

Oracle® Communications Network
Charging and Control
Service Management System Technical
Guide

Release 15.2

January 2026

ii Service Management System Technical Guide

Copyright

Copyright © 2026, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government’s use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

 iii

Contents

About This Document .. vii
Document Conventions .. viii

Chapter 1

System Overview .. 1

Overview .. 1
What is the Service Management System? .. 1
Platform Configuration ... 4
Maintaining Network Connections ... 6
smsTrigDaemon .. 7
Alarms.. 9
Statistics ..12
EDRs ...15

Chapter 2

Replication Overview .. 19

Overview ..19
What is Replication? ..19
Failover and Error Recovery ...22
Replication in an Unclustered Installation ...23
replication.def File ...31
replication.config File ...38

Chapter 3

Replication Check ... 41

Overview ..41
Replication Checks ..41
Database Comparisons ...43
Database Resynchronizations ...45
Auditing ..47

Chapter 4

Configuring the Environment ... 49

Overview ..49
Configuration Overview ...49
Configuring the Resource Group in the Clustered Environment ...51
Configuring Replication Files ...55
Configuring the Oracle Wallet ...56
Creating the Oracle Wallet Automatically by Using setupOracleWallet.sh62
Configuring the Oracle Listener ...65
Configuring the SNMP Agent ..70
Configuring Connections for CORBA Services ...76
SMF AlarmMessage Format ...79
Defining the Screen Language ..81
Defining the Help Screen Language ...83
Setting up the Screens ..84
Configuring Nodes ...116
Installing Additional Applications ...116

iv Service Management System Technical Guide

Configuring LDAP based SMS Login .. 117

Chapter 5

Background Processes on the SMS .. 119

Overview .. 119
cmnConfigRead ... 120
cmnReceiveFiles ... 120
smsAlarmDaemon ... 121
smsAlarmManager .. 123
smsAlarmRelay ... 125
smsConfigDaemon .. 128
smsConfigDaemonScript ... 129
smsCdrArchiver ... 131
smsCdrProcess.sh .. 140
smsDbCleanup.sh ... 140
smsLogCleaner ... 141
smsMergeDaemon .. 143
smsMaster ... 144
smsNamingServer ... 145
smsReportsDaemon .. 146
smsReportScheduler ... 148
smsReportCleanupStartup.sh ... 150
smsStatsDaemon .. 151
smsStatisticsWriter .. 151
smsStatsThreshold .. 162
smsSendConfig.sh .. 163
smsTaskAgent ... 164
smsTrigDaemon .. 167

Chapter 6

Background Processes on the SLC .. 173

Overview .. 173
smsApplyConfig.sh .. 173
cmnPushFiles .. 174
infMaster .. 179
smsAlarmDaemon ... 180
smsLogCleaner ... 182
smsStatsDaemon .. 184
updateLoader .. 192

Chapter 7

Tools and Utilities ... 195

Overview .. 195
cmnConfigSyntaxCheck .. 195
cmnSU ... 196
compareNode .. 196
comparisonServer ... 197
inetCompareServer ... 198
infoDisplayer .. 199
inputBootstrap ... 200
repConfigWrite... 201
resyncServer ... 203

 v

setupOracleWallet.sh ..203
smsCompareResyncClient ..205
smsCompareResyncServer ..208
smsDumpRepConfig ...218
smsIorDump ..219
smsLogTest ...220
smsManualRequester..221
smsProcessCdr ...222
smsRecordStatistic ..229
smsStatsQuery ..229
startMerge ...231

Chapter 8

Reports .. 233

Overview ..233
Reports Database Tables ..233
Installing a Report Script ...234
Report Script Worked Example ...236
Database Auditing ...240

Chapter 9

Troubleshooting .. 243

Overview ..243
Common Troubleshooting Procedures ..243
Possible Problems ...244
Index Defragmentation ..246

Chapter 10

Pre-installation .. 249

Overview ..249
SMS Client Specifications ...249
Preparing the System ..250
Database Timezone and Backups ..251
Starting Oracle Automatically on Reboot ..252

Chapter 11

About Installation and Removal ... 253

Overview ..253
Installation and Removal Overview ...253
Raw Devices on Clustered SMS ...254
Setting up ssh keys ...256
Checking the Installation ...257

 vii

About This Document

Scope

The scope of this document includes all the information required to install, configure, and administer the
Service Management System application.

Audience

This guide was written primarily for system administrators and persons installing, configuring,
implementing and administering the USMS application. The documentation assumes that the person
using this guide has a good technical knowledge of the system.

Prerequisites

Although there are no prerequisites for using this guide, familiarity with the target platform would be an
advantage.

A solid understanding of Unix and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this technical guide. Attempting to install, remove, configure or
otherwise alter the described system without the appropriate background skills, could cause damage to
the system; including temporary or permanent incorrect operation, loss of service, and may render your
system beyond recovery.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related Documents

The following documents are related to this document:

• Service Management System User's Guide

• SC3.1 Data Service for OPS/RAC
https://support.oracle.com/CSP/main/article?type=NOT&id=1000611.1

https://support.oracle.com/CSP/main/article?type=NOT&id=1000611.1

viii Service Management System Technical Guide

Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network
Charging and Control (NCC) documentation.

Formatting Convention Type of Information

Special Bold Items you must select, such as names of tabs.

Names of database tables and fields.

Italics Name of a document, chapter, topic or other publication.

Emphasis within text.

Button The name of a button to click or a key to press.

Example: To close the window, either click Close, or press Esc.

Key+Key Key combinations for which the user must press and hold down one
key and then press another.

Example: Ctrl+P or Alt+F4.

Monospace Examples of code or standard output.

Monospace Bold Text that you must enter.

variable Used to indicate variables or text that should be replaced with an
actual value.

menu option > menu option > Used to indicate the cascading menu option to be selected.

Example: Operator Functions > Report Functions

hypertext link Used to indicate a hypertext link.

 Chapter 1, System Overview 1

Chapter 1

System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Network Charging and Control
(NCC) network or service implications of the product.

In this Chapter

This chapter contains the following topics.

What is the Service Management System? .. 1
Platform Configuration ... 4
Maintaining Network Connections ... 6
smsTrigDaemon .. 7
Alarms ... 9
Statistics .. 12
EDRs ... 15

What is the Service Management System?

Description

The Service Management System (SMS) product provides service management support for existing
Oracle Communications Network Charging and Control Intelligent Network (IN) products.

The primary function of SMS is to provide operators with access to data used by service logic
applications.

SMS provides the following:

• A central repository for other IN services, such as ACS and CCS

• Generic functions

The SMS main menu provides access to all installed services. To access any service, select the item
from this menu.

Functions

The generic functions of SMS include:

• Security

• Replication

• Statistics gathering

• Alarm Management

• Report generation

Chapter 1

2 Service Management System Technical Guide

• Auditing of Database Changes

SMS component diagram

Here is an example of the main components of the SMS system.

SMS subsystems

There are four main subsystems within SMS:

 Chapter 1

•

 Chapter 1, System Overview 3

• Replication

• configuration management

• Reporting functions

• File transfer

Replication

Replication provides the main method of transferring data around the Service Management System. It
provides:

• A reliable and fault tolerant delivery of data:

▪ From administrators and SLCs into the SMF
▪ Changes to persistent data held in the SMF to all relevant SLCs (so all parts of the system have

consistent data)

• Alternative network routing between the SLC and SMS under network failure, or buffered updates
under complete network failure or SMS downtime

• Disaster recovery in the event of a network failure

Replication moves the following data:

• Configuration data for the smsStatsDaemon

• Configuration data for other installed IN software (such as ACS, CCS and VWS)

• Any update of application data due to the actions of the service running on the SLCs (including
client account and call routing data)

• System, application and interface statistics

• Alarms

For more information about replication, see Replication Overview (on page 19).

Reporting Functions

The reporting functions enable the administrator to run reports against the data collected in the SMF.

The reports are configured in the SMS Java administration screens.

Data flow

There are two main methods of data transfer:

• Replication

• File transfer (using ftp)

Process Descriptions

This table describes the main components in SMS.

Process Role Further information

smsMaster Receives update requests and forwards them to
the SMF.

smsMaster (on page
144)

SMF The main SMF on the SMS.

SCP The databases on the SLCs. They hold a subset
of the data on the SMF.

updateLoaders Receives update orders from the smsMaster and
inserts them into the SCPs.

updateLoader (on page
192)

Chapter 1

4 Service Management System Technical Guide

Process Role Further information

Update Requesters Update requesters run on SMSs and SLCs and
may run on other IPs as well . They send update
requests to the smsMaster. They include the
smsAlarmDaemon and the smsStatsDaemon.

smsTaskAgent Forwards administrator's instructions to the
smsMaster.

smsTaskAgent (on
page 164)

smsAlarmDaemon Collects alarms from local sources and forwards
them to the smsMaster.

Alarms (on page 9)

smsAlarmRelay Monitors the alarms in the SMF and forwards
alarms to administrators.

Alarms (on page 9)

smsReportsDaemon Enables the user to run reports against the data
held in the SMF.

smsReportsDaemon
(on page 146)

smsStatsDaemon Collects statistics and forwards them to the
smsMaster.

Statistics (on page 12)

Platform Configuration

Overview

There are three configurations that SMS can be installed on. They are:

• On a single platform

• With one SMS on one platform and one or more SLCs on separate platforms

• With multiple SMSs connected to a RAID array and one or more SLCs on separate platforms

Unclustered platform configuration

Using the unclustered platform configuration, the smsSms package is installed on the SMS. The
smsScp package is installed on one or more SLCs.

This configuration provides resilience by using a failover system from the SMS to the SLCs. However,
while the SMS is unavailable, no configuration updates can be forwarded to the SLCs.

 Chapter 1

•

 Chapter 1, System Overview 5

Unclustered platform configuration diagram

Here is an example of replication in an unclustered installation.

Single platform configuration

Using the single platform configuration, all required SMS functionality is installed on a single platform.
Because all SMS functionality is on a single computer the parts of SMS which are involved in connecting
the different components are removed.

This results in a simple, easy to administer system. However, because the system runs on one machine,
resilience is reduced.

Chapter 1

6 Service Management System Technical Guide

Single platform component diagram

Here is an example of the components in SMS installed on a single platform.

Maintaining Network Connections

Introduction

All replication elements (nodes) establish TCP connections with a master replicator by implicitly
connecting to one.

To maintain reliable connection between nodes of the replication system two methods are employed to
strengthen the underlying TCP protocol to be used:

• Heartbeating

• Dual network connection

Heartbeating

A simple heartbeating mechanism is used to overcome TCP's failure to detect connection severance (for
example, cable failure).

Every node connected to a superior master node sends a periodic heartbeat message to which the
master responds with an acknowledgment. This ensures both ends of the connection can detect failure
within one heartbeat period.

When a connection fails, the connecting element should attempt to reconnect to a superior master. If the
superior master is part of a cluster, the connecting element attempts to connect to the next master in the
cluster.

 Chapter 1

•

 Chapter 1, System Overview 7

Dual Network Connection

The replication system supports dual network connection to overcome a potential single point of failure
(that of the underlying transport medium).

Each node can have two addresses by which it can be reached: a primary and a secondary address.
These addresses can (and should) be on separate networks.

When a connection to a superior master is required by an element, two connection attempts are made:

1 Primary address (over the primary network)

2 Secondary address (over a secondary network)

The replication element uses the first connection to succeed, closing the other connection first.

If required, a configurable delay (of up to one second) occurs between the connection attempt to the
primary address and the secondary one.

This provides the ability to favor the primary network over the secondary (for example, if one network
has a better known latency).

If no delay is configured, the connection attempts occur simultaneously. If both networks have similar
latency, the one that ultimately gets used is unpredictable.

smsTrigDaemon

Purpose

smsTrigDaemon manages control plan execution requests. It runs on the SMS platform.

smsTrigDaemon accepts control plan execution requests from either a remote PI client or the Java
management screens. It forwards requests to ACS through the xmlTcapInterface on the SLC platform.
An indication of whether or not the requests were successful passes back from the ACS to the initiating
client.

Chapter 1

8 Service Management System Technical Guide

Architectural overview

This diagram shows smsTrigDaemon and components that surround it.

Message flows

This table describes message the message flows that smsTrigDaemon uses.

Stage Description

1 The Java management screens send control plan execution requests to smsTrigDaemon
over a CORBA transport layer. Each request contains the name of the control plan to be
executed, the SLC service handle, the CLI of the subscriber against which the control
plan should be executed, an optional called party number and extensions.

2 A remote PI client sends control plan execution to requests to the provisioning interface.
As with stage 1, each request contains the name of the control plan to be executed, the
SLC service handle, the CLI of the subscriber against which the control plan should be
executed, an optional called party number and extensions.

3 The provisioning interface forwards requests to smsTrigDaemon over the FIFO layer
transport layer.

4 Using an XML request, smsTrigDaemon forwards the control plan execution request to
the xmlTcapInterface on the SLC platform.

 Chapter 1

•

 Chapter 1, System Overview 9

Stage Description

5 The xmlTcapInterface constructs an InitialDP and sends it to ACS through the SLEE.

For more information about the SLEE, see Service Logic Execution Environment
Technical Guide.

6 An indication of success or failure is returned to the xmlTcapInterface using a Connect,
Continue or ReleaseCall component.

7 The indication of success or failure is sent to smsTrigDaemon using an HTTP response.
smsTrigDaemon then sends the indication back to the client.

Note: Third parties can also send XML requests directly to the xmlTcapInterface.

Components

The smsTrigDaemon interacts with three subsystems:

• Provisioning Interface

• xmlTcapInterface

• SLEE

PI

The Provisioning Interface (PI) provides a mechanism for manipulating data in the SMF. It enables bulk
or scripted operations on SMF data where manual input using the Java management screens would be
inefficient.

For more information, see PI User's and Technical Guide.

xmlTcapInterface

The xmlTcapInterface enables the SLEE to inter-work with a TCAP protocol. The interface converts
XML messages arriving from smsTrigDaemon into SLEE events. Similarly, the interface converts events
arriving from the SLEE into XML messages that smsTrigDaemon understands.

For more information, see XML TCAP Interface Technical Guide.

Alarms

Introduction

Alarms from the SMS and SLCs are collected in the SMF using replication. A set of tools enable
management of the alarms in the SMF. Functions include:

• Filtering alarms

• Setting notification destinations

• Monitoring

This functionality is configured using the alarms screens in SMS. For more information about configuring
alarms, see Service Management System User's Guide.

Alarms can be generated from monitoring statistics.

Chapter 1

10 Service Management System Technical Guide

Alarms diagram

Here is an example of the alarms transfer process.

Alarms replication process

This table describes the stages involved in collecting and reporting about alarms within the SMS system
using replication.

Stage Description

1 Alarms are collected by the smsAlarmDaemon on the SMS and SLCs. Sources include:

• The syslog file

• Oracle logs

 Chapter 1

•

 Chapter 1, System Overview 11

Stage Description

2 The smsAlarmDaemon sends an update request to the superior master (usually the
smsMaster).

Exception: The smsAlarmDaemon on the SMS makes its updates directly to the SMF,
without sending anything to the smsMaster.

3 When the superior master receives an update request, it inserts the updated data into the
SMF_ALARMS_MESSAGE table of the SMF.

4 The smsAlarmManager matches each alarm instance in the SMF_ALARMS_MESSAGE
table with the correct alarm type from the SMF_ALARM_DEFN table, and additional
information about the alarm type is saved with the alarm instance.

5 The smsAlarmRelay process monitors the SMF_ALARMS_MESSAGE table and forwards
alarms to the specified external resource.

Note: The administrator can run reports on the collected alarms using the reports screens
in SMS (which are executed by the smsReportsDaemon).

Statistics thresholds

Alarms can be generated from specific statistical measures.

The smsStatsThreshold process monitors the SMF_STATISTICS table in the SMF database. When a
statistic or statistics match a rule specified in the SMF_STATISTICS_RULE table, the
smsStatsThreshold process inserts an alarm record into the SMF_ALARM_MESSAGE table in the SMF
database.

For more information about configuring statistics thresholds, see Service Management System User's
Guide.

Enhanced Fault Management

Enhanced Fault Management (EFM) takes the alarms that are produced by the system and matches
alarm instances to information that is held in the database for each alarm type. The alarm instances,
including the additional information can then be relayed to an external resource for further processing.

Description of processes and executables

This table describes the roles of the components involved in the alarms process.

Process Role Further information

smsAlarmDaemon Collects alarms from local sources and forwards
them to the smsMaster.

smsAlarmDaemon (on
page 121)

smsMaster Receives alarms from smsAlarmDaemons and
forwards them to the SMF.

smsMaster (on page
144)

smsAlarmRelay Monitors the SMF_ALARM_MESSAGE table in
the SMF and forwards alarms to relevant
notification points (including SNMP).

smsAlarmRelay (on
page 144)

smsReportsDaemon Enables the user to run reports against the
alarms held in the SMF.

smsReportsDaemon
(on page 146)

smsStatsThreshold Monitors the SMF_STATISTICS table in the
SMF. If the statistics meet certain rules, the this
process creates an alarm and inserts it into the
SMF_ALARM_MESSAGE table in the SMF.

smsStatsThreshold (on
page 162)

Chapter 1

12 Service Management System Technical Guide

Process Role Further information

smsAlarmManager The smsAlarmManager matches alarm instances
with the alarm definitions stored in the
SMF_ALARM_DEFN table on the SMF, and adds
the extra information stored in the definition to
each instance of that alarm as it occurs.

smsAlarmManager (on
page 123)

Alarm replication and buffering

The smsAlarmDaemon filters alarms before they are sent. This enables:

• Protection against the SMS being flooded with alarms

• Filtering of repeating alarms

For more information about buffering alarms, see smsAlarmDaemon (on page 121).

Statistics

Introduction

Statistics generated by the SMS and SLCs are collected in the SMF_STATISTICS table of the SMF
database. A set of tools provides management functions. Functions include:

• Filtering statistics

• Setting rules for statistics thresholds which raise alarms

• Running reports against the statistics held in SMF_STATISTICS

For more information about using these functions, see Service Management System User's Guide.

 Chapter 1

•

 Chapter 1, System Overview 13

Statistics collection diagram

Here is an example of the statistics collection process.

Description of processes and executables

This table describes the roles of the components involved in the statistics process.

Process Role Further information

smsStatsDaemon Collects statistics from SLCs and forwards them
to smsMaster.

smsStatsDaemon (on
page 184).

smsMaster Receives statistics from the smsStatsDaemons
and forwards them to the smsMaster for insertion
into the SMF.

smsMaster (on page
144).

Chapter 1

14 Service Management System Technical Guide

Process Role Further information

smsReportsDaemon Enables the user to run reports against the
statistics held in the SMF.

smsReportsDaemon
(on page 146).

smsStatsThreshold Monitors the SMF_STATISTICS table in the
SMF. If the statistics meet certain rules, the
smsStatsThreshold process creates an alarm and
forwards it to the smsAlarmDaemon on the SMS.

smsStatsThreshold (on
page 162).

Statistics collection process

This table describes the stages involved in collecting statistics within the SMS system using replication.

Stage Description

1 Statistics are gathered by the statistics daemon process (smsStatsDaemon) which runs
on each SLC platform. Statistics which are collected include:

• Statistics from the shared memory which are generated by the slee_acs

• TCAP statistics from files saved by the TCAP interface

• System statistics from the kernel

2 At regular intervals, the smsStatsDaemon sends the values to the smsMaster process on
the SMS platform as an update request.

3 The smsMaster adds the new statistics to the SMF_STATISTICS table in the SMF.

4 The administrator can run reports on the collected statistics using the statistics screens in
SMS (which are executed by the smsReportsDaemon).

Statistics thresholds

Alarms can be generated from specific statistical measures.

The smsStatsThreshold process monitors the SMF_STATISTICS table in the SMF database. When a
statistic or statistics match a rule specified in the SMF_STATISTICS_RULE table, the
smsStatsThreshold process inserts an alarm record into the SMF_ALARM_MESSAGE table in the SMF
database.

For more information about configuring statistics thresholds, see Service Management System User's
Guide.

Statistics collected

The statistics system can collect any SMS-compatible IN application statistics. These are typically
coarse values related to the general performance and behavior of the application. Typical statistics
values include:

• Total number of requests from SSF

• Number of call instances resulting in error treatment

• Number of calls from invalid geographical locations

• Number of calls reaching successful call completion to international locations

• Number of calls reaching successful call completion to international category one partners

Statistics sources may include:

• System statistics from the syslog

• System statistics from the operating system

• Statistics from the Sigtran stack

• Statistics from shared memory

 Chapter 1

•

 Chapter 1, System Overview 15

Note: For statistics about call processing, see also Advanced Control Services Technical Guide.

EDRs

Introduction

The SMS software provides a complete, integrated reporting mechanism for Event Detail Records
(EDR). It allows the developers of SMS-compatible IN applications to add report functions to their
product, through the SMS reports interface.

EDR file transfer diagram

Here is an example of the transfer of files between SLCs and the SMS.

Chapter 1

16 Service Management System Technical Guide

EDR file transfer process

This table describes the stages involved in transferring files around the system using the Common File
Transfer process. The files usually transferred are EDRs.

Stage Description

1 On the SLCs, cmnPushFiles collects files from the configured input directory and
transfers them to the configured output directory on the SMS through an stdout. It adds
the destination directory to the file.

2 If the transfer fails, cmnPushFiles copies the files to the configured retry directory to
attempt the transfer again later.

3 When the files are successfully transferred to the SMS, cmnPushFiles moves the files to
the configured completed directory.

4 On the SMS, cmnReceiveFiles scans the configured input directory and moves any files
to the directory specified in the file.

5 smsCdrProcess.sh scans its input directory for *.cdr files and moves them to its processed
directory.

Description of processes and executables

This table describes the roles of the components involved in the alarms process.

Process Role Further information

cmnPushFiles Reads files from a specified directory and
transfers them to the SMS using stdout.
Depending on the success of the transfer, the file
is also moved to another directory on the
origination SLC.

cmnPushFiles (on page
174)

cmnReceiveFiles Collects files from the input directory on the SMS
and writes them to the specified output directory
on the SMS.

cmnReceiveFiles (on
page 120)

smsCdrProcess.sh Provides a set of EDR processing and archiving
functions.

smsCdrProcess.sh (on
page 140)

smsReportDaemon Enables the user to run reports against the
statistics held in the SMF.

smsReportsDaemon
(on page 146)

Directory structure and filenames

So that the Unix transfer scripts can locate the output EDR file, the file should be named according to
the naming convention. This is usually done by the processes which create the files.

The directory structure which holds the files is in /IN/service_packages/SMS/cdr/.

For more information about the directory structure, see Advanced Control Services Technical Guide.

The file name is ApplicationID.cdr. In this case, the complete specification of the currently active EDR
filename for the ACS application is APP_yyyymmddhhmmss.txt.

Where:

• APP is the three letter acronym for the originating process

• yyyymmddhhmmss is the date and time the file started to be written to

There is no need for the application to provide any further detail in the file name, as the subsequent
processing of the EDR files can perform this. The file names for archived files on the SLC and SMS are
detailed in the section that deals with the subsequent processing of these files.

 Chapter 1

•

 Chapter 1, System Overview 17

EDR intermediate file format

The intermediate EDR, as output from the SMS EDR API is written to the
/IN/service_packages/SMS/cdr/current/ directory.

The format of the file is a | separated list of TAG=VALUE pairs, except for the first entry which is the
service name followed by a |. Each record is new line separated.

Example:

File created at 1999060312449

Acs_Service|SN=1800906420|TN=4770360|CGN=9380360|TCS=1999060312449

Acs_Service|SN=1800906421|TN=4770361|CGN=9380361|TCS=1999060312450

Acs_Service|SN=1800906422|TN=4770362|CGN=9380362|TCS=1999060312457

Acs_Service|SN=1800906423|TN=4770363|CGN=9380363|TCS=1999060312521

Acs_Service|SN=1800906424|TN=4770364|CGN=9380364|TCS=1999060312590

Acs_Service|SN=1800906425|CGN=9380365|TCS=1999060312449

Acs_Service|SN=1800906426|CGN=9380366|TCS=1999060312449

Acs_Service|SN=1800906427|TN=4770367|CGN=9380367|TCS=1999060313036

Acs_Service|SN=1800906428|TN=4770368|CGN=9380368|TCS=1999060312036

 Chapter 2, Replication Overview 19

Chapter 2

Replication Overview

Overview

Introduction

This chapter explains the replication system used in SMS.

In this chapter

This chapter contains the following topics.

What is Replication? .. 19
Failover and Error Recovery ... 22
Replication in an Unclustered Installation ... 23
replication.def File ... 31
replication.config File ... 38

What is Replication?

Introduction

Replication is the system which transfers data between nodes in the IN installation.

Data flow

The SMF database on the SMS holds the full set of authoritative data within the system. Data required
for call processing and resilience is forwarded to the SCP database on the SLCs using SMS replication.
Updates are received from processes on the SMSs and the SLCs and from the Service Management
System administration screens.

Chapter 2

20 Service Management System Technical Guide

Replication process

This table describes the stages involved in replicating data around the system.

Stage Description

1 Update Requests come from one of the following:

• The administration screens

• An event on the SMS or SLCs

2 If the update comes from the administration screens, one of the following occurs:

• Forwarded to the smsTaskAgent, and then through to an smsMaster

• Inserted directly into the SMF database

If the update request comes from the SMS or SLCs, the relevant update requester sends
an update request to an smsMaster (parent).

3 When an smsMaster (parent) receives an update request, it:
a. Sends an update order to all configured destination replication groups (there may

be no relevant groups, in which case no order is sent)

b. Spawns a local smsMaster (child) process to insert the updated data into the SMF
database.

4 updateLoader on the relevant SLCs reads the update order from the socket and inserts
the data into the SCP database.

5 If requested to do so, updateLoader sends a confirmation to smsMaster that the update
completed successfully.

Nodes

Replication occurs between nodes in the system. Nodes allow specific processes on machines to be
replicated to and from, and for more than one node to exist on a single machine. Each node has a node
number which identifies the node.

For more information about configuring nodes, see Service Management System User's Guide.

Superior Master Nodes

Superior master nodes are forwarded all data update requests within SMS, and distribute update orders
to all SLCs that require the replication data through the updateLoaders.

In a clustered installation, the superior master role is shared between the available smsMaster nodes on
the SMSs.

In an unclustered installation, the superior master node is the node with the lowest node number in the
system. This is usually the smsMaster on the SMS, but at times may be an infMaster on an SLC.

Update Loader nodes

Update loader nodes run on any SLC that requires database updates. They are the updateLoader
processes running on the SLCs. They accept update orders from superior master nodes and insert the
data into the local SCP database.

The update loaders on a single SLC platform are independent of each other and are treated as separate
replication nodes to the replication system. Hence there can be more than one per machine, although in
practice there is normally just one.

An update loader must always be connected to a master. Even if it is not receiving any information from
the master, it will have a connection.

 Chapter 2

•

 Chapter 2, Replication Overview 21

Update Requester nodes

Update requesters create update requests in response to specific events on the SLCs and send them to
the superior master to update the centralized data (and from there it is replicated to the relevant SLCs).
Update requesters include:

• replicationIF

• smsAlarmsDaemons

• smsStatsDaemons

Update requesters do not need to be configured in the database.

Replication groups

A replication table has one or more replication groups. A replication group can be assigned to one or
more replication nodes.

Example:

• Replication Group A resides on Node 1, Node 2 and Node 3

• Replication Group B resides on Node 1 and Node 3

Primary replication nodes

Primary nodes can be defined for a specific replication group. The primary is the highest priority
destination node for the data defined in the replication group. This enables the IN to assign particular
services to specific nodes, but still provide a failover to other nodes as required.

This only sets the node as the primary for the specific group involved and is independent of other
groups. A node may be defined as a primary for one group without being a primary for another group.

Example:

• Replication Group A resides on Node 1, Node 2 and Node 3, where Node 3 is the primary for group
A.

• Replication Group B resides on Node 1 and Node 3, where Node 1 is the primary for group B.

Primary nodes are not required unless a service is running with different priority on different nodes.

Update requests to primary nodes

Primary node status is relevant for processes which are requesting an smsMaster to update the SMF.

The update processes have three types of Update Requests:

1 Make the change and do not confirm that it has been made.

2 Send a notification when the change has been made to the SMF.

3 Send a notification when the change has been made to the primary replication node for this
replication group.

The primary node status is used when the third type of update request is used. While the update may be
successful without the primary node being configured, the requesting process may register errors if the
notification of the update is not received.

For more information about setting primary and secondary status within a replication group, see Service
Management System User's Guide.

Master Controllers

A master controller is any process which provides instructions to a superior master node. Possible
instructions include:

Chapter 2

22 Service Management System Technical Guide

• Update configuration

• Merge databases

• Resync databases

Master controllers include executables started from the command line and functions embedded in other
processes. They include:

• smsTaskAgent

• resyncServer

• smsCompareResyncServer

Failover and Error Recovery

Introduction

If a node becomes unavailable for any reason, the system attempts to continue functioning. The nodes
that remain available continue to operate normally. Updates for the node that is unavailable are queued
for as long as the queue space lasts.

When the node becomes available again, the queued updates are resent.

If nodes become out of sync to the point where they cannot automatically recover, a manual resync can
be run.

updateLoader failure

If the update loader fails, then the updates are queued until it is back on-line. If the Update Loader is still
down after a period of time and a smsMaster's pending queue reaches its configured maximum size,
then the update loader is marked as "Out Of History" by that smsMaster and its updates are removed. If
this happens, after the Update Loader is back on-line, a total database re-synchronization is performed
with the smsMaster.

Update queuing

If the nodes become disconnected, a number of processes queue updates until the connection is
restored. After the connection is restored, the queued updates execute normally.

smsMaster queues all updates it sends out until an acknowledgment is sent out by the receiving
updateLoader. The number of updates that are queued is set in the smsMaster configuration.

updateLoader queues all uncompleted updates in a file named using the following format:

updateLoaderNodeNumber-queuedOrders.dat

Further information

For more information on failover and error recovery processes, see Replication Check (on page 41).

 Chapter 2

•

 Chapter 2, Replication Overview 23

Replication in an Unclustered Installation

Replication component diagram

Here is an example of replication in an unclustered installation.

Chapter 2

24 Service Management System Technical Guide

Replication components

This table describes the components of replication in an unclustered installation.

Process Role Further information

smsMaster Runs on the SMS handling updates throughout
SMS. This is the superior master for all
connected nodes.

smsMaster (on page
144)

infMaster An infMaster runs on each SLC. If it becomes the
node with the highest number of all connected
nodes, it stands in as the superior master until a
higher node number becomes available again.

infMaster (on page 179)

updateLoaders An updateLoader runs on each SLC. It manages
all incoming update orders and inserts updated
data into the SCP.

At any point in time, an updateLoader is
connected to a specific superior master.

updateLoader (on page
192)

update requesters update requesters may run on any machine.
They send update requests to the Superior
Master.

Update Requester
nodes (on page 21)

smsMergeDaemon The smsMergeDaemon runs on the SMS and
monitors the connections between the SMS and
the SLCs. If it notices a break in the connection, it
may start a merge to update the disconnected
nodes.

smsMergeDaemon (on
page 143)

smsTaskAgent The smsTaskAgent accepts instructions from the
SMS Administration screens and produces
instructions for the smsMaster. It generates the
replication config file and copies it to the SLC
nodes.

smsTaskAgent (on
page 164)

smsNamingServer The smsNamingServer enables non-SMS
components to connect to elements within the
SMS.

smsNamingServer (on
page 145)

SMF This Oracle database holds authoritative data for
all SLCs.

SCPs These Oracle databases hold the subset of SMF
data required to route calls.

Updates

The replication system performs ‘row’ level updates and buffers updates to reduce processing load on
the real-time system elements. This is achieved by holding the update requests in a memory resident
queue (called the Pending Updates Queue) until replication has been successfully completed.

Update requests are performed in the order they arrive at the superior master.

Inferior Master Nodes

An inferior master node is a master node with a higher node number than that of the current superior
master. It does not perform any function unless it becomes the available master node with the highest
node number (in which case it becomes the superior master).

 Chapter 2

•

 Chapter 2, Replication Overview 25

Node numbers

This table lists the node number ranges and their details for an unclustered installation.

Node Numbers Description

1 This node number must assigned to the smsMaster process on the SMS.

17-255 These node numbers are available to infMaster processes on the SLCs.

256-511 These node numbers are available to updateLoaders on the SLCs.

512-999 These node numbers are available to updateRequesters. They are usually
configured in the following pattern:

• 601-699 Replication IF nodes

• 701-799 smsStatsDaemon nodes

• 801-899 smsAlarmDaemon nodes

1000 In an unclustered installation, this node number is used for the
smsMergeDaemon.

Note: Node numbers are unique.

Failover

If a node becomes disconnected from the smsMaster node (due to network failure or a problem with the
SMS), it attempts to contact the other nodes in descending node number order until it locates a node it
can connect to.

An infMaster on one of the SLCs becomes the acting superior master until the failure is resolved. After
the smsMaster becomes available again, smsMergeDaemon instructs the infMaster to merge its
updates with the smsMaster.

If the infMaster that is the acting superior master becomes unavailable before the smsMaster is
available again, the infMaster with the next node number is used instead.

Chapter 2

26 Service Management System Technical Guide

All nodes connected

Here is an example showing all nodes in an unclustered configuration connected to the
smsMergeDaemon.

 Chapter 2

•

 Chapter 2, Replication Overview 27

Isolated SLC

This diagram depicts an isolated SLC in an unclustered environment.

Where an SLC has been isolated from the master it looks for and connects to the master in the network,
which has the next lowest node number. In the diagram above, SLC1 has been isolated from the
network and the update loader cannot find Master 1, so it looks for the master with the lowest node
number it can see (in this case it is Inferior Master 2 on SLC1) and connects to that.

The Master 1 queues all updates for SLC1 until such time as it comes back on line. When SLC1 comes
back on line, the smsMergeDaemon queries the infMaster process to see if there are any connections to
it. If there are any processes connected to the infMaster, the smsMergeDaemon sends a start merge
message to the smsMaster. The smsMaster then updates the rest of the network with the information
received from SLC1.

Chapter 2

28 Service Management System Technical Guide

If the smsMergeDaemon is not running, the startMerge process may be used instead. startMerge copies
the data from SLC1 to the smsMaster. The smsMaster then updates the rest of the network with the
information received from SLC1.

Isolated SMS

This diagram depicts an isolated SMS.

Where the master is isolated from the network, each update loader looks for the inferior master with the
lowest node number and connects to that.

 Chapter 2

•

 Chapter 2, Replication Overview 29

In the above case the Master 1 on the SMS has been isolated. The update loader on each node looks
for the inferior master with the lowest node number it can find, in this case the update loaders on both
SLC1 and SLC2 finds and connecst to inferior master 2 on SLC1. When the SMS comes back into the
network, the smsMergeDaemon checks each SLC infMaster process to see if there are any connections
to them. In this case, there are connections to the SLC1 infMaster process (node 2) from the SLC2
(node 3). The smsMergeDaemon runs startMerge against SLC1. startMerge copies SLC1's data across
to the SMS. The smsMaster then attempts to update both SLCs with the new data from SLC1.

All nodes isolated

This diagram depicts all nodes isolated.

Where all nodes in the network are isolated, they each connect to the inferior master with the lowest
node number that they can see. In the above example, this results in the update loader on SLC1
connecting to inferior master 2 on SLC1 (node 2), and the update loader on SLC2 connecting to the
inferior master 3 (node 3).

Chapter 2

30 Service Management System Technical Guide

As the SLCs reconnect to the SMS and reestablish a reliable heartbeat, the smsMergeDaemons run
startMerge against each SLC to copy the data across to the SMS. Then the SMS replicates the data to
the available SLCs.

Merging nodes

If a infMaster is acting as a superior master, it collects update requests in a table on the local SCP.
When the smsMaster (or another infMaster with a higher node number) reconnects, all local update
requests must be forwarded to the new superior master node and replicated.

The process for completing this task is known as a merge. Usually, the smsMergeDaemon initiates a
merge automatically when the connection has stabilized. However, it is also possible to start a merge by
hand by invoking the startMerge process from the command line.

For more information about using startMerge, see startMerge (on page 231).

Description of resync processes and executables

This table describes the roles of the components involved in the resync process.

Process Role Further information

smsMaster The smsMaster collects update requests in the
pending update queue until the destination
updateLoader acknowledges a successful
update.

If the smsMaster cannot connect to a
updateLoader, it collects pending updates until a
new connection to the updateLoader is made.

smsMaster (on page
144)

resyncServer Takes a snapshot of the SMF and sends it to the
compareResyncReceive process on the SLC.
One resyncServer is started for each resync
commenced.

resyncServer

smsCompareResyncServe
r

Reads configuration information from the
configuration file created by resyncServer and
starts a resync.

smsCompareResync
Server (on page
208)

compareResyncReceiver Updates the SCP with the data from the SMF
(sent by resyncServer on the SMS).

smsCompareResyncClient Receives information from
smsCompareResyncServer and updates the
SCP.

smsCompareResync
Client (on page 205)

updateLoader When a resync is started, the updateLoader
stops making updates to the SCP. Instead it
writes the updates to a file named in the following
file:

nodenum-queuedOrders.dat

When the resync is completed, the queued
update orders are processed as normal.

updateLoader (on
page 192)

 Chapter 2

•

 Chapter 2, Replication Overview 31

replication.def File

Introduction

The replication.def file defines default values for all the replication executables on the node it is on. Any of
the defaults may be overridden on the command line when the executable is started.

Example: MAX PENDING=200 can be overridden when starting an smsMaster by adding the command

line parameters -maxpending 400 (no spaces in the parameter and all lower case).

Note: Ensure that the heartbeat settings for both ends of a heartbeat are set to the same value.
Otherwise, the connection is repeatedly dropped.

This file is located in the /IN/service_packages/SMS/etc/ directory.

Parameters

The replication.def accepts the following configurable parameters.

COMMIT IDLE TIME

Syntax: COMMIT IDLE TIME=mseconds

Description: Timeout period (in milliseconds) for the Update Receiver (Update Loader) to
become idle after an Update Request (Update Order) and commit.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 100

Notes:

Example: COMMIT IDLE TIME=100

COMMIT BUSY TIME

Syntax: COMMIT BUSY TIME=mseconds

Description: Timeout period (in milliseconds) for the Update Receiver or updateLoader to
commit a change even if it remains continuously busy.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10000

Notes:

Example: COMMIT BUSY TIME=10000

CONFIG DIR

Syntax: CONFIG DIR=dir

Description: The directory where the replication config file is stored. This parameter has been
included for future development, it is recommended that the default is always
used.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /IN/service_packages/SMS/etc

Chapter 2

32 Service Management System Technical Guide

Notes:

Example: CONFIG DIR=/IN/service_packages/SMS/etc

CONN RETRY TIME

Syntax: CONN RETRY TIME=seconds

Description: Time (in seconds) before an updateLoader tries to reconnect to a master
replicator if none is available.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 0

Notes: If set to 0, no re-attempt is made.

Example: CONN RETRY TIME=0

CONNECTION TIMEOUT

Syntax: CONNECTION TIMEOUT=seconds

Description: Timeout (in seconds) before an attempted connection to a master is terminated
and alternative is tried.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 1

Notes:

Example: CONNECTION TIMEOUT=1

HB PERIOD

Syntax: HB PERIOD=seconds

Description: Heartbeat period (in seconds)

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes: The period should be consistent across all platforms. Not advisable to take below
3 seconds.

Example: HB PERIOD=10

HB TIMEOUT

Syntax: HB TIMEOUT=seconds

Description: Heartbeat timeout period (in seconds) used by smsMergeDaemon, before a
heartbeat is considered late.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes: Generally set to the same as HB PERIOD.

Example: HB TIMEOUT=10

 Chapter 2

•

 Chapter 2, Replication Overview 33

HB TOLERANCE

Syntax: HB TOLERANCE=mseconds

Description: Heartbeat tolerance time (in millisecs).

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 250

Notes: Default is generally used

Example: HB TOLERANCE=250

HTML DIR

Syntax: HTML DIR=dir

Description: The directory where html files are written.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /IN/html

Notes:

Example: HTML DIR=/IN/html

LONG TIMEOUT

Syntax: LONG TIMEOUT=seconds

Description: Heartbeat timeout period (in seconds) used by smsMergeDaemon to check if the
connections to smsMaster and the node to be merged are stable.

If they have both been responding to heartbeats within the time specified in LONG

TIMEOUT, the merge takes place.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 60

Notes:

Example: LONG TIMEOUT=60

MASTER PORT

Syntax: MASTER PORT=port

Description: The TCP port that master replicators listen for connections on.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 12343

Notes: Generally the default is used

Example: MASTER PORT=12343

Chapter 2

34 Service Management System Technical Guide

MAXMASTERSNODES

Syntax: MAXMASTERSNODES=num

Description: The number of master nodes used.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 8

Notes:

Example: MAXMASTERSNODES=8

MAX PENDING

Syntax: MAX PENDING=num

Description: Used by master replicators to determine maximum size of their pending updates
queue (the maximum number of outstanding updates that are stored before an
unconnected updateLoader is considered "Out Of History").

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10000

Notes:

Example: MAX PENDING=10000

NODE ID

Syntax: NODE ID=ID

Description: Used by an updateLoader to define its replication node number. This value must
be unique, and is set to the default value at installation. If more than one
updateLoader is running on the same SLC machine, you must override this value
with a unique number, for example, by setting the nodeid command line

parameter.

Type: Integer

Optionality: Required

Default: 274

Example: NODE ID=274

ORACLE USER

Syntax: ORACLE USER=user/pwd

Description: Oracle username and associated password normally of the form user/password.
Operator accounts are used to maintain security.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /

Notes: It is recommended that this is left as the default.

Example: ORACLE USER=/

 Chapter 2

•

 Chapter 2, Replication Overview 35

POLLING INTERVAL

Syntax: POLLING INTERVAL=useconds

Description: Used to specify the polling interval (in microseconds) when the smsMaster is not
receiving replication updates.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 50000

Notes:

Example: POLLING INTERVAL=50000

QUEUE WARN THRESH

Syntax: QUEUE WARN THRESH=int

Description: The threshold intervals at which warnings are sent to the error log to indicate an
increasing or decreasing pending updates queue.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 1000

Notes:

Example: QUEUE WARN THRESH=50

QUEUE ERR THRESH

Syntax: QUEUE ERR THRESH=int

Description: The threshold intervals at which a warning is turned into an error and sent to the
error log to indicate an increasing/decreasing pending updates queue.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10000

Notes: To work correctly, this must be greater than the QUEUE WARN THRESH value.

Example: QUEUE ERR THRESH=200

QUEUE CRIT THRESH

Syntax: QUEUE CRIT THRESH=int

Description: The threshold intervals at which a warning or error is turned into a critical error
and sent to the error log to indicate an increasing/decreasing pending updates
queue.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 100000

Notes: To work correctly, this must be greater than the QUEUE ERR THRESH value.

Example: QUEUE CRIT THRESH=400

Chapter 2

36 Service Management System Technical Guide

REP_PATH

Syntax: REP_PATH=path

Description: The directory path of the replication.config file.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /IN/service_packages/SMS/etc/replication.config

Notes: Used by smsMergeDaemon.

Example: REP_PATH=/IN/service_packages/SMS/etc/replication.config

REPORT DIR

Syntax: REPORT DIR=dir

Description: The directory where replication reports (for example, merge reports and database
comparison reports) are stored.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /IN/service_packages/SMS/output/Replication

Notes:

Example: REPORT DIR=/IN/service_packages/SMS/output/Replication

RESYNC DIR

Syntax: RESYNC DIR=dir

Description: The directory where an updateLoader’s pendingUpdates.dat file is stored during a
resync.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: IN/service_packages/SMS/tmp

Notes:

Example: RESYNC DIR=IN/service_packages/SMS/tmp

SECONDARY DELAY

Syntax: SECONDARY DELAY=useconds

Description: Initial time (in microseconds) that the primary network has to establish a
connection before attempting to connect over the secondary network as well.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 100000

Notes: A value of 0 means both networks are attempted immediately.

Example: SECONDARY DELAY=100000

SMS_PORT

Syntax: SMS_PORT=port

Description: The SMS port used by the smsMergeDaemon process.

 Chapter 2

•

 Chapter 2, Replication Overview 37

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 7

Notes:

Example: SMS_PORT=7

STATSKEY

Syntax: STATSKEY=key

Description: Shared memory key for updateLoader replication statistics.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 270198

Notes: The default value is recommended. If the default is not used, part of the statistics
gathering system (dm_sys) can no longer find the statistics.

Example: STATSKEY=270198

tcpRxMaxBuf

Syntax: tcpRxMaxBuf = bytes

Description: Sets the receive window size in bytes. This is equivalent to the TCP/IP Tunable
Parameter tcp_recv_hiwat and is set via calls to setsockopt(). This will be limited by

tcp_max_buf, which is the maximum transmit/receive buffer size in bytes.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Integer range from 2,048 to 1,073,741,824

Default: 1,048,576

Notes: The parameter default is different than the system default of 24,576.

Example: tcpRxMaxBuf = 2048

tcpTxMaxBuf

Syntax: tcpTxMaxBuf = bytes

Description: Sets the transmit window size in bytes. This is equivalent to the TCP/IP Tunable
Parameter tcp_xmit_hiwat and is set via calls to setsockopt(). This will be limited by

tcp_max_buf, which is the maximum transmit/receive buffer size in bytes.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Ranges from 4,096 to 1,073,741,824

Default: 1,048,576

Notes: The parameter default is different than the system default of 16,384.

Example: tcpTxBuf = 4096

Example replication.def file

Here is an example replication.def file for an SMS platform:

Chapter 2

38 Service Management System Technical Guide

MAX PENDING=10000

ORACLE USER=/

HB PERIOD=20

HB TIMEOUT=20

LONG TIMEOUT=60

HB TOLERANCE=10000

CONNECTION TIMEOUT=2

SECONDARY DELAY=100000

CONN RETRY=1

QUEUE WARN THRESH=5

POLLING INTERVAL=50000

CONN RETRY TIME=10

tcpRxMaxBuf=2048

tcpTxMaxBuf=4096

replication.config File

Introduction

The replication.config file is a binary configuration file that defines the current specific replication setup. It
is a binary representation of the replication setup within the SMF created by the repConfigWrite process.

This file is used by all replication nodes on a machine, and must be:

• The same on each machine

• Accessible by each node

The file is written to the directory specified by the output parameter.

Generating replication.config

This file is usually created by clicking Create Config File on the Table Replication tab of the Node
Management window.

Example replication.config

This text shows an example of a replication.config file which has been converted using
smsDumpRepConfig.

smsDumpRepConfig: File /IN/service_packages/SMS/etc/replication.config

smsDumpRepConfig: (PAD = 0)

smsDumpRepConfig: Short listing. Use -v (verbose) for full listing

smsDumpRepConfig: Table, Column, Group definitions...

TABLE [ACS_CALL_PLAN]

TABLE [ACS_CALL_PLAN_PROFILE]

TABLE [ACS_CALL_PLAN_STRUCTURE]

TABLE [ACS_CLI_CALL_PLAN_ACTIVATION]

TABLE [ACS_CUSTOMER]

TABLE [ACS_CUSTOMER_CLI]

TABLE [ACS_CUSTOMER_SN]

TABLE [ACS_FN_TYPE]

TABLE [ACS_GLOBAL_PROFILE]

TABLE [ACS_LANGUAGE]

TABLE [ACS_NETWORK_KEY]

TABLE [ACS_SN_CALL_PLAN_ACTIVATION]

TABLE [SMF_ALARM_MESSAGE]

TABLE [SMF_STATISTICS]

TABLE [SMF_STATISTICS_DEFN]

 Chapter 2

•

 Chapter 2, Replication Overview 39

smsDumpRepConfig: Replication Groups configured for each node...

NODE NUMBER [1] Prim (192.168.0.173) Sec (0.0.0.0)

NODE NUMBER [301] Prim (192.168.0.163) Sec (0.0.0.0)

 GROUP [ACS_CUSTOMER] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_FN_TYPE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CALL_PLAN_PROFILE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CALL_PLAN_STRUCTURE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CALL_PLAN] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CUSTOMER_CLI] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CUSTOMER_SN] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_LANGUAGE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [SMF_STATISTICS_DEFN] [Prim=-1] Min=('!','!',') Max=('~','~','')

 GROUP [ACS_CLI_CALL_PLAN_ACTIVATION] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_GLOBAL_PROFILE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_NETWORK_KEY] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_SN_CALL_PLAN_ACTIVATION] [Prim=-1] Min=('+0','',') Max=('+9','','')

NODE NUMBER [302] Prim (192.168.0.178) Sec (0.0.0.0)

 GROUP [ACS_CUSTOMER] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_FN_TYPE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CALL_PLAN_PROFILE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CALL_PLAN_STRUCTURE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CALL_PLAN] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CUSTOMER_CLI] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_LANGUAGE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [SMF_STATISTICS_DEFN] [Prim=-1] Min=('!','!',') Max=('~','~','')

 GROUP [ACS_CLI_CALL_PLAN_ACTIVATION] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_GLOBAL_PROFILE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_NETWORK_KEY] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CUSTOMER_SN] [Prim=-1] Min=('+0','',') Max=('+9','','')

Further information

For more information, see:

• replication.config File (on page 38)

• smsDumpRepConfig (on page 218)

• Service Management System User's Guide

 Chapter 3, Replication Check 41

Chapter 3

Replication Check

Overview

Introduction

This chapter explains replication check and data resychronization processes used in SMS.

In this chapter

This chapter contains the following topics.

Replication Checks .. 41
Database Comparisons ... 43
Database Resynchronizations ... 45
Auditing .. 47

Replication Checks

Description

SMS provides a replication check mechanism to enable operators to check the replication of data across
their services network.

A replication check will perform a comparison of the SMF data on each replication node. Once the
comparison is complete a report will be generated detailing any discrepancies. No data is changed.

Depending on the size of the data set there may be sizable performance impact on the client node and
care should be taken to perform such a check outside of peak times.

Chapter 3

42 Service Management System Technical Guide

Replication check diagram

Here is a diagram that shows the elements involved in replication checks.

Replication check components

This table describes the components involved in replication check process.

Process Role Further information

SMF The main database on the SMS.

SCP The databases on the SLCs. They hold a subset
of the data on the SMF.

writeHTMLDirFile Updates index.html to include new replication,
comparison and resynchronization reports.

smsCompareResyncSe
rver

Performs database resynchronizations and
comparisons on the superior node.

smsCompareResyncSe
rver (on page 208)

smsCompareResyncCli
ent

Performs database resynchronizations and
comparisons on the inferior node.

smsCompareResyncCli
ent (on page 205)

inetCompareServer Accepts Replication Check requests from the
Replication Check screen.

inetCompareServer (on
page 198)

 Chapter 3

•

 Chapter 3, Replication Check 43

Replication check process

The replication check process follows these stages.

Stage Description

1 The run all command starts inetCompareServer as configured in the replication check

report.

2 inetCompareServer configures and starts smsCompareResyncServer (on page 208) and
writeHTMLDirFile.

3 smsCompareResyncClient (on page 205) handles the other end of the replication check.

4 writeHTMLDirFile updates index.html to include the new report for display in the screens.

Database Comparisons

Description

compareNode is used to initiate a full database comparison of an SCP database with the definitive copy
in SMF db. This ensures that an SCP's data is consistent with the SMF database. Under normal
conditions, this should always be the case, but there may be a time (for example, after multiple failures)
where the system administrator wants to check an SLC is consistent.

compareNode tool requests a comparison between the contents of SMF and one other node, by
invoking comparisonServer. Comparisons are a more time-efficient method than resyncs.
compareServer compares all the entries of all tables which are defined to be replicated to specified
updateLoader node.

Chapter 3

44 Service Management System Technical Guide

Database comparison diagram

Here is a diagram that shows the elements involved in a database comparison process.

Database comparison components

This table describes the components involved in database comparison process.

Process Role Further information

compareNode Initiates a full database comparison of an SCP
with the definitive copy in SMF. Starts
comparisonServer.

compareNode (on page
196)

inputBootstrap Creates configuration files for
smsCompareResyncServer from replication.config.

inputBootstrap (on page
200)

smsMaster Receives update requests and forwards them to
the SMF.

smsMaster (on page
144)

 Chapter 3

•

 Chapter 3, Replication Check 45

Process Role Further information

comparisonServer Creates configuration files for
smsCompareResyncServer from
replication.config.

smsCompareResync
Client

Performs database resynchronizations and
comparisons on the inferior node.

smsCompareResyncCli
ent (on page 205)

writeHTMLDirFile Updates index.html to include new replication,
comparison and resynchronization reports.

Database comparison process

The database comparison process follows these stages.

Step Action

1 compareNode sends a comparison request to smsMaster.

2 smsMaster configures and starts comparisonServer.

3 inputBootstrap provides configuration for comparisonServer from replication.config.

4 comparisonServer configures and starts smsCompareResyncServer and
writeHTMLDirFile.

5 smsCompareResyncClient handles the other end of the comparison.

6 writeHTMLDirFile updates index.html to include the new report for display in the screens.

Database Resynchronizations

Description

Nodes can become out of sync to the point where normal recovery processes cannot rectify the
problem. This can happen if there is a network failure for a long period of time, or if there is a fault in the
replication process.

If the databases are out of sync, a resynchronization must be run. Resyncs compare the data in two
specified nodes and update the inferior database with the different information in the superior database.

Resyncs run automatically if:

• The updateLoader is started with the -resync flag, and there is a queuedOrders.dat file

• The smsMaster has marked that updateLoader node as out of history

• The smsMaster is connected to by an updateLoader which is not in its pending updates queue

• A resync instruction is included in a smsTaskAgent file

Resyncs can also be run from the command line. For more information about running
resynchronizations, see resyncServer (on page 203).

Chapter 3

46 Service Management System Technical Guide

Database resynchronization diagram

Here is a diagram that shows the elements involved in a database resynchronization process.

Database resynchronization components

This table describes the components involved in database resynchronization process.

Process Role Further information

inputBootstrap Creates configuration files for
smsCompareResyncServer from replication.config.

inputBootstrap (on page
200)

resyncServer Starts smsCompareResyncServer and
inputBootstrap for resyncs.

resyncServer (on page
203)

smsCompareResync
Client

Performs database resynchronizations and
comparisons on the inferior node.

smsCompareResyncCli
ent (on page 205)

writeHTMLDirFile Updates index.html to include new replication,
comparison and resynchronization reports.

 Chapter 3

•

 Chapter 3, Replication Check 47

Database resynchronization process

The resynchronization process follows these stages.

Stage Description

1 If the resync has been started from the command line using resync, resync sends a
resynchronization request to smsMaster.

2 smsMaster sends a resynchronization request to resyncServer.

3 resyncServer sends a request to inputBootstrap.

4 inputBootstrap reads data from replication.config and creates a configuration file for
smsCompareResyncServer.

5 resyncServer starts smsCompareResyncServer in resync mode.

6 smsCompareResyncServer connects to the SMF and smsCompareResyncClient on the
inferior node.

7 smsCompareResyncClient accepts the connection and connects to the SCP.

8 smsCompareResyncServer and smsCompareResyncClient resync the databases.

9 smsCompareResyncServer writes a resynchronization report to
/IN/html/output/SMS/resync/inferior_node_number/yyyymmddhhmmss.report.

10 writeHTMLDirFile updates /IN/html/output/SMS/resync/inferior_node_number/index.html to
include the new report.

Auditing

Description

SMS provides an auditing function for all services implemented through it. It tracks all changes made to
the SMF database and stores them in the SMF_AUDIT table. It records:

• User's user ID

• IP address of terminal from which the change was made

• Timestamp of the change

• Table changed

• Copy of the record before the change and a copy of the record after the change

Most database tables also have Change User and Change Date columns which record:

• User name of the user that last changed the contents of a table

• Date at which this change was made

User actions that are logged include:

• Changing a user's password

• Performing a search from the Subscriber tab in the Subscriber Management screen, if only one
record is found

• Opening a subscriber record in the Edit Subscriber screen

• Viewing an EDR in the EDR viewer

• Logging in and out of the Customer Care Portal (CCP)

• Locking and unlocking the CCP

• Performing a search in the CCP dashboard

Chapter 3

48 Service Management System Technical Guide

• Viewing a subscriber record through the CCP Quick View

Auditing - listAudit.sh

Audit information is produced as a report by running listAudit.sh.

Run either as a cron job or from command line using this command:

listAudit.sh usr/pwd [start_date] [end_date] [db_user] [table]

 Chapter 4, Configuring the Environment 49

Chapter 4

Configuring the Environment

Overview

Introduction

This chapter explains the steps required to configure Oracle Communications Network Charging and
Control (NCC) Service Management System (SMS).

In this chapter

This chapter contains the following topics.

Configuration Overview ... 49
Configuring the Resource Group in the Clustered Environment ... 51
Configuring Replication Files ... 55
Configuring the Oracle Wallet ... 56
Creating the Oracle Wallet Automatically by Using setupOracleWallet.sh 62
Configuring the Oracle Listener ... 65
Configuring the SNMP Agent .. 70
Configuring Connections for CORBA Services ... 76
SMF AlarmMessage Format ... 79
Defining the Screen Language .. 81
Defining the Help Screen Language ... 83
Assigning the Oracle Profile to New Users ... 84
Setting up the Screens .. 84
Configuring Nodes ... 116
Installing Additional Applications ... 116
Configuring LDAP based SMS Login .. 117

Configuration Overview

Introduction

This topic provides a high level overview of how the SMS application is configured. Configuration details
for individual processes are located with the documentation for that process.

Configuration process overview

This table describes the steps involved in configuring SMS for the first time.

Stage Description

1 The environment SMS runs in must be configured correctly. This includes:

• If the directory SMS was installed into was not the recommended directory,
setting the root directory

• If this was a clustered installation, configuring the resource groups

• Configuring the Oracle wallet

• Configuring the Oracle listener

Chapter 4

50 Service Management System Technical Guide

Stage Description

• Configuring the SNMP agent

• Configuring connections for CORBA services

• Configuring the location of the EDR directories

• Configuring the smf_oper profile

• Configuring the webserver

2 The replication groups must be configured.

3 If the default language for the SMS Java administration screens need changing, the new
default language must be configured.

4 If the default language for the help system for the SMS Java administration screens
needs changing, the new default language must be configured.

5 The SMS screen-based configuration must be completed. This includes checking node
configuration and statistics configuration.

Configuration components

SMS is configured by the following components:

Component Locations Description Further Information

SMS Java
Administration
screens

SMS The SMS screens provide a
graphical interface for configuring
many parts of SMS including:

• Replication

• Statistics

• Alarm filtering

• Reports

Service Management
System User's Guide

replication.def All machines with
running
replication agents

This file specifies the configuration
parameters for replication. These
parameters may also be specified on
the command-line for each
application.

replication.def File (on
page 31)

replication.config All machines with
running
replication agents

This file holds a binary version of the
configuration held in the SMF. It is
copied out to all machines and is
required by all replication agent.

replication.config File
(on page 38)

logjob.conf All SMSs This file is automatically generated
when the smsSms package is
installed.

logjob.conf (on page
183)

snmp.cfg All SMSs This file configures the SNMP
agent's details.

Configuring the SNMP
Agent (on page 70)

repsib.cfg All SLCs This is the template file for the
updateRequester program.

Other applications typically append
template definitions to this file when
they are installed, and remove them
when they are uninstalled.

 Chapter 4

•

 Chapter 4, Configuring the Environment 51

About Configuration for Secure SSL Connection to the Database

NCC supports secure network logins through Secure Socket Layer (SSL) connections from the NCC UI
to the database. SSL is the default method for connecting to the database when you install NCC.

To enable SSL connections to the database, the following additional configuration must be set in the
smsGui.bat/smsGui.sh file:

• The jnlp.sms.secureConnectionDatabaseHost Java application property (on non-clustered

systems) or the jnlp.sms.secureConnectionClusterDatabaseHost Java application

property (on clustered systems) must specify the database connection in the CONNECT_DATA
part. In addition the PROTOCOL part must be set to TCPS and the PORT part must be set to 2484.

• If present, the jnlp.sms.EncryptedSSLConnection Java application property should be set to

true. The NCC UI connects to the database by using encrypted SSL connections by default.

Note: If you are using non-SSL connections to the database then you must set EncryptedSSLConnection
to false. When EncryptedSSLConnection is set to false, the secureConnectionDatabaseHost and the
secureConnectionClusterDatabaseHost parameters are ignored.

See Java Application Properties (on page 85) for more information.

In addition, to enable SSL connections to the database:

• The Oracle wallet that identifies the database server must be created on the SMS node, and its
location must be specified in the listener.ora and sqlnet.ora files. See Configuring the Oracle Wallet
(on page 56) for more information.

• The listener.ora file must be changed to additionally listen on port 2484 by using the TCPS protocol
for secure SSL connections to the database. See Configuring the Oracle Listener (on page 65) for
more information.

Note: The standard Oracle listener TCP port is 1521. However, SSL connections use the standard port
for the TCPS protocol, port 2484 instead. If there is a firewall between screen clients and the SMS then
you will need to open port 2484 in the firewall.

Configuring the Resource Group in the Clustered
Environment

Overview

Certain tasks performed by the cluster require only one instance running across all cluster nodes. For
example, an application which modifies a shared data source. There must be a mechanism in place to
monitor the running processes and make sure they are restarted when problems arise. This is similar to
normal UNIX inittab functionality with the caveat that a process can be restarted on any of the cluster
nodes (failover).

Configuration of resource groups must be completed on each node in the cluster.

Starting the webserver failover

Follow these steps to start the httpd failover.

Step Action

1 Change to the ESERVHttpd directory.

Example command: cd /opt/ESERVHttpd

2 Read the readme file.

Chapter 4

52 Service Management System Technical Guide

Step Action

3 Stop apache.

Example command: /usr/apache/bin/apachectl stop

4 Change to the util directory within the httpd directory.

Example command: cd util/

5 Start httpd failover using the following command.
startHttpd -h hostname -p "port/tcp"

Where:

• hostname is the shared hostname for the SMS cluster

• port is the port number the webserver accepts httpd requests on

Example command: startHttpd -h smpVirtualCluster -p "80/tcp"

For more information about shared hostnames for clustered machines, see the Oracle
documentation.

Starting the sshd failover

Follow these steps to start the sshd failover.

Step Action

1 Change to the ESERVSshd directory.

Example command: cd /opt/ESERVSshd

2 Read the readme file.

3 Stop the sshd.

Example command: /etc/init.d/sshd stop

4 Change to the util directory in ESERVSshd.

Example command: cd util

5 Start the sshd failover with the following command:
startSshd -h hostname -p "port/tcp"

Where:

• hostname is the shared hostname of the SMS cluster

• port is the port number the sshd should be running on

Example command: startSshd -h smpVirtualCluster -p "22/tcp"

For more information about shared hostnames for clustered machines, see the Oracle
documentation.

Starting the smsAlarmDaemon failover

Follow these steps to start the smsAlarmDaemon (on page 121) failover.

Step Action

1 Unset the $HOSTNAME environmental variable.

Example commands:
echo $HOSTNAME

unset HOSTNAME

echo $HOSTNAME

2 Change to the OracleSmsAlarmDaemon/util directory.

Example command: cd /opt/OracleSmsAlarmDaemon/util

 Chapter 4

•

 Chapter 4, Configuring the Environment 53

Step Action

3 Start the smsAlarmDaemon.

Example command: ./startSmsAlarmDaemon

Result: The following information is sent to stdout:
Creating a scalable instance ...

Registering resource type <Oracle.SmsAlarmDaemon>...done.

Creating scalable resource group <SmsAlarmDaemon-sarg>...done.

Creating resource <SmsAlarmDaemon-sars> for the resource type

<Oracle.SmsAlarmDaemon>...done.

Bringing resource group <SmsAlarmDaemon-sarg> online...done.

Starting the smsAlarmRelay failover

Follow these steps to start the smsAlarmRelay (on page 125) failover.

Step Action

1 Change to the OracleSmsAlarmRelay directory.

Example command: cd /opt/OracleSmsAlarmRelay

2 Read the readme file.

3 Change to the util directory in the OracleSmsAlarmRelay.

Example command: cd util

4 Start the smsAlarmRelay.

Example command: ./startSmsAlarmRelay

Result: The following information is sent to stdout:
Creating a failover instance ...

Registering resource type <Oracle.SmsAlarmRelay>...done.

Creating failover resource group <SmsAlarmRelay-harg>...done.

Creating resource <SmsAlarmRelay-hars> for the resource type

<Oracle.SmsAlarmRelay>...done.

Bringing resource group <SmsAlarmRelay-harg> online...done.

Starting the smsNamingServer failover

Follow these steps to start the smsNamingServer (on page 145) failover.

Step Action

1 Change to the OracleSmsNamingServer/util directory.

Example command: cd /opt/OracleSmsNamingServer/util

2 Start the smsNamingServer failover.

Example command: ./startSmsNamingServer

Result: The following information is sent to stdout:
Creating a scalable instance ...

Registering resource type <Oracle.SmsNamingServer>...done.

Creating scalable resource group <SmsNamingServer-sarg>...done.

Creating resource <SmsNamingServer-sars> for the resource type

<Oracle.SmsNamingServer>...done.

Bringing resource group <SmsNamingServer-sarg> online...done.

Chapter 4

54 Service Management System Technical Guide

Starting the smsReportScheduler failover

Follow these steps to start the smsReportScheduler (on page 148) failover.

Step Action

1 Change to the OracleSmsReportScheduler/util directory.

Example command: cd /opt/OracleSmsReportScheduler/util

2 Start the smsReportScheduler failover.

Example command: ./startSmsReportScheduler

Result: The following information is sent to stdout:
Creating a failover instance ...

Registering resource type <Oracle.SmsReportScheduler>...done.

Creating failover resource group <SmsReportScheduler-harg>...done.

Creating resource <SmsReportScheduler-hars> for the resource type

<Oracle.SmsReportScheduler>...done.

Bringing resource group <SmsReportScheduler-harg> online...done.

Starting the smsReportsDaemon failover

Follow these steps to start the smsReportsDaemon (on page 146) failover.

Step Action

1 Change to the OracleSmsReportsDaemon/util directory.

Example command: cd /opt/OracleSmsReportsDaemon/util

2 Start the smsReportsDaemon failover.

Example command: ./startSmsReportsDaemon

Result: The following information is sent to stdout:
Creating a scalable instance ...

Registering resource type <Oracle.SmsReportsDaemon>...done.

Creating scalable resource group <SmsReportsDaemon-sarg>...done.

Creating resource <SmsReportsDaemon-sars> for the resource type

<Oracle.SmsReportsDaemon>...done.

Bringing resource group <SmsReportsDaemon-sarg> online...done.

Starting the smsStatsThreshold failover

Follow these steps to start the smsStatsThreshold (on page 162) failover.

Step Action

1 Change to the OracleSmsStatsThreshold/util directory.

Example command: cd /opt/OracleSmsStatsThreshold/util

2 Start the smsStatsThreshold failover.

Example command: ./startSmsStatsThreshold

Result: The following information is sent to stdout:
Creating a failover instance ...

Registering resource type <Oracle.SmsStatsThreshold>...done.

Creating failover resource group <SmsStatsThreshold-harg>...done.

Creating resource <SmsStatsThreshold-hars> for the resource type

<Oracle.SmsStatsThreshold>...done.

Bringing resource group <SmsStatsThreshold-harg> online...done.

 Chapter 4

•

 Chapter 4, Configuring the Environment 55

Starting the smsTaskAgent failover

Follow these steps to start the smsTaskAgent (on page 164) failover.

Step Action

1 Change to the OracleSmsTaskAgent/util directory.

Example command: cd /opt/OracleSmsTaskAgent/util

2 Start the smsTaskAgent.

Example command: ./startSmsTaskAgent

Result: The following information is sent to stdout:
Creating a scalable instance ...

Registering resource type <Oracle.SmsTaskAgent>...done.

Creating scalable resource group <SmsTaskAgent-sarg>...done.

Creating resource <SmsTaskAgent-sars> for the resource type

<Oracle.SmsTaskAgent>...done.

Bringing resource group <SmsTaskAgent-sarg> online...done.

Configuring Replication Files

Introduction

There are two configuration files for replication that may be changed by the administrator.

• replication.def

• replication.config

The replication.config file

The replication.config file is created and changed through the Node Management screens in the SMS
screens. The user must move tables on the screen from the Available Replication Groups list to the
node they are to be replicated to in the Allocated Replication Groups list. Clicking Create Config File
produces a new replication.config file.

The previous configuration is deleted prior to the new configuration being loaded. This does not
necessitate the application being restarted, but it causes disruption to service on any of the SLCs.

The replication.config file contains the configuration for the whole network. This includes all configuration
details needed for smsMasters and infMasters (if necessary).

Implementing changes to the replication.config file

The new replication.config file takes effect after the program called changeConfig is run.

If you make the new configuration from the screens, this will be immediately. If you make the config from
the command line, the change can be scheduled.

The replication.def file

The replication.def file is configured when the application is installed and should not need to be updated.
It contains parameters that may be changed by the operator on start-up.

Chapter 4

56 Service Management System Technical Guide

Implementing change to replication.def

Since replication.def is read only when the application starts up, if it does need to be updated and
changes are made, the application (updateLoader, infMaster or smsMaster) must be restarted for these
changes to take effect. After restart, these changes take effect immediately.

The Replication.def file is held on each node in the same directory as the application (updateLoader,
infMaster or smsMaster). If changes are made to the SLC configuration, infMaster and updateLoader
must be restarted.

Where changes are to be made to the SMS configuration, the smsMasters must be restarted. In an
unclustered installation, smsMaster must be shut down by merging it with an infMaster to avoid loss of
data and update information.

Example replication.def file

Here is an example of the default replication.def file that is installed when you install NCC:

@(#)replication.def 1.2

MAX PENDING=10000

ORACLE USER=/

HB PERIOD=10

HB TIMEOUT=10

HB TOLERENCE=250

CONNECTION TIMEOUT=2

 SECONDARY DELAY=100000

CONN RETRY=1

QUEUE WARN THRESH=5

#Some Update Loader values

CONN RETRY TIME=0

RESYNC DIR=/IN/service_packages/SMS/tmp

CONFIG DIR=/IN/service_packages/SMS/etc

HTML DIR=/IN/html

REPORT DIR=/IN/service_packages/SMS/output/Replication

Configuring the Oracle Wallet

About the Oracle Wallet

The Oracle wallet is the single-sign-on wallet that is used when connecting securely to the database and
that contains certificate information for identifying the Oracle server. You must create the Oracle wallet if
you are using secure SSL connections to the database.

The certificate identifying the server must be signed by a certificate authority (CA) either by creating a
root CA and self-signing, or by sending a certificate signing request to a commercial CA.

You can create the Oracle wallet and server certificate in the following ways:

• Manually by using the Oracle PKI tool, orapki. The orapki tool provides a uniform interface for
manipulating Oracle wallets and certificates. See Manually Creating the Oracle Wallet (on page 57)
for more information.

• Automatically by using the setupOracleWallet.sh script. This script automatically issues the orapki
commands and prompts you for the required information. See Creating the Oracle Wallet
Automatically by Using setupOracleWallet.sh (on page 62) for more information.

On a clustered SMS you should create the Oracle wallet in a file system that is cluster-wide to allow all
instances to access the same wallet information in a single location; for example, on a non-clustered
SMS node the Oracle wallet is located in the following directory by default:

/u01/app/wallets/oracle/server

 Chapter 4

•

 Chapter 4, Configuring the Environment 57

However, if /global is a shared volume on a cluster then you should use the following directory for the
Oracle wallet:

/global/oracle/app/wallets/oracle/server

About Configuring the Location of the Oracle Wallet

The Oracle wallet is used for single sign on to the Oracle server. If you are using secure SSL
connections to the database then you must configure the location of the Oracle wallet in the
WALLET_LOCATION entry in the listener.ora and sqlnet.ora files by using the following syntax:

WALLET_LOCATION =

(SOURCE =

(METHOD = FILE)

(METHOD_DATA =

(DIRECTORY = directory))

)

Where directory is the directory where the Oracle auto-login wallet is located; for example, on a non-
clustered system the Oracle wallet default location is:

/u01/app/wallets/oracle/server

On a clustered system, the Oracle wallet default location is:

/global/oracle/app/wallets/oracle/server

Note: On a clustered system you should specify a cluster-wide shared location so that a single Oracle
wallet definition can be accessed from all cluster nodes.

In addition you must configure the following entries in the listener.ora and the sqlnet.ora files:

SSL_CLIENT_AUTHENTICATION=FALSE

SSL_CIPHER_SUITES = (TLS_RSA_WITH_AES_128_CBC_SHA)

You must also set the jnlp.sms.sslCipherSuites Java application property in the

smsGui.bat/smsGui.sh file to the same value as the SSL_CIPHER_SUITES entry.

Manually Creating the Oracle Wallet

The following high-level procedure explains how to create the Oracle wallet by using the Oracle orapki
tool, and how to add a trusted or a self-signed certificate to the server wallet.

Follow these steps to create the Oracle wallet and add a trusted or a self-signed certificate to the server
wallet.

Step Action

1 (Optional) Skip this step if you are using a commercial CA to sign the server certificate. If
you want to use self-signed certificates, then you must create the wallet container for the
root CA. See Creating the Wallet Container for the Root CA (on page 58) for more
information.

2 (Optional) Skip this step if you are using a commercial CA to sign the server certificate. If
you want to use self-signed certificates, then you must create a self-signed certificate.
See Creating a Self-Signed Certificate (on page 59) for more information.

3 Create an Oracle wallet to store the Oracle server certificate. See Creating an Oracle
Wallet to Store the Oracle Server Certificate (on page 59) for more information.

4 Add a user certificate to the server wallet. See Adding a User Certificate to the Server
Wallet (on page 60) for more information.

Chapter 4

58 Service Management System Technical Guide

Step Action

5 Export a certificate-signing request from the server wallet. See Exporting the Server
Certificate Request (on page 60) for more information.

6 Sign the server certificate request. If you are using:

• Self-signed certificates, see Signing the Server Certificate Request by Using the
Self-Signed Certificate from the Root CA (on page 60) for more information.

• A commercial CA, see Signing the Server Certificate Request by Using a
Commercial CA (on page 61) for more information.

7 Configure the pathname to the server wallet in the WALLET_LOCATION entry in the
listener.ora and sqlnet.ora files. See About Configuring the Location of the Oracle Wallet (on
page 57) for more information.

8 (Optional) Skip this step if you are using a commercial CA. Add the trusted certificates to
the keystore on client PCs. See Adding Trusted Certificates to the Keystore on Client PCs
(on page 62) for more information.

Creating the Wallet Container for the Root CA

This procedure assumes that NCC is installed on a non-clustered SMS node and that the following
directory has been created for the Oracle wallet:

/u01/app/wallets/oracle

On a clustered SMS the Oracle wallet is located in a file system that is cluster-wide to allow all instances
to access the same wallet information in a single location; for example, /global/oracle/app/wallets/oracle.

Follow these steps to create the wallet container for the root CA.

Step Action

1 Log in to the SMS as user oracle.

2 Go to the directory created for the Oracle wallet, for example:

cd /u01/app/wallets/oracle

3 Create the wallet container by entering the following command:

orapki wallet create -wallet ./root

4 When prompted, specify a new password for the root wallet.

Note: Wallet passwords have length and content validity checks applied to them. Generally
passwords should have a minimum length of eight characters and contain alphabetic
characters combined with numbers and special characters.

5 Confirm the password.

orapki creates the following directory for the root wallet and adds the ewallet.p12 file in root
directory:

/u01/app/wallets/oracle/root

 Chapter 4

•

 Chapter 4, Configuring the Environment 59

Creating a Self-Signed Certificate

Follow these steps to create a self-signed certificate in the root wallet and export it to a file named
b64certificate.txt.

Step Action

1 Create a self-signed certificate that is added to the root wallet by entering the following
command:

orapki wallet add -wallet ./root -dn CN=root_CA,C=CC -keysize 2048 -

self_signed -validity 3650

Where root_CA is the self-signed certificate name and CC is the local international
country code.

2 When prompted, enter the password for the root wallet.

3 Export the self-signed certificate from the root wallet by entering the following command:

orapki wallet export -wallet ./root -dn CN=root_CA,C=CC –cert

./root/b64certificate.txt

Where CC is the local international country code, and the –cert command line option

specifies the location of the export certificate.

4 When prompted, enter the password for the root wallet.

The self-signed certificate is exported to the file b64certificate.txt.

Creating an Oracle Wallet to Store the Oracle Server Certificate

You create an Oracle wallet in the server sub-directory of the wallet directory to store the Oracle server
certificate. The server sub-directory is in addition to the root sub-directory that you optionally created for
the root CA.

The server wallet is used to authenticate the Oracle server. The location of the Oracle server wallet
must be specified in the following WALLET_LOCATION configuration in listener.ora and sqlnet.ora files:

WALLET_LOCATION =

(SOURCE =

(METHOD = FILE)

(METHOD_DATA = (DIRECTORY = server_directory)

)

Where server_directory is the directory you create for the Oracle server certificate; for example:

 /u01/app/wallets/oracle/server

See About Configuring the Location of the Oracle Wallet (on page 57) for more information.

Follow these steps to create an Oracle wallet for the server certificate.

Step Action

1 As user oracle on the SMS node, go to the Oracle wallet directory; for example:

cd /u01/app/wallets/oracle

Chapter 4

60 Service Management System Technical Guide

Step Action

2 Create the server wallet by entering the following command:

orapki wallet create -wallet ./server -auto_login

3 When prompted specify a new password for the server wallet.

Note: Wallet passwords have length and content validity checks applied to them. Generally
passwords should have a minimum length of eight characters and contain alphabetic
characters combined with numbers and special characters.

4 Confirm the password.

orapki creates the /u01/app/wallets/oracle/server directory for the server wallet and adds the
following files in the directory:

cwallet.sso

ewallet.p12

5 To check that the files have been created, enter the following command:

ls server

Adding a User Certificate to the Server Wallet

Follow these steps to add a user certificate for the SMS to the server wallet.

Step Action

1 As user oracle on the SMS, enter the following command to add a user certificate for

the SMS to the server wallet:

orapki wallet add -wallet ./server/ewallet.p12 -dn 'CN=SMS,C=CC' -keysize

2048

Where ewallet.p12 is the name of the server wallet and CC is the local international country
code.

2 When prompted, enter the password for the server wallet.

Exporting the Server Certificate Request

You export a certificate request from the server wallet so that the request can be signed by a CA.

To export the server certificate request enter the following command as user oracle:

orapki wallet export -wallet ./server -dn 'CN=SMS,C=CC' -request ./server/creq.txt

Where CC is the local international country code and creq.txt is the name of the server certificate request
file.

The server request is exported to the following file in the server directory:

/u01/app/wallets/oracle/server/creq.txt

Signing the Server Certificate Request by Using the Self-Signed Certificate from
the Root CA

The following procedure uses the root CA you initially created to sign the certificate request.
Alternatively you can send the request to a commercial CA for signing.

 Chapter 4

•

 Chapter 4, Configuring the Environment 61

Follow these steps to sign the server certificate request.

Step Action

1 Create the server certificate in the file named cert.txt using the certificate request in the file
named creq.txt. As user oracle on the SMS, enter the following command:

orapki cert create -wallet ./root -request ./server/creq.txt -cert

./server/cert.txt -validity 3650

Where the command line option:

• -wallet specifies to use the self-signed certificate in the root CA to sign the

server request

• -cert specifies to create the signed certificate named cert.txt

2 When prompted, enter the password for the root wallet.

3 Add the trusted certificate of the root CA, ./root/b64certificate.txt, and the user certificate
signed by the root CA, ./server/cert.txt, into the server wallet by entering the following
commands:

• orapki wallet add -wallet ./server/ewallet.p12 -trusted_cert

–cert ./root/b64certificate.txt

• orapki wallet add -wallet ./server/ewallet.p12 -user_cert –

cert ./server/cert.txt

When prompted, enter the password for the server wallet.

Signing the Server Certificate Request by Using a Commercial CA

Follow these steps to use a commercial CA to sign the server certificate request.

Step Action

1 Send the certificate request in the file named creq.txt to the commercial CA for signing.

2 When you receive the signed certificate back from the commercial CA, add the
commercial CA's trusted public certificate to the server wallet container.

orapki wallet add -wallet ./server/ewallet.p12 -trusted_cert –cert

trusted_CA_certificate

Where trusted_CA_certificate is the file containing the CA's trusted public certificate.

3 When prompted for a password, enter the password for the server wallet.

4 Add the CA-signed server certificate to the server wallet container.

orapki wallet add -wallet ./server/ewallet.p12 -user_cert -cert

CA_signed_certificate

Where CA_signed_certificate is the signed server certificate from the CA.

5 When prompted, enter the password for the server wallet.

Chapter 4

62 Service Management System Technical Guide

Adding Trusted Certificates to the Keystore on Client PCs

If you are using self-signed certificates then you must update the keystore on client PCs to trust
certificates from the SMS server that have been signed by the root CA.

Note: Certificates signed by a commercial CA are already trusted by definition, therefore update the
keystore on client PCs only if you are using self-signed certificates.

Follow these steps to add a trusted certificate for the SMS server to the Java keystore on a client PC.

Step Action

1 Copy the root CA certificate ./root/b64certificate.txt to the client PC.

2 As the Administrator user on the client PC, open the command tool window and enter

the following command:

keytool -importcert -keystore "path_to_java_lib_security_cacerts"

-alias SMS -file "path_to_b64certificate_txt"

where:

• path_to_java_lib_security_cacerts is the path for the cacerts file

• path_to_b64certificate_txt is the path for the b64certificate.txt file

3 When prompted, enter the password for the keystore.

Note: The Java installation sets the keystore password to changeit by default.

4 Answer yes to the following prompt:

Trust this certificate? [no]:

Oracle keytool updates the keystore on the client PC to trust certificates from the SMS
server that have been signed with the root CA.

Creating the Oracle Wallet Automatically by Using
setupOracleWallet.sh

About Creating the Oracle Wallet by Using setupOracleWallet.sh

The Oracle wallet is the single-sign-on wallet that is used when connecting securely to the database and
that contains certificate information for identifying the Oracle server. You must create the Oracle wallet if
you are using secure SSL connections to the database. See About the Oracle Wallet (on page 56) for
more information.

The setupOracleWallet.sh script enables you to automatically run the orapki commands for creating the
Oracle wallet. The script prompts you to enter all the information it requires to create the Oracle wallet.
See setupOracleWallet.sh (on page 203) for more information about setupOracleWallet.sh.

When you run setupOracleWallet.sh, you specify whether or not you want to use self-signed certificates. If
you are using:

• Self-signed certificates, the script completes after creating the Oracle wallet and self-signed
certificate. You must then update the Java keystore on client PCs with the trusted certificates. See
Adding Trusted Certificates to the Keystore on Client PCs (on page 62) for more information.

• Certificates signed by a commercial CA, the script initially completes after creating the certificate
signing request. You must send the certificate signing request to the commercial CA for signing.
When the commercial CA returns the signed certificate, you re-run setupOracleWallet.sh to add the
trusted CA certificate and the signed CA certificate to the Oracle server wallet.

 Chapter 4

•

 Chapter 4, Configuring the Environment 63

After creating the Oracle wallet, the script prints details of the additional configuration that must be set in
the Oracle listener.ora and sqlnet.ora files. See the discussion on Configuring the Oracle Listener (on
page 65) for more information.

Information Required by setupOracleWallet.sh

The following table lists the information that is required by the setupOracleWallet.sh script.

Required Item Description

Oracle wallet base
directory

The base directory for the Oracle wallet. Specify the base directory to use for the
Oracle root and Oracle server wallets. On a clustered SMS specify a file system
that is cluster-wide to allow all instances to access the same wallet information in
a single location.
On a non-clustered system the default location for the Oracle wallet base
directory is: /u01/app/wallets/oracle/

On a clustered system the default location for the Oracle wallet base directory is:
/global/oracle/app/wallets/oracle/

ISO country code The local international country (ISO) code for your country. Specify the two-letter
code.

Wallet passwords The password to use for the root CA wallet and the password to use for the
server wallet. You will be prompted for the password each time the wallet is
accessed.

Note: Wallet passwords have length and content validity checks applied to them.
Generally passwords should have a minimum length of eight characters and
contain alphabetic characters combined with numbers and special characters.

Setting Up the Oracle Wallet to Use Self-Signed Certificates by Using
setupOracleWallet.sh

Follow these steps to set up the Oracle server wallet to use self-signed certificates by using
setupOracleWallet.sh.

Step Action

1 Log in to the SMS as user oracle.

2 Enter the following command:

/IN/service_packages/SMS/bin/setupOracleWallet.sh

3 Answer y to the following prompt:

Do you wish to proceed with the configuration (y/n):

Chapter 4

64 Service Management System Technical Guide

Step Action

4 Enter the following information as required:

• The base directory for the Oracle wallet. Specify the base directory to use for the
Oracle root and Oracle server wallets. On a clustered SMS specify a file system
that is cluster-wide to allow all instances to access the same wallet information in
a single location.

• The local international country (ISO) code for your country. Specify the two-letter
code.

• The password to use for the root CA wallet and the password to use for the server
wallet. You will be prompted for the password each time the wallet is accessed.

Note: Wallet passwords have length and content validity checks applied to them. Generally
passwords should have a minimum length of eight characters and contain alphabetic
characters combined with numbers and special characters.

5 Answer y to the following prompt:

Would you like to use a self-signed root certificate to sign the

SMS server certificate?

When processing completes, the self-signed root certificate is exported to the following
file:

./root/b64certificate.txt

Where ./root is a sub-directory of the base directory for the Oracle wallet. You must import
this certificate into the Java lib\security\cacerts file on each client PC by using the Java
keytool utility. See Adding Trusted Certificates to the Keystore on Client PCs (on page 62)
for more information.

Setting Up the Oracle Wallet to Use CA-Signed Certificates by Using
setupOracleWallet.sh

Note: This procedure assumes that the commercial CA's own root certificate is available in the following
file:

./root/b64certificate.txt

Where ./root is a sub-directory of the base directory for the Oracle wallet.

Follow these steps to set up the Oracle server wallet to use certificates signed by a commercial CA by
using setupOracleWallet.sh.

Step Action

1 Log in to the SMS as user oracle.

2 Enter the following command:

/IN/service_packages/SMS/bin/setupOracleWallet.sh

3 Answer y to the following prompt:

Do you wish to proceed with the configuration (y/n):

 Chapter 4

•

 Chapter 4, Configuring the Environment 65

Step Action

4 Enter the following information as required:

• The base directory for the Oracle wallet. Specify the base directory to use for the
Oracle root and Oracle server wallets. On a clustered SMS specify a file system
that is cluster-wide to allow all instances to access the same wallet information in
a single location.

• The local international country (ISO) code for your country. Specify the two-letter
code.

• The password the password to use for the server wallet. You will be prompted for
the password each time the wallet is accessed.

Note: Wallet passwords have length and content validity checks applied to them. Generally
passwords should have a minimum length of eight characters and contain alphabetic
characters combined with numbers and special characters.

5 Answer n to the following prompt:

Would you like to use a self-signed root certificate to sign the

SMS server certificate?

The script creates the server auto-login wallet and exports the certificate signing request
to the following file:

./server/creq.txt

Where ./server is a sub-directory of the base directory for the Oracle wallet.

6 Send the certificate signing request to the commercial CA for signing. The commercial CA
returns the signed certificate.

7 Place the signed certificate in the following file:

./server/cert.txt

8 Place the root certificate from the commercial CA in the following file:

./root/b64certificate.txt

9 Log in as user oracle on the SMS and enter the following command:

/IN/service_packages/SMS/bin/setupOracleWallet.sh -s ./server/cert.txt -t

./root/b64certificate.txt -w wallet_base_directory

Where:

• -s ./server/cert.txt specifies the location of the signed server certificate

• -t ./root/b64certificate.txt specifies the location of the root certificate

from the commercial CA

• -w wallet_base_directory specifies the Oracle wallet base directory

The setupOracleWallet.sh script completes by adding the trusted CA certificate and the CA-
signed certificate to the server wallet.

Configuring the Oracle Listener

Introduction

In order for the database on the SMS node to operate correctly it requires an Oracle listener. The Oracle
listener listens for external requests to connect to a database on the SMS node.

Chapter 4

66 Service Management System Technical Guide

The Oracle listener configuration in this section is defined in the listener.ora file on the SMS platform only;
specific additional configuration is not required on any of the SLC nodes. This is because the listener.ora
file on the SLC nodes is part of the standard Oracle installation and should not be changed.

The following high-level procedure explains how to add support to the listener.ora file to enable access to
Oracle database instances by using the TCPS network protocol for secure SSL connections, or by using
the TCP network protocol for non-SSL connections. It does not explain how to create a listener.ora file.
The process of adding support for TCPS or TCP is also described in the Oracle documentation,
however it is outlined here for quick reference.

The task of creating or updating the Oracle listener should be performed by your database
administrator. See Chapter 5 (Using Sql*Net) in Understanding Sql*Net, which is shipped with Oracle 7
for more information about creating an Oracle listener file.

Note: This is not a comprehensive guide to configuring Oracle Database. Configuring and maintaining a
database is a non-trivial task, and if you are unsure how to proceed please consult your database
administrator.

Procedure

Follow these steps to configure the Oracle listener.

Step Action

1 Log in to the SMS as user oracle, or enter the following command from a root login to
become the user oracle:

su - oracle

Note: Logging in as the user oracle ensures that the path to all the Oracle binaries is
correct and that file ownership for Oracle files is preserved.

2 Go to the directory containing the listener.ora file. The location of the listener.ora file
depends on the version of Oracle Database installed and the options selected at
installation. It is located in one of the following directories by default:

• $ORACLE_HOME/network/admin

• /var/opt/oracle/

3 Edit the listener.ora file by using a text editor such as vi; for example:

vi listener.ora

 Chapter 4

•

 Chapter 4, Configuring the Environment 67

Step Action

4 Add ADDRESS entries to ADDRESS_LIST to define the SMS hostname, protocols, and
ports to use for connecting to the database. Use the following syntax:

LISTENER=

 (DESCRIPTION_LIST =

 (DESCRIPTION=(ADDRESS_LIST=

(ADDRESS=

(PROTOCOL=protocol)

(HOST=hostname)

(PORT=port_number)

)))

)

where:

• protocol is the protocol to use for connecting to the SMF database. You must
specify TCPS for secure SSL connections, or TCP for non-SSL connections

• hostname is the hostname of the SMS node

• port_number is the number of the port on which the listener listens for requests.
You must specify 2484 for secure SSL connections, or 1521 for non-SSL
connections

Note: The TCPS protocol entry in the listener.ora file must appear after the TCP protocol
entry.

 Example:

The following example shows ADDRESS_LIST configuration for an SMS node called
“hostSMP”:

LISTENER=

 (DESCRIPTION_LIST =

 (DESCRIPTION=(ADDRESS_LIST=

(ADDRESS=

(PROTOCOL=IPC)

(KEY=SMF)

)))

 (DESCRIPTION=(ADDRESS_LIST=

(ADDRESS=

(PROTOCOL=TCP)

(HOST=hostSMP)

(PORT=1521)

)))

 (DESCRIPTION=(ADDRESS_LIST=

(ADDRESS=

(PROTOCOL=TCPS)

(HOST=hostSMP)

(PORT=2484)

)))

)

)

 Note: The ORACLE_SID for the SMF database is SMF. The listener can be made aware
of this by adding an ADDRESS entry to the ADDRESS_LIST.

Chapter 4

68 Service Management System Technical Guide

Step Action

5 The listener also needs to know where it can find the information for any particular
ORACLE_SID. This is accomplished through SID_LIST. The listener needs to know the
name of the SID, the Oracle home directory and the global database name.

Add an entry to SID_LIST by using the following syntax:

SID_LIST_LISTENER=(SID_LIST=

(SID_DESC=

(SID_NAME=SMF)

(ORACLE_HOME=oracle_home_directory)

(GLOBAL_DBNAME=SMF.Hostname)

)

)

Where:

• oracle_home_directory is the directory in which Oracle Database is installed

• SMF.Hostname is the global database name. Hostname is the hostname of the
SMS node

 Example

The following example shows SID_LIST configuration for an SMS node called “hostSMP”:

SID_LIST_LISTENER=(SID_LIST=

(SID_DESC=

(SID_NAME=SMF)

(ORACLE_HOME=/u01/app/oracle/product/12.1.0)

(GLOBAL_DBNAME=SMF.hostSMP)

)

)

6 Comment out the following entries:
USE_PLUG_AND_PLAY_LISTENER = TRUE

USE_CKPFILE_LISTENER = TRUE

Important: Do not change the following settings:

• STARTUP_WAIT_TIME_LISTENER = 0

• CONNECT_TIMEOUT_LISTENER = 10

7 If you are using SSL connections to the database, set the following lines to these values:

SSL_CLIENT_AUTHENTICATION=FALSE

SSL_CIPHER_SUITES=(TLS_RSA_WITH_AES_128_CBC_SHA)

Notes: You must also:

• Configure the same entries for SSL_CLIENT_AUTHENTICATION and
SSL_CIPHER_SUITES in the sqlnet.ora file.

• Set the jnlp.sms.sslCipherSuites Java application property in

smsGui.bat/smsGui.sh and the SSL_CIPHER_SUITES entry to the same value.

8 Save and close the file.

9 Stop the listener and then restart the listener using the updated configuration by entering
the following commands:

lsnrctl stop

lsnrctl start

 Chapter 4

•

 Chapter 4, Configuring the Environment 69

Configuring Oracle Listener Java Application properties

You configure the Java application properties for the Oracle listener in the smsGui.bat/smsGui.sh file. The
installation process attempts to automatically configure this file for you, but you must check the data in
the smsGui.bat/smsGui.sh file to ensure it is completely accurate.

Follow these steps to configure the Java application properties for the Oracle listener.

Step Action

1 Log on as user root.

2 Edit the /IN/html/smsGui.bat and /IN/html/smsGui.sh file by using a text editor such as vi; for
example:

vi /IN/html/smsGui.bat

3 If you are using secure SSL connections to the database on a non-clustered system,
configure the jnlp.sms.secureConnectionDatabaseHost application property

entry. The parameter value must be all on one line in the JNLP file:

-Djnlp.sms.secureConnectionDatabaseHost="(DESCRIPTION= (ADDRESS_LIST=

(ADDRESS=(PROTOCOL=TCPS) (HOST=host_ip_addr)(PORT=lport))) (CONNECT_DATA=

(SERVICE_NAME=db_sid)))"

If you are using secure SSL connections to the database on a clustered system, configure
the jnlp.sms.secureConnectionClusterDatabaseHost application property entry.

The parameter value must be all on one line in the JNLP file:

-Djnlp.sms.secureConnectionClusterDatabaseHost="(DESCRIPTION=

(ADDRESS_LIST= (ADDRESS=(PROTOCOL=TCPS) (HOST=host_ip_addr)(PORT=lport)))

(CONNECT_DATA= (SERVICE_NAME=db_sid)))"

Where:

• host_ip_addr is the host name or IP address of the SMS node

• lport is the listener port for SSL connections using the TCPS protocol. Set

LPORT to 2484 for SSL connections.

• db_sid is the database SID

In addition, for SSL connections the jnlp.sms.EncryptedSSLConnection Java

application property must be left undefined or set to true.

Example Java application property configuration for SSL connections to the database (non-clustered)

-Djnlp.sms.secureConnectionDatabaseHost=="(DESCRIPTION= (ADDRESS_LIST=

(ADDRESS=(PROTOCOL=TCPS) (HOST=hostSMP)(PORT=2484))) (CONNECT_DATA=

(SERVICE_NAME=SMF)))"

-Djnlp.sms.EncryptedSSLConnection=true

4 If you are using SSL connections to the database you must set the
jnlp.sms.sslCipherSuites Java application property to

TLS_RSA_WITH_AES_128_CBC_SHA:

-Djnlp.sms.sslCipherSuites="(TLS_RSA_WITH_AES_128_CBC_SHA)"

Chapter 4

70 Service Management System Technical Guide

Step Action

5 If you are using non-SSL connections to the database you must set the
jnlp.sms.EncryptedSSLConnection parameter to false, and edit the following

application property entries:

-Djnlp.sms.host=”host_ip_addr”

-Djnlp.sms.databaseID=”lport:db_sid”

Where:

• host_ip_addr is the host name or IP address of the SMS node

• lport:db_sid is the listener port and the database SID. Set LPORT to 1521 for

non-SSL connections.

Example Java application property configuration for non-SSL connections to the database

-Djnlp.sms.host=="hostSMP"

-Djnlp.sms.databaseID=="1521:SMF"

-Djnlp.sms.EncryptedSSLConnection=false

6 Save and close the file.

The parameters in the smsGui.bat/smsGui.sh files are updated to reflect those of the Oracle
listener.

Note: The sms.html file has been deprecated. However, if you upgraded from an earlier version of NCC,
you may continue to use the sms.html file. You must ensure that you set parameters to the same value in
both the sms.html file, and the sms.jnlp file.

Configuring the SNMP Agent

Introduction

SNMP trap relaying is not automatically enabled. If you require SNMP trap relaying then you must
perform the steps described in this topic.

The SNMP agent supports the following functionality:

• Forwarding of alarms as SNMP traps, using the Alarm Relay mechanism (see Service Management
System User's Guide)

• Resynchronization of traps, enabling an SNMP manager to request resend of traps

Traps may be forwarded to multiple SNMP managers.

Note: This is subject to the following restrictions:

• All managers must use the same port to receive SNMP traps;

• All managers must be configured to use the same Community string

• Any triggering of the resynchronization mechanism results in duplicate traps being forwarded to all
managers.

Configuring the snmp.cfg file

The SNMP agent is configured via the Alarm Notification screen and the snmp configuration file as
described in this section. The configuration file is /IN/service_packages/SMS/etc/snmp.cfg.

The name of the network management station is defined by the destination field in the rule, used to
match alarms. This allows alarms to be sent to multiple machines and also to determine which alarms
should be sent to which machines. The SNMP-specific parameters are:

 Chapter 4

•

 Chapter 4, Configuring the Environment 71

• TARGET = “SNMP”

• DESTINATION = manager_hostname

The other parameters are the same for all destinations and are determined from this configuration file,
read at the start up of the smsAlarmRelay program.

In understanding these parameters, you must be familiar with the Simple Network Management Protocol
(SNMP).

We currently support SNMP v3 (IETF STD0062). SNMP v1 (IETF RFC1157) traps are supported for
backward compatibility purposes only.

To support integration with as broad a range of SNMP managers as possible, two forms of SNMP trap
are supported:

• Opaque traps include all of the fault data in a single structured data type

• Multiple variable traps, wherein each fault datum is represented by a distinct trap variable

A single trap type must be chosen for each installation. See the "opaque" and "specific" configuration
parameter descriptions below for details.

SNMP relaying - switching on

Follow these steps to turn on SNMP relaying of alarms.

Note: Like any command line switches, the –p can appear at any point in the command line. –p is a

parameter without any options, and is used to enable SNMP relaying of alarms. SNMP relaying of
alarms is off by default.

Step Action

1 Open the snmp.cfg script with a text editor such as vi. The snmp.cfg file is located here by
default:

/IN/service_packages/SMS/etc/snmp.cfg

2 Add -p to the command line.

3 Save and close the file.

snmp.cfg example

This text shows the content of an example snmp.cfg file.

use-SNMPv3: 1

listenPort: 1161

userName: smf_oper

community: public

my-addr: addr

trap: 6

specific: 1

opaque: 1

port: 162

snmp.cfg file parameters

The parameters available in this file are described below. The only parameter that you are required to
modify is “my-addr”; the rest are given for reference only.

Note: Separate the parameter from the value using the colon ‘:’.

Chapter 4

72 Service Management System Technical Guide

community

Syntax: community: type

Description: The community to which smsAlarmRelay belongs.

Type: String

Optionality: Required

Allowed:

Default: public

Notes:

Example: community: public

listenPort

Syntax: listenPort: port

Description: The UDP port number from which smsAlarmRelay listens for get- and set-

variable requests.

Type: Integer

Optionality: Required

Allowed: 1 - 65535

Default:

Notes: If the use-SNMPv3 parameter is set to 0, the listenPort parameter has no

effect.

Example: listenPort: 1161

my-addr

Syntax: my-addr: addr

Description: The Internet Protocol (IP) address of the computer on which smsAlarmRelay is
installed.

Type: String

Optionality: Required

Allowed: May be either a symbolic host name or an Internet protocol number expressed in
dotted-decimal format.

Default:

Notes: In SNMP terminology, addr is called agent-addr.

Most hosts have at least two addresses, the second one being the loop-back
address: 127.0.0.1.

Example: A symbolic host name might be SMS_main_1.

my-addr: SMS_main_1

An Internet protocol number could be 192.0.2.0.

my-addr: 192.0.2.0

my-oid

Syntax: my-oid: id

Description: The alarm parameter argument assigned to Oracle.

Type: String

Optionality: Optional (deprecated)

Allowed: 1.2.36.52947743

Default: 1.2.36.52947743

 Chapter 4

•

 Chapter 4, Configuring the Environment 73

Notes:

Example:

notification-oid

Syntax: notification-oid: str

Description: A variable that can be queried or changed remotely.

Type: String

Optionality: Optional (deprecated)

Allowed: Constructed from the value of the param-oid parameter to which is appended

two additional digits. The value of each digit is determined by the format of
alarms.

1.2.36.52947743.1.1 Opaque encoding of Oracle fields.

1.2.36.52947743.1.2 id, .3 = machine, .4 = time, .5 =
cpu, etc.

1.2.36.52947743.2.1 Opaque encoding of X.733 fields.

1.2.36.52947743.2.2 Managed object instance, .3 event
type, etc.

Default: 1.2.36.52947743.2.1

Notes: The notification-oid parameter requires that:

• The use-SNMPv3 parameter is set for SNMP version 3.

• The listenPort parameter is configured.

Example:

opaque

Syntax: opaque: 0|1

Description: Defines encoding for SNMP specific traps.

Type: Boolean

Optionality: Required if the specific (on page 74) parameter is used.

Allowed: 0 Use if specific is set to 2 or 4.

1 Use if specific is set to 1 or 3.

Default:

Notes: The value depends on the value assigned to the specific parameter.

Example: opaque: 1

param-oid

Syntax: param-oid: id

Description: The alarm parameter argument assigned to Oracle.

Type: String

Optionality: Optional (deprecated)

Allowed: 1.2.36.52947743

Default: 1.2.36.52947743

Notes: The id is constructed from the values of the sub-parameters listed below.

iso country australia Oracle

1 2 36 52947743

Chapter 4

74 Service Management System Technical Guide

Example:

port

Syntax: port: port

Description: The Internet Protocol (IP) port number of the remote SNMP manager computer.

Type: Integer

Optionality: Required

Allowed: 1 - 65535

Default: 162

Notes: 162 is the SNMP trap port.

Example: port: 162

specific

Syntax: specific: int

Description: An SNMP-specific trap parameter.

Type: Integer

Optionality: Required if you set the opaque parameter

Allowed: 1 A single opaque binding.

2 Multiple variable bindings per trap, for each
parameter.

3 A single opaque binding in x733 format.

4 Multiple x733 variable bindings per trap.

Default:

Notes: If you use the specific parameter, you must also set the opaque parameter.

Example: specific: 1

trap

Syntax: trap: int

Description: The value of the generic trap.

Type: Integer

Optionality: Required

Allowed: 6

Default: 6

Notes:

Example: trap: 6

use-SNMPv3

Syntax: use-SNMPv3: 0|1

Description: The version of the SNMP implementation.

Type: Integer

Optionality: Required

Allowed: 0 SNMPv1 is enabled

1 SNMPv3 is enabled

Default: 1

Notes:

 Chapter 4

•

 Chapter 4, Configuring the Environment 75

Example: use-SNMPv3: 1

userName

Syntax: userName: name

Description: Used by smsAlarmRelay when it listens on a standard SNMP port that has
already been opened.

Type: String

Optionality: Required

Allowed:

Default: smf_oper

Notes: In order to open the standard SNMP port, smsAlarmRelay needs root privileges.
Once the port is open, smsAlarmRelay's privileges are restricted to those
assigned to name.

Example: userName: smf_oper

Formatting an SNMP trap message

The format of SNMP messages is defined in IETF STD0062.

At the top level the “Message” element has the “version” field set in accordance with the SNMP version
set by the "use-SNMPv3" configuration parameter. The rest of the formatting differs according to the
SNMP version that is being used.

SNMP v1

The SNMP v1 message is built up from each line of this table.

Part Set from

version Set by the use-SNMPv3 configuration parameter.

community Set via the community configuration parameter.

enterprise Set using the my-oid configuration parameter.

agent-addr The IP address of the SMS set using my-addr parameter.

generic-trap Set using the trap configuration parameter.

specific-trap Set using the the specific parameter.

SNMP v3

The SNMP v3 message is built up as follows.

• version - set by the use-SNMPv3 configuration parameter

• Global Header - including a usm security model

• security parameters

▪ authoritative Engine ID - security ID
▪ engine boots - record of the number of boots of the alarmRelay
▪ engine time - record of the up of the alarmRelay

• context engine ID - PID of smsAlarmRelay

• context name - "smsAlarmRelay"

• v2 trap PDU

▪ error status
▪ error index

Chapter 4

76 Service Management System Technical Guide

variable bindings

The variable-bindings take one of two forms, in accordance with the settings of the opaque (on page

73) and specific (on page 74) configuration parameters.

The opaque form is composed of a sequence containing a single item. That single item is itself a
sequence comprising of a pair. The pair is the object ID of the alarm (obtained from the configuration
file) and the alarm data itself encased as an “Opaque” data item.

The multiple variable form is composed of a sequence of pairs, each pair being an object ID identifying
the variable and the variable values. The object IDs and variable datatypes are specified in the MIB.

See SMF AlarmMessage Format (see "Configuring the SNMP Agent" on page 70, on page 79) for the
ASN.1 format of the alarm data.

Transmission of the SNMP trap message

Given the trap message that has been previously formatted we can now send it to the network
management station. As defined in RFC 1157, the message is sent over the User Datagram Protocol
(UDP). The destination IP address and the port are specified in the configuration file.

Failure to send the trap does not raise an alarm as this would lead to an infinite loop of alarm messages.

Starting and stopping

The SNMP additions to the smsAlarmRelay send a “start” trap to all configured destinations when it
starts up. Similarly, it sends a “stopped” trap and process shutdown.

Restarting the smsAlarmRelay

By default, SNMP trap relaying is not performed. Therefore the smsAlarmRelayStartup.sh script must be
edited and the smsAlarmRelay (on page 125) process restarted using the steps below.

Follow these steps to restart the smsAlarmRelay daemon.

Step Action

1 Type following command to find the process ID:
ps -ef | grep smsAlarmRelay

Note: The second column of the results returned is the process ID and the third column
gives the parent process ID.

Kill the process ID from the second column.

2 Type kill -TERM pid

Result: The process is terminated and is restarted by the inittab process.

Configuring Connections for CORBA Services

About CORBA Services Configuration

The CorbaServices section in the eserv.config configuration file defines common connection parameters
for CORBA services on SMS nodes. The CorbaServices configuration overrides the default and
command-line values specified for CORBA listen ports and addresses.

If you are using IP version 6 addresses, then you must include the CorbaServices section in the
eserv.config file on SMS nodes. This section is optional if you are using only IP version 4 addresses.

The CorbaServices section includes the following required parameters:

 Chapter 4

•

 Chapter 4, Configuring the Environment 77

• AddressInIOR

• smsTaskAgentOrbListenPort

• smsReportDaemonOrbListenPort

• smsTrigDaemonOrbListenPort

• ccsBeOrbListenPort

Example CORBA Services Configuration on the SMS

The following example shows the CorbaServices configuration section in the eserv.config file for CORBA
services on the SMS node.

CorbaServices = {

AddressInIOR = "sms_machine.oracle.com"

OrbListenAddresses = [

"2001:db8:0:1050:0005:ffff:ffff:326b"

"192.0.2.0"

smsTaskAgentOrbListenPort = 6332

smsReportDaemonListenPort = 6333

smsTrigDaemonOrbListenPort = 6334

ccsBeOrbListenPort = 6335

}

CorbaServices Parameters

You specify CORBA services configuration in the CorbaServices section of the eserv.config file on SMS
and SLC nodes. The CorbaServices configuration supports the following parameters:

AddressInIOR

Syntax: AddressInIOR = "str"

Description: The hostname or IP address to place in the IOR (Interoperable Object Reference) for
the CORBA service.

Type: String

Optionality: Required (on SMS nodes only)

Allowed: Hostname, IP version 6 address, or IP version 4 address

Default:

Notes:

Examples: AddressInIOR = "2001:db8:0:1050:0005:ffff:ffff:326b"

AddressInIOR = "192.0.2.0"

AddressInIOR = "sms03xxx.us.oracle.com"

OrbListenAddresses

Syntax: OrbListenAddresses = [

"str"

["str"]

]

Description: List of IP addresses on which the CORBA service listens for incoming requests.

Type: Array

Optionality: Optional (on SMS nodes only)

Allowed: IP version 6 addresses, and IP version 4 addresses

Chapter 4

78 Service Management System Technical Guide

Default:

Notes: If the OrbListAddresses parameter is not set, or you do not specify any IP

addresses, then the CORBA service listens on all the IP addresses available on the
host. Loopback IP addresses and special IP addresses, as defined in RFC 5156, are
excluded.

Example:
OrbListenAddresses = [

"2001:db8:0:1050:0005:ffff:ffff:326b"

"192.0.2.0"

]

smsTaskAgentOrbListenPort

Syntax: smsTaskAgentOrbListenPort = int

Description: The number of the port on which smsTaskAgentOrb listens.

Type: Integer

Optionality: Required (on SMS nodes only)

Allowed:

Default:

Notes: Overrides the CORBA service port specified for the smsTaskAgent process in the -s

command-line parameter. For more information, see smsTaskAgent (on page 164).

Example: smsTaskAgentOrbListenPort = 6332

smsReportDaemonOrbListenPort

Syntax: smsReportDaemonOrbListenPort = int

Description: The number of the port on which smsReportDaemonOrb listens.

Type: Integer

Optionality: Required (on SMS nodes only)

Allowed:

Default:

Notes: Overrides the CORBA listen port specified for the smsReportDaemon process in the -s

command-line parameter. For more information about smsReportDaemon, see
smsReportsDaemon (on page 146).

Example: smsReportDaemonOrbListenPort = 6333

smsTrigDaemonOrbListenPort

Syntax: smsTrigDaemonOrbListenPort = int

Description: The number of the port on which smsTrigDaemonOrb listens.

Type: Integer

Optionality: Required (on SMS nodes only)

Allowed:

Default:

Notes: Overrides the smsTrigDaemon CORBA listen port set in the listenPort parameter in

the triggering section of the eserv.config file. For more information about
smsTrigDaemon, see smsTrigDaemon (on page 167).

Example: smsTrigDaemonOrbListenPort = 6334

ccsBeOrbListenPort

Syntax: ccsBeOrbListenPort = int

Description: The number of the port on which ccsBeOrb listens.

 Chapter 4

•

 Chapter 4, Configuring the Environment 79

Type: Integer

Optionality: Required (on SMS nodes only)

Allowed:

Default:

Notes: Overrides the CORBA listen port specified for the ccsBeOrb process in the
listenPort parameter. For more information, see Charging Control Services

Technical Guide.

Example: ccsBeOrbListenPort = 6335

SMF AlarmMessage Format

Introduction

This topic provides the format of the SMFalarmMessage including the MIB definitions.

Alarm Table fields

This table defines the layout of the SMF_ALARM_MESSAGE and SMF_ALARM_DEFN tables in the
SMF from which the alarms are derived.

Name Field size Field type Null value

id 38 NUMBER not null

machine 16

(15 characters for
hostname; 1
terminating charater)

VARCHAR2 not null

time DATE not null

cpu 3 NUMBER not null

name 6 NUMBER not null

subsystem 24 VARCHAR2 not null

severity 1 NUMBER not null

description 256 VARCHAR2

opcomment 256 VARCHAR2

count 4 NUMBER not null

close_time DATE

status 7 VARCHAR2

change_sequence 38 NUMBER

managed_object_instan
ce

2000 VARCHAR2

event_type 2 NUMBER

probable_cause 4 NUMBER

specific_problem 256 VARCHAR2

perceived_severity 1 NUMBER

additional_text 1000 VARCHAR2

Chapter 4

80 Service Management System Technical Guide

MIB field mappings - SMF_ALARM_MESSAGE

This table provides the SMF_ALARM_MESSAGE to MIB field mappings.

DB Alarm MIB

0 id Mapped directly (unique ID)

1 machine Mapped directly (hostname)

2 time Mapped directly (“YYYYMMDDHHMMSS”

3 cpu Mapped directly (CPU number)

4 name = 0 for Solaris & HPUX

6 subsystem Mapped directly (process identifier)

7 severity Mapped directly (0=NOTICE, 2=WARNING, 4=ERROR,
6=CRITICAL, 8=CLEARANCE)

8 description Mapped directly (free text)

9 opcomment Mapped directly (free text)

10 count Mapped directly (number of duplicates)

 close_time Not sent

5 status Mapped directly (“OPEN”, “PENDING”, “CLOSED”)

 change_sequence Not sent

MIB field mappings - SMF_ALARM_MESSAGE

This table provides the SMF_ALARM_MESSAGE to MIB field mappings.

DB Alarm MIB

0 id Mapped directly (unique ID)

1 machine Mapped directly (hostname)

2 time Mapped directly (“YYYYMMDDHHMMSS”

3 cpu Mapped directly (CPU number)

4 name = 0 for Solaris

6 subsystem Mapped directly (process identifier)

7 severity Mapped directly (0=NOTICE, 2=WARNING, 4=ERROR,
6=CRITICAL, 8=CLEARANCE)

8 description Mapped directly (free text)

9 opcomment Mapped directly (free text)

10 count Mapped directly (number of duplicates)

 close_time Not sent

5 status Mapped directly (“OPEN”, “PENDING”, “CLOSED”)

 change_sequence Not sent

MIB field mappings - SMF_ALARM_DEFN

This table provides the SMF_ALARM_DEFN to MIB field mappings.

DB Alarm MIB

Alarm_type_id not sent

 Chapter 4

•

 Chapter 4, Configuring the Environment 81

DB Alarm MIB

event_type Mapped directly (event_type)

probable_cause Mapped directly (probable_cause)

severity Mapped directly (severity)

specific_problem Mapped directly (specific_problem)

recommended_action not sent

additional_text Prefixed with description and mapped to additional_text

present_to_am not sent

present_to_ar not sent

autoclear period not sent

regular_expression not sent

notes not sent

SMF Listen Messages

An SNMP manager may trigger the resend of traps by setting eServDataLastChgSeq to the value of the
identifier (id or eServId) of the last successfully received trap.

Note: Use of this mechanism will cause traps to be sent to all active SNMP managers.

Defining the Screen Language

Introduction

The default language file sets the language that the Java administration screens start in. The user can
change to another language after logging in.

The default language can be changed by the system administrator.

By default, the language is set to English. If English is your preferred language, you can skip this step
and proceed to the next configuration task, Defining the Help Screen Language (on page 83).

Default.lang

When SMS is installed, a file called Default.lang is created in the application's language directory in the
screens module. This contains a soft-link to the language file that defines the language used by the
screens.

If a Default.lang file is not present, the English.lang file is used.

The SMS Default.lang file is:

/IN/html/SMS/language/Default.lang

Example Screen Language

If Dutch is the language you want to set as the default, create a soft-link from the Default.lang file to the
Dutch.lang file.

Chapter 4

82 Service Management System Technical Guide

Language files for multi-byte character sets

To create and use a language file for a language that requires a multi-byte character set, as simplified or
traditional Chinese does, as well as others, you should create the file in the UTF-8 (Unicode
Transformation Format-8) format.

Note:To support reading and writing of UTF-8 characters, you must ensure that the database character
set is UTF-8. You can use the following query to determine what the database character set is:

select value from nls_database_parameters where parameter =

'NLS_CHARACTERSET';

User-specific language settings

All screens in the SMS are able to support selected languages. On login, the screens are displayed in
the default language. You can subsequently specify a language for a specific user in the Configuration
field of the User Management screen by specifying LANGUAGE=ABC where ABC must match the
language file name, is case-sensitive, and does not include the file name extension. After a language is
selected for a user, it is stored in their profile.

If a character set other than UTF-8 is used to create the language file, you must specify the character
set for a user using CHARSET=XYZ in the Configuration field on the User tab of the User Management
screen, where XYZ specifies one of the following character sets: US-ASCII, ISO-8859-1, UTF-16BE,
UTF-16LE, or UTF-16.

For more information about setting the Configuration field, see Service Management System User's
Guide.

Procedure

Follow these steps to set the default language for your SMS Java Administration screens.

Step Action

1 Change to the following directory:
/IN/html/SMS/language

Example command: cd /IN/html/SMS/language/

2 Ensure the Default.lang file exists in this directory.

3 If the required file does not exist, create an empty file called Default.lang.

4 Ensure that the language file for your language exists in this directory. The file should be
in the format:
language.lang

Where:

language = your language.

Example:
Spanish.lang

5 If the required language file does not exist, either:

• create a new one with your language preferences, or

• contact Oracle support.

To create a language file, you need a list of the phrases and words used in the screens.
These should appear in a list with the translated phrase in the following format:
original phrase=translated phrase

Any existing language file should have the full set of phrases. If you do not have an
existing file to work from, contact Oracle support with details.

6 Create a soft-link between the Default.lang file, and the language file you want to use as
the default language for the SMS Java Administration screens.

 Chapter 4

•

 Chapter 4, Configuring the Environment 83

Step Action

Example command: ln -s Dutch.lang Default.lang

Defining the Help Screen Language

Introduction

The default Helpset file sets the language that the help system for the Java Administration screens start
in. The user can change to another language after logging in.

The default language can be changed by the system administrator. By default, the language is set to
English.

Default.SMS.hs

When SMS is installed, a file called Default.SMS.hs is created in the application's language directory in the
screens module. This contains a soft-link to the language file which defines the language which will be
used by the screens.

If a Default.SMS.hs file is not present, the English.SMS.hs file will be used.

If a Default.SMS.hs file is present, a user must explicitly set their language to their required language in
the Tools screen or the default language will be used.

The Default.SMS.hs file is:

/IN/html/SMS/helptext/Default.SMS.hs

Example helpset language

If Dutch is the language you want to set as the default, create a soft-link from the Default.SMS.hs file to
the Dutch.SMS.hs file.

Procedure

Follow these steps to set the default language for your SMS Java Administration screens.

Step Action

1 Change to the following directory:
/IN/html/SMS/helptext

Example command: cd /IN/html/SMS/helptext

2 Ensure the Default.SMS.hs file exists in this directory.

3 If the required file does not exist, create an empty file called Default.SMS.hs.

4 Ensure that the language file for your language exists in this directory. The file should be
in the format:
language.SMS.hs

Where:

language is your language

Example:

Dutch.SMS.hs

5 If the required language file does not exist, either:

• create a new one with your language preferences, or

• contact Oracle support.

Chapter 4

84 Service Management System Technical Guide

To create a language file, you need a list of the phrases and words used in the screens.
These should appear in a list with the translated phrase in the following format:
original phrase=translated phrase

Any existing language file should have the full set of phrases. If you do not have an
existing file to work from, contact Oracle support with details.

6 Create a soft-link between the Default.SMS.hs file, and the language file you want to use as
the default language for the SMS Java Administration screens.

Example command: ln -s Dutch.Acs_Service.hs Default.Acs_Service.hs

Assigning the Oracle Profile to New Users

You create users that can access the SMS UI by using the Service Management System System, User
Management screen. By default, when you add a new SMS user, the new user is assigned the standard
Oracle profile, named DEFAULT. This profile includes a password verification function that checks
things such as the minimum length, number of digits, and so on.

You can create a non-standard Oracle profile to assign to new users by using the CREATE PROFILE
command. When you create the Oracle profile, you specify the password verification function that will be
applied to user passwords. You can use this feature, for example, to specify an Oracle profile that uses
a password verification function that has stricter password verification conditions.

For information about creating Oracle profiles by using the CREATE PROFILE command, see the
Oracle Database documentation.

When you create or edit a user's password, smsTaskAgent verifies that you have entered an acceptable
password by applying the password verification function that is specified in the Oracle profile assigned
to the user.

You configure smsTaskAgent to assign a non-standard Oracle profile to new users instead of the default
Oracle profile as follows:

smsTaskAgent = {

defaultOracleProfile = "password_profile"

}

where password_profile is the name of the Oracle profile you want to use. You must specify the name of
an existing Oracle profile. See smsTaskAgent (on page 164) for more information.

You specify the message that displays for failed attempts to create or change a user's password in the
jnlp.sms.passwordPolicyMessage Java application property. See

jnlp.sms.passwordPolicyMessage (on page 98) for more information.

Setting up the Screens

Accessing SMS

To access the SMS user interface (UI), do the following:

• Ensure the Java SE Runtime Environment version 21 is installed on your computer.

• If required, obtain, and install the trusted certificate for the database connection into your keystore.

• Obtain the application zip file containing jars and other files (smsGui.bat or smsGui.sh).

• In Windows, run smsGui.bat to start the application.

• In other machines:

▪ Change the permission of smsGui.sh using chmod 755 smsGui.sh command.

▪ Run the application using bash smsGui.sh command.

For more information about the SMS UI, see SMS User's Guide.

 Chapter 4

•

 Chapter 4, Configuring the Environment 85

About Customizing the SMS UI

You can customize the SMS UI by setting application properties in the smsGui.bat/smsGUi.bat file, which is
in the /IN/html/ directory. You set java application properties:

-Dproperty="value"

Where:

• property is the name of the application property.

• value is the value of the specified property.

Note: If the properties are present in multiple lines, separate properties with "^" in smsGui.bat or "\" in
smsGui.sh. For example:
In smsGui.bat :
-Dproperty="value" ^

In smsGui.sh:
-Dproperty="value" \

Java Application Properties

The following application properties are available to customize the UI:

jnlp.acs.ACSDefaultCustomerIsPrepaid

Syntax: -Djnlp.acs.ACSDefaultCustomerIsPrepaid="value"

Description: Specifies whether the ACS New Customer screen has the Prepaid Charging Customer
check box selected by default.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: True

Notes: If set to:

• True – The Prepaid Charging Customer check box is selected by default.

• False – The Prepaid Charging Customer check box is cleared by default.

Example: -Djnlp.acs.ACSStartScreenVersion="1"

jnlp.acs.ACSStartScreenVersion

Syntax: -Djnlp.acs.ACSStartScreenVersion="num"

Description: This property is provided for backwards compatibility only. It allows you to display the
version of the ACS main screen for releases prior to NCC release 5.0.3. The current
version of the ACS main screen is displayed by default.

Type: String

Optionality: Optional

Chapter 4

86 Service Management System Technical Guide

Allowed: • 1 – The version of the ACS main screen for releases prior to NCC release 5.0.3
is displayed that includes the Events button. The ACS events feature is now
deprecated. Use this setting only if you want to access existing events
configuration in ACS.

• Not set – The current version of the ACS main screen is displayed.

Default: Not set

Notes: This property is provided for backwards compatibility.

Example: -Djnlp.acs.ACSStartScreenVersion="1"

jnlp.acs.allowCallPlanSchedulingInPast

Syntax: -Djnlp.acs.allowCallPlanSchedulingInPast="value"

Description: Specifies whether control plans can be scheduled to start in the past.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: False

Notes: If set to:

• True – Control plans can be scheduled to start in the past.

• False – Control plans cannot be scheduled to start in the past.

Example: -Djnlp.acs.allowCallPlanSchedulingInPast="t"

jnlp.ccs.AllowDeletedVouchers

Syntax: -Djnlp.ccs.allowDeletedVouchers="value"

Description: Specifies whether you can set a voucher status or a voucher range state to Deleted.

This parameter is used by the following in the Voucher Manager screens:

• The Vouchers tab

• The Voucher Ranges tab

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: True

Notes: If set to:

• True – You can set a voucher range state or a voucher status to Deleted.

• False – You cannot set a voucher range state or a voucher status to Deleted.

Example: -Djnlp.ccs.allowDeletedVouchers="true"

 Chapter 4

•

 Chapter 4, Configuring the Environment 87

jnlp.acs.allowRefInCustCombo

Syntax: -Djnlp.acs.allowRefInCustCombo="value"

Description: Specifies whether users can perform searches in the ACS UI by using the
customer reference number rather than the customer name.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: False

Notes: If set to:

• True – Allows searches using the customer reference number only.

• False – Requires searches to include a customer name along with a
customer reference number.

Example: -Djnlp.acs.allowRefInCustCombo="t"

jnlp.acs.autoCloseCompileDialog

Syntax: -Djnlp.acs.autoCloseCompileDialog="value"

Description: Specifies whether the CPE compiler report closes automatically after a control
plan compiles successfully.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: False

Notes: If set to:

• True – The CPE compiler report closes automatically after a control plan
compiles successfully.

• False – The CPE compiler report remains open after a control plan
compiles successfully.

Example: -Djnlp.acs.autoCloseCompileDialog ="t"

jnlp.acs.autoCloseCPE

Syntax: -Djnlp.acs.autoCloseCPE="value"

Description: Specifies whether the Control Plan Editor closes automatically after a control plan
compiles successfully.

Type: String

Optionality: Optional

Allowed: • True

Chapter 4

88 Service Management System Technical Guide

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: False

Notes: If set to:

• True – The CPE closes automatically after a control plan compiles
successfully.

• False – The CPE remains open after a control plan compiles
successfully.

Example: -Djnlp.acs.autoCloseCPE="t"

jnlp.ccs.BeORBTimeoutms

Syntax: -Djnlp.ccs.BeORBTimeoutms="num"

Description: Specifies the length of time, in milliseconds, after which an ORB request from the
screen operator's terminal to the NCC server times out.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 20000 (that is, 20 seconds)

Notes:

Example: -Djnlp.ccs.BeORBTimeoutms="5000"

jnlp.ccs.ccs_oper_cmnReceiveFiles_port

Syntax: -Djnlp.ccs.ccs_oper_cmnReceiveFiles_port="port"

Description: Specifies the port number on which the cmnReceiveFiles background process listens on
the SMS machine when running as the ccs_oper user.

This property is used by the following:

• The Voucher Management GPG Public Keys tab to import public keys

• The Subscriber Management Subscriber Batch tab to upload batch files

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 2027

Notes:

Example: -Djnlp.ccs.ccs_oper_cmnReceiveFiles_port="2027"

jnlp.ccs.CCSAccountNumLength

Syntax: -Djnlp.ccs.CCSAccountNumLength="num"

Description: Specifies the required length of credit card numbers entered in the Card Number field of
the CCS New Subscriber screen.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: Not set

 Chapter 4

•

 Chapter 4, Configuring the Environment 89

Notes: If this property is not set, the number in the Card Number field must have more than 0
digits.

Example: -Djnlp.ccs.CCSAccountNumLength="9"

jnlp.sms.clusterDatabaseHost

Syntax: -Djnlp.sms.clusterDatabaseHost="(DESCRIPTION=
(LOAD_BALANCE=YES)(FAILOVER=ON)(ENABLE=BROKEN)
(ADDRESS_LIST=(ADDRESS=(PROTOCOL=type)(HOST=name)(PORT=port))
(ADDRESS=(PROTOCOL=type)(HOST=name)(PORT=port)))
(CONNECT_DATA=(SERVICE_NAME=SMF)(FAILOVER_MODE=(TYPE=SESSION)

(METHOD=BASIC)(RETRIES=5)(DELAY=3))))"

Description: Specifies the connection string (including a host and an alternative host address,
in case the first IP address is unavailable) for non-SSL cluster-aware connection to
the database.

To use non-SSL connections to the database, set the
jnlp.sms.EncryptedSSLConnection property to false.

Type: String

Optionality: Optional

Allowed:

Default: By default, port is set to 1521.

Notes: If present, this property is used instead of the jnlp.sms.databaseID property.

Example: -Djnlp.sms.clusterDatabaseHost="(DESCRIPTION=
(LOAD_BALANCE=YES)(FAILOVER=ON)(ENABLE=BROKEN)
(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=smsphysnode1)
(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=smsphysnode2)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=SMF)(FAILOVER_MODE=(TYPE=SESSION)

(METHOD=BASIC)(RETRIES=5)(DELAY=3))))"

jnlp.acs.connectionsDialog

Syntax: -Djnlp.acs.connectionsDialog="value"

Description: Specifies whether the Control Plan Editor displays the Manage Node Exits dialog box
when you hold down the Shift key while dragging the mouse to connect a feature node
exit to a feature node entry.

Type: String

Optionality: Optional (default used if not set)

Allowed: • shown – CPE displays the Manage Node Exits dialog box.

• hidden – CPE does not display the Manage Node Exits dialog box.

Default: shown

Notes:

Example: -Djnlp.acs.connectionsDialog"="hidden"

jnlp.acs.cpeLineDrawingMechanism

Syntax: -Djnlp.acs.cpeLineDrawingMechanism="connection_type"

Description: Specifies the type of connector lines that the Control Plan Editor displays. You
use connector lines to connect feature nodes in control plans.

Connector lines can be angled or straight lines:

Chapter 4

90 Service Management System Technical Guide

• Angled connector lines bend around feature nodes where possible
instead of crossing over them. Angled connector lines are colored when
highlighted.

• HV connector lines use a combination of horizontal and vertical lines to
connect feature nodes and may cross over other feature nodes. HV
connector lines can be black or colored when highlighted.

Type: String

Optionality: Optional

Allowed: • ColouredNodeConnectionDrawer – The CPE displays connectors as
angled lines that are colored when highlighted.

• HVNodeConnectionDrawer – The CPE displays connectors as horizontal
and vertical lines that are black.

• ColouredHVNodeConnectionDrawer – The CPE displays horizontal and
vertical lines that are colored when highlighted.

Default: ColouredNodeConnectionDrawer

Notes:

Example: -Djnlp.acs.cpeLineDrawingMechanism="HVNodeConnectionDrawer"

jnlp.ccs.CreditTransferCP

Syntax: -Djnlp.ccs.CreditTransferCP="name"

Description: Specifies the name of the control plan to run when a credit transfer is performed.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: CREDIT_TRANSFER

Notes:

Example: -Djnlp.ccs.CreditTransferCP="CREDIT_CP"

jnlp.sms.database

Syntax: -Djnlp.sms.database="SMF"

Description: Specifies the Oracle SID for the SMF database.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: SMF

Notes: Set at installation.

Example: -Djnlp.sms.database="SMF"

 Chapter 4

•

 Chapter 4, Configuring the Environment 91

jnlp.sms.databaseHost

Syntax: -Djnlp.sms.databaseHost="ip:port:sid"

Description: Sets the IP address and port to use for non-SSL connections to the SMF
database, and the database SID.

• To use non-SSL connections to the database, set port to 1524 and the
jnlp.sms.EncryptedSSLConnection property to false.

• To use SSL connections to the database, set the
jnlp.sms.EncryptedSSLConnection property to true and set either

the jnlp.sms.secureConnectionDatabaseHost property or the

jnlp.sms.secureConnectionClusterDatatbaseHost property

appropriately. When the jnlp.sms.EncryptedSSLConnection

property is set to true or is undefined, jnlp.sms.databaseHost is

ignored.

Type: String

Optionality: Optional

Allowed:

Default: Not set. Secure SSL connection is enabled at installation by default.

Notes: Internet Protocol version 6 (IPv6) addresses must be enclosed in square brackets
[]; for example: [2001:db8:n:n:n:n:n:n] where n is a group of 4

hexadecimal digits. The industry standard for omitting zeros is also allowed when
specifying IP addresses.

Examples: -Djnlp.sms.databaseHost="192.0.2.1:2484:SMF"

-

Djnlp.sms.databaseHost="[2001:db8:0000:1050:0005:0600:300c:3

26b]:2484:SMF"

-Djnlp.sms.databaseHost=

"[2001:db8:0:0:0:500:300a:326f]:2484:SMF"

-Djnlp.sms.databaseHost= "[2001:db8::c3]:2484:SMF"

jnlp.sms.databaseID

Syntax: -Djnlp.sms.databaseID="port:sid"

Description: Specifies the SQL*Net port for connecting to the database, and the database SID.

Type: String

Optionality: Required

Allowed:

Default: 1521:SMF

Notes: • To use non-SSL connections to the database, set port to 1521 and the
jnlp.sms.EncryptedSSLConnection property to false.

• To use SSL connections to the database, set the
jnlp.sms.EncryptedSSLConnection property to true and set either

the jnlp.sms.secureConnectionDatabaseHost property or the

jnlp.sms.secureConnectionClusterDatatbaseHost property

appropriately. When the jnlp.sms.EncryptedSSLConnection

property is set to true or is undefined, jnlp.sms.databaseID is

ignored.

Example: -Djnlp.sms.databaseID="1521:SMF"

Chapter 4

92 Service Management System Technical Guide

jnlp.sms.dbPassword

Syntax: -Djnlp.sms.dbPassword="password"

Description: Specifies the database password. This password is for a special database user
that the ACS Logon screen uses before the user logs in. This property is set
during installation and is then not changed.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: acs_public

Notes: Do not change this value.

Example: -Djnlp.sms.dbPassword="acs_public"

jnlp.sms.dBUser

Syntax: -Djnlp.sms.dBUser="user"

Description: Specifies the database user name. This is a special database user that the ACS
Logon screen uses before the user logs in. This property is set during installation
and is then not changed.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: acs_public

Notes: Do not change this value.

Example: -Djnlp.sms.dBUser="acs_public"

jnlp.ccs.defaultEDRSearchAge

Syntax: -Djnlp.ccs.defaultEDRSearchAge="num"

Description: Used to calculate the default start date that is shown in the EDR Viewer. The
default start date is equal to the current date and time minus
jnlp.ccs.defaultEDRSearchAge.

The default end date is the current date and time.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 2

Notes:

Example: -Djnlp.ccs.defaultEDRSearchAge="5"

jnlp.ccs.defaultEDRSearchCategories

Syntax: -Djnlp.ccs.defaultEDRSearchCategories="list_of_categories"

Description: Specifies the default EDR categories to search for when viewing EDRs in the
CCS View EDRs for Subscriber screen.

Use a comma-separated string of EDR sub-types.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: All

 Chapter 4

•

 Chapter 4, Configuring the Environment 93

Notes: The list of categories must be comma-separated and enclosed in single quotes.

Example: -Djnlp.ccs.defaultEDRSearchCategories="'Amount Charge','Bad

Pin'"

jnlp.ccs.defaultSubscriberSearchType

Syntax: -Djnlp.ccs.defaultSubscriberSearchType="exact|prefix"

Description: Sets the default search type for subscribers in the following locations in the CCS UI:

• The Subscriber tab

• The Register Subscriber to Credit Card dialog box

Type: String

Optionality: Optional (default used if not set)

Allowed: • exact – Searches for the matching subscriber.

• prefix – Searches for all subscribers with IDs that match the entered prefix.

Default: prefix

Notes:

Example: -Djnlp.ccs.defaultSubscriberSearchType="exact"

jnlp.acs.defaultTelcoManaged

Syntax: -Djnlp.acs.defaultTelcoManaged="value"

Description: Specifies whether new ACS customer accounts are marked as being managed by
a Telecommunications Operator (telco) by default. Telco-managed customers are
customers that never log into ACS but are managed explicitly (and without
resource limits) by the telco.

This property controls whether the Managed Customer check box is selected in the
ACS New Customer Details dialog box by default.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: True

Notes: If set to:

• True – The Managed Customer check box is selected by default.

• False – The Managed Customer check box is clear by default.

Example: -Djnlp.acs.defaultTelcoManaged="f"

jnlp.sms.DUAL_STATS_NODE

Syntax: -Djnlp.sms.DUAL_STATS_NODE="value"

Description: Specifies whether the View Statistics tab of the Statistics Viewer screen displays
information about the SMS node.

Type: String

Optionality: Optional

Chapter 4

94 Service Management System Technical Guide

Allowed: • true – The View Statistics tab of the Statistics Viewer screen displays information
about the SMS node.

• false – The View Statistics tab of the Statistics Viewer screen does not display
information about the SMS node.

Default: false

Notes: For more information, see Viewing Statistics in SMS User's Guide.

Example: -Djnlp.sms.DUAL_STATS_NODE="true"

jnlp.ECEExtensions

Syntax: -Djnlp.ECEExtensions="value"

Description: Specifies whether to enable the Notification Gateway tab in the OSD UI.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true – Enables the Notification Gateway tab in the OSD UI.

false or not set – Disables the Notification Gateway tab in the OSD UI.

Default: Not set (disabled)

Notes:

Example: -Djnlp.ECEExtensions="true"

jnlp.sms.EncryptedSSLConnection

Syntax: -Djnlp.sms.EncryptedSSLConnection="value"

Description: Specifies whether connections to the client UI use encrypted SSL.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true – Use encrypted SSL connections to access the client UI.

false – Use non-SSL connections to access the client UI.

Default: true

Notes: • To use SSL connections to the database, set the
jnlp.sms.EncryptedSSLConnection property to true and set either the

jnlp.sms.secureConnectionDatabaseHost property or the

jnlp.sms.secureConnectionClusterDatatbaseHost property

appropriately.

• To use non-SSL connections to the database, set the
jnlp.sms.EncryptedSSLConnection property to false.

Example: -Djnlp.sms.EncryptedSSLConnection="true"

jnlp.sms.host

Syntax: -Djnlp.sms.host="IPaddress"

Description: Specifies the Internet Protocol (IP) address for the SMS host machine that is set
at installation.

Type: String

Optionality: Required

Allowed: • IP version 4 (IPv4) addresses

• IP version 6 (IPv6) addresses

Default: No default

 Chapter 4

•

 Chapter 4, Configuring the Environment 95

Notes: You can use the industry standard for omitting zeros when specifying IP
addresses.

Examples: -Djnlp.sms.host="192.0.2.0"

-Djnlp.sms.host="2001:db8:0000:1050:0005:0600:300c:326b"

-Djnlp.sms.host="2001:db8:0:0:0:500:300a:326f"

-Djnlp.sms.host="2001:db8::c3"

jnlp.sms.protocol

Syntax: -Djnlp.sms. protocol="value"

Description: Specifies the protocol used to load the GUI images.

Type: String

Optionality: Optional (default used if not set)

Allowed: http, https

Default: http

Notes: When the GUI is launched using https, set the value of jnlp.sms.protocol to

https in order to load the images.

Examples: -Djnlp.sms.protocol="https"

jnlp.vpn.INProtocol

Syntax: -Djnlp.vpn.INProtocol="name"

Description: Specifies the IN protocol for VPN screens.

Type: String

Optionality: Required

Allowed: • AIN – Hides settings not relevant to AIN. Only customers using Advanced
Intelligent Network (AIN) should set the property to AIN.

• Not set – All settings are shown.

Default: Not set

Notes: Set at installation.

Example: -Djnlp.vpn.INProtocol="AIN"

jnlp.acs.issuePCClockWarning

Syntax: -Djnlp.acs.issuePCClockWarning="value"

Description: Specifies whether a warning is raised when the user's PC clock time is more than
two minutes faster or slower than the SMS platform's clock time.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: True

Notes: If set to:

• True – A warning is raised.

Chapter 4

96 Service Management System Technical Guide

• False – A warning is not raised.

Example: -Djnlp.acs.issuePCClockWarning="t"

jnlp.sms.logo

Syntax: -Djnlp.sms.logo="file"

Description: Specifies the logo displayed on the splash screen immediately before the ACS
Logon screen appears.

At installation, the property is set to an Oracle logo GIF file.

Type: String

Optionality: Optional

Allowed: A valid network path and filename.

Default: None

Notes:

Example: -Djnlp.sms.logo="SMS/images/oracle.gif"

jnlp.acs.MAX_CONTROL_PLANS_DISPLAYED

Syntax: -Djnlp.acs.MAX_CONTROL_PLANS_DISPLAYED="num"

Description: Specifies the maximum number of control plans that can be displayed in the
search results section of an ACS UI dialog box.

Type: String

Optionality: Optional

Allowed: 1 through 999

Default: 200

Notes:

Example: -Djnlp.acs.MAX_CONTROL_PLANS_DISPLAYED="200"

jnlp.ccs.MaxGlobalLimitedLiabilityPromotions

Syntax: -Djnlp.ccs.MaxGlobalLimitedLiabilityPromotions="num"

Description: Specifies the maximum number of promotions that can have global limited liability.

This property is used by the Details tab of the Promotion Manager screen.

After the maximum number is reached, the global limited liability fields are disabled on
the Details tab.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any integer greater than or equal to 0

Default: 20

Notes:

Example: -Djnlp.ccs.MaxGlobalLimitedLiabilityPromotions="25"

jnlp.acs.maximiseAcsScreens

Syntax: -Djnlp.acs.maximiseAcsScreens="value"

Description: Specifies whether the windows in the ACS UI are opened at maximum size or
optimum size.

 Chapter 4

•

 Chapter 4, Configuring the Environment 97

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: False

Notes: If set to:

• True – The windows in the ACS UI are opened at maximum size.

• False – The windows in the ACS UI are opened at optimum size.

Example: -Djnlp.acs.maximiseAcsScreens="t"

jnlp.ccs.MaxPDSMSThresholdEntries

Syntax: -Djnlp.ccs.MaxPDSMSThresholdEntries="num"

Description: Specifies the maximum number of promotional destination discount thresholds that you
can define. That is, the number of non-discounted short messages that must be sent
before the discount is applied.

This property is used by the Promotional Destination Rates option of the New Product
Type screen.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any number greater than or equal to zero

Default: 5

Notes:

Example: -Djnlp.ccs.MaxPDSMSThresholdEntries="10"

jnlp.ccs.MaxRowsRTWN

Syntax: -Djnlp.ccs.MaxRowsRTWN="num"

Description: Specifies the maximum number of rows to display in the Real Time Wallet Notifications
option of the CCS New Product Type screen.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 100

Notes:

Example: -Djnlp.ccs.MaxRowsRTWN="50"

jnlp.sms.namingServerPort

Syntax: -Djnlp.sms.namingServerPort" value="port"

Description: Tells the CCP Dashboard screens how to contact the naming
server.

Type: Integer

Chapter 4

98 Service Management System Technical Guide

Optionality: Optional

Allowed:

Default: 5556

Notes: The value in this field should be the same as the value you set
in the -p parameter of smsNamingServerStartup.

Example: -Djnlp.sms.namingServerPort" value="5556"

jnlp.ORB_HOST

Syntax: -Djnlp.ORB_HOST="hostsms"

Description: Specifies the host name of the machine running the ccsBeOrb background process.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: The SMS machine host name.

Notes:

Example: -Djnlp.ORB_HOST="hostname"

jnlp.acs.paletteStyle

Syntax: -Djnlp.acs.paletteStyle="value"

Description: Specifies the style used to display the feature palette in the Control Plan Editor
window. There are two possible feature palette styles:

• The floating panel style feature palette displays feature group names in a
list, and the feature nodes within a selected group in a floating panel. The
floating panel style enables you to quickly locate a feature node in the
palette by using the Search Palette feature to filter the available feature
nodes.

• The static panel style feature palette displays an expandable list of
feature node groups from which you select individual feature nodes in a
static panel. The Search Palette feature is not available with this style.

Type: String

Optionality: Optional

Allowed: • old – Sets the feature palette to the static panel style.

• Not set – Sets the feature palette to the floating panel style.

Default: Floating panel style

Notes: To enable the jnlp.acs.paletteStyle property, clear the Java cache and

the client browser cache before restarting the Control Plan Editor.

Example: -Djnlp.acs.paletteStyle="old"

jnlp.sms.passwordPolicyMessage

Syntax: -Djnlp.sms.passwordPolicyMessage="message_text"

Description: Specifies the message text that is displayed for failed attempts to change a user's
password through the User Management screen in the SMS UI.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any text. The text should be relevant to the password restrictions imposed by the
password verification function defined in the user's (Oracle) profile.

 Chapter 4

•

 Chapter 4, Configuring the Environment 99

Default: The new password is not compliant with the password policy.

Notes: The definition must be specified on one line. Do not include new lines in the message
text. If the message is longer than 80 characters, the displayed message is broken up
into multiple lines automatically.

Example: -Djnlp.sms.passwordPolicyMessage="The new password must contain

at least 9 characters and must contain at least 2 digits"

jnlp.sms.port

Syntax: -Djnlp.sms.port="num"

Description: Specifies the SQL*Net port for connecting to the SMS host machine.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 1521

Notes: Set at installation

Example: -Djnlp.sms.port="1521"

jnlp.sms.printingFontSize

Syntax: -Djnlp.sms.printingFontSize="num"

Description: Specifies the point size of text that can be printed from screens that support printing.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: 6 through 12 (inclusive)

Default: 8

Notes:

Example: -Djnlp.sms.printingFontSize="10"

jnlp.acs.ProfileN

Syntax: -Djnlp.acs.Profilenumber="new_name"/>

Description: Specifies to suppress or change the name of any of the 20 profile blocks.

Type: String

Optionality: Optional

Allowed: 1  number  20

new_name is one of the following:

• – (dash): The profile block is not displayed in screens.

• String comprising any printable characters.

Chapter 4

100 Service Management System Technical Guide

Default: The following table lists default profile block names in the order in which they
appear in feature node drop-down lists.

Profile1 VPN Network Profile

Profile2 VPN Station Profile

Profile3 Customer Profile

Profile4 Control Plan Profile

Profile5 Global Profile

Profile6 CLI Subscriber Profile

Profile7 Service Number Profile

Profile8 App Specific 1

Profile9 App Specific 2

Profile10 App Specific 3

Profile11 App Specific 4

Profile12 App Specific 5

Profile13 App Specific 6

Profile14 App Specific 7

Profile15 App Specific 8

Profile16 Any Valid Profile

Profile17 Temporary Storage

Profile18 Call Context

Profile19 Outgoing Extensions

Profile20 Incoming Extensions

Notes: • If VPN is not installed, Profile1 and Profile2 are suppressed by default.

• If Charging Control Services is installed, profile block names associated
with Profile8 through Profile15 are changed automatically. For more
information, see CCS Technical Guide.

• If RCA is not installed, Profile19 and Profile20 are suppressed by default.
You can make them available by installing RCA or by appending them to
the sms.jnlp file.

• Feature nodes with writable fields cannot write into Profile16.

Examples: -DProfile1="–"

-DProfile6="Originating CLI"

jnlp.acs.requireCustomerReference

Syntax: -Djnlp.acs.requireCustomerReference="value"

Description: Specifies whether a customer reference number is mandatory for each ACS
customer that is created.

Type: String

Optionality: Optional

 Chapter 4

•

 Chapter 4, Configuring the Environment 101

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: True

Notes: If set to:

• True – Customer reference numbers are mandatory for newly created
ACS customers.

• False – Customer reference numbers are optional for newly created ACS
customers.

Example: -Djnlp.acs.requireCustomerReference="f"

jnlp.sms.ResyncServerPort

Syntax: -Djnlp.sms.ResyncServerPort="port"

Description: Specifies the port number on which the SMS resyncServer process listens for
connections.

This property is used by the SMS Replication Check screen.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 7669

Notes:

Example: -Djnlp.sms.ResyncServerPort="7669"

jnlp.sms.reports_location

Syntax: -Djnlp.sms.reports_location="hostname"

Description: Specifies the machine name of the HTML server on which generated reports are
available in the /output directory.

This property is used by the SMS Report Functions screen.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: Not set, which means that reports are generated on the SMS machine.

Notes:

Example: -Djnlp.sms.reports_location="SMSmachine"

jnlp.acs.scfs

Syntax: -Djnlp.acs.scfs="scfn"

Description: Lists the network entities that are available for handover.

The names listed in this section are used by the following feature nodes:

• TCAP Handover (as the SCP Name list)

• RIMS MAP Query and IS41 Query (as the Return Address for mapping the
SCCP Calling Party Address)

Chapter 4

102 Service Management System Technical Guide

Type: String

Optionality: Optional. However, the TCAP Handover feature node must have at least one scf
to work.

Allowed: Any scf name configured in the acs.conf file. See acsChassis SSF Configuration
(SLC).

Default: None

Notes: For every jnlp.acs.scfs property in the JNLP file, you must create a matching

scf entry in the acs.conf file on each SLC defining the address associated with

this entry.

Example: -Djnlp.acs.scfs="SCF_Name1,SCF_Name2"

jnlp.acs.SDRfastTimeoutDefault

Syntax: -Djnlp.acs.SDRfastTimeoutDefault="secs"

Description: Specifies the default fast timeout period, in seconds, for the Selection Dependent
Routing feature node. If the specified timeout period expires before a customer enters a
digit on their telephone keypad, the feature node exits. You can use this feature, for
example, to connect calls directly to the operator after timing out.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 10

Notes:

Example: -Djnlp.acs.SDRfastTimeoutDefault="5"

jnlp.sms.secureConnectionClusterDatabaseHost

Syntax: -Djnlp.sms.secureConnectionClusterDatabaseHost = "(DESCRIPTION=
(ADDRESS_LIST=(ADDRESS=(PROTOCOL=type)(HOST=IPaddress)
(PORT=port))
(ADDRESS=(PROTOCOL=type)(HOST=IPaddress)(PORT=port)))
(CONNECT_DATA=(SERVICE_NAME=servicename)))"

Description: Specifies the connection string (including host address and port) for encrypted SSL
connections to the SMF database on a clustered system.

To enable secure SSL connections to the database, set port to 2484 and set the
jnlp.sms.EncryptedSSLConnection property to true.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default:

Notes: If present, this property is used instead of the
jnlp.sms.secureConnectionDatabaseHost property.

Example: -Djnlp.sms.secureConnectionClusterDatabaseHost = "(DESCRIPTION=
(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCPS)(HOST=192.0.1.1)
(PORT=2484))
(ADDRESS=(PROTOCOL=TCP)(HOST=192.0.2.1)(PORT=2484)))
(CONNECT_DATA=(SERVICE_NAME=SMF)))"

 Chapter 4

•

 Chapter 4, Configuring the Environment 103

jnlp.sms.secureConnectionDatabaseHost

Syntax: -Djnlp.sms.secureConnectionDatabaseHost = "(DESCRIPTION=
(ADDRESS_LIST=(ADDRESS=(PROTOCOL=type)(HOST=IPaddress)
(PORT=port))))(CONNECT_DATA=(SERVICE_NAME=servicename)))"

Description: Specifies the connection string (including host address and port) for encrypted SSL
connections to the SMF database on a non-clustered system.

To use SSL connections to the database, set port to 2484 and set the
jnlp.sms.EncryptedSSLConnection property to true.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default:

Notes: If present, this property is used instead of the jnlp.sms.databaseID property.

Example: -Djnlp.sms.secureConnectionDatabaseHost = "(DESCRIPTION=
(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCPS)(HOST=192.0.1.1)
(PORT=2484))))(CONNECT_DATA=(SERVICE_NAME=SMF)))"

jnlp.ses.SES_DATE_FORMAT

Syntax: -Djnlp.ses.SES_DATE_FORMAT="format"

Description: Specifies the date format used by the SES Configuration screens.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any format supported by Java SimpleDateFormat (see
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html)

Default: dd/MM/yyyy HH:mm:ss

Notes:

Example: -Djnlp.ses.SES_DATE_FORMAT="yyMMddHHmmssZ"

jnlp.acs.showAnnouncementSource

Syntax: -Djnlp.acs.showAnnouncementSource="value"

Description: Specifies whether announcement sources (i.e., the resource name and resource ID)
are displayed next to announcement names in ACS UI windows.

Type: String

Optionality: Optional

Allowed: • TRUE

• true

• YES

• yes

• Y

• y

All other values are considered to be false.

Default: True

Notes: If set to:

• True – Announcement sources are displayed.

• False – Announcement sources are not displayed.

Example: -Djnlp.acs.showAnnouncementSource="f"

Chapter 4

104 Service Management System Technical Guide

jnlp.sms.showEFM

Syntax: -Djnlp.sms.showEFM="value"

Description: Specifies whether the Alarm Definition tab is available on the Alarm Management screen.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: False

Notes: If set to:

• True – The Alarm Definition tab is available.

• False – The Alarm Definition tab is not available.

Example: -Djnlp.sms.showEFM="True"

jnlp.ccs.ShowEmptyEDRTags

Syntax: -Djnlp.ccs.ShowEmptyEDRTags="taglist"

Description: Lists the CCS EDR tags that must be displayed in EDR Viewer or CCP
Dashboard when they are empty.

Type: String

Optionality: Optional (default used if not set)

Allowed: Comma separated list of the tags to include.

Default: Empty tags are not displayed in EDR Viewer.

Notes: Do not insert spaces in the list of tags.

Example: -Djnlp.ccs.ShowEmptyEDRTags="ACS_CUST_ID,PI,WALLET_TYPE"

jnlp.acs.showNetwork

Syntax: -Djnlp.acs.showNetwork="value"

Description: Specifies whether the Network field is displayed in the ACS New Customer dialog
box.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: True

Notes: If set to:

• True – The Network field is displayed.

• False – The Network field is not displayed.

Example: -Djnlp.acs.showNetwork="f"

 Chapter 4

•

 Chapter 4, Configuring the Environment 105

jnlp.acs.showCallPlanCopy

Syntax: -Djnlp.acs.showCallPlanCopy="value"

Description: Specifies whether the Copy button is enabled on the ACS Numbers screen.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: True

Notes: If set to:

• True – The Copy button is enabled.

• False – The Copy button is disabled.

Example: -Djnlp.acs.showCallPlanCopy="f"

jnlp.sms.smf_oper_cmnReceiveFiles_port

Syntax: -Djnlp.sms.smf_oper_cmnReceiveFiles_port="port"

Description: Specifies the port number on which the cmnReceiveFiles background process listens on
the SMS machine when running as the smf_oper user.

This property is used by the following:

• The Location Capabilities Pack Import screen when importing LCP cell or area data

• The Voucher Management GPG Public Keys tab to import public keys

• The Subscriber Management Subscriber Batch tab to upload batch files

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 2028

Notes:

Example: -Djnlp.sms.smf_oper_cmnReceiveFiles_port="2028"

jnlp.sms.smsProductInfo

Syntax: -Djnlp.sms.smsProductInfo="product"

Description: Specifies the product name displayed in the About Oracle Communications Network
Charging and Control help screen.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: SMS – Service Management System

Notes:

Example: -Djnlp.sms.smsProductInfo="SMS – Service Management System"

Chapter 4

106 Service Management System Technical Guide

jnlp.sms.smsVersionInfo

Syntax: -Djnlp.sms.smsVersionInfo="version"

Description: Specifies the product version number displayed in the About Oracle Communications
Network Charging and Control help screen.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: Version 6.0.1

Notes:

Example: -Djnlp.sms.smsVersionInfo="Version 6.0.1"

jnlp.acs.ssfs

Syntax: -Djnlp.acs.ssfs="ssf1,ssf2,...,ssfn"

Description: Lists the switches that are available in the IN network.

The switches listed in this section are used by the Call Initiation feature node (as
the switch name list).

Type: String

Optionality: Optional. However, the Call Initiation feature node must have at least one scf to
work.

Allowed: Any ssf name configured in the acs.conf file. See acsChassis SSF Configuration
(SLC).

Default: None

Notes:

Example: -Djnlp.acs.ssfs="SSF_Name1,SSF_Name2"

jnlp.sms.sslCipherSuites

Syntax: -Djnlp.sms.sslCipherSuites="(TLS_RSA_WITH_AES_128_CBC_SHA)"

Description: Specifies the cipher suites to use for SSL encryption. You must set this property if you
are using encrypted SSL for connecting to the SMS database.

Type: String

Optionality: Optional (default used if not set)

Allowed: (TLS_RSA_WITH_AES_128_CBC_SHA)

Default: (TLS_RSA_WITH_AES_128_CBC_SHA)

Notes: You must also set the SSL_CIPHER_SUITES property to
(TLS_RSA_WITH_AES_128_CBC_SHA) in the listener.ora and sqlnet.ora files.

Example: -Djnlp.sms.sslCipherSuites="(TLS_RSA_WITH_AES_128_CBC_SHA)"

jnlp.acs.suppressedSDRDigits

Syntax: -Djnlp.acs.suppressedSDRDigits="digits"

Description: The Selection Dependent Routing feature node allows you to route calls based on the
number, letter, or special character entered on the caller's telephone keypad.

You use the jnlp.acs.suppressedSDRDigits property to prevent users from

assigning specified digits to a calling route and to exclude those digits from the
Configure Selection Dependent Routing dialog box of the ACS Control Plan Editor.

Type: String

Optionality: Optional

Allowed: • Numbers ranging from 0 (zero) through 9

 Chapter 4

•

 Chapter 4, Configuring the Environment 107

• Letters ranging from A through F

• Special characters * and #

Default: None

Notes:

Example: -Djnlp.acs.suppressedSDRDigits"="12ab"

jnlp.acs.SuppressTagID

Syntax: -Djnlp.acs.SuppressTagID="value"

Description: Specifies to not include the profile tag value when displaying a profile field name
in the ACS Control Plan Editor.

For example, when jnlp.acs.SuppressTagID is set to:

• true – The profile tag 196613 displays the name "PIN Prefix"

• false – The profile tag 196613 displays the name "PIN Prefix (196613)"

Type: Boolean

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false

Default: True

Notes: If set to:

• True – Only the profile field name is displayed.

• False – Both the profile field name and the profile field value is displayed.

Example: -Djnlp.acs.SuppressTagID="True"

jnlp.trace

Syntax: -Djnlp.trace="value"

Description: Specifies whether to enable tracing for the Control Plan Editor. The output is displayed
in the Java Console.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: on | off, true | false, yes | no, 1 | 0, enabled | disabled

Default: Off

Notes:

Example: -Djnlp.trace="on"

jnlp.sms.TZ

Syntax: -Djnlp.sms.TZ="timezone"

Description: Specifies the time zone used for all time and date values displayed in NCC UI
windows.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any Java supported time zone.

Chapter 4

108 Service Management System Technical Guide

Default: GMT

Notes: For a full list of Java supported time zones, see Time Zones.

Example: -Djnlp.sms.TZ="GMT"

jnlp.sms.OsTZ

Syntax: -Djnlp.sms.OsTZ="timezone"

Description: Specifies the Operating System time zone of the SMS node. It is used in
conjunction with the sms.TZ parameter to successfully show dates in the correct
time zone.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any Java supported time zone.

Default: GMT

Notes: For a full list of Java supported time zones, see Time Zones.

Example: -Djnlp.sms.OsTZ="GMT"

jnlp.acs.updateCPReferences

Syntax: -Djnlp.acs.updateCPReferences="value"

Description: When you update a control plan, the Control Plan Editor creates a new version of
the control plan. If any customers are scheduled to use the older version of the
control plan, the customers' service numbers or CLIs remain attached to the older
version by default. This property specifies whether you can attach customers'
service numbers or CLIs to the new control plan version.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: None

Notes: If set to:

• True – After an updated control plan compiles successfully, the Control
Plan Editor prompts you to select the service numbers or CLIs to attach to
the new control plan version.

• False – The existing service numbers or CLIs remain attached to the
older version of the content plan.

Example: -Djnlp.acs.updateCPReferences="t"

jnlp.ccs.UseAnnouncements

Syntax: -Djnlp.ccs.UseAnnouncements="value"

Description: Specifies whether to play announcements.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

 Chapter 4

•

 Chapter 4, Configuring the Environment 109

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: False

Notes:

Example: -Djnlp.ccs.UseAnnouncements="Yes"

jnlp.acs.useTNForNodeName

Syntax: -Djnlp.acs.useTNForNodeName="value"

Description: Specifies whether the feature node name displayed in the Control Plan Editor window
is the Termination Number (TN). This applies to the following feature nodes only:

• Attempt Termination (AT)

• Unconditional Termination (UT)

The TN is displayed for any UT or AT feature node in the CPE window, without
requiring you to save each feature node to update the stored control plan data.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: False

Notes: If set to:

• True – The feature node name is displayed as the TN in the CPE window.

• False – The feature node name is displayed as the stored feature node name
in the CPE window.

You can update the TN for these feature nodes in a control plan by using the ACS
Numbers screen. See the discussion about Editing Termination Numbers in ACS
User's Guide for more information.

Example: -Djnlp.acs.useTNForNodeName="true"

jnlp.vpn.vpnMaxNumOfHL

Syntax: -Djnlp.vpn.vpnMaxNumOfHL="num"

Description: Specifies the maximum number of hunting lists per station.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes: A hunting list is a terminating call feature where a subscriber may request a list of
alternate destination addresses. If their mobile station is not attached, or does not
answer a call, the service logic attempts to reach the supplied alternate destinations in
sequence.

Example: -Djnlp.vpn.vpnMaxNumOfHL="15"

Chapter 4

110 Service Management System Technical Guide

jnlp.vpn.vpnMaxNumOfHLEntries

Syntax: -Djnlp.vpn.vpnMaxNumOfHLEntries="num"

Description: Specifies the maximum number of entries in a hunting list.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 20

Notes:

Example: -Djnlp.vpn.vpnMaxNumOfHLEntries="25"

jnlp.ccs.VRRedeemMaxVoucherLength

Syntax: -Djnlp.ccs.VRRedeemMaxVoucherLength="int"

Description: Specifies the maximum number of digits in a voucher number.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Must be equal to or larger than VRRedeemMinVoucherLength.

Default: 18

Example: -Djnlp.ccs.VRRedeemMaxVoucherLength="18"

jnlp.ccs.VRRedeemMinVoucherLength

Syntax: -Djnlp.ccs.VRRedeemMinVoucherlength="int"

Description: Specifies the minimum number of digits in a voucher number.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Must be equal to or smaller than VRRedeemMaxVoucherLength.

Default: 10

Example: -Djnlp.ccs.VRRedeemMinVoucherlength="10"

jnlp.acs.warnAboutUnfilledExits

Syntax: -Djnlp.acs.warnAboutUnfilledExits="True"

Description: Specifies whether a control plan passes validation if any of its feature nodes are missing
exits.

This property has a dependency on the endUnlinkedExits parameter. For more

information, see endUnlinkedExits.

Type: String

Optionality: Optional

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Default: False

 Chapter 4

•

 Chapter 4, Configuring the Environment 111

Notes: If set to:

• True – Control plans that are missing feature node exits will pass validation. To
work, you must also set the endUnlinkedExits parameter to 1.

• False – Control plans that are missing node exits will fail during validation.

Example: -Djnlp.acs.warnAboutUnfilledExits="True"

jnlp.osd.WSDLDirectory

Syntax: -Djnlp.osd.WSDLDirectory="file"

Description: Specifies the path to the Operation Sets WSDL file.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /IN/html/wsdls

Notes: Part of OSD.

If you change this property's value, you must also change the
wsdlUriBaseName parameter in the eserv.config file.

Example: -Djnlp.osd.WSDLDirectory="/IN/html/wsdls"

jnlp.osd.WSDLURL

Syntax: -Djnlp.osd.WSDLURL="url"

Description: Specifies the WSDL URL field value (same as wsdlUriBaseName parameter),

and has the form of:

http://host_name/wsdls

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: http://<unset>

Notes: Part of OSD.

If you change this property's value, you must also change the
wsdlUriBaseName parameter in the eserv.config file.

Example: -Djnlp.osd.WSDLURL="http://nzwn-test08.uk.oracle.com/wsdls"

jnlp.sms.OverWriteSwingFont

Syntax: -Djnlp.sms.OverWriteSwingFont="value"

Description: Specifies whether to overwrite the default font of Swing components like JTextArea,
JTextPane, JOptionPane, and JTable to support some special languages (for example:
Dhivehi for Maldives).

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • True

• t(rue)

• Yes

• y(es)

• 1

All other values are considered to be false.

Chapter 4

112 Service Management System Technical Guide

Default: False

Notes: If set to:

• True: Certain swing component default value is overwritten with value
configured for jnlp.sms.OverWriteSwingFontValue.

• False: Default swing component font is used.

Example: -Djnlp.sms.OverWriteSwingFont="True"

jnlp.sms.OverWriteSwingFontValue

Syntax: -Djnlp.sms.OverWriteSwingFontValue="value"

Description: Specifies the font to be used for certain Swing components like JTextArea, JTextPane,
JOptionPane, and JTable in order to support some special languages.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any valid font available in the system.

Default: None

Notes: This field is used if jnlp.sms.OverWriteSwingFont is set to True.

Example: -Djnlp.sms.OverWriteSwingFontValue="MV Boli"

Example of smsGui Script Files

Here is an example of the application properties for resources in the smsGui.bat and smsGui.sh files. Note
that other applications, such as ACS and CCS, may add properties to this file.

smsGui.bat

@echo off

REM Copyright (c) 2025 Oracle. All rights reserved.

REM

REM This material is the confidential property of Oracle Corporation or its

REM licensors and may be used, reproduced, stored or transmitted only in

REM accordance with a valid Oracle license or sublicense agreement.

REM

REM

REM smsGui.bat: runs the SMS application

REM Run: execute smsGui.bat

REM Set JAR_PATH to the current directory

set JAR_PATH=%~dp0

REM Enable delayed expansion

setlocal enabledelayedexpansion

REM Set classpath

 Chapter 4

•

 Chapter 4, Configuring the Environment 113

set

CLASSPATH=%JAR_PATH%;%JAR_PATH%sms.jar.sig;%JAR_PATH%common.jar.sig;%JAR_PATH%ojdbc11.jar

.sig;%JAR_PATH%oraclepki.jar.sig;%JAR_PATH%acs.jar.sig;%JAR_PATH%osd.jar.sig;%JAR_PATH%PI

security.jar.sig;%JAR_PATH%pi.jar.sig;%JAR_PATH%dap.jar.sig;%JAR_PATH%jaxb-runtime-

4.0.5.jar.sig;%JAR_PATH%jaxb-core-4.0.5.jar.sig;%JAR_PATH%istack-commons-runtime-

4.1.2.jar.sig;%JAR_PATH%jakarta.activation-2.0.1.jar.sig;%JAR_PATH%jakarta.xml.bind-api-

4.0.2.jar.sig;%JAR_PATH%http_client.jar.sig;%JAR_PATH%orawsdl.jar.sig;%JAR_PATH%ccs.jar.s

ig;%JAR_PATH%UIS_GW.jar.sig;%JAR_PATH%UPC.jar.sig;%JAR_PATH%upcMacros.jar.sig;%JAR_PATH%r

ims.jar.sig;%JAR_PATH%xms.jar.sig;%JAR_PATH%smcb.jar.sig;%JAR_PATH%np.jar.sig;%JAR_PATH%l

cp.jar.sig;%JAR_PATH%enum.jar.sig;%JAR_PATH%ses.jar.sig;%JAR_PATH%vpn.jar.sig;%JAR_PATH%r

ca.jar.sig;%JAR_PATH%asm-9.1.jar.sig;%JAR_PATH%asm-analysis-9.1.jar.sig;%JAR_PATH%asm-

commons-7.3.1.jar.sig;%JAR_PATH%asm-tree-9.1.jar.sig;%JAR_PATH%asm-util-

9.1.jar.sig;%JAR_PATH%exception-annotation-processor-4.2.5.jar.sig;%JAR_PATH%glassfish-

corba-csiv2-idl-4.2.5.jar.sig;%JAR_PATH%glassfish-corba-internal-api-

4.2.5.jar.sig;%JAR_PATH%glassfish-corba-omgapi-4.2.5.jar.sig;%JAR_PATH%glassfish-corba-

orb-4.2.5.jar.sig;%JAR_PATH%gmbal-api-only-4.0.3.jar.sig;%JAR_PATH%org.osgi.core-

6.0.0.jar.sig;%JAR_PATH%pfl-basic-4.1.2.jar.sig;%JAR_PATH%pfl-basic-tools-

4.1.2.jar.sig;%JAR_PATH%pfl-dynamic-4.1.2.jar.sig;%JAR_PATH%pfl-tf-

4.1.2.jar.sig;%JAR_PATH%pfl-tf-tools-4.1.2.jar.sig;%JAR_PATH%management-api-

3.2.3.jar.sig;%JAR_PATH%ohj.jar.sig;%JAR_PATH%help-

share.jar.sig;%JAR_PATH%oracle_ice.jar.sig;%JAR_PATH%jewt.jar.sig;%JAR_PATH%share.jar.sig

REM Starting GUI....

java ^

 -Djava.util.Arrays.useLegacyMergeSort=true ^

 -Djnlp.sms.TZ=GMT ^

 -Djnlp.sms.host=OUI_HOSTNAME ^

 -Djnlp.sms.OhcHelp=true ^

 -Djnlp.sms.OhcNccHelpLinks=OHCFLAG ^

 -Djnlp.sms.logo=SMS/images/oracle.gif ^

 -Djnlp.sms.databaseID=LPORT:OUI_ORACLE_SID ^

 -Djnlp.sms.databaseHost=NCC_DBHOST:LPORT:OUI_ORACLE_SID ^

 -Djnlp.sms.EncryptedSSLConnection=false ^

 -Djnlp.sms.sslCipherSuites="(TLS_RSA_WITH_AES_128_CBC_SHA)" ^

 -Djnlp.sms.secureConnectionDatabaseHost="(DESCRIPTION= (ADDRESS_LIST=

(ADDRESS=(PROTOCOL=TCPS)(HOST=NCC_DBHOST)(PORT=SECPORT))) (CONNECT_DATA=

(SERVICE_NAME=OUI_ORACLE_SID)))" ^

 -Djnlp.sms.piUsersPasswordPolicyMessage="The new password must be at least 9

characters long and have at least 2 uppercase characters, 2 lowercase characters, 2

digits and 2 special characters, and must be 4 characters or more different from the

previous password if there was one." ^

 -Djnlp.sms.showEFM=1 ^

 -Djnlp.sms.OverWriteSwingFont=false ^

 -Djnlp.sms.OverWriteSwingFontValue="MV Boli" ^

 -Djnlp.acs.SuppressTagID=TRUE ^

 -Djnlp.acs.maximiseAcsScreens=false ^

 -Djnlp.ECEExtensions=true ^

 -Djnlp.acs.Profile8="Account Reference Profile" ^

 -Djnlp.acs.Profile9="Product Type Profile" ^

 -Djnlp.acs.Profile10="Control Plan Profile (App 3)" ^

 -Djnlp.acs.Profile12="CCS Global Profile" ^

 -Djnlp.acs.Profile13="CCS Temporary Profile (App 6)" ^

 -Djnlp.acs.Profile14="CCS Temporary Profile (App 7)" ^

 -Djnlp.acs.Profile15="CCS Temporary Profile (App 8)" ^

 -Djnlp.acs.ssfs="vssp,sca" ^

 -Djnlp.acs.scfs=scf ^

 -Djnlp.vpn.INProtocol=IN_PROTOCOL ^

 -Djnlp.osd.WSDLDirectory="/IN/html/wsdls" ^

 -Djnlp.osd.WSDLURL="http://SHORTHOSTNAME/wsdls" ^

 -Djnlp.ccs.UseAnnouncements=YES ^

 -Djnlp.ccs.BeORBTimeoutms=5000 ^

 -Djnlp.ccs.VRRedeemMinVoucherLength=9 ^

 -Djnlp.ccs.VRRedeemMaxVoucherLength=15 ^

 -Djnlp.ccs.defaultEDRSearchAge=2 ^

 -Djnlp.ccs.allowTTC=true ^

 -Djnlp.ORB_HOST=SHORTHOSTNAME ^

 -Djnlp.sms.ldapDbUser="LdapDbUserName" ^

 -Djnlp.sms.ldapProviderURL="ldaps://LdapHostAddress" ^

 -Djnlp.sms.ldapAuthType=simple ^

 -Djnlp.sms.ldapSecurityPrincipal="uid=#username#,ou=OU,dc=Domain,dc=com" ^

 -Djnlp.sms.ldapSecurityProtocol=ssl ^

Chapter 4

114 Service Management System Technical Guide

 -Djnlp.sms.ldapTemplateAttribute=LdapTemplateAttributeName ^

 -cp "%CLASSPATH%" ^

UserScreens.Application

REM End delayed expansion

endlocal

smsGui.sh

#!/bin/bash

Copyright (c) 2025 Oracle. All rights reserved.

This material is the confidential property of Oracle Corporation or its

licensors and may be used, reproduced, stored or transmitted only in

accordance with a valid Oracle license or sublicense agreement.

smsGui.sh : runs the SMS application

Run: bash smsGui.sh

JAR_PATH=$(pwd)

JAXB_VERSION=4.0.5

GMBAL_VERSION=4.0.3

PFL_VERSION=4.1.2

GLASSFISH_VERSION=4.2.5

ASM_VERSION=9.1

ASM_COMMON_VERSION=7.3.1

JAKARTA_ACTIVATION=2.0.1

JAKARTA_XML_BIND=4.0.2

OSGI_VERSION=6.0.0

MANAGEMENT_API_VERSION=3.2.3

CLASSPATH=$JAR_PATH/:\

$JAR_PATH/sms.jar.sig:\

$JAR_PATH/common.jar.sig:\

$JAR_PATH/ojdbc11.jar.sig:\

$JAR_PATH/oraclepki.jar.sig:\

$JAR_PATH/acs.jar.sig:\

$JAR_PATH/osd.jar.sig:\

$JAR_PATH/PIsecurity.jar.sig:\

$JAR_PATH/pi.jar.sig:\

$JAR_PATH/dap.jar.sig:\

$JAR_PATH/http_client.jar.sig:\

$JAR_PATH/orawsdl.jar.sig:\

$JAR_PATH/ccs.jar.sig:\

$JAR_PATH/UIS_GW.jar.sig:\

$JAR_PATH/UPC.jar.sig:\

$JAR_PATH/upcMacros.jar.sig:\

$JAR_PATH/rims.jar.sig:\

$JAR_PATH/xms.jar.sig:\

$JAR_PATH/smcb.jar.sig:\

$JAR_PATH/np.jar.sig:\

$JAR_PATH/lcp.jar.sig:\

$JAR_PATH/enum.jar.sig:\

$JAR_PATH/ses.jar.sig:\

$JAR_PATH/vpn.jar.sig:\

$JAR_PATH/rca.jar.sig:\

$JAR_PATH/ohj.jar.sig:\

$JAR_PATH/help-share.jar.sig:\

$JAR_PATH/oracle_ice.jar.sig:\

$JAR_PATH/jewt.jar.sig:\

$JAR_PATH/share.jar.sig:\

$JAR_PATH/jaxb-runtime-$JAXB_VERSION.jar.sig:\

$JAR_PATH/jaxb-core-$JAXB_VERSION.jar.sig:\

$JAR_PATH/istack-commons-runtime-$PFL_VERSION.jar.sig:\

 Chapter 4

•

 Chapter 4, Configuring the Environment 115

$JAR_PATH/jakarta.activation-$JAKARTA_ACTIVATION.jar.sig:\

$JAR_PATH/jakarta.xml.bind-api-$JAKARTA_XML_BIND.jar.sig:\

$JAR_PATH/asm-$ASM_VERSION.jar.sig:\

$JAR_PATH/asm-analysis-$ASM_VERSION.jar.sig:\

$JAR_PATH/asm-commons-$ASM_COMMON_VERSION.jar.sig:\

$JAR_PATH/asm-tree-$ASM_VERSION.jar.sig:\

$JAR_PATH/asm-util-$ASM_VERSION.jar.sig:\

$JAR_PATH/exception-annotation-processor-$GLASSFISH_VERSION.jar.sig:\

$JAR_PATH/glassfish-corba-csiv2-idl-$GLASSFISH_VERSION.jar.sig:\

$JAR_PATH/glassfish-corba-internal-api-$GLASSFISH_VERSION.jar.sig:\

$JAR_PATH/glassfish-corba-omgapi-$GLASSFISH_VERSION.jar.sig:\

$JAR_PATH/glassfish-corba-orb-$GLASSFISH_VERSION.jar.sig:\

$JAR_PATH/gmbal-api-only-$GMBAL_VERSION.jar.sig:\

$JAR_PATH/org.osgi.core-$OSGI_VERSION.jar.sig:\

$JAR_PATH/pfl-basic-$PFL_VERSION.jar.sig:\

$JAR_PATH/pfl-basic-tools-$PFL_VERSION.jar.sig:\

$JAR_PATH/pfl-dynamic-$PFL_VERSION.jar.sig:\

$JAR_PATH/pfl-tf-$PFL_VERSION.jar.sig:\

$JAR_PATH/pfl-tf-tools-$PFL_VERSION.jar.sig:\

$JAR_PATH/management-api-$MANAGEMENT_API_VERSION.jar.sig:

echo "Starting GUI...."

exec ${JAVA_HOME}/bin/java \

 -Djava.util.Arrays.useLegacyMergeSort=true \

 -Djnlp.sms.TZ=GMT \

 -Djnlp.sms.host=OUI_HOSTNAME \

 -Djnlp.sms.OhcHelp=true \

 -Djnlp.sms.OhcNccHelpLinks=OHCFLAG \

 -Djnlp.sms.logo=SMS/images/oracle.gif \

 -Djnlp.sms.databaseID=LPORT:OUI_ORACLE_SID \

 -Djnlp.sms.databaseHost=NCC_DBHOST:LPORT:OUI_ORACLE_SID \

 -Djnlp.sms.EncryptedSSLConnection=false \

 -Djnlp.sms.sslCipherSuites="(TLS_RSA_WITH_AES_128_CBC_SHA)" \

 -Djnlp.sms.secureConnectionDatabaseHost="(DESCRIPTION= (ADDRESS_LIST=

(ADDRESS=(PROTOCOL=TCPS)(HOST=NCC_DBHOST)(PORT=SECPORT))) (CONNECT_DATA=

(SERVICE_NAME=OUI_ORACLE_SID)))" \

 -Djnlp.sms.piUsersPasswordPolicyMessage="The new password must be at least 9

characters long and have at least 2 uppercase characters, 2 lowercase characters, 2

digits and 2 special characters, and must be 4 characters or more different from the

previous password if there was one." \

 -Djnlp.sms.showEFM=1 \

 -Djnlp.sms.OverWriteSwingFont=false \

 -Djnlp.sms.OverWriteSwingFontValue="MV Boli" \

 -Djnlp.acs.SuppressTagID=TRUE \

 -Djnlp.acs.maximiseAcsScreens=false \

 -Djnlp.ECEExtensions=true \

 -Djnlp.acs.Profile8="Account Reference Profile" \

 -Djnlp.acs.Profile9="Product Type Profile" \

 -Djnlp.acs.Profile10="Control Plan Profile (App 3)" \

 -Djnlp.acs.Profile12="CCS Global Profile" \

 -Djnlp.acs.Profile13="CCS Temporary Profile (App 6)" \

 -Djnlp.acs.Profile14="CCS Temporary Profile (App 7)" \

 -Djnlp.acs.Profile15="CCS Temporary Profile (App 8)" \

 -Djnlp.acs.ssfs="vssp,sca" \

 -Djnlp.acs.scfs=scf \

 -Djnlp.vpn.INProtocol=IN_PROTOCOL \

 -Djnlp.osd.WSDLDirectory="/IN/html/wsdls" \

 -Djnlp.osd.WSDLURL="http://SHORTHOSTNAME/wsdls" \

 -Djnlp.ccs.UseAnnouncements=YES \

 -Djnlp.ccs.BeORBTimeoutms=5000 \

 -Djnlp.ccs.VRRedeemMinVoucherLength=9 \

 -Djnlp.ccs.VRRedeemMaxVoucherLength=15 \

 -Djnlp.ccs.defaultEDRSearchAge=2 \

 -Djnlp.ccs.allowTTC=true \

 -Djnlp.ORB_HOST=SHORTHOSTNAME \

 -Djnlp.sms.ldapDbUser="LdapDbUserName" \

 -Djnlp.sms.ldapProviderURL="ldaps://LdapHostAddress" \

 -Djnlp.sms.ldapAuthType=simple \

 -Djnlp.sms.ldapSecurityPrincipal="uid=#username#,ou=OU,dc=Domain,dc=com" \

 -Djnlp.sms.ldapSecurityProtocol=ssl \

Chapter 4

116 Service Management System Technical Guide

 -Djnlp.sms.ldapTemplateAttribute=LdapTemplateAttributeName \

 -cp "$CLASSPATH" \

UserScreens.Application

Configuring Nodes

SMS Nodes

During installation of the SMS software, each SMS is set up so that it is a valid replication node. Check
that each node has at least the following configuration details:

• Valid primary address (or hostname)

• Node number of 1-16 (starting at 1), and

• Validator check box checked.

You can check the setup via the Node Management screen in the SMS Administration screens. For
more information on node configuration and setup, see Service Management System User's Guide.

SLC Nodes

In a clustered installation, each SLC has one node number associated with it:

• One in the range 256 to 511 for the Update Loader

These node numbers can be assigned using the Node Management screen in the SMS Java screens.

Each Update Loader should at least have:

• Valid primary address (or hostname)

• Node number in the range 256 to 511 (the Node Numbers of the Update Loader should start at
301).

• Empty validator check box.

For more information on node configuration and setup, see the SMS User's Guide.

Statistics nodes

You must complete the process by configuring Statistics within the SMS, see SMS User's Guide.

Installing Additional Applications

Installing the applications

Follow these steps to install the applications.

Step Action

1 Install each application to create a set of replication groups.

2 Decide which SLCs will run this application.

3 Target all of the new groups (or such different set as is advised in the instructions for the
application) onto each of these SLCs (the i+256 node).

Order of replication

Please note that the order in which replication tables are added is important.

 Chapter 4

•

 Chapter 4, Configuring the Environment 117

Configuring LDAP based SMS Login

This topic provides details of configurations for setting up LDAP based authentication for SMS GUI
login.

Prerequisites

Before setting up LDAP authentication, ensure you have the following configured:

• LDAP Server: This is the server which will perform the user authentications. It should have proper
connectivity with the client system performing the SMS GUI login.

• LDAP Template Attribute: One of the user attributes has to be identified as the attribute having the
list of NCC templates that the user is assigned to. The template names can be assigned to the
attribute either one to one (attribute value pair), or one to many, in a comma separated pattern.

For example, if groups is the attribute identified to be containing the template names, and you want
to assign four templates (ACS_BOSS, OSD Superuser, DAP AspEdit Full, and CCSBPL) to the
user, you can use the following methods for the template entries:

Method 1: Attribute Value Pairs - one to one

groups: ACS_BOSS

groups: OSD Superuser

groups: DAP AspEdit Full

groups: CCSBPL

Method 2: Attribute Value Pairs - one to many - comma separated

groups: ACS_BOSS,OSD Superuser,DAP AspEdit Full,CCSBPL

Method 3: (Mixed)

groups: ACS_BOSS

groups: OSD Superuser,DAP AspEdit Full

groups: CCSBPL

• LDAP NCC Database User: For LDAP authentication, you need to have a user which can connect
to SMF database and fetch the required screen details. As a one-time activity, a screen user
(LDAP_DB_USER) should be created from the NCC user management screen, and a password
should be set for that user. You need not assign any template to this newly created user. For more
information about creating a screen user, see Service Management System User's Guide.

Configurations

All the LDAP configurations are set as properties in smsGui.bat/smsGui.sh file which is located in the
/IN/html directory.

This table describes the properties that needs to be configured in the resources section of the
smsGui.bat/smsGui.sh file.

Property Description

sms.ldapDbUser This is the LDAP_DB_USER created as part of prerequisite.

This is used to connect to SMF database when any LDAP user logs in.

Same LDAP_DB_USER is used for all LDAP logins.

Example:

-Djnlp.sms.ldapDbUser="ldapDbUser"

Chapter 4

118 Service Management System Technical Guide

Property Description

sms.ldapProviderURL LDAP server host connection URL. This URL is used by the GUI to
connect to LDAP server in order to authenticate the user and fetch the
LDAP NCC templates.

Example:

-Djnlp.sms.ldapProviderURL="ldaps://LdapHostAddress"

sms.ldapAuthType LDAP authentication type. Following authentication types are supported:

a. none

b. simple

Example:

-Djnlp.sms.ldapAuthType=simple

sms.ldapSecurityPrincipal Specifies the name of the user/program performing the authentication.
This depends on the value of the sms.ldapAuthType property.

It should be set to the fully qualified domain name of the client to
authenticate, as per the LDAP user’s domain hierarchy in the LDAP
server.

Example:

-

Djnlp.sms.ldapSecurityPrincipal="uid=#username#,ou=OU

,dc=Domain,dc=com"

Note: The #username# is a place holder for the LDAP username.

Wherever you need to enter the LDAP username, enter #username#.
This is replaced with actual LDAP username (as supplied by logging-in
user) during the authentication process.

sms.ldapSecurityProtocol Specifies the name of the security protocol to be used for
communicating with LDAP server. It supports TLS version as per the
underlying Java runtime environment.

If this value is left blank or unspecified, SSL will not be used for
communication.

Example:

-Djnlp.sms.ldapSecurityProtocol=ssl

Note: If ssl is specified here, then update sms.ldapProviderURL to use
the 'ldaps' link, instead of the usual 'ldap' link.

sms.ldapTemplateAttribute The attribute name which has the list of templates for the LDAP users.

Example:

-

Djnlp.sms.ldapTemplateAttribute=LdapTemplateAttribute

Name

 Chapter 5, Background Processes on the SMS 119

Chapter 5

Background Processes on the SMS

Overview

Introduction

This chapter provides a description of the programs or executables used by the System as background
processes on an SMS.

Executables are located in the /IN/service_packages/SMS/bin directory.

Some executables have accompanying scripts that run the executables after performing certain cleanup
functions. All scripts should be located in the same directory as the executable.

For more information about the processes and systems that use these programs and executables, see
System Overview (on page 1).

Important: It is a pre-requisite for managing these core service functions that the operator is familiar with
the basics of Unix process scheduling and management. Specifically, the following Unix commands:

• init (and inittab)

• cron (and crontab)

• ps

• kill

Chapter 5

120 Service Management System Technical Guide

In this chapter

This chapter contains the following topics.

cmnConfigRead ... 120
cmnReceiveFiles ... 120
smsAlarmDaemon ... 121
smsAlarmManager .. 123
smsAlarmRelay ... 125
smsConfigDaemon .. 128
smsConfigDaemonScript ... 129
smsCdrArchiver ... 131
smsCdrProcess.sh .. 140
smsDbCleanup.sh ... 140
smsLogCleaner ... 141
smsMergeDaemon .. 143
smsMaster ... 144
smsNamingServer ... 145
smsReportsDaemon .. 146
smsReportScheduler ... 148
smsReportCleanupStartup.sh ... 150
smsStatsDaemon .. 151
smsStatisticsWriter .. 151
smsStatsThreshold .. 162
smsSendConfig.sh .. 163
smsTaskAgent ... 164
smsTrigDaemon .. 167

cmnConfigRead

Purpose

cmnConfigRead is used by the installation process to read the configuration files.

cmnConfigRead reads the NCC configuration file (eserv.config), specified by the Oracle_CONFIG_FILE
environment variable and returns the value of path.

This can be used in commands to return the eserv.config specified path value.

Example:

FILENAME=`cmnConfigRead CCS.MyReport.filename

/IN/service_packages/CCS/tmp/MyReport.log`

This sets $FILENAME to the value of CCS.MyReport.filename. If CCS.MyReport.filename is not

present or there is an error, $FILENAME defaults to /IN/service_packages/CCS/tmp/MyReport.log.

Startup

cmnConfigRead is started by the system and is not intended to be changed by the user.

cmnReceiveFiles

Purpose

cmnReceiveFiles collects EDRs from cmnPushFiles and writes them to the specified directory on the
SMS.

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 121

Warning: You must install the xinetd daemon as a prerequisite to running cmnReceiveFiles. You install
this daemon by entering the following command:

yum install xinetd

Startup

cmnReceiveFiles is started by the following entry in /etc/inetd.conf:

smsoperFile stream tcp nowait smf_oper /IN/service_packages/SMS/bin/

cmnReceiveFilesStartup.sh cmnReceiveFilesStartup.sh

Parameters

cmnReceiveFiles does not have any direct parameters or configuration. Most details are provided by
cmnPushFiles with the EDR.

The port cmnReceiveFiles listens on is set in /etc/services in the following line:

smsoperFile 2028/tcp # cmnAddInetServicesEntry

Important: The port number must match the port specified by cmnPushFiles.

Failure

If cmnReceiveFiles fails, the EDRs stay on the SLC and are moved to the retry directory. For more
information about this process, see cmnPushFiles (on page 174).

Output

cmnReceiveFiles writes the EDRs to the directory specified by cmnPushFiles.

smsAlarmDaemon

Purpose

The smsAlarmDaemon executable runs on all alarm-managed nodes in the SMS system, including the
SMS node itself. The role of smsAlarmDaemon is to gather alarms from the following sources:

• Error messages log (/var/adm/messages)

• Oracle error log ($ORACLE_BASE/admin/SID/bdump/alert_SID.log)

• Sigtran stack logs (/IN/service_packages/SLEE/stats) [If installed]

On the SMS machine itself, the error messages are written directly into the SMF_ALARM_MESSAGE
database table. When run on other nodes, replication is used to update the SMF_ALARM_MESSAGE
table.

Alarm replication and buffering

smsAlarmDaemon allows only a limited number of alarms to be sent within a configured time period.
Both the number of messages that can be sent within a time period and the length of each period can be
configured from the command line.

If more messages arrive than are allowed through the filter, the remaining messages are buffered and
sent later. The buffer size is limited but can hold a large number of messages. If it needs to make more
space, it discards messages of the lowest severity (informational). The buffer also has an upper limit,
ensuring that the daemons do not grow unchecked. This upper limit defaults to a maximum of 1000
messages and can be configured.

Chapter 5

122 Service Management System Technical Guide

If more than one of the same alarm appears within the configured time, only one update request is sent.

Startup

In an unclustered install, this task is started by entry sms5 in the inittab, through the
/IN/service_packages/SMS/bin/smsAlarmDaemonSmsStartup.sh shell script.

In a clustered install, this task is started by the clustering software, through the
/IN/service_packages/SMS/bin/smsAlarmDaemonCluster.sh shell script.

Configuration

smsAlarmDaemon accepts the following command-line arguments.

Usage:

smsAlarmDaemon [-l seconds] [-h seconds] [-n number] [-m number] [-p] [-d] [-a path]

[-r node] [-u user/pass] [-f] [-i] [-g] [-c number] [-t seconds]

The available parameters are:

Parameter Default Description

-a path Null Propagate alarms from the specified Oracle alert log to the
database.

By default, smsAlarmDaemon does not propagate alarms from
the Oracle alert log.

-c number 1 Commit Rate. The number of inserts before committing to the
database.

-d Sort messages Disable sorting of messages in the buffer by severity.

Specifically, messages are kept in the buffer and subsequently
written into the SMF database, in the same sequence in which
they are received.

-f No filtering Filtering. Delete duplicate alarms and increase the alarm
count.

-g Uses local time GMT timezone. Use GMT instead of local time.

-h seconds 60 Heartbeat message. Will be forced to be greater or equal to
time period (seconds).

-i Use fuzzy
matching

Filtering type. Use exact matching (rather than fuzzy
matching). Indicates that duplicate matches should be
performed on text only (that is, excluding digits).

Note: Only valid when used in conjunction with -f.

-l seconds 2 Filter Period. Duration between linked-list checks (in seconds).

-n number 5 Filter Number. The number of alarm messages allowed within
the time period.

Allowed values: Integers

-m number 1000 Maximum number of alarm messages to buffer.

Allowed values: Integers 1-1000000

-p Do not drop
messages

Drop low-priority messages when the buffer is full. Specifically,
when -m number messages have been received but it is not
yet time to write the buffer contents to the SMS database, low
priority messages in the buffer are dropped in favor of higher-
priority messages that may be received on its input stream.

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 123

Parameter Default Description

-r node Direct to the
Oracle DB

Replication node. Specify the replication requester node.

-t seconds 1 Commit interval. The maximum interval between database
commits (in seconds).

-u user/pass / Use the supplied Oracle user/password pair.

Usage example

Here is an example of using smsAlarmDaemon:

smsAlarmDaemon -l 5 -h 30 -n 10 -m 2000 -p -d -a /volB/home/saich -r 750 -u

smf/smf -f -i -g -c 2 -t 2

• Filter Period (-I) = 5 seconds

• Heart beat (-h) = Yes every 30 seconds

• Filter Number (-n) = 10 each period

• Max number(-m) = 2000 records

• Drop low priority messages (-p) = true

• Sort messages by severity (-d) = false

• Oracle Alert Log location (-a) = /volB/home/saich

• Rep node (-r) = 750

• Oracle User (-u) = smf/smf

• Filtering (-f) = Multiple alarms combined

• Filtering type (-i) = Exact match

• GMT timezone (-g) = Yes

• Commit Rate (-c) = every 2 number of inserts

• Commit Interval (-t) = every 2 seconds if 2 records not reached

Failure

The smsAlarmDaemon on each alarm-managed node in the installation will by default generate a
health-check alarm once per minute. These health check alarms will be relayed in the same fashion as
all other alarms.

If these health check alarms are not received at the target destination, then the smsAlarmDaemon may
have failed, and should be investigated.

Output

The smsAlarmDaemon writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/SMS/tmp/smsAlarmDaemonSms.log.

smsAlarmManager

Purpose

The smsAlarmManager runs on the SMS. The role of the smsAlarmManager is to:

• Match alarm instances to the correct alarm types

Chapter 5

124 Service Management System Technical Guide

• Automatically time out alarms that have not been cleared

• record alarm instances that have no alarm type match

Startup

This task is started by entry efm1 in the inittab, through the
/IN/service_packages/EFM/bin/smsAlarmManagerStartup.sh shell script.

The inittab entry will be similar to that shown below:

efm1:34:respawn:su - smf_oper -c "exec

/IN/service_packages/EFM/bin/smsAlarmManagerStartup.sh >> /IN

/service_packages/EFM/tmp/smsAlarmManager.log 2>&1" > /dev/null 2>&1 0<&1

Configuration

The smsAlarmManager accepts the following command line arguments.

Usage:

smsAlarmManager -a alarm_batch_size -c correlate_batch_size -o timeout_commit_rate -

p pending_timeout_length -r reload_defn_interval -s number -t timeout_check_interval

-u user/password

The available parameters are:

Parameter Default Description

-a

alarm_batch_size
20 The number of alarms to attempt to find an ID for before carrying

on to other tasks.

-c

correlate_batch_s

ize

20 The number of non-correlated CLEAR alarms to attempt to
correlate against open alarms before carrying on to other tasks.

-o

timeout_commit_ra

te

1000 The number of rows to update with automatic timeout before
committing.

-p

pending_timeout_l

ength

280 The amount of time given to another node in the cluster before
assuming that it has failed to generate an ALARM_TYPE_ID

-r

reload_defn_inter

val

86400 interval (s) for reloading the alarm definitions for the DB.

Interval between reloading the regular expressions from
SMF_ALARM_DEFN and SMF_ALARM_IGNORE. This should
only be needed after an install of new packages/patches, and
also acts to keep the preferred cache current

-s 50000 interval (microseconds) to sleep for when no work to do

-t

timeout_check_int

erval

300 Interval between checks for alarms that need to be closed with a
timeout.

-u

"user/password"
/ u ”/”

The username/password combination used to log into the
database. The default value is sufficient if smsAlarmManager is
executed from the smf_oper user account.

smsAlarmManager will respond to SIGHUP, to reread the regular expressions from the database.

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 125

Failure

The smsAlarmManager matches alarm instances with alarm types and updates the alarm instances with
the extra information. Should any of the following occur the smsAlarmManager may have failed, and
should be investigated.

• Alarms missing expected information

• Alarm clearances are not not being matched with the corresponding alarms

• Alarms not being automatically timed out

If the smsAlarmManager cannot match an alarm instance with an alarm type, it will save the alarm text
into the SMF_ALARM_UNKNOWN database table.

Output

On startup the smsAlarmManager logs the following information:

smsAlarmManager startup.

Alarm Batch Size = 20

Correlate Batch Size = 20

Pending Timeout Length = 280

Timeout Check Interval = 300

Reload Defn Interval = 86400

Timeout Commit Rate = 1000

Sleep Time (microseconds) for no Work = 50000

Username/Password = /

Aug 30 15:31:07 smsAlarmManager(18347) NOTICE: smsAlarmManager started.

Cache successfully reloaded

smsAlarmRelay

Purpose

The smsAlarmRelay is responsible for implementing the SNMP Agent (on page 70). It runs
continuously, polling the database to check for new entries written into the SMF_ALARM_MESSAGE
table by the smsAlarmDaemon processes running on the various managed nodes which form the SMS-
managed installation.

The information in the SMF_ALARM_MESSAGE is relayed to the destinations, as configured in the
SMF_ALARM_HANDLER table using the Alarm Notification screens. For more information about how to
configure alarm relay destinations, see the Service Management System User's Guide.

You can configure smsAlarmRelay to do the following:

• Send X.733 information with all forwarded alarms

• Check for SNMP requests (to resend alarms)

• Send version 3 (instead of version 1) SNMP traps

Startup

In an unclustered installation, this task is started by entry sms1 in the inittab, through the
/IN/service_packages/SMS/bin/smsAlarmRelayStartup.sh shell script.

In a clustered installation, this task is started by the cluster software, through the
/IN/service_packages/SMS/bin/smsAlarmRelayCluster.sh shell script.

Chapter 5

126 Service Management System Technical Guide

Parameters

The smsAlarmRelay accepts the following command line arguments.

Usage:

smsAlarmRelay [-u <usr/pwd>] [-s <secs>] [-p] [-x] [-t] [-e]

Note: SNMP processing is not currently enabled by default.

The available parameters are:

-u

Syntax: -u user/pwd

Description: The Oracle user and password pair.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: /

Notes:

Example:

-s

Syntax: -s seconds

Description: The number of seconds to sleep between database checks.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1

Notes:

Example:

-p

Syntax: -p

Description: Whether to do SNMP processing or not.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: set Use SNMP

not set Do not use SNMP

Default: not set

Notes:

Example:

-x

Syntax: -x

Description: Whether to send SNMP traps in X.733 format or not.

Type: Boolean

Optionality: Optional (default used if not set).

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 127

Allowed: set Send in X.733 format.

not set Do not send in X.733 format.

Default: not set

Notes:

Example:

-t

Syntax: -t

Description: Whether to format the enterprise id with the severity.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: set Insert severity into penultimate object of the
extended enterprise id.

not set Do not format enterprise id with severity.

Default: not set

Notes:

Example:

-e

Syntax: -e

Description: Loads the EFM rules from the smf_alarm_relay_filter database table to provide
alarm filtering.

Type: Boolean

Optionality: Optional.

Allowed: Set or not set.

Default: Not set

Resend Alarms

The smsAlarmRelay can be configured to listen for a request to resent all alarms above a certain alarm
number. This is designed for use by an SNMP Manager that has been off line for a while and may have
missed some alarm notifications.

To request a resend of alarms the relay application needs send an SNMP set-request using the format
described in the variables.mib file.

The smsAlarmRelay will listen using the port number specified as the listenPort parameter in snmp.cfg.
The alarmRelay keeps an internal count of the highest alarm number sent. When a valid SNMP set-
request is received, the alarmRelay will take note of the number in the message and send all alarms
with an alarm ID greater than this number.

Failure

The smsAlarmDaemon on each alarm-managed node in the installation will by default generate a
health-check alarm once per minute. These health check alarms will be relayed in the same fashion as
all other alarms.

If these health check alarms are not received at the target destination, then the smsAlarmRelay may
have failed, and should be investigated.

Chapter 5

128 Service Management System Technical Guide

Output

The smsAlarmRelay.sh writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/SMS/tmp/smsAlarmRelay.log.

The following table summarizes the information in the Service Management System User's Guide.

Destination Field Content

SNMP Host name of the target SNMP TRAPS recipient

FILE Name of a file to which the daemon has write access

NFM Host name of the NFM target.

Q3 Host name of the Q3 target.

SNMP Host name of the SNMP target.

NORELAY The field is empty, as the alarm is not forwarded to a target

Note: Setting the target to NORELAY will stop any other notification rules being actioned. Consequently,
the NORELAY rules must be very specific. Otherwise an important alarm may accidentally be missed.

smsConfigDaemon

Purpose

smsConfigDaemon exists on both the source node (example, SMS) as well as the target node
(example, SLC). It takes an optional parameter (-m) which decides its action.

When run with the -m, it monitors for changes to the master XML file (example, esgConfigMaster.xml). If it

finds changes made to the master config file, smsConfigDaemon will call smsSendConfig.sh.

If the the -m parameter is missing, smsConfigDaemon monitors for changes to the derived eserv.config

file (example, eserv.config.derived) on the target node, and calls smsApplyConfig.sh if it finds changes to
the file.

About database connections

smsConfigDaemon connects to the database on a local or a remote SMS node by using the user
credentials set in the following environment variables in smsConfigVariables.sh:

• SMP_DB_USER_NAME

• SMP_DB_PASSWORD

• SMP_DB_CONNECT_STRING

For connections to a:

• Local database, specify the username and password by setting the SMP_DB_USER_NAME and
SMP_DB_PASSWORD variables. You can set only the user name in the SMP_DB_USER_NAME
variable, if required.

• Remote database, specify the username and password by setting the SMP_DB_USER_NAME and
SMP_DB_PASSWORD variables, and specify the SID of the remote database in the
SMP_DB_CONNECT_STRING variable. You can set the SMP_DB_USER_NAME and the
SMP_DB_CONNECT_STRING variables only, if required.

• Local or a remote database by using the Oracle wallet secure external password store, specify only
the TNS connection string in the SMP_DB_CONNECT_STRING variable, where the connection
string is the alias defined for the username and password credentials in the external password store.
This alias can be either a TNS name or a service name from tnsnames.ora. The
SMP_DB_CONNECT_STRING variable has the following format: "\@connect_string".

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 129

Note: If you set none of these variables, smsConfigDaemon connects to the database by using the
default value of "/".

Startup

smsConfigDaemon is started by the script smsConfigDaemonScript. This process is driven by the
system and is not intended to be changed by the user.

Configuration

For more information on the parameters used by smsConfigDaemon, see smsConfigDaemonScript
Configuration (on page 130).

Failure

If the smsConfigDaemon fails, the secondary scripts, smsSendConfig.sh and smsApplyConfig.sh will fail to
start and distribution of the updated configuration files is affected. Appropriate alarm messages are
generated.

Output

The smsConfigDaemon and its sub-scripts write error messages to the system messages file, and also
write additional output to /IN/service_packages/SMS/tmp/smsConfigDaemonMaster.log if they reside on the
target node to /IN/service_packages/SMS/tmp/smsConfigDaemonClient.log.

smsConfigDaemonScript

Purpose

smsConfigDaemonScript is responsible for starting the smsConfigDaemon process. It also runs the
smsConfigVariables.sh script which includes a set of configurable environment variables that are used by
smsConfigDaemon and its helper scripts; for example, to set the username and password credentials
for connecting to the Oracle database.

For more information about smsConfigDaemon, see smsConfigDaemon (on page 128).

Environment variables set in smsConfigVariables.sh

The smsConfigVariables.sh file is located in the following directory:

/IN/service_packages/SMS/bin

The following tables lists descriptions for the environment variables that you can configure in the
smsConfigVariables.sh file and provides their default values.

Variable Default Value Description

SMP_DB_USER_NAM
E

None The Oracle user that smsConfigDaemon uses to
log in to the Oracle database.

SMP_DB_PASSWORD None The password for the Oracle user that
smsConfigDaemon uses to log in to the Oracle
database.

SCP_DB_USER_NAME None The Oracle user that the
smsSignalConfigChange script uses to access
sqlplus.

Chapter 5

130 Service Management System Technical Guide

Variable Default Value Description

SCP_DB_PASSWORD None The password for the Oracle user that the
smsSignalConfigChange script uses to access
sqlplus.

SMP_DB_CONNECT_S
TRING

None Any extra connect parameters that
smsConfigDaemon requires to log in to the
Oracle database.

DETECTION_PERIOD 10 The number of seconds between
smsConfigDaemon change detection attempts.

RETRY_PERIOD 60 The number of seconds between
smsConfigDaemon sendConfig retry attempts.

SLEEP_TIME 100 The number of milliseconds to sleep inside the
smsConfigDaemon main loop.

Configuration

smsConfigDaemonScript sets the configurable parameters for smsConfigDaemon and its helper scripts.

The available parameters are:

Parameter Default Description

smp_db_user

user/password
 Oracle user/password for the SMF.

Example: smf/smf

scp_db_user

user/password
 Oracle user/password for the smsSignalConfigChange script

should use for sqlplus.
Example: scp/scp

connect_strin

g
 Any extra connect parameters to be used by

smsConfigDaemon

detection_per

iod
10 Period (in seconds) after which smsConfigDaemon attempts

to detect changes.

retry_period 60 Period (in seconds) after which smsConfigDaemon attempts
to retry initiating sendConfig.

sleep_time 100 Period (in milliseconds) to wait inside smsConfigDaemon's
main loop.

source_root /IN/html/Configur
ation

Location where all the XML-driven config files and directories
are stored.

Not to be changed by the user.

master_xml_di

r
 Location of the master config.xml file.

Not to be changed by the user.

master_config

_file
esgConfigMaster Name of the master configuration xml file.

master_config

_file_full_pa

th

 Full path of the master configuration file monitored by the SMP
config daemon (derived from the master config xml file).

archive_xml_d

ir
 Location where the master config.xml files are archived to

prior to modification.

derived_eserv

_dir
 Location of the derived eserv file.

pending_dir Location where the config files from failed updates are held,
pending a retry.

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 131

Parameter Default Description

xml_convert_s

cript
 Location of the XML to eserv.config converter script.

target_root /IN/service_pack
ages/Configuratio
n

Location of the USP nodes where the eserv.config file is sent.

target_eserv_

config_dir
 Location on the USP nodes where the eserv.config file is

pushed out to.

derived_eserv eserv.config.derive
d

Name of the eserv.config file sent to the target nodes.

derived_confi

g_file_full_p

ath

 Full path of the derived config file monitored by the SCP config
daemon (derived from the eserv.config file sent to the target
nodes)

management_in

terface_host
localhost Location of the management interface.

management_in

terface_port
 Port is the management interface listening on.

Note: It is not recommended to change the values of these parameters. All necessary configuration is
done at installation time by the configuration script; this section exists for information only. Please
contact Oracle support prior to attempting any modification to configuration data.

Startup

smsConfigDaemonScript is started by the system and is not intended to be changed by the user.

Failure

If smsConfigDaemonScript encounters problems, the smsConfigDaemon will fail to start and the
updated eserv.config data will not be copied to the relevant platforms. Appropriate alarm messages are
generated.

Output

The smsConfigDaemonScript writes error messages to the system messages file, and also writes
additional output, when smsConfigDaemon has been started using the -m option, to the

/IN/service_packages/SMS/tmp/smsConfigDaemonMaster.log.

If the -m option is not used, output will be written to

/IN/service_packages/SMS/tmp/smsConfigDaemonClient.log.

smsCdrArchiver

Purpose

smsCdrArchiver performs a daily search of a specified input directory for CDR or EDR files to archive,
and archives them to a file in a specified output directory. It also compresses and deletes old archive
files according to the rules specified in the smsCdrArchiver configuration.

About archive file names

The name of the archive file output daily by smsCdrArchiver has the following format:

Chapter 5

132 Service Management System Technical Guide

[machineName]+[outputFileTag]+[_serviceType]+_Date[-HH]+[outputFileSuffix]

Where

• machineName is the name of the machine that generated the data record. smsCdrArchiver prefixes
the output file name with the machine name when you set the useMachineName parameter to true.

• outputFileTag is an identifying tag for the output file that you specify in the optional
outputFileTag parameter.

• serviceType is the service type that generated the data record. smsCdrArchiver includes the service
type in the output file name when you set the useServiceType parameter to true.

• Date is the date timestamp for the data record formatted as: YYYYMMDD.

• HH is the record hour that is appended to the Date value by using the following format:
YYYYMMDD-HH, when you set the UseRecordHour parameter to true.

• outputFileSuffix is the suffix specified in the optional outputFileSuffix parameter that is

appended to the output file name.

File name example

smsCdrArchiver has the following output file parameters configured in the eserv.config file:

smsCdrArchiver = {

...

outputFileTag = "ACS"

outputFileSuffix = ".cdr"

useRecordHour = true

useMachineName = true

useServiceType = true

...

}

For machine name "telco-p-uas", service type "ACS", and timestamp "2014061512", the following output
file would be created:

telco-p-uasACS_ACS_20140615-12.cdr

Startup

The smsCdrArchiver process is started by the smsCdrArchiver.sh script, that is located in the
/IN/service_packages/SMS/bin/ directory. The smsCdrArchiver.sh script runs in the crontab for the smf_oper
user.

Note: If smsCdrArchiver.sh script or smsCdrArchiver binary is not found under /IN/service_packages/SMS/bin
directory, copy them from /IN/service_packages/SUPPORT/bin directory.

Rename smsCdrArchiverStartup.sh to smsCdrArchiver.sh before moving the file to
/IN/service_packages/SMS/bin directory.

Configuration

You configure smsCdrArchiver in the SMS, smsCdrArchiver section of the eserv.config configuration file:

SMS = {

smsCdrArchiver = {

recordType = "CDR"

inDir = "/cdr/processed"

outDir = "/cdr/CDR-archive"

outputFileSuffix = ".cdr"

useRecordHour = true

useMachineName = true

useServiceType = true

writeIndexFile = false

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 133

useDateOutDirs = true

prefixFileName2Data = false

fileMatch = "telco-p-uas*_ACS_"

fileOwner = "smf_oper"

compressionCommand = "GZIP"

compressModTime = 2

compressImmediately = false

compressMinRunTime = 0

deleteModTime = 31

runCleanupHour = 03

BFT = {

exportBFTDataRecords = true

exportBFTOutDir = "/cdr/export/BFT"

exportBFTOutputFileSuffix = ""

changeBFTOutputFileGroup = ""

compressBFTDataRecords = true

exportBFTKeepDays = 4

ext5BFTHex2Dec = false

zeroPadExt5Hex2Dec = 0

}

}

}

smsCdrArchiver parameters

The smsCdrArchiver section accepts the following parameters.

recordType

Syntax: recordType = "str"

Description: Defines the type of data records to archive. When recordType is set to:

• CDR (for ACS Call Data Records), the ACS TCS (Time Call Start) tag is used
to find the timestamp

• EDR (for VWS Event Data Records), the VWS RECORD_DATE tag is used to
find the date timestamp

Type: String

Optionality: Required

Allowed: CDR, EDR

Default:

Notes:

Example: recordType = "CDR"

inDir

Syntax: inDir = "dir"

Description: The directory that contains CDR or EDR input files.

Type: String

Optionality: Required

Allowed: A vaild directory path and name.

Default:

Notes: ccsCdrArchiver will not search sub-directories of the specified directory for input files.

Example: inDir = "/cdr/processed"

Chapter 5

134 Service Management System Technical Guide

outDir

Syntax: outDir = value

Description: The output directory for the archived CDR or EDR file.

Type: String

Optionality: Required

Allowed: A valid directory path and name

Default:

Notes:

Example: outDir = "/cdr/CDR-archive"

outputFileTag

Syntax: outputFileTag = "str"

Description: An identifying tag for the output file, such as the name of the application that generated
the data records. For example, for ACS CDRs set outputFileTag to "ACS".

Type: String

Optionality: Optional

Allowed:

Default: Not used

Notes:

Example: outputFileTag = "ACS"

outputFileSuffix

Syntax: outputFileSuffix = "suffix"

Description: The suffix to append to the name of the output file; for example, ".cdr" or ."edr"

Type: String

Optionality: Optional

Allowed:

Default: Not used

Notes:

Example: outputFileSuffix = ".cdr"

useRecordHour

Syntax: useRecordHour = true|false

Description: When set to true, the record hour is appended to the record date in the archive output
file name by using the following format: YYYYMMDD-HH

Where YYYYMMDD is the record date, and HH is the record hour.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: Not used

Notes:

Example: useRecordHour = true

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 135

useMachineName

Syntax: useMachineName = true|false

Description: When set to true, prefix the archive output file name with the name of the machine that
generated the data record.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes: The machine name can only be used in the output file name if the input file name has
been prefixed with the machine name. This is the standard used by the cmnPushFiles
process.

Example: useMachineName = true

useServiceType

Syntax: useServiceType = true|false

Description: Include the data record service type tag in the output file name. The service type:

• For CDR records is specified in field 1

• For EDR records is specified in the CDR_TYPE field

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes:

Example: useServicetype = true

writeIndexFile

Syntax: writeIndexFile = true|false

Description: When set, smsCdrArchciver writes an index file that links data record entries to the
output file name. The name of the index file is outputFilename.idx, where
outputFilename is the archive output file name.

Index file entries have the following formats:

• CDR index file format: Date Time CID CLI ServiceType(field 1)

[Data_SessionID]

• EDR index file format: Date Time SEQUENCE_NUMBER CLI CDR_TYPE

[Data_SessionID]

Where:

• Data_SessionID is the ID for the data session

• CID in the CDR index file correlates to the VWS EDR SEQUENCE_NUMBER
value (where applicable)

You use the index file to search, based on the fields listed above, for the identity of the
archived output file containing the complete record.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Chapter 5

136 Service Management System Technical Guide

Notes: Using this option requires extra processing that can cause the smsCdrArchiver to run
more slowly.

Example: writeIndexFile = true

useDateOutDirs

Syntax: useDateOutDirs = true|false

Description: When set to true, smsCdrArchiver separates output files into date (YYYYMMDD)
directories based on the TCS or RECORD_DATE values. The output files are written to
the following location: outDir/YYYYMMDD/outFile

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes: Using this option requires extra processing that can cause the smsCdrArchiver to run
more slowly.

Example: useDateOutDirs = true

prefixFileName2Data

Syntax: prefixFileName2Data = true|false

Description: When set to true, smsCdrlArchiver prefixes the archived data record with the filename of
the CDR or EDR record, by using the following format:
original_filename:data_record_entry.

Where:

• original_filename is the name of the original file that contains the CDR or EDR
record

• data_record_entry is the archived data record

You can use this option to identify the original filename in case of loading errors; for
example, for CCS EDRs that are post-processed by the ccsCdrLoader.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes: You should use this option for EDRs only.

Example: prefixFileName2Data = true

fileMatch

Syntax: fileMatch = "str"

Description: Use to search for file names that match the prefix defined by the specified regular
expression. You can define more than one prefix to match. The prefixes should be
enclosed in double quotes "", and separated by white space.

You can include the following wild cards in prefix strings:

• * wild card at the end of each prefix string

• \ wild card to prevent shell expansion and unexpected results

Type: String

Optionality: Optional

Allowed:

Default: Not set

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 137

Notes:

Example: filematch = "telco-p-uas*_ACS_"

fileOwner

Syntax: fileOwner = "str"

Description: When set, smsCdrArchiver locates only those files that are owned by the specified user.

Type: String

Optionality: Optional

Allowed:

Default: Not set

Notes:

Example: fileOwner = "smf_oper"

compressionCommand

Syntax: compressionCommand = "str"

Description: Specifies the compression utility to use for compressing old archive files.

Type: String

Optionality: Optional (default used if not set)

Allowed: GZIP, BZIP2, PBZIP2

Default: GZIP

Notes:

Example: compressionCommand = GZIP

Billing Failure Treatment CDR parameters

The Billing Failure Treatment (BFT) parameters define rules for exporting BFT data records to a special
directory for BFT post processing by the billing server.

Note: The BFT parameters apply only to ACS CDRs, where the recordType field is set to "CDR".

You configure BFT parameters in the smsCdrArchiver, BFT section of the eserv.config file by using the
following syntax:

smsCdrArchiver = {

BFT = {

exportBFTDataRecords = true

exportBFTOutDir = "/cdr/export/BFT"

exportBFTOutputFileSuffix = ""

changeBFTOutputFileGroup = ""

compressBFTDataRecords = true

exportBFTKeepDays = 4

ext5BFTHex2Dec = false

zeroPadExt5Hex2Dec = 0

}

}

exportBFTDataRecords

Syntax: exportBFTDataRecords = true|false

Description: Enables BFT CDRs to be exported to the directory specified by the exportBFTOutDir

parameter.

Chapter 5

138 Service Management System Technical Guide

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes:

Example: exportBFTDataRecords = true

exportBFTOutDir

Syntax: exportBFTOutDir = "str"

Description: The directory path for the directory to which to export BFT CDRs.

Type: String

Optionality: Optional

Allowed:

Default:

Notes:

Example: exportBFTOutDir = "/cdr/export/BFT"

exportBFTOutputFileSuffix

Syntax: exportBFTOutputFileSuffix = "str"

Description: Specifies the suffix for the BFT output file. If this is unset, then the original input file
name is used.

Type: String

Optionality: Optional

Allowed:

Default:

Notes: White spaces are replaced by the _ (underscore) character.

Example: exportBFTOutputFileSuffix = ""

changeBFTOutputFileGroup

Syntax: changeBFTOutputFileGroup = "str"

Description: Sets the group file permissions for the output file; for example, to change group
read/write access to allow third parties to collect BFT CDRs for post processing.

Type: String

Optionality: Optional (default used if not set)

Allowed: The group file permissions must be valid for the user running the smsCdrArchiver script.

Default:

Notes: If the group is invalid, or left undefined, then the group file permissions are not changed.

Example: changeBFTOutputFileGroup = ""

compressBFTDataRecords

Syntax: compressBFTDataRecords = true|false

Description: Set to true to compress the BFT oputput files as they are written. If set to false, then the
compressModTime parameter does not take the BFT CDR files into account and no

further compression will be done.

Type: Boolean

Optionality: Optional (default used if not set)

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 139

Allowed: true, false

Default: true

Notes: The compression utility used is defined by the compressionCommand parameter.

Example: compressBFTDataRecords = true

exportBFTKeepDays

Syntax: exportBFTKeepDays = int

Description: The number of days to keep the exported BFT CDRs before they are deleted.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 1 - The default value of one will be used if you specify a value that is less than one.

Notes:

Example: exportBFTKeepDays = 4

ext5BFTHex2Dec

Syntax: ext5BFTHex2Dec = true|false

Description: Whether the ACS CDR EXT5 field is written as a hexidecimal value, such as
EXT5=0000000A, or whether it is converted to a decimal value, such as EXT5=10, for

the BFT post-processing tools.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • true (use decimal values)

• false (use hex values)

Default: false

Notes:

Example: ext5BFTHex2Dec = false

zeroPadExt5Hext2Dec

Syntax: zeroPadExt5Hext2Dec = int

Description: The number of leading zeros to use when padding the converted EXT5 decimal number
(if ext5BFTHex2Dec is set to true). Set to 0 (zero) or 1 (one) for no leading zero

padding.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 0

Notes: If zeroPadExt5Hext2Dec is set to a negative number then the decimal number will be

padded so that it is the same length as the original hex number. For example, the hex
number: 0000000A is converted to the decimal number: 00000010.

Example: zeroPadExt5Hext2Dec = 0

Chapter 5

140 Service Management System Technical Guide

smsCdrProcess.sh

Purpose

smsCdrProcess.sh performs basic EDR processing and archiving. smsCdrProcess.sh runs the
smsProcessCdr binary with specified command line parameters. One output EDR file is created for each
input EDR file.

smsCdrProcess.sh can also be configured to prevent processing the EDR.

For more information about how smsProcessCdr processes EDRs, see smsProcessCdr (on page 222).

EDR format

The format of the records in the EDR file are specific to the application which generates them. The
most commonly used EDR format processed by this mechanism is the ACS "Pipe Tag LF" format, which
uses TAG=VALUE pairs separated by the "|" character. Records are line field delimited.

For more information about this format, see the ACS Technical Guide.

Startup

This task is run in the crontab for smf_oper, by default at 1:00 am system clock time. It is scheduled as
the /IN/service_packages/SMS/bin/smsCdrProcess.sh script.

The script runs the smsProcessCdr process with set parameters.

Configuration

The following command in the smsProcessCdr.sh prevents the EDR from being processed and copies it
directly to the output directory.

Example Command: $BINDIR/smsProcessCdr -d $CDRDIR -D $OUTDIR -s $INSFX -S $OUTSFX

To process EDRs, use the following command instead:

Example Command: $BINDIR/smsProcessCdr -t $OUTFMT -d $CDRDIR -D $OUTDIR -s $INSFX -S
$OUTSFX

Failure

If the process is not running, EDR files will build up in the /IN/service_packages/SMS/cdr/received directory.

The filesystem usage will rise above standard operational levels.

Output

The smsCdrProcess.sh writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/SMS/tmp/smsCdrProcess.sh.log.

smsDbCleanup.sh

Purpose

This task executes SQL statements to delete old data from the following tables.

SQL Statement Data deleted

SMF_AUDIT Audit trail of database changes.

SMF_STATISTICS Application bulk usage counters.

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 141

SQL Statement Data deleted

SMF_ALARM_MESSAGE System messages.

SMF_ALARM_UNKNOWN System messages which do not match any known alarm definitions.

Startup

This task is run in the crontab for smf_oper, by default at 1:00 am system clock time. It is a shell script,
specifically /IN/service_packages/SMS/bin/smsDbCleanup.sh.

Parameters

The decision on when to delete data is determined according to various parameters configured in
eserv.config. These values can be changed by the usual eserv.config editing method, subject to database
sizing limitations and availability of space for additional historical data.

The default parameters are:

Parameter Default Description

alarmAge 7 Delete records older than this number of days. Refers to the actual age
of the alarm, and controls the deletion of all alarms of a certain age,
regardless of whether they are noted (closed).

alarmMax 100000 Maximum number of records to keep. After this value is reached,
smsDbCleanup.sh delete records.

alarmNotedAge 3 Controls the deletion of noted (closed) alarms.

auditAge 7 Delete records older than this number of days.

commit 100 Number of statistic records to delete before committing the deletions.

statsAge 30 Delete records older than this number of days.

unknownMax 5000 Maximum number of alarms to keep in table smf_alarm_unknown. After
this value is reached, new additions cause oldest to be deleted from the
table.

Failure

If the process is not running, old data will not be purged from the database. The database may reach
maximum size, and inserts may fail.

Output

The smsDbCleanup.sh writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/SMS/tmp/smsDbCleanup.sh.log.

smsLogCleaner

Purpose

smsLogCleaner archives the following types of log files:

• NCC process log files (/IN/service_packages/Product/tmp/Process.log)

• System log files (syslog)

For more information, see System Administrator's Guide.

Chapter 5

142 Service Management System Technical Guide

Startup

This task is run in the crontab for smf_oper. By default, it runs at 30 minutes past each hour. It is run via
the shell script:

/IN/service_packages/SMS/bin/smsLogCleanerStartup.sh

Parameters

smsLogCleaner supports the following command-line options:

Usage:

smsLogCleaner -c configuration_file -d days -s storage_file [-h]

The available parameters are:

Parameter Default Description

-c configuration_file logjob.conf The name of the configuration file.

-d days 7 How often to clean the archive, in days.

-s storage_file storage.txt The name of the storage file.

-h Provides help information.

At installation time, the cronjob is configured to execute by default with the following command-line
parameters:

-c /IN/service_packages/SMS/etc/logjob.conf

-s /IN/service_packages/SMS/tmp/sms_storage.txt

-d 7

An operator may change these values, subject to disk storage availability and site-specific archiving
policies.

Failure

If the process is not running, log files in the following directory will accumulate in size and age beyond
the expected values.

/IN/service_packages/SMS/tmp

Output

The smsLogCleaner run by smf_oper writes error messages to the system messages file, and also
writes additional output to /IN/service_packages/SMS/tmp/smsLogCleaner.log.

logjob.conf

The logjob.conf configuration file has the following format:

log file age hrs size size arcdir dir logonce zip size

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 143

The available parameters are:

Parameter Description

log file The full directory path and name of the file to be cleaned. You can include the '*'
wildcard in the file name if required.

Example:
log /IN/service_packages/SMS/tmp/smsNamingServer.log

Tip: Most processes and tools document where their output is written to in their
Output topic.

age hrs Sets the minimum age, in hours, for the log file before it is cleaned. You must set
either this parameter or the size parameter. If both parameters are set, the log

file is cleaned when either condition is met.

Example: age 100

size size Sets the minimum size for the log file before it is cleaned. You must set either this
parameter or the age parameter. If both parameters are set, the log file is cleaned

when either condition is met.

Examples: size 60K, or size 60M

arcdir dir The directory for storing the old log file. If this parameter is not specified, the log
file is deleted.

Example:
arcdir /IN/service_packages/SMS/tmp/archive

logonce Include this parameter if you want to keep only one archived version of the log
file.

zip size Automatically compress log files that exceed the specified size.

Example: zip 100M

smsMergeDaemon

Purpose

The smsMergeDaemon monitors the connections between the SMS and SLCs via a heartbeat. The
smsMergeDaemon will initiate a startMerge to resyncronise the SMS and SLCs where:

• the infMaster on the disconnected SLC reports that it has received updates that would have
normally gone to the SMS or it has an updateLoader or updateRequester pointing to it, and

• the heartbeat to the SMS and SLC have been stable for a period.

For more information about the startMerge process, see startMerge (on page 231).

Startup

This task is started by entry sms9 in the inittab, via the shell script:

/IN/service_packages/SMS/bin/smsMergeDaemonStartup.sh

Note: smsMergeDaemon is not used in a clustered install.

Parameters

The smsMergeDaemon accepts the following command line arguments.

Usage:

Chapter 5

144 Service Management System Technical Guide

smsMergeDaemon -nodeid

The available parameters are:

Parameter Default Description

-nodeid 1000 The node number of the smsMergeDaemon.

The rest of the configuration details are taken from replication.def (on page 31). Relevant parameters
include:

• HB PERIOD

• LONG TIMEOUT

• MAX_ROUNDTRIP 3

• MAX_CONNECTION_TIME 100000000

• MERGE_INTERVAL 600

• REP_PATH "/IN/service_packages/SMS/etc/replication.config"

• SMS_PORT 7

• TICK_TIME 1000

Failure

If the smsMergeDaemon's connection to the smsMaster is lost, it will exit.

Output

The smsMergeDaemon.sh writes error messages to the system messages file, and also writes
additional output to /IN/service_packages/SMS/tmp/smsMergeDaemon.log.

smsMaster

Purpose

The smsMaster is the central correlation point for the replication system.

smsMaster:

• Sends notifications of updates to remote updateLoaders to be loaded into secondary databases.

• Accepts update requests from remote systems that wish to change the master database (including
the smsStatsDaemon, RequesterIF and smsAlarmDaemon).

• Correlates full resynchronization with remote databases, and communicates with inferior masters
which can assume some smsMaster functions in the case of a platform or network failure.

Startup

This task is started by entry sms7 in the inittab, through the shell script:

/IN/service_packages/SMS/bin/smsMasterStartup.sh

Configuration

The smsMaster supports the following command-line options:

Usage:

smsMaster -maxpending int

The available parameters are:

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 145

-maxpending

Syntax: -maxpending int

Description: The size of pending request queue.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 10000

Notes:

Example:

Failure

Remote replication nodes such as update loaders, updated requesters, inferior masters will generate
alarms indicating connection failure to the smsMaster.

Output

The smsMaster writes error messages to the system messages file, and also writes additional output to
/IN/service_packages/SMS/tmp/smsMaster.log.

smsNamingServer

Introduction

The smsNamingServer listens for IORs being exported from CORBA processes, and stores them in the
database in the IORS table owned by Oracle user SMF. It also serves requests to read IOR strings from
the database.

This functionality is required to support processes that wish to store/retrieve IOR strings, but which do
not have Oracle access to the SMF database instance, for security or licensing reasons.

Startup

In an unclustered installation, this task is started by entry sms2 in the inittab, through the shell script:

/IN/service_packages/SMS/bin/smsNamingServerStartup.sh

In a clustered installation this task is started by the cluster software, through the shell script:

/IN/service_packages/SMS/bin/smsNamingServerCluster.sh

Parameters

The smsNamingServer supports the following command-line options:

Usage:

smsNamingServer [-u usr/pwd] [-p port]

The available parameters are:

-u

Syntax: -u usr/pwd

Description: The Oracle user and password pair.

Type: String

Chapter 5

146 Service Management System Technical Guide

Optionality: Optional (default used if not set)

Allowed:

Default: /

Notes:

Example: -u /

-p

Syntax: -p port

Description: The port number on which to listen for requests.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 7362

Notes:

Example: -p 7362

Failure

If the smsNamingServer fails, then processes attempting to access the specified port will not be able to
access the service, and should report an error indicating this.

Output

The smsNamingServer writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/SMS/tmp/smsNamingServer.log.

smsReportsDaemon

Purpose

smsReportsDaemon is a CORBA server process that generates reports on demand.

When the SMS user interface (UI) Reports function requests a report, smsReportsDaemon:

• Returns the report output filename

• Writes the report output to a specified directory on the SMS

The SMS UI Reports function then displays the report. For more information about the SMS Reports
function, see Service Management System User's Guide.

Startup

In an unclustered installation, smsReportsDaemon is started by entry sms3 in the inittab, via the shell
script:

/IN/service_packages/SMS/bin/smsReportsDaemonStartup.sh

In a clustered installation, smsReportsDaemon is started by the cluster software, via the shell script:

/IN/service_packages/SMS/bin/smsReportsDaemonCluster.sh

Parameters

smsReportsDaemon supports the following command-line options.

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 147

Usage:

smsReportsDaemon [-h host] [-p port] [-i dir] [-o dir] [-f dir] [-u user/password]

[-t host] [-s port] [-z timezone] [-m num]

The available parameters are:

Parameter Default Description

-h host Value returned
by gethostname

smsNamingServer hostname.

Allowed value type: ASCII String

-p port 7362 smsNamingServer port number.

Allowed value type: Number

-i dir /IN/service_package
s/SMS/input

Report scripts/binaries input directory.

Allowed value type: ASCII String

-o dir /IN/service_package
s/SMS/output

Generated report output directory.

Allowed value type: ASCII String

-f dir /IN/service_package
s/SMS/input

The setTZ.sql file directory. By default, the file is located in
/IN/service_packages/SMS/input.

-u user/password Oracle SMF database username and password.

Allowed value type: ASCII String

-t host Default
determined by
CORBA

CORBA transport layer hostname.

-s port Default
determined by
CORBA

CORBA transport layer port number. This parameter is
ignored if the CorbaServices section is present in the
eserv.config configuration file. For more information, see
Configuring Connections for CORBA Services (on page 76).

-z timezone Timezone in which the smsReportsDaemon SQL queries are
run generating the report output.

-m num 2 Maximum number of concurrent reports per node.

Failure

If smsReportsDaemon fails, you will not be able to generate reports.

Output

smsReportsDaemon writes error messages to the system messages file, and writes additional output to
/IN/service_packages/SMS/tmp/smsReportsDaemon.log.

smsReportsDaemon writes report output to subdirectories of the specified output directory (by default,
/IN/service_packages/SMS/output). The subdirectory depends on the application and category defined for
the report:

/IN/service_packages/SMS/output/Application/Category

The report output filename is in the format:

YYMMDDHHmmss.9_random_characters.txt

Interactive reports

smsReportsDaemon generates on-demand reports.

Chapter 5

148 Service Management System Technical Guide

Reports are defined through SQL commands, shell scripts, or compiled executable programs. Additional
reports can be created and made available for on-demand and scheduled generation as a post-
installation manual function. For more information, see Reports (on page 233).

At startup, smsReportsDaemon publishes its IOR string via the smsNamingServer. If not specified, the
IP port number on which the CORBA service is provided will be determined by the CORBA framework.
In most installations, a firewall is used to protect the SMS host, and hence the CORBA service port must
be fixed. Use the -s parameter for this purpose.

smsReportScheduler

Purpose

The smsReportScheduler monitors the database table SMF_REPORT_SCHEDULE for entries inserted
via the SMS Java screens.

smsReportScheduler sleeps until the next report is due to be executed. The output of the report is
optionally copied to a specified directory, spooled to a specified printer, or sent to a specified email
address. For more information about how to schedule reports which will be performed periodically and
how to configure the report destination, see the Service Management System User's Guide.

Startup

In an unclustered installation, this task is started by entry sms4 in the inittab, via the shell script:

/IN/service_packages/SMS/bin/smsReportSchedulerStartup.sh

In a clustered installation this task is started by the cluster software, via the shell script:

/IN/service_packages/SMS/bin/smsReportSchedulerCluster.sh

Parameters

The smsReportScheduler supports the following command-line options:

Usage:

smsReportScheduler [-i dir] [-o dir] [-u usr/pwd] [-v] [-z timezone]

The available parameters are:

-i dir

Syntax: -i dir

Description: The input directory for report generation scripts/binaries dir.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /IN/service_packages/SMS/input

Notes:

Example:

-o dir

Syntax: -o dir

Description: The output directory for report generation.

Type: String

Optionality: Optional (default used if not set)

Allowed:

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 149

Default: /IN/service_packages/SMS/output

Notes: Report may provide a default output directory which overrides
smsReportDaemon's default.

Example:

-u usr/pwd

Syntax: -u usr/pwd

Description: The userid and password for oracle login string.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /

Notes:

Example:

-v

Syntax: -v

Description: What level of information to output.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: set Print additional information.

not set Only print the standard level of information.

Default: not set

Notes:

Example:

-z timezone

Syntax: -z timezone

Description: The timezone in which to schedule the report.

Type: String

Optionality: Optional (default used if not set)

Allowed: Java supported timezone

Default: GMT

Notes: For a full list of Java supported timezones see ACS Technical

Guide - Appendix TimeZones.

Example: -z "EST"

Failure

In the case of failure, the scheduled report will not appear at the specified destination, or may contain
incorrect or missing output.

Output

The smsReportScheduler writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/SMS/tmp/smsReportScheduler.log.

Chapter 5

150 Service Management System Technical Guide

Unix utilities

The table below lists the Unix utilities required for scheduling.

Unix Binary Required Description Location Expected

mailto E-mail agent used by report generation
component to send emails.

/usr/bin/mailto

sendmail (or equivalent
delivery agent)

E-mail delivery agent. daemon started at boot
time.

lpr Printing utility. /usr/ucb/lpr

Note: E-mail sending/receiving/delivery agent requires all local e-mail user names to be under 13
characters. For local e-mail user names longer than 13 characters, mailto and sendmail will not function
properly.

smsReportCleanupStartup.sh

Purpose

The Reports cleaner looks for output from ad-hoc and scheduled reports generated by the
smsReportsDaemon and the smsReportScheduler.

It deletes files that are older than a specified age.

Startup

This task is run in the crontab for smf_oper. By default it runs at 2:00 am system time. It is scheduled as
the following script:

/IN/service_packages/SMS/bin/smsReportsCleanerStartup.sh

Parameters

The command inside the script contains a command line parameter specifying the cleanup age of report
output files. By default this is seven days. Report output files older than this age are deleted.

An operator may change this value, subject to disk storage availability and site-specific archiving
policies.

Failure

If the process is not running, reports files in the following directory will accumulate in size and age
beyond the expected values.

/IN/service_packages/SMS/output

Output

The smsReportsCleaner run by smf_oper writes error messages to the system messages file, and also
writes additional output to:

/IN/service_packages/SMS/tmp/smsReportsCleanerStartup.sh.log

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 151

smsStatsDaemon

Description

smsStatsDaemon can be run as a background process on an SMS, SLC, and also on other IPs such as
Voucher and Wallet Servers.

For more information about smsStatsDaemon, see the discussion about the smsStatsDaemon (on page
184) background process on the SLC node.

smsStatisticsWriter

Purpose

The smsStatisticsWriter is responsible for collecting statistical data provided by the smsStatDaemons
and writing it to files, either for standalone statistics, or for groups of statistics associated with an event.

smsStatisticsWriter structure

Here is an example structure of the smsStatisticsWriter.config file.

smsStatisticsWriter = {

tempDir = "/IN/service_packages/SMS/tmp/smsStatisticsWriter"

outDir = "/IN/service_packages/SMS/logs/smsStatisticsWriter"

outDirType = 'FLAT'

outDirExpectedFiles = 65536

outDirBucketSize = 10

outFileName = "smsStatisticsWriter"

maxFileSize = 100

maxFileOpenTime = 3600

statsDaemonRestartDelay = 10

statsDaemonStartupTime = 5

scanInterval = 100000

replicationAllowance = 60

endOfEventTolerance = 5

resetInterval = {

days = 1

hours = 0

minutes = 0

seconds = 0

}

Events = [

{

eventName = "EventGood"

resetAllEventStatisticsOnStartup = true

eventResetBaseTime = "20110511130000"

resetInterval = {

days = 0

hours = 0

minutes = 4

seconds = 0

}

eventStartDateTime = "20100728000000"

eventEndDateTime = "20101231000000"

eventWritePeriod = 30

Statistics = [

{

applicationName = "TELEVOTING"

Chapter 5

152 Service Management System Technical Guide

statisticName = "Stat1"

}

{

applicationName ="TELEVOTING"

statisticName = Statn

}

etc

]

{

eventName = "Event2"

parameters for event...

}

{

eventName = "Eventn"

parameters for event...

}

]

Statistics = [

{

StatisticName = "Stat2"

resetStatisticOnStartup = false

statWritePeriod = 0

statResetBaseTime = "20110511130000"

resetInterval = {

days = 0

hours = 0

minutes = 5

seconds = 0

}

}

{

statisticName = "StatN"

parameter for statistic...

}

Etc

]

smsStatisticsWriter parameters

The smsStatisticsWriter section accepts the following parameters.

tempDir

Syntax: tempDir = "dir"

Description: The temporary directory for writing intermediate statistics files to.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/SMS/tmp/smsStatisticsWriter"

Notes:

Example: tempDir = "/IN/service_packages/SMS/tmp/smsStatisticsWriter"

outDir

Syntax: outDir = "dir"

Description: The base directory for storing completed statistics files.

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 153

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/SMS/logs/smsStatisticsWriter"

Notes:

Example: outDir = "/IN/service_packages/SMS/logs/smsStatisticsWriter"

outDirType

Syntax: outDirType: = "type"

Description: File store type.

Type: String

Optionality: Optional (default used if not set).

Allowed: HASH or FLAT

Default: "FLAT"

Notes:

Example: outDirType: = "FLAT"

outDirExpectedFiles

Syntax: outDirExpectedFiles = num

Description: The maximum number of files in outDir when outDirType is HASH.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 65536

Notes:

Example: outDirExpectedFiles = 65536

outDirBucketSize

Syntax: outDirBucketSize = size

Description: The maximun number of files in any leaf directory when outDirType is HASH.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 10

Notes:

Example: outDirBucketSize = 10

outFileName

Syntax: outFileName = "name"

Description: The base of the statistics file name.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Chapter 5

154 Service Management System Technical Guide

Default: "smsStatisticsWriter"

Notes:

Example: outFileName = "smsStatisticsWriter"

maxFileSize

Syntax: maxFileSize = size

Description: The maximum size of a statistics file (kilobytes).

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 100

Notes:

Example: maxFileSize = 100

maxFileOpenTime

Syntax: maxFileOpenTime = sec

Description: The maximum time a statistics file can be kept open (seconds).

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 3600

Notes:

Example: maxFileOpenTime = 3600

statsDaemonRestartDelay

Syntax: statsDaemonRestartDelay = sec

Description: The length of time to allow updated statistics to be replicated to the SLC nodes
before restarting the smsStatsDaemon processes on those nodes. (seconds).

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 10

Notes:

Example: statsDaemonRestartDelay = 10

statsDaemonStartupTime

Syntax: statsDaemonStartupTime = <seconds>

Description: The length of time (in seconds) to allow for smsStatsDaemon to restart and initialize
after startUp request issued.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 5

Notes:

Example: statsDaemonStartupTime = 8

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 155

scanInterval

Syntax: scanInterval = msec

Description: Length of time between scans of the statistics (microseconds).

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 100000

Notes:

Example: scanInterval = 100000

replicationAllowance

Syntax: replicationAllowance = <seconds>

Description: The time (in seconds) to allow for stats to be replicated to SMS from SLC.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 60

Notes: For best results this value should be less than any of the reporting periods of
statistics included in event configuration.

Example: replicationAllowance = 40

Events

Event configuration parameters may or may not have default values, where defaults are defined that
parameter may be omitted, for all others the parameter is required. There may be multiple events
configured.

Each event accepts the following parameters.

Events = [

{

eventName = "EventGood"

resetAllEventStatisticsOnStartup = true

eventResetBaseTime = "20110511130000"

resetInterval = {

days = 0

hours = 0

minutes = 4

seconds = 0

}

eventStartDateTime = "20100728000000"

eventEndDateTime = "20101231000000"

eventWritePeriod = 30

Statistics = [

{

applicationName = "TELEVOTING"

statisticName = "Stat1"

}

eventName

Syntax: eventName = "name"

Description: The name of the event.

Chapter 5

156 Service Management System Technical Guide

Type: String

Optionality: Required

Allowed:

Default: no default

Notes:

Example: eventName = "eventGood"

resetAllEventStatisticsOnStartup

Syntax: resetAllEventStatisticsOnStartup = true|false

Description: Reset all statistics defined for the event on start up.

Type: Boolean

Optionality: Optional (default used when omitted)

Allowed: • true, or

• false

Default: true

Notes: If true, individual statistic resetStatisticOnStatup config is overidden.

Example: resetAllEventStatisticsOnStartup = false

eventResetBaseTime

Syntax: eventResetBaseTime = "<date and time>"

Description: Sets a specific date and time base to calculate resets for the statistics configured
for this event.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "20100101000000" - (00:00:00 on Jan 1 2010)

Notes: Date and time format is yyyymmddHHMMSS

The event resetInterval parameter timing starts from this parameter's date and
time.

Example: eventResetBaseTime = "20110511130000"

resetInterval

Syntax: resetInterval = {<days>,<hours>,<minutes>,<seconds>}

Description: The interval between periodic resets of all statistics configured for the event.

Type: Parameter list

Optionality: Optional (default used if missing)

Allowed:

Default: Global resetInterval values are used.

Notes: If non zero, the reset period configured for individual statistics will be overridden.

Example:
resetInterval = {

days = 0

hours = 0

minutes = 4

seconds = 0

}

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 157

eventStartDateTime

Syntax: eventStartDateTime = "dateandtime"

Description: The event start time.

Type: String

Optionality: Required

Allowed: Expected format yyyymmddHHMMSS

Default: no default

Notes: Statistics will only be collected for the event between the start and end times.

Example: eventStartDateTime = "20100728000000"

eventEndDateTime

Syntax: eventEndDateTime = "dateandtime"

Description: The event end time.

Type: String

Optionality: Required

Allowed: Expected format yyyymmddHHMMSS

Default: no default

Notes: Statistics will only be collected for the event between the start and end times.

Example: eventEndDateTime = "20101231000000"

eventWritePeriod

Syntax: eventWritePeriod = <seconds>

Description: The period (in seconds) between successive writes of statistics data to the report
file.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0

Notes: When set to 0 the write period is synchronized to the shortest sample period
defined for the statistics included in the event.

Example: eventWritePeriod = 30

Event statistics

Each event can collect more than one statistic.

For example the event "EventGood" is a contest where you can vote for three contestants. The statistic
for each contestant is collected separately to determine the winner.

Each event statistic accepts the following parameters:

applicationName

Syntax: applicationName = "name"

Description: The name of application to which the statistic belongs.

Type: String

Optionality: Required

Chapter 5

158 Service Management System Technical Guide

Allowed:

Default: no default

Notes:

Example: applicationName = "TELEVOTING"

statisticName

Syntax: statisticName = "name"

Description: The name of the statistic.

Type: String

Optionality: Required

Allowed:

Default: no default

Notes:

Example: statisticName = "Stat1"

Statistics

As well as event statistics, smsStatisticsWriter statistics as a whole are collected, irrespective of events.

Each statistic accepts the following parameters:

applicationName

Syntax: applicationName = "name"

Description: The name of application to which the statistic belongs.

Type: String

Optionality: Required

Allowed:

Default: no default

Notes:

Example: applicationName = "TELEVOTING"

statisticName

Syntax: statisticName = "name"

Description: The name of the statistic.

Type: String

Optionality: Required

Allowed:

Default: no default

Notes:

Example: statisticName = "Stat1"

resetStatisticOnStartup

Syntax: resetStatisticOnStartup = true|false

Description: Reset statistic on start up.

Type: Boolean

Optionality: Optional (default used if omitted)

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 159

Allowed: • true, or

• false

Default: true

Notes:

Example: resetStatisticOnStartup = false

statWritePeriod

Syntax: statWritePeriod = <seconds>

Description: The period (seconds) between successive writes of statistics data to the report
file.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0

Notes: When set to 0 the write period is synchronized to the sample period defined for
the statistic.

Example: statWritePeriod = 0

statResetBaseTime

Syntax: statResetBaseTime = "<date and time>"

Description: Sets a specific date and time for setting the statistic to zero.

Type: String

Optionality: Required

Allowed:

Default: None

Notes: Date and time format is yyyymmddHHMMSS

The statistic resetInterval parameter timing starts from this parameter's date and
time.

Example: statResetBaseTime = "20110511130000"

resetInterval

Syntax: resetInterval = {<days>,<hours>,<minutes>,<seconds>}

Description: The interval between periodic resets of the statistic.

Type: Array of parameters

Optionality: optional (default used if not set).

Allowed:

Default: Global resetInterval values are used.

Notes: This interval is started from the date and time statResetBaseTime if it is present.

Example:
resetInterval = {

days = 0

hours = 0

minutes = 4

seconds = 0

}

Chapter 5

160 Service Management System Technical Guide

Event name file format

The smsStatisticsWriter process creates a file format as detailed below for an event configured in
SMS.smsStatisticsWriter.Events.eventName:

===============================

"Event Name"

"Start Time"

"Stop Time"

===============================

[Automatic statistic reset Time Stamp]

Timestamp

[Automatic statistic reset Time Stamp]

"Statistic ID" Statistics Count

[Automatic statistic reset Time Stamp]

"Statistic ID" Statistics Count

….

Timestamp

[Automatic statistic reset Time Stamp]

"Statistic ID" Statistics Count

[Automatic statistic reset Time Stamp]

"Statistic ID" Statistics Count

For example:

===============================

“Strictly Come Dancing”

“20:00:00”

“20:30:00”

===============================

Automatic statistic reset 21-04-2010 20:00:00

21-04-2010 20:00:00

“Contestant A” 0

“Contestant B” 0

“Contestant C” 0

21-04-2010 20:01:00

“Contestant A” 300

“Contestant B” 20

“Contestant C” 50

…

21-04-2010 20:20:00

“Contestant A” 1200

Automatic statistic reset 21-04-2010 20:20:00

“Contestant B” 0

“Contestant C” 95

…

21-04-2010 20:30:00

“Contestant A” 15345

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 161

“Contestant B” 12789

“Contestant C” 120

Statistics file format

The smsStatisticsWriter process creates a file format as detailed below for a statistic configured in
SMS.smsStatisticsWriter.Statistics:

===============================

"Application ID"

"Statistic ID"

===============================

[Automatic statistic reset Timestamp]

Timestamp Statistics Count

….

[Automatic statistic reset Timestamp]

Timestamp Statistics Count

….

[Automatic statistic reset Timestamp]

Timestamp Statistics Count

For example:

===============================

“TPSA”

“Service A”

===============================

01-01-2010 00:00:00 0

01-01-2010 00:00:30 2

…

Automatic statistic reset 31-01-2010 12:00:00

31-01-2010 12:00:00 0

31-01-2010 12:00:30 3

…

31-01-2010 23:00:00 4000

Chapter 5

162 Service Management System Technical Guide

smsStatsThreshold

Purpose

The smsStatsThreshold polls the database for updates to the SMF_STATISTICS table. It compares the
values against threshold rules defined in the SMF_STATISTICS_RULE table, and raises an alarm if the
threshold is exceeded. It inserts the alarm into the SMF_ALARM_MESSAGE table in the SMF
database.

For more information about how to define new statistics threshold rules, see the Service Management
System User's Guide. New threshold rules are automatically recognised by the program.

Startup

In an unclustered installation, this task is started by entry sms6 in the inittab, via the shell script:

/IN/service_packages/SMS/bin/smsStatsThresholdStartup.sh

In a clustered installation, this task is started by the cluster software, via the shell script:

/IN/service_packages/SMS/bin/smsStatsThresholdCluster.sh

Parameters

The smsStatsThreshold supports the following command-line options:

Usage:

smsStatsThreshold -u <usr/pwd> -s <secs>

The available parameters are:

-u <usr/pwd>

Syntax: -u <usr/pwd>

Description: The Oracle user and password pair.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: /

Notes:

Example:

-s <secs>

Syntax: -s <secs>

Description: The number of seconds to sleep between database checks.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 60

Notes:

Example:

Failure

Alarm messages derived from statistics values will not appear in the alarm system.

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 163

Output

The smsStatsThreshold writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/SMS/tmp/smsStatsThreshold.log.

smsSendConfig.sh

Purpose

smsSendConfig.sh resides on the source node (for example, an SMS) and performs the following
functions:

• Archives current master XML file

• Stores audit information

• Sets link to current archived file

• Converts XML format to derived eserv.config using the script cmnConfigXmlConvert.sh

• Sends derived eserv.config file to target node using scp.

About database connections

smsSendConfig.sh connects to the database on a local or a remote SMS node by using the user
credentials set in the following environment variables in smsConfigVariables.sh:

• SMP_DB_USER_NAME

• SMP_DB_PASSWORD

• SMP_DB_CONNECT_STRING

For connections to a:

• Local database, specify the username and password by setting the SMP_DB_USER_NAME and
SMP_DB_PASSWORD variables. You can set only the user name in the SMP_DB_USER_NAME
variable, if required.

• Remote database, specify the username and password by setting the SMP_DB_USER_NAME and
SMP_DB_PASSWORD variables, and specify the SID of the remote database in the
SMP_DB_CONNECT_STRING variable. You can set the SMP_DB_USER_NAME and the
SMP_DB_CONNECT_STRING variables only, if required.

• Local or a remote database by using the Oracle wallet secure external password store, specify only
the TNS connection string in the SMP_DB_CONNECT_STRING variable, where the connection
string is the alias defined for the username and password credentials in the external password store.
This alias can be either a TNS name or a service name from tnsnames.ora. The
SMP_DB_CONNECT_STRING variable has the following format: "\@connect_string".

Note: If you do not set any of these variables, smsSendConfig.sh connects to the database by using the
default value of "/".

Startup

smsSendConfig.sh is started by smsConfigDaemon (using the -m parameter). It is driven by the
system and is not intended to be changed by the user.

Configuration

For more information on the parameters used by smsSendConfig.sh, see smsConfigDaemonScript
Configuration (on page 130).

Chapter 5

164 Service Management System Technical Guide

Failure

If smsSendConfig.sh fails, deployment process for the eserv.config on the source node will fail.
Consequently, no updates will be sent to the target node. Appropriate alarm messages are generated.

Output

The smsSendConfig.sh and its sub-scripts write error messages to the system messages file, and also
write additional output to /IN/service_packages/SMS/tmp/smsConfigDaemonMaster.log.

smsTaskAgent

Purpose

smsTaskAgent is a CORBA server that performs various utility functions as requested by the SMS Java
screens, including:

• Create replication.config file

• Change Oracle password for NCC screens user

• Perform data consistency checks with remote nodes

• Change the customer care PIN for a subscriber

CORBA service port

At startup, smsTaskAgent publishes its IOR string via the smsNamingServer. If the IP port number is not
specified, the port number on which the CORBA service is provided will be determined by the CORBA
framework. The CORBA service port must be fixed because a firewall is used to protect the SMS host.
Use the -s parameter to provide the port number on the CORBA transport.

Startup

In an unclustered installation, this task is started by entry sms8 in the inittab, via the shell script:

/IN/service_packages/SMS/bin/smsTaskAgentStartup.sh

In a clustered installation, this task is started by the cluster software, via the shell script:

/IN/service_packages/SMS/bin/smsTaskAgentCluster.sh

If there is no local SMF database and smsTaskAgent connects to the Oracle database only on a remote
SMS, remove or comment out the following lines and all the lines in between:

"echo "`date` - Waiting for DB SMF""

"echo "`date` - DB SMF is ready""

smsTaskAgent configuration in eserv.config

You configure smsTaskAgent in the SMS, smsTaskAgent section of the eserv.config configuration file:

SMS = {

smsTaskAgent = {

defaultOracleProfile = "password_profile"

}

}

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 165

defaultOracleProfile

Syntax: defaultOracleProfile = "password_profile"

Description: The name of the Oracle profile to allocate to new users created through the User
Management screen in the SMS UI. The SMS uses the verification function for the
allocated Oracle profile to check that the entered password is acceptable. The SMS
also applies the verification function whenever the system administrator attempts to
change a user's password through the SMS UI.

If the entered password is rejected, the SMS displays an error message. You specify
the error message text in the passwordPolicyMessage Java application property.

See jnlp.sms.passwordPolicyMessage (on page 98) for more information.

Type: String

Optionality: Optional (default used if not set)

Allowed: The name of an existing Oracle profile (created by using the CREATE PROFILE
command).

Default: Use the standard Oracle profile called DEFAULT.

Notes: For information about creating Oracle profiles and using the CREATE PROFILE
command, see the Oracle Database online documentation.

Example: defaultOracleProfile = "password_profile"

Command line parameters

smsTaskAgent supports the following command line options:

Usage:

smsTaskAgent [-c] [-i ior_host] [-p ior_port] [-u usr/pwd] [-t trans_host] [-s

trans_port] [-w secs]

The available parameters are:

-c

Syntax: -c

Description: Use secure shell and secure copy (ssh and scp).

Type: Boolean

Optionality: Optional (default used if not set)

Allowed:

Default: Use standard connection and copy

Notes:

Example:

-i ior_host

Syntax: -i ior_host

Description: The IOR listener host to connection to.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: localhost

Notes:

Example: -i produsms

Chapter 5

166 Service Management System Technical Guide

-p port

Syntax: -p port

Description: The port on the IOR listener host to connect to.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 5556

Notes:

Example: -p 13579

-u usr/pwd

Syntax: -u usr/pwd|/@connect_string

Description: The username and password, or the connection string, to use for connections to
the Oracle database on a local or a remote SMS node.

Type: String

Optionality: Optional (default used if not set)

Allowed: For connections to a:

• Local or remote database by using user credentials, specify the user and
password, or specify '/' for passwordless connections

• Local or a remote database by using the Oracle wallet secure external
password store, specify only the TNS connection string where the TNS
connection string is the alias defined for the username and password
credentials in the external password store. This alias can be either a TNS
name or a service name from tnsnames.ora.

Default: /

Notes: When smsTaskAgent invokes repConfigWrite in order to create the
replication.config file, the specified user credentials are passed down to
reConfigWrite as the -user argument.

Example: -u SMF/SMF

-t trans_host

Syntax: -t trans_host

Description: The CORBA transport host to connect to.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: NULL

Notes:

Example:

-s trans_port

Syntax: -s trans_port

Description: The port on the CORBA transport host to connect to.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 167

Default: 0

Notes:

Example:

-w secs

Syntax: -w secs

Description: The number of seconds smsTaskAgent waits for a consistency check update
before timing out and abandoning a consistency check.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 20

Notes:

Example: -w 120

Failure - smsTaskAgent

If smsTaskAgent fails, any further smsTaskAgent based tasks that you perform are not processed and
an error message is displayed. Oracle recommends that you call Oracle support when you see the
following error messages:

Error Message Description

Failed to hash subscriber PIN in
subscribers CORBA interface.

The encryption call used by smsTaskAgent failed.

Cannot retrieve IOR for the
subscribers service from the IORS
database table.

smsTaskAgent did not add an entry to the IORS table
because the subscriber’s service is not registered.

Output

smsTaskAgent writes error messages to the system messages file, and also writes additional output to
/IN/service_packages/SMS/tmp/smsTaskAgent.log.

smsTrigDaemon

Purpose

smsTrigDaemon manages control plan execution requests. It runs on the SMS platform.

smsTrigDaemon accepts control plan execution requests from either a remote PI client or the Java
management screens. It forwards requests to ACS through the xmlTcapInterface on the SLC platform.
An indication of whether or not the requests were successful passes back from the ACS to the initiating
client.

Startup

In an unclustered installation, this task is started by entry sm11 in the inittab, via the shell script:

/IN/service_packages/SMS/bin/smsTrigDaemonStartup.sh

In a clustered environment this task is started by the binary startSmsTrigDaemon which is located in:

Chapter 5

168 Service Management System Technical Guide

/opt/ESERVSmsTrigDaemon/util/startSmsTrigDaemon

Note: startSmsTrigDaemon must be manually run as root in a clustered environment. smsTrigDaemon
is then added as a cluster resource.

Location

This binary is located on the SMS node.

Parameters

smsTrigDaemon is configured by the following parameters from the triggering section of eserv.config:

Usage:

triggering = {

oracleLogin = "userName/password"

useORB = true|false

listenPort = portNumber

slcBusyTimeout = seconds

useFIFO = true|false

extraFIFO = [

"1stPath"

"2ndPath"

…

…

…

"nthPath"

]

scps = [

"1stHostAddress:1stPortNumber"

"2ndHostAddress:2ndPortNumber"

…

…

…

"nthHostAddress:nthPortNumber"

]

}

Available parameters are:

oracleLogin

Syntax: oracleLogin = "usr/pwd"

Description: The Oracle user name and password that smsTrigDaemon uses when connecting
to the database.

Type: String

Optionality: Required

Allowed:

Default: /

Notes:

Example:

useORB

Syntax: useORB = <true|false>

Description: Whether smsTrigDaemon accepts incoming CORBA requests.

Type: Boolean

Optionality: Required

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 169

Allowed: true smsTrigDaemon accepts incoming CORBA
requests.

false smsTrigDaemon refuses incoming CORBA
requests.

Default: false

Notes:

Example:

listenPort

Syntax: listenPort = portNumber

Description: The IP port on which smsTrigDaemon listens for CORBA requests.

Type: Integer

Optionality: Required

Allowed: 0 - 65535

Default: 0

Notes: If set to 0, any available port is used.

Example:

slcBusyTimeout

Syntax: slcBusyTimeout = seconds

Description: The number of seconds before connections to the SLC or VWS nodes will time
out.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes:

Example: slcBusyTimeout = 15

useFIFO

Syntax: useFIFO = true|false

Description: Whether smsTrigDaemon accepts FIFO transport layer incoming requests.

Type: Boolean

Optionality: Required

Allowed: true smsTrigDaemon accepts FIFO transport
layer incoming requests

false smsTrigDaemon refuses FIFO transport
layer incoming requests

Default: false

Notes: If set to false, the extraFIFO (on page 170) parameter array is ignored.

If set to false and useORB (on page 168) is also set to false, smsTrigDaemon will
do nothing.

Example:

Chapter 5

170 Service Management System Technical Guide

extraFIFO

Syntax: extraFIFO = [
"dir"

...

]

Description: The paths that smsTrigDaemon should create for extra FIFOs.

Type: Parameter array

Optionality: Optional

Allowed:

Default: Empty set

Notes: If useFIFO (on page 169) is set to false, this parameter array is ignored.

Example: extraFIFO = [
"/IN/service_packages/SMS/tmp/trg-req-3005"

"/IN/service_packages/SMS/tmp/trg-req-3006"

]

scps

Syntax: scps = [
"ip:port"

...

]

Description: The Internet Protocol (IP) address and port number for each SLC to which the
smsTrigDaemon connects. If you specify an IP version 6 (IPv6) address and port
combination, then you must enclose the IPv6 address in square brackets [], see
example for details.

Type: Array

Optionality: The scps parameter array is optional.

In any row of the array, the :port part is optional.

Allowed: ip Any IP address or symbolic host name.

port 0 - 65535

Default: Empty set

Notes: An example of an Internet protocol address is 192.0.2.1.

An example of an IPv6 address is 2001:db8:n:n:n:n:n:n where n is a group

of 4 hexadecimal digits. The industry standard for omitting zeros is also allowed.

An example of an address in symbolic name format is primary_smc.

Example: scps = [
"198.51.100.1"

"192.0.2.1:4000"

"[2001:db8:0000:1050:0005:0600:300c:326b]:3004"

"[2001:db8:0:0:0:500:300a:326f]:1234:SMF"

"[2001:db8::c3]:1234:SMF"

"2001:db8:1050:0:0:300a:0300:126c"

"primary_smc"

"secondary_smc:3006"

]

Failure

If smsTrigDaemon fails, then interaction with the BPL requests from the Java screens and the PI will fail.

 Chapter 5

•

 Chapter 5, Background Processes on the SMS 171

Output

smsTrigDaemon writes error messages to the system messages file, and also writes additional output to
/IN/service_packages/SMS/tmp/smsTrigDaemon.log.

Control plan execution requests

After receiving a control plan execution request the smsTrigDaemon follows a three-stage process:

Stage Description

1 smsTrigDaemon attempts to connect to one of the SLCs in the following way.

• If a connection to a SLC is established and not in use, that connection is used.
smsTrigDaemon maintains a list of currently-open connections.

• If a connection to a SLC is not established, smsTrigDaemon attempts to open
one. SLCs are identified by the scps configuration parameter. smsTrigDaemon

polls this list until it finds an available connection. If the connection fails, the next
SLC in the list is tried.

2 smsTrigDaemon connects to the SLC using either port 3072 or another port specified by
the scps parameter.

• If a connection to a SLC is established and not in use, that connection is used.
smsTrigDaemon maintains a list of currently-open connections.

• If a connection to an SLC is not established, smsTrigDaemon attempts to open
one. SLCs are identified by the scps configuration parameter. smsTrigDaemon

polls this list until it finds an available connection. If the connection fails, the next
SLC in the list is tried.

3 smsTrigDaemon sends an XML message via an HTTP "POST / HTTP/1.1" request.

The syntax of the message is:
<control-plan-exec>

<control-plan><name of control plan></control-plan>

<service-handle><service handle></service-handle>

<cgpn><calling party></cgpn>

<cdpn><called party></cdpn>

<ext id="400"><host></ext>

<ext id="401"><user></ext>

<ext id="402"><more extensions></ext>

...

</control-plan-exec>

At least two extension parameters, id="400" and id="401", will be present. These
represent the client's host and user names. Optional additional extension parameters can
be included with labels id="402", id="403", etc.

Data consistency check

A race condition can occur after the Save & Execute button has been pressed in a Java management
screen. The race condition exists between the SMS's replication system and execution on the SLCs of
an smsTrigDaemon request.

To avoid this possibility, a data consistency check is carried out on the current subscriber before
proceeding with the request.

Because it is not possible to know in advance which SLC will be selected by smsTrigDaemon, a data
consistency check is performed on all replicated SLCs. A decision to carry on with the request is only
made after the check has been completed.

Chapter 5

172 Service Management System Technical Guide

The following steps describe the consistency check process and the criteria used to determine whether
the execution will be allowed.

Stage Description

1 The Java management screen sends to smsTaskAgent a request for a consistency check
on the current subscriber.

2 The Java management screen waits until a check report is received from smsTaskAgent.
The report is in the form of an HTML file.

3 The Java management screen extracts relevant information from the report, including:

• The number of nodes checked.

• The number of nodes that failed the check.

• The number of nodes that replied to the check request.

• The number of nodes that reported inconsistent data.

4 The consistency check:

• succeeds, if:

▪ at least one node replied without error, and
▪ no node reported inconsistent data.

• fails, if:

▪ no nodes replied without error, or
▪ one or more nodes reported inconsistent data.

5 If the check succeeds, the request proceeds.

6 If the request fails, steps 1 through 4 are repeated. After three fails, the request is
cancelled and the user informed in an SMS message dialogue box.

 Chapter 6, Background Processes on the SLC 173

Chapter 6

Background Processes on the SLC

Overview

Introduction

This chapter provides a description of the programs or executables used by the System as background
processes on an SLC.

Executables are located in the /IN/service_packages/SMS/bin directory.

Some executables have accompanying scripts that run the executables after performing certain cleanup
functions. All scripts should be located in the same directory as the executable.

Important: It is a prerequisite for managing these core service functions that the operator is familiar with
the basics of Unix process scheduling and management. Specifically, the following Unix commands:

• init (and inittab)

• cron (and crontab)

• ps

• kill

In this chapter

This chapter contains the following topics.

smsApplyConfig.sh .. 173
cmnPushFiles .. 174
infMaster .. 179
smsAlarmDaemon ... 180
smsLogCleaner ... 182
smsStatsDaemon .. 184
updateLoader .. 192

smsApplyConfig.sh

Purpose

smsApplyConfig.sh resides on the target node, example SLC.

It performs the following functions:

• Backup of the live eserv.config currently used in production,

• Merges changes from derived file into live eserv.config using smsConfigSurgeon.

• Signals changes using smsSignalConfigChanges.sh.

If a SIGHUP is required, smsSignalConfigChanges.sh will in turn call smsSendSighup.sh (which will run
with root permissions).

Chapter 6

174 Service Management System Technical Guide

Startup

smsApplyConfig.sh is started by smsConfigDaemon (without the -m parameter). It is driven by the
system and is not intended to be changed by the user.

Configuration

For more information on the parameters used by smsApplyConfig.sh, see smsConfigDaemonScript
Configuration (on page 130).

Failure

If smsApplyConfig.sh fails, the deployment process for eserv.config on the target node will fail.
Appropriate alarm messages will be generated.

Output

The smsApplyConfig.sh and its sub-scripts write error messages to the system messages file, and also
write additional output to /IN/service_packages/SMS/tmp/smsConfigDaemonClient.log.

cmnPushFiles

Purpose

cmnPushFiles transfers files to specific directories on the SMS from SLCs and VWSs. The files
transferred include:

• EDRs

• PIN logs

Note: Other Oracle applications also use their own instances of this process.

Startup

This task is started by entry scp1 in the inittab, using the shell script:

/IN/service_packages/SMS/bin/cmnPushFilesStartup.sh

Configuration

cmnPushFiles accepts the following command-line options:

Usage:

cmnPushFiles -d <dir> [-o <dir> [-a <days>]] [-f <dir>] [-F] [-P <pref>] [-S <sufx>]

-h <host> [-r <pref>] [-p <port>] [-s <secs>] [-R <secs>] [-M <secs>] [-C <secs>] [-

t <bits>] [-T] [-x] [-e] [-w <secs>]

-d <dir>

Syntax: -d <dir>

Description: The destination directory for files on remote machine.

Type: String

Optionality: Optional (default used if not set).

Allowed: Path must start with '/' or the -r option must also be used.

Cannot be the same as -f <dir> (on page 177).

Default: .

 Chapter 6

•

 Chapter 6, Background Processes on the SLC 175

Notes: An example of a destination directory is the directory on a SLC where
cmnPushFiles looks for the files to be sent to the SMS.

Example:

-P <dir>

Syntax: -P <dir>

Description: The file prefix to match on.

Type: String

Optionality:

Allowed:

Default:

Notes:

Example:

-S <sufx>

Syntax: -S <sufx>

Description: The file suffix.

Type: String

Optionality:

Allowed:

Default:

Notes:

Example:

-r <pref>

Syntax: -r <pref>

Description: The remote directory prefix.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: null

Notes: Required if -d <dir> (on page 174) is a relative directory.

Example:

-h <host>

Syntax: -h <host>

Description: The hostname of the remote machine.

Type: String

Optionality: Required

Allowed:

Default: null

Notes: If set, a hostname must be specified.

Example:

Chapter 6

176 Service Management System Technical Guide

-p <port>

Syntax: -p <port>

Description: The port number on the remote machine on which cmnReceiveFiles will listen for
receiving files.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: port Port to connect to.

-1 Use stdin and stdout.

Default: 2027

Notes:

Example:

-s <secs>

Syntax: -s <secs>

Description: The number of seconds for the sleep period.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 15

Notes:

Example:

-t <bits>

Syntax: -t <bits>

Description: The number of bits per second to start throttling at.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0 (no throttling)

Notes:

Example:

-w <secs>

Syntax: -w <secs>

Description: The number of seconds to wait for success.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 30

Notes:

Example:

-x

Syntax: -x

Description: Whether to use hostname-prefixing on remote filenames.

 Chapter 6

•

 Chapter 6, Background Processes on the SLC 177

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: set
(false)

Don't use prefixing.

not set
(true)

Use prefixing.

Default: true

Notes:

Example:

-o <dir>

Syntax: -o <dir>

Description: The directory to transfer sent files to.

Type: String

Optionality: Optional (default used if not set).

Allowed: directory The directory to store transferred files in.

null Delete the transferred files, do not store them.

Default: null (file deleted)

Notes:

Example:

-f <dir>

Syntax: -f <dir>

Description: The retry directory.

Type: String

Optionality: Optional (default used if not set).

Allowed: Cannot be the same as -d <dir> (on page 174).

Default: null (no retry directory)

Notes:

Example:

-F

Syntax: paraMeter = <>

Description: Use fuser to not move files in use.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: set (true) Use fuser.

not set (false) Don't use fuser.

Default: false

Notes:

Example:

-a <days>

Syntax: -a <days>

Description: The number of days old a transferred file can be before it is deleted.

Chapter 6

178 Service Management System Technical Guide

Type: Integer

Optionality: Optional (default used if not set).

Allowed: positive
integer

-1 never delete files.

Default: -1

Notes: This parameter only relevant when -o <dir> (on page 177) option is specified.

Example:

-e

Syntax: -e

Description: Which mode to run in.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: set
(false)

Run in non-daemon mode. Execute file transfer
only once, then exit.

not set
(true)

Run in daemon mode.

Default: not set

Notes:

Example:

-R <secs>

Syntax: -R <secs>

Description: The number of seconds before Initial retry period starts.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 15

Notes:

Example:

-M <secs>

Syntax: -M <secs>

Description: The maximum number of seconds for the retry period to continue.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 900

Notes:

Example:

-C <secs>

Syntax: -C <secs>

Description: The number of seconds for the cleanup period.

Type: Integer

 Chapter 6

•

 Chapter 6, Background Processes on the SLC 179

Optionality: Optional (default used if not set).

Allowed:

Default: 1800

Notes:

Example:

-T

Syntax: -T

Description: Whether or not to move recursively.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: set Tree move: recursive into subdirectories.

not set

Default: true

Notes:

Example:

Example

This text shows an example of the command line options for cmnPushFiles.

cmnPushFiles -d /IN/service_packages/SMS/cdr/closed -f

/IN/service_packages/SMS/cdr/retry -r /IN/service_packages/SMS/cdr/received -h

prodsmp1.telcoexample.com -s 10 -p 2028 -S cdr -w 20

Failure

If cmnPushFiles fails, EDRs will accumulate in:

/IN/service_packages/SMS/cdr/current/

cmnPushFiles will send error messages to the syslog and the cmnPushFiles log.

Output

The cmnPushFiles writes error messages to the system messages file, and also writes additional output
to this default location:

/IN/service_packages/SMS/tmp/cmnPushFiles.log

infMaster

Purpose

The infMaster provides resilience for replication in case the smsMaster fails. For more information, see
Inferior Master.

The infMaster is only used in the unclustered configuration.

Note: The infMaster does not replicate Alarms or Statistics.

Chapter 6

180 Service Management System Technical Guide

Startup

This task is started by entry scp2 in the inittab, via the shell script:

/IN/service_packages/SMS/bin/infMasterStartup.sh

Parameters

The infMaster supports the following command-line options:

Usage:

infMaster [-maxpending <number>]

The available parameters are:

Parameter Default Description

-maxpending
<number>

10000 This sets the maximum number of pending updates which will
be queued in the infMaster's memory.

Failure

If the infMaster fails, no functionality will be affected unless the infMaster would normally be required to
operate as the Superior Master (that is, the smsMaster and all other infMasters with higher node
numbers were unavailable). In this case, replication will not work.

The infMaster will send error messages to syslog and infMaster.log.

Output

The infMaster writes error messages to the system messages file, and also writes additional output to
/IN/service_packages/SMS/tmp/infMaster.log.

smsAlarmDaemon

Purpose

The smsAlarmDaemon runs on all alarm-managed nodes in the SMS system, including the SMS nodes.
The role of the smsAlarmDaemon is to gather alarms from the following sources:

• System error log (/var/adm/syslog.log or /var/log/syslog)

• Oracle Standard DB error log

• Sigtran SUA logs (/IN/service_packages/SLEE/stats) [If installed]

On the SMSs, the resultant error messages are written directly into the SMF_ALARM_MESSAGE table
in the SMF. When run on other nodes, replication is used to update the SMF_ALARM_MESSAGE table.

Startup

This task is started by entry scp4 in the inittab, via the shell script:

/IN/service_packages/SMS/bin/smsAlarmDaemonScpStartup.sh

Configuration

smsAlarmDaemon accepts the following command-line arguments.

Usage:

 Chapter 6

•

 Chapter 6, Background Processes on the SLC 181

smsAlarmDaemon [-l seconds] [-h seconds] [-n number] [-m number] [-p] [-d] [-a path]

[-r node] [-u user/pass] [-f] [-i] [-g] [-c number] [-t seconds]

The available parameters are:

Parameter Default Description

-a path Null Propagate alarms from the specified Oracle alert log to the
database.

By default, smsAlarmDaemon does not propagate alarms from
the Oracle alert log.

-c number 1 Commit Rate. The number of inserts before committing to the
database.

-d Sort messages Disable sorting of messages in the buffer by severity.

Specifically, messages are kept in the buffer and subsequently
written into the SMF database, in the same sequence in which
they are received.

-f No filtering Filtering. Delete duplicate alarms and increase the alarm
count.

-g Uses local time GMT timezone. Use GMT instead of local time.

-h seconds 60 Heartbeat message. Will be forced to be greater or equal to
time period (seconds).

-i Use fuzzy
matching

Filtering type. Use exact matching (rather than fuzzy
matching). Indicates that duplicate matches should be
performed on text only (that is, excluding digits).

Note: Only valid when used in conjunction with -f.

-l seconds 2 Filter Period. Duration between linked-list checks (in seconds).

-n number 5 Filter Number. The number of alarm messages allowed within
the time period.

Allowed values: Integers

-m number 1000 Maximum number of alarm messages to buffer.

Allowed values: Integers 1-1000000

-p Do not drop
messages

Drop low-priority messages when the buffer is full. Specifically,
when -m number messages have been received but it is not
yet time to write the buffer contents to the SMS database, low
priority messages in the buffer are dropped in favor of higher-
priority messages that may be received on its input stream.

-r node Direct to the
Oracle DB

Replication node. Specify the replication requester node.

-t seconds 1 Commit interval. The maximum interval between database
commits (in seconds).

-u user/pass / Use the supplied Oracle user/password pair.

Usage example

Here is an example of using smsAlarmDaemon:

smsAlarmDaemon -l 5 -h 30 -n 10 -m 2000 -p -d -a /volB/home/saich -r 750 -u

smf/smf -f -i -g -c 2 -t 2

Chapter 6

182 Service Management System Technical Guide

• Filter Period (-I) = 5 seconds

• Heart beat (-h) = Yes every 30 seconds

• Filter Number (-n) = 10 each period

• Max number(-m) = 2000 records

• Drop low priority messages (-p) = true

• Sort messages by severity (-d) = false

• Oracle Alert Log location (-a) = /volB/home/saich

• Rep node (-r) = 750

• Oracle User (-u) = smf/smf

• Filtering (-f) = Multiple alarms combined

• Filtering type (-i) = Exact match

• GMT timezone (-g) = Yes

• Commit Rate (-c) = every 2 number of inserts

• Commit Interval (-t) = every 2 seconds if 2 records not reached

Failure

The smsAlarmDaemon on each alarm-managed node in the installation will by default generate a
health-check alarm once per minute. These health check alarms will be relayed in the same fashion as
all other alarms.

If these health check alarms are not received at the target destination, then the smsAlarmDaemon may
have failed, and should be investigated.

Output

The smsAlarmDaemon writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/SMS/tmp/smsAlarmDaemonScp.log.

smsLogCleaner

Purpose

smsLogCleaner archives the following types of log files:

• NCC process log files (/IN/service_packages/Product/tmp/Process.log)

• System log files (syslog)

For more information, see System Administrator's Guide.

Startup

This task is run in the crontab for smf_oper. By default, it runs at 30 minutes past each hour. It is run via
the shell script:

/IN/service_packages/SMS/bin/smsLogCleanerStartup.sh

Parameters

smsLogCleaner supports the following command-line options:

Usage:

smsLogCleaner -c configuration_file -d days -s storage_file [-h]

 Chapter 6

•

 Chapter 6, Background Processes on the SLC 183

The available parameters are:

Parameter Default Description

-c configuration_file logjob.conf The name of the configuration file.

-d days 7 How often to clean the archive (in days).

-s storage_file storage.txt The name of the storage file.

-h Provides help information.

At installation, the cronjob is configured to execute by default with the following command-line
parameters:

-c /IN/service_packages/SMS/etc/logjob.conf

-s /IN/service_packages/SMS/tmp/sms_storage.txt

-d 7

An operator can change these values, subject to disk storage availability and site-specific archiving
policies.

Failure

If the process is not running, log files in the following directory will accumulate in size and age beyond
the expected values.

/IN/service_packages/SMS/tmp

Output

The smsLogCleaner run by smf_oper writes error messages to the system messages file, and also
writes additional output to /IN/service_packages/SMS/tmp/smsLogCleaner.log.

logjob.conf

The logjob.conf configuration file has the following format:

log <file> age <hrs> size <size> arcdir <dir> logonce

The available parameters are:

Parameter Description

log <file> The full directory path and name of the file to be cleaned. You can include the '*'
wildcard in the file name if required.

Example:
log /IN/service_packages/SMS/tmp/smsNamingServer.log

Tip: Most processes and tools document where their output is written to in their
Output topic.

age <hrs> Sets the minimum age in hours for the log file before it will be cleaned. You must
set either this parameter or the size parameter. If both parameters are set, then
the log file is cleaned if either condition is met.

Example: age 100

size <size> Sets the minimum size for the logfile before it will be cleaned. You must set either
this parameter or the age parameter. If both parameters are set, then the log file
is cleaned if either condition is met.

Examples: size 60K, or size 60M

Chapter 6

184 Service Management System Technical Guide

Parameter Description

arcdir <dir> The directory to use to store the old log file. If this parameter is not specified, then
the log file is deleted.

Example:
arcdir /IN/service_packages/SMS/tmp/archive

logonce Only specify this parameter if you just want to keep one archived version of the
log file.

smsStatsDaemon

Purpose

The smsStatsDaemon program is the key component in the statistics process. The statistics process
gathers and updates all statistics values through a single consistent mechanism over the network.

The smsStatsDaemon can optionally dynamically load extension libraries at runtime to provide extra
functionality. This functionality includes node uptime, process uptime, and database row counts.

Startup

This task is started by entry scp3 in the inittab, via the shell script:

/IN/service_packages/SMS/bin/smsStatsDaemonStartup.sh

smsStatsDaemon configuration

The stats daemon can run in one of two modes:

• standard mode or

• legacy mode.

The standard mode uses command line options to configure the smsStatsDaemon, and uses the
SMF_STATISTICS_DEFN table in the SMF database to define the statistics which should be collected.

The legacy mode is configured using a combination of command line parameters and a configuration
file. The configuration file defines the statistics which should be collected.

Depending on which mode the smsStatsDaemon is running in, a different set of parameters will be
used.

Parameters

The command line parameters for the smsStatsDaemon are:

Usage:

smsStatsDaemon [-e <secs>] [-u <usr/pwd>] [-f <dir/file>] [-v] [-r <node>] [-d

<size>] [-h <ratio>] [-w] [-F] [-m <size>] [-i] [-S] [-T] [-C <n>]

Or for legacy form:

smsStatsDaemon [-c <dir>] [-a <dir>] [-t <secs>] [-s <Kb>] [-e <secs>] [-f

<dir/file>] [-v] [-d <size>] [-h <ratio>] [-w] [-F] [-m <size>] [-i] [-S] [-T] [-C

<n>]

The available parameters are:

-e secs

Syntax: -e secs

Description: The minimum number of seconds between logging statistic counts of zero.

 Chapter 6

•

 Chapter 6, Background Processes on the SLC 185

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0

Notes: This only applies to collection mode 1 (always report).

Example:

-f dir/file

Syntax: -f dir/file

Description: The stats configuration file (full path, includes file name).

Type: String

Optionality: Optional (stats file not used if not set).

Allowed:

Default: null

Notes:

Example:

-v

Syntax: -v

Description: Use verbose mode (provide more information while processing).

Type: Boolean

Optionality: Optional (default used if not set).

Allowed:

Default: Do not use verbose mode.

Notes: Usually used for debuggin set-up problems.

Example:

-d rows

Syntax: -d rows

Description: The number of rows for dynamic stats table.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: > 1

Default: 500

Notes: The dynamic stats table is the shared memory hash table used to contain the
statistics information. The size of this table varies with the number of statistics
being collected.

Example:

-h ratio

Syntax: -h ratio

Description: The ratio of the size of the hash index to the dynamic stats table.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Chapter 6

186 Service Management System Technical Guide

Default: 2

Notes: The dynamic stats table is the shared memory hash table used to contain the
statistics information. The size of this table varies with the number of statistics
being collected.

Example:

-F

Syntax: -F

Description: Only do SMS-specific statistic collection.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed:

Default: Collect all statistics.

Notes: Only set when smsStatsDaemon is running on an SMS.

The SMF_STATISTICS_EXTN table specifies for each extension statistic whether
it is an SMS stat or not. Also the shared memory hash table specifies whether
each statistic is an SMS stat. Hence the -F option can do only SMS stats or all
stats.

Examples: Uptime of smsMaster (on page 144) is an SMS stat, uptime of
updateLoader (on page 192) is not an SMS stat.

Example:

-m size

Syntax: -m size

Description: The size of the details column in the dynamic stats table.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 80

Notes: The dynamic stats table is the shared memory hash table used to contain the
statistics information.

Example:

-i

Syntax: -i

Description: Silently ignore mount points that are longer than the -m size (on page 186) limit.

Type: Boolean

Optionality: Optional (not used if not set).

Allowed:

Default:

Notes:

Example:

-S

Syntax: -S

Description: Silently drop statistics where the details field is longer than -m size (on page 186).

Type: Boolean

 Chapter 6

•

 Chapter 6, Background Processes on the SLC 187

Optionality: Optional (not used if not set).

Allowed:

Default:

Notes:

Example:

-T

Syntax: -T

Description: Truncate the detail field for statistics that exceed -m size (on page 186).

Type: Boolean

Optionality: Optional (not used if not set).

Allowed:

Default:

Notes:

Example:

-C n

MERSyntax: -C n

Description: Sets the global configuration variable mergeCpuStats to the value of "n". This
defines whether individual CPU statistics will be output or whether CPU statistics
will be summed. For summed statistics, the number of CPUs is also output.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: n = 0 output individual CPU statistics

n = 1 sum CPU statistics

Any other value of n will be ignored, and default behavior will be used

Default: 0 - output individual CPU statistics

Notes: If MERGECPUSTATS config file entry is set, it overrides the default behaviour.

If the command line switch (-C) is set, then it will override the MERGECPUSTATS
config file entry.

Example: -C 1

Parameters for standard mode

This parameters are used with the general parameters when smsStatsDaemon is running in standard
mode.

Note: These parameters cannot be used with the Parameters for legacy mode (on page 188).

-u usr/pwd

Syntax: -u usr/pwd

Description: The userid and password to use to log into the SMF database.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: /

Notes:

Chapter 6

188 Service Management System Technical Guide

Example:

-r node

Syntax: -r node

Description: The replication node number smsStatsDaemon should use.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: -1

Notes:

Example:

-w

Syntax: -w

Description: Do Row Count statistic collection.

Type: Boolean

Optionality: Optional (not used if not set).

Allowed:

Default:

Notes: Provides statistics of the number of rows in selected database tables as defined
in the SMF_STATISTICS_EXTN table.

This type of statistic should only be collected on the primary SMS node.

Example:

Parameters for legacy mode

These parameters can be used if smsStatsDaemon is being used in legacy mode.

Note: These parameters cannot be used with the Parameters for standard mode (on page 187).

-c dir

Syntax: -c dir

Description: Current statistics file directory.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: /tmp

Notes:

Example:

-a dir

Syntax: -d dir

Description: Archived statistics file directory.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: /tmp

 Chapter 6

•

 Chapter 6, Background Processes on the SLC 189

Notes:

Example:

-t secs

Syntax: -t secs

Description: The maximum number of seconds a statistics file can be open.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1800

Notes:

Example:

-s Kb

Syntax: -s Kb

Description: The maximum number of Kb a stats file can reach.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 10

Notes:

Example:

Failure

If the smsStatsDaemon fails, statistics on that SLC will not be processed. When the smsStatsDaemon is
restarted the statistics will be processed.

Output

The smsStatsDaemon writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/SMS/tmp/smsStatsDaemon.log.

Measurement IDs - standard mode

Measurement IDs for the statistics which should be collected are loaded from the
SMF_STATISTICS_DEFN and SMF_STATISTICS_EXTN tables in the Oracle Standard DB instance
given by ORACLE_SID. Setting the TWO_TASK variable allows a machine without a database instance
running access a database on a remote machine. One application of this may be to allow monitoring of
a remote disaster recovery machine.

Statistics shared memory

The shared memory area contains an index to the statistics measurements it contains. Each
measurement has an accumulator for up to 16 SLPI instances. The single SLPI process is the only
process to write to that buffer. The per-SLPI statistics counters are never reset, the smsStatsDaemon
treats them as read-only.

Chapter 6

190 Service Management System Technical Guide

smsStatsDaemon parameters

This table gives the type and valid values of the parameters.

Name Type Description

CURRENTDIR 256
characters

Where active statistics files are stored.

ARCHIVEDIR 256
characters

Where archived statistics files are stored.

OPENTIME unsigned long The maximum length of time a statistics file should remain
open. The range of values is 1-1440 minutes.

MAXSIZE unsigned long The maximum size (in Kbytes) a statistics file is allowed to
reach.

Note: This is only checked after a recording period, so a file
may be larger than this size.

NOTIFY 256
characters

Space separated e-mail accounts to notify when the statistics
file is rotated. This value is optional. If it does not exist, no e-
mail is sent.

MID Measurement
description
record

Specifies a measurement to be made available.

MERGECPUSTATS 1 character If this config file entry is set, it overrides the default behaviour.

The command line switch (-C) when set, overrides both this
config file entry and the default entry.

Legacy mode configuration - config file

To provide full backwards support for sites using the SMS version 1 style configuration, the use of a
configuration file is optional. A configuration file will be searched for according to the following rules:

• If the -f <config_file_loc> parameter is specified, the config file is used. An error occurs if the
specified file does not exist.

• If the -f parameter is omitted, then a search is made for a file "etc/smsStatsDaemon.cfg" or
"../etc/smsStatsDaemon.cfg". If one of these files exists, then the file is used. Otherwise the
smsStatsDaemon will start with the default configuration as described above.

The configuration file provides:

• Parameters (for example, max open file size, archive file directory), and

• Measurement IDs (specified using "MID=…" entries).

Note: Any configuration specified in the command line will override the details in the configuration file.
The database configuration is NOT used.

Syntax for the stats_config file

For legacy sites, the syntax of the stats_config file is given.

This is an example of a stats_config file:

Log file locations (trailing / is optional)

CURRENTDIR=/IN/service_packages/SMS/statistics/current

ARCHIVEDIR=/IN/service_packages/SMS/statistics/archive

Max open time is 10 min (1-1440)

OPENTIME=10

Max file size is 128 kb (unlimited)

 Chapter 6

•

 Chapter 6, Background Processes on the SLC 191

MAXSIZE=128

MID=npNotFound,NP,Portability request with no target,3600,Category NF

MID=npTimeOut,NP,Exceeded regulated time-out on connect,300,No comment

MID=vpnManagement,VPN,Calls to management hotline,3600,Non-charged

MID=vpnSchedule,VPN,Calls activating scheduled routing,3600,No comment

Where:

indicates a comment. The comment character needs to start at the beginning of a
line. The entire line is then ignored (up to 255 characters).

CURRENTDIR indicates the working directory of the daemon. This is where a temporary
statistics file is stored until the file size of open time exceeds the configured value.

ARCHIVEDIR the location a closed statistics file is moved to.

OPENTIME indicates how long a statistics file can stay active (that is, how long can the
daemon keep on writing statistics into a file) in minutes.

MAXSIZE The maximum allowable size of a statistics file in Kilobytes.

Note: If a statistics file becomes overloaded half way through a dump, the entire
record will still be written.

MID The measurements to retrieve. Refer to the subsection on Measurements

Measurements

Measurements are specified in the configuration file using one MID command for each measurement to
be defined.

MID commands are comma separated value names, that must be in the order below:

• ID

• APPLICATION

• DESCRIPTION

• PERIOD

• COMMENT

• EXTN

• KEYWORD

• DETAIL

• LIB_NAME

• FUNCTION_NAME

Examples:

An example MID line without the extension fields might be:

MID=vpnManagement,VPN,Calls to management hotline,3600,Non-charged

An example MID line with the extension fields would be:

MID=STATSDAEMON,SCP_SYSTEM,Uptime for smsStatsDaemon process,60,smsStatsDaemon

process uptime in

minutes,EXTN,PROCESS_UPTIME,smsStatsDaemon,libsmsextrastats.so,getProcessUptime

This table describes the measurement parameters.

Name Type Description

APPLICATION 20 characters The application ID. This may be up to 20 characters for clarity,
however the first three characters must be unique.

Chapter 6

192 Service Management System Technical Guide

Name Type Description

COMMENT 256 characters Textual comment relating to the statistic.

DESCRIPTION 256 characters The textual description of the measurement.

DETAIL 80 characters Extra data required to measure stat, i.e. process name for
process uptime stats. Can be NULL (empty string).

EXTN 5 characters The keyword 'EXTN' indicating that this mid line has the extra
fields.

FUNCTION_NA
ME

50 characters Function within the library (specified at LIB_NAME) to call in
order to measure stat.e.g. getNodeUptime.

ID 20 characters The measurement ID.

KEYWORD 20 characters May be required by measurement function. e.g.
UPTIME_NODE.

LIB_NAME 30 characters Dynamic library to load to get stat measurement function. e.g.
libsmsextrastats.so.

PERIOD unsigned long The time in seconds between each recording in the output file
of this statistic. Value range is 10-31536000 (1yr).

After a change is made to the Measurement IDs, the smsStatsDaemonRep process needs to be notified
via a SIGHUP. This can be performed manually, or via the smsStatsDaemonRepReload.sh script
provided as part of the installation.

Updating smsStatsDaemon measurements

After a change is made to the Measurement IDs, either via the database, or via modifying "MID=…"
entries in the stats_config file, the smsStatsDaemon process needs to be notified via a SIGHUP. This
can be performed manually, or via the smsStatsDaemonReload.sh script provided as part of the
installation.

updateLoader

Purpose

The updateLoader accepts updates from the smsMaster and makes the requested changes to the
database it is configured to update. More than one updateLoader may run on each SLC. For more
information about updateLoaders and replication, see What is Replication? (on page 19)

If the SCP data becomes out of sync with the data in the SMF, a resync can be done to ensure the SCP
has the correct information. It should not be necessary to do a manual resync. The system does
automatic resyncs as necessary.

There are three cases where the system will resync:

Case Description

A Node is Out of
History

Where a node is isolated SMS will hold a queue of updates for the node. In
the replication.def file there is a max pending variable that gives the
maximum number of updates that will be held in this queue for each SLC. If
this limit is exceeded (the node is out of history) SMS will drop all the
entries and force a resync of the node when it comes back on line.

New Node Added When a new node is added to the system a replication config file will be
sent to the node. This forces a resync.

Replication Changed If the replication config file for a node is changed then a resync will be
forced.

 Chapter 6

•

 Chapter 6, Background Processes on the SLC 193

Startup

This task is started by entry scp5 in the inittab, via the shell script:

/IN/service_packages/SMS/bin/updateLoaderStartup.sh

Parameters

The updateLoader supports the following command-line options:

Usage:

updateLoader [-nodeid node_number] [-resync]

The available parameters are:

Parameter Default Description

-nodeid
node_number

274 The node number of the updateLoader requesting the resync.

-resync Causes the updateLoader to re-synchronise with the smsMaster.

Failure

If the updateLoader is not working, updates from the SMS to the SCP database will be unsuccessful.
The SLC will continue to run on the last configuration successfully loaded from the SMS.

An error message will be logged to the syslog and the updateLoader log, and may be logged to the
smsMaster log.

Output

The updateLoader writes error messages to the system messages file.

 Chapter 7, Tools and Utilities 195

Chapter 7

Tools and Utilities

Overview

Introduction

This chapter provides a description of the operational programs or executables used by the system.

Executables are located in the /IN/service_packages/SMS/bin directory.

Some executables have accompanying scripts that run the executables after performing certain cleanup
functions. All scripts should be located in the same directory as the executable.

In this chapter

This chapter contains the following topics.

cmnConfigSyntaxCheck .. 195
cmnSU ... 196
compareNode .. 196
comparisonServer ... 197
inetCompareServer ... 198
infoDisplayer .. 199
inputBootstrap ... 200
repConfigWrite ... 201
resyncServer ... 203
setupOracleWallet.sh .. 203
smsCompareResyncClient .. 205
smsCompareResyncServer .. 208
smsDumpRepConfig ... 218
smsIorDump .. 219
smsLogTest ... 220
smsManualRequester ... 221
smsProcessCdr ... 222
smsRecordStatistic .. 229
smsStatsQuery .. 229
startMerge ... 231

cmnConfigSyntaxCheck

Purpose

cmnConfigSyntaxCheck is used to check that the syntax of the eserv.config file is correct.

Configuration

cmnConfigSyntaxCheck accepts the following command line options.

Usage:

cmnConfigSyntaxCheck [-v -d] filename [filename [...]]

Chapter 7

196 Service Management System Technical Guide

The available parameters are:

 Parameter Default Description

-v - Verbose mode. Displays in detail all information that is available.

-d - Reads and dumps the named files

Output

cmnConfigSyntaxCheck displays the results of the syntax check on the terminal.

Example: This text shows an example of a report from the cmnConfigSyntaxCheck.

$ cmnConfigSyntaxCheck -v filename /ACS/etc/acs.conf

cmn::FileNotFoundException: Opening config file filename

Config file syntax error: ACS/etc/acs.conf:30: Syntax Error

cmnSU

Purpose

cmnSU replaces the built in “su” command for NCC processes run from initab. Run as root, it will
provide a login shell to the specified user.

Configuration

cmnSU accepts the following command line options.

Usage:

 /cmnSU - username [arg...]

The available parameters are:

Parameter Default Description

- Provide a login shell. Required.

username The user to become. Required.

[arg...]: The rest of the arguments to the shell

compareNode

Purpose

This command can be used to initiate a full database comparison of an SCP database with the definitive
copy in the SMF database.

This is used to ensure that an SCP database has all its data consistent with the SMF database. Under
normal conditions, this should always be the case, but there may be a time (for example, after multiple
failures) where the System Administrator wants to check that an SLC database is consistent.

The compareNode tool requests a comparison between the contents of the SMF database and one
other node, by invoking comparisonServer. This is a more time-efficient method than a resync. All the
entries of all the tables that are defined to be replicated to the specified updateLoader will be compared.

A full report of the comparison is written in the report directory (REPORT DIR) on the SLC machine.

 Chapter 7

•

 Chapter 7, Tools and Utilities 197

Configuration

compareNode accepts the following command line options.

Usage:

compareNode [-hostname hostname|-master node_num] [-with node_num] [-timeout

seconds]

The available parameters are:

Parameter Default Description

-hostname Sets the hostname of the superior node in the comparison. (Optional. If
used, -master must = 0, that is, if -master must be set to off.)

-master 1 Node number of the superior node in the comparison. (Optional, as the
default will be used if it is not set. Or it can be turned off by setting to 0,
and a hostname specified instead.)

Note: This can be an infMaster.

-with 256 Node number of the updateLoader in the comparison. (Optional, as the
default will be used if it is not set.)

-timeout 10 Number of seconds before the connection between the nodes in the
comparison is timed out. (Optional, as the default will be used if it is not
set.)

Example: This text shows the common usage of compareNode being run on the superior master in a
node comparison.

compareNode -with 301

Failure

If compareNode fails, it will send error messages to stdout and syslog.

Output

The compareNode writes error messages to the system messages file, and also writes additional output
to /IN/html/SMS/output/node_number/timestamp.html.

comparisonServer

Purpose

comparisonServer is a shell script which starts node comparisons between data in two different nodes.
It is started by an SMS in response to a database comparison request.

Configuration

comparisonServer accepts the following command line options.

Usage:

comparisonServer node_to_compare address port

Chapter 7

198 Service Management System Technical Guide

The available parameters are:

Parameter Default Description

node_to_co

mpare

address

port

Output

comparisonServer writes error messages to the system messages file, and also writes additional output
to IN/service_packages/SMS/tmp/comparisonServer.log.

inetCompareServer

Purpose

inetCompareServer is a shell script which is run by the Replication Check screens. It uses the report
configuration information from the Replication Check screen to start a node comparison (which is
performed by smsCompareResyncServer). It should not be necessary to run this script by hand.

Output

inetCompareServer writes to syslog and also logs additional information (including raw Replication
Check report data) to /IN/service_packages/SMS/tmp/inetCompareServer.log.

Example: This text shows an example of a report from the inetCompareServer.

Copyright (c) 2002, Oracle. Contact Oracle at support@oracle.co.nz

Input delivered through standard input. Please consult the SMS administration

guide for more information on this software. For command line options, pass '-h'

as the only option to this program.

Awaiting server control information...

Input accepted. Now running server.

Mar 4 05:01:49 smsCompareResyncServer(28781) NOTICE: Beginning comparison for node

301.

COM: Fri Mar 4 05:01:50 2005: Node 301, started processing 186 SMS and 186 SCP

records.

COM: Fri Mar 4 05:01:50 2005: Node 301, table ACS_CALL_PLAN, started processing 186

SMS and 186 SCP records.

COM: Fri Mar 4 05:01:51 2005: Node 301, table ACS_CALL_PLAN, group ACS_CALL_PLAN,

started processing 186 SMS and 186 SCP records.

COM: Fri Mar 4 05:01:52 2005: Node 301, table ACS_CALL_PLAN, group ACS_CALL_PLAN,

finished processing 186 of 186 SMS and 186 of 186 SCP records, 0 discrepancy found

in group.

COM: Fri Mar 4 05:01:52 2005: Node 301, table ACS_CALL_PLAN, finished processing

186 of 186 SMS and 186 of 186 SCP records, 0 discrepancy found in table.

COM: Fri Mar 4 05:01:52 2005: Node 301, finished processing 186 of 186 SMS and 186

SCP of 186 records, 0 discrepancy found in node.

Mar 4 05:01:54 smsCompareResyncServer(28781) NOTICE: Ending comparison for node

301.

Mar 4 05:01:54 smsCompareResyncServer(28781) NOTICE: Comparison was successful for

node 301.

Started writing index HTML file for reports.

 Chapter 7

•

 Chapter 7, Tools and Utilities 199

Finished writing index HTML file for reports.

infoDisplayer

Purpose

infoDisplayer is an executable which can be used to display update request information results.

Configuration

infoDisplayer supports the following command-line options:

Usage:

infoDisplayer [-host value] [-master value] [-nodeid value] [-timeout value]

The available parameters are:

Parameter Default Description

host localhost The local host name

master 0 The node number of the smsMaster

nodeID 1 The ID of the node for which the information is to be displayed.

timeout 10 Period after which infoDisplayer will timeout

Output

Examples:

bash-2.05$./infoDisplayer -nodeid 999 -master 1

initialiseNode: Reading '/IN/service_packages/SMS/etc/replication.def'

initialiseNode: heartbeatPeriod 20

initialiseNode: heartbeatTimeout 20

initialiseNode: connectionTimeout 2

initialiseNode: masterPortNum 12343

initialiseNode: queueWarnThresh 5

initialiseNode: queueErrThresh 100000

initialiseNode: queueCritThresh 1000000

initialiseNode: hBTolerance 10.0

initialiseNode: commitIdleTime 0.100000

initialiseNode: commitBusyTime 10.0

initialiseNode: tcpAbortSecs 20

initialiseNode: oracleUserPass '/'

initialiseNode: reportDir '/IN/service_packages/SMS/tmp/'

initialiseNode: statusFile '/IN/html/status.html'

initialiseNode: configFilePath '/IN/service_packages/SMS/etc/replication.config'

initialiseNode: configFileName 'replication.config'

initialiseNode: node number 999

initialiseNode: node type 5

initialiseNode: s side updates 1

Nov 22 22:05:17 infoDisplayer(6589) NOTICE: Master Controller `./infoDisplayer'

process started (node 999)

Chapter 7

200 Service Management System Technical Guide

inputBootstrap

Purpose

The purpose of the inputbootstrap binary is to produce a configuration file to be passed to the
smsCompareResyncServer from replication.config. It is started by the comparisonServer or the
resyncServer which initiates requests. It can also be executed manually from the command line.

It must be noted that this binary cannot be run with DEBUG when used with the comparisonServer.
(Applicable to production environment).

Note: This binary is not intended to be run by the user. Please contact your Oracle support before
attempting to do so.

Configuration

inputBootstrap accepts the following command line options.

Usage:

inputBootstrap -n node_id [-c config_filename] [-a ip_address] [--hex-address

ip_address] [-p port] [-r] [-u usr/pwd] [-e] [-i interval] [-h] [-b]

Or long form:

inputBootstrap --node-id=node_id [--config-file=config_filename] [--

address=ip_address] [--hex-address ip_address] [--port=port] [--preserve-ranges] [--

oracle-user=usr/pwd] [--enhanced-recovery] [--sync-marker-retry-interval=interval [-

-help] [--build-info]

The available parameters are:

Parameter Default Description

-n

--node-id

none The replication node ID for which the configuration file is
produced. (Required.)

Allowed values: integers, (any signed number of reasonable
value, usually in decimal/octal/hex).

-c

--config-

file

/IN/service_packages/
SMS/etc/
replication.config

Name of the replication configuration file to use. (Optional.)

Allowed values: string

-a

--address

from file specified in
config-file

The IP address of the node. This cannot be specified if the
'--hex-address' option is specified. (Optional.) If
specified, this will override all addresses specified in the
configuration file.

Allowed values: string

--hex-

address
from file specified in
config-file

The IP address of the node as a hex string. This cannot be
specified if the '-a' ('--address') option is specified.
(Optional.) If specified, this will override all addresses
specified in the configuration file.

Allowed values: string

-p

--port

none The port number to connect to at the given node.
(Optional.)

Note: This can only be used when the address is also
specified.

Allowed values: integers, (any signed number of reasonable
value, usually in decimal/octal/hex).

 Chapter 7

•

 Chapter 7, Tools and Utilities 201

Parameter Default Description

-r

--

preserve-

ranges

false when missing Leave the data from the configuration file as it is and do not
correct the group ranges. This option is implied by the -e
option.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

-u

--oracle-

user

smf/smf The Oracle database connection string (userid/password).
(Optional.)

Allowed values: string

-e

--

enhanced-

recovery

false when missing Restrict range of rows to resync. If enhanced recovery
mode is possible, the smsMaster process sets this option.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

-i

--sync-

marker-

retry-

interval

30 seconds The number of seconds between attempts to insert the
replication synchronization marker into the database. The
marker indicates when a total database re-synchronization
has been performed with the smsMaster database.
Inserting marker requires inputBootstrap to acquire a lock;
failure to acquire the lock could result in updateLoader
timing out. (Optional.)

Allowed values: integers, (any signed number of reasonable
value, usually in decimal/octal/hex).

-h

--help

false when missing Shows the help for this binary.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

-b

--build-

info

false when missing Prints out program build information of the binary.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

Note: Long options can be separated from their values by an equal sign ('='), or you can pass the value
as the following argument on the command line (for example, '--port 4000' or '--port=4000'). Short
options must have their values passed after them on the command line, and in the case of boolean short
options, cannot have values (they default to true) (e.g., '-p 4000' or '-f').

Failure

If inputBootstrap fails, it will send error messages to stdout and syslog.

repConfigWrite

Purpose

This command can be used to create a replication.config file. It reads the local database to obtain the
replication set-up and writes the file to the directory specified by the output parameter.

Chapter 7

202 Service Management System Technical Guide

Generally this function is performed using the SMS Java screens.

For more information, see:

• replication.config File (on page 38)

• smsDumpRepConfig (on page 218)

• Service Management System User's Guide

Startup

This task is started by clicking Create Config File on the Table Replication tab of the Node Management
screen.

It can also be started on the SMS from the command line.

For more information about the Node Management screen, see SMS User's Guide.

Configuration

repConfigWrite accepts the following command-line options:

Usage:

repConfigWrite [-user user/password] [-output file]

The available parameters are:

Parameter Default Description

-user Oracle user/password for the SMF.

Example: smf/smf

-output ./repCofigNNNN
N

(Where NNNNN
is a version
number that
counts for the
number of times
the file has
generated OK.)

The output path and filename for the replication.config file.
(Optional.)

Example:
/IN/service_packages/SMS/etc/replication.config

Failure

If repConfigWrite fails, replication.config may not have been written correctly. You can check the content
of replication.config with smsDumpRepConfig. If there is a problem with replication.config, replication
will not work.

Output

The repConfigWrite writes error messages to the system messages file, and also writes additional
output to the specified directory and file.

 Chapter 7

•

 Chapter 7, Tools and Utilities 203

resyncServer

Purpose

resyncServer initiates resyncs between databases by sending a resync request to a node Master
process. This overwrites data in an SCP with data from the SMF. The node Master process is usually
smsMaster.

This process is started by the smsMaster when a database resync is required and runs only for the
duration of the resync. It should not be run manually.

Configuration

resyncServer accepts the following command line options.

Usage:

resyncServer inf_node address port enhanced_recovery

The available parameters are:

Parameter Default Description

inf_node The node with the database which will be updated.

address The ip address or hostname of the node which will be updated.

port The port number on the node which will be updated.

enhanced_r

ecovery
off If set to on, the number of rows in the inferior database will not be

counted during the resync.

Allowed values:

on, off.

Output

resyncServer writes error messages to the system messages file, and also writes additional output to
/IN/service_packages/SMS/tmp/resyncServer.log.

setupOracleWallet.sh

Purpose

The setupOracleWallet.sh script automatically creates the Oracle server wallet on the SMS by performing
a sequence of orapki commands. The Oracle server wallet is the single-sign-on wallet that is used when
connecting securely to the database and that contains certificate information for identifying the Oracle
server. Use this script only if you are using SSL connections to the database.

For information about creating the Oracle wallet automatically by using setupOracleWallet.sh, see Creating
the Oracle Wallet Automatically by Using setupOracleWallet.sh (on page 62).

Important: You will not need to re-run this script after you complete the Oracle server wallet setup.

Chapter 7

204 Service Management System Technical Guide

Information Required by setupOracleWallet.sh

The following table lists the information that is required by the setupOracleWallet.sh script.

Required Item Description

Oracle wallet base
directory

The base directory for the Oracle wallet. Specify the base directory to use for the
Oracle root and Oracle server wallets. On a clustered SMS specify a file system
that is cluster-wide to allow all instances to access the same wallet information in
a single location.
On a non-clustered system the default location for the Oracle wallet base
directory is: /u01/app/wallets/oracle/

On a clustered system the default location for the Oracle wallet base directory is:
/global/oracle/app/wallets/oracle/

ISO country code The local international country (ISO) code for your country. Specify the two-letter
code.

Wallet passwords The password to use for the root CA wallet and the password to use for the
server wallet. You will be prompted for the password each time the wallet is
accessed.

Note: Wallet passwords have length and content validity checks applied to them.
Generally passwords should have a minimum length of eight characters and
contain alphabetic characters combined with numbers and special characters.

Startup

You run setupOracleWallet.sh on the SMS node from the command line. You must be logged in as user
oracle. If NCC is installed on a clustered system then you should run setupOracleWallet.sh only on the
primary SMS node.

Configuration

The setupOracleWallet.sh script is configured by the following command-line parameters.

Usage:

setupOracleWallet.sh [-k keysize] [-v validdays] [-s server_certificate] [-t

root_certificate] [-w wallet_base]

Parameter Default Description

-k keysize 2048 The keysize for certificate keys.

-v validdays 3650 The validity period for certificates in days.

-s
server_certif

icate

NA The signed certificate file for the server wallet; for example,
./server/cert.txt.

-t
root_certific

ate

NA The root certificate file of the certificate authority (CA); for
example, ./root/b64certificate.txt.

 Chapter 7

•

 Chapter 7, Tools and Utilities 205

Parameter Default Description

-w
wallet_base

NA The base directory for the Oracle wallet. If not specified, the
script prompts you to enter the location of the Oracle wallet
base directory. Choose a directory accessible by user oracle;
for example, on a non-clustered SMS choose:

/u01/app/wallets/oracle

On a clustered system choose a directory located in a cluster
global file system; for example:

/global/oracle/app/wallets/oracle

The script creates the following subdirectories for the root and
server wallets under the wallet base location: ./root and ./server.

Ways to run setupOracleWallet.sh

When you initially run setupOracleWallet.sh you specify whether to use self-signed certificates or
certificates signed by a commercial CA. You can optionally specify the -k, -v, and -w command-line

parameters; for example:

setupOracleWallet.sh -k keysize -v validdays -w wallet_base

If you specify to use self-signed certificates then setupOracleWallet.sh creates the self-signed root
certificate and exports it to the following file:

./root/b64certificate.txt

Where ./root is a sub-directory of the base directory for the Oracle wallet. You must import this certificate
into the Java lib\security\cacerts file on each client PC by using the Java keytool utility. See Adding
Trusted Certificates to the Keystore on Client PCs (on page 62) for more information.

If you specify to use a commercial CA to sign your certificates then setupOracleWallet.sh creates the
certificate request file that you must send to the commercial CA for signing. When the commercial CA
returns the signed certificate, you must rerun setupOracleWallet.sh to add the trusted CA certificate and
the CA-signed certificate to the server wallet. You can optionally specify the -s and -t command-line

parameters; for example:

setupOracleWallet.sh -s server_certificate -t root_certificate

smsCompareResyncClient

Purpose

This is a child process of updateLoader. It is called by smsCompareResyncServer and updates the SCP
during replication on a clustered install. It also performs database resynchronizations and comparisons
on the inferior node during replication checks.

This process is not intended to be be started manually. It is installed on the SLC.

Configuration

smsCompareResyncClient accepts the following command line options.

Usage:

Chapter 7

206 Service Management System Technical Guide

smsCompareResyncClient -n int [-u usr/pwd] [-h] [-b] [-i int] [-p port] [-o seconds]

[-t] [--outside-throttle-sample-rate int] [--inside-throttle-sample-rate int] [--

start-threshold int] [--stop-threshold int] [-s dir] [--database-write-buffer-size

int] [--database-read-buffer-size int] [--database-commit-period int] [--max-buffer-

size int] [--dump-core-instead-of-exception] [--long-raw-size=max_size]

The available parameters are:

Parameter Default Description

-n

--node-id

 The node number of the client. (Required.)

Allowed values: integer (any signed number of reasonable
value, usually in decimal/octal/hex)

-u

--oracle-user

smf/smf The Oracle database connection string. (Optional.)

Allowed values: string

-h

--help

false Prints this help screen. (Optional.)

Allowed values:

• 1, on, yes, true

• 0, off, no, false

-b

--build-info

false Prints out program build information then exits. (Optional.)

Allowed values:

• 1, on, yes, true

• 0, off, no, false

-i

--inform-parent

no process is
informed

Process to inform when the process is in a position to
resync/compare. For use only when used from the
updateLoader process. (Optional.)

Allowed values: integers (any signed number of reasonable
value, usually in decimal/octal/hex)

-p

--port

 The port to listen on for connections from the server.
(Optional.)

Allowed values: integers (any signed number of reasonable
value, usually in decimal/octal/hex)

-o

--tcp-timeout

-1 Timeout (in seconds) on TCP connection. (Optional.)

Allowed values:

• positive integers

• -1 = no timeout

-t

--throttle-cpu

false To throttle the client. (Optional.)

Allowed values:

• 1, on, yes, true

• 0, off, no, false

--outside-

throttle-

sample-rate

 Sample rate in seconds for throttling while not throttling.
(Required if -t given.)

Allowed values: integers (any signed number of reasonable
value, usually in decimal/octal/hex)

--inside-

throttle-

sample-rate

 Sample rate in seconds for throttling while throttling. (Required
if -t given.)

Allowed values: integers (any signed number of reasonable
value, usually in decimal/octal/hex)

 Chapter 7

•

 Chapter 7, Tools and Utilities 207

Parameter Default Description

--start-

threshold
 CPU usage percentage to start throttling at. (Required if -t

given.)

Allowed values: integers (any signed number of reasonable
value, usually in decimal/octal/hex)

--stop-

threshold
 CPU usage percentage to end throttling at. (Required if -t

given.)

Allowed values: integers (any signed number of reasonable
value, usually in decimal/octal/hex)

-s

--storage-dir

/tmp Directory to store required database changes in during a
resync. (Optional.)

Allowed values: string

--database-

write-buffer-

size

10 The size in terms of records of the buffer size for writing to the
database. (Optional.)

Allowed values: integers (any signed number of reasonable
value, usually in decimal/octal/hex)

--database-

read-buffer-

size

100 The size in terms of records of the buffer size for reading to
the database. (Optional.)

Allowed values: integers (any signed number of reasonable
value, usually in decimal/octal/hex)

--database-

commit-period
1000 The number of changes to make to the database before

committing them to the database. (Optional.)

Allowed values: integers (any signed number of reasonable
value, usually in decimal/octal/hex)

--max-buffer-

size
approximately
50Mb

The maximum size (in bytes) to allow messages received from
the server to be. This size is reflected in the maximum size of
bytes to allocate in memory for such messages. (Optional.)

Allowed values: integers (any signed number of reasonable
value, usually in decimal/octal/hex)

--dump-core-

instead-of-

exception

false If set, will force the process to dump a core file (and exit) if any
network messages are received bigger than max-buffer-size.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

--long-raw-size 512K The maximum size (in bytes) to allocate for a long raw field
used in a resync.

Allowed values:

• 512K.

Note: Long options can be separated from their values by an equal sign ('='), or you can pass the value
as the following argument on the command line (for example, '--node-id 257' or '--node-id=257'). Short
options must have their values passed after them on the command line, and in the case of boolean short
options, cannot have values (they default to true) (for example, '-p 4000' or '-t').

Chapter 7

208 Service Management System Technical Guide

smsCompareResyncServer

Purpose

smsCompareResyncServer performs comparisons and resyncs of data in specified tables and
replication groups. This enables you to:

• Check that replication is working correctly

• Force updates of data between nodes

Note: This process is usually started by resyncServer.

smsCompareResyncServer is installed on the SMS.

Configuration

smsCompareResyncServer accepts the following command line options.

Usage:

smsCompareResyncServer [--dump-core-instead-of-exception] --max-buffer-size=size [--

dont-count-rows] [--inform-master] [--database-read-buffer-size=size] [--cancel-on-

eof] [--use-ip=int] [--report-directory=base_dir] [--tcp-timeout] [--input-

file=config_file_name] [--oracle-user=user] [--build-info] [--help] [--long-raw-

size=max_size]

The available parameters are:

Parameter Default Description

--dump-core-

instead-of-

exception

false when missing If set, will force the process to dump a core file (and
exit) if any network messages are received bigger
than max-buffer-size.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

--max-buffer-size approximately 50Mb The maximum size (in bytes) to allow messages sent
to the client to be. This size is reflected in the
maximum size of bytes to allocate in memory for
such messages.

Allowed values: integers (any signed number of
reasonable value, usually in decimal/octal/hex).

-d

--dont-count-rows

false when missing Do not make a count of the rows in the database.
For very large comparisons/resyncs this may give a
speed improvement.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

-m

--inform-master

false when missing If performing a resync, inform the smsMaster.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

 Chapter 7

•

 Chapter 7, Tools and Utilities 209

Parameter Default Description

--database-read-

buffer-size
100 The size (in records) of the buffer size for reading

from the database. Must match the --database-write-
buffer-size specified for the smsCompResyncClient.
(Optional.)

Allowed values: integers (any signed number of
reasonable value, usually in decimal/octal/hex).

Note: Performance of the compare/resync can be
seriously impacted if the number specified is too low,
a recommended value for this parameter is 1000+.

--cancel-on-eof false when missing Tells the server to cancel the resync/compare when
EOF on standard input is reached.

Note: This option is specifically for the
inetCompareServer setup.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

--use-ip none Forces the server to use the IP address ranked as
per the mentioned integer for each client. If there are
not enough IP addresses listed, or this option is not
specified, it will start from the first IP address,
attempting each in turn until connected.

Allowed values: integers (any signed number of
reasonable value, usually in decimal/octal/hex).

Examples: If --use-ip = 2, the server will use the

second IP address listed.

-r

--report-

directory

/IN/html/output/
SMS/

The base directory to create and store final reports
in. (Optional.)

Allowed values: string.

-o

--tcp-timeout

0 Timeout (in seconds) on TCP connection. (Optional.)
Zero = no timeout.

Allowed values: integers (any signed number of
reasonable value, usually in decimal/octal/hex).

-i

--input-file

Input is expected on
the standard input
stream.

Contains the name of a configuration file as input
information for performing a resync/compare.
(Optional.) See Input file for details.

Allowed values: string

-u

--oracle-user

smf/smf The Oracle database connection string. (Optional.)

Allowed values: string

-b

--build-info

false when missing Prints out program build information then exits.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

Chapter 7

210 Service Management System Technical Guide

Parameter Default Description

-h

--help

false when missing Prints this help screen.

Allowed values:

• 1, on, yes, true

• 0, off, no, false

--long-raw-size 512K The maximum size (in bytes) to allocate for a long
raw field used in a resync.

Allowed values:

• 512K.

Notes:

• All options apart from '-h', '-b' and '-i' can be specified in the input configuration.

• Long options can be separated from their values by an equal sign ('='), or you can pass the value as
the following argument on the command line (for example, '--tcp-timeout 100' or '--tcp-timeout=100').
Short options must have their values passed after them on the command line, and in the case of
boolean short options, cannot have values (they default to true) (for example, '-o 100' or '-h').

Input file

These are the configuration parameters contained within the input file optionally used by
smsCompareResyncServer.

Replication

Syntax: Replication = {list_of_replication_parameters}

Description: The Replication section lists the required replication parameters.

Type: List

Optionality: Required

Allowed:

Default: none

Notes:

Example:

perform

Syntax: perform = "action"

Description: The action to be taken by smsCompareResyncServer.

Type: Boolean

Optionality: Required

Allowed: • resync

• compare

Default: none

Notes:

Example: perform = "resync"

 Chapter 7

•

 Chapter 7, Tools and Utilities 211

report-row-number-limit

Syntax: report-row-number-limit = max_value

Description: For a comparison, the maximum number of differences in a group that will be
reported.

For a resync, the maximum number of errors to report of each group
synchronized.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: -1

Notes: Specifying -1 indicates no limit will be imposed.

Example: report-row-number-limit = 100

produce-final-reports

Syntax: produce-final-reports = true|false

Description: Whether or not to produce final reports.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true (reports produced)

Notes:

Example: produce-final-reports = false

report-directory

Syntax: report-directory = "dir"

Description: Specify which directory reports are to be written to.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any valid directory

Default: /IN/html/output/SMS

Notes:

Example: report-directory = "."

report-after

Syntax: report-after = {
 type = “[comparisons|seconds]”
 count = number
}

Description: Depending on the type option:
Specify how many comparisons the client should process before sending
progress report to the server.

Specify how many seconds the client should allow to elapse before sending a
progress report to the server.

Type: List

Chapter 7

212 Service Management System Technical Guide

Optionality: Optional (default used if not set)

Allowed:

Default: No progress reports are provided.

Notes: type and count are both mandatory when report-after is specified.

Example: report-after = {
 count = 10
 type = "seconds"
}

stop-on-limit

Syntax: stop-on-limit = true|false

Description: A flag to tell the server to stop a resync or comparison for a replication group after
the report-row-number-limit (on page 211) is reached.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false (do not stop)

Notes:

Example: stop-on-limit = false

view

Syntax: view = {}

Description: Describes the nodes, tables and groups for the replication action.

Type: List

Optionality: Required

Allowed:

Default: none

Notes:

Example:

Node

Syntax: Node {
 id = number
 address = [
 "string", "string", ...
]
}

Description: A list of nodes for the replication action to work on.

Type: Array

Optionality: Required

Allowed:

Default: none

Notes:

Example:

 Chapter 7

•

 Chapter 7, Tools and Utilities 213

id

Syntax: id = id

Description: The ID of the node to be used.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: Values from replication node configuration

Notes: For normal replication resyncronization, these are calculated using the replication
node configuration.

When running from the command line this must match the
--node-id of a smsCompareResyncClient.

Example: id = 301

address

Syntax: address = [
 "string", "string", ...
]

Description: An array of IP addresses and port numbers for this node ID.

Type: Array

Optionality: Required

Allowed:

Default: None

Notes: Internet Protocol version 6 (IPv6) addresses must be enclosed in square brackets
[]; for example: [2001:db8:n:n:n:n:n:n] where n is a group of 4

hexadecimal digits. The industry standard for omitting zeros is also allowed when
specifying IP addresses.

Use a comma to separate address entries or specify each entry on a separate
line.

Example:
address = [

"192.0.2.1:4000"

"[2001:db8:0000:1050:0005:0600:300c:326b]:3004"

"[2001:db8:0:0:0:500:300a:326f]:1234:SMF"

"[2001:db8::c3]:1234:SMF"

]

tables

Syntax: tables = [
{

table = "string" [

groups-cover-table-on-scp = bool

]

key-columns = [

"str", "str", ...

]

other-columns = [

"str", "str", ...

]

}

]

Description: An array of tables to action for this node ID.

Type: Array

Chapter 7

214 Service Management System Technical Guide

Optionality: Required

Allowed:

Default: none

Notes:

Example:

table

Syntax: table = "str"

Description: The name of the table to be used in this operation.

Type: String

Optionality: Required

Allowed:

Default: none

Notes:

Example: table = "TEST_REP"

groups-cover-table-on-scp

Syntax: groups-cover-table-on-scp = true|false

Description:

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes:

Example: groups-cover-table-on-scp = true

key-columns

Syntax: key-columns = [
 "str", "str", ...
]

Description: An array of the table column keys which are to be used for this table and this
operation.

Type: Array

Optionality: Optional (default used if not set).

Allowed: Any valid key column name for this table.

Default: Pre-configured values.

Notes: Normal replication resyncs are pre-configured and restricted to a maximum of 3
keys. When running from the command line this restriction is lifted.

These columns must exist on the remote platform.

Example: key-columns = [
 "NUMBER_3"
]

 Chapter 7

•

 Chapter 7, Tools and Utilities 215

other-columns

Syntax: other-columns = [
 "str", "str", ...
]

Description: An array of the non keyed columns which are to be used for this table and this
operation.

Type: Array

Optionality: Optional (default used if not set).

Allowed: Any valid non keyed column name for this table.

Default: Pre-configured values.

Notes: For normally replication resyncs these are pre-configured.

These columns must exist on the remote platform.

Example: other-columns = [
 "VARCHAR_1","LONG_RAW_2","CHAR_4",
 "DATE_5"
]

Groups

Syntax: groups = [
{

group = <str>

table = <str>

ranges = [

<rangeData>, <rangeData>, ...

]

nodes = [

<int>, <int>, ...

]

}

]

Description: An array of groups associated with this operation.

Type: Array

Optionality: Required

Allowed:

Default: none

Notes:

Example:

group

Syntax: group = "str"

Description: The name associated with a node.

Type: String

Optionality: Required

Allowed: Any character

Default: none

Notes:

Example: group = "TEST_REP_0"

Chapter 7

216 Service Management System Technical Guide

table

Syntax: table = "str"

Description: The name of the table associated with this group.

Type: String

Optionality: Required

Allowed: Any characters

Default: none

Notes:

Example: table = "TEST_REP"

ranges

Syntax: ranges = [
{

from = [<from data>]

to = [<to data>]

}

]

Description: An array specifying the ranges to be associated with this group, table, and for this
node.

Type: Array

Optionality: Required

Allowed:

Default: none

Notes: Although an index to support the ranges specified is not required, it is
recommended an index is used for performance reasons.

The number of elements in the from and to conditions must be the same and
must match tables, key-columns entry for the table specified.

Example: ranges = [
{

from = [

"1"

]

to = [

"2"

]

}

]

nodes

Syntax: nodes = [int, int, [..]]

Description: The list of nodes to be associated with this group.

Type: Array

Optionality: Required

Allowed: Any nodes defined in Node section.

Default: none

Notes: These nodes must have been defined already in the Node section.

Example: nodes = [
301

]

 Chapter 7

•

 Chapter 7, Tools and Utilities 217

Input file example

This is an example of what the input configuration will look like, the indentation format is for readability.

replication = {

perform = "resync"

report-row-number-limit = 100

produce-final-reports = true

report-directory = "."

report-after = {

count = 10

type = "seconds"

}

stop-on-limit = false

}

view = {

nodes = [

{

id = 400

address = [

"127.0.0.1"

]

}

]

tables = [

{

table = "TEST_REP"

groups-cover-table-on-scp = true

key-columns = [

"NUMBER_3"

]

other-columns = [

"VARCHAR_1",

"LONG_RAW_2",

"CHAR_4",

"DATE_5"

]

}

]

groups = [

{

group = "TEST_REP_0"

table = "TEST_REP"

ranges = [

{

from = [

"1"

]

to = [

"2"

]

}

]

nodes = [

400

]

}

]

}

Chapter 7

218 Service Management System Technical Guide

Output

smsCompareResyncServer writes error messages to the system messages file.

smsCompareResyncServer writes replication checks and database comparisons to the
/IN/html/output/SMS/compare/inferior_ node_number/ directory.

smsDumpRepConfig

Purpose

smsDumpRepConfig parses and displays the contents of replication.config. This provides access to the
contents of the binary file where the replication configuration data is held.

For more information, see replication.config File (on page 38).

Configuration

The smsDumpRepConfig supports the following command-line options:

Usage:

smsDumpRepConfig -f filename [-v]

The available parameters are:

Parameter Default Description

-f /IN/service_packages/SMS/et
c/replication.config

Location of the configuration file to be displayed.

-v Verbose, displays extra information, including
column and field names.

Failure

If smsDumpRepConfig fails, it will send error messages to stdout and syslog. If an error is displayed
while parsing a replication.config file, the file may be corrupted.

Output

smsDumpRepConfig displays output to stdout.

Example:

This text is an example of the output from a simple replication.config file which includes SMS and ACS
replication groups between nodes 1 and 301.

smsDumpRepConfig: File /IN/service_packages/SMS/etc/replication.config

smsDumpRepConfig: (PAD = 0)

smsDumpRepConfig: Short listing. Use -v (verbose) for full listing

smsDumpRepConfig: Table, Column, Group definitions...

TABLE [ACS_CALL_PLAN]

TABLE [ACS_CALL_PLAN_PROFILE]

TABLE [ACS_CALL_PLAN_STRUCTURE]

TABLE [ACS_CLI_CALL_PLAN_ACTIVATION]

TABLE [ACS_CUSTOMER]

TABLE [ACS_CUSTOMER_CLI]

TABLE [ACS_CUSTOMER_SN]

TABLE [ACS_FN_TYPE]

 Chapter 7

•

 Chapter 7, Tools and Utilities 219

TABLE [ACS_GLOBAL_PROFILE]

TABLE [ACS_LANGUAGE]

TABLE [ACS_NETWORK_KEY]

TABLE [ACS_SN_CALL_PLAN_ACTIVATION]

TABLE [SMF_ALARM_MESSAGE]

TABLE [SMF_STATISTICS]

TABLE [SMF_STATISTICS_DEFN]

smsDumpRepConfig: Replication Groups configured for each node...

NODE NUMBER [1] Prim (192.168.0.144) Sec (0.0.0.0)

NODE NUMBER [301] Prim (192.168.0.142) Sec (0.0.0.0)

 GROUP [ACS_CUSTOMER] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_FN_TYPE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CALL_PLAN_PROFILE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CALL_PLAN_STRUCTURE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CALL_PLAN] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CUSTOMER_CLI] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_CUSTOMER_SN] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [SMF_STATISTICS_DEFN] [Prim=-1] Min=('!','!',') Max=('~','~','')

 GROUP [ACS_CLI_CALL_PLAN_ACTIVATION] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_GLOBAL_PROFILE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_LANGUAGE] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_NETWORK_KEY] [Prim=-1] Min=('+0','',') Max=('+9','','')

 GROUP [ACS_SN_CALL_PLAN_ACTIVATION] [Prim=-1] Min=('+0','',') Max=('+9','','')

Note: Both nodes are primaries for their groups and have no secondary network address configured.

smsIorDump

Purpose

The smsIorDump utility enables you to display details about the IORs (Interoperable Object References)
available to CORBA services. You use smsIorDump to investigate java exceptions related to CORBA.

The smsIorDump utility is located in the following directory:

/IN/service_packages/SMS/bin/

Configuration

The smsIorDump utility supports the following command-line options:

Usage:

smsIorDump [-u user/pw] -i IOR_str

Where:

• user/pw is the user and password for the database on the SMS

• IOR_str is the IOR whose details you want to display

Fields Displayed by smsIorDump

This table describes the fields that display when you run the smsIorDump utility.

Field Description

NAME (Always display) The unique CORBA server label agreed between the server
and the client.

Chapter 7

220 Service Management System Technical Guide

Field Description

CLASS (Display if available) Provides version information.

IP (Display if available) The IP address that provides a key for distinguishing
between multiple servers of the same type. Note that this IP address is not used
to locate the server.

IOR (Always display) The CORBA Interoperable Object Reference (IOR) that
specifies the class of object actually served, and the host and port number of the
server. The host and port number define the address that will be used to locate
the server at run-time.

smsLogTest

Purpose

smsLogTest generates an alarm and writes it to the syslog on the local machine. You can configure
the alarm details.

Configuration

smsLogTest supports the following command-line options:

Usage:

./smsLogTest name severity message [copies] [alarm_type_id]

The available parameters are:

Parameter Default Description

name none The subsystem name/identifier. (Required.)

severity none The severity value. (Required.)

Allowed values:

N or 0 [Notice]

W or 1 [Warning]

E or 2 [Error]

C or 3 [Critical]

- or 4 [clear]

message none The message to log. (Required.)

[copies] 1 Number of times to generate the alarm. (Optional.)

Allowed values: integer

[{alarm_ty

pe_id}]
none Optional Alarm Type ID associated with the message. This must be up

to a 9-digit number between braces (for example, {123456789}

Examples:

./smsLogTest smsAlarmRelay %d \"Failed to connect to Oracle\" 4\n {123456789}

./smsLogTest smsMaster %d \"Startup Successful\"

Failure

If smsLogTest fails, no alarm will be generated.

 Chapter 7

•

 Chapter 7, Tools and Utilities 221

Output

smsLogTest displays progress and errors to stdout. It writes the alarm output to the local syslog.

smsManualRequester

Purpose

smsManualRequester sends update requests to the smsMaster.

Configuration

smsManualRequester supports the following command-line options:

Usage:

smsManualRequester [-nodeid value]

The available parameters are:

Parameter Default Description

value the ID of the node (Optional)

Output

smsManualRequester displays the output to local terminal.

Examples:

./smsManualRequester -nodeid 999

Nov 22 22:01:48 smsManualRequester(6578) NOTICE: Update Requester

`./smsManualRequester' process registered (node 999)

Enter table name (start with `-' to indicate delete)

?-to set info return:-ACS_CUSTOMER

Enter key names (key1,key2...):id

Enter values for keys & columns(terminate with ##):29

Enter values for keys & columns(terminate with ##):##

initialiseNode: Reading '/IN/service_packages/SMS/etc/replication.def'

initialiseNode: heartbeatPeriod 20

initialiseNode: heartbeatTimeout 20

initialiseNode: connectionTimeout 2

initialiseNode: masterPortNum 12343

initialiseNode: queueWarnThresh 5

initialiseNode: queueErrThresh 100000

initialiseNode: queueCritThresh 1000000

initialiseNode: hBTolerance 10.0

initialiseNode: commitIdleTime 0.100000

initialiseNode: commitBusyTime 10.0

initialiseNode: tcpAbortSecs 20

initialiseNode: oracleUserPass '/'

initialiseNode: reportDir '/IN/service_packages/SMS/tmp/'

initialiseNode: statusFile '/IN/html/status.html'

initialiseNode: configFilePath '/IN/service_packages/SMS/etc/replication.config'

initialiseNode: configFileName 'replication.config'

initialiseNode: node number 999

initialiseNode: node type 3

initialiseNode: s side updates 1

Nov 22 22:02:17 smsManualRequester(6578) NOTICE: Reached master node 1 at

`192.168.0.198'

Enter table name (start with `-' to indicate delete)

Chapter 7

222 Service Management System Technical Guide

?-to set info return:

.....

smsProcessCdr

Purpose

smsProcessCdr processes EDRs based on the rules set in a format file. The format file describes the
fields, literal strings and functions to apply to the input data in order to produce the desired output EDR.

Functions include:

• Field selection

• Reordering

• Delimiter specification

• String concatenation with static strings and field values (such as would be required for field #13 in
the EDR SRS)

• Multi-level pattern matching (as would be required for field #1) conditional field selection (as would
be required for field #11)

This process is typically used to perform the following tasks for EDR files and ACS PIN log files:

1 (Optional) format conversion on files.

2 Move of files to a medium-term archive area.

3 (Optional) copy of files to directory for external retrieval.

4 Cleanup of expired files from the archive area.

Specification and implementation of EDR processing requirements is typically a system integration task
which is performed prior to final system acceptance. This is usually implemented by the shell script
smsCdrProcess.sh.

To prevent the EDR from being processed, see Configuring smsCdrProcess.sh (on page 140).

Configuration

smsProcessCdr accepts the following command line parameters.

Usage:

smsProcessCdr [-t edr_format] -d in_dir -D out_dir [-s in_suffix] [-p in_prefix] [-S

out_suffix] [-P out_prefix] [-u usr/pwd] [-l tz] [-h] -b

The available parameters are:

Parameter Default Description

-t
edr_format

none The filename of the EDR format file.

Note: No format conversion is performed by default. The formatting file
supports the following:

• Fields

• Literal strings

• Functions

-d in_dir none The directory to read EDRs from.

-D out_dir none The directory to write processed EDRs to.

-s

in_suffix
none The suffix that input EDR files must match (these are stripped from the

output file name).

 Chapter 7

•

 Chapter 7, Tools and Utilities 223

Parameter Default Description

-p

in_prefix
none The prefix that input EDR files must match (these are stripped from the

output file name).

-S

out_suffix
none The suffix to add to output EDR files.

-P

out_prefix
none The prefix to add to output EDR files.

-u usr/pwd / The Oracle user and password to use.

Note: smsProcessCdr will only attempt to connect to the database if the
EDR format file contains functions that require it.

-l tz none Alternate timezone TCS and TCE EDR fields are converted to.

-h none Displays a help page.

-b none Allows blank header tag values. Treats non-existent header tags as
blank value.

Example 1

The following command would:

• Use /IN/service_packages/SMS/bin/cdrFormat.fmt as theEDR format file

• Process every file matching the pattern /IN/service_packages/SMS/cdr/received/scp2_acs*.cdr
smsProcessCdr –t /IN/service_packages/SMS/bin/cdrFormat.fmt –d

/IN/service_packages/SMS/cdr/received -D /tmp/processedCdrs -p scp2_acs -s .cdr -P

ACS_ -S .out -u smf/smf

The output file name is a transformation of the input file name. For example, with the parameters
supplied above, an input file /IN/service_packages/SMS/cdr/received/scp2_acs20010831120012.cdr would have
output file named /tmp/processedCdrs/ACS_20010831120012.out.

Example 2

The following command:

smsProcessCdr –t /IN/service_packages/SMS/bin/mobifone.fmt –d

/IN/service_packages/SMS/cdr/received -D /tmp/processedCdrs -p scp2_acs -s .cdr -P

ACS_ -S .out -u smf/smf

Would cause the following file to be parsed as the EDR format file
/IN/service_packages/SMS/bin/mobifone.fmt.

After parsing is complete, the binary will process its input files. With the parameters supplied above, this
would be every file matching the pattern:

/IN/service_packages/SMS/cdr/received/scp2_acs*.cdr

When an input EDR is successfully processed, it is written out to an output EDR file. One output EDR
file is created for each input EDR file. The output file name is a transformation of the input file name.

The input file /IN/service_packages/SMS/cdr/received/scp2_acs20010831120012.cdr would produce the following
output file /tmp/processedCdrs/ACS_20010831120012.out.

Format File configuration

A EDR format file consists of field specifiers which translate input data to an output format.

The valid field specifiers are:

Chapter 7

224 Service Management System Technical Guide

• Header tags

• Standard fields

• Special fields

• Strings

• Functions

• Format characters

Header tags

A HEADER tag may be specified in the format file passed in providing a single header line at the top of
processed output files.

The header appears once and contains all HEADER tag values concatenated and space separated.

Through the use of a -b option passed in to smsProcessCdr at runtime blank values are allowed. When

any tags are missing their respective value will be set blank rather than exiting on error. Underscores
are allowed by default with no extra settings.

Standard fields

Standard fields are fields which relate to tags in the input EDR.

ACS EDRs have the following format:

APPLICATION|tag1=value1|tag2=value2| . . . |tagn=valuen

A standard field is any one of the tag values.

If a EDR File format contains a field tag, then the corresponding value from the input EDR, value, will be
written to the output EDR. Standard tags are written into the EDR format file using the same text which
is used to specify them in the input EDR.

Special fields

Special fields are for data extracted from a EDR which does not occur in the input as a tag=value pair.

The only example of this is the EDR application name field, which always occurs as the first element in a
EDR.

Placing the field <APPLICATION> in the EDR format file will cause the application name from the input

EDR to be written to the output EDR.

Strings

Strings are used to write literal text to the output EDR.

Strings appear in the EDR format file as double quoted strings “data“.

Any characters occurring in data are written, verbatim, to the output EDR file. This can be used to
supply field delimiters (for example: “,”) or to hard code output values (for example: “0,2,-1,”).

Functions

Functions are programmatic transformations that can be applied to values.

Functions occur in the DR format file with the form:

function_name (function_parameters)

Functions always produce a textual output.

The format of the functions used in smsProcessCdr are the same or similar to those used in the LISP
programming language.

 Chapter 7

•

 Chapter 7, Tools and Utilities 225

Most functions will support expressions as parameters so long as they produce textual output. The
following types are included:

• Standard fields

• Special fields

• Strings

• Functions

Boolean expressions

Boolean expressions are used as parameters to COND functions (and could be used as parameters to
other functions at a later date).

Boolean functions are functions which evaluate to either TRUE or FALSE. The compiler will not allow
Boolean functions to be used as ‘top level’ functions, but they may be nested in other functions to
provide the ability to test conditions.

EQUALS function

The EQUALS function compares two expressions for equality. EQUALS evaluates to TRUE if the
expressions are equivalent. Otherwise it evaluates to FALSE. The equality test is a case-sensitive string
comparison.

EQUALS (expr1 ,expr2)

Example: This example shows the EQUALS function being used as part of a COND function. EQUALS
is used to check whether the application name is “ACS”.

COND ((EQUALS (APPLICATION , “ACS”) , “ACS Service”) , (TRUE , “Unknown

Service”))

PREFIX function

The PREFIX function evaluates to TRUE if expr2 is a prefix of expr1. Otherwise it evaluates to FALSE.

PREFIX (expr1 , expr2)

Example: This example shows the PREFIX function being used as part of a COND function. PREFIX is
used to check whether the service number (SN) in the input EDR starts with either the digits 0800 or
0900.

COND ((PREFIX (SN , “0800”) , “Freephone”) , (PREFIX (SN , “0900”) , “Pay

Service”) , (TRUE , “Unknown Service”))

CONCAT function

The CONCAT function concatenates one or more expressions.

CONCAT (expr1 [, expr2 , expr3 . . . exprn])

Example: This example concatenates the literal string T0 onto the value of the special field,
APPLICATION. Therefore, if APPLICATION evaluates to CCS then the example would produce the
output: T0CCS.

CONCAT (“T0” , APPLICATION)

Example: This example shows literal strings being concatenated to a field value and the result of
another expression. If the value of the field XYZ is 21 and CCET is 12.32 then the result of the example
would be: ABC2112.

CONCAT (“ABC” , XYZ , ROUND (CCET))

COND function

The COND function evaluates to an expression on the basis of a series of one or more test Boolean
expressions.

Chapter 7

226 Service Management System Technical Guide

The first Boolean expression which evaluates to TRUE causes its associated result expression to be
evaluated as the result of the COND function. If none of the Boolean expressions evaluates to TRUE
then the result of the COND function is an empty string.

COND ((bexpr1 , expr1) [, (bexpr2 , expr2) . . . , (bexprn , exprn)])

Examples:

In either of these two examples, the function evaluates to:

• Pizza Shed if the service number is 0800101101

• Pay Service if the service number starts with 0900

• Unknown in all other cases
COND ((EQUALS (SN , “0800101101”) , “Pizza Shed”) , (TRUE , (COND ((PREFIX

(SN , “0900”) , “Pay Service”) , (TRUE , “Unknown”)

COND ((EQUALS (SN , “0800101101”) , “Pizza Shed”) , (PREFIX (SN , “0900”) ,

“Pay Service”) , (TRUE , “Unknown”))

For more examples, see the examples for PREFIX and EQUALS.

LANGUAGEID function

The LANGUAGEID function evaluates to the ID of a named language (from the ACS_SE_LANGUAGE
table). The language name check is case insensitive.

If the named language can not be found, LANGUAGEID evaluates to –1.

LANGUAGEID ("string")

Note: Using the LANGUAGEID function requires a connection to the database, which requires setting
the oracle user / password option when invoking smsProcessCdr (unless the default “/” will suffice).

Example: This example checks the language ID from the input EDR (the LGID field). If the LGID is the
same as the ID for the language English, then the expression evaluates to 1. If it is French, it evaluates
to 2, if it is German, it evaluates to 3.

COND ((EQUALS (LANGUAGEID (“English” , LGID)) , “1”) , (EQUALS (LANGUAGEID

(“French” , LGID)) , “2”) , (EQUALS (LANGUAGEID (“German” , LGID)) , “3”

))

ROUND function

The ROUND function interprets the supplied expression as a floating point number and replaces it with
the same value rounded to the nearest integer. ROUND also works for negative numbers (using the
minus symbol). If the supplied expression cannot be interpreted as a floating point number, then
ROUND will evaluate to 0.

ROUND (expr)

Examples:

This example evaluates to 2.

ROUND (“2.1”)

This example evaluates to 3.

ROUND (“2.6”)

If CCET evaluates to 12.3, this example evaluates to 12.

ROUND (CCET)

SUBSTR function

The SUBSTR function extracts a substring from a given expression. The parameters:

• expr is the source expression

• start is an integer indicating where the substring should start (counting starts at zero)

• length is an integer indicating how many characters should be read.

 Chapter 7

•

 Chapter 7, Tools and Utilities 227

If start is greater than the length of expr, then SUBSTR returns an empty string. If the specified start and
length would cause SUBSTR to read off the end of the input expression, then SUBSTR returns the
maximum number of characters it could read.

SUBSTR (expr , start , length)

Examples:

This example evaluates to "the".

SUBSTR ("the happy elephant" , 0, 3)

This example evaluates to "e ha".

SUBSTR ("the happy elephant" , 2, 4)

This example evaluates to an empty string.

SUBSTR ("the happy elephant" , 50, 4)

This example evaluates to "appy elephant".

SUBSTR ("the happy elephant" , 5, 40)

Format characters

The format characters are a subset of the ASCII escape characters which allow special characters to be
inserted into the output file. This table describes the supported format characters.

Format character Definition

\n New line

\r Carriage return

\t Tab

\0 Null

File Format example 1

A simple example which just picks up the application name, service number, CLI.

Fields are comma delimited, records are terminated with a newline character (\n).

Format File:

<APPLICATION> "," SN "," CLI \n

Input CDR file contents:

ACS|SN=0800101101|CLI=044784333|XYZ=123

ACS|SN=0900222333|CLI=044784333|XYZ=123

ACS|SN=|CLI=044784333|XYZ=123

Output file contents:

ACS,0800101101,044784333

ACS,0900222333,044784333

ACS,,044784333

File Format example 2

A more complicated example using comments, special fields, and a function.

Fields are space delimited, records are terminated with a newline and a carriage return character.

Format File:

// our CDR format file

APPLICATION " "

// fields 2 and 3 are hard coded to be zero

Chapter 7

228 Service Management System Technical Guide

"0 0 "

ROUND (CCET) " "

COND ((EQUALS(APPLICATION, "CCS"), CONCAT("00", CA)), (TRUE, CONCAT("00", TN)))

// end of line indicator:

\n \r

Input CDR file contents:

CCS|XYZ=123|CCET=0.2|TN=123123|CA=321321|ABC=333

ACS|XYZ=123|CCET=8.8|TN=123123|CA=321321|ABC=333

VPN|XYZ=123|CCET=-1.6|TN=123123|CA=321321|ABC=333

CCS|XYZ=123|CCET=BOB|TN=123123|CA=321321|ABC=333

Output file contents:

CCS 0 0 0 00321321

ACS 0 0 9 00123123

VPN 0 0 –2 00123123

CCS 0 0 0 00321321

File Format example 3

Another complicated example using a header, comments, special fields, and a function.

Fields are space delimited, records are terminated with a newline and a carriage return character.

Format file:

HEADER ("ONE TWO")

//ROUND ("6.1")

<APPLICATION> " "

ROUND (CCET) " "

HEADER ("THREE")

COND ((EQUALS(<APPLICATION>, "CCS"), CONCAT("00", CA)),

(TRUE,CONCAT("00", TN)))

// end of line indicator:

\n \r

Input CDR file contents:

CCS|XYZ=123|CCET=0.2|TN=123123|CA=321321|ABC=333

ACS|XYZ=123|CCET=8.8|TN=123123|CA=321321|ABC=333

VPN|XYZ=123|CCET=-1.6|TN=123123|CA=321321|ABC=333

CCS|XYZ=123|CCET=BOB|TN=123123|CA=321321|ABC=333

Output file:

ONE TWO THREE

CCS 0 00321321

ACS 9 00123123

VPN -2 00123123

CCS 0 00321321

Further information

Because of the wide range of external EDR processing systems and site-specific requirements, it is not
feasible in this document to describe all of the tasks which may be required to complete EDR
integration.

For more information about this process, contact Level 1 support with details.

 Chapter 7

•

 Chapter 7, Tools and Utilities 229

smsRecordStatistic

Purpose

This tool makes use of the SMS statistics subsystem, which in turn makes use of shared memory for
communicating with the smsStatsDaemon. The smsStatsDaemon must be installed and running.

Location

The smsRecordStatistic process is located on the SLC in the ./IN/service_packages/SMS/bin directory.

Configuration

smsRecordStatistic supports the following command-line options:

Usage:

smsRecordStatistic [application] [statistic] [value]

The available parameters are:

Parameter Description

application The name of the application for the statistic. (Optional)

statistic The name of the statistic to record. (Optional)

value Adds the given delta value to the statistic. (Optional.)

Output

The statistic named when running the script will be updated in the database.

smsStatsQuery

About smsStatsQuery

The smsStatsQuery utility enables you to directly query statistics generated on the Voucher and Wallet
Server (VWS) and Service Logic Controller (SLC) before the statistics are replicated to the Service
Management System (SMS). You use this utility for system monitoring.

Tip: You can view statistics that have been replicated to the SMS node by using the statistical viewing
feature in the SMS user interface (UI). For more information, see Service Management System User's
Guide.

The smsStatsQuery utility is located in the following directories:

• /IN/service_packages/BE/bin on the VWS nodes.

• /IN/service_packages/SMS/bin on the SLC nodes.

You can either supply a single query string as input to smsStatsQuery, or you can supply a text file
containing a list of query strings as input.

Usage:

smsStatsQuery [options] "stats_query"

smsStatsQuery [options] -f "queryfile"

Where:

Chapter 7

230 Service Management System Technical Guide

• options is a space-separated list of optional parameters. The available options include options for

the standard bc (binary calculator) utility, that is accessed by smsStatsQuery to apply calculations to
the statistics results.

The optional parameters and some typical bc options that you might want to set are listed in the
Optional Parameters Table (on page 231) below.

Note: You can display a full list of bc options by entering man bc at the UNIX prompt.

• stats_query is a string that identifies the statistics to query. To retrieve multiple statistics, specify

a space-separated list of the statistics you want in the query string.

You can also include a mathematical formula in the query to perform calculations on the retrieved
statistics and return a single value.

See Specifying the Statistics to Query (on page 230) for information about specifying the
stats_query string.

• queryfile is the name of a text file that contains a list of stats_query strings.

Note: Specify either stats_query or queryfile, but not both.

Examples

In the following examples, the statistics to query are specified in a query string:

./smsStatsQuery "Acs_Service.elapsedTime"

./smsStatsQuery "Acs_Service.CALLS_INITIATED Acs_Service.ANNOUNCEMENTS_PLAYED"

In the following example, the statistics to query are specified in a text file:

./smsStatsQuery -f "queryFile.txt"

Note: The statistics on the VWS and SLC nodes are collected by smsStatsDaemon for replication to the
SMS node. If you enter a query for a statistic that is not currently held by smsStatsDaemon then the
smsStatsQuery utility returns an error. You can check which statistics are currently held by
smsStatsDaemon by entering the following command:

./smsStatsQuery -l

For more information about smsStatsDaemon, see smsStatsDaemon (on page 184).

Specifying the Statistics to Query

To specify one or more statistics in the stats_query string, use the following syntax:

application.statistic[.detail] [application.statistic[.detail]]

Where:

• application is the name of the application or service that generated the statistic, such as

Acs_Service.

• statistic is the name of the statistic to query, such as elapsedTime.

• detail (optional field) is the name of a detail field associated with the specified statistic. Note: Not

all statistics have detail fields.

For example, the following queries retrieve statistics for the ACS service:

./smsStatsQuery "Acs_Service.elapsedTime"

./smsStatsQuery "Acs_Service.CALLS_INITIATED Acs_Service.ANNOUNCEMENTS_PLAYED"

To query a statistic that contains a space in any of its attribute names, you must use double square
brackets, "[[" and "]]", to enclose the statistic specification in the stats_query string.

For example, the following queries include the "PrePaid Success" statistic in the stats_query string:

./smsStatsQuery "[[Ccs_Service.PrePaid Success]]"

./smsStatsQuery "Acs_Service.CALLS_INITIATED [[Ccs_Service.PrePaid Success]]

Acs_Service.ANNOUNCEMENTS_PLAYED"

To specify a formula in the stats_query string, use the following syntax:

 Chapter 7

•

 Chapter 7, Tools and Utilities 231

[factor]statistic[[factor][statistic]]

Where:

• factor is a combination of a constant and an operator, or just an operator, that is applied to the

statistic.

• statistic is a statistic specified as: application.statistic.detail.

For example:

./smsStatsQuery "10*Acs_Service.ANNOUNCEMENTS_PLAYED/Acs_Service.CALLS_INITIATED"

Note: You may not retrieve a list of statistics if you include a formula in the stats_query string.

Optional Parameters Table

This table describes the optional parameters for smsStatsQuery.

Parameter Description

-h Lists usage information for the smsStatsQuery utility.

-l Lists the contents of statistics currently held by smsStatsDaemon.

-t secs (bc option) Calculates the average rate a statistic is used based on two readings
of the statistic, where the second reading is taken secs seconds after the first

reading. The formula used to calculate the average rate a statistic is used is:
(value of reading 2 - value of reading 1)/ secs.

-p precision (bc option) Specifies the number of decimal places to display for the statistics
value output.

-w Warn if the statistics values are saturated.

-c Correct the saturated statistics values.

-r Reset saturated statistics values.

startMerge

Purpose

This command initiates a master merge of an inferior master to a superior one. It can also be used to
safely shut down an superior master by merging it with an inferior master.

Configuration

The startMerge supports the following command-line options:

Usage:

startMerge [-from nodenum] [-to nodenum]

The available parameters are:

Parameter Default Description

-from nodenum none Node number of the inferior master to merge from.

-to nodenum none Node number of the inferior master to merge to.

Failure

If startMerge fails, it will write an error to the syslog and exit.

Chapter 7

232 Service Management System Technical Guide

Output

The startMerge writes error messages to the system messages file, and also writes additional output to
/IN/service_packages/SMS/tmp/merge.rep.

 Chapter 8, Reports 233

Chapter 8

Reports

Overview

Introduction

This chapter explains SMS reporting functionality.

In this chapter

This chapter contains the following topics.

Reports Database Tables .. 233
Installing a Report Script ... 234
Report Script Worked Example ... 236
Database Auditing ... 240

Reports Database Tables

Introduction

Report-generating functionality is available via the SMS Java screens, to provide for service
management reports of data.

This topic describes how to create reports:

• Service reports, to be installed at the time of service installation

• General reports, installed subsequently

Database tables

There are three database tables which are specific to report generation:

• SMF_REPORT_SCRIPT contains one entry for each report script

• SMF_REPORT_PARAMETER contains one entry for each report parameter (may be none)

• SMF_REPORT_SCHEDULE contains one entry for each scheduled report instance. This table is
not used for report installation, and is not covered in this document.

In addition, the following tables are used for controlling who has access to a report:

• SMF_APPLICATION

• SMF_APPLICATION_PART

• SMF_APPLICATION_ACCESS

These tables are reviewed here in regards to their role in report security. Security is handled by the
standard SMS application part mechanism (see, example 3). Auditing is provided by the standard SMS
audit mechanism, and should not need changing. The last change fields are the standard SMS last
change fields, and are not listed in this table.

Chapter 8

234 Service Management System Technical Guide

Report Scripts table

The report database table is called SMF_REPORT_SCRIPT. It contains the details of reports as shown
below.

Field Description

REPORT_ID Unique identifier, primary key, generated by a counter.

APP_ID Application ID, foreign key to SMF_APPLICATION(app_id)

PART_ID Part ID for security, foreign key to SMF_APPLICATION_PART (part_id)

CATEGORY Script category, identifies the subdirectory.

SCRIPT Script name, identifies the .sql file or shell script to execute.

NAME Name to list in the report directory.

DESCRIPTION Help text.

Report parameter table

The parameter table is called SMF_REPORT_PARAMETER. It contains the details of report parameters
as shown below.

Field Description

REPORT_ID The ID of the report this parameter belongs to.

PARAM_NUMBER The position of the parameter in the list, for example 1st, 2nd.

NAME The parameter name.

DESCRIPTION Help text.

TYPE The type – INT, STRING, DATE, and so on. (See table following for details)

DEFAULT_VALUE Default value, optional.

VALID_VALUES Valid comma separated values.

CONSTRAINT1 A constraint on the parameter (interpretation depends on TYPE).

CONSTRAINT2 A constraint on the parameter (interpretation depends on TYPE).

Installing a Report Script

Introduction

A script must be installed before it can be made available to the system. This process is described
here, along with examples.

The main steps in the procedure detailed below are:

1 Choose an application ID, a category, and a report name.

2 Determine the parameters (if any) required by your script, and write the script.

3 Decide which application part your report will belong to.

4 Install the actual script on the SMS in the correct location.

5 Insert entries into the REPORT tables in the SMS database.

 Chapter 8

•

 Chapter 8, Reports 235

Procedure

Follow these steps to install a report script.

Step Action

1 The Application ID must be an existing entry from SMF_APPLICATION. Common values
are shown below. If you have additional services installed, additional choices may be
available.
SQL> select app_id, application from smf_application;

APP_ID APPLICATION

---------- --------------------

1 SMS

4 SYSTEM

2 Acs_Service

The Category is an arbitrary name for a group of reports within one application. For
example: "Customer", "Management", "Resource Usage".

The Name is a name for your report. Typically, this will be similar to the script name. For
example, if your script is monthly_usage.sql, your report name could be "Monthly Usage".

2 Your script may take user parameters. The SMS report functions allow you to determine
whether these are string, numeric, or values from a constrained list of parameters. Refer
to the description of the SMF_REPORT_PARAMETER table to see the parameter types
supported.

3 A report must one of the following:

• Have a .sql extension. In this case, it will be executed using sqlplus.

• Be executable by the smf_oper user.

In either case, the script will be passed (n + 1) command line parameters, where n is the
number of user parameters defined in SMF_REPORT_PARAMETER. Command line
parameter one will always be the absolute output file name allocated to this report.

 Examples:

for a .sql file:
sqlplus script-name output-file [user-parameters]

for an executable file without a .sql extension
script-name output-file [user-parameters]

Exit status of report scripts are defined by the following:

0 = okay
> = not okay. (Unix style)
<0 = undefined

Neither the smsReportsDaemon nor the smsReportScheduler is responsible for the clean
up or reclaim of resources used by reports. This must be done explicitly by the application
programmer.

The user may request cancelation of a script, in which case it will be sent a SIGTERM.
Scripts should not ignore SIGTERM.

If the report spawns children, it should implement a SIGTERM handler to dispose the
children, in case the user cancels a report.

4 For simplicity, an application part may be reused. Access to multiple reports may be
controlled by one application part. You can even re-use access parts controlling existing
installed screens.

You can list all existing defined application parts with the SQL command:
SQL> select app_id, part_id, part from smf_application_part;

If you choose to re-use application part 1030 (SMSReportScreens), all users who can
access report screens will be able to run this report.

Chapter 8

236 Service Management System Technical Guide

Step Action

5 The script itself must be placed into /IN/service_packages/SMS/input/application-
name/category/script-file.

6 The script must now be made known to the SMS screens, and available for use to any
SMS user who has access to the part ID, which owns your report script. This means:

• Inserting an entry into SMF_REPORT_SCRIPT for your script, indicating the
category and script filename.

• Inserting one entry into SMF_REPORT_PARAMETER for each parameter in your
report (if any). This indicates any constraints you wish enforced (for example,
min/max values).

Report Script Worked Example

Introduction

A script must be installed before it can be made available to the system. This process is described
here, along with examples.

The main steps are:

1 Choose a category and a name for your script.

2 Determine the parameters (if any) required by your script, and write the script.

3 Decide which application part your report will belong to.

4 Install the actual script on the SMS in the correct location.

5 Insert entries into the REPORT tables in the SMF database.

Example report script

Follow these steps to work through the example report script. The example script appears below
description of each action in the procedure.

Step Action

1 The details for this example are:

Application: SMS (ID is 1)

Category: “Errors”

Name: “Program Errors”

Script File: program_errors.sql

Application Part: 1805 (new part)

In this example, we are installing into the application SMS, which has the unique
application ID of 1. Typically, you will install a service-specific report under the unique
application ID that has been allocated to your service.

We are free to choose the category; we have chosen the "Errors" category.

We are free to choose a unique script name within this application and category; we have
chosen program_errors.sql. We have chosen to create a new application part (1805) to
control access to this report. An existing part may be used, for example: 1030.

 Chapter 8

•

 Chapter 8, Reports 237

Step Action

2 The report takes three user parameters:

Num Hours: Integer in range 1..999, default is 24

Program Prefix: String length 0..20 characters

Category: One of FATAL, SERIOUS, WARNING,

 INFORMATIONAL

Note: The script itself will take four parameters. The first parameter is the output file
name, which is determined by the reports daemon and is handed to us. You must
generate your output to that file, if you wish it to be seen by the user.

The script below accepts three arguments, and shows the essential basic techniques of
accepting input parameters, and spooling to the correct output file.

/*---

 * File: program_errors.sql

 *

 * Updates:

 *

 * Parameters: &1 Output file, determined by reports daemon

 * &2 Hours back

 * &3 Program prefix

 * &4 Severity

 * (FATAL,SERIOUS,WARNING,INFORMATIONAL)

 *

 * Copyright Notice:

 * (c)1998 This source code is owned and copyrighted by Oracle

 ---/

-- #ident "@(#)$Id: telephony_errors.sql,v 1.4 1999/02/25 22:10:29 rhwang

Exp $"

-- so we won't print to stdout.

set termout off

set verify off

-- we are going to access the sms_program_errors table.

-- set the column titles.

column program 'Program' format a20

column error_code 'Error Code' format a16

column node_name 'Node Name' format a20

column severity 'Error Severity'

set linesize 80

set pagesize 2100

spool &1

-- now set the title at the top of the page.

ttitle center 'Recent Telephony Errors for Application &3 Severity &4'

skip 1 -

center 'PROGRAM TELEPHONY ERRORS' -

center ============================ skip 1 -

RIGHT 'PAGE:' FORMAT 999 SQL.PNO SKIP 2

Chapter 8

238 Service Management System Technical Guide

Step Action
break on program skip 1;

break on severity skip 1;

select program, severity, error_code, node_name, timestamp

from smf_program_errors

where (program like '%&3') and

 (severity like '%&4') and

 (timestamp < sysdate - &2/24)

order by program, severity;

spool off

quit

3 The user must now specify an application part for security purposes. If you have decided
to re-use an existing part_id (for example: 1030), proceed to Example part 4.
a. The Application ID for this example is 1. This is the unique ID for SMS.

b. Application Part IDs must be in the range App-ID * 1000 + (0 … 999) so for SMS,
this means 1000 .. 1999. In this example, it has been determined that the ID 1805
is available for use. This is a new ID, which will control access to this report (and
possibly others placed in the same security domain).

c. Application Access IDs must be in the range <Part-ID> * 100 + (0..99). This is the
part ID, so any Access ID within this range may be chosen. In the example,
180500 has been chosen.

As part of the installation for this script, run SQL to create this new Part ID.

Note: It is not necessary to create the SMF_APPLICATION for the SMS, since this is
already created as part of the smsSms installation.

/*

 * Create our application part. We can re-use this if we

 * have multiple reports that we want to have all controlled

 * by a single security identifier

 */

insert into smf_application_part (part_id, app_id, part, description)

 values (1805, 1, 'SMSErrorReports', 'Access SMS error reports

category');

insert into smf_application_access(access_id, part_id, rights_name,

description)

 values (180500, 1805, 'Access', 'Run reports');

/*

 * We also add this to the 'SMS CreateDelete' user template,

 * so that any user who is granted this template will get

 * access to this report. We could add this to other

 * templates too...

 */

var temp_id number;

EXEC select template_id into :temp_id from smf_template where

template='SMS CreateDelete';

insert into smf_template_access (template_id, access_id)

 values (:temp_id, 180500);

commit;

 Chapter 8

•

 Chapter 8, Reports 239

Step Action

4 As part of the installation package, ensure that the file, program_errors.sql is installed into
the correct destination location, for example,
/IN/service_packages/SMS/input/SMS/Errors/program_errors.sql.

The smf_oper user must have read access to this file. If this was a shell script or a binary
program, it is necessary to ensure that the smf_oper also has execute access to this file.

5 The final task is to notify the SMS about the script, to make it visible.

In this example, the report and the three user parameters to be collected are defined.

Note: The screens constrain the content of the parameters to be passed to the script, but
the interpretation of the parameters is of course up to the script itself.

/*

 * Add our script to the list of scripts.

 */

var report_ref number;

insert into smf_report_script

 (app_id, part_id, category, script, name, description)

values

 (1, 1805, 'Errors', 'program_errors.sql', 'Program Errors',

 'Dumps all the program errors for the specified program(s)');

exec select report_id into :report_ref -

from smf_report_script -

 where (app_id=1) -

 and (category = 'Errors') -

 and (name = 'Program Errors');

insert into smf_report_parameter (

 report_id, param_number, name, description, type,

 default_value, valid_values, constraint1, constraint2)

values

 (:report_ref, 1, 'Num Days', 'Number of hours to go back',

 'INT', '24', '', '1','999');

insert into smf_report_parameter (

 report_id, param_number, name, description, type,

 default_value, valid_values, constraint1, constraint2)

values

 (:report_ref, 2, 'User',

 'Leading string of program (0-20 characters)',

 'STRING', '', '', '0', '20');

insert into smf_report_parameter (

 report_id, param_number, name, description, type,

 default_value, valid_values, constraint1, constraint2)

values

 (:report_ref, 3, 'Category', 'Error Category (pulldown menu)',

 'STRING', 'FATAL', 'FATAL,SERIOUS,WARNING,INFORMATIONAL', '', '');

commit;

Chapter 8

240 Service Management System Technical Guide

Database Auditing

Introduction

Changes to the data held in the SMF are tracked in the SMF_AUDIT table.

The listAudit.sh tool enables reports to be run on the changes tracked in SMF_AUDIT.

Purpose

listAudit.sh enables you to run queries against the audit data held in the SMF_AUDIT table. The results
are processes in to a comma separated report.

Configuration

listAudit.sh accepts the following command line options.

Usage:

listAudit.sh usr/pwd [start_date] [end_date] [db_user] [table]

The available parameters are:

Parameter Default Description

usr/pwd The user and password combination to be used to log into the SMF.
(Required.)

start_date The time and date the query will start reporting on. The format is
yyyymmddhh24mmss. (Optional.)

end_date The time and date the query will stop reporting on. The format is
yyyymmddhh24mmss. (Optional.)

db_user The userid for the database user which made the changes to the
database. (Optional.)

table The database table which was changed. (Optional.)

The square brackets indicate optional parameters, but if a parameter is missed out and a later one used
the missed out parameters should be indicated by using "".

Failure

If listAudit.sh fails, the report will not be completed. Errors will be sent to stdout.

Output

listAudit.sh writes error messages to the system messages file, and produces reports to stdout.

Example: This text shows an audit report for changes to the SMF_USER table by the SU user on the 08
Mar 2005.

$ listAudit.sh smf/smf 20050308000000 20050308235959 SU SMF_USER

Connected.

SU,20050308225724,192168007165,SMF_USER,ADMIN_TRAINING1_EX2,Student Training,Student

1,0,,31,20050321010942,LANGUAGE=ENGLISH

,,,,ADMIN_TRAINING1_EX2,Student Training,Student 1,0,Locked for

testing,31,20050408000000,LANGUAGE=ENGLISH

SU,20050308225808,192168007165,SMF_USER,ADMIN_TRAINING1_EX1,Student Account,Student

1,0,,31,20050320205427,LANGUAGE=ENGLISH

,,,,ADMIN_TRAINING1_EX1,Student Account,Student 1,0,Locked for

training,31,20050408000000,LANGUAGE=ENGLISH

 Chapter 8

•

 Chapter 8, Reports 241

SU,20050308225828,192168007165,SMF_USER,ADMIN_TRAINING1_EX1,Student Account,Student

1,0,Locked for training,31,20050408000000,LANGUAGE=ENGLISH

,,,,ADMIN_TRAINING1_EX1,Student Account,Student

1,0,,31,20050408000000,LANGUAGE=ENGLISH

SU,20050308225838,192168007165,SMF_USER,ADMIN_TRAINING1_EX2,Student Training,Student

1,0,Locked for testing,31,20050408000000,LANGUAGE=ENGLISH

,,,,ADMIN_TRAINING1_EX2,Student Training,Student

1,0,,31,20050408000000,LANGUAGE=ENGLISH

 Chapter 9, Troubleshooting 243

Chapter 9

Troubleshooting

Overview

Introduction

This chapter explains the important processes on each of the server components in NCC, and describes
a number of example troubleshooting methods that can help aid the troubleshooting process before you
raise a support ticket.

In this chapter

This chapter contains the following topics.

Common Troubleshooting Procedures.. 243
Possible Problems ... 244
Index Defragmentation .. 246

Common Troubleshooting Procedures

Introduction

Refer to System Administrator's Guide for troubleshooting procedures common to all NCC components.

Checking current processes

You can check which processes are running using the standard UNIX command: ps. To find processes
being run by Oracle software, you can grep for the string 'oper', which will display all processes being
run by the application operator accounts (for example, acs_oper, ccs_oper and smf_oper).

Note: Some processes which are required for proper functioning may be run by other users, including
root or the user which runs the webserver.

Example command: ps -ef | grep oper

For more information about the ps command, see the system documentation for the ps command.

You can also check how much of the processor a process is using by running the standard UNIX tool:
top. If you have some baseline measurements, you will be able to compare it with the current load.

Example command: top

Tip: Some processes should only have one instance. If there are two or more instances, this may
indicate a problem. For example, there will usually only be one timerIF running on each SLC.

For more information about which processes should be running on each node, check the Process List
for each node in Installation Guide.

Restarting running processes using kill

Follow these steps to restart a running process.

Chapter 9

244 Service Management System Technical Guide

Important: Restarting some processes can cause system instability or data loss. Some processes must
be restarted using specific tools. Check the documentation for the process before restarting.

Step Action

1 Find the Process ID for the process you want to restart.

Example command: ps -ef | grep smsAlarmRelay

Note: The second column of the results returned is the Process ID and the third column
gives the Parent Process ID.

2 Kill the process using the kill command.

Example command: kill -TERM 123

Result: The process is terminated and will be restarted by the inittab process.

Checking configuration files

One of the significant areas where faults can occur and be remedied is in the configuration of
processes. Configuration files can be edited by any standard text editor. A backup of the existing
configuration file should always be taken before editing a configuration file.

For more information about the configuration files used in this application, see Configuration User's
Guide.

For more information about the configuration file for a specific program or tool, see the section named
after the binary in question.

Possible Problems

Introduction

This topic lists common problems and actions you can take to investigate or solve them. This list
enables you to check for alarms based on the overall behavior you are experiencing.

SMS Java screens will not start

Follow these steps to resolve JavaClient problems.

Step Action

1 Ensure that the HTTPD daemon (on the SMS) is running and that it is correctly
configured.

2 If you can start the SMS screens, but unable to login:

• Ensure that the smsGui.bat/smsGui.sh files are correctly configured, and
permissions are proper.

• Ensure that the SMS console can resolve host names into IP addresses.

Java help screen grayed out

This is caused by Java Runtime Environment (jre) running out of memory for the run time heap cache.

Under the default Java settings this may happen after 10 to 15 help screen accesses.

Follow these steps to extend the number of Help accesses.

Step Action

1 Close the SMS screens.

 Chapter 9

•

 Chapter 9, Troubleshooting 245

Step Action

2 From the Windows system, open the Control Panel.

3 Switch to Classic View to see the complete list of installed applications.

4 Double click Java icon to open java Control Panel.

5 Select the Java tab.

6 Click View in the Java Applet Runtime Settings panel.

7 Click the Java Runtime Parameter field.

Note: This is the fourth field along, pop-up may require expanding to see this field.

8 Type -Xms10M -Xmx512M in the Java Runtime Parameter field.

Note: If other parameters are there, add these to the end.

9 Click OK.

10 Click Apply.

11 Click OK.

12 Close the Control Panel.

13 Restart the browser and start the SMS screen.

Note: Using Xmx512M may cause issues with starting jre. If the browser jre cannot start up, try -
Xmx180M.

Replication is failing

This table describes possible problems with replication.

Alarm Reason Remedy

Cannot connect to

Oracle – exiting
There is a problem with the
replication.config files in the system.

Use smsDumpRepConfig to
check that the content of
replication.config is correct.

Generate a new
replication.config file and check
is it correctly copied to each
machine.

For more information, see
replication.config File (on
page 38).

Could not make fifo f

– exiting
A connection is being dropped
because the heartbeat settings on
each end of a connection are
different.

Check that the heartbeat
settings for both ends of the
connection are the same. The
heartbeat settings are in
replication.def, though they can
be overridden at the
command line for any
process.

Chapter 9

246 Service Management System Technical Guide

comparisonServer is failing

This table describes possible problems with comparisonServer.

Alarm Reason Remedy

 The replication.config file is not
available to inetBootstrap, so
smsCompareResync is not starting
up.

Check that replication.config is
in the correct directory and is
readable by smf_oper.

Index Defragmentation

Description

The automatic defragmentation facility provided by SMS is intended to prevent fragmentation of the
replication tables which frequently use insert, delete and update functions.

In order to enable this defragmentation facility, the script fragmentation_install.sh must first be

installed. This will install the stored procedure sms_defrag_rep_iot, and schedule a job to run it

every 10 minutes.

The following tables are affected:

• REP_ORA_EVENT

• REP_ORA_RENUMBERED

Before you begin

The process for installing the defragmentation script varies depending on the Oracle configuration
available on the SMS. For most clustered environments, Oracle configuration is stored in the service
parameter file (SPFILE), which permits configuration parameters to be modified at runtime. If this is the
case, then the there is no need to manually alter the Oracle configuration.

However, if SPFILEs are not in use (that is the traditional PFILEs are used to manage Oracle
configuration), then it is important to first modify the cache and block sizings in the initSMF.ora file. The
cache size for the 32 KB block size should be set to 32 MB or another suitably large value.

Note: It is recommended that this activity is performed by an experienced DBA.

Enabling defragmentation

To enable the defragmentation facility, run the following script:

fragmentation_install.sh

This script is located in:

/IN/service_packages/SMS/db/defragmentation

Disabling defragmentation

To disable the defragmentation facility, run the uninstallation script as the oracle SMF user:

fragmentation_uninstall.sh

This script is located in:

/IN/service_packages/SMS/db/defragmentation

 Chapter 9

•

 Chapter 9, Troubleshooting 247

Oracle configuration restriction

While editing the parameter files, it must be noted that the following sets of parameters are mutually
exclusive and cannot be used in combination with each other.

Example: You cannot use one or more of:

{db_cache_size,

db_recycle_cache_size,

db_keep_cache_size,

db_nk_cache_size (where n is one of 2,4,8,16,32),

db_cache_advice }

AND one or more of the following in your configuration:

{db_block_buffers

buffer_pool_keep

buffer_pool_recycle}

 Chapter 10, Pre-installation 249

Chapter 10

Pre-installation

Overview

Introduction

This chapter explains the pre-installation configuration requirements of the application.

In this chapter

This chapter contains the following topics.

SMS Client Specifications ... 249
Preparing the System .. 250
Database Timezone and Backups .. 251
Starting Oracle Automatically on Reboot .. 252

SMS Client Specifications

Specifications

This topic provides the specifications of SMS.

Network

The minimum requirements of network bandwidth for acceptable normal response times are as follows:

Number of Users Minimum Requirements

1-5 512 KB

6-15 1 MB

16 + LAN connection (at least 25% available resource of 10 MB)

Memory

The NCC screens are written to optimize data interaction. As a result, it is necessary to cache data in
such a way as to reduce redundant data retrieval. This means that heavy usage can lead to the
requirement for a large amount of memory to be available on the client machine running the screens.
The recommended memory installed on the client machine is 256MB minimum with 512 MB preferred,
especially with machine running Windows XP.

This table shows the minimum client resources required.

RAM CPU

256 MB 800 MHz

Chapter 10

250 Service Management System Technical Guide

This table shows the recommended client resources required.

RAM CPU

512 MB 1.2 GHz

Response Times

This table shows typical response time.

GUI Action Response Time

Startup to Login dialog 30 seconds maximum

Login to SMS main screen 20 seconds maximum

SMS main screen to ACS 5 seconds maximum

ACS main screen to CPE 15 seconds maximum

Screen

Here is the required screen specification.

Pixel

800 x 600 pixel resolution

Preparing the System

Introduction

It is recommended that you check the kernel parameters on the system to ensure the system is
optimally configured.

The following parameters are described in their respective technical guides. However, they are collated
here for reference.

Note: Actual kernel parameters may be greater than those listed here.

Checking Kernel Parameters

Follow these steps to check the Kernel parameters.

Step Action

1 Log in as root.

2 Enter cat /etc/system

3 Check the parameters are set to at least the minimum values.

4 Change the parameters as required using the following command from /etc/system.

Kernel Parameters

For Oracle 19c database the minimum values are the same except for project.max-shm-memory, which
depends on the amount of physical RAM in the system. If RAM is in the range 1 GB to 16 GB, you
should set the minimum value for project.max-shm-memory to half the size of the physical memory. If
RAM is greater than 16 GB, you should set project.max-shm-memory to a value of at least 8 GB.

 Chapter 10

•

 Chapter 10, Pre-installation 251

1 Determine the sum of process parameters for all database instances on the system, the overhead
for Oracle background processes, the system and other application requirements.

2 Set semmns (total semaphores system-wide) to the larger of the value in 1 or 32000.

3 Set semmsl (semaphores per set) to 250.

4 Set semmni (total semaphore sets) to semmns/semmsl rounded up to the nearest multiple of 1024.

5 For Linux and Oracle 19c, set the maximum number of asynchronous I/O requests allowed in
/etc/sysctl.conf as follows:

 fs.aio-max-nr = 3145728

After changing the /etc/sysctl.conf, run the following command as root to set the values in the system:

/sbin/sysctl -p /etc/sysctl.conf

Database Timezone and Backups

Setting Oracle timezone

To operate correctly, Oracle must be running on Greenwich mean time (GMT).

To ensure that Oracle is running on GMT, check that the following line is in the Oracle user's .profile:

TZ=GMT

export TZ

Oracle database domain

Check that the sqlnet.ora file does not override the oracle database domain specified in the initSMF*.ora
file. Overriding will cause database creation failure with an inability to resolve the required database
name in tnsnames.ora.

The initSMF*.ora files are located in the /IN/service_packages/SMS/db/install/create/SMP/machine-profile
directory.

Each file should contain the following line:

db_domain=basms1p.SMF

The sqlnet.ora file should contain the following line:

NAMES.DEFAULT_DOMAIN = Oracle

The sqlnet.ora file will be in the $ORACLE_HOME/network/admin/ directory.

Note: The specific initSMF*.ora file used in the installation is specific during the execution of the smsSms
installation script.

SMF backups

The SMF can be backed up in two ways.

• Shut down the database periodically and backup all the database data files. This is simple but will
disable provisioning and service side updates for the duration of the backup.

• Hot Backups:

Archive logging should be enabled

Archive logs and table spaces must be backed up and archive logs removed periodically. This
procedure must be implemented by an individual with good knowledge of Oracle databases.

Chapter 10

252 Service Management System Technical Guide

Archive logging

It is important to remember that if archive logging is enabled and the archive logs are not removed
periodically then the disk will eventually fill up and the database will cease to function.

Starting Oracle Automatically on Reboot

Setting the initialization

In an operational environment, it is desirable that Oracle automatically start on reboot. This requires the
creation of various scripts in the Unix initialization directories. A script is provided to simplify this task.

Before you begin

These tasks require that the "dbstart" script is in the default PATH for the "Oracle" user.

Procedure

For Linux, see the discussion about automating shutdown and startup in Oracle Database
Administrator's Reference for Linux and UNIX-Based Operating Systems Guide.

 Chapter 11, About Installation and Removal 253

Chapter 11

About Installation and Removal

Overview

Introduction

This chapter provides information about the installed components for the Oracle Communications
Network Charging and Control (NCC) application described in this guide. It also lists the files installed by
the application that you can check for, to ensure that the application installed successfully.

In this Chapter

This chapter contains the following topics.

Installation and Removal Overview ... 253
Raw Devices on Clustered SMS ... 254
Setting up ssh keys ... 256
Checking the Installation ... 257

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see Installation Guide:

• NCC system requirements

• Pre-installation tasks

• Installing and removing NCC packages

SMS packages

An installation of Service Management System includes the following packages, on the:

• SMS:

▪ smsSms
▪ smsCluster (clustered)
▪ efmSms
▪ efmCluster (clustered)

• SLC:

▪ smsScp

• VWS:

▪ smsExtras

Chapter 11

254 Service Management System Technical Guide

Raw Devices on Clustered SMS

Raw devices

SMS can allocate tablespace storage based on raw (without a file system) partitions. This enhances the
performance of SMS on the SMS.

If you are using the raw devices option, you must create the raw partitions before installing the database
using tools such as the system’s format command.

The raw devices file (which you will be prompted to complete during the installation) must contain the full
paths of the device files for the appropriate partitions.

The partitions must be at least as big as the required datafile sizings listed in the sizing file which will be
used by the installation.

Example smf_devices.sh file

This is an example smf_devices.sh file.

#!/bin/sh

The following file is the structure required for knowledge of

raw device utilization and a few details pertaining to cluster

creation. If clusters are not used then retaining the default

values will be sufficient and not impact installation for raw

device only.

Details about the cluster

How many instances in the cluster?

CLUSTER_INSTANCES=2

export CLUSTER_INSTANCES

For each instance in the cluster we need to know the node name

to install into the service configuration

NODE_1=smp1

NODE_2=smp2

export NODE_1 NODE_2

These are the generic RAW DEVICE requirements for the cluster

NOTE:// ENSURE ALL THESE DEVICES ARE READ WRITEABLE BY THE

ORACLE USER OTHERWISE INSTALLATION WILL FAIL

System tablespace

SYSTEM_TABLESPACE=/dev/did/rdsk/d10s5

export SYSTEM_TABLESPACE

USERS tablespace

USERS_TABLESPACE=/dev/did/rdsk/d10s6

export USERS_TABLESPACE

Temporary tablespace

TEMP_DATAFILE_1=/dev/did/rdsk/d10s2

TEMP_DATAFILE_2=/dev/did/rdsk/d10s3

TEMP_DATAFILE_3=/dev/did/rdsk/d10s4

TEMP_DATAFILE_4=/dev/did/rdsk/d11s0

TEMP_DATAFILE_5=/dev/did/rdsk/d11s1

TEMP_DATAFILE_6=/dev/did/rdsk/d11s2

TEMP_DATAFILE_7=/dev/did/rdsk/d11s3

TEMP_DATAFILE_8=/dev/did/rdsk/d11s4

export TEMP_DATAFILE_1 TEMP_DATAFILE_2 TEMP_DATAFILE_3

export TEMP_DATAFILE_4 TEMP_DATAFILE_5 TEMP_DATAFILE_6

export TEMP_DATAFILE_7 TEMP_DATAFILE_8

 Chapter 11

•

 Chapter 11, About Installation and Removal 255

Tools tablespace

TOOLS_TABLESPACE=/dev/did/rdsk/d10s7

export TOOLS_TABLESPACE

3 control file devices

CONTROL_FILE_1=/dev/did/rdsk/d12s3

CONTROL_FILE_2=/dev/did/rdsk/d12s4

CONTROL_FILE_3=/dev/did/rdsk/d12s5

export CONTROL_FILE_1 CONTROL_FILE_2 CONTROL_FILE_3

Service Configuration Device

SRVM=/dev/did/rdsk/d11s5

export SRVM

Now the UNDO tables. There will be 1 UNDO tablespace per instance in the

cluster, having 5 datafiles per tablespace

Standard to use here is UNDOTBS${NODEID}_DATAFILE_X, so UNDOTBS1

is the UNDO space for NODE_1

If clusters are not in use and this is raw device then UNDOTBS1

only needs populating.

UNDOTBS1_DATAFILE_1=/dev/did/rdsk/d9s0

UNDOTBS1_DATAFILE_2=/dev/did/rdsk/d9s1

UNDOTBS1_DATAFILE_3=/dev/did/rdsk/d9s2

UNDOTBS1_DATAFILE_4=/dev/did/rdsk/d9s3

UNDOTBS1_DATAFILE_5=/dev/did/rdsk/d9s4

export UNDOTBS1_DATAFILE_1 UNDOTBS1_DATAFILE_2 UNDOTBS1_DATAFILE_3

export UNDOTBS1_DATAFILE_4 UNDOTBS1_DATAFILE_5

We require one of the following UNDOTBS sections PER cluster instance

The ** REQUIRED ** format is UNDOTBSX_DATAFILE_Y= where X is the instance

ID of the node defined in NODE_X and Y is the log file number

UNDOTBS2_DATAFILE_1=/dev/did/rdsk/d9s5

UNDOTBS2_DATAFILE_2=/dev/did/rdsk/d9s6

UNDOTBS2_DATAFILE_3=/dev/did/rdsk/d9s7

UNDOTBS2_DATAFILE_4=/dev/did/rdsk/d10s0

UNDOTBS2_DATAFILE_5=/dev/did/rdsk/d10s1

export UNDOTBS2_DATAFILE_1 UNDOTBS2_DATAFILE_2 UNDOTBS2_DATAFILE_3

export UNDOTBS2_DATAFILE_4 UNDOTBS2_DATAFILE_5

And the redo logs. The sizing is for $REDO_LOGS_PER_NODE redo logs per

node in the cluster, so this section requires $CLUSTER_INSTANCES *

$REDO_LOGS_PER_NODE to be complete. Naming standard is

redo$NODEID_X, for example REDO1_1, REDO1_2 ...

REDO_LOGS_PER_NODE=16

export REDO_LOGS_PER_NODE

REDO1_1=/dev/did/rdsk/d5s0

REDO1_2=/dev/did/rdsk/d5s1

REDO1_3=/dev/did/rdsk/d5s2

REDO1_4=/dev/did/rdsk/d5s3

REDO1_5=/dev/did/rdsk/d5s4

REDO1_6=/dev/did/rdsk/d5s5

REDO1_7=/dev/did/rdsk/d5s6

REDO1_8=/dev/did/rdsk/d5s7

REDO1_9=/dev/did/rdsk/d6s0

REDO1_10=/dev/did/rdsk/d6s1

REDO1_11=/dev/did/rdsk/d6s2

REDO1_12=/dev/did/rdsk/d6s3

REDO1_13=/dev/did/rdsk/d6s4

REDO1_14=/dev/did/rdsk/d6s5

REDO1_15=/dev/did/rdsk/d6s6

REDO1_16=/dev/did/rdsk/d6s7

export REDO1_1 REDO1_2 REDO1_3 REDO1_4

Chapter 11

256 Service Management System Technical Guide

export REDO1_5 REDO1_6 REDO1_7 REDO1_8

export REDO1_9 REDO1_10 REDO1_11 REDO1_12

export REDO1_13 REDO1_14 REDO1_15 REDO1_16

As with the UNDOTBS we require a set of redo logs per nodal instance in

the cluster. The format ** REQUIRED ** is REDOX_Y= where X is the instance

ID of the node defined in NODE_X and Y is the log file number

REDO2_1=/dev/did/rdsk/d7s0

REDO2_2=/dev/did/rdsk/d7s1

REDO2_3=/dev/did/rdsk/d7s2

REDO2_4=/dev/did/rdsk/d7s3

REDO2_5=/dev/did/rdsk/d7s4

REDO2_6=/dev/did/rdsk/d7s5

REDO2_7=/dev/did/rdsk/d7s6

REDO2_8=/dev/did/rdsk/d7s7

REDO2_9=/dev/did/rdsk/d8s0

REDO2_10=/dev/did/rdsk/d8s1

REDO2_11=/dev/did/rdsk/d8s2

REDO2_12=/dev/did/rdsk/d8s3

REDO2_13=/dev/did/rdsk/d8s4

REDO2_14=/dev/did/rdsk/d8s5

REDO2_15=/dev/did/rdsk/d8s6

REDO2_16=/dev/did/rdsk/d8s7

export REDO2_1 REDO2_2 REDO2_3 REDO2_4

export REDO2_5 REDO2_6 REDO2_7 REDO2_8

export REDO2_9 REDO2_10 REDO2_11 REDO2_12

export REDO2_13 REDO2_14 REDO2_15 REDO2_16

SMS Specific

SMF_DATA_DATAFILE=/dev/did/rdsk/d11s6

SMF_INDEX_DATAFILE=/dev/did/rdsk/d11s7

SMF_LOGS_DATAFILE_1=/dev/did/rdsk/d12s0

SMF_LOGS_DATAFILE_2=/dev/did/rdsk/d12s1

SMF_LOGS_INDEX_DATAFILE=/dev/did/rdsk/d12s2

export SMF_DATA_DATAFILE SMF_INDEX_DATAFILE

export SMF_LOGS_DATAFILE_1 SMF_LOGS_DATAFILE_2

export SMF_LOGS_INDEX_DATAFILE

Setting up ssh keys

Introduction

Some of the processes in SMS use ssh and scp to transfer data around the network. Consequently, ssh
keys and permissions need to be set up on the relevant machines.

Procedure

Follow these steps to generate an automatic ssh access to a replication node.

Step Action

1 Log into the SMS host as smf_oper.

2 Enter ssh smf@host

where host stands for the replicated node host, for example, XXSCP1

 Chapter 11

•

 Chapter 11, About Installation and Removal 257

Step Action

3 Run the ssh-keygen package.

Example command: ssh-keygen

Result: The script will display the following prompts one at a time:

Enter file in which to save the

key(/IN/service_packages/SMS/.ssh/id_rsa):

Generating public/private rsa key pair.

Enter passphrase(empty for no passphrase):

Enter same passphrase again:

4 Press Enter to continue.

Result: The ssh public key will be generated and saved in .ssh/id_rsa.pub.

5 Log into the replicated node host, for example, XXSCP1, as smf_oper.

6 Append the content of the public key to authorized keys.

Example command: cat .ssh/id_rsa.pub >> .ssh/authorized_keys

7 Test the ssh access on the replicated node.

Example command: ssh smf_oper@host

Checking the Installation

Introduction

Refer to these checking procedures to ensure that SMS has installed correctly.

The end of the smsSms installation process (both unclustered and clustered) specifies a script designed
to check the installation just performed. They must be run from the command line.

Check unclustered SMS procedure

Follow these steps to ensure SMS has been installed on an unclustered SMS machine correctly.

Step Action

1 Log in to SMS machine as root.

2 Check the following directory structure exists with subdirectories:

• /IN/service_packages/SMS

• /IN/html

3 Check both directories contain subdirectories and that all are owned by:

smf_oper user (group oracle)

4 Log into the system as smf_oper.

Note: This step is to check that the smf_oper user is valid.

5 Check that the permissions for smf_oper's .ssh directory are:

dwrx------

Note: These permissions are required for the ssh keys to work correctly.

Chapter 11

258 Service Management System Technical Guide

Step Action

6 Type sqlplus /

No password is required.

Note: This step is to check that the smf_oper user has valid access to the database.

7 Check the entries of the /etc/inittab file.

Inittab entries reserved for SMS on SMS:
a. sms7 /IN/service_packages/SMS/bin/smsMasterStartup.sh

b. (runs smsMaster)

c. sms9 /IN/service_packages/SMS/bin/smsMergeDaemonStartup.sh

d. (runs smsMergeDaemon)

e. sms5

/IN/service_packages/SMS/bin/smsAlarmDaemonSmsStartup.sh

f. (runs smsAlarmDaemon)

g. sms1 /IN/service_packages/SMS/bin/smsAlarmRelayStartup.sh

h. (runs smsAlarmRelay)

i. sms6

/IN/service_packages/SMS/bin/smsStatsThresholdStartup.sh

j. (runs smsStatsThreshold)

k. sms4

/IN/service_packages/SMS/bin/smsReportSchedulerStartup.sh

l. (runs smsReportScheduler)

m. sms3

/IN/service_packages/SMS/bin/smsReportsDaemonStartup.sh

n. (runs smsReportsDaemon)

o. sms2

/IN/service_packages/SMS/bin/smsNamingServerStartup.sh

p. (runs smsNamingServer)

q. sms8 /IN/service_packages/SMS/bin/smsTaskAgentStartup.sh

r. (runs smsTaskAgent)

8 Check that the processes listed in the process lists are running on the relevant machine.
For a list of the processes which should be running, see Process list - unclustered SMP.

Check clustered SMS procedure

Follow these steps to ensure SMS has been installed on a clustered SMS machine correctly.

Step Action

1 Log in to SMS machine as root.

2 Check the following directory structure exists with subdirectories:

• /IN/service_packages/SMS

• /IN/html

3 Check both directories contain subdirectories and that all are owned by:

smf_oper user (group oracle)

4 Log into the system as smf_oper.

Note: This step is to check that the smf_oper user is valid.

5 Check that the permissions for smf_oper's .ssh directory are:

 Chapter 11

•

 Chapter 11, About Installation and Removal 259

Step Action

dwrx------

Note: These permissions are required for the ssh keys to work correctly.

6 Type sqlplus /

No password is required.

Note: This step is to check that the smf_oper user has valid access to the database.

7 Check the entries of the /etc/inittab file.

Inittab entries reserved for SMS on SMS:

sms7 /IN/service_packages/SMS/bin/smsMasterStartup.sh (runs

smsMaster)

8 Ensure the following shell scripts are configured to be run by the clustering software:

• /IN/service_packages/SMS/bin/smsAlarmDaemonSmsCluster.sh

(runs smsAlarmDaemon)

• /IN/service_packages/SMS/bin/smsAlarmRelayCluster.sh

(runs smsAlarmRelay)

• /IN/service_packages/SMS/bin/smsStatsThresholdCluster.sh

(runs smsStatsThreshold)

• /IN/service_packages/SMS/bin/smsReportSchedulerCluster.sh

(runs smsReportScheduler)

• /IN/service_packages/SMS/bin/smsReportsDaemonCluster.sh

(runs smsReportsDaemon)

• /IN/service_packages/SMS/bin/smsNamingServerCluster.sh

(runs smsNamingServer)

• /IN/service_packages/SMS/bin/smsTaskAgentCluster.sh

(runs smsTaskAgent)

9 Check that the processes listed in the process lists are running on the relevant machine.

Check SLC procedure

Follow these steps to ensure SMS has been installed on the SLC machine correctly.

Step Action

1 Log in to SLC machine as root.

2 Check the following directory structure exists with subdirectories:
/IN/service_packages/SLEE.

3 Check both directories contain subdirectories and that all are owned by:

smf_oper user (group oracle)

4 Log into the system as smf_oper.

Note: This step is to check that the smf_oper user is valid.

Chapter 11

260 Service Management System Technical Guide

Step Action

5 Check that the permissions for smf_oper's .ssh directory are:

dwrx------

Note: These permissions are required for the ssh keys to work correctly.

6 Type sqlplus /

No password is required.

Note: This step is to check that the smf_oper user has valid access to the database.

7 Ensure that the required ACS triggers have been added to the database for the
ACS_ADMIN oracle user.

8 Check the entries of the /etc/inittab file.

Inittab entries reserved for SMS on SLC:

• scp1 /IN/service_packages/SMS/bin/cmnPushFilesStartup.sh

(runs cmnPushFiles)

• scp2 /IN/service_packages/SMS/bin/infMasterStartup.sh

(runs infMaster)

• scp3 /IN/service_packages/SMS/bin/smsStatsDaemonStartup.sh

(runs smsStatsDaemon)

• scp4

/IN/service_packages/SMS/bin/smsAlarmDaemonScpStartup.sh

(runs smsAlarmDaemon)

• scp5 /IN/service_packages/SMS/bin/updateLoaderStartup.sh

(runs updateLoader)

9 Check that the processes listed in the process lists are running on the relevant machine

Check other machines procedure

Follow these steps to ensure SMS has been installed correctly on machines other than SMSs or SLCs.

Step Action

1 Log in to the machine as root.

2 Check the following directory structure exists with subdirectories:

/IN/service_packages/SMS

3 Check both directories contain subdirectories and that all are owned by:

smf_oper user (group oracle)

4 Log into the system as smf_oper.

Note: This step is to check that the smf_oper user is valid.

5 Check that the permissions for smf_oper's .ssh directory are:

dwrx------

Note: These permissions are required for the ssh keys to work correctly.

6 If a database has been installed on the machine, and SMS statistics has been configured
to use the database, type sqlplus /

No password is required.

 Chapter 11

•

 Chapter 11, About Installation and Removal 261

Step Action

Note: This step is to check that the smf_oper user has valid access to the database.

7 Ensure that the required SMS tables have been added to the database for the SMF
oracle user.

8 Check the entries of the /etc/inittab file:

Inittab entries reserved for SMS on SLC:
1 ext8 /IN/service_packages/SMS/bin/smsStatsDaemonStartup.sh

(runs smsStatsDaemon)

2 ext9 /IN/service_packages/SMS/bin/smsAlarmDaemonStartup.sh

(runs smsAlarmDaemon)

9 Check that the processes listed in the process lists are running on the relevant machine.
For a list of the processes which should be running, see Process list - other machines (on
page 262).

Process list

If the application is running correctly, the following processes should be running on each SMS, started
from the inittab:

• smsMaster

• smsMergeDaemon

• smsAlarmDaemon

• smsAlarmManager

• smsAlarmRelay

• smsStatsThreshold

• smsReportScheduler

• smsReportsDaemon

• smsNamingServer

• smsTaskAgent

• smsTrifDaemon

Process list - clustered SMS

If the application is running correctly, the following processes should be running on each SMS.

• smsMaster, started from the inittab.

• The following are started by the clustering software.

▪ smsAlarmDaemon
▪ smsAlarmManager
▪ smsAlarmRelay
▪ smsStatsThreshold
▪ smsReportScheduler
▪ smsReportsDaemon
▪ smsNamingServer
▪ smsTaskAgent
▪ smsTrigDaemon

Chapter 11

262 Service Management System Technical Guide

Process list - SLC

If the application is running correctly, the following processes should be running on each SLC, started
from the inittab:

• infMaster

• updateLoader

• smsAlarmDaemon

• smsStatsDaemon

• cmnPushFiles

Process list - other machines

If the application is running correctly, the following processes should be running on each platform,
started from the inittab:

• If alarms use replication, smsAlarmDaemon

• If statistics use replication, smsStatsDaemon

Check the SMS Administration Screens

Check that the SMS administration screens are working correctly. Launch the application using
smsGui.bat/smsGui.sh script. For more information about using the SMS Java administration screens, see
Service Management System User's Guide.

Check alarm replication

Follow these steps to check that alarm replication is functioning correctly.

Step Action

1 Open the SMS Java administration screen.

2 Open the Operator Functions > Node Management screen.

3 Click Create.

Result: This will create a replication.config file and distribute a copy to all the machines in
the IN.

4 Check that the file exists on all the machines in the IN.

5 On each node in the IN, use smsLogTest to generate an error. For more information
about smsLogTest, see smsLogTest (on page 220).

6 Open the Operator Functions > Alarm Management screen.

7 Check that the alarm has replicated from each node into the SMF_ALARM_MESSAGE
table in the SMF.

Enabling index defragmentation

Once the installation process is completed, it is advisable to enable the index defragmentation facility,
although it is not strictly necessary.

Note: This facility has a dependency on specific Oracle configuration settings which relate to the nature
of deployment. For more information how to install the defragmentation script, see Index
defragmentation.

	About This Document
	Scope
	Audience
	Prerequisites
	Related Documents

	Document Conventions
	Typographical Conventions

	Chapter 1
	System Overview
	Overview
	Introduction
	In this Chapter

	What is the Service Management System?
	Description
	Functions
	SMS component diagram
	SMS subsystems
	Replication
	Reporting Functions
	Data flow
	Process Descriptions

	Platform Configuration
	Overview
	Unclustered platform configuration
	Unclustered platform configuration diagram
	Single platform configuration
	Single platform component diagram

	Maintaining Network Connections
	Introduction
	Heartbeating
	Dual Network Connection

	smsTrigDaemon
	Purpose
	Architectural overview
	Message flows
	Components
	PI
	xmlTcapInterface

	Alarms
	Introduction
	Alarms diagram
	Alarms replication process
	Statistics thresholds
	Enhanced Fault Management
	Description of processes and executables
	Alarm replication and buffering

	Statistics
	Introduction
	Statistics collection diagram
	Description of processes and executables
	Statistics collection process
	Statistics thresholds
	Statistics collected

	EDRs
	Introduction
	EDR file transfer diagram
	EDR file transfer process
	Description of processes and executables
	Directory structure and filenames
	EDR intermediate file format

	Chapter 2

	Replication Overview
	Overview
	Introduction
	In this chapter

	What is Replication?
	Introduction
	Data flow
	Replication process
	Nodes
	Superior Master Nodes
	Update Loader nodes
	Update Requester nodes
	Replication groups
	Primary replication nodes
	Update requests to primary nodes
	Master Controllers

	Failover and Error Recovery
	Introduction
	updateLoader failure
	Update queuing
	Further information

	Replication in an Unclustered Installation
	Replication component diagram
	Replication components
	Updates
	Inferior Master Nodes
	Node numbers
	Failover
	All nodes connected
	Isolated SLC
	Isolated SMS
	All nodes isolated
	Merging nodes
	Description of resync processes and executables

	replication.def File
	Introduction
	Parameters
	COMMIT IDLE TIME
	COMMIT BUSY TIME
	CONFIG DIR
	CONN RETRY TIME
	CONNECTION TIMEOUT
	HB PERIOD
	HB TIMEOUT
	HB TOLERANCE
	HTML DIR
	LONG TIMEOUT
	MASTER PORT
	MAXMASTERSNODES
	MAX PENDING
	NODE ID
	ORACLE USER
	POLLING INTERVAL
	QUEUE WARN THRESH
	QUEUE ERR THRESH
	QUEUE CRIT THRESH
	REP_PATH
	REPORT DIR
	RESYNC DIR
	SECONDARY DELAY
	SMS_PORT
	STATSKEY
	tcpRxMaxBuf
	tcpTxMaxBuf
	Example replication.def file

	replication.config File
	Introduction
	Generating replication.config
	Example replication.config
	Further information

	Chapter 3

	Replication Check
	Overview
	Introduction
	In this chapter

	Replication Checks
	Description
	Replication check diagram
	Replication check components
	Replication check process

	Database Comparisons
	Description
	Database comparison diagram
	Database comparison components
	Database comparison process

	Database Resynchronizations
	Description
	Database resynchronization diagram
	Database resynchronization components
	Database resynchronization process

	Auditing
	Description
	Auditing - listAudit.sh

	Chapter 4

	Configuring the Environment
	Overview
	Introduction
	In this chapter

	Configuration Overview
	Introduction
	Configuration process overview
	Configuration components
	About Configuration for Secure SSL Connection to the Database

	Configuring the Resource Group in the Clustered Environment
	Overview
	Starting the webserver failover
	Starting the sshd failover
	Starting the smsAlarmDaemon failover
	Starting the smsAlarmRelay failover
	Starting the smsNamingServer failover
	Starting the smsReportScheduler failover
	Starting the smsReportsDaemon failover
	Starting the smsStatsThreshold failover
	Starting the smsTaskAgent failover

	Configuring Replication Files
	Introduction
	The replication.config file
	Implementing changes to the replication.config file
	The replication.def file
	Implementing change to replication.def
	Example replication.def file

	Configuring the Oracle Wallet
	About the Oracle Wallet
	About Configuring the Location of the Oracle Wallet
	Manually Creating the Oracle Wallet
	Creating the Wallet Container for the Root CA
	Creating a Self-Signed Certificate
	Creating an Oracle Wallet to Store the Oracle Server Certificate
	Adding a User Certificate to the Server Wallet
	Exporting the Server Certificate Request
	Signing the Server Certificate Request by Using the Self-Signed Certificate from the Root CA
	Signing the Server Certificate Request by Using a Commercial CA
	Adding Trusted Certificates to the Keystore on Client PCs

	Creating the Oracle Wallet Automatically by Using setupOracleWallet.sh
	About Creating the Oracle Wallet by Using setupOracleWallet.sh
	Information Required by setupOracleWallet.sh
	Setting Up the Oracle Wallet to Use Self-Signed Certificates by Using setupOracleWallet.sh
	Setting Up the Oracle Wallet to Use CA-Signed Certificates by Using setupOracleWallet.sh

	Configuring the Oracle Listener
	Introduction
	Procedure
	Configuring Oracle Listener Java Application properties

	Configuring the SNMP Agent
	Introduction
	Configuring the snmp.cfg file
	SNMP relaying - switching on
	snmp.cfg example
	snmp.cfg file parameters
	community
	listenPort
	my-addr
	my-oid
	notification-oid
	opaque
	param-oid
	port
	specific
	trap
	use-SNMPv3
	userName
	Formatting an SNMP trap message
	SNMP v1
	SNMP v3
	variable bindings

	Transmission of the SNMP trap message
	Starting and stopping
	Restarting the smsAlarmRelay

	Configuring Connections for CORBA Services
	About CORBA Services Configuration
	Example CORBA Services Configuration on the SMS

	CorbaServices Parameters
	AddressInIOR
	OrbListenAddresses
	smsTaskAgentOrbListenPort
	smsReportDaemonOrbListenPort
	smsTrigDaemonOrbListenPort
	ccsBeOrbListenPort

	SMF AlarmMessage Format
	Introduction
	Alarm Table fields
	MIB field mappings - SMF_ALARM_MESSAGE
	MIB field mappings - SMF_ALARM_MESSAGE
	MIB field mappings - SMF_ALARM_DEFN
	SMF Listen Messages

	Defining the Screen Language
	Introduction
	Default.lang
	Example Screen Language
	Language files for multi-byte character sets
	User-specific language settings
	Procedure

	Defining the Help Screen Language
	Introduction
	Default.SMS.hs
	Example helpset language
	Procedure
	Assigning the Oracle Profile to New Users

	Setting up the Screens
	Accessing SMS
	About Customizing the SMS UI
	Java Application Properties
	jnlp.acs.ACSDefaultCustomerIsPrepaid
	jnlp.acs.ACSStartScreenVersion
	jnlp.acs.allowCallPlanSchedulingInPast
	jnlp.ccs.AllowDeletedVouchers
	jnlp.acs.allowRefInCustCombo
	jnlp.acs.autoCloseCompileDialog
	jnlp.acs.autoCloseCPE
	jnlp.ccs.BeORBTimeoutms
	jnlp.ccs.ccs_oper_cmnReceiveFiles_port
	jnlp.ccs.CCSAccountNumLength
	jnlp.sms.clusterDatabaseHost
	jnlp.acs.connectionsDialog
	jnlp.acs.cpeLineDrawingMechanism
	jnlp.ccs.CreditTransferCP
	jnlp.sms.database
	jnlp.sms.databaseHost
	jnlp.sms.databaseID
	jnlp.sms.dbPassword
	jnlp.sms.dBUser
	jnlp.ccs.defaultEDRSearchAge
	jnlp.ccs.defaultEDRSearchCategories
	jnlp.ccs.defaultSubscriberSearchType
	jnlp.acs.defaultTelcoManaged
	jnlp.sms.DUAL_STATS_NODE
	jnlp.ECEExtensions
	jnlp.sms.EncryptedSSLConnection
	jnlp.sms.host
	jnlp.sms.protocol
	jnlp.vpn.INProtocol
	jnlp.acs.issuePCClockWarning
	jnlp.sms.logo
	jnlp.acs.MAX_CONTROL_PLANS_DISPLAYED
	jnlp.ccs.MaxGlobalLimitedLiabilityPromotions
	jnlp.acs.maximiseAcsScreens
	jnlp.ccs.MaxPDSMSThresholdEntries
	jnlp.ccs.MaxRowsRTWN
	jnlp.sms.namingServerPort
	jnlp.ORB_HOST
	jnlp.acs.paletteStyle
	jnlp.sms.passwordPolicyMessage
	jnlp.sms.port
	jnlp.sms.printingFontSize
	jnlp.acs.ProfileN
	jnlp.acs.requireCustomerReference
	jnlp.sms.ResyncServerPort
	jnlp.sms.reports_location
	jnlp.acs.scfs
	jnlp.acs.SDRfastTimeoutDefault
	jnlp.sms.secureConnectionClusterDatabaseHost
	jnlp.sms.secureConnectionDatabaseHost
	jnlp.ses.SES_DATE_FORMAT
	jnlp.acs.showAnnouncementSource
	jnlp.sms.showEFM
	jnlp.ccs.ShowEmptyEDRTags
	jnlp.acs.showNetwork
	jnlp.acs.showCallPlanCopy
	jnlp.sms.smf_oper_cmnReceiveFiles_port
	jnlp.sms.smsProductInfo
	jnlp.sms.smsVersionInfo
	jnlp.acs.ssfs
	jnlp.sms.sslCipherSuites
	jnlp.acs.suppressedSDRDigits
	jnlp.acs.SuppressTagID
	jnlp.trace
	jnlp.sms.TZ
	jnlp.sms.OsTZ
	jnlp.acs.updateCPReferences
	jnlp.ccs.UseAnnouncements
	jnlp.acs.useTNForNodeName
	jnlp.vpn.vpnMaxNumOfHL
	jnlp.vpn.vpnMaxNumOfHLEntries
	jnlp.ccs.VRRedeemMaxVoucherLength
	jnlp.ccs.VRRedeemMinVoucherLength
	jnlp.acs.warnAboutUnfilledExits
	jnlp.osd.WSDLDirectory
	jnlp.osd.WSDLURL
	jnlp.sms.OverWriteSwingFont
	jnlp.sms.OverWriteSwingFontValue
	Example of smsGui Script Files

	Configuring Nodes
	SMS Nodes
	SLC Nodes
	Statistics nodes

	Installing Additional Applications
	Installing the applications
	Order of replication

	Configuring LDAP based SMS Login
	Prerequisites
	Configurations

	Chapter 5

	Background Processes on the SMS
	Overview
	Introduction
	In this chapter

	cmnConfigRead
	Purpose
	Startup

	cmnReceiveFiles
	Purpose
	Startup
	Parameters
	Failure
	Output

	smsAlarmDaemon
	Purpose
	Alarm replication and buffering
	Startup
	Configuration
	Usage example
	Failure
	Output

	smsAlarmManager
	Purpose
	Startup
	Configuration
	Failure
	Output

	smsAlarmRelay
	Purpose
	Startup
	Parameters
	-u
	-s
	-p
	-x
	-t
	-e
	Resend Alarms
	Failure
	Output

	smsConfigDaemon
	Purpose
	About database connections
	Startup
	Configuration
	Failure
	Output

	smsConfigDaemonScript
	Purpose
	Environment variables set in smsConfigVariables.sh
	Configuration
	Startup
	Failure
	Output

	smsCdrArchiver
	Purpose
	About archive file names
	Startup
	Configuration
	smsCdrArchiver parameters
	recordType
	inDir
	outDir
	outputFileTag
	outputFileSuffix
	useRecordHour
	useMachineName
	useServiceType
	writeIndexFile
	useDateOutDirs
	prefixFileName2Data
	fileMatch
	fileOwner
	compressionCommand
	Billing Failure Treatment CDR parameters
	exportBFTDataRecords
	exportBFTOutDir
	exportBFTOutputFileSuffix
	changeBFTOutputFileGroup
	compressBFTDataRecords
	exportBFTKeepDays
	ext5BFTHex2Dec
	zeroPadExt5Hext2Dec

	smsCdrProcess.sh
	Purpose
	EDR format
	Startup
	Configuration
	Failure
	Output

	smsDbCleanup.sh
	Purpose
	Startup
	Parameters
	Failure
	Output

	smsLogCleaner
	Purpose
	Startup
	Parameters
	Failure
	Output
	logjob.conf

	smsMergeDaemon
	Purpose
	Startup
	Parameters
	Failure
	Output

	smsMaster
	Purpose
	Startup
	Configuration
	-maxpending
	Failure
	Output

	smsNamingServer
	Introduction
	Startup
	Parameters
	-u
	-p
	Failure
	Output

	smsReportsDaemon
	Purpose
	Startup
	Parameters
	Failure
	Output
	Interactive reports

	smsReportScheduler
	Purpose
	Startup
	Parameters
	-i dir
	-o dir
	-u usr/pwd
	-v
	-z timezone
	Failure
	Output
	Unix utilities

	smsReportCleanupStartup.sh
	Purpose
	Startup
	Parameters
	Failure
	Output

	smsStatsDaemon
	Description

	smsStatisticsWriter
	Purpose
	smsStatisticsWriter structure
	smsStatisticsWriter parameters
	tempDir
	outDir
	outDirType
	outDirExpectedFiles
	outDirBucketSize
	outFileName
	maxFileSize
	maxFileOpenTime
	statsDaemonRestartDelay
	statsDaemonStartupTime
	scanInterval
	replicationAllowance
	Events
	eventName
	resetAllEventStatisticsOnStartup
	eventResetBaseTime
	resetInterval
	eventStartDateTime
	eventEndDateTime
	eventWritePeriod
	Event statistics
	applicationName
	statisticName
	Statistics
	applicationName
	statisticName
	resetStatisticOnStartup
	statWritePeriod
	statResetBaseTime
	resetInterval
	Event name file format
	Statistics file format

	smsStatsThreshold
	Purpose
	Startup
	Parameters
	-u <usr/pwd>
	-s <secs>
	Failure
	Output

	smsSendConfig.sh
	Purpose
	About database connections
	Startup
	Configuration
	Failure
	Output

	smsTaskAgent
	Purpose
	CORBA service port
	Startup
	smsTaskAgent configuration in eserv.config
	defaultOracleProfile
	Command line parameters
	-c
	-i ior_host
	-p port
	-u usr/pwd
	-t trans_host
	-s trans_port
	-w secs
	Failure - smsTaskAgent
	Output

	smsTrigDaemon
	Purpose
	Startup
	Location
	Parameters
	oracleLogin
	useORB
	listenPort
	slcBusyTimeout
	useFIFO
	extraFIFO
	scps
	Failure
	Output
	Control plan execution requests
	Data consistency check

	Chapter 6

	Background Processes on the SLC
	Overview
	Introduction
	In this chapter

	smsApplyConfig.sh
	Purpose
	Startup
	Configuration
	Failure
	Output

	cmnPushFiles
	Purpose
	Startup
	Configuration
	-d <dir>
	-P <dir>
	-S <sufx>
	-r <pref>
	-h <host>
	-p <port>
	-s <secs>
	-t <bits>
	-w <secs>
	-x
	-o <dir>
	-f <dir>
	-F
	-a <days>
	-e
	-R <secs>
	-M <secs>
	-C <secs>
	-T
	Example

	Failure
	Output

	infMaster
	Purpose
	Startup
	Parameters
	Failure
	Output

	smsAlarmDaemon
	Purpose
	Startup
	Configuration
	Usage example
	Failure
	Output

	smsLogCleaner
	Purpose
	Startup
	Parameters
	Failure
	Output
	logjob.conf

	smsStatsDaemon
	Purpose
	Startup
	smsStatsDaemon configuration
	Parameters
	-e secs
	-f dir/file
	-v
	-d rows
	-h ratio
	-F
	-m size
	-i
	-S
	-T
	-C n
	Parameters for standard mode
	-u usr/pwd
	-r node
	-w
	Parameters for legacy mode
	-c dir
	-a dir
	-t secs
	-s Kb
	Failure
	Output
	Measurement IDs - standard mode
	Statistics shared memory
	smsStatsDaemon parameters
	Legacy mode configuration - config file
	Syntax for the stats_config file
	Measurements

	Updating smsStatsDaemon measurements

	updateLoader
	Purpose
	Startup
	Parameters
	Failure
	Output

	Chapter 7

	Tools and Utilities
	Overview
	Introduction
	In this chapter

	cmnConfigSyntaxCheck
	Purpose
	Configuration
	Output

	cmnSU
	Purpose
	Configuration

	compareNode
	Purpose
	Configuration
	Failure
	Output

	comparisonServer
	Purpose
	Configuration
	Output

	inetCompareServer
	Purpose
	Output

	infoDisplayer
	Purpose
	Configuration
	Output

	inputBootstrap
	Purpose
	Configuration
	Failure

	repConfigWrite
	Purpose
	Startup
	Configuration
	Failure
	Output

	resyncServer
	Purpose
	Configuration
	Output

	setupOracleWallet.sh
	Purpose
	Information Required by setupOracleWallet.sh
	Startup
	Configuration
	Ways to run setupOracleWallet.sh

	smsCompareResyncClient
	Purpose
	Configuration

	smsCompareResyncServer
	Purpose
	Configuration
	Input file
	Replication
	perform
	report-row-number-limit
	produce-final-reports
	report-directory
	report-after
	stop-on-limit
	view
	Node
	id
	address
	tables
	table
	groups-cover-table-on-scp
	key-columns
	other-columns
	Groups
	group
	table
	ranges
	nodes
	Input file example
	Output

	smsDumpRepConfig
	Purpose
	Configuration
	Failure
	Output

	smsIorDump
	Purpose
	Configuration
	Fields Displayed by smsIorDump

	smsLogTest
	Purpose
	Configuration
	Failure
	Output

	smsManualRequester
	Purpose
	Configuration
	Output

	smsProcessCdr
	Purpose
	Configuration
	Example 1
	Example 2
	Format File configuration
	Header tags
	Standard fields
	Special fields
	Strings
	Functions
	Boolean expressions
	EQUALS function
	PREFIX function
	CONCAT function
	COND function
	LANGUAGEID function
	ROUND function
	SUBSTR function

	Format characters
	File Format example 1
	File Format example 2
	File Format example 3
	Further information

	smsRecordStatistic
	Purpose
	Location
	Configuration
	Output

	smsStatsQuery
	About smsStatsQuery
	Specifying the Statistics to Query
	Optional Parameters Table

	startMerge
	Purpose
	Configuration
	Failure
	Output

	Chapter 8

	Reports
	Overview
	Introduction
	In this chapter

	Reports Database Tables
	Introduction
	Database tables
	Report Scripts table
	Report parameter table

	Installing a Report Script
	Introduction
	Procedure

	Report Script Worked Example
	Introduction
	Example report script

	Database Auditing
	Introduction
	Purpose
	Configuration
	Failure
	Output

	Chapter 9

	Troubleshooting
	Overview
	Introduction
	In this chapter

	Common Troubleshooting Procedures
	Introduction
	Checking current processes
	Restarting running processes using kill
	Checking configuration files

	Possible Problems
	Introduction
	SMS Java screens will not start
	Java help screen grayed out
	Replication is failing
	comparisonServer is failing

	Index Defragmentation
	Description
	Before you begin
	Enabling defragmentation
	Disabling defragmentation
	Oracle configuration restriction

	Chapter 10

	Pre-installation
	Overview
	Introduction
	In this chapter

	SMS Client Specifications
	Specifications
	Network
	Memory
	Response Times
	Screen

	Preparing the System
	Introduction
	Checking Kernel Parameters
	Kernel Parameters

	Database Timezone and Backups
	Setting Oracle timezone
	Oracle database domain
	SMF backups
	Archive logging

	Starting Oracle Automatically on Reboot
	Setting the initialization
	Before you begin
	Procedure

	Chapter 11

	About Installation and Removal
	Overview
	Introduction
	In this Chapter

	Installation and Removal Overview
	Introduction
	SMS packages

	Raw Devices on Clustered SMS
	Raw devices
	Example smf_devices.sh file

	Setting up ssh keys
	Introduction
	Procedure

	Checking the Installation
	Introduction
	Check unclustered SMS procedure
	Check clustered SMS procedure
	Check SLC procedure
	Check other machines procedure
	Process list
	Process list - clustered SMS
	Process list - SLC
	Process list - other machines
	Check the SMS Administration Screens
	Check alarm replication
	Enabling index defragmentation

