

Oracle® Communications Network
Charging and Control
Voucher and Wallet Server Technical
Guide

Release 15.2

January 2026

ii Voucher and Wallet Server Technical Guide

Copyright

Copyright © 2026, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government’s use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

 iii

Contents

About This Document .. v
Document Conventions .. vi

Chapter 1

System Overview .. 1

Overview .. 1
Introduction to VWS ... 1
Wallets, Balances and Buckets ... 4
Request handling ... 7
Data Management ...18
Synchronization ...20
Wallet and Bucket Expiry...23
BE States ...26
EDR Processing ..29
MFile Updates ...30
Statistics ..32

Chapter 2

Configuration ... 33

Overview ..33
Configuration Overview ...33
Configuring the Environment ...34
eserv.config Configuration ...34
BE Shared Parameters..40
User Interface-Based Configuration Tasks ...44
SLEE.cfg ..45

Chapter 3

Background Processes .. 47

Overview ..47
beCDRMover ...47
BeClient ...50
beGroveller ..59
beServer ..65
beSync ...76
beServiceTrigger ...83
beVWARS ...94
beVWARSCCDRHandler ..117
beVWARSExpiry ...117
beVWARSMergeBuckets ..121
cmnPushFiles ..122
Event Storage Interface ...125
libbeMsgRouterDefault ..129
libBeClientIF ..129
libclientBcast ..130
libbeEventFactory ..130

iv Voucher and Wallet Server Technical Guide

Chapter 4

Tools and Utilities ... 133

Tools and Utilities Overview .. 133
VWS Correction Tool ... 133
beEventStorageIFDump .. 141
beServiceTriggerUser ... 143

Chapter 5

Troubleshooting ... 145

Overview .. 145
Common Troubleshooting Procedures ... 145
Possible Problems ... 145
Process Failure Recovery ... 147

Chapter 6

About Installation and Removal .. 151

Overview .. 151
Installation and Removal Overview ... 151
Checking the Installation ... 151

 v

About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the
Voucher and Wallet Server (VWS) application.

Audience

This guide was written primarily for system administrators and persons installing, configuring and
administering the VWS application. However, sections of the document may be useful to anyone
requiring an introduction to the application.

Prerequisites

Although there are no prerequisites for using this guide, familiarity with the target platform would be an
advantage.

A solid understanding of UNIX and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this technical guide. Attempting to install, remove, configure or
otherwise alter the described system without the appropriate background skills, could cause damage to
the system; including temporary or permanent incorrect operation and complete loss of service.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related Documents

The following documents are related to this document:

• Service Logic Execution Environment Technical Guide

• Service Management System Technical Guide

• Service Management System User's Guide

• Event Detail Record Reference Guide

If this Voucher and Wallet Server is installed with Charging Control Services, these documents are also
related to this document:

• Charging Control Services Technical Guide

• Charging Control Services User's Guide

• Feature Nodes Reference Guide

vi Voucher and Wallet Server Technical Guide

Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network
Charging and Control (NCC) documentation.

Formatting Convention Type of Information

Special Bold Items you must select, such as names of tabs.

Names of database tables and fields.

Italics Name of a document, chapter, topic or other publication.

Emphasis within text.

Button The name of a button to click or a key to press.

Example: To close the window, either click Close, or press Esc.

Key+Key Key combinations for which the user must press and hold down one
key and then press another.

Example: Ctrl+P or Alt+F4.

Monospace Examples of code or standard output.

Monospace Bold Text that you must enter.

variable Used to indicate variables or text that should be replaced with an
actual value.

menu option > menu option > Used to indicate the cascading menu option to be selected.

Example: Operator Functions > Report Functions

hypertext link Used to indicate a hypertext link.

Specialized terms and acronyms are defined in the glossary at the end of this guide.

 Chapter 1, System Overview 1

Chapter 1

System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Network Charging and Control
(NCC) network or service implications of the product.

In this Chapter

This chapter contains the following topics.

Introduction to VWS... 1
Wallets, Balances and Buckets ... 4
Request handling... 7
Data Management ... 18
Synchronization ... 20
Wallet and Bucket Expiry .. 23
BE States ... 26
EDR Processing .. 29
MFile Updates ... 30
Statistics .. 32

Introduction to VWS

Introduction

The Voucher and Wallet Server (VWS) provides high-performance, real-time charging and subscriber
account management functions.

The VWS solution maintains voucher, wallet and reservation details in the E2BE database on the
Voucher and Wallet Server. It enables call processing applications to bill mobile customers.

Billing information is kept logically separate from call processing on the SLCs, allowing it to be used by
multiple clients.

Functions

The role of the VWS is to manage all the billing/charging information associated with call processing.

The VWS provides:

• Subscriber account management

• Management of multiple wallets and balance types

• Real-time rating of services

• Structure for tariffing on transactions

• Reservation, debit and credit requests

Chapter 1

2 Voucher and Wallet Server Technical Guide

• Voucher management, including voucher query and redemption requests

• Failover and machine redundancy

• EDRs and EDR archiving

Main components diagram

This diagram shows the main components of VWS. They mostly run as separate processes on the
SLEE, as illustrated below. Their operation needs to be coordinated, as the state of the entire VWS
affects their behavior.

Main components

This table describes the main components in VWS.

Process Role Further information

BeClient The BeClient is a SLEE interface that runs on the SLC
and handles any process that uses the libBeClientIF
library to connect to the beServer.

The main BeClient is the BeClient provided by VWS for
the SLC. (Other applications can provide other
processes to handle other activities such as ccsBeOrb,
which handles interaction between the SMS UI and the
Voucher and Wallet Server nodes.)

BeClient (on page 50)

beServer Handles connections from client processes (including
BeClient processes) and controls routing to beVWARS
processes.

You can run more than one beServer process to
improve performance on Sun CMT hardware.

beServer (on page 65)

 Chapter 1

•

 Chapter 1, System Overview 3

Process Role Further information

beVWARS beVWARS is the core of the VWS. More than one
beVWARS will usually be running on a VWS. It:

• Reads and caches wallet and voucher
information from the E2BE database

• Manages all queries, reservations and updates
against wallets

• Manages all queries, redemptions and state
changes for vouchers

• Writes files used to synchronize data

• Writes EDRs.

beVWARS (on page
94)

beVWARS plug-
in handlers

Perform business-case specific operations on wallets
and vouchers. Some plug-in handlers are provided by
VWS, but other applications can extend VWS logic by
providing additional plug-ins.

Examples: CCS beVWARS plug-in handlers manage
monthly:

• Spend accumulation and upgrade

• Account activation

beVWARS plugins (on
page 7)

beSync Synchronizes data between the Voucher and Wallet
Servers in a VWS pair.

You can run more than one beSync process to improve
performance on Sun CMT hardware.

beSync (on page 76)

E2BE database The databases on the VWSs. They hold a subset of the
data from the SMF database on SMS.

NA

Billing Interfaces

VWS supports external interfaces to bill for third-party services, such as:

• Calling card services

• Data charging services

• SMS charging services

• Universal Parlay Gateway

VWS Domains

Each VWS domain is made up of a pair of Voucher and Wallet Server. For more information about
Voucher and Wallet Server pairs, see Data redundancy (on page 18).

Domains can provide a full set of functions, or can be configured to offer a specific set of functions.

Domains are configured in the Service Management screen in CCS. For more information about
configuring domains, see CCS User's Guide.

About improving performance

If the VWS server will be processing high volumes of traffic, you can improve performance by
configuring the SLEE to run multiple instances of the beServer and beSync processes. Running multiple
instances of these processes enables the VWS server to load-share:

• beServer client connections over multiple process spaces

Chapter 1

4 Voucher and Wallet Server Technical Guide

• beSync synchronization connections over multiple process spaces

For information on configuring beServer, see beServer (on page 65). For information on configuring
beSync, see beSync (on page 76).

Note: In the diagrams in the following sections in this guide that show the beServer and beSync
processes, only one instance of each is shown.

Wallets, Balances and Buckets

Wallets

Each subscriber account is linked to one or two wallets.

A wallet is a group of balances owned by the subscriber and available to pay for prepaid services
offered by the platform.

Example: A subscriber could have a “General Cash” balance and a “Free Notification” balance in their
wallet. Each balance has its own expiry date, which means that any value left in the balance after this
date will be removed.

Wallet states

The wallet has a state which:

• Indicates what phase of the life cycle the associated subscriber account currently is in

• Determines whether the subscriber can use his or her services

This table describes the available wallet states.

State Description

Pre-use The first state after the subscriber account/wallet is created.

Active The state during which normal wallet operations are handled. All services can
be used.

When a subscriber uses their account for the first time (via any paid service), the
wallet moves from the Pre-use state into the Active state. The initial expiry dates
for the balances and the wallet are set when the wallet is activated.

Dormant If the subscriber does not use any services for a configurable period of time, the
account/wallet is put in the Dormant state. The Dormant state is useful for
reporting inactive subscribers. All services are still accessible.

Frozen If fraudulent activity is detected on the subscriber account, the subscriber
account/wallet is changed into the Frozen state. All services are disabled until
manual intervention by an operator.

Suspended The suspended state can be used by the operator to temporarily disable a
subscriber's account.

Terminated When the wallet's expiry date is reached, the subscriber account/wallet is moved
into the terminated state.

Note: Wallets may also be affected by expiry dates. For more information about wallet and bucket
expiry, see Wallet and Bucket Expiry (on page 23).

 Chapter 1

•

 Chapter 1, System Overview 5

Wallet lifecycle

This diagram shows the states in a standard life cycle of a wallet.

Wallet life cycle plans

A wallet life cycle plan comprises a set of wallet life cycle periods. The plan can be associated with a
subscriber's wallet through the subscriber's product type.

The plan is used to extend the existing states of the wallet with customizable sub-states called periods.
The beginning of each period can be configured as an offset of days before or after the wallet expiration
date. A period ends when the next one, if defined, starts or when the wallet expires.

For each period in the wallet life cycle you can define the features that will be available. This includes:

• Session charges

• Available named event operations

• Enabled general charges and recharges

For information on configuring wallet life cycle plans, see the Wallet Management section in CCS User's
Guide.

VWS associations

When a wallet is created, it is created on a specific VWS Voucher and Wallet Server pair. This Voucher
and Wallet Server pair handles all the updates and information queries for that wallet.

Processes which send a wallet request will usually check to which VWS to send the request before the
request is sent. If the wallet request is sent to the wrong VWS, the VWS will return an error.

Migrating wallets

If the Voucher and Wallet Server (VWS) pair is storing CCS wallets, the wallets can be migrated from
one VWS to another using the UBE Account Balancing tab. For more information about this tab, see CCS
User's Guide. For more information about how CCS migrates wallets between VWSs, see CCS
Technical Guide.

Chapter 1

6 Voucher and Wallet Server Technical Guide

Balances

Balances record a value in a wallet by collecting buckets into a group. Each bucket records a specific
value with an optional expiry date. There are two main types of balances:

• Chargeable balances which record value that can be used for services

• Internal balances which are used for internal values and triggers within the system

Wallets, balances and buckets relationship

This diagram shows how buckets are collected into a balance value, and balances are connected to a
wallet.

Note: Internal balances have the same structure.

Wallet and bucket events

When beVWARS receives a request which involves a wallet, it will load the wallet and all the wallet's
buckets. This includes loading a wallet for a query, update or charging operation. When the wallet is
loaded, wallet load event plug-ins are triggered. These event plug-ins will take any required actions on
the wallets and buckets as necessary.

Background processing

In normal processing, events are triggered only when a subscriber or customer care representative
interacts with the wallet. Some events (such as expiries and periodic charges) should be triggered
regardless of whether the wallet has been used by a subscriber or customer care representative. In
order to process these events, beGroveller sends lists of wallet IDs to beVWARS for processing. This
processing triggers any events which are due to occur in the same way a normal interaction would,
except wallet events triggered from beGroveller lists do not trigger any message handlers.

For more information about how wallets and buckets are expired, see Wallet and Bucket Expiry (on
page 23).

 Chapter 1

•

 Chapter 1, System Overview 7

Request handling

Reservations and billing diagram

This diagram shows how VWS handles requests.

beVWARS plugins

beVWARS plug-ins can trigger on any event which requires reading data about a wallet or voucher
(including maintenance through SMS UI, call charges, or named events).
Because the plug-ins run before the original request is processed, any action such as expiring a bucket
or wallet is run before any charges are applied. This means expired wallets or buckets are never
available, even if they still exist in the database.

Applications which are using the VWS for charging or voucher redemption usually provide beVWARS
plug-ins to handle the specific application logic required by the application. VWS provides these plug-ins
as standard:

• beVWARSExpiry (on page 117)

• beVWARSMergeBuckets (on page 121)

• libbeEventFactory (on page 130)

Request processing

This table describes how VWS handles requests from service applications.

Chapter 1

8 Voucher and Wallet Server Technical Guide

Note: For information about how CCS handles charging for calls or SMS and the CCS plug-ins
mentioned in the process, see CCS Technical Guide.

Stage Description

1 Requesting process sends a request to the BeClient process (usually BeClient on the
SLC, but also PIbeClient and ccsBeOrb on the SMS).

Note: Other applications and specific functions can use other BeClient processes, but the
ones mentioned are the most common.

2 BeClient process checks for plug-ins to handle this message. Plug-ins are specified in the
plugins (on page 57) parameter in eserv.config.

Example: libBeClientIF (on page 129) will usually be triggered in addition to any
application-specific plug-ins such as libccsClientPlugins which applies CCS logic.

3 If the message has a BE ID of 0, libclientBcast will send the request to all VWS Voucher
and Wallet Servers to locate the Voucher and Wallet Server which holds the details which
are relevant to the request.

If the message has a BE ID other than 0, BeClient will send the request to the VWS pair
with that id.

Note: The BE ID of a VWS is set by the serverId (on page 42) parameter.

Example: If the request is a voucher redeem, the libclientBcast library will cause the
BeClient to send a request to all Voucher and Wallet Server pairs to locate the Voucher
and Wallet Server pair which holds the data for the voucher which is about to be
redeemed.

4 beServer receives the request from the BeClient process via FOX over TCP/IP. It
determines the message type and checks whether there are any handlers for this
message. Handlers are configured in the handlers (on page 69) parameter in

eserv.config.

5 beServer creates a context to store information for the request. The information includes:

• The original request

• The BeClient

• Any message handler that is handling the request

• The state the message handler is in

• The beVWARS process which will handle the request

6 beServer checks for and runs routing plug-ins configured in the
messageRoutingPlugins (on page 71) parameter in eserv.config.

Note: If this message is part of a sequence (but not the first), beServer will send the
message to the same beVWARS as the other parts of the sequence.

7 beServer forwards the message across the SLEE to the correct beVWARS.

8 beVWARS determines whether there is a message handler for this message type.
Message handlers are configured in the handlers (on page 98) parameter in

eserv.config.

Note: If there is no message handler for this type, beVWARS will log an error.

9 When the initial message handler is triggered, it will query either the wallet or the voucher
cache. If the cache does not contain the details or the details in the cache are stale,
beVWARS reads the details from the database.

10 Depending on the message type, different event and message plug-ins will be triggered.
Plug-ins (including event handlers) are configured in the plugins (on page 99)

parameter in eserv.config.

 Chapter 1

•

 Chapter 1, System Overview 9

Stage Description

Example: If a wallet is interacted with, beVWARSExpiry will check the expiry dates on all
buckets in the wallet, and will expire any buckets which are overdue. For more
information about expiry handling, see Wallet and Bucket Expiry (on page 23).

Note: At least one plug-in must be provided to process requests from an application
which is using VWS for charging. For more information about the specific plug-ins which
are triggered, what order they are triggered in, and what they do, see the technical guide
for that application.

11 For updates and reservations (but not queries), beVWARS starts the synchronization
process by writing the change to the sync files. Synchronization enables the VWS to
replay operations in the event of a failure and maintain redundancy in the event of a
failure. For more information about how the synchronization process works, see Data
synchronization.

For updates only, beVWARS also flushes the data. It:

• Updates the wallet cache from the database

• Updates the database (this update will be held in a queue until the next flush of
COMMITs to the E2BE database)

• Writes the changes to the EDR file (these updates are also queued for bulk
writing)

Note: The EDRs will be written by the beVWARS which processed the update. This
avoids duplicate EDRs being written in the event of a failover.

For more information about how beVWARS writes data, see Queuing and flushing
updates (on page 19).

For more information about EDRs, see EDR Processing (on page 29).

12 beVWARS on the primary VWS sends the acknowledgment back to BeClient via
beServer.

13 BeClient passes the acknowledgment back to the requesting process.

Wallet and voucher caches

beVWARS maintains a wallet cache and a voucher cache to store up to date information about the
wallets and vouchers it maintains. beVWARS updates the cache record for a wallet or voucher
whenever one of the following occurs:

• Wallet or voucher is queried

• Wallet reservation or update is received

• Voucher is redeemed

A wallet or voucher record is removed from the cache if the record for it expires before a new request for
that record is retrieved.

Supported requests

This table describes the types of messages VWS supports.

Message Type Code Description

Initial Reservation IR Reserve a charge amount.

Subsequent Reservation SR Reserve another charge amount.

Commit Reservation CR Apply reserved charge.

Revoke Reservation RR Abandon a reservation.

Chapter 1

10 Voucher and Wallet Server Technical Guide

Message Type Code Description

Named Event NE Attempt to charge a named event.

Named Event Rate NER Used by Named Event feature node.

Apply Tariffed Charge ATC Used by DUCR feature node.

Initial Named Event
Reservation

INER Attempt to reserve a named event.

Subsequent Named Event
Reservation

SNER Named event reservation which follows on from an
Initial Events Reservation (INER).

Confirm Named Event
Reservation

CNER Apply reserved named event.

Revoke Named Event
Reservation

RNER Abandon a named event reservation.

Voucher Information VI Query a voucher.

Voucher Update VU Update voucher details.

Voucher Redeem VR Reserves a voucher.

Commit Voucher Redeem CVR Wallet changed successfully, redeem voucher.

Revoke Voucher Redeem RVR Abandon a voucher reservation.

Voucher Redeem Wallet VRW Tells BeClient to start a Voucher Redemption.

Voucher Type Recharge VTR Recharge a wallet using a voucher type name.

Voucher Type Recharge
Confirm

VTRC Perform product type swap.

Wallet General Recharge WGR Recharge wallet and buckets.

Wallet Update WU Update wallet details (not buckets/balances).

Wallet Create WC Create a new wallet.

Wallet Delete WD Delete an existing wallet.

Wallet Information WI Query a wallet and its buckets/balances.

Bad PIN BPIN Increase the Bad PIN balance.

Reload the MFile LDMF Reload an updated MFile.

walletDeleteBufferSize

Syntax: walletDeleteBufferSize = num

Description: The number of wallet deletes in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: walletDeleteBufferSize = 1000

walletIds

Syntax: walletIds = [ID1, ID2, ...]

Description: List of subscriber wallet ids we want to trace.

Type: Array, Integer

Optionality: Optional if beClient parameter supplied, mandatory if beClient not supplied.

Allowed: Any valid wallet ID.

 Chapter 1

•

 Chapter 1, System Overview 11

Default: None

Notes: To obtain the wallet id(s) for a given CLI/subscriber use the showCLI.sh script on
the BE where tracing is to occur.

Example: walletIds = [
 382,
 385
]

walletLowWaterMark

Syntax: walletLowWaterMark = num

Description: The number of outstanding wallet IDs to grovel, before sending a request to
beGroveller for another batch of wallet IDs to grovel.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 100

Notes:

Example: walletLowWaterMark = 100

Wallets

Each subscriber account is linked to one or two wallets.

A wallet is a group of balances owned by the subscriber and available to pay for prepaid services
offered by the platform.

Example: A subscriber could have a “General Cash” balance and a “Free Notification” balance in their
wallet. Each balance has its own expiry date, which means that any value left in the balance after this
date will be removed.

writerIfName

Syntax: writerIfName = "name"

Description: The SLEE name for the VWS component - beWriter.

Type: String

Optionality:

Allowed:

Default: "beWriter"

Notes: For more information about the SLEE, see SLEE Technical
Guide.

Example: writerIfName = "beWriter"

XmlTcap Parameters

beServiceTrigger/XmlTcap is configured by the following parameters from the triggering section in

the eserv.config file on the VWS:

triggering = {

Control_Plan = "cpname"

Service_Handle = "handle"

scps = ["ip:port"]

}

Chapter 1

12 Voucher and Wallet Server Technical Guide

triggering = {

Control_Plan = "Reward"

Service_Handle = "CCS_BPL"

CCSNamespace = "http://eng-prf-zone01-z1/wsdls/ON/CCSNotifications.wsdl"

edr = false

scps = ["cmxdevscp1:3072", "cmxdevscp2:3072"]

osd_scps = ["cmxdevscp1:3072", "cmxdevscp2:3072"]

failureRetryTime = 60

storageInterface = beEventStorageIF

triggerInterface = beServiceTrigger

operationSet = CMX ON

operation = Invoke OSD

responseTag = Result

maxRatePerUAS = 0

throttleLife = 30

timeBetweenThrottles = 10

tcpTxMaxBuf = 262144

tcpRxMaxBuf = 131072

} # triggering

Example eserv.config configuration

This is an example of the BE section of an eserv.config file (comments have been removed). It is not

intended to be used in a production environment, but only to illustrate the configurations available.

Details on the configurations in this file are located in various sections later in this guide.

BE = {

serverId = 11

amPrimary = true

oracleUserAndPassword="/"

beLocationPlugin = "libGetccsBeLocation.so"

timerIfName = "Timer"

enableGrovelling = true

freeDiskSpaceWarningThres = 100

freeDiskSpaceShutdownThres = 10

freeDiskSpaceCheckInterval = 300

lowDiskSpaceNotificationInterval = 30

beServer = {

clientSelectTime = 1000000

quiesceLength = 100000

serverPortOverride = 1500

clientSocketBufferSize = 10240

enableStatistics = true

errorOnRecordStatistics = false

maxDownstreamQueueLength = 1000

downstreamOverloadSleepUSec = 100000

dbConnCheckTime = 5

recoveryReportInterval = 60

shutdownDelayTime = 4

startupRetryPeriodSeconds = 2

notEndActions = [

{type="IR ", action="ACK "}

{type="SR ", action="ACK "}

{type="SR ", action="NACK"}

{type="INER", action="ACK "}

{type="SNER", action="ACK "}

{type="SNER", action="NACK"}

]

 Chapter 1

•

 Chapter 1, System Overview 13

handlers = [

"libbeServerPingPlugin.so"

]

messageRoutingPlugins = [

"libbeMsgRouterDefault.so"

]

msgRouterDefault = {

roundRobinTypes = [

"VI "

]

routeOnVoucherNumber = true

}

purge = {

purgeInterval = 300

vwarsTimeout = 10

expectedKeep = 60

noExpectedKeep = 3600

}

routingVoucherNumberLength = 10

} # BE.beServer

beVWARS = {

voucherReservationPeriodSeconds = 120

useTimeFromClient = true

maxTransactionsPerSet = 7

maxOpenDialogTime = 5.0

maxDownstreamQueueLength = 10000

downstreamOverloadSleepUSec = 100000

minResyncReservationLength = 5

createBucketExpiryDays = 30

pluginSkipTimeOnStartup = 30

gapBeforeRestartingPluginSkip = 60

clearEmptyBuckets = true

walletCache = {

maxSize = 10000

maxLoopSize = 500

checkBeforeFlush = false

}

voucherCache = {

maxLoopSize = 500

checkBeforeFlush = false

flushPeriodSeconds = 60 # -1

maxSize = 2

voucherRevokeOnTimeout = true

 # when a voucher reservation is expired, revokes it if set to true

 # this takes precedence over voucherCommitOnTimeout

voucherCommitOnTimeout = false

 # when a voucher reservation is expired, commits it if set to true

 # however voucherRevokeOnTimeout takes precedence if set

}

groveller = {

periodMsec = 1200

requestHighWaterMark = 1

Chapter 1

14 Voucher and Wallet Server Technical Guide

walletLowWaterMark = 100

requestTimeout = 300

peerDatabaseLogin = ""

peerWalletCheckRetrySeconds = 60

}

duplicateDetection = {

keepDirectSeconds = 60.0

keepSyncSeconds = 60.0

directMaxDelaySeconds = 1.0

syncMaxDelaySeconds = 1.0

}

setLastActivationDateStates = [

[PREU]

]

plugins = [

"beVWARSExpiry.so"

]

handlers = [

"beVWARSCCDRHandler.so"

]

syncWriter = {

maxRecordsPerFile = 100

maxSecondsPerFile = 2

}

dbWriter = {

flushPeriod = 10

cdrOutputDirectory = "/IN/service_packages/E2BE/logs/CDR"

balanceCreateBufferSize = 1000

balanceUpdateBufferSize = 1000

balanceDeleteBufferSize = 1000

bucketCreateBufferSize = 1000

bucketUpdateBufferSize = 1000

bucketDeleteBufferSize = 1000

walletCreateBufferSize = 1000

walletUpdateBufferSize = 1000

walletDeleteBufferSize = 1000

voucherCreateBufferSize = 1000

voucherUpdateBufferSize = 1000

voucherDeleteBufferSize = 1000

}

tracing = {

enabled = true

debugLevel = "all"

walletIds = [

<walletid1>,

<walletid2>

]

beClients = [

"<Beclient1>",

"<Beclient2>"

]

}

} # BE.beVWARS

beVWARSExpiry = {

 Chapter 1

•

 Chapter 1, System Overview 15

expireNegativeBuckets = false

removeEmptyBuckets = false

expireBucketsForExpiredWallets = false

expireAtMidnightTZ = "Asia/Vladivostok"

}

beVWARSMergeBuckets = {

maxBuckets = -1

triggerPlugins = false

}

beCDRMover = {

oracleService = ""

oracleUser = "e2be_admin"

oraclePassword = "password"

outDirectory = "/IN/service_packages/E2BE/logs/CDR"

destinationDirectory = "/IN/service_packages/E2BE/logs/CDR-out"

timeout = 4

numberOfRecordsToCommit = 10

commitTimeSeconds = 10

} # BE.beCDRMover

cmnPushFiles = {

CDR = [

"-d", "/IN/service_packages/E2BE/logs/CDR-out"

"-r", "/IN/service_packages/CCS/logs/CDR-in"

"-h", "smp1hostname"

"-F"

]

}

beSync = {

shared = {

noWorkSleepTime = 0.2

spoolDirectory = "/IN/service_packages/E2BE/sync"

spoolChunkSize = 16

badFileDirectory = "/IN/service_packages/E2BE/tmp"

maxDownstreamQueueLength = 10000

downstreamOverloadSleepUSec = 100000

}

sink = {

inSyncThresholdSeconds = 5

inSyncReportingPeriodRecords = 10000

maxSecsToWaitForRemoteOperations = 5

retryConnectionDelaySeconds = 30

maxRetriesBeforeStart = 5

localUpdateChunkSize = 100

heartbeatPeriodSeconds = 10

}

source = {

recordSendingChunkSize = 50

maxQueueLength = 50

}

}

BeClient = {

clientName = "scpClient"

heartbeatPeriod = 10000000

maxOutstandingMessages = 100

Chapter 1

16 Voucher and Wallet Server Technical Guide

connectionRetryTime = 2

plugins = [

{

config="",

library="libclientBcast.so",

function="makeBroadcastPlugin"

}

]

notEndActions = [

{type="IR ", action="ACK "}

{type="SR ", action="ACK "}

{type="SR ", action="NACK"}

{type="INER", action="ACK "}

{type="SNER", action="ACK "}

{type="SNER", action="NACK"}

]

billingEngines = [

{

id = 1,

primary = { ip="123.123.123.123", port=1500 },

secondary = { ip="123.123.123.124", port=1500 }

}

]

}

beGroveller = {

quorumHost = "produsms-cluster"

maxIDsPerResponse = 160

retrySeconds = 60

processExpiredBuckets = true

noProcessingTimes = [

{ startsAt = "06:00", endsAt = "09:30" }

{ startsAt = "11:30", endsAt = "14:00" }

{ startsAt = "16:00", endsAt = "21:00" }

]

connectionRetryTime = 60

heartbeatPeriod = 300000000

filledBufferThreshold = 480

ludProcessingTime = "14:04"

}

triggering = {

Control_Plan = "Reward"

Service_Handle = "CCS_BPL"

CCSNamespace = "http://eng-prf-zone01-z1/wsdls/ON/CCSNotifications.wsdl"

edr = false

scps = ["cmxdevscp1:3072", "cmxdevscp2:3072"]

osd_scps = ["cmxdevscp1:3072", "cmxdevscp2:3072"]

failureRetryTime = 60

storageInterface = beEventStorageIF

triggerInterface = beServiceTrigger

operationSet = CMX ON

operation = Invoke OSD

responseTag = Result

maxRatePerUAS = 0

throttleLife = 30

timeBetweenThrottles 10

tcpTxMaxBuf = 262144

tcpRxMaxBuf = 131072

} # triggering

}

 Chapter 1

•

 Chapter 1, System Overview 17

Wallet life cycle period checks

Before processing a request, the request handler will check that the corresponding feature in the current
wallet life cycle plan period is enabled. If the feature is disabled for the subscriber's wallet, then the
request will fail.

This table lists the request handler and the feature it checks for when processing requests.

Request Handler Wallet Life Cycle Period Features Checked

IR Session Charge

IARR Session Charge

NE General Charge and First Named Event Class if the amount is greater than or
equal to 0 (debit)

General Recharge and First Named Event Class if the amount is less than 0
(credit)

INER Session Charge and First Named Event Class

ATC General Charge if the amount is greater than or equal to 0 (debit)

General Recharge if the amount is less than 0 (credit)

DA General Charge if the amount is greater than or equal to 0 (debit)

General Recharge if the amount is less than 0 (credit)

WGR General Recharge

Merging wallets processes

This table describes the main components involved in merging wallets.

Process Role Further information

beServer Handles connections from client processes
(including BeClient processes) and
controls routing to beVWARS processes.

beServer (on page 65)

beVWARS beVWARS is the core of the VWS. More
than one beVWARS will usually be running
on a VWS. It:

• Reads and caches wallet and
voucher information from the E2BE
database

• Manages all queries, reservations
and updates against wallets

• Manages all queries, redemptions
and state changes for vouchers

• Writes EDRs.

beVWARS (on page 94)

beVWARSMergeBuckets This beVWARS plug-in merges buckets in
the same balance when there are too
many buckets in the wallet.

beVWARSMergeBuckets
(on page 121)

beVWARS plugins (on
page 7)

E2BE database The databases on the VWSs. They hold a
subset of the data from the SMF.

NA

Chapter 1

18 Voucher and Wallet Server Technical Guide

Data Management

Data redundancy

In a redundant configuration there are two Voucher and Wallet Servers in each VWS domain: a primary
and a secondary. The primary is the node with:

• 'true' specified in the amPrimary (on page 41) parameter

• The highest node number

In normal conditions, the primary VWS performs all subscriber account, wallet and balance actions for
the pair. The secondary VWS maintains a duplicate set of data.

If a single Voucher and Wallet Server in a pair is down, the system will work as normal. When the other
peer comes back up:

1 It will resynchronize with the uninterrupted peer without prompting

2 Service will continue as if nothing happened

If the network link between BeClients and beServers, or between peer servers in a redundant pair, is
disconnected, those BeClients that can see at least one member of a VWS pair should be able to keep
running. When connectivity is restored, changes made to records held on the peers are resynchronized.

If the primary VWS fails, the secondary VWS performs the functions of a primary VWS until the primary
VWS becomes available again.

For more information about failover and recovery, see BE States (on page 26).

BeClients and connection failure

If a BeClient process cannot connect to the beServer on the primary VWS, it will retransmit any
outstanding messages to the secondary VWS for processing. Subsequent messages will go to the
secondary VWS, until the primary VWS recovers. When the primary VWS recovers, BeClient sends new
transactions to the primary VWS.

This prevents call crossover conditions, where the beginning of a call could start on one VWS and end
on another.

Throttling

If one beVWARS process is throttling, the beServer will stop accepting any new requests on the client
sockets.

Database update consistency

The E2BE database seldom reflects the complete state of the running system, because updates are
almost always pending. To maintain a single consistent view of the state of records in the database, all
wallet or voucher accesses are processed through beVWARS. beVWARS is responsible for all updates
to resynchronized database fields.

Because beVWARS sends updates to beSync before confirmation of the update on the local VWS has
happened, updates can be applied to the remote VWS and not the local VWS. If the local VWS fails
before updates have been applied, then the updates are retrieved and applied during resynchronization.

beVWARS data updates

Each beVWARS performs the following data update tasks:

• Buffering database updates and EDRs (for performance reasons)

• Applying database updates to the database in the order they were produced

• Writing EDR data to flat files

 Chapter 1

•

 Chapter 1, System Overview 19

• Writing updates to sync files

• Informing beSync there is a sync file to process

Queuing and flushing updates

Updates fall into one of these categories:

• Bucket creations, updates or deletions

• Balance creations, updates or deletions

• Wallet creations, updates or deletions

• Voucher creations, updates or deletions

A buffer is maintained for each of these categories to store updates for later binding to the database via
a bulk bind operation. Each buffer has a configurable maximum size.

beVWARS also maintains an EDR cache to queue EDR details for later writing to disk.

Each time beVWARS processes a transaction, it checks the following criteria to determine if it should
perform a flush:

• One of the buffers is full

• The configurable buffer/cache flush period has been reached

• The writer subsystem is told to flush and commit (on shutdown, for example)

If a flush is triggered, all buffers are written to the E2BE database and the EDR cache is written to the
EDR files.

Flush process

This describes the stages involved in a flush operation.

Stage Description

1 beVWARS writes all EDR records in the cache to a new file.

2 beVWARS records the EDR file name in the E2BE database (BE_CDR_FILE).

3 Update the BE_VWARS_SEQ_NUM table entry for the current beVWARS process. Sets:

• 'last local sequence number' to the sequence number of the last update in the
buffers, and

• 'remote sequence number' to the last value sent from the remote beSync).

4 Bulk bind and run the database statement associated with each database buffer. The
buffers are flushed in this order:

• BE_WALLET, BE_BALANCE, BE_BUCKET, then BE_VOUCHER Inserts

• BE_WALLET, BE_BALANCE, BE_BUCKET, then BE_VOUCHER Updates

• BE_BUCKET, BE_BALANCE, BE_WALLET, then BE_VOUCHER Deletes

5 Commit the changes to the E2BE database.

6 Generate and send a COMMIT message to the beSync process containing the last local
and remote sequence numbers.

7 Update the last committed local update sequence number.

8 Perform a wallet cache flush. This frees up space in the wallet cache by releasing any
entries which were protected until a flush applied the transaction.

Changing number of beVWARS

Because of the method used to keep the VWS pairs synchronised, you must run the same number of
beVWARS on both Voucher and Wallet Server nodes.

Chapter 1

20 Voucher and Wallet Server Technical Guide

Follow these steps to change the number of beVWARS to run on the VWS.

Note: If you reduce the number of beVWARS on a pair, any transactional updates that are incomplete
when the change is made will be lost.

Step Action14.25

1 Set the number of beVWARS interface instances to run by editing the INTERFACE line
for beVWARS in SLEE.cfg for each VWS in the pair.

2 Stop the SLEE on both VWSs in the pair.

The VWS will move to the disabled state.

3 Start the SLEE on both VWSs in the pair.

• The SLEE will start the number of beVWARS instances specified in the updated
SLEE.cfg file.

• The VWS will move to a running state.

For more information about configuring SLEE interfaces, stopping the SLEE, and starting the SLEE, see
SLEE Technical Guide.

Synchronization

Data synchronization

Synchronization is used to ensure database updates and EDRs are not lost. This is achieved by
beVWARS recording a stream of updates to flat files, so the updates can:

• Be replayed in the event of a failure (for example, a hardware fault, power failure, software failure)

• Provide a persistent stream of updates to be delivered to the secondary VWS for application to a
remote E2BE database in the interests of redundancy and failover

It is possible for the remote beSync to drop the connection and later connect and request older updates
at any point. The sync files are only removed when both VWSs have committed the updates.

The current position in the transaction stream for each VWS within a pair is recorded as a pair of
sequence numbers. These numbers record the last locally sourced update and the last remotely
sourced update received and written to the database.

Sequence numbers are managed for each beVWARS, so lost updates are visible as gaps in the
sequence numbers for the beVWARS handling that traffic.

Synchronization between two VWSs in a VWS domain can be viewed as two continuous streams
containing all reservations, updates, and deletions made on one VWS to the other. The two streams are
connections from:

1 Primary beSync source to secondary beSync sink.

2 Secondary beSync sink to primary beSync source.

The two stream connections between the beSync processes on the primary and secondary VWS nodes
are maintained using the internal port that you specify when you configure the VWS domain. If you are
running more than one instance of beSync on the VWS nodes, then two stream connections will be
maintained for each instance. The internal port number is incremented by 1 (one) for each additional
instance of beSync.

For information on configuring VWS domains, see the section on Service Management in CCS User's
Guide.

Example

If you are running two instances of beSync and the internal port number is 1500 then the connections
between:

• beSync0 on VWS1 and beSync0 on VWS2 use port 1500

 Chapter 1

•

 Chapter 1, System Overview 21

• beSync1 on VWS1 and beSync1 on VWS2 use port 1501

Sync files

Files are named with the form “sync-VWARS-YYYYMMDDHHMMSS-UUU” where:

• UUU is a unique number used to differentiate when two or more files are produced in a second

• VWARS is the beVWARS number to distinguish between beVWARS instances.

The files are stored in numbered directories within the main sync file directory. The name of the
subdirectories follows the beVWARS number which wrote the sync file. This is to aid the beSync during
recovery of individual beVWARS instances.

Synchronization diagram

This diagram shows the processes and data involved in the synchronization.

Synchronization process

This table describes how the VWS keeps the Voucher and Wallet Servers in a pair in sync during an
update or reservation.

Note: This process starts at the point the beVWARS has triggered all the configured event plug-ins and
message handlers and is ready to start a reservation or update.

Stage Description

1 For each reservation or update, beVWARS:

• Updates the cache

Chapter 1

22 Voucher and Wallet Server Technical Guide

Stage Description

• Writes the update or reservation to the sync file

• Updates the sync file sequence number

If there is no sync file, the beVWARS creates one.

2 If the request is an update, the beVWARS on the primary VWS writes the EDR to record
the transaction.

3 beVWARS closes its sync file after a configurable period or a configurable number of
entries, or force-closes it (if a commit message is received). It writes the current
transaction set to the file and performs a file flush on the current file to ensure the last
transaction set is written safely to disk.

beVWARS sends a new file notification to beSync containing the name of the file.

4 beSync receives the notification and starts to read the new sync file.

The notification contains the name of the sync file and the beVWARS number. The
beSync process queues received sync file names, so it knows the order in which to
process them without performing expensive directory searching operations.

5 The beSync sink function on the secondary VWS opens a TCP connection to the
corresponding source function on the beSync on the primary VWS and requests updates.

6 The beSync source function on the primary VWS listens on a defined TCP port, for
connections from the corresponding beSync sink. When it receives a request, it reads the
updates and reservations from a transaction set in the sync file and sends them to
beSync on the secondary VWS. A transaction set is a specific sequence number range
from a single beVWARS's sync file. It then waits for another request.

Note: If the number of commands exceeds a configured maximum, outstanding updates
are queued until the number is reduced. This helps to prevent surges of activity that may
stress the VWSs and delay the synchronization.

7 beSync on the secondary VWS sends the update or reservation to a local beVWARS
process.

8 The beVWARS on the secondary VWS updates the:

• Cache

• Sync file sequence number

The beVWARS on both the primary and secondary VWSs flush the reservations or
updates. They:

• Update the database

• Send a COMMIT message to the local beSync.

9 The beSync on the secondary VWS sends the COMMIT to the beSync on the primary
VWS.

10 The beSyncs on both VWSs verify the updates and reservations in their sync files against
the updates and reservations in the COMMIT message(s) they have received.

11 When all the updates and reservations in a sync file have been verified by a COMMIT
message, beSync deletes the file.

Resynchronizations

This table describes the stages involved in resynchronizations.

 Chapter 1

•

 Chapter 1, System Overview 23

Note: The running VWS refers to the Voucher and Wallet Server which has been running as a primary.
It also refers to the other VWS if the two Voucher and Wallet Servers have been running in isolation.
The recovering VWS refers to the Voucher and Wallet Server which has been disabled.

Stage Description

1 If a resynchronization is triggered, the beSync on the recovering VWS queries a local
beVWARS for its last update numbers (both local and remote update numbers).

2 beSync on the recovering compares the sequence number from the local beVWARS with
the last local update sequence number to check whether any local updates have been
missed. If the numbers do not match, beSync streams all local uncommitted transactions
to the recovering beVWARS.

3 When all local updates have been sent, beSync sends a “request all reservations”
message to the beSync on the running VWS specifying which beVWARS instance to
update.

4 The running VWS sends updated beVWARS context and reservations for the recovering
beVWARS number from the beServer on the running VWS to the beServer on the
recovering VWS via the beSync processes.

5 The beVWARS on the running VWS indicates all contexts have been sent correctly and
the beSync on the recovering VWS requests the beSync on the recovering VWS to start
streaming updates.

6 As remote updates are received by the beSync on the recovering VWS, they are
delivered to the appropriate beVWARS instance for application to the database. When
streamed updates are close enough to real-time relative to the running VWS, which is still
actively processing traffic, the beSync process will notifies the recovering beVWARS to
move into running state.

7 After the recovering beVWARS has been enabled, it sends a message to the beServer to
move into running state.

For more information about the different failure scenarios which can trigger a resynchronization, see
Failure scenarios (on page 145).

Wallet and Bucket Expiry

Introduction

Like most functions, wallet expiry and bucket expiry and removal are triggered when a wallet is loaded.
VWS uses beVWARSExpiry to control when wallet expiry events are triggered. Additional wallet expiry
processing can be done by plug-ins and processes provided by other applications. VWS provides basic
bucket handling, though this functionality can be extended by plug-ins which are triggered on bucket
expiry or bucket delete/removal events.

Note: Expiry handling is optional. If no expiry dates are configured for wallets and/or buckets, no expiry
handling will be run.

Wallet management processes

This table describes the main components in VWS.

Process Role Further information

beServer Handles connections from client processes
(including BeClient processes) and controls
routing to beVWARS processes.

beServer (on page 65)

Chapter 1

24 Voucher and Wallet Server Technical Guide

Process Role Further information

beGroveller beGroveller triggers processing on wallets which
have not been triggered by a subscriber action.
This enables VWS to ensure required actions are
taken against all wallets and buckets.

beGroveller (on page
59)

beVWARS beVWARS is the core of the VWS. More than one
beVWARS will usually be running on a VWS. It
does the following:

• Reads and caches wallet and voucher
information from the E2BE database

• Manages all queries, reservations and
updates against wallets

• Manages all queries, redemptions and
state changes for vouchers

• Writes sync files

• Writes EDRs

beVWARS (on page
94)

beVWARSExpiry beVWARSExpiry monitors wallets and buckets,
checking for wallets and buckets which have
passed their expiry date. If it finds a wallet or
bucket which requires expiring, it processes the
record as configured and triggers any Expiry
plug-ins with a Wallet Event or Bucket Event.

beVWARSExpiry (on
page 117)

beVWARS plugins (on
page 7)

Expiry plug-ins beVWARSExpiry starts an expiry event when it
finds an expired wallet or bucket. Each expiry
event can trigger one or more expiry plug-ins.
Each expiry plug-in will take its own action.

Technical guide for the
application using VWS.
For an example, see
CCS Technical Guide.

E2BE database The databases on the VWSs. They hold a subset
of the data from the SMF.

NA

 Chapter 1

•

 Chapter 1, System Overview 25

Expiry diagram

This diagram shows the basic processes, communication and relationships for expiring wallets and
buckets.

Wallet and bucket expiry processing

This table describes how wallets and buckets are expired when they have passed their expiry date.

Stage Description

1 beVWARS (on page 94) loads a wallet.

Loading a wallet can be triggered by one of the following:

• A query, request or reservation from a requesting process as part of normal
processing

• beVWARS processing a wallet from a list of wallet IDs to grovel from beGroveller
(on page 59).

2 Loading the wallet triggers beVWARSExpiry (on page 117).

3 For wallets which are Active or Dormant, beVWARSExpiry checks whether the wallet has
passed its expiry date.

Tip: Wallet expiry date checking is defined by expireAtMidnightTZ (on page 118). If

expireAtMidnightTZ is set, beVWARSExpiry will expire the wallet and buckets the

next time they are loaded after the midnight in the specified time zone which follows the
expiry date.

Chapter 1

26 Voucher and Wallet Server Technical Guide

Stage Description

If the wallet has not expired, beVWARSExpiry checks whether any of the buckets in the
wallet have passed their expiry date. For each bucket which has passed its expiry date,
beVWARSExpiry deletes the bucket. If two buckets expire at exactly the same time, the
buckets will be processed in bucket ID order.

This triggers any beVWARS event plug-ins which are designed to handle Bucket Expiry
events.

Note: If a bucket is expired, it will be deleted unless an event plug-in provides specific
logic which retains the bucket.

Example: ccsVWARSPeriodicCharge processes expiring periodic charge buckets. It
keeps the periodic charge bucket and sets the expiry date to a point in the future.

4 If the wallet has passed its expiry date, bevWARSExpiry sets the wallet's state to
terminated and fires a Wallet Expiry event. This triggers any beVWARS event plug-ins
which are designed to handle Wallet Expiry events.

Expiry plug-ins which handle Wallet Expiry events can be provided as part of another
application such as CCS.

Example: When triggered by a Wallet Expiry event, ccsVWARSExpiry writes an EDR and
a adds the wallet to a list of expired wallets which is used to update the HLR records.

5 beVWARSExpiry checks the configuration.

If expireBucketsForExpiredWallets (on page 119) is set to true, it deletes all

buckets with a positive or zero value. If expireNegativeBuckets (on page 119) is also

set to true, beVWARSExpiry will also delete buckets with negative values.

This triggers any beVWARS event plug-ins which are designed to handle Bucket Expiry
events.

6 If removeEmptyBuckets (on page 120) is set to true, beVWARSExpiry deletes all

buckets with a 0 balance from the E2BE.

Exception: If the last bucket in a wallet which has not expired has a value of 0, that bucket
will be left. If the parameter clearEmptyBuckets is set to false,

removeEmptyBuckets flag will be disabled.

For more information about the expiry plug-ins provided with other applications, see the application's
technical guide.

BE States

Introduction

In a VWS domain, there are two Voucher and Wallet Servers, in a redundant configuration.

If one VWS in a pair is down, the system will work as normal. When the other peer comes back up:

1 It will resynchronize with the uninterrupted peer without prompting

2 Service will continue as if nothing happened.

If the network link between BeClients and beServers (or between VWSs in a domain) is disconnected,
the BeClients that can see at least one member of a VWS pair should be able to keep running. When
connectivity is restored, changes made to records held on the VWSs are resynchronized.

BE states

The beVWARS is responsible for maintaining the current state of a Voucher and Wallet Server. There
are three possible states for a VWS:

• Running

 Chapter 1

•

 Chapter 1, System Overview 27

• Recovering

• Disabled

Running

This is the normal state of a VWS.

In this state:

• beSync is streaming updates and receiving streamed updates

• beServer is accepting connections from BeClients and processing requests

beSync listens on a defined TCP port, for connections from the beSync on the peer VWS. When this
connection is open and streaming, all reservations and transactions are sent to the other VWS.

Disabled

This is the initial state of a VWS, and it can return to this state in a variety of failure scenarios.

In this state:

• beServer does not accept any connections from BeClients

• beSync does not accept any connections from the peer VWS

• The beGroveller does not run

• No internal processing is performed

beVWARS failure

When the SLEE watchdog notices a beVWARS process has failed, the beServer will:

• Cease to read new work from the client sockets

• Allow the remaining active beVWARS instances to quiesce

• Close all client connections (when all beVWARS instances are idle)

When all connections are closed, the BeClient processes will failover to the secondary Voucher and
Wallet Server. The local beServer removes all existing context and beVWARS routes for the failed
beVWARS. These are recovered during the beVWARS recovery, which delivers all context from the
remote VWS.

Recovering

In this state:

• The beGroveller does not run

• Synchronization can be in any state

• beServer should not be accepting new connections from the BeClients.

beServer begins in a recovery state expecting to receive all of its contexts from the beServer on the
peer, and getting the OK from all local beVWARS indicating they are in sync before accepting client
connects and client requests.

On VWS recovery/startup, the local sync files are processed to ensure there are no lost local updates.
Then a connection is made to the peer VWS, to request all updates since the last remote update
received. For more information about this process, see Resynchronizations (on page 22).

If one VWS is disabled for an extended period of time, its peer will amass a significant number of
updates in the sync directory specified by spoolDirectory (on page 79) (typically in the
/IN/service_packages/E2BE/sync/ directory). When the VWS is re-enabled, the updates will be requested
and the VWSs will return to a synchronized state.

Chapter 1

28 Voucher and Wallet Server Technical Guide

beVWARS recovery

Individual beVWARS processes recover independently. If a beVWARS process fails, the other
beVWARS processes do not detect this, and continue to function (though, due to the beServer disabling
connections, they will only be processing remote transactions from the now active secondary VWS).

The failed beVWARS independently goes through its recovery process along with the beSync process,
until it is able to move back into running state. The beServer asks the remote beServer for all contexts
for the beVWARS which failed.

State transitions

Here is what a user can expect to see, in the transition of a Voucher and Wallet Server from one state to
another.

Note: The initial state of the VWS should be disabled.

Transition Description

Disabled to Recovering beServer should prepare to accept contexts.

beVWARS should prepare to send contexts to the beServer, and should
prepare to receive Operations. This should include a complete new
Reservation load, so all existing reservations should be erased.

beVWARS will not request work from beGroveller.

beGroveller will not return wallet IDs for groveling to beVWARS.

beSync should initiate recovery.

Disabled to Running Not a possible transition.

Recovering to Running beServer should start accepting connections.

beVWARS can start to accept new requests and can start to send requests
to beGroveller for lists of wallet IDs to grovel.

beGroveller will determine if it should run. If it should, it will start to return
wallet IDs to grovel to beVWARS. For more information about the
beGroveller, see beGroveller (on page 59).

beSync should proceed as it was (it usually leads the recovery process).

Recovering to Disabled beServer should terminate all connections.

beVWARS should disable the beGroveller.

beVWARS should stop requesting work from beGroveller.

beGroveller will stop accepting requests from beVWARS for wallet IDs to
grovel. an inactive state.

Running to Recovering beServer should terminate all connections.

beVWARS should stop requesting work from beGroveller.

beGroveller will stop accepting requests from beVWARS for wallet IDs to
grovel.

beSync should disconnect open connections and initiate recovery.

Running to Disabled beServer should terminate all connections.

beVWARS should stop requesting work from beGroveller.

beGroveller will stop accepting requests from beVWARS for wallet IDs to
grovel.

beSync should close all open connections and return to an inactive state.

 Chapter 1

•

 Chapter 1, System Overview 29

EDR Processing

Introduction

Each Voucher and Wallet Server in a domain logs EDRs for all actions which are successfully
completed on the local VWS.

EDR processing diagram

This diagram shows how EDRs are processed by VWS.

Note: EDRs can be post-processed on the SMS.

VWS EDR processing

This process describes how VWS processes EDRs.

Stage Description

1 beVWARS receives an update request from the local beServer.

2 beVWARS updates the relevant cache and queues the EDR write until the next flush.

For more information about queuing and flushing, see Queuing and flushing updates (on
page 19).

3 When the next flush is triggered, beVWARS:

• Writes all queued EDR records to a new EDR file

• Records the EDR file name in the E2BE database (in the BE_CDR_FILE table).

Chapter 1

30 Voucher and Wallet Server Technical Guide

Stage Description

Note: Entering the EDR file name in the BE_CDR_FILE table indicates that the EDRs in
the file should be:

• Accepted by the rest of the system

• Transmitted to the SMS for consolidation into the SMF database.

4 beCDRMover moves completed EDR files from the working directory to the output
directory.

5 cmnPushFiles transfers the EDR file to the SMS.

EDR triggers

EDRs are written on the Voucher and Wallet Servers when a wallet or voucher is modified. The
following messages, among others, cause the beVWARS to write EDRs:

• Call End Notification

• Wallet Recharge Request

• Named Event

MFile Updates

Introduction

The MFile contains a subset of the Voucher and Wallet Server data, used to reduce network traffic on
the system. Some of the information held within the VWS changes less frequently, such as Tariffs. It
is this data which is copied to the MFile and held on the VWS. The system reads this MFile, enabling it
to retrieve data quickly, thereby reducing network traffic to the Voucher and Wallet Servers.

MFile data types

A MFile will need to be recompiled if any of the following data types are changed:

• Discount Period

• Discount Sets

• Geography Sets

• Billing Periods

• CLIxDN Mappings

• Tariff Plans

• Product Types

• Tariff Plans

• Currency

 Chapter 1

•

 Chapter 1, System Overview 31

Update process diagram

Here is an example showing an update to an MFile.

Update process - mfile

This table describes the process through which MFiles are updated.

Stage Description

1 - 4 Through the Prepaid Charging user interface (UI) on the SMS node, the system
administrator updates the details contained in the MFile and clicks Save.

5 A new entry is added to the CCS_MFILE table in the SMF database.

Chapter 1

32 Voucher and Wallet Server Technical Guide

Stage Description

6 The relevant tables in the SMF are updated and the data is transferred to the VWS nodes
using replication.

7 When the new CCS_MFILE entry arrives on the BE, VWS sends a notification to the
ccsMFileCompiler.

8 The ccsMFileCompiler updates the MFile file name table (CCS_MFILE) in the BE
database.

9 ccsMFileCompiler then generates a new MFile from the updated data in the E2BE
database.

10 If ccsMFileCompiler has not already connected to the beServer, it uses the
beLocationPlugin (on page 41) to extract the location of the beServer from the BE

database. After establishing the connection, or if it is already connected,
ccsMFileCompiler sends a request to the beServer to reload the MFile.

11 The ccsMFileLoadHandler message handler on the beServer forwards the reload request
to the ccsMFileLoader message handler in beVWARS.

12 beVWARS uses ccsMFileLoader to reload the new MFile.

For more information about the ccsMFile processes, see CCS Technical Guide.

Statistics

Introduction

VWS statistics are generated by each VWS VWS, and then transferred at periodic intervals to the SMS
for permanent storage and analysis.

VWS also records statistics for applications which use the VWS, such as CCS. For more information
about these statistics, see the application's technical guide.

SMS statistics subsystem

The statistics system provided by SMS provides the functionality which collects the statistical events
logged by VWS processes.

For more information about the SMS statistics subsystem, see SMS Technical Guide.

Collected statistics

This table describes the statistics produced by VWS processes.

Statistic Description

NUM_TOTAL_REQ Total number of requests sent to the VWS.

Note: All statistics are collected with a period of 1800 seconds.

For more information about the request messages these statistics measure, see Supported requests (on
page 9).

 Chapter 2, Configuration 33

Chapter 2

Configuration

Overview

Introduction

This chapter explains how to configure the Oracle Communications Network Charging and Control
(NCC) application.

In this chapter

This chapter contains the following topics.

Configuration Overview ... 33
Configuring the Environment ... 34
eserv.config Configuration ... 34
BE Shared Parameters ... 40
User Interface-Based Configuration Tasks ... 44
SLEE.cfg .. 45

Configuration Overview

Introduction

This topic provides a high level overview of how the VWS application is configured.

Note: There are several configuration options that are not explained in this chapter. These options
should not be changed by the user without first consulting Oracle for technical support.

Configuration process overview

This table describes the steps involved in configuring a VWS for the first time.

Stage Description

1 The environment that VWS will run in must be configured correctly. This includes:

• If the directory VWS was installed into was not the recommended directory
(/IN/service_packages/E2BE), setting the root directory

• Configuring the location of the EDR directories

2 The eserv.config file must be configured for the following machines:

• SMS nodes

• SLC nodes

• VWS nodes

The example file should be copied into the main eserv.config, and any mandatory
parameters configured. The parameters which must be set are listed at the top of the
eserv.config file. For more information, see eserv.config Configuration (on page 34).

3 The screen-based configuration tasks must be completed through the CCS User Interface
(UI).

4 The SLEE.cfg file must contain references to the VWS SLEE applications and interfaces.

Chapter 2

34 Voucher and Wallet Server Technical Guide

Configuration components

VWS is configured by the following components:

Component Locations Description Further Information

eserv.config all SMSs and
VWSs

VWS is configured by the BE section

of eserv.config.

eserv.config
Configuration (on page
34)

SLEE.cfg all VWSs SLEE.cfg sets up SLEE interfaces
and applications.

SLEE.cfg (on page 45)

Domains screen SMF database Domains must be set up which
define the Voucher and Wallet
Servers, and available services in
the Domain screen in the CCS UI.

User Interface-Based
Configuration Tasks (on
page 44)

Configuring the Environment

Oracle environment variables

The VWS UNIX system account ebe_oper requires the standard ORACLE environment variables to be
present.

eserv.config Configuration

Introduction

The eserv.config file is a shared configuration file, from which many Oracle applications read their
configuration. Each Oracle machine (SMS, SLC and VWS) has its own version of the configuration file,
containing configuration relevant to that machine. The configuration file contains many different parts or
sections; each application reads the parts of the eserv.config file that contains data relevant to it.

It is located in the following directory:

/IN/service_packages/

The eserv.config file format allows hierarchical groupings, and most applications make use of this to
divide up the options into logical groupings.

Configuration File Format

To organize the configuration data within the eserv.config file, some sections are nested within other
sections. Configuration details are opened and closed using either { } or [].

• Groups of parameters are enclosed with curly brackets – { }

• An array of parameters is enclosed in square brackets – []

• Comments are prefaced with a # at the beginning of the line

To list things within a group or an array, elements must be separated by at least one comma or at least
one line break. Any of the following formats can be used, as in this example:

{ name="route6", id = 3, prefixes = ["00000148", "0000473"] }

{ name="route7", id = 4, prefixes = ["000001049"] }

or

{ name="route6"

 Chapter 2

•

 Chapter 2, Configuration 35

id = 3

prefixes = [

"00000148"

"0000473"

]

}

{ name="route7"

id = 4

prefixes = [

"000001049"

]

}

or

{ name="route6"

id = 3

prefixes = ["00000148", "0000473"]

}

{ name="route7", id = 4

prefixes = ["000001049"]

}

eserv.config Files Delivered

Most applications come with an example eserv.config configuration in a file called eserv.config.example in
the root of the application directory, for example, /IN/service_packages/eserv.config.example.

Editing the File

Open the configuration file on your system using a standard text editor. Do not use text editors, such as
Microsoft Word, that attach control characters. These can be, for example, Microsoft DOS or Windows
line termination characters (for example, ^M), which are not visible to the user, at the end of each row.
This causes file errors when the application tries to read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a working
copy to which you can return.

Loading eserv.config Changes

If you change the configuration file, you must restart the appropriate parts of the service to enable the
new options to take effect.

Example eserv.config configuration

This is an example of the BE section of an eserv.config file (comments have been removed). It is not

intended to be used in a production environment, but only to illustrate the configurations available.

Details on the configurations in this file are located in various sections later in this guide.

BE = {

serverId = 11

amPrimary = true

oracleUserAndPassword="/"

beLocationPlugin = "libGetccsBeLocation.so"

timerIfName = "Timer"

enableGrovelling = true

freeDiskSpaceWarningThres = 100

freeDiskSpaceShutdownThres = 10

Chapter 2

36 Voucher and Wallet Server Technical Guide

freeDiskSpaceCheckInterval = 300

lowDiskSpaceNotificationInterval = 30

beServer = {

clientSelectTime = 1000000

quiesceLength = 100000

serverPortOverride = 1500

clientSocketBufferSize = 10240

enableStatistics = true

errorOnRecordStatistics = false

maxDownstreamQueueLength = 1000

downstreamOverloadSleepUSec = 100000

dbConnCheckTime = 5

recoveryReportInterval = 60

shutdownDelayTime = 4

startupRetryPeriodSeconds = 2

notEndActions = [

{type="IR ", action="ACK "}

{type="SR ", action="ACK "}

{type="SR ", action="NACK"}

{type="INER", action="ACK "}

{type="SNER", action="ACK "}

{type="SNER", action="NACK"}

]

handlers = [

"libbeServerPingPlugin.so"

]

messageRoutingPlugins = [

"libbeMsgRouterDefault.so"

]

msgRouterDefault = {

roundRobinTypes = [

"VI "

]

routeOnVoucherNumber = true

}

purge = {

purgeInterval = 300

vwarsTimeout = 10

expectedKeep = 60

noExpectedKeep = 3600

}

routingVoucherNumberLength = 10

} # BE.beServer

beVWARS = {

voucherReservationPeriodSeconds = 120

useTimeFromClient = true

maxTransactionsPerSet = 7

maxOpenDialogTime = 5.0

maxDownstreamQueueLength = 10000

downstreamOverloadSleepUSec = 100000

minResyncReservationLength = 5

createBucketExpiryDays = 30

setLastUseDateOnActivation = true

maxSendReservationsToSync = 1000

 Chapter 2

•

 Chapter 2, Configuration 37

clearEmptyBuckets = true

pluginSkipTimeOnStartup = 30

gapBeforeRestartingPluginSkip = 60

walletCache = {

maxSize = 10000

maxLoopSize = 500

checkBeforeFlush = false

}

voucherCache = {

maxLoopSize = 500

checkBeforeFlush = false

flushPeriodSeconds = 60 # -1

maxSize = 2

voucherRevokeOnTimeout = false

 # when a voucher reservation is expired, revokes it if set to true

 # this takes precedence over voucherCommitOnTimeout

voucherCommitOnTimeout = false

 # when a voucher reservation is expired, commits it if set to true

 # voucherRevokeOnTimeout takes precedence if set

}

groveller = {

periodMsec = 1200

requestHighWaterMark = 1

walletLowWaterMark = 100

requestTimeout = 300

peerDatabaseLogin = ""

peerWalletCheckRetrySeconds = 60

}

duplicateDetection = {

keepDirectSeconds = 60.0

keepSyncSeconds = 60.0

directMaxDelaySeconds = 1.0

syncMaxDelaySeconds = 1.0

}

setLastActivationDateStates = [

[PREU]

]

plugins = [

"beVWARSExpiry.so"

]

handlers = [

"beVWARSCCDRHandler.so"

]

syncWriter = {

maxRecordsPerFile = 100

maxSecondsPerFile = 2

}

dbWriter = {

flushPeriod = 10

cdrOutputDirectory = "/IN/service_packages/E2BE/logs/CDR"

balanceCreateBufferSize = 1000

balanceUpdateBufferSize = 1000

Chapter 2

38 Voucher and Wallet Server Technical Guide

balanceDeleteBufferSize = 1000

bucketCreateBufferSize = 1000

bucketUpdateBufferSize = 1000

bucketDeleteBufferSize = 1000

walletCreateBufferSize = 1000

walletUpdateBufferSize = 1000

walletDeleteBufferSize = 1000

voucherCreateBufferSize = 1000

voucherUpdateBufferSize = 1000

voucherDeleteBufferSize = 1000

}

tracing = {

enabled = true

debugLevel = "all"

walletIds = [

<walletid1>,

<walletid2>

]

beClients = [

"<Beclient1>",

"<Beclient2>"

]

}

} # BE.beVWARS

beVWARSExpiry = {

expireNegativeBuckets = false

removeEmptyBuckets = false

expireBucketsForExpiredWallets = false

expireAtMidnightTZ = "Asia/Vladivostok"

}

beVWARSMergeBuckets = {

maxBuckets = -1

triggerPlugins = false

}

beCDRMover = {

oracleService = ""

oracleUser = "e2be_admin"

oraclePassword = "password"

outDirectory = "/IN/service_packages/E2BE/logs/CDR"

destinationDirectory = "/IN/service_packages/E2BE/logs/CDR-out"

timeout = 4

numberOfRecordsToCommit = 10

commitTimeSeconds = 10

} # BE.beCDRMover

cmnPushFiles = {

CDR = [

"-d", "/IN/service_packages/E2BE/logs/CDR-out"

"-r", "/IN/service_packages/CCS/logs/CDR-in"

"-h", "smp1hostname"

"-F"

]

}

beSync = {

shared = {

noWorkSleepTime = 0.2

spoolDirectory = "/IN/service_packages/E2BE/sync"

spoolChunkSize = 16

 Chapter 2

•

 Chapter 2, Configuration 39

badFileDirectory = "/IN/service_packages/E2BE/tmp"

maxDownstreamQueueLength = 10000

downstreamOverloadSleepUSec = 100000

}

sink = {

inSyncThresholdSeconds = 5

inSyncReportingPeriodRecords = 10000

maxSecsToWaitForRemoteOperations = 5

retryConnectionDelaySeconds = 30

maxRetriesBeforeStart = 5

localUpdateChunkSize = 100

heartbeatPeriodSeconds = 10

}

source = {

recordSendingChunkSize = 50

maxQueueLength = 50

}

}

BeClient = {

clientName = "scpClient"

heartbeatPeriod = 10000000

maxOutstandingMessages = 100

connectionRetryTime = 2

plugins = [

{

config="",

library="libclientBcast.so",

function="makeBroadcastPlugin"

}

]

notEndActions = [

{type="IR ", action="ACK "}

{type="SR ", action="ACK "}

{type="SR ", action="NACK"}

{type="INER", action="ACK "}

{type="SNER", action="ACK "}

{type="SNER", action="NACK"}

]

billingEngines = [

{

id = 1,

primary = { ip="123.123.123.123", port=1500 },

secondary = { ip="123.123.123.124", port=1500 }

}

]

}

beGroveller = {

quorumHost = "produsms-cluster"

maxIDsPerResponse = 160

retrySeconds = 60

processExpiredBuckets = true

noProcessingTimes = [

{ startsAt = "06:00", endsAt = "09:30" }

{ startsAt = "11:30", endsAt = "14:00" }

{ startsAt = "16:00", endsAt = "21:00" }

Chapter 2

40 Voucher and Wallet Server Technical Guide

]

connectionRetryTime = 60

heartbeatPeriod = 300000000

filledBufferThreshold = 480

ludProcessingTime = "14:04"

}

triggering = {

Control_Plan = "Reward"

Service_Handle = "CCS_BPL"

CCSNamespace = "http://eng-prf-zone01-z1/wsdls/ON/CCSNotifications.wsdl"

edr = false

scps = ["cmxdevscp1:3072", "cmxdevscp2:3072"]

osd_scps = ["cmxdevscp1:3072", "cmxdevscp2:3072"]

failureRetryTime = 60

storageInterface = beEventStorageIF

triggerInterface = beServiceTrigger

operationSet = CMX ON

operation = Invoke OSD

responseTag = Result

maxRatePerUAS = 0

throttleLife = 30

timeBetweenThrottles 10

} # triggering

}

BE Shared Parameters

Purpose

The BE section of the eserv.config file for the VWS contains parameters that are shared by various VWS
background processes. These parameters define the settings that are common to the background
processes.

Configuration

VWS accepts these parameters from eserv.config.

serverId = int

amPrimary = true|false

oracleUserAndPassword="/"

beLocationPlugin = "lib"

timerIfName = "str"

enableGrovelling = true|false

freeDiskSpaceWarningThres = MB

freeDiskSpaceShutdownThres = MB

freeDiskSpaceCheckInterval = secs

lowDiskSpaceNotificationInterval = secs

Example BE shared parameters configuration

The following section sets the shared BE configuration parameters.

Note: The comments have been removed.

BE = {

serverId = 11

amPrimary = true

oracleUserAndPassword="/"

 Chapter 2

•

 Chapter 2, Configuration 41

beLocationPlugin = "libGetccsBeLocation.so"

timerIfName = "Timer"

enableGrovelling = true

freeDiskSpaceWarningThres = 100

freeDiskSpaceShutdownThres = 10

freeDiskSpaceCheckInterval = 300

lowDiskSpaceNotificationInterval = 30

}

Parameters

Here are the available shared VWS parameters.

amPrimary

Syntax: amPrimary = true|false

Description: True if this is the primary VWS in the pair.

Type: Boolean

Optionality: Optional, default used if not set

Allowed:

Default: true

Notes:

Example: amPrimary = false

beLocationPlugin

Syntax: beLocationPlugin = "lib"

Description: The plug-in library that finds the Voucher and Wallet Server details of the Voucher
and Wallet Servers to connect to.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: libGetccsBeLocation.so

Notes: This library must be in the LD_LIBRARY_PATH.

Example: beLocationPlugin = "libGetccsBeLocation.so"

enableGrovelling

Syntax: enableGrovelling = true|false

Description: Whether or not to process wallets when spare resources are available.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • true – Use beGroveller to trigger events on wallets and balances that are
not used often.

• false – Do not do background triggering of events on wallets and
balances.

Default: true

Notes:

Example: enableGrovelling = true

Chapter 2

42 Voucher and Wallet Server Technical Guide

oracleUserAndPassword

Syntax: oracleUserAndPassword = "usr/pwd"

Description: The Oracle user and password for the connections to the E2BE database for
VWS processes.

Type: String

Optionality: Optional, default used if not set

Allowed:

Default: "/"

Notes: The default sets no user and password.

Example: oracleUserAndPassword = "/"

serverId

Syntax: serverId = id

Description: The ID of the VWS pair.

Type: Integer

Optionality:

Allowed:

Default: 1

Notes: Set to 1 if this is not a VWS

Example: serverId = 11

timerIfName

Syntax: timerIfName = "name"

Description: The name for the SLEE Timer interface component.

Type: String

Optionality: Optional, default used if not set

Allowed:

Default: Timer

Notes: Must match the handle of the timer interface in SLEE.cfg. For more information
about the SLEE, see SLEE Technical Guide.

Example: timerIfName = "Timer"

freeDiskSpaceCheckInterval

Syntax: freeDiskSpaceCheckInterval = seconds

Description: How often (in seconds) beServer checka whether there is more than
freeDiskSpaceWarningThres (on page 43) space free on the disk. If there is less
than freeDiskSpaceShutdownThres (on page 43), beServer closes its
connections and stops accepting requests.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: • 0 – Disables the disk space check

• Positive Integer – Checks the available disk space at the specified
interval

Default: 300

Notes: If a shutdown is triggered, beServer logs a critical-level error to the syslog.

Example: freeDiskSpaceCheckInterval = 300

 Chapter 2

•

 Chapter 2, Configuration 43

freeDiskSpaceShutdownThres

Syntax: freeDiskSpaceShutdownThres = MB

Description: When free disk space in MB is below this threshold, beServer closes its
connections and stops taking new requests.

Threshold applies to the partitions containing the directories set by the following
parameters:

• spoolDirectory (on page 79)

• cdrOutputDirectory (on page 112)

Type: Integer

Optionality: Optional (default used if not set)

Allowed: • 0 – Disables the threshold shutdown

• Positive Integer – The MB threshold

Default: 10

Notes: When the disk space has come back above the threshold, beServer re-enables
and returns to running state.

If beServer stops taking requests, it will log a critical-level error to the syslog.

Disk space is checked by beServer at the frequency set by
freeDiskSpaceCheckInterval (on page 42).

Example: freeDiskSpaceShutdownThres = 10

freeDiskSpaceWarningThres

Syntax: freeDiskSpaceWarningThres = MB

Description: Low disk space threshold, in Megabytes, for the partitions containing the
directories set by the following parameters:

• spoolDirectory (on page 79)

• cdrOutputDirectory (on page 112)

Type: Integer

Optionality: Optional (default used if not set)

Allowed: • 0 – Disables the threshold warning

• Positive Integer – The MB threshold

Default: 100

Notes: If the threshold is reached, an error-level warning is logged to the syslog.

Disk space is checked by beServer at the frequency set by
freeDiskSpaceCheckInterval (on page 42).

Example: freeDiskSpaceWarningThres = 200

lowDiskSpaceNotificationInterval

Syntax: lowDiskSpaceNotificationInterval = seconds

Description: The number of seconds between logging the error triggered by the low disk space
warning or shutdown thresholds being triggered.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 30

Chapter 2

44 Voucher and Wallet Server Technical Guide

Notes: The threshold is set by freeDiskSpaceWarningThres (on page 43) and

freeDiskSpaceShutdownThres (on page 43).

The notification interval should be set to a value higher than
freeDiskSpaceCheckInterval (on page 42), as it will only log an error if the

check interval has recorded a low disk space condition since the last error was
logged.

Example: lowDiskSpaceNotificationInterval = 30

Deprecated SLEE Name Definitions

The parameters listed in this section have been deprecated and should not be used. You should delete
them from the BE section of eserv.config if they are currently defined.

grovellerIfNamePrefix

Syntax: grovellerIfNamePrefix = "name"

Default: beGroveller

Example: grovellerIfNamePrefix = "beGroveller"

serverIfName

Syntax: serverIfName = "name"

Default: beServer

Example: serverIfName = "beServer"

syncIfName

Syntax: syncIfName = "name"

Default: beSync

Example: syncIfName = "beSync"

vwarsIfNamePrefix

Syntax: vwarsIfNamePrefix = "name"

Default: beVWARS

Example: vwarsIfNamePrefix = "beVWARS"

User Interface-Based Configuration Tasks

Introduction

These procedures are normally performed only once, after the installation and initial configuration of the
system.

For more information about accessing the CCS screens, see CCS User's Guide.

Defining VWS locations

The system requires the location of VWS machines to be defined. These are defined using the New
Domain or Edit Domain screens, accessed from the Service Management screen.

For more information about configuring domains, see CCS User's Guide.

 Chapter 2

•

 Chapter 2, Configuration 45

SLEE.cfg

About Configuring VWS SLEE Interfaces

The VWS includes the beVWARS, beSync, and beServer SLEE interfaces that run on the VWS nodes.
For these processes to run correctly, they must be configured in the SLEE.cfg file. The SLEE is
automatically configured during installation to run one or more instances of each by the following lines in
SLEE.cfg:

INTERFACE=beVWARS beVWARSStartup.sh /IN/service_packages/E2BE/bin instance_count EVENT

INTERFACE=beSync beSyncStartup.sh /IN/service_packages/E2BE/bin instance_count EVENT

INTERFACE=beServer beServerStartup.sh /IN/service_packages/E2BE/bin instance_count EVENT

Where instance_count is the number of instances of the interface process to run.

Note: The actual startup script names can vary.

You should only update this configuration if you want to change the number of instances to run any of
these processes. For example, if there is a high volume of traffic on the VWS, you can improve
performance by running additional instances of these processes.

For more information about configuring SLEE interfaces, see the discussion about configuring the SLEE
in SLEE Technical Guide.

About Configuring MAXEVENTS

The value of MAXEVENTS sets the maximum number of event objects that the system can hold in
shared memory. If MAXEVENTS is exceeded when the system is running, no more events or calls will
be accepted and alarm messages will be sent. This means that you should set MAXEVENTS to a value
that is big enough to handle an overload situation. You can estimate this value by using the following
formula:

(num_beServers * max_beServer_queue) + (num_beVWARS * max_beVWARS_queue) +
(num_beSyncs * max_beSync_queue) + contingency

Where:

• num_beServers is the number of instances of the beServer interface defined in the SLEE.cfg
configuration file.

• max_beServer_queue is the maximum number of beVWARS response events that can be queued
up for the beServer. This is the value specified for the
BE.beVWARS.maxDownstreamQueueLength parameter in the eserv.config configuration file.

• num_beVWARS is the number of instances of the beVWARS interface defined in the SLEE.cfg
configuration file.

• max_beVWARS_queue is the value specified in the eserv.config configuration file for either
BE.beSync.maxDownstreamQueueLength or BE.beServer.maxDownstreamQueueLength,

whichever value is greater.

• num_beSyncs is the number of instances of the beSync interface defined in the SLEE.cfg
configuration file.

• max_beSync_queue is the maximum number of beVWARS events that can be queued up for the
beSync. This is the value specified for the BE.beVWARS.maxDownstreamQueueLength

parameter in the eserv.config configuration file.

• contingency is an estimated value for any additional VWS events such as VWS control messages. A
typical value for contingency would be 5000.

Example

Chapter 2

46 Voucher and Wallet Server Technical Guide

This example shows how to calculate the value for MAXEVENTS for one beServer interface, six
instances of the beVWARS interface, and two instances of the beSync interface, and where:

• BE.beVWARS.maxDownStreamQueueLength = 10000

• BE.beSync.maxDownStreamQueueLength = 50000

• BE.beServer.maxDownStreamQueueLength = 50000

• contingency = 5000

MAXEVENTS = (1 * 10000) + (6 * 5000) + (2 * 10000) + 5000 = 65000

You configure MAXEVENTS in the SLEE.cfg configuration file. For more information about configuring
MAXEVENTS, see the discussion about configuring the SLEE in SLEE Technical Guide.

Loading SLEE.cfg changes

If you change the SLEE.cfg file, you must restart the SLEE to enable the new options to take effect.

For more information about restarting the SLEE, see SLEE Technical Guide.

 Chapter 3, Background Processes 47

Chapter 3

Background Processes

Overview

Introduction

This chapter explains the processes that are started automatically by Service Logic Execution
Environment (SLEE).

Note: This chapter also includes some plug-ins to background processes which do not run
independently.

In this chapter

This chapter contains the following topics.

beCDRMover ... 47
BeClient ... 50
beGroveller .. 59
beServer .. 65
beSync ... 76
beServiceTrigger ... 83
beVWARS ... 94
beVWARSCCDRHandler .. 117
beVWARSExpiry ... 117
beVWARSMergeBuckets .. 121
cmnPushFiles .. 122
Event Storage Interface ... 125
libbeMsgRouterDefault .. 129
libBeClientIF .. 129
libclientBcast .. 130
libbeEventFactory .. 130

beCDRMover

Purpose

beCDRMover moves completed EDR files from the working directory to a directory from which they are
copied to the SMS. The inter-machine transfer is completed by cmnPushFiles.

Startup

This task is started by entry be_1 in the inittab, via the shell script:

/IN/service_packages/E2BE/bin/beCDRMoverStartup.sh

Note: The above is a default and may vary as per configuration.

Configuration

beCDRMover accepts the following parameters from eserv.config.

Chapter 3

48 Voucher and Wallet Server Technical Guide

beCDRMover = {

oracleService = "str"

oracleUser = "name"

oraclePassword = "str"

outDirectory = "dir"

destinationDirectory = "dir"

timeout = int

numberOfRecordsToCommit = num

commitTimeSeconds = num

}

Parameters

Here are the available beCDRMover parameters.

destinationDirectory

Syntax: destinationDirectory = "dir"

Description: The destination directory into which EDRs are moved.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /IN/service_packages/E2BE/logs/CDR

Notes: Must be a valid directory

Example: destinationDirectory = "/var/edr/UBE/dest"

commitTimeSeconds

Syntax: commitTimeSeconds = num

Description: The maximum amount of time, in seconds, to leave transactions uncommitted.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes:

Example: commitTimeSeconds = 5

numberOfRecordsToCommit

Syntax: numberOfRecordsToCommit = num

Description: EDRs are moved in batches. This parameter defines the number of records in
each batch.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes:

Example: numberOfRecordsToCommit = 10

oraclePassword

Syntax: oraclePassword = "str"

Description: The Oracle password VWS processes to connect to the E2BE database.

 Chapter 3

•

 Chapter 3, Background Processes 49

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: e2be_admin

Notes:

Example: oraclePassword = "password"

oracleService

Syntax: oracleService = "name"

Description: The Oracle service.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: ""

Notes:

Example: oracleService = ""

oracleUser

Syntax: oracleUser = "name"

Description: The Oracle user that VWS uses to connect to the E2BE.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: "e2be_admin"

Notes:

Example: oracleUser = "e2be_admin"

outDirectory

Syntax: outDirectory = "dir"

Description: The directory from which EDRs are moved.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: IN/service_packages/E2BE/logs/CDR

Notes:

Example: outDirectory = "/var/edr/UBE"

timeout

Syntax: timeout = seconds

Description: Time (in seconds) before the EDR move is regarded as failed.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Chapter 3

50 Voucher and Wallet Server Technical Guide

Default: 4

Notes: The timeout value should be set to 4 seconds or less. If it is set to higher than 4

seconds, multiple "file cannot be deleted" messages will appear in the syslog.

Example: timeout = 4

Example configuration

This is an example of the beCDRMover section of an eserv.config file on a VWS (comments have been
removed).

beCDRMover = {

oracleService = ""

oracleUser = "e2be_admin"

oraclePassword = "password"

outDirectory = "/IN/service_packages/E2BE/logs/CDR"

destinationDirectory = "/IN/service_packages/E2BE/logs/CDR-out"

timeout = 4

numberOfRecordsToCommit = 10

commitTimeSeconds = 10

} # BE.beCDRMover

Failure

If beCDRMover fails, no EDR files will be moved from the input directory until it is restarted.

Output

The beCDRMover writes error messages to the system messages file, and also writes additional output
to:

/IN/service_packages/E2BE/tmp/beCDRMover.log

Note: Above is default and can vary if configured differently to the default values.

BeClient

Purpose

BeClient is a SLEE interface that runs on the SLC. It communicates with the Voucher and Wallet Server
using FOX over TCP/IP.

BeClient maintains connections to all primary nodes within all of the configured VWS domains. It
switches from the primary to the secondary Voucher and Wallet Server if the TCP connection breaks or
if a failure to detect Voucher and Wallet Server heartbeat occurs.

BeClient is designed to be mostly ignorant of the messages it routes. This enables it to be used with
enhanced protocols without requiring upgrades.

Startup

The BeClient is a SLEE interface and is started during SLEE initialization by the following line in
SLEE.cfg:

INTERFACE=BeClient BeClientStartup.sh /IN/service_packages/BE/bin/ instance_count

EVENT

Where instance_count is the number of instances to run of the BeCLient process.

 Chapter 3

•

 Chapter 3, Background Processes 51

Note: If you are running multiple BeClient instances, then each BeClient process will have the value of
instance_count - 1 appended to its name. So the first BeClient process will be named BeClient0 and

subsequent BeClient processes will be named BeClient1, BeClient2 and so on. Nothing will be
appended to the process name when you configure only one beClient instance to run.

For more information about starting and stopping BeClient processes, see SLEE Technical Guide.

Configuration

In order to operate, BeClient plug-in reads the BeClient section of the eserv.config file. The BeClient

section is listed below.

BeClient = {

clientName = "str"

heartbeatPeriod = microsecs

messageTimeoutSeconds = seconds

maxOutstandingMessages = int

reportPeriodSeconds = seconds

primaryFailbackIntreval = seconds

connectionRetryTime = seconds

plugins = [

{

config="confStr",

library="lib",

function="str"

}

[...]

]

confStr = {

plugin configuration

}

notEndActions = [

{type="str", action="[ACK |NACK]"}

[...]

]

billingEngines = [

{ id = int,

 primary = { ip="ip", port=port },

 secondary = { ip="ip", port=port }

}

[...]

]

}

Parameters

BeClient has no command line parameters.

The BeClient supports the following parameters from the BE section of eserv.config.

Chapter 3

52 Voucher and Wallet Server Technical Guide

billingEngines

Syntax: billingEngines = [
{ id = int

 primary = { ip="ip", port=port },

 secondary = { ip="ip", port=port }

}

[...]

]

Description: Overrides connection details that beLocationPlugin (on page 41) obtains from

the database.

Type: Parameter array.

Optionality: Optional (beLocationPlugin finds connection details if not set).

Allowed:

Default:

Notes: Identifies the Voucher and Wallet Servers and assigns their Internet connection
details.

Example: billingEngines = [
{ id = 1,

 primary = { ip="192.0.2.0", port=1500 },

 secondary = { ip="192.0.2.1", port=1500 }

}

]

id

Syntax: id = int

Description: This unique identifier for this Voucher and Wallet Server configuration.

Type: Integer

Optionality: Required, if this section is used

Allowed:

Default:

Notes: This parameter is part of the billingEngines parameter array.

Example: id = 1

primary

Syntax: primary = { ip="ip", port=port }

Description: The primary parameter group defines the Internet Protocol (IP) address and

associated port number of the primary Voucher and Wallet Server.

Type: Parameter array

Optionality: Required if this section is used

Allowed:

Default:

Notes: This parameter is part of the billingEngines parameter array.

Examples: primary = { ip="192.0.2.0", port=1500 }

primary = { ip = "2001:db8:0000:1050:0005:0600:300c:326b",

port=1500 }

primary = {ip = "2001:db8:0:0:0:500:300a:326f", port=1500 }

primary = { ip = "2001:db8::c3", port=1500 }

 Chapter 3

•

 Chapter 3, Background Processes 53

secondary

Syntax: secondary = { ip="ip", port=port }

Description: The secondary parameter group defines the Internet Protocol (IP) address and

associated port number of the secondary Voucher and Wallet Server.

Type: Array

Optionality: Required, if this section is used

Allowed:

Default:

Notes: This parameter is part of the billingEngines parameter array.

Examples: secondary = { ip="192.0.2.1", port=1500 }

secondary = { ip = "2001:db8:0000:1050:0005:0600:300c:326b",

port=1500]

secondary = {ip = "2001:db8:0:0:0:500:300a:326f", port=1500

}

secondary = { ip = "2001:db8::c3", port=1500 }

ip

Syntax: ip = "ip"

Description: The Internet Protocol (IP) address of the Voucher and Wallet Server.

Type: String

Optionality: Required

Allowed: IP version 4 (IPv4) addresses, IP version 6 (IPv6) addresses

Default: None

Notes: This parameter is part of either the primary, or the secondary parameter group of
the billingEngines parameter array.

You can use the industry standard for omitting zeros when specifying IPv6
addresses.

Examples: ip = "192.0.2.0"

ip = "2001:db8:0000:1050:0005:0600:300c:326b"

ip = "2001:db8:0:0:0:500:300a:326f"

ip = "2001:db8::c3"

port

Syntax: port = port

Description: The port number associated with the address of the Voucher and Wallet Server.

Type: Integer

Optionality: Required

Allowed:

Default: None

Notes: This parameter is part of either the primary or secondary parameter group of the
billingEngines parameter array.

Example: port = 1500

Chapter 3

54 Voucher and Wallet Server Technical Guide

broadcastOptions

Syntax: broadcastOptions = {
 aggregateNAckCodes = [config]
}

Description: Name of configuration section for the BeClient Broadcast plug-in libclientBcast.

Type: Parameter array

Optionality:

Allowed:

Default:

Notes: libclientBcast is used by a range of processes which connect to the beServer,
including:

• BeClient

• PIbeClient

• ccsBeOrb

For more information about libclientBcast, see libclientBcast (on page 130).

Example: broadcastOptions = {
 aggregateNAckCodes = []
}

aggregateNAckCodes

Syntax: aggregateNAckCodes = [
 "NVOU"
]

Description: When this parameter is set, the BeClient waits for a response from all the VWS
pairs in use and filters the responses from the broadcast request using the
configured NAck codes.

Type: Parameter array

Optionality:

Allowed: NVOU

Default:

Notes: When a voucher recharge request is broadcast, this ensures that all the available
VWS pairs are checked for the required voucher before a voucher not found
message is returned to the requesting process.

Example:

clientName

Syntax: clientName = "name"

Description: The unique client name of the process.

Type: String

Optionality: Required

Allowed: Must be unique.

Default: The host name of the local machine.

Notes: The server generates clientId from a hash of str.

If more than one client attempts to connect with the same name, then some
connections will be lost.

This parameter is used by libBeClientIF.

Example: clientName = "scpClient"

 Chapter 3

•

 Chapter 3, Background Processes 55

connectionRetryTime

Syntax: connectionRetryTime = seconds

Description: The maximum number of seconds the client process will wait for a connection to
succeed before attempting a new connection.

Type: Integer

Optionality: Required

Allowed:

Default: 5

Notes: This parameter is used by libBeClientIF.

Example: connectionRetryTime = 2

heartbeatPeriod

Syntax: heartbeatPeriod = microsecs

Description: The number of microseconds during which a Voucher and Wallet Server
heartbeat message must be detected, or the BeClient process will switch to the
other VWS in the pair.

Type: Integer

Optionality: Required

Allowed: 0 Disable heartbeat detection.

positive integer Heartbeat period.

Default: 3000000

Notes: 1 000 000 microseconds = 1 second.

If no heartbeat message is detected during the specified time, client process
switches to the other Voucher and Wallet Server in the pair.

This parameter is used by libBeClientIF.

Example: heartbeatPeriod = 10000000

maxOutstandingMessages

Syntax: maxOutstandingMessages = num

Description: The maximum number of messages allowed to be waiting for a response from the
Voucher and Wallet Server.

Type: Integer

Optionality: Required

Allowed:

Default: If this parameter is not set, the maximum is unlimited.

Notes: If more than this number of messages are waiting for a response from the
Voucher and Wallet Server, the client process assumes the Voucher and Wallet
Server is overloaded. In this event, the client process refuses to start new calls
but continues to service existing calls.

The messages are queued until the Voucher and Wallet Server has reduced its
outstanding load.

This parameter is used by libBeClientIF.

Example: maxOutstandingMessages = 100

Chapter 3

56 Voucher and Wallet Server Technical Guide

messageTimeoutSeconds

Syntax: messageTimeoutSeconds = seconds

Description: The time that the client process will wait for the server to respond to a request.

Type: Integer

Units: Seconds

Optionality: Required

Allowed: 1-604800 Number of seconds to wait.

0 Do not time out.

Default: 2

Notes: After the specified number of seconds, the client process will generate an
exception and discard the message associated with the request.

This parameter is used by libBeClientIF.

Example: messageTimeoutSeconds = 2

notEndActions

Syntax: notEndActions = [
 {type="str", action="[ACK|NACK]"}
 [...]
]

Description: The notEndActions parameter array is used to define the messages

associated with dialogs that should not have their dialog closes, because the
dialog is closed by default. This facilitates failover.

Type: Parameter array.

Optionality: Required

Allowed:

Default:

Notes: If the incoming dialog for a call closes and the last response received was of the
notEndActions type, the client process sends an ABRT message. The ABRT
message allows the VWS to remove the reservation. An example of this situation
would be where slee_acs has stopped working.

This parameter is used by libBeClientIF.

For more information about slee_acs, see ACS Technical Guide.

Example: notEndActions = [
 {type="IR ", action="ACK "}
 {type="SR ", action="ACK "}
 {type="SR ", action="NACK"}
 {type="INER", action="ACK "}
 {type="SNER", action="ACK "}
 {type="SNER", action="NACK"}
]

 Chapter 3

•

 Chapter 3, Background Processes 57

plugins

Syntax: plugins = [
{

config=""

library="lib"

function="str"

}

...

]

Description: Defines any client process plug-ins to run. Also defines the string which maps to
their configuration section.

Type: Parameter array

Optionality: Optional (as plug-ins will not be loaded if they are not configured here, this
parameter must include any plug-ins which are needed to supply application
functions; for more information about which plug-ins to load, see the BeClient

section for the application which provides the BeClient plug-ins).

Allowed:

Default: Empty (that is, do not load any plug-ins).

Notes: The libclientBcast plug-in must be placed last in the plug-ins configuration list.

For more information about the libclientBcast plug-in, see libclientBcast (on page
130).

This parameter is used by libBeClientIF.

Example: plugins = [
{

config="broadcastOptions"

library="libclientBcast.so"

function="makeBroadcastPlugin"

}

]

primaryFailbackInterval

Syntax: primaryFailbackInterval = seconds

Description: seconds defines the failback interval. If the number of seconds since the VWS

sent the last request for a session running on the secondary BE is greater than
the specified failback interval, then all subsequent requests for the session will be
sent to the primary BE. During the failback interval, the secondary BE will
synchronize requests to the primary BE.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: • 0 – For immediate failback

• -1 – To disable primary failback

• A positive integer

Default: -1

Notes: Setting this parameter will not affect failover behavior. A session will failover to
the other BE if a communications error means that it cannot continue processing
on the current BE.

Example: primaryFailbackInterval = 10

Chapter 3

58 Voucher and Wallet Server Technical Guide

reportPeriodSeconds

Syntax: reportPeriodSeconds = seconds

Description: The number of seconds separating reports of failed messages.

Type: Integer

Units: Seconds

Optionality: Required

Allowed:

Default: 10

Notes: BeClient issues a failed message report:

• For timed-out messages

• For unrequested responses

• For new calls rejected because of congestion

• For messages with invalid Voucher and Wallet Server identifiers

• If new and subsequent requests fail because both Voucher and Wallet
Servers have stopped working

VWS heartbeat detection must be enabled for the parameter to work. Set
reportPeriodSeconds to more than heartbeatPeriod.

This parameter is used by libBeClientIF.

Example: reportPeriodSeconds = 10

Example configuration

The following configuration is an example BeClient section of eserv.config on a Voucher and Wallet
Server node. Comments have been removed.

BeClient = {

clientName = "scpClient"

heartbeatPeriod = 3000000

messageTimeoutSeconds = 2

maxOutstandingMessages = 100

reportPeriodSeconds = 10

primaryFailbackIntreval = 10

connectionRetryTime = 2

plugins = [

{

config="broadcastOptions",

library="libclientBcast.so",

function="makeBroadcastPlugin"

}

]

broadcastOptions = {

aggregateNAckCodes = [

"NVOU"

]

}

notEndActions = [

{type="IR ", action="ACK "}

{type="SR ", action="ACK "}

{type="SR ", action="NACK"}

{type="INER", action="ACK "}

{type="SNER", action="ACK "}

{type="SNER", action="NACK"}

 Chapter 3

•

 Chapter 3, Background Processes 59

]

billingEngines = [

{ id = 1,

 primary = { ip="192.0.2.0", port=1500 },

 secondary = { ip="192.0.2.1", port=1500 }

}

]

}

Output

The BeClient writes error messages to the system messages file, and also writes additional output to:

/IN/service_packages/CCS/tmp/BeClient.log

Note: The above are defaults and can vary.

beGroveller

Purpose

The beGroveller processes wallets daily on the primary VWS (while the VWS is active) and performs
wallet inquiries. This triggers all beVWARS plug-ins that are activated on wallet inquiry (for example,
beVWARSExpiry). This activity catches up on due events for wallets that have not been accessed for
some time. This keeps the E2BE database relatively up to date and means operations such as MSC
deactivation for removed accounts always happen (although later than they are scheduled to occur).

Additionally, the beGroveller runs a night time run to process all the wallets that have not been accessed
during the day.

The beGroveller is designed to run on the primary VWS, although it will failover to the secondary if
necessary. For more information about which VWS the beGroveller runs on, see beGroveller quorum
(on page 148).

Tuning the beGroveller is a balance between the need to keep the database running smoothly for
business purposes, and the load imposed by the process. Configuring the beGroveller for less than 100
ms per wallet (= 10 wallets/second) is not recommended.

Process

The beGroveller maintains multiple asynchronous connections to the VWS database; a single
connection for each beVWARS requesting grovel activity.

Here is the beGroveller process.

Stage Description

1 A connection is assigned to the first beVWARS instance requiring grovel activity and a
buffer is opened for it.

2 The wallets with currently expired buckets are retrieved and stored to the buffer in a
collection set for the beVWARS. The buffer is then closed.

3 The beVWARS requests are then processed directly from the set instead of being
continuously fetched from the database.

4 The beGroveller is responsible for maintaining the set of wallets in the beVWARS buffer.
When it is empty, or it drops below a configured threshold, then the buffer is automatically
reopened and more wallet details are collected.

Chapter 3

60 Voucher and Wallet Server Technical Guide

Stage Description

5 Successive beVWARS instances perform one of the following:

• Use an existing connection that is not currently managing a buffer

• Open a new connection if all the current connections are in operation

6 At the end of the day the beGroveller creates a list of all the wallets that have not been
accessed during the day, and these are processed during the overnight run.

Startup

This task is started by the SLEE, by the following line in SLEE.cfg:

INTERFACE=beGroveller beGroveller /IN/service_packages/E2BE/bin instance_count

EVENT

Where instance_count is the number of instances to run of the beGroveller process.

Notes:

• To enable beGroveller to run, you must set the enableGrovelling (on page 41) parameter to

true.

• If you configure the SLEE to run multiple instances of the beGroveller, then each beGroveller
process will have the value of instance_count - 1 appended to the process name. So the master

beGroveller process will be named beGroveller0 and subsequent slave beGroveller processes will
be named beGroveller1, beGroveller2 and so on. If you configure only one instance of the
beGroveller, then nothing will be appended to the process name.

For more information about configuring SLEE interfaces, see SLEE Technical Guide.

Configuration

The beGroveller uses parameters from these parameter groups in the eserv.config file on VWS nodes:

• beGroveller

• beVWARS groveller parameters (on page 105)

beGroveller also uses the enableGrovelling (on page 41) shared parameter from the BE section of

eserv.config.

The beGroveller group contains parameters in the structure shown below.

beGroveller = {

quorumHost = "host"

maxIDsPerResponse = ids

retrySeconds = seconds

processExpiredBuckets = true|false

consecutiveFetch = num

noProcessingTimes = [

{ startsAt = "HH:MM", endsAt = "HH:MM" }

...

]

connectionRetryTime = seconds

heartbeatPeriod = microseconds

filledBufferThreshold = num

ludProcessingTime = "HH:MM"

}

 Chapter 3

•

 Chapter 3, Background Processes 61

Example configuration

This is an example of the beGroveller section of an eserv.config file on a VWS (comments have been
removed).

beGroveller = {

quorumHost = "produsms-cluster"

maxIDsPerResponse = 160

retrySeconds = 60

processExpiredBuckets = true

noProcessingTimes = [

{ startsAt = "06:00", endsAt = "09:30" }

{ startsAt = "11:30", endsAt = "14:00" }

{ startsAt = "16:00", endsAt = "21:00" }

]

connectionRetryTime = 60

heartbeatPeriod = 300000000

filledBufferThreshold = 480

ludProcessingTime = "14:04"

}

Parameters

Parameters of the beGroveller group are listed below.

connectionRetryTime

Syntax: connectionRetryTime = seconds

Description: The number of seconds between attempts to establish a connection to the
beServer on the local VWS and the remote VWS in this pair.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 60

Notes: The connection to beServer establishes whether or not the local and remote
VWSs are in the running state.

If it fails to make a connection, beGroveller will log an error to the syslog.

For more information about states, see BE States (on page 26).

Example: connectionRetryTime = 60

consecutiveFetch

Syntax: consecutiveFetch = num

Description: Maximum number of consecutive fetches between other priority checks.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 3000

Notes: This number is hard coded in versions prior to 2.4.0.22.

Example: consecutiveFetch = 3000

Chapter 3

62 Voucher and Wallet Server Technical Guide

filledBufferThreshold

Syntax: filledBufferThreshold = num

Description: Threshold for the minimum number of wallet ID entries stored in the buffer. A refill
is needed when the number of entries in the buffer falls below this number.

Type: Integer

Optionality: Required

Allowed:

Default: 320

Notes: A separate buffer will be used for each beGroveller client. The beGroveller will
continue to fetch wallets until all the client buffers are full. It will then wait until the
number of entries in one of the buffers falls below the minimum before fetching
more wallets.

Example: filledBufferThreshold = 400

heartbeatPeriod

Syntax: heartbeatPeriod = microsecs

Description: The heartbeat period for the beGroveller connection to the beServer through
beClientIF.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 300000000 (300 seconds)

Notes:

Example: heartbeatPeriod = 300000000

ludProcessingTime

Syntax: ludProcessingTime = "HH:MM"

Description: Defines the hour of the day when the last used date logic will run. If the
beGroveller starts at a later time in the day, then the last used date logic
processing will be delayed until the next day. If this hour occurs in a no
processing period, then the last used date logic processing will be delayed until
the end of the no processing period.

Type: String

Optionality: Optional (default used if not set)

Allowed: A valid time in the format HH:MM

Default: 00:00

Notes:

Example: ludProcessingTime = "10:00"

maxIDsPerResponse

Syntax: maxIDsPerResponse = ids

Description: The number of wallet IDs to send to a beVWARS process when it requests
wallets to grovel.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 160

 Chapter 3

•

 Chapter 3, Background Processes 63

Notes: beVWARS processes request IDs when they run out other work to do. Setting too
low will make groveling slow. Setting it too high will make the response exceed
the SLEE event size. 1k events will fit in about 160. 2k events will fit in ~330. Fit in
as many as your event size will allow.

For more information about SLEE event sizes, see SLEE Technical Guide.

Example: maxIDsPerResponse = 160

noProcessingTimes

Syntax: noProcessingTimes = [
{startsAt = "HH:MM", endsAt = "HH:MM"}

...

]

Description: The time periods during each day when beGroveller should not return any wallet
IDs to beVWARS which are requesting wallet IDs to grovel.

Type: Array

Optionality: Optional (default used if not set)

Allowed:

Default: No time restrictions.

Notes:

Example: noProcessingTimes = [
{ startsAt = "06:00", endsAt = "09:30" }

{ startsAt = "11:30", endsAt = "14:00" }

{ startsAt = "16:00", endsAt = "21:00" }

]

startsAt

Syntax: startsAt = "HH:MM"

Description: The hour and minute to start a period of not sending wallets to be groveled
beVWARS processes.

Type: String

Optionality: Rrequired if noProcessingTimes is set

Allowed:

Default: No default

Notes: The period is finished by the endsAt (on page 63) parameter paired with this

startsAt parameter in the {} set.

This parameter is part of the noProcessingTimes (on page 63) parameter

array.

Example: startsAt = "06:00"

endsAt

Syntax: endsAt = "HH:MM"

Description: The hour and minute to finish a period of not sending wallets to be groveled
beVWARS processes.

Type: String

Optionality: Required if noProcessingTimes is set

Allowed:

Default: No default

Chapter 3

64 Voucher and Wallet Server Technical Guide

Notes: The period is started by the startsAt (on page 63) parameter paired with this

endsAt parameter in the {} set.

This parameter is part of the noProcessingTimes (on page 63) parameter

array.

Example: endsAt = "09:30"

processExpiredBuckets

Syntax: processExpiredBuckets = true|false

Description: Activates or deactivates expired bucket processing.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true Activate expired bucket processing. The
beGroveller will fetch wallets as often as
required and process buckets based on the
bucket expiry date.

false Deactivate expired bucket processing. The
beGroveller will fetch wallets for processing once
per day at the time set by the
ludProcessingTime parameter.

Default: true

Notes:

Example: processExpiredBuckets = true

quorumHost

Syntax: quorumHost = "host"

Description: The host name or IP address of a machine on the same VWS subnet to use as a
quorum device. The quorum machine is used to break a tie when trying to decide
if beGroveller should allow the beVWARS processes to process wallets.

Type: String

Optionality: Required. If this is not set, or if the specified machine is not on the same VWS
subnet, grovelling may not start (see Notes).

Allowed:

Default: Not specified

Notes: This value is used when a beGroveller cannot see the other VWS in a pair (that
is, it cannot ping the other VWS). In this case, beGroveller needs to decide which
VWS is partitioned from the rest of the network. If this beGroveller can see
quorumHost but not the other VWS, it will grovel. This means that quorumHost

must be another device on the same subnet that the VWS nodes use for
communication.

A good value for quorumHost may be the logical address of a SMS cluster, or

the IP address of a non-clustered SMS, but you should confirm this with the
network administrator.

Example: quorumHost = "produsms-cluster"

retrySeconds

Syntax: retrySeconds = seconds

Description: How many seconds to tell beVWARS to wait before sending another request for
wallet IDs to process. Used when beGroveller cannot find any wallets which need
groveling to send to a beVWARS which has requested wallets to grovel.

 Chapter 3

•

 Chapter 3, Background Processes 65

Type: Integer

Optionality: Optional (default used if not set)

Allowed: 0 beGroveller will attempt to calculate a useful
delay to set. Either:

• the time that a wallet for the requesting
beVWARS will expire + 1 minute (up to a
maximum of 1 hour), or

• 300 (five minutes).

positive
integer

The number of seconds beVWARS should wait
before asking for more wallet IDs to grovel.

Default: 0

Notes:

Example: retrySeconds = 60

beServer

Purpose

Handles connections from client processes (including BeClient processes) and controls routing to
beVWARS processes.

It maintains a list of connected clients, and loads plug-ins to handle different request types.

The beServer is a finite state machine, handling one request at a time until either a response can be
sent back, or more information is needed and a further request is sent to the beVWARS.

The beServer deals with:

• Multiple client connections (via be protocol)

• Pluggable message handlers (per message type x message version)

• Call context for call state for plug-ins

• SLEE event message passing

• Switchable accepting messages from client

• Resynchronizable call context.

Plug-ins

beServer can be extended by:

• Routing handlers specified in the messageRoutingPlugins (on page 71) parameter (such as

libbeMsgRouterDefault (on page 129))

• Message handlers specified in the handlers (on page 69) parameter.

The beServer will attempt to process messages using its own handlers; if no handler is found the
message will be sent to the beVWARS for processing. Message handlers are generally provided by
other applications such as CCS to provide application-specific functions such as asking the beVWARS
(through the SLEE) for account information, reservations, and billing.

For more information about the plug-ins provided by CCS, see CCS Technical Guide.

Chapter 3

66 Voucher and Wallet Server Technical Guide

About running multiple beServer processes

You can run multiple instances of the beServer to improve performance. The first beServer process
(beServer0) is the master beServer and all other instances of the beServer are its slave processes. The
master beServer determines which slave beServer to use for each new VWS client connection. It
checks the status of the slave beServers and load balances client connections across all slave
beServers on the VWS (the master beServer also acts as a slave in this respect and will assign
connections to itself as required by the connection loading). After a VWS client connection has been
assigned to a slave beServer, it will remain attached to that slave beServer for the lifetime of the
connection.

Note: You can configure the master beServer process to always handle specific VWS client interface
connections itself. By default, this includes the beGroveller and ccsMfileCompiler connections. See
clientLoadWeightings (on page 67) for more information.

Startup

This task is started by the SLEE, by the following line in SLEE.cfg:

INTERFACE=beServer beServerStartup.sh /IN/service_packages/E2BE/bin instance_count EVENT

Where instance_count is the number of instances to run of the beServer process.

Note: If you configure the SLEE to run multiple instances of the beServer, then each beServer process
will have the value of instance_count - 1 appended to the process name. So the first beServer

process will be named beServer0 and subsequent beServer processes will be named beServer1,
beServer2 and so on. If you configure only one instance of the beServer, then nothing will be appended
to the process name.

For more information about configuring SLEE interfaces, see SLEE Technical Guide

Configuration

The beServer is configured by the parameters in the following section of eserv.config file:

beServer = {

clientSelectTime = microsecs

quiesceLength = microsecs

serverPortOverride = port

clientSocketBufferSize = bytes

enableStatistics = true

errorOnRecordStatistics = false

maxDownstreamQueueLength = int

downstreamOverloadSleepUSec = microsecs

dbConnCheckTime = seconds

recoveryReportInterval = seconds

notEndActions = [

{type="str", action="[ACK|NACK]"}

[...]

]

handlers = [

"lib"

[...]

]

messageRoutingPlugins = [

"lib"

...

]

msgRouterDefault = {

 Chapter 3

•

 Chapter 3, Background Processes 67

roundRobinTypes = [

"TYPE"

...

]

routeOnVoucherNumber = true|false

}

purge = {

purgeInterval = seconds

vwarsTimeout = seconds

expectedKeep = seconds

noExpectedKeep = seconds

}

routingVoucherNumberLength = int

slaveLocalSocketDirectory = "directory"

clientLoadWeightings = [

{name="client_name", weighting=value}

{...}

]

}

Parameters

Parameters of the beServer group are listed below.

clientLoadWeightings

Syntax:
clientLoadWeightings = [

{name="client_name", weighting=value}

{name="client_name", weighting=value}

...

]

Description: Defines the load weighting value to assign to each type of client connected to the
beServer. This improves load sharing over multiple beServer interfaces.

• client_name is a the name of a client interface configured in SLEE.cfg.

• value is the load weighting value and indicates the expected traffic load

from the specified client interface. A larger value indicates a greater
expected load.

The weighting value for the beGroveller and ccsMFileCompiler clients should be
zero (0) and you should not change their value. Setting the weighting value to
zero forces the master beServer to always handle the connection itself.

Type: Array

Optionality: Optional (default used if not set)

Allowed:

Default: 100 except ccsMfileCompiler (default 0), and beGroveller (default 0)

Notes: The clientLoadWeightings configuration is used when there are multiple instances
of the beServer interface running. It is not used if only one beServer interface is
running.

Chapter 3

68 Voucher and Wallet Server Technical Guide

Example:
clientLoadWeightings = [

{name="ccsBeClient", weighting=200}

{name="ccsMFileCompiler", weighting=0}

{name="ccsBeGroveller", weighting=0}

{name="ccsBeOrb", weighting=10}

{name="ccsBeResync", weighting=100}

{name="ccsBatchCharge", weighting=10}

{name="ccsDomainMigration", weighting=50}

{name="ccsAccount", weighting=10}

{name="ccsPeriodicCharge", weighting=100}

{name="ccsChangeDaemon", weighting=50}

{name="ccsSLEEChangeDaemon", weighting=50}

{name="PIbeClient", weighting=10}

]

clientSelectTime

Syntax: clientSelectTime = microsecs

Description: The number of microseconds between each instant where beServer checks the
SLEE for events.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 1000000

Notes: • 1 000 000 microseconds = 1 second.

• If an event is waiting on the SLEE, beServer ignores this setting and
makes the next check immediately afterwards. This allows a second
event to be detected without delay.

• If the eserv.config file is reloaded, beServer will re-read the
clientSelectTime parameter.

Example:

clientSocketBufferSize

Syntax: clientSocketBufferSize = bytes

Description: The maximum message size in bytes expected from the BeClients connected to
the beServer.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10240

Notes: A message larger than this value will not be constructed properly.

Example: clientSocketBufferSize = 10240

enableStatistics

Syntax: enableStatistics = true|false

Description: Enable statistics gathering for beServer for all received client message types.

Type: Boolean

Optionality: Optional

Allowed: true Record statistics.

false Do not record statistics.

Default: false

 Chapter 3

•

 Chapter 3, Background Processes 69

Notes:

Example: enableStatistics = false

errorOnRecordStatistics

Syntax: errorOnRecordStatistics = true|false

Description: Enable statistics warnings/errors when there is a problem recording a statistic for
known/unknown message type.

Type: Boolean

Optionality: Optional

Allowed: true Generate warning/error.

false Do not generate warning/error.

Default: false

Notes:

Example: errorOnRecordStatistics = false

dbConnCheckTime

Syntax: dbConnCheckTime = seconds

Description: The number of seconds between each check that beServer is connected to, and
logged on to, the Oracle database.

Type: Integer

Optionality: Optional

Allowed:

Default: 1

Notes: If the Oracle database is not available, the current Voucher and Wallet Server is
disabled and BeClient routes calls to the other Voucher and Wallet Server.

Example: dbConnCheckTime = 1

downstreamOverloadSleepUSec

Syntax: downstreamOverloadSleepUSec = microsecs

Description: If a downstream process like beVWARS is overloaded, this parameter sets the
number of microseconds that beServer will wait before rechecking the process.

Type: Integer

Optionality: Required

Allowed:

Default:

Notes: • 1 000 000 microseconds = 1 second.

• This value must be shorter than the SLEE watchdog timeout period.

Example: downstreamOverloadSleepUSec = 100000

handlers

Syntax: handlers = [
"lib"

[...]

]

Description: The handlers parameter array contains plug-in library files that beServer must
load.

Chapter 3

70 Voucher and Wallet Server Technical Guide

Type: Parameter array

Optionality: Optional

Allowed:

Default:

Notes: • Plug-in library files contain message handlers for requests from clients. A
typical file might be libbeServerPingPlugin.so.

• The order that plug-in files are listed in the array is important. A handler
can be loaded twice, causing the last handler to be the one used.

• If the eserv.config file is reloaded, beServer will re-read the plug-in library
files in the handlers parameter array.

Example: handlers = [
"libbeServerPingPlugin.so"

]

quiesceLength

Syntax: quiesceLength = microsecs

Description: The number of microseconds that the beServer will restrict traffic to only sending
responses to outstanding requests from clients.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 100000 (1/10 second)

Notes: beServer will not read any new work during a quiesced interval so the Voucher
and Wallet Server has a chance to confirm the result of requests to the clients.
This minimizes failing over requests to the other VWS in the pair that have been
successfully processed on this VWS, but the confirmation has not been sent to
the client.

Client requests that have yet to be read will build up during this time, and when
they exceed the maximum queue length, BFT will kick in on the client. The
beServer will close the socket after quiesceLength has passed, and all traffic will
be directed at the other VWS in this pair.

This value should be set to the maximum time it takes to process all outstanding
requests currently on the SLEE. Any longer and outstanding requests on the
sockets will be delayed unnecessarily.

For more information about VWS error states and recovery, see Process Failure
Recovery (on page 147).

Example: quiesceLength = 100000

maxDownStreamQueueLength

Syntax: maxDownStreamQueueLength = len

Description: The maximum number of pending events on any beVWARS.

Type: Integer

Optionality: Required

Allowed:

Default:

Notes: If pending events exceed this number, beServer refers to the
downstreamOverloadSleepUSec parameter.

Example: maxDownStreamQueueLength = 1000

 Chapter 3

•

 Chapter 3, Background Processes 71

messageRoutingPlugins

Syntax: messageRoutingPlugins = [
"lib"

]

Description: Which message routing plug-ins to load.

Type: Array

Optionality: Optional (default used if not set)

Allowed:

Default:

Notes: These plug-ins tell the beServer which beVWARS to pass requests to. Requests
based on a wallet or a voucher must continue to be serviced by the same
beVWARS so it can keep the wallet or voucher cached.

For more information, see libbeMsgRouterDefault (on page 129).

Example: messageRoutingPlugins = [
"libbeMsgRouterDefault.so"

]

msgRouterDefault

Syntax: msgRouterDefault = {
roundRobinTypes = []

}

Description: Defaults for the message routing plug-ins loaded by messageRoutingPlugins

(on page 71).

Type: Array

Optionality:

Allowed:

Default:

Notes: Includes the roundRobinTypes (on page 71) parameter

Example:

roundRobinTypes

Syntax: roundRobinTypes = [
"type"

...

]

Description: Default routing for libbeMsgRouterDefault.so.

Type: Array of four-character strings.

Optionality: Optional (default used if not set)

Allowed:

Default: VI

Notes: If a message does not have a [WALT] or [VNUM] tag and its message type is in
this array, it will be round robined around beVWARS to share load.

The CCS VI message may or may not have a [VNUM] field.

You can also organize the elements in this array in one line, using a comma ',' to
separate the types.

Example: roundRobinTypes = [
"VI "

]

Chapter 3

72 Voucher and Wallet Server Technical Guide

routeOnVoucherNumber

Syntax: routeOnVoucherNumber = true|false

Description: What method to use to determine which beVWARS process to route voucher
redeem requests to.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true Use a hash of the Voucher Number to route to
beVWARS.

Compatible with CCS 3.1.4 and earlier.

false Use Voucher ID to route to beVWARS.

Compatible with CCS 3.1.5 and later.

Default: true

Notes: This parameter is used by the libbeMsgRouterDefault library.

Example: routeOnVoucherNumber = false

notEndActions

Syntax: notEndActions = [
{type="type", action="ACK|NACK"}

[...]

]

Description: This parameter array identifies messages that will be followed by subsequent
message.

Type: Parameter array

Optionality: Required

Allowed:

Default:

Notes:

Example: notEndActions = [
{type="IR ", action="ACK "}

{type="SR ", action="ACK "}

{type="SR ", action="NACK"}

{type="INER", action="ACK "}

{type="SNER", action="ACK "}

{type="SNER", action="NACK"}

]

purge

Syntax: purge = {
purgeInterval = seconds

vwarsTimeout = seconds

expectedKeep = seconds

noExpectedKeep = seconds

}

Description: The purge parameter group contains parameters that control purges.

Type: Parameter group.

Optionality: Optional

Allowed:

Default:

Notes: Running purge stresses the system with high loads.

Example:

 Chapter 3

•

 Chapter 3, Background Processes 73

expectedKeep

Syntax: expectedKeep = seconds

Description: A plug-in can specify the number of seconds it will wait for a request for a context
that it wants to keep. This parameter sets additional time, after the plug-in's time,
that beServer keeps a context if (during this period) no request for the context is
made.

Type: Integer

Optionality: Optional

Allowed:

Default: 60

Notes: • This parameter is part of the purge parameter group.

• If the eserv.config file is reloaded, beServer will re-read the parameter.

Example: expectedKeep = 60

noExpectedKeep

Syntax: noExpectedKeep = seconds

Description: If the plug-in does not specify a time it will wait for a request for a wanted context,
this parameter defines the number of seconds that beServer will keep the context.

Type: Integer

Optionality: Optional

Allowed:

Default: 3600

Notes: • This parameter is part of the purge parameter group.

• If the eserv.config file is reloaded, beServer will re-read the parameter.

• This parameter should be set to the equivalent value in seconds as the
CCS volumeReservationLength value. See CCS Technical Guide

Example: volumeReservationLength = 2 (days)

noExpectedKeep = 172800 (number of seconds in 2 days)

purgeInterval

Syntax: purgeInterval = seconds

Description: The number of seconds between purges.

Type: Integer

Optionality: Optional

Allowed:

Default: 300

Notes: • This parameter is part of the purge parameter group.

• If the eserv.config file is reloaded, beServer will re-read the parameter.

Example: purgeInterval = 300

vwarsTimeout

Syntax: vwarsTimeout = seconds

Description: The number of seconds between the moment that beServer sends a request to
the beVWARS and the moment that beServer fabricates an exception response.

Type: Integer

Chapter 3

74 Voucher and Wallet Server Technical Guide

Units: Seconds

Optionality: Optional

Allowed:

Default: 10

Notes: • This parameter is read during a purge.

• This parameter is part of the purge parameter group.

• If the eserv.config file is reloaded, beServer will re-read the parameter.

Example: vwarsTimeout = 10

recoveryReportInterval

Syntax: recoveryReportInterval = seconds

Description: The number of seconds between logging each recovery report to the syslog while
in recovery mode.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 60

Notes: The recovery report records how many beVWARS processes beServer is waiting
to go into running state before it will go into running state.

For more information about the different states, see Process Failure Recovery (on
page 147).

Example: recoveryReportInterval = 60

routingVoucherNumberLength

Syntax: routingVoucherNumberLength = len

Description: The length of the prefix of the voucher number to use for routing voucher
messages to beVWARS processes.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes: For CCS vouchers, this should match the length of the voucher number, not the
length of the voucher signature. For more information about voucher numbers
and voucher signatures, see Voucher Manager User's Guide.

Example: routingVoucherNumberLength = 10

serverPortOverride

Syntax: serverPortOverride = port

Description: The port number beServer uses as an alternative to the one defined by the
beLocationPlugin (on page 41).

Type: Integer

Optionality: Optional

Allowed: -1 Do not override beLocationPlugin.

any valid port Port for beServer to use.

Default: -1

Notes: This parameter is usually used for testing.

Example: serverPortOverride = 1500

 Chapter 3

•

 Chapter 3, Background Processes 75

slaveLocalSocketDirectory

Syntax: slaveLocalSocketDirectory = "directory_name"

Description: Specifies the directory to use for files created by interprocess communication
(IPC) objects, such as sockets, semaphores, and shared memory. The IPC
objects enable communication between master and slave beServer interfaces.

Type: String

Optionality: Optional (default used if not set)

Allowed: A valid directory location.

Default: /tmp

Notes: None

Example: slaveLocalSocketDirectory = "/tmp"

Example configuration

This is an example of the beServer section of the eserv.config file on a VWS node (comments have been
removed).

beServer = {

clientSelectTime = 1000000

quiesceLength = 100000

serverPortOverride = 1500

clientSocketBufferSize = 10240

maxDownstreamQueueLength = 1000

downstreamOverloadSleepUSec = 100000

dbConnCheckTime = 5

recoveryReportInterval = 60

notEndActions = [

{type="IR ", action="ACK "}

{type="SR ", action="ACK "}

{type="SR ", action="NACK"}

{type="INER", action="ACK "}

{type="SNER", action="ACK "}

{type="SNER", action="NACK"}

]

handlers = [

"libbeServerPingPlugin.so"

]

messageRoutingPlugins = [

"libbeMsgRouterDefault.so"

]

msgRouterDefault = {

roundRobinTypes = [

"VI "

]

routeOnVoucherNumber = true

}

purge = {

purgeInterval = 300

vwarsTimeout = 10

expectedKeep = 60

noExpectedKeep = 3600

Chapter 3

76 Voucher and Wallet Server Technical Guide

}

routingVoucherNumberLength = 10

slaveLocalSocketDirectory = "/tmp"

clientLoadWeightings = [

{name="ccsBeClient", weighting=200}

{name="ccsMFileCompiler", weighting=0}

{name="ccsBeGroveller", weighting=0}

{name="ccsBeOrb", weighting=10}

{name="ccsBeResync", weighting=100}

{name="osaChamScs", weighting=100}

{name="ccsBatchCharge", weighting=10}

{name="ccsDomainMigration", weighting=50}

{name="ccsAccount", weighting=10}

{name="ccsPeriodicCharge", weighting=100}

{name="ccsChangeDaemon", weighting=50}

{name="ccsSLEEChangeDaemon", weighting=50}

{name="PIbeClient", weighting=10}

]

} # BE.beServer

Output

The beServer writes error messages to the system messages file, and also writes additional output to
the following location by default:

/IN/service_packages/E2BE/tmp/beServer.log

beSync

Purpose

Synchronizes data between the Voucher and Wallet Servers in a VWS pair.

beSync collects all updates and reservations being made, and writes them to disk. It then reads them
from disk and sends them to the other VWS, as and when it can.

For more information on beSync and how it interacts with other VWS components, see Synchronization
(on page 20).

Startup

This task is started by the SLEE, by the following line in SLEE.cfg:

INTERFACE=beSync beSyncStartup.sh /IN/service_packages/E2BE/bin instance_count

EVENT

Where instance_count is the number of instances to run of the beSync process.

Note: If you configure the SLEE to run multiple instances of the beSync process, then each beSync
process will have the value of instance_count - 1 appended to the process name. So the first

beSync process will be named beSync0 and subsequent beSync processes will be named beSync1,
beSync2 and so on. If you configure only one instance of beSync then nothing is appended to the
process name.

For more information about configuring SLEE interfaces, see SLEE Technical Guide.

Configuration

beSync accepts the following parameters from eserv.config.

 Chapter 3

•

 Chapter 3, Background Processes 77

beSync = {

shared = {

noWorkSleepTime = seconds

spoolDirectory = "dir"

spoolChunkSize = num

badFileDirectory = "dir"

maxDownstreamQueueLength = num

downstreamOverloadSleepUSec = int

}

sink = {

inSyncThresholdSeconds = seconds

inSyncReportingPeriodRecords = records

maxSecsToWaitForRemoteOperations = seconds

remoteBEhostname="host"

remoteBEport=port

retryConnectionDelaySeconds = seconds

maxRetriesBeforeStart = num

localUpdateChunkSize = size

heartbeatPeriodSeconds = seconds

}

source = {

listenInterface="ip"

listenPort = port

recordSendingChunkSize = num

maxQueueLength = num

}

}

Parameters

Here are the parameters in the beSync section.

shared parameters

The shared sub-section of beSync defines the beSync shared items.

badFileDirectory

Syntax: badFileDirectory = "dir"

Description: Directory to move corrupted resync files to.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any directory path.

Default: "/IN/service_packages/E2BE/tmp"

Notes: Files in this directory will be called file.bad.

Example: badFileDirectory = "/IN/service_packages/E2BE/tmp"

Chapter 3

78 Voucher and Wallet Server Technical Guide

downstreamOverloadSleepUSec

Syntax: downstreamOverloadSleepUSec = int

Description: When a downstream process, a beVWARS is overloaded, sleep for this period
before rechecking.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 100000

Notes: This value must be shorter than the SLEE watchdog timeout period.

Example: downstreamOverloadSleepUSec = 100000

maxDownstreamQueueLength

Syntax: maxDownstreamQueueLength = num

Description: The maximum number of pending events on any beVWARS. When more than
this number of events are queued on any of the processes, beSync will sleep.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10000

Notes: See maxQueueLength (on page 82) for throttling based on the remote beSync.

Important: Care should be taken when setting
BE.beSync.maxDownstreamQueueLength as this is the value that slows a full

resync by keeping each of the beVWARS processes busy. If you allow a full
resync to run as fast as possible, it will use up all of the events.

Example: maxDownstreamQueueLength = 10000

noWorkSleepTime

Syntax: noWorkSleepTime = seconds

Description: The sleep time in seconds.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 0.2

Notes: Should be small (0.x) in production, and larger in test (2.0). Lower values will
cause more CPU usage.

Example: noWorkSleepTime = 0.2

spoolChunkSize

Syntax: spoolChunkSize = num

Description: The number of records to read and send in one cycle.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 16

Notes:

Example: spoolChunkSize = 16

 Chapter 3

•

 Chapter 3, Background Processes 79

spoolDirectory

Syntax: spoolDirectory = "dir"

Description: This is where all transactions are written to disk by beVWARS so they can be
replayed to one of the following:

• The remote VWS in the pair

• If there has been a failure, the local VWS in the pair

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /IN/service_packages/E2BE/sync

Notes: Available space in the directory set by this parameter is checked by the beSync
against the limits set in the Disk space parameters.

Example: spoolDirectory = "/var/logs/sync"

sink parameters

The sink sub-section of beSync defines the sink parameters for beSync. This is the component that

receives operations from the remote beSync.

heartbeatPeriodSeconds

Syntax: heartbeatPeriodSeconds = seconds

Description: How often in seconds heartbeat packets are sent on a connection.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes:

Example: heartbeatPeriodSeconds = 10

inSyncThresholdSeconds

Syntax: inSyncThresholdSeconds = seconds

Description: How close (in seconds) to real-time before the beSync is enabled.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 5

Notes:

Example: inSyncThresholdSeconds = 5

inSyncReportingPeriodRecords

Syntax: inSyncReportingPeriodRecords = records

Description: The number of records between checks against real-time.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Chapter 3

80 Voucher and Wallet Server Technical Guide

Default: 10000

Notes:

Example: inSyncReportingPeriodRecords = 10000

localUpdateChunkSize

Syntax: localUpdateChunkSize = size

Description: Tuning parameter.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 100

Notes:

Example: localUpdateChunkSize = 100

maxRetriesBeforeSeconds

Syntax: maxRetriesBeforeSeconds = num

Description: The number of attempts to contact the other VWS in the pair before we start
regardless.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 5

Notes:

Example: maxRetriesBeforeSeconds = 5

maxSecsToWaitForRemoteOperations

Syntax: maxSecsToWaitForRemoteOperations = seconds

Description: During the synchronization process, the maximum number of seconds beSync waits for
a remote operation message before enabling beVWARS to move to the Running state.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: 0 – beSync does not wait before enabling beVWARS to move to the Running state.

Positive integer – Specifies the number of seconds beSync waits for a remote operation
message.

Default: 5

Notes:

Example: maxSecsToWaitForRemoteOperations = 5

remoteBEhostname

Syntax: remoteBEhostname = "host"

Description: Overrides the DB configuration of the remote VWS host.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: The name of the remote BE host.

Notes:

 Chapter 3

•

 Chapter 3, Background Processes 81

Example:

remoteBEport

Syntax: remoteBEport = port

Description: Overrides the DB configuration of the remote VWS port

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Valid port number

Default: 2001

Notes:

Example: remoteBEport = 2001

retryConnectionDelaySeconds

Syntax: retryConnectionDelaySeconds = seconds

Description: The maximum number of seconds between connection attempts

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 30

Notes:

Example: retryConnectionDelaySeconds = 30

source parameters

The source sub-section beSync defines the source parameters for beSync. This is the component that

sends operations to the remote beSync.

listenInterface

Syntax: listenInterface = "ip"

Description: Overrides the DB configuration for what we listen to.

Type: String

Optionality: Optional (default used if not set)

Allowed: Internet Protocol version 4 (IPv4) addresses, IP version 6 (IPv6) addresses

Default: 0.0.0.0

Notes: You can use the industry standard for omitting zeros when specifying IPv6
addresses.

Examples: listenInterface = "192.0.2.0"

listenInterface = "2001:db8:0000:1050:0005:0600:300c:326b"

listenInterface = "2001:db8:0:0:0:500:300a:326f"

listenInterface = "2001:db8::c3"0"

listenPort

Syntax: listenPort = port

Description: Overrides the DB configuration.

Type: Integer

Optionality: Optional (default used if not set)

Chapter 3

82 Voucher and Wallet Server Technical Guide

Allowed:

Default: 2001

Notes:

Example: listenPort = 2001

maxQueueLength

Syntax: maxQueueLength = num

Description: How many messages can queue on the socket before we stop sending and stop
getting work from the beVWARS.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 50

Notes:

Example: maxQueueLength = 50

recordSendingChunkSize

Syntax: recordSendingChunkSize = num

Description: The number of records to send in one poll cycle.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 50

Notes:

Example: recordSendingChunkSize = 50

Example configuration

This is an example of the beSync section of the eserv.config file on a VWS (comments have been

removed).

beSync = {

shared = {

noWorkSleepTime = 0.2

spoolDirectory = "/IN/service_packages/E2BE/sync"

spoolChunkSize = 16

badFileDirectory = "/IN/service_packages/E2BE/tmp"

maxDownstreamQueueLength = 10000

downstreamOverloadSleepUSec = 100000

}

sink = {

inSyncThresholdSeconds = 5

inSyncReportingPeriodRecords = 10000

maxSecsToWaitForRemoteOperations = 5

retryConnectionDelaySeconds = 30

maxRetriesBeforeStart = 5

localUpdateChunkSize = 100

heartbeatPeriodSeconds = 10

}

 Chapter 3

•

 Chapter 3, Background Processes 83

source = {

recordSendingChunkSize = 50

maxQueueLength = 50

}

}

Output

The beSync writes error messages to the system messages file, and also writes additional output to:

/IN/service_packages/E2BE/tmp/beSync.log

Note: The above are defaults and can vary.

beServiceTrigger

Purpose

beServiceTrigger sends BPL requests to instances of the xmlTcapIF and NCC Open Services
Development (OSD) requests to the osdInterface running on separate SLC nodes within the same IN
platform. It runs as a SLEE interface on the primary VWS only.

beServiceTrigger accepts beServiceTrigger events from other BE SLEE interfaces running on the same
VWS. For each beServiceTrigger event received, it first checks whether an operationSetName is
defined in the event. If an operationSetName is:

• Defined, it sends the related OSD operation to the OSD interface running on a separate SLC node

• Not defined, it creates and sends a new BPL request to an available instance of an XML TCAP
interface running on a separate SLC node.

About the beServiceTrigger User

The beServiceTrigger user allows beServiceTrigger to access external systems, such as a client ASP
that is accessed through the OSD component during event processing. beServiceTrigger retrieves the
user credentials (username and password) from a secure credentials vault on the SMS node. The
credentials vault is used for storing user names and passwords securely and for authorizing users.

You can set the beServiceTrigger user and password by using the beServiceTriggerUser utility. See
Setting the beServiceTrigger User and Password (on page 144) for more information.

Example

An example of the use of the beServiceTrigger is the Rewards plug-in in the beVWARS. The Rewards
plug-in sends a beServiceTrigger request to run a control plan to apply rewards to subscribers on non-
VWS charging domains.

Characteristics

beServiceTrigger has the following characteristics:

• It only accepts beServiceTrigger events sent by other SLEE interfaces running on the same
(primary) VWS

• When processing beServiceTrigger events, a new BPL or OSD request is issued to the next
available XML TCAP or OSD interface without any acknowledgment to the requesting interface. The
traffic between the beServiceTrigger and each particular xmlTcapIf / osdInterface is handled
synchronously. No BPL / OSD request will be sent to the same xmlTcapIf/ osdInterface instance
until the processing of the previous BPL / OSD request has finished.

Chapter 3

84 Voucher and Wallet Server Technical Guide

• Apart from processing incoming beServiceTrigger events, the beServiceTrigger interface
communicates with the beVWARS interfaces in order to produce EDRs as a result of processing
BPL / OSD responses

• Overall, the processing of beServiceTrigger events and connections to different xmlTcapIf /
osdInterface instance is done asynchronously. This allows events to be processed and requests to
different xmlTcapIf / osdInterface instances to be handled in parallel.

Process

This section describes how beServiceTrigger processes a beServiceTrigger event from the Rewards
plug-in of beVWARS.

Stage Description

1 beServiceTrigger receives a beServiceTrigger event from the Rewards plug-in and
immediately creates a new BPL request ready to be sent to the next available xmlTcapIf.

Note: The Rewards plug-in is not notified about the events received or the BPL requests
being sent.

2 When an xmlTcapIf becomes available, the enqueued BPL request is sent and the
xmlTcapIf then becomes unavailable until a response is received or the request times out.

3 Incoming beServiceTrigger events and BPL responses are handled asynchronously to
allow new BPL requests to be sent to available xmlTcapIf instances.

4 After a BPL response arrives, the corresponding xmlTcapIf becomes available to process
further requests. A request to create a Control Plan Service Invoke EDR (type 7) is sent
to the appropriate beVWARS interface.

Startup

This task is started by the following line in SLEE.cfg:

INTERFACE=beServiceTrigger beSerTrigStartup.sh

/IN/service_packages/E2BE/bin EVENT

Note: Only one instance of the beServiceTrigger interface is allowed per VWS SLEE.

Valid interfaces

The beServiceTrigger requires and uses slightly different configuration depending on the interface used.

XmlTcap is the default interface unless the operation set is defined in the request, in which case the
OSD interface is used.

XmlTcap parameters

• Control_Plan

• Service_Handle

• scps

OSD parameters

• CCSNamespace

• osd_scps

• operationSet

• operation

Parameters common to both intrefaces

• edr

 Chapter 3

•

 Chapter 3, Background Processes 85

• failureRetryTime

• storageInterface

• triggerInterface

• responseTag

• maxRatePerUAS

• throttleLife

• timeBetweenThrottles

• maxConnections

XmlTcap Parameters

beServiceTrigger/XmlTcap is configured by the following parameters from the triggering section in

the eserv.config file on the VWS:

triggering = {

Control_Plan = "cpname"

Service_Handle = "handle"

scps = ["ip:port"]

}

triggering = {

Control_Plan = "Reward"

Service_Handle = "CCS_BPL"

CCSNamespace = "http://eng-prf-zone01-z1/wsdls/ON/CCSNotifications.wsdl"

edr = false

scps = ["cmxdevscp1:3072", "cmxdevscp2:3072"]

osd_scps = ["cmxdevscp1:3072", "cmxdevscp2:3072"]

failureRetryTime = 60

storageInterface = beEventStorageIF

triggerInterface = beServiceTrigger

operationSet = CMX ON

operation = Invoke OSD

responseTag = Result

maxRatePerUAS = 0

throttleLife = 30

timeBetweenThrottles = 10

tcpTxMaxBuf = 262144

tcpRxMaxBuf = 131072

} # triggering

Control_Plan

Syntax: Control_Plan = "cpname"

Description: The default control plan name that will be used in BPL requests if none is present
in the SLEE event.

Type: String

Optionality: Optional

Allowed:

Default: Empty

Notes:

Example: Control_Plan = "Reward"

Chapter 3

86 Voucher and Wallet Server Technical Guide

scps

Syntax: scps = [
"ip:port"

...

]

Description: Lists the host name or Internet Protocol (IP) address, and port of each
xmlTcapInterface SLC to which beServiceTrigger connects. If you specify an IP
version 6 (IPv6) address and port combination, then you must enclose the IPv6
address in square brackets [], see example for details.

Type: Array

Optionality: Required. In any row of the array, ip must be specified but port is optional.

Allowed: • ip – An IP address or symbolic host name

• port – Integer in the range 0 to 65535

Default: port defaults to 3072

Notes: An example of an IPv4 address is 192.0.2.1.

An example of an IPv6 address is 2001:db8:n:n:n:n:n:n where n is a group

of 4 hexadecimal digits. The industry standard for omitting zeros is also allowed.

An example of an address in symbolic name format is primary_smc.

Example:
scps = [

"198.51.100.1"

"192.0.2.1:4000"

"[2001:db8:0000:1050:0005:0600:300c:326b]:3004"

"[2001:db8:0:0:0:500:300a:326f]:1234:SMF"

"[2001:db8::c3]:1234:SMF"

"2001:db8:1050:0:0:300a:0300:126c"

"primary_smc"

"secondary_smc:3006"

]

Service_Handle

Syntax: Service_Handle = "handle"

Description: The default service handle that will be used in BPL requests if none is present in
the SLEE event.

Type: String

Optionality: Optional

Allowed:

Default: Empty

Notes:

Example: Service_Handle = "CCS_BPL"

OSD Parameters

beServiceTrigger/OSD is configured by the following parameters from the triggering section in the
eserv.config file on the VWS:

triggering = {

CCSNamespace = "URL"

osd_scps = ["ip:port"]

operationSet = "name"

operation = "name"

}

 Chapter 3

•

 Chapter 3, Background Processes 87

CCSNamespace

Syntax: CCSNamespace = "URL"

Description: The default Namespace that will be put into OSD requests if none is present in
the SLEE event.

Type: String

Optionality: Optional

Allowed:

Default: Empty

Notes:

Example: CCSNamespace = "http://eng-prf-zone01-

z1/wsdls/ON/CCSNotifications.wsdl"

osd_scps

Syntax: scps = [
"ip:port"

...

]

Description: Lists the host name or Internet Protocol (IP) address, and port of each
xmlTcapInterface SLC to which beServiceTrigger connects. If you specify an IP
version 6 (IPv6) address and port combination, then you must enclose the IPv6
address in square brackets [], see example for details.

Type: Array

Optionality: Required. In any row of the array, ip must be specified but port is optional.

Allowed: • ip – An IP address or symbolic host name

• port – Integer in the range 0 to 65535

Default: port defaults to 3072

Notes: An example of an Internet protocol address is 192.0.2.1.

An example of an IPv6 address is 2001:db8:n:n:n:n:n:n where n is a group

of 4 hexadecimal digits

An example of an address in symbolic name format is primary_smc.

Example:
osd_scps = [

"192.0.2.2

"192.0.2.1:4000"

"[2001:db8:0000:1050:0005:0600:300c:326b]:3004"

"[2001:db8:0:0:0:500:300a:326f]:1234:SMF"

"[2001:db8::c3]:1234:SMF"

"2001:db8:300c:0:600:300c:0:126b"

"primary_smc"

"secondary_smc:3006"

]

operation

Syntax: operation = "name"

Description: The name of the OSD operation to invoke the service when none is set in the
SLEE event.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: Empty

Chapter 3

88 Voucher and Wallet Server Technical Guide

Notes:

Example: operation = "Notification"

operationSet

Syntax: operationSet = "name"

Description: The name of the operation set that contains the template used to invoke the
service when none is set in the SLEE event.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: Empty

Notes:

Example: operationSet = "NotificationSet"

Common parameters

beServiceTrigger common parameters are configured by the following from the triggering section in the
eserv.config file on the VWS:

triggering = {

edr = true | false

failureRetryTime = seconds

storageInterface = "name"

triggerInterface = "name"

responseTag = name

maxRatePerUAS = num

throttleLife = seconds

timeBetweenThrottles = millisecs

maxConnections = integer

}

edr

Syntax: edr = true|false

Description: Should an EDR be produced when a response is received.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes:

Example: edr = false

failureRetryTime

Syntax: failureRetryTime = seconds

Description: The length of time in seconds between attempts to send the message to the SLC.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 60

Notes:

Example: failureRetryTime = 60

 Chapter 3

•

 Chapter 3, Background Processes 89

maxConnections

Syntax: maxConnections = integer

Description: The maximum number of connections from beServiceTrigger to interfaces on the
SLC.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: 0 or any positive integer. 0 indicates no maximum.

Default: 25

Notes: Increase the value of maxConnections as the number of rows in the
be_event_storage table increases.

Example: maxConnections = 25

maxRatePerUAS

Syntax: maxRatePerUAS = num

Description: The maximum rate (messages/second) each SLC is able to handle before
throttling.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 0

Notes: 0 means unlimited.

Example: maxRatePerUAS = 0

responseTag

Syntax: responseTag = name

Description: The name of the tag in the response message to use to populate the EDR.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: Result

Notes:

Example: responseTag = Result

storageInterface

Syntax: storageInterface = "name"

Description: The name of the interface used to store events for sending later, either due to a
failure, or a request for a delayed send.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: beEventStorageIF

Notes:

Example: storageInterface = "beEventStorageIF"

Chapter 3

90 Voucher and Wallet Server Technical Guide

tcpTxMaxBuf

Syntax: tcpTxMaxBuf = size

Description: Maximum size of TCP send buffer.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 1048576

Notes:

Example: tcpTxMaxBuf = 262144

tcpRxMaxBuf

Syntax: tcpRxMaxBuf = size

Description: Maximum size of TCP receive buffer.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 1048576

Notes:

Example: tcpRxMaxBuf = 131072

throttleLife

Syntax: throttleLife = seconds

Description: The length of time in seconds a throttle will exist for before the attempts to back it
off.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 30

Notes:

Example: throttleLife = 30

timeBetweenThrottles

Syntax: timeBetweenThrottles = millisecs

Description: The length of time in milliseconds between throttle messages being sent to the
storage interface.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes:

Example: timeBetweenThrottles 10

triggerInterface

Syntax: triggerInterface = "name"

Description: The name of the triggering interface itself.

 Chapter 3

•

 Chapter 3, Background Processes 91

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: beServiceTrgger

Notes:

Example: triggerInterface = "beServiceTrigger"

Output

beServiceTrigger writes error messages to the system messages file, and also writes additional output
to the location indicated in the startup script, which will usually be set to:

/IN/service_packages/E2BE/tmp/beServiceTrigger.log

Notification requests

The VWS directs all notification requests to a SLC OSD interface through the beServiceTrigger (flow 2
in diagram).

Notification overview

The OSD interface triggers ACS, which loads a control plan containing the notification node in order to
perform delivery (flow 6 in diagram).

If no OSD nodes are available, are unresponsive, or the notification has a Time of Day associated, then
it will be stored locally for subsequent delivery.

Note: The Wallet Information will be omitted from this, as it will be stale before the notification is sent.

The Time Daemon will poll the Time Dependant notifications stored on the VWSs and trigger OSD
requests according to the time. These requests will be throttled and load balanced in order to not
overload SLC nodes with large numbers of Control Plan requests.

The VWSs will operate in isolation within the pair, therefore if notifications are delayed and stored on the
Primary VWS, they will not be synchronized to the secondary.

If there is a failure or outage in the primary, notifications to be generated will be stored locally on the
secondary during the outage. After the primary is operational again it will process all relevant
notifications, while the secondary retains responsibility for notifications generated during the primary
outage.

Chapter 3

92 Voucher and Wallet Server Technical Guide

Notification flows

This diagram shows the various notification flows across the NCC platform.

 Chapter 3

•

 Chapter 3, Background Processes 93

Flow 1

The beVWARS plug-ins send SMS information to the beServiceTrigger.

Flow 2

Notification XML messages from the beServiceTrigger to the OSD interface on the SLC.

Flow 3

If a notification cannot be delivered immediately, either because it has an associated time period when it
can be delivered, or because the delivery attempt failed, then persistent storage of the notification is
provided in a database table.

Flow 4

When the time notification daemon examines the notification entries in the database, it retrieves the
notifications that can now be sent either because their allowable delivery time has been met or because
it is a message retry.

Flow 5

The time notification daemon deletes the active entries from the database and sends delivery request
messages to the beServiceTrigger for each of the active entries.

Flow 6

The OSD interface triggers ACS, which then loads the control plan containing the notification feature
node that will perform delivery of the notification.

Flow 7

The notification template to use is determined by the notification feature node, based on:

• Language ID

• Template ID

• Customer ID

Flow 8

The notification feature node delivers a USSD notification through the TCAP interface.

If the message class is "USSD push", then an internal message is sent through the USSD push action
handler to the TCAP interface after the notification feature node has performed all the parameter
substitutions.

Flow 9

Chassis action to construct message from template.

Flow 10

Other send message feature nodes use new chassis actions to deliver notifications using Messaging
Manager.

Chapter 3

94 Voucher and Wallet Server Technical Guide

beVWARS

Purpose

beVWARS caches and holds the state of:

• Wallets and their associated reservations

• Vouchers and their associated reservations

The database cannot reflect the state of the running system, because updates are usually pending in
the Writer. To maintain a single consistent view of an individual record's state in the database, use a
beVWARS instance to access all wallets or vouchers. beVWARS is responsible for all updates to
database fields changed during a resync.

beVWARS also handles COMMITing the database updates and writing EDRs. For more information,
see beVWARS data updates (on page 18).

Plug-ins

beVWARS can be extended by:

• Event handlers specified in the plugins (on page 99) parameter

• Message handlers specified in the handlers (on page 98) parameter

VWS provides a set of standard beVWARS plug-ins to handle standard interactions. These include
beVWARSMergeBuckets (on page 121).

Other handlers are provided by other applications such as CCS to provide application-specific functions
such as named event charges. For more information about the plug-ins provided by CCS, see CCS
Technical Guide.

Activating Used Units Confirmation (UUC) Features

Follow these steps to activate Used Units Confirmation (UUC) features. The installation instructions tell
you when to perform these steps.

Note: Perform this procedure on the Primary BE only. Under normal operation, a reservation expires at
exactly the same time on both VWSs. Installing the ccsVWARSReservationExpiry plug-in on the
Secondary BE causes the user to be double-charged.

Step Action

1 On the primary BE, open the /IN/service_packages/eserv.config file in a text editor.

2 In the plugins section, add the ccsVWARSReservationExpiry.so entry.
BE = {

beVWARS = {

plugins = [

... Existing plug-ins here ...

"ccsVWARSReservationExpiry.so" # <-- New plugin entry

]

}

}

3 Save and close the file.

Startup

The SLEE starts this task through the following line in SLEE.cfg:

INTERFACE=beVWARS beVWARSStartup.sh /IN/service_packages/E2BE/bin

instance_count EVENT

 Chapter 3

•

 Chapter 3, Background Processes 95

Where instance_count is the number of instances to run of the beVWARS process.

Note: beVWARS usually uses more than one beVWARS process. Each beVWARS process has the
value of instance_count - 1 appended to the process name. Thus, the first beVWARS process is

beVWARS0, and subsequent beVWARS processes are named beVWARS1, beVWARS2, and so on. If
you configure only one instance of beVWARS, nothing is appended to the process name.

For more information about configuring SLEE interfaces, see SLEE Technical Guide

Wallet Time Configuration

By default, beVWARS applies the OS time to every wallet as transactions are applied. You can
configure beVWARS to read the time from a wallet time configuration file
(/IN/service_packages/E2BE/etc/VWARS_sysdate.cfg). The file contains a mapping of times to wallet IDs. This
allows you to manually change the time for a wallet ID on the fly.

Note: beVWARS uses the time zone of the VWS host on which the beVWARS process is running.

The following shows the format for each line in the VWARS_sysdate.cfg file:

WalletID YYYY/MM/DD HH:MM:SS

For example:

12345 2011/11/01 12:00:00

To configure beVWARS to read times from VWARS_sysdate.cfg, set the useTimeFromConfigFile

parameter to true in the eserv.config file.

Configuration

beVWARS accepts the following parameters from eserv.config.

beVWARS = {

voucherReservationPeriodSeconds = seconds

useTimeFromClient = true|false

maxTransactionsPerSet = num

maxOpenDialogTime = seconds

maxDownstreamQueueLength = num

downstreamOverloadSleepUSec = microsecs

minResyncReservationLength = seconds

createBucketExpiryDays = days

reservationExpiryCheckMilliseconds = millisecs

walletConfigFileReReadTime = seconds

setLastUseDateOnActivation = true|false

maxSendReservationsToSync = num

useTimeFromConfigFile = true|false

waltResvnExpiryToleranceSeconds = num

removeExpiredNotRemoved = true|false

pluginSkipTimeOnStartup = seconds

gapBeforeRestartingPluginSkip = seconds

clearEmptyBuckets = true|false

walletCache = {

maxSize = num

maxLoopSize = num

checkBeforeFlush = true|false

}

voucherCache = {

maxLoopSize = num

checkBeforeFlush = true|false

Chapter 3

96 Voucher and Wallet Server Technical Guide

flushPeriodSeconds = 60 # -1

maxSize = num

voucherRevokeOnTimeout = false

 # when a voucher reservation is expired revoke it if set to true

 # this takes precedence over voucherCommitOnTimeout

voucherCommitOnTimeout = false

 # when a voucher reservation is expired commit it if set to true

 # however voucherRevokeOnTimeout takes precedence if set

}

groveller = {

periodMsec = millisecs

requestHighWaterMark = num

walletLowWaterMark = num

requestTimeout = seconds

peerDatabaseLogin = "login"

peerWalletCheckRetrySeconds = seconds

secondaryConnectionDelaySeconds = seconds

}

duplicateDetection = {

keepDirectSeconds = seconds

keepSyncSeconds = seconds

directMaxDelaySeconds = seconds

syncMaxDelaySeconds = seconds

}

setLastActivationDateStates = [states]

plugins = [

"lib"

[...]

]

handlers = [

"lib"

[...]

]

syncWriter = {

maxRecordsPerFile = num

maxSecondsPerFile = seconds

}

dbWriter = {

flushPeriod = seconds

cdrOutputDirectory = "dir"

balanceCreateBufferSize = num

balanceUpdateBufferSize = num

balanceDeleteBufferSize = num

bucketCreateBufferSize = num

bucketUpdateBufferSize = num

bucketDeleteBufferSize = num

walletCreateBufferSize = num

walletUpdateBufferSize = num

walletDeleteBufferSize = num

voucherCreateBufferSize = num

voucherUpdateBufferSize = num

voucherDeleteBufferSize = num

}

}

 Chapter 3

•

 Chapter 3, Background Processes 97

Parameters

Here are the available parameters in the beVWARS section of eserv.config.

clearEmptyBuckets

Syntax: clearEmptyBuckets = true|false

Description: Controls the empty bucket deletion. Mainly used in case of balance update flow
for commit sequence of normal call.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true – Existing functionality will be retained i.e. empty buckets will be
deleted.

• false – Empty buckets won't be deleted.

Default: true

Notes: Other flows like Expiry flow and WalletUpdate flow can also be controlled using
this flag i.e. when this flag value is set to false, it will override
deleteEmptyBuckets and removeEmptyBuckets flag value, irrespective of what
value is configured for them.

Example: clearEmptyBuckets = false

createBucketExpiryDays

Syntax: createBucketExpiryDays = days

Description: In rare cases, beVWARS must spontaneously create a new bucket to preserve a
wallet's last use date. This occurs, for example, when:

• The last bucket is deleted.

• A call is made when a wallet does not contain any buckets.

• A recharge occurs against a Balance Type with no buckets.

This parameter defines the new bucket's Balance Expiry Date.

Type: Integer

Units: Days

Optionality: Optional (default used if not set).

Allowed: • 0 – Creates the bucket with no expiry date.

• A positive integer – Sets the bucket's Balance Expiry Date to this many
days in the future.

Default: 30

Notes:

Example: createBucketExpiryDays = 30

downstreamOverloadSleepUSec

Syntax: downstreamOverloadSleepUSec = microsecs

Description: When a downstream process (beSync or beServer) is overloaded, this parameter
specifies the amount of time to sleep, in microseconds, before rechecking the
downstream process.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 100000

Chapter 3

98 Voucher and Wallet Server Technical Guide

Notes: This value must be shorter than the SLEE watchdog timeout period.

Example: downstreamOverloadSleepUSec = 100000

handlers

Syntax: handlers = [
"lib"

[...]

]

Description: Lists the beVWARS message handler plug-ins to load.

Type: Array

Optionality: Optional (default used if not set).

Allowed:

Default:

Notes: This array must include handlers for messages from processes requesting billing
actions.

For more information about handlers from other applications, see the associated
technical guide.

Example: handlers = [
"beVWARSCCDRHandler.so"

]

maxDownstreamQueueLength

Syntax: maxDownstreamQueueLength = num

Description: Specifies the maximum number of pending events on beSync or beServer.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 10000

Notes: When this number is exceeded, if events are queued on either of the processes,
beVWARS sleeps.

Example: maxDownstreamQueueLength = 10000

maxOpenDialogTime

Syntax: maxOpenDialogTime = seconds

Description: Specifies how long, in seconds, to try to open dialogs to the other SLEE
processes.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 5.0

Notes:

Example: maxOpenDialogTime = 5.0

maxSendReservationsToSync

Syntax: maxSendReservationsToSync = num

Description: When beSync has requested all reservations, this is the number to send in one
pass.

Type: Integer

 Chapter 3

•

 Chapter 3, Background Processes 99

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes: This parameter controls the number of reservation contexts to send to the remote
beSync (sink) in one pass. Between each maxSendReservationsToSync

number of reservations sent, a single real time event will be processed. Lowering
this will alter the ratio of reservation contexts sent to real time events processed
by the active beVWARS.

Example: maxSendReservationsToSync = 1000

maxTransactionsPerSet

Syntax: maxTransactionsPerSet = num

Description: Specifies the number of transactions and EDRs to try initially to fit into a
TransactionSet written to the sync files.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 7

Notes: This TransactionSet will be passed across the SLEE on the other VWS, so must
fit inside a SLEE event.

If this number of transactions does not fit the message, the message is re-
encoded with fewer and fewer Transactions and EDRs per TransactionSet.

7 is used because 7.75 132 byte Transactions fit into a 1024 bytes SleeEvent.

Example: maxTransactionsPerSet = 7

minResyncReservationLength

Syntax: minResyncReservationLength = seconds

Description: Minimum reservation length (in seconds) before passing the reservation to the
other Voucher and Wallet Server in a pair.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: positive integer Minimum

0 Resync all reservations.

Default: 5

Notes: Set this parameter to reduce the amount of reservations which are sent where
they will have expired by the time they are received by the other VWS.

Example: minResyncReservationLength = 5

plugins

Syntax: plugins = [
"lib"

[...]

]

Description: Lists the beVWARS event handler plug-ins to load.

Type: Parameter array

Optionality:

Allowed:

Chapter 3

100 Voucher and Wallet Server Technical Guide

Default:

Notes: Where plug-ins are triggered by the same event, they will operate in the order
they appear in this list.

For more information about plug-ins from other applications, see the associated
technical guide.

Example: plugins = [
"beVWARSExpiry.so"

]

pluginSkipTimeOnStartup

Syntax: pluginSkipTimeOnStartup = seconds

Description: The number of seconds to hold/stop periodic charge plugin executions, expiry
bucket processing and grovelling, whenever beVWARS starts and first client
event is received or, when a first client event is received after a failover from
primary to secondary VWS.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0

Notes: In primary VWS, this parameter is used only during start-up. After start-up, as
soon as first client event is received, beVWARS will start skipping periodic charge
plugin executions, expiry bucket processing and grovelling for
pluginSkipTimeOnStartup seconds. It will resume after the configured

seconds. In secondary VWS, it is used during start-up as well as during a failover
from primary to secondary VWS. To identify, that a client event is received in
secondary because of primary failover, configuration parameter
gapBeforeRestartingPluginSkip is checked.

Example: pluginSkipTimeOnStartup = 30

gapBeforeRestartingPluginSkip

Syntax: gapBeforeRestartingPluginSkip = seconds

Description: The delay in number of seconds after which any client event is treated as failover
so that pluginSkipTimeOnStartup can restart.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 600

Notes: Used only in secondary VWS. When secondary VWS starts serving client traffic
after a gap of gapBeforeRestartingPluginSkip seconds, then beVWARS

will skip PC plugin executions, expiry bucket processing and grovelling again for
the configured pluginSkipTimeOnStartup seconds.

Example: gapBeforeRestartingPluginSkip = 60

 Chapter 3

•

 Chapter 3, Background Processes 101

removeExpiredNotRemoved

Syntax: removeExpiredNotRemoved = true | false

Description: Controls whether to remove the buckets with extended expiry from expiredNotRemoved
list or not.

Whenever there is an active reservation on a bucket and it expires, the bucket is kept in
expiredNotRemoved list till the existing reservation is active. Any new call will not be
granted from a bucket which is there in expiredNotRemoved list.

There are cases where the expiry can be extended for a bucket while it is there in
expiredNotRemoved list. In such cases, as soon as the expiry is extended, we may
want to remove the bucket from expiredNotRemoved list so that it can be used in new
calls as the expiry is extended.

This flag can be utilized for such scenarios, where we would want to grant from a bucket
whose expiry has been extended.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • true – Remove the buckets from expiredNotRemoved list whose expiry has
been extended.

• false – Do not remove buckets from expiredNotRemoved list even if the expiry
is extended.

Default: false

Notes:

Example: removeExpiredNotRemoved = true

reservationExpiryCheckMilliseconds

Syntax: reservationExpiryCheckMilliseconds = millisecs

Description: The frequency (milliseconds) that the reservation expiry check occurs.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 10000

Notes:

Example: reservationExpiryCheckMilliseconds = 5000

setLastActivationDateStates

Syntax: setLastActivationDateStates = [states]

Description: A list of all old wallet states which will cause the 'Last Activation Date' for the
wallet to be updated. The new wallet state in all these cases will be "ACTV" after
the call has completed.

Type: String

Optionality: Optional (default used if not set).

Allowed: Valid values are: PREU, FROZ, DORM, SUSP, and TERM

Default: PREU

Notes:

Example: setLastActivationDateStates = [PREU,DORM]

Chapter 3

102 Voucher and Wallet Server Technical Guide

setLastUseDateOnActivation

Syntax: setLastUseDateOnActivation = true | false

Description: Specifies whether beVWARs creates a new bucket for all balance types.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • true – When a wallet is activated, beVWARs stores balances in one bucket and
sets each balance's last use date.

• false – When a wallet is activated, beVWARs creates a new bucket for all
balance types and sets the wallet's last use date.

Default: true

Notes:

Example: setLastUseDateOnActivation = true

useTimeFromClient

Syntax: useTimeFromClient = true|false

Description: Specifies whether beVWARS retrieves the time for every wallet from either the
incoming message or the OS.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true – Uses the time from the incoming message (client date and usec).

• false – Applies the OS time to every wallet as transactions are applied.

Default: true

Notes: This ensures that a given client message is treated identically on both VWSs,
when it is re-sent. Otherwise, duplicate detection will cause the VWSs to get out
of sync.

Example: useTimeFromClient = true

useTimeFromConfigFile

Syntax: useTimeFromConfigFile = true|false

Description: Specifies whether beVWARS reads the time from the useTimeFromClient parameter

or the VWARS_sysdate.cfg file.

This parameter allows beVWARS to read a configuration file on disk for every call to
detect time mapping changes and apply them. This allows you to change the time
applied to wallets on the fly without an application restart.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • true – Use the time from the /IN/service_packages/E2BE/etc/VWARS_sysdate.cfg file.

• false – Use the time set in the useTimeFromClient parameter. See

useTimeFromClient.

Default: false

Notes: Set this parameter to true for functional tests only. This parameter should be disabled
for performance tests and production systems.

Example: useTimeFromConfigFile = true

voucherReservationPeriodSeconds

Syntax: voucherReservationPeriodSeconds = seconds

Description: The number of seconds that vouchers remain ‘reserved’.

 Chapter 3

•

 Chapter 3, Background Processes 103

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 120

Notes:

Example: voucherReservationPeriodSeconds = 120

walletConfigFileReReadTime

Syntax: walletConfigFileReReadTime = seconds

Description: Specifies how often, in seconds, beVWARS reads/parses the wallet time configuration
file (VWARS_sysdate.cfg). beVWARS saves parsed values in a map, which is then
queried until the time specified in walletConfigFileReReadTime elapses.

To use this parameter, the useTimeFromConfigFile parameter must be set to true.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: • 0 – beVWARS does not read/parse the wallet time configuration file.

• A positive integer – beVWARs reads/parses the wallet time configuration file at
the specified interval. A value between 30 and 300 is recommended.

Default: 300

Notes:

Example: walletConfigFileReReadTime = 300

waltResvnExpiryToleranceSeconds

Syntax: waltResvnExpiryToleranceSeconds = num

Description: Specifies the number of seconds to add to the expiration time of wallet reservations
during the data synchronization process.

The data synchronization process introduces a slight delay between the time a wallet
reservation is sent from the remote VWS server to the local VWS server. This means a
wallet reservation could expire before it is received by the local VWS server. Use this
parameter to ensure that wallet reservations expire sometime after the data
synchronization process completes.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: • 0 – Does not add any time to wallet reservation expirations.

• A positive integer – The number of seconds to add to the expiration time of
wallet reservations.

Default: 30

Notes:

Example: waltResvnExpiryToleranceSeconds = 20

duplicateDetection parameters

Duplicate messages are possible, as the BeClient can switch to the auxiliary beServer after the original
beServer has processed the message, but failed to return a response. The beVWARS detects
duplicates by keeping a list of the client, clientMessageId and clientMsgTimestamps from messages
received directly from the local beServer or received via beSync.

Chapter 3

104 Voucher and Wallet Server Technical Guide

It is not necessary to store message identifiers permanently, as the BeClient switchover time is finite.
For a given stream of messages, it is possible to tell that the client has not switched over.

Example: If the client is set to switch over at 1:00, but a message is received dated 3:00 from the
beServer, we know that the BeClient has not switched over (or messages would not continue to be
received via the beServer).

If we receive a message through the beServer dated 2:00, we know that we will not receive any other
messages (from the beClient) through the beServer dated 1:30 or earlier. Due to wallet locks, messages
are not always received exactly in the beClientMessageTimestamp order.

directMaxDelaySeconds

Syntax: directMaxDelaySeconds = seconds

Description: The maximum delay (in seconds) before IDs received directly are removed from
the main stream. IDs are kept for this time, in order to compare them with IDs
from the converse stream.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1.0

Notes: It is recommended that the delay be kept to a minimum, so that the timestamp
order is not affected too greatly.

Example: directMaxDelaySeconds = 1.0

keepDirectSeconds

Syntax: keepDirectSeconds = seconds

Description: The time (in seconds) to keep IDs from messages received directly (through
beServer), for comparison later with IDs from messages received through sync
(through beSync).

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 60.0

Notes: If a message has been kept much longer than the latest message received, we
know that the BeClient has not switched beServers, so duplicates are not
possible.

Example: keepDirectSeconds = 60.0

keepSyncSeconds

Syntax: keepSyncSeconds = seconds

Description: The time (in seconds) to leave the IDs in the duplicate map, to wait for a
duplicate.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 60.0

Notes:

Example: keepSyncSeconds = 60.0

 Chapter 3

•

 Chapter 3, Background Processes 105

syncMaxDelaySeconds

Syntax: syncMaxDelaySeconds = seconds

Description: The maximum delay (in seconds) before IDs are removed from the duplicate
map. IDs are kept for this time, in order to compare them with IDs from the
converse stream.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1.0

Notes: It is recommended that the delay be kept to a minimum, so that the timestamp
order is not affected too greatly.

Example: syncMaxDelaySeconds = 1.0

groveller parameters

The groveller sub-section of the beVWARS provides the configuration for the groveller subsystem in

beVWARS to query wallets and run plug-ins against them. Wallets are supplied by wallet ID from
beGroveller. For more information about how wallets are groveled, see Background processing (on
page 6).

peerDatabaseLogin

Syntax: peerDatabaseLogin = "login"

Description: If peerDatabaseLogin is not "", the groveller will perform a remote database query
on the other VWS's database for information on the wallet. If inconsistent, another
check is attempted after the number of seconds configured in
peerWalletCheckRetrySeconds. This gives the remote VWS time to process and
commit transactions. If the wallets are still inconsistent, a syslog message is
produced.

Type:

Units:

Optionality: Optional (default used if not set).

Allowed:

Default: ""

Important: This should not be used in production due to impact on performance.

Example: peerDatabaseLogin = ""

peerWalletCheckRetrySeconds

Syntax: peerWalletCheckRetrySeconds = seconds

Description: How long (in seconds) to wait after the peer VWS's information on a wallet, if
found to be inconsistent. If the wallet is still inconsistent after this period a syslog
message is produced.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 60

Notes: This period should be long enough for locally generated operation message to be
sent to the remote VWS, and committed to the database.

Example: peerWalletCheckRetrySeconds = 60

Chapter 3

106 Voucher and Wallet Server Technical Guide

periodMsec

Syntax: periodMsec = millisecs

Description: The minimum number of milliseconds between groveling wallets.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 0 Send a new request as soon as possible.

positive integer

Default: 1000

Notes: This parameter is restricted by requestHighWaterMark (on page 106).

Setting request frequency to 0 will impact the normal VWS processing speed.

This parameter will have no effect if groveling is disabled (for example, if
enableGrovelling (on page 41)is set to false).

Example: periodMsec = 1200

requestHighWaterMark

Syntax: requestHighWaterMark = num

Description: The maximum number of outstanding requests queued on the SLEE waiting on
this beVWARS instance before no requests are sent to beGroveller for wallets to
grovel.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1

Notes: If the number of outstanding requests in the SLEE queue is less than or equal to
half of requestHighWaterMark, then this beVWARS instance will try to grovel a
wallet between every request it processes.

If the number of outstanding requests in the SLEE queue is more than half of
requestHighWaterMark, wallets will be groveled with decreasing frequency
proportional to the queue length, until only one wallet is groveled every for every
10 requests from beServer. The proportion is calculated to approximately
increase the total number of requests (SLEE queue + grovel requests) to
requestHighWaterMark.

Examples: These examples assume requestHighWaterMark = 100.

• If queue length = 25, beVWARS will process one grovel request for each
SLEE queue request (that is , 50 of every 100 requests will be grovel
requests).

• If queue length = 50, beVWARS will process one grovel request for each
SLEE queue request (that is, 50 of every 100 requests will be grovel
requests).

• If queue length = 80, beVWARS will process two grovel requests for
every eight SLEE queue requests (that is, 20 of every 100 requests will
be grovel requests).

• If queue length = 90, beVWARS will process one grovel request for every
10 SLEE queue requests (that is, 10 of every 100 requests will be grovel
requests).

• If queue length = 100, beVWARS will not process any grovel requests.

Example: requestHighWaterMark = 100

 Chapter 3

•

 Chapter 3, Background Processes 107

requestTimeout

Syntax: requestTimeout = seconds

Description: The maximum number of seconds to wait for a response after sending a request
to beGroveller for another batch of wallet IDs to grovel, before timing out the
request.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: positive integer

-1 Do not time out requests.

Default: 30

Notes: If a request is timed out, beVWARS will log a Warning level error to syslog and
will resend the request.

If errors are being logged to the syslog indicating timeouts, try:

• Setting walletLowWaterMark (on page 11) to a higher value

• Setting requestTimeout to a higher value

• If there are not as many beGroveller processes as beVWARS processes,
adding the number of beGroveller processes (this can be done until there
are as many beGroveller processes as beVWARS processes)

• Setting maxIDsPerResponse (on page 62) to a higher value

Example: requestTimeout = 30

secondaryConnectionDelaySeconds

Syntax: secondaryConnectionDelaySeconds = seconds

Description: The number of seconds to wait before enabling the beGroveller to process wallets
on the secondary VWS if the primary VWS cannot be contacted. Ensures that
wallet processing by the beGroveller is not started on the secondary VWS if the
primary VWS is down for a short period of time only.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 900

Notes: The configured delay is applied when the secondary VWS beGroveller is started
and when the client connection from the secondary VWS beGroveller to the
primary beServer is lost.

Example: secondaryConnectionDelaySeconds = 900

walletLowWaterMark

Syntax: walletLowWaterMark = num

Description: The number of outstanding wallet IDs to grovel, before sending a request to
beGroveller for another batch of wallet IDs to grovel.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 100

Notes:

Example: walletLowWaterMark = 100

Chapter 3

108 Voucher and Wallet Server Technical Guide

voucherCache parameters

The voucherCache sub-section of the beVWARS parameters defines the voucher cache.

checkBeforeFlush

Syntax: checkBeforeFlush = true|false

Description: If true, vouchers are checked against the database before flushing. If they are
different, an error is sent to syslog.

Type: Boolean

Units:

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Important: This should not be used in production due to impact on performance.

Example: checkBeforeFlush = false

maxLoopSize

Syntax: maxLoopSize = num

Description: The number of vouchers in the voucher cache for beVWARS to process at one
time before pausing. This enables beVWARS to pause and respond to other
requests, instead of attempting to process the whole cache at once.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Positive integers Number of vouchers to process in a batch.

-1 Process whole cache at once.

Default: 10000

Notes: This parameter should be set if maxSize and maxAgeSeconds are set to -1

(which is likely to cause a large cache).

If this number is set too high (or to -1) the SLEE watchdog can restart beVWARS
unnecessarily. Too low, and beVWARS will waste CPU polling the SLEE
unnecessarily.

Example: maxLoopSize = 5000

maxSize

Syntax: maxSize = MB

Description: The maximum size of the beVWARS voucher cache.

Type: Integer

Units: MB

Optionality: Optional (default used if not set).

Allowed: 0 or a positive integer.

Default: 10000

Notes:

Example: maxSize = 10000

voucherCommitOnTimeout

Syntax: voucherCommitOnTimeout = true|false

Description: If true, vouchers are committed when voucher reservation expires.
voucherRevokeOnTimeout takes precedence if set.

 Chapter 3

•

 Chapter 3, Background Processes 109

Type: Boolean

Units:

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: voucherCommitOnTimeout = true

voucherRevokeOnTimeout

Syntax: voucherRevokeOnTimeout = true|false

Description: If true, vouchers are revoked when voucher reservation expires.

Type: Boolean

Units:

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: voucherRevokeOnTimeout = true

walletCache parameters

The walletCache sub-section of the beVWARS parameters defines the wallet cache.

checkBeforeFlush

Syntax: checkBeforeFlush = true|false

Description: If true, wallets are checked against the database before flushing. If they are
different, an error is sent to syslog.

Type: Boolean

Units:

Optionality: Optional (default used if not set).

Allowed:

Default: false

Important: This should not be used in production due to impact on performance.

Example: checkBeforeFlush = false

maxLoopSize

Syntax: maxLoopSize = num

Description: The number of wallets in the wallet cache for beVWARS to process at one time
before pausing. This enables beVWARS to pause and respond to other requests,
instead of attempting to process the whole cache at once.

Type: Integer

Optionality: Optional, default value will be used if not set.

Allowed: Positive integers Number of wallets to process in a batch.

-1 Process whole cache at once.

Default: 100000

Chapter 3

110 Voucher and Wallet Server Technical Guide

Notes: This parameter should be set if maxSize and maxAgeSeconds are set to -1

(which is likely to cause a large cache).

If this number is set to high (or to -1) the SLEE watchdog can restart beVWARS
unnecessarily. Too low, and beVWARS will waste CPU polling the SLEE
unnecessarily.

Example: maxLoopSize = 5000

maxSize

Syntax: maxSize = MB

Description: The maximum size of the beVWARS wallet cache.

Type: Integer

Units: MB

Optionality: Optional (default used if not set).

Allowed: 0 or a positive integer.

Default: 100000

Notes:

Example: maxSize = 100000

syncWriter parameters

The syncWriter sub-section of the beVWARS parameters defines how the beVWARS syncWriter

writes sync files.

maxRecordsPerFile

Syntax: maxRecordsPerFile = num

Description: The maximum number of records in a sync file.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 100

Notes:

Example: maxRecordsPerFile = 200

maxSecondsPerFile

Syntax: maxSecondsPerFile = seconds

Description: The maximum number of seconds to hold a sync file open.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 2

Notes:

Example: maxSecondsPerFile = 4

dbWriter parameters

The dbWriter sub-section of the beVWARS parameters defines how the beVWARS dbWriter buffers

and writes:

 Chapter 3

•

 Chapter 3, Background Processes 111

• Data updates to the E2BE database

• EDRs to the filesystem

Note: All buffers and the EDR cache are flushed whenever one of the following conditions occurs:

• One of the buffers is full

• The EDR cache is full

• The current flush period has ended

• The beVWARS writer subsystem is told to flush and commit (on shutdown for example)

balanceCreateBufferSize

Syntax: balanceCreateBufferSize = num

Description: The number of items in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: balanceCreateBufferSize = 1500

balanceDeleteBufferSize

Syntax: balanceDeleteBufferSize = num

Description: The number of deletes in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: balanceDeleteBufferSize = 1000

balanceUpdateBufferSize

Syntax: balanceUpdateBufferSize = num

Description: The number of updates in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: balanceUpdateBufferSize = 1000

bucketCreateBufferSize

Syntax: balanceCreateBufferSize = num

Description: The number of bucket creates in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Chapter 3

112 Voucher and Wallet Server Technical Guide

Default: 1000

Notes:

Example: balanceCreateBufferSize = 1000

bucketDeleteBufferSize

Syntax: bucketDeleteBufferSize = num

Description: The number of bucket deletes in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: bucketDeleteBufferSize = 1000

bucketUpdateBufferSize

Syntax: bucketUpdateBufferSize = num

Description: The number of bucket updates in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: bucketUpdateBufferSize = 1000

cdrOutputDirectory

Syntax: cdrOutputDirectory = "dir"

Description: Directory where EDRs are written to.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/E2BE/logs/CDR"

Notes: EDRs will be stored in this directory until they are moved by another process.

Example: cdrOutputDirectory = "/var/EDRs/UBE/"

flushPeriod

Syntax: flushPeriod = seconds

Description: The maximum number of seconds between flushes.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 10

Notes:

Example: flushPeriod = 20

 Chapter 3

•

 Chapter 3, Background Processes 113

voucherUpdateBufferSize

Syntax: voucherUpdateBufferSize = num

Description: The number of voucher updates in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: voucherUpdateBufferSize = 1000

voucherCreateBufferSize

Syntax: voucherCreateBufferSize = num

Description: The number of voucher creates in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: voucherCreateBufferSize = 1000

voucherDeleteBufferSize

Syntax: voucherDeleteBufferSize = num

Description: The number of voucher deletes in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: voucherDeleteBufferSize = 1000

walletCreateBufferSize

Syntax: walletCreateBufferSize = num

Description: The number of wallet creates in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: walletCreateBufferSize = 1000

walletDeleteBufferSize

Syntax: walletDeleteBufferSize = num

Description: The number of wallet deletes in a buffer before beVWARS will flush it.

Type: Integer

Chapter 3

114 Voucher and Wallet Server Technical Guide

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: walletDeleteBufferSize = 1000

walletUpdateBufferSize

Syntax: walletUpdateBufferSize = num

Description: The number of wallet updates in a buffer before beVWARS will flush it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example: walletUpdateBufferSize = 1000

Tracing parameters

The tracing parameters allow tracing to be performed for individual wallet IDs on selected be clients.

Where more than one criteria (wallet and client) is configured for tracing then the message must satisfy
all criteria (logical AND) for tracing/debug to activate.

beClients

Syntax: beClients = ["client1", "client2", ...]

Description: List of BE client names to trace.

Type: Array, String

Optionality: Optional if walletIDs parameter supplied, mandatory if walletIDs not supplied.

Allowed: Any beClient.

Default: None

Notes: The names are converted to a unique BE client hash ID - which is the same
mechanism employed by the beVWARS for referencing BE clients.

Example: beClients = [
 "ccsBeOrb",
 "PIbeClient"
]

debugLevel

Syntax: debugLevel = "level"

Description: The debug level/filter, is equivalent to DEBUG environment variable.

Type: String

Optionality: Optional (default used if not set).

Allowed: Any of the DEBUG options.

Default: "all"

Notes: This is a comma separated string. See traceDebugLevel in ACS Technical Guide
for more information.

Example: debugLevel = "all"

 Chapter 3

•

 Chapter 3, Background Processes 115

enabled

Syntax: enabled = true|false

Description: The tracing activation switch to allow tracing of selected wallet and/or be client
activity.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: enabled = true

walletIds

Syntax: walletIds = [ID1, ID2, ...]

Description: List of subscriber wallet ids we want to trace.

Type: Array, Integer

Optionality: Optional if beClient parameter supplied, mandatory if beClient not supplied.

Allowed: Any valid wallet ID.

Default: None

Notes: To obtain the wallet id(s) for a given CLI/subscriber use the showCLI.sh script on
the BE where tracing is to occur.

Example: walletIds = [
 382,
 385
]

Example configuration

This is an example beVWARS section eserv.config on a VWS node (comments have been removed).

beVWARS = {

voucherReservationPeriodSeconds = 120

useTimeFromClient = true

maxTransactionsPerSet = 7

maxOpenDialogTime = 5.0

maxDownstreamQueueLength = 10000

downstreamOverloadSleepUSec = 100000

minResyncReservationLength = 5

createBucketExpiryDays = 30

maxSendReservationsToSync = 1000

removeExpiredNotRemoved = true

reservationExpiryCheckMilliseconds = 10000

setLastUseDateOnActivation = true

pluginSkipTimeOnStartup = 30

gapBeforeRestartingPluginSkip = 60

clearEmptyBuckets = true

walletCache = {

maxSize = 10000

checkBeforeFlush = false

maxLoopSize = 500

}

Chapter 3

116 Voucher and Wallet Server Technical Guide

voucherCache = {

checkBeforeFlush = false

maxLoopSize = 500

flushPeriodSeconds = 60 # -1

maxSize = 2

voucherRevokeOnTimeout = false

 # when a voucher reservation is expired, revokes it if set to true

 # this takes precedence over voucherCommitOnTimeout

voucherCommitOnTimeout = false

 # when a voucher reservation is expired, commits it if set to true

 # however voucherRevokeOnTimeout takes precedence if set

}

groveller = {

periodMsec = 1200

requestHighWaterMark = 1

walletLowWaterMark = 100

requestTimeout = 300

peerDatabaseLogin = ""

peerWalletCheckRetrySeconds = 60

secondaryConnectionDelaySeconds = 900

}

duplicateDetection = {

keepDirectSeconds = 60.0

keepSyncSeconds = 60.0

directMaxDelaySeconds = 1.0

syncMaxDelaySeconds = 1.0

}

setLastActivationDateStates = [

[PREU]

]

plugins = [

"beVWARSExpiry.so"

]

handlers = [

"beVWARSCCDRHandler.so"

]

syncWriter = {

maxRecordsPerFile = 100

maxSecondsPerFile = 2

}

dbWriter = {

flushPeriod = 10

cdrOutputDirectory = "/IN/service_packages/E2BE/logs/CDR"

balanceCreateBufferSize = 1000

balanceUpdateBufferSize = 1000

balanceDeleteBufferSize = 1000

bucketCreateBufferSize = 1000

bucketUpdateBufferSize = 1000

bucketDeleteBufferSize = 1000

walletCreateBufferSize = 1000

walletUpdateBufferSize = 1000

walletDeleteBufferSize = 1000

voucherCreateBufferSize = 1000

voucherUpdateBufferSize = 1000

voucherDeleteBufferSize = 1000

 Chapter 3

•

 Chapter 3, Background Processes 117

}

tracing = {

enabled = true

debugLevel = "all"

walletIds = [

382,

385

]

beClients = [

"ccsBeOrb",

"PIbeClient"

]

}

setLastActivationDateStates = [

"PREU"

]

} # BE.beVWARS

Output

Each beVWARS writes error messages to the system messages file, and also writes additional output to
its own log file. By default this is:

/IN/service_packages/E2BE/tmp/beVWARS0.log

Note: The actual name will be different for each beVWARS process.

beVWARSCCDRHandler

Purpose

The beVWARSCCDRHandler provides a specific EDR-generating function. This is generally used
where no other process in an interaction will produce an EDR, but an EDR should still be generated.

Example: If a voucher redeem fails because the voucher cannot be found on any Voucher and Wallet
Server, the client process will send a request to the beVWARSCCDRHandler to write an EDR for the
failed voucher redeem.

Startup

beVWARSCCDRHandler.so is included in the beVWARS by specifying it in the handlers array.

For more information about the handlers array, see handlers (on page 98).

Configuration

This binary has no specific configuration.

beVWARSExpiry

Purpose

beVWARSExpiry monitors subscriber accounts and wallets, checking for subscriber accounts and
wallets which have passed their expiry date. If it finds a subscriber account or wallet which requires
expiring, it processes the record as configured.

Chapter 3

118 Voucher and Wallet Server Technical Guide

Startup

If beVWARSExpiry is configured in eserv.config, it is started by beVWARS when beVWARS is initialized.
It is included in the beVWARS handlers section.

handlers = [

"beVWARSExpiry.so"

]

For more information about beVWARS:

• Plug-ins, see Plug-ins (on page 94).

• Handlers section, see handlers (on page 98)

Note: Other handlers can also be included in the handlers list.

Configuration

beVWARSExpiry accepts the following parameters from eserv.config.

beVWARSExpiry = {

expireNegativeBuckets = true|false

removeEmptyBuckets = true|false

expireBucketsForExpiredWallets = true|false

expireAtMidnightTZ = "timezone"

terminatedWalletConsistencyCheck = true|false

}

Parameters

Here are the available parameters in the beVWARSExpiry section of the eserv.config.

expireAtMidnightTZ

Syntax: expireAtMidnightTZ = "timezone"

Description: Sets wallets and buckets to expire at midnight for the time zone specified.

Type: String

Optionality: Optional (default used if not set)

Allowed: The time zone part of the parameter must be typed in a form that the operating
system recognizes.

Alternatively you can select a time zone from the operating system's list. To view
top-level time zone names, type ls /usr/share/lib/zoneinfo from a shell.

To see second-level time zone names type ls /usr/share/lib/zoneinfo

TopLevelName/. For example, to verify that the operating system recognizes a

time zone name for DeNoranha, in Brazil, you would type ls

/usr/share/lib/zoneinfo/Brazil/. DeNoranha is listed, so the time zone

name would be "Brazil/DeNoranha".

Default: GMT

Notes: A list of time zones can be found in the Time Zones appendix of ACS Technical
Guide.

This parameter does not affect the expiry calculations of periodic charge buckets.

 Chapter 3

•

 Chapter 3, Background Processes 119

Example: An account is created at 2 p.m. on 5 September 2014 and is set to have a life
span of 24 days.

If expireAtMidnightTZ = "Asia/Vladivostok" is included, the account

will expire on 29 September 2014 at midnight, Vladivostok time.

If this parameter is omitted, the account will expire on 29 September 2014 at 2:00
PM GMT.

expireBucketsForExpiredWallets

Syntax: expireBucketsForExpiredWallets = true|false

Description: Controls whether wallet expiry triggers bucket expiry.

If true, any buckets under the wallet will be expired when the wallet expires.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true All buckets with a positive or zero value in a wallet will be expired
when the wallet is expired, even if the buckets are not due to expire
yet.

false Buckets are expired when their own expiry date passes.

Note: This means the wallet will not be deleted from the system, but
will instead be set to Removed state and kept until the last bucket is
expired.

Default: false

Notes: If expireNegativeBuckets (on page 119) is set to false, buckets with a

negative value will not be deleted, regardless of the value of this parameter.

Using this parameter will remove any positive value the wallet holds when the
wallet expires.

Example: expireBucketsForExpiredWallets = false

expireNegativeBuckets

Syntax: expireNegativeBuckets = true|false

Description: Whether or not to expire buckets which have a negative value.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true Buckets with negative values are expired when their expiry date
passes.

Buckets with negative values (where the subscriber is in debit), are
expired when their expiry date passes.

false Buckets are expired when their expiry date passes and they have a
positive or 0 balance.

Note: This means wallets with negative balances will not be deleted
from the system, but will instead be set to Removed state and kept
until the last bucket is expired.

Default: false

Notes: This parameter is designed to enable the Telco to keep the wallet until all
outstanding money has been recovered from the subscriber.

Example: expireNegativeBuckets = false

Chapter 3

120 Voucher and Wallet Server Technical Guide

removeEmptyBuckets

Syntax: removeEmptyBuckets = true|false

Description: Whether or not to remove buckets when they have a value of 0.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: false Leave buckets to expire as normal.

true If true, any buckets with 0 value will be removed.

Default: false

Notes: Setting this to false does not stop beVWARSExpiry removing buckets for expired
wallets if expireBucketsForExpiredWallets (on page 119) is set to true.

When clearEmptyBuckets flag is set to false, removeEmptyBuckets flag

will be disabled.

Example: removeEmptyBuckets = false

terminatedWalletConsistencyCheck

Syntax: terminatedWalletConsistencyCheck = true|false

Description: Whether to check the wallet cache against the database for terminated wallets. If
terminatedWalletConsistencyCheck is set to true, then beVWARSExpiry checks

for terminated wallets in the wallet cache and if the status is different in the database,
updates the wallet status to terminated in the database.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true (perform database consistency check on terminated wallets)

false (do not perform database consistency check)

Default: false

Notes: Set this parameter to true if wallet expiry transactions are incorrectly synchronized with
the database; for example, if the database failed when a wallet expired for the first time.

Example: terminatedWalletConsistencyCheck = true

Example configuration

This is an example of the beVWARSExpiry section of an eserv.config file from a VWS (comments have

been removed).

beVWARSExpiry = {

expireNegativeBuckets = false

removeEmptyBuckets = false

expireBucketsForExpiredWallets = false

expireAtMidnightTZ = "Asia/Vladivostok"

}

Failure

If beVWARSExpiry fails, it will not trigger expiry events for any Expiry plug-in. When beVWARSExpiry
recovers, it will process as normal, and will catch up with any expired wallets or buckets.

Output

The beVWARSExpiry writes error messages to the system messages file, and also writes additional
output to the following default (can vary as per configuration):

/IN/service_packages/E2BE/tmp/beVWARSExpiry.log

 Chapter 3

•

 Chapter 3, Background Processes 121

beVWARSMergeBuckets

Purpose

beVWARSMergeBuckets is a plug-in library for beVWARS.

This beVWARS plug-in merges buckets in the same balance when there are too many buckets in the
wallet. If there are too many buckets the message detailing the wallet contents will not fit in a 1024 byte
SLEE event and can cause errors.

Merging begins with the balances that have the most buckets. In each balance, the bucket with the
earliest expiry has its value added to the next bucket, then it is removed. This is repeated until the wallet
has the maximum allowed number of buckets left.

Configuration

beVWARSMergeBuckets accepts the following parameters from eserv.config.

maxBuckets = num

triggerPlugins = true|false

Parameters

Here are the available parameters in the beVWARSMergeBuckets section of the eserv.config.

maxBuckets

Syntax: maxBuckets = num

Description: The maximum number of buckets a wallet can have.

Type: Integer

Units:

Optionality: Optional (default used if not set).

Allowed: -1 No maximum.

positive integer Maximum number of buckets.

Default: -1

Notes:

Example: maxBuckets = -1

triggerPlugins

Syntax: triggerPlugins = true|false

Description: When we merge buckets (update the value of one and delete the other), should
we trigger other beVWARS plug-in.

Type: Boolean

Units:

Optionality: Optional (default used if not set).

Allowed:

Default: false

Notes:

Example: triggerPlugins = false

Chapter 3

122 Voucher and Wallet Server Technical Guide

Example configuration

This is an example of the beVWARSExpiry section of an eserv.config file on a VWS (comments have

been removed).

beVWARSMergeBuckets = {

maxBuckets = -1

triggerPlugins = false

}

cmnPushFiles

Purpose

cmnPushFiles transfers files to specific directories on the SMS from SLCs and VWSs. The files
transferred include:

• EDRs

• PIN logs

Note: Other Oracle applications also use their own instances of this process.

Startup

This task is started by entry scp1 in the inittab, using the shell script:

/IN/service_packages/SMS/bin/cmnPushFilesStartup.sh

Configuration

cmnPushFiles accepts the following command-line options:

Usage:

cmnPushFiles -d dir [-o dir [-a age]] [-f dir] [-F] [-P prefix] [-S suffix] -h host

[-r prefix] [-p port] [-s seconds] [-R seconds] [-M seconds] [-C seconds] [-t

bitrate] [-T] [-x] [-e] [-w seconds]

The available parameters are:

Parameter Default Description

-d Destination directory for files on remote machine.

Example: The directory on SLC where the cmnPushFiles looks
for the files to be sent to the SMS.

-o File deleted Transferred directory.

-a Never delete files Age of transferred files before being deleted. This parameter
only relevant when -o option is specified.

-f none Retry directory.

-F Do not use Use fuser to not move files in use.

-P none File prefix.

-S none File suffix.

-h none Remote hostname.

-r none Remote directory prefix.

Note: Required if -d is relative directory.

 Chapter 3

•

 Chapter 3, Background Processes 123

Parameter Default Description

-p 2027 Port on remote machine on which the cmnReceiveFiles will
listen for receiving files.

Note: -1 for stdin/stdout.

-s 15 Sleep period in seconds.

-R 15 Seconds before Initial retry period in seconds.

-M 900 Maximum retry period in seconds.

-C 1800 Cleanup period in seconds.

-t none (no
throttling)

Throttles transfer to nnn bits per second.

-T off (non-
recursive)

Tree move: recursive into subdirectories.

-x On (use
prefixing)

Do not use hostname-prefixing on remote filenames.

-e Daemon mode Non-daemon mode. Run file transfer only once, then exit.

-w 30 Time to wait for success in seconds.

Example:

cmnPushFiles -d /IN/service_packages/SMS/cdr/closed -f

/IN/service_packages/SMS/cdr/retry -r /IN/service_packages/SMS/cdr/received -h

prodsmp1.telcoexample.com -s 10 -p 2028 -S cdr -w 20

Parameters

Here are the available parameters in the cmnPushFiles section of the eserv.config file.

CDR

Syntax: CDR = [
"param"[, "value"]

[...]

]

Description: Arguments to cmnPushFiles when used to send EDRs to SMS.

Type: Array

Optionality: Optional (default used if not set).

Allowed: See cmnPushFiles documentation in SMS Technical Guide.

Default:

Notes:

Example: CDR = [
"-d", "/IN/service_packages/E2BE/logs/CDR-out"

"-r", "/IN/service_packages/CCS/logs/CDR-in"

"-h", "smp1prod"

"-F"

]

-d

Syntax: "-d", "dir"

Description: Local source directory.

Type: String

Chapter 3

124 Voucher and Wallet Server Technical Guide

Optionality:

Allowed:

Default:

Notes:

Example: "-d", "/IN/service_packages/E2BE/logs/CDR-out"

-r

Syntax: "-r", "dir"

Description: Remote destination directory.

Type: String

Optionality:

Allowed:

Default:

Notes:

Example: "-r", "/IN/service_packages/CCS/logs/CDR-in"

-h

Syntax: "-h", "host"

Description: Full host name and domain of the SMS machine.

Type: String

Optionality:

Allowed:

Default:

Notes:

Example: "-h", "smp1prod"

-F

Syntax: -F

Description: Do not send the file if a process is currently using it.

Type: Boolean

Optionality: Optional (file sent if not set).

Allowed:

Default:

Notes:

Example: -F

Example configuration

This is an example of the cmnPushFiles section of an eserv.config file on a VWS (comments have been

removed).

cmnPushFiles = {

CDR = [

"-d", "/IN/service_packages/E2BE/logs/CDR-out"

"-r", "/IN/service_packages/CCS/logs/CDR-in"

"-h", "smp1hostname"

"-F"

]

}

 Chapter 3

•

 Chapter 3, Background Processes 125

Failure

If cmnPushFiles fails, EDRs will accumulate in:

/IN/service_packages/SMS/cdr/current/

cmnPushFiles will send error messages to the syslog and the cmnPushFiles log.

Output

The cmnPushFiles writes error messages to the system messages file, and also writes additional output
to this default location:

/IN/service_packages/SMS/tmp/cmnPushFiles.log

Event Storage Interface

Overview

The event storage interface stores events to be sent to a different SLEE interface at a future time.

When it is time to send an event, the event storage interface sends the event to the specified SLEE
interface and waits for a response. The response can be one of the following:

• DIALOG_CLOSED: An error occurred, and the event will be retried later.

• Any event other than DIALOG_CLOSED: The event was delivered successfully. The event
storage interface removes the event from the queue.

To prevent it from spamming the outbound interface with events, the storage interface accepts a throttle
message, which inserts a gap between events sent to the interface.

Chapter 3

126 Voucher and Wallet Server Technical Guide

Error and throttle flow

Here is an example flow showing the interaction between the plug-in and beServiceTrigger when an
event that is to be sent immediately encounters multiple failures: first the SLC is down, and then a
second failure occurs due to throttling.

 Chapter 3

•

 Chapter 3, Background Processes 127

Send later flow

Here is an example flow showing the interaction between the plug-in and beServiceTrigger for an event
that is to be sent later.

Crash flow

Here is an example flow showing the interaction between the plug-in and beServiceTrigger when an
event that is to be sent immediately encounters a beServiceTrigger failure.

Event Storage SLEE Events

Trigger events for event storage, plus parameters are:

• SenSendEventAt:

When

InterfaceName

Chapter 3

128 Voucher and Wallet Server Technical Guide

EventToSend

• SendEventAck

Success

• ThrottleSending

TimeBetweenEvents

InstanceToThrottledEventAt

Configuration

The event storage interface accepts the following parameters from eserv.config.

eventStorage = {

nextEventWindowTime = millisecs

NumberOfRows = num

sleepTime = millisecs

}

Parameters

Parameters of the eventStorage group are listed below.

nextEventWindowTime

Syntax: nextEventWindowTime = millisecs

Description: The timeout interval, in milliseconds, for the next event that is sent. This allows time for
the event storage interface to check for further events, rather than get caught
processing timeouts.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: A positive integer

Default: 100

Notes: The event timeout is set to one of the following, depending on whichever is greatest:

• The current time plus nextEventWindowTime

• Next event time

Example: nextEventWindowTime = 75

NumberOfRows

Syntax: NumberOfRows = num

Description: The number of rows that the event storage interface returns from a single re-read
iteration, before the SLEE is checked for a management event.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: A positive integer

Default: 10

Notes:

Example: NumberOfRows = 15

sleepTime

Syntax: sleepTime = millisecs

Description: The amount of time, in milliseconds, that the event storage interface sleeps when
waiting for new events. This time is used when no new events are due before the
specified time interval elapses.

 Chapter 3

•

 Chapter 3, Background Processes 129

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 1

Notes: The amount of time that the event storage interface sleeps is set to one of the following,
depending on whichever is shortest:

• sleepTime

• Next event time

Example: sleepTime = 2

libbeMsgRouterDefault

Purpose

libbeMsgRouterDefault is a beServer plug-in which determines which beVWARS to direct ESCHER
messages to.

Startup

libclientBcast is used by beServer process if its configuration includes the library. To be used, it must be
included in the messageRoutingPlugins array as shown:

messageRoutingPlugins = [

"libbeMsgRouterDefault.so"

]

For more information about the beServer messageRoutingPlugins section, see messageRoutingPlugins
(on page 71).

Configuration

The libbeMsgRouterDefault's configuration is read from the beServer section of eserv.config.

libbeMsgRouterDefault supports the following parameters:

• All parameters in msgRouterDefault (on page 71)

• routingVoucherNumberLength (on page 74)

libBeClientIF

Purpose

The libBeClientIF provides an interface to one or more VWS Voucher and Wallet Servers.

Startup

The libBeClientIF is a runtime dependency of processes which need to talk to the VWS Voucher and
Wallet Servers.

Configuration

The libBeClientIF's configuration is usually read from the section which configures the process which is
using it. libBeClientIF supports the following parameters.

Chapter 3

130 Voucher and Wallet Server Technical Guide

• beLocationPlugin (on page 41)

• clientName (on page 54)

• heartbeatPeriod (on page 55)

• messageTimeoutSeconds (on page 56)

• maxOutstandingMessages (on page 55)

• reportPeriodSeconds (on page 58)

• connectionRetryTime (on page 55)

• plugins (on page 57)

• notEndActions (on page 56)

Notes:

• Any process which is using the libBeClientIF can use these parameters.

• beLocationPlugin is located in the shared parameters section.

libclientBcast

Purpose

libclientBcast is used by BeClient processes to send messages which may be answered by any Voucher
and Wallet Server. The request is sent to one of the VWSs in all Voucher and Wallet Server pairs at
once. The plug-in is activated by sending a message to BE ID 0.

This process is specifically used to redeem vouchers, and vouchers cannot be redeemed if this library is
not loaded.

Startup

libclientBcast is used by BeClient processes if their configuration includes the library.

If libclientBcast is used by BeClient and ccsBeOrb, it is included in the plugins array as shown:

plugins = [
{

config=""

library="libclientBcast.so"

function="makeBroadcastPlugin"

}

]

For more information about the BeClient plugins section, see plugins (on page 57).

Configuration

The libBeClientIF's configuration is usually read from the section which configures the process which is
using it. libBeClientIF supports the aggregateNAckCodes (on page 54) parameter.

libbeEventFactory

Purpose

libbeEventFactory is the common library used to create SLEE events from ESCHER messages. It is
required by the system and should not be removed.

 Chapter 3

•

 Chapter 3, Background Processes 131

Startup

libbeEventFactory is used by a number of processes on the VWS. No startup configuration is required
for this library to be used.

Configuration

This binary has no specific configuration.

 Chapter 4, Tools and Utilities 133

Chapter 4

Tools and Utilities

Tools and Utilities Overview

Introduction

This chapter provides a description of the operational programs or executables that can used on the
VWS. You can run these processes as needed.

In this chapter

This chapter contains the following topics.

VWS Correction Tool ... 133
beEventStorageIFDump .. 141
beServiceTriggerUser ... 143

VWS Correction Tool

Purpose

Use the correction tool to restore consistent data in the system following a software fault or configuration
error, without causing further outage or lost service for any node in the system.

Use the correction tool for making a small number of changes to fields that cannot be maintained via the
User Interface or Provisioning Interface.

Rollback

There is no rollback as such. The commands can be run again with pre-corrected data to reach the
previous state.

About minimizing tool impact

Any changes to the VWS database will affect the performance of the server. To mitigate performance
degradation, several of the configuration parameters can be used to effectively throttle the tool.

The operator can:

• Limit number of concurrent commands executing in one binary by using the maxQueueSize
configuration parameter. The tool will not issue new requests unless there are currently less than or
equal to maxQueueSize commands in flight.

• Impose time delay between successive commands by using the maxCommandsPerSecond
configuration parameter. The tool will issue this maximum number of commands per second. When
used in conjunction with the maxQueueSize parameter, allows an even tighter throttle if required.
For example, with a maxQueueSize of 1, the tool can still direct a strong volume commands, but if it
is further moderated by a setting such as maxCommandsPerSecond=(say) 2 or even 1, then the
traffic can be brought under tighter control.

• Queue or reject concurrent requests to same business object by using the queueUpdatesToSameObject
configuration parameter. The tool can either allow concurrent or serial commands to run against the

Chapter 4

134 Voucher and Wallet Server Technical Guide

same business object. The default is false, which means that a file of commands for the same wallet
will be run serially, true, the commands are run in parallel.

Starting the commands

For individual changes, the commands can be typed directly into the command line.

For many changes, the command lines can be entered into a batch file which is then executed from the
command line.

eserv.config parameters

clientName

Syntax: clientName = "value"

Description: The unique client name to connect to the database with.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "ccsAccount"

Notes: Only one connections with the same name is allowed.

Example: clientName = "nccdemo-dev-ccsVWSCorrection"

heartbeatPeriod

Syntax: heartbeatPeriod = value

Description: The number of microseconds since previous message before fail over to the other
VWS.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 0 for no heartbeating.

Default: 30000000 (30 seconds)

Notes: If no heartbeat or other messages received in this period we switch to the other
VWS in the pair on the assumption that the current VWS has failed.

Example: heartbeatPeriod = 10000000

connectionRetryTime

Syntax: connectionRetryTime = value

Description: The number of seconds before we try to reconnect.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 5

Notes:

Example: connectionRetryTime = 2

plugins

Syntax: plugins = value

Description: Identifies which plugins to load.

 Chapter 4

•

 Chapter 4, Tools and Utilities 135

Type: Array

Optionality: Optional (default used if not set).

Allowed:

Default: [] (empty, no plugins)

Notes: Not currently used, for future potential use.

Example: plugins = []

Syntax: billingEngines = value

Description: beLocationPlugin values override.

Type: Array

Optionality: Optional (default used if not set).

Allowed:

Default: beLocationPlugin billing engine values

Notes: Used to override the beLocationPlugin that would normally load the connection
details from the DB.

Example:
billingEngines = [

{id = 1,primary = { ip="PRIMARY_BE_IP", port=1500 },secondary

= { ip="SECONDARY_BE_IP", port=1500 }

}

]

maxQueueSize

Syntax: maxQueueSize = value

Description: Number of concurrent commands executing in one binary.

Type: Integer

Optionality: Mandatory.

Allowed:

Default:

Notes: The tool will not issue new requests unless there are currently less than or equal
to maxQueueSize commands in flight. In conjunction with
maxCommandsPerSecond can be used to control impact on the VWS.

Example: maxQueueSize = 10

queueUpdatesToSameObject

Syntax: queueUpdatesToSameObject = value

Description: Controls whether multiple updates to a single business object are done in parallel
or serially.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true – Allow parallel updates

• false – Serial updates only

Default: false

Notes:

Example: queueUpdatesToSameObject = true

Syntax: notificationInterval = value

Description: The number of seconds between reporting progress status to the log file.

Chapter 4

136 Voucher and Wallet Server Technical Guide

Type: Integer

Optionality: Mandatory

Allowed:

Default:

Notes:

Example: notificationInterval = 6

Syntax: maxCommandsPerSecond = value

Description: The maximum number of commands allowed in flight per second.

Type: Integer

Optionality: Mandatory

Allowed:

Default:

Notes:

Example: maxCommandsPerSecond = 10

Syntax: pollTimeUsecs = value

Description: The number of microseconds to wait for a message from a Billing Engine client
before polling.

Type: Integer

Optionality: Mandatory

Default: 1000000 (one second)

Example: pollTimeUsecs = 100000

Example of VWS correction tool section

This is an example of the eserv.config file correction tool section.

ccsVWSCorrection = {

ClientIF = {

clientName = "nccdemo-dev-ccsVWSCorrection"

heartbeatPeriod = 10000000

connectionRetryTime = 2

plugins = []

billingEngines = [

{id = 1,

primary = { ip="PRIMARY_BE_IP", port=1500 },

secondary = { ip="SECONDARY_BE_IP", port=1500 }

}

]

}

maxQueueSize = 10

queueUpdatesToSameObject = false

notificationInterval = 6

maxCommandsPerSecond = 10

pollTimeUsecs = 100000

 Chapter 4

•

 Chapter 4, Tools and Utilities 137

} # CCS.ccsVWSCorrection section

Command line parameters

The commands that can be used are:

• delete_balance:

This deletes the balance from the wallet ID and balance type ID.

• delete_bucket:

This updates the supplied bucket ID by zeroing the current value of the bucket. The mechanism to
physically delete the bucket is up to other (pr-existing) configuration on the VWS as to whether or
not zero value buckets are retained or deleted.

• update_balance:

This updates the supplied balance fields with the new values.

• update_bucket:

This updates supplied bucket fields with the new values.

• update_wallet:

This updates the supplied wallet fields with the new values.

See Command line examples.

Update balance parameters

The update_balance: command has the ability to modify the following fields to schema and business rule
acceptable values against a specified balance for a specified wallet:

• limit_type

• minimum_credit

The balance and wallet key data is supplied in these fields:

• wallet_id

• balance_type

An example of the update_balance command is:

update_balance:wallet_id=4,balance_type=9,limit_type=LCRD,minimum_credit=888

81000

Update bucket parameters

The update_bucket: command has the ability to modify the following fields to schema and business rule
acceptable values against a specified bucket for a specified balance and wallet:

• expiry

• value

• value_delta

• reference

• start_date

• last_use

• never_expires

• never_used

The balance and wallet key data is supplied in these fields:

• wallet_id

• balance_type

Chapter 4

138 Voucher and Wallet Server Technical Guide

• bucket_id

Examples of the update_bucket command is:

update_bucket:wallet_id=4,balance_type=9,bucket_id=2,expiry=20160101115500

update_bucket:wallet_id=4,balance_type=9,bucket_id=2,value=5,value_delta=1

Update wallet parameters

The update_wallet: command has the ability to modify the following fields to schema and business rule
acceptable values against a specified wallet:

• max_concurrent state

• never_expires

• expiry

• never_activated

• activation_date

• state

The wallet key data is supplied in this field:

• wallet_id

Examples of the update_bucket command is:

update_wallet:wallet_id=4,never_expires=true,expiry=20110101115600

update_wallet:wallet_id=47,state=ACTV

Delete balance parameters

The delete_balance: command deletes the balance.

The balance key data is supplied in these fields:

• wallet_id

• balance_type

Example of the delete_balance command is:

delete_balance:wallet_id=4,balance_type=99

Delete bucket parameters

The delete_bucket: command modifies the bucket value field to zero, allowing the VWS to retain or delete
the bucket.

The bucket key data is supplied in these fields:

• wallet_id

• balance_type

• bucket_id

Example of the delete_bucket command is:

delete_bucket:wallet_id=44,balance_type=13,bucket_id=30

Command line examples

The commands can be run singularly by typing in at the command line prompt, or as a batch in a file.

This is an example of a file of commands that will do a set of updates (picture a file with 450 lines of the
following) that generated the Progress reporting and Audit reporting examples.

update_bucket:wallet_id=4,balance_type=9,bucket_id=2,value=5,value_delta=1

 Chapter 4

•

 Chapter 4, Tools and Utilities 139

update_bucket:wallet_id=4,balance_type=9,bucket_id=2,value=5,value_delta=1

lots of lines (447) deleted for conciseness.

update_bucket:wallet_id=4,balance_type=9,bucket_id=2,value=5,value_delta=1

Other examples are:

• update_wallet:wallet_id=4,never_expires=true

• update_balance:wallet_id=4,balance_type=9,limit_type=LCRD

• delete_balance:wallet_id=44,balance_type=9

• delete_bucket:wallet_id=4,balance_type=13,bucket_id=30

Progress reporting

The tool sends report information to the logfile, including, the parameters at the start, the status
periodically as it executes, and the details of each command processed.

Here is a an example showing the expected reporting. The tool is executing a series of commands that
add 5c to a particular bucket repeatedly (450 times).

To see the report, on the command line type (for example):

-bash-3.00$./ccsVWSCorrection -i commandFile -o logFile

The logfile report will look something like this:

Aug 2 14:54:37.208548 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection processing starting

Aug 2 14:54:37.213175 ccsVWSCorrection(29583) NOTICE: Connection to BE 1:192.168.10.217-1500 is
established.

Aug 2 14:54:37.547017 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 0 of 450
commands: 0.0% complete

Aug 2 14:54:43.091905 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 30 of 450
commands: 6.7% complete

Aug 2 14:54:49.107811 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 72 of 450
commands: 16.0% complete

Aug 2 14:54:55.031967 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 106 of
450 commands: 23.6% complete

Aug 2 14:55:01.058072 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 145 of
450 commands: 32.2% complete

Aug 2 14:55:07.002602 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 179 of
450 commands: 39.8% complete

Aug 2 14:55:13.107238 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 204 of
450 commands: 45.3% complete

Aug 2 14:55:19.081310 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 238 of
450 commands: 52.9% complete

Aug 2 14:55:25.046720 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 278 of
450 commands: 61.8% complete

Aug 2 14:55:31.141610 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 310 of
450 commands: 68.9% complete

Aug 2 14:55:37.082081 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 346 of
450 commands: 76.9% complete

Aug 2 14:55:43.022000 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 386 of
450 commands: 85.8% complete

Aug 2 14:55:49.096070 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 418 of
450 commands: 92.9% complete

Chapter 4

140 Voucher and Wallet Server Technical Guide

Aug 2 14:55:54.407038 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection Tool status: processed 450 of
450 commands: 100.0% complete

Aug 2 14:55:54.407308 ccsVWSCorrection(29583) NOTICE: ccsVWSCorrection processing complete

Audit reporting

The audit log contains structured fields (keyed by command number, time stamp and log record type.
This is to permit convenient grepping, filtering, sorting and analysis of the log records after the run.

A log record can be of type:

• COMMAND: dumping the command being called

• INFO: displaying any informational message

• WARNING: displaying some warning condition

• ERROR: displaying an error in order to explain why the command did not run

• AUDIT: for commands that got as far as an update request, one or more of these show what fields
were modified. Commands that delete business objects will display the current value of that object
and any children it contains, to assist with recovery should it be necessary.

This is the log from the Command line examples and Progress reporting examples.

00000001 [20110802145437.549545] COMMAND:

update_bucket:wallet_id=4,balance_type=9,bucket_id=2,value=5,value_delta=1

00000002 [20110802145437.652071] COMMAND:

update_bucket:wallet_id=4,balance_type=9,bucket_id=2,value=5,value_delta=1

00000002 [20110802145437.652117] WARNING: We're already executing a command for wallet ID 4

(we'll retry shortly..)

00000001 [20110802145437.671977] AUDIT : update_bucket:

wallet_id=4,balance_type=9,bucket_id=2,old_value=6330,new_value=6335,old_reference=,new_referen

ce=,old_start_date=19700101000000,new_start_date=19700101000000,old_never_expires=1,new_never_e

xpires=1,old_expiry=19700101000000,new_expiry=19700101000000,old_never_used=0,new_never_used=0,

old_last_use=20110802025232,new_last_use=20110802025232

00000003 [20110802145437.882058] COMMAND:

update_bucket:wallet_id=4,balance_type=9,bucket_id=2,value=5,value_delta=1

00000003 [20110802145437.882146] WARNING: We're already executing a command for wallet ID 4

(we'll retry shortly..)

00000003 [20110802145437.990985] WARNING: We're already executing a command for wallet ID 4

(we'll retry shortly..)

00000002 [20110802145438.045385] AUDIT : update_bucket:

wallet_id=4,balance_type=9,bucket_id=2,old_value=6335,new_value=6340,old_reference=,new_referen

ce=,old_start_date=19700101000000,new_start_date=19700101000000,old_never_expires=1,new_never_e

xpires=1,old_expiry=19700101000000,new_expiry=19700101000000,old_never_used=0,new_never_used=0,

old_last_use=20110802025437,new_last_use=20110802025437

00000003 [20110802145438.172316] AUDIT : update_bucket:

wallet_id=4,balance_type=9,bucket_id=2,old_value=6340,new_value=6345,old_reference=,new_referen

ce=,old_start_date=19700101000000,new_start_date=19700101000000,old_never_expires=1,new_never_e

xpires=1,old_expiry=19700101000000,new_expiry=19700101000000,old_never_used=0,new_never_used=0,

old_last_use=20110802025438,new_last_use=20110802025438

lots of lines removed for conciseness.

00000449 [20110802145553.946776] COMMAND:

update_bucket:wallet_id=4,balance_type=9,bucket_id=2,value=5,value_delta=1

00000449 [20110802145554.013305] AUDIT : update_bucket:

wallet_id=4,balance_type=9,bucket_id=2,old_value=8570,new_value=8575,old_reference=,new_referen

ce=,old_start_date=19700101000000,new_start_date=19700101000000,old_never_expires=1,new_never_e

xpires=1,old_expiry=19700101000000,new_expiry=19700101000000,old_never_used=0,new_never_used=0,

old_last_use=20110802025553,new_last_use=20110802025553

00000450 [20110802145554.122045] COMMAND:

update_bucket:wallet_id=4,balance_type=9,bucket_id=2,value=5,value_delta=1

00000450 [20110802145554.122104] WARNING: We're already executing a command for wallet ID 4

(we'll retry shortly..)

00000450 [20110802145554.295870] AUDIT : update_bucket:

wallet_id=4,balance_type=9,bucket_id=2,old_value=8575,new_value=8580,old_reference=,new_referen

ce=,old_start_date=19700101000000,new_start_date=19700101000000,old_never_expires=1,new_never_e

xpires=1,old_expiry=19700101000000,new_expiry=19700101000000,old_never_used=0,new_never_used=0,

old_last_use=20110802025554,new_last_use=20110802025554

Statistics:

 Chapter 4

•

 Chapter 4, Tools and Utilities 141

 Completed commands = 450

 Information acks received = 450

 Primary information acks received = 450

 Primary update acks received = 450

 Total commands = 450

 Update acks received = 450

 Wallet Info Requests sent to Primary BE = 450

ccsVWSCorrection stopped at Tue Aug 2 14:55:54 2011

The log report shows that all commands were (eventually, there were some cases of the tool waiting for
a previous update for the same wallet ID to finish, but this is normal in a file with multiple commands
against the same wallet) successful, and the bucket value grew from an initial balance of 6330 (old
value on first audit record) to 8580 (new value on last audit record). The difference is 450 x 5, so all
updates were applied correctly.

beEventStorageIFDump

Purpose

The beEventStorageIFDump utility is a diagnostic tool for finding bottlenecks in the
BE_EVENT_STORAGE database table. It parses through the table and lists the number, type, and
contents of the storage events.The utility parses data exported from the database.

This tool allows decoding of notifications in the BE_EVENT_STORAGE table. Decoding can occur via
direct query of the database, or by parsing of the exported table.

Location

The beEventStorageIFDump utility is located on the SMS node.

Syntax

You start the beEventStorageIFDump utility from the command line by using the following syntax:

beEventStorageIFDump -a|-m Value [-b FieldFile] [-c EventFieldName] [-d] [-f

DumpFile] [-g] [-h] [-l ListFile] [-n] [-r MSISDN] [-R Date] [-s StartEvent]

[-v 1|2|3]

The following table describes the beEventStorageIFDump command line parameters.

Parameter Description

-a Lists all events that are in the BE_EVENT_STORAGE table.

-m Value Writes all events that match the specified value to a file.

• ALL – Writes all events from the BE_EVENT_STORAGE table to a file
named BE_EVENT_STORAGE_EventFieldName_allevents.

• FieldValue – Finds all events that have a matching event field value and
writes them to a file named BE_EVENT_STORAGE_EventFieldNameValue.

where EventFieldName is the name of a field in the BE_EVENT_STORAGE
table, and FieldValue is the value of any field in the BE_EVENT_STORAGE
table.

-b FieldFile The default file name is beEventHeaders.txt.

Chapter 4

142 Voucher and Wallet Server Technical Guide

Parameter Description

-c
EventFieldName

Finds all events in the table that have a matching event field name.

Note: You can further narrow the results by adding the -m FieldValue option to
specify the required value of the field.

-f DumpFile Specifies to write the event contents to the specified file. The default file name is
BE_EVENT_STORAGE.dmp.

-g Displays all event details.

-h Displays the command-line syntax and parameters.

-l ListFile Specifies to write the output of the utility to the specified file. The default file
name is beEventHeaders.txt.

-n Don't show event data as it finds it????

-r MSISDN Match all entries based on <msisdn> in RequestTime window, use with -R

-R Value match all entries with request times that occur in the interval |<date> - <n> days
to <date>| where <date> is the value specified by -m<value>

An msisdn match can be specified with -r<msisdn> this option requires -c <time
based event field name> e.g. -cRequestTime

-s StartEvent Use eventFieldName <startEvent> as the start of the event dump file,
default='beServiceTrigger' use in conjunction with -m

-v 1|2|3 Verbose: 1 (minimum), 2(mid), 3 (max)

Command line examples

The commands can be run singularly by typing in at the command line prompt, or as a batch in a file.

The following example shows the syntax to list all MSISDN in exported table.

• show all MSISDN in exported table

(i) show all msisdn in exported table
 (a) list event field names to match against : ../beEventStorageIFDump -l
 (b) list Calling_Party_id for all events, show frequency: ../beEventStorageIFDump -cCalling_Party_id
 (c) list matched events, e.g.: ../beEventStorageIFDump -cCalling_Party_id -m12345678
 (d) to reduce display, add -n

To show all MSISDN in an exported table

Step Action

1 List all events and their field names from the BE_EVENT_STORAGE table by entering the
following command:

beEventStorageIFDump -l

2 List the value of each event's CALLING_PARTY_ID field by entering the following
command:

beEventStorageIFDump -c CALLING_PARTY_ID

3 List all events that have a value of 12345678 in the CALLING_PARTY_ID field:

beEventStorageIFDump -c CALLING_PARTY_ID -m 12345678

beEventStorageIFDump -l -c CALLING_PARTY_ID -m 12345678 -n

The following example shows the syntax

 Chapter 4

•

 Chapter 4, Tools and Utilities 143

 (a) ../beEventStorageIFDump -cCalling_Party_id -m12345678 -g
 (b) to reduce display, add -n
 (c) to show all events, regardless of -c/-m match, add -a

beEventStorageIFDump -c Calling_Party_id -m 12345678 -g

(iii)match all MSISDN with direct read from database
 (a) ../beEventStorageIFDump -cCalling_Party_id -m12345678 -S
 generates result in BE_EVENT_STORAGE_Calling_Party_id12345678
 (b) to output to debug, rather than file, add -d

(iv) match all events on, or previous to <date> in DB dump
 (a) ../beEventStorageIFDump -fBE_EVENT_STORAGE2.dmp -cRequestTime -m2012-02-01 -r<> -
n
 (b) to match all events between -m<date> and the previous n days, add -R<n>
 Note: date is expected to be 'YYYY-MM-DDTHH-MM-SSZ'
 e.g.: -mYYYY, -mYYYY-MM, -mYYYY-MM-DD etc accepted

beEventStorageIFDump -f BE_EVENT_STORAGE2.dmp -cRequestTime -m2016-02-01 -r -n

beServiceTriggerUser

Purpose

The beServiceTriggerUser utility sets the user name and password that beServiceTrigger uses to log in
to external systems remotely; for example, when sending service requests to a client ASP through the
NCC Open Services Development (OSD) component. The beServiceTriggerUser utility stores the user
name and password in a secure credentials vault on the SMS node.

Location

The beServiceTriggerUser utility is located on the SMS node.

Startup

You start the beServiceTriggerUser utility from the command line by using the following syntax:

beServiceTriggerUser [-d user/password] [-u STUsername] [-p STpassword] [-r]

The following table describes the beServiceTrigger command line parameters.

Parameter Description

-d

user/password
(Optional) The oracle user and password to use to log in to the database on the
SMS. If you omit the -d option, then beServiceTriggerUser uses the database

login specified in the oracleUserAndPassword parameter in the BE section of
eserv.config. Defaults to '/' if -d is not specified and oracleUserAndPassword is

not set.

-u STUsername (Optional) The name of the beServiceTrigger user. If you omit the -u option,

beServiceTriggerUser prompts for a name.

-p STpassword (Optional) The password for the beServiceTrigger user. If you omit the -p option,

beServiceTriggerUser prompts for a password.

-r (Optional) Specifies to delete the password.

Chapter 4

144 Voucher and Wallet Server Technical Guide

Setting the beServiceTrigger User and Password

Follow these steps to set the username and password for the beServiceTrigger process by using

the beServiceTriggerUser utility.

Step Action

1 Log in to the SMS as user smf_oper.

2 Go to the directory where beServiceTriggerUser is located.

3 Enter the following command to set the username and password for
beServiceTrigger:

beServiceTriggerUser [-d user/password] [-u STusername] [-p

ST_password]

Where:

• user/password is the login ID for the Oracle database. The login specified in

the oracleUserAndPassword parameter is used if you omit the -d option. If

this is not set, then "/" is used.

• STusername is the remote login name for the beServiceTrigger user. If you

omit the -u option, then beServiceTriggerUser prompts for a name.

• ST_password is the new password for the beServiceTrigger user. If you

omit the -p option, then beServiceTriggerUser prompts for a password.

Tip: To remove the beServiceTrigger user and password, enter the following

command:

beServiceTriggerUser -r

 Chapter 5, Troubleshooting 145

Chapter 5

Troubleshooting

Overview

Introduction

This chapter explains the important processes on each of the server components in NCC, and describes
a number of example troubleshooting methods that can help aid the troubleshooting process before you
raise a support ticket.

In this chapter

This chapter contains the following topics.

Common Troubleshooting Procedures.. 145
Possible Problems ... 145
Process Failure Recovery ... 147

Common Troubleshooting Procedures

Introduction

Refer to System Administrator's Guide for troubleshooting procedures common to all NCC components.

Possible Problems

Introduction

This topic lists common problems and actions you can take to investigate or solve them. This list
enables you to check for alarms based on the overall behavior you are experiencing.

Database failure

Upon network failure, any request or response may be lost. Pending Database (DB) write and EDRs
will be lost.

Failure scenarios

This table lists a range of failure scenarios and a description of the events that will happen as a result.

For more information about resynchronization, see Resynchronizations (on page 22).

Scenario Resulting Events

VWS is running.

beServer core dumps,
losing all contexts and
BeClient connections.

1 beServer recovers, finds the current state from beVWARS, determines
that the VWS should be in Recovery state and makes it so.

2 beServer prepares to receive contexts from beServer on the other
VWS.

3 beGroveller detects the dropped connection and a failover is triggered.

Chapter 5

146 Voucher and Wallet Server Technical Guide

Scenario Resulting Events

4 beSync starts attempting recovery.

5 Remote beServer starts sending contexts to the local beServer (and
receives Operations from beSync).

6 beSync should complete its recovery quickly (it should have already
been in Sync). beSync will tell beVWARS to move to Running state,
when the beVWARS has finished sending contexts it will move to
Running.

7 beServer starts accepting connections from BeClient processes.

8 beGroveller establishes connection with beServer and starts grovelling.

beVWARS core dumps,
loses all reservations
and cached wallets,
then restarts.

1 beServer and beSync are informed that the beVWARS process had
died.

2 beServer closes all open connections as nicely as it can.

3 beVWARS restarts, prepares to send contexts to beServer (and receive
Operations from beSync).

4 beServer and beSync recognise beVWARS recovery.

5 beSync initiates recovery (includes getting all reservation details from
other VWS).

6 beGroveller detects the dropped connection and a failover is triggered.

7 When beSync completes recovery, the process completes as above (in
beServer failure).

VWS state is running.
beSync core dumps
and restarts.

1 beSync restarts, gets current status from beVWARS.

2 If the beVWARS is in Recovery or Running state it starts recovery.

3 beSync processes as normal, but does not force the system into
Recovery (which would deny connections, and this is not required)
groveller proceeds as it was.

4 beSync proceeds, when the inSync threshold is reached it tells the
beVWARS to go to Running state (which it may already be in).

Primary VWS has
power turned off.

BeClient detects failure
of primary VWS.

1 Primary VWS is turned back on.

2 SLEE starts up, all SLEE processes start.

3 beServer starts disabled, refuses BeClient connections.

4 beGroveller attempts to connect to beServer and fails. It doesn't start
processing.

5 beSync starts, reads in existing sync file repository. At this point
beSync source will not accept connections from the remote beSync
sink as we do not want to send anything.

6 BeClient swaps to sending messages to Secondary VWS, resending
any it does not have responses for (and marks them as duplicates).

7 beSync asks each local beVWARS for their last written Sequence
Number.

8 beSync looks to see if it needs to process files locally to write updates
that are in the sync files but not in the database. This is done by looking
to see if there is any later sequence numbers in the files.

9 If later sequence numbers are found, they are read and sent to the
beVWARS.

10 While this is proceeding, the beSync source will start accepting
connections from the remote beSync sink.

11 When all local updates have been performed, beSync sink requests all
reservations from the remote VWS to populate the beVWARS.
Note: This is an extra step only performed on full recovery.

 Chapter 5

•

 Chapter 5, Troubleshooting 147

Scenario Resulting Events

12 The local beSync sink establishes a link to the remote VWS and
requests all updates since the last remote update we have recorded on
our database.

13 Updates stream to us, and we confirm them in chunks.

14 The timestamp on every update is checked against the wall clock. If the
difference is less than the (configurable) inSyncThreshold then we
consider ourselves to be inSync and tell beServer to start accepting
connections again.

15 beServer starts accepting connections again.

16 beGroveller establishes connection with beServer and starts grovelling.

For more information about beGroveller failover, see beGroveller quorum (on page 148).

Process Failure Recovery

Startup checks

On startup, or failure (and restart) of the beServer or beVWARS, we must get all reservations and server
contexts from the peer VWS. Both the beServer and beVWARS must be present if this is to be
successful.

Startup process

After you start the SLEE, the following events occur.

Stage Description

1 All processes startup in disabled/startup state.

2 beSync waits until it can contact beVWARS.

3 Once beSync can, it starts local recovery, by sending updates to the beVWARS.

4 The local beSync establishes a connection to the beSync on the remote VWS, and asks
for contexts and reservations.

5 After the local beSync has all the remote contexts and updates, it requests the remote
updates from beSync.

6 After remote updates are within a couple of seconds of the current time, beSync tells the
beVWARS to change to running state.

7 beVWARS passes the state change message to beServer.

8 After beServer has Running messages from all beVWARS, it goes into running mode,
and opens for client connections.

9 If grovelling is available at this time, beGroveller can now grovel, and will respond to
requests for more wallets to grovel from each of the beVWARS processes.

Restarts while in state Recovery

If you restart while in state recovery, the following events will occur.

For beSync:

• Queries the beVWARS, finds it is recovering, and starts requesting everything from the other
beSync again.

• Reservations in the beVWARS are overwritten.

Chapter 5

148 Voucher and Wallet Server Technical Guide

• Contexts in the beServer are overwritten.

For beVWARS:

• Comes up in disabled state.

• beServer gets a dialog closed event and disables itself, then it tries to contact beVWARS to put it in
Recovery mode.

For beServer:

• Same as SLEE startup; contacts the beVWARS and resets Recovery mode.

Restarts while in state Running

If you restart while in state running, the following events will occur.

• beSync queries the beVWARS and starts up running.

• beVWARS comes up disabled.

• beServer will get a dialog closed, disable itself, and then same as SLEE startup. Then it will follow
the same process as a SLEE restart.

• beGroveller will start disabled, and will start processing when beServer starts accepting
connections.

• We have lost all of the updates between the committed database's sequence number and those in
the beVWARS, however the sync files still record all of these (they have not been removed as
beSync hasn't received a COMMIT message yet).

• Each beVWARS clears its cache, reads the local and remote sequence number from the database,
goes into recovery mode - broadcasting these SSEQ numbers.

• beVWARS will then ignore all operations from beSync until it sees one with the SessionNumber set
to the ID of the control message it sent to set the VWS state to Recovery - beSync may have
operations queued on the beVWARS with SSEQs AFTER those of the database (we do not want to
skip those in between).

• beSync sees these new SSEQ numbers and sends all of the local and remote transactions it has to
the beVWARS. The first operation message has the SessionNumber set to the ID of the control
message that set the state to Recovery.

beGroveller quorum

beGroveller is designed to only run on the primary Voucher and Wallet Server in a pair. However,
groveling activity will failover to the secondary Voucher and Wallet Server if the Voucher and Wallet
Server fails.

beGroveller determines whether it should pass groveling work to beVWARS processes, by checking
whether it is on the primary and whether it can connect to the:

• Local beServer process

• beServer on the other VWS in the pair

• SMS specified in quorumHost (on page 64)

Establishing quorum on primary VWS

beGroveller determines whether it is running on a primary VWS by checking the value of amPrimary

(on page 41). If amPrimary is set to true, the beGroveller is running on a primary VWS.

If the beGroveller on a primary VWS can connect to the local beServer, beGroveller will respond to
beVWARS grovel requests with lists of wallet IDs to grovel. If beGroveller cannot connect to the local
beServer, it assumes the VWS is disabled or recovering and will not return work to beVWARS
processes.

 Chapter 5

•

 Chapter 5, Troubleshooting 149

Establishing quorum on secondary VWS

beGroveller determines whether it is running on a secondary VWS by checking the value of amPrimary

(on page 41). If amPrimary is set to false, the beGroveller is running on a secondary VWS.

If beGroveller:

• Cannot connect to the local beServer, it assumes the VWS is disabled or recovering and will not
return work to beVWARS processes.

• On a secondary VWS can connect to the local beServer, beGroveller will check whether it can
connect to the beServer on the other VWS in the pair. If it can connect to the remote beServer, it will
assume the primary is running and will not respond to beVWARS grovel requests with lists of wallet
IDs to grovel.

• Can connect to the local beServer, but cannot connect to the beServer on the VWS, it will check
whether it can ping the remote VWS. If it can ping the remote VWS it assumes the remote VWS is
disabled and will start groveling.

• Cannot ping the remote VWS it will attempt to ping the SMS specified in quorumHost (on page 64).
If it can ping quorumHost, it will assume the VWS pair has failed over, and will start to respond to
beVWARS requests with lists of wallet IDs to grovel. If it cannot ping quorumHost, it will assume it is
not on the main network, and will not respond to beVWARS requests with lists of wallet IDs to
grovel.

 Chapter 6, About Installation and Removal 151

Chapter 6

About Installation and Removal

Overview

Introduction

This chapter provides information about the installed components for the Oracle Communications
Network Charging and Control (NCC) application described in this guide. It also lists the files installed by
the application that you can check for, to ensure that the application installed successfully.

In this Chapter

This chapter contains the following topics.

Installation and Removal Overview ... 151
Configuring for Raw Device Support ... 151
Checking the Installation ... 151

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see Installation Guide:

• NCC system requirements

• Pre-installation tasks

• Installing and removing NCC packages

Voucher and Wallet Server packages

An installation of Voucher and Wallet Server includes the following packages, on the:

• SMS:

▪ beSms

• SLC:

▪ beScp

• VWS:

▪ beBe

Checking the Installation

Introduction

Refer to this checklist to ensure that VWS has installed correctly.

The end of the package installation process specifies a script designed to check the installation just
performed. They must be run from the command line.

Chapter 6

152 Voucher and Wallet Server Technical Guide

Checklist

Follow these steps in this checklist to ensure VWS has been installed on an VWS machine correctly.

Step Action

1 Log into the VWS machine as root.

2 Check the following directory structure exists with the subdirectory:

/IN/service_packages/E2BE

3 Check the directory contains subdirectories and that all are owned by:

ebe_oper user (group esg)

4 Log into the system as ebe_oper.

Note: This step is to check that the ebe_oper user is valid.

5 Type sqlplus /

No password is required.

Note: This step is to check that the ebe_oper user has valid access to the database.

Ensure that the ORACLE_SID is set.

6 Ensure that VWS and CCS tables have been added to the database.

7 Check the entries of the following file:

/etc/inittab

Inittab Entries Reserved for VWS on VWS:
a. be_1 bin/beCDRMoverStartup.sh

(Runs beCDRMoverStartup, which moves completed EDR files into an output
directory for later processing.)

b. be_2 bin/cmnPushFilesStartup.sh

(Runs cmnPushFiles, which moves the EDRs to a configured destination machine
(usually the SMS).)

	About This Document
	Scope
	Audience
	Prerequisites
	Related Documents

	Document Conventions
	Typographical Conventions

	Chapter 1
	System Overview
	Overview
	Introduction
	In this Chapter

	Introduction to VWS
	Introduction
	Functions
	Main components diagram
	Main components
	Billing Interfaces
	VWS Domains
	About improving performance

	Wallets, Balances and Buckets
	Wallets
	Wallet states
	Wallet lifecycle
	Wallet life cycle plans
	VWS associations
	Migrating wallets
	Balances
	Wallets, balances and buckets relationship
	Wallet and bucket events
	Background processing

	Request handling
	Reservations and billing diagram
	beVWARS plugins
	Request processing
	Wallet and voucher caches
	Supported requests
	walletDeleteBufferSize
	walletIds
	walletLowWaterMark
	Wallets
	writerIfName
	XmlTcap Parameters
	Example eserv.config configuration
	Wallet life cycle period checks
	Merging wallets processes

	Data Management
	Data redundancy
	BeClients and connection failure
	Throttling
	Database update consistency
	beVWARS data updates
	Queuing and flushing updates
	Flush process
	Changing number of beVWARS

	Synchronization
	Data synchronization
	Sync files
	Synchronization diagram
	Synchronization process
	Resynchronizations

	Wallet and Bucket Expiry
	Introduction
	Wallet management processes
	Expiry diagram
	Wallet and bucket expiry processing

	BE States
	Introduction
	BE states
	Running
	Disabled
	beVWARS failure
	Recovering
	beVWARS recovery
	State transitions

	EDR Processing
	Introduction
	EDR processing diagram
	VWS EDR processing
	EDR triggers

	MFile Updates
	Introduction
	MFile data types
	Update process diagram
	Update process - mfile

	Statistics
	Introduction
	SMS statistics subsystem
	Collected statistics

	Chapter 2

	Configuration
	Overview
	Introduction
	In this chapter

	Configuration Overview
	Introduction
	Configuration process overview
	Configuration components

	Configuring the Environment
	Oracle environment variables

	eserv.config Configuration
	Introduction
	Configuration File Format
	eserv.config Files Delivered
	Editing the File
	Loading eserv.config Changes
	Example eserv.config configuration

	BE Shared Parameters
	Purpose
	Configuration
	Example BE shared parameters configuration
	Parameters
	amPrimary
	beLocationPlugin
	enableGrovelling
	oracleUserAndPassword
	serverId
	timerIfName
	freeDiskSpaceCheckInterval
	freeDiskSpaceShutdownThres
	freeDiskSpaceWarningThres
	lowDiskSpaceNotificationInterval
	Deprecated SLEE Name Definitions
	grovellerIfNamePrefix
	serverIfName
	syncIfName
	vwarsIfNamePrefix

	User Interface-Based Configuration Tasks
	Introduction
	Defining VWS locations

	SLEE.cfg
	About Configuring VWS SLEE Interfaces
	About Configuring MAXEVENTS
	Loading SLEE.cfg changes

	Chapter 3

	Background Processes
	Overview
	Introduction
	In this chapter

	beCDRMover
	Purpose
	Startup
	Configuration
	Parameters
	destinationDirectory
	commitTimeSeconds
	numberOfRecordsToCommit
	oraclePassword
	oracleService
	oracleUser
	outDirectory
	timeout
	Example configuration

	Failure
	Output

	BeClient
	Purpose
	Startup
	Configuration
	Parameters
	billingEngines
	id
	primary
	secondary
	ip
	port
	broadcastOptions
	aggregateNAckCodes
	clientName
	connectionRetryTime
	heartbeatPeriod
	maxOutstandingMessages
	messageTimeoutSeconds
	notEndActions
	plugins
	primaryFailbackInterval
	reportPeriodSeconds
	Example configuration
	Output

	beGroveller
	Purpose
	Process
	Startup
	Configuration
	Example configuration
	Parameters
	connectionRetryTime
	consecutiveFetch
	filledBufferThreshold
	heartbeatPeriod
	ludProcessingTime
	maxIDsPerResponse
	noProcessingTimes
	startsAt
	endsAt
	processExpiredBuckets
	quorumHost
	retrySeconds

	beServer
	Purpose
	Plug-ins
	About running multiple beServer processes
	Startup
	Configuration
	Parameters
	clientLoadWeightings
	clientSelectTime
	clientSocketBufferSize
	enableStatistics
	errorOnRecordStatistics
	dbConnCheckTime
	downstreamOverloadSleepUSec
	handlers
	quiesceLength
	maxDownStreamQueueLength
	messageRoutingPlugins
	msgRouterDefault
	roundRobinTypes
	routeOnVoucherNumber
	notEndActions
	purge
	expectedKeep
	noExpectedKeep
	purgeInterval
	vwarsTimeout
	recoveryReportInterval
	routingVoucherNumberLength
	serverPortOverride
	slaveLocalSocketDirectory
	Example configuration
	Output

	beSync
	Purpose
	Startup
	Configuration
	Parameters
	shared parameters

	badFileDirectory
	downstreamOverloadSleepUSec
	maxDownstreamQueueLength
	noWorkSleepTime
	spoolChunkSize
	spoolDirectory
	sink parameters

	heartbeatPeriodSeconds
	inSyncThresholdSeconds
	inSyncReportingPeriodRecords
	localUpdateChunkSize
	maxRetriesBeforeSeconds
	maxSecsToWaitForRemoteOperations
	remoteBEhostname
	remoteBEport
	retryConnectionDelaySeconds
	source parameters

	listenInterface
	listenPort
	maxQueueLength
	recordSendingChunkSize
	Example configuration
	Output

	beServiceTrigger
	Purpose
	About the beServiceTrigger User
	Example
	Characteristics
	Process
	Startup
	Valid interfaces
	XmlTcap Parameters
	Control_Plan
	scps
	Service_Handle
	OSD Parameters
	CCSNamespace
	osd_scps
	operation
	operationSet
	Common parameters
	edr
	failureRetryTime
	maxConnections
	maxRatePerUAS
	responseTag
	storageInterface
	tcpTxMaxBuf
	tcpRxMaxBuf
	throttleLife
	timeBetweenThrottles
	triggerInterface
	Output
	Notification requests
	Notification overview
	Notification flows
	Flow 1
	Flow 2
	Flow 3
	Flow 4
	Flow 5
	Flow 6
	Flow 7
	Flow 8
	Flow 9
	Flow 10

	beVWARS
	Purpose
	Plug-ins
	Activating Used Units Confirmation (UUC) Features
	Startup
	Wallet Time Configuration
	Configuration
	Parameters
	clearEmptyBuckets
	createBucketExpiryDays
	downstreamOverloadSleepUSec
	handlers
	maxDownstreamQueueLength
	maxOpenDialogTime
	maxSendReservationsToSync
	maxTransactionsPerSet
	minResyncReservationLength
	plugins
	pluginSkipTimeOnStartup
	gapBeforeRestartingPluginSkip
	removeExpiredNotRemoved
	reservationExpiryCheckMilliseconds
	setLastActivationDateStates
	setLastUseDateOnActivation
	useTimeFromClient
	useTimeFromConfigFile
	voucherReservationPeriodSeconds
	walletConfigFileReReadTime
	waltResvnExpiryToleranceSeconds
	duplicateDetection parameters

	directMaxDelaySeconds
	keepDirectSeconds
	keepSyncSeconds
	syncMaxDelaySeconds
	groveller parameters

	peerDatabaseLogin
	peerWalletCheckRetrySeconds
	periodMsec
	requestHighWaterMark
	requestTimeout
	secondaryConnectionDelaySeconds
	walletLowWaterMark
	voucherCache parameters

	checkBeforeFlush
	maxLoopSize
	maxSize
	voucherCommitOnTimeout
	voucherRevokeOnTimeout
	walletCache parameters

	checkBeforeFlush
	maxLoopSize
	maxSize
	syncWriter parameters
	maxRecordsPerFile
	maxSecondsPerFile
	dbWriter parameters
	balanceCreateBufferSize
	balanceDeleteBufferSize
	balanceUpdateBufferSize
	bucketCreateBufferSize
	bucketDeleteBufferSize
	bucketUpdateBufferSize
	cdrOutputDirectory
	flushPeriod
	voucherUpdateBufferSize
	voucherCreateBufferSize
	voucherDeleteBufferSize
	walletCreateBufferSize
	walletDeleteBufferSize
	walletUpdateBufferSize
	Tracing parameters
	beClients
	debugLevel
	enabled
	walletIds
	Example configuration
	Output

	beVWARSCCDRHandler
	Purpose
	Startup
	Configuration

	beVWARSExpiry
	Purpose
	Startup
	Configuration
	Parameters
	expireAtMidnightTZ
	expireBucketsForExpiredWallets
	expireNegativeBuckets
	removeEmptyBuckets
	terminatedWalletConsistencyCheck
	Example configuration
	Failure
	Output

	beVWARSMergeBuckets
	Purpose
	Configuration
	Parameters
	maxBuckets
	triggerPlugins
	Example configuration

	cmnPushFiles
	Purpose
	Startup
	Configuration
	Parameters
	CDR
	-d
	-r
	-h
	-F
	Example configuration

	Failure
	Output

	Event Storage Interface
	Overview
	Error and throttle flow
	Send later flow
	Crash flow
	Event Storage SLEE Events
	Configuration
	Parameters
	nextEventWindowTime
	NumberOfRows
	sleepTime

	libbeMsgRouterDefault
	Purpose
	Startup
	Configuration

	libBeClientIF
	Purpose
	Startup
	Configuration

	libclientBcast
	Purpose
	Startup
	Configuration

	libbeEventFactory
	Purpose
	Startup
	Configuration

	Chapter 4

	Tools and Utilities
	Tools and Utilities Overview
	Introduction
	In this chapter

	VWS Correction Tool
	Purpose
	Rollback
	About minimizing tool impact
	Starting the commands
	eserv.config parameters
	clientName
	heartbeatPeriod
	connectionRetryTime
	plugins
	maxQueueSize
	queueUpdatesToSameObject
	Example of VWS correction tool section
	Command line parameters
	Update balance parameters
	Update bucket parameters
	Update wallet parameters
	Delete balance parameters
	Delete bucket parameters
	Command line examples
	Progress reporting
	Audit reporting

	beEventStorageIFDump
	Purpose
	Location
	Syntax
	Command line examples

	beServiceTriggerUser
	Purpose
	Location
	Startup
	Setting the beServiceTrigger User and Password

	Chapter 5

	Troubleshooting
	Overview
	Introduction
	In this chapter

	Common Troubleshooting Procedures
	Introduction

	Possible Problems
	Introduction
	Database failure
	Failure scenarios

	Process Failure Recovery
	Startup checks
	Startup process
	Restarts while in state Recovery
	Restarts while in state Running
	beGroveller quorum
	Establishing quorum on primary VWS
	Establishing quorum on secondary VWS

	Chapter 6

	About Installation and Removal
	Overview
	Introduction
	In this Chapter

	Installation and Removal Overview
	Introduction
	Voucher and Wallet Server packages

	Checking the Installation
	Introduction
	Checklist

