Oracle® Communications Network
Charging and Control
Voucher Manager Technical Guide

ﬁ Release 15.2

Copyright

Copyright © 2026, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government’s use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

i Voucher Manager Technical Guide

Contents

Y o To 101 I T ESR Lo Yo o =T o | PP %
(Do TolN] g LT o1 @] 01Y/=T 01 i o] o PRSP Vi

Chapter 1

SYSTEM OVEIVIEW ...oviiiiiiii et e e e e e e e e e e e 1
L@ YT T PR RPPRRRP 1
T 0o [1 o 1o T o PP ER TP 1
VOUCKET LIfECYCIE ..ttt e e et e e s bbe e e e s breeeeans 3
LY=ol U] SRR 9

Chapter 2

(©70] 01T 1V 1 = 1 o] o FS USRI 13
L@ YT T PSRRI 13
€SerV.CONfig CONTIGUIALION..........iii ittt e e ee e 13
Configuring VWS procesSES fOF CCS... ...ttt ettt e et e e e e 14

Chapter 3

Tools and ULHITIESooveieie e 17
OVBIVIBW ...ttt ettt ettt e oottt et e o4 4o ok kb ettt e e e e e o s b b bbb et e e e e e s e nbb bbb e e e e e e e e anbnbneeeeaeaeaanns 17
CCSVOUCNEISIANUP.SN ... 17

Chapter 4

Background ProCeSSESuoiiiiiiiiiii e 33
L@ YT 11 PSR 33
LN AT 33
(oTo1=] ST = Y N o PP TPPRUPPPPPPTN 34
COSSIMSAV ...ttt ettt et e oo 4ok b bttt e e e e e e o s e bbb b et e e e e e e e e nbb bbb e e e e e e e eaabnbneeeaaeeeaanns 36
CCSVCHRPART _MaiNteNanCe.SN.....ccccoe i 36
CCSCBILOHRNAES ...ttt et e ettt e e e sttt e e e sntb e e e sttt e e e antbeeeesntbeeeesabbeeeesnsneeanans 37
CCSCBLOHRNSHA ...ttt e et e e e s b e e e s tb e e e e abbe e e e antbeeeesnbbeeeesnsreeaeans 38
LoTots] I =T = 103/ o |\ PSP 38
(olody Y o 1N ol s = g O O 31 PP PP PP TPPPPPOUPRRN 39
(olody Y o 1N ol s 1= g O O S PRSP PP TUTPPPOUPRRN 39
CCSVWARSVOUCHEIHANAIETcviiiiiiee ettt e e e e e e e rn e e e e e e e annns 40

About This Document

Scope

The scope of this document includes all the information required to configure and administer the
Voucher Management feature.

Audience

This guide was written primarily for system administrators and persons configuring and administering
vouchers in Prepaid Charging. However, sections of the document may be useful to anyone requiring
an introduction to vouchers.

Prerequisites

A solid understanding of Unix and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this technical guide. Attempting to configure or otherwise alter the
described system without the appropriate background skills, could cause damage to the system;
including temporary or permanent incorrect operation, loss of service, and may render your system
beyond recovery.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related Documents

The following documents are related to this document:

e Charging Control Services User's Guide

e Advanced Control Services User's Guide

e Advanced Control Services Technical Guide

e Service Management System Technical Guide
e Service Management System User's Guide

e Voucher Manager User's Guide

e Voucher and Wallet Server Technical Guide

Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network
Charging and Control (NCC) documentation.

Formatting Convention

Type of Information

Special Bold Items you must select, such as names of tabs.
Names of database tables and fields.
Italics Name of a document, chapter, topic or other publication.
Emphasis within text.
Button The name of a button to click or a key to press.
Example: To close the window, either click Close, or press Esc.
Key+Key Key combinations for which the user must press and hold down one
key and then press another.
Example: Ctrl+P or Alt+F4.
Monospace Examples of code or standard output.

Monospace Bold

Text that you must enter.

variable

Used to indicate variables or text that should be replaced with an
actual value.

menu option > menu option >

Used to indicate the cascading menu option to be selected.
Example: Operator Functions > Report Functions

Used to indicate a hypertext link.

Specialized terms and acronyms are defined in the glossary at the end of this guide.

vi Voucher Manager Technical Guide

Chapter 1
System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Network Charging and Control
(NCC) network or service implications of the product.

In this Chapter

This chapter contains the following topics.

[a1doTo [T i o] o PP PP U PP TR PPPPPPPI 1
VOUCNEI LIFECYCIE ... 3
Y=o 1778 9

Introduction

Vouchers

Vouchers add value to wallet balances.
CCS provides systems for:

e creating Voucher Types and batches

e securing Vouchers (though PIN numbers)
e redeeming Vouchers, and

e automatically deleting archived Vouchers.

CCS uses VWS's voucher system to redeem, query and delete archived vouchers. Redeeming and
deleting vouchers are the only tasks performed on the Voucher and Wallet Server. The rest of voucher
management is done on the SMS by CCS processes.

Vouchers are sometimes known as scratch cards.

CCS component

Vouchers are part of the Prepaid Charging solution and build on functionality provided by CCS. To fully
understand how tasks work, you must also refer to the CCS Technical Guide.

Restricted functionality

This functionality is only available if you have purchased the Vouchers licence.

Chapter 1, System Overview 1

Process descriptions

This table describes the processes involved in voucher creation, redemption and deletion in CCS.

Process

Role

Further information

beServer

Partner of the BeClient. The
interface for client requests to the
VWS. Supports handler plugins to
provide application-specific
functionality.

VWS Technical Guide

beVWARS

Manages actions against wallets and
vouchers.

Reads, caches and updates
voucher information from E2BE
database and writes EDRs.

beVWARS plugins perform functions
on data in the database.

beVWARS (on page 33)

BeClient

Passes voucher redemption
messages between control plans on
the SLC and the beServer on VWSs.

BeClient

ccsBeAvd

ccsBeAvd runs on a regular basis as
a single independent instance on
each VWS node. It deletes a range
of archived/deleted voucher records
from the VWS.

ccsBeAvd (on page 34)

ccsBeAvdStartup.sh

Registers ccsBeAvd as a replication
VWS node and starts the ccsBeAvd
process.

ccsVWARSVoucherHandler

ccsVWARSVoucherHandler is a
beVWARS message handler which
handles reserving a voucher and
redeeming a voucher.

ccsVWARSVoucherHandler
(on page 40)

ccsVWARSWalletHandler

ccsVWARSWalletHandler is a
beVWARS message handler which
performs the wallet changes
specified by a successful voucher
redemption.

ccsVWARSWalletHandler

ccsVoucher_CCS1 and
ccsVoucher_CCS3

These ccsVoucher tools generate
batches of vouchers into the SMF
database. They also perform some
batch updates.

ccsVoucherStartup.sh

New Voucher Batch screen collects
parameters, and runs
ccsVoucher_CCS1 or
ccsVoucher_CCS3 through
ccsVoucherStartup.sh.

ccsVoucherStartup.sh (on
page 17)

Security libraries

ccsVoucher uses security libraries to
encrypt voucher batches.
ccsVWARSVoucherHandler uses
security libraries to decrypt PIN
details when redeeming vouchers.

Security libraries

2 Voucher Manager Technical Guide

Process

Role

Further information

CCS Macro Nodes

CCS includes a specific set of
voucher nodes which enable
subscribers to use self-care IVR
systems to redeem vouchers.

CCS Feature Node User's
Guide

CCS Java Administration
Screens

The CCS Admin screens enable
users to:
e configure and generate new
batches of vouchers

o perform one-off voucher
redemptions.

Note: The way EDRSs look in
Prepaid Charging's subscriber
management screens is directly
affected by a configuration file. See
cdrDetailsConfig.conf for CCS.

CCS User's Guide

Voucher Lifecycle

Voucher life cycle

This diagram shows the life cycle of a voucher.

Note: Voucher batches have a slightly different life cycle.

Chapter 1, System Overview 3

Mew Woucher

Batch screan Creation

%

l * PAM

voucher _""_ Encryption —,

batch GPG Public key

Authentication rule

Generation

L' GPG Private key
Printing q—}

A J

—» Created =

Telco changes

state
- » Frozen
Subscriber
recharges Redemption < y,
Redeemed
> Customer care
Deadline intervention
reached AVD Rémoval > Security
Subscriber
Remaved T activity

= AVD Removal

Voucher batches and CCS

Voucher batches are created either by:

1 running the ccsVoucher_CCS3 script directly, or

2 using the Create Voucher Batch screen via the Vouchers menu from CCS.

The bulk of the voucher creation work is done by the command-line tool, ccsVoucher_CCS3. The
Create Voucher Batch screen and ccsVoucherStartup.sh script provide a simple graphical wrapper for
the ccsVoucher process. The screen performs a consistency check before the voucher-creation request
is sent to the SMS host through ccsSmsORB and smsReportsDaemon.

If you are using the Create Voucher Batch screen, after the ccsVoucher_CCS3 job starts at the
background, the process may fail, even though the screen indicates that the job has started
successfully.

4 Voucher Manager Technical Guide

Generating vouchers

ccsVoucherStartup.sh (on page 17) runs the ccsVoucher_CCS3 binary in create mode for CB10 HRN
SHA and CB10 HRN AES encryption. The voucher batch is created on the SMS and transferred from
there to Voucher and Wallet Server.

Generating vouchers diagram

This diagram shows the processes involved in generating a batch of vouchers.

SMS
SMS
CCS
cocsVoucher « smsReports
Startup.sh Daemon
h 4
SMF cesVoucher | L2
Plugin.__. progress SMS Java
CCS Tables 1 > file o Screens
¥
voucher
batch
—
SMS A _
Replication .

Vouchers and VWSs

Once a batch of vouchers have been generated on the SMS, the full batch is divided up into groups and
each group is replicated completely to one VWS pair only. They are only replicated to VWSs which
have been configured to be in a Domain which supports vouchers. Each voucher is only replicated to a
single VWS pair. The voucher records on each VWS include a record of which BE the voucher should
be on.

No voucher information is replicated to the SLCs. BeClient does not maintain Voucher location
information. When a voucher redeem is triggered on the SLC, the BeClient process broadcasts to all
VWS pairs asking for the VWS pair with that voucher on it. The VWS pair that owns that voucher then
replies to the request indicating it holds the relevant voucher data and makes a voucher reservation.

Changing voucher states

ccsVoucher binaries (ccsVoucher_CCS1 or ccsVoucher CCS3) has two options which change voucher
states:

e Qactivate, and

e state.

If ccsVoucher binary is run with the activate option, it will attempt to change the state of a batch of
vouchers to 'activate'.

Chapter 1, System Overview 5

If ccsVoucher binary is run with the state option, it will attempt to change the state of a range of
vouchers within a batch to a specified state.

The maximum number of vouchers for one job is 999999999. The operation will commit in batches of
100, and pause for the specified time between commits.

Vouchers that have already been redeemed may not have their state changed.

Triggering a voucher redemption

CCS obtains Voucher information for recharges from subscribers using subscriber interaction using
these systems:

¢ |VR feature nodes in a control plan

= subscribers can recharge their account by providing Voucher details through IVR (using the
CCS voucher nodes)

e interaction with a customer services representative (who uses the Voucher Management screen)
e (if MM is installed) Short Messages sent from the subscriber's handset, and
e (if USSD GW is installed) menus and fast access.

The validation of the Voucher is done by the chargeable service (usually CCS) through beVWARS
plugins on the VWS.

Voucher redemption message flows

This diagram shows the message flows for a voucher redeem.

Note: This message flow is valid where both the voucher domain and the wallet domain are VWS. If
the domains are different, the message flow will return back to the Request Initiator each time, so it can
pass the next request to a different client. For more information about this type of voucher redemption,
see the Technical Guide for the non-VWS VWS client involved in the processing.

6 Voucher Manager Technical Guide

UAS/USMS UBE

Request | BeClient i E2BE sync EDRs
Initiatar Process beServer | Plugins beVWARS | Handlers
Voucher redeam
(VRW_Req) N
request Voucher reserve | Voucher reserve
request (VR_Req) request (VR Req) g » Update cache
VR Ak Resarvation
" -
" WR_Ack
Wallet update
(WGR) request Wallet update
{WGR) request Update cache
Wallet Update
WGER_Ack £ E———
_ WGER_Ack n =
N Wallet t
allet Update
COMMIT
Commit voucher)
reserve (CVR_Req) Commit voucher
request » reserve (CVR_Req)
reguest Woucher Updale
CVR_Ack
Voucher CVR Ack - o
" redeem ack | © = Voucher Update
{(VRW_Ack) COMMIT

Voucher redeem process

This table describes the stages involved in redeeming a voucher using CCS plugins. For more
information about the VWS actions in this process (including EDR writing), see VWS Technical Guide.

Note: This documentation describes a voucher redemption where both the voucher and wallet domains
are VWS. If the wallet domain is different from the voucher domain, the messages will return back to
the process which triggered the redemption. The initiating process will then pass a wallet recharge
request to the VWS client which is configured to handle the wallet's domain. For more information
about this type of voucher redemption, see the Technical Guide for the non-VWS VWS client involved in
the processing.

Stage Description

1 Voucher redemption is triggered using any of the methods described in Triggering a
voucher redemption (on page 6). The information is collected from the user and passed
to the relevant BeClient process.

e For control plans, the request is passed to BeClient on the SLC.

e For Voucher Management screen redemptions, the request is passed to
ccsBeOrb on the SMS.

Chapter 1, System Overview 7

Stage Description

2 Voucher requests are sent with a BE id of 0, so the libclientBcast plugin handles
broadcasting the Voucher Reserve (VR_Req) request to all VWS Voucher and Wallet
Servers.

3 beServer processes on the Voucher and Wallet Servers pass the request to the a
beVWARS process.

4 The beVWARS process checks for VR message handlers. CCS provides

ccsVWARSVoucherHandler (on page 40) for VR messages, so beVWARS passes the
message to that handler. ccsVWARSVoucherHandler checks whether:
e this VWS holds the details for the requested voucher, and

e whether the voucher can be redeemed (if the voucher's PIN was encrypted,
ccsVWARSVoucherHandler will use the Security libraries to check the PIN).

If the voucher is local, and can be redeemed, ccsVWARSVoucherHandler reserves the
voucher and passes the voucher details back to the BeClient via beServer.

The beVWARS processes on VWSs which do not hold the voucher's details return a
VR_Nack. If none of the available VWSs hold the voucher details, BeClient will send a
create EDR request (CCDR_Req) to a VWS so the beVWARSCCDRHandler will log an
EDR recording the failed voucher redemption. Go to stage 9.

5 The BeClient process sends a Wallet General Recharge (WGR_Req) request back to the
beVWARS via the beServer.

Note: This request may be to a different VWS from the one which has reserved the
voucher.

6 beVWARS checks for WGR message handlers. CCS provides
ccsVWARSWalletHandler for WGR messages, so beVWARS passes the message to that
handler. ccsVWARSWalletHandler updates buckets/balances specified in the request by
the amount specified in the request. beVWARS then passes a WGR_Ack back to the
BeClient via beServer.

If the wallet recharge fails, beVWARS return a WGR_Nack.

7 If the wallet recharge succeeds, BeClient sends a Commit Voucher Reservation
(CVR_Req) request back to beVWARS via beServer.
If the wallet recharge fails, BeClient sends a Revoke Voucher Reservation (RVR_Req)
request to beVWARS via beServer.

8 beVWARS checks for CVR or RVR message handlers. CCS provides
ccsVWARSVoucherHandler (on page 40) for both types of messages, so beVWARS
passes the message to that handler.

If the message was a CVR, ccsVWARSVoucherHandler updates the voucher to
redeemed and returns a CVR_Ack to BeClient via beServer.

If the message was a RVR, ccsVWARSVoucherHandler clears the reservation set in
stage 4 and returns a RVR_Ack to BeClient via beServer.

9 If the recharge was successful, BeClient returns a VRW _Ack to the requesting process.

If the recharge failed, BeClient returns a VRW _Nack.
Note: If there are any beServer message handlers configured for the messages passed in this process,
beServer will pass the request its handlers before passing them to the beVWARS. These handlers
may generate other messages to be passed to the beVWARS, and the handlers on the beVWARS wiill

handle them before responding back to the beServer handlers. CCS does not provide beServer
message handlers for any of the messages described in this process.

Automatic voucher deletion

Vouchers that have been redeemed will be archived on a weekly basis. The archived vouchers will be
automatically deleted from the VWS after a configurable number of weeks has elapsed.

8 Voucher Manager Technical Guide

For more information on automatic voucher deletion see the Voucher Manager User's Guide.

Security

Authenticating modules

To provide security over account and voucher generation, CCS contains authentication modules.

These modules contain information uniquely related to the account or voucher number, which is not
stored (directly) in the database, but which must be supplied in order to make use of the account or
voucher.

Each module has a pair of functions.

1 The first function (the hash generation function) is called at subscriber account- or voucher-
generation time.

2 The second (the hash validation function) is called every time a subscriber account- or voucher
number is presented to the system during call processing.

Note: Once a batch is created, the authentication module associated with that batch may not be
changed.

Voucher PINs

Without PIN validation, subscribers may attempt to guess valid voucher numbers. PINs are stored in
CCS_VOUCHER_REFERENCE table.

PIN numbers for Vouchers are implemented through security plugins. These plugins are used by:

e ccsVoucher_CCS1 (on page 39) and ccsVoucher_CCS3 (on page 39) to generate voucher PINs,
and

e beVWARS ccsVWARSVoucherHandler (on page 40) plugin to check PIN numbers for validity.

Tip: The plugin used to generate the vouchers is also used for validation.

Modules and security plugins

This table describes when security plugins are used and which process they are used by.

Process Use

ccsAccount Used to generate subscriber account or calling card PINs (which are
used to secure self-management systems).

ccsVoucherStartup.sh (on Used to generate voucher PINs (that is, a string of digits to be

page 17) printed on the voucher or scratch card.

beVWARS Used to check PIN numbers for validity (for example, to validate a

ccsVWARSVoucherHandler | string of digits entered by the user indicating a Subscriber account to

(on page 40) plugin use or a voucher to redeem).

For more information about the ccsAccount tool, see CCS Technical Guide.

Chapter 1, System Overview 9

Security libraries

Voucher management uses security libraries to provide flexibility in how the PINs are generated by
ccsVoucher_CCS3 (on page 39). This table describes the function of each security library.

Library Description

ccsLegacyPIN (on Provides the DES authentication module (DES crypt()ed n-digit PINS) for

page 38) account/voucher authentication. Used by subscriber account and voucher
subsystems.

The plug-in library is not applicable to new voucher batches.

Note: The output file is sent directly to the third-party tool gpg, so the
resulting printer file is encrypted. The printer file is never created on the
SMS in an unencrypted format.

ccsCB10HRNSHA Provides the CB10 HRN SHA256 and CB10 HRN SHA512 authentication
modules for voucher security.

ccsCB10HRNAES Provides the CB10 HRN AES256 authentication module for voucher
security.

The authentication module is selected in the New Voucher Batch screen. For information about this
screen, see Voucher Manager User's Guide.

Tip: Vouchers are validated using the same plugin as they were generated with.

DES Encryption

DES Encryption supports separate voucher number and voucher PIN generation.

The generated voucher numbers will be determined using the start and end range values specified for
the voucher batch, while the voucher PINs will be randomly generated.

The length of the voucher number and the voucher PIN will depend on the configuration specified for the
DES encryption rule being used.

Where DES Encryption is used, gpg is used to encrypt the exported voucher batch file.

Public and private key encryption

Public and private key encryption (also known as asymmetric encryption) involves a pair of keys:

1 a public key which is used encrypt the file, and
2 aprivate key which is used to decrypt the file.

Both keys are generated by the holder of the private key. The public key is made available to others
who want to send encrypted files to the private key holder. In this case, the print shop will generate the
public and private keys and provide the public key to the operator.

For more information about:

e generating keys, see Managing Public/Private Key Pairs.
e decrypting files, see Decrypting Files.

More information about public and private key encryption is widely available in publications and on the
Internet.

GPG keys

GPG Public keys are used to increase security when creating subscriber account and voucher batch
export files for printing.

10 Voucher Manager Technical Guide

To use GPG public keys, you must use the Voucher Management screen to:

e Import new GPG public keys
o Verify the imported keys.

Note: You cannot use a key until you verify it.

When a GPG Public Key is imported, it is added to the SMF database by smf_oper. When verified, they
are marked as verified. These keys are then available when creating a voucher or account batch. You
cannot remove public keys from the database or from the GPG key-ring store on the SMS.

When a voucher batch is created a required key or UID will be supplied. The UID is used to determine
which GnuPG key to use within the keyring to encrypt the export file. The key UID is a hexadecimal
number up to 10 digits in length.

For more information about the Voucher Management screen, see Voucher Manager User's Guide.

CB-10 HRN Creation

The CB10 HRN creation provided by the CB10 HRN authentication module generates voucher numbers
using the:

e CB-10 HRN private keys (K1, K2 and K3) for the service provider

e S, R1, R2 and R3 security parameters defined for the authentication rule

The CB-10 HRN creation algorithm does not support voucher PINs and therefore the PIN length is
always set to 0.

A unigue set of CB-10 HRN private keys (K1, K2 and K3) is required for each service provider. These

keys are generated in one of the following ways:

e Generated automatically when a new service provider is created

e Generated or regenerated for service providers who existed before the CB-10 HRN authentication
was activated using the Generate button for one of the CB10 HRN SHA or AES PAM modules

Note: If a voucher batch is already created for a service provider using the CB-10 creation algorithm then
you cannot:

e Regenerate the K1, K2, and K3 private keys for the selected service provider

e Edit the associated authentication rule

CB-10 HRN SHA Hashing

CB-10 HRN private keys are created when:

e anew service provider is created

e a Generate button is clicked for a CB10 or SDK PAM Authentication module and the service
provider does not have any CB-10 vouchers created yet

Clicking a Generate button also generates hash/encryption keys for the specific PAM Authentication
module that are used for hashing/encrypting the CB10 or SDK-created HRN. Generate buttons are
disabled if the service provider already has a voucher batch created using the specific PAM
Authentication module.

For example, after a voucher batch is created for a service provider using an authentication rule
specifying a PAM of CB10 HRN SHA256, you cannot change or update the hash key for CB10 HRN
SHA256.

PAMs that use SHA hashing can specify the number of hash iterations to apply, the default is 1 iteration.

Chapter 1, System Overview 11

Decryption to retrieve the HRN is not supported for SHA-based PAMs as the SHA operation is not
reversible.

12 Voucher Manager Technical Guide

Chapter 2
Configuration

Overview

Introduction

This chapter explains how to configure the Oracle Communications Network Charging and Control
(NCC) application.

In this chapter

This chapter contains the following topics.

€SerV.CONTIG CONTIGUIALION........uiiii e e 13
Configuring VWS proCeSSES fOr CCS......uiiiiiiiiiie ittt ettt 14

eserv.config Configuration

Introduction

The eserv.config file is a shared configuration file, from which many Oracle Communications Network
Charging and Control (NCC) applications read their configuration. Each NCC machine (SMS, SLC, and
VWS) has its own version of this configuration file, containing configuration relevant to that machine.
The eserv.config file contains different sections; each application reads the sections of the file that
contains data relevant to it.

The eserv.config file is located in the /IN/service_packages/ directory.

The eserv.config file format uses hierarchical groupings, and most applications make use of this to divide
the options into logical groupings.

Configuration File Format

To organize the configuration data within the eserv.config file, some sections are nested within other
sections. Configuration details are opened and closed using either { } or [].

e Groups of parameters are enclosed with curly brackets — { }
e An array of parameters is enclosed in square brackets — []

e Comments are prefaced with a # at the beginning of the line

To list things within a group or an array, elements must be separated by at least one comma or at least
one line break. Any of the following formats can be used, as in this example:

["00000148"™, "0000473"] }
["000001049" 1 1}

{ name="routeo6", id
{ name="route7", id

3, prefixes
4, prefixes

or
{ name="routeo6"
id = 3
prefixes = [
"00000148"
"0000473"

Chapter 2, Configuration 13

}

{ name="route7"

id = 4
prefixes = [
"000001049"

]

or
{ name="routeo"
id = 3
prefixes = ["00000148"™, "0000473"]

}

{ name="route7", id = 4
prefixes = ["000001049"]

}

eserv.config Files Delivered

Most applications come with an example eserv.config configuration in a file called eserv.config.example in
the root of the application directory, for example, /IN/service_packages/eserv.config.example.

Editing the File

Open the configuration file on your system using a standard text editor. Do not use text editors, such as
Microsoft Word, that attach control characters. These can be, for example, Microsoft DOS or Windows
line termination characters (for example, M), which are not visible to the user, at the end of each row.
This causes file errors when the application tries to read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a working
copy to which you can return.

Loading eserv.config Changes

If you change the configuration file, you must restart the appropriate parts of the service to enable the
new options to take effect.

Configuring VWS processes for CCS

VWS processes used by CCS

beVWARS on the VWS must be configured to include the CCS beVWARS plugins and message
handlers for voucher functionality.

For more information about configuring ccsVWARSVoucherHandler, see:

e beVWARS (on page 33), and
e ccsVWARSVoucherHandler (on page 40).

Message handlers and event plug-ins

Message handlers provide functionality which is specifically related to messages passed between
BeClient and the VWS. Plug-ins are designed to handle specific events such as a balance expiry date
being passed.

14 Voucher Manager Technical Guide

Message handlers

CCS installs a number of message handlers and plugins into the VWS for handling the CCS-specific
messages and functionality. For handling voucher messages, CCS provides
ccsVWARSVoucherHandler (on page 40).

Other handlers are described in CCS Technical Guide.

Chapter 2, Configuration 15

Chapter 3
Tools and Utilities

Overview

Introduction

This chapter provides a description of the operational programs or executables which are used to
administer CCS. All of these processes are performed when needed.

Executables are located in the /IN/service packages/CCS/bin directory.

Some executables have accompanying scripts that run the executables after performing certain cleanup
functions. All scripts should be located in the same directory as the executable.

Note: Most processes can be re-started using the UNIX kill command.
Using SLP Trace log files

Processes started by the inittab and cronjobs produce logdfiles that are stored in the tmp folder of each
service directory, that is:

/IN/service packages/CCS/tmp/

Other CCS tools

The other CCS tools are documented in the CCS Technical Guide.

In this chapter

This chapter contains the following topics.

CCSVOUCNEISIANUP.SN ... 17

ccsVoucherStartup.sh

Purpose

Depending on the option used, the ccsVoucherStartup.sh:

e generates batches of vouchers from data entered on the command line
e changes the state of vouchers in a specified range

e activates a batch of vouchers

e cancels voucher batches, and

e cleans up expired vouchers.

For more information about these processes, see Vouchers (on page 1).

All voucher management and administration is performed on the SMS.

ccsVoucherStartup.sh runs one of the ccsVoucher binaries, passing on any relevant configuration as
command line parameters. The two ccsVoucher binaries are:

1 ccsVoucher_CCS1 (on page 39), and

Chapter 3, Tools and Utilities 17

2 ccsVoucher_CCS3 (on page 39).

Location

This binary is located on the SMS node.

Startup
Follow these steps to run the ccsVoucher tool.
Step Action
1 Login to the SMS machine on which your CCS application is installed as ccs_oper.
2 Navigate to the directory in which ccsVoucher is located.
In a standard installation, this will be:
/IN/service packages/CCS/bin
3 Enter the program name:
ccsVoucher option parameters
Where:
ccsVoucher is one of the binaries - ccsVoucher_CCS1 or ccsVoucher_CCS3
Options (on page 18) and Common command line parameters (on page 18) are defined
in the following tables.
Note: The option determines the action to be performed. The subsequent parameters
depend on the option selected.
Options
The following options define the task ccsVoucher will perform.
<option>
Syntax: option
Description: option specifies the task ccsVoucher will perform.
Type: String
Optionality: Required
Allowed: activate Change the state of a batch of vouchers to 'activated'.
cancel Mark a batch as cancelled in the SMF database.
cleanup Mark batches unusable if beyond their pre-use expiry.
create Generate a new batch of vouchers.
state Change the state of a range of vouchers within a batch to a specified
state.
Default: None
Notes: The parameters that may be used depend on the specified option.
Example: ccsVoucher create parameters 1list

Common command line parameters

The following command line switches and parameters are common to both ccsVoucher CCS1 and
ccsVoucher_CCS3.

18 Voucher Manager Technical Guide

-v provider

Syntax: -v provider

Description: The name of the service provider.
Type: String

Optionality: Optional

Allowed:

Default: null

Notes:

Example:

-r start[/end]

Syntax: -r start[/end]

Description: start is the lowest serial number in the range of vouchers.
end is the highest serial number in the range of vouchers.

Type: Integer

Optionality: e End voucher is required for state option.

e This parameter is optional for create option. When not provided, then the
voucher batch ranges are populated as follows:
o VOUCHER START RANGE = minimum number of required digits
as per the authentication rule.
o VOUCHER END RANGE = maximum number of required digits
as per the authentication rule.

Allowed: End voucher must be a higher number than start voucher.

Default: None

Notes: Valid for create and state options

Example: -r 1234567440/1234567489

-s size

Syntax: -s size

Description: size is the total number of vouchers to be produced in the batch.
When used with -O (On-demand mode), this is the batch size for On-demand
vouchers.

Type: Integer

Optionality: Required (must be set if -r or -R do not have an end option set)
Required, when used with -O (On-demand) option.

Allowed: Positive integer

Default: None

Notes: Only valid for the generate option

This is not necessarily required because ccsVoucher is able to determine the size
of the batch from the start and end ranges of the batch for both the -r and -rR
arguments (if <end> is supplied).

Example: -s 1000

Chapter 3, Tools and Utilities 19

-s state

Syntax:
Description:
Type:
Optionality:
Allowed:

Default:
Notes:
Example:

-B batch code

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

-C

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-t type

Syntax:
Description:
Type:
Optionality:
Allowed:

Default:
Notes:
Example:

-s state

The state the vouchers will be changed to
String

Required

C Created

A Activated

F Frozen

none

Valid for state option only

-s A

-B batch code
batch code is the code of the batch to perform the operation on.
Integer

None
This cannot be used with -b option

Valid for all options except cleanup.
-B 362

-C
Update voucher channel fields. Valid only for on-demand vouchers.

Optional

Not set. If not specified, no voucher details are updated.

Applicable to the On-Demand Voucher create command only.

-C

"BARCODE=5492: TEXT=text field:CARD DESIGN=901:DISTRIBUTOR CH
ANNEL=d channel:RETAIL CHANNEL=r channel:FREE TEXT FIELD 1=V
FTF1:FREE TEXT FIELD 2=VFTF2:FREE TEXT FIELD 3=VFTF3"

-t type

The name of the voucher type.
String

Required (default raises error)

This must be the same as the name defined in the NAME field in the
CCS_VOUCHER_TYPE table.

Null
Used in create and cancel modes.

20 Voucher Manager Technical Guide

-m pam

Syntax: -m "pam"

Description: The name of the authentication module to use when generating vouchers.
Type: String

Optionality: Required

Allowed: AltAuthMod Use ccsVoucher_CCS1 with -B.

Note: This option is deprecated.

DES (no key set) Use ccsVoucher CCS3 with no special parameters.
DES (and a Use ccsVoucher_CCS3 with -B, -F, -R, -S, -n, and -o.
keyUid (on page

24) set)

DES Encryption Use ccsVoucher_CCS3 with no special parameters.

Note: This option is deprecated.

CB10 HRN, Use ccsVoucher_CCS3 with -B, -F, -R and -n.
CB10 HRN
SHA256 or CB10
HRN SHA512 (no
key set)
CB10 HRN (and Use ccsVoucher_CCS3 with -B, -F, -R, -n and -o.
a keyUid (on
page 24) set)
Default: No default
Notes: This parameter is set by the PAM field in the New Authentication Rule screen.
Example: -m "DES"
-m "CB10 HRN SHA256"

-M rule

Syntax: -M "rule"

Description: The name of the authentication rule to use when generating a batch of vouchers.

Type: String

Optionality: Required

Allowed: Must match an Authentication Rule nhame in the Security tab on the Service
Management screen.

Default: No default

Notes: The authentication rule associated with a voucher batch determines which
encryption algorithm to use when generating the voucher numbers in the batch.

Examples: -M "CB10 S=10"
-M "DES (CCS3) NL=10 PL=04"

-Cc str

Syntax: -c str

Description: The voucher context data.

Type: String

Optionality: Optional (default used if not set)

Chapter 3, Tools and Utilities 21

Allowed:
Default:
Notes:
Example:

-e be

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-f filename

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Examples:

-p pause

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:

Notes:
Example:

-D str

Syntax:
Description:
Type:
Optionality:
Allowed:

Null
Only used with create mode

-e be

The Voucher and Wallet Server name.
String

Required (default raises an error)

null
Used with create and cancel modes

-f "file"

For the create option, fiIe is the output voucher file name.

For the state option, file is the file to which failed changes are written.
String

Null

The file will be written to the export directory for both options.
-f "Batch362Generation.txt"

-f "Batch362ChangeErrors.txt"

-p secs

The number of seconds to pause between the generation or change of a sub-set

of vouchers.

Integer

0 For create option

1 For state option
Valid for create and state options.
-p 6

_D nw Str"

EDR description.

String

Optional (default used if not set)

22 Voucher Manager Technical Guide

Default: Null
Notes: Only used with create mode.

This parameter is populated by the CDR Description field in the New Voucher
Batch screen.

Example: -D "Batch-New CB10 0003"

-P file

Syntax: -P path file

Description: The file to send the results to (success or failure) when ccsVoucher is run through
the UL.

Type: String

Optionality: Required (default raises an error)

Allowed:

Default: null

Notes: Used with all states

Example:

-i state

Syntax: -1 state

Description: The state vouchers created in this batch will have when they are first generated.

Type: String

Optionality: Required when used for generating new vouchers. When used for changing the
state of a range of vouchers, -i is optional, (default used if not set).

Allowed: C Generate vouchers with state = Created
A Generate vouchers with state = Activated
F Generate vouchers with state = Frozen

Default: When used to change the state of a range of vouchers, the default is A.
Otherwise there is no default.

Notes:

Example: -icC

-b batch id

Syntax: -b batch id

Description: <batch id> is the batch id to generate or the batch to perform the operation on.
Corresponds to the voucher batch's database ID.

Type: Integer

Optionality: Required

Allowed:

Default: None

Notes: This cannot be used with the -B option.
Valid for all other options except cleanup.

Example: -b 362

Chapter 3, Tools and Utilities 23

-u usr/pwd

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

keyUid

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-d

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-u usrl[/pwd]
usr is the username of the Oracle account to use to log into the SMF database.
pwd is the password of the Oracle account to use to log into the SMF database.

Optional (default used if not set)

/
Valid for all options.
-u smf/smf

keyUid

The id of the gpg key to use to encrypt the output file.
String

Optional (file not encrypted if not set)

null
Not available with the AltAuthMod PAM.

-d

Perform a dry run. Checks parameters only, does not create any vouchers.
Boolean

Optional (default used if not set)

Not set

Create example

To produce a set of vouchers, both serial number and a voucher number must be produced for each
voucher. These numbers are sequential starting from some number supplied by the user.

All command line parameters are optional, but you'll be prompted for the following if batch ID is not

provided:

e Voucher and Wallet Server
e service provider, and

e batch details.

To produce ten vouchers with the serial numbers starting at 100 and the voucher numbers starting at
200, the switches and parameters could be either of:

ccsVoucher create -m "DES" -r 100 -R 200 -s 10
ccsVoucher create -m "DES" -r 100/109 -R 200/209

24 Voucher Manager Technical Guide

Monitoring voucher generation

You can check the ongoing status of the background ccsVoucher job by reading the ccsSmsORB output
log. Any error messages from the actual voucher creation process will appear in there. For
information about locating the ccsSmsORB log, see ccsBeOrb Details.

If the job is successful, a file named as specified in the voucher batch creation screen, with "Ist.print'
appended to the filename, will appear in the following directory with a non-zero file size:

/IN/service_packages/CCS/voucher/export/
If the job has failed, then either this file will not be created, or it will contain no data (that is, be zero
bytes long), or no usable data (that is, headers only, no voucher data).

State example

To activate 40 vouchers with serial numbers starting at 100, the options and parameters would be:
ccsVoucher state -r 1234567440/1234567489 -p 6 -f Batch362ChangeErrors.txt

Note: You don't need to set -s A, as this is the default.

CCS3 command line parameters

The following command line switches and parameters are specific to ccsVoucher_CCS3 (on page 39).
They can be used with the CCS3 Encryption and CCS1 Compatable methods of generating vouchers.

-F batch name

Syntax: -F str

Description: The name of the context file.

Type: String

Optionality:

Allowed: String must be 50 characters or less.
Default:

Notes: This cannot be used with -B.

Example:

-n

Syntax: -n

Description: Allow overlapping voucher ranges.
Type:

Optionality: Optional (default used if not set)
Allowed:

Default: Not set. Don't allow overlapping voucher ranges.
Notes: The -R option must also be specified.
Example:

-0

Syntax: -0

Description: Do not send the vouchers to the export file. Use standard out instead.
Type:

Optionality:

Chapter 3, Tools and Utilities 25

Allowed:
Default:
Notes:
Example:

-0

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-R

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-S
Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

-0
Create On-Demand Voucher. To be used in create mode only.

Optional (default used if not set)

Not set. Don't create 'On-Demand Voucher' when not specified.

-R
Create random voucher number.

-S
Create random salt for CCS1 Legacy or CCS3 Encryption.

The Unix 'crypt' function uses a 2-digit alphanumeric string (SALT) which is used
as part of the encryption. By default, the SALT is fixed. To increase security
you can also randomly generate the SALT for each voucher created. This
provides a non-uniform private/secret key.

eserv.config parameters

ccsVoucherStartup.sh accepts the following global configuration parameters in eserv.config.

Note: SMS only.

26 Voucher Manager Technical Guide

disableConcurrencylLock

Syntax: disableConcurrencyLock = true|false

Description: Determines whether or not multiple instances of ccsVoucher are allowed to run
concurrently.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true Do not perform the locking file checking of the file specified by

lockFileName (on page 27).
false Use lock file to ensure only one ccsVoucher process is running at a
time.

Default: false

Notes: This will not disable the checking done in the wrapper script.

Example: disableConcurrencyLock = false

displayVoucherValue

Syntax: displayVoucherValue = <true|false>

Description: Whether or not to include voucher values in batch report

Type: Boolean

Optionality: Optional (default used if not set)

Allowed:

Default: false

Notes:

Example: displayVoucherValues = false

ignoreRandomGenerationFlags

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

lockFileName

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

ignoreRandomGenerationFlags = true|false

Ignore the command line parameters used for random
generation (-R and -n).

Boolean
Optional (default used if not set)

false
ignoreRandomGenerationFlags = false
lockFileName = "path file"

The full path and filename for the lock file.
String
Optional (default used if not set).

voucher number

/IN/service_packages/CCS/logs/.ccsVoucher-lock

Prevents multiple instances of ccsVoucher running concurrently when set.

Chapter 3, Tools and Utilities 27

suppressHeaders

Syntax: suppressHeaders = true|false
Description: Whether to suppress default header fields in the voucher batch file.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: true
false
Default: false
Notes:
Example:

voucherFileHeaderPlugins

Syntax: voucherFileHeaderPlugins = [
"path/1ib"

1

Description: Full path to the file writer plugin, if any. If set, then this plugin will be used to
format the voucher batch file.

Type: Array

Optionality: Optional (default plugin used if not set)

Allowed:

Default:

Notes:

Example:

voucherFileWriterPlugin

Syntax: voucherFileWriterPlugin = path/lib

Description: Full path to the file writer plugin, if any. If set, then this plugin will be used to
format the voucher batch file.

Type: String

Optionality: Optional (default writer used if not set)

Allowed:

Default:

Notes:

Example:

Example eserv.config parameters

Here is an example of the global configuration options parameters for the ccsVoucher tool.
ccsVoucher = {
suppressHeaders = false

displayVoucherValue = false
ignoreRandomGenerationFlags = false
voucherFileWriterPlugin = "IN/service packages/CCS/lib/yourFilePlugin.so"
voucherFileHeaderPlugins = [
"IN/service packages/CCS/lib/yourHeaderPluginl.so"
"IN/service packages/CCS/lib/yourHeaderPlugin2.so"
]
lockFileName = "/IN/service packages/CCS/logs/.ccsVoucher-lock"

28 Voucher Manager Technical Guide

disableConcurrencyLock = false

}

Failure

If ccsVoucher fails, either:

e no voucher batches will be produced, or
e a partial voucher batch will be created.

Output

ccsVoucher produces:

e Database inserts for the SMF database:
= voucher number
e Flat file:

= voucher number
= voucher PIN

It also logs errors to:

ccsVoucher.log

Exported voucher batch files

Voucher batch file format is controlled by the security library, and the voucher writer plugin used to
generate the batch. Which libraries and plugins are used is defined by the Authentication Module
(PAM) and the Authentication Rule specified in the New Voucher Batch screen.

Header fields are in the format "<Key field name>=<value>".

Key field names always start with an

alphabetic character. This makes it easy to distinguish them from voucher records (which always start

with a number).

The following header fields are used in the voucher batch file header, (although downstream processors

should detect any "<Key field name>=<value>" lines).

Header field Description

BilingEngineName=<str> The name of the Voucher and Wallet Server where the voucher
resides.

VoucherTypeName=<str> The name of the voucher type as created on the NCC platform. The

voucher type contains the following information:
e Pre-use expiry period (humber of days and hours that this
voucher is valid in a pre-use state)
e Wallet expiry period (change the current wallet expiry date
by this many days and hours)

e Voucher number length
e Voucher PIN length

e Alist of all the balance types, associated values and balance
expiry date modifications which will be changed/updated
when this voucher is redeemed

Note: It will be up to the operator to provide the details of the
voucher type described here to the print shop so that any specific
voucher details can be printed on the final vouchers.

Chapter 3, Tools and Utilities 29

Header field Description

AuthRuleName=<str> The name of the authentication rule which was used for creating the
voucher number and PIN.

AuthModName=<str> The name of the pluggable authentication module (PAM) (NCC
specific) used for creating the voucher PIN.

VoucherBatchBatch=<str> A two character identifier (non unique) for this voucher batch.

VoucherBatchID=<int> The system generated ID for this voucher batch.

OriginalCount=<int> The number of vouchers created in this batch.

StartOfRange=<int> Beginning of the range of voucher numbers.

EndOfRange=<int> End of the range of voucher numbers.

A line consisting of a single equal sign (=) terminates the header lines. All subsequent lines are
voucher detail records.

CCS3 DES voucher batch example

This text shows an example export voucher batch file generated by ccsVoucher_CCS3 using the DES
encryption library (and a bespoke voucher file writer plugin to format the non-header details), but no
GnuPG key.

#

Voucher file for batch 83

Generated by ccsVoucher at Tue Nov 11 12:55:27 2008
(key=value or
voucherserialnumber, vouchernumber, vouchersecret, vouchercontext, voucherprivate secret
)

#

BillingEngineName=PCDEV
VoucherTypeName=DES
AuthRuleName= DES (VL=10 VP=4)
AuthModName=DES
VoucherBatchBatch=
VoucherBatchID=83
OriginalCount=2
StartOfRange=1000000001
EndOfRange=1000000002

#

Voucher records start

#

1000000001, 8986
1000000002,4887

#

End of voucher records

#

CCS3 DES GPG voucher batch example

This text shows the beginning of an example export voucher batch file generated by ccsVoucher CCS3
using GnuPG encryption (and a bespoke voucher file writer plugin to format the non-header details).

Note: This file has been decrypted using the gpg key.

#

Voucher file for batch 84

Generated by ccsVoucher at Tue Nov 11 12:58:27 2008

(key=value or

voucherserialnumber, vouchernumber, vouchersecret, vouchercontext, voucherprivate secret
)

#

30 Voucher Manager Technical Guide

BillingEngineName=PCDEV
VoucherTypeName=DES
AuthRuleName=DES (VL=10 VP=4)
AuthModName=DES
VoucherBatchBatch=
VoucherBatchID=84
OriginalCount=2
StartOfRange=0000000003
EndOfRange=0000000004

#

Voucher records start

#
1000000136,0000000003,8986
1000000137,0000000004,4887
#

End of voucher records

#

CCS3 CB10 voucher batch example

This text shows an example export voucher batch file generated by ccsVoucher_CCS3 using the 'CB10
HRN' encryption library using the 'HRNGEN' encryption algorithm, but no GnuPG key.

#

Voucher file for batch 85

Generated by ccsVoucher at Tue Nov 11 12:55:27 2008
(key=value or voucherbatch,preuseexpiry,hrn,serialnumber)
#

BillingEngineName=PCDEV

VoucherTypeName=CB10

AuthRuleName=CB10 (S=14 R1=2 R2=2 R3=0)
AuthModName=CB10 HRN

VoucherBatchBatch=

VoucherBatchID=85

OriginalCount=2

StartOfRange=00000000000001
EndOfRange=00000000000002

#

Voucher records start

#
85,20090101000000,631599527570333589,1000000138
85,20090101000000,855619036698319621,1000000139
#

End of voucher records

#

CCS3 CB10 GPG voucher batch example

This text shows an example export voucher batch file generated by ccsVoucher_CCS3 using the 'CB10
HRN' encryption library using the 'HRNGEN' encryption algorithm, and GnuPG encryption.

Note: This file has been decrypted using the gpg key.

#

Voucher file for batch 86

Generated by ccsVoucher at Tue Nov 11 12:55:27 2008

(key=value or voucherserialnumber,hrnserialnumberseed,hrn,nrnlength,hrnc)
#

BillingEngineName=PCDEV

VoucherTypeName=CB10 HRN

AuthRuleName= CB10 (S=14 R1=2 R2=2 R3=0)

AuthModuleName=CB10 HRN

Chapter 3, Tools and Utilities 31

VoucherBatchBatch=

VoucherBatchID=86

OriginalCount=2

StartOfRange=00000000000003
EndOfRange=00000000000004

#

Voucher records start

#
86,20090101000000,057195727842702414,1000000138
86,20090101000000,363323157948027866,1000000139
#

End of voucher records

#

32 Voucher Manager Technical Guide

Chapter 4
Background Processes

Overview

Introduction

This chapter explains the processes that are started automatically by Service Logic Execution
Environment (SLEE).

Note: This chapter also includes some plug-ins to background processes which do not run
independently.

In this chapter

This chapter contains the following topics.

DEVWARS ..ttt 33
CCSBEAVM.......c ettt 34
COSSIMSAVA ...ttt ettt e e et e oo et e e e e st e e e e st e e e ae et e e e as et e e e anre e e e e nnne e e e ennes 36
CCSVCHRPART _MaiNtENaANCE.SN 36
CCSCBILOHRNAES ...ttt e et e e et e e et e e e st e e e an e e s e e e e e anes 37
CCSCBILOHRNSHA ...ttt e et e e et e e e s e e s ann e e e e nnes 38
CCSLEACYPIN 38
LTty Lo 10 [od o 1= T g O O3 1 R P TP PP 39
LTty Lo T¥ [od o [=T g O O3S TP TP PP PRP PSRN 39
CCSVWARSVOUCNEIHANIET ...ttt e e e e e e e st aee e e e e e e e anns 40
CCSVOUCNEICIEatIONPIUGIN ...ttt e e e e 43
beVWARS
Purpose

beVWARS is the Vouchers Wallets Accounts Reserve System. It enables CCS to handle actions that
interact with the wallet, account, and voucher tables in the E2BE database on the VWS. Most
beVWARS functionality is provided by plug-ins and handlers as defined in the handlers (on page 34)
and plugins parameters. This section shows beVWARS configuration, which includes CCS plug-ins and
handlers.

Note: If the VWS is not used, the beVWARS handlers and plug-ins are not relevant.
Location

This binary is located on VWS nodes.

More information

For more information about the beVWARS and its handlers and plugins, see VWS Technical Guide and
CCS Technical Guide.

Chapter 4, Background Processes 33

Example

An example of the beVWARS parameter group of a Voucher and Wallet Server eserv.config file is listed
below. Comments have been removed.

beVWARS = {
<other beVWARS configuration>
handlers = [
<UBE beVWARS handlers>
"ccsVWARSVoucherHandler.so"

}

Parameters

beVWARS has one parameter which is relevant to CCS configuration. It is documented below. For
more information about other beVWARS parameters, see VWS Technical Guide and CCS Technical
Guide.

handlers
Syntax: handlers = |
"lib"
[...]
1
Description: Lists the beVWARS message handler plugins to load.
Type: Array
Optionality: Required to load handlers which handle messages from CCS processes such as
Messaging Manager.
Allowed:
Default:
Notes: This array will also include the standard handlers provided by VWS, and may also

include plugins from other applications such as OSA CHAM.

For more information about the voucher handler provided with Voucher Manager
including its configuration, see ccsVWARSVoucherHandler (on page 40).

Example: handlers = [
"ccsVWARSVoucherHandler.so"

]

ccsBeAvd

Purpose

ccsBeAvd runs on a regular basis as a single independent instance on each VWS node. It deletes a
range of archived/deleted voucher records from the VWS.

ccsBeAvd determines which range of archived/deleted vouchers to delete based on the information held
in the AVD (archive voucher delete) configuration table. This table holds the range of voucher redeem
dates for which vouchers should be deleted and the number of records to delete in one go.

After deleting a range of vouchers, ccsBeAvd deletes the related row from the AVD configuration table.

ccsBeAvd can also delete a single voucher batch based on the information held in the AVD node table.

34 Voucher Manager Technical Guide

Replication node registration

ccsBeAvd is registered as a replication node. The replication node id is taken from the -r command line
parameter at start up. See Parameters (on page 35).

Location

This binary is located on the SMS node.

Startup

ccsBeAvd is started by the cron daemon via a shell script (ccsBeAvdStartup.sh) entry in the crontab.

Example

Here is an example crontab entry for the ccsBeAvd startup script.

01 **0 (. /IN/service packages/CCS/ .profile ; . /IN/service packages/CCS/
.profile ; /IN/service packages/CCS/bin/ccsBeAvdStartup.sh) >>
/IN/service packages/CCS/tmp/ccsBeAvd.log 2>&l

Parameters

ccsBeAvd supports the following command line parameters.

-r

Syntax: -r node id

Description: node_1id s the reference number which uniquely identifies the ccsBeAvd
instance on the VWS as a replication node.

Type: Integer

Optionality: Required

Allowed: A number between 512 and 1023

Default: None

Notes: For more information about node numbers, see SMS Technical Guide.

Example: -r 611

Failure

If ccsBeAvd fails some of the archived voucher records may not be deleted from the database and the
entry for the ccsBeAvd replication node may not be deleted from the AVD configuration table. In this
case, the voucher records will be processed the next time ccsBeAvd is run.

Output

ccsBeAvd logs output to the following log file:
/IN/services packages/CCS/tmp/ccsBeAvd. log.

Chapter 4, Background Processes 35

ccsSmsAvd

Purpose

ccsSmsAvd runs on a regular basis as a single independent instance on each SMS node. It deletes a
range of archived/deleted voucher records from the SMS.

ccsSmsAvd determines which range of archived/deleted vouchers to delete based on the information
held in the AVD (archive voucher delete) configuration table. This table holds the range of voucher
redeem dates for which vouchers should be deleted and the number of records to delete in one go.

After deleting a range of vouchers, ccsSmsAvd deletes the related row from the AVD configuration
table. ccsSmsAvd can also delete a single voucher batch based on the information held in the AVD
node table.

The existing configuration file,

/IN/service packages/CCSVCHRPART/etc/ccs voucher reference part.cfg, isused to
control the archiving functionality of the ccsSmsAvd binary when it deletes a voucher, with the addition
of optional flat file archiving of vouchers.

Location

This binary is located in SMS.

Startup

ccsSmsAvd is started by the cron daemon via a shell script (ccsSmsAvdStartup.sh) entry in the crontab.

Example

Here is an example crontab entry for the ccsSmsAvd startup script.

01 **0 (. /IN/service packages/CCS/ .profile ; . /IN/service packages/CCS/
.profile ; /IN/service packages/CCS/bin/ccsSmsAvdStartup.sh) >>
/IN/service packages/CCS/tmp/ccsSmsAvd.log 2>&1

Failure

If ccsSmsAvd fails, some of the archived voucher records may not be deleted from the database and the
entry for the ccsSmsAvd replication node may not be deleted from the AVD configuration table. In this
case, the voucher records will be processed the next time ccsSmsAvd is run.

Output

ccsSmsAvd logs output to the following log file:
/IN/services packages/CCS/tmp/ccsSmsAvd. log.

CCSVCHRPART_ maintenance.sh

Purpose

The CCSVCHRPART maintenance. sh script performs scheduled partition maintenance on the
CCS_VOUCHER_REFERENCE table. It identifies and removes the redeemed vouchers whose
REDEEMED_DATE is older than the configured retention period, ensuring efficient clean-up of outdated
data while retaining recent voucher records to maintain optimal database performance.

36 Voucher Manager Technical Guide

Location

Script file: /IN/service_packages/CCSVCHRPART/bin/CCSVCHRPART_maintenance.sh
Configuration file: /IN/service_packages/CCSVCHRPART/etc/ccs_voucher_reference_part.cfg
Node: This script runs on the SMS node.

Note: This script runs daily at 2:30 AM via CRON to maintain table partitioning for voucher data.

Operations

CCSVCHRPART maintenance. sh script performs the following operations:

1. Disables the foreign key constraints referencing CCS_VOUCHER_REFERENCE
2. Drops expired partitions older than N weeks (value configurable via .cfg file or DB parameter).

Note: Partitions are created in advance on a weekly basis, aligned with calendar weeks. The
partitioning key is the REDEEMED_DATE column from the CCS_VOUCHER_REFERENCE table,
which determines the weekly partition each voucher belongs to.

3. Next partitions are pre-allocated in advance, even if no vouchers yet exist for that week.
4. Re-enables foreign key constraints using ENABLE NOVALIDATE.
5. Ensures sufficient free disk space before partition operations.

Summary

Whenever CCSVCHRPART maintenance.sh is run, it performs partition maintenance on the
CCS_VOUCHER_REFERENCE table by identifying the vouchers with a REDEEMED_DATE older than
the retention period defined by WEEKS_TO_KEEP_PARTITION. This threshold can be specified
directly in the config file (e.g., WEEKS_TO_KEEP_PARTITION=1), or set as 'DB', in which case the
script dynamically fetches the value from the CCS_AVD_COMMON_CONFIG.INTERVAL database
table. Vouchers older than the configured number of weeks are removed by dropping their
corresponding weekly partitions. For vouchers within the retention period, the script changes the status
of their associated tablespaces from ONLINE to READ ONLY in DBA_TABLESPACES to enforce data
immutability and support efficient storage management. This mechanism ensures timely cleanup of old
data while safeguarding recent voucher records.

Log file: /IN/service_packages/CCSVCHRPART/tmp/CCSVCHRPART _maintenance.log

ccsCB10HRNAES

Purpose

The ccsCB10HRNAES security plugin provides the CB10 HRN AES256 encryption functions.
ccsVoucher_CCS3 (on page 39) uses these functions during voucher generation (depending on
configuration). It is also used by ccsVWARSVoucherHandler (on page 40) during voucher redemption
to validate HRN numbers.

For more information about encryption, see CB-10 HRN Creation (on page 11).

Location

This binary is located on SMSs, SLCs, and VWSs.

Chapter 4, Background Processes 37

Startup

ccsCB10HRNAES is used by ccsVoucher_CCS3 as necessary. No startup configuration is required to
use these libraries.

Configuration

ccsCB10HRNAES has no specific configuration. It does accept some parameters from
ccsVoucher_CCS3 for voucher encryption which are configured in the Voucher Management and
Service Management screens.

CcCSCB10HRNSHA

Purpose

The ccsCB1OHRNSHA security plugin provides the CB10 HRN SHA256 and CB10 HRN SHA512 hash
functions. ccsVoucher_CCS3 (on page 39) use these functions during voucher generation (depending
on configuration). Itis also used by ccsVWARSVoucherHandler (on page 40) during voucher
redemption to validate HRN numbers.

For more information about encryption, see CB-10 HRN Creation (on page 11).
Location

This binary is located on SMSs, SLCs, and VWSs.

Startup

ccsCB10OHRNSHA is used by ccsVoucher_CCS3 as necessary. No startup configuration is required to
use these libraries.

Configuration

ccsCB10OHRNSHA has no specific configuration. It does accept some parameters from
ccsVoucher_CCS3 for voucher encryption which are configured in the Voucher Management and
Service Management screens.

ccsLegacyPIN

Purpose - ccsLegacyPIN

ccslLegacyPIN plugin library is used by the ccsVoucher_CCS3 (on page 39) voucher tool to encrypt the
voucher's PINs when it generates vouchers using the DES authentication rule. The ccsLegacyPIN
plugin library is not applicable to new voucher batches. For more information about authentication rules,
see Security libraries.

Note: The ccs3Encryption plugin is a symbolic link to the ccsLegacyPIN (on page 38) plugin, but in the
ccs3Encryption mode is uses different parameters.

38 Voucher Manager Technical Guide

Location

This binary is located on SMSs and VWSs.

Startup - ccsLegacyPIN

ccsLegacyPIN is used by ccsVoucher CCS3 for existing vouchers. No startup configuration is required
for this library to be used.

Configuration
ccsLegacyPIN has no specific configuration. It does accept some parameters from ccsVoucher CCS3

(on page 39) for voucher encryption which are configured in the CCS Voucher Management and Service
Management screens.

ccsVoucher CCS1

Purpose

ccsVoucher_CCS1 is used by the ccsChangeVoucherStartup.sh script for creating or changing the state
of a range of vouchers. It provides the AltAuthMod PAM for voucher generation.

Location

This binary is located on the SMS node.

Startup

ccsVoucher_CCS1 can be run from the command line. However it is usually started by
ccsChangeVoucherStartup.sh in response to an action from the Voucher Management screen.

Configuration

ccsVoucher_CCS1 supports both eserv.config parameters and command line parameters. For more
information about the configuration available to this process, see ccsVoucherStartup.sh (on page 17).

ccsVoucher CCS3

Purpose

ccsVoucher_CCS3 provides voucher generation functionality for most voucher generation methods.

Location

This binary is located on the SMS node.

Startup

ccsVoucher_CCS3 can be run from the command line. However it is usually started by
ccsVoucherStartup.sh (on page 17) in response to an action from the Voucher Management screen.

Chapter 4, Background Processes 39

Configuration

ccsVoucher_CCS3 supports both eserv.config parameters and command line parameters. For more
information about the configuration available to this process, see ccsVoucherStartup.sh (on page 17).

Output

For more information about the voucher files written by ccsVoucher_CCS3, see Exported voucher batch
files (on page 29).

ccsVWARSVoucherHandler

Purpose

This beVWARS message handler performs the Voucher and Wallet Server side processing of
messages directly relating to vouchers. This includes voucher reservation/commit, alteration and
deletion. It does not perform the wallet recharge; this is done by the ccsVWARSWalletHandler. The
message handler only controls the Voucher and Wallet Server side of the CCS voucher tables, not the
main body of data about vouchers that is replicated from the SMS.

This handler validates incoming voucher reserve (for example, scratch or redeem) requests, and refers
to the replicated CCS voucher tables for all information except the current redeemed/unredeemed state
of the voucher.

It is important to remember that the BE_VOUCHER record will in all probability not exist unless the
voucher has had a previous successful (or almost successful) redeem performed upon it. This state is
hidden from the client process, a non-existent BE_VOUCHER record is proof that the voucher has not
been redeemed.

Location

This binary is located on VWS nodes.

Startup

If ccsVWARSVoucherHandler is included in the beVWARS handlers array in eserv.config, it is loaded
by beVWARS when beVWARS is initialized.

Itis included in the following lines:

handlers = [
"ccsVWARSVoucherHandler.so"
]
For more information about the beVWARS handlers section, see handlers (on page 34).

Note: Other handlers may also be included in the handlers array.

Parameters

The ccsVWARSVoucherHandler supports the following parameters in the beVWARS section of
eserv.config .

Note: It also required the BE . serverId parameter. For more information about setting serverId, see
VWS Technical Guide.

badPinExpiryHours
Syntax: badPinExpiryHours = hours
Description: The number of hours before the bucket storing the bad PIN expires.

40 Voucher Manager Technical Guide

Type: Integer

Optionality: Optional (default used if not set)
Allowed: negative integer Does not expire
positive integer Number of hours before expiry
Default: 24
Notes:
Example: badPinExpiryHours = 48

consecutiveBadPinExpiryHours

Syntax: consecutiveBadPinExpiryHours = hours
Description: The number of hours before the bucket storing the consecutive bad PIN expires.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: negative integer Does not expire
positive integer Number of hours before expiry
Default: 24
Notes:
Example: consecutiveBadPinExpiryHours = 48

createRechargeCDRInactiveAccount

Syntax: createRechargeCDRInactiveAccount = truel|false
Description: When true, failed voucher recharges generate an EDR.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: true

Notes:

Example: createRechargeCDRInactiveAccount = true

dailyBadPinExpiryHours

Syntax: dailyBadPinExpiryHours = hours
Description: The number of hours before the bucket storing the daily bad PIN expires.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: negative integer Does not expire
positive integer Number of hours before expiry
Default: 24
Notes:
Example: dailyBadPinExpiryHours = 48

monthlyBadPinExpiryHours

Syntax: monthlyBadPinExpiryHours = hours
Description: The number of hours before the bucket storing the monthly bad PIN expires.
Type: Integer

Chapter 4, Background Processes 41

Optionality: Optional (default used if not set)

Allowed: negative integer Does not expire
positive integer Number of hours before expiry
Default: 744
Notes:
Example: monthlyBadPinExpiryHours = 744
requireBonusRow
Syntax: requireBonusRow = true|false
Description: When true, vouchers will fail if there is no entry in CCS_BONUS_VALUES.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: true, false
Default: true
Notes:
Example: requireBonusRow = true

updatelastUseVoucherRecharge

Syntax: updatelastUseVoucherRecharge = truel|false
Description: When true, voucher recharges update the 'last use date' field.
Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: true

Notes:

Example: updatelLastUseVoucherRecharge = true
vomsInstalled

Syntax: vomsInstalled = truel|false

Description: Define if you are using:

e Voucher Manager-type bad PIN balances (true)
e Just a single, VWS bad PIN (false)

Type: Boolean

Optionality: Optional (default used if not set)
Allowed: true, false

Default: false

Notes:

Example: vomsInstalled = true

replicationInterface

Syntax: replicationInterface = "if"
Description: The handle of the SLEE replication interface.
Type: String

Optionality: Optional (default used if not set)

Allowed: Must match the Interface name in SLEE.cfg.

42 Voucher Manager Technical Guide

Default: "replicationlF"

Notes: For more information about SLEE.cfg, see SLEE Technical Guide.
Example: replicationInterface = "replicationIF"
Example

An example of the voucherHandler parameter group of a Voucher and Wallet Server eserv.config file
is listed below. Comments have been removed.

voucherHandler = {
requireBonusRow = true
updatelLastUseVoucherRecharge = true
createRechargeCDRInactiveAccount = true

badPinExpiryHours = 24
dailyBadPinExpiryHours = 24
monthlyBadPinExpiryHours = 744
consecutiveBadPinExpiryHours = -1
vomsInstalled = true
replicationInterface = "replicationIF"

}

Failure

If ccsVWARSVoucherHandler fails, interaction with the wallets from the SLC involving vouchers will fail.

Output

The ccsVWARSVoucherHandler writes error messages to the system messages file, and also writes
additional output to /IN/service_packages/E2BE/tmp/beVWARS.log.

ccsVoucherCreationPlugin

Purpose

The ccsVoucherCreationPlugin library is used by ccsVoucher_CCS3 (on page 39) to generate the
headers and footers of voucher batch files.

Location

This binary is located on the SMS node.

Startup

ccsVoucherCreationPlugin is used by ccsVoucher_CCS3 as necessary. No startup configuration is
required for this library to be used.

Configuration

ccsVoucherCreationPlugin has no specific configuration. It does accept some parameters from
ccsVoucher_CCS3 for voucher encryption which are configured in the Voucher Management and
Service Management screens.

Chapter 4, Background Processes 43

	About This Document
	Scope
	Audience
	Prerequisites
	Related Documents

	Document Conventions
	Typographical Conventions

	Chapter 1
	System Overview
	Overview
	Introduction
	In this Chapter

	Introduction
	Vouchers
	CCS component
	Restricted functionality
	Process descriptions

	Voucher Lifecycle
	Voucher life cycle
	Voucher batches and CCS
	Generating vouchers
	Generating vouchers diagram
	Vouchers and VWSs
	Changing voucher states
	Triggering a voucher redemption
	Voucher redemption message flows
	Voucher redeem process
	Automatic voucher deletion

	Security
	Authenticating modules
	Voucher PINs
	Modules and security plugins
	Security libraries
	DES Encryption
	Public and private key encryption
	GPG keys
	CB-10 HRN Creation
	CB-10 HRN SHA Hashing

	Chapter 2

	Configuration
	Overview
	Introduction
	In this chapter

	eserv.config Configuration
	Introduction
	Configuration File Format
	eserv.config Files Delivered
	Editing the File
	Loading eserv.config Changes

	Configuring VWS processes for CCS
	VWS processes used by CCS
	Message handlers and event plug-ins
	Message handlers

	Chapter 3

	Tools and Utilities
	Overview
	Introduction
	Using SLP Trace log files
	Other CCS tools
	In this chapter

	ccsVoucherStartup.sh
	Purpose
	Location
	Startup
	Options
	<option>
	Common command line parameters
	-v provider
	-r start[/end]
	-s size
	-s state
	-B batch_code
	-C
	-t type
	-m pam
	-M rule
	-c str
	-e be
	-f filename
	-p pause
	-D str
	-P file
	-i state
	-b batch id
	-u usr/pwd
	keyUid
	-d
	Create example
	Monitoring voucher generation
	State example
	CCS3 command line parameters
	-F batch_name
	-n
	-o
	-O
	-R
	-S
	eserv.config parameters
	disableConcurrencyLock
	displayVoucherValue
	ignoreRandomGenerationFlags
	lockFileName
	suppressHeaders
	voucherFileHeaderPlugins
	voucherFileWriterPlugin
	Example eserv.config parameters
	Failure
	Output
	Exported voucher batch files
	CCS3 DES voucher batch example
	CCS3 DES GPG voucher batch example
	CCS3 CB10 voucher batch example
	CCS3 CB10 GPG voucher batch example

	Chapter 4

	Background Processes
	Overview
	Introduction
	In this chapter

	beVWARS
	Purpose
	Location
	More information
	Example
	Parameters
	handlers

	ccsBeAvd
	Purpose
	Replication node registration
	Location
	Startup
	Example
	Parameters
	-r
	Failure
	Output

	ccsSmsAvd
	Purpose
	Location
	Startup
	Example
	Failure
	Output

	CCSVCHRPART_maintenance.sh
	Purpose
	Location
	Operations
	Summary

	ccsCB10HRNAES
	Purpose
	Location
	Startup
	Configuration

	ccsCB10HRNSHA
	Purpose
	Location
	Startup
	Configuration

	ccsLegacyPIN
	Purpose - ccsLegacyPIN
	Location
	Startup - ccsLegacyPIN
	Configuration

	ccsVoucher_CCS1
	Purpose
	Location
	Startup
	Configuration

	ccsVoucher_CCS3
	Purpose
	Location
	Startup
	Configuration
	Output

	ccsVWARSVoucherHandler
	Purpose
	Location
	Startup
	Parameters
	badPinExpiryHours
	consecutiveBadPinExpiryHours
	createRechargeCDRInactiveAccount
	dailyBadPinExpiryHours
	monthlyBadPinExpiryHours
	requireBonusRow
	updateLastUseVoucherRecharge
	vomsInstalled
	replicationInterface
	Example
	Failure
	Output
	ccsVoucherCreationPlugin
	Purpose
	Location
	Startup
	Configuration

