
Oracle® Streams
Replication Administrator’s Guide

12c Release 2 (12.2)
E85775-01
April 2017

Oracle Streams Replication Administrator’s Guide, 12c Release 2 (12.2)

E85775-01

Copyright © 2003, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Roopesh Ashok Kumar

Contributors: Randy Urbano, Nimar Arora, Lance Ashdown, Ram Avudaiappan, Neerja Bhatt, Ragamayi
Bhyravabhotla, Alan Downing, Curt Elsbernd, Yong Feng, Jairaj Galagali, Lei Gao, Thuvan Hoang, Lewis
Kaplan, Tianshu Li, Jing Liu, Edwina Lu, Raghu Mani, Rui Mao, Pat McElroy, Shailendra Mishra, Valarie
Moore, Bhagat Nainani, Maria Pratt, Arvind Rajaram, Viv Schupmann, Vipul Shah, Neeraj Shodhan, Wayne
Smith, Jim Stamos, Janet Stern, Mahesh Subramaniam, Bob Thome, Byron Wang, Wei Wang, James M.
Wilson, Lik Wong, Jingwei Wu, Haobo Xu, Jun Yuan, David Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xv

Documentation Accessibility xv

Related Documents xvi

Conventions xvi

 Changes for Oracle Streams Replication Administrator's Guide

Changes in Oracle Database 12c Release 1 (12.1) xvii

Part I Configuring Oracle Streams Replication

1 Preparing for Oracle Streams Replication

1.1 Overview of Oracle Streams Replication 1-1

1.1.1 Common Reasons to Use Oracle Streams Replication 1-2

1.1.2 Rules in an Oracle Streams Replication Environment 1-3

1.2 Decisions to Make Before Configuring Oracle Streams Replication 1-5

1.2.1 Decide Which Type of Replication Environment to Configure 1-5

1.2.1.1 About Two-Database Replication Environments 1-5

1.2.1.2 About Hub-And-Spoke Replication Environments 1-7

1.2.1.3 About N-Way Replication Environments 1-10

1.2.2 Decide Whether to Configure Local or Downstream Capture for the
Source Database 1-11

1.2.3 Decide Whether Changes Are Allowed at One Database or at Multiple
Databases 1-14

1.2.4 Decide Whether the Replication Environment Will Have Nonidentical
Replicas 1-15

1.2.5 Decide Whether the Replication Environment Will Use Apply Handlers 1-16

1.2.6 Decide Whether to Maintain DDL Changes 1-16

1.2.7 Decide How to Configure the Replication Environment 1-17

1.3 Tasks to Complete Before Configuring Oracle Streams Replication 1-20

1.3.1 Configuring an Oracle Streams Administrator on All Databases 1-20

iii

1.3.2 Configuring Network Connectivity and Database Links 1-24

1.3.3 Ensuring That Each Source Database Is In ARCHIVELOG Mode 1-26

1.3.4 Setting Initialization Parameters Relevant to Oracle Streams 1-27

1.3.5 Configuring the Oracle Streams Pool 1-32

1.3.5.1 Using Automatic Memory Management to Set the Oracle Streams
Pool Size 1-34

1.3.5.2 Using Automatic Shared Memory Management to Set the Oracle
Streams Pool Size 1-34

1.3.5.3 Setting the Oracle Streams Pool Size Manually 1-35

1.3.5.4 Using the Default Setting for the Oracle Streams Pool Size 1-35

1.3.6 Specifying Supplemental Logging 1-36

1.3.6.1 Required Supplemental Logging in an Oracle Streams Replication
Environment 1-37

1.3.6.2 Specifying Table Supplemental Logging Using Unconditional Log
Groups 1-38

1.3.6.3 Specifying Table Supplemental Logging Using Conditional Log
Groups 1-39

1.3.6.4 Dropping a Supplemental Log Group 1-40

1.3.6.5 Specifying Database Supplemental Logging of Key Columns 1-41

1.3.6.6 Dropping Database Supplemental Logging of Key Columns 1-42

1.3.6.7 Procedures That Automatically Specify Supplemental Logging 1-42

1.3.7 Configuring Log File Transfer to a Downstream Capture Database 1-43

1.3.8 Adding Standby Redo Logs for Real-Time Downstream Capture 1-46

2 Simple Oracle Streams Replication Configuration

2.1 Configuring Replication Using the Setup Streams Replication Wizard 2-1

2.2 Configuring Replication Using the DBMS_STREAMS_ADM Package 2-3

2.2.1 The Oracle Streams Replication Configuration Procedures 2-3

2.2.2 Important Considerations for the Configuration Procedures 2-7

2.2.2.1 Local or Downstream Capture for the Source Database 2-7

2.2.2.2 Perform Configuration Actions Directly or With a Script 2-9

2.2.2.3 Oracle Streams Components Configured by These Procedures 2-9

2.2.2.4 One-Way or Bi-Directional Replication 2-11

2.2.2.5 Data Definition Language (DDL) Changes 2-13

2.2.2.6 Instantiation 2-14

2.2.3 Creating the Required Directory Objects 2-16

2.2.4 Examples That Configure Two-Database Replication with Local Capture
2-17

2.2.4.1 Configuring Two-Database Global Replication with Local Capture 2-18

2.2.4.2 Configuring Two-Database Schema Replication with Local
Capture 2-25

2.2.4.3 Configuring Two-Database Table Replication with Local Capture 2-28

iv

2.2.5 Examples That Configure Two-Database Replication with Downstream
Capture 2-34

2.2.5.1 Configuring Tablespace Replication with Downstream Capture at
Destination 2-34

2.2.5.2 Configuring Schema Replication with Downstream Capture at
Destination 2-39

2.2.5.3 Configuring Schema Replication with Downstream Capture at
Third Database 2-43

2.2.6 Example That Configures Two-Database Replication with Synchronous
Captures 2-49

2.2.7 Example That Configures Hub-and-Spoke Replication 2-58

2.2.8 Monitoring Oracle Streams Configuration Progress 2-63

3 Flexible Oracle Streams Replication Configuration

3.1 Creating a New Oracle Streams Single-Source Environment 3-2

3.2 Creating a New Oracle Streams Multiple-Source Environment 3-6

3.2.1 Configuring Populated Databases When Creating a Multiple-Source
Environment 3-9

3.2.2 Adding Replicated Objects to Import Databases When Creating a New
Environment 3-10

3.2.3 Complete the Multiple-Source Environment Configuration 3-11

4 Adding to an Oracle Streams Replication Environment

4.1 About Adding to an Oracle Streams Replication Environment 4-1

4.1.1 About Using the Setup Streams Replication Wizard or a Single
Configuration Procedure 4-2

4.1.2 About Adding the Oracle Streams Components Individually in Multiple
Steps 4-3

4.2 Adding Multiple Components Using a Single Procedure 4-4

4.2.1 Adding Database Objects to a Replication Environment Using a Single
Procedure 4-4

4.2.2 Adding a Database to a Replication Environment Using a Single
Procedure 4-8

4.3 Adding Components Individually in Multiple Steps 4-11

4.3.1 Adding Replicated Objects to an Existing Single-Source Environment 4-11

4.3.2 Adding a New Destination Database to a Single-Source Environment 4-16

4.3.3 Adding Replicated Objects to an Existing Multiple-Source Environment 4-19

4.3.3.1 Configuring Populated Databases When Adding Replicated
Objects 4-23

4.3.3.2 Adding Replicated Objects to Import Databases in an Existing
Environment 4-23

4.3.3.3 Finish Adding Objects to a Multiple-Source Environment
Configuration 4-25

v

4.3.4 Adding a New Database to an Existing Multiple-Source Environment 4-25

4.3.4.1 Configuring Databases If the Replicated Objects Already Exist at
the New Database 4-28

4.3.4.2 Adding Replicated Objects to a New Database 4-29

5 Configuring Implicit Capture

5.1 Configuring a Capture Process 5-1

5.1.1 Preparing to Configure a Capture Process 5-2

5.1.2 Configuring a Local Capture Process 5-3

5.1.2.1 Configuring a Local Capture Process Using
DBMS_STREAMS_ADM 5-3

5.1.2.2 Configuring a Local Capture Process Using
DBMS_CAPTURE_ADM 5-4

5.1.2.3 Configuring a Local Capture Process with Non-NULL Start SCN 5-6

5.1.3 Configuring a Downstream Capture Process 5-7

5.1.3.1 Configuring a Real-Time Downstream Capture Process 5-8

5.1.3.2 Configuring an Archived-Log Downstream Capture Process 5-11

5.1.4 After Configuring a Capture Process 5-17

5.2 Configuring Synchronous Capture 5-18

5.2.1 Preparing to Configure a Synchronous Capture 5-19

5.2.2 Configuring a Synchronous Capture Using the DBMS_STREAMS_ADM
Package 5-19

5.2.3 Configuring a Synchronous Capture Using the DBMS_CAPTURE_ADM
Package 5-21

5.2.4 After Configuring a Synchronous Capture 5-22

6 Configuring Queues and Propagations

6.1 Creating an ANYDATA Queue 6-1

6.2 Creating Oracle Streams Propagations Between ANYDATA Queues 6-3

6.2.1 Preparing to Create a Propagation 6-4

6.2.2 Creating a Propagation Using DBMS_STREAMS_ADM 6-5

6.2.3 Creating a Propagation Using DBMS_PROPAGATION_ADM 6-6

7 Configuring Implicit Apply

7.1 Overview of Apply Process Creation 7-1

7.2 Preparing to Create an Apply Process 7-2

7.3 Creating an Apply Process for Captured LCRs Using
DBMS_STREAMS_ADM 7-3

7.4 Creating an Apply Process Using DBMS_APPLY_ADM 7-4

vi

7.4.1 Creating an Apply Process for Captured LCRs with
DBMS_APPLY_ADM 7-4

7.4.2 Creating an Apply Process for Persistent LCRs with
DBMS_APPLY_ADM 7-6

8 Instantiation and Oracle Streams Replication

8.1 Overview of Instantiation and Oracle Streams Replication 8-1

8.2 Capture Rules and Preparation for Instantiation 8-3

8.2.1 DBMS_STREAMS_ADM Package Procedures Automatically Prepare
Objects 8-4

8.2.2 When Preparing for Instantiation Is Required 8-5

8.2.3 Supplemental Logging Options During Preparation for Instantiation 8-6

8.2.4 Preparing Database Objects for Instantiation at a Source Database 8-9

8.2.4.1 Preparing Tables for Instantiation 8-9

8.2.4.2 Preparing the Database Objects in a Schema for Instantiation 8-11

8.2.4.3 Preparing All of the Database Objects in a Database for
Instantiation 8-13

8.2.5 Aborting Preparation for Instantiation at a Source Database 8-14

8.3 Oracle Data Pump and Oracle Streams Instantiation 8-15

8.3.1 Data Pump Export and Object Consistency 8-15

8.3.2 Oracle Data Pump Import and Oracle Streams Instantiation 8-15

8.3.2.1 Instantiation SCNs and Data Pump Imports 8-15

8.3.2.2 Instantiation SCNs and Oracle Streams Tags Resulting from Data
Pump Imports 8-16

8.3.2.3 The STREAMS_CONFIGURATION Data Pump Import Utility
Parameter 8-16

8.3.3 Instantiating Objects Using Data Pump Export/Import 8-19

8.4 Recovery Manager (RMAN) and Oracle Streams Instantiation 8-21

8.4.1 Instantiating Objects in a Tablespace Using Transportable Tablespace
or RMAN 8-22

8.4.1.1 Instantiating Objects Using Transportable Tablespace 8-23

8.4.1.2 Instantiating Objects Using Transportable Tablespace From
Backup With RMAN 8-25

8.4.2 Instantiating an Entire Database Using RMAN 8-28

8.4.2.1 Instantiating an Entire Database on the Same Platform Using
RMAN 8-29

8.4.2.2 Instantiating an Entire Database on Different Platforms Using
RMAN 8-34

8.5 Setting Instantiation SCNs at a Destination Database 8-40

8.5.1 Setting Instantiation SCNs Using Export/Import 8-40

8.5.1.1 Full Database Export and Full Database Import 8-41

8.5.1.2 Full Database or User Export and User Import 8-41

8.5.1.3 Full Database, User, or Table Export and Table Import 8-41

vii

8.5.2 Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package 8-42

8.5.2.1 Setting the Instantiation SCN While Connected to the Source
Database 8-43

8.5.2.2 Setting the Instantiation SCN While Connected to the Destination
Database 8-44

8.6 Monitoring Instantiation 8-45

8.6.1 Determining Which Database Objects Are Prepared for Instantiation 8-45

8.6.2 Determining the Tables for Which an Instantiation SCN Has Been Set 8-46

9 Oracle Streams Conflict Resolution

9.1 About DML Conflicts in an Oracle Streams Environment 9-1

9.2 Conflict Types in an Oracle Streams Environment 9-2

9.2.1 Update Conflicts in an Oracle Streams Environment 9-2

9.2.2 Uniqueness Conflicts in an Oracle Streams Environment 9-2

9.2.3 Delete Conflicts in an Oracle Streams Environment 9-2

9.2.4 Foreign Key Conflicts in an Oracle Streams Environment 9-2

9.3 Conflicts and Transaction Ordering in an Oracle Streams Environment 9-3

9.4 Conflict Detection in an Oracle Streams Environment 9-3

9.4.1 Control Over Conflict Detection for Nonkey Columns 9-4

9.4.2 Rows Identification During Conflict Detection in an Oracle Streams
Environment 9-4

9.5 Conflict Avoidance in an Oracle Streams Environment 9-5

9.5.1 Use a Primary Database Ownership Model 9-5

9.5.2 Avoid Specific Types of Conflicts 9-5

9.5.2.1 Avoid Uniqueness Conflicts in an Oracle Streams Environment 9-5

9.5.2.2 Avoid Delete Conflicts in an Oracle Streams Environment 9-6

9.5.2.3 Avoid Update Conflicts in an Oracle Streams Environment 9-6

9.6 Conflict Resolution in an Oracle Streams Environment 9-6

9.6.1 Prebuilt Update Conflict Handlers 9-7

9.6.1.1 Types of Prebuilt Update Conflict Handlers 9-7

9.6.1.2 Column Lists 9-10

9.6.1.3 Resolution Columns 9-11

9.6.1.4 Data Convergence 9-12

9.6.2 Custom Conflict Handlers 9-12

9.7 Managing Oracle Streams Conflict Detection and Resolution 9-13

9.7.1 Setting an Update Conflict Handler 9-13

9.7.2 Modifying an Existing Update Conflict Handler 9-15

9.7.3 Removing an Existing Update Conflict Handler 9-15

9.7.4 Stopping Conflict Detection for Nonkey Columns 9-16

9.8 Monitoring Conflict Detection and Update Conflict Handlers 9-17

9.8.1 Displaying Information About Conflict Detection 9-18

viii

9.8.2 Displaying Information About Update Conflict Handlers 9-19

10

Oracle Streams Tags

10.1 Introduction to Tags 10-1

10.2 Tags and Rules Created by the DBMS_STREAMS_ADM Package 10-2

10.3 Tags and Online Backup Statements 10-5

10.4 Tags and an Apply Process 10-5

10.5 Oracle Streams Tags in a Replication Environment 10-6

10.5.1 N-Way Replication Environments 10-7

10.5.2 Hub-and-Spoke Replication Environments 10-10

10.5.3 Hub-and-Spoke Replication Environment with Several Extended
Secondary Databases 10-15

10.6 Managing Oracle Streams Tags 10-18

10.6.1 Managing Oracle Streams Tags for the Current Session 10-18

10.6.1.1 Setting the Tag Values Generated by the Current Session 10-18

10.6.1.2 Getting the Tag Value for the Current Session 10-19

10.6.2 Managing Oracle Streams Tags for an Apply Process 10-19

10.6.2.1 Setting the Tag Values Generated by an Apply Process 10-19

10.6.2.2 Removing the Apply Tag for an Apply Process 10-20

10.7 Monitoring Oracle Streams Tags 10-20

10.7.1 Displaying the Tag Value for the Current Session 10-20

10.7.2 Displaying the Default Tag Value for Each Apply Process 10-21

11

Oracle Streams Heterogeneous Information Sharing

11.1 Oracle to Non-Oracle Data Sharing with Oracle Streams 11-1

11.1.1 Change Capture and Staging in an Oracle to Non-Oracle Environment 11-2

11.1.2 Change Apply in an Oracle to Non-Oracle Environment 11-3

11.1.2.1 Apply Process Configuration in an Oracle to Non-Oracle
Environment 11-3

11.1.2.2 Data Types Applied at Non-Oracle Databases 11-5

11.1.2.3 Types of DML Changes Applied at Non-Oracle Databases 11-6

11.1.2.4 Instantiation in an Oracle to Non-Oracle Environment 11-6

11.1.3 Transformations in an Oracle to Non-Oracle Environment 11-9

11.1.4 Messaging Gateway and Oracle Streams 11-9

11.1.5 Error Handling in an Oracle to Non-Oracle Environment 11-9

11.1.6 Example Oracle to Non-Oracle Streams Environment 11-10

11.2 Non-Oracle to Oracle Data Sharing with Oracle Streams 11-10

11.2.1 Change Capture in a Non-Oracle to Oracle Environment 11-10

11.2.2 Staging in a Non-Oracle to Oracle Environment 11-11

11.2.3 Change Apply in a Non-Oracle to Oracle Environment 11-11

ix

11.2.4 Instantiation from a Non-Oracle Database to an Oracle Database 11-12

11.3 Non-Oracle to Non-Oracle Data Sharing with Oracle Streams 11-12

Part II Administering Oracle Streams Replication

12

Managing Oracle Streams Replication

12.1 About Managing Oracle Streams 12-1

12.2 Tracking LCRs Through a Stream 12-1

12.3 Splitting and Merging an Oracle Streams Destination 12-5

12.3.1 About Splitting and Merging Oracle Streams 12-5

12.3.2 Split and Merge Options 12-13

12.3.2.1 Automatic Split and Merge 12-13

12.3.2.2 Manual Split and Automatic Merge 12-14

12.3.2.3 Manual Split and Merge With Generated Scripts 12-15

12.3.3 Examples That Split and Merge Oracle Streams 12-15

12.3.3.1 Splitting and Merging an Oracle Streams Destination
Automatically 12-16

12.3.3.2 Splitting an Oracle Streams Destination Manually and Merging It
Automatically 12-19

12.3.3.3 Splitting and Merging an Oracle Streams Destination Manually
With Scripts 12-21

12.4 Changing the DBID or Global Name of a Source Database 12-24

12.5 Resynchronizing a Source Database in a Multiple-Source Environment 12-26

12.6 Performing Database Point-in-Time Recovery in an Oracle Streams
Environment 12-26

12.6.1 Performing Point-in-Time Recovery on the Source in a Single-Source
Environment 12-27

12.6.2 Performing Point-in-Time Recovery in a Multiple-Source Environment 12-31

12.6.3 Performing Point-in-Time Recovery on a Destination Database 12-32

12.6.3.1 Resetting the Start SCN for the Existing Capture Process to
Perform Recovery 12-33

12.6.3.2 Creating a New Capture Process to Perform Recovery 12-35

12.7 Running Flashback Queries in an Oracle Streams Replication Environment 12-37

12.8 Recovering from Operation Errors 12-39

12.8.1 Recovery Scenario 12-41

13

Comparing and Converging Data

13.1 About Comparing and Converging Data 13-1

13.1.1 Scans 13-2

13.1.2 Buckets 13-2

x

13.1.3 Parent Scans and Root Scans 13-3

13.1.4 How Scans and Buckets Identify Differences 13-4

13.2 Other Documentation About the DBMS_COMPARISON Package 13-6

13.3 Quick Start: A Simple Compare and Converge Scenario 13-6

13.3.1 Tutorial: Preparing to Compare and Converge Data 13-7

13.3.2 Tutorial: Comparing Data in Two Different Databases 13-8

13.3.3 Tutorial: Converging Divergent Data 13-11

13.4 Preparing To Compare and Converge a Shared Database Object 13-13

13.5 Diverging a Database Object at Two Databases to Complete Examples 13-13

13.6 Comparing a Shared Database Object at Two Databases 13-14

13.6.1 Comparing a Subset of Columns in a Shared Database Object 13-14

13.6.2 Comparing a Shared Database Object without Identifying Row
Differences 13-16

13.6.3 Comparing a Random Portion of a Shared Database Object 13-18

13.6.4 Comparing a Shared Database Object Cyclically 13-19

13.6.5 Comparing a Custom Portion of a Shared Database Object 13-21

13.6.6 Comparing a Shared Database Object That Contains CLOB or BLOB
Columns 13-23

13.7 Viewing Information About Comparisons and Comparison Results 13-27

13.7.1 Viewing General Information About the Comparisons in a Database 13-27

13.7.2 Viewing Information Specific to Random and Cyclic Comparisons 13-29

13.7.3 Viewing the Columns Compared by Each Comparison in a Database 13-30

13.7.4 Viewing General Information About Each Scan in a Database 13-31

13.7.5 Viewing the Parent Scan ID and Root Scan ID for Each Scan in a
Database 13-33

13.7.6 Viewing Detailed Information About the Row Differences Found in a
Scan 13-35

13.7.7 Viewing Information About the Rows Compared in Specific Scans 13-36

13.8 Converging a Shared Database Object 13-38

13.8.1 Converging a Shared Database Object for Consistency with the Local
Object 13-39

13.8.2 Converging a Shared Database Object for Consistency with the
Remote Object 13-40

13.8.3 Converging a Shared Database Object with a Session Tag Set 13-41

13.9 Rechecking the Comparison Results for a Comparison 13-42

13.10 Purging Comparison Results 13-43

13.10.1 Purging All of the Comparison Results for a Comparison 13-44

13.10.2 Purging the Comparison Results for a Specific Scan ID of a
Comparison 13-44

13.10.3 Purging the Comparison Results of a Comparison Before a Specified
Time 13-45

13.11 Dropping a Comparison 13-45

xi

13.12 Using DBMS_COMPARISON in an Oracle Streams Replication
Environment 13-45

13.12.1 Checking for Consistency After Instantiation 13-45

13.12.2 Checking for Consistency in a Running Oracle Streams Replication
Environment 13-46

14

Managing Logical Change Records (LCRs)

14.1 Requirements for Managing LCRs 14-1

14.2 Constructing and Enqueuing LCRs 14-2

14.3 Executing LCRs 14-6

14.3.1 Executing Row LCRs 14-7

14.3.1.1 Example of Constructing and Executing Row LCRs 14-7

14.3.2 Executing DDL LCRs 14-11

14.4 Managing LCRs Containing LOB Columns 14-11

14.4.1 Apply Process Behavior for Direct Apply of LCRs Containing LOBs 14-12

14.4.2 LOB Assembly and Custom Apply of LCRs Containing LOB Columns 14-13

14.4.2.1 LOB Assembly Considerations 14-15

14.4.2.2 LOB Assembly Example 14-16

14.4.3 Requirements for Constructing and Processing LCRs Containing LOB
Columns 14-19

14.4.3.1 Requirements for Constructing and Processing LCRs Without
LOB Assembly 14-19

14.4.3.2 Requirements for Apply Handler Processing of LCRs with LOB
Assembly 14-20

14.4.3.3 Requirements for Rule-Based Transformation Processing of
LCRs with LOBs 14-21

14.5 Managing LCRs Containing LONG or LONG RAW Columns 14-22

Part III Oracle Streams Replication Best Practices

15

Best Practices for Oracle Streams Replication Databases

15.1 Best Practices for Oracle Streams Database Configuration 15-1

15.1.1 Use a Separate Queue for Capture and Apply Oracle Streams Clients 15-1

15.1.2 Automate the Oracle Streams Replication Configuration 15-2

15.2 Best Practices for Oracle Streams Database Operation 15-4

15.2.1 Follow the Best Practices for the Global Name of an Oracle Streams
Database 15-4

15.2.2 Monitor Performance and Make Adjustments When Necessary 15-5

15.2.3 Monitor Capture Process's and Synchronous Capture's Queues for
Size 15-5

15.2.4 Follow the Oracle Streams Best Practices for Backups 15-6

xii

15.2.4.1 Best Practices for Backups of an Oracle Streams Source
Database 15-6

15.2.4.2 Best Practices for Backups of an Oracle Streams Destination
Database 15-7

15.2.5 Adjust the Automatic Collection of Optimizer Statistics 15-8

15.2.6 Check the Alert Log for Oracle Streams Information 15-8

15.2.7 Follow the Best Practices for Removing an Oracle Streams
Configuration at a Database 15-9

15.3 Best Practices for Oracle Real Application Clusters and Oracle Streams 15-9

15.3.1 Make Archive Log Files of All Threads Available to Capture Processes 15-10

15.3.2 Follow the Best Practices for the Global Name of an Oracle RAC
Database 15-10

15.3.3 Follow the Best Practices for Configuring and Managing Propagations 15-10

15.3.4 Follow the Best Practices for Queue Ownership 15-11

16

Best Practices for Capture

16.1 Best Practices for Capture Process Configuration 16-1

16.1.1 Grant the Required Privileges to the Capture User 16-1

16.1.2 Set Capture Process Parallelism 16-2

16.1.3 Set the Checkpoint Retention Time 16-2

16.2 Best Practices for Capture Process Operation 16-3

16.2.1 Configure a Heartbeat Table at Each Source Database in an Oracle
Streams Environment 16-3

16.2.2 Perform a Dictionary Build and Prepare Database Objects for
Instantiation Periodically 16-4

16.2.3 Minimize the Performance Impact of Batch Processing 16-4

16.3 Best Practices for Synchronous Capture Configuration 16-5

17

Best Practices for Propagation

17.1 Best Practices for Propagation Configuration 17-1

17.1.1 Use Queue-to-Queue Propagations 17-1

17.1.2 Set the Propagation Latency for Each Propagation 17-2

17.1.3 Increase the SDU in a Wide Area Network for Better Network
Performance 17-3

17.2 Best Practices for Propagation Operation 17-3

17.2.1 Restart Broken Propagations 17-3

18

Best Practices for Apply

18.1 Best Practices for Destination Database Configuration 18-1

18.1.1 Grant Required Privileges to the Apply User 18-1

xiii

18.1.2 Set Instantiation SCN Values 18-2

18.1.3 Configure Conflict Resolution 18-3

18.2 Best Practices for Apply Process Configuration 18-3

18.2.1 Set Apply Process Parallelism 18-3

18.2.2 Consider Allowing Apply Processes to Continue When They Encounter
Errors 18-4

18.3 Best Practices for Apply Process Operation 18-4

18.3.1 Manage Apply Errors 18-4

Index

xiv

Preface

Oracle Streams Replication Administrator's Guide describes the features and
functionality of Oracle Streams that can be used for data replication. This document
contains conceptual information about Oracle Streams replication, along with
information about configuring and managing an Oracle Streams replication
environment.

This Preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
Oracle Streams Replication Administrator's Guide is intended for database
administrators who create and maintain Oracle Streams replication environments.
These administrators perform one or more of the following tasks

• Plan for an Oracle Streams replication environment

• Configure an Oracle Streams replication environment

• Configure conflict resolution in an Oracle Streams replication environment

• Administer an Oracle Streams replication environment

• Monitor an Oracle Streams replication environment

• Perform necessary troubleshooting activities for an Oracle Streams replication
environment

To use this document, you must be familiar with relational database concepts, SQL,
distributed database administration, general Oracle Streams concepts, Advanced
Queuing concepts, PL/SQL, and the operating systems under which you run an Oracle
Streams environment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Streams Concepts and Administration

• Oracle Database Concepts

• Oracle Database Administrator's Guide

• Oracle Database SQL Language Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database PL/SQL Language Reference

• Oracle Database Utilities

• Oracle Database Heterogeneous Connectivity User's Guide

• Oracle Streams online Help for the Oracle Streams tool in Oracle Enterprise
Manager Cloud Control

Many of the examples in this book use the sample schemas. See Oracle Database
Sample Schemas for information about these schemas.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Changes for Oracle Streams Replication
Administrator's Guide

This preface contains:

• Changes in Oracle Database 12c Release 1 (12.1)

Changes in Oracle Database 12c Release 1 (12.1)
The following are changes in Oracle Streams Replication Administrator's Guide for
Oracle Database 12c Release 1 (12.1).

Deprecated Features
• Oracle Streams is deprecated in Oracle Database 12c Release 1 (12.1). Use

Oracle GoldenGate to replace all replication features of Oracle Streams.

Oracle Streams does not support any Oracle Database features added in Oracle
Database 12c Release 1 (12.1) or later releases.

Note:

Oracle Database Advanced Queuing is independent of Oracle Streams and
continues to be enhanced.

See Also:

The Oracle GoldenGate documentation

xvii

Part I
Configuring Oracle Streams Replication

This part describes configuring Oracle Streams replication and contains the following
chapters:

• Preparing for Oracle Streams Replication

• Simple Oracle Streams Replication Configuration

• Flexible Oracle Streams Replication Configuration

• Adding to an Oracle Streams Replication Environment

• Configuring Implicit Capture

• Configuring Queues and Propagations

• Configuring Implicit Apply

• Instantiation and Oracle Streams Replication

• Oracle Streams Conflict Resolution

• Oracle Streams Tags

• Oracle Streams Heterogeneous Information Sharing

1
Preparing for Oracle Streams Replication

This chapter contains information about preparing for an Oracle Streams replication
environment. This chapter also describes best practices to follow when you are
preparing for an Oracle Streams replication environment.

This chapter contains these topics:

• Overview of Oracle Streams Replication

• Decisions to Make Before Configuring Oracle Streams Replication

• Tasks to Complete Before Configuring Oracle Streams Replication

See Also:

Oracle Streams Concepts and Administration for general information about
Oracle Streams. This document assumes that you understand the concepts
described in Oracle Streams Concepts and Administration.

1.1 Overview of Oracle Streams Replication
Replication is the process of sharing database objects and data at multiple
databases. To maintain replicated database objects and data at multiple databases, a
change to one of these database objects at a database is shared with the other
databases. Through this process, the database objects and data are kept
synchronized at all of the databases in the replication environment. In an Oracle
Streams replication environment, the database where a change originates is called the
source database, and a database where a change is shared is called a destination
database.

When you use Oracle Streams, replication of a data manipulation language (DML) or
data definition language (DDL) change typically includes three steps:

1. A capture process, a synchronous capture, or an application creates one or more
logical change records (LCRs) and enqueues them. An LCR is a message with a
specific format that describes a database change. A capture process reformats
changes captured from the redo log into LCRs, a synchronous capture uses an
internal mechanism to reformat changes into LCRs, and an application can
construct LCRs. If the change was a DML operation, then each row LCR
encapsulates a row change resulting from the DML operation to a replicated table
at the source database. If the change was a DDL operation, then a DDL LCR
encapsulates the DDL change that was made to a replicated database object at a
source database.

2. A propagation propagates the staged LCRs to another queue, which usually
resides in a database that is separate from the database where the LCRs were
captured. An LCR can be propagated to several different queues before it arrives
at a destination database.

1-1

3. At a destination database, an apply process consumes the change. An apply
process can dequeue the LCR and apply it directly to the replicated database
object, or an apply process can dequeue the LCR and send it to an apply handler.
In an Oracle Streams replication environment, an apply handler performs
customized processing of an LCR. An apply handler can apply the change in the
LCR to the replicated database object, or it can consume the LCR in some other
way.

Step 1 and Step 3 are required, but Step 2 is optional because, in some cases, a
capture process or a synchronous capture can enqueue a change into a queue, and
an apply process can dequeue the change from the same queue. An application can
also enqueue an LCR directly at a destination database. In addition, in a
heterogeneous replication environment in which an Oracle database shares
information with a non-Oracle database, an apply process can apply changes directly
to a non-Oracle database without propagating LCRs.

Figure 1-1 illustrates the information flow in an Oracle Streams replication
environment.

Figure 1-1 Oracle Streams Information Flow

ConsumptionCapture Staging

This document describes how to use Oracle Streams for replication and includes the
following information:

• Conceptual information relating to Oracle Streams replication

• Instructions for configuring an Oracle Streams replication environment

• Instructions for administering, monitoring, and troubleshooting an Oracle Streams
replication environment

• Examples that create and maintain Oracle Streams replication environments

Replication is one form of information sharing. Oracle Streams enables replication,
and it also enables other forms of information sharing, such as messaging, event
management and notification, data warehouse loading, and data protection.

See Also:

Oracle Streams Concepts and Administration for more information about
Oracle Streams

1.1.1 Common Reasons to Use Oracle Streams Replication
The following are some of the most common reasons for using Oracle Streams
replication:

Chapter 1
Overview of Oracle Streams Replication

1-2

• Availability: Replication provides fast, local access to shared data because it
balances activity over multiple sites. Some users can access one server while
other users access different servers, thereby reducing the load at all servers. Also,
users can access data from the replication site that has the lowest access cost,
which is typically the site that is geographically closest to them.

• Performance and Network Load Reduction: Replication provides fast, local
access to shared data because it balances activity over multiple sites. Some users
can access one server while other users access different servers, thereby
reducing the load at all servers. Applications can access various regional servers
instead of accessing one central server. This configuration can reduce network
load dramatically.

1.1.2 Rules in an Oracle Streams Replication Environment
A rule is a database object that enables a client to perform an action when an event
occurs and a condition is satisfied. Rules are evaluated by a rules engine, which is a
built-in part of Oracle Database. Rules control the information flow in an Oracle
Streams replication environment. Each of the following components is a client of the
rules engine:

• Capture process

• Synchronous capture

• Propagation

• Apply process

You control the behavior of each of these Oracle Streams clients using rules. A rule
set contains a collection of rules. You can associate a positive and a negative rule set
with a capture process, a propagation, and an apply process, but a synchronous
capture can have only a positive rule set.

In a replication environment, an Oracle Streams client performs an action if a logical
change record (LCR) satisfies its rule sets. In general, an LCR satisfies the rule sets
for an Oracle Streams client if no rules in the negative rule set evaluate to TRUE for the
LCR, and at least one rule in the positive rule set evaluates to TRUE for the LCR. If an
Oracle Streams client is associated with both a positive and negative rule set, then the
negative rule set is always evaluated first.

Specifically, you control the information flow in an Oracle Streams replication
environment in the following ways:

• Specify the changes that a capture process captures from the redo log or discards.
That is, if a change found in the redo log satisfies the rule sets for a capture
process, then the capture process captures the change. If a change found in the
redo log does not satisfy the rule sets for a capture process, then the capture
process discards the change.

• Specify the changes that a synchronous capture captures or discards. That is, if a
DML change made to a table satisfies the rule set for a synchronous capture, then
the synchronous capture captures the change. If a DML change made to a table
does not satisfy the rule set for a synchronous capture, then the synchronous
capture discards the change.

• Specify the LCRs that a propagation propagates from one queue to another or
discards. That is, if an LCR in a queue satisfies the rule sets for a propagation,

Chapter 1
Overview of Oracle Streams Replication

1-3

then the propagation sends the LCR. If an LCR in a queue does not satisfy the
rule sets for a propagation, then the propagation discards the LCR.

• Specify the LCRs that an apply process dequeues or discards. That is, if an LCR
in a queue satisfies the rule sets for an apply process, then the apply process
dequeues and processes the LCR. If an LCR in a queue does not satisfy the rule
sets for an apply process, then the apply process discards the LCR.

You can use the Oracle-supplied PL/SQL package DBMS_STREAMS_ADM to create rules for
an Oracle Streams replication environment. You can specify these system-created
rules at the following levels:

• Table level - Contains a rule condition that evaluates to TRUE for changes made to
a particular table

• Schema level - Contains a rule condition that evaluates to TRUE for changes made
to a particular schema and the database objects in the schema

• Global level - Contains a rule condition that evaluates to TRUE for all changes made
to a database

In addition, a single system-created rule can evaluate to TRUE for DML changes or for
DDL changes, but not both. So, for example, to replicate both DML and DDL changes
to a particular table, you need both a table-level DML rule and a table-level DDL rule
for the table.

Oracle Streams also supports subsetting of table data with subset rules. If a replicated
table in a database contains only a subset of the data, then you can configure Oracle
Streams so that only the appropriate subset of the data is replicated. For example, a
particular database might maintain data for employees in a particular department only.
One or more other databases in the replication environment might contain all of the
data in the employees table. In this case, you can use subset rules to replicate
changes to the data for employees in that department with the subset table, but not
changes to employees in other departments.

Subsetting can be done at any point in the Oracle Streams information flow. That is, a
capture process or synchronous capture can use a subset rule to capture a subset of
changes to a particular table, a propagation can use a subset rule to propagate a
subset of changes to a particular table, and an apply process can use a subset rule to
apply a subset of changes to a particular table.

Note:

Synchronous captures only use table rules. Synchronous captures ignore
schema and global rules.

See Also:

Oracle Streams Concepts and Administration for more information about how
rules are used in Oracle Streams

Chapter 1
Overview of Oracle Streams Replication

1-4

1.2 Decisions to Make Before Configuring Oracle Streams
Replication

Make the following decisions before configuring Oracle Streams replication:

• Decide Which Type of Replication Environment to Configure

• Decide Whether to Configure Local or Downstream Capture for the Source
Database

• Decide Whether Changes Are Allowed at One Database or at Multiple Databases

• Decide Whether the Replication Environment Will Have Nonidentical Replicas

• Decide Whether the Replication Environment Will Use Apply Handlers

• Decide Whether to Maintain DDL Changes

• Decide How to Configure the Replication Environment

1.2.1 Decide Which Type of Replication Environment to Configure
Before configuring a replication environment, first decide how many databases will be
included in the replication environment, which database objects will be replicated, and
how database changes will flow through the replication environment.

The following sections describe the most common types of replication environments:

• About Two-Database Replication Environments

• About Hub-And-Spoke Replication Environments

• About N-Way Replication Environments

If these common replication environments do not meet your requirements, then you
can configure almost any type of custom replication environment with Oracle Streams.
For example, a custom replication environment might send database changes through
several intermediary databases before the changes are applied at a destination
database.

1.2.1.1 About Two-Database Replication Environments
A two-database replication environment is one in which only two databases share
the replicated database objects. The changes made to replicated database objects at
one database are captured and sent directly to the other database, where they are
applied. In a two-database replication environment, only one database might allow
changes to the database objects, or both databases might allow changes to them.

If only one database allows changes to the replicated database objects, then the other
database contains read-only replicas of these database objects. This is a one-way
replication environment and typically has the following basic components:

• The first database has a capture process or synchronous capture to capture
changes to the replicated database objects.

• The first database has a propagation that sends the captured changes to the other
database.

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-5

• The second database has an apply process to apply changes from the first
database.

• For the best performance, each capture process and apply process has its own
queue.

Figure 1-2 shows a two-database replication environment configured for one-way
replication.

Figure 1-2 One-Way Replication in a Two-Database Replication Environment

In a two-database replication environment, both databases can allow changes to the
replicated database objects. In this case, both databases capture changes to these
database objects and send the changes to the other database, where they are applied.
This is a bi-directional replication environment and typically has the following basic
components:

• Each database has a capture process or synchronous capture to capture changes
to the replicated database objects.

• Each database has a propagation that sends the captured changes to the other
database.

• Each database has an apply process to apply changes from the other database.

• For the best performance, each capture process and apply process has its own
queue.

Figure 1-3 show a two-database replication environment configured for bi-directional
replication.

Figure 1-3 Bi-Directional Replication in a Two-Database Replication
Environment

Typically, in a bi-directional replication environment, you should configure conflict
resolution to keep the replicated database objects synchronized. You can configure a
two-database replication environment using Setup Streams Replication Wizard in
Oracle Enterprise Manager Cloud Control or the configuration procedures in the
DBMS_STREAMS_ADM package.

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-6

See Also:

• "Examples That Configure Two-Database Replication with Local Capture"

• "Examples That Configure Two-Database Replication with Downstream
Capture"

• "Example That Configures Two-Database Replication with Synchronous
Captures"

• Oracle Streams Conflict Resolution

1.2.1.2 About Hub-And-Spoke Replication Environments
A hub-and-spoke replication environment is one in which a central database, or
hub, communicates with secondary databases, or spokes. The spokes do not
communicate directly with each other. In a hub-and-spoke replication environment, the
spokes might or might not allow changes to the replicated database objects.

If the spokes do not allow changes, then they contain read-only replicas of the
database objects at the hub. This type of hub-and-spoke replication environment
typically has the following basic components:

• The hub has a capture process or synchronous capture to capture changes to the
replicated database objects.

• The hub has propagations that send the captured changes to each of the spokes.

• Each spoke has an apply process to apply changes from the hub.

• For the best performance, each capture process and apply process has its own
queue.

Figure 1-4 shows a hub-and-spoke replication environment with read-only spokes.

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-7

Figure 1-4 Hub-and-Spoke Replication Environment with Read-Only Spokes

Hub

Spoke

Spoke Spoke

If the spokes allow changes to the database objects, then typically the changes are
captured and sent back to the hub, and the hub replicates the changes with the other
spokes. This type of hub-and-spoke replication environment typically has the following
basic components:

• The hub has a capture process or synchronous capture to capture changes to the
replicated database objects.

• The hub has propagations that send the captured changes to each of the spokes.

• Each spoke has a capture process or synchronous capture to capture changes to
the replicated database objects.

• Each spoke has a propagation that sends changes made at the spoke back to the
hub.

• Each spoke has an apply process to apply changes from the hub and from the
other spokes.

• The hub has a separate apply process to apply changes from each spoke. A
different apply process must apply changes from each spoke.

• For the best performance, each capture process and apply process has its own
queue.

Figure 1-5 shows a hub-and-spoke replication environment with read/write spokes.

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-8

Figure 1-5 Hub-and-Spoke Replication Environment with Read/Write Spokes

Hub

Spoke

Spoke Spoke

Typically, in a hub-and-spoke replication environment that allows changes at spoke
databases, you should configure conflict resolution to keep the replicated database
objects synchronized. Some hub-and-spoke replication environments allow changes to
the replicated database objects at some spokes but not at others.

For example, an insurance company might use this configuration to share customer
data between its headquarters and local sales offices. A networked version of this
configuration can be especially useful in cases of limited connectivity between the end
spokes and the hub. Suppose local sales offices have direct connectivity to regional
offices, which in turn connect to headquarters, but the local offices have no direct
connectivity to headquarters. This type of networked routing can eliminate some
complexity that results when there are direct connections between all locations. The
hub-and-spoke configuration is also useful in data warehousing environments, where
detailed data is maintained at each store or spoke, and higher-level data can be
shared with the data warehouse or hub.

You can configure a hub-and-spoke replication environment using the Setup Streams
Replication Wizard in Oracle Enterprise Manager Cloud Control or the configuration
procedures in the DBMS_STREAMS_ADM package.

See Also:

• "Example That Configures Hub-and-Spoke Replication"

• Oracle Streams Conflict Resolution

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-9

1.2.1.3 About N-Way Replication Environments
An n-way replication environment is one in which each database communicates
directly with each other database in the environment. The changes made to replicated
database objects at one database are captured and sent directly to each of the other
databases in the environment, where they are applied.

An n-way replication environment typically has the following basic components:

• Each database has one or more capture processes or synchronous captures to
capture changes to the replicated database objects.

• Each database has propagations that send the captured changes to each of the
other databases.

• Each database has apply processes that apply changes from each of the other
databases. A different apply process must apply changes from each source
database.

• For the best performance, each capture process and apply process has its own
queue.

Figure 1-6 shows an n-way replication environment.

Figure 1-6 N-Way Replication Environment

You can configure an n-way replication environment by using the following Oracle-
supplied packages:

• DBMS_STREAMS_ADM can perform most of the configuration actions, including setting
up queues, creating capture processes or synchronous captures, creating
propagations, creating apply processes, and configuring rules and rule sets for the
replication environment.

• DBMS_CAPTURE_ADM can start any capture processes you configured in the replication
environment.

• DBMS_APPLY_ADM can configure apply processes, configure conflict resolution, and
start apply processes, as well as other configuration tasks.

An n-way configuration is frequently used by organizations that must provide
scalability and availability of data. Often, these applications use a "follow the sun"
model, with replicas located around the globe. For example, an organization might

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-10

have call centers in the United States, Europe, and Asia, each with a complete copy of
the customer data. Customer calls can be routed to the appropriate call center
depending on the time of day. Each call center has fast, local access to the data. If a
site becomes unavailable for any reason, then transactions can be routed to a
surviving location. This type of configuration can also be used to provide load
balancing between multiple locations.

Typically, in an n-way replication environment, you should configure conflict resolution
to keep the replicated database objects synchronized.

Configuring an n-way replication environment is beyond the scope of this guide. See
Oracle Streams Extended Examples for a detailed example that configures an n-way
replication environment.

See Also:

Oracle Streams Conflict Resolution

1.2.2 Decide Whether to Configure Local or Downstream Capture for
the Source Database

Local capture means that a capture process runs on the source database.
Downstream capture means that a capture process runs on a database other than the
source database. The primary reason to use downstream capture is to reduce the load
on the source database, thereby improving its performance.

The database that captures changes made to the source database is called the
capture database. One of the following databases can be the capture database:

• Source database (local capture)

• Destination database (downstream capture)

• A third database (downstream capture)

Figure 1-7 shows the role of the capture database.

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-11

Figure 1-7 The Capture Database

Capture Database*Source Database

Record�
Changes

Shipped for �
Downstream �
Capture

Capture�
Changes�
(Local)

Propagate�
LCRs

Database Objects

Redo

Log

Capture�
Changes�
(Downstream)

Enqueue�
LCRs

Capture Process

Destination Database

Dequeue�
LCRs

Apply�
Changes

Database Objects

Apply Process

Queue

Redo

Log

Queue

Capture database may be source
database, destination database, �
or a third database.

*

If the source database or a third database is the capture database, then a propagation
sends changes from the capture database to the destination database. If the
destination database is the capture database, then this propagation between
databases is not needed because the capture process and apply process use the
same queue.

If you decide to configure a downstream capture process, then you must decide which
type of downstream capture process you want to configure. The following types are
available:

• A real-time downstream capture process configuration means that redo
transport services at the source database sends redo data to the downstream
database, and a remote file server process (RFS) at the downstream database
receives the redo data over the network and stores the redo data in the standby
redo log.

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-12

• An archived-log downstream capture process configuration means that
archived redo log files from the source database are copied to the downstream
database, and the capture process captures changes in these archived redo log
files. These log files can be transferred automatically using redo transport
services, or they can be transferred manually using a method such at FTP.

The advantage of real-time downstream capture over archived-log downstream
capture is that real-time downstream capture reduces the amount of time required to
capture changes made at the source database. The time is reduced because the real-
time downstream capture process does not need to wait for the redo log file to be
archived before it can capture changes from it. You can configure multiple real-time
downstream capture processes that captures changes from the same source
database, but you cannot configure real-time downstream capture for multiple source
databases at one downstream database.

The advantage of archived-log downstream capture over real-time downstream
capture is that archived-log downstream capture allows downstream capture
processes from multiple source databases at a downstream database. You can copy
redo log files from multiple source databases to a single downstream database and
configure multiple archived-log downstream capture processes to capture changes in
these redo log files.

If you decide to configure a real-time downstream capture process, then you must
complete the steps in "Configuring Log File Transfer to a Downstream Capture
Database" and "Adding Standby Redo Logs for Real-Time Downstream Capture".

If you decide to configure an archived-log downstream capture process that uses
archived redo log files that were transferred to the downstream database automatically
by redo transport services, then you must complete the steps in "Configuring Log File
Transfer to a Downstream Capture Database".

Note:

When the RMAN DUPLICATE or CONVERT DATABASE command is used for database
instantiation with one of these procedures, the destination database cannot be
the capture database.

See Also:

• Oracle Streams Concepts and Administration for information about local
capture and downstream capture

• "Decide Whether Changes Are Allowed at One Database or at Multiple
Databases"

• "Recovery Manager (RMAN) and Oracle Streams Instantiation"

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-13

1.2.3 Decide Whether Changes Are Allowed at One Database or at
Multiple Databases

A replication environment can limit changes to a particular replicated database object
to one database only. In this case, the replicated database object is read/write at one
database and read-only at the other databases in the replication environment. Or, a
replication environment can allow changes to a replicated database object at two or
more databases.

When two or more databases can change a replicated database object, conflicts are
possible. A conflict is a mismatch between the old values in an LCR and the expected
data in a table. Conflicts can occur in an Oracle Streams replication environment that
permits concurrent data manipulation language (DML) operations on the same data at
multiple databases. Conflicts typically result when two or more databases make
changes to the same row in a replicated table at nearly the same time. If conflicts are
not resolved, then they can result in inconsistent data at replica databases.

Typically, conflicts are possible in the following common types of replication
environments:

• Bi-directional replication in a two database environment where the replicated
database objects at both databases are read/write

• Hub-and-spoke replication where the replicated database objects are read/write at
the hub and at one or more spokes

• N-way replication where the replicated database objects are read/write at multiple
databases

"Decide Which Type of Replication Environment to Configure" describes these
common types of replication environments in more detail.

Oracle Streams provides prebuilt conflict handlers to resolve conflicts automatically.
You can also build your own custom conflict handler to resolve data conflicts specific
to your business rules. Such a conflict handler can be part of a procedure DML
handler or an error handler.

If conflicts are possible in the replication environment you plan to configure, then plan
to create conflict handlers to resolve these conflicts.

See Also:

• "Configuring Network Connectivity and Database Links"

• "Ensuring That Each Source Database Is In ARCHIVELOG Mode"

• Oracle Streams Conflict Resolution

• "Decide Whether to Configure Local or Downstream Capture for the
Source Database"

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-14

1.2.4 Decide Whether the Replication Environment Will Have
Nonidentical Replicas

Oracle Streams replication supports sharing database objects that are not identical at
multiple databases. Different databases in the Oracle Streams environment can
contain replicated database objects with different structures. In Oracle Streams
replication, a rule-based transformation is any modification to a logical change
record (LCR) that results when a rule in a positive rule set evaluates to TRUE. You can
configure rule-based transformations during capture, propagation, or apply to make
any necessary changes to LCRs so that they can be applied at a destination database.

For example, a table at a source database can have the same data as a table at a
destination database, but some column names can be different. In this case, a rule-
based transformation can change the names of the columns in LCRs from the source
database so that they can be applied successfully at the destination database.

There are two types of rule-based transformations: declarative and custom.
Declarative rule-based transformations cover a set of common transformation
scenarios for row LCRs, including renaming a schema, renaming a table, adding a
column, renaming a column, keeping a list of columns, and deleting a column. You
specify such a transformation using a procedure in the DBMS_STREAMS_ADM package.
Oracle Streams performs declarative transformations internally, without invoking PL/
SQL.

A custom rule-based transformation requires a user-defined PL/SQL function to
perform the transformation. Oracle Streams invokes the PL/SQL function to perform
the transformation. A custom rule-based transformation can modify captured LCRs,
persistent LCRs, or user messages. For example, a custom rule-based transformation
can change the data type of a particular column in an LCR. A custom rule-based
transformation must be defined as a PL/SQL function that takes an ANYDATA object as
input and returns an ANYDATA object.

Rule-based transformations can be done at any point in the Oracle Streams
information flow. That is, a capture process or a synchronous capture can perform a
rule-based transformation on a change when a rule in its positive rule set evaluates to
TRUE for the change. Similarly, a propagation or an apply process can perform a rule-
based transformation on an LCR when a rule in its positive rule set evaluates to TRUE
for the LCR.

If you plan to have nonidentical copies of database objects in your replication
environment, then plan to create rule-based transformations that will modify LCRs so
that they can be applied successfully at destination databases.

Note:

Throughout this document, "rule-based transformation" is used when the text
applies to both declarative and custom rule-based transformations. This
document distinguishes between the two types of rule-based transformations
when necessary.

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-15

See Also:

Oracle Streams Concepts and Administration for more information about rule-
based transformations

1.2.5 Decide Whether the Replication Environment Will Use Apply
Handlers

When you use an apply handler, an apply process passes a message to either a
collection of SQL statements or a user-created PL/SQL procedure for processing.

The following types of apply handlers are possible:

• A statement DML handler uses a collection of SQL statement to process row
logical change records (row LCRs).

• A procedure DML handler uses a PL/SQL procedure to process row LCRs.

• A DDL handler uses a PL/SQL procedure to process DDL LCRs.

• A message handler uses a PL/SQL procedure to process user messages.

• A precommit handlers uses a PL/SQL procedure to process the commit
information for a transaction.

• An error handler uses a PL/SQL procedure to process row LCRs that have caused
apply errors.

An apply handler can process a message in a customized way. For example, a
handler might audit the changes made to a table or enqueue an LCR into a queue
after the change in the LCR has been applied. An application can then process the re-
enqueued LCR. A handler might also be used to audit the changes made to a
database.

If you must process LCRs in a customized way in your replication environment, then
decide which apply handlers you should use to accomplish your goals. Next, create
the PL/SQL procedures that will perform the custom processing and specify these
procedures as apply handlers when your environment is configured.

See Also:

Oracle Streams Concepts and Administration

1.2.6 Decide Whether to Maintain DDL Changes
Replication environments typically maintain data manipulation language (DML)
changes to the replicated database objects. DML changes include INSERT, UPDATE,
DELETE, and LOB update operations. You must decide whether you want the replication
environment to maintain data definition language (DDL) changes as well. Examples of
statements that result in DDL changes are CREATE TABLE, ALTER TABLE, ALTER TABLESPACE,
and ALTER DATABASE.

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-16

Some Oracle Streams replication environments assume that the database objects are
the same at each database. In this case, maintaining DDL changes with Oracle
Streams makes it easy to keep the shared database objects synchronized. However,
some Oracle Streams replication environments require that shared database objects
are different at different databases. For example, a table can have a different name or
shape at two different databases. In these environments, rule-based transformations
and apply handlers can modify changes so that they can be shared between
databases, and you might not want to maintain DDL changes with Oracle Streams. In
this case, you should make DDL changes manually at each database that required
them.

When replicating data definition language (DDL) changes, do not allow system-
generated names for constraints or indexes. Modifications to these database objects
will most likely fail at the destination database because the object names at the
different databases will not match. Also, storage clauses might cause problems if the
destination databases are not identical. If you decide not to replicate DDL in your
Oracle Streams environment, then any table structure changes must be performed
manually at each database in the environment.

See Also:

• "Data Definition Language (DDL) Changes"

• "Decide Whether the Replication Environment Will Have Nonidentical
Replicas"

• Oracle Streams Concepts and Administration for more information about
rule-based transformations

1.2.7 Decide How to Configure the Replication Environment
There are three options for configuring an Oracle Streams replication environment:

• Run the Setup Streams Replication wizard to configure replication between two
databases. You can run the wizard multiple times to configure a replication
environment with more than two databases.

The wizard walks you through the process of configuring your replication
environment, but there are some limits to the types of replication environments
that can be configured with the wizard. For example, the wizard currently cannot
configure synchronous capture.

See "Configuring Replication Using the Setup Streams Replication Wizard" and
the Oracle Enterprise Manager Cloud Control online help for more information
about the replication configuration wizards.

• Run a configuration procedure in the DBMS_STREAMS_ADM supplied PL/SQL package
to configure replication between two databases. You can run the procedure
multiple times to configure a replication environment with more than two
databases.

The following procedures configure Oracle Streams replication:

– The MAINTAIN_GLOBAL procedure configures an Oracle Streams environment
that replicates changes at the database level between two databases.

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-17

– The MAINTAIN_SCHEMAS procedure configures an Oracle Streams environment
that replicates changes to specified schemas between two databases.

– The MAINTAIN_SIMPLE_TTS procedure clones a simple tablespace from a source
database at a destination database and uses Oracle Streams to maintain this
tablespace at both databases.

– The MAINTAIN_TABLES procedure configures an Oracle Streams environment
that replicates changes to specified tables between two databases.

– The MAINTAIN_TTS procedure clones a set of tablespaces from a source
database at a destination database and uses Oracle Streams to maintain
these tablespaces at both databases.

These procedures configure multiple Oracle Streams components with a single
procedure call, and they automatically follow Oracle Streams best practices. They
are ideal for configuring one-way, bi-directional, and hub-and-spoke replication
environments.

See "Configuring Replication Using the DBMS_STREAMS_ADM Package" and
Oracle Database PL/SQL Packages and Types Reference for more information
about these procedures.

• Configure each Oracle Streams component separately. These components
include queues, capture processes, synchronous captures, propagations, and
apply processes. Choose this option if you plan to configure an n-way replication
environment, or if you plan to configure another type of replication environment
that cannot be configured with the wizards or configuration procedures.

See Flexible Oracle Streams Replication Configuration for information about
configuring each component of a replication environment separately.

Your configuration options might be limited by the type of replication environment you
want to configure. See "Decide Which Type of Replication Environment to Configure".

Table 1-1 lists the configuration options that are available for each type of replication
environment.

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-18

Table 1-1 Oracle Streams Replication Configuration Options

Type of Replication Environment Configuration Options and Examples

One-way replication in a two
database replication environment

Setup Streams Replication Wizard in Oracle Enterprise Manager Cloud
Control. Examples:

• "Tutorial: Configuring Two-Database Replication with Local Capture
Processes" in the Oracle Enterprise Manager Cloud Control online
help

• "Tutorial: Configuring Two-Database Replication with a Downstream
Capture Process" in the Oracle Enterprise Manager Cloud Control
online help

A configuration procedure in the DBMS_STREAMS_ADM supplied PL/SQL
package. Examples:

• "Configuring Two-Database Schema Replication with Local Capture"
• "Configuring Two-Database Table Replication with Local Capture"
• "Configuring Tablespace Replication with Downstream Capture at

Destination"
• "Configuring Schema Replication with Downstream Capture at

Destination"
Configure each Oracle Streams component individually. Examples:

• Oracle Streams Extended Examples
Bi-directional replication in a two
database replication environment

Setup Streams Replication Wizard in Oracle Enterprise Manager Cloud
Control. Example:

• "Tutorial: Configuring Two-Database Replication with Local Capture
Processes" in the Oracle Enterprise Manager Cloud Control online
help

A configuration procedure in the DBMS_STREAMS_ADM supplied PL/SQL
package. Examples:

• "Configuring Two-Database Global Replication with Local Capture"
• "Configuring Two-Database Schema Replication with Local Capture"
• "Configuring Schema Replication with Downstream Capture at Third

Database"
Configure each Oracle Streams component individually. Example:

• "Example That Configures Two-Database Replication with
Synchronous Captures"

Hub-and-spoke replication with a
read/write hub and read-only spokes

A configuration procedure in the DBMS_STREAMS_ADM supplied PL/SQL
package.

Configure each Oracle Streams component individually.

Hub-and-spoke replication with a
read/write hub and one or more read/
write spokes

Setup Streams Replication Wizard in Oracle Enterprise Manager Cloud
Control. Example:

• "Tutorial: Configuring Hub-and-Spoke Replication with Local Capture
Processes" in the Oracle Enterprise Manager Cloud Control online
help

A configuration procedure in the DBMS_STREAMS_ADM supplied PL/SQL
package. Example:

• "Example That Configures Hub-and-Spoke Replication"
Configure each Oracle Streams component individually.

N-way replication with multiple read/
write databases

Configure each Oracle Streams component individually. Example:

• Oracle Streams Extended Examples
Custom replication environment Configure each Oracle Streams component individually. See Flexible

Oracle Streams Replication Configuration for instructions. Examples:

• Oracle Streams Extended Examples

Chapter 1
Decisions to Make Before Configuring Oracle Streams Replication

1-19

Before configuring the replication environment, complete the tasks in "Tasks to
Complete Before Configuring Oracle Streams Replication".

1.3 Tasks to Complete Before Configuring Oracle Streams
Replication

The following sections describe tasks to complete before configuring Oracle Streams
replication:

• Configuring an Oracle Streams Administrator on All Databases

• Configuring Network Connectivity and Database Links

• Ensuring That Each Source Database Is In ARCHIVELOG Mode

• Setting Initialization Parameters Relevant to Oracle Streams

• Configuring the Oracle Streams Pool

• Specifying Supplemental Logging

• Configuring Log File Transfer to a Downstream Capture Database

• Adding Standby Redo Logs for Real-Time Downstream Capture

1.3.1 Configuring an Oracle Streams Administrator on All Databases
To configure and manage an Oracle Streams environment, either create a new user
with the appropriate privileges or grant these privileges to an existing user. You should
not use the SYS or SYSTEM user as an Oracle Streams administrator, and the Oracle
Streams administrator should not use the SYSTEM tablespace as its default tablespace.

Typically, the user name for the Oracle Streams administrator is strmadmin, but any
user with the proper privileges can be an Oracle Streams administrator. The examples
in this section use strmadmin for the Oracle Streams administrator user name.

Create a separate tablespace for the Oracle Streams administrator at each
participating Oracle Streams database. This tablespace stores any objects created in
the Oracle Streams administrator schema, including any spillover of messages from
the buffered queues owned by the schema.

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions
about creating an Oracle Streams administrator using Oracle Enterprise
Manager Cloud Control

Complete the following steps to configure an Oracle Streams administrator at each
database in the environment that will use Oracle Streams:

1. In SQL*Plus, connect as an administrative user who can create users, grant
privileges, and create tablespaces. Remain connected as this administrative user
for all subsequent steps.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-20

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Either create a tablespace for the Oracle Streams administrator or use an existing
tablespace. For example, the following statement creates a new tablespace for the
Oracle Streams administrator:

CREATE TABLESPACE streams_tbs DATAFILE '/usr/oracle/dbs/streams_tbs.dbf'
 SIZE 25M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

3. Create a new user to act as the Oracle Streams administrator or use an existing
user. For example, to create a user named strmadmin and specify that this user
uses the streams_tbs tablespace, run the following statement:

CREATE USER strmadmin IDENTIFIED BY password
 DEFAULT TABLESPACE streams_tbs
 QUOTA UNLIMITED ON streams_tbs;

Note:

Enter an appropriate password for the administrative user.

See Also:

Oracle Database Security Guide for guidelines for choosing passwords

4. Grant the Oracle Streams administrator DBA role:

GRANT DBA TO strmadmin;

Note:

The DBA role is required for a user to create or alter capture processes,
synchronous captures, and apply processes. When the user does not need to
perform these tasks, DBA role can be revoked from the user.

5. Run the GRANT_ADMIN_PRIVILEGE procedure in the DBMS_STREAMS_AUTH package.

A user must have explicit EXECUTE privilege on a package to execute a subprogram
in the package inside of a user-created subprogram, and a user must have explicit
READ or SELECT privilege on a data dictionary view to query the view inside of a
user-created subprogram. These privileges cannot be through a role. You can run
the GRANT_ADMIN_PRIVILEGE procedure to grant such privileges to the Oracle
Streams administrator, or you can grant them directly.

Depending on the parameter settings for the GRANT_ADMIN_PRIVILEGE procedure, it
either grants the privileges for an Oracle Streams administrator directly, or it
generates a script that you can edit and then run to grant these privileges.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-21

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about this procedure

Use the GRANT_ADMIN_PRIVILEGE procedure to grant privileges directly:

Run the following procedure:

BEGIN
 DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee => 'strmadmin',
 grant_privileges => TRUE);
END;
/

Use the GRANT_ADMIN_PRIVILEGE procedure to generate a script:

Complete the following steps:

a. Use the SQL statement CREATE DIRECTORY to create a directory object for the
directory into which you want to generate the script. A directory object is
similar to an alias for the directory. For example, to create a directory object
called strms_dir for the /usr/admin directory on your computer system, run the
following procedure:

CREATE DIRECTORY strms_dir AS '/usr/admin';

b. Run the GRANT_ADMIN_PRIVILEGE procedure to generate a script named
grant_strms_privs.sql and place this script in the /usr/admin directory on your
computer system:

BEGIN
 DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee => 'strmadmin',
 grant_privileges => FALSE,
 file_name => 'grant_strms_privs.sql',
 directory_name => 'strms_dir');
END;
/

Notice that the grant_privileges parameter is set to FALSE so that the
procedure does not grant the privileges directly. Also, notice that the directory
object created in Step 5.a is specified for the directory_name parameter.

c. Edit the generated script if necessary and save your changes.

d. Execute the script in SQL*Plus:

SET ECHO ON
SPOOL grant_strms_privs.out
@/usr/admin/grant_strms_privs.sql
SPOOL OFF

e. Check the spool file to ensure that all of the grants executed successfully. If
there are errors, then edit the script to correct the errors and rerun it.

6. If necessary, grant the following additional privileges:

• If you plan to use Oracle Enterprise Manager Cloud Control to manage
databases with Oracle Streams components, then configure the Oracle

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-22

Streams administrator to be an Oracle Enterprise Manager administrative
user. Doing so grants additional privileges required by Oracle Enterprise
Manager Cloud Control, such as the privileges required to run Oracle
Enterprise Manager Cloud Control jobs. See the Oracle Enterprise Manager
Cloud Control online help for information about creating Oracle Enterprise
Manager administrative users.

• Grant the privileges for a remote Oracle Streams administrator to perform
actions in the local database. Grant these privileges using the
GRANT_REMOTE_ADMIN_ACCESS procedure in the DBMS_STREAMS_AUTH package. Grant
this privilege if a remote Oracle Streams administrator will use a database link
that connects to the local Oracle Streams administrator to perform
administrative actions. Specifically, grant these privileges if either of the
following conditions are true:

– You plan to configure a downstream capture process at a remote
downstream database that captures changes originating at the local
source database, and the downstream capture process will use a
database link to perform administrative actions at the source database.

– You plan to configure an apply process at the local database and use a
remote Oracle Streams administrator to set the instantiation SCN values
for replicated database objects at the local database.

• If no apply user is specified for an apply process, then grant the Oracle
Streams administrator the necessary privileges to perform DML and DDL
changes on the apply objects owned by other users. If an apply user is
specified, then the apply user must have these privileges. These privileges
can be granted directly or through a role.

• If no apply user is specified for an apply process, then grant the Oracle
Streams administrator EXECUTE privilege on any PL/SQL subprogram owned by
another user that is executed by an Oracle Streams apply process. These
subprograms can be used in apply handlers or error handlers. If an apply user
is specified, then the apply user must have these privileges. These privileges
must be granted directly. They cannot be granted through a role.

• Grant the Oracle Streams administrator EXECUTE privilege on any PL/SQL
function owned by another user that is specified in a custom rule-based
transformation for a rule used by an Oracle Streams capture process,
synchronous capture, propagation, apply process, or messaging client. For a
capture process or synchronous capture, if a capture user is specified, then
the capture user must have these privileges. For an apply process, if an apply
user is specified, then the apply user must have these privileges. These
privileges must be granted directly. They cannot be granted through a role.

• Grant the Oracle Streams administrator privileges to alter database objects
where appropriate. For example, if the Oracle Streams administrator must
create a supplemental log group for a table in another schema, then the
Oracle Streams administrator must have the necessary privileges to alter the
table. These privileges can be granted directly or through a role.

• If the Oracle Streams administrator does not own the queue used by an
Oracle Streams capture process, synchronous capture, propagation, apply
process, or messaging client, and is not specified as the queue user for the
queue when the queue is created, then the Oracle Streams administrator must
be configured as a secure queue user of the queue if you want the Oracle
Streams administrator to be able to enqueue messages into or dequeue
messages from the queue. The Oracle Streams administrator might also need

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-23

ENQUEUE or DEQUEUE privileges on the queue, or both. See Oracle Streams
Concepts and Administration for information about managing queues.

• Grant the Oracle Streams administrator EXECUTE privilege on any object types
that the Oracle Streams administrator might need to access. These privileges
can be granted directly or through a role.

• If the Oracle Streams administrator will use Data Pump to perform export and
import operations on database objects in other schemas during an Oracle
Streams instantiation, then grant the EXP_FULL_DATABASE and IMP_FULL_DATABASE
roles to the Oracle Streams administrator.

• If Oracle Database Vault is installed, then the user who performs the following
actions must be granted the BECOME USER system privilege:

– Creates or alters a capture process

– Creates or alters an apply process

Granting the BECOME USER system privilege to the user who performs these
actions is not required if Oracle Database Vault is not installed. You can
revoke the BECOME USER system privilege from the user after the completing one
of these actions, if necessary.

7. Repeat all of the previous steps at each database in the environment that will use
Oracle Streams.

See Also:

• "Grant the Required Privileges to the Capture User"

• "Grant Required Privileges to the Apply User"

1.3.2 Configuring Network Connectivity and Database Links
If you plan to use Oracle Streams to share information between databases, then
configure network connectivity and database links between these databases:

• For Oracle databases, configure your network and Oracle Net so that the
databases can communicate with each other.

• For non-Oracle databases, configure an Oracle Database Gateway for
communication between the Oracle database and the non-Oracle database.

• If you plan to propagate messages from a source queue at a database to a
destination queue at another database, then create a private database link
between the database containing the source queue and the database containing
the destination queue. Each database link should use a CONNECT TO clause for the
user propagating messages between databases.

A database link from the source database to the destination database is always
required. The name of the database link must match the global name of the
destination database.

A database link from the destination database to the source database is required in
any of the following cases:

• The Oracle Streams replication environment will be bi-directional.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-24

• A Data Pump network import will be performed during instantiation.

• The destination database is the capture database for downstream capture of
source database changes.

• The RMAN DUPLICATE or CONVERT DATABASE command will be used for database
instantiation.

This database link is required because the POST_INSTANTIATION_SETUP procedure
with a non-NULL setting for the instantiation_scn parameter runs the
SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package at the
destination database. The SET_GLOBAL_INSTANTIATION_SCN procedure requires the
database link. This database link must be created after the RMAN instantiation
and before running the POST_INSTANTIATION_SETUP procedure.

In each of these cases, the name of the database link must match the global name of
the source database.

If a third database is the capture database for downstream capture of source database
changes, then the following database links are also required:

• A database link is required from the third database to the source database. The
name of the database link must match the global name of the source database.

• A database link is required from the third database to the destination database.
The name of the database link must match the global name of the destination
database.

Each database link should be created in the Oracle Streams administrator's schema.
For example, if the global name of the source database is dbs1.example.com, the global
name of the destination database is dbs2.example.com, and the Oracle Streams
administrator is strmadmin at each database, then the following statement creates the
database link from the source database to the destination database:

CONNECT strmadmin@dbs1.example.com
Enter password: password

CREATE DATABASE LINK dbs2.example.com CONNECT TO strmadmin
 IDENTIFIED BY password USING 'dbs2.example.com';

If a database link is required from the destination database to the source database,
then the following statement creates this database link:

CONNECT strmadmin@dbs2.example.com
Enter password: password

CREATE DATABASE LINK dbs1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password USING 'dbs1.example.com';

If a third database is the capture database, then a database link is required from the
third database to the source and destination databases. For example, if the third
database is dbs3.example.com, then the following statements create the database links
from the third database to the source and destination databases:

CONNECT strmadmin@dbs3.example.com
Enter password: password

CREATE DATABASE LINK dbs1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password USING 'dbs1.example.com';

CREATE DATABASE LINK dbs2.example.com CONNECT TO strmadmin
 IDENTIFIED BY password USING 'dbs2.example.com';

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-25

If an RMAN database instantiation is performed, then the database link at the source
database is copied to the destination database during instantiation. This copied
database link should be dropped at the destination database. In this case, if the
replication is bi-directional, and a database link from the destination database to the
source database is required, then this database link should be created after the
instantiation.

See Also:

• Oracle Database Administrator's Guide for more information about
database links

• Oracle Database Heterogeneous Connectivity User's Guide for
information about communication between an Oracle database and a non-
Oracle database

• "Decide Whether Changes Are Allowed at One Database or at Multiple
Databases"

• "Decide Whether to Configure Local or Downstream Capture for the
Source Database"

1.3.3 Ensuring That Each Source Database Is In ARCHIVELOG Mode
In an Oracle Streams replication environment, each source database that generates
changes that will be captured by a capture process must be in ARCHIVELOG mode. For
downstream capture processes, the downstream database also must run in ARCHIVELOG
mode if you plan to configure a real-time downstream capture process. The
downstream database does not need to run in ARCHIVELOG mode if you plan to run only
archived-log downstream capture processes on it.

If you are configuring Oracle Streams in an Oracle Real Application Clusters (Oracle
RAC) environment, then the archive log files of all threads from all instances must be
available to any instance running a capture process. This requirement pertains to both
local and downstream capture processes.

Note:

Synchronous capture does not require ARCHIVELOG mode.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-26

See Also:

• Oracle Database Administrator's Guide for instructions about running a
database in ARCHIVELOG mode

• "Decide Whether Changes Are Allowed at One Database or at Multiple
Databases"

• "Decide Whether to Configure Local or Downstream Capture for the
Source Database"

1.3.4 Setting Initialization Parameters Relevant to Oracle Streams
Some initialization parameters are important for the configuration, operation, reliability,
and performance of an Oracle Streams environment. Set these parameters
appropriately for your Oracle Streams environment.

Table 1-2 describes the initialization parameters that are relevant to Oracle Streams.
This table specifies whether each parameter is modifiable. A modifiable initialization
parameter can be modified using the ALTER SYSTEM statement while an instance is
running. Some modifiable parameters can also be modified for a single session using
the ALTER SESSION statement.

Table 1-2 Initialization Parameters Relevant to Oracle Streams

Parameter Values Description

GLOBAL_NAMES Default: false
Range: true or false

Modifiable?: Yes

Specifies whether a database link is
required to have the same name as the
database to which it connects.

To use Oracle Streams to share
information between databases, set this
parameter to true at each database
that is participating in your Oracle
Streams environment.

LOG_ARCHIVE_CONFIG Default: 'SEND, RECEIVE,
NODG_CONFIG'

Range: Values:

• SEND

• NOSEND

• RECEIVE

• NORECEIVE

• DG_CONFIG

• NODG_CONFIG

Modifiable?: Yes

Enables or disables the sending of redo
logs to remote destinations and the
receipt of remote redo logs, and
specifies the unique database names
(DB_UNIQUE_NAME) for each database in
the Data Guard configuration

To use downstream capture and copy
the redo data to the downstream
database using redo transport services,
specify the DB_UNIQUE_NAME of the
source database and the downstream
database using the DG_CONFIG attribute.
This parameter must be set at both the
source database and the downstream
database.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-27

Table 1-2 (Cont.) Initialization Parameters Relevant to Oracle Streams

Parameter Values Description

LOG_ARCHIVE_DEST_n Default: None

Range: None

Modifiable?: Yes

Defines up to 31 log archive
destinations, where n is 1, 2, 3, ... 31.

To use downstream capture and copy
the redo data to the downstream
database using redo transport services,
at least one log archive destination
must be set at the site running the
downstream capture process.

LOG_ARCHIVE_DEST_STATE_n Default: enable
Range: One of the following:

• alternate

• defer

• enable

Modifiable?: Yes

Specifies the availability state of the
corresponding destination. The
parameter suffix (1 through 31) specifies
one of the corresponding
LOG_ARCHIVE_DEST_n destination
parameters.

To use downstream capture and copy
the redo data to the downstream
database using redo transport services,
ensure that the destination that
corresponds to the
LOG_ARCHIVE_DEST_n destination for the
downstream database is set to enable.

LOG_BUFFER Default: 5 MB to 32 MB depending
on configuration

Range: Operating system-
dependent

Modifiable?: No

Specifies the amount of memory (in
bytes) that Oracle uses when buffering
redo entries to a redo log file. Redo log
entries contain a record of the changes
that have been made to the database
block buffers.

If an Oracle Streams capture process is
running on the database, then set this
parameter properly so that the capture
process reads redo log records from the
redo log buffer rather than from the hard
disk.

MEMORY_MAX_TARGET Default: 0
Range: 0 to the physical memory
size available to Oracle Database

Modifiable?: No

Specifies the maximum systemwide
usable memory for an Oracle database.

If the MEMORY_TARGET parameter is set to
a nonzero value, then set this
parameter to a large nonzero value if
you must specify the maximum memory
usage of the Oracle database.

See Also: "Configuring the Oracle
Streams Pool"

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-28

Table 1-2 (Cont.) Initialization Parameters Relevant to Oracle Streams

Parameter Values Description

MEMORY_TARGET Default: 0
Range: 152 MB to
MEMORY_MAX_TARGET setting

Modifiable?: Yes

Specifies the systemwide usable
memory for an Oracle database.

Oracle recommends enabling the
autotuning of the memory usage of an
Oracle database by setting
MEMORY_TARGET to a large nonzero value
(if this parameter is supported on your
platform).

See Also: "Configuring the Oracle
Streams Pool"

OPEN_LINKS Default: 4
Range: 0 to 255

Modifiable?: No

Specifies the maximum number of
concurrent open connections to remote
databases in one session. These
connections include database links,
plus external procedures and
cartridges, each of which uses a
separate process.

In an Oracle Streams environment,
ensure that this parameter is set to the
default value of 4 or higher.

PROCESSES Default: 100
Range: 6 to operating system-
dependent

Modifiable?: No

Specifies the maximum number of
operating system user processes that
can simultaneously connect to Oracle.

Ensure that the value of this parameter
allows for all background processes,
such as locks and slave processes. In
Oracle Streams, capture processes,
apply processes, XStream inbound
servers, and XStream outbound servers
use background processes.
Propagations use background
processes in combined capture and
apply configurations. Propagations use
Oracle Scheduler slave processes in
configurations that do not use combined
capture and apply.

SESSIONS Default: Derived from:

(1.5 * PROCESSES) + 22

Range: 1 to 231

Modifiable?: No

Specifies the maximum number of
sessions that can be created in the
system.

To run one or more capture processes,
apply processes, XStream outbound
servers, or XStream inbound servers in
a database, you might need to increase
the size of this parameter. Each
background process in a database
requires a session.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-29

Table 1-2 (Cont.) Initialization Parameters Relevant to Oracle Streams

Parameter Values Description

SGA_MAX_SIZE Default: Initial size of SGA at
startup

Range: 0 to operating system-
dependent

Modifiable?: No

Specifies the maximum size of System
Global Area (SGA) for the lifetime of a
database instance.

If the SGA_TARGET parameter is set to a
nonzero value, then set this parameter
to a large nonzero value if you must
specify the SGA size.

See Also: "Configuring the Oracle
Streams Pool"

SGA_TARGET Default: 0 (SGA autotuning is
disabled)

Range: 64 MB to operating
system-dependent

Modifiable?: Yes

Specifies the total size of all System
Global Area (SGA) components.

If MEMORY_MAX_TARGET and
MEMORY_TARGET are set to 0 (zero), then
Oracle recommends enabling the
autotuning of SGA memory by setting
SGA_TARGET to a large nonzero value.

If this parameter is set to a nonzero
value, then the size of the Oracle
Streams pool is managed by Automatic
Shared Memory Management.

See Also: "Configuring the Oracle
Streams Pool"

SHARED_POOL_SIZE Default:
When SGA_TARGET is set to a
nonzero value: If the parameter is
not specified, then the default is 0
(internally determined by Oracle
Database). If the parameter is
specified, then the user-specified
value indicates a minimum value
for the shared memory pool.

When SGA_TARGET is not set (32-
bit platforms): 64 MB, rounded up
to the nearest granule size. When
SGA_TARGET is not set (64-bit
platforms): 128 MB, rounded up to
the nearest granule size.

Range: The granule size to
operating system-dependent

Modifiable?: Yes

Specifies (in bytes) the size of the
shared pool. The shared pool contains
shared cursors, stored procedures,
control structures, and other structures.

If the MEMORY_MAX_TARGET,
MEMORY_TARGET, SGA_TARGET, and
STREAMS_POOL_SIZE initialization
parameters are set to zero, then Oracle
Streams transfers an amount equal to
10% of the shared pool from the buffer
cache to the Oracle Streams pool.

See Also:"Configuring the Oracle
Streams Pool"

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-30

Table 1-2 (Cont.) Initialization Parameters Relevant to Oracle Streams

Parameter Values Description

STREAMS_POOL_SIZE Default: 0
Range: 0 to operating system-
dependent limit

Modifiable?: Yes

Specifies (in bytes) the size of the
Oracle Streams pool. The Oracle
Streams pool contains buffered queue
messages. In addition, the Oracle
Streams pool is used for internal
communications during parallel capture
and apply.

If the MEMORY_TARGET or
MEMORY_MAX_TARGET initialization
parameter is set to a nonzero value,
then the Oracle Streams pool size is set
by Automatic Memory Management,
and STREAMS_POOL_SIZE specifies the
minimum size.

If the SGA_TARGET initialization
parameter is set to a nonzero value,
then the Oracle Streams pool size is set
by Automatic Shared Memory
Management, and STREAMS_POOL_SIZE
specifies the minimum size.

This parameter is modifiable. If this
parameter is reduced to zero when an
instance is running, then Oracle
Streams processes and jobs might not
run.

Ensure that there is enough memory to
accommodate the Oracle Streams
components. The following are the
minimum requirements:

• 15 MB for each capture process
parallelism

• 250 MB or more for each buffered
queue. The buffered queue is
where the buffered messages are
stored.

• 1 MB for each apply process
parallelism

• 1 MB for each XStream outbound
server

• 1 MB for each XStream inbound
server parallelism

For example, if parallelism is set to 3 for
a capture process, then at least 45 MB
is required for the capture process. If a
database has two buffered queues,
then at least 20 MB is required for the
buffered queues. If parallelism is set to
4 for an apply process, then at least 4
MB is required for the apply process.

You can use the
V$STREAMS_POOL_ADVICE dynamic
performance view to determine an
appropriate setting for this parameter.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-31

Table 1-2 (Cont.) Initialization Parameters Relevant to Oracle Streams

Parameter Values Description

See Also: "Configuring the Oracle
Streams Pool"

TIMED_STATISTICS Default:
If STATISTICS_LEVEL is set to
TYPICAL or ALL, then true

If STATISTICS_LEVEL is set to
BASIC, then false

The default for STATISTICS_LEVEL
is TYPICAL.

Range: true or false

Modifiable?: Yes

Specifies whether statistics related to
time are collected.

To collect elapsed time statistics in the
dynamic performance views related to
Oracle Streams, set this parameter to
true. The views that include elapsed
time statistics include:
V$STREAMS_CAPTURE,
V$STREAMS_APPLY_COORDINATOR,
V$STREAMS_APPLY_READER,
V$STREAMS_APPLY_SERVER.

UNDO_RETENTION Default: 900
Range: 0 to 231 - 1

Modifiable?: Yes

Specifies (in seconds) the amount of
committed undo information to retain in
the database.

For a database running one or more
capture processes, ensure that this
parameter is set to specify an adequate
undo retention period.

If you run one or more capture
processes and you are unsure about
the proper setting, then try setting this
parameter to at least 3600. If you
encounter "snapshot too old" errors,
then increase the setting for this
parameter until these errors cease.
Ensure that the undo tablespace has
enough space to accommodate the
UNDO_RETENTION setting.

See Also:

• Oracle Database Reference for more information about these initialization
parameters

• Oracle Data Guard Concepts and Administration for more information
about the LOG_ARCHIVE_DEST_n parameter

• Oracle Database Administrator's Guide for more information about the
UNDO_RETENTION parameter

• Oracle Database XStream Guide

1.3.5 Configuring the Oracle Streams Pool
The Oracle Streams pool is a portion of memory in the System Global Area (SGA)
that is used by Oracle Streams. The Oracle Streams pool stores buffered queue
messages in memory, and it provides memory for capture processes, apply

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-32

processes, XStream outbound servers, and XStream inbound servers. The Oracle
Streams pool always stores LCRs captured by a capture process, and it stores LCRs
and messages that are enqueued into a buffered queue by applications.

The Oracle Streams pool is initialized the first time any one of the following actions
occurs in a database:

• Messages are enqueued into a buffered queue.

Oracle Streams components manipulate messages in a buffered queue. These
components include capture processes, propagations, apply processes, XStream
outbound servers, and XStream inbound servers. Also, Data Pump export and
import operations initialize the Oracle Streams pool because these operations use
buffered queues.

• Messages are dequeued from a persistent queue in a configuration that does not
use Oracle Real Application Clusters (Oracle RAC).

The Oracle Streams pool is used to optimize dequeue operations from persistent
queues. The Oracle Streams pool is not used to optimize dequeue operations from
persistent queues in an Oracle RAC configuration.

• A capture process is started.

• A propagation is created.

• An apply process is started.

• An XStream outbound server is started.

• An XStream inbound server is started.

The size of the Oracle Streams pool is determined in one of the following ways:

• Using Automatic Memory Management to Set the Oracle Streams Pool Size

• Using Automatic Shared Memory Management to Set the Oracle Streams Pool
Size

• Setting the Oracle Streams Pool Size Manually

• Using the Default Setting for the Oracle Streams Pool Size

Note:

If the Oracle Streams pool cannot be initialized, then an ORA-00832 error is
returned. If this happens, then first ensure that there is enough space in the
SGA for the Oracle Streams pool. If necessary, reset the SGA_MAX_SIZE
initialization parameter to increase the SGA size. Next, set one or more of the
following initialization parameters: MEMORY_TARGET, MEMORY_MAX_TARGET,
SGA_TARGET, and STREAMS_POOL_SIZE.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-33

See Also:

• "Setting Initialization Parameters Relevant to Oracle Streams"

• Oracle Streams Concepts and Administration

• Oracle Database XStream Guide

1.3.5.1 Using Automatic Memory Management to Set the Oracle Streams Pool
Size

The Automatic Memory Management feature automatically manages the size of the
Oracle Streams pool when the MEMORY_TARGET or MEMORY_MAX_TARGET initialization
parameter is set to a nonzero value. When you use Automatic Memory Management,
you can still set the following initialization parameters:

• If the SGA_TARGET initialization parameter also is set to a nonzero value, then
Automatic Memory Management uses this value as a minimum for the system
global area (SGA).

• If the STREAMS_POOL_SIZE initialization parameter also is set to a nonzero value, then
Automatic Memory Management uses this value as a minimum for the Oracle
Streams pool.

The current memory allocated to Oracle Streams pool by Automatic Memory
Management can be viewed by querying the V$MEMORY_DYNAMIC_COMPONENTS view.

Note:

Currently, the MEMORY_TARGET and MEMORY_MAX_TARGET initialization parameters
are not supported on some platforms.

See Also:

• Oracle Database Administrator's Guide

• Oracle Database Reference

1.3.5.2 Using Automatic Shared Memory Management to Set the Oracle
Streams Pool Size

The Automatic Shared Memory Management feature automatically manages the size
of the Oracle Streams pool when the following conditions are met:

• The MEMORY_TARGET and MEMORY_MAX_TARGET initialization parameters are both set to 0
(zero).

• SGA_TARGET initialization parameter is set to a nonzero value.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-34

If you are using Automatic Shared Memory Management and the STREAMS_POOL_SIZE
initialization parameter also is set to a nonzero value, then Automatic Shared Memory
Management uses this value as a minimum for the Oracle Streams pool. You can set
a minimum size if your environment needs a minimum amount of memory in the
Oracle Streams pool to function properly. The current memory allocated to Oracle
Streams pool by Automatic Shared Memory Management can be viewed by querying
the V$SGA_DYNAMIC_COMPONENTS view.

See Also:

• Oracle Database Administrator's Guide

• Oracle Database Reference

1.3.5.3 Setting the Oracle Streams Pool Size Manually
The Oracle Streams pool size is the value specified by the STREAMS_POOL_SIZE
parameter, in bytes, if the following conditions are met.

• The MEMORY_TARGET, MEMORY_MAX_TARGET, and SGA_TARGET initialization parameters are
all set to 0 (zero).

• The STREAMS_POOL_SIZE initialization parameter is set to a nonzero value.

If you plan to set the Oracle Streams pool size manually, then you can use the
V$STREAMS_POOL_ADVICE dynamic performance view to determine an appropriate setting
for the STREAMS_POOL_SIZE initialization parameter.

See Also:

Oracle Streams Concepts and Administration

1.3.5.4 Using the Default Setting for the Oracle Streams Pool Size
The Oracle Streams pool size is set by default if all of the following parameters are set
to 0 (zero): MEMORY_TARGET, MEMORY_MAX_TARGET, SGA_TARGET, and STREAMS_POOL_SIZE. When
the Oracle Streams pool size is set by default, the first use of Oracle Streams in a
database transfers an amount of memory equal to 10% of the shared pool from the
buffer cache to the Oracle Streams pool. The buffer cache is set by the DB_CACHE_SIZE
initialization parameter, and the shared pool size is set by the SHARED_POOL_SIZE
initialization parameter.

For example, consider the following configuration in a database before Oracle Streams
is used for the first time:

• DB_CACHE_SIZE is set to 100 MB.

• SHARED_POOL_SIZE is set to 80 MB.

• MEMORY_TARGET, MEMORY_MAX_TARGET, SGA_TARGET, and STREAMS_POOL_SIZE are all set to
zero.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-35

Given this configuration, the amount of memory allocated after Oracle Streams is used
for the first time is the following:

• The buffer cache has 92 MB.

• The shared pool has 80 MB.

• The Oracle Streams pool has 8 MB.

See Also:

"Setting Initialization Parameters Relevant to Oracle Streams" for more
information about the STREAMS_POOL_SIZE initialization parameter

1.3.6 Specifying Supplemental Logging
When you use a capture process to capture changes, supplemental logging must be
specified for certain columns at a source database for changes to the columns to be
applied successfully at a destination database. Supplemental logging places additional
information in the redo log for these columns. A capture process captures this
additional information and places it in logical change records (LCRs), and an apply
process might need this additional information to apply changes properly.

This section contains these topics:

• Required Supplemental Logging in an Oracle Streams Replication Environment

• Specifying Table Supplemental Logging Using Unconditional Log Groups

• Specifying Table Supplemental Logging Using Conditional Log Groups

• Dropping a Supplemental Log Group

• Specifying Database Supplemental Logging of Key Columns

• Dropping Database Supplemental Logging of Key Columns

• Procedures That Automatically Specify Supplemental Logging

Note:

Supplemental logging is not required when synchronous capture is used to
capture changes to database objects.

See Also:

Oracle Streams Concepts and Administration for queries that show
supplemental logging specifications

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-36

1.3.6.1 Required Supplemental Logging in an Oracle Streams Replication
Environment

There are two types of supplemental logging: database supplemental logging and
table supplemental logging. Database supplemental logging specifies supplemental
logging for an entire database, while table supplemental logging enables you to
specify log groups for supplemental logging of a particular table. If you use table
supplemental logging, then you can choose between two types of log groups:
unconditional log groups and conditional log groups.

Unconditional log groups log the before images of specified columns when the table
is changed, regardless of whether the change affected any of the specified columns.
Unconditional log groups are sometimes referred to as "always log groups."
Conditional log groups log the before images of all specified columns only if at least
one of the columns in the log group is changed.

Supplementing logging at the database level, unconditional log groups at the table
level, and conditional log groups at the table level determine which old values are
logged for a change.

If you plan to use one or more apply processes to apply LCRs captured by a capture
process, then you must enable supplemental logging at the source database for the
following types of columns in tables at the destination database:

• Any columns at the source database that are used in a primary key in tables for
which changes are applied at a destination database must be unconditionally
logged in a log group or by database supplemental logging of primary key
columns.

• If the parallelism of any apply process that will apply the changes is greater than 1,
then any unique constraint column at a destination database that comes from
multiple columns at the source database must be conditionally logged.
Supplemental logging does not need to be specified if a unique constraint column
comes from a single column at the source database.

• If the parallelism of any apply process that will apply the changes is greater than 1,
then any foreign key column at a destination database that comes from multiple
columns at the source database must be conditionally logged. Supplemental
logging does not need to be specified if the foreign key column comes from a
single column at the source database.

• If the parallelism of any apply process that will apply the changes is greater than 1,
then any bitmap index column at a destination database that comes from multiple
columns at the source database must be conditionally logged. Supplemental
logging does not need to be specified if the bitmap index column comes from a
single column at the source database.

• Any columns at the source database that are used as substitute key columns for
an apply process at a destination database must be unconditionally logged. You
specify substitute key columns for a table using the SET_KEY_COLUMNS procedure in
the DBMS_APPLY_ADM package.

• The columns specified in a column list for conflict resolution during apply must be
conditionally logged if multiple columns at the source database are used in the
column list at the destination database.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-37

• Any columns at the source database that are used by a statement DML handler,
change handler, procedure DML handler, or error handler at a destination
database must be unconditionally logged.

• Any columns at the source database that are used by a rule or a rule-based
transformation must be unconditionally logged.

• Any columns at the source database that are specified in a value dependency
virtual dependency definition at a destination database must be unconditionally
logged.

• If you specify row subsetting for a table at a destination database, then any
columns at the source database that are in the destination table or columns at the
source database that are in the subset condition must be unconditionally logged.
You specify a row subsetting condition for an apply process using the
dml_condition parameter in the ADD_SUBSET_RULES procedure in the DBMS_STREAMS_ADM
package.

If you do not use supplemental logging for these types of columns at a source
database, then changes involving these columns might not apply properly at a
destination database.

Note:

Columns of the following data types cannot be part of a supplemental log
group: LOB, LONG, LONG RAW, user-defined types (including object types, REFs,
varrays, nested tables), and Oracle-supplied types (including Any types, XML
types, spatial types, and media types).

See Also:

• "Column Lists"

• "Decide Whether the Replication Environment Will Have Nonidentical
Replicas" for information about rule-based transformations

• "Decide Whether the Replication Environment Will Use Apply Handlers"

• Oracle Database SQL Language Reference for more information about
data types

1.3.6.2 Specifying Table Supplemental Logging Using Unconditional Log
Groups

The following sections describe creating an unconditional supplemental log group:

• Specifying an Unconditional Supplemental Log Group for Primary Key Column(s)

• Specifying an Unconditional Supplemental Log Group for All Table Columns

• Specifying an Unconditional Supplemental Log Group that Includes Selected
Columns

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-38

1.3.6.2.1 Specifying an Unconditional Supplemental Log Group for Primary Key Column(s)
To specify an unconditional supplemental log group that only includes the primary key
column(s) for a table, use an ALTER TABLE statement with the PRIMARY KEY option in the
ADD SUPPLEMENTAL LOG DATA clause.

For example, the following statement adds the primary key column of the hr.regions
table to an unconditional log group:

ALTER TABLE hr.regions ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

The log group has a system-generated name.

1.3.6.2.2 Specifying an Unconditional Supplemental Log Group for All Table Columns
To specify an unconditional supplemental log group that includes all of the columns in
a table, use an ALTER TABLE statement with the ALL option in the ADD SUPPLEMENTAL LOG
DATA clause.

For example, the following statement adds all of the columns in the hr.regions table to
an unconditional log group:

ALTER TABLE hr.regions ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

The log group has a system-generated name.

1.3.6.2.3 Specifying an Unconditional Supplemental Log Group that Includes Selected
Columns

To specify an unconditional supplemental log group that contains columns that you
select, use an ALTER TABLE statement with the ALWAYS specification for the ADD
SUPPLEMENTAL LOG GROUP clause.These log groups can include key columns, if necessary.

For example, the following statement adds the department_id column and the
manager_id column of the hr.departments table to an unconditional log group named
log_group_dep_pk:

ALTER TABLE hr.departments ADD SUPPLEMENTAL LOG GROUP log_group_dep_pk
 (department_id, manager_id) ALWAYS;

The ALWAYS specification makes this log group an unconditional log group.

1.3.6.3 Specifying Table Supplemental Logging Using Conditional Log Groups
The following sections describe creating a conditional log group:

• Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG DATA
Clause

• Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG
GROUP Clause

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-39

1.3.6.3.1 Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG
DATA Clause

You can use the following options in the ADD SUPPLEMENTAL LOG DATA clause of an ALTER
TABLE statement:

• The FOREIGN KEY option creates a conditional log group that includes the foreign key
column(s) in the table.

• The UNIQUE option creates a conditional log group that includes the unique key
column(s) and bitmap index column(s) in the table.

If you specify multiple options in a single ALTER TABLE statement, then a separate
conditional log group is created for each option.

For example, the following statement creates two conditional log groups:

ALTER TABLE hr.employees ADD SUPPLEMENTAL LOG DATA
 (UNIQUE, FOREIGN KEY) COLUMNS;

One conditional log group includes the unique key columns and bitmap index columns
for the table, and the other conditional log group includes the foreign key columns for
the table. Both log groups have a system-generated name.

Note:

Specifying the UNIQUE option does not enable supplemental logging of bitmap
join index columns.

1.3.6.3.2 Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG
GROUP Clause

To specify a conditional supplemental log group that includes any columns you choose
to add, you can use the ADD SUPPLEMENTAL LOG GROUP clause in the ALTER TABLE statement.
To make the log group conditional, do not include the ALWAYS specification.

For example, suppose the min_salary and max_salary columns in the hr.jobs table are
included in a column list for conflict resolution at a destination database. The following
statement adds the min_salary and max_salary columns to a conditional log group
named log_group_jobs_cr:

ALTER TABLE hr.jobs ADD SUPPLEMENTAL LOG GROUP log_group_jobs_cr
 (min_salary, max_salary);

1.3.6.4 Dropping a Supplemental Log Group
To drop a conditional or unconditional supplemental log group, use the DROP
SUPPLEMENTAL LOG GROUP clause in the ALTER TABLE statement. For example, to drop a
supplemental log group named log_group_jobs_cr, run the following statement:

ALTER TABLE hr.jobs DROP SUPPLEMENTAL LOG GROUP log_group_jobs_cr;

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-40

1.3.6.5 Specifying Database Supplemental Logging of Key Columns
You have the option of specifying supplemental logging for all primary key, unique key,
bitmap index, and foreign key columns in a source database. You might choose this
option if you configure a capture process to capture changes to an entire database. To
specify supplemental logging for all primary key, unique key, bitmap index, and foreign
key columns in a source database, issue the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

If your primary key, unique key, bitmap index, and foreign key columns are the same
at all source and destination databases, then running this command at the source
database provides the supplemental logging needed for primary key, unique key,
bitmap index, and foreign key columns at all destination databases. When you specify
the PRIMARY KEY option, all columns of a row's primary key are placed in the redo log file
any time the table is modified (unconditional logging). When you specify the UNIQUE
option, any columns in a row's unique key and bitmap index are placed in the redo log
file if any column belonging to the unique key or bitmap index is modified (conditional
logging). When you specify the FOREIGN KEY option, all columns of a row's foreign key
are placed in the redo log file if any column belonging to the foreign key is modified
(conditional logging).

You can omit one or more of these options. For example, if you do not want to
supplementally log all of the foreign key columns in the database, then you can omit
the FOREIGN KEY option, as in the following example:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE) COLUMNS;

In addition to PRIMARY KEY, UNIQUE, and FOREIGN KEY, you can also use the ALL option. The
ALL option specifies that, when a row is changed, all the columns of that row (except
for LOB, LONG, LONG RAW, user-defined type, and Oracle-supplied type columns) are
placed in the redo log file (unconditional logging).

Supplemental logging statements are cumulative. If you issue two consecutive ALTER
DATABASE ADD SUPPLEMENTAL LOG DATA statements, each with a different identification key,
then both keys are supplementally logged.

Note:

Specifying the UNIQUE option does not enable supplemental logging of bitmap
join index columns.

See Also:

Oracle Database SQL Language Reference for information about data types

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-41

1.3.6.6 Dropping Database Supplemental Logging of Key Columns
To drop supplemental logging for all primary key, unique key, bitmap index, and
foreign key columns in a source database, issue the ALTER DATABASE DROP SUPPLEMENTAL
LOG DATA statement. To drop database supplemental logging for all primary key, unique
key, bitmap index, and foreign key columns, issue the following SQL statement:

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

Note:

Dropping database supplemental logging of key columns does not affect any
existing table-level supplemental log groups.

1.3.6.7 Procedures That Automatically Specify Supplemental Logging
The following procedures in the DBMS_CAPTURE_ADM package automatically specify
supplemental logging:

• BUILD

• PREPARE_GLOBAL_INSTANTIATION

• PREPARE_SCHEMA_INSTANTIATION

• PREPARE_TABLE_INSTANTIATION

The BUILD procedure automatically specifies database supplemental logging by
running the ALTER DATABASE ADD SUPPLEMENTAL LOG DATA statement. In most cases, the
BUILD procedure is run automatically when a capture process is created.

The PREPARE_GLOBAL_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and
PREPARE_TABLE_INSTANTIATION procedures automatically specify supplemental logging of
the primary key, unique key, bitmap index, and foreign key columns in the tables
prepared for instantiation.

Certain procedures in the DBMS_STREAMS_ADM package automatically run a procedure
listed previously. See "DBMS_STREAMS_ADM Package Procedures Automatically
Prepare Objects" for information.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about these procedures

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-42

1.3.7 Configuring Log File Transfer to a Downstream Capture
Database

If you decided to use a local capture process at the source database, then log file
transfer is not required. However, if you decided to use downstream capture that uses
redo transport services to transfer archived redo log files to the downstream database
automatically, then configure log file transfer from the source database to the capture
database before configuring the replication environment. See "Decide Whether to
Configure Local or Downstream Capture for the Source Database" for information
about the decision.

You must complete the steps in this section if you plan to configure downstream
capture using either of the following methods:

• Running a configuration procedure in the DBMS_STREAMS_ADM supplied PL/SQL
package to configure replication between two databases

• Configuring each Oracle Streams component separately

See "Decide How to Configure the Replication Environment" for information about
these methods.

Tip:

You can use Oracle Enterprise Manager Cloud Control to configure log file
transfer and a downstream capture process. See the Oracle Enterprise
Manager Cloud Control online help for instructions.

Complete the following steps to prepare the source database to transfer its redo log
files to the capture database, and to prepare the capture database to accept these
redo log files:

1. Configure Oracle Net so that the source database can communicate with the
downstream database.

See Also:

Oracle Database Net Services Administrator's Guide

2. Configure authentication at both databases to support the transfer of redo data.

Redo transport sessions are authenticated using either the Secure Sockets Layer
(SSL) protocol or a remote login password file. If the source database has a
remote login password file, then copy it to the appropriate directory on the
downstream capture database system. The password file must be the same at the
source database and the downstream capture database.

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-43

See Also:

Oracle Data Guard Concepts and Administration for detailed information about
authentication requirements for redo transport

3. At the source database, set the following initialization parameters to configure redo
transport services to transmit redo data from the source database to the
downstream database:

• LOG_ARCHIVE_DEST_n - Configure at least one LOG_ARCHIVE_DEST_n initialization
parameter to transmit redo data to the downstream database. Set the following
attributes of this parameter in the following way:

– SERVICE - Specify the network service name of the downstream database.

– ASYNC or SYNC - Specify a redo transport mode.

The advantage of specifying ASYNC is that it results in little or no effect on
the performance of the source database. ASYNC is recommended to avoid
affecting source database performance if the downstream database or
network is performing poorly.

The advantage of specifying SYNC is that redo data is sent to the
downstream database faster then when ASYNC is specified. Also, specifying
SYNC AFFIRM results in behavior that is similar to MAXIMUM AVAILABILITY
standby protection mode. Note that specifying an ALTER DATABASE STANDBY
DATABASE TO MAXIMIZE AVAILABILITY SQL statement has no effect on an
Oracle Streams capture process.

– NOREGISTER - Specify this attribute so that the location of the archived redo
log files is not recorded in the downstream database control file.

– VALID_FOR - Specify either (ONLINE_LOGFILE,PRIMARY_ROLE) or
(ONLINE_LOGFILE,ALL_ROLES).

– TEMPLATE - If you are configuring an archived-log downstream capture
process, then specify a directory and format template for archived redo
logs at the downstream database. The TEMPLATE attribute overrides the
LOG_ARCHIVE_FORMAT initialization parameter settings at the downstream
database. The TEMPLATE attribute is valid only with remote destinations.
Ensure that the format uses all of the following variables at each source
database: %t, %s, and %r.

Do not specify the TEMPLATE attribute if you are configuring a real-time
downstream capture process.

– DB_UNIQUE_NAME - The unique name of the downstream database. Use the
name specified for the DB_UNIQUE_NAME initialization parameter at the
downstream database.

The following example is a LOG_ARCHIVE_DEST_n setting that specifies the
downstream database dbs2 for a real-time downstream capture process:

LOG_ARCHIVE_DEST_2='SERVICE=DBS2.EXAMPLE.COM ASYNC NOREGISTER
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=dbs2'

The following example is a LOG_ARCHIVE_DEST_n setting that specifies the
downstream database dbs2 for an archived-log downstream capture process:

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-44

LOG_ARCHIVE_DEST_2='SERVICE=DBS2.EXAMPLE.COM ASYNC NOREGISTER
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 TEMPLATE=/usr/oracle/log_for_dbs1/dbs1_arch_%t_%s_%r.log
 DB_UNIQUE_NAME=dbs2'

See "Decide Whether to Configure Local or Downstream Capture for the
Source Database" for information about the differences between real-time and
archived-log downstream capture.

Tip:

If you are configuring an archived-log downstream capture process, then
specify a value for the TEMPLATE attribute that keeps log files from a remote
source database separate from local database log files. In addition, if the
downstream database contains log files from multiple source databases, then
the log files from each source database should be kept separate from each
other.

• LOG_ARCHIVE_DEST_STATE_n - Set this initialization parameter that corresponds
with the LOG_ARCHIVE_DEST_n parameter for the downstream database to ENABLE.

For example, if the LOG_ARCHIVE_DEST_2 initialization parameter is set for the
downstream database, then set the LOG_ARCHIVE_DEST_STATE_2 parameter in the
following way:

LOG_ARCHIVE_DEST_STATE_2=ENABLE

• LOG_ARCHIVE_CONFIG - Set the DG_CONFIG attribute in this initialization parameter
to include the DB_UNIQUE_NAME of the source database and the downstream
database.

For example, if the DB_UNIQUE_NAME of the source database is dbs1, and the
DB_UNIQUE_NAME of the downstream database is dbs2, then specify the following
parameter:

LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbs1,dbs2)'

By default, the LOG_ARCHIVE_CONFIG parameter enables a database to both send
and receive redo.

See Also:

Oracle Database Reference and Oracle Data Guard Concepts and
Administration for more information about these initialization parameters

4. At the downstream database, set the DG_CONFIG attribute in the LOG_ARCHIVE_CONFIG
initialization parameter to include the DB_UNIQUE_NAME of the source database and
the downstream database.

For example, if the DB_UNIQUE_NAME of the source database is dbs1, and the
DB_UNIQUE_NAME of the downstream database is dbs2, then specify the following
parameter:

LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbs1,dbs2)'

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-45

By default, the LOG_ARCHIVE_CONFIG parameter enables a database to both send
and receive redo.

5. If you reset any initialization parameters while the instance was running at a
database in Step 3 or Step 4, then you might want to reset them in the initialization
parameter file as well, so that the new values are retained when the database is
restarted.

If you did not reset the initialization parameters while the instance was running, but
instead reset them in the initialization parameter file in Step 3 or Step 4, then
restart the database. The source database must be open when it sends redo log
files to the downstream database, because the global name of the source
database is sent to the downstream database only if the source database is open.

When these steps are complete, you are ready to perform one of the following tasks:

• Configure an archived-log downstream capture process. In this case, see the
instructions in the following sections:

– "Configuring Replication Using the DBMS_STREAMS_ADM Package"

– "Configuring an Archived-Log Downstream Capture Process"

• Add standby redo logs files at the downstream database for a real-time
downstream capture process. In this case, see the instructions in "Adding Standby
Redo Logs for Real-Time Downstream Capture".

1.3.8 Adding Standby Redo Logs for Real-Time Downstream Capture
The example in this section adds standby redo logs at a downstream database.
Standby redo logs are required to configure a real-time downstream capture process.
In the example, the source database is dbs1.example.com and the downstream
database is dbs2.example.com

See "Decide Whether to Configure Local or Downstream Capture for the Source
Database" for information about the differences between real-time and archived-log
downstream capture. The steps in this section are required only if you are configuring
real-time downstream capture. If you are configuring archived-log downstream
capture, then do not complete the steps in this section.

Tip:

You can use Oracle Enterprise Manager Cloud Control to configure real-time
downstream capture. See the Oracle Enterprise Manager Cloud Control online
help for instructions.

Complete the following steps to add a standby redo log at the downstream database:

1. Complete the steps in "Configuring Log File Transfer to a Downstream Capture
Database".

2. At the downstream database, set the following initialization parameters to
configure archiving of the redo data generated locally:

• Set at least one archive log destination in the LOG_ARCHIVE_DEST_n initialization
parameter either to a directory or to the fast recovery area on the computer

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-46

system running the downstream database. Set the following attributes of this
parameter in the following way:

– LOCATION - Specify either a valid path name for a disk directory or, to use a
fast recovery area, specify USE_DB_RECOVERY_FILE_DEST. This location is the
local destination for archived redo log files written from the standby redo
logs. Log files from a remote source database should be kept separate
from local database log files. See Oracle Database Backup and Recovery
User's Guide for information about configuring a fast recovery area.

– VALID_FOR - Specify either (ONLINE_LOGFILE,PRIMARY_ROLE) or
(ONLINE_LOGFILE,ALL_ROLES).

The following example is a LOG_ARCHIVE_DEST_n setting for the locally generated
redo data at the real-time downstream capture database:

LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local_rl_dbs2
 VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE)'

A real-time downstream capture configuration should keep archived standby
redo log files separate from archived online redo log files generated by the
downstream database. Specify ONLINE_LOGFILE instead of ALL_LOGFILES for the
redo log type in the VALID_FOR attribute to accomplish this.

You can specify other attributes in the LOG_ARCHIVE_DEST_n initialization
parameter if necessary.

• Set the LOG_ARCHIVE_DEST_STATE_n initialization parameter that corresponds with
the LOG_ARCHIVE_DEST_n parameter previously set in this step to ENABLE.

For example, if the LOG_ARCHIVE_DEST_1 initialization parameter is set, then set
the LOG_ARCHIVE_DEST_STATE_1 parameter in the following way:

LOG_ARCHIVE_DEST_STATE_1=ENABLE

3. At the downstream database, set the following initialization parameters to
configure the downstream database to receive redo data from the source
database and write the redo data to the standby redo log at the downstream
database:

• Set at least one archive log destination in the LOG_ARCHIVE_DEST_n initialization
parameter either to a directory or to the fast recovery area on the computer
system running the downstream database. Set the following attributes of this
parameter in the following way:

– LOCATION - Specify either a valid path name for a disk directory or, to use a
fast recovery area, specify USE_DB_RECOVERY_FILE_DEST. This location is the
local destination for archived redo log files written from the standby redo
logs. Log files from a remote source database should be kept separate
from local database log files. See Oracle Database Backup and Recovery
User's Guide for information about configuring a fast recovery area.

– VALID_FOR - Specify either (STANDBY_LOGFILE,PRIMARY_ROLE) or
(STANDBY_LOGFILE,ALL_ROLES).

The following example is a LOG_ARCHIVE_DEST_n setting for the redo data
received from the source database at the real-time downstream capture
database:

LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbs1
 VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-47

You can specify other attributes in the LOG_ARCHIVE_DEST_n initialization
parameter if necessary.

• Set the LOG_ARCHIVE_DEST_STATE_n initialization parameter that corresponds with
the LOG_ARCHIVE_DEST_n parameter previously set in this step to ENABLE.

For example, if the LOG_ARCHIVE_DEST_2 initialization parameter is set for the
downstream database, then set the LOG_ARCHIVE_DEST_STATE_2 parameter in the
following way:

LOG_ARCHIVE_DEST_STATE_2=ENABLE

See Also:

Oracle Database Reference and Oracle Data Guard Concepts and
Administration for more information about these initialization parameters

4. If you reset any initialization parameters while an instance was running at a
database in Step 2 or 3, then you might want to reset them in the relevant
initialization parameter file as well, so that the new values are retained when the
database is restarted.

If you did not reset the initialization parameters while an instance was running, but
instead reset them in the initialization parameter file in Step 2 or 3, then restart the
database. The source database must be open when it sends redo data to the
downstream database, because the global name of the source database is sent to
the downstream database only if the source database is open.

5. Create the standby redo log files.

Note:

The following steps outline the general procedure for adding standby redo log
files to the downstream database. The specific steps and SQL statements
used to add standby redo log files depend on your environment. For example,
in an Oracle Real Application Clusters (Oracle RAC) environment, the steps
are different. See Oracle Data Guard Concepts and Administration for detailed
instructions about adding standby redo log files to a database.

a. In SQL*Plus, connect to the source database dbs1.example.com as an
administrative user.

See Oracle Database Administrator's Guide for information about connecting
to a database in SQL*Plus.

b. Determine the log file size used on the source database. The standby log file
size must exactly match (or be larger than) the source database log file size.
For example, if the source database log file size is 500 MB, then the standby
log file size must be 500 MB or larger. You can determine the size of the redo
log files at the source database (in bytes) by querying the V$LOG view at the
source database.

For example, query the V$LOG view:

SELECT BYTES FROM V$LOG;

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-48

c. Determine the number of standby log file groups required on the downstream
database. The number of standby log file groups must be at least one more
than the number of online log file groups on the source database. For
example, if the source database has two online log file groups, then the
downstream database must have at least three standby log file groups. You
can determine the number of source database online log file groups by
querying the V$LOG view at the source database.

For example, query the V$LOG view:

SELECT COUNT(GROUP#) FROM V$LOG;

d. In SQL*Plus, connect to the downstream database dbs2.example.com as an
administrative user.

e. Use the SQL statement ALTER DATABASE ADD STANDBY LOGFILE to add the standby
log file groups to the downstream database.

For example, assume that the source database has two online redo log file
groups and is using a log file size of 500 MB. In this case, use the following
statements to create the appropriate standby log file groups:

ALTER DATABASE ADD STANDBY LOGFILE GROUP 3
 ('/oracle/dbs/slog3a.rdo', '/oracle/dbs/slog3b.rdo') SIZE 500M;

ALTER DATABASE ADD STANDBY LOGFILE GROUP 4
 ('/oracle/dbs/slog4.rdo', '/oracle/dbs/slog4b.rdo') SIZE 500M;

ALTER DATABASE ADD STANDBY LOGFILE GROUP 5
 ('/oracle/dbs/slog5.rdo', '/oracle/dbs/slog5b.rdo') SIZE 500M;

f. Ensure that the standby log file groups were added successfully by running
the following query:

SELECT GROUP#, THREAD#, SEQUENCE#, ARCHIVED, STATUS
 FROM V$STANDBY_LOG;

You output should be similar to the following:

 GROUP# THREAD# SEQUENCE# ARC STATUS
---------- ---------- ---------- --- ----------
 3 0 0 YES UNASSIGNED
 4 0 0 YES UNASSIGNED
 5 0 0 YES UNASSIGNED

g. Ensure that log files from the source database are appearing in the location
specified in the LOCATION attribute in Step 3. You might need to switch the log
file at the source database to see files in the directory.

When these steps are complete, you are ready to configure a real-time downstream
capture process. See the instructions in the following sections:

• "Configuring Replication Using the DBMS_STREAMS_ADM Package"

• "Configuring a Real-Time Downstream Capture Process"

Chapter 1
Tasks to Complete Before Configuring Oracle Streams Replication

1-49

2
Simple Oracle Streams Replication
Configuration

This chapter describes simple methods for configuring Oracle Streams replication.

This chapter contains these topics:

• Configuring Replication Using the Setup Streams Replication Wizard

• Configuring Replication Using the DBMS_STREAMS_ADM Package

2.1 Configuring Replication Using the Setup Streams
Replication Wizard

The Oracle Streams tool in Oracle Enterprise Manager Cloud Control includes a Setup
Streams Replication Wizard that configures an Oracle Streams replication
environment. Using this wizard, you can configure an Oracle Streams replication
environment with any of the following characteristics:

• Replicate changes to the entire source database, selected schemas in the source
database, selected tablespaces in the source database, selected tables in the
source database, or subsets of tables in the source database

• Maintain data manipulation language (DML) changes, data definition language
(DDL) changes, or both.

• One-way or bi-directional replication

• Local capture or downstream capture

The wizard walks you through the process of configuring your replication environment,
and you can run the wizard multiple times to configure a replication environment with
more than two databases. There are some limits to the types of replication
environments that can be configured with the wizard. For example, the wizard
currently cannot configure synchronous capture.

You can choose to configure the Oracle Streams replication environment immediately,
or you can use the wizard to generate a script. When you generate a script, you can
review the script, and edit the script if necessary, before running the script to configure
the replication environment.

To open the wizard, complete the following steps in Oracle Enterprise Manager Cloud
Control:

1. Review the decisions described in "Decisions to Make Before Configuring Oracle
Streams Replication". Make these decisions about the Oracle Streams replication
environment before proceeding.

2. Complete the tasks to prepare for the Oracle Streams replication environment.
See "Tasks to Complete Before Configuring Oracle Streams Replication".

2-1

The wizard completes some tasks automatically, but you must complete the
following tasks manually:

• Configure an Oracle Streams administrator at both databases. See
"Configuring an Oracle Streams Administrator on All Databases". If you have
not done so already, you must click the Streams Administrator user link after
you open the Streams page in Step 6 to configure the Oracle Streams
administrator to manage Oracle Streams using Oracle Enterprise Manager
Cloud Control.

• Configure network connectivity between the two databases. See "Configuring
Network Connectivity and Database Links".

• Ensure that any database that will be a source database is in ARCHIVELOG
mode. If you are configuring bi-directional replication, then both databases
must be in ARCHIVELOG mode. See "Ensuring That Each Source Database Is In
ARCHIVELOG Mode".

• Ensure that the initialization parameters are set properly at both databases.
See "Setting Initialization Parameters Relevant to Oracle Streams".

• Configure the Oracle Streams pool properly at both databases. See
"Configuring the Oracle Streams Pool".

3. In Oracle Enterprise Manager Cloud Control, log in to the database as the Oracle
Streams administrator. Log in to a database that will be a source database in the
replication environment.

4. Go to the Database Home page.

5. Click Data Movement to open the Data Movement subpage.

6. Click Setup in the Streams section to open the Streams page.

7. In the Setup Streams Replication section, select the option for the type of
replication environment you want to configure.

8. In the Host Credentials section, enter the username and password for the host
computer that runs the source database.

9. Click Continue to open the Setup Streams Replication wizard.

Note:

By default, the Setup Streams Replication Wizard configures one-way
replication. To configure bi-directional replication, open the Advanced Options
section on the Replication Options page and select Setup Bi-directional
replication. If bi-directional replication is configured, then conflict resolution
might be required.

Chapter 2
Configuring Replication Using the Setup Streams Replication Wizard

2-2

See Also:

• The Oracle Enterprise Manager Cloud Control online help for examples
that configure an Oracle Streams replication environment with the wizard

• "Decide Which Type of Replication Environment to Configure"

• Oracle Streams Conflict Resolution

2.2 Configuring Replication Using the
DBMS_STREAMS_ADM Package

You can configure an Oracle Streams replication environment using procedures in the
DBMS_STREAMS_ADM package.

The following sections contain information about these procedures, instructions for
preparing to run one of these procedures, and examples that illustrate common
scenarios:

• The Oracle Streams Replication Configuration Procedures

• Important Considerations for the Configuration Procedures

• Creating the Required Directory Objects

• Examples That Configure Two-Database Replication with Local Capture

• Examples That Configure Two-Database Replication with Downstream Capture

• Example That Configures Two-Database Replication with Synchronous Captures

• Example That Configures Hub-and-Spoke Replication

• Monitoring Oracle Streams Configuration Progress

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about these procedures

2.2.1 The Oracle Streams Replication Configuration Procedures
The easiest way to configure an Oracle Streams replication environment is by running
one of the following configuration procedures in the DBMS_STREAMS_ADM package:

• MAINTAIN_GLOBAL configures an Oracle Streams environment that replicates
changes at the database level between two databases.

• MAINTAIN_SCHEMAS configures an Oracle Streams environment that replicates
changes to specified schemas between two databases.

• MAINTAIN_SIMPLE_TTS clones a simple tablespace from a source database at a
destination database and uses Oracle Streams to maintain this tablespace at both
databases.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-3

• MAINTAIN_TABLES configures an Oracle Streams environment that replicates
changes to specified tables between two databases.

• MAINTAIN_TTS clones a set of tablespaces from a source database at a destination
database and uses Oracle Streams to maintain these tablespaces at both
databases.

• PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP configure an Oracle
Streams environment that replicates changes either at the database level or to
specified tablespaces between two databases. These procedures must be used
together, and instantiation actions must be performed manually, to complete the
Oracle Streams replication configuration. Typically, these procedures are used to
perform database maintenance operations with little or no down time. See Oracle
Streams Concepts and Administration for more information.

These procedures configure two databases at a time, and they require you to specify
one database as the source database and the other database as the destination
database. They can configure a replication environment with more than two databases
by running them multiple times.

Table 2-1 describes the required parameters for these procedures.

Table 2-1 Required Parameters for the Oracle Streams Replication Configuration Procedures

Parameter Procedure Description

source_directory_object All procedures The directory object for the directory on
the computer system running the source
database into which the generated Data
Pump export dump file is placed.

Note: The specified directory object
cannot point to an Automatic Storage
Management (ASM) disk group.

destination_directory_object All procedures The directory object for the directory on
the computer system running the
destination database into which the
generated Data Pump export dump file is
transferred. The dump file is used to
instantiate the replicated database objects
at the destination database.

Note: The specified directory object
cannot point to an Automatic Storage
Management (ASM) disk group.

source_database All procedures The global name of the source database.
The specified database must contain the
database objects to be replicated.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-4

Table 2-1 (Cont.) Required Parameters for the Oracle Streams Replication Configuration
Procedures

Parameter Procedure Description

destination_database All procedures The global name of the destination
database. The database objects to be
replicated are optional at the destination
database. If they do not exist at the
destination database, then they are
instantiated by Data Pump export/import.

If the local database is not the destination
database, then a database link from the
local database to the destination
database, with the same name as the
global name of the destination database,
must exist and must be accessible to the
user who runs the procedure.

schema_names MAINTAIN_SCHEMAS only The schemas to be configured for
replication.

tablespace_name MAINTAIN_SIMPLE_TTS only The tablespace to be configured for
replication.

table_names MAINTAIN_TABLES only The tables to be configured for replication.

tablespace_names MAINTAIN_TTS only The tablespaces to be configured for
replication.

In addition, each of these procedures has several optional parameters. The
bi_directional parameter is an important optional parameter. If you want changes to
the replicated database objects to be captured at each database and sent to the other
database, then the bi_directional parameter must be set to TRUE. The default setting
for this parameter is FALSE. When the bi_directional parameter is set to FALSE, the
procedures configure a one-way replication environment, where the changes made at
the destination database are not captured.

These procedures perform several tasks to configure an Oracle Streams replication
environment. These tasks include:

• Configure supplemental logging for the replicated database objects at the source
database.

• If the bi_directional parameter is set to TRUE, then configure supplemental logging
for the replicated database objects at the destination database.

• Instantiate the database objects at the destination database. If the database
objects do not exist at the destination database, then the procedures use Data
Pump export/import to instantiate them at the destination database.

• Configure a capture process to capture changes to the replicated database objects
at the source database. This capture process can be a local capture process or a
downstream capture process. If the procedure is run at the database specified in
the source_database parameter, then the procedure configures a local capture
process on this database. If the procedure is run at a database other than the
database specified in the source_database parameter, then the procedure
configures a downstream capture process on the database that runs the
procedure.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-5

• If the bi_directional parameter is set to TRUE, then configure a capture process to
capture changes to the replicated database objects at the destination database.
This capture process must be a local capture process.

• Configure one or more queues at each database to store captured changes.

• Configure a propagation to send changes made to the database objects at the
source database to the destination database.

• If the bi_directional parameter is set to TRUE, then configure a propagation to send
changes made to the database objects at the destination database to the source
database

• Configure an apply process at the destination database to apply changes from the
source database.

• If the bi_directional parameter is set to TRUE, then configure an apply process at
the source database to apply changes from the destination database.

• Configure rule sets and rules for each capture process, propagation, and apply
process. The rules instruct the Oracle Streams clients to replicate changes to the
specified database objects.

• Set the instantiation SCN for the replicated database objects at the destination
database.

• If the bi_directional parameter is set to TRUE, then set the instantiation SCN for the
replicated database objects at the source database.

Tip:

To view all of the actions performed by one of these procedures in detail, use
the procedure to generate a script, and view the script in a text editor. You can
use the perform_actions, script_name, and script_directory_object parameters
to generate a script.

These procedures always configure tags for a hub-and-spoke replication environment.
The following are important considerations about these procedures and tags:

• If you are configuring a two-database replication environment, then you can use
these procedures to configure it. These procedures configure tags in a two-
database environment to avoid change cycling. If you plan to expand the
replication environment beyond two databases in the future, then it is important to
understand how the tags are configured. If the expanded database environment is
not a hub-and-spoke environment, then you might need to modify the tags to avoid
change cycling.

• If you are configuring a replication environment that involves three or more
databases, then these procedures can only be used to configure a hub-and-spoke
replication environment. These procedures configure tags in a hub-and-spoke
environment to avoid change cycling.

• If you are configuring an n-way replication environment, then do not use these
procedures to configure it. Change cycling might result if you do so.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-6

Note:

Currently, these configuration procedures configure only capture processes to
capture changes. You cannot use these procedures to configure a replication
environment that uses synchronous captures. You can configure a
synchronous capture using the ADD_TABLE_RULES and ADD_SUBSET_RULES
procedures in the DBMS_STREAMS_ADM package.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the procedures in the DBMS_STREAMS_ADM package

• Oracle Streams Tags

• "Decide Which Type of Replication Environment to Configure"

• Oracle Streams Concepts and Administration

2.2.2 Important Considerations for the Configuration Procedures
This section describes important considerations for the configuration procedures. It
also discusses several procedure parameters related to these considerations.

This section contains these topics:

• Local or Downstream Capture for the Source Database

• Perform Configuration Actions Directly or With a Script

• Oracle Streams Components Configured by These Procedures

• One-Way or Bi-Directional Replication

• Data Definition Language (DDL) Changes

• Instantiation

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about all of the parameters in these procedures

2.2.2.1 Local or Downstream Capture for the Source Database
These procedures can either configure local capture or downstream capture for the
database specified in the source_database parameter. The database that captures
changes made to the source database is called the capture database. See "Decide
Whether to Configure Local or Downstream Capture for the Source Database" for
more information.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-7

The database on which the procedure is run is configured as the capture database for
changes made to the source database. Therefore, to configure local capture at the
source database, run the procedure at the source database. To configure downstream
capture at the destination database, run the procedure at the database specified in the
destination_database parameter. To configure downstream capture at the at a third
database, run the procedure at a database that is not specified in the source_database
or destination_database parameter.

If the source database or a third database is the capture database, then these
procedures configure a propagation to send changes from the capture database to the
destination database. If the destination database is the capture database and you are
not configuring bi-directional replication, then this propagation between databases is
not needed. In this case, the propagation is not configured if the capture_queue_name
and apply_queue_name parameters have the same value. If these values are different,
then a propagation is configured between the two queues within the destination
database.

Note:

• When these procedures configure downstream capture, they always
configure archived-log downstream capture. These procedures do not
configure real-time downstream capture. However, you can configure redo
transport services for real-time downstream capture before running a
procedure, and then set the downstream_real_time_mine capture process
parameter to Y after the procedure completes. You can also modify the
scripts generated by these procedures to configure real-time downstream
capture.

• If these procedures configure bi-directional replication, then the capture
process for the destination database always is a local capture process.
That is, these procedures always configure the capture process for
changes made to the destination database to run on the destination
database.

• Synchronous capture cannot be configured with the configuration
procedures.

See Also:

• "Decide Whether Changes Are Allowed at One Database or at Multiple
Databases" and "One-Way or Bi-Directional Replication" for more
information about bi-directional replication

• "Oracle Streams Components Configured by These Procedures"

• Oracle Streams Concepts and Administration for information about local
capture and downstream capture

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-8

2.2.2.2 Perform Configuration Actions Directly or With a Script
These procedures can configure the Oracle Streams replication environment directly,
or they can generate a script that configures the environment. Using a procedure to
configure replication directly is simpler than running a script, and the environment is
configured immediately. However, you might choose to generate a script for the
following reasons:

• You want to review the actions performed by the procedure before configuring the
environment.

• You want to modify the script to customize the configuration.

For example, you might want an apply process to use apply handlers for customized
processing of the changes to certain tables before applying these changes. In this
case, you can use the procedure to generate a script and modify the script to add the
apply handlers.

You also might want to maintain DML changes for several tables, but you might want
to maintain DDL changes for a subset of these tables. In this case, you can generate a
script by running the MAINTAIN_TABLES procedure with the include_ddl parameter set to
FALSE. You can modify the script to maintain DDL changes for the appropriate tables.

The perform_actions parameter controls whether the procedure configures the
replication environment directly:

• To configure an Oracle Streams replication environment directly when you run one
of these procedures, set the perform_actions parameter to TRUE. The default value
for this parameter is TRUE.

• To generate a configuration script when you run one of these procedures, set the
perform_actions parameter to FALSE, and use the script_name and
script_directory_object parameters to specify the name and location of the
configuration script.

Note:

The script_directory_object parameter cannot point to an Automatic Storage
Management (ASM) disk group.

See Also:

• "Decide Whether the Replication Environment Will Use Apply Handlers"

• "Data Definition Language (DDL) Changes"

2.2.2.3 Oracle Streams Components Configured by These Procedures
These procedures configure the following Oracle Streams clients:

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-9

• These procedures configure a capture process that captures changes to the
source database. If bi-directional replication is configured, then these procedures
also configure a capture process that captures changes to the destination
database.

• If the capture database and the destination database are different databases, then
these procedures configure a propagation that sends changes from the capture
database to the destination database.

• If the capture database and the destination database are the same database, then
the queue names determine whether a propagation is created:

– If the capture_queue_name and apply_queue_name parameters specify different
queue names, then a propagation is created between the two queues within
the destination database.

– If the capture_queue_name and apply_queue_name parameters specify the same
queue name, then a propagation is not created, and the downstream capture
process and the apply process use the same queue. This configuration is
possible only if the bi_directional parameter is set to FALSE to configure a
single source replication environment.

• If bi-directional replication is configured, then these procedures configure a
propagation that sends changes from the destination database to the source
database.

• These procedures configure an apply process that applies changes at the
destination database. These changes originated at the source database. If bi-
directional replication is configured, then these procedures also configure an apply
process that applies changes to the source database. These changes originated at
the destination database.

By default, the capture_queue_name and apply_queue_name parameters are set to NULL.
When these parameters are set to NULL, these procedures configure a separate queue
for each capture process and apply process. The Oracle Streams replication
environment might operate more efficiently if each Oracle Streams client has its own
separate queue.

However, two Oracle Streams clients share a queue in the following configurations:

• The configuration described previously in this section in which the downstream
capture process and the apply process at the destination database share a queue.

• A configuration in which all of the following conditions are met:

– The capture database is the source database or a third database.

– The bi_directional parameter is set to TRUE.

– The same queue name is specified for the capture_queue_name and
apply_queue_name parameters.

In this case, the local capture process and the apply process at the destination
database share the same queue. If the source database is the capture database,
then the local capture process and the apply process at the source database also
share the same queue.

Also, the capture_name and capture_queue_name parameters must be set to NULL when
both of the following conditions are met:

• The destination database is the capture database.

• The bi_directional parameter is set to TRUE.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-10

When both of these conditions are met, these procedure configure two capture
processes at the destination database, and these capture processes must have
different names. One capture process is the downstream capture process for the
source database, while the other capture process is the local capture process that
captures changes made to the destination database. When the capture_name and
capture_queue_name parameters are set to NULL, the system generates a different name
for the capture processes. These procedures raise an error if both conditions are met
and either the capture_name parameter or the capture_queue_name parameter is set to a
non-NULL value.

See Also:

• "One-Way or Bi-Directional Replication"

• "Local or Downstream Capture for the Source Database"

2.2.2.4 One-Way or Bi-Directional Replication
These procedures set up either a one-way (or single-source) Oracle Streams
configuration with the database specified in the source_database parameter as the
source database, or a bi-directional Oracle Streams configuration with both databases
acting as source and destination databases. See "Decide Whether Changes Are
Allowed at One Database or at Multiple Databases" for more information.

The bi_directional parameter in each procedure controls whether the Oracle Streams
configuration is single source or bi-directional:

• If the bi_directional parameter is FALSE, then a capture process captures changes
made to the source database and an apply process at the destination database
applies these changes. If the destination database is not the capture database,
then a propagation sends the captured changes to the destination database. The
default value for this parameter is FALSE.

• If the bi_directional parameter is TRUE, then a separate capture process captures
changes made to each database, propagations send these changes to the other
database, and each database applies changes from the other database.

When a replication environment is not bi-directional, and no changes are allowed at
the destination database, Oracle Streams keeps the shared database objects
synchronized at the databases. However, when a replication environment is not bi-
directional, and independent changes are allowed at the destination database, the
shared database objects might diverge between the databases. Independent changes
can be made by users, by applications, or by replication with a third database.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-11

Note:

• You might need to configure conflict resolution if bi-directional replication
is configured.

• If you set the bi_directional parameter to TRUE when you run one of these
procedures, then do not allow data manipulation language (DML) or data
definition language (DDL) changes to the shared database objects at the
destination database while the procedure, or the script generated by the
procedure, is running. This restriction does not apply if a procedure is
configuring a single-source replication environment.

• These procedures do not configure the replicated tables to be read-only at
the destination database. If you set the bi_directional parameter to FALSE
when you run one of these procedures, and the replicated tables should
be read only at the destination database, then configure privileges at the
destination databases accordingly. However, the apply user for the apply
process must be able to make DML changes to the replicated database
objects. See Oracle Database Security Guide for information about
configuring privileges.

See Also:

• Oracle Streams Conflict Resolution

• "Oracle Streams Components Configured by These Procedures"

2.2.2.4.1 Change Cycling and Tags
Change cycling happens when a change is sent back to the database where it
originated. Typically, change cycling should be avoided because it can result in each
change going through endless loops back to the database where it originated. Such
loops can result in unintended data in the database and tax the networking and
computer resources of an environment.

If the bi_directional parameter is set to TRUE, then these procedures configure bi-
directional replication. To prevent change cycling in a bi-directional Oracle Streams
replication environment, these procedures configure the environment in the following
way:

• The apply process at each database applies each change with an apply tag that is
unique to the environment. An apply tag is an Oracle Streams tag that is part of
each redo record created by the apply process. For example, if a procedure
configures databases sfdb.net and nydb.net for bi-directional replication, then the
apply tag for the apply process at sfdb.net might be the hexidecimal equivalent of
'1', and the apply tag for the apply process at nydb.net might be the hexidecimal
equivalent of '2'. In this case, an applied change with a tag that is the hexidecimal
equivalent of '1' originated at the nydb.net database, while an applied change with
a tag that is the hexidecimal equivalent of '2' originated at the sfdb.net database.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-12

• The capture process at each database captures all changes to the shared
database objects, regardless of tags in the redo records for the changes to these
database objects.

• Each propagation sends all changes made to the shared database objects to the
other database in the bi-directional replication environment, except for changes
that originated at the other database. Continuing the example, the propagation at
sfdb.net sends all changes to nydb.net, except for changes with a tag value that is
the hexidecimal equivalent of '1', because these changes originated at nydb.net.
Similarly, the propagation at nydb.net sends all changes to sfdb.net, except for
changes with a tag value that is the hexidecimal equivalent of '2'. A change that is
not propagated because of its tag value is discarded.

These procedures cannot be used to configure multi-directional replication where
changes can be cycled back to a source database by a third database in the
environment. For example, these procedures cannot be used to configure an Oracle
Streams replication environment with three databases where each database shares
changes with the other two databases in the environment. Such an environment is
sometimes called an "n-way" replication environment. If these procedures were used
to configure this type of a three way replication environment, then changes made at a
source database would be cycled back to the same source database. In a valid three
way replication environment, a particular change is made only once at each database.

These procedures can configure an Oracle Streams replication environment that
includes more than two databases, if changes made at a source database cannot
cycle back to the same source database. For example, a procedure can be run
multiple times to configure an environment in which a primary database shares
changes with multiple secondary databases. Such an environment is sometimes called
a "hub-and-spoke" replication environment.

You can configure the Oracle Streams environment manually to replicate changes in a
multiple source environment where each source database shares changes with the
other source databases, or you can modify generated scripts to achieve this.

See Also:

• Oracle Streams Tags

• "Example That Configures Hub-and-Spoke Replication" for an example
that configures a hub-and-spoke replication environment

• Oracle Streams Extended Examples

2.2.2.5 Data Definition Language (DDL) Changes
The include_ddl parameter controls whether the procedure configures Oracle Streams
replication to maintain DDL changes:

• To configure an Oracle Streams replication environment that does not maintain
DDL changes, set the include_ddl parameter to FALSE when you run one of these
procedures. The default value for this parameter is FALSE.

• To configure an Oracle Streams replication environment that maintains DDL
changes, set the include_ddl parameter to TRUE when you run one of these
procedures.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-13

Note:

The MAINTAIN_SIMPLE_TTS procedure does not include the include_ddl
parameter. An Oracle Streams replication environment configured by the
MAINTAIN_SIMPLE_TTS procedure only maintains DML changes.

See Also:

"Decide Whether to Maintain DDL Changes"

2.2.2.6 Instantiation
The MAINTAIN_GLOBAL, MAINTAIN_SCHEMAS, and MAINTAIN_TABLES procedures provide
options for instantiation. Instantiation is the process of preparing database objects for
instantiation at a source database, optionally copying the database objects from a
source database to a destination database, and setting the instantiation SCN for each
instantiated database object.

When you run one of these three procedures, you can choose to perform the
instantiation in one of the following ways:

• Data Pump Export Dump File Instantiation: This option performs a Data Pump
export of the shared database objects at the source database and a Data Pump
import of the export dump file at the destination database. The instantiation SCN is
set for each shared database object during import.

To specify this instantiation option, set the instantiation parameter to one of the
following values:

– DBMS_STREAMS_ADM.INSTANTIATION_FULL if you run the MAINTAIN_GLOBAL procedure

– DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA if you run the MAINTAIN_SCHEMAS
procedure

– DBMS_STREAMS_ADM.INSTANTIATION_TABLE if you run the MAINTAIN_TABLES
procedure

If the bi_directional parameter is set to TRUE, then the procedure also sets the
instantiation SCN for each shared database object at the source database.

When you use this option, you must create directory objects to hold the Data
Pump files. See "Creating the Required Directory Objects".

• Data Pump Network Import Instantiation: This option performs a network Data
Pump import of the shared database objects. A network import means that Data
Pump performs the import without using an export dump file. Therefore, directory
objects do not need to be created for instantiation purposes when you use this
option. The instantiation SCN is set for each shared database object during import.

To specify this instantiation option, set the instantiation parameter to one of the
following values:

– DBMS_STREAMS_ADM.INSTANTIATION_FULL_NETWORK if you run the MAINTAIN_GLOBAL
procedure

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-14

– DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA_NETWORK if you run the MAINTAIN_SCHEMAS
procedure

– DBMS_STREAMS_ADM.INSTANTIATION_TABLE_NETWORK if you run the MAINTAIN_TABLES
procedure

If the bi_directional parameter is set to TRUE, then the procedure also sets the
instantiation SCN for each shared database object at the source database.

• Generate a Configuration Script with No Instantiation Specified: This option
does not perform an instantiation. This setting is valid only if the perform_actions
parameter is set to FALSE, and the procedure generates a configuration script. In
this case, the configuration script does not perform an instantiation and does not
set the instantiation SCN for each shared database object. Instead, you must
perform the instantiation and ensure that instantiation SCN values are set
properly.

To specify this instantiation option, set the instantiation parameter to
DBMS_STREAMS_ADM.INSTANTIATION_NONE in each procedure.

When one of these procedures performs a table instantiation, the tablespace that
contains the table must exist at the destination database. When one of these
procedures performs a schema instantiation, the tablespace that contains the schema
must exist at the destination database.

When these procedures perform a dump file or network instantiation and an
instantiated database object does not exist at the destination database, the database
object is imported at the destination database, including its supplemental logging
specifications from the source database and its supporting database objects, such as
indexes and triggers. However, if the database object already exists at the destination
database before instantiation, then it is not imported at the destination database.
Therefore, the supplemental logging specifications from the source database are not
specified for the database object at the destination database, and the supporting
database objects are not imported.

The PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures do not perform
an instantiation. You must perform any required instantiation actions manually after
running PRE_INSTANTIATION_SETUP and before running POST_INSTANTIATION_SETUP. You
also must perform any required instantiation actions manually if you use the
MAINTAIN_GLOBAL, MAINTAIN_SCHEMAS, and MAINTAIN_TABLES procedures and set the
instantiation parameter to DBMS_STREAMS_ADM.INSTANTIATION_NONE.

In these cases, you can use any instantiation method. For example, you can use
Recovery Manager (RMAN) to perform a database instantiation using the RMAN
DUPLICATE or CONVERT DATABASE command or a tablespace instantiation using the RMAN
TRANSPORT TABLESPACE command. If the bi_directional parameter is set to TRUE, then
ensure that the instantiation SCN values are set properly at the source database and
the destination database.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-15

Note:

• The MAINTAIN_SIMPLE_TTS and MAINTAIN_TTS procedures do not provide
these instantiation options. These procedures always perform an
instantiation by cloning the tablespace or tablespace set, transferring the
files required for instantiation to the destination database, and attaching
the tablespace or tablespace set at the destination database.

• If one of these procedures performs an instantiation, then the database
objects, tablespace, or tablespaces set being configured for replication
must exist at the source database.

• If the RMAN DUPLICATE or CONVERT DATABASE command is used for database
instantiation, then the destination database cannot be the capture
database.

• When the MAINTAIN_TABLES procedure performs a dump file or network
instantiation and the instantiated table already exist at the destination
database before instantiation, the procedure does not set the instantiation
SCN for the table. In this case, you must set the instantiation SCN for the
table manually after the procedure completes.

See Also:

• Instantiation and Oracle Streams Replication

• "Perform Configuration Actions Directly or With a Script"

• "One-Way or Bi-Directional Replication"

2.2.3 Creating the Required Directory Objects
A directory object is similar to an alias for a directory on a file system. The following
directory objects might be required when you run one of these procedures:

• A script directory object is required if you decided to generate a configuration
script. The configuration script is placed in this directory on the computer system
where the procedure is run. Use the script_directory_object parameter when you
run one of these procedures to specify the script directory object.

• A source directory object is required if you decided to perform a Data Pump export
dump file instantiation, and you will use one of the following procedures:
MAINTAIN_GLOBAL, MAINTAIN_SCHEMAS, MAINTAIN_SIMPLE_TTS, MAINTAIN_TABLES, or
MAINTAIN_TTS. The Data Pump export dump file and log file are placed in this
directory on the computer system running the source database. Use the
source_directory_object parameter when you run one of these procedures to
specify the source directory object. This directory object is not required if you will
use the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures.

• A destination directory object is required if you decided to perform a Data Pump
export dump file instantiation, and you will use one of the following procedures:
MAINTAIN_GLOBAL, MAINTAIN_SCHEMAS, MAINTAIN_SIMPLE_TTS, MAINTAIN_TABLES, or

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-16

MAINTAIN_TTS. The Data Pump export dump file is transferred from the computer
system running the source database to the computer system running the
destination database and placed in this directory on the computer system running
the destination database. Use the destination_directory_object parameter when
you run one of these procedures to specify the destination directory object. This
directory object is not required if you will use the PRE_INSTANTIATION_SETUP and
POST_INSTANTIATION_SETUP procedures.

Each directory object must be created using the SQL statement CREATE DIRECTORY, and
the user who invokes one of the procedures must have READ and WRITE privilege on
each directory object.

For example, complete the following steps to create a directory object named db_dir
that corresponds to the /usr/db_files directory:

1. In SQL*Plus, connect to the database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Create the directory object:

CREATE DIRECTORY db_dir AS '/usr/db_files';

The user who creates the directory object automatically has READ and WRITE privilege
on the directory object. When you are configuring an Oracle Streams replication
environment, typically the Oracle Streams administrator creates the directory objects.

Note:

The directory objects cannot point to an Automatic Storage Management
(ASM) disk group.

See Also:

• "Perform Configuration Actions Directly or With a Script"

• "Instantiation"

2.2.4 Examples That Configure Two-Database Replication with Local
Capture

Each of the following examples configures a two-database replication environment that
uses one or more local capture processes:

• Configuring Two-Database Global Replication with Local Capture

• Configuring Two-Database Schema Replication with Local Capture

• Configuring Two-Database Table Replication with Local Capture

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-17

2.2.4.1 Configuring Two-Database Global Replication with Local Capture
You can use the following procedures in the DBMS_STREAMS_ADM package to configure
replication at the database level:

• MAINTAIN_GLOBAL

• PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP

The MAINTAIN_GLOBAL procedure automatically excludes database objects that are not
supported by Oracle Streams from the replication environment. The
PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures do not
automatically exclude database objects. Instead, these procedures enable you to
specify which database objects to exclude from the replication environment. Query the
DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database objects are
not supported by Oracle Streams. If unsupported database objects are not excluded,
then capture errors will result.

The following table lists the decisions that were made about the Oracle Streams
replication environment configured in this example.

Decision Assumption for This Example

Decide Which Type of Replication
Environment to Configure

This example configures bi-directional
replication in a two database environment
where both databases are read/write.

Decide Whether to Configure Local or
Downstream Capture for the Source Database

This example configures local capture for each
source database.

Decide Whether Changes Are Allowed at One
Database or at Multiple Databases

This example allows changes to the replicate
database objects at both databases.

Decide Whether the Replication Environment
Will Have Nonidentical Replicas

This example configures identical shared
database objects at the databases.

Decide Whether the Replication Environment
Will Use Apply Handlers

This example does not configure apply
handlers.

Decide Whether to Maintain DDL Changes This example maintains DDL changes.

Decide How to Configure the Replication
Environment

This example uses the
PRE_INSTANTIATION_SETUP and
POST_INSTANTIATION_SETUP procedures to
configure the environment.

In this example, the procedures will configure the replication environment directly.
Configuration scripts will not be generated. An RMAN database instantiation will be
performed.

As noted in the previous table, this example uses the PRE_INSTANTIATION_SETUP and
POST_INSTANTIATION_SETUP procedures to configure database replication. The replication
configuration will exclude all database objects that are not supported by Oracle
Streams. In this example, the source database is dbs1.example.com, and the destination
database is dbs2.example.com.

Figure 2-1 provides an overview of the replication environment created in this
example.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-18

Figure 2-1 Sample Oracle Streams Environment That Replicates an Entire
Database

Oracle Database

dbs1.example.com

Capture DML

and DDL changes

Capture Process

Redo

Log

Enqueue

Changes

Propagation Sends

Changes

Queue

Apply

Changes

Apply Process

Dequeue

Changes

Propagation Sends

Changes

Queue

Database Objects
Record Changes

Oracle Database

dbs2.example.com

Dequeue

Changes

Apply Process

Apply

Changes

Queue

Enqueue

Changes

Capture Process

Capture DML

and DDL Changes

Queue

Database Objects

Redo

Log

Note:

A capture process never captures changes in the SYS, SYSTEM, or CTXSYS
schemas. Changes to these schemas are not maintained by Oracle Streams
in the replication configuration described in this section.

See Also:

Oracle Streams Concepts and Administration for instructions on determining
which database objects are not supported by Oracle Streams

Complete the following steps to use the PRE_INSTANTIATION_SETUP and
POST_INSTANTIATION_SETUP procedures to configure the replication environment:

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-19

1. Complete the required tasks before running the PRE_INSTANTIATION_SETUP
procedure. See "Tasks to Complete Before Configuring Oracle Streams
Replication" for instructions.

For this configuration, the following tasks must be completed:

• Configure an Oracle Streams administrator at both databases. See
"Configuring an Oracle Streams Administrator on All Databases".

• Configure network connectivity and database links:

– Configure network connectivity between the source database
dbs1.example.com and the destination database dbs2.example.com.

– Create a database link from the source database dbs1.example.com to the
destination database dbs2.example.com.

See "Configuring Network Connectivity and Database Links".

• Ensure that both databases are in ARCHIVELOG mode. See "Ensuring That Each
Source Database Is In ARCHIVELOG Mode".

• Ensure that the initialization parameters are set properly at both databases.
See "Setting Initialization Parameters Relevant to Oracle Streams".

• Configure the Oracle Streams pool properly at both databases. See
"Configuring the Oracle Streams Pool".

A database link is required from the destination database to the source database.
However, because RMAN will be used for database instantiation, this database
link must be created after instantiation. This database link is required because the
replication environment will be bi-directional and because RMAN will be used for
database instantiation.

2. In SQL*Plus, connect to the source database dbs1.example.com as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Run the PRE_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.PRE_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'dbs1.example.com',
 destination_database => 'dbs2.example.com',
 perform_actions => TRUE,
 bi_directional => TRUE,
 include_ddl => TRUE,
 start_processes => TRUE,
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Notice that the start_processes parameter is set to TRUE. Therefore, each capture
process and apply process created during the configuration is started
automatically.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-20

Also, notice the values specified for the exclude_schemas and exclude_flags
parameters. The asterisk (*) specified for exclude_schemas indicates that certain
database objects in every schema in the database might be excluded from the
replication environment. The value specified for the exclude_flags parameter
indicates that DML and DDL changes for all unsupported database objects are
excluded from the replication environment. Rules are placed in the negative rule
sets for the capture processes to exclude these database objects.

Because the procedure is run at the source database, local capture is configured
at the source database.

Because this procedure configures a bi-directional replication environment, do not
allow DML or DDL changes to the shared database objects at the destination
database while the procedure is running.

The procedure does not specify the apply_name parameter. Therefore, the default,
NULL, is specified for this parameter. When the apply_name parameter is set to NULL,
no apply process that applies changes from the source database can exist on the
destination database. If an apply process that applies changes from the source
database exists at the destination database, then specify a non-NULL value for the
apply_name parameter.

To monitor the progress of the configuration operation, follow the instructions in
"Monitoring Oracle Streams Configuration Progress".

If this procedure encounters an error and stops, then see "Recovering from
Operation Errors" for information about either recovering from the error or rolling
back the configuration operation.

4. Perform the instantiation. You can use any of the methods described in
Instantiation and Oracle Streams Replication to complete the instantiation. This
example uses the RMAN DUPLICATE command to perform the instantiation by
performing the following steps:

a. Create a backup of the source database if one does not exist. RMAN requires
a valid backup for duplication. In this example, create a backup of
dbs1.example.com if one does not exist.

Note:

A backup of the source database is not necessary if you use the FROM ACTIVE
DATABASE option when you run the RMAN DUPLICATE command. For large
databases, the FROM ACTIVE DATABASE option requires significant network
resources. This example does not use this option.

b. In SQL*Plus, connect to the source database dbs1.example.com as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting
to a database in SQL*Plus.

c. Determine the until SCN for the RMAN DUPLICATE command:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 until_scn NUMBER;
BEGIN
 until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-21

END;
/

Make a note of the until SCN returned. You will use this number in Step 4.h.
For this example, assume that the returned until SCN is 45442631.

d. In SQL*Plus, connect to the source database dbs1.example.com as an
administrative user.

e. Archive the current online redo log:

ALTER SYSTEM ARCHIVE LOG CURRENT;

f. Prepare your environment for database duplication, which includes preparing
the destination database as an auxiliary instance for duplication. See Oracle
Database Backup and Recovery User's Guide for instructions.

g. Start the RMAN client, and connect to the source database dbs1.example.com
as TARGET and to the destination database dbs2.example.com as AUXILIARY.

See Also:

Oracle Database Backup and Recovery Reference for more information about
the RMAN CONNECT command

h. Use the RMAN DUPLICATE command with the OPEN RESTRICTED option to
instantiate the source database at the destination database. The OPEN
RESTRICTED option is required. This option enables a restricted session in the
duplicate database by issuing the following SQL statement: ALTER SYSTEM
ENABLE RESTRICTED SESSION. RMAN issues this statement immediately before the
duplicate database is opened.

You can use the UNTIL SCN clause to specify an SCN for the duplication. Use
the until SCN determined in Step 4.c for this clause. Archived redo logs must
be available for the until SCN specified and for higher SCN values. Therefore,
Step 4.e archived the redo log containing the until SCN.

Ensure that you use TO database_name in the DUPLICATE command to specify the
name of the duplicate database. In this example, the duplicate database is
dbs2.example.com. Therefore, the DUPLICATE command for this example includes
TO dbs2.example.com.

The following is an example of an RMAN DUPLICATE command:

RMAN> RUN
 {
 SET UNTIL SCN 45442631;
 ALLOCATE AUXILIARY CHANNEL dbs2 DEVICE TYPE sbt;
 DUPLICATE TARGET DATABASE TO dbs2
 NOFILENAMECHECK
 OPEN RESTRICTED;
 }

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-22

See Also:

Oracle Database Backup and Recovery Reference for more information about
the RMAN DUPLICATE command

i. In SQL*Plus, connect to the destination database as an administrative user.

j. Rename the global name. After an RMAN database instantiation, the
destination database has the same global name as the source database.
Rename the global name of the destination database back to its original name
with the following statement:

ALTER DATABASE RENAME GLOBAL_NAME TO dbs2.example.com;

k. In SQL*Plus, connect to the destination database dbs2.example.com as the
Oracle Streams administrator.

l. Drop the database link from the source database to the destination database
that was cloned from the source database:

DROP DATABASE LINK dbs2.example.com;

5. While still connected to the destination database as the Oracle Streams
administrator, create a database link from the destination database to the source
database:

CREATE DATABASE LINK dbs1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password USING 'dbs1.example.com';

See Step 1 for information about why this database link is required.

6. In SQL*Plus, connect to the source database dbs1.example.com as the Oracle
Streams administrator.

7. Run the POST_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.POST_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'dbs1.example.com',
 destination_database => 'dbs2.example.com',
 perform_actions => TRUE,
 bi_directional => TRUE,
 include_ddl => TRUE,
 start_processes => TRUE,
 instantiation_scn => 45442630,
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

The parameter values specified in both the PRE_INSTANTIATION_SETUP and
POST_INSTANTIATION_SETUP procedures must match, except for the values of the
following parameters: perform_actions, script_name, script_directory_object, and
start_processes.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-23

Also, notice that the instantiation_scn parameter is set to 45442630. The RMAN
DUPLICATE command duplicates the database up to one less than the SCN value
specified in the UNTIL SCN clause. Therefore, you should subtract one from the until
SCN value that you specified when you ran the DUPLICATE command in Step 44.h.
In this example, the until SCN was set to 45442631. Therefore, the
instantiation_scn parameter should be set to 45442631 - 1, or 45442630.

If the instantiation SCN was set for the shared database objects at the destination
database during instantiation, then the instantiation_scn parameter should be set
to NULL. For example, the instantiation SCN might be set during a full database
export/import.

Because this procedure configures a bi-directional replication environment, do not
allow DML or DDL changes to the shared database objects at the destination
database while the procedure is running.

To monitor the progress of the configuration operation, follow the instructions in
"Monitoring Oracle Streams Configuration Progress".

If this procedure encounters an error and stops, then see "Recovering from
Operation Errors" for information about either recovering from the error or rolling
back the configuration operation.

8. At the destination database, connect as an administrative user in SQL*Plus and
use the ALTER SYSTEM statement to disable the RESTRICTED SESSION:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

9. Configure conflict resolution for the shared database objects if necessary.

Typically, conflicts are possible in a bi-directional replication environment. If
conflicts are possible in the environment created by the PRE_INSTANTIATION_SETUP
and POST_INSTANTIATION_SETUP procedures, then configure conflict resolution before
you allow users to make changes to the shared database objects.

See Oracle Streams Conflict Resolution for more information.

The bi-directional replication environment configured in this example has the following
characteristics:

• Database supplemental logging is configured at both databases.

• The dbs1.example.com database has two queues and queue tables with system-
generated names. One queue is for the local capture process, and one queue is
for the apply process.

• The dbs2.example.com database has two queues and queue tables with system-
generated names. One queue is for the local capture process, and one queue is
for the apply process.

• At the dbs1.example.com database, a capture process with a system-generated
name captures DML and DDL changes to all of the database objects in the
database that are supported by Oracle Streams.

• At the dbs2.example.com database, a capture process with a system-generated
name captures DML and DDL changes to all of the database objects in the
database that are supported by Oracle Streams.

• A propagation running on the dbs1.example.com database with a system-generated
name sends the captured changes from a queue at the dbs1.example.com database
to a queue at the dbs2.example.com database.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-24

• A propagation running on the dbs2.example.com database with a system-generated
name sends the captured changes from a queue at the dbs2.example.com database
to a queue at the dbs1.example.com database.

• At the dbs1.example.com database, an apply process with a system-generated
name dequeues the changes from its queue and applies them to the database
objects.

• At the dbs2.example.com database, an apply process with a system-generated
name dequeues the changes from its queue and applies them to the database
objects.

• Tags are used to avoid change cycling. Specifically, each apply process uses an
apply tag so that redo records for changes applied by the apply process include
the tag. Each apply process uses an apply tag that is unique in the replication
environment. Each propagation discards changes that have the tag of the apply
process running on the same database. See "Change Cycling and Tags" for more
information.

2.2.4.2 Configuring Two-Database Schema Replication with Local Capture
This example configures an Oracle Streams replication environment that replicates
data manipulation language (DML) changes to all of the tables in the hr schema. This
example configures a two-database replication environment with local capture
processes to capture changes. This example uses the global database names
db1.example.com and db2.example.com. However, you can substitute databases in your
environment to complete the example.

The following table lists the decisions that were made about the Oracle Streams
replication environment configured in this example.

Decision Assumption for This Example

Decide Which Type of Replication
Environment to Configure

This example provides instructions for
configuring either one-way or bi-directional
replication. To configure bi-directional
replication, you must complete additional steps
and set the bi_directional parameter to TRUE
when you run the configuration procedure.

Decide Whether to Configure Local or
Downstream Capture for the Source Database

This example configures local capture for the
source database.

Decide Whether Changes Are Allowed at One
Database or at Multiple Databases

This example lets you choose whether to allow
changes at one database or both databases.

Decide Whether the Replication Environment
Will Have Nonidentical Replicas

This example configures identical shared
database objects at the databases.

Decide Whether the Replication Environment
Will Use Apply Handlers

This example does not configure apply
handlers.

Decide Whether to Maintain DDL Changes This example maintains DDL changes.

Decide How to Configure the Replication
Environment

This example uses the MAINTAIN_SCHEMAS
procedure to configure the environment.

The database objects being configured for replication might or might not exist at the
destination database when you run the MAINTAIN_SCHEMAS procedure. If the database
objects do not exist at the destination database, then the MAINTAIN_SCHEMAS procedure
instantiates them at the destination database using a Data Pump export/import. During

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-25

instantiation, the instantiation SCN is set for these database objects. If the database
objects already exist at the destination database, then the MAINTAIN_SCHEMAS procedure
retains the existing database objects and sets the instantiation SCN for them. In this
example, the hr schema exists at both the db1.example.com database and the
db2.example.com database before the MAINTAIN_SCHEMAS procedure is run.

In this example, the MAINTAIN_SCHEMAS procedure will configure the replication
environment directly. A configuration script will not be generated. A Data Pump export
dump file instantiation will be performed.

Figure 2-2 provides an overview of the environment created in this example. The
additional components required for bi-directional replication are shown in gray, and
their actions are indicated by dashed lines.

Figure 2-2 Two-Database Replication Environment with Local Capture Processes

Propagation Sends �
Changes

Oracle Database

db1.example.com

Apply Process

Queue

Oracle Database �
db2.example.com

Redo�
Log

Apply�
Changes

Dequeue�
Changes

Capture Process

Capture Process

Queue

Queue

Enqueue�
Changes

Tables in hr�
Schema

Apply Process

Record Changes

Capture DML Changes�
to hr Schema

Redo�
Log

Capture DML Changes

to hr Schema

Enqueue Changes

Apply Changes

Dequeue Changes

Queue

Propagation Sends �
Changes

Tables in hr

Schema

Record Changes

Complete the following steps to use the MAINTAIN_SCHEMAS procedure to configure the
environment:

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-26

1. Complete the following tasks to prepare for the two-database replication
environment:

a. Configure network connectivity so that the db1.example.com database can
communicate with the db2.example.com database.

See Oracle Database 2 Day DBA for information about configuring network
connectivity between databases.

b. Configure an Oracle Streams administrator at each database that will
participate in the replication environment. See "Configuring an Oracle Streams
Administrator on All Databases" for instructions. This example assumes that
the Oracle Streams administrator is strmadmin.

c. Create a database link from the db1.example.com database to the
db2.example.com database.

The database link should be created in the Oracle Streams administrator's
schema. Also, the database link should connect to the Oracle Streams
administrator at the other database. Both the name and the service name of
the database link must be db2.example.com. See "Configuring Network
Connectivity and Database Links" for instructions.

d. Configure the db1.example.com database to run in ARCHIVELOG mode. For a
capture process to capture changes generated at a source database, the
source database must be running in ARCHIVELOG mode. See Oracle Database
Administrator's Guide for information about configuring a database to run in
ARCHIVELOG mode.

2. To configure a bi-directional replication environment, complete the following steps.
If you are configuring a one-way replication environment, then these steps are not
required, and you can move on to Step 3.

a. Create a database link from the db2.example.com database to the
db1.example.com database.

The database link should be created in the Oracle Streams administrator's
schema. Also, the database link should connect to the Oracle Streams
administrator at the other database. Both the name and the service name of
the database link must be db1.example.com. See "Configuring Network
Connectivity and Database Links" for instructions.

b. Configure the db2.example.com database to run in ARCHIVELOG mode. For a
capture process to capture changes generated at a source database, the
source database must be running in ARCHIVELOG mode. See Oracle Database
Administrator's Guide for information about configuring a database to run in
ARCHIVELOG mode.

3. Set initialization parameters properly at each database that will participate in the
Oracle Streams replication environment. See "Setting Initialization Parameters
Relevant to Oracle Streams""Setting Initialization Parameters Relevant to Oracle
Streams" for instructions.

4. Create the following required directory objects:

• A source directory object at the source database. This example assumes that
this directory object is source_directory.

• A destination directory object at the destination database. This example
assumes that this directory object is dest_directory.

See "Creating the Required Directory Objects" for instructions.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-27

5. In SQL*Plus, connect to the db1.example.com database as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

6. Run the MAINTAIN_SCHEMAS procedure to configure replication of the hr schema
between the db1.example.com database and the db2.example.com database.

Ensure that the bi_directional parameter is set properly for the replication
environment that you are configuring. Either set this parameter to FALSE for one-
way replication, or set it to TRUE for bi-directional replication.

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS(
 schema_names => 'hr',
 source_directory_object => 'source_directory',
 destination_directory_object => 'dest_directory',
 source_database => 'db1.example.com',
 destination_database => 'db2.example.com',
 bi_directional => FALSE); -- Set to TRUE for bi-directional
END;
/

The MAINTAIN_SCHEMAS procedure can take some time to run because it is
performing many configuration tasks. Do not allow data manipulation language
(DML) or data definition language (DDL) changes to the replicated database
objects at the destination database while the procedure is running.

When a configuration procedure is run, information about its progress is recorded
in the following data dictionary views: DBA_RECOVERABLE_SCRIPT,
DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and
DBA_RECOVERABLE_SCRIPT_ERRORS. If the procedure stops because it encounters an
error, then see Oracle Streams Replication Administrator's Guide for instructions
about using the RECOVER_OPERATION procedure in the DBMS_STREAMS_ADM package to
recover from these errors.

7. If you configured bi-directional replication, then configure latest time conflict
resolution for all of the tables in the hr schema at both databases. This schema
includes the countries, departments, employees, jobs, job_history, locations, and
regions tables. See Oracle Streams Conflict Resolution for instructions.

See Also:

The Oracle Enterprise Manager Cloud Control online help for an example that
configures this replication environment using Oracle Enterprise Manager
Cloud Control

2.2.4.3 Configuring Two-Database Table Replication with Local Capture
You can use the MAINTAIN_TABLES procedure in the DBMS_STREAMS_ADM package to
configure table replication. The example in this section uses this procedure to
configure an Oracle Streams replication environment that maintains specific tables in
the hr schema. The source database is dbs1.example.com, and the destination
database is dbs2.example.com.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-28

The following table lists the decisions that were made about the Oracle Streams
replication environment configured in this example.

Decision Assumption for This Example

Decide Which Type of Replication
Environment to Configure

This example configures one-way replication
in a two database environment where the
source database is read/write and the
destination database is read-only.

Decide Whether to Configure Local or
Downstream Capture for the Source Database

This example configures local capture for the
source database.

Decide Whether Changes Are Allowed at One
Database or at Multiple Databases

This example configures a replication
environment that allows changes only at the
source database.

Decide Whether the Replication Environment
Will Have Nonidentical Replicas

This example configures identical shared
database objects at the databases.

Decide Whether the Replication Environment
Will Use Apply Handlers

This example does not configure apply
handlers.

Decide Whether to Maintain DDL Changes This example maintains DDL changes for a
subset of the shared database objects.

Decide How to Configure the Replication
Environment

This example uses the MAINTAIN_TABLES
procedure to configure the environment.

The replication environment maintains the following DML and DDL changes for the
shared database objects:

• The replication environment will maintain DML changes to the following tables in
the hr schema:

– departments

– employees

– countries

– regions

– locations

– jobs

– job_history

• The replication environment will maintain DDL changes to the following tables in
the hr schema:

– departments

– employees

The replication environment does not maintain DDL changes to the following tables in
the hr schema:

• countries

• regions

• locations

• jobs

• job_history

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-29

In this example, the MAINTAIN_TABLES procedure will not configure the replication
environment directly. Instead, a configuration script will be generated, and this script
will be modified so that DDL changes to the following tables are maintained:
departments and employees. A Data Pump network import instantiation will be
performed.

Ensure that you do not try to replicate tables that are not supported by Oracle
Streams.

Figure 2-3 provides an overview of the replication environment created in this
example.

Figure 2-3 Sample Oracle Streams Environment That Replicates Tables

Oracle Database

dbs1.example.com

Capture

Changes

Capture Process

Redo

Log

Enqueue

Changes

Propagation Send

Changes

Queue

Database Objects
Record Changes

Oracle Database

dbs2.example.com

Dequeue

Changes

Apply Process

Apply

Changes

Queue

Tables in

hr Schema

Database Objects

Tables in

hr Schema

See Also:

Oracle Streams Concepts and Administration for instructions on determining
which database objects are not supported by Oracle Streams

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-30

Complete the following steps to use the MAINTAIN_TABLES procedure to configure the
environment:

1. Complete the required tasks before running the MAINTAIN_TABLES procedure. See
"Tasks to Complete Before Configuring Oracle Streams Replication" for
instructions.

For this configuration, the following tasks must be completed:

• Configure an Oracle Streams administrator at both databases. See
"Configuring an Oracle Streams Administrator on All Databases".

• Configure network connectivity and database links:

– Configure network connectivity between the source database
dbs1.example.com and the destination database dbs2.example.com.

– Create a database link from the source database dbs1.example.com to the
destination database dbs2.example.com.

– Because the MAINTAIN_TABLES procedure will perform a Data Pump network
import instantiation, create a database link from the destination database
dbs2.example.com to the source database dbs1.example.com.

See "Configuring Network Connectivity and Database Links".

• Ensure that the source database dbs1.example.com is in ARCHIVELOG mode. See
"Ensuring That Each Source Database Is In ARCHIVELOG Mode".

• Ensure that the initialization parameters are set properly at both databases.
See "Setting Initialization Parameters Relevant to Oracle Streams".

• Configure the Oracle Streams pool properly at both databases. See
"Configuring the Oracle Streams Pool".

2. Create a script directory object at the source database. This example assumes
that this directory object is script_directory.

See "Creating the Required Directory Objects" for instructions.

3. In SQL*Plus, connect to the source database dbs1.example.com as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

4. Run the MAINTAIN_TABLES procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 BEGIN
 tables(1) := 'hr.departments';
 tables(2) := 'hr.employees';
 tables(3) := 'hr.countries';
 tables(4) := 'hr.regions';
 tables(5) := 'hr.locations';
 tables(6) := 'hr.jobs';
 tables(7) := 'hr.job_history';
 DBMS_STREAMS_ADM.MAINTAIN_TABLES(
 table_names => tables,
 source_directory_object => NULL,
 destination_directory_object => NULL,
 source_database => 'dbs1.example.com',
 destination_database => 'dbs2.example.com',
 perform_actions => FALSE,

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-31

 script_name => 'configure_rep.sql',
 script_directory_object => 'script_directory',
 bi_directional => FALSE,
 include_ddl => FALSE,
 instantiation => DBMS_STREAMS_ADM.INSTANTIATION_TABLE_NETWORK);
END;
/

The configure_rep.sql script generated by the procedure uses default values for
the parameters that are not specified in the procedure call. The script uses
system-generated names for the ANYDATA queues, queue tables, capture process,
propagation, and apply process it creates. You can specify different names by
using additional parameters available in the MAINTAIN_TABLES procedure. Notice that
the include_ddl parameter is set to FALSE. Therefore, the script does not configure
the replication environment to maintain DDL changes to the tables.

The procedure does not specify the apply_name parameter. Therefore, the default,
NULL, is specified for this parameter. When the apply_name parameter is set to NULL,
no apply process that applies changes from the source database can exist on the
destination database. If an apply process that applies changes from the source
database exists at the destination database, then specify a non-NULL value for the
apply_name parameter.

5. Modify the configure_rep.sql script:

a. Navigate to the directory that corresponds with the script_directory directory
object on the computer system running the source database.

b. Open the configure_rep.sql script in a text editor. Consider making a backup
of this script before modifying it.

c. In the script, find the ADD_TABLE_RULES and ADD_TABLE_PROPAGATION_RULES
procedure calls that create the table rules for the hr.departments and
hr.employees tables. For example, the procedure calls for the capture process
look similar to the following:

dbms_streams_adm.add_table_rules(
 table_name => '"HR"."DEPARTMENTS"',
 streams_type => 'CAPTURE',
 streams_name => '"DBS1$CAP"',
 queue_name => '"STRMADMIN"."DBS1$CAPQ"',
 include_dml => TRUE,
 include_ddl => FALSE,
 include_tagged_lcr => TRUE,
 source_database => 'DBS1.EXAMPLE.COM',
 inclusion_rule => TRUE,
 and_condition => get_compatible);

dbms_streams_adm.add_table_rules(
 table_name => '"HR"."EMPLOYEES"',
 streams_type => 'CAPTURE',
 streams_name => '"DBS1$CAP"',
 queue_name => '"STRMADMIN"."DBS1$CAPQ"',
 include_dml => TRUE,
 include_ddl => FALSE,
 include_tagged_lcr => TRUE,
 source_database => 'DBS1.EXAMPLE.COM',
 inclusion_rule => TRUE,
 and_condition => get_compatible);

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-32

d. In the procedure calls that you found in Step 5.c, change the setting of the
include_ddl parameter to TRUE. For example, the procedure calls for the
capture process should look similar to the following after the modification:

dbms_streams_adm.add_table_rules(
 table_name => '"HR"."DEPARTMENTS"',
 streams_type => 'CAPTURE',
 streams_name => '"DBS1$CAP"',
 queue_name => '"STRMADMIN"."DBS1$CAPQ"',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'DBS1.EXAMPLE.COM',
 inclusion_rule => TRUE,
 and_condition => get_compatible);

dbms_streams_adm.add_table_rules(
 table_name => '"HR"."EMPLOYEES"',
 streams_type => 'CAPTURE',
 streams_name => '"DBS1$CAP"',
 queue_name => '"STRMADMIN"."DBS1$CAPQ"',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'DBS1.EXAMPLE.COM',
 inclusion_rule => TRUE,
 and_condition => get_compatible);

Remember to change the procedure calls for all capture processes,
propagations, and apply processes.

e. Save and close the configure_rep.sql script.

6. In SQL*Plus, connect to the source database dbs1.example.com as the Oracle
Streams administrator.

7. At the source database, run the configuration script:

SET ECHO ON
SPOOL configure_rep.out
@configure_rep.sql

The script prompts you to supply information about the database names and the
Oracle Streams administrators. When this configuration script completes, the
Oracle Streams single-source replication environment is configured. The script
also starts the queues, capture process, propagations, and apply process.

The resulting single-source replication environment has the following characteristics:

• At the source database, supplemental logging is configured for the shared
database objects.

• The source database dbs1.example.com has a queue and queue table with system-
generated names.

• The destination database dbs2.example.com has a queue and queue table with
system-generated names.

• At the source database, a capture process with a system-generated name
captures DML changes to all of the tables in the hr schema and DDL changes to
the hr.departments and hr.employees tables.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-33

• A propagation running on the source database with a system-generated name
sends the captured changes from the queue at the source database to the queue
at the destination database.

• At the destination database, an apply process with a system-generated name
dequeues the changes from the queue and applies them to the tables at the
destination database.

2.2.5 Examples That Configure Two-Database Replication with
Downstream Capture

Each of the following examples configures a two-database replication environment that
uses a downstream capture process:

• Configuring Tablespace Replication with Downstream Capture at Destination

• Configuring Schema Replication with Downstream Capture at Destination

• Configuring Schema Replication with Downstream Capture at Third Database

2.2.5.1 Configuring Tablespace Replication with Downstream Capture at
Destination

You can use the following procedures in the DBMS_STREAMS_ADM package to configure
tablespace replication:

• MAINTAIN_SIMPLE_TTS

• MAINTAIN_TTS

• PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP

You can use the MAINTAIN_SIMPLE_TTS procedure to configure Oracle Streams
replication for a simple tablespace, and you can use the MAINTAIN_TTS procedure to
configure Oracle Streams replication for a set of self-contained tablespaces. These
procedures use transportable tablespaces, Data Pump, the
DBMS_STREAMS_TABLESPACE_ADM package, and the DBMS_FILE_TRANSFER package to
configure the environment.

A self-contained tablespace has no references from the tablespace pointing outside of
the tablespace. For example, if an index in the tablespace is for a table in a different
tablespace, then the tablespace is not self-contained. A simple tablespace is a self-
contained tablespace that uses only one data file. When there are multiple
tablespaces in a tablespace set, a self-contained tablespace set has no references
from inside the set of tablespaces pointing outside of the set of tablespaces.

These procedures clone the tablespace or tablespaces being configured for replication
from the source database to the destination database. The MAINTAIN_SIMPLE_TTS
procedure uses the CLONE_SIMPLE_TABLESPACE procedure in the
DBMS_STREAMS_TABLESPACE_ADM package, and the MAINTAIN_TTS procedure uses the
CLONE_TABLESPACES procedure in the DBMS_STREAMS_TABLESPACE_ADM package. When a
tablespace is cloned, it is made read-only automatically until the clone operation is
complete.

The example in this section uses the MAINTAIN_TTS procedure to configure an Oracle
Streams replication environment that maintains the following tablespaces using Oracle
Streams:

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-34

• tbs1

• tbs2

The source database is dbs1.example.com, and the destination database is
dbs2.example.com.

The following table lists the decisions that were made about the Oracle Streams
replication environment configured in this example.

Decision Assumption for This Example

Decide Which Type of Replication
Environment to Configure

This example configures one-way replication
in a two database environment where the
source database is read/write and the
destination database is read-only.

Decide Whether to Configure Local or
Downstream Capture for the Source Database

This example configures a downstream
capture process running on the destination
database (dbs2.example.com) that captures
changes made to the source database
(dbs1.example.com). The downstream capture
process will be an archived-log downstream
capture process.

Decide Whether Changes Are Allowed at One
Database or at Multiple Databases

This example configures a replication
environment that allows changes only at the
source database.

Decide Whether the Replication Environment
Will Have Nonidentical Replicas

This example configures identical shared
database objects at the databases.

Decide Whether the Replication Environment
Will Use Apply Handlers

This example does not configure apply
handlers.

Decide Whether to Maintain DDL Changes This example maintains DDL changes to the
tablespaces and the database objects in the
tablespaces.

Decide How to Configure the Replication
Environment

This example uses the MAINTAIN_TTS
procedure to configure the environment.

In this example, the MAINTAIN_TTS procedure will configure the replication environment
directly. A configuration script will not be generated. In addition, this example makes
the following assumptions:

• The tablespaces tbs1 and tbs2 make a self-contained tablespace set at the source
database dbs1.example.com.

• The data files for the tablespace set are both in the /orc/dbs directory at the
source database dbs1.example.com.

• The dbs2.example.com database does not contain the tablespace set currently.

The MAINTAIN_SIMPLE_TTS and MAINTAIN_TTS procedures automatically exclude database
objects that are not supported by Oracle Streams from the replication environment by
adding rules to the negative rule set of each capture and apply process. The
PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures enable you to
specify which database objects to exclude from the replication environment.

Query the DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database
objects are not supported by Oracle Streams. If unsupported database objects are not
excluded, then capture errors will result.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-35

Figure 2-4 provides an overview of the replication environment created in this
example.

Figure 2-4 Sample Oracle Streams Environment That Replicates Tablespaces

Oracle Database

dbs1.example.com

Redo

Log

Archived Redo

Log from

dbs1.example.com

Sent by Redo Transport

Services

Tablespaces

TBS1 and TBS2

Record Changes

Capture DML and �
DDL Changes to �
Tablespaces

Apply Changes

Oracle Database

dbs2.example.com

Enqueue

Changes

Dequeue

Changes

Tablespaces

TBS1 and TBS2

Apply Process

apply_tts

Capture Process

capture_tts

Queue

streams_queue

See Also:

Oracle Streams Concepts and Administration for instructions on determining
which database objects are not supported by Oracle Streams

Complete the following steps to use the MAINTAIN_TTS procedure to configure the
environment:

1. Complete the required tasks before running the MAINTAIN_TTS procedure. See
"Tasks to Complete Before Configuring Oracle Streams Replication" for
instructions.

For this configuration, the following tasks must be completed:

• Configure an Oracle Streams administrator at both databases. See
"Configuring an Oracle Streams Administrator on All Databases".

• Configure network connectivity and database links:

– Configure network connectivity between the source database
dbs1.example.com and the destination database dbs2.example.com.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-36

– Create a database link from the source database dbs1.example.com to the
destination database dbs2.example.com.

– Because downstream capture will be configured at the destination
database, create a database link from the destination database
dbs2.example.com to the source database dbs1.example.com.

See "Configuring Network Connectivity and Database Links".

• Ensure that both databases are in ARCHIVELOG mode. See "Ensuring That Each
Source Database Is In ARCHIVELOG Mode".

• Ensure that the initialization parameters are set properly at both databases.
See "Setting Initialization Parameters Relevant to Oracle Streams".

• Configure the Oracle Streams pool properly at both databases. See
"Configuring the Oracle Streams Pool".

• Because the destination database will be the capture database for changes
made to the source database, configure log file copying from the source
database dbs1.example.com to the destination database dbs2.example.com. The
capture process will be an archived-log downstream capture process. See
"Configuring Log File Transfer to a Downstream Capture Database".

2. Create the following required directory objects:

• A source directory object at the source database. This example assumes that
this directory object is source_directory.

• A destination directory object at the destination database. This example
assumes that this directory object is dest_directory.

See "Creating the Required Directory Objects" for instructions.

3. In SQL*Plus, connect to the database that contains the tablespace set as the
Oracle Streams administrator. In this example, connect to the dbs1.example.com
database.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

4. Create a directory object for the directory that contains the data files for the
tablespaces in the tablespace set. For example, the following statement creates a
directory object named tbs_directory that corresponds to the /orc/dbs directory:

CREATE DIRECTORY tbs_directory AS '/orc/dbs';

If the data files are in multiple directories, then a directory object must exist for
each of these directories, and the user who runs the MAINTAIN_TTS procedure in
Step 6 must have READ privilege on these directory objects. In this example, the
Oracle Streams administrator has this privilege because this user creates the
directory object.

5. In SQL*Plus, connect to the destination database dbs2.example.com as the Oracle
Streams administrator.

6. Run the MAINTAIN_TTS procedure:

DECLARE
 t_names DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 -- Tablespace names
 t_names(1) := 'TBS1';
 t_names(2) := 'TBS2';

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-37

 DBMS_STREAMS_ADM.MAINTAIN_TTS(
 tablespace_names => t_names,
 source_directory_object => 'source_directory',
 destination_directory_object => 'dest_directory',
 source_database => 'dbs1.example.com',
 destination_database => 'dbs2.example.com',
 perform_actions => TRUE,
 capture_name => 'capture_tts',
 capture_queue_table => 'streams_queue_table',
 capture_queue_name => 'streams_queue',
 apply_name => 'apply_tts',
 apply_queue_table => 'streams_queue_table',
 apply_queue_name => 'streams_queue');
 bi_directional => FALSE,
 include_ddl => TRUE);
END;
/

When this procedure completes, the Oracle Streams single-source replication
environment is configured.

Because the procedure is run at the destination database, downstream capture is
configured at the destination database for changes to the source database. When
you use a configuration procedure to configure downstream capture, the
parameters that specify the queue and queue table names are important. In such
a configuration, it is more efficient for the capture process and apply process to
use the same queue at the downstream capture database to avoid propagating
changes between queues. To improve efficiency in this sample configuration,
notice that streams_queue is specified for both the capture_queue_name and
apply_queue_name parameters. Also, streams_queue_table is specified for both the
capture_queue_table and apply_queue_table parameters.

To monitor the progress of the configuration operation, follow the instructions in
"Monitoring Oracle Streams Configuration Progress".

If this procedure encounters an error and stops, then see "Recovering from
Operation Errors" for information about either recovering from the error or rolling
back the configuration operation.

The resulting single-source replication environment has the following characteristics:

• Supplemental logging is configured for the shared database objects at the source
database dbs1.example.com.

• The dbs1.example.com database has a queue named streams_queue which uses a
queue table named streams_queue_table. This queue is for the apply process.

• The dbs2.example.com database has a queue named streams_queue which uses a
queue table named streams_queue_table. This queue is shared by the downstream
capture process and the apply process.

• At the dbs2.example.com database, an archived-log downstream capture process
named capture_tts captures changes made to the source database. Specifically,
this downstream capture process captures DML changes made to the tables in the
tbs1 and tbs2 tablespaces and DDL changes to these tablespaces and the
database objects in them.

If the capture process is not enabled after an inordinately long time, then check the
alert log for errors. See Oracle Streams Concepts and Administration for more
information.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-38

• At the dbs2.example.com database, an apply process named apply_tts dequeues
the changes from its queue and applies them to the shared database objects.

2.2.5.2 Configuring Schema Replication with Downstream Capture at
Destination

This example configures an Oracle Streams replication environment that replicates
data manipulation language (DML) changes to all of the tables in the hr schema. This
example configures a two-database replication environment with a downstream
capture process at the destination database. This example uses the global database
names src.example.com and dest.example.com. However, you can substitute databases
in your environment to complete the example. See "Decide Which Type of Replication
Environment to Configure" for more information about two-database replication
environments.

In this example, the downstream capture process runs on the destination database
dest.example.com. Therefore, the resources required to capture changes are freed at
the source database src.example.com. This example configures a real-time
downstream capture process, not an archived-log downstream capture process. The
advantage of real-time downstream capture is that it reduces the amount of time
required to capture the changes made at the source database. The time is reduced
because the real-time downstream capture process does not need to wait for the redo
log file to be archived before it can capture data from it.

The following table lists the decisions that were made about the Oracle Streams
replication environment configured in this example.

Decision Assumption for This Example

Decide Which Type of Replication
Environment to Configure

This example configures one-way replication
in a two database environment where the
source database is read/write and the
destination database is read-only.

Decide Whether to Configure Local or
Downstream Capture for the Source Database

This example configures a downstream
capture process running on the destination
database (dest.example.com) that captures
changes made to the source database
(src.example.com). The downstream capture
process will be a real-time downstream
capture process.

Decide Whether Changes Are Allowed at One
Database or at Multiple Databases

This example configures a replication
environment that allows changes only at the
source database.

Decide Whether the Replication Environment
Will Have Nonidentical Replicas

This example configures identical shared
database objects at the databases.

Decide Whether the Replication Environment
Will Use Apply Handlers

This example does not configure apply
handlers.

Decide Whether to Maintain DDL Changes This example maintains DDL changes to the
tablespaces and the database objects in the
tablespaces.

Decide How to Configure the Replication
Environment

This example uses the MAINTAIN_SCHEMAS
procedure to configure the environment.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-39

The database objects being configured for replication might or might not exist at the
destination database when you run the MAINTAIN_SCHEMAS procedure. If the database
objects do not exist at the destination database, then the MAINTAIN_SCHEMAS procedure
instantiates them at the destination database using a Data Pump export/import. During
instantiation, the instantiation SCN is set for these database objects. If the database
objects already exist at the destination database, then the MAINTAIN_SCHEMAS procedure
retains the existing database objects and sets the instantiation SCN for them. In this
example, the hr schema exists at both the src.example.com database and the
dest.example.com database before the MAINTAIN_SCHEMAS procedure is run.

In this example, the MAINTAIN_SCHEMAS procedure will configure the replication
environment directly. A configuration script will not be generated. A Data Pump export
dump file instantiation will be performed.

Figure 2-5 provides an overview of the environment created in this example.

Figure 2-5 Two-Database Replication Environment with a Downstream Capture
Process

Sent by Redo Transport Services

Oracle Database

src.example.com

Queue

streams_queue

Oracle Database

dest.example.com

Enqueue�
Changes

Dequeue

Changes

Apply�
Changes

Record�
Changes

Capture DML

Changes to

hr Schema

Redo�
Log

Redo Log from�
src.example.com

Capture Process

capture

Apply Process

apply

Tables in

hr schema

Tables in

hr schema

Complete the following steps to use the MAINTAIN_SCHEMAS procedure to configure the
environment:

1. Complete the following tasks to prepare for the two-database replication
environment:

a. Configure network connectivity so that the src.example.com database and the
dest.example.com database can communicate with each other.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-40

See Oracle Database 2 Day DBA for information about configuring network
connectivity between databases.

b. Configure an Oracle Streams administrator at each database that will
participate in the replication environment. See "Configuring an Oracle Streams
Administrator on All Databases" for instructions. This example assumes that
the Oracle Streams administrator is strmadmin.

c. Create a database link from the source database to the destination database
and from the destination database to the source database. In this example,
create the following database links:

• From the src.example.com database to the dest.example.com database.
Both the name and the service name of the database link must be
dest.example.com.

• From the dest.example.com database to the src.example.com database.
Both the name and the service name of the database link must be
src.example.com.

The database link from the dest.example.com database to the src.example.com
database is necessary because the src.example.com database is the source
database for the downstream capture process at the dest.example.com
database. This database link simplifies the creation and configuration of the
capture process.

Each database link should be created in the Oracle Streams administrator's
schema. Also, each database link should connect to the Oracle Streams
administrator at the other database. See "Configuring Network Connectivity
and Database Links" for instructions.

d. Set initialization parameters properly at each database that will participate in
the Oracle Streams replication environment. See "Setting Initialization
Parameters Relevant to Oracle Streams" for instructions.

e. Configure both databases to run in ARCHIVELOG mode. For a downstream
capture process to capture changes generated at a source database, both the
source database and the downstream capture database must be running in
ARCHIVELOG mode. In this example, the src.example.com and dest.example.com
databases must be running in ARCHIVELOG mode. See Oracle Database
Administrator's Guide for information about configuring a database to run in
ARCHIVELOG mode.

f. Because the destination database (dest.example.com) will be the capture
database for changes made to the source database, configure log file copying
from the source database src.example.com to the destination database
dest.example.com. See "Configuring Log File Transfer to a Downstream
Capture Database".

g. Because this example configures a real-time downstream capture process,
add standby redo logs at the downstream database. See "Adding Standby
Redo Logs for Real-Time Downstream Capture".

2. Create the following required directory objects:

• A source directory object at the source database. This example assumes that
this directory object is source_directory.

• A destination directory object at the destination database. This example
assumes that this directory object is dest_directory.

See "Creating the Required Directory Objects" for instructions.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-41

3. In SQL*Plus, connect to the dest.example.com database as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

4. While still connected to the dest.example.com database as the Oracle Streams
administrator, run the MAINTAIN_SCHEMAS procedure to configure replication between
the src.example.com database and the dest.example.com database:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS(
 schema_names => 'hr',
 source_directory_object => 'source_directory',
 destination_directory_object => 'dest_directory',
 source_database => 'src.example.com',
 destination_database => 'dest.example.com',
 capture_name => 'capture',
 capture_queue_table => 'streams_queue_qt',
 capture_queue_name => 'streams_queue',
 apply_name => 'apply',
 apply_queue_table => 'streams_queue_qt',
 apply_queue_name => 'streams_queue');
END;
/

The MAINTAIN_SCHEMAS procedure can take some time to run because it is
performing many configuration tasks. Do not allow data manipulation language
(DML) or data definition language (DDL) changes to the replicated database
objects at the destination database while the procedure is running.

In the MAINTAIN_SCHEMAS procedure, only the following parameters are required:
schema_names, source_directory_object, destination_directory_object,
source_database, and destination_database.

This example specifies the other parameters to show that you can choose the
name for the capture process, capture process's queue table, capture process's
queue, apply process, apply process's queue table, and apply process's queue. If
you do not specify these parameters, then system-generated names are used.

When you use a configuration procedure to configure downstream capture, the
parameters that specify the queue and queue table names are important. In such
a configuration, it is more efficient for the capture process and apply process to
use the same queue at the downstream capture database to avoid propagating
changes between queues. To improve efficiency in this sample configuration,
notice that streams_queue is specified for both the capture_queue_name and
apply_queue_name parameters. Also, streams_queue_qt is specified for both the
capture_queue_table and apply_queue_table parameters.

When a configuration procedure is run, information about its progress is recorded
in the following data dictionary views: DBA_RECOVERABLE_SCRIPT,
DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and
DBA_RECOVERABLE_SCRIPT_ERRORS. If the procedure stops because it encounters an
error, then see Oracle Streams Replication Administrator's Guide for instructions
about using the RECOVER_OPERATION procedure in the DBMS_STREAMS_ADM package to
recover from these errors.

Wait until the procedure completes successfully before proceeding to the next
step.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-42

5. While still connected to the dest.example.com database as the Oracle Streams
administrator, set the downstream_real_time_mine capture process parameter to Y:

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name => 'capture',
 parameter => 'downstream_real_time_mine',
 value => 'Y');
END;
/

6. In SQL*Plus, connect to the source database src.example.com as an administrative
user.

7. Archive the current log file at the source database:

ALTER SYSTEM ARCHIVE LOG CURRENT;

Archiving the current log file at the source database starts real-time mining of the
source database redo log.

If the capture process appears to be waiting for redo data for an inordinately long
time, then check the alert log for errors. See Oracle Streams Concepts and
Administration for more information.

See Also:

The Oracle Enterprise Manager Cloud Control online help for an example that
configures this replication environment using Oracle Enterprise Manager
Cloud Control

2.2.5.3 Configuring Schema Replication with Downstream Capture at Third
Database

You can use the MAINTAIN_SCHEMAS procedure in the DBMS_STREAMS_ADM package to
configure schema replication. The example in this section uses this procedure to
configure an Oracle Streams replication environment that maintains the hr schema.
The source database is dbs1.example.com, and the destination database is
dbs3.example.com.

The following table lists the decisions that were made about the Oracle Streams
replication environment configured in this example.

Decision Assumption for This Example

Decide Which Type of Replication
Environment to Configure

This example configures bi-directional
replication in a two database environment
where both databases are read/write.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-43

Decision Assumption for This Example

Decide Whether to Configure Local or
Downstream Capture for the Source Database

This example configures a downstream
capture process running on a third database
named dbs2.example.com that captures
changes made to the source database
(dbs1.example.com), and a propagation at
dbs2.example.com will propagate these
captured changes to the destination database
(dbs3.example.com). The downstream capture
process will be a real-time downstream
capture process.

Decide Whether Changes Are Allowed at One
Database or at Multiple Databases

This example configures a replication
environment that allows changes to the
replicated database objects at both databases.

Decide Whether the Replication Environment
Will Have Nonidentical Replicas

This example configures identical shared
database objects at the databases.

Decide Whether the Replication Environment
Will Use Apply Handlers

This example does not configure apply
handlers.

Decide Whether to Maintain DDL Changes This example maintains DDL changes to hr
schema and the database objects in the hr
schema will be maintained.

Decide How to Configure the Replication
Environment

This example uses the MAINTAIN_SCHEMAS
procedure to configure the environment.

In this example, the MAINTAIN_SCHEMAS procedure will configure the replication
environment directly. A configuration script will not be generated. A Data Pump export
dump file instantiation will be performed.

The MAINTAIN_SCHEMAS procedure automatically excludes database objects that are not
supported by Oracle Streams from the replication environment by adding rules to the
negative rule set of each capture and apply process. Query the
DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database objects are
not supported by Oracle Streams. If unsupported database objects are not excluded,
then capture errors will result.

Figure 2-6 provides an overview of the replication environment created in this
example.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-44

Figure 2-6 Sample Oracle Streams Environment That Replicates a Schema

Oracle Database
dbs1.example.com

Dequeue
Changes

Record
Changes

Apply Changes
Apply Process

apply_hr

Queue

rep_dest_queue
Local
Redo
Log

Oracle Database
dbs3.example.com

Enqueue
Changes

Dequeue
Changes

Record
Changes

Apply
Changes

Queue

rep_capture_queue

Queue

rep_dest_queue

Apply Process

apply_hr

Capture Process

capture_hr

Local
Redo
Log

Oracle Database
dbs2.example.com

Standby Redo
Log from
dbs1.example.com

Archived Redo
Log from
dbs1.example.com

Capture DML and
DDL Changes to
Schema

ARCn
Capture Process

capture_hr

Queue

rep_capture_queue

Sent by Redo Transport Services

prop_hr Propagation
Send Changes

hr Schema

Capture DML and
DDL Changes to
Schema

prop_hr
Propagation
Send Changes

hr Schema

Enqueue
Changes

See Also:

Oracle Streams Concepts and Administration for instructions on determining
which database objects are not supported by Oracle Streams

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-45

Complete the following steps to use the MAINTAIN_SCHEMAS procedure to configure the
environment:

1. Complete the required tasks before running the MAINTAIN_SCHEMAS procedure. See
"Tasks to Complete Before Configuring Oracle Streams Replication" for
instructions.

For this configuration, the following tasks must be completed:

• Configure an Oracle Streams administrator at all three databases. See
"Configuring an Oracle Streams Administrator on All Databases".

• Configure network connectivity and database links:

– Configure network connectivity between all three databases: the source
database dbs1.example.com, the destination database dbs3.example.com,
and the third database dbs2.example.com.

– Create a database link from the source database dbs1.example.com to the
destination database dbs3.example.com.

– Because downstream capture will be configured at the third database,
create a database link from the third database dbs2.example.com to the
source database dbs1.example.com.

– Because downstream capture will be configured at the third database,
create a database link from the third database dbs2.example.com to the
destination database dbs3.example.com.

– Because the replication environment will be bi-directional, create a
database link from the destination database dbs3.example.com to the
source database dbs1.example.com.

See "Configuring Network Connectivity and Database Links".

• Ensure that the source database, the destination databases, and the third
database are in ARCHIVELOG mode. See "Ensuring That Each Source Database
Is In ARCHIVELOG Mode".

• Ensure that the initialization parameters are set properly at all databases. See
"Setting Initialization Parameters Relevant to Oracle Streams".

• Configure the Oracle Streams pool properly at both databases. See
"Configuring the Oracle Streams Pool".

• Because a third database (dbs2.example.com) will be the capture database for
changes made to the source database, configure log file copying from the
source database dbs1.example.com to the third database dbs2.example.com. See
"Configuring Log File Transfer to a Downstream Capture Database".

• Because this example configures a real-time downstream capture process,
add standby redo logs at the downstream database (dbs2.example.com). See
"Adding Standby Redo Logs for Real-Time Downstream Capture".

2. Create the following required directory objects:

• A source directory object at the source database. This example assumes that
this directory object is source_directory.

• A destination directory object at the destination database. This example
assumes that this directory object is dest_directory.

See "Creating the Required Directory Objects" for instructions.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-46

3. In SQL*Plus, connect to the third database dbs2.example.com as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

4. Run the MAINTAIN_SCHEMAS procedure:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS(
 schema_names => 'hr',
 source_directory_object => 'source_directory',
 destination_directory_object => 'dest_directory',
 source_database => 'dbs1.example.com',
 destination_database => 'dbs3.example.com',
 perform_actions => TRUE,
 dump_file_name => 'export_hr.dmp',
 capture_queue_table => 'rep_capture_queue_table',
 capture_queue_name => 'rep_capture_queue',
 capture_queue_user => NULL,
 apply_queue_table => 'rep_dest_queue_table',
 apply_queue_name => 'rep_dest_queue',
 apply_queue_user => NULL,
 capture_name => 'capture_hr',
 propagation_name => 'prop_hr',
 apply_name => 'apply_hr',
 log_file => 'export_hr.clg',
 bi_directional => TRUE,
 include_ddl => TRUE,
 instantiation => DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA);
END;
/

Because this procedure configures a bi-directional replication environment, do not
allow DML or DDL changes to the shared database objects at the destination
database while the procedure is running.

Because the procedure is run at the third database, downstream capture is
configured at the third database for changes to the source database.

To monitor the progress of the configuration operation, follow the instructions in
"Monitoring Oracle Streams Configuration Progress".

If this procedure encounters an error and stops, then see "Recovering from
Operation Errors" for information about either recovering from the error or rolling
back the configuration operation.

5. Set the downstream_real_time_mine capture process parameter to Y:

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name => 'capture_hr',
 parameter => 'downstream_real_time_mine',
 value => 'Y');
END;
/

6. Connect to the source database dbs1.example.com as an administrative user with
the necessary privileges to switch log files.

7. Archive the current log file at the source database:

ALTER SYSTEM ARCHIVE LOG CURRENT;

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-47

Archiving the current log file at the source database starts real time mining of the
source database redo log.

If the capture process appears to be waiting for redo data for an inordinately long
time, then check the alert log for errors. See Oracle Streams Concepts and
Administration for more information.

8. Configure conflict resolution for the shared database objects if necessary.

Typically, conflicts are possible in a bi-directional replication environment. If
conflicts are possible in the environment created by the MAINTAIN_SCHEMAS
procedure, then configure conflict resolution before you allow users to make
changes to the shared database objects.

See Oracle Streams Conflict Resolution for information.

The bi-directional replication environment configured in this example has the following
characteristics:

• Supplemental logging is configured for the shared database objects at the source
and destination databases.

• The dbs1.example.com database has a queue named rep_dest_queue which uses a
queue table named rep_dest_queue_table. This queue is for the apply process.

• The dbs3.example.com database has a queue named rep_capture_queue which uses
a queue table named rep_capture_queue_table. This queue is for the local capture
process.

• The dbs3.example.com database has a queue named rep_dest_queue which uses a
queue table named rep_dest_queue_table. This queue is for the apply process.

• The dbs2.example.com database has a queue named rep_capture_queue which uses
a queue table named rep_capture_queue_table. This queue is for the downstream
capture process.

• At the dbs2.example.com database, a real-time downstream capture process named
capture_hr captures DML and DDL changes to the hr schema and the database
objects in the schema at the source database.

• At the dbs3.example.com database, a local capture process named capture_hr
captures DML and DDL changes to the hr schema and the database objects in the
schema at the destination database.

• A propagation running on the dbs2.example.com database named prop_hr sends the
captured changes from the queue in the dbs2.example.com database to the queue
in the dbs3.example.com database.

• A propagation running on the dbs3.example.com database named prop_hr sends the
captured changes from the queue in the dbs3.example.com database to the queue
in the dbs1.example.com database.

• At the dbs1.example.com database, an apply process named apply_hr dequeues the
changes from rep_dest_queue and applies them to the database objects.

• At the dbs3.example.com database, an apply process named apply_hr dequeues the
changes from rep_dest_queue and applies them to the database objects.

• Tags are used to avoid change cycling. Specifically, each apply process uses an
apply tag so that redo records for changes applied by the apply process include
the tag. Each apply process uses an apply tag that is unique in the replication
environment. Each propagation discards changes that have the tag of the apply

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-48

process running on the same database. See "Change Cycling and Tags" for more
information.

2.2.6 Example That Configures Two-Database Replication with
Synchronous Captures

This example configures an Oracle Streams replication environment that replicates
data manipulation language (DML) changes to two tables in the hr schema. This
example uses a synchronous capture at each database to capture these changes. In
this example, the global names of the databases in the Oracle Streams replication
environment are sync1.example.com and sync2.example.com. However, you can
substitute any two databases in your environment to complete the example.

Specifically, this example configures a two-database Oracle Streams replication
environment that shares the hr.employees and hr.departments tables at the
sync1.example.com and sync2.example.com databases. The two databases replicate all of
the DML changes to these tables.

Note:

A synchronous capture can only capture changes at the table level. It cannot
capture changes at the schema or database level. You can configure a
synchronous capture using the ADD_TABLE_RULES and ADD_SUBSET_RULES
procedures in the DBMS_STREAMS_ADM package.

Figure 2-7 provides an overview of the environment created in this example.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-49

Figure 2-7 Two-Database Replication Environment with Synchronous Captures

send_emp_dep�
Send �
Changes

send_emp_dep�
Send �
Changes

Synchronous Capture

sync_capture

Queue

capture_queue

Apply Process

apply_emp_dep

Tables

hr.employees

hr.departments

Queue

apply_queue

Oracle Database

sync1.example.com

Synchronous Capture

sync_capture

Apply Process

apply_emp_dep

Queue

capture_queue

Oracle Database

sync2.example.com

Queue

apply_queue

Enqueue�
Changes

Dequeue�
Changes

Enqueue�
Changes

Apply

Changes

Dequeue�
Changes

Apply�
Changes

Tables

hr.employees

hr.departments Capture DML Changes

to Tables

Capture DML Changes

to Tables

To configure this replication environment with synchronous captures:

1. Complete the following tasks to prepare for the two-database replication
environment:

a. Configure network connectivity so that the two databases can communicate
with each other. See Configuring Network Connectivity and Database Links for
information.

b. Configure an Oracle Streams administrator at each database that will
participate in the replication environment. See "Configuring an Oracle Streams
Administrator on All Databases" for more information. This example assumes
that the Oracle Streams administrator is strmadmin.

c. Set initialization parameters properly at each database that will participate in
the Oracle Streams replication environment. See " Preparing for Oracle
Streams Replication" for more information.

d. Ensure that the hr.employees and hr.departments tables exist at the two
databases and are consistent at these databases. If the database objects exist

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-50

at only one database, then you can use export/import to create and populate
them at the other database. See Oracle Database Utilities for information
about export/import.

2. Create two ANYDATA queues at each database. For this example, create the
following two queues at each database:

• A queue named capture_queue owned by the Oracle Streams administrator
strmadmin. This queue will be used by the synchronous capture at the
database.

• A queue named apply_queue owned by the Oracle Streams administrator
strmadmin. This queue will be used by the apply process at the database.

See "Creating an ANYDATA Queue" for more information.

3. Create a database link from each database to the other database:

a. Create a database link from the sync1.example.com database to the
sync2.example.com database. The database link should be created in the
Oracle Streams administrator's schema. Also, the database link should
connect to the Oracle Streams administrator at the sync2.example.com
database. Both the name and the service name of the database link must be
sync2.example.com.

b. Create a database link from the sync2.example.com database to the
sync1.example.com database. The database link should be created in the
Oracle Streams administrator's schema. Also, the database link should
connect to the Oracle Streams administrator at the sync1.example.com
database. Both the name and the service name of the database link must be
sync1.example.com.

See "Configuring Network Connectivity and Database Links" for more information.

4. Configure an apply process at the sync1.example.com database. This apply process
will apply changes to the shared tables that were captured at the
sync2.example.com database and propagated to the sync1.example.com database.

a. Open SQL*Plus and connect to the sync1.example.com database as the Oracle
Streams administrator.

b. Create the apply process:

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.apply_queue',
 apply_name => 'apply_emp_dep',
 apply_captured => FALSE);
END;
/

The apply_captured parameter is set to FALSE because the apply process
applies changes in the persistent queue. These are changes that were
captured by a synchronous capture. The apply_captured parameter should be
set to TRUE only when the apply process applies changes captured by a
capture process.

Do not start the apply process.

c. Add a rule to the apply process rule set:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-51

 table_name => 'hr.employees',
 streams_type => 'apply',
 streams_name => 'apply_emp_dep',
 queue_name => 'strmadmin.apply_queue',
 source_database => 'sync2.example.com');
END;
/

This rule instructs the apply process apply_emp_dep to apply all DML changes
to the hr.employees table that appear in the apply_queue queue. The rule also
specifies that the apply process applies only changes that were captured at
the sync2.example.com source database.

d. Add an additional rule to the apply process rule set:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'apply',
 streams_name => 'apply_emp_dep',
 queue_name => 'strmadmin.apply_queue',
 source_database => 'sync2.example.com');
END;
/

This rule instructs the apply process apply_emp_dep to apply all DML changes
to the hr.departments table that appear in the apply_queue queue. The rule also
specifies that the apply process applies only changes that were captured at
the sync2.example.com source database.

5. Configure an apply process at the sync2.example.com database. This apply process
will apply changes that were captured at the sync1.example.com database and
propagated to the sync2.example.com database.

a. In SQL*Plus, connect to the sync2.example.com database as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for information about connecting
to a database in SQL*Plus.

b. Create the apply process:

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.apply_queue',
 apply_name => 'apply_emp_dep',
 apply_captured => FALSE);
END;
/

The apply_captured parameter is set to FALSE because the apply process
applies changes in the persistent queue. These changes were captured by a
synchronous capture. The apply_captured parameter should be set to TRUE only
when the apply process applies changes captured by a capture process.

Do not start the apply process.

c. Add a rule to the apply process rule set:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.employees',
 streams_type => 'apply',

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-52

 streams_name => 'apply_emp_dep',
 queue_name => 'strmadmin.apply_queue',
 source_database => 'sync1.example.com');
END;
/

This rule instructs the apply process apply_emp_dep to apply all DML changes
that appear in the apply_queue queue to the hr.employees table. The rule also
specifies that the apply process applies only changes that were captured at
the sync1.example.com source database.

d. Add an additional rule to the apply process rule set:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'apply',
 streams_name => 'apply_emp_dep',
 queue_name => 'strmadmin.apply_queue',
 source_database => 'sync1.example.com');
END;
/

This rule instructs the apply process apply_emp_dep to apply all DML changes
that appear in the apply_queue queue to the hr.departments table. The rule also
specifies that the apply process applies only changes that were captured at
the sync1.example.com source database.

6. Create a propagation to send changes from a queue at the sync1.example.com
database to a queue at the sync2.example.com database:

a. In SQL*Plus, connect to the sync1.example.com database as the Oracle
Streams administrator.

b. Create the propagation that sends changes to the sync2.example.com
database:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.employees',
 streams_name => 'send_emp_dep',
 source_queue_name => 'strmadmin.capture_queue',
 destination_queue_name => 'strmadmin.apply_queue@sync2.example.com',
 source_database => 'sync1.example.com',
 queue_to_queue => TRUE);
END;
/

The ADD_TABLE_PROPAGATION_RULES procedure creates the propagation and its
positive rule set. This procedure also adds a rule to the propagation rule set
that instructs it to send DML changes to the hr.employees table to the
apply_queue queue in the sync2.example.com database.

c. Add an additional rule to the propagation rule set:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.departments',
 streams_name => 'send_emp_dep',
 source_queue_name => 'strmadmin.capture_queue',
 destination_queue_name => 'strmadmin.apply_queue@sync2.example.com',
 source_database => 'sync1.example.com',

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-53

 queue_to_queue => TRUE);
END;
/

The ADD_TABLE_PROPAGATION_RULES procedure adds a rule to the propagation
rule set that instructs it to send DML changes to the hr.departments table to the
apply_queue queue in the sync2.example.com database.

7. Create a propagation to send changes from a queue at the sync2.example.com
database to a queue at the sync1.example.com database:

a. In SQL*Plus, connect to the sync2.example.com database as the Oracle
Streams administrator.

b. Create the propagation that sends changes to the sync1.example.com
database:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.employees',
 streams_name => 'send_emp_dep',
 source_queue_name => 'strmadmin.capture_queue',
 destination_queue_name => 'strmadmin.apply_queue@sync1.example.com',
 source_database => 'sync2.example.com',
 queue_to_queue => TRUE);
END;
/

The ADD_TABLE_PROPAGATION_RULES procedure creates the propagation and its
positive rule set. This procedure also adds a rule to the propagation rule set
that instructs it to send DML changes to the hr.employees table to the
apply_queue queue in the sync1.example.com database.

c. Add an additional rule to the propagation rule set:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.departments',
 streams_name => 'send_emp_dep',
 source_queue_name => 'strmadmin.capture_queue',
 destination_queue_name => 'strmadmin.apply_queue@sync1.example.com',
 source_database => 'sync2.example.com',
 queue_to_queue => TRUE);
END;
/

The ADD_TABLE_PROPAGATION_RULES procedure adds a rule to the propagation
rule set that instructs it to send DML changes to the hr.departments table to the
apply_queue queue in the sync1.example.com database.

8. Configure a synchronous capture at the sync1.example.com database:

a. In SQL*Plus, connect to the sync1.example.com database as the Oracle
Streams administrator.

b. Run the ADD_TABLE_RULES procedure to create the synchronous capture and
add a rule to instruct it to capture changes to the hr.employees table:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.employees',
 streams_type => 'sync_capture',
 streams_name => 'sync_capture',

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-54

 queue_name => 'strmadmin.capture_queue');
END;
/

c. Add an additional rule to the synchronous capture rule set:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'sync_capture',
 streams_name => 'sync_capture',
 queue_name => 'strmadmin.capture_queue');
END;
/

Running these procedures performs the following actions:

• Creates a synchronous capture named sync_capture at the current database.
A synchronous capture with the same name must not exist.

• Enables the synchronous capture. A synchronous capture cannot be disabled.

• Associates the synchronous capture with an existing queue named
capture_queue owned by strmadmin.

• Creates a positive rule set for synchronous capture sync_capture. The rule set
has a system-generated name.

• Creates a rule that captures DML changes to the hr.employees table and adds
the rule to the positive rule set for the synchronous capture. The rule has a
system-generated name.

• Prepares the hr.employees table for instantiation by running the
DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION function for the table
automatically.

• Creates a rule that captures DML changes to the hr.departments table and
adds the rule to the positive rule set for the synchronous capture. The rule has
a system-generated name.

• Prepares the hr.departments table for instantiation by running the
DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION function for the table
automatically.

9. Configure a synchronous capture at the sync2.example.com database:

a. In SQL*Plus, connect to the sync2.example.com database as the Oracle
Streams administrator.

b. Run the ADD_TABLE_RULES procedure to create the synchronous capture and
add a rule to instruct it to capture changes to the hr.employees table:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.employees',
 streams_type => 'sync_capture',
 streams_name => 'sync_capture',
 queue_name => 'strmadmin.capture_queue');
END;
/

c. Add an additional rule to the synchronous capture rule set:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-55

 table_name => 'hr.departments',
 streams_type => 'sync_capture',
 streams_name => 'sync_capture',
 queue_name => 'strmadmin.capture_queue');
END;
/

Step 8 describes the actions performed by these procedures at the current
database.

10. Set the instantiation SCN for the tables at the sync2.example.com database:

a. In SQL*Plus, connect to the sync1.example.com database as the Oracle
Streams administrator.

b. Set the instantiation SCN for the hr.employees table at the sync2.example.com
database:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@sync2.example.com(
 source_object_name => 'hr.employees',
 source_database_name => 'sync1.example.com',
 instantiation_scn => iscn);
END;
/

c. Set the instantiation SCN for the hr.departments table at the sync2.example.com
database:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@sync2.example.com(
 source_object_name => 'hr.departments',
 source_database_name => 'sync1.example.com',
 instantiation_scn => iscn);
END;
/

An instantiation SCN is the lowest SCN for which an apply process can apply
changes to a table. Before the apply process can apply changes to the shared
tables at the sync2.example.com database, an instantiation SCN must be set for
each table.

11. Set the instantiation SCN for the tables at the sync1.example.com database:

a. In SQL*Plus, connect to the sync2.example.com database as the Oracle
Streams administrator.

b. Set the instantiation SCN for the hr.employees table at the sync1.example.com
database:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@sync1.example.com(
 source_object_name => 'hr.employees',
 source_database_name => 'sync2.example.com',
 instantiation_scn => iscn);

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-56

END;
/

c. Set the instantiation SCN for the hr.departments table at the sync2.example.com
database:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@sync1.example.com(
 source_object_name => 'hr.departments',
 source_database_name => 'sync2.example.com',
 instantiation_scn => iscn);
END;
/

12. Start the apply process at each database:

a. In SQL*Plus, connect to the sync1.example.com database as the Oracle
Streams administrator.

b. Start the apply process:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_emp_dep');
END;
/

c. In SQL*Plus, connect to the sync2.example.com database as the Oracle
Streams administrator.

d. Start the apply process:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_emp_dep');
END;
/

13. Configure latest time conflict resolution for the hr.departments and hr.employees
tables at the sync1.example.com and sync2.example.com databases. See "Prebuilt
Update Conflict Handlers" for more information.

A two-database replication environment with the following characteristics is configured:

• Each database has a synchronous capture named sync_capture. The synchronous
capture captures all DML changes to the hr.employees hr.departments tables.

• Each database has a queue named capture_queue. This queue is for the
synchronous capture at the database.

• Each database has an apply process named apply_emp_dep. The apply process
applies all DML changes to the hr.employees table and hr.departments tables.

• Each database has a queue named apply_queue. This queue is for the apply
process at the database.

• Each database has a propagation named send_emp_dep. The propagation sends
changes from the capture_queue in the local database to the apply_queue in the
other database. The propagation sends all DML changes to the hr.employees and
hr.departments tables.

• Tags are used to avoid change cycling in the following way:

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-57

– Each apply process uses the default apply tag. The default apply tag is the
hexadecimal equivalent of '00' (double zero).

– Each synchronous capture only captures changes in a session with a NULL tag.
Therefore, neither synchronous capture captures the changes that are being
applied by the local apply process. The synchronous capture rules instruct the
synchronous capture not to capture these changes.

See "Change Cycling and Tags" for more information about how the replication
environment avoids change cycling.

To check the Oracle Streams replication configuration:

1. At each database, complete the following steps to ensure that synchronous
capture is configured:

a. Start SQL*Plus and connect to the database as the Oracle Streams
administrator.

See Oracle Database 2 Day DBA for more information about starting
SQL*Plus.

b. Query the ALL_SYNC_CAPTURE data dictionary view:

SELECT CAPTURE_NAME FROM ALL_SYNC_CAPTURE;

Ensure that a synchronous capture named sync_capture exists at each
database.

2. At each database, ensure that the propagation is enabled. To do so, query the
STATUS column in the DBA_PROPAGATION view.

3. At each database, ensure that the apply process is enabled. To do so, query the
STATUS column in the DBA_APPLY view.

To replicate changes:

1. At one of the databases, make DML changes to the hr.employees table or
hr.departments table.

2. After some time has passed to allow for replication of the changes, use SQL*Plus
to query the hr.employees or hr.departments table at the other database to view the
changes.

2.2.7 Example That Configures Hub-and-Spoke Replication
This example configures an Oracle Streams hub-and-spoke replication environment
that replicates data manipulation language (DML) changes to all of the tables in the hr
schema. This example uses a capture process at each database to capture these
changes. Hub-and-spoke replication means that a central hub database replicates
changes with one or more spoke databases. The spoke databases do not
communicate with each other directly. In this sample configuration, the hub database
sends changes generated at one spoke database to the other spoke database.

In this example, the global name of the hub database is hub.example.com, and the
global names of the spoke databases are spoke1.example.com and spoke2.example.com.
However, you can substitute databases in your environment to complete the example.

The following table lists the decisions that were made about the Oracle Streams
replication environment configured in this example.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-58

Decision Assumption for This Example

Decide Which Type of Replication
Environment to Configure

This example configures a hub-and-spoke
replication environment in which the global
name of the hub database is
hub.example.com, and the global names of the
spoke databases are spoke1.example.com
and spoke2.example.com. All of the databases
in the environment are read/write.

Decide Whether to Configure Local or
Downstream Capture for the Source Database

This example configures local capture at each
database.

Decide Whether Changes Are Allowed at One
Database or at Multiple Databases

This example configures a replication
environment that allows changes to the
replicated database objects at all three
databases.

Decide Whether the Replication Environment
Will Have Nonidentical Replicas

This example configures identical shared
database objects at the databases.

Decide Whether the Replication Environment
Will Use Apply Handlers

This example does not configure apply
handlers.

Decide Whether to Maintain DDL Changes This example does not maintain DDL changes
to the shared database objects.

Decide How to Configure the Replication
Environment

This example uses the MAINTAIN_SCHEMAS
procedure to configure the environment.

In this example, the MAINTAIN_SCHEMAS procedure will configure the replication
environment directly. A configuration script will not be generated. A Data Pump export
dump file instantiation will be performed.

The MAINTAIN_SCHEMAS procedure automatically excludes database objects that are not
supported by Oracle Streams from the replication environment by adding rules to the
negative rule set of each capture and apply process. Query the
DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database objects are
not supported by Oracle Streams. If unsupported database objects are not excluded,
then capture errors will result.

The database objects being configured for replication might or might not exist at the
destination databases when you run the MAINTAIN_SCHEMAS procedure. If the database
objects do not exist at a destination database, then the MAINTAIN_SCHEMAS procedure
instantiates them at the destination database using a Data Pump export/import. During
instantiation, the instantiation SCN is set for these database objects. If the database
objects already exist at a destination database, then the MAINTAIN_SCHEMAS procedure
retains the existing database objects and sets the instantiation SCN for them. In this
example, the hr schema exists at each database before the MAINTAIN_SCHEMAS
procedure is run.

Figure 2-8 provides an overview of the environment created in this example.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-59

Figure 2-8 Hub-and-Spoke Environment with Capture Processes and Read/Write Spokes

Capture Process

capture_hns

Enqueue�
Changes

propagation_spoke1

Send Changes

propagation_spoke2

Send Changes

Enqueue�
Changes

propagation_spoke2

Send Changes

propagation_spoke1

Send Changes

Tables in hr �
Schema

Apply Process

apply_spoke1

Apply

Changes

Queue

destination_spoke1

Dequeue�
Changes

Oracle Database

spoke1.example.com

Capture Process

capture_hns

Queue

destination_spoke2

Queue

source_hns

Oracle Database

hub.example.com

Apply Process

apply_spoke 1

Apply

Changes

Apply Process

apply_spoke 2

Apply�
Changes

Queue

destination_spoke1

Dequeue�
Changes

Capture �
DML Changes �
to hr �
Schema

Dequeue�
Changes

Enqueue�
Changes

Capture Process

capture_hns

Apply Process

apply_spoke2

Queue

destination_spoke2

Oracle Database �
spoke2.example.com

Apply

Changes

Dequeue�
Changes

Tables in hr

Schema Redo

Log

Record�
Changes

Redo

Log

Record�
Changes

Capture DML�
Changes to �
hr Schema

Redo

Log

Record�
Changes

Queue

source_hns

Queue

source_hns

Tables in hr

Schema

Capture DML�
Changes to �
hr Schema

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-60

Complete the following steps to use the MAINTAIN_SCHEMAS procedure to configure the
environment:

1. Complete the following tasks to prepare for the hub-and-spoke replication
environment:

a. Configure network connectivity so that the following databases can
communicate with each other:

• The hub.example.com database and the spoke1.example.com database

• The hub.example.com database and the spoke2.example.com database

See Oracle Database 2 Day DBA for information about configuring network
connectivity between databases.

b. Configure an Oracle Streams administrator at each database that will
participate in the replication environment. See "Configuring an Oracle Streams
Administrator on All Databases" for instructions. This example assumes that
the Oracle Streams administrator is strmadmin.

c. Create a database link from the hub database to each spoke database and
from each spoke database to the hub database. In this example, create the
following database links:

• From the hub.example.com database to the spoke1.example.com database.
Both the name and the service name of the database link must be
spoke1.example.com.

• From the hub.example.com database to the spoke2.example.com database.
Both the name and the service name of the database link must be
spoke2.example.com.

• From the spoke1.example.com database to the hub.example.com database.
Both the name and the service name of the database link must be
hub.example.com.

• From the spoke2.example.com database to the hub.example.com database.
Both the name and the service name of the database link must be
hub.example.com.

Each database link should be created in the Oracle Streams administrator's
schema. Also, each database link should connect to the Oracle Streams
administrator at the destination database. See "Configuring Network
Connectivity and Database Links" for instructions.

d. Set initialization parameters properly at each database that will participate in
the Oracle Streams replication environment. See "Setting Initialization
Parameters Relevant to Oracle Streams" for instructions.

e. Configure each source database to run in ARCHIVELOG mode. For a capture
process to capture changes generated at a source database, the source
database must be running in ARCHIVELOG mode. In this example, all databases
must be running in ARCHIVELOG mode. See Oracle Database Administrator's
Guide for information about configuring a database to run in ARCHIVELOG mode.

2. Create the following required directory objects:

• A directory object at the hub database hub.example.com. This example
assumes that this directory object is hub_directory.

• A directory object at the spoke database spoke1.example.com. This example
assumes that this directory object is spoke1_directory.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-61

• A directory object at the spoke database spoke2.example.com. This example
assumes that this directory object is spoke2_directory.

See "Creating the Required Directory Objects" for instructions.

3. In SQL*Plus, connect to the hub.example.com database as the Oracle Streams
administrator.

See Oracle Database 2 Day DBA for more information about starting SQL*Plus.

4. Run the MAINTAIN_SCHEMAS procedure to configure replication between the
hub.example.com database and the spoke1.example.com database:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS(
 schema_names => 'hr',
 source_directory_object => 'hub_directory',
 destination_directory_object => 'spoke1_directory',
 source_database => 'hub.example.com',
 destination_database => 'spoke1.example.com',
 capture_name => 'capture_hns',
 capture_queue_table => 'source_hns_qt',
 capture_queue_name => 'source_hns',
 propagation_name => 'propagation_spoke1',
 apply_name => 'apply_spoke1',
 apply_queue_table => 'destination_spoke1_qt',
 apply_queue_name => 'destination_spoke1',
 bi_directional => TRUE);
END;
/

The MAINTAIN_SCHEMAS procedure can take some time to run because it is
performing many configuration tasks. Do not allow data manipulation language
(DML) or data definition language (DDL) changes to the replicated database
objects at the destination database while the procedure is running.

In the MAINTAIN_SCHEMAS procedure, only the following parameters are required:
schema_names, source_directory_object, destination_directory_object,
source_database, and destination_database. Also, when you use a configuration
procedure to configure bi-directional replication, the bi_directional parameter
must be set to TRUE.

This example specifies the other parameters to show that you can choose the
name for the capture process, capture process's queue table, capture process's
queue, propagation, apply process, apply process's queue table, and apply
process's queue. If you do not specify these parameters, then system-generated
names are used.

When a configuration procedure is run, information about its progress is recorded
in the following data dictionary views: DBA_RECOVERABLE_SCRIPT,
DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and
DBA_RECOVERABLE_SCRIPT_ERRORS. If the procedure stops because it encounters an
error, then see Oracle Streams Replication Administrator's Guide for instructions
about using the RECOVER_OPERATION procedure in the DBMS_STREAMS_ADM package to
recover from these errors.

5. While still connected in SQL*Plus to the hub.example.com database as the Oracle
Streams administrator, run the MAINTAIN_SCHEMAS procedure to configure replication
between the hub.example.com database and the spoke2.example.com database:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS(

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-62

 schema_names => 'hr',
 source_directory_object => 'hub_directory',
 destination_directory_object => 'spoke2_directory',
 source_database => 'hub.example.com',
 destination_database => 'spoke2.example.com',
 capture_name => 'capture_hns',
 capture_queue_table => 'source_hns_qt',
 capture_queue_name => 'source_hns',
 propagation_name => 'propagation_spoke2',
 apply_name => 'apply_spoke2',
 apply_queue_table => 'destination_spoke2_qt',
 apply_queue_name => 'destination_spoke2',
 bi_directional => TRUE);
END;
/

6. Configure latest time conflict resolution for all of the tables in the hr schema at the
hub.example.com, spoke1.example.com, and spoke2.example.com databases. This
schema includes the countries, departments, employees, jobs, job_history,
locations, and regions tables. See Oracle Streams Conflict Resolution for
instructions.

See Also:

The Oracle Enterprise Manager Cloud Control online help for an example that
configures this replication environment using Oracle Enterprise Manager
Cloud Control

2.2.8 Monitoring Oracle Streams Configuration Progress
The following procedures in the DBMS_STREAMS_ADM package configure a replication
environment that is maintained by Oracle Streams:

• MAINTAIN_GLOBAL

• MAINTAIN_SCHEMAS

• MAINTAIN_SIMPLE_TTS

• MAINTAIN_TABLES

• MAINTAIN_TTS

• PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP

While one of these procedures configures the replication environment directly (with the
perform_actions parameter is set to TRUE), you can monitor the progress of the
configuration in a separate terminal window.

Complete the following steps to monitor the progress of the Oracle Stream
configuration:

1. In SQL*Plus, connect to the capture database as the Oracle Streams
administrator. Use a different terminal window than the one that is running the
configuration procedure.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-63

2. For basic information about the configuration operation, run the following query:

COLUMN SCRIPT_ID HEADING 'Script ID' FORMAT A40
COLUMN CREATION_TIME HEADING 'Creation|Time' FORMAT A20

SELECT SCRIPT_ID,
 TO_CHAR(CREATION_TIME,'HH24:Mi:SS MM/DD/YY') CREATION_TIME
 FROM DBA_RECOVERABLE_SCRIPT;

Your output is similar to the following:

 Creation
Script ID Time
-- --------------------
64EE0DFCC374CE7EE040578C89174D3E 07:46:54 03/12/09

This output shows the script ID for the configuration operation and the time when
the operation started.

3. For detailed information about the progress of the configuration operation, run the
following query:

COLUMN STATUS HEADING 'Status' FORMAT A12
COLUMN PROGRESS HEADING 'Steps|Completed' FORMAT A10
COLUMN ELAPSED_SECONDS HEADING 'Elapsed|Seconds' FORMAT A10
COLUMN CURRENT_STEP HEADING 'Current Step' FORMAT A20
COLUMN PROCEDURE HEADING 'Procedure' FORMAT A20

SELECT rs.STATUS,
 rs.DONE_BLOCK_NUM||' of '||rs.TOTAL_BLOCKS PROGRESS,
 TO_CHAR(TO_NUMBER(SYSDATE-rs.CREATION_TIME)*86400,9999.99) ELAPSED_SECONDS,
 SUBSTR(TO_CHAR(rsb.FORWARD_BLOCK),1,100) CURRENT_STEP,
 rs.INVOKING_PACKAGE||'.'||rs.INVOKING_PROCEDURE PROCEDURE
 FROM DBA_RECOVERABLE_SCRIPT rs, DBA_RECOVERABLE_SCRIPT_BLOCKS rsb
 WHERE rs.SCRIPT_ID = rsb.SCRIPT_ID AND
 rsb.BLOCK_NUM = rs.DONE_BLOCK_NUM + 1;

Your output is similar to the following:

 Steps Elapsed
Status Completed Seconds Current Step Procedure
------------ ---------- ---------- -------------------- --------------------
EXECUTING 7 of 39 132 -- DBMS_STREAMS_ADM.MAI
 -- Set up queue "STR NTAIN_SCHEMAS
 MADMIN"."PROD$APPQ"
 --
 BEGIN
 dbms_streams_adm.s
 et_up_queue(
 queue_ta

This output shows the following information about the configuration operation:

• The current status of the configuration operation, either GENERATING, NOT
EXECUTED, EXECUTING, EXECUTED, or ERROR

• The number of steps completed and the total number of steps required to
complete the operation

• The amount of time, in seconds, that the configuration operation has been
running

• The operation being performed by the current step

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-64

• The PL/SQL procedure being executed in the current step

See Also:

"Recovering from Operation Errors"

Chapter 2
Configuring Replication Using the DBMS_STREAMS_ADM Package

2-65

3
Flexible Oracle Streams Replication
Configuration

This chapter describes flexible methods for configuring Oracle Streams replication
between two or more databases. This chapter includes step-by-step instructions for
configuring each Oracle Streams component to build a single-source or multiple-
source replication environment.

One common type of single-source replication environment is a hub-and-spoke
replication environment that does not allow changes to the replicated database objects
in the spoke databases. The following are common types of multiple-source replication
environments:

• A hub-and-spoke replication environment that allows changes to the replicated
database objects in the spoke databases

• An n-way replication environment

"Decide Which Type of Replication Environment to Configure" describes these
common types of replication environments in detail.

If possible, consider using a simple method for configuring Oracle Streams replication
described in Simple Oracle Streams Replication Configuration. You can either use the
Oracle Streams tool in Oracle Enterprise Manager Cloud Control or a single procedure
in the DBMS_STREAMS_ADM package configure all of the Oracle Streams components in a
replication environment with two databases. Also, you can use a simple method and
still meet custom requirements for your replication environment in one of the following
ways:

• You can use a simple method to generate a configuration script and modify the
script to meet your requirements.

• You can use a simple method to configure Oracle Streams replication between
two databases and add new database objects or databases to the environment by
following the instructions in Adding to an Oracle Streams Replication Environment.

However, if you require more flexibility in your Oracle Streams replication configuration
than what is available with the simple methods, then you can follow the instructions in
this chapter to configure the environment.

This chapter contains these topics:

• Creating a New Oracle Streams Single-Source Environment

• Creating a New Oracle Streams Multiple-Source Environment

3-1

Note:

• The instructions in the following sections assume you will use the
DBMS_STREAMS_ADM package to configure your Oracle Streams environment.
If you use other packages, then extra steps might be necessary for each
task.

• Certain types of database objects are not supported by Oracle Streams.
When you configure an Oracle Streams environment, ensure that no
capture process attempts to capture changes to an unsupported database
object. Also, ensure that no synchronous capture or apply process
attempts to process changes to unsupported columns. To list unsupported
database objects and unsupported columns, query the
DBA_STREAMS_UNSUPPORTED and DBA_STREAMS_COLUMNS data dictionary views.

See Also:

Oracle Streams Concepts and Administration for instructions on determining
which database objects are not supported by Oracle Streams

3.1 Creating a New Oracle Streams Single-Source
Environment

This section lists the general steps to perform when creating a new single-source
Oracle Streams environment. A single-source environment is one in which there is
only one source database for replicated data. There can be multiple source databases
in a single-source environment, but no two source databases capture any of the
same data. A one-way replication environment with two databases is an example of a
single-source environment.

Before starting capture processes, creating synchronous captures, and configuring
propagations in a new Oracle Streams environment, ensure that any propagations or
apply processes that will receive LCRs are configured to handle these LCRs. That is,
the propagations or apply processes should exist, and each one should be associated
with rule sets that handle the LCRs appropriately. If these propagations and apply
processes are not configured properly to handle these LCRs, then LCRs can be lost.

This example assumes that the replicated database objects are read-only at the
destination databases. If the replicated database objects are read/write at the
destination databases, then the replication environment will not stay synchronized
because Oracle Streams is not configured to replicate the changes made to the
replicated objects at the destination databases.

Figure 3-1 shows an example Oracle Streams single-source replication environment.

Chapter 3
Creating a New Oracle Streams Single-Source Environment

3-2

Figure 3-1 Example Oracle Streams Single-Source Environment

Source Database

Database

link for�

propagation

Includes:

·	A SYS.AnyData queue

·	Supplemental logging specifications

·	A capture process and/or �
	 synchronous capture

·	One propagation for each �
	 destination database

·	Rule sets for the capture process and/or �
	 synchronous capture and the propagations

·	Each shared object prepared for �
	 instantiation

Destination Database

Includes:

·	A SYS.AnyData queue

·	Instantiation SCN set for each �
	 shared object �
·	An apply process for the source database�
·	Rule sets for the apply process

· · ·

Additional�

Destination�

Databases

You can create an Oracle Streams replication environment that is more complicated
than the one shown in Figure 3-1. For example, a single-source Oracle Streams
replication environment can use downstream capture and directed networks.

In general, if you are configuring a new Oracle Streams single-source environment in
which changes to replicated database objects are captured at one database and then
propagated and applied at remote databases, then you should configure the
environment in the following order:

1. Make the necessary decisions about configuring the replication environment. See
"Decisions to Make Before Configuring Oracle Streams Replication".

2. Complete the necessary tasks to prepare each database in your environment for
Oracle Streams. See "Tasks to Complete Before Configuring Oracle Streams
Replication".

Some of these tasks might not be required at certain databases.

3. Create any necessary ANYDATA queues that do not already exist. When you create
a capture process, synchronous capture, or apply process, you associate the
process with a specific ANYDATA queue. When you create a propagation, you
associate it with a specific source queue and destination queue. See "Creating an
ANYDATA Queue" for instructions.

4. Specify supplemental logging at each source database for any replicated database
object. See "Specifying Supplemental Logging" for instructions.

Chapter 3
Creating a New Oracle Streams Single-Source Environment

3-3

5. At each database, create the required capture processes, synchronous captures,
propagations, and apply processes for your environment. You can create capture
processes, propagations, and apply processes in any order. If you create
synchronous captures, then create them after you create the relevant
propagations and apply processes.

• Create one or more capture processes at each database that will capture
changes with a capture process. Ensure that each capture process uses rule
sets that are appropriate for capturing changes. Do not start the capture
processes you create. Oracle recommends that you use only one capture
process for each source database. See "Configuring a Capture Process" for
instructions.

When you use a procedure in the DBMS_STREAMS_ADM package to add the
capture process rules, it automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION procedure in
the DBMS_CAPTURE_ADM package for the specified table, specified schema, or
entire database, respectively, if the capture process is a local capture process
or a downstream capture process with a database link to the source database.

You must run the appropriate procedure to prepare for instantiation manually if
any of the following conditions is true:

– You use the DBMS_RULE_ADM package to add or modify rules.

– You use an existing capture process and do not add capture process rules
for any replicated object.

– You use a downstream capture process with no database link to the
source database.

If you must prepare for instantiation manually, then see "Preparing Database
Objects for Instantiation at a Source Database" for instructions.

• Create all propagations that send the captured LCRs from a source queue to a
destination queue. Ensure that each propagation uses rule sets that are
appropriate for sending changes. See "Creating Oracle Streams Propagations
Between ANYDATA Queues" for instructions.

• Create one or more apply processes at each database that will apply changes.
Ensure that each apply process uses rule sets that are appropriate for
applying changes. Do not start the apply processes you create. See
Configuring Implicit Apply for instructions.

• Create one or more synchronous captures at each database that will capture
changes with a synchronous capture. Ensure that each synchronous capture
use a rule set that is appropriate for capturing changes. Do not create the
synchronous capture until you create all of the propagations and apply
processes that will process its LCRs. See "Configuring Synchronous Capture"
for instructions.

When you use a procedure in the DBMS_STREAMS_ADM package to add the
synchronous capture rules, it automatically runs the
PREPARE_SYNC_INSTANTIATION function in the DBMS_CAPTURE_ADM package for the
specified table.

6. Either instantiate, or set the instantiation SCN for, each database object for which
changes are applied by an apply process. If the database objects do not exist at a
destination database, then instantiate them using export/import, transportable
tablespaces, or RMAN. If the database objects already exist at a destination
database, then set the instantiation SCNs for them manually.

Chapter 3
Creating a New Oracle Streams Single-Source Environment

3-4

• To instantiate database objects using export/import, first export them at the
source database. Next, import them at the destination database. See
Instantiation and Oracle Streams Replication.

Do not allow any changes to the database objects being exported during
export at the source database. Do not allow changes to the database objects
being imported during import at the destination database.

You can specify a more stringent degree of consistency by using an export
parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

• To set the instantiation SCN for a table, schema, or database manually, run
the appropriate procedure or procedures in the DBMS_APPLY_ADM package at the
destination database:

– SET_TABLE_INSTANTIATION_SCN

– SET_SCHEMA_INSTANTIATION_SCN

– SET_GLOBAL_INSTANTIATION_SCN

When you run one of these procedures, you must ensure that the replicated
objects at the destination database are consistent with the source database as
of the instantiation SCN.

If you run SET_GLOBAL_INSTANTIATION_SCN at a destination database, then set the
recursive parameter for this procedure to TRUE so that the instantiation SCN
also is set for each schema at the destination database and for the tables
owned by these schemas.

If you run SET_SCHEMA_INSTANTIATION_SCN at a destination database, then set the
recursive parameter for this procedure to TRUE so that the instantiation SCN
also is set for each table in the schema.

If you set the recursive parameter to TRUE in the SET_GLOBAL_INSTANTIATION_SCN
procedure or the SET_SCHEMA_INSTANTIATION_SCN procedure, then a database
link from the destination database to the source database is required. This
database link must have the same name as the global name of the source
database and must be accessible to the user who executes the procedure.
See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" for
instructions.

Alternatively, you can perform a metadata export/import to set the instantiation
SCNs for existing database objects. If you choose this option, then ensure that
no rows are imported. Also, ensure that the replicated database objects at all
of the destination databases are consistent with the source database that
performed the export at the time of the export. If you are sharing DML changes
only, then table level export/import is sufficient. If you are sharing DDL
changes also, then additional considerations apply. See "Setting Instantiation
SCNs Using Export/Import" for more information about performing a metadata
export/import.

7. Start each apply process you created in Step 5 using the START_APPLY procedure in
the DBMS_APPLY_ADM package.

8. Start each capture process you created in Step 5 using the START_CAPTURE
procedure in the DBMS_CAPTURE_ADM package.

When you are configuring the environment, remember that capture processes and
apply processes are stopped when they are created. However, synchronous captures
start to capture changes immediately when they are created, and propagations are
scheduled to send LCRs immediately when they are created. A capture process or

Chapter 3
Creating a New Oracle Streams Single-Source Environment

3-5

synchronous capture must be created before the relevant objects are instantiated at a
remote destination database. You must create the propagations and apply processes
before starting the capture process or creating the synchronous capture, and you must
instantiate the objects before running the whole stream.

See Also:

• Oracle Streams Extended Examples for detailed examples that set up
single-source environments

3.2 Creating a New Oracle Streams Multiple-Source
Environment

This section lists the general steps to perform when creating a new multiple-source
Oracle Streams environment. A multiple-source environment is one in which there are
multiple source databases for any of the replicated data. An n-way replication
environment is an example of a multiple-source environment.

This example uses the following terms:

• Populated database: A database that already contains the replicated database
objects before you create the new multiple-source environment. You must have at
least one populated database to create the new Oracle Streams environment.

• Export database: A populated database on which you perform an export of the
replicated database objects. This export is used to instantiate the replicated
database objects at the import databases. You might not have an export database
if all of the databases in the environment are populated databases.

• Import database: A database that does not contain the replicated database
objects before you create the new multiple-source environment. You instantiate
the replicated database objects at an import database by performing an import of
these database objects. You might not have any import databases if all of the
databases in the environment are populated databases.

Figure 3-2 shows an example multiple-source Oracle Streams environment.

Chapter 3
Creating a New Oracle Streams Multiple-Source Environment

3-6

Figure 3-2 Example Oracle Streams Multiple-Source Environment

Source / Destination Database

Database

links for�

propagations

Includes:

·	One or more SYS.AnyData queues

·	Supplemental logging specifications

·	Each shared object prepared for �
	 instantiation�
·	One or more capture process(es) and/or �
	 synchronous capture(s)

·	One propagation for each of the other �
	 destination databases�
·	Instantiation SCN set for each shared �
	 object for each of the other source databases�
·	One apply process for each of the other �
	 source databases

·	Rule sets for the capture process(es) and/or �
	 synchronous capture(s), propagation(s), �
	 and apply process(es)

·	Conflict resolution if necessary

· · ·

Additional�

Source / Destination�

Databases

Source / Destination Database

Includes:

·	One or more SYS.AnyData queues

·	Supplemental logging specifications

·	Each shared object prepared for �
	 instantiation�
·	One or more capture process(es) and/or �
	 synchronous capture(s)

·	One propagation for each of the other �
	 destination databases�
·	Instantiation SCN set for each shared object �
	 for each of the other source databases�
·	One apply process for each of the other �
	 source databases

·	Rule sets for the capture process(es) and/or �
	 synchronous capture(s), propagation(s), �
	 and apply process(es)

·	Conflict resolution if necessary

You can create an Oracle Streams replication environment that is more complicated
than the one shown in Figure 3-2. For example, a multiple-source Oracle Streams
replication environment can use downstream capture and directed networks.

When there are multiple source databases in an Oracle Streams replication
environment, change cycling is possible. Change cycling happens when a change is
sent back to the database where it originated. Typically, you should avoid change
cycling. Before you configure your replication environment, see Oracle Streams Tags,
and ensure that you configure the replication environment to avoid change cycling.

Complete the following steps to create a multiple-source environment:

Chapter 3
Creating a New Oracle Streams Multiple-Source Environment

3-7

Note:

Ensure that no changes are made to the objects being shared at a database
you are adding to the Oracle Streams environment until the instantiation at the
database is complete.

1. Make the necessary decisions about configuring the replication environment. See
"Decisions to Make Before Configuring Oracle Streams Replication".

2. Complete the necessary tasks to prepare each database in your environment for
Oracle Streams. See "Tasks to Complete Before Configuring Oracle Streams
Replication".

Some of these tasks might not be required at certain databases.

3. At each populated database, specify any necessary supplemental logging for the
replicated database objects. See "Specifying Supplemental Logging" for
instructions.

4. Create any necessary ANYDATA queues that do not already exist. When you create
a capture process, synchronous capture, or apply process, you associate the
process with a specific ANYDATA queue. When you create a propagation, you
associate it with a specific source queue and destination queue. See "Creating an
ANYDATA Queue" for instructions.

5. At each database, create the required capture processes, synchronous captures,
propagations, and apply processes for your environment. You can create capture
processes, propagations, and apply processes in any order. If you create
synchronous captures, then create them after you create the relevant
propagations and apply processes.

• Create one or more capture processes at each database that will capture
changes with a capture process. Ensure that each capture process uses rule
sets that are appropriate for capturing changes. Do not start the capture
processes you create. Oracle recommends that you use only one capture
process for each source database. See "Configuring a Capture Process" for
instructions.

When you use a procedure in the DBMS_STREAMS_ADM package to add the
capture process rules, it automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION procedure in
the DBMS_CAPTURE_ADM package for the specified table, specified schema, or
entire database, respectively, if the capture process is a local capture process
or a downstream capture process with a database link to the source database.

You must run the appropriate procedure to prepare for instantiation manually if
any of the following conditions is true:

– You use the DBMS_RULE_ADM package to add or modify rules.

– You use an existing capture process and do not add capture process rules
for any replicated database object.

– You use a downstream capture process with no database link to the
source database.

If you must prepare for instantiation manually, then see "Preparing Database
Objects for Instantiation at a Source Database" for instructions.

Chapter 3
Creating a New Oracle Streams Multiple-Source Environment

3-8

• Create all propagations that propagate the captured LCRs from a source
queue to a destination queue. Ensure that each propagation uses rule sets
that are appropriate for propagating changes. See "Creating Oracle Streams
Propagations Between ANYDATA Queues" for instructions.

• Create one or more apply processes at each database that will apply changes.
Ensure that each apply process uses rule sets that are appropriate for
applying changes. Do not start the apply processes you create. See
Configuring Implicit Apply for instructions.

• Create one or more synchronous captures at each database that will capture
changes with a synchronous capture. Ensure that each synchronous capture
uses rule sets that are appropriate for capturing changes. Do not create the
synchronous capture until you create all of the propagations and apply
processes that will process its LCRs. See "Configuring Synchronous Capture"
for instructions.

When you use a procedure in the DBMS_STREAMS_ADM package to add the
synchronous capture rules, it automatically runs the
PREPARE_SYNC_INSTANTIATION function in the DBMS_CAPTURE_ADM package for the
specified table.

After completing these steps, complete the steps in each of the following sections that
apply to your environment. You might need to complete the steps in only one of these
sections or in both of these sections:

• For each populated database, complete the steps in "Configuring Populated
Databases When Creating a Multiple-Source Environment". These steps are
required only if your environment has multiple populated databases.

• For each import database, complete the steps in "Adding Replicated Objects to
Import Databases When Creating a New Environment".

3.2.1 Configuring Populated Databases When Creating a Multiple-
Source Environment

After completing the steps in "Creating a New Oracle Streams Multiple-Source
Environment", complete the following steps for the populated databases if your
environment has multiple populated databases:

1. For each populated database, set the instantiation SCN at each of the other
populated databases in the environment that will be a destination database of the
populated source database. These instantiation SCNs must be set, and only the
changes made at a particular populated database that are committed after the
corresponding SCN for that database will be applied at another populated
database.

For each populated database, you can set these instantiation SCNs in one of the
following ways:

• Perform a metadata only export of the replicated database objects at the
populated database and import the metadata at each of the other populated
databases. Such an import sets the required instantiation SCNs for the
populated database at the other populated databases. Ensure that no rows
are imported. Also, ensure that the replicated database objects at each
populated database performing a metadata import are consistent with the
populated database that performed the metadata export at the time of the
export.

Chapter 3
Creating a New Oracle Streams Multiple-Source Environment

3-9

If you are replicating DML changes only, then table level export/import is
sufficient. If you are replicating DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using Export/Import" for
more information about performing a metadata export/import.

• Set the instantiation SCNs manually at each of the other populated databases.
Do this for each of the replicated database objects. Ensure that the replicated
database objects at each populated database are consistent with the
instantiation SCNs you set at that database. See "Setting Instantiation SCNs
Using the DBMS_APPLY_ADM Package" for instructions.

3.2.2 Adding Replicated Objects to Import Databases When Creating
a New Environment

After completing the steps in "Creating a New Oracle Streams Multiple-Source
Environment", complete the following steps for the import databases:

1. Pick the populated database that you will use as the export database. Do not
perform the instantiations yet.

2. For each import database, set the instantiation SCNs at all of the other databases
in the environment that will be a destination database of the import database. In
this case, the import database will be the source database for these destination
databases. The databases where you set the instantiation SCNs can include
populated databases and other import databases.

a. If one or more schemas will be created at an import database during
instantiation or by a subsequent replicated DDL change, then run the
SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package for this
import database at all of the other databases in the environment.

b. If a schema exists at an import database, and one or more tables will be
created in the schema during instantiation or by a subsequent replicated DDL
change, then run the SET_SCHEMA_INSTANTIATION_SCN procedure in the
DBMS_APPLY_ADM package for the schema at all of the other databases in the
environment for the import database. Do this for each such schema.

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" for
instructions.

Because you run these procedures before any tables are instantiated at the import
databases, and because the local capture processes or synchronous captures are
configured already for these import databases, you will not need to run the
SET_TABLE_INSTANTIATION_SCN procedure for each table created during the
instantiation. Instantiation SCNs will be set automatically for these tables at all of
the other databases in the environment that will be destination databases of the
import database.

3. At the export database you chose in Step 1, perform an export of the replicated
database objects. Next, perform an import of the replicated database objects at
each import database. See Instantiation and Oracle Streams Replication and
Oracle Database Utilities for information about using export/import.

Do not allow any changes to the database objects being exported while exporting
these database objects at the source database. Do not allow changes to the
database objects being imported while importing these database objects at the
destination database.

Chapter 3
Creating a New Oracle Streams Multiple-Source Environment

3-10

You can specify a more stringent degree of consistency by using an export
parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

4. For each populated database, except for the export database, set the instantiation
SCNs at each import database that will be a destination database of the populated
source database. These instantiation SCNs must be set, and only the changes
made at a populated database that are committed after the corresponding SCN for
that database will be applied at an import database.

You can set these instantiation SCNs in one of the following ways:

• Perform a metadata only export at each populated database and import the
metadata at each import database. Each import sets the required instantiation
SCNs for the populated database at the import database. In this case, ensure
that the replicated database objects at the import database are consistent with
the populated database at the time of the export.

If you are sharing DML changes only, then table level export/import is
sufficient. If you are sharing DDL changes also, then additional considerations
apply. See "Setting Instantiation SCNs Using Export/Import" for more
information about performing a metadata export/import.

• For each populated database, set the instantiation SCN manually for each
replicated database object at each import database. Ensure that the replicated
database objects at each import database are consistent with the populated
database as of the corresponding instantiation SCN. See "Setting Instantiation
SCNs Using the DBMS_APPLY_ADM Package" for instructions.

3.2.3 Complete the Multiple-Source Environment Configuration
Before completing the steps in this section, you should have completed the following
tasks:

• "Creating a New Oracle Streams Multiple-Source Environment"

• "Configuring Populated Databases When Creating a Multiple-Source
Environment", if your environment has multiple populated databases

• "Adding Replicated Objects to Import Databases When Creating a New
Environment", if your environment has one or more import databases

When all of the previous configuration steps are finished, complete the following steps:

1. At each database, configure conflict resolution if conflicts are possible. See Oracle
Streams Conflict Resolution for instructions.

2. Start each apply process in the environment using the START_APPLY procedure in
the DBMS_APPLY_ADM package.

3. Start each capture process the environment using the START_CAPTURE procedure in
the DBMS_CAPTURE_ADM package.

See Also:

Oracle Streams Extended Examples for a detailed example that creates a
multiple-source environment

Chapter 3
Creating a New Oracle Streams Multiple-Source Environment

3-11

4
Adding to an Oracle Streams Replication
Environment

This chapter contains instructions for adding database objects and databases to an
existing Oracle Streams replication environment.

This chapter contains these topics:

• About Adding to an Oracle Streams Replication Environment

• Adding Multiple Components Using a Single Procedure

• Adding Components Individually in Multiple Steps

Note:

Certain types of database objects are not supported by Oracle Streams. When
you extend an Oracle Streams environment, ensure that no capture process
attempts to capture changes to an unsupported database object. Also, ensure
that no synchronous capture or apply process attempts to process changes to
unsupported columns. To list unsupported database objects and unsupported
columns, query the DBA_STREAMS_UNSUPPORTED and DBA_STREAMS_COLUMNS data
dictionary views.

See Also:

• Simple Oracle Streams Replication Configuration

• Flexible Oracle Streams Replication Configuration

• Oracle Streams Concepts and Administration for instructions on
determining which database objects are not supported by Oracle Streams

4.1 About Adding to an Oracle Streams Replication
Environment

Sometimes it is necessary to extend an Oracle Streams replication environment when
the needs of your organization change. You can extend an Oracle Streams replication
environment by adding database objects or databases.

There are three ways to extend an Oracle Streams replication environment:

• About Using the Setup Streams Replication Wizard or a Single Configuration
Procedure

4-1

• About Adding the Oracle Streams Components Individually in Multiple Steps

4.1.1 About Using the Setup Streams Replication Wizard or a Single
Configuration Procedure

There are two easy ways to extend an Oracle Streams replication environment:

• Run the Setup Streams Replication Wizard in Oracle Enterprise Manager Cloud
Control

• Run one of the following procedures in the DBMS_STREAMS_ADM package:

– The MAINTAIN_GLOBAL procedure can add a new database to an environment
that replicates changes to all of the database objects in the databases.

– The MAINTAIN_SCHEMAS procedure can add one or more new schemas to the
existing databases in the replication environment, or it can add a new
database that replicates schemas that are currently being replicated.

– The MAINTAIN_SIMPLE_TTS procedure can add a new simple tablespace to an
existing replication environment, or it can add a new database that replicates a
simple tablespace that is currently being replicated.

– The MAINTAIN_TABLES procedure can add one or more new tables to the existing
databases in the replication environment, or it can add a new database that
replicates tables that are currently being replicated.

– The MAINTAIN_TTS procedure can add a new set of tablespaces to an existing
replication environment, or it can add a new database that replicates a set of
tablespaces that are currently being replicated.

To use either of these methods to extend an Oracle Streams replication environment,
the environment must meet the following conditions:

• It must be a two-database or hub-and-spoke replication environment that was
configured by the Setup Streams Replication Wizard or by one of the configuration
procedures in the DBMS_STREAMS_ADM package. See "Decide Which Type of
Replication Environment to Configure" for information about these types of
replication environments.

• It cannot use a synchronous capture at any database in the Oracle Streams
replication environment. See Oracle Streams Concepts and Administration for
more information about synchronous capture.

• If you are adding a database to the environment, then each database that
captures changes must use a local capture process. No database can use a
downstream capture process. If you are adding one or more database objects to
the environment, then the databases can use either local or downstream capture
processes. See "Decide Whether to Configure Local or Downstream Capture for
the Source Database" for more information about downstream capture.

• If you are adding database objects to the replication environment, then the
database objects must exist at the database specified in the source_database
parameter of the configuration procedure.

If your environment meets these conditions, then you can use the Setup Streams
Replication Wizard or a single procedure to extend the environment.

Chapter 4
About Adding to an Oracle Streams Replication Environment

4-2

The following are additional requirements for cases in which the replicated database
objects already exist at an intended destination database before you run the wizard or
procedure:

• If you are adding database objects to the replication environment, and one or more
of these database objects exist at a database other than the source database,
then meet the following requirements:

– Before running the wizard or procedure, ensure that the replicated database
objects at each destination database are consistent with replicated database
objects at the source database.

– After running the wizard or procedure, ensure that the instantiation SCN is set
for each replicated database object at each destination database. See "Setting
Instantiation SCNs at a Destination Database" and "Monitoring
Instantiation""Monitoring Instantiation".

• If you are adding a database to the replication environment, then any of the
database objects that are replicated in the current environment exist at the added
database, then meet the following requirements:

– Before running the wizard or procedure, ensure that the replicated database
objects at each database being added are consistent with replicated database
objects at the source database.

– After running the wizard or procedure, ensure that the instantiation SCN is set
for each replicated database object at the added database. See "Setting
Instantiation SCNs at a Destination Database" and "Monitoring
Instantiation""Monitoring Instantiation".

For instructions about adding to a replication environment using the wizard or a single
procedure, see the following documentation:

• The Oracle Enterprise Manager Cloud Control online help for instructions about
using the Setup Streams Replication Wizard

• "Adding Multiple Components Using a Single Procedure" for instructions about
using a single procedure in the DBMS_STREAMS_ADM package

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the procedures in the DBMS_STREAMS_ADM chapter

4.1.2 About Adding the Oracle Streams Components Individually in
Multiple Steps

If you cannot extend the Oracle Streams replication environment by using the Setup
Streams Replication Wizard or a configuration procedure in the DBMS_STREAMS_ADM
package, then you must complete the configuration steps manually. These steps
include adding the necessary rules and Oracle Streams components to the
environment, and other configuration steps.

If you must extend the Oracle Streams replication environment manually, then see the
instructions in "Adding Components Individually in Multiple Steps".

Chapter 4
About Adding to an Oracle Streams Replication Environment

4-3

4.2 Adding Multiple Components Using a Single Procedure
This section describes adding Oracle Streams components a single PL/SQL
procedure in the DBMS_STREAMS_ADM package. Oracle Streams components include
queues, rules, rule sets, capture processes, synchronous captures, propagations, and
apply processes.

This section contains these topics:

• Adding Database Objects to a Replication Environment Using a Single Procedure

• Adding a Database to a Replication Environment Using a Single Procedure

4.2.1 Adding Database Objects to a Replication Environment Using a
Single Procedure

This topic includes an example that uses the MAINTAIN_TABLES procedure in the
DBMS_STREAMS_ADM package to add tables to an existing hub-and-spoke replication
environment. When the example is complete, the Oracle Streams replication
environment replicates the changes made to the added tables at the databases in the
environment.

Specifically, the example in this topic extends the replication environment configured in
"Example That Configures Hub-and-Spoke Replication". That configuration has the
following characteristics:

• The hr schema is replicated at the hub.example.com, spoke1.example.com, and
spoke2.example.com databases.

• The hub.example.com database is the hub database in the hub-and-spoke
environment, while the other databases are the spoke databases.

• The spoke databases allow changes to the replicated schema, and each database
has a local capture process to capture these changes.

• Update conflict handlers are configured for each replicated table at each database
to resolve conflicts

This example adds the following tables to the environment:

• oe.orders

• oe.order_items

This example uses the tables in the oe sample schema.

Note:

Before you use a configuration procedure in the DBMS_STREAMS_ADM package to
extend an Oracle Streams replication environment, ensure that the
environment meets the conditions described in "About Using the Setup
Streams Replication Wizard or a Single Configuration Procedure".

Complete the following steps:

Chapter 4
Adding Multiple Components Using a Single Procedure

4-4

1. Ensure that the following directory objects exist, and remove any files related to
the previous configuration from them, including Data Pump export dump files and
export log files:

• The hub_dir directory object at the hub.example.com database.

• The spoke1_dir directory object at the spoke1.example.com database.

• The spoke2_dir directory object at the spoke2.example.com database.

2. Stop the capture process at the hub database in the hub-and-spoke environment.

Use the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop a capture
process.

In this example, stop the capture process at the hub.example.com database. The
replicated database objects can remain open to changes while the capture
process is stopped. These changes will be captured when the capture process is
restarted.

3. In SQL*Plus, run the appropriate configuration procedure in the DBMS_STREAMS_ADM
package at the hub database to add each new database object for each spoke
database.

You might need to run the procedure several times if the environment has multiple
spoke databases. In this example, complete the following steps:

a. Open SQL*Plus and connect to the hub.example.com database as the Oracle
Streams administrator.

See Oracle Database 2 Day DBA for more information about starting
SQL*Plus.

b. Run the MAINTAIN_TABLES procedure to add the oe.orders and oe.order_items
tables for replication between hub.example.com and spoke1.example.com:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 DBMS_STREAMS_ADM.MAINTAIN_TABLES(
 table_names => tables,
 source_directory_object => 'hub_dir',
 destination_directory_object => 'spoke1_dir',
 source_database => 'hub.example.com',
 destination_database => 'spoke1.example.com',
 capture_name => 'capture_hns',
 capture_queue_table => 'source_hns_qt',
 capture_queue_name => 'source_hns',
 propagation_name => 'propagation_spoke1',
 apply_name => 'apply_spoke1',
 apply_queue_table => 'destination_spoke1_qt',
 apply_queue_name => 'destination_spoke1',
 bi_directional => TRUE);
END;
/

The MAINTAIN_TABLES procedure can take some time to run because it is
performing many configuration tasks. Do not allow data manipulation language
(DML) or data definition language (DDL) changes to the specified tables at the
destination database while the procedure is running. When the procedure

Chapter 4
Adding Multiple Components Using a Single Procedure

4-5

completes, the new database objects are added to the environment, and the
capture process that was stopped in Step 2 is restarted.

When a configuration procedure is run, information about its progress is
recorded in the following data dictionary views: DBA_RECOVERABLE_SCRIPT,
DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and
DBA_RECOVERABLE_SCRIPT_ERRORS. If the procedure stops because it encounters
an error, then see Oracle Streams Replication Administrator's Guide for
instructions about using the RECOVER_OPERATION procedure in the
DBMS_STREAMS_ADM package to recover from these errors.

The parameter values that specify Oracle Streams component names must be
the same as the values specified in the configuration procedure in the
DBMS_STREAMS_ADM package that configured the replication environment. The
Oracle Streams component names specified include the capture process
name, queue names, queue table names, the propagation name, and the
apply process name. In this example, the Oracle Streams component names
match the ones specified in "Example That Configures Hub-and-Spoke
Replication".

c. Run the MAINTAIN_TABLES procedure to add the oe.orders and oe.order_items
tables for replication between hub.example.com and spoke2.example.com:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 DBMS_STREAMS_ADM.MAINTAIN_TABLES(
 table_names => tables,
 source_directory_object => 'hub_dir',
 destination_directory_object => 'spoke2_dir',
 source_database => 'hub.example.com',
 destination_database => 'spoke2.example.com',
 capture_name => 'capture_hns',
 capture_queue_table => 'source_hns_qt',
 capture_queue_name => 'source_hns',
 propagation_name => 'propagation_spoke2',
 apply_name => 'apply_spoke2',
 apply_queue_table => 'destination_spoke2_qt',
 apply_queue_name => 'destination_spoke2',
 bi_directional => TRUE);
END;
/

4. Set the instantiation SCN for the replicated tables at the spoke databases:

Chapter 4
Adding Multiple Components Using a Single Procedure

4-6

Note:

This step is required in this example because the replicated tables existed at
the spoke databases before the MAINTAIN_TABLES procedure was run. If the
replicated tables did not exist at the spoke databases before the
MAINTAIN_TABLES procedure was run, then the procedure sets the instantiation
SCN for the replicated tables and this step is not required. Ensure that the
data in the shared table is consistent at the source and destination databases
when the instantiation SCN is set and that no changes are made to the table
at the source database until after the SCN that is used for the instantiation
SCN.

a. In SQL*Plus, connect to the hub.example.com database as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting
to a database in SQL*Plus.

b. Set the instantiation SCN for the oe.orders table at the spoke1.example.com
database:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@spoke1.example.com(
 source_object_name => 'oe.orders',
 source_database_name => 'hub.example.com',
 instantiation_scn => iscn);
END;
/

c. Set the instantiation SCN for the oe.order_items table at the
spoke1.example.com database:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@spoke1.example.com(
 source_object_name => 'oe.order_items',
 source_database_name => 'hub.example.com',
 instantiation_scn => iscn);
END;
/

d. Set the instantiation SCN for the oe.orders table at the spoke2.example.com
database:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@spoke2.example.com(
 source_object_name => 'oe.orders',
 source_database_name => 'hub.example.com',
 instantiation_scn => iscn);
END;
/

Chapter 4
Adding Multiple Components Using a Single Procedure

4-7

e. Set the instantiation SCN for the oe.order_items table at the
spoke2.example.com database:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@spoke2.example.com(
 source_object_name => 'oe.order_items',
 source_database_name => 'hub.example.com',
 instantiation_scn => iscn);
END;
/

5. Configure latest time conflict resolution for the orders and order_items tables in the
oe schema at the hub.example.com, spoke1.example.com, and spoke2.example.com
databases. See "Prebuilt Update Conflict Handlers" for instructions.

4.2.2 Adding a Database to a Replication Environment Using a Single
Procedure

This topic includes an example that uses the MAINTAIN_SCHEMAS procedure in the
DBMS_STREAMS_ADM package to add a new spoke database to an existing hub-and-spoke
replication environment. When the example is complete, the Oracle Streams
replication environment replicates the changes made to the schema with the new
database.

Specifically, the example in this topic extends the replication environment configured in
"Example That Configures Hub-and-Spoke Replication". That configuration has the
following characteristics:

• The hr schema is replicated at the hub.example.com, spoke1.example.com, and
spoke2.example.com databases.

• The hub.example.com database is the hub database in the hub-and-spoke
environment, while the other databases are the spoke databases.

• The spoke databases allow changes to the replicated schema, and each database
has a local capture process to capture these changes.

This example adds the spoke3.example.com database to the environment.

Note:

Before you use a configuration procedure in the DBMS_STREAMS_ADM package to
extend an Oracle Streams replication environment, ensure that the
environment meets the conditions described in "About Using the Setup
Streams Replication Wizard or a Single Configuration Procedure".

Complete the following steps:

1. Complete the following tasks to prepare the environment for the new database:

a. Configure network connectivity so that the hub database can communicate
with the new spoke database. In this example, configure network connectivity

Chapter 4
Adding Multiple Components Using a Single Procedure

4-8

so that the hub.example.com database and the spoke3.example.com databases
can communicate with each other.

See Oracle Database 2 Day DBA for information about configuring network
connectivity between databases.

b. Configure an Oracle Streams administrator at the new spoke database. In this
example, configure an Oracle Streams administrator at the spoke3.example.com
database. See "Configuring an Oracle Streams Administrator on All
Databases" for instructions. This example assumes that the Oracle Streams
administrator is strmadmin.

c. Create a database link from the hub database to new spoke database and
from new spoke database to the hub database. In this example, create the
following database links:

• From the hub.example.com database to the spoke3.example.com database.
Both the name and the service name of the database link must be
spoke3.example.com.

• From the spoke3.example.com database to the hub.example.com database.
Both the name and the service name of the database link must be
hub.example.com.

Each database link should be created in the Oracle Streams administrator's
schema. Also, each database link should connect to the Oracle Streams
administrator at the destination database. See "Configuring Network
Connectivity and Database Links" for instructions.

d. Set initialization parameters properly at the new spoke database. In this
example, set initialization parameters properly at the spoke3.example.com
database. See "Setting Initialization Parameters Relevant to Oracle Streams"
for instructions.

e. Configure the new spoke database to run in ARCHIVELOG mode. For a capture
process to capture changes generated at a source database, the source
database must be running in ARCHIVELOG mode. In this example, configure the
spoke3.example.com database to run in ARCHIVELOG mode. See Oracle Database
Administrator's Guide for information about configuring a database to run in
ARCHIVELOG mode.

f. Ensure that the hub_dir directory objects exist at the hub.example.com
database, and remove any files related to the previous configuration from it,
including Data Pump export dump files and export log files.

2. Open SQL*Plus and connect to the spoke3.example.com database as the Oracle
Streams administrator.

See Oracle Database 2 Day DBA for more information about starting SQL*Plus.

3. Create a directory object to hold files that will be generated by the
MAINTAIN_SCHEMAS procedure, including the Data Pump export dump file used for
instantiation. The directory object can point to any accessible directory on the
computer system. For example, the following statement creates a directory object
named spoke3_dir that points to the /usr/spoke3_log_files directory:

CREATE DIRECTORY spoke3_dir AS '/usr/spoke3_log_files';

4. Stop the capture process at the hub database in the hub-and-spoke environment.

Use the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop a capture
process.

Chapter 4
Adding Multiple Components Using a Single Procedure

4-9

In this example, stop the capture process at the hub.example.com database. The
replicated database objects can remain open to changes while the capture
process is stopped. These changes will be captured when the capture process is
restarted.

5. In SQL*Plus, run the appropriate configuration procedure in the DBMS_STREAMS_ADM
package at the hub database to add the new spoke database.

In this example, complete the following steps:

a. Open SQL*Plus and connect to the hub.example.com database as the Oracle
Streams administrator.

b. Run the MAINTAIN_SCHEMAS procedure to add the spoke3.example.com database
to the Oracle Streams replication environment:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS(
 schema_names => 'hr',
 source_directory_object => 'hub_dir',
 destination_directory_object => 'spoke3_dir',
 source_database => 'hub.example.com',
 destination_database => 'spoke3.example.com',
 capture_name => 'capture_hns',
 capture_queue_table => 'source_hns_qt',
 capture_queue_name => 'source_hns',
 propagation_name => 'propagation_spoke3',
 apply_name => 'apply_spoke3',
 apply_queue_table => 'destination_spoke3_qt',
 apply_queue_name => 'destination_spoke3',
 bi_directional => TRUE);
END;
/

The MAINTAIN_SCHEMAS procedure can take some time to run because it is
performing many configuration tasks. Do not allow data manipulation language
(DML) or data definition language (DDL) changes to the database objects in
the specified schema at the destination database while the procedure is
running. When the procedure completes, the new database objects are added
to the environment, and the capture process that was stopped in Step 4 is
restarted.

The parameter values specified in capture_name, capture_queue_table, and
capture_queue_name must be the same as the values specified in the
configuration procedure in the DBMS_STREAMS_ADM package that configured the
replication environment. In this example, these parameter values match the
ones specified in "Example That Configures Hub-and-Spoke Replication".

When a configuration procedure is run, information about its progress is
recorded in the following data dictionary views: DBA_RECOVERABLE_SCRIPT,
DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and
DBA_RECOVERABLE_SCRIPT_ERRORS. If the procedure stops because it encounters
an error, then see Oracle Streams Replication Administrator's Guide for
instructions about using the RECOVER_OPERATION procedure in the
DBMS_STREAMS_ADM package to recover from these errors.

6. Configure latest time conflict resolution for all of the tables in the hr schema at the
spoke3.example.com database. This schema includes the countries, departments,
employees, jobs, job_history, locations, and regions tables. See "Prebuilt Update
Conflict Handlers" for instructions.

Chapter 4
Adding Multiple Components Using a Single Procedure

4-10

4.3 Adding Components Individually in Multiple Steps
This section describes adding Oracle Streams components separately to extend a
replication environment. Oracle Streams components include queues, rules, rule sets,
capture processes, synchronous captures, propagations, and apply processes.

This section contains these topics:

• Adding Replicated Objects to an Existing Single-Source Environment

• Adding a New Destination Database to a Single-Source Environment

• Adding Replicated Objects to an Existing Multiple-Source Environment

• Adding a New Database to an Existing Multiple-Source Environment

Note:

• When possible, it is usually easier to extend an Oracle Streams replication
environment using either a single procedure or the Setup Streams
Replication Wizard in Oracle Enterprise Manager Cloud Control. See
"Adding Multiple Components Using a Single Procedure" for instructions
about using a single procedure and the Oracle Enterprise Manager Cloud
Control online help for instructions about using the wizard.

• The instructions in the following sections assume you will use the
DBMS_STREAMS_ADM package to configure your Oracle Streams environment.
If you use other packages, then extra steps might be necessary for each
task.

4.3.1 Adding Replicated Objects to an Existing Single-Source
Environment

You can add existing database objects to an existing single-source environment by
adding the necessary rules to the appropriate capture processes, synchronous
captures, propagations, and apply processes. Before creating or altering capture or
propagation rules in a running Oracle Streams environment, ensure that any
propagations or apply processes that will receive logical change records (LCRs)
because of the new or altered rules are configured to handle these LCRs. That is, the
propagations or apply processes should exist, and each one should be associated with
rule sets that handle the LCRs appropriately. If these propagations and apply
processes are not configured properly to handle these LCRs, then LCRs might be lost.

For example, suppose you want to add a table to an Oracle Streams replication
environment that already captures, propagates, and applies changes to other tables.
Assume that only one capture process or synchronous captures will capture changes
to this table, and only one apply process will apply changes to this table. In this case,
you must add one or more table rules to the following rule sets:

• The positive rule set for the apply process that will apply changes to the table

• The positive rule set for each propagation that will propagate changes to the table

Chapter 4
Adding Components Individually in Multiple Steps

4-11

• The positive rule set for the capture process or synchronous capture that will
capture changes to the table

If you perform administrative steps in the wrong order, you can lose LCRs. For
example, if you add the rule to a capture process rule set first, without stopping the
capture process, then the propagation will not propagate the changes if it does not
have a rule that instructs it to do so, and the changes can be lost.

This example assumes that the replicated database objects are read-only at the
destination databases. If the replicated database objects are read/write at the
destination databases, then the replication environment will not stay synchronized
because Oracle Streams is not configured to replicate the changes made to the
replicated database objects at the destination databases.

Figure 4-1 shows the additional configuration steps that must be completed to add
replicated database objects to a single-source Oracle Streams environment.

Figure 4-1 Example of Adding Replicated Objects to a Single-Source
Environment

Destination Database

Source Database

Existing

database

link for�
propagation

Additional configuration includes:

·	Supplemental logging specifications for �
	 the added shared objects

·	Each additional shared object prepared �
	 for instantiation

·	Appropriate rules for the added objects �
	 included the rule sets for the capture

	 process and/or synchronous capture, �
	 and for the propagations

Additional configuration includes:

·	Instantiation SCN set for each additional �
	 shared object�
·	Appropriate rules for the added objects

	 included in the rule sets for the �
	 apply process

· · ·

Additional�

Destination�

Databases

To avoid losing LCRs, complete the configuration in the following order:

1. At each source database where replicated database objects are being added,
specify supplemental logging for the added replicated database objects. See
"Specifying Supplemental Logging" for instructions.

2. Either stop the capture process, one of the propagations, or the apply processes:

Chapter 4
Adding Components Individually in Multiple Steps

4-12

• Use the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop a
capture process.

• Use the STOP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package to
stop a propagation.

• Use the STOP_APPLY procedure in the DBMS_APPLY_ADM package to stop an apply
process.

In general, it is best to stop the capture process so that messages do not
accumulate in queues during the operation.

Note:

Synchronous captures cannot be stopped.

See Also:

Oracle Streams Concepts and Administration for more information about
completing these tasks with PL/SQL procedures

3. Add the relevant rules to the rule sets for the apply processes. To add rules to the
rule set for an apply process, you can run one of the following procedures:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules to the
positive or negative rule set for an apply process. The ADD_SUBSET_RULES procedure
can add rules only to the positive rule set for an apply process.

4. Add the relevant rules to the rule sets for the propagations. To add rules to the rule
set for a propagation, you can run one of the following procedures:

• DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

Excluding the ADD_SUBSET_PROPAGATION_RULES procedure, these procedures can add
rules to the positive or negative rule set for a propagation. The
ADD_SUBSET_PROPAGATION_RULES procedure can add rules only to the positive rule set
for a propagation.

5. Add the relevant rules to the rule sets used by the capture process or synchronous
capture. To add rules to a rule set for an existing capture process, you can run one
of the following procedures and specify the existing capture process:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_RULES

Chapter 4
Adding Components Individually in Multiple Steps

4-13

• DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules to the
positive or negative rule set for a capture process. The ADD_SUBSET_RULES
procedure can add rules only to the positive rule set for a capture process.

To add rules to a rule set for an existing synchronous capture, you can run one of
the following procedures and specify the existing synchronous capture:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_RULES

When you use a procedure in the DBMS_STREAMS_ADM package to add the capture
process rules, it automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION procedure in the
DBMS_CAPTURE_ADM package for the specified table, specified schema, or entire
database, respectively, if the capture process is a local capture process or a
downstream capture process with a database link to the source database.

You must run the appropriate procedure to prepare for instantiation manually if any
of the following conditions is true:

• You use DBMS_RULE_ADM to create or modify rules in a capture process rule set.

• You do not add rules for the added objects to a capture process rule set,
because the capture process already captures changes to these objects. In
this case, rules for the objects can be added to propagations and apply
processes in the environment, but not to the capture process.

• You use a downstream capture process with no database link to the source
database.

If you must prepare for instantiation manually, then see "Preparing Database
Objects for Instantiation at a Source Database" for instructions.

When you use a procedure in the DBMS_STREAMS_ADM package to add the
synchronous capture rules, it automatically runs the PREPARE_SYNC_INSTANTIATION
function in the DBMS_CAPTURE_ADM package for the specified table.

6. At each destination database, either instantiate, or set the instantiation SCN for,
each database object you are adding to the Oracle Streams environment. If the
database objects do not exist at a destination database, then instantiate them
using export/import, transportable tablespaces, or RMAN. If the database objects
already exist at a destination database, then set the instantiation SCNs for them
manually.

• To instantiate database objects using export/import, first export them at the
source database. Next, import them at the destination database. See
Instantiation and Oracle Streams Replication.

Do not allow any changes to the database objects being exported while
exporting these database objects at the source database. Do not allow
changes to the database objects being imported while importing these
database objects at the destination database.

You can specify a more stringent degree of consistency by using an export
parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

Chapter 4
Adding Components Individually in Multiple Steps

4-14

• To set the instantiation SCN for a table, schema, or database manually, run
the appropriate procedure or procedures in the DBMS_APPLY_ADM package at a
destination database:

– SET_TABLE_INSTANTIATION_SCN

– SET_SCHEMA_INSTANTIATION_SCN

– SET_GLOBAL_INSTANTIATION_SCN

When you run one of these procedures at a destination database, you must
ensure that every added object at the destination database is consistent with
the source database as of the instantiation SCN.

If you run SET_GLOBAL_INSTANTIATION_SCN at a destination database, then set the
recursive parameter for this procedure to TRUE so that the instantiation SCN
also is set for each schema at the destination database and for the tables
owned by these schemas.

If you run SET_SCHEMA_INSTANTIATION_SCN at a destination database, then set the
recursive parameter for this procedure to TRUE so that the instantiation SCN
also is set for each table in the schema.

If you set the recursive parameter to TRUE in the SET_GLOBAL_INSTANTIATION_SCN
procedure or the SET_SCHEMA_INSTANTIATION_SCN procedure, then a database
link from the destination database to the source database is required. This
database link must have the same name as the global name of the source
database and must be accessible to the user who executes the procedure.
See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" for
instructions.

Alternatively, you can perform a metadata export/import to set the instantiation
SCNs for existing database objects. If you choose this option, then ensure that
no rows are imported. Also, ensure that every added object at the importing
destination database is consistent with the source database that performed
the export at the time of the export. If you are sharing DML changes only, then
table level export/import is sufficient. If you are sharing DDL changes also,
then additional considerations apply. See "Setting Instantiation SCNs Using
Export/Import" for more information about performing a metadata export/
import.

7. Start any Oracle Streams client you stopped in Step 2:

• Use the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package to start a
capture process.

• Use the START_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package
start a propagation.

• Use the START_APPLY procedure in the DBMS_APPLY_ADM package to start an apply
process.

See Also:

Oracle Streams Concepts and Administration for more information about
completing these tasks using PL/SQL procedures

You must stop the capture process, disable one of the propagation jobs, or stop the
apply process in Step 2 to ensure that the table or schema is instantiated before the

Chapter 4
Adding Components Individually in Multiple Steps

4-15

first LCR resulting from the added rule(s) reaches the apply process. Otherwise, LCRs
could be lost or could result in apply errors, depending on whether the apply process
rule(s) have been added.

If you are certain that the added table is not being modified at the source database
during this procedure, and that there are no LCRs for the table already in the stream or
waiting to be captured, then you can perform Step 7 before Step 6 to reduce the
amount of time that an Oracle Streams process or propagation job is stopped.

See Also:

Oracle Streams Extended Examples for a detailed example that adds objects
to an existing single-source environment

4.3.2 Adding a New Destination Database to a Single-Source
Environment

You can add a destination database to an existing single-source environment by
creating one or more new apply processes at the new destination database and, if
necessary, configuring one or more propagations to send changes to the new
destination database. You might also need to add rules to existing propagations in the
stream that send changes to the new destination database.

As in the example that describes "Adding Replicated Objects to an Existing Single-
Source Environment", before creating or altering propagation rules in a running Oracle
Streams replication environment, ensure that any propagations or apply processes
that will receive logical change records (LCRs) because of the new or altered rules are
configured to handle these LCRs. Otherwise, LCRs might be lost.

This example assumes that the replicated database objects are read-only at the
destination databases. If the replicated database objects are read/write at the
destination databases, then the replication environment will not stay synchronized
because Oracle Streams is not configured to replicate the changes made to the
replicated database objects at the destination databases.

Figure 4-2 shows the additional configuration steps that must be completed to add a
destination database to a single-source Oracle Streams environment.

Chapter 4
Adding Components Individually in Multiple Steps

4-16

Figure 4-2 Example of Adding a Destination to a Single-Source Environment

Existing Destination Database Added Destination Database

Source Database

Existing

database

link for�
existing�

propagation

Added�
database

link for�
 added

propagation

Additional configuration includes:

·	Each shared object prepared �
	 for instantiation

·	A propagation for the added �
	 destination database

Additional configuration includes:

·	A SYS.AnyData queue

·	Instantiation SCN set for each �
	 shared object �
·	An apply process for the source database�
·	Rule sets for the apply process

No Additional configuration required

· · ·

Additional�
Destination�
Databases

To avoid losing LCRs, you should complete the configuration in the following order:

1. Complete the necessary tasks to prepare each database in your environment for
Oracle Streams. See "Tasks to Complete Before Configuring Oracle Streams
Replication".

Some of these tasks might not be required at certain databases.

2. Create any necessary ANYDATA queues that do not already exist at the destination
database. When you create an apply process, you associate the apply process
with a specific ANYDATA queue. See "Creating an ANYDATA Queue" for
instructions.

3. Create one or more apply processes at the new destination database to apply the
changes from its source database. Ensure that each apply process uses rule sets
that are appropriate for applying changes. Do not start any of the apply processes
at the new database. See Configuring Implicit Apply for instructions.

Keeping the apply processes stopped prevents changes made at the source
databases from being applied before the instantiation of the new database is
completed. Starting the apply processes might lead to incorrect data and errors.

4. Configure any necessary propagations to send changes from the source
databases to the new destination database. Ensure that each propagation uses
rule sets that are appropriate for propagating changes. See "Creating Oracle
Streams Propagations Between ANYDATA Queues".

Chapter 4
Adding Components Individually in Multiple Steps

4-17

5. At the source database, prepare for instantiation each database object for which
changes will be applied by an apply process at the new destination database.

If you are using one or more capture processes, then run either the
PREPARE_TABLE_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, or
PREPARE_GLOBAL_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package for the
specified table, specified schema, or entire database, respectively.

If you are using one or more synchronous captures, then run the
PREPARE_SYNC_INSTANTIATION function in the DBMS_CAPTURE_ADM package for the
specified table.

See "Preparing Database Objects for Instantiation at a Source Database".

6. At the new destination database, either instantiate, or set the instantiation SCNs
for, each database object for which changes will be applied by an apply process. If
the database objects do not already exist at the new destination database, then
instantiate them using export/import, transportable tablespaces, or RMAN. If the
database objects exist at the new destination database, then set the instantiation
SCNs for them.

• To instantiate database objects using export/import, first export them at the
source database. Next, import them at the destination database. See
Instantiation and Oracle Streams Replication.

Do not allow any changes to the database objects being exported while
exporting these database objects at the source database. Do not allow
changes to the database objects being imported while importing these
database objects at the destination database.

You can specify a more stringent degree of consistency by using an export
parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

• To set the instantiation SCN for a table, schema, or database manually, run
the appropriate procedure or procedures in the DBMS_APPLY_ADM package at the
new destination database:

– SET_TABLE_INSTANTIATION_SCN

– SET_SCHEMA_INSTANTIATION_SCN

– SET_GLOBAL_INSTANTIATION_SCN

When you run one of these procedures, you must ensure that the replicated
database objects at the new destination database are consistent with the
source database as of the instantiation SCN.

If you run SET_GLOBAL_INSTANTIATION_SCN at a destination database, then set the
recursive parameter for this procedure to TRUE so that the instantiation SCN
also is set for each schema at the destination database and for the tables
owned by these schemas.

If you run SET_SCHEMA_INSTANTIATION_SCN at a destination database, then set the
recursive parameter for this procedure to TRUE so that the instantiation SCN
also is set for each table in the schema.

If you set the recursive parameter to TRUE in the SET_GLOBAL_INSTANTIATION_SCN
procedure or the SET_SCHEMA_INSTANTIATION_SCN procedure, then a database
link from the destination database to the source database is required. This
database link must have the same name as the global name of the source
database and must be accessible to the user who executes the procedure.

Chapter 4
Adding Components Individually in Multiple Steps

4-18

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" for
instructions.

Alternatively, you can perform a metadata export/import to set the instantiation
SCNs for existing database objects. If you choose this option, then ensure that
no rows are imported. Also, ensure that the replicated database objects at the
importing destination database are consistent with the source database that
performed the export at the time of the export. If you are sharing DML changes
only, then table level export/import is sufficient. If you are sharing DDL
changes also, then additional considerations apply. See "Setting Instantiation
SCNs Using Export/Import" for more information about performing a metadata
export/import.

7. Start the apply processes you created in Step 3 using the START_APPLY procedure in
the DBMS_APPLY_ADM package.

See Also:

Oracle Streams Extended Examples for detailed example that adds a
database to an existing single-source environment

4.3.3 Adding Replicated Objects to an Existing Multiple-Source
Environment

You can add existing database objects to an existing multiple-source environment by
adding the necessary rules to the appropriate capture processes, synchronous
captures, propagations, and apply processes.

This example uses the following terms:

• Populated database: A database that already contains the replicated database
objects being added to the multiple-source environment. You must have at least
one populated database to add the objects to the environment.

• Export database: A populated database on which you perform an export of the
database objects you are adding to the environment. This export is used to
instantiate the added database objects at the import databases. You might not
have an export database if all of the databases in the environment are populated
databases.

• Import database: A database that does not contain the replicated database
objects before they are added to the multiple-source environment. You instantiate
the replicated database objects at an import database by performing an import of
these database objects. You might not have any import databases if all of the
databases in the environment are populated databases.

Before creating or altering capture or propagation rules in a running Oracle Streams
replication environment, ensure that any propagations or apply processes that will
receive logical change records (LCRs) because of the new or altered rules are
configured to handle these LCRs. That is, the propagations or apply processes should
exist, and each one should be associated with rule sets that handle the LCRs
appropriately. If these propagations and apply processes are not configured properly
to handle these LCRs, then LCRs can be lost.

Chapter 4
Adding Components Individually in Multiple Steps

4-19

For example, suppose you want to add a new table to an Oracle Streams replication
environment that already captures, propagates, and applies changes to other tables.
Assume multiple capture processes or synchronous captures in the environment will
capture changes to this table, and multiple apply processes will apply changes to this
table. In this case, you must add one or more table rules to the following rule sets:

• The positive rule set for each apply process that will apply changes to the table

• The positive rule set for each propagation that will propagate changes to the table

• The positive rule set for each capture process or synchronous capture that will
capture changes to the table

If you perform administrative steps in the wrong order, then you can lose LCRs. For
example, if you add the rule to a capture process rule set first, without stopping the
capture process, then the propagation will not propagate the changes if it does not
have a rule that instructs it to do so, and the changes can be lost.

Figure 4-3 shows the additional configuration steps that must be completed to add
replicated database objects to a multiple-source Oracle Streams environment.

Figure 4-3 Example of Adding Replicated Objects to a Multiple-Source
Environment

Source / Destination Database

Existing�
database

links for�

propagations

Additional configuration includes:

·	Supplemental logging specifications�
	 for added shared objects

·	Each additional object prepared for �
	 instantiation�
·	Appropriate rules for the added objects

	 included in the rule sets for the

	 capture process(es), synchronous capture(s), �
	 propagation(s), and apply process(es)

·	Instantiation SCN set for each �
	 additional object for each of the other �
	 source databases�
·	Conflict resolution for the added objects

	 if necessary

· · ·

Additional�

Source / Destination�

Databases

Source / Destination Database

Additional configuration includes:

·	Supplemental logging specifications�
	 for added shared objects

·	Each additional object prepared for �
	 instantiation�
·	Appropriate rules for the added objects

	 included in the rule sets for the

	 capture process(es), synchronous capture(s),

	 propagation(s), and apply process(es)

·	Instantiation SCN set for each �
	 additional object for each of the other �
	 source databases

·	Conflict resolution for the added objects

	 if necessary

Chapter 4
Adding Components Individually in Multiple Steps

4-20

When there are multiple source databases in an Oracle Streams replication
environment, change cycling is possible. Change cycling happens when a change is
sent back to the database where it originated. Typically, you should avoid change
cycling. Before you configure your replication environment, see Oracle Streams Tags,
and ensure that you configure the replication environment to avoid change cycling.

To avoid losing LCRs, complete the configuration in the following order:

1. At each populated database, specify any necessary supplemental logging for the
objects being added to the environment. See "Specifying Supplemental Logging"
for instructions.

2. Either stop all of the capture processes that will capture changes to the added
objects, stop all of the propagations that will propagate changes to the added
objects, or stop all of the apply process that will apply changes to the added
objects:

• Use the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop a
capture process.

• Use the STOP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package to
stop a propagation.

• Use the STOP_APPLY procedure in the DBMS_APPLY_ADM package to stop an apply
process.

In general, it is best to stop the capture process so that messages do not
accumulate in queues during the operation.

Note:

Synchronous captures cannot be stopped.

See Also:

Oracle Streams Concepts and Administration for more information about
completing these tasks using PL/SQL procedures

3. Add the relevant rules to the rule sets for the apply processes that will apply
changes to the added objects. To add rules to the rule set for an apply process,
you can run one of the following procedures:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules to the
positive or negative rule set for an apply process. The ADD_SUBSET_RULES procedure
can add rules only to the positive rule set for an apply process.

4. Add the relevant rules to the rule sets for the propagations that will propagate
changes to the added objects. To add rules to the rule set for a propagation, you
can run one of the following procedures:

Chapter 4
Adding Components Individually in Multiple Steps

4-21

• DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

Excluding the ADD_SUBSET_PROPAGATION_RULES procedure, these procedures can add
rules to the positive or negative rule set for a propagation. The
ADD_SUBSET_PROPAGATION_RULES procedure can add rules only to the positive rule set
for a propagation.

5. Add the relevant rules to the rule sets used by each capture process or
synchronous capture that will capture changes to the added objects. To add rules
to a rule set for an existing capture process, you can run one of the following
procedures and specify the existing capture process:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules to the
positive or negative rule set for a capture process. The ADD_SUBSET_RULES
procedure can add rules only to the positive rule set for a capture process.

To add rules to a rule set for an existing synchronous capture, you can run one of
the following procedures and specify the existing synchronous capture:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_RULES

When you use a procedure in the DBMS_STREAMS_ADM package to add the capture
process rules, it automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION procedure in the
DBMS_CAPTURE_ADM package for the specified table, specified schema, or entire
database, respectively, if the capture process is a local capture process or a
downstream capture process with a database link to the source database.

You must run the appropriate procedure to prepare for instantiation manually if any
of the following conditions is true:

• You use DBMS_RULE_ADM to create or modify rules in a capture process rule set.

• You do not add rules for the added objects to a capture process rule set,
because the capture process already captures changes to these objects. In
this case, rules for the objects can be added to propagations and apply
processes in the environment, but not to the capture process.

• You use a downstream capture process with no database link to the source
database.

If you must prepare for instantiation manually, then see "Preparing Database
Objects for Instantiation at a Source Database" for instructions.

When you use a procedure in the DBMS_STREAMS_ADM package to add the
synchronous capture rules, it automatically runs the PREPARE_SYNC_INSTANTIATION
function in the DBMS_CAPTURE_ADM package for the specified table.

Chapter 4
Adding Components Individually in Multiple Steps

4-22

After completing these steps, complete the steps in each of the following sections that
apply to your environment. You might need to complete the steps in only one of these
sections or in both of these sections:

• For each populated database, complete the steps in "Configuring Populated
Databases When Adding Replicated Objects". These steps are required only if
your environment has multiple populated databases.

• For each import database, complete the steps in "Adding Replicated Objects to
Import Databases in an Existing Environment".

4.3.3.1 Configuring Populated Databases When Adding Replicated Objects
After completing the steps in "Adding Replicated Objects to an Existing Multiple-
Source Environment", complete the following steps for each populated database if
your environment has multiple populated databases:

1. For each populated database, set the instantiation SCN for each added object at
the other populated databases in the environment. These instantiation SCNs must
be set, and only the changes made at a particular populated database that are
committed after the corresponding SCN for that database will be applied at
another populated database.

For each populated database, you can set these instantiation SCNs for each
added database object in one of the following ways:

• Perform a metadata only export of the added database objects at the
populated database and import the metadata at each of the other populated
databases. Such an import sets the required instantiation SCNs for the
database at the other databases. Ensure that no rows are imported. Also,
ensure that the replicated database objects at each of the other populated
databases are consistent with the populated database that performed the
export at the time of the export.

If you are replicating DML changes only, then table level export/import is
sufficient. If you are replicating DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using Export/Import" for
more information about performing a metadata export/import.

• Set the instantiation SCNs manually for the added objects at each of the other
populated databases. Ensure that every added database object at each
populated database is consistent with the instantiation SCNs you set at that
database. See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM
Package" for instructions.

4.3.3.2 Adding Replicated Objects to Import Databases in an Existing
Environment

After completing the steps in "Adding Replicated Objects to an Existing Multiple-
Source Environment", complete the following steps for the import databases:

1. Pick the populated database that you will use as the export database. Do not
perform the instantiations yet.

2. For each import database, set the instantiation SCNs for the added database
objects at all of the other databases in the environment that will be a destination
database of the import database. In this case, the import database will be the

Chapter 4
Adding Components Individually in Multiple Steps

4-23

source database for these destination databases. The databases where you set
the instantiation SCNs might be populated databases and other import databases.

a. If one or more schemas will be created at an import database during
instantiation or by a subsequent replicated DDL change, then run the
SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package for this
import database at all of the other databases in the environment.

b. If a schema exists at an import database, and one or more tables will be
created in the schema during instantiation or by a subsequent replicated DDL
change, then run the SET_SCHEMA_INSTANTIATION_SCN procedure in the
DBMS_APPLY_ADM package for the schema for this import database at each of the
other databases in the environment. Do this for each such schema.

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" for
instructions.

Because you run these procedures before any tables are instantiated at the import
databases, and because the local capture processes or synchronous captures are
configured already for these import databases, you will not need to run the
SET_TABLE_INSTANTIATION_SCN procedure for each table created during instantiation.
Instantiation SCNs will be set automatically for these tables at all of the other
databases in the environment that will be destination databases of the import
database.

3. At the export database you chose in Step 1, perform an export of the replicated
database objects. Next, perform an import of the replicated database objects at
each import database. See Instantiation and Oracle Streams Replication and
Oracle Database Utilities for information about using export/import.

Do not allow any changes to the database objects being exported while exporting
these database objects at the source database. Do not allow changes to the
database objects being imported while importing these database objects at the
destination database.

You can specify a more stringent degree of consistency by using an export
parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

4. For each populated database, except for the export database, set the instantiation
SCNs for the added database objects at each import database that will be a
destination database of the populated source database. These instantiation SCNs
must be set, and only the changes made at a populated database that are
committed after the corresponding SCN for that database will be applied at an
import database.

For each populated database, you can set these instantiation SCNs for the added
objects in one of the following ways:

• Perform a metadata only export of the added database objects at the
populated database and import the metadata at each import database. Each
import sets the required instantiation SCNs for the populated database at the
import database. In this case, ensure that every added database object at the
import database is consistent with the populated database at the time of the
export.

If you are replicating DML changes only, then table level export/import is
sufficient. If you are replicating DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using Export/Import" for
more information about performing a metadata export/import.

Chapter 4
Adding Components Individually in Multiple Steps

4-24

• Set the instantiation SCNs manually for the added objects at each import
database. Ensure that every added object at each import database is
consistent with the populated database as of the corresponding instantiation
SCN. See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM
Package" for instructions.

4.3.3.3 Finish Adding Objects to a Multiple-Source Environment Configuration
Before completing the configuration, you should have completed the following tasks:

• "Adding Replicated Objects to an Existing Multiple-Source Environment"

• "Configuring Populated Databases When Adding Replicated Objects", if your
environment has multiple populated databases

• "Adding Replicated Objects to Import Databases in an Existing Environment", if
your environment had import databases

When all of the previous configuration steps are finished, complete the following steps:

1. At each database, configure conflict resolution for the added database objects if
conflicts are possible. See Oracle Streams Conflict Resolution for instructions.

2. Start each Oracle Streams client you stopped in Step 2 in "Adding Replicated
Objects to an Existing Multiple-Source Environment":

• Use the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package to start a
capture process.

• Use the START_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package
start a propagation.

• Use the START_APPLY procedure in the DBMS_APPLY_ADM package to start an apply
process.

See Also:

Oracle Streams Concepts and Administration for more information about
completing these tasks using the PL/SQL procedures

4.3.4 Adding a New Database to an Existing Multiple-Source
Environment

Figure 4-4 shows the additional configuration steps that must be completed to add a
source/destination database to a multiple-source Oracle Streams environment.

Chapter 4
Adding Components Individually in Multiple Steps

4-25

Figure 4-4 Example of Adding a Database to a Multiple-Source Environment

Existing Source / Destination Database

Added�
database

links for�

propagations

Additional configuration includes:

·	A SYS.AnyData queue to stage changes

	 from the new source database (optional)

·	Each shared object prepared for �
	 instantiation�
·	A propagation for the added database �
·	Instantiation SCN set for each shared

	 object for the added source database�
·	An apply process for the added

	 source database�
·	Rule sets for the added propagation

	 and apply process

· · ·

Additional�
Source / Destination�
Databases

Added Source / Destination Database

Additional configuration includes:

·	One or more SYS.AnyData queues

·	Supplemental logging specifications

·	Each shared object prepared for �
	 instantiation�
·	One or more capture process(es) and/or �
	 synchronous capture(s)

·	One propagation for each of the other �
	 destination databases�
·	Instantiation SCN set for each shared �
	 object for each of the other source databases�
·	One apply process for each of the other �
	 source databases

·	Rule sets for the capture process(es) and/or �
	 synchronous capture(s), �
	 propagation(s), and apply process(es)�
·	Conflict resolution if necessary

When there are multiple source databases in an Oracle Streams replication
environment, change cycling is possible. Change cycling happens when a change is
sent back to the database where it originated. Typically, you should avoid change
cycling. Before you configure your replication environment, see Oracle Streams Tags,
and ensure that you configure the replication environment to avoid change cycling.

Complete the following steps to add a new source/destination database to an existing
multiple-source Oracle Streams replication environment:

Note:

Ensure that no changes are made to the database objects being replicated at
the database you are adding to the Oracle Streams replication environment
until the instantiation at the database is complete.

Chapter 4
Adding Components Individually in Multiple Steps

4-26

1. Complete the necessary tasks to prepare each database in your environment for
Oracle Streams. See "Tasks to Complete Before Configuring Oracle Streams
Replication".

Some of these tasks might not be required at certain databases.

2. Create any necessary ANYDATA queues that do not already exist. When you create
a capture process, synchronous capture, or apply process, you associate the
process with a specific ANYDATA queue. When you create a propagation, you
associate it with a specific source queue and destination queue. See "Creating an
ANYDATA Queue" for instructions.

3. Create one or more apply processes at the new database to apply the changes
from its source databases. Ensure that each apply process uses rule sets that are
appropriate for applying changes. Do not start any apply process at the new
database. See Configuring Implicit Apply for instructions.

Keeping the apply processes stopped prevents changes made at the source
databases from being applied before the instantiation of the new database is
completed. Starting the apply processes might lead to incorrect data and errors.

4. If the new database will be a source database, then, at all databases that will be
destination databases for the changes made at the new database, create one or
more apply processes to apply changes from the new database. Ensure that each
apply process uses rule sets that are appropriate for applying changes. Do not
start any of these new apply processes. See Configuring Implicit Apply for
instructions.

5. Configure propagations at the databases that will be source databases of the new
database to send changes to the new database. Ensure that each propagation
uses rule sets that are appropriate for propagating changes. See "Creating Oracle
Streams Propagations Between ANYDATA Queues".

6. If the new database will be a source database, then configure propagations at the
new database to send changes from the new database to each of its destination
databases. Ensure that each propagation uses rule sets that are appropriate for
propagating changes. See "Creating Oracle Streams Propagations Between
ANYDATA Queues".

7. If the new database will be a source database, and the replicated database
objects already exist at the new database, then specify any necessary
supplemental logging for the replicated database objects at the new database.
See "Specifying Supplemental Logging" for instructions.

8. At each source database for the new database, prepare for instantiation each
database object for which changes will be applied by an apply process at the new
database.

If you are using one or more capture processes, then run either the
PREPARE_TABLE_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, or
PREPARE_GLOBAL_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package for the
specified table, specified schema, or entire database, respectively.

If you are using one or more synchronous captures, then run the
PREPARE_TABLE_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package for the
specified table.

See "Preparing Database Objects for Instantiation at a Source Database" for
instructions.

Chapter 4
Adding Components Individually in Multiple Steps

4-27

9. If the new database will be a source database, then create one or more capture
processes or synchronous captures to capture the relevant changes. See
Configuring Implicit Capture for instructions. If you plan to use capture processes,
then Oracle recommends that you use only one capture process for each source
database.

When you use a procedure in the DBMS_STREAMS_ADM package to add the capture
process rules, it automatically runs the PREPARE_TABLE_INSTANTIATION,
PREPARE_SCHEMA_INSTANTIATION, or PREPARE_GLOBAL_INSTANTIATION procedure in the
DBMS_CAPTURE_ADM package for the specified table, specified schema, or entire
database, respectively, if the capture process is a local capture process or a
downstream capture process with a database link to the source database.

You must run the appropriate procedure to prepare for instantiation manually if any
of the following conditions is true:

• You use the DBMS_RULE_ADM package to add or modify rules.

• You use an existing capture process and do not add capture process rules for
any replicated database object.

• You use a downstream capture process with no database link to the source
database.

If you must prepare for instantiation manually, then see "Preparing Database
Objects for Instantiation at a Source Database" for instructions.

When you use a procedure in the DBMS_STREAMS_ADM package to add the
synchronous capture rules, it automatically runs the PREPARE_SYNC_INSTANTIATION
function in the DBMS_CAPTURE_ADM package for the specified table.

10. If the new database will be a source database, then start any capture process you
created in Step 9 using the START_CAPTURE procedure in the DBMS_CAPTURE_ADM
package.

After completing these steps, complete the steps in the appropriate section:

• If the objects that are to be replicated with the new database already exist at the
new database, then complete the steps in "Configuring Databases If the
Replicated Objects Already Exist at the New Database".

• If the objects that are to be replicated with the new database do not already exist
at the new database, complete the steps in "Adding Replicated Objects to a New
Database".

4.3.4.1 Configuring Databases If the Replicated Objects Already Exist at the
New Database

After completing the steps in "Adding a New Database to an Existing Multiple-Source
Environment", complete the following steps if the objects that are to be replicated with
the new database already exist at the new database:

1. For each source database of the new database, set the instantiation SCNs at the
new database. These instantiation SCNs must be set, and only the changes made
at a source database that are committed after the corresponding SCN for that
database will be applied at the new database.

For each source database of the new database, you can set these instantiation
SCNs in one of the following ways:

Chapter 4
Adding Components Individually in Multiple Steps

4-28

• Perform a metadata only export of the replicated database objects at the
source database, and import the metadata at the new database. The import
sets the required instantiation SCNs for the source database at the new
database. Ensure that no rows are imported. In this case, ensure that the
replicated database objects at the new database are consistent with the
source database at the time of the export.

If you are replicating DML changes only, then table level export/import is
sufficient. If you are replicating DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using Export/Import" for
more information about performing a metadata export/import.

• Set the instantiation SCNs manually at the new database for the replicated
database objects. Ensure that the replicated database objects at the new
database are consistent with the source database as of the corresponding
instantiation SCN. See "Setting Instantiation SCNs Using the
DBMS_APPLY_ADM Package" for instructions.

2. For the new database, set the instantiation SCNs at each destination database of
the new database. These instantiation SCNs must be set, and only the changes
made at the new source database that are committed after the corresponding SCN
will be applied at a destination database. If the new database is not a source
database, then do not complete this step.

You can set these instantiation SCNs for the new database in one of the following
ways:

• Perform a metadata only export at the new database and import the metadata
at each destination database. Ensure that no rows are imported. The import
sets the required instantiation SCNs for the new database at each destination
database. In this case, ensure that the replicated database objects at each
destination database are consistent with the new database at the time of the
export.

If you are replicating DML changes only, then table level export/import is
sufficient. If you are replicating DDL changes also, then additional
considerations apply. See "Setting Instantiation SCNs Using Export/Import" for
more information about performing a metadata export/import.

• Set the instantiation SCNs manually at each destination database for the
replicated database objects. Ensure that the replicated database objects at
each destination database are consistent with the new database as of the
corresponding instantiation SCN. See "Setting Instantiation SCNs Using the
DBMS_APPLY_ADM Package" for instructions.

3. At the new database, configure conflict resolution if conflicts are possible. See
Oracle Streams Conflict Resolution for instructions.

4. Start the apply processes that you created at the new database in Step 3 using the
START_APPLY procedure in the DBMS_APPLY_ADM package.

5. Start the apply processes that you created at each of the other destination
databases in Step 4. If the new database is not a source database, then do not
complete this step.

4.3.4.2 Adding Replicated Objects to a New Database
After completing the steps in "Adding a New Database to an Existing Multiple-Source
Environment", complete the following steps if the database objects that are to be
shared with the new database do not already exist at the new database:

Chapter 4
Adding Components Individually in Multiple Steps

4-29

1. If the new database is a source database for other databases, then, at each
destination database of the new source database, set the instantiation SCNs for
the new database.

a. If one or more schemas will be created at the new database during
instantiation or by a subsequent replicated DDL change, then run the
SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package for the
new database at each destination database of the new database.

b. If a schema exists at the new database, and one or more tables will be created
in the schema during instantiation or by a subsequent replicated DDL change,
then run the SET_SCHEMA_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM
package for the schema at each destination database of the new database.
Do this for each such schema.

See "Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package" for
instructions.

Because you run these procedures before any tables are instantiated at the new
database, and because the local capture process or synchronous capture is
configured already at the new database, you will not need to run the
SET_TABLE_INSTANTIATION_SCN procedure for each table created during instantiation.
Instantiation SCNs will be set automatically for these tables at all of the other
databases in the environment that will be destination databases of the new
database.

If the new database will not be a source database, then do not complete this step,
and continue with the next step.

2. Pick one source database from which to instantiate the replicated database
objects at the new database using export/import. First, perform an export of the
replicated database objects. Next, perform an import of the replicated database
objects at the new database. See Instantiation and Oracle Streams Replication
and Oracle Database Utilities for information about using export/import.

Do not allow any changes to the database objects being exported while exporting
these database objects at the source database. Do not allow changes to the
database objects being imported while importing these database objects at the
destination database.

You can specify a more stringent degree of consistency by using an export
parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

3. For each source database of the new database, except for the source database
that performed the export for instantiation in Step 2, set the instantiation SCNs at
the new database. These instantiation SCNs must be set, and only the changes
made at a source database that are committed after the corresponding SCN for
that database will be applied at the new database.

For each source database, you can set these instantiation SCNs in one of the
following ways:

• Perform a metadata only export at the source database and import the
metadata at the new database. The import sets the required instantiation
SCNs for the source database at the new database. In this case, ensure that
the replicated database objects at the new database are consistent with the
source database at the time of the export.

If you are replicating DML changes only, then table level export/import is
sufficient. If you are replicating DDL changes also, then additional

Chapter 4
Adding Components Individually in Multiple Steps

4-30

considerations apply. See "Setting Instantiation SCNs Using Export/Import" for
more information about performing a metadata export/import.

• Set the instantiation SCNs manually at the new database for the replicated
database objects. Ensure that the replicated database objects at the new
database are consistent with the source database as of the corresponding
instantiation SCN. See "Setting Instantiation SCNs Using the
DBMS_APPLY_ADM Package" for instructions.

4. At the new database, configure conflict resolution if conflicts are possible. See
Oracle Streams Conflict Resolution for instructions.

5. Start the apply processes that you created in Step 3 at the new database using the
START_APPLY procedure in the DBMS_APPLY_ADM package.

6. Start the apply processes that you created in Step 4 at each of the other
destination databases. If the new database is not a source database, then do not
complete this step.

Chapter 4
Adding Components Individually in Multiple Steps

4-31

5
Configuring Implicit Capture

Implicit capture means that a capture process or a synchronous capture captures and
enqueues database changes automatically. A capture process captures changes in
the redo log, while a synchronous capture captures data manipulation language (DML)
changes with an internal mechanism. Both capture processes and synchronous
captures reformat the captured changes into logical change records (LCRs) and
enqueue the LCRs into an ANYDATA queue.

The following topics describe configuring implicit capture:

• Configuring a Capture Process

• Configuring Synchronous Capture

Each task described in this chapter should be completed by an Oracle Streams
administrator that has been granted the appropriate privileges, unless specified
otherwise.

See Also:

• Oracle Streams Concepts and Administration for more information about
implicit capture

• "Configuring an Oracle Streams Administrator on All Databases"

5.1 Configuring a Capture Process
You can create a capture process that captures changes either locally at the source
database or remotely at a downstream database. A downstream capture process runs
on a downstream database, and redo data from the source database is copied to the
downstream database. A downstream capture process captures changes in the copied
redo data at the downstream database.

You can use any of the following procedures to create a local capture process:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

• DBMS_CAPTURE_ADM.CREATE_CAPTURE

Each of the procedures in the DBMS_STREAMS_ADM package creates a capture process
with the specified name if it does not already exist, creates either a positive rule set or
negative rule set for the capture process if the capture process does not have such a
rule set, and can add table rules, schema rules, or global rules to the rule set.

5-1

The CREATE_CAPTURE procedure creates a capture process, but does not create a rule
set or rules for the capture process. However, the CREATE_CAPTURE procedure enables
you to specify an existing rule set to associate with the capture process, either as a
positive or a negative rule set, a first SCN, and a start SCN for the capture process.
Also, to create a capture process that performs downstream capture, you must use the
CREATE_CAPTURE procedure.

The following sections describe configuring a capture process:

• Preparing to Configure a Capture Process

• Configuring a Local Capture Process

• Configuring a Downstream Capture Process

• After Configuring a Capture Process

Note:

When a capture process is started or restarted, it might need to scan redo log
files with a FIRST_CHANGE# value that is lower than start SCN. Removing
required redo log files before they are scanned by a capture process causes
the capture process to abort. You can query the DBA_CAPTURE data dictionary
view to determine the first SCN, start SCN, and required checkpoint SCN for a
capture process. A capture process needs the redo log file that includes the
required checkpoint SCN, and all subsequent redo log files. See Oracle
Streams Concepts and Administration for more information about the first SCN
and start SCN for a capture process.

Note:

• You can configure an entire Oracle Streams environment, including
capture processes, using procedures in the DBMS_STREAMS_ADM package or
Oracle Enterprise Manager Cloud Control. See Simple Oracle Streams
Replication Configuration.

• After creating a capture process, avoid changing the DBID or global name
of the source database for the capture process. If you change either the
DBID or global name of the source database, then the capture process
must be dropped and re-created. See "Changing the DBID or Global
Name of a Source Database".

• To configure downstream capture, the source database must be an Oracle
Database 10g Release 1 or later database.

5.1.1 Preparing to Configure a Capture Process
The following tasks must be completed before you configure a capture process:

• Complete the following tasks in "Tasks to Complete Before Configuring Oracle
Streams Replication".

– "Configuring an Oracle Streams Administrator on All Databases"

Chapter 5
Configuring a Capture Process

5-2

– "Configuring Network Connectivity and Database Links"

– "Ensuring That Each Source Database Is In ARCHIVELOG Mode"

– "Setting Initialization Parameters Relevant to Oracle Streams"

– "Configuring the Oracle Streams Pool"

– "Specifying Supplemental Logging"

• If you plan to create a real-time or an archived-log downstream capture process
that uses redo transport services to transfer archived redo log files to the
downstream database automatically, then complete the steps in "Configuring Log
File Transfer to a Downstream Capture Database".

• If you plan to create a real-time downstream capture process, then complete the
steps in "Adding Standby Redo Logs for Real-Time Downstream Capture".

• Create an ANYDATA queue to associate with the capture process, if one does not
exist. See "Creating an ANYDATA Queue" for instructions. The examples in this
chapter assume that the queue used by the capture process is
strmadmin.streams_queue. Create the queue on the same database that will run the
capture process.

5.1.2 Configuring a Local Capture Process
The following sections describe using the DBMS_STREAMS_ADM package and the
DBMS_CAPTURE_ADM package to create a local capture process.

This section contains the following examples:

• Configuring a Local Capture Process Using DBMS_STREAMS_ADM

• Configuring a Local Capture Process Using DBMS_CAPTURE_ADM

• Configuring a Local Capture Process with Non-NULL Start SCN

5.1.2.1 Configuring a Local Capture Process Using DBMS_STREAMS_ADM
To configure a local capture process using the DBMS_STREAMS_ADM package, complete
the following steps:

1. Complete the tasks in "Preparing to Configure a Capture Process".

2. In SQL*Plus, connect to the source database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Run the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to create a
local capture process:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.employees',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => FALSE,
 source_database => NULL,
 inclusion_rule => TRUE);

Chapter 5
Configuring a Capture Process

5-3

END;
/

Running this procedure performs the following actions:

• Creates a capture process named strm01_capture. The capture process is
created only if it does not already exist. If a new capture process is created,
then this procedure also sets the start SCN to the point in time of creation.

• Associates the capture process with the existing queue
strmadmin.streams_queue.

• Creates a positive rule set and associates it with the capture process, if the
capture process does not have a positive rule set. The rule set is a positive
rule set because the inclusion_rule parameter is set to TRUE. The rule set uses
the SYS.STREAMS$_EVALUATION_CONTEXT evaluation context. The rule set name is
system generated.

• Creates two rules. One rule evaluates to TRUE for data manipulation language
(DML) changes to the hr.employees table, and the other rule evaluates to TRUE
for data definition language (DDL) changes to the hr.employees table. The rule
names are system generated.

• Adds the two rules to the positive rule set associated with the capture process.
The rules are added to the positive rule set because the inclusion_rule
parameter is set to TRUE.

• Specifies that the capture process captures a change in the redo log only if the
change has a NULL tag, because the include_tagged_lcr parameter is set
to FALSE. This behavior is accomplished through the system-created rules for
the capture process.

• Creates a capture process that captures local changes to the source database
because the source_database parameter is set to NULL. For a local capture
process, you can also specify the global name of the local database for this
parameter.

• Prepares the hr.employees table for instantiation.

• Enables supplemental logging for any primary key, unique key, bitmap index,
and foreign key columns in the hr.employees table.

4. If necessary, complete the steps described in "After Configuring a Capture
Process".

See Also:

• Oracle Streams Concepts and Administration for more information about
rules

• Oracle Streams Tags

5.1.2.2 Configuring a Local Capture Process Using DBMS_CAPTURE_ADM
To configure a local capture process using the DBMS_CAPTURE_ADM package, complete
the following steps:

1. Complete the tasks in "Preparing to Configure a Capture Process".

Chapter 5
Configuring a Capture Process

5-4

2. In SQL*Plus, connect to the source database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Create the rule set that will be used by the capture process if it does not exist. In
this example, assume that the rule set is strmadmin.strm01_rule_set. Optionally,
you can also add rules to the rule set. See Oracle Streams Concepts and
Administration for instructions.

4. Run the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package to create a
local capture process:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'strmadmin.streams_queue',
 capture_name => 'strm02_capture',
 rule_set_name => 'strmadmin.strm01_rule_set',
 start_scn => NULL,
 source_database => NULL,
 first_scn => NULL);
END;
/

Running this procedure performs the following actions:

• Creates a capture process named strm02_capture. A capture process with the
same name must not exist.

• Associates the capture process with the existing queue
strmadmin.streams_queue.

• Associates the capture process with the existing rule set
strmadmin.strm01_rule_set. This rule set is the positive rule set for the capture
process.

• Creates a capture process that captures local changes to the source database
because the source_database parameter is set to NULL. For a local capture
process, you can also specify the global name of the local database for this
parameter.

• Specifies that the Oracle database determines the start SCN and first SCN for
the capture process because both the start_scn parameter and the first_scn
parameter are set to NULL.

• If no other capture processes that capture local changes are running on the
local database, then the BUILD procedure in the DBMS_CAPTURE_ADM package is
run automatically. Running this procedure extracts the data dictionary to the
redo log, and a LogMiner data dictionary is created when the capture process
is started for the first time.

5. If necessary, complete the steps described in "After Configuring a Capture
Process".

See Also:

Oracle Streams Concepts and Administration for more information about rules

Chapter 5
Configuring a Capture Process

5-5

5.1.2.3 Configuring a Local Capture Process with Non-NULL Start SCN
This example runs the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package to
create a local capture process with a start SCN set to 223525. This example assumes
that there is at least one local capture process at the database, and that this capture
process has taken at least one checkpoint. You can always specify a start SCN for a
new capture process that is equal to or greater than the current SCN of the source
database. To specify a start SCN that is lower than the current SCN of the database,
the specified start SCN must be higher than the lowest first SCN for an existing local
capture process that has been started successfully at least once and has taken at
least one checkpoint.

You can determine the first SCN for existing capture processes, and whether these
capture processes have taken a checkpoint, by running the following query:

SELECT CAPTURE_NAME, FIRST_SCN, MAX_CHECKPOINT_SCN FROM DBA_CAPTURE;

Your output looks similar to the following:

CAPTURE_NAME FIRST_SCN MAX_CHECKPOINT_SCN
------------------------------ ---------- ------------------
CAPTURE_SIMP 223522 230825

These results show that the capture_simp capture process has a first SCN of 223522.
Also, this capture process has taken a checkpoint because the MAX_CHECKPOINT_SCN
value is non-NULL. Therefore, the start SCN for the new capture process can be set to
223522 or higher.

To configure a local capture process with a non-NULL start SCN, complete the following
steps:

1. Complete the tasks in "Preparing to Configure a Capture Process".

2. In SQL*Plus, connect to the source database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Create the rule set that will be used by the capture process if it does not exist. In
this example, assume that the rule set is strmadmin.strm01_rule_set. Optionally,
you can also add rules to the rule set. See Oracle Streams Concepts and
Administration for instructions.

4. Run the following procedure to create the capture process:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'strmadmin.streams_queue',
 capture_name => 'strm03_capture',
 rule_set_name => 'strmadmin.strm01_rule_set',
 start_scn => 223525,
 source_database => NULL,
 first_scn => NULL);
END;
/

Running this procedure performs the following actions:

• Creates a capture process named strm03_capture. A capture process with the
same name must not exist.

Chapter 5
Configuring a Capture Process

5-6

• Associates the capture process with the existing queue
strmadmin.streams_queue.

• Associates the capture process with the existing rule set
strmadmin.strm01_rule_set. This rule set is the positive rule set for the capture
process.

• Specifies 223525 as the start SCN for the capture process. The new capture
process uses the same LogMiner data dictionary as one of the existing
capture processes. Oracle Streams automatically chooses which LogMiner
data dictionary to share with the new capture process. Because the first_scn
parameter was set to NULL, the first SCN for the new capture process is the
same as the first SCN of the existing capture process whose LogMiner data
dictionary was shared. In this example, the existing capture process is
capture_simp.

• Creates a capture process that captures local changes to the source database
because the source_database parameter is set to NULL. For a local capture
process, you can also specify the global name of the local database for this
parameter.

Note:

If no local capture process exists when the procedure in this example is run,
then the DBMS_CAPTURE_ADM.BUILD procedure is run automatically during capture
process creation to extract the data dictionary into the redo log. The first time
the new capture process is started, it uses this redo data to create a LogMiner
data dictionary. In this case, a specified start_scn parameter value must be
equal to or higher than the current database SCN.

5. If necessary, complete the steps described in "After Configuring a Capture
Process".

See Also:

• Oracle Streams Concepts and Administration

• Oracle Database PL/SQL Packages and Types Reference for more
information about setting the first_scn and start_scn parameters in the
CREATE_CAPTURE procedure

5.1.3 Configuring a Downstream Capture Process
This section describes configuring a real-time or archived-log downstream capture
process.

This section contains these topics:

• Configuring a Real-Time Downstream Capture Process

• Configuring an Archived-Log Downstream Capture Process

Chapter 5
Configuring a Capture Process

5-7

5.1.3.1 Configuring a Real-Time Downstream Capture Process
To create a capture process that performs downstream capture, you must use the
CREATE_CAPTURE procedure. The example in this section describes creating a real-time
downstream capture process that uses a database link to the source database.
However, a real-time downstream capture process might not use a database link.

This example assumes the following:

• The source database is dbs1.example.com and the downstream database is
dbs2.example.com.

• The capture process that will be created at dbs2.example.com uses the
strmadmin.streams_queue.

• The capture process will capture DML changes to the hr.departments table.

This section contains an example that runs the CREATE_CAPTURE procedure in the
DBMS_CAPTURE_ADM package to create a real-time downstream capture process at the
dbs2.example.com downstream database that captures changes made to the
dbs1.example.com source database. The capture process in this example uses a
database link to dbs1.example.com for administrative purposes. The name of the
database link must match the global name of the source database.

Note:

You can configure multiple real-time downstream capture processes that
captures changes from the same source database, but you cannot configure
real-time downstream capture for multiple source databases at one
downstream database.

See Also:

Oracle Streams Concepts and Administration for conceptual information about
real-time downstream capture

Complete the following steps:

1. Complete the tasks in "Preparing to Configure a Capture Process". Ensure that
you complete the tasks "Configuring Log File Transfer to a Downstream Capture
Database" and "Adding Standby Redo Logs for Real-Time Downstream Capture".

2. In SQL*Plus, connect to the downstream database dbs2.example.com as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Create the database link from dbs2.example.com to dbs1.example.com. For example,
if the user strmadmin is the Oracle Streams administrator on both databases, then
create the following database link:

Chapter 5
Configuring a Capture Process

5-8

CREATE DATABASE LINK dbs1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'dbs1.example.com';

This example assumes that an Oracle Streams administrator exists at the source
database dbs1.example.com. If no Oracle Streams administrator exists at the source
database, then the Oracle Streams administrator at the downstream database
should connect to a user who allows remote access by an Oracle Streams
administrator. You can enable remote access for a user by specifying the user as
the grantee when you run the GRANT_REMOTE_ADMIN_ACCESS procedure in the
DBMS_STREAMS_AUTH package at the source database.

4. Run the CREATE_CAPTURE procedure to create the capture process:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'strmadmin.streams_queue',
 capture_name => 'real_time_capture',
 rule_set_name => NULL,
 start_scn => NULL,
 source_database => 'dbs1.example.com',
 use_database_link => TRUE,
 first_scn => NULL,
 logfile_assignment => 'implicit');
END;
/

Running this procedure performs the following actions:

• Creates a capture process named real_time_capture at the downstream
database dbs2.example.com. A capture process with the same name must not
exist.

• Associates the capture process with an existing queue on dbs2.example.com
named streams_queue and owned by strmadmin.

• Specifies that the source database of the changes that the capture process
will capture is dbs1.example.com.

• Specifies that the capture process uses a database link with the same name
as the source database global name to perform administrative actions at the
source database.

• Specifies that the capture process accepts redo data implicitly from
dbs1.example.com. Therefore, the capture process scans the standby redo log
at dbs2.example.com for changes that it must capture. If the capture process
falls behind, then it scans the archived redo log files written from the standby
redo log.

This step does not associate the capture process real_time_capture with any rule
set. A rule set will be created and associated with the capture process in a later
step.

If no other capture process at dbs2.example.com is capturing changes from the
dbs1.example.com source database, then the DBMS_CAPTURE_ADM.BUILD procedure is
run automatically at dbs1.example.com using the database link. Running this
procedure extracts the data dictionary at dbs1.example.com to the redo log, and a
LogMiner data dictionary for dbs1.example.com is created at dbs2.example.com when
the capture process real_time_capture is started for the first time at
dbs2.example.com.

Chapter 5
Configuring a Capture Process

5-9

If multiple capture processes at dbs2.example.com are capturing changes from the
dbs1.example.com source database, then the new capture process
real_time_capture uses the same LogMiner data dictionary for dbs1.example.com as
one of the existing archived-log capture process. Oracle Streams automatically
chooses which LogMiner data dictionary to share with the new capture process.

Note:

During the creation of a downstream capture process, if the first_scn
parameter is set to NULL in the CREATE_CAPTURE procedure, then the
use_database_link parameter must be set to TRUE. Otherwise, an error is
raised.

See Also:

Oracle Streams Concepts and Administration for more information about SCN
values related to a capture process

5. Set the downstream_real_time_mine capture process parameter to Y:

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name => 'real_time_capture',
 parameter => 'downstream_real_time_mine',
 value => 'Y');
END;
/

6. Create the positive rule set for the capture process and add a rule to it:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'capture',
 streams_name => 'real_time_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => FALSE,
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

Running this procedure performs the following actions:

• Creates a rule set at dbs2.example.com for capture process real_time_capture.
The rule set has a system-generated name. The rule set is the positive rule set
for the capture process because the inclusion_rule parameter is set to TRUE.

• Creates a rule that captures data manipulation language (DML) changes to the
hr.departments table, and adds the rule to the positive rule set for the capture
process. The rule has a system-generated name. The rule is added to the
positive rule set for the capture process because the inclusion_rule parameter
is set to TRUE.

Chapter 5
Configuring a Capture Process

5-10

• Prepares the hr.departments table at dbs1.example.com for instantiation using
the database link created in Step 3.

• Enables supplemental logging for any primary key, unique key, bitmap index,
and foreign key columns in the table at dbs1.example.com.

7. Connect to the source database dbs1.example.com as an administrative user with
the necessary privileges to switch log files.

8. Archive the current log file at the source database:

ALTER SYSTEM ARCHIVE LOG CURRENT;

Archiving the current log file at the source database starts real time mining of the
source database redo log.

If the capture process appears to be waiting for redo data for an inordinately long
time, then check the alert log for errors. See Oracle Streams Concepts and
Administration for more information.

9. If necessary, complete the steps described in "After Configuring a Capture
Process".

5.1.3.2 Configuring an Archived-Log Downstream Capture Process
This section describes configuring an archived-log downstream capture process that
either assigns log files implicitly or explicitly.

This section contains these topics:

• Configuring an Archived-Log Downstream Capture Process that Assigns Logs
Implicitly

• Configuring an Archived-Log Downstream Capture Process that Assigns Logs
Explicitly

5.1.3.2.1 Configuring an Archived-Log Downstream Capture Process that Assigns Logs
Implicitly

To create a capture process that performs downstream capture, you must use the
CREATE_CAPTURE procedure. The example in this section describes creating an archived-
log downstream capture process that uses a database link to the source database for
administrative purposes. The name of the database link must match the global name
of the source database.

This example assumes the following:

• The source database is dbs1.example.com and the downstream database is
dbs2.example.com.

• The capture process that will be created at dbs2.example.com uses the
streams_queue owned by strmadmin.

• The capture process will capture data manipulation language (DML) changes
made to the hr.departments table at dbs1.example.com.

• The capture process assigns log files implicitly. That is, the downstream capture
process automatically scans all redo log files added by redo transport services or
added manually from the source database to the downstream database.

Complete the following steps:

Chapter 5
Configuring a Capture Process

5-11

1. Complete the tasks in "Preparing to Configure a Capture Process". Ensure that
you complete the task "Configuring Log File Transfer to a Downstream Capture
Database".

2. In SQL*Plus, connect to the downstream database dbs2.example.com as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Create the database link from dbs2.example.com to dbs1.example.com. For example,
if the user strmadmin is the Oracle Streams administrator on both databases, then
create the following database link:

CREATE DATABASE LINK dbs1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'dbs1.example.com';

This example assumes that an Oracle Streams administrator exists at the source
database dbs1.example.com. If no Oracle Streams administrator exists at the source
database, then the Oracle Streams administrator at the downstream database
should connect to a user who allows remote access by an Oracle Streams
administrator. You can enable remote access for a user by specifying the user as
the grantee when you run the GRANT_REMOTE_ADMIN_ACCESS procedure in the
DBMS_STREAMS_AUTH package at the source database.

4. Run the CREATE_CAPTURE procedure to create the capture process:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'strmadmin.streams_queue',
 capture_name => 'strm04_capture',
 rule_set_name => NULL,
 start_scn => NULL,
 source_database => 'dbs1.example.com',
 use_database_link => TRUE,
 first_scn => NULL,
 logfile_assignment => 'implicit');
END;
/

Running this procedure performs the following actions:

• Creates a capture process named strm04_capture at the downstream database
dbs2.example.com. A capture process with the same name must not exist.

• Associates the capture process with an existing queue on dbs2.example.com
named streams_queue and owned by strmadmin.

• Specifies that the source database of the changes that the capture process
will capture is dbs1.example.com.

• Specifies that the capture process accepts new redo log files implicitly from
dbs1.example.com. Therefore, the capture process scans any new log files
copied from dbs1.example.com to dbs2.example.com for changes that it must
capture.

This step does not associate the capture process strm04_capture with any rule set.
A rule set will be created and associated with the capture process in the next step.

If no other capture process at dbs2.example.com is capturing changes from the
dbs1.example.com source database, then the DBMS_CAPTURE_ADM.BUILD procedure is

Chapter 5
Configuring a Capture Process

5-12

run automatically at dbs1.example.com using the database link. Running this
procedure extracts the data dictionary at dbs1.example.com to the redo log, and a
LogMiner data dictionary for dbs1.example.com is created at dbs2.example.com when
the capture process is started for the first time at dbs2.example.com.

If multiple capture processes at dbs2.example.com are capturing changes from the
dbs1.example.com source database, then the new capture process uses the same
LogMiner data dictionary for dbs1.example.com as one of the existing capture
process. Oracle Streams automatically chooses which LogMiner data dictionary to
share with the new capture process.

Note:

During the creation of a downstream capture process, if the first_scn
parameter is set to NULL in the CREATE_CAPTURE procedure, then the
use_database_link parameter must be set to TRUE. Otherwise, an error is
raised.

See Also:

• Oracle Streams Concepts and Administration

• Oracle Database SQL Language Reference for more information about
the ALTER DATABASE statement

• Oracle Data Guard Concepts and Administration for more information
registering redo log files

5. Create the positive rule set for the capture process and add a rule to it:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'capture',
 streams_name => 'strm04_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => FALSE,
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

Running this procedure performs the following actions:

• Creates a rule set at dbs2.example.com for capture process strm04_capture. The
rule set has a system-generated name. The rule set is a positive rule set for
the capture process because the inclusion_rule parameter is set to TRUE.

• Creates a rule that captures DML changes to the hr.departments table, and
adds the rule to the rule set for the capture process. The rule has a system-
generated name. The rule is added to the positive rule set for the capture
process because the inclusion_rule parameter is set to TRUE.

Chapter 5
Configuring a Capture Process

5-13

6. If necessary, complete the steps described in "After Configuring a Capture
Process".

5.1.3.2.2 Configuring an Archived-Log Downstream Capture Process that Assigns Logs
Explicitly

To create a capture process that performs downstream capture, you must use the
CREATE_CAPTURE procedure. This section describes creating an archived-log
downstream capture process that assigns redo log files explicitly. That is, you must
use the DBMS_FILE_TRANSFER package, FTP, or some other method to transfer redo log
files from the source database to the downstream database, and then you must
register these redo log files with the downstream capture process manually.

In this example, assume the following:

• The source database is dbs1.example.com and the downstream database is
dbs2.example.com.

• The capture process that will be created at dbs2.example.com uses the
streams_queue owned by strmadmin.

• The capture process will capture data manipulation language (DML) changes
made to the hr.departments table at dbs1.example.com.

• The capture process does not use a database link to the source database for
administrative actions.

Complete the following steps:

1. Complete the tasks in "Preparing to Configure a Capture Process". Because in this
example you are transferring and registering archived redo log files explicitly at the
downstream database, you do not need to complete the task "Configuring Log File
Transfer to a Downstream Capture Database".

2. In SQL*Plus, connect to the source database dbs1.example.com as the Oracle
Streams administrator.

If you do not use a database link from the downstream database to the source
database, then an Oracle Streams administrator must exist at the source
database.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. If there is no capture process at dbs2.example.com that captures changes from
dbs1.example.com, then perform a build of the dbs1.example.com data dictionary in
the redo log. This step is optional if a capture process at dbs2.example.com is
already configured to capture changes from the dbs1.example.com source
database.

SET SERVEROUTPUT ON
DECLARE
 scn NUMBER;
BEGIN
 DBMS_CAPTURE_ADM.BUILD(
 first_scn => scn);
 DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/
First SCN Value = 409391

Chapter 5
Configuring a Capture Process

5-14

This procedure displays the valid first SCN value for the capture process that will
be created at dbs2.example.com. Make a note of the SCN value returned because
you will use it when you create the capture process at dbs2.example.com.

If you run this procedure to build the data dictionary in the redo log, then when the
capture process is first started at dbs2.example.com, it will create a LogMiner data
dictionary using the data dictionary information in the redo log.

4. Prepare the hr.departments table for instantiation:

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.departments',
 supplemental_logging => 'keys');
END;
/

Primary key supplemental logging is required for the hr.departments table because
this example creates a capture processes that captures changes to this table.
Specifying keys for the supplemental_logging parameter in the
PREPARE_TABLE_INSTANTIATION procedure enables supplemental logging for any
primary key, unique key, bitmap index, and foreign key columns in the table.

5. Determine the current SCN of the source database:

SET SERVEROUTPUT ON SIZE 1000000

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_OUTPUT.PUT_LINE('Current SCN: ' || iscn);
END;
/

You can use the returned SCN as the instantiation SCN for destination databases
that will apply changes to the hr.departments table that were captured by the
capture process being created. In this example, assume the returned SCN is
1001656.

6. Connect to the downstream database dbs2.example.com as the Oracle Streams
administrator.

7. Run the CREATE_CAPTURE procedure to create the capture process and specify the
value obtained in Step 3 for the first_scn parameter:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'strmadmin.streams_queue',
 capture_name => 'strm05_capture',
 rule_set_name => NULL,
 start_scn => NULL,
 source_database => 'dbs1.example.com',
 use_database_link => FALSE,
 first_scn => 409391, -- Use value from Step 3
 logfile_assignment => 'explicit');
END;
/

Running this procedure performs the following actions:

Chapter 5
Configuring a Capture Process

5-15

• Creates a capture process named strm05_capture at the downstream database
dbs2.example.com. A capture process with the same name must not exist.

• Associates the capture process with an existing queue on dbs2.example.com
named streams_queue and owned by strmadmin.

• Specifies that the source database of the changes that the capture process
will capture is dbs1.example.com.

• Specifies that the first SCN for the capture process is 409391. This value was
obtained in Step 3. The first SCN is the lowest SCN for which a capture
process can capture changes. Because a first SCN is specified, the capture
process creates a new LogMiner data dictionary when it is first started,
regardless of whether there are existing LogMiner data dictionaries for the
same source database.

• Specifies that new redo log files from dbs1.example.com must be assigned to
the capture process explicitly. After a redo log file has been transferred to the
computer running the downstream database, you assign the log file to the
capture process explicitly using the following statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE file_name FOR capture_process;

Here, file_name is the name of the redo log file and capture_process is the
name of the capture process that will use the redo log file at the downstream
database. You must add redo log files manually if the logfile_assignment
parameter is set to explicit.

This step does not associate the capture process strm05_capture with any rule set.
A rule set will be created and associated with the capture process in the next step.

See Also:

• Oracle Streams Concepts and Administration for more information about
SCN values related to a capture process

• Oracle Database SQL Language Reference for more information about
the ALTER DATABASE statement

• Oracle Data Guard Concepts and Administration for more information
registering redo log files

8. Create the positive rule set for the capture process and add a rule to it:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'capture',
 streams_name => 'strm05_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => FALSE,
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

Chapter 5
Configuring a Capture Process

5-16

Running this procedure performs the following actions:

• Creates a rule set at dbs2.example.com for capture process strm05_capture. The
rule set has a system-generated name. The rule set is a positive rule set for
the capture process because the inclusion_rule parameter is set to TRUE.

• Creates a rule that captures DML changes to the hr.departments table, and
adds the rule to the rule set for the capture process. The rule has a system-
generated name. The rule is added to the positive rule set for the capture
process because the inclusion_rule parameter is set to TRUE.

9. After the redo log file at the source database dbs1.example.com that contains the
first SCN for the downstream capture process is archived, transfer the archived
redo log file to the computer running the downstream database. The BUILD
procedure in Step 3 determined the first SCN for the downstream capture process.
If the redo log file is not yet archived, then you can run the ALTER SYSTEM SWITCH
LOGFILE statement on the database to archive it.

You can run the following query at dbs1.example.com to identify the archived redo
log file that contains the first SCN for the downstream capture process:

COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A50
COLUMN FIRST_CHANGE# HEADING 'First SCN' FORMAT 999999999

SELECT NAME, FIRST_CHANGE# FROM V$ARCHIVED_LOG
 WHERE FIRST_CHANGE# IS NOT NULL AND DICTIONARY_BEGIN = 'YES';

Transfer the archived redo log file with a FIRST_CHANGE# that matches the first SCN
returned in Step 3 to the computer running the downstream capture process.

10. Connect to the downstream database dbs2.example.com as an administrative user.

11. Assign the transferred redo log file to the capture process. For example, if the redo
log file is /oracle/logs_from_dbs1/1_10_486574859.dbf, then issue the following
statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE
 '/oracle/logs_from_dbs1/1_10_486574859.dbf' FOR 'strm05_capture';

12. If necessary, complete the steps described in "After Configuring a Capture
Process".

5.1.4 After Configuring a Capture Process
If you plan to configure propagations and apply processes that process logical change
records (LCRs) captured by the new capture process, then perform the configuration
in the following order:

1. Create all of the queues that will be required propagations and apply processes in
the replication environment. See "Creating an ANYDATA Queue".

2. Create all of the propagations that will propagate LCRs captured by the new
capture process. See "Creating Oracle Streams Propagations Between ANYDATA
Queues".

3. Create all of the apply processes that will dequeue and process LCRs captured by
the new capture process. See Configuring Implicit Apply. Configure each apply
process to apply captured LCRs.

Chapter 5
Configuring a Capture Process

5-17

4. Instantiate the tables for which the new capture process captures changes at all
destination databases. See Instantiation and Oracle Streams Replication for
detailed information about instantiation.

5. Use the START_APPLY procedure in the DBMS_APPLY_ADM package to start the apply
processes that will process LCRs captured by the new capture process.

6. Use the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package to start the new
capture process.

Note:

Other configuration steps might be required for your Oracle Streams
environment. For example, some Oracle Streams environments include
transformations, apply handlers, and conflict resolution.

5.2 Configuring Synchronous Capture
You can use any of the following procedures to create a synchronous capture:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_RULES

• DBMS_CAPTURE_ADM.CREATE_SYNC_CAPTURE

Both of the procedures in the DBMS_STREAMS_ADM package create a synchronous capture
with the specified name if it does not already exist, create a positive rule set for the
synchronous capture if it does not exist, and can add table rules or subset rules to the
rule set.

The CREATE_SYNC_CAPTURE procedure creates a synchronous capture, but does not
create a rule set or rules for the synchronous capture. However, the
CREATE_SYNC_CAPTURE procedure enables you to specify an existing rule set to associate
with the synchronous capture, and it enables you to specify a capture user other than
the default capture user.

The following sections describe configuring a synchronous capture:

• Preparing to Configure a Synchronous Capture

• Configuring a Synchronous Capture Using the DBMS_STREAMS_ADM Package

• Configuring a Synchronous Capture Using the DBMS_CAPTURE_ADM Package

• After Configuring a Synchronous Capture

See Also:

• Oracle Streams Concepts and Administration

• "Example That Configures Two-Database Replication with Synchronous
Captures"

Chapter 5
Configuring Synchronous Capture

5-18

5.2.1 Preparing to Configure a Synchronous Capture
The following tasks must be completed before you configure a synchronous capture:

• Complete the following tasks in "Tasks to Complete Before Configuring Oracle
Streams Replication".

– "Configuring an Oracle Streams Administrator on All Databases"

– "Configuring Network Connectivity and Database Links"

– "Setting Initialization Parameters Relevant to Oracle Streams"

– "Configuring the Oracle Streams Pool"

• Create ANYDATA queues to associate with the synchronous capture, if they do not
exist. See "Creating an ANYDATA Queue" for instructions. The queue must be a
commit-time queue. The examples in this chapter assume that the queue used by
synchronous capture is strmadmin.streams_queue. Create the queue in the same
database that will run the synchronous capture.

• Create ANYDATA queues to associate with the propagations that will propagate
logical change records (LCRs) captured by the synchronous capture and apply
processes that will dequeue and process LCRs captured by the synchronous
capture, if they do not exist. See "Creating an ANYDATA Queue" for instructions.

• Create all of the propagations that will propagate LCRs captured by the new
synchronous capture. See "Creating Oracle Streams Propagations Between
ANYDATA Queues".

• Create all of the apply processes that will dequeue and process LCRs captured by
the new synchronous capture. See "Creating an Apply Process for Persistent
LCRs with DBMS_APPLY_ADM". Configure each apply process to apply
persistent LCRs by setting the apply_captured parameter to FALSE in the
DBMS_APPLY_ADM.CREATE_APPLY procedure. Do not start the apply process until after
the instantiation performed in "After Configuring a Synchronous Capture" is
complete.

• Ensure that the Oracle Streams administrator is granted DBA role. The Oracle
Streams administrator must be granted DBA role to create a synchronous capture.

5.2.2 Configuring a Synchronous Capture Using the
DBMS_STREAMS_ADM Package

When you run the ADD_TABLE_RULES or ADD_SUBSET_RULES procedure to create a
synchronous capture, set the streams_type parameter in these procedures to
sync_capture. A rule created by the ADD_TABLE_RULES procedure instructs the
synchronous capture to capture all data manipulation language (DML) changes to the
table. A rule created by the ADD_SUBSET_RULES procedure instructs the synchronous
capture to capture a subset of the DML changes to the table.

This example assumes the following:

• The source database is dbs1.example.com.

• The synchronous capture that will be created uses the strmadmin.streams_queue
queue.

Chapter 5
Configuring Synchronous Capture

5-19

• The synchronous capture that will be created captures the results of DML changes
made to the hr.departments table.

• The capture user for the synchronous capture that will be created is the Oracle
Streams administrator strmadmin.

Complete the following steps to create a synchronous capture using the
DBMS_STREAMS_ADM package:

1. Complete the tasks in "Preparing to Configure a Synchronous Capture".

2. In SQL*Plus, connect to the dbs1.example.com database as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Run the ADD_TABLE_RULES or ADD_SUBSET_RULES procedure to create a synchronous
capture. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'sync_capture',
 streams_name => 'sync_capture',
 queue_name => 'strmadmin.streams_queue');
END;
/

This procedure performs the following actions:

• Creates a synchronous capture named sync_capture at the source database.

• Enables the synchronous capture. A synchronous capture cannot be disabled.

• Associates the synchronous capture with the existing strmadmin.streams_queue
queue.

• Creates a positive rule set for the synchronous capture. The rule set has a
system-generated name.

• Creates a rule that captures DML changes to the hr.departments table, and
adds the rule to the positive rule set for the synchronous capture. The rule has
a system-generated name.

• Configures the user who runs the procedure as the capture user for the
synchronous capture. In this case, this user is strmadmin.

• Prepares the specified table for instantiation by running the
DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION function for the table
automatically.

Note:

When the ADD_TABLE_RULES or the ADD_SUBSET_RULES procedure adds rules to a
synchronous capture rule set, the procedure must obtain an exclusive lock on
the specified table. If there are outstanding transactions on the specified table,
then the procedure waits until it can obtain a lock.

4. If necessary, complete the steps described in "After Configuring a Synchronous
Capture".

Chapter 5
Configuring Synchronous Capture

5-20

5.2.3 Configuring a Synchronous Capture Using the
DBMS_CAPTURE_ADM Package

This section contains an example that runs procedures in the DBMS_CAPTURE_ADM
package and DBMS_STREAMS_ADM package to configure a synchronous capture.

This example assumes the following:

• The source database is dbs1.example.com.

• The synchronous capture that will be created uses the strmadmin.streams_queue
queue.

• The synchronous capture that will be created uses an existing rule set named
sync01_rule_set in the strmadmin schema.

• The synchronous capture that will be created captures the results of a subset of
the DML changes made to the hr.departments table.

• The capture user for the synchronous capture that will be created is hr. The hr
user must have privileges to enqueue into the streams_queue.

Complete the following steps to create a synchronous capture using the
DBMS_CAPTURE_ADM package:

1. Complete the tasks in "Preparing to Configure a Synchronous Capture".

2. In SQL*Plus, connect to the dbs1.example.com database as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Create the rule set that will be used by the synchronous capture if it does not exist.
In this example, assume that the rule set is strmadmin.sync01_rule_set. See Oracle
Streams Concepts and Administration for instructions.

4. Run the CREATE_SYNC_CAPTURE procedure to create a synchronous capture. For
example:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_SYNC_CAPTURE(
 queue_name => 'strmadmin.streams_queue',
 capture_name => 'sync01_capture',
 rule_set_name => 'strmadmin.sync01_rule_set',
 capture_user => 'hr');
END;
/

Running this procedure performs the following actions:

• Creates a synchronous capture named sync01_capture. A synchronous capture
with the same name must not exist.

• Enables the synchronous capture. A synchronous capture cannot be disabled.

• Associates the synchronous capture with the existing queue
strmadmin.streams_queue.

• Associates the synchronous capture with the existing rule set
strmadmin.sync01_rule_set.

Chapter 5
Configuring Synchronous Capture

5-21

• Configures hr as the capture user for the synchronous capture.

5. Run the ADD_TABLE_RULES or ADD_SUBSET_RULES procedure to add a rule to the
synchronous capture rule set. For example, run the ADD_SUBSET_RULES procedure to
instruct the synchronous capture to capture a subset of the DML changes to the
hr.departments table:

BEGIN
 DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
 table_name => 'hr.departments',
 dml_condition => 'department_id=1700',
 streams_type => 'sync_capture',
 streams_name => 'sync01_capture',
 queue_name => 'strmadmin.streams_queue',
 include_tagged_lcr => FALSE);
END;
/

Running this procedure performs the following actions:

• Adds subset rules to the rule set for the synchronous capture named
sync01_capture at the source database dbs1.example.com. The subset rules
instruct the synchronous capture to capture changes to rows with
department_id equal to 1700. The synchronous capture does not capture
changes to other rows in the table.

• Prepares the hr.departments table for instantiation by running the
DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION function for the table
automatically.

• Specifies that the synchronous capture captures a change only if the session
that makes the change has a NULL tag, because the include_tagged_lcr
parameter is set to FALSE. This behavior is accomplished through the system-
created rules for the synchronous capture.

Note:

When the CREATE_SYNC_CAPTURE procedure creates a synchronous capture, the
procedure must obtain an exclusive lock on each table for which it will capture
changes. The rules in the specified rule set for the synchronous capture
determine these tables. Similarly, when the ADD_TABLE_RULES or the
ADD_SUBSET_RULES procedure adds rules to a synchronous capture rule set, the
procedure must obtain an exclusive lock on the specified table. In these cases,
if there are outstanding transactions on a table for which the synchronous
capture will capture changes, then the procedure waits until it can obtain a
lock.

6. If necessary, complete the steps described in "After Configuring a Synchronous
Capture".

5.2.4 After Configuring a Synchronous Capture
If you configured propagations and apply processes that process logical change
records (LCRs captured) by the new synchronous capture, then complete the following
steps:

Chapter 5
Configuring Synchronous Capture

5-22

1. Instantiate the tables for which the new synchronous capture captures changes at
all destination databases. See Instantiation and Oracle Streams Replication for
detailed information about instantiation.

2. Use the START_APPLY procedure in the DBMS_APPLY_ADM package to start the apply
processes that will process LCRs captured by the new synchronous capture.

Note:

Other configuration steps might be required for your Oracle Streams
environment. For example, some Oracle Streams environments include
transformations, apply handlers, and conflict resolution.

Chapter 5
Configuring Synchronous Capture

5-23

6
Configuring Queues and Propagations

The following topics describe configuring queues and propagations:

• Creating an ANYDATA Queue

• Creating Oracle Streams Propagations Between ANYDATA Queues

Each task described in this chapter should be completed by an Oracle Streams
administrator that has been granted the appropriate privileges, unless specified
otherwise.

See Also:

• Oracle Streams Concepts and Administration for more information about
queues and propagations

• "Configuring an Oracle Streams Administrator on All Databases"

6.1 Creating an ANYDATA Queue
A queue stores messages in an Oracle Streams environment. Messages can be
enqueued, propagated from one queue to another, and dequeued. An ANYDATA queue
stores messages whose payloads are of ANYDATA type. Therefore, an ANYDATA queue
can store a message with a payload of nearly any type, if the payload is wrapped in an
ANYDATA wrapper. Each Oracle Streams capture process, synchronous capture, apply
process, and messaging client is associated with one ANYDATA queue, and each Oracle
Streams propagation is associated with one ANYDATA source queue and one ANYDATA
destination queue.

The easiest way to create an ANYDATA queue is to use the SET_UP_QUEUE procedure in the
DBMS_STREAMS_ADM package. This procedure enables you to specify the following
settings for the ANYDATA queue it creates:

• The queue table for the queue

• A storage clause for the queue table

• The queue name

• A queue user that will be configured as a secure queue user of the queue and
granted ENQUEUE and DEQUEUE privileges on the queue

• A comment for the queue

If the specified queue table does not exist, then it is created. If the specified queue
table exists, then the existing queue table is used for the new queue. If you do not
specify any queue table when you create the queue, then, by default,
streams_queue_table is specified.

6-1

For example, complete the following steps to create an ANYDATA queue with the
SET_UP_QUEUE procedure:

1. Complete the following tasks in "Tasks to Complete Before Configuring Oracle
Streams Replication" you create an ANYDATA queue:

• "Configuring an Oracle Streams Administrator on All Databases"

• "Setting Initialization Parameters Relevant to Oracle Streams"

• "Configuring the Oracle Streams Pool"

2. In SQL*Plus, connect to the database that will contain the queue as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Run the SET_UP_QUEUE procedure to create the queue:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.streams_queue_table',
 queue_name => 'strmadmin.streams_queue',
 queue_user => 'hr');
END;
/

Running this procedure performs the following actions:

• Creates a queue table named streams_queue_table in the strmadmin schema.
The queue table is created only if it does not already exist. Queues based on
the queue table store messages of ANYDATA type. Queue table names can be a
maximum of 24 bytes.

• Creates a queue named streams_queue in the strmadmin schema. The queue is
created only if it does not already exist. Queue names can be a maximum of
24 bytes.

• Specifies that the streams_queue queue is based on the
strmadmin.streams_queue_table queue table.

• Configures the hr user as a secure queue user of the queue, and grants this
user ENQUEUE and DEQUEUE privileges on the queue.

• Starts the queue.

Default settings are used for the parameters that are not explicitly set in the
SET_UP_QUEUE procedure.

When the SET_UP_QUEUE procedure creates a queue table, the following
DBMS_AQADM.CREATE_QUEUE_TABLE parameter settings are specified:

• If the database is Oracle Database 10g Release 2 or later, then the sort_list
setting is commit_time. If the database is a release before Oracle Database 10g
Release 2, then the sort_list setting is enq_time.

• The multiple_consumers setting is TRUE.

• The message_grouping setting is transactional.

• The secure setting is TRUE.

The other parameters in the CREATE_QUEUE_TABLE procedure are set to their default
values.

Chapter 6
Creating an ANYDATA Queue

6-2

You can use the CREATE_QUEUE_TABLE procedure in the DBMS_AQADM package to create a
queue table of ANYDATA type with different properties than the default properties
specified by the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package. After you
create the queue table with the CREATE_QUEUE_TABLE procedure, you can create a queue
that uses the queue table. To do so, specify the queue table in the queue_table
parameter of the SET_UP_QUEUE procedure.

Similarly, you can use the CREATE_QUEUE procedure in the DBMS_AQADM package to create
a queue instead of SET_UP_QUEUE. Use CREATE_QUEUE if you require custom settings for
the queue. For example, use CREATE_QUEUE to specify a custom retry delay or retention
time. If you use CREATE_QUEUE, then you must start the queue manually.

Note:

• You can configure an entire Oracle Streams environment, including
queues, using procedures in the DBMS_STREAMS_ADM package or Oracle
Enterprise Manager Cloud Control. See Simple Oracle Streams
Replication Configuration.

• A message cannot be enqueued unless a subscriber who can dequeue
the message is configured.

See Also:

• Oracle Streams Concepts and Administration

• Oracle Database Advanced Queuing User's Guide

• Oracle Database PL/SQL Packages and Types Reference for more
information about the SET_UP_QUEUE, CREATE_QUEUE_TABLE, and CREATE_QUEUE
procedures

6.2 Creating Oracle Streams Propagations Between
ANYDATA Queues

A propagation sends messages from an Oracle Streams source queue to an Oracle
Streams destination queue. In addition, you can use the features of Oracle Database
Advanced Queuing (AQ) to manage Oracle Streams propagations.

You can use any of the following procedures to create a propagation between two
ANYDATA queues:

• DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

• DBMS_PROPAGATION_ADM.CREATE_PROPAGATION

Chapter 6
Creating Oracle Streams Propagations Between ANYDATA Queues

6-3

Each of these procedures in the DBMS_STREAMS_ADM package creates a propagation with
the specified name if it does not already exist, creates either a positive rule set or
negative rule set for the propagation if the propagation does not have such a rule set,
and can add table rules, schema rules, or global rules to the rule set.

The CREATE_PROPAGATION procedure creates a propagation, but does not create a rule
set or rules for the propagation. However, the CREATE_PROPAGATION procedure enables
you to specify an existing rule set to associate with the propagation, either as a
positive or a negative rule set. All propagations are started automatically upon
creation.

This section contains the following topics:

• Preparing to Create a Propagation

• Creating a Propagation Using DBMS_STREAMS_ADM

• Creating a Propagation Using DBMS_PROPAGATION_ADM

Note:

You can configure an entire Oracle Streams environment, including
propagations, using procedures in the DBMS_STREAMS_ADM package or Oracle
Enterprise Manager Cloud Control. See Simple Oracle Streams Replication
Configuration.

See Also:

• Oracle Streams Concepts and Administration

• Oracle Database Advanced Queuing User's Guide for more information
about configuring propagations with the features of Oracle Streams AQ
and instructions about configuring propagations between typed queues

6.2.1 Preparing to Create a Propagation
The following tasks must be completed before you create a propagation:

• Complete the following tasks in "Tasks to Complete Before Configuring Oracle
Streams Replication":

– "Configuring an Oracle Streams Administrator on All Databases"

– "Configuring Network Connectivity and Database Links" if the propagation will
send messages between databases

– "Setting Initialization Parameters Relevant to Oracle Streams"

– "Configuring the Oracle Streams Pool"

• Create a source queue and a destination queue for the propagation, if they do not
exist. Both queues must be ANYDATA queues. The examples in this chapter assume
that the source queue is strmadmin.strm_a_queue and that the destination queue is
strmadmin.strm_b_queue. See "Creating an ANYDATA Queue" for instructions.

Chapter 6
Creating Oracle Streams Propagations Between ANYDATA Queues

6-4

6.2.2 Creating a Propagation Using DBMS_STREAMS_ADM
Complete the following steps to create a propagation using the
ADD_TABLE_PROPAGATION_RULES procedure in the DBMS_STREAMS_ADM package:

1. Complete the tasks in "Preparing to Create a Propagation".

2. In SQL*Plus, connect to the database that contains the source queue for the
propagation as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Run the ADD_TABLE_PROPAGATION_RULES procedure to create the propagation:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.departments',
 streams_name => 'strm01_propagation',
 source_queue_name => 'strmadmin.strm_a_queue',
 destination_queue_name => 'strmadmin.strm_b_queue@dbs2.example.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE,
 queue_to_queue => TRUE);
END;
/

Running this procedure performs the following actions:

• Creates a propagation named strm01_propagation. The propagation is created
only if it does not already exist.

• Specifies that the propagation propagates logical change records (LCRs) from
strmadmin.strm_a_queue in the current database to strmadmin.strm_b_queue in
the dbs2.example.com database. These queues must exist.

• Specifies that the propagation uses the dbs2.example.com database link to
propagate the LCRs, because the destination_queue_name parameter contains
@dbs2.example.com. This database link must exist.

• Creates a positive rule set and associates it with the propagation because the
inclusion_rule parameter is set to TRUE. The rule set uses the evaluation
context SYS.STREAMS$_EVALUATION_CONTEXT. The rule set name is system
generated.

• Creates two rules. One rule evaluates to TRUE for row LCRs that contain the
results of data manipulation language (DML) changes to the hr.departments
table. The other rule evaluates to TRUE for DDL LCRs that contain data
definition language (DDL) changes to the hr.departments table. The rule
names are system generated.

• Adds the two rules to the positive rule set associated with the propagation.
The rules are added to the positive rule set because the inclusion_rule
parameter is set to TRUE.

• Specifies that the propagation propagates an LCR only if it has a NULL tag,
because the include_tagged_lcr parameter is set to FALSE. This behavior is
accomplished through the system-created rules for the propagation.

Chapter 6
Creating Oracle Streams Propagations Between ANYDATA Queues

6-5

• Specifies that the source database for the LCRs being propagated is
dbs1.example.com, which might or might not be the current database. This
propagation does not propagate LCRs in the source queue that have a
different source database.

• Creates a propagation job for the queue-to-queue propagation.

Note:

To use queue-to-queue propagation, the compatibility level must be 10.2.0 or
higher for each database that contains a queue involved in the propagation.

See Also:

• Oracle Streams Concepts and Administration for more information about
queues, propagations, and rules

• Oracle Streams Tags

6.2.3 Creating a Propagation Using DBMS_PROPAGATION_ADM
Complete the following steps to create a propagation using the CREATE_PROPAGATION
procedure in the DBMS_PROPAGATION_ADM package:

1. Complete the tasks in "Preparing to Create a Propagation".

2. In SQL*Plus, connect to the database that contains the source queue for the
propagation as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Create the rule set that will be used by the propagation if it does not exist. In this
example, assume that the rule set is strmadmin.strm01_rule_set. Optionally, you
can also add rules to the rule set. See Oracle Streams Concepts and
Administration for instructions.

4. Run the CREATE_PROPAGATION procedure to create the propagation:

BEGIN
 DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(
 propagation_name => 'strm02_propagation',
 source_queue => 'strmadmin.strm_a_queue',
 destination_queue => 'strmadmin.strm_b_queue',
 destination_dblink => 'dbs2.example.com',
 rule_set_name => 'strmadmin.strm01_rule_set',
 queue_to_queue => TRUE);
END;
/

Running this procedure performs the following actions:

• Creates a propagation named strm02_propagation. A propagation with the
same name must not exist.

Chapter 6
Creating Oracle Streams Propagations Between ANYDATA Queues

6-6

• Specifies that the propagation propagates messages from
strmadmin.strm_a_queue in the current database to strmadmin.strm_b_queue in
the dbs2.example.com database. These queues must exist. Depending on the
rules in the rule sets for the propagation, the propagated messages can be
LCRs or user messages, or both.

• Specifies that the propagation uses the dbs2.example.com database link to
propagate the messages. This database link must exist.

• Associates the propagation with the rule set named
strmadmin.strm01_rule_set. This rule set must exist. This rule set is the positive
rule set for the propagation.

• Creates a propagation job for the queue-to-queue propagation.

Note:

To use queue-to-queue propagation, the compatibility level must be 10.2.0 or
higher for each database that contains a queue involved in the propagation.

Chapter 6
Creating Oracle Streams Propagations Between ANYDATA Queues

6-7

7
Configuring Implicit Apply

In a replication environment, Oracle Streams apply process dequeues logical change
records (LCRs) from a specific queue and either applies each one directly or passes it
as a parameter to a user-defined procedure called an apply handler.

The following topics describe configuring implicit apply:

• Overview of Apply Process Creation

• Creating an Apply Process for Captured LCRs Using DBMS_STREAMS_ADM

• Creating an Apply Process Using DBMS_APPLY_ADM

Each task described in this chapter should be completed by an Oracle Streams
administrator that has been granted the appropriate privileges, unless specified
otherwise.

See Also:

• Oracle Streams Concepts and Administration

• "Configuring an Oracle Streams Administrator on All Databases"

7.1 Overview of Apply Process Creation
You can use any of the following procedures to configure an apply process:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

• DBMS_STREAMS_ADM.ADD_MESSAGE_RULE

• DBMS_APPLY_ADM.CREATE_APPLY

Each of the procedures in the DBMS_STREAMS_ADM package creates an apply process with
the specified name if it does not already exist, creates either a positive rule set or
negative rule set for the apply process if the apply process does not have such a rule
set, and can add table rules, schema rules, global rules, or a message rule to the rule
set.

The CREATE_APPLY procedure in the DBMS_APPLY_ADM package creates an apply process,
but does not create a rule set or rules for the apply process. However, the
CREATE_APPLY procedure enables you to specify an existing rule set to associate with
the apply process, either as a positive or a negative rule set, and several other
options, such as apply handlers, an apply user, an apply tag, and whether to dequeue
messages from a buffered queue or a persistent queue.

7-1

A single apply process must either dequeue messages from a buffered queue or a
persistent queue. Logical change records that were captured by a capture process are
called captured LCRs, and they are always in buffered queues. Therefore, if a single
apply process applies LCRs that were captured by a capture process, then it cannot
apply persistent LCRs or persistent user messages.

Alternatively, LCRs that were captured by a synchronous capture are persistent LCRs,
and they are always in persistent queues. Therefore, if a single apply process applies
LCRs that were captured by a synchronous capture, then it cannot apply LCRs
captured by a capture process. However, a single apply process can apply both
persistent LCRs and persistent user messages because both types of messages are
staged in a persistent queue.

The examples in this chapter create apply processes that apply captured LCRs,
persistent LCRs, and persistent user messages. Before you create an apply process,
create an ANYDATA queue to associate with the apply process, if one does not exist.

Note:

• You can configure an entire Oracle Streams environment, including apply
processes, using procedures in the DBMS_STREAMS_ADM package or Oracle
Enterprise Manager Cloud Control. See Simple Oracle Streams
Replication Configuration.

• Depending on the configuration of the apply process you create,
supplemental logging might be required at the source database on
columns in the tables for which an apply process applies changes. See
"Specifying Supplemental Logging".

• Oracle Streams Concepts and Administration for more information about
the captured LCRs and persistent LCRs

7.2 Preparing to Create an Apply Process
The following tasks must be completed before you create an apply:

• Complete the following tasks in "Tasks to Complete Before Configuring Oracle
Streams Replication".

– "Configuring an Oracle Streams Administrator on All Databases"

– "Setting Initialization Parameters Relevant to Oracle Streams"

– "Configuring the Oracle Streams Pool"

• Create an ANYDATA queue to associate with the apply process, if one does not exist.
See "Creating an ANYDATA Queue" for instructions. The examples in this chapter
assume that the queue used by the apply process is strmadmin.streams_queue.
Create the queue on the same database that will run the apply process.

Chapter 7
Preparing to Create an Apply Process

7-2

7.3 Creating an Apply Process for Captured LCRs Using
DBMS_STREAMS_ADM

The following example runs the ADD_SCHEMA_RULES procedure in the DBMS_STREAMS_ADM
package to create an apply process that applies captured logical change records
(LCRs). This apply process can apply LCRs that were captured by a capture process.

Complete the following steps:

1. Complete the tasks in "Preparing to Create an Apply Process".

2. In SQL*Plus, connect to the database that will run the apply process as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Create the apply process:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'strm01_apply',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => FALSE,
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

Running this procedure performs the following actions:

• Creates an apply process named strm01_apply that applies captured LCRs to
the local database. The apply process is created only if it does not already
exist.

• Associates the apply process with the existing queue strmadmin.streams_queue.
This queue must exist.

• Creates a positive rule set and associates it with the apply process, if the
apply process does not have a positive rule set, because the inclusion_rule
parameter is set to TRUE. The rule set uses the
SYS.STREAMS$_EVALUATION_CONTEXT evaluation context. The rule set name is
system generated.

• Creates one rule that evaluates to TRUE for row LCRs that contain the results of
data manipulation language (DML) changes to database objects in the hr
schema. The rule name is system generated.

• Adds the rule to the positive rule set associated with the apply process
because the inclusion_rule parameter is set to TRUE.

• Sets the apply_tag for the apply process to a value that is the hexadecimal
equivalent of '00' (double zero). This is the default apply tag value. Redo
entries generated by the apply process have a tag with this value.

Chapter 7
Creating an Apply Process for Captured LCRs Using DBMS_STREAMS_ADM

7-3

• Specifies that the apply process applies a row LCR only if it has a NULL tag,
because the include_tagged_lcr parameter is set to FALSE. This behavior is
accomplished through the system-created rule for the apply process.

• Specifies that the LCRs applied by the apply process originate at the
dbs1.example.com source database. The rules in the apply process rule sets
determine which LCRs are dequeued by the apply process. If the apply
process dequeues an LCR with a source database other than
dbs1.example.com, then an error is raised.

7.4 Creating an Apply Process Using DBMS_APPLY_ADM
This section contains the following examples that create an apply process using the
DBMS_APPLY_ADM package:

• Creating an Apply Process for Captured LCRs with DBMS_APPLY_ADM

• Creating an Apply Process for Persistent LCRs with DBMS_APPLY_ADM

See Also:

• "Change Apply in an Oracle to Non-Oracle Environment" for information
about configuring an apply process to apply messages to a non-Oracle
database using the apply_database_link parameter

• Oracle Streams Concepts and Administration

7.4.1 Creating an Apply Process for Captured LCRs with
DBMS_APPLY_ADM

The following example runs the CREATE_APPLY procedure in the DBMS_APPLY_ADM package
to create an apply process that applies captured logical change records (LCRs). This
apply process can apply LCRs that were captured by a capture process.

Complete the following steps:

1. Complete the tasks in "Preparing to Create an Apply Process".

2. In SQL*Plus, connect to the database that will run the apply process as the Oracle
Streams administrator.

Ensure that the Oracle Streams administrator is granted DBA role. DBA role is
required because this example sets the apply user to a user other than the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Create the rule set that will be used by the apply process if it does not exist. In this
example, assume that the rule set is strmadmin.strm02_rule_set. Optionally, you
can also add rules to the rule set. See Oracle Streams Concepts and
Administration for instructions.

4. Create any apply handlers that will be used by the apply process if they do not
exist. In this example, assume that the DDL handler is the strmadmin.history_ddl

Chapter 7
Creating an Apply Process Using DBMS_APPLY_ADM

7-4

procedure. An example in the Oracle Streams Concepts and Administration
creates this procedure.

5. Create the apply process:

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.streams_queue',
 apply_name => 'strm02_apply',
 rule_set_name => 'strmadmin.strm02_rule_set',
 message_handler => NULL,
 ddl_handler => 'strmadmin.history_ddl',
 apply_user => 'hr',
 apply_database_link => NULL,
 apply_tag => HEXTORAW('5'),
 apply_captured => TRUE,
 precommit_handler => NULL,
 negative_rule_set_name => NULL,
 source_database => 'dbs1.example.com');
END;
/

Running this procedure performs the following actions:

• Creates an apply process named strm02_apply. An apply process with the
same name must not exist.

• Associates the apply process with the queue strmadmin.streams_queue. This
queue must exist.

• Associates the apply process with the rule set strmadmin.strm02_rule_set. This
rule set must exist. This rule set is the positive rule set for the apply process.

• Specifies that the apply process does not use a message handler.

• Specifies that the DDL handler is the history_ddl PL/SQL procedure in the
strmadmin schema. This procedure must exist, and the user who runs the
CREATE_APPLY procedure must have EXECUTE privilege on the history_ddl
PL/SQL procedure.

• Specifies that the user who applies changes is hr, and not the user who is
running the CREATE_APPLY procedure (the Oracle Streams administrator).

• Specifies that the apply process applies changes to the local database
because the apply_database_link parameter is set to NULL.

• Specifies that each redo entry generated by the apply process has a tag that is
the hexadecimal equivalent of '5'. See Oracle Streams Tags for more
information about tags.

• Specifies that the apply process applies captured LCRs, not persistent LCRs
or persistent user messages. Therefore, if an LCR that was constructed by a
synchronous capture or a user application, not by a capture process, and is
staged in the queue for the apply process, then this apply process does not
dequeue the LCR.

• Specifies that the apply process does not use a precommit handler.

• Specifies that the apply process does not use a negative rule set.

• Specifies that the LCRs applied by the apply process originate at the
dbs1.example.com source database. The rules in the apply process rule sets
determine which LCRs are dequeued by the apply process. If the apply

Chapter 7
Creating an Apply Process Using DBMS_APPLY_ADM

7-5

process dequeues an LCR with a source database other than
dbs1.example.com, then an error is raised.

After creating the apply process, run the ADD_TABLE_RULES or ADD_SUBSET_RULES
procedure to add rules to the apply process rule set. These rules direct the apply
process to apply LCRs for the specified tables.

See Also:

Oracle Streams Concepts and Administration for more information about rules

7.4.2 Creating an Apply Process for Persistent LCRs with
DBMS_APPLY_ADM

The following example runs the CREATE_APPLY procedure in the DBMS_APPLY_ADM package
to create an apply process that applies persistent logical change records (LCRs). This
apply process can apply LCRs that were captured by a synchronous capture or
constructed by an application.

Complete the following steps:

1. Complete the tasks in "Preparing to Create an Apply Process".

2. In SQL*Plus, connect to the database that will run the apply process as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Create the rule set that will be used by the apply process if it does not exist. In this
example, assume that the rule set is strmadmin.strm03_rule_set. Optionally, you
can also add rules to the rule set. See Oracle Streams Concepts and
Administration for instructions.

4. Create any apply handlers that will be used by the apply process if they do not
exist. The apply process created in this example does not used apply handlers.

5. Create the apply process:

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.streams_queue',
 apply_name => 'strm03_apply',
 rule_set_name => 'strmadmin.strm03_rule_set',
 message_handler => NULL,
 ddl_handler => NULL,
 apply_user => NULL,
 apply_database_link => NULL,
 apply_tag => NULL,
 apply_captured => FALSE,
 precommit_handler => NULL,
 negative_rule_set_name => NULL);
END;
/

Running this procedure performs the following actions:

Chapter 7
Creating an Apply Process Using DBMS_APPLY_ADM

7-6

• Creates an apply process named strm03_apply. An apply process with the
same name must not exist.

• Associates the apply process with the queue named strmadmin.streams_queue.
This queue must exist.

• Associates the apply process with the rule set strmadmin.strm03_rule_set. This
rule set must exist. This rule set is the positive rule set for the apply process.

• Specifies that the apply process does not use a message handler.

• Specifies that the apply process does not use a DDL handler.

• Specifies that the user who applies the changes is the user who runs the
CREATE_APPLY procedure, because the apply_user parameter is NULL.

• Specifies that the apply process applies changes to the local database,
because the apply_database_link parameter is set to NULL.

• Specifies that each redo entry generated by the apply process has a NULL tag.
See Oracle Streams Tags for more information about tags.

• Specifies that the apply process does not apply captured LCRs. Therefore, the
apply process can apply persistent LCRs or persistent user messages that are
in the persistent queue portion of the apply process's queue.

• Specifies that the apply process does not use a precommit handler.

• Specifies that the apply process does not use a negative rule set.

After creating the apply process, run the ADD_TABLE_RULES or ADD_SUBSET_RULES
procedure to add rules to the apply process rule set. These rules direct the apply
process to apply LCRs for the specified tables.

See Also:

Oracle Streams Concepts and Administration for more information about rules

Chapter 7
Creating an Apply Process Using DBMS_APPLY_ADM

7-7

8
Instantiation and Oracle Streams
Replication

This chapter contains conceptual information about instantiation and Oracle Streams
replication. It also contains instructions for preparing database objects for instantiation,
performing instantiations, setting instantiation system change numbers (SCNs), and
monitoring instantiations.

This chapter contains these topics:

• Overview of Instantiation and Oracle Streams Replication

• Capture Rules and Preparation for Instantiation

• Oracle Data Pump and Oracle Streams Instantiation

• Recovery Manager (RMAN) and Oracle Streams Instantiation

• Setting Instantiation SCNs at a Destination Database

• Monitoring Instantiation

8.1 Overview of Instantiation and Oracle Streams
Replication

In an Oracle Streams environment that replicates a database object within a single
database or between multiple databases, a source database is the database where
changes to the object are generated, and a destination database is the database
where these changes are dequeued by an apply process. If a capture process or
synchronous capture captures, or will capture, such changes, and the changes will be
applied locally or propagated to other databases and applied at destination databases,
then you must instantiate these source database objects before you can replicate
changes to the objects. If a database where changes to the source database objects
will be applied is a different database than the source database, then the destination
database must have a copy of these database objects.

In Oracle Streams, the following general steps instantiate a database object:

1. Prepare the database object for instantiation at the source database.

2. If a copy of the database object does not exist at the destination database, then
create a database object physically at the destination database based on a
database object at the source database. You can use export/import, transportable
tablespaces, or RMAN to copy database objects for instantiation. If the database
object already exists at the destination database, then this step is not necessary.

3. Set the instantiation system change number (SCN) for the database object at the
destination database. An instantiation SCN instructs an apply process at the
destination database to apply only changes that committed at the source database
after the specified SCN.

8-1

All of these instantiation steps can be performed automatically when you use one of
the following Oracle-supplied procedures in the DBMS_STREAMS_ADM package that
configure replication environments:

• MAINTAIN_GLOBAL

• MAINTAIN_SCHEMAS

• MAINTAIN_SIMPLE_TTS

• MAINTAIN_TABLES

• MAINTAIN_TTS

In some cases, Step 1 and Step 3 are completed automatically. For example, when
you add rules for a database object to the positive rule set of a capture process by
running a procedure in the DBMS_STREAMS_ADM package, the database object is prepared
for instantiation automatically.

Also, when you use export/import, transportable tablespaces, or the RMAN TRANSPORT
TABLESPACE command to copy database objects from a source database to a
destination database, instantiation SCNs can be set for these database objects
automatically.

Note:

The RMAN DUPLICATE command can instantiate an entire database, but this
command does not set instantiation SCNs for database objects.

If the database object being instantiated is a table, then the tables at the source and
destination database do not need to be an exact match. However, if some or all of the
table data is replicated between the two databases, then the data that is replicated
should be consistent when the table is instantiated. Whenever you plan to replicate
changes to a database object, you must always prepare the database object for
instantiation at the source database and set the instantiation SCN for the database
object at the destination database. By preparing an object for instantiation, you are
setting the lowest SCN for which changes to the object can be applied at destination
databases. This SCN is called the ignore SCN. You should prepare a database object
for instantiation after a capture process or synchronous capture has been configured
to capture changes to the database object.

When you instantiate tables using export/import, transportable tablespaces, or RMAN,
any supplemental log group specifications are retained for the instantiated tables. That
is, after instantiation, log group specifications for imported tables at the import
database are the same as the log group specifications for these tables at the export
database. If you do not want to retain supplemental log group specifications for tables
at the import database, then you can drop specific supplemental log groups after
import.

Database supplemental logging specifications are not retained during export/import,
even if you perform a full database export/import. However, the RMAN DUPLICATE
command retains database supplemental logging specifications at the instantiated
database.

Chapter 8
Overview of Instantiation and Oracle Streams Replication

8-2

Note:

• During an export for an Oracle Streams instantiation, ensure that no data
definition language (DDL) changes are made to objects being exported.

• When you export a database or schema that contains rules with non-NULL
action contexts, the database or the default tablespace of the schema that
owns the rules must be writeable. If the database or tablespace is read-
only, then export errors result.

See Also:

• Oracle Streams Concepts and Administration for more information about
the oldest SCN for an apply process

• "Configuring Replication Using the DBMS_STREAMS_ADM Package"

• "Specifying Supplemental Logging" for information about adding and
dropping supplemental log groups

8.2 Capture Rules and Preparation for Instantiation
The following subprograms in the DBMS_CAPTURE_ADM package prepare database objects
for instantiation:

• The PREPARE_TABLE_INSTANTIATION procedure prepares a single table for
instantiation when changes to the table will be captured by a capture process.

• The PREPARE_SYNC_INSTANTIATION function prepares a single table or multiple tables
for instantiation when changes to the table or tables will be captured by a
synchronous capture.

• The PREPARE_SCHEMA_INSTANTIATION procedure prepares for instantiation all of the
database objects in a schema and all database objects added to the schema in
the future. This procedure should only be used when changes will be captured by
a capture process.

• The PREPARE_GLOBAL_INSTANTIATION procedure prepares for instantiation all of the
database objects in a database and all database objects added to the database in
the future. This procedure should only be used when changes will be captured by
a capture process.

These procedures record the lowest system change number (SCN) of each object for
instantiation. SCNs after the lowest SCN for an object can be used for instantiating the
object.

If you use a capture process to capture changes, then these procedures also populate
the Oracle Streams data dictionary for the relevant capture processes, propagations,
and apply processes that capture, propagate, or apply changes made to the table,
schema, or database being prepared for instantiation. In addition, if you use a capture
process to capture changes, then these procedures optionally can enable

Chapter 8
Capture Rules and Preparation for Instantiation

8-3

supplemental logging for key columns or all columns in the tables that are being
prepared for instantiation.

Note:

Replication with synchronous capture does not use the Oracle Streams data
dictionary and does not require supplemental logging.

See Also:

• "Preparing Database Objects for Instantiation at a Source Database"

• "Procedures That Automatically Specify Supplemental Logging"

• Oracle Streams Concepts and Administration for more information about
the Oracle Streams data dictionary

8.2.1 DBMS_STREAMS_ADM Package Procedures Automatically
Prepare Objects

When you add rules to the positive rule set for a capture process or synchronous
capture by running a procedure in the DBMS_STREAMS_ADM package, a procedure or
function in the DBMS_CAPTURE_ADM package is run automatically on the database objects
where changes will be captured. Table 8-1 lists which procedure or function is run in
the DBMS_CAPTURE_ADM package when you run a procedure in the DBMS_STREAMS_ADM
package.

Table 8-1 DBMS_CAPTURE_ADM Package Procedures That Are Run
Automatically

When you run this procedure in the
DBMS_STREAMS_ADM package

This procedure or function in the
DBMS_CAPTURE_ADM package is run
automatically

ADD_TABLE_RULES

ADD_SUBSET_RULES

PREPARE_TABLE_INSTANTIATION when rules are
added to a capture process rule set

PREPARE_SYNC_INSTANTIATION when rules are
added to a synchronous capture rule set

ADD_SCHEMA_RULES PREPARE_SCHEMA_INSTANTIATION

ADD_GLOBAL_RULES PREPARE_GLOBAL_INSTANTIATION

Multiple calls to prepare for instantiation are allowed. If you are using downstream
capture, and the downstream capture process uses a database link from the
downstream database to the source database, then the database objects are prepared
for instantiation automatically when you run one of these procedures in the
DBMS_STREAMS_ADM package. However, if the downstream capture process does not use
a database link from the downstream database to the source database, then you must
prepare the database objects for instantiation manually.

Chapter 8
Capture Rules and Preparation for Instantiation

8-4

When capture process rules are created by the DBMS_RULE_ADM package instead of the
DBMS_STREAMS_ADM package, you must run the appropriate procedure manually to
prepare each table, schema, or database whose changes will be captured for
instantiation, if you plan to apply changes that result from the capture process rules
with an apply process.

In addition, some procedures automatically run these procedures. For example, the
DBMS_STREAMS_ADM.MAINTAIN_TABLES procedure automatically runs the ADD_TABLE_RULES
procedure.

Note:

A synchronous capture only captures changes based on rules created by the
ADD_TABLE_RULES or ADD_SUBSET_RULES procedures.

See Also:

"Configuring Replication Using the DBMS_STREAMS_ADM Package"

8.2.2 When Preparing for Instantiation Is Required
Whenever you add, or modify the condition of, a capture process, propagation, or
apply process rule for a database object that is in a positive rule set, you must run the
appropriate procedure to prepare the database object for instantiation at the source
database if any of the following conditions are met:

• One or more rules are added to the positive rule set for a capture process that
instruct the capture process to capture changes made to the object.

• One or more conditions of rules in the positive rule set for a capture process are
modified to instruct the capture process to capture changes made to the object.

• One or more rules are added to the positive rule set for a propagation that instruct
the propagation to propagate changes made to the object.

• One or more conditions of rules in the positive rule set for a propagation are
modified to instruct the propagation to propagate changes made to the object.

• One or more rules are added to the positive rule set for an apply process that
instruct the apply process to apply changes that were made to the object at the
source database.

• One or more conditions of rules in the positive rule set for an apply process are
modified to instruct the apply process to apply changes that were made to the
object at the source database.

Whenever you remove, or modify the condition of, a capture process, propagation, or
apply process rule for a database object that is in a negative rule set, you must run the
appropriate procedure to prepare the database object for instantiation at the source
database if any of the following conditions are met:

• One or more rules are removed from the negative rule set for a capture process to
instruct the capture process to capture changes made to the object.

Chapter 8
Capture Rules and Preparation for Instantiation

8-5

• One or more conditions of rules in the negative rule set for a capture process are
modified to instruct the capture process to capture changes made to the object.

• One or more rules are removed from the negative rule set for a propagation to
instruct the propagation to propagate changes made to the object.

• One or more conditions of rules in the negative rule set for a propagation are
modified to instruct the propagation to propagate changes made to the object.

• One or more rules are removed from the negative rule set for an apply process to
instruct the apply process to apply changes that were made to the object at the
source database.

• One or more conditions of rules in the negative rule set for an apply process are
modified to instruct the apply process to apply changes that were made to the
object at the source database.

When any of these conditions are met for changes to a positive or negative rule set,
you must prepare the relevant database objects for instantiation at the source
database to populate any relevant Oracle Streams data dictionary that requires
information about the source object, even if the object already exists at a remote
database where the rules were added or changed.

The relevant Oracle Streams data dictionaries are populated asynchronously for both
the local dictionary and all remote dictionaries. The procedure that prepares for
instantiation adds information to the redo log at the source database. The local Oracle
Streams data dictionary is populated with the information about the object when a
capture process captures these redo entries, and any remote Oracle Streams data
dictionaries are populated when the information is propagated to them.

Synchronous captures do not use Oracle Streams data dictionaries. However, when
you are capturing changes to a database object with synchronous capture, you must
prepare the database object for instantiation when you add rules for the database
object to the synchronous capture rule set. Preparing the database object for
instantiation is required when rules are added because it records the lowest SCN for
instantiation for the database object. Preparing the database object for instantiation is
not required when synchronous capture rules are modified, but modifications cannot
change the database object name or schema in the rule condition.

See Also:

• "Preparing Database Objects for Instantiation at a Source Database"

• Oracle Streams Concepts and Administration for more information about
the Oracle Streams data dictionary

8.2.3 Supplemental Logging Options During Preparation for
Instantiation

If a replication environment uses a capture process to capture changes, then
supplemental logging is required. Supplemental logging places additional column data
into a redo log whenever an operation is performed. The procedures in the
DBMS_CAPTURE_ADM package that prepare database objects for instantiation include
PREPARE_TABLE_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and

Chapter 8
Capture Rules and Preparation for Instantiation

8-6

PREPARE_GLOBAL_INSTANTIATION. These procedures have a supplemental_logging
parameter which controls the supplemental logging specifications for the database
objects being prepared for instantiation.

Table 8-2 describes the values for the supplemental_logging parameter for each
procedure.

Table 8-2 Supplemental Logging Options During Preparation for Instantiation

Procedure supplemental_logging
Parameter Setting

Description

PREPARE_TABLE_INSTANTIATION keys The procedure enables supplemental logging
for primary key, unique key, bitmap index,
and foreign key columns in the table being
prepared for instantiation. The procedure
places the logged columns for the table in
three separate log groups: the primary key
columns in an unconditional log group, the
unique key columns and bitmap index
columns in a conditional log group, and the
foreign key columns in a conditional log
group.

PREPARE_TABLE_INSTANTIATION all The procedure enables supplemental logging
for all columns in the table being prepared for
instantiation. The procedure places all of the
columns for the table in an unconditional log
group.

PREPARE_SCHEMA_INSTANTIATION keys The procedure enables supplemental logging
for primary key, unique key, bitmap index,
and foreign key columns in the tables in the
schema being prepared for instantiation and
for any table added to this schema in the
future. Primary key columns are logged
unconditionally. Unique key, bitmap index,
and foreign key columns are logged
conditionally.

PREPARE_SCHEMA_INSTANTIATION all The procedure enables supplemental logging
for all columns in the tables in the schema
being prepared for instantiation and for any
table added to this schema in the future. The
columns are logged unconditionally.

PREPARE_GLOBAL_INSTANTIATION keys The procedure enables database
supplemental logging for primary key, unique
key, bitmap index, and foreign key columns
in the tables in the database being prepared
for instantiation and for any table added to
the database in the future. Primary key
columns are logged unconditionally. Unique
key, bitmap index, and foreign key columns
are logged conditionally.

PREPARE_GLOBAL_INSTANTIATION all The procedure enables supplemental logging
for all columns in all of the tables in the
database being prepared for instantiation
and for any table added to the database in
the future. The columns are logged
unconditionally.

Chapter 8
Capture Rules and Preparation for Instantiation

8-7

Table 8-2 (Cont.) Supplemental Logging Options During Preparation for Instantiation

Procedure supplemental_logging
Parameter Setting

Description

Any Prepare Procedure none The procedure does not enable
supplemental logging for any columns in the
tables being prepared for instantiation.

If the supplemental_logging parameter is not specified when one of prepare procedures
is run, then keys is the default. Some procedures in the DBMS_STREAMS_ADM package
prepare tables for instantiation when they add rules to a positive capture process rule
set. In this case, the default supplemental logging option, keys, is specified for the
tables being prepared for instantiation.

Note:

• When all is specified for the supplemental_logging parameter,
supplemental logging is not enabled for columns of the following types:
LOB, LONG, LONG RAW, user-defined type, and Oracle-supplied type.

• Specifying keys for the supplemental_logging parameter does not enable
supplemental logging of bitmap join index columns.

• Oracle Database 10g Release 2 introduced the supplemental_logging
parameter for the prepare procedures. By default, running these
procedures enables supplemental logging. Before this release, these
procedures did not enable supplemental logging. If you remove an Oracle
Streams environment, or if you remove certain database objects from an
Oracle Streams environment, then you can also remove the supplemental
logging enabled by these procedures to avoid unnecessary logging.

See Also:

• "Preparing Database Objects for Instantiation at a Source Database"

• "Specifying Supplemental Logging"

• "DBMS_STREAMS_ADM Package Procedures Automatically Prepare
Objects"

• "Aborting Preparation for Instantiation at a Source Database" for
information about removing supplemental logging enabled by the prepare
procedures

• Oracle Database SQL Language Reference for information about data
types

Chapter 8
Capture Rules and Preparation for Instantiation

8-8

8.2.4 Preparing Database Objects for Instantiation at a Source
Database

If you use the DBMS_STREAMS_ADM package to create rules for a capture process or a
synchronous capture, then any objects referenced in the system-created rules are
prepared for instantiation automatically. If you use the DBMS_RULE_ADM package to create
rules for a capture process, then you must prepare the database objects referenced in
these rules for instantiation manually. In this case, you should prepare a database
object for instantiation after a capture process has been configured to capture changes
to the database object. Synchronous captures ignore rules created by the
DBMS_RULE_ADM package.

See "Capture Rules and Preparation for Instantiation" for information about the
PL/SQL subprograms that prepare database objects for instantiation. If you run one of
these procedures while a long running transaction is modifying one or more database
objects being prepared for instantiation, then the procedure waits until the long running
transaction is complete before it records the ignore SCN for the objects. The ignore
SCN is the SCN below which changes to an object cannot be applied at destination
databases. Query the V$STREAMS_TRANSACTION dynamic performance view to monitor
long running transactions being processed by a capture process or apply process.

The following sections contain examples that prepare database objects for
instantiation:

• Preparing Tables for Instantiation

• Preparing the Database Objects in a Schema for Instantiation

• Preparing All of the Database Objects in a Database for Instantiation

See Also:

Oracle Streams Concepts and Administration for more information about the
instantiation SCN and ignore SCN for an apply process

8.2.4.1 Preparing Tables for Instantiation
This section contains these topics:

• Preparing a Table for Instantiation Using DBMS_STREAMS_ADM When a
Capture Process Is Used

• Preparing a Table for Instantiation Using DBMS_CAPTURE_ADM When a
Capture Process Is Used

• Preparing Tables for Instantiation Using DBMS_STREAMS_ADM When a
Synchronous Capture Is Used

• Preparing Tables for Instantiation Using DBMS_CAPTURE_ADM When a
Synchronous Capture Is Used

Chapter 8
Capture Rules and Preparation for Instantiation

8-9

8.2.4.1.1 Preparing a Table for Instantiation Using DBMS_STREAMS_ADM When a
Capture Process Is Used

The example in this section prepares a table for instantiation using the
DBMS_STREAMS_ADM package when a capture process captures changes to the table. To
prepare the hr.regions table for instantiation and enable supplemental logging for any
primary key, unique key, bitmap index, and foreign key columns in the table, add rules
for the hr.regions table to the positive rule set for a capture process using a procedure
in the DBMS_STREAMS_ADM package. If the capture process is a local capture process or a
downstream capture process with a database link to the source database, then the
procedure that you run prepares this table for instantiation automatically.

The following procedure adds rules to the positive rule set of a capture process named
strm01_capture and prepares the hr.regions table for instantiation:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.regions',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strmadmin.strm01_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 inclusion_rule => TRUE);
END;
/

See Also:

"Specifying Supplemental Logging"

8.2.4.1.2 Preparing a Table for Instantiation Using DBMS_CAPTURE_ADM When a
Capture Process Is Used

The example in this section prepares a table for instantiation using the
DBMS_CAPTURE_ADM package when a capture process captures changes to the table. To
prepare the hr.regions table for instantiation and enable supplemental logging for any
primary key, unique key, bitmap index, and foreign key columns in the table, run the
following procedure:

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.regions',
 supplemental_logging => 'keys');
END;
/

The default value for the supplemental_logging parameter is keys. Therefore, if this
parameter is not specified, then supplemental logging is enabled for any primary key,
unique key, bitmap index, and foreign key columns in the table that is being prepared
for instantiation.

Chapter 8
Capture Rules and Preparation for Instantiation

8-10

See Also:

"Specifying Supplemental Logging"

8.2.4.1.3 Preparing Tables for Instantiation Using DBMS_STREAMS_ADM When a
Synchronous Capture Is Used

The example in this section prepares all of the tables in the hr schema for instantiation
using the DBMS_STREAMS_ADM package when a synchronous capture captures changes to
the tables.Add rules for the hr.jobs_transport and hr.regions_transport tables to the
positive rule set for a synchronous capture using a procedure in the DBMS_STREAMS_ADM
package. The procedure that you run prepares the tables for instantiation
automatically.

The following procedure adds a rule to the positive rule set of a synchronous capture
named sync_capture and prepares the hr.regions table for instantiation:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.regions',
 streams_type => 'sync_capture',
 streams_name => 'sync_capture',
 queue_name => 'strmadmin.streams_queue');
END;
/

8.2.4.1.4 Preparing Tables for Instantiation Using DBMS_CAPTURE_ADM When a
Synchronous Capture Is Used

The example in this section prepares all of the tables in the hr schema for instantiation
using the DBMS_CAPTURE_ADM package when a synchronous capture captures changes to
the tables. To prepare the tables in the hr schema for instantiation, run the following
function:

SET SERVEROUTPUT ON
DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 prepare_scn NUMBER;
 BEGIN
 tables(1) := 'hr.departments';
 tables(2) := 'hr.employees';
 tables(3) := 'hr.countries';
 tables(4) := 'hr.regions';
 tables(5) := 'hr.locations';
 tables(6) := 'hr.jobs';
 tables(7) := 'hr.job_history';
 prepare_scn := DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION(
 table_names => tables);
 DBMS_OUTPUT.PUT_LINE('Prepare SCN = ' || prepare_scn);
END;
/

8.2.4.2 Preparing the Database Objects in a Schema for Instantiation
This section contains these topics:

Chapter 8
Capture Rules and Preparation for Instantiation

8-11

• Preparing the Database Objects in a Schema for Instantiation Using
DBMS_STREAMS_ADM

• Preparing the Database Objects in a Schema for Instantiation Using
DBMS_CAPTURE_ADM

8.2.4.2.1 Preparing the Database Objects in a Schema for Instantiation Using
DBMS_STREAMS_ADM

The example in this section prepares the database objects in a schema for
instantiation using the DBMS_STREAMS_ADM package when a capture process captures
changes to these objects.

To prepare the database objects in the hr schema for instantiation and enable
supplemental logging for the all columns in the tables in the hr schema, run the
following procedure, add rules for the hr schema to the positive rule set for a capture
process using a procedure in the DBMS_STREAMS_ADM package. If the capture process is a
local capture process or a downstream capture process with a database link to the
source database, then the procedure that you run prepares the objects in the hr
schema for instantiation automatically.

The following procedure adds rules to the positive rule set of a capture process named
strm01_capture and prepares the hr schema, and all of its database objects, for
instantiation:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strm01_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 inclusion_rule => TRUE);
END;
/

If the specified capture process does not exist, then this procedure creates it.

In addition, supplemental logging is enabled for any primary key, unique key, bitmap
index, and foreign key columns in the tables that are being prepared for instantiation.

See Also:

"Specifying Supplemental Logging"

8.2.4.2.1.1 Preparing the Database Objects in a Schema for Instantiation Using
DBMS_CAPTURE_ADM

The example in this section prepares the database objects in a schema for
instantiation using the DBMS_CAPTURE_ADM package when a capture process captures
changes to these objects. To prepare the database objects in the hr schema for
instantiation and enable supplemental logging for the all columns in the tables in the hr
schema, run the following procedure:

Chapter 8
Capture Rules and Preparation for Instantiation

8-12

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_SCHEMA_INSTANTIATION(
 schema_name => 'hr',
 supplemental_logging => 'all');
END;
/

After running this procedure, supplemental logging is enabled for all of the columns in
the tables in the hr schema and for all of the columns in the tables added to the hr
schema in the future.

See Also:

"Specifying Supplemental Logging"

8.2.4.3 Preparing All of the Database Objects in a Database for Instantiation
This section contains these topics:

• Preparing All of the Database Objects in a Database for Instantiation Using
DBMS_STREAMS_ADM

• Preparing All of the Database Objects in a Database for Instantiation Using
DBMS_CAPTURE_ADM

8.2.4.3.1 Preparing All of the Database Objects in a Database for Instantiation Using
DBMS_STREAMS_ADM

The example in this section prepares the database objects in a database for
instantiation using the DBMS_STREAMS_ADM package when a capture process captures
changes to these objects. To prepare all of the database objects in a database for
instantiation, run the ADD_GLOBAL_RULES procedure in the DBMS_STREAMS_ADM package:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'capture',
 streams_name => 'capture_db',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 inclusion_rule => TRUE);
END;
/

If the specified capture process does not exist, then this procedure creates it.

In addition, supplemental logging is enabled for any primary key, unique key, bitmap
index, and foreign key columns in the tables that are being prepared for instantiation.

See Also:

"Specifying Supplemental Logging"

Chapter 8
Capture Rules and Preparation for Instantiation

8-13

8.2.4.3.1.1 Preparing All of the Database Objects in a Database for Instantiation Using
DBMS_CAPTURE_ADM

The example in this section prepares the database objects in a database for
instantiation using the DBMS_CAPTURE_ADM package when a capture process captures
changes to these objects. To prepare all of the database objects in a database for
instantiation, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION(
 supplemental_logging => 'none');
END;
/

Because none is specified for the supplemental_logging parameter, this procedure does
not enable supplemental logging for any columns. However, you can specify
supplemental logging manually using an ALTER TABLE or ALTER DATABASE statement.

See Also:

"Specifying Supplemental Logging"

8.2.5 Aborting Preparation for Instantiation at a Source Database
The following procedures in the DBMS_CAPTURE_ADM package abort preparation for
instantiation:

• ABORT_TABLE_INSTANTIATION reverses the effects of PREPARE_TABLE_INSTANTIATION and
removes any supplemental logging enabled by the PREPARE_TABLE_INSTANTIATION
procedure.

• ABORT_SYNC_INSTANTIATION reverses the effects of PREPARE_SYNC_INSTANTIATION

• ABORT_SCHEMA_INSTANTIATION reverses the effects of PREPARE_SCHEMA_INSTANTIATION
and removes any supplemental logging enabled by the
PREPARE_SCHEMA_INSTANTIATION and PREPARE_TABLE_INSTANTIATION procedures.

• ABORT_GLOBAL_INSTANTIATION reverses the effects of PREPARE_GLOBAL_INSTANTIATION
and removes any supplemental logging enabled by the
PREPARE_GLOBAL_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and
PREPARE_TABLE_INSTANTIATION procedures.

These procedures remove data dictionary information related to the potential
instantiation of the relevant database objects.

For example, to abort the preparation for instantiation of the hr.regions table, run the
following procedure:

BEGIN
 DBMS_CAPTURE_ADM.ABORT_TABLE_INSTANTIATION(
 table_name => 'hr.regions');
END;
/

Chapter 8
Capture Rules and Preparation for Instantiation

8-14

8.3 Oracle Data Pump and Oracle Streams Instantiation
The following sections contain information about performing Oracle Streams
instantiations using Oracle Data Pump:

• Data Pump Export and Object Consistency

• Oracle Data Pump Import and Oracle Streams Instantiation

• Instantiating Objects Using Data Pump Export/Import

See Also:

• Oracle Streams Concepts and Administration for information about
performing a full database export/import on a database using Oracle
Streams

• Oracle Database Utilities for more information about Data Pump

8.3.1 Data Pump Export and Object Consistency
During export, Oracle Data Pump automatically uses Oracle Flashback to ensure that
the exported data and the exported procedural actions for each database object are
consistent to a single point in time. When you perform an instantiation in an Oracle
Streams environment, some degree of consistency is required. Using the Data Pump
Export utility is sufficient to ensure this consistency for Oracle Streams instantiations.

If you are using an export dump file for other purposes in addition to an Oracle
Streams instantiation, and these other purposes have more stringent consistency
requirements than those provided by Data Pump's default export, then you can use the
Data Pump Export utility parameters FLASHBACK_SCN or FLASHBACK_TIME for Oracle
Streams instantiations. For example, if an export includes objects with foreign key
constraints, then more stringent consistency might be required.

8.3.2 Oracle Data Pump Import and Oracle Streams Instantiation
The following sections provide information about Oracle Data Pump import and Oracle
Streams instantiation:

• Instantiation SCNs and Data Pump Imports

• Instantiation SCNs and Oracle Streams Tags Resulting from Data Pump Imports

• The STREAMS_CONFIGURATION Data Pump Import Utility Parameter

8.3.2.1 Instantiation SCNs and Data Pump Imports
During a Data Pump import, an instantiation SCN is set at the import database for
each database object that was prepared for instantiation at the export database before
the Data Pump export was performed. The instantiation SCN settings are based on
metadata obtained during Data Pump export.

Chapter 8
Oracle Data Pump and Oracle Streams Instantiation

8-15

See Also:

Oracle Streams Concepts and Administration

8.3.2.2 Instantiation SCNs and Oracle Streams Tags Resulting from Data
Pump Imports

A Data Pump import session can set its Oracle Streams tag to the hexadecimal
equivalent of '00' to avoid cycling the changes made by the import. Redo entries
resulting from such an import have this tag value.

Whether the import session tag is set to the hexadecimal equivalent of '00' depends
on the export that is being imported. Specifically, the import session tag is set to the
hexadecimal equivalent of '00' in either of the following cases:

• The Data Pump export was in FULL or SCHEMA mode.

• The Data Pump export was in TABLE or TABLESPACE mode and at least one table
included in the export was prepared for instantiation at the export database before
the export was performed.

If neither one of these conditions is true for a Data Pump export that is being imported,
then the import session tag is NULL.

Note:

• If you perform a network import using Data Pump, then an implicit export
is performed in the same mode as the import. For example, if the network
import is in schema mode, then the implicit export is in schema mode also.

• The import session tag is not set if the Data Pump import is performed in
TRANSPORTABLE TABLESPACE mode. An import performed in this mode does
not generate any redo data for the imported data. Therefore, setting the
session tag is not required.

See Also:

Oracle Streams Tags

8.3.2.3 The STREAMS_CONFIGURATION Data Pump Import Utility Parameter
The STREAMS_CONFIGURATION Data Pump Import utility parameter specifies whether to
import any general Oracle Streams metadata that is present in the export dump file.
This import parameter is relevant only if you are performing a full database import. By
default, the STREAMS_CONFIGURATION Import utility parameter is set to y. Typically, specify
y if an import is part of a backup or restore operation.

Chapter 8
Oracle Data Pump and Oracle Streams Instantiation

8-16

The following objects are imported regardless of the STREAMS_CONFIGURATION setting if
the information is present in the export dump file:

• ANYDATA queues and their queue tables

• Queue subscribers

• Advanced Queuing agents

• Rules, including their positive and negative rule sets and evaluation contexts. All
rules are imported, including Oracle Streams rules and non-Oracle Streams rules.
Oracle Streams rules are rules generated by the system when certain procedures
in the DBMS_STREAMS_ADM package are run, while non-Oracle Streams rules are rules
created using the DBMS_RULE_ADM package.

If the STREAMS_CONFIGURATION parameter is set to n, then information about Oracle
Streams rules is not imported into the following data dictionary views:
ALL_STREAMS_RULES, ALL_STREAMS_GLOBAL_RULES, ALL_STREAMS_SCHEMA_RULES,
ALL_STREAMS_TABLE_RULES, DBA_STREAMS_RULES, DBA_STREAMS_GLOBAL_RULES,
DBA_STREAMS_SCHEMA_RULES, and DBA_STREAMS_TABLE_RULES. However, regardless of
the STREAMS_CONFIGURATION parameter setting, information about these rules is
imported into the ALL_RULES, ALL_RULE_SETS, ALL_RULE_SET_RULES, DBA_RULES,
DBA_RULE_SETS, DBA_RULE_SET_RULES, USER_RULES, USER_RULE_SETS, and
USER_RULE_SET_RULES data dictionary views.

When the STREAMS_CONFIGURATION Import utility parameter is set to y, the import includes
the following information, if the information is present in the export dump file; when the
STREAMS_CONFIGURATION Import utility parameter is set to n, the import does not include
the following information:

• Capture processes that capture local changes, including the following information
for each capture process:

– Name of the capture process

– State of the capture process

– Capture process parameter settings

– Queue owner and queue name of the queue used by the capture process

– Rule set owner and rule set name of each positive and negative rule set used
by the capture process

– Capture user for the capture process

– The time that the status of the capture process last changed. This information
is recorded in the DBA_CAPTURE data dictionary view.

– If the capture process disabled or aborted, then the error number and
message of the error that was the cause. This information is recorded in the
DBA_CAPTURE data dictionary view.

• Synchronous captures, including the following information for each synchronous
capture:

– Name of the synchronous capture

– Queue owner and queue name of the queue used by the synchronous capture

– Rule set owner and rule set name of each rule set used by the synchronous
capture

– Capture user for the synchronous capture

Chapter 8
Oracle Data Pump and Oracle Streams Instantiation

8-17

• If any tables have been prepared for instantiation at the export database, then
these tables are prepared for instantiation at the import database.

• If any schemas have been prepared for instantiation at the export database, then
these schemas are prepared for instantiation at the import database.

• If the export database has been prepared for instantiation, then the import
database is prepared for instantiation.

• The state of each ANYDATA queue that is used by an Oracle Streams client, either
started or stopped. Oracle Streams clients include capture processes,
synchronous captures, propagations, apply process, and messaging clients.
ANYDATA queues themselves are imported regardless of the STREAMS_CONFIGURATION
Import utility parameter setting.

• Propagations, including the following information for each propagation:

– Name of the propagation

– Queue owner and queue name of the source queue

– Queue owner and queue name of the destination queue

– Destination database link

– Rule set owner and rule set name of each positive and negative rule set used
by the propagation

– Oracle Scheduler jobs related to Oracle Streams propagations

• Apply processes, including the following information for each apply process:

– Name of the apply process

– State of the apply process

– Apply process parameter settings

– Queue owner and queue name of the queue used by the apply process

– Rule set owner and rule set name of each positive and negative rule set used
by the apply process

– Whether the apply process applies captured LCRs in a buffered queue or
messages in a persistent queue

– Apply user for the apply process

– Message handler used by the apply process, if one exists

– DDL handler used by the apply process, if one exists.

– Precommit handler used by the apply process, if one exists

– Tag value generated in the redo log for changes made by the apply process

– Apply database link, if one exists

– Source database for the apply process

– The information about apply progress in the DBA_APPLY_PROGRESS data dictionary
view, including applied message number, oldest message number (oldest
SCN), apply time, and applied message create time

– Apply errors

– The time that the status of the apply process last changed. This information is
recorded in the DBA_APPLY data dictionary view

Chapter 8
Oracle Data Pump and Oracle Streams Instantiation

8-18

– If the apply process disabled or aborted, then the error number and message
of the error that was the cause. This information is recorded in the DBA_APPLY
data dictionary view.

• DML handlers (including both statement DML handlers and procedure DML
handlers)

• Error handlers

• Update conflict handlers

• Substitute key columns for apply tables

• Instantiation SCN for each apply object

• Ignore SCN for each apply object

• Messaging clients, including the following information for each messaging client:

– Name of the messaging client

– Queue owner and queue name of the queue used by the messaging client

– Rule set owner and rule set name of each positive and negative rule set used
by the messaging client

– Message notification settings

• Some data dictionary information about Oracle Streams rules. The rules
themselves are imported regardless of the setting for the STREAMS_CONFIGURATION
parameter.

• Data dictionary information about Oracle Streams administrators, messaging
clients, message rules, extra attributes included in logical change records (LCRs)
captured by a capture process or synchronous capture, and extra attributes used
in message rules

Note:

Downstream capture processes are not included in an import regardless of the
STREAMS_CONFIGURATION setting.

8.3.3 Instantiating Objects Using Data Pump Export/Import
The example in this section describes the steps required to instantiate objects in an
Oracle Streams environment using Oracle Data Pump export/import. This example
makes the following assumptions:

• You want to capture changes to all of the database objects in the hr schema at a
source database and apply these changes at a separate destination database.

• The hr schema exists at the source database but does not exist at the destination
database. For the purposes of this example, you can drop the hr user at the
destination database using the following SQL statement:

DROP USER hr CASCADE;

The Data Pump import re-creates the user and the user's database objects at the
destination database.

Chapter 8
Oracle Data Pump and Oracle Streams Instantiation

8-19

• You have configured an Oracle Streams administrator at the source database and
the destination database named strmadmin. At each database, the Oracle Streams
administrator is granted DBA role.

Note:

The example in this section uses the command line Data Pump utility. You can
also use the DBMS_DATAPUMP package for Oracle Streams instantiations.

See Also:

• "Configuring an Oracle Streams Administrator on All Databases"

• Oracle Database Utilities for more information about Data Pump

• Oracle Streams Extended Examples for examples that use the
DBMS_DATAPUMP package for Oracle Streams instantiations

Given these assumptions, complete the following steps to instantiate the hr schema
using Data Pump export/import:

1. In SQL*Plus, connect to the source database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Create a directory object to hold the export dump file and export log file:

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

3. Prepare the database objects in the hr schema for instantiation. See "Preparing
the Database Objects in a Schema for Instantiation" for instructions.

4. While still connected to the source database as the Oracle Streams administrator,
determine the current system change number (SCN) of the source database:

SELECT DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER FROM DUAL;

The SCN value returned by this query is specified for the FLASHBACK_SCN Data
Pump export parameter in Step 5. Because the hr schema includes foreign key
constraints between tables, the FLASHBACK_SCN export parameter, or a similar export
parameter, must be specified during export. In this example, assume that the
query returned 876606.

After you perform this query, ensure that no DDL changes are made to the objects
being exported until after the export is complete.

5. On a command line, use Data Pump to export the hr schema at the source
database.

Perform the export by connecting as an administrative user who is granted
EXP_FULL_DATABASE role. This user also must have READ and WRITE privilege on the
directory object created in Step 2. This example connects as the Oracle Streams
administrator strmadmin.

The following is a sample Data Pump export command:

Chapter 8
Oracle Data Pump and Oracle Streams Instantiation

8-20

expdp strmadmin SCHEMAS=hr DIRECTORY=DPUMP_DIR DUMPFILE=hr_schema_dp.dmp
FLASHBACK_SCN=876606

See Also:

Oracle Database Utilities for information about performing a Data Pump export

6. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator.

7. Create a directory object to hold the import dump file and import log file:

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

8. Transfer the Data Pump export dump file hr_schema_dp.dmp to the destination
database. You can use the DBMS_FILE_TRANSFER package, binary FTP, or some
other method to transfer the file to the destination database. After the file transfer,
the export dump file should reside in the directory that corresponds to the directory
object created in Step 7.

9. On a command line at the destination database, use Data Pump to import the
export dump file hr_schema_dp.dmp. Ensure that no changes are made to the tables
in the schema being imported at the destination database until the import is
complete. Performing the import automatically sets the instantiation SCN for the hr
schema and all of its database objects at the destination database.

Perform the import by connecting as an administrative user who is granted
IMP_FULL_DATABASE role. This user also must have READ and WRITE privilege on the
directory object created in Step 7. This example connects as the Oracle Streams
administrator strmadmin.

The following is a sample import command:

impdp strmadmin SCHEMAS=hr DIRECTORY=DPUMP_DIR DUMPFILE=hr_schema_dp.dmp

Note:

Any table supplemental log groups for the tables exported from the export
database are retained when the tables are imported at the import database.
You can drop these supplemental log groups if necessary.

See Also:

Oracle Database Utilities for information about performing a Data Pump import

8.4 Recovery Manager (RMAN) and Oracle Streams
Instantiation

The RMAN TRANSPORT TABLESPACE command can instantiate a tablespace or set of
tablespaces, and the RMAN DUPLICATE and CONVERT DATABASE commands can instantiate

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-21

an entire database. Using RMAN for instantiation usually is faster than other
instantiation methods.

The following sections contain information about using these RMAN commands for
instantiation:

• Instantiating Objects in a Tablespace Using Transportable Tablespace or RMAN

• Instantiating an Entire Database Using RMAN

8.4.1 Instantiating Objects in a Tablespace Using Transportable
Tablespace or RMAN

The RMAN TRANSPORT TABLESPACE command uses Data Pump and an RMAN-managed
auxiliary instance to export the database objects in a tablespace or tablespace set
while the tablespace or tablespace set remains online in the source database. RMAN
automatically starts an auxiliary instance with a system-generated name. The RMAN
TRANSPORT TABLESPACE command produces a Data Pump export dump file and data files
for the tablespace or tablespaces.

You can use Data Pump to import the dump file at the destination database, or you
can use the ATTACH_TABLESPACES procedure in the DBMS_STREAMS_TABLESPACE_ADM package
to attach the tablespace or tablespaces to the destination database. Also, instantiation
SCN values for the database objects in the tablespace or tablespaces are set
automatically at the destination database when the tablespaces are imported or
attached.

Note:

The RMAN TRANSPORT TABLESPACE command does not support user-managed
auxiliary instances.

The examples in this section describe the steps required to instantiate the database
objects in a tablespace using transportable tablespace or RMAN. These instantiation
options usually are faster than export/import. The following examples instantiate the
database objects in a tablespace:

• "Instantiating Objects Using Transportable Tablespace" uses the transportable
tablespace feature to complete the instantiation. Data Pump exports the
tablespace at the source database and imports the tablespace at the destination
database. The tablespace is read-only during the export.

• "Instantiating Objects Using Transportable Tablespace From Backup With RMAN"
uses the RMAN TRANSPORT TABLESPACE command to generate a Data Pump export
dump file and data files for a tablespace or set of tablespaces at the source
database while the tablespace or tablespaces remain online. Either Data Pump
import or the ATTACH_TABLESPACES procedure in the DBMS_STREAMS_TABLESPACE_ADM
package can add the tablespace or tablespaces to the destination database.

These examples instantiate a tablespace set that includes a tablespace called
jobs_tbs, and a tablespace called regions_tbs. To run the examples, connect to the
source database in SQL*Plus as an administrative user and create the new
tablespaces:

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-22

CREATE TABLESPACE jobs_tbs DATAFILE '/usr/oracle/dbs/jobs_tbs.dbf' SIZE 5 M;

CREATE TABLESPACE regions_tbs DATAFILE '/usr/oracle/dbs/regions_tbs.dbf' SIZE 5 M;

Place the new table hr.jobs_transport in the jobs_tbs tablespace:

CREATE TABLE hr.jobs_transport TABLESPACE jobs_tbs AS
 SELECT * FROM hr.jobs;

Place the new table hr.regions_transport in the regions_tbs tablespace:

CREATE TABLE hr.regions_transport TABLESPACE regions_tbs AS
 SELECT * FROM hr.regions;

Both of the examples make the following assumptions:

• You want to capture all of the changes to the hr.jobs_transport and
hr.regions_transport tables at a source database and apply these changes at a
separate destination database.

• The hr.jobs_transport table exists at a source database, and a single self-
contained tablespace named jobs_tbs contains the table. The jobs_tbs tablespace
is stored in a single data file named jobs_tbs.dbf.

• The hr.regions_transport table exists at a source database, and a single self-
contained tablespace named regions_tbs contains the table. The regions_tbs
tablespace is stored in a single data file named regions_tbs.dbf.

• The jobs_tbs and regions_tbs tablespaces do not contain data from any other
schemas.

• The hr.jobs_transport table, the hr.regions_transport table, the jobs_tbs
tablespace, and the regions_tbs tablespace do not exist at the destination
database.

• You have configured an Oracle Streams administrator at both the source database
and the destination database named strmadmin, and you have granted this Oracle
Streams administrator DBA role at both databases.

See Also:

• "Checking for Consistency After Instantiation"

• "Configuring an Oracle Streams Administrator on All Databases"

• Oracle Database Administrator's Guide for instructions about connecting
to a database in SQL*Plus

8.4.1.1 Instantiating Objects Using Transportable Tablespace
This example uses transportable tablespace to instantiate the database objects in a
tablespace set. In addition to the assumptions listed in "Instantiating Objects in a
Tablespace Using Transportable Tablespace or RMAN", this example makes the
following assumptions:

• The Oracle Streams administrator at the source database is granted the
EXP_FULL_DATABASE role to perform the transportable tablespaces export. The DBA

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-23

role is sufficient because it includes the EXP_FULL_DATABASE role. In this example,
the Oracle Streams administrator performs the transportable tablespaces export.

• The Oracle Streams administrator at the destination database is granted the
IMP_FULL_DATABASE role to perform the transportable tablespaces import. The DBA
role is sufficient because it includes the IMP_FULL_DATABASE role. In this example,
the Oracle Streams administrator performs the transportable tablespaces export.

See Also:

Oracle Database Administrator's Guide for more information about using
transportable tablespaces and for information about limitations that might
apply

Complete the following steps to instantiate the database objects in the jobs_tbs and
regions_tbs tablespaces using transportable tablespace:

1. In SQL*Plus, connect to the source database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Create a directory object to hold the export dump file and export log file:

CREATE DIRECTORY TRANS_DIR AS '/usr/trans_dir';

3. Prepare the hr.jobs_transport and hr.regions_transport tables for instantiation.
See "Preparing Tables for Instantiation" for instructions.

4. Make the tablespaces that contain the objects you are instantiating read-only. In
this example, the jobs_tbs and regions_tbs tablespaces contain the database
objects.

ALTER TABLESPACE jobs_tbs READ ONLY;

ALTER TABLESPACE regions_tbs READ ONLY;

5. On a command line, use the Data Pump Export utility to export the jobs_tbs and
regions_tbs tablespaces at the source database using transportable tablespaces
export parameters. The following is a sample export command that uses
transportable tablespaces export parameters:

expdp strmadmin TRANSPORT_TABLESPACES=jobs_tbs, regions_tbs
DIRECTORY=TRANS_DIR DUMPFILE=tbs_ts.dmp

When you run the export command, ensure that you connect as an administrative
user who was granted EXP_FULL_DATABASE role and has READ and WRITE privileges on
the directory object.

See Also:

Oracle Database Utilities for information about performing an export

6. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator.

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-24

7. Create a directory object to hold the import dump file and import log file:

CREATE DIRECTORY TRANS_DIR AS '/usr/trans_dir';

8. Transfer the data files for the tablespaces and the export dump file tbs_ts.dmp to
the destination database. You can use the DBMS_FILE_TRANSFER package, binary
FTP, or some other method to transfer these files to the destination database.
After the file transfer, the export dump file should reside in the directory that
corresponds to the directory object created in Step 7.

9. On a command line at the destination database, use the Data Pump Import utility
to import the export dump file tbs_ts.dmp using transportable tablespaces import
parameters. Performing the import automatically sets the instantiation SCN for the
hr.jobs_transport and hr.regions_transport tables at the destination database.

The following is an example import command:

impdp strmadmin DIRECTORY=TRANS_DIR DUMPFILE=tbs_ts.dmp
TRANSPORT_DATAFILES=/usr/orc/dbs/jobs_tbs.dbf,/usr/orc/dbs/regions_tbs.dbf

When you run the import command, ensure that you connect as an administrative
user who was granted IMP_FULL_DATABASE role and has READ and WRITE privileges on
the directory object.

See Also:

Oracle Database Utilities for information about performing an import

10. If necessary, at both the source database and the destination database, connect
as the Oracle Streams administrator and put the tablespaces into read/write mode:

ALTER TABLESPACE jobs_tbs READ WRITE;

ALTER TABLESPACE regions_tbs READ WRITE;

Note:

Any table supplemental log groups for the tables exported from the export
database are retained when tables are imported at the import database. You
can drop these supplemental log groups if necessary.

See Also:

"Checking for Consistency After Instantiation"

8.4.1.2 Instantiating Objects Using Transportable Tablespace From Backup
With RMAN

The RMAN TRANSPORT TABLESPACE command uses Data Pump and an RMAN-managed
auxiliary instance to export the database objects in a tablespace or tablespace set
while the tablespace or tablespace set remains online in the source database. The

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-25

RMAN TRANSPORT TABLESPACE command produces a Data Pump export dump file and
data files, and you can use these files to perform a Data Pump import of the
tablespace or tablespaces at the destination database. You can also use the
ATTACH_TABLESPACES procedure in the DBMS_STREAMS_TABLESPACE_ADM package to attach
the tablespace or tablespaces at the destination database.

In addition to the assumptions listed in "Instantiating Objects in a Tablespace Using
Transportable Tablespace or RMAN", this example makes the following assumptions:

• The source database is tts1.example.com.

• The destination database is tts2.example.com.

See Also:

Oracle Database Backup and Recovery User's Guide for instructions on using
the RMAN TRANSPORT TABLESPACE command

Complete the following steps to instantiate the database objects in the jobs_tbs and
regions_tbs tablespaces using transportable tablespaces and RMAN:

1. Create a backup of the source database that includes the tablespaces being
instantiated, if a backup does not exist. RMAN requires a valid backup for
tablespace cloning. In this example, create a backup of the source database that
includes the jobs_tbs and regions_tbs tablespaces if one does not exist.

2. In SQL*Plus, connect to the source database tts1.example.com as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Optionally, create a directory object to hold the export dump file and export log file:

CREATE DIRECTORY SOURCE_DIR AS '/usr/db_files';

This step is optional because the RMAN TRANSPORT TABLESPACE command creates a
directory object named STREAMS_DIROBJ_DPDIR on the auxiliary instance if the
DATAPUMP DIRECTORY parameter is omitted when you run this command in Step 9.

4. Prepare the hr.jobs_transport and hr.regions_transport tables for instantiation.
See "Preparing Tables for Instantiation" for instructions.

5. Determine the until SCN for the RMAN TRANSPORT TABLESPACE command:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 until_scn NUMBER;
BEGIN
 until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);
END;
/

Make a note of the until SCN returned. You will use this number in Step 9. For this
example, assume that the returned until SCN is 7661956.

Optionally, you can skip this step. In this case, do not specify the until clause in the
RMAN TRANSPORT TABLESPACE command in Step 9. When no until clause is specified,

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-26

RMAN uses the last archived redo log file to determine the until SCN
automatically.

6. In SQL*Plus, connect to the source database tts1.net as an administrative user.

7. Archive the current online redo log:

ALTER SYSTEM ARCHIVE LOG CURRENT;

8. Start the RMAN client, and connect to the source database tts1.example.com as
TARGET.

See Oracle Database Backup and Recovery Reference for more information about
the RMAN CONNECT command

9. At the source database tts1.example.com, use the RMAN TRANSPORT TABLESPACE
command to generate the dump file for the tablespace set:

RMAN> RUN
 {
 TRANSPORT TABLESPACE 'jobs_tbs', 'regions_tbs'
 UNTIL SCN 7661956
 AUXILIARY DESTINATION '/usr/aux_files'
 DATAPUMP DIRECTORY SOURCE_DIR
 DUMP FILE 'jobs_regions_tbs.dmp'
 EXPORT LOG 'jobs_regions_tbs.log'
 IMPORT SCRIPT 'jobs_regions_tbs_imp.sql'
 TABLESPACE DESTINATION '/orc/dbs';
 }

The TRANSPORT TABLESPACE command places the files in the following directories on
the computer system that runs the source database:

• The directory that corresponds to the SOURCE_DIR directory object (/usr/
db_files) contains the export dump file and export log file.

• The /orc/dbs directory contains the generated data files for the tablespaces
and the import script. You use this script to complete the instantiation by
attaching the tablespace at the destination database.

10. Modify the import script, if necessary. You might need to modify one or both of the
following items in the script:

• You might want to change the method used to make the exported tablespaces
part of the destination database. The import script includes two ways to make
the exported tablespaces part of the destination database: a Data Pump
import command (impdp), and a script for attaching the tablespaces using the
ATTACH_TABLESPACES procedure in the DBMS_STREAMS_TABLESPACE_ADM package.

The default script uses the attach tablespaces method. The Data Pump import
command is commented out. To use Data Pump import, remove the comment
symbols (/* and */) surrounding the impdp command, and either surround the
attach tablespaces script with comments or remove the attach tablespaces
script. The attach tablespaces script starts with SET SERVEROUTPUT ON and
continues to the end of the file.

• You might need to change the directory paths specified in the script. In Step
11, you will transfer the import script (jobs_regions_tbs_imp.sql), the Data
Pump export dump file (jobs_regions_tbs.dmp), and the generated data file for
each tablespace (jobs_tbs.dbf and regions_tbs.dbf) to one or more directories
on the computer system running the destination database. Ensure that the
directory paths specified in the script are the correct directory paths.

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-27

11. Transfer the import script (jobs_regions_tbs_imp.sql), the Data Pump export dump
file (jobs_regions_tbs.dmp), and the generated data file for each tablespace
(jobs_tbs.dbf and regions_tbs.dbf) to the destination database. You can use the
DBMS_FILE_TRANSFER package, binary FTP, or some other method to transfer the file
to the destination database. After the file transfer, these files should reside in the
directories specified in the import script.

12. In SQL*Plus, connect to the destination database tts2.example.com as the Oracle
Streams administrator.

13. Run the import script:

SET ECHO ON
SPOOL jobs_tbs_imp.out
@jobs_tbs_imp.sql

When the script completes, check the jobs_tbs_imp.out spool file to ensure that all
actions finished successfully.

See Also:

"Checking for Consistency After Instantiation"

8.4.2 Instantiating an Entire Database Using RMAN
The Recovery Manager (RMAN) DUPLICATE command creates a copy of the target
database in another location. The command uses an RMAN auxiliary instance to
restore backups of the target database files and create a new database. In an Oracle
Streams instantiation, the target database is the source database and the new
database that is created is the destination database. The RMAN DUPLICATE command
requires that the source and destination database run on the same platform.

The RMAN CONVERT DATABASE command generates the data files and an initialization
parameter file for a new destination database on a different platform. It also generates
a script that creates the new destination database. These files can instantiate an entire
destination database that runs on a different platform than the source database but
has the same endian format as the source database.

The RMAN DUPLICATE and CONVERT DATABASE commands do not set the instantiation SCN
values for the database objects. The instantiation SCN values must be set manually
during instantiation.

The examples in this section describe the steps required to instantiate an entire
database using the RMAN DUPLICATE command or CONVERT DATABASE command. To use
one of these RMAN commands for full database instantiation, complete the following
general steps:

1. Copy the entire source database to the destination site using the RMAN
command.

2. Remove the Oracle Streams configuration at the destination site using the
REMOVE_STREAMS_CONFIGURATION procedure in the DBMS_STREAMS_ADM package.

3. Configure Oracle Streams destination site, including configuration of one or more
apply processes to apply changes from the source database.

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-28

You can complete this process without stopping any running capture processes or
propagations at the source database.

Follow the instructions in one of these sections:

• Instantiating an Entire Database on the Same Platform Using RMAN

• Instantiating an Entire Database on Different Platforms Using RMAN

Note:

• To configure an Oracle Streams replication environment that replicates all
of the supported changes for an entire database, you can use the
PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures in the
DBMS_STREAMS_ADM package. See "Configuring Two-Database Global
Replication with Local Capture" for instructions.

• Oracle recommends that you do not use RMAN for instantiation in an
environment where distributed transactions are possible. Doing so can
cause in-doubt transactions that must be corrected manually. Use export/
import or transportable tablespaces for instantiation instead.

See Also:

"Configuring an Oracle Streams Administrator on All Databases" for
information about configuring an Oracle Streams administrator

8.4.2.1 Instantiating an Entire Database on the Same Platform Using RMAN
The example in this section instantiates an entire database using the RMAN DUPLICATE
command. The example makes the following assumptions:

• You want to capture all of the changes made to a source database named
dpx1.example.com, propagate these changes to a separate destination database
named dpx2.example.com, and apply these changes at the destination database.

• You have configured an Oracle Streams administrator at the source database
named strmadmin. See "Configuring an Oracle Streams Administrator on All
Databases".

• The dpx1.example.com and dpx2.example.com databases run on the same platform.

See Also:

Oracle Database Backup and Recovery User's Guide for instructions about
using the RMAN DUPLICATE command

Complete the following steps to instantiate an entire database using RMAN when the
source and destination databases run on the same platform:

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-29

1. Create a backup of the source database if one does not exist. RMAN requires a
valid backup for duplication. In this example, create a backup of dpx1.example.com
if one does not exist.

Note:

A backup of the source database is not necessary if you use the FROM ACTIVE
DATABASE option when you run the RMAN DUPLICATE command. For large
databases, the FROM ACTIVE DATABASE option requires significant network
resources. This example does not use this option.

2. In SQL*Plus, connect to the source database dpx1.example.com as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Create an ANYDATA queue to stage the changes from the source database if such a
queue does not already exist. This queue will stage changes that will be
propagated to the destination database after it has been configured.

For example, the following procedure creates a queue named streams_queue:

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

Remain connected as the Oracle Streams administrator in SQL*Plus at the source
database through Step 9.

4. Create a database link from dpx1.example.com to dpx2.example.com:

CREATE DATABASE LINK dpx2.example.com CONNECT TO strmadmin
 IDENTIFIED BY password USING 'dpx2.example.com';

5. Create a propagation from the source queue at the source database to the
destination queue at the destination database. The destination queue at the
destination database does not exist yet, but creating this propagation ensures that
logical change records (LCRs) enqueued into the source queue will remain staged
there until propagation is possible. In addition to captured LCRs, the source queue
will stage internal messages that will populate the Oracle Streams data dictionary
at the destination database.

The following procedure creates the dpx1_to_dpx2 propagation:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
 streams_name => 'dpx1_to_dpx2',
 source_queue_name => 'strmadmin.streams_queue',
 destination_queue_name => 'strmadmin.streams_queue@dpx2.example.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 source_database => 'dpx1.example.com',
 inclusion_rule => TRUE,
 queue_to_queue => TRUE);
END;
/

6. Stop the propagation you created in Step 5.

BEGIN
 DBMS_PROPAGATION_ADM.STOP_PROPAGATION(

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-30

 propagation_name => 'dpx1_to_dpx2');
END;
/

7. Prepare the entire source database for instantiation, if it has not been prepared for
instantiation previously. See "Preparing All of the Database Objects in a Database
for Instantiation" for instructions.

If there is no capture process that captures all of the changes to the source
database, then create this capture process using the ADD_GLOBAL_RULES procedure
in the DBMS_STREAMS_ADM package. If the capture process is a local capture process
or a downstream capture process with a database link to the source database,
then running this procedure automatically prepares the entire source database for
instantiation. If such a capture process already exists, then ensure that the source
database has been prepared for instantiation by querying the
DBA_CAPTURE_PREPARED_DATABASE data dictionary view.

8. If you created a capture process in Step 7, then start the capture process:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_db');
END;
/

9. Determine the until SCN for the RMAN DUPLICATE command:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 until_scn NUMBER;
BEGIN
 until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);
END;
/

Make a note of the until SCN returned. You will use this number in a later step. For
this example, assume that the returned until SCN is 3050191.

10. In SQL*Plus, connect to the source database dpx1.example.com as an
administrative user.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

11. Archive the current online redo log:

ALTER SYSTEM ARCHIVE LOG CURRENT;

12. Prepare your environment for database duplication, which includes preparing the
destination database as an auxiliary instance for duplication. See Oracle Database
Backup and Recovery User's Guide for instructions.

13. Start the RMAN client, and connect to the source database dpx1.example.com as
TARGET and to the destination database dpx2.example.com as AUXILIARY.

See Oracle Database Backup and Recovery Reference for more information about
the RMAN CONNECT command.

14. Use the RMAN DUPLICATE command with the OPEN RESTRICTED option to instantiate
the source database at the destination database. The OPEN RESTRICTED option is
required. This option enables a restricted session in the duplicate database by

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-31

issuing the following SQL statement: ALTER SYSTEM ENABLE RESTRICTED SESSION.
RMAN issues this statement immediately before the duplicate database is opened.

You can use the UNTIL SCN clause to specify an SCN for the duplication. Use the
until SCN determined in Step 9 for this clause. The until SCN specified for the
RMAN DUPLICATE command must be higher than the SCN when the database was
prepared for instantiation in Step 7. Also, archived redo logs must be available for
the until SCN specified and for higher SCN values. Therefore, Step 11 archived
the redo log containing the until SCN.

Ensure that you use TO database_name in the DUPLICATE command to specify the
name of the duplicate database. In this example, the duplicate database name is
dpx2. Therefore, the DUPLICATE command for this example includes TO dpx2.

The following is an example of an RMAN DUPLICATE command:

RMAN> RUN
 {
 SET UNTIL SCN 3050191;
 ALLOCATE AUXILIARY CHANNEL dpx2 DEVICE TYPE sbt;
 DUPLICATE TARGET DATABASE TO dpx2
 NOFILENAMECHECK
 OPEN RESTRICTED;
 }

See Also:

Oracle Database Backup and Recovery Reference for more information about
the RMAN DUPLICATE command

15. At the destination database, connect as an administrative user in SQL*Plus and
rename the database global name. After the RMAN DUPLICATE command, the
destination database has the same global name as the source database.

ALTER DATABASE RENAME GLOBAL_NAME TO DPX2.EXAMPLE.COM;

16. At the destination database, connect as an administrative user in SQL*Plus and
run the following procedure:

Note:

Ensure that you are connected to the destination database, not the source
database, when you run this procedure because it removes the local Oracle
Streams configuration.

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-32

Note:

Any supplemental log groups for the tables at the source database are
retained at the destination database, and the REMOVE_STREAMS_CONFIGURATION
procedure does not drop them. You can drop these supplemental log groups if
necessary.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the REMOVE_STREAMS_CONFIGURATION procedure

17. At the destination database, use the ALTER SYSTEM statement to disable the
RESTRICTED SESSION:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

18. At the destination database, connect as the Oracle Streams administrator. See
"Configuring an Oracle Streams Administrator on All Databases".

19. At the destination database, create the queue specified in Step 5.

For example, the following procedure creates a queue named streams_queue:

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

20. At the destination database, configure the Oracle Streams environment.

Note:

Do not start any apply processes at the destination database until after you set
the global instantiation SCN in Step 22.

21. At the destination database, create a database link from the destination database
to the source database:

CREATE DATABASE LINK dpx1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password USING 'dpx1.example.com';

This database link is required because the next step runs the
SET_GLOBAL_INSTANTIATION_SCN procedure with the recursive parameter set to TRUE.

22. At the destination database, set the global instantiation SCN for the source
database. The RMAN DUPLICATE command duplicates the database up to one less
than the SCN value specified in the UNTIL SCN clause. Therefore, you should
subtract one from the until SCN value that you specified when you ran the
DUPLICATE command in Step 14. In this example, the until SCN was set to 3050191.
Therefore, the instantiation SCN should be set to 3050191 - 1, or 3050190.

For example, to set the global instantiation SCN to 3050190 for the
dpx1.example.com source database, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(
 source_database_name => 'dpx1.example.com',

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-33

 instantiation_scn => 3050190,
 recursive => TRUE);
END;
/

Notice that the recursive parameter is set to TRUE to set the instantiation SCN for
all schemas and tables in the destination database.

23. At the destination database, you can start any apply processes that you
configured.

24. At the source database, start the propagation you stopped in Step 6:

BEGIN
 DBMS_PROPAGATION_ADM.START_PROPAGATION(
 queue_name => 'dpx1_to_dpx2');
END;
/

See Also:

"Checking for Consistency After Instantiation"

8.4.2.2 Instantiating an Entire Database on Different Platforms Using RMAN
The example in this section instantiates an entire database using the RMAN CONVERT
DATABASE command. The example makes the following assumptions:

• You want to capture all of the changes made to a source database named
cvx1.example.com, propagate these changes to a separate destination database
named cvx2.example.com, and apply these changes at the destination database.

• You have configured an Oracle Streams administrator at the source database
named strmadmin. See "Configuring an Oracle Streams Administrator on All
Databases".

• The cvx1.example.com and cvx2.example.com databases run on different platforms,
and the platform combination is supported by the RMAN CONVERT DATABASE
command. You can use the DBMS_TDB package to determine whether a platform
combination is supported.

The RMAN CONVERT DATABASE command produces converted data files, an initialization
parameter file (PFILE), and a SQL script. The converted data files and PFILE are for
use with the destination database, and the SQL script creates the destination
database on the destination platform.

See Also:

Oracle Database Backup and Recovery User's Guide for instructions about
using the RMAN CONVERT DATABASE command

Complete the following steps to instantiate an entire database using RMAN when the
source and destination databases run on different platforms:

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-34

1. Create a backup of the source database if one does not exist. RMAN requires a
valid backup. In this example, create a backup of cvx1.example.com if one does not
exist.

2. In SQL*Plus, connect to the source database cvx1.example.com as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Create an ANYDATA queue to stage the changes from the source database if such a
queue does not already exist. This queue will stage changes that will be
propagated to the destination database after it has been configured.

For example, the following procedure creates a queue named streams_queue:

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

Remain connected as the Oracle Streams administrator in SQL*Plus at the source
database through Step 8.

4. Create a database link from cvx1.example.com to cvx2.example.com:

CREATE DATABASE LINK cvx2.example.com CONNECT TO strmadmin
 IDENTIFIED BY password USING 'cvx2.example.com';

5. Create a propagation from the source queue at the source database to the
destination queue at the destination database. The destination queue at the
destination database does not exist yet, but creating this propagation ensures that
logical change records (LCRs) enqueued into the source queue will remain staged
there until propagation is possible. In addition to captured LCRs, the source queue
will stage internal messages that will populate the Oracle Streams data dictionary
at the destination database.

The following procedure creates the cvx1_to_cvx2 propagation:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
 streams_name => 'cvx1_to_cvx2',
 source_queue_name => 'strmadmin.streams_queue',
 destination_queue_name => 'strmadmin.streams_queue@cvx2.example.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 source_database => 'cvx1.example.com',
 inclusion_rule => TRUE,
 queue_to_queue => TRUE);
END;
/

6. Stop the propagation you created in Step 5.

BEGIN
 DBMS_PROPAGATION_ADM.STOP_PROPAGATION(
 propagation_name => 'cvx1_to_cvx2');
END;
/

7. Prepare the entire source database for instantiation, if it has not been prepared for
instantiation previously. See "Preparing All of the Database Objects in a Database
for Instantiation" for instructions.

If there is no capture process that captures all of the changes to the source
database, then create this capture process using the ADD_GLOBAL_RULES procedure
in the DBMS_STREAMS_ADM package. If the capture process is a local capture process

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-35

or a downstream capture process with a database link to the source database,
then running this procedure automatically prepares the entire source database for
instantiation. If such a capture process already exists, then ensure that the source
database has been prepared for instantiation by querying the
DBA_CAPTURE_PREPARED_DATABASE data dictionary view.

8. If you created a capture process in Step 7, then start the capture process:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_db');
END;
/

9. In SQL*Plus, connect to the source database as an administrative user.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

10. Archive the current online redo log:

ALTER SYSTEM ARCHIVE LOG CURRENT;

11. Prepare your environment for database conversion, which includes opening the
source database in read-only mode. Complete the following steps:

a. If the source database is open, then shut it down and start it in read-only
mode.

b. Run the CHECK_DB and CHECK_EXTERNAL functions in the DBMS_TDB package. Check
the results to ensure that the conversion is supported by the RMAN CONVERT
DATABASE command.

See Also:

Oracle Database Backup and Recovery User's Guide for more information
about these steps

12. Determine the current SCN of the source database:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 current_scn NUMBER;
BEGIN
 current_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Current SCN: ' || current_scn);
END;
/

Make a note of the SCN value returned. You will use this number in Step 24. For
this example, assume that the returned value is 46931285.

13. Start the RMAN client, and connect to the source database cvx1.example.com as
TARGET.

See Oracle Database Backup and Recovery Reference for more information about
the RMAN CONNECT command.

14. Run the CONVERT DATABASE command.

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-36

Ensure that you use NEW DATABASE database_name in the CONVERT DATABASE command
to specify the name of the destination database. In this example, the destination
database name is cvx2. Therefore, the CONVERT DATABASE command for this example
includes NEW DATABASE cvx2.

The following is an example of an RMAN CONVERT DATABASE command for a
destination database that is running on the Linux IA (64-bit) platform:

CONVERT DATABASE NEW DATABASE 'cvx2'
 TRANSPORT SCRIPT '/tmp/convertdb/transportscript.sql'
 TO PLATFORM 'Linux IA (64-bit)'
 DB_FILE_NAME_CONVERT '/home/oracle/dbs','/tmp/convertdb';

15. Transfer the data files, PFILE, and SQL script produced by the RMAN CONVERT
DATABASE command to the computer system that will run the destination database.

16. On the computer system that will run the destination database, modify the SQL
script so that the destination database always opens with restricted session
enabled.

The following is a sample script with the necessary modifications in bold font:

-- The following commands will create a new control file and use it
-- to open the database.
-- Data used by Recovery Manager will be lost.
-- The contents of online logs will be lost and all backups will
-- be invalidated. Use this only if online logs are damaged.

-- After mounting the created controlfile, the following SQL
-- statement will place the database in the appropriate
-- protection mode:
-- ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE

STARTUP NOMOUNT PFILE='init_00gd2lak_1_0.ora'
CREATE CONTROLFILE REUSE SET DATABASE "CVX2" RESETLOGS NOARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 1
 MAXLOGHISTORY 226
LOGFILE
 GROUP 1 '/tmp/convertdb/archlog1' SIZE 25M,
 GROUP 2 '/tmp/convertdb/archlog2' SIZE 25M
DATAFILE
 '/tmp/convertdb/systemdf',
 '/tmp/convertdb/sysauxdf',
 '/tmp/convertdb/datafile1',
 '/tmp/convertdb/datafile2',
 '/tmp/convertdb/datafile3'
CHARACTER SET WE8DEC
;

-- NOTE: This ALTER SYSTEM statement is added to enable restricted session.

ALTER SYSTEM ENABLE RESTRICTED SESSION;

-- Database can now be opened zeroing the online logs.
ALTER DATABASE OPEN RESETLOGS;

-- No tempfile entries found to add.
--

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-37

set echo off
prompt ~~~
prompt * Your database has been created successfully!
prompt * There are many things to think about for the new database. Here
prompt * is a checklist to help you stay on track:
prompt * 1. You may want to redefine the location of the directory objects.
prompt * 2. You may want to change the internal database identifier (DBID)
prompt * or the global database name for this database. Use the
prompt * NEWDBID Utility (nid).
prompt ~~~

SHUTDOWN IMMEDIATE
-- NOTE: This startup has the UPGRADE parameter.
-- It already has restricted session enabled, so no change is needed.
STARTUP UPGRADE PFILE='init_00gd2lak_1_0.ora'
@@ ?/rdbms/admin/utlirp.sql
SHUTDOWN IMMEDIATE
-- NOTE: The startup below is generated without the RESTRICT clause.
-- Add the RESTRICT clause.
STARTUP RESTRICT PFILE='init_00gd2lak_1_0.ora'
-- The following step will recompile all PL/SQL modules.
-- It may take serveral hours to complete.
@@ ?/rdbms/admin/utlrp.sql
set feedback 6;

Other changes to the script might be necessary. For example, the data file
locations and PFILE location might need to be changed to point to the correct
locations on the destination database computer system.

17. At the destination database, connect as an administrative user in SQL*Plus and
run the following procedure:

Note:

Ensure that you are connected to the destination database, not the source
database, when you run this procedure because it removes the local Oracle
Streams configuration.

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

Note:

Any supplemental log groups for the tables at the source database are
retained at the destination database, and the REMOVE_STREAMS_CONFIGURATION
procedure does not drop them. You can drop these supplemental log groups if
necessary.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the REMOVE_STREAMS_CONFIGURATION procedure

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-38

18. In SQL*Plus, connect to the destination database cvx2.example.com as the Oracle
Streams administrator.

19. Drop the database link from the source database to the destination database that
was cloned from the source database:

DROP DATABASE LINK cvx2.example.com;

20. At the destination database, use the ALTER SYSTEM statement to disable the
RESTRICTED SESSION:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

21. At the destination database, create the queue specified in Step 5.

For example, the following procedure creates a queue named streams_queue:

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

22. At the destination database, connect as the Oracle Streams administrator and
configure the Oracle Streams environment. See "Configuring an Oracle Streams
Administrator on All Databases".

Note:

Do not start any apply processes at the destination database until after you set
the global instantiation SCN in Step 24.

23. At the destination database, create a database link to the source database:

CREATE DATABASE LINK cvx1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password USING 'cvx1.example.com';

This database link is required because the next step runs the
SET_GLOBAL_INSTANTIATION_SCN procedure with the recursive parameter set to TRUE.

24. At the destination database, set the global instantiation SCN for the source
database to the SCN value returned in Step 12.

For example, to set the global instantiation SCN to 46931285 for the
cvx1.example.com source database, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(
 source_database_name => 'cvx1.example.com',
 instantiation_scn => 46931285,
 recursive => TRUE);
END;
/

Notice that the recursive parameter is set to TRUE to set the instantiation SCN for
all schemas and tables in the destination database.

25. At the destination database, you can start any apply processes that you
configured.

26. At the source database, start the propagation you stopped in Step 6:

BEGIN
 DBMS_PROPAGATION_ADM.START_PROPAGATION(
 propagation_name => 'cvx1_to_cvx2');

Chapter 8
Recovery Manager (RMAN) and Oracle Streams Instantiation

8-39

END;
/

See Also:

"Checking for Consistency After Instantiation"

8.5 Setting Instantiation SCNs at a Destination Database
An instantiation system change number (SCN) instructs an apply process at a
destination database to apply changes that committed after a specific SCN at a source
database. You can set instantiation SCNs in one of the following ways:

• Export the relevant database objects at the source database and import them at
the destination database. In this case, the export/import creates the database
objects at the destination database, populates them with the data from the source
database, and sets the relevant instantiation SCNs. You can use Data Pump
export/import for instantiations. See "Setting Instantiation SCNs Using Export/
Import" for information about the instantiation SCNs that are set for different types
of export/import operations.

• Perform a metadata only export/import using Data Pump. If you use Data Pump
export/import, then set the CONTENT parameter to METADATA_ONLY during export at the
source database or import at the destination database, or both. Instantiation SCNs
are set for the database objects, but no data is imported. See "Setting Instantiation
SCNs Using Export/Import" for information about the instantiation SCNs that are
set for different types of export/import operations.

• Use transportable tablespaces to copy the objects in one or more tablespaces
from a source database to a destination database. An instantiation SCN is set for
each schema in these tablespaces and for each database object in these
tablespaces that was prepared for instantiation before the export. See
"Instantiating Objects in a Tablespace Using Transportable Tablespace or RMAN".

• Set the instantiation SCN using the SET_TABLE_INSTANTIATION_SCN,
SET_SCHEMA_INSTANATIATION_SCN, and SET_GLOBAL_INSTANTIATION_SCN procedures in
the DBMS_APPLY_ADM package. See "Setting Instantiation SCNs Using the
DBMS_APPLY_ADM Package".

See Also:

Oracle Streams Concepts and Administration

8.5.1 Setting Instantiation SCNs Using Export/Import
This section discusses setting instantiation SCNs by performing an export/import. The
information in this section applies to both metadata export/import operations and to
export/import operations that import rows. You can specify a more stringent degree of
consistency by using an export parameter such as FLASHBACK_SCN or FLASHBACK_TIME.

Chapter 8
Setting Instantiation SCNs at a Destination Database

8-40

The following sections describe how the instantiation SCNs are set for different types
of export/import operations. These sections refer to prepared tables. Prepared tables
are tables that have been prepared for instantiation using the
PREPARE_TABLE_INSTANTIATION procedure, PREPARE_SYNC_INSTANTIATION function,
PREPARE_SCHEMA_INSTANTIATION procedure, or PREPARE_GLOBAL_INSTANTIATION procedure in
the DBMS_CAPTURE_ADM package. A table must be a prepared table before export in order
for an instantiation SCN to be set for it during import. However, the database and
schemas do not need to be prepared before the export in order for their instantiation
SCNs to be set for them during import.

8.5.1.1 Full Database Export and Full Database Import
A full database export and full database import sets the following instantiation SCNs at
the import database:

• The database, or global, instantiation SCN

• The schema instantiation SCN for each imported user

• The table instantiation SCN for each prepared table that is imported

8.5.1.2 Full Database or User Export and User Import
A full database or user export and user import sets the following instantiation SCNs at
the import database:

• The schema instantiation SCN for each imported user

• The table instantiation SCN for each prepared table that is imported

8.5.1.3 Full Database, User, or Table Export and Table Import
Any export that includes one or more tables and a table import sets the table
instantiation SCN for each prepared table that is imported at the import database.

Note:

• If a non-NULL instantiation SCN already exists for a database object at a
destination database that performs an import, then the import updates the
instantiation SCN for that database object.

• During an export for an Oracle Streams instantiation, ensure that no data
definition language (DDL) changes are made to objects being exported.

• Any table supplemental logging specifications for the tables exported from
the export database are retained when the tables are imported at the
import database.

Chapter 8
Setting Instantiation SCNs at a Destination Database

8-41

See Also:

• "Oracle Data Pump and Oracle Streams Instantiation" and Oracle
Database Utilities for information about using export/import

• "Preparing Database Objects for Instantiation at a Source Database"

8.5.2 Setting Instantiation SCNs Using the DBMS_APPLY_ADM
Package

You can set an instantiation SCN at a destination database for a specified table, a
specified schema, or an entire database using one of the following procedures in the
DBMS_APPLY_ADM package:

• SET_TABLE_INSTANTIATION_SCN

• SET_SCHEMA_INSTANTIATION_SCN

• SET_GLOBAL_INSTANTIATION_SCN

If you set the instantiation SCN for a schema using SET_SCHEMA_INSTANTIATION_SCN, then
you can set the recursive parameter to TRUE when you run this procedure to set the
instantiation SCN for each table in the schema. Similarly, if you set the instantiation
SCN for a database using SET_GLOBAL_INSTANTIATION_SCN, then you can set the
recursive parameter to TRUE when you run this procedure to set the instantiation SCN
for the schemas in the database and for each table owned by these schemas.

Note:

• If you set the recursive parameter to TRUE in the
SET_SCHEMA_INSTANTIATION_SCN procedure or the
SET_GLOBAL_INSTANTIATION_SCN procedure, then a database link from the
destination database to the source database is required. This database
link must have the same name as the global name of the source database
and must be accessible to the user who executes the procedure.

• When setting an instantiation SCN for a database object, always specify
the name of the schema and database object at the source database,
even if a rule-based transformation or apply handler is configured to
change the schema name or database object name.

• If a relevant instantiation SCN is not present, then an error is raised during
apply.

• These procedures can set an instantiation SCN for changes captured by
capture processes and synchronous captures.

Table 8-3 lists each procedure and the types of statements for which they set an
instantiation SCN.

Chapter 8
Setting Instantiation SCNs at a Destination Database

8-42

Table 8-3 Set Instantiation SCN Procedures and the Statements They Cover

Procedure Sets Instantiation SCN for Examples

SET_TABLE_INSTANTIATION_SCN DML and DDL statements on
tables, except CREATE TABLE

DDL statements on table indexes
and table triggers

UPDATE

ALTER TABLE

DROP TABLE

CREATE, ALTER, or DROP INDEX on a
table

CREATE, ALTER, or DROP TRIGGER on
a table

SET_SCHEMA_INSTANTIATION_SCN DDL statements on users, except
CREATE USER

DDL statements on all database
objects that have a non-PUBLIC
owner, except for those DDL
statements handled by a table-level
instantiation SCN

CREATE TABLE

ALTER USER

DROP USER

CREATE PROCEDURE

SET_GLOBAL_INSTANTIATION_SCN DDL statements on database
objects other than users with no
owner

DDL statements on database
objects owned by public

CREATE USER statements

CREATE USER

CREATE TABLESPACE

8.5.2.1 Setting the Instantiation SCN While Connected to the Source Database
The user who runs the examples in this section must have access to a database link
from the source database to the destination database. In these examples, the
database link is hrdb2.example.com. The following example sets the instantiation SCN
for the hr.departments table at the hrdb2.example.com database to the current SCN by
running the following procedure at the source database hrdb1.example.com:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@HRDB2.EXAMPLE.COM(
 source_object_name => 'hr.departments',
 source_database_name => 'hrdb1.example.com',
 instantiation_scn => iscn);
END;
/

The following example sets the instantiation SCN for the oe schema and all of its
objects at the hrdb2.example.com database to the current source database SCN by
running the following procedure at the source database hrdb1.example.com:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN@HRDB2.EXAMPLE.COM(
 source_schema_name => 'oe',
 source_database_name => 'hrdb1.example.com',

Chapter 8
Setting Instantiation SCNs at a Destination Database

8-43

 instantiation_scn => iscn,
 recursive => TRUE);
END;
/

Because the recursive parameter is set to TRUE, running this procedure sets the
instantiation SCN for each database object in the oe schema.

Note:

When you set the recursive parameter to TRUE, a database link from the
destination database to the source database is required, even if you run the
procedure while you are connected to the source database. This database link
must have the same name as the global name of the source database and
must be accessible to the current user.

8.5.2.2 Setting the Instantiation SCN While Connected to the Destination
Database

The user who runs the examples in this section must have access to a database link
from the destination database to the source database. In these examples, the
database link is hrdb1.example.com. The following example sets the instantiation SCN
for the hr.departments table at the hrdb2.example.com database to the current source
database SCN at hrdb1.example.com by running the following procedure at the
destination database hrdb2.example.com:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER@HRDB1.EXAMPLE.COM;
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.departments',
 source_database_name => 'hrdb1.example.com',
 instantiation_scn => iscn);
END;
/

The following example sets the instantiation SCN for the oe schema and all of its
objects at the hrdb2.example.com database to the current source database SCN at
hrdb1.example.com by running the following procedure at the destination database
hrdb2.example.com:

DECLARE
 iscn NUMBER; -- Variable to hold instantiation SCN value
BEGIN
 iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER@HRDB1.EXAMPLE.COM;
 DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN(
 source_schema_name => 'oe',
 source_database_name => 'hrdb1.example.com',
 instantiation_scn => iscn,
 recursive => TRUE);
END;
/

Chapter 8
Setting Instantiation SCNs at a Destination Database

8-44

Because the recursive parameter is set to TRUE, running this procedure sets the
instantiation SCN for each database object in the oe schema.

Note:

If an apply process applies changes to a remote non-Oracle database, then
set the apply_database_link parameter to the database link used for remote
apply when you set the instantiation SCN.

See Also:

• Oracle Streams Extended Examples for detailed examples that uses the
SET_TABLE_INSTANTIATION_SCN procedure

• The information about the DBMS_APPLY_ADM package in the Oracle Database
PL/SQL Packages and Types Reference for more information about which
instantiation SCN can be used for a DDL LCR

8.6 Monitoring Instantiation
The following sections contain queries that you can run to determine which database
objects are prepared for instantiation at a source database and the instantiation SCN
for database objects at a destination database:

• Determining Which Database Objects Are Prepared for Instantiation

• Determining the Tables for Which an Instantiation SCN Has Been Set

8.6.1 Determining Which Database Objects Are Prepared for
Instantiation

See "Capture Rules and Preparation for Instantiation" for information about preparing
database objects for instantiation.

To determine which database objects have been prepared for instantiation, query the
following data dictionary views:

• DBA_CAPTURE_PREPARED_TABLES

• DBA_SYNC_CAPTURE_PREPARED_TABS

• DBA_CAPTURE_PREPARED_SCHEMAS

• DBA_CAPTURE_PREPARED_DATABASE

For example, to list all of the tables that have been prepared for instantiation by the
PREPARE_TABLE_INSTANTIATION procedure, the SCN for the time when each table was
prepared, and the time when each table was prepared, run the following query:

COLUMN TABLE_OWNER HEADING 'Table Owner' FORMAT A15
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN SCN HEADING 'Prepare SCN' FORMAT 99999999999

Chapter 8
Monitoring Instantiation

8-45

COLUMN TIMESTAMP HEADING 'Time Ready for|Instantiation'

SELECT TABLE_OWNER,
 TABLE_NAME,
 SCN,
 TO_CHAR(TIMESTAMP, 'HH24:MI:SS MM/DD/YY') TIMESTAMP
 FROM DBA_CAPTURE_PREPARED_TABLES;

Your output looks similar to the following:

 Time Ready for
Table Owner Table Name Prepare SCN Instantiation
--------------- --------------- ----------------- -----------------
HR COUNTRIES 196655 12:59:30 02/28/02
HR DEPARTMENTS 196658 12:59:30 02/28/02
HR EMPLOYEES 196659 12:59:30 02/28/02
HR JOBS 196660 12:59:30 02/28/02
HR JOB_HISTORY 196661 12:59:30 02/28/02
HR LOCATIONS 196662 12:59:30 02/28/02
HR REGIONS 196664 12:59:30 02/28/02

See Also:

"Preparing Database Objects for Instantiation at a Source Database"

8.6.2 Determining the Tables for Which an Instantiation SCN Has
Been Set

An instantiation SCN is set at a destination database. It controls which captured logical
change records (LCRs) for a database object are ignored by an apply process and
which captured LCRs for a database object are applied by an apply process. If the
commit SCN of an LCR for a table from a source database is less than or equal to the
instantiation SCN for that table at a destination database, then the apply process at
the destination database discards the LCR. Otherwise, the apply process applies the
LCR. The LCRs can be captured by a capture process or a synchronous capture. See
"Setting Instantiation SCNs at a Destination Database".

To determine which database objects have a set instantiation SCN, query the following
corresponding data dictionary views:

• DBA_APPLY_INSTANTIATED_OBJECTS

• DBA_APPLY_INSTANTIATED_SCHEMAS

• DBA_APPLY_INSTANTIATED_GLOBAL

The following query lists each table for which an instantiation SCN has been set at a
destination database and the instantiation SCN for each table:

COLUMN SOURCE_DATABASE HEADING 'Source Database' FORMAT A20
COLUMN SOURCE_OBJECT_OWNER HEADING 'Object Owner' FORMAT A15
COLUMN SOURCE_OBJECT_NAME HEADING 'Object Name' FORMAT A15
COLUMN INSTANTIATION_SCN HEADING 'Instantiation SCN' FORMAT 99999999999

SELECT SOURCE_DATABASE,
 SOURCE_OBJECT_OWNER,

Chapter 8
Monitoring Instantiation

8-46

 SOURCE_OBJECT_NAME,
 INSTANTIATION_SCN
 FROM DBA_APPLY_INSTANTIATED_OBJECTS
 WHERE APPLY_DATABASE_LINK IS NULL;

Your output looks similar to the following:

Source Database Object Owner Object Name Instantiation SCN
-------------------- --------------- --------------- -----------------
DBS1.EXAMPLE.COM HR REGIONS 196660
DBS1.EXAMPLE.COM HR COUNTRIES 196660
DBS1.EXAMPLE.COM HR LOCATIONS 196660

Note:

You can also display instantiation SCNs for changes that are applied to
remote non-Oracle databases. This query does not display these instantiation
SCNs because it lists an instantiation SCN only if the APPLY_DATABASE_LINK
column is NULL.

See Also:

"Setting Instantiation SCNs at a Destination Database"

Chapter 8
Monitoring Instantiation

8-47

9
Oracle Streams Conflict Resolution

Some Oracle Streams environments must use conflict handlers to resolve possible
data conflicts that can result from sharing data between multiple databases.

This chapter contains these topics:

• About DML Conflicts in an Oracle Streams Environment

• Conflict Types in an Oracle Streams Environment

• Conflicts and Transaction Ordering in an Oracle Streams Environment

• Conflict Detection in an Oracle Streams Environment

• Conflict Avoidance in an Oracle Streams Environment

• Conflict Resolution in an Oracle Streams Environment

• Managing Oracle Streams Conflict Detection and Resolution

• Monitoring Conflict Detection and Update Conflict Handlers

9.1 About DML Conflicts in an Oracle Streams Environment
A conflict is a mismatch between the old values in an LCR and the expected data in a
table. Conflicts can occur in an Oracle Streams environment that permits concurrent
data manipulation language (DML) operations on the same data at multiple databases.
In an Oracle Streams environment, DML conflicts can occur only when an apply
process is applying a message that contains a row change resulting from a DML
operation. This type of message is called a row logical change record, or row LCR. An
apply process automatically detects conflicts caused by row LCRs.

For example, when two transactions originating at different databases update the
same row at nearly the same time, a conflict can occur. When you configure an Oracle
Streams environment, you must consider whether conflicts can occur. You can
configure conflict resolution to resolve conflicts automatically, if your system design
permits conflicts.

In general, you should try to design an Oracle Streams environment that avoids the
possibility of conflicts. Using the conflict avoidance techniques discussed later in this
chapter, most system designs can avoid conflicts in all or a large percentage of the
shared data. However, many applications require that some percentage of the shared
data be updatable at multiple databases at any time. If this is the case, then you must
address the possibility of conflicts.

Note:

An apply process does not detect DDL conflicts or conflicts resulting from user
messages. Ensure that your environment avoids these types of conflicts.

9-1

See Also:

Oracle Streams Concepts and Administration for more information about row
LCRs

9.2 Conflict Types in an Oracle Streams Environment
You can encounter these types of conflicts when you share data at multiple databases:

• Update Conflicts in an Oracle Streams Environment

• Uniqueness Conflicts in an Oracle Streams Environment

• Delete Conflicts in an Oracle Streams Environment

• Foreign Key Conflicts in an Oracle Streams Environment

9.2.1 Update Conflicts in an Oracle Streams Environment
An update conflict occurs when the apply process applies a row LCR containing an
update to a row that conflicts with another update to the same row. Update conflicts
can happen when two transactions originating from different databases update the
same row at nearly the same time.

9.2.2 Uniqueness Conflicts in an Oracle Streams Environment
A uniqueness conflict occurs when the apply process applies a row LCR containing
a change to a row that violates a uniqueness integrity constraint, such as a PRIMARY KEY
or UNIQUE constraint. For example, consider what happens when two transactions
originate from two different databases, each inserting a row into a table with the same
primary key value. In this case, the transactions cause a uniqueness conflict.

9.2.3 Delete Conflicts in an Oracle Streams Environment
A delete conflict occurs when two transactions originate at different databases, with
one transaction deleting a row and another transaction updating or deleting the same
row. In this case, the row referenced in the row LCR does not exist to be either
updated or deleted.

9.2.4 Foreign Key Conflicts in an Oracle Streams Environment
A foreign key conflict occurs when the apply process applies a row LCR containing a
change to a row that violates a foreign key constraint. For example, in the hr schema,
the department_id column in the employees table is a foreign key of the department_id
column in the departments table. Consider what can happen when the following
changes originate at two different databases (A and B) and are propagated to a third
database (C):

• At database A, a row is inserted into the departments table with a department_id of
271. This change is propagated to database B and applied there.

• At database B, a row is inserted into the employees table with an employee_id of 206
and a department_id of 271.

Chapter 9
Conflict Types in an Oracle Streams Environment

9-2

If the change that originated at database B is applied at database C before the change
that originated at database A, then a foreign key conflict results because the row for
the department with a department_id of 271 does not yet exist in the departments table
at database C.

9.3 Conflicts and Transaction Ordering in an Oracle Streams
Environment

Ordering conflicts can occur in an Oracle Streams environment when three or more
databases share data and the data is updated at two or more of these databases. For
example, consider a scenario in which three databases share information in the
hr.departments table. The database names are mult1.example.com, mult2.example.com,
and mult3.example.com. Suppose a change is made to a row in the hr.departments table
at mult1.example.com that will be propagated to both mult2.example.com and
mult3.example.com. The following series of actions might occur:

1. The change is propagated to mult2.example.com.

2. An apply process at mult2.example.com applies the change from mult1.example.com.

3. A different change to the same row is made at mult2.example.com.

4. The change at mult2.example.com is propagated to mult3.example.com.

5. An apply process at mult3.example.com attempts to apply the change from
mult2.example.com before another apply process at mult3.example.com applies the
change from mult1.example.com.

In this case, a conflict occurs because a column value for the row at mult3.example.com
does not match the corresponding old value in the row LCR propagated from
mult2.example.com.

In addition to causing a data conflict, transactions that are applied out of order might
experience referential integrity problems at a remote database if supporting data has
not been successfully propagated to that database. Consider the scenario where a
new customer calls an order department. A customer record is created and an order is
placed. If the order data is applied at a remote database before the customer data,
then a referential integrity error is raised because the customer that the order
references does not exist at the remote database.

If an ordering conflict is encountered, then you can resolve the conflict by reexecuting
the transaction in the error queue after the required data has been propagated to the
remote database and applied.

9.4 Conflict Detection in an Oracle Streams Environment
An apply process detects update, uniqueness, delete, and foreign key conflicts as
follows:

• An apply process detects an update conflict if there is any difference between the
old values for a row in a row LCR and the current values of the same row at the
destination database.

• An apply process detects a uniqueness conflict if a uniqueness constraint violation
occurs when applying an LCR that contains an insert or update operation.

Chapter 9
Conflicts and Transaction Ordering in an Oracle Streams Environment

9-3

• An apply process detects a delete conflict if it cannot find a row when applying an
LCR that contains an update or delete operation, because the primary key of the
row does not exist.

• An apply process detects a foreign key conflict if a foreign key constraint violation
occurs when applying an LCR.

A conflict can be detected when an apply process attempts to apply an LCR directly or
when an apply process handler, such as a DML handler, runs the EXECUTE member
procedure for an LCR. A conflict can also be detected when either the EXECUTE_ERROR or
EXECUTE_ALL_ERRORS procedure in the DBMS_APPLY_ADM package is run.

Note:

• If a column is updated and the column's old value equals its new value,
then Oracle never detects a conflict for this column update.

• Any old LOB values in update LCRs, delete LCRs, and LCRs dealing with
piecewise updates to LOB columns are not used by conflict detection.

9.4.1 Control Over Conflict Detection for Nonkey Columns
By default, an apply process compares old values for all columns during conflict
detection, but you can stop conflict detection for nonkey columns using the
COMPARE_OLD_VALUES procedure in the DBMS_APPLY_ADM package. Conflict detection might
not be needed for some nonkey columns.

See Also:

• "Stopping Conflict Detection for Nonkey Columns"

• "Displaying Information About Conflict Detection"

9.4.2 Rows Identification During Conflict Detection in an Oracle
Streams Environment

To detect conflicts accurately, Oracle must be able to identify and match
corresponding rows at different databases uniquely. By default, Oracle uses the
primary key of a table to identify rows in a table uniquely. When a table does not have
a primary key, you should designate a substitute key. A substitute key is a column or
set of columns that Oracle can use to identify uniquely rows in the table.

See Also:

Oracle Streams Concepts and Administration

Chapter 9
Conflict Detection in an Oracle Streams Environment

9-4

9.5 Conflict Avoidance in an Oracle Streams Environment
The following topics describe ways to avoid data conflicts:

• Use a Primary Database Ownership Model

• Avoid Specific Types of Conflicts

9.5.1 Use a Primary Database Ownership Model
You can avoid the possibility of conflicts by limiting the number of databases in the
system that have simultaneous update access to the tables containing shared data.
Primary ownership prevents all conflicts, because only a single database permits
updates to a set of shared data. Applications can even use row and column subsetting
to establish more granular ownership of data than at the table level. For example,
applications might have update access to specific columns or rows in a shared table
on a database-by-database basis.

9.5.2 Avoid Specific Types of Conflicts
If a primary database ownership model is too restrictive for your application
requirements, then you can use a shared ownership data model, which means that
conflicts might be possible. Even so, typically you can use some simple strategies to
avoid specific types of conflicts.

The following topics describe strategies for avoiding specific types of conflicts:

• Avoid Uniqueness Conflicts in an Oracle Streams Environment

• Avoid Delete Conflicts in an Oracle Streams Environment

• Avoid Update Conflicts in an Oracle Streams Environment

9.5.2.1 Avoid Uniqueness Conflicts in an Oracle Streams Environment
You can avoid uniqueness conflicts by ensuring that each database uses unique
identifiers for shared data. There are three ways to ensure unique identifiers at all
databases in an Oracle Streams environment.

One way is to construct a unique identifier by executing the following select statement:

SELECT SYS_GUID() OID FROM DUAL;

This SQL operator returns a 16-byte globally unique identifier. This value is based on
an algorithm that uses time, date, and the computer identifier to generate a globally
unique identifier. The globally unique identifier appears in a format similar to the
following:

A741C791252B3EA0E034080020AE3E0A

Another way to avoid uniqueness conflicts is to create a sequence at each of the
databases that shares data and concatenate the database name (or other globally
unique value) with the local sequence. This approach helps to avoid any duplicate
sequence values and helps to prevent uniqueness conflicts.

Chapter 9
Conflict Avoidance in an Oracle Streams Environment

9-5

Finally, you can create a customized sequence at each of the databases that shares
data so that no two databases can generate the same value. You can accomplish this
by using a combination of starting, incrementing, and maximum values in the CREATE
SEQUENCE statement. For example, you might configure the following sequences:

Table 9-1 Customized Sequences for Oracle Streams Replication
Environments

Parameter Database A Database B Database C

START WITH 1 3 5

INCREMENT BY 10 10 10

Range Example 1, 11, 21, 31, 41,... 3, 13, 23, 33, 43,... 5, 15, 25, 35, 45,...

Using a similar approach, you can define different ranges for each database by
specifying a START WITH and MAXVALUE that would produce a unique range for each
database.

9.5.2.2 Avoid Delete Conflicts in an Oracle Streams Environment
Always avoid delete conflicts in shared data environments. In general, applications
that operate within a shared ownership data model should not delete rows using
DELETE statements. Instead, applications should mark rows for deletion and then
configure the system to purge logically deleted rows periodically.

9.5.2.3 Avoid Update Conflicts in an Oracle Streams Environment
After trying to eliminate the possibility of uniqueness and delete conflicts, you should
also try to limit the number of possible update conflicts. However, in a shared
ownership data model, update conflicts cannot be avoided in all cases. If you cannot
avoid all update conflicts, then you must understand the types of conflicts possible and
configure the system to resolve them if they occur.

9.6 Conflict Resolution in an Oracle Streams Environment
After an update conflict has been detected, a conflict handler can attempt to resolve it.
Oracle Streams provides prebuilt conflict handlers to resolve update conflicts, but not
uniqueness, delete, foreign key, or ordering conflicts. However, you can build your
own custom conflict handler to resolve data conflicts specific to your business rules.
Such a conflict handler can be part of a procedure DML handler or an error handler.

Whether you use prebuilt or custom conflict handlers, a conflict handler is applied as
soon as a conflict is detected. If neither the specified conflict handler nor the relevant
apply handler can resolve the conflict, then the conflict is logged in the error queue.
You might want to use the relevant apply handler to notify the database administrator
when a conflict occurs.

When a conflict causes a transaction to be moved to the error queue, sometimes it is
possible to correct the condition that caused the conflict. In these cases, you can
reexecute a transaction using the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM
package.

Chapter 9
Conflict Resolution in an Oracle Streams Environment

9-6

See Also:

• Oracle Streams Concepts and Administration for more information about
procedure DML handlers, error handlers, and the error queue

• Oracle Database PL/SQL Packages and Types Reference for more
information about the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM
package

9.6.1 Prebuilt Update Conflict Handlers
This section describes the types of prebuilt update conflict handlers available to you
and how column lists and resolution columns are used in prebuilt update conflict
handlers. A column list is a list of columns for which the update conflict handler is
called when there is an update conflict. The resolution column is the column used to
identify an update conflict handler. If you use a MAXIMUM or MINIMUM prebuilt update
conflict handler, then the resolution column is also the column used to resolve the
conflict. The resolution column must be one of the columns in the column list for the
handler.

Use the SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package to
specify one or more update conflict handlers for a particular table. There are no
prebuilt conflict handlers for uniqueness, delete, or foreign key conflicts.

See Also:

• "Managing Oracle Streams Conflict Detection and Resolution" for
instructions on adding, modifying, and removing an update conflict handler

• Oracle Database PL/SQL Packages and Types Reference for more
information about the SET_UPDATE_CONFLICT_HANDLER procedure

• "Column Lists"

• "Resolution Columns"

9.6.1.1 Types of Prebuilt Update Conflict Handlers
Oracle provides the following types of prebuilt update conflict handlers for an Oracle
Streams environment: OVERWRITE, DISCARD, MAXIMUM, and MINIMUM.

The description for each type of handler later in this section refers to the following
conflict scenario:

1. The following update is made at the dbs1.example.com source database:

UPDATE hr.employees SET salary = 4900 WHERE employee_id = 200;
COMMIT;

This update changes the salary for employee 200 from 4400 to 4900.

Chapter 9
Conflict Resolution in an Oracle Streams Environment

9-7

2. At nearly the same time, the following update is made at the dbs2.example.com
destination database:

UPDATE hr.employees SET salary = 5000 WHERE employee_id = 200;
COMMIT;

3. A capture process or synchronous capture captures the update at the
dbs1.example.com source database and puts the resulting row LCR in a queue.

4. A propagation propagates the row LCR from the queue at dbs1.example.com to a
queue at dbs2.example.com.

5. An apply process at dbs2.example.com attempts to apply the row LCR to the
hr.employees table but encounters a conflict because the salary value at
dbs2.example.com is 5000, which does not match the old value for the salary in the
row LCR (4400).

The following sections describe each prebuilt conflict handler and explain how the
handler resolves this conflict.

9.6.1.1.1 OVERWRITE
When a conflict occurs, the OVERWRITE handler replaces the current value at the
destination database with the new value in the LCR from the source database.

If the OVERWRITE handler is used for the hr.employees table at the dbs2.example.com
destination database in the conflict example, then the new value in the row LCR
overwrites the value at dbs2.example.com. Therefore, after the conflict is resolved, the
salary for employee 200 is 4900.

9.6.1.1.2 DISCARD
When a conflict occurs, the DISCARD handler ignores the values in the LCR from the
source database and retains the value at the destination database.

If the DISCARD handler is used for the hr.employees table at the dbs2.example.com
destination database in the conflict example, then the new value in the row LCR is
discarded. Therefore, after the conflict is resolved, the salary for employee 200 is 5000
at dbs2.example.com.

9.6.1.1.3 MAXIMUM
When a conflict occurs, the MAXIMUM conflict handler compares the new value in the
LCR from the source database with the current value in the destination database for a
designated resolution column. If the new value of the resolution column in the LCR is
greater than the current value of the column at the destination database, then the
apply process resolves the conflict in favor of the LCR. If the new value of the
resolution column in the LCR is less than the current value of the column at the
destination database, then the apply process resolves the conflict in favor of the
destination database.

If the MAXIMUM handler is used for the salary column in the hr.employees table at the
dbs2.example.com destination database in the conflict example, then the apply process
does not apply the row LCR, because the salary in the row LCR is less than the
current salary in the table. Therefore, after the conflict is resolved, the salary for
employee 200 is 5000 at dbs2.example.com.

If you want to resolve conflicts based on the time of the transactions involved, then
one way to do this is to add a column to a shared table that automatically records the

Chapter 9
Conflict Resolution in an Oracle Streams Environment

9-8

transaction time with a trigger. You can designate this column as a resolution column
for a MAXIMUM conflict handler, and the transaction with the latest (or greater) time would
be used automatically.

The following is an example of a trigger that records the time of a transaction for the
hr.employees table. Assume that the job_id, salary, and commission_pct columns are
part of the column list for the conflict resolution handler. The trigger should fire only
when an UPDATE is performed on the columns in the column list or when an INSERT is
performed.

ALTER TABLE hr.employees ADD (time TIMESTAMP WITH TIME ZONE);

CREATE OR REPLACE TRIGGER hr.insert_time_employees
BEFORE
 INSERT OR UPDATE OF job_id, salary, commission_pct ON hr.employees
FOR EACH ROW
BEGIN
 -- Consider time synchronization problems. The previous update to this
 -- row might have originated from a site with a clock time ahead of the
 -- local clock time.
 IF :OLD.TIME IS NULL OR :OLD.TIME < SYSTIMESTAMP THEN
 :NEW.TIME := SYSTIMESTAMP;
 ELSE
 :NEW.TIME := :OLD.TIME + 1 / 86400;
 END IF;
END;
/

If you use such a trigger for conflict resolution, then ensure that the trigger's firing
property is fire once, which is the default. Otherwise, a new time might be marked
when transactions are applied by an apply process, resulting in the loss of the actual
time of the transaction.

See Also:

Oracle Streams Concepts and Administration

9.6.1.1.4 MINIMUM
When a conflict occurs, the MINIMUM conflict handler compares the new value in the
LCR from the source database with the current value in the destination database for a
designated resolution column. If the new value of the resolution column in the LCR is
less than the current value of the column at the destination database, then the apply
process resolves the conflict in favor of the LCR. If the new value of the resolution
column in the LCR is greater than the current value of the column at the destination
database, then the apply process resolves the conflict in favor of the destination
database.

If the MINIMUM handler is used for the salary column in the hr.employees table at the
dbs2.example.com destination database in the conflict example, then the apply process
resolves the conflict in favor of the row LCR, because the salary in the row LCR is less
than the current salary in the table. Therefore, after the conflict is resolved, the salary
for employee 200 is 4900.

Chapter 9
Conflict Resolution in an Oracle Streams Environment

9-9

9.6.1.2 Column Lists
Each time you specify a prebuilt update conflict handler for a table, you must specify a
column list. A column list is a list of columns for which the update conflict handler is
called. If an update conflict occurs for one or more of the columns in the list when an
apply process tries to apply a row LCR, then the update conflict handler is called to
resolve the conflict. The update conflict handler is not called if a conflict occurs only in
columns that are not in the list. The scope of conflict resolution is a single column list
on a single row LCR.

You can specify multiple update conflict handlers for a particular table, but the same
column cannot be in more than one column list. For example, suppose you specify two
prebuilt update conflict handlers on hr.employees table:

• The first update conflict handler has the following columns in its column list: salary
and commission_pct.

• The second update conflict handler has the following columns in its column list:
job_id and department_id.

Also, assume that no other conflict handlers exist for this table. In this case, if a conflict
occurs for the salary column when an apply process tries to apply a row LCR, then the
first update conflict handler is called to resolve the conflict. If, however, a conflict
occurs for the department_id column, then the second update conflict handler is called
to resolve the conflict. If a conflict occurs for a column that is not in a column list for
any conflict handler, then no conflict handler is called, and an error results. In this
example, if a conflict occurs for the manager_id column in the hr.employees table, then
an error results. If conflicts occur in more than one column list when a row LCR is
being applied, and there are no conflicts in any columns that are not in a column list,
then the appropriate update conflict handler is invoked for each column list with a
conflict.

Column lists enable you to use different handlers to resolve conflicts for different types
of data. For example, numeric data is often suited for a maximum or minimum conflict
handler, while an overwrite or discard conflict handler might be preferred for character
data.

If a conflict occurs in a column that is not in a column list, then the error handler for the
specific operation on the table attempts to resolve the conflict. If the error handler
cannot resolve the conflict, or if there is no such error handler, then the transaction
that caused the conflict is moved to the error queue.

Also, if a conflict occurs for a column in a column list that uses either the OVERWRITE,
MAXIMUM, or MINIMUM prebuilt handler, and the row LCR does not contain all of the
columns in this column list, then the conflict cannot be resolved because all of the
values are not available. In this case, the transaction that caused the conflict is moved
to the error queue. If the column list uses the DISCARD prebuilt method, then the row
LCR is discarded and no error results, even if the row LCR does not contain all of the
columns in this column list.

A conditional supplemental log group must be specified for the columns specified in a
column list if more than one column at the source database affects the column list at
the destination database. Supplemental logging is specified at the source database
and adds additional information to the LCR, which is needed to resolve conflicts
properly. Typically, a conditional supplemental log group must be specified for the
columns in a column list if there are multiple columns in the column list, but not if there
is only one column in the column list.

Chapter 9
Conflict Resolution in an Oracle Streams Environment

9-10

However, in some cases, a conditional supplemental log group is required even if
there is only one column in a column list. That is, an apply handler or custom rule-
based transformation can combine multiple columns from the source database into a
single column in the column list at the destination database. For example, a custom
rule-based transformation can take three columns that store street, state, and postal
code data from a source database and combine the data into a single address column
at a destination database.

Also, in some cases, no conditional supplemental log group is required even if there
are multiple columns in a column list. For example, an apply handler or custom rule-
based transformation can separate one address column from the source database into
multiple columns that are in a column list at the destination database. A custom rule-
based transformation can take an address that includes street, state, and postal code
data in one address column at a source database and separate the data into three
columns at a destination database.

Note:

Prebuilt update conflict handlers do not support LOB, LONG, LONG RAW, user-
defined type, and Oracle-supplied type columns. Therefore, you should not
include these types of columns in the column_list parameter when running the
SET_UPDATE_CONFLICT_HANDLER procedure.

See Also:

• "Specifying Supplemental Logging"

• Oracle Database SQL Language Reference for information about data
types

9.6.1.3 Resolution Columns
The resolution column is the column used to identify a prebuilt update conflict
handler. If you use a MAXIMUM or MINIMUM prebuilt update conflict handler, then the
resolution column is also the column used to resolve the conflict. The resolution
column must be one of the columns in the column list for the handler.

For example, if the salary column in the hr.employees table is specified as the
resolution column for a maximum or minimum conflict handler, then the salary column
is evaluated to determine whether column list values in the row LCR are applied or the
destination database values for the column list are retained.

In either of the following situations involving a resolution column for a conflict, the
apply process moves the transaction containing the row LCR that caused the conflict
to the error queue, if the error handler cannot resolve the problem. In these cases, the
conflict cannot be resolved and the values of the columns at the destination database
remain unchanged:

• The new LCR value and the destination row value for the resolution column are
the same (for example, if the resolution column was not the column causing the
conflict).

Chapter 9
Conflict Resolution in an Oracle Streams Environment

9-11

• Either the new LCR value of the resolution column or the current value of the
resolution column at the destination database is NULL.

Note:

Although the resolution column is not used for OVERWRITE and DISCARD conflict
handlers, a resolution column must be specified for these conflict handlers.

9.6.1.4 Data Convergence
When you share data between multiple databases, and you want the data to be the
same at all of these databases, then ensure that you use conflict resolution handlers
that cause the data to converge at all databases. If you allow changes to shared data
at all of your databases, then data convergence for a table is possible only if all
databases that are sharing data capture changes to the shared data and propagate
these changes to all of the other databases that are sharing the data.

In such an environment, the MAXIMUM conflict resolution method can guarantee
convergence only if the values in the resolution column are always increasing. A time-
based resolution column meets this requirement, if successive time stamps on a row
are distinct. The MINIMUM conflict resolution method can guarantee convergence in such
an environment only if the values in the resolution column are always decreasing.

9.6.2 Custom Conflict Handlers
You can create a PL/SQL procedure to use as a custom conflict handler. You use the
SET_DML_HANDLER procedure in the DBMS_APPLY_ADM package to designate one or more
custom conflict handlers for a particular table. Specifically, set the following
parameters when you run this procedure to specify a custom conflict handler:

• Set the object_name parameter to the fully qualified name of the table for which you
want to perform conflict resolution.

• Set the object_type parameter to TABLE.

• Set the operation_name parameter to the type of operation for which the custom
conflict handler is called. The possible operations are the following: INSERT, UPDATE,
DELETE, and LOB_UPDATE. You can also set the operation_name parameter to DEFAULT
so that the handler is used by default for all operations.

• If you want an error handler to perform conflict resolution when an error is raised,
then set the error_handler parameter to TRUE. Or, if you want to include conflict
resolution in your procedure DML handler, then set the error_handler parameter to
FALSE.

If you specify FALSE for this parameter, then, when you execute a row LCR using
the EXECUTE member procedure for the LCR, the conflict resolution within the
procedure DML handler is performed for the specified object and operation(s).

• Specify the procedure to resolve a conflict by setting the user_procedure
parameter. This user procedure is called to resolve any conflicts on the specified
table resulting from the specified type of operation.

Chapter 9
Conflict Resolution in an Oracle Streams Environment

9-12

If the custom conflict handler cannot resolve the conflict, then the apply process
moves the transaction containing the conflict to the error queue and does not apply the
transaction.

If both a prebuilt update conflict handler and a custom conflict handler exist for a
particular object, then the prebuilt update conflict handler is invoked only if both of the
following conditions are met:

• The custom conflict handler executes the row LCR using the EXECUTE member
procedure for the LCR.

• The conflict_resolution parameter in the EXECUTE member procedure for the row
LCR is set to TRUE.

See Also:

• Oracle Streams Concepts and Administration for more information about
managing error handlers

• Oracle Database PL/SQL Packages and Types Reference for more
information about the SET_DML_HANDLER procedure

9.7 Managing Oracle Streams Conflict Detection and
Resolution

This section describes the following tasks:

• Setting an Update Conflict Handler

• Modifying an Existing Update Conflict Handler

• Removing an Existing Update Conflict Handler

• Stopping Conflict Detection for Nonkey Columns

See Also:

"Displaying Information About Update Conflict Handlers"

9.7.1 Setting an Update Conflict Handler
Set an update conflict handler using the SET_UPDATE_CONFLICT_HANDLER procedure in the
DBMS_APPLY_ADM package. You can use one of the following prebuilt methods when you
create an update conflict resolution handler:

• OVERWRITE

• DISCARD

• MAXIMUM

• MINIMUM

Chapter 9
Managing Oracle Streams Conflict Detection and Resolution

9-13

For example, suppose an Oracle Streams environment captures changes to the
hr.jobs table at dbs1.example.com and propagates these changes to the
dbs2.example.com destination database, where they are applied. In this environment,
applications can perform DML changes on the hr.jobs table at both databases, but, if
there is a conflict for a particular DML change, then the change at the dbs1.example.com
database should always overwrite the change at the dbs2.example.com database. In this
environment, you can accomplish this goal by specifying an OVERWRITE handler at the
dbs2.example.com database.

To specify an update conflict handler for the hr.jobs table in the hr schema at the
dbs2.example.com database, run the following procedure at dbs2.example.com:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
 BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => 'OVERWRITE',
 resolution_column => 'job_title',
 column_list => cols);
END;
/

All apply processes running on a database that apply changes to the specified table
locally use the specified update conflict handler.

Note:

• The resolution_column is not used for OVERWRITE and DISCARD methods, but
one of the columns in the column_list still must be specified.

• You must specify a conditional supplemental log group at the source
database for all of the columns in the column_list at the destination
database. In this example, you would specify a conditional supplemental
log group including the job_title, min_salary, and max_salary columns in
the hr.jobs table at the dbs1.example.com database.

• Prebuilt update conflict handlers do not support LOB, LONG, LONG RAW, user-
defined type, and Oracle-supplied type columns. Therefore, you should
not include these types of columns in the column_list parameter when
running the procedure SET_UPDATE_CONFLICT_HANDLER.

Chapter 9
Managing Oracle Streams Conflict Detection and Resolution

9-14

See Also:

• "Specifying Supplemental Logging"

• Oracle Streams Extended Examples for an example Oracle Streams
environment that illustrates using the MAXIMUM prebuilt method for time-
based conflict resolution

• Oracle Database SQL Language Reference for information about data
types

9.7.2 Modifying an Existing Update Conflict Handler
You can modify an existing update conflict handler by running the
SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package. To update an
existing conflict handler, specify the same table and resolution column as the existing
conflict handler.

To modify the update conflict handler created in "Setting an Update Conflict Handler",
you specify the hr.jobs table and the job_title column as the resolution column. You
can modify this update conflict handler by specifying a different type of prebuilt method
or a different column list, or both. However, to change the resolution column for an
update conflict handler, you must remove and re-create the handler.

For example, suppose the environment changes, and you want changes from
dbs1.example.com to be discarded in the event of a conflict, whereas previously
changes from dbs1.example.com overwrote changes at dbs2.example.com. You can
accomplish this goal by specifying a DISCARD handler at the dbs2.example.com database.

To modify the existing update conflict handler for the hr.jobs table in the hr schema at
the dbs2.example.com database, run the following procedure:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
 BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => 'DISCARD',
 resolution_column => 'job_title',
 column_list => cols);
END;
/

9.7.3 Removing an Existing Update Conflict Handler
You can remove an existing update conflict handler by running the
SET_UPDATE_CONFLICT_HANDLER procedure in the DBMS_APPLY_ADM package. To remove a
an existing conflict handler, specify NULL for the method, and specify the same table,
column list, and resolution column as the existing conflict handler.

For example, suppose you want to remove the update conflict handler created in
"Setting an Update Conflict Handler" and then modified in "Modifying an Existing

Chapter 9
Managing Oracle Streams Conflict Detection and Resolution

9-15

Update Conflict Handler". To remove this update conflict handler, run the following
procedure:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
 BEGIN
 cols(1) := 'job_title';
 cols(2) := 'min_salary';
 cols(3) := 'max_salary';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.jobs',
 method_name => NULL,
 resolution_column => 'job_title',
 column_list => cols);
END;
/

9.7.4 Stopping Conflict Detection for Nonkey Columns
You can stop conflict detection for nonkey columns using the COMPARE_OLD_VALUES
procedure in the DBMS_APPLY_ADM package.

For example, suppose you configure a time column for conflict resolution for the
hr.employees table, as described in "MAXIMUM". In this case, you can decide to stop
conflict detection for the other nonkey columns in the table. After adding the time
column and creating the trigger as described in that section, add the columns in the
hr.employees table to the column list for an update conflict handler:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'first_name';
 cols(2) := 'last_name';
 cols(3) := 'email';
 cols(4) := 'phone_number';
 cols(5) := 'hire_date';
 cols(6) := 'job_id';
 cols(7) := 'salary';
 cols(8) := 'commission_pct';
 cols(9) := 'manager_id';
 cols(10) := 'department_id';
 cols(11) := 'time';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.employees',
 method_name => 'MAXIMUM',
 resolution_column => 'time',
 column_list => cols);
END;
/

This example does not include the primary key for the table in the column list because
it assumes that the primary key is never updated. However, other key columns are
included in the column list.

To stop conflict detection for all nonkey columns in the table for both UPDATE and DELETE
operations at a destination database, run the following procedure:

DECLARE
 cols DBMS_UTILITY.LNAME_ARRAY;
 BEGIN

Chapter 9
Managing Oracle Streams Conflict Detection and Resolution

9-16

 cols(1) := 'first_name';
 cols(2) := 'last_name';
 cols(3) := 'email';
 cols(4) := 'phone_number';
 cols(5) := 'hire_date';
 cols(6) := 'job_id';
 cols(7) := 'salary';
 cols(8) := 'commission_pct';
 DBMS_APPLY_ADM.COMPARE_OLD_VALUES(
 object_name => 'hr.employees',
 column_table => cols,
 operation => '*',
 compare => FALSE);
END;
/

The asterisk (*) specified for the operation parameter means that conflict detection is
stopped for both UPDATE and DELETE operations. After you run this procedure, all apply
processes running on the database that apply changes to the specified table locally do
not detect conflicts on the specified columns. Therefore, in this example, the time
column is the only column used for conflict detection.

Note:

The example in this section sets an update conflict handler before stopping
conflict detection for nonkey columns. However, an update conflict handler is
not required before you stop conflict detection for nonkey columns.

See Also:

• "Control Over Conflict Detection for Nonkey Columns"

• "Displaying Information About Conflict Detection"

• Oracle Streams Extended Examples for a detailed example that uses
time-based conflict resolution

• Oracle Database PL/SQL Packages and Types Reference for more
information about the COMPARE_OLD_VALUES procedure

9.8 Monitoring Conflict Detection and Update Conflict
Handlers

The following sections contain queries that you can run to monitor an apply process in
a Stream replication environment:

• Displaying Information About Conflict Detection

• Displaying Information About Update Conflict Handlers

Chapter 9
Monitoring Conflict Detection and Update Conflict Handlers

9-17

See Also:

Oracle Streams Concepts and Administration

9.8.1 Displaying Information About Conflict Detection
You can stop conflict detection for nonkey columns using the COMPARE_OLD_VALUES
procedure in the DBMS_APPLY_ADM package. When you use this procedure, conflict
detection is stopped for updates and deletes on the specified columns for all apply
processes at a destination database. To display each column for which conflict
detection has been stopped, run the following query:

COLUMN OBJECT_OWNER HEADING 'Table Owner' FORMAT A15
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A20
COLUMN COLUMN_NAME HEADING 'Column Name' FORMAT A20
COLUMN COMPARE_OLD_ON_DELETE HEADING 'Compare|Old On|Delete' FORMAT A7
COLUMN COMPARE_OLD_ON_UPDATE HEADING 'Compare|Old On|Update' FORMAT A7

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 COLUMN_NAME,
 COMPARE_OLD_ON_DELETE,
 COMPARE_OLD_ON_UPDATE
 FROM DBA_APPLY_TABLE_COLUMNS
 WHERE APPLY_DATABASE_LINK IS NULL;

Your output should look similar to the following:

 Compare Compare
 Old On Old On
Table Owner Table Name Column Name Delete Update
--------------- -------------------- -------------------- ------- -------
HR EMPLOYEES COMMISSION_PCT NO NO
HR EMPLOYEES EMAIL NO NO
HR EMPLOYEES FIRST_NAME NO NO
HR EMPLOYEES HIRE_DATE NO NO
HR EMPLOYEES JOB_ID NO NO
HR EMPLOYEES LAST_NAME NO NO
HR EMPLOYEES PHONE_NUMBER NO NO
HR EMPLOYEES SALARY NO NO

Note:

You can also stop conflict detection for changes that are applied to remote
non-Oracle databases. This query does not display such specifications
because it lists a specification only if the APPLY_DATABASE_LINK column is NULL.

Chapter 9
Monitoring Conflict Detection and Update Conflict Handlers

9-18

See Also:

• "Control Over Conflict Detection for Nonkey Columns"

• "Stopping Conflict Detection for Nonkey Columns"

9.8.2 Displaying Information About Update Conflict Handlers
When you specify an update conflict handler using the SET_UPDATE_CONFLICT_HANDLER
procedure in the DBMS_APPLY_ADM package, the update conflict handler is run for all
apply processes in the database, when a relevant conflict occurs.

The query in this section displays all of the columns for which conflict resolution has
been specified using a prebuilt update conflict handler. That is, it shows the columns in
all of the column lists specified in the database. This query also shows the type of
prebuilt conflict handler specified and the resolution column specified for the column
list.

To display information about all of the update conflict handlers in a database, run the
following query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A5
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A12
COLUMN METHOD_NAME HEADING 'Method' FORMAT A12
COLUMN RESOLUTION_COLUMN HEADING 'Resolution|Column' FORMAT A13
COLUMN COLUMN_NAME HEADING 'Column Name' FORMAT A30

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 METHOD_NAME,
 RESOLUTION_COLUMN,
 COLUMN_NAME
 FROM DBA_APPLY_CONFLICT_COLUMNS
 ORDER BY OBJECT_OWNER, OBJECT_NAME, RESOLUTION_COLUMN;

Your output looks similar to the following:

Table Resolution
Owner Table Name Method Column Column Name
----- ------------ ------------ ------------- ------------------------------
HR COUNTRIES MAXIMUM TIME COUNTRY_NAME
HR COUNTRIES MAXIMUM TIME REGION_ID
HR COUNTRIES MAXIMUM TIME TIME
HR DEPARTMENTS MAXIMUM TIME DEPARTMENT_NAME
HR DEPARTMENTS MAXIMUM TIME LOCATION_ID
HR DEPARTMENTS MAXIMUM TIME MANAGER_ID
HR DEPARTMENTS MAXIMUM TIME TIME

See Also:

"Managing Oracle Streams Conflict Detection and Resolution"

Chapter 9
Monitoring Conflict Detection and Update Conflict Handlers

9-19

10
Oracle Streams Tags

This chapter explains the concepts related to Oracle Streams tags.

This chapter contains these topics:

• Introduction to Tags

• Tags and Rules Created by the DBMS_STREAMS_ADM Package

• Tags and Online Backup Statements

• Tags and an Apply Process

• Oracle Streams Tags in a Replication Environment

• Managing Oracle Streams Tags

• Monitoring Oracle Streams Tags

See Also:

"Managing Oracle Streams Tags"

10.1 Introduction to Tags
Every redo entry in the redo log has a tag associated with it. The data type of the tag
is RAW. By default, when a user or application generates redo entries, the value of the
tag is NULL for each redo entry, and a NULL tag consumes no space. The size limit for a
tag value is 2000 bytes.

You can configure how tag values are interpreted. For example, you can use a tag to
determine whether an LCR contains a change that originated in the local database or
at a different database, so that you can avoid change cycling (sending an LCR back to
the database where it originated). Tags can be used for other LCR tracking purposes
as well. You can also use tags to specify the set of destination databases for each
LCR.

You can control the value of the tags generated in the redo log in the following ways:

• Use the DBMS_STREAMS.SET_TAG procedure to specify the value of the redo tags
generated in the current session. When a database change is made in the
session, the tag becomes part of the redo entry that records the change. Different
sessions can have the same tag setting or different tag settings.

• Use the CREATE_APPLY or ALTER_APPLY procedure in the DBMS_APPLY_ADM package to
control the value of the redo tags generated when an apply process runs. All
sessions coordinated by the apply process coordinator use this tag setting. By
default, redo entries generated by an apply process have a tag value that is the
hexadecimal equivalent of '00' (double zero).

10-1

Based on the rules in the rule sets for a capture process, the tag value in the redo
entry for a change can determine whether the change is captured. Based on the rules
in the rule sets for a synchronous capture, the session tag value for a change can
determine whether the change is captured. The tags become part of the LCRs
captured by a capture process or synchronous capture.

Similarly, once a tag is part of an LCR, the value of the tag can determine whether a
propagation propagates the LCR and whether an apply process applies the LCR. The
behavior of a custom rule-based transformation or apply handler can also depend on
the value of the tag. In addition, you can set the tag value for an existing LCR using
the SET_TAG member procedure for the LCR in a custom rule-based transformation or
an apply handler that uses a PL/SQL procedure. You cannot set a tag value for an
existing LCR in a statement DML handler or change handler.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the SET_TAG member procedure for LCRs

• Oracle Streams Concepts and Administration for more information about
how rules are used in Oracle Streams

10.2 Tags and Rules Created by the
DBMS_STREAMS_ADM Package

When you use a procedure in the DBMS_STREAMS_ADM package to create rules and set the
include_tagged_lcr parameter to FALSE, each rule contains a condition that evaluates to
TRUE only if the tag is NULL. In DML rules, the condition is the following:

:dml.is_null_tag()='Y'

In DDL rules, the condition is the following:

:ddl.is_null_tag()='Y'

Consider a positive rule set with a single rule and assume the rule contains such a
condition. In this case, Oracle Streams capture processes, synchronous captures,
propagations, and apply processes behave in the following way:

• A capture process captures a change only if the tag in the redo log entry for the
change is NULL and the rest of the rule conditions evaluate to TRUE for the change.

• A synchronous capture captures a change only if the tag for the session that
makes the change is NULL and the rest of the rule conditions evaluate to TRUE for
the change.

• A propagation propagates an LCR only if the tag in the LCR is NULL and the rest of
the rule conditions evaluate to TRUE for the LCR.

• An apply process applies an LCR only if the tag in the LCR is NULL and the rest of
the rule conditions evaluate to TRUE for the LCR.

Chapter 10
Tags and Rules Created by the DBMS_STREAMS_ADM Package

10-2

Alternatively, consider a negative rule set with a single rule and assume the rule
contains such a condition. In this case, Oracle Streams capture processes,
propagations, and apply processes behave in the following way:

• A capture process discards a change only if the tag in the redo log entry for the
change is NULL and the rest of the rule conditions evaluate to TRUE for the change.

• A propagation or apply process discards LCR only if the tag in the LCR is NULL and
the rest of the rule conditions evaluate to TRUE for the LCR.

In most cases, specify TRUE for the include_tagged_lcr parameter if rules are being
added to a negative rule set so that changes are discarded regardless of their tag
values.

The following procedures in the DBMS_STREAMS_ADM package create rules that contain
one of these conditions by default:

• ADD_GLOBAL_PROPAGATION_RULES

• ADD_GLOBAL_RULES

• ADD_SCHEMA_PROPAGATION_RULES

• ADD_SCHEMA_RULES

• ADD_SUBSET_PROPAGATION_RULES

• ADD_SUBSET_RULES

• ADD_TABLE_PROPAGATION_RULES

• ADD_TABLE_RULES

If you do not want the rules to contain such a condition, then set the
include_tagged_lcr parameter to TRUE when you run these procedures. This setting
results in no conditions relating to tags in the rules. Therefore, rule evaluation of the
database change does not depend on the value of the tag.

For example, consider a table rule that evaluates to TRUE for all DML changes to the
hr.locations table that originated at the dbs1.example.com source database.

Assume the ADD_TABLE_RULES procedure is run to generate this rule:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.locations',
 streams_type => 'capture',
 streams_name => 'capture',
 queue_name => 'streams_queue',
 include_tagged_lcr => FALSE, -- Note parameter setting
 source_database => 'dbs1.example.com',
 include_dml => TRUE,
 include_ddl => FALSE);
END;
/

Notice that the include_tagged_lcr parameter is set to FALSE, which is the default. The
ADD_TABLE_RULES procedure generates a rule with a rule condition similar to the
following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS'))
and :dml.is_null_tag() = 'Y' and :dml.get_source_database_name() =
'DBS1.EXAMPLE.COM')

Chapter 10
Tags and Rules Created by the DBMS_STREAMS_ADM Package

10-3

If a capture process uses a positive rule set that contains this rule, then the rule
evaluates to FALSE if the tag for a change in a redo entry is a non-NULL value, such as
'0' or '1'. So, if a redo entry contains a row change to the hr.locations table, then the
change is captured only if the tag for the redo entry is NULL.

However, suppose the include_tagged_lcr parameter is set to TRUE when
ADD_TABLE_RULES is run:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.locations',
 streams_type => 'capture',
 streams_name => 'capture',
 queue_name => 'streams_queue',
 include_tagged_lcr => TRUE, -- Note parameter setting
 source_database => 'dbs1.example.com',
 include_dml => TRUE,
 include_ddl => FALSE);
END;
/

In this case, the ADD_TABLE_RULES procedure generates a rule with a rule condition
similar to the following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS'))
and :dml.get_source_database_name() = 'DBS1.EXAMPLE.COM')

Notice that there is no condition relating to the tag. If a capture process uses a positive
rule set that contains this rule, then the rule evaluates to TRUE if the tag in a redo entry
for a DML change to the hr.locations table is a non-NULL value, such as '0' or '1'.
The rule also evaluates to TRUE if the tag is NULL. So, if a redo entry contains a DML
change to the hr.locations table, then the change is captured regardless of the value
for the tag.

To modify the is_null_tag condition in an existing system-created rule, use an
appropriate procedure in the DBMS_STREAMS_ADM package to create a rule that is the
same as the rule you want to modify, except for the is_null_tag condition. Next, use
the REMOVE_RULE procedure in the DBMS_STREAMS_ADM package to remove the old rule from
the appropriate rule set. In addition, you can use the and_condition parameter for the
procedures that create rules in the DBMS_STREAMS_ADM package to add conditions relating
to tags to system-created rules.

If you created a rule with the DBMS_RULE_ADM package, then you can add, remove, or
modify the is_null_tag condition in the rule by using the ALTER_RULE procedure in this
package.

Chapter 10
Tags and Rules Created by the DBMS_STREAMS_ADM Package

10-4

See Also:

• Oracle Streams Concepts and Administration for examples of rules
generated by the procedures in the DBMS_STREAMS_ADM package

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_STREAMS_ADM package and the
DBMS_RULE_ADM.ALTER_RULE procedure

• "Setting the Tag Values Generated by an Apply Process" for more
information about the SET_TAG procedure

10.3 Tags and Online Backup Statements
If you are using global rules to capture and apply DDL changes for an entire database,
then online backup statements will be captured, propagated, and applied by default.
Typically, database administrators do not want to replicate online backup statements.
Instead, they only want them to run at the database where they are executed
originally. An online backup statement uses the BEGIN BACKUP and END BACKUP clauses in
an ALTER TABLESPACE or ALTER DATABASE statement.

To avoid replicating online backup statements, you can use one of the following
strategies:

• Include one or more calls to the DBMS_STREAMS.SET_TAG procedure in your online
backup procedures, and set the session tag to a value that will cause the online
backup statements to be ignored by a capture process.

• Use a DDL handler for an apply process to avoid applying the online backup
statements.

Note:

If you use Recovery Manager (RMAN) to perform an online backup, then the
online backup statements are not used, and there is no need to set Oracle
Streams tags for backups.

See Also:

Oracle Database Backup and Recovery User's Guide for information about
making backups

10.4 Tags and an Apply Process
An apply process generates entries in the redo log of a destination database when it
applies DML or DDL changes. For example, if the apply process applies a change that
updates a row in a table, then that change is recorded in the redo log at the destination

Chapter 10
Tags and Online Backup Statements

10-5

database. You can control the tags in these redo entries by setting the apply_tag
parameter in the CREATE_APPLY or ALTER_APPLY procedure in the DBMS_APPLY_ADM package.
For example, an apply process can generate redo tags that are equivalent to the
hexadecimal value of '0' (zero) or '1'.

The default tag value generated in the redo log by an apply process is '00' (double
zero). This value is the default tag value for an apply process if you use a procedure in
the DBMS_STREAMS_ADM package or the CREATE_APPLY procedure in the DBMS_APPLY_ADM
package to create the apply process. There is nothing special about this value beyond
the fact that it is a non-NULL value. The fact that it is a non-NULL value is important
because rules created by the DBMS_STREAMS_ADM package by default contain a condition
that evaluates to TRUE only if the tag is NULL in a redo entry or an LCR. You can alter
the tag value for an existing apply process using the ALTER_APPLY procedure in the
DBMS_APPLY_ADM package.

Redo entries generated by an apply handler for an apply process have the tag value of
the apply process, unless the handler sets the tag to a different value using the SET_TAG
procedure. If a procedure DML handler, DDL handler, or message handler calls the
SET_TAG procedure in the DBMS_STREAMS package, then any subsequent redo entries
generated by the handler will include the tag specified in the SET_TAG call, even if the
tag for the apply process is different. When the handler exits, any subsequent redo
entries generated by the apply process have the tag specified for the apply process.

See Also:

• Oracle Streams Concepts and Administration for more information about
the apply process

• "Tags and Rules Created by the DBMS_STREAMS_ADM Package" for
more information about the default tag condition in Oracle Streams rules

• "Managing Oracle Streams Tags"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_STREAMS_ADM package and the DBMS_APPLY_ADM
package

10.5 Oracle Streams Tags in a Replication Environment
In an Oracle Streams environment that includes multiple databases sharing data
bidirectionally, you can use tags to avoid change cycling. Change cycling means
sending a change back to the database where it originated. Typically, change cycling
should be avoided because it can result in each change going through endless loops
back to the database where it originated. Such loops can result in unintended data in
the database and tax the networking and computer resources of an environment. By
default, Oracle Streams is designed to avoid change cycling.

Using tags and appropriate rules for Oracle Streams capture processes, synchronous
captures, propagations, and apply processes, you can avoid such change cycles. This
section describes common Oracle Streams environments and how you can use tags
and rules to avoid change cycling in these environments.

This section contains these topics:

Chapter 10
Oracle Streams Tags in a Replication Environment

10-6

• N-Way Replication Environments

• Hub-and-Spoke Replication Environments

• Hub-and-Spoke Replication Environment with Several Extended Secondary
Databases

10.5.1 N-Way Replication Environments
An n-way replication environment is one in which each database is a source
database for every other database, and each database is a destination database of
every other database. Each database communicates directly with every other
database.

For example, consider an environment that replicates the database objects and data in
the hrmult schema between three Oracle databases: mult1.example.com,
mult2.example.com, and mult3.example.com. DML and DDL changes made to tables in
the hrmult schema are captured at all three databases in the environment and
propagated to each of the other databases in the environment, where changes are
applied. Figure 10-1 illustrates a sample n-way replication environment.

Chapter 10
Oracle Streams Tags in a Replication Environment

10-7

Figure 10-1 Each Database Is a Source and Destination Database

mult2.example.com mult3.example.com

mult1.example.com

Propagate

Locally

Captured

LCRs

Propagate

Locally

Captured

LCRs

Propagate Locally

Captured LCRs

Propagate Locally

Captured LCRs

User Changes User Changes

User Changes

Database Objects

Capture

Process�

Enqueue

LCRs

Capture

Changes

Queue

Apply Process for

mult1.example.com changes

Apply Process for

mult2.example.com changes

Dequeue LCRs

sent From

mult2.example.com

Dequeue LCRs �
sent From

mult1.example.com

Apply Changes sent from

mult2.example.com

Apply Changes sent from

mult1.example.com

Database Objects

Capture

Process�

Enqueue

LCRs

Capture

Changes

Queue

Apply Process for

mult1.example.com changes

Apply Process for

mult3.example.com changes

Dequeue LCRs

sent From

mult3.example.com

Dequeue LCRs

sent From

mult1.example.com

Apply Changes sent from

mult3.example.com

Apply Changes sent from

mult1.example.com

Database Objects

Capture

Process�

Enqueue

LCRs

Capture

Changes

Apply Process for

mult2.example.com changes

Apply Process for

mult3.example.com changes

Dequeue LCRs

sent From

mult3.example.com

Dequeue

LCRs sent

From

mult2.example.com

Apply Changes sent from

mult3.example.com

Apply Changes sent from

mult2.example.com

Queue

You can avoid change cycles by configuring such an environment in the following way:

• Configure one apply process at each database to generate non-NULL redo tags for
changes from each source database. If you use a procedure in the
DBMS_STREAMS_ADM package to create an apply process, then the apply process
generates non-NULL tags with a value of '00' in the redo log by default. In this
case, no further action is required for the apply process to generate non-NULL tags.

If you use the CREATE_APPLY procedure in the DBMS_APPLY_ADM package to create an
apply process, then do not set the apply_tag parameter. Again, the apply process

Chapter 10
Oracle Streams Tags in a Replication Environment

10-8

generates non-NULL tags with a value of '00' in the redo log by default, and no
further action is required.

• Configure the capture process at each database to capture changes only if the tag
in the redo entry for the change is NULL. You do this by ensuring that each DML
rule in the positive rule set used by the capture process has the following
condition:

:dml.is_null_tag()='Y'

Each DDL rule should have the following condition:

:ddl.is_null_tag()='Y'

These rule conditions indicate that the capture process captures a change only if
the tag for the change is NULL. If you use the DBMS_STREAMS_ADM package to generate
rules, then each rule has such a condition by default.

This configuration prevents change cycling because all of the changes applied by the
apply processes are never recaptured (they were captured originally at the source
databases). Each database sends all of its changes to the hrmult schema to every
other database. So, in this environment, no changes are lost, and all databases are
synchronized. Figure 10-2 illustrates how tags can be used in a database in an n-way
replication environment.

Figure 10-2 Tag Use When Each Database Is a Source and Destination Database

mult1.example.com

User Changes

Database Objects

Enqueue

LCRs

Capture changes with

NULL Tags

Capture

Process�

Redo

Log

Record

apply changes

from

mult2.example.com

(Tag is '00')

Record

apply

changes

from

mult3.example.com

(Tag is '00')

Queue

Apply Process for

mult2.example.com changes

Apply Process for

mult3.example.com changes

Dequeue

LCRs sent

From

mult3.example.com

Dequeue

LCRs sent

From

mult2.example.com

Apply Changes sent from

mult3.example.com

Apply Changes sent from

mult2.example.com

Record user

changes

(Tag is NULL)

Propagate

Locally

Captured

LCRs

Propagate

Locally

Captured

LCRs

Chapter 10
Oracle Streams Tags in a Replication Environment

10-9

See Also:

Oracle Streams Extended Examples for a detailed illustration of this example

10.5.2 Hub-and-Spoke Replication Environments
A hub-and-spoke replication environment is one in which a primary database, or
hub, communicates with secondary databases, or spokes. The spokes do not
communicate directly with each other. In a hub-and-spoke replication environment, the
spokes might or might not allow changes to the replicated database objects.

If the spokes do not allow changes to the replicated database objects, then the primary
database captures local changes to the shared data and propagates these changes to
all secondary databases, where these changes are applied at each secondary
database locally. Change cycling is not possible when none of the secondary
databases allow changes to the replicated database objects because changes to the
replicated database objects are captured in only one location.

If the spokes allow changes to the replicated database objects, then changes are
captured, propagated, and applied in the following way:

• The primary database captures local changes to the shared data and propagates
these changes to all secondary databases, where these changes are applied at
each secondary database locally.

• Each secondary database captures local changes to the shared data and
propagates these changes to the primary database only, where these changes are
applied at the primary database locally.

• The primary database applies changes from each secondary database locally.
Next, these changes are captured at the primary database and propagated to all
secondary databases, except for the one at which the change originated. Each
secondary database applies the changes from the other secondary databases
locally, after they have gone through the primary database. This configuration is
an example of apply forwarding.

An alternate scenario might use queue forwarding. If this environment used queue
forwarding, then changes from secondary databases that are applied at the
primary database are not captured at the primary database. Instead, these
changes are forwarded from the queue at the primary database to all secondary
databases, except for the one at which the change originated.

See Also:

Oracle Streams Concepts and Administration for more information about apply
forwarding and queue forwarding

For example, consider an environment that replicates the database objects and data in
the hr schema between one primary database named ps1.example.com and three
secondary databases named ps2.example.com, ps3.example.com, and ps4.example.com.
DML and DDL changes made to tables in the hr schema are captured at the primary
database and at the three secondary databases in the environment. Next, these

Chapter 10
Oracle Streams Tags in a Replication Environment

10-10

changes are propagated and applied as described previously. The environment uses
apply forwarding, not queue forwarding, to share data between the secondary
databases through the primary database. Figure 10-3 illustrates a sample environment
which has one primary database and multiple secondary databases.

Figure 10-3 Primary Database Sharing Data with Several Secondary Databases

Primary

Database

Secondary

Database

Secondary

Database

Secondary

Database

You can avoid change cycles by configuring the environment in the following way:

• Configure each apply process at the primary database ps1.example.com to generate
non-NULL redo tags that indicate the site from which it is receiving changes. In this
environment, the primary database has at least one apply process for each
secondary database from which it receives changes. For example, if an apply
process at the primary database receives changes from the ps2.example.com
secondary database, then this apply process can generate a raw value that is
equivalent to the hexadecimal value '2' for all changes it applies. You do this by
setting the apply_tag parameter in the CREATE_APPLY or ALTER_APPLY procedure in the
DBMS_APPLY_ADM package to the non-NULL value.

For example, run the following procedure to create an apply process that
generates redo entries with tags that are equivalent to the hexadecimal value '2':

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.streams_queue',
 apply_name => 'apply_ps2',
 rule_set_name => 'strmadmin.apply_rules_ps2',
 apply_tag => HEXTORAW('2'),
 apply_captured => TRUE);
END;
/

• Configure the apply process at each secondary database to generate non-NULL
redo tags. The exact value of the tags is irrelevant if it is non-NULL. In this

Chapter 10
Oracle Streams Tags in a Replication Environment

10-11

environment, each secondary database has one apply process that applies
changes from the primary database.

If you use a procedure in the DBMS_STREAMS_ADM package to create an apply
process, then the apply process generates non-NULL tags with a value of '00' in
the redo log by default. In this case, no further action is required for the apply
process to generate non-NULL tags.

For example, assuming no apply processes exist at the secondary databases, run
the ADD_SCHEMA_RULES procedure in the DBMS_STREAMS_ADM package at each
secondary database to create an apply process that generates non-NULL redo
entries with tags that are equivalent to the hexadecimal value '00':

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 source_database => 'ps1.example.com',
 inclusion_rule => TRUE);
END;
/

• Configure the capture process at the primary database to capture changes to the
shared data regardless of the tags. You do this by setting the include_tagged_lcr
parameter to TRUE when you run one of the procedures that generate capture
process rules in the DBMS_STREAMS_ADM package. If you use the DBMS_RULE_ADM
package to create rules for the capture process at the primary database, then
ensure that the rules do not contain is_null_tag conditions, because these
conditions involve tags in the redo log.

For example, run the following procedure at the primary database to produce one
DML capture process rule and one DDL capture process rule that each have a
condition that evaluates to TRUE for changes in the hr schema, regardless of the
tag for the change:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'capture',
 streams_name => 'capture',
 queue_name => 'strmadmin.streams_queue',
 include_tagged_lcr => TRUE, -- Note parameter setting
 include_dml => TRUE,
 include_ddl => TRUE,
 inclusion_rule => TRUE);
END;
/

• Configure the capture process at each secondary database to capture changes
only if the tag in the redo entry for the change is NULL. You do this by ensuring that
each DML rule in the positive rule set used by the capture process at the
secondary database has the following condition:

:dml.is_null_tag()='Y'

DDL rules should have the following condition:

:ddl.is_null_tag()='Y'

Chapter 10
Oracle Streams Tags in a Replication Environment

10-12

These rules indicate that the capture process captures a change only if the tag for
the change is NULL. If you use the DBMS_STREAMS_ADM package to generate rules,
then each rule has one of these conditions by default. If you use the DBMS_RULE_ADM
package to create rules for the capture process at a secondary database, then
ensure that each rule contains one of these conditions.

• Configure one propagation from the queue at the primary database to the queue at
each secondary database. Each propagation should use a positive rule set with
rules that instruct the propagation to propagate all LCRs in the queue at the
primary database to the queue at the secondary database, except for changes that
originated at the secondary database.

For example, if a propagation propagates changes to the secondary database
ps2.example.com, whose tags are equivalent to the hexadecimal value '2', then the
rules for the propagation should propagate all LCRs relating to the hr schema to
the secondary database, except for LCRs with a tag of '2'. For row LCRs, such
rules should include the following condition:

:dml.get_tag() IS NULL OR :dml.get_tag()!=HEXTORAW('2')

For DDL LCRs, such rules should include the following condition:

:ddl.get_tag() IS NULL OR :ddl.get_tag()!=HEXTORAW('2')

Alternatively, you can add rules to the negative rule set for the propagation so that
the propagation discards LCRs with the tag value. For row LCRs, such rules
should include the following condition:

:dml.get_tag()=HEXTORAW('2')

For DDL LCRs, such rules should include the following condition:

:ddl.get_tag()=HEXTORAW('2')

You can use the and_condition parameter in a procedure in the DBMS_STREAMS_ADM
package to add these conditions to system-created rules, or you can use the
CREATE_RULE procedure in the DBMS_RULE_ADM package to create rules with these
conditions. When you specify the condition in the and_condition parameter,
specify :lcr instead of :dml or :ddl. See Oracle Streams Concepts and
Administration for more information about the and_condition parameter.

• Configure one propagation from the queue at each secondary database to the
queue at the primary database. A queue at one of the secondary databases
contains only local changes made by user sessions and applications at the
secondary database, not changes made by an apply process. Therefore, no
further configuration is necessary for these propagations.

This configuration prevents change cycling in the following way:

• Changes that originated at a secondary database are never propagated back to
that secondary database.

• Changes that originated at the primary database are never propagated back to the
primary database.

• All changes made to the shared data at any database in the environment are
propagated to every other database in the environment.

So, in this environment, no changes are lost, and all databases are synchronized.

Figure 10-4 illustrates how tags are used at the primary database ps1.example.com.

Chapter 10
Oracle Streams Tags in a Replication Environment

10-13

Figure 10-4 Tags Used at the Primary Database

Primary Database ps1.example.com

User Changes

Propagate All locally captured

LCRs to ps2.example.com, �
except LCRs with Tag = '2'

Receive LCRs

sent from

ps2.example.com

Propagate All locally captured

LCRs to ps3.example.com,

except LCRs with Tag = '3'

Receive LCRs

sent from

ps3.example.com

Propagate all locally

captured LCRs to

ps4.example.com,

except LCRs with Tag = '4'

Receive LCRs

sent from

ps4.example.com

Enqueue LCRs

(including Tags)

Capture Changes

with Any Tag

(including a NULL tag)

Capture

Process�

Redo

Log

Record

apply

changes

from

ps4.example.com

(Tag is '4')

Record

apply

changes

from

ps2.example.com

(Tag is '2')

Record

apply

changes

from

ps3.example.com

(Tag is '3')

Queue

Apply Process for�
ps2.example.com changes

Apply Process for

ps3.example.com changes

Apply Process for

ps4.example.com changes

Dequeue LCRs sent

From ps4.example.com

Dequeue

LCRs sent

From

ps3.example.com

Dequeue LCRs

sent From

ps2.example.com

Apply Changes sent from

ps4.example.com

Apply Changes sent from

ps3.example.com

Apply Changes sent from

ps2.example.com

Record user

changes

(Tag is NULL)

Database Objects

Figure 10-5 illustrates how tags are used at one of the secondary databases
(ps2.example.com).

Chapter 10
Oracle Streams Tags in a Replication Environment

10-14

Figure 10-5 Tags Used at a Secondary Database

Secondary Database ps2.example.com

Database Objects

Propagate locally

captured LCRs to

ps1.example.com

Receive LCRs

From Primary

Database

Enqueue

LCRs

Capture Changes

with NULL Tag

Capture

Process�

Redo

Log

Record

changes

from

ps1.example.com

(Tag is '00')

Queue

Apply Process for ps1.example.com changes

Dequeue LCRs �
sent from �
ps1.example.com

Apply Changes sent from ps1.example.com

Record user changes

(Tag is NULL)

User Changes

See Also:

"About Hub-And-Spoke Replication Environments"

10.5.3 Hub-and-Spoke Replication Environment with Several
Extended Secondary Databases

In this environment, one primary database shares data with several secondary
databases, but the secondary databases have other secondary databases connected
to them, which will be called remote secondary databases. This environment is an
extension of the environment described in "Hub-and-Spoke Replication Environments".

If a remote secondary database allows changes to the replicated database objects,
then the remote secondary database does not share data directly with the primary
database. Instead, it shares data indirectly with the primary database through a

Chapter 10
Oracle Streams Tags in a Replication Environment

10-15

secondary database. So, the shared data exists at the primary database, at each
secondary database, and at each remote secondary database. Changes made at any
of these databases can be captured and propagated to all of the other databases.
Figure 10-6 illustrates an environment with one primary database and multiple
extended secondary databases.

Figure 10-6 Primary Database and Several Extended Secondary Databases

Remote

Secondary

Database

Primary

Database

Remote

Secondary

Database

Secondary

Database

. . .

Secondary

Database

Secondary

Database

Remote

Secondary

Database

Remote

Secondary

Database

Remote

Secondary

Database

Remote

Secondary

Database

.

In such an environment, you can avoid change cycling in the following way:

• Configure the primary database in the same way that it is configured in the
example described in "Hub-and-Spoke Replication Environments".

• Configure each remote secondary database similar to the way that each
secondary database is configured in the example described in "Hub-and-Spoke
Replication Environments". The only difference is that the remote secondary
databases share data directly with secondary databases, not the primary
database.

Chapter 10
Oracle Streams Tags in a Replication Environment

10-16

• At each secondary database, configure one apply process to apply changes from
the primary database with a redo tag value that is equivalent to the hexadecimal
value '00'. This value is the default tag value for an apply process.

• At each secondary database, configure one apply process to apply changes from
each of its remote secondary databases with a redo tag value that is unique for the
remote secondary database.

• Configure the capture process at each secondary database to capture all changes
to the shared data in the redo log, regardless of the tag value for the changes.

• Configure one propagation from the queue at each secondary database to the
queue at the primary database. The propagation should use a positive rule set
with rules that instruct the propagation to propagate all LCRs in the queue at the
secondary database to the queue at the primary database, except for changes that
originated at the primary database. You do this by adding a condition to the rules
that evaluates to TRUE only if the tag in the LCR does not equal '00'. For example,
enter a condition similar to the following for row LCRs:

:dml.get_tag() IS NULL OR :dml.get_tag()!=HEXTORAW('00')

You can use the and_condition parameter in a procedure in the DBMS_STREAMS_ADM
package to add this condition to system-created rules, or you can use the
CREATE_RULE procedure in the DBMS_RULE_ADM package to create rules with this
condition. When you specify the condition in the and_condition parameter,
specify :lcr instead of :dml or :ddl. See Oracle Streams Concepts and
Administration for more information about the and_condition parameter.

• Configure one propagation from the queue at each secondary database to the
queue at each remote secondary database. Each propagation should use a
positive rule set with rules that instruct the propagation to propagate all LCRs in
the queue at the secondary database to the queue at the remote secondary
database, except for changes that originated at the remote secondary database.
You do this by adding a condition to the rules that evaluates to TRUE only if the tag
in the LCR does not equal the tag value for the remote secondary database.

For example, if the tag value of a remote secondary database is equivalent to the
hexadecimal value '19', then enter a condition similar to the following for row
LCRs:

:dml.get_tag() IS NULL OR :dml.get_tag()!=HEXTORAW('19')

You can use the and_condition parameter in a procedure in the DBMS_STREAMS_ADM
package to add this condition to system-created rules, or you can use the
CREATE_RULE procedure in the DBMS_RULE_ADM package to create rules with this
condition. When you specify the condition in the and_condition parameter,
specify :lcr instead of :dml or :ddl. See Oracle Streams Concepts and
Administration for more information about the and_condition parameter.

By configuring the environment in this way, you prevent change cycling, and no
changes originating at any database are lost.

See Also:

"About Hub-And-Spoke Replication Environments"

Chapter 10
Oracle Streams Tags in a Replication Environment

10-17

10.6 Managing Oracle Streams Tags
You can set or get the value of the tags generated by the current session or by an
apply process. The following sections describe how to set and get tag values.

• Managing Oracle Streams Tags for the Current Session

• Managing Oracle Streams Tags for an Apply Process

See Also:

"Monitoring Oracle Streams Tags"

10.6.1 Managing Oracle Streams Tags for the Current Session
The following topics contain instructions for setting and getting the tag for the current
session:

• Setting the Tag Values Generated by the Current Session

• Getting the Tag Value for the Current Session

10.6.1.1 Setting the Tag Values Generated by the Current Session
You can set the tag for all redo entries generated by the current session using the
SET_TAG procedure in the DBMS_STREAMS package. For example, to set the tag to the
hexadecimal value of '1D' in the current session, run the following procedure:

BEGIN
 DBMS_STREAMS.SET_TAG(
 tag => HEXTORAW('1D'));
END;
/

After running this procedure, each redo entry generated by DML or DDL statements in
the current session will have a tag value of 1D. Running this procedure affects only the
current session.

The following are considerations for the SET_TAG procedure:

• This procedure is not transactional. That is, the effects of SET_TAG cannot be rolled
back.

• If the SET_TAG procedure is run to set a non-NULL session tag before a data
dictionary build has been performed on the database, then the redo entries for a
transaction that started before the dictionary build might not include the specified
tag value for the session. Therefore, perform a data dictionary build before using
the SET_TAG procedure in a session. A data dictionary build happens when the
DBMS_CAPTURE_ADM.BUILD procedure is run. The BUILD procedure can be run
automatically when a capture process is created.

Chapter 10
Managing Oracle Streams Tags

10-18

10.6.1.2 Getting the Tag Value for the Current Session
You can get the tag for all redo entries generated by the current session using the
GET_TAG procedure in the DBMS_STREAMS package. For example, to get the hexadecimal
value of the tags generated in the redo entries for the current session, run the
following procedure:

SET SERVEROUTPUT ON
DECLARE
 raw_tag RAW(2048);
BEGIN
 raw_tag := DBMS_STREAMS.GET_TAG();
 DBMS_OUTPUT.PUT_LINE('Tag Value = ' || RAWTOHEX(raw_tag));
END;
/

You can also display the tag value for the current session by querying the DUAL view:

SELECT DBMS_STREAMS.GET_TAG FROM DUAL;

10.6.2 Managing Oracle Streams Tags for an Apply Process
The following topics contain instructions for setting and removing the tag for an apply
process:

• Setting the Tag Values Generated by an Apply Process

• Removing the Apply Tag for an Apply Process

•

See Also:

• "Tags and an Apply Process" for conceptual information about how tags
are used by an apply process and apply handlers

• Oracle Streams Concepts and Administration

10.6.2.1 Setting the Tag Values Generated by an Apply Process
An apply process generates redo entries when it applies changes to a database or
invokes handlers. You can set the default tag for all redo entries generated by an
apply process when you create the apply process using the CREATE_APPLY procedure in
the DBMS_APPLY_ADM package, or when you alter an existing apply process using the
ALTER_APPLY procedure in the DBMS_APPLY_ADM package. In both of these procedures, set
the apply_tag parameter to the value you want to specify for the tags generated by the
apply process.

For example, to set the value of the tags generated in the redo log by an existing apply
process named strep01_apply to the hexadecimal value of '7', run the following
procedure:

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(

Chapter 10
Managing Oracle Streams Tags

10-19

 apply_name => 'strep01_apply',
 apply_tag => HEXTORAW('7'));
END;
/

After running this procedure, each redo entry generated by the apply process will have
a tag value of 7.

10.6.2.2 Removing the Apply Tag for an Apply Process
You remove the apply tag for an apply process by setting the remove_apply_tag
parameter to TRUE in the ALTER_APPLY procedure in the DBMS_APPLY_ADM package.
Removing the apply tag means that each redo entry generated by the apply process
has a NULL tag. For example, the following procedure removes the apply tag from an
apply process named strep01_apply.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strep01_apply',
 remove_apply_tag => TRUE);
END;
/

10.7 Monitoring Oracle Streams Tags
The following sections contain queries that you can run to display the Oracle Streams
tag for the current session and the default tag for each apply process:

• Displaying the Tag Value for the Current Session

• Displaying the Default Tag Value for Each Apply Process

See Also:

• "Managing Oracle Streams Tags"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_STREAMS package

10.7.1 Displaying the Tag Value for the Current Session
You can display the tag value generated in all redo entries for the current session by
querying the DUAL view:

SELECT DBMS_STREAMS.GET_TAG FROM DUAL;

Your output looks similar to the following:

GET_TAG
--
1D

You can also determine the tag for a session by calling the DBMS_STREAMS.GET_TAG
function.

Chapter 10
Monitoring Oracle Streams Tags

10-20

10.7.2 Displaying the Default Tag Value for Each Apply Process
You can get the default tag for all redo entries generated by each apply process by
querying for the APPLY_TAG value in the DBA_APPLY data dictionary view. For example, to
get the hexadecimal value of the default tag generated in the redo entries by each
apply process, run the following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A30
COLUMN APPLY_TAG HEADING 'Tag Value' FORMAT A30

SELECT APPLY_NAME, APPLY_TAG FROM DBA_APPLY;

Your output looks similar to the following:

Apply Process Name Tag Value
------------------------------ ------------------------------
APPLY_FROM_MULT2 00
APPLY_FROM_MULT3 00

A handler or custom rule-based transformation function associated with an apply
process can get the tag by calling the DBMS_STREAMS.GET_TAG function.

Chapter 10
Monitoring Oracle Streams Tags

10-21

11
Oracle Streams Heterogeneous
Information Sharing

This chapter explains concepts relating to Oracle Streams support for information
sharing between Oracle databases and non-Oracle databases.

This chapter contains these topics:

• Oracle to Non-Oracle Data Sharing with Oracle Streams

• Non-Oracle to Oracle Data Sharing with Oracle Streams

• Non-Oracle to Non-Oracle Data Sharing with Oracle Streams

Note:

A new feature called XStream is available in Oracle Database 11g Release 2
(11.2) and later. XStream enables Oracle Call Interface and Java applications
to access the database changes in a stream. See Oracle Database XStream
Guide for information about XStream.

11.1 Oracle to Non-Oracle Data Sharing with Oracle
Streams

To share DML changes from an Oracle source database to a non-Oracle destination
database, the Oracle database functions as a proxy and carries out some steps that
would usually be done at the destination database. That is, the LCRs intended for the
non-Oracle destination database are dequeued in the Oracle database itself and an
apply process at the Oracle database applies the changes to the non-Oracle database
across a network connection through an Oracle Database Gateway. Figure 11-1
shows an Oracle database sharing data with a non-Oracle database.

11-1

Figure 11-1 Oracle to Non-Oracle Heterogeneous Data Sharing

Heterogeneous

Services

Oracle

Database

Non-Oracle

Database

Queue

Database

Objects

Dequeue

LCRs

Oracle

Database

Gateway

Apply

ChangesApply

Process�

You should configure the Oracle Database Gateway to use the transaction model
COMMIT_CONFIRM.

See Also:

The Oracle documentation for your specific Oracle Database Gateway for
information about using the transaction model COMMIT_CONFIRM for your Oracle
Database Gateway

11.1.1 Change Capture and Staging in an Oracle to Non-Oracle
Environment

In an Oracle to non-Oracle environment, a capture process or a synchronous capture
functions the same way as it would in an Oracle-only environment. That is, a capture
process finds changes in the redo log, captures them based on its rules, and
enqueues the captured changes as logical change records (LCRs) into an ANYDATA
queue. A synchronous capture uses an internal mechanism to capture changes based
on its rules and enqueue the captured changes as row LCRs into an ANYDATA queue. In
addition, a single capture process or synchronous capture can capture changes that
will be applied at both Oracle and non-Oracle databases.

Similarly, the ANYDATA queue that stages the LCRs functions the same way as it would
in an Oracle-only environment, and you can propagate LCRs to any number of
intermediate queues in Oracle databases before they are applied at a non-Oracle
database.

Chapter 11
Oracle to Non-Oracle Data Sharing with Oracle Streams

11-2

See Also:

• Oracle Streams Concepts and Administration for general information
about capture processes, synchronous captures, staging, and
propagations

• Preparing for Oracle Streams Replication for information about capture
processes, synchronous captures, staging, and propagations in an Oracle
Streams replication environment

11.1.2 Change Apply in an Oracle to Non-Oracle Environment
An apply process running in an Oracle database uses Heterogeneous Services and an
Oracle Database Gateway to apply changes encapsulated in LCRs directly to
database objects in a non-Oracle database. The LCRs are not propagated to a queue
in the non-Oracle database, as they would be in an Oracle-only Oracle Streams
environment. Instead, the apply process applies the changes directly through a
database link to the non-Oracle database.

Note:

Oracle Streams apply processes do not support Generic Connectivity.

See Also:

Oracle Streams Concepts and Administration

11.1.2.1 Apply Process Configuration in an Oracle to Non-Oracle Environment
This section describes the configuration of an apply process that will apply changes to
a non-Oracle database.

11.1.2.1.1 Before Creating an Apply Process in an Oracle to Non-Oracle Environment
Before you create an apply process that will apply changes to a non-Oracle database,
configure Heterogeneous Services, the Oracle Database Gateway, and a database
link.

Oracle Streams supports the following Oracle Database Gateways:

• Oracle Database Gateway for Sybase

• Oracle Database Gateway for Informix

• Oracle Database Gateway for SQL Server

• Oracle Database Gateway for DRDA

Chapter 11
Oracle to Non-Oracle Data Sharing with Oracle Streams

11-3

The database link will be used by the apply process to apply the changes to the non-
Oracle database. The database link must be created with an explicit CONNECT TO clause.

See Also:

• Oracle Database Heterogeneous Connectivity User's Guide for more
information about Heterogeneous Services and Oracle Database Gateway

• The Oracle documentation for your Oracle Database Gateway

11.1.2.1.2 Apply Process Creation in an Oracle to Non-Oracle Environment
After the database link has been created and is working properly, create the apply
process using the CREATE_APPLY procedure in the DBMS_APPLY_ADM package and specify
the database link for the apply_database_link parameter. After you create an apply
process, you can use apply process rules to specify which changes are applied at the
non-Oracle database.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the procedures in the DBMS_APPLY_ADM package

• Oracle Streams Concepts and Administration for information about
specifying apply process rules

11.1.2.1.3 Substitute Key Columns in an Oracle to Non-Oracle Heterogeneous
Environment

If you use substitute key columns for any of the tables at the non-Oracle database,
then specify the database link to the non-Oracle database when you run the
SET_KEY_COLUMNS procedure in the DBMS_APPLY_ADM package.

See Also:

Oracle Streams Concepts and Administration

11.1.2.1.4 Parallelism in an Oracle to Non-Oracle Heterogeneous Environment
You must set the parallelism apply process parameter to 1, the default setting, when
an apply process is applying changes to a non-Oracle database. Currently, parallel
apply to non-Oracle databases is not supported. However, you can use multiple apply
processes to apply changes a non-Oracle database.

Chapter 11
Oracle to Non-Oracle Data Sharing with Oracle Streams

11-4

11.1.2.1.5 Procedure DML Handlers in an Oracle to Non-Oracle Heterogeneous
Environment

If you use a procedure DML handler to process row LCRs for any of the tables at the
non-Oracle database, then specify the database link to the non-Oracle database when
you run the SET_DML_HANDLER procedure in the DBMS_APPLY_ADM package.

See Also:

Oracle Streams Concepts and Administration for information about message
processing options for an apply process

11.1.2.1.6 Message Handlers in an Oracle to Non-Oracle Heterogeneous Environment
If you want to use a message handler to process user messages for a non-Oracle
database, then, when you run the CREATE_APPLY procedure in the DBMS_APPLY_ADM
package, specify the database link to the non-Oracle database using the
apply_database_link parameter, and specify the message handler procedure using the
message_handler parameter.

See Also:

Oracle Streams Concepts and Administration for information about message
processing options and managing message handlers

11.1.2.1.7 Error and Conflict Handlers in an Oracle to Non-Oracle Heterogeneous
Environment

Currently, error handlers and conflict handlers are not supported when sharing data
from an Oracle database to a non-Oracle database. If an apply error occurs, then the
transaction containing the LCR that caused the error is moved into the error queue in
the Oracle database.

11.1.2.2 Data Types Applied at Non-Oracle Databases
When applying changes to a non-Oracle database, an apply process applies changes
made to columns of only the following data types:

• CHAR

• VARCHAR2

• NCHAR

• NVARCHAR2

• NUMBER

• DATE

• RAW

Chapter 11
Oracle to Non-Oracle Data Sharing with Oracle Streams

11-5

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

The apply process does not apply changes in columns of the following data types to
non-Oracle databases: CLOB, NCLOB, BLOB, BFILE, LONG, LONG RAW, ROWID, UROWID, user-
defined types (including object types, REFs, varrays, and nested tables), and Oracle-
supplied types (including Any types, XML types, spatial types, and media types). The
apply process raises an error when an LCR contains a data type that is not listed, and
the transaction containing the LCR that caused the error is moved to the error queue
in the Oracle database.

Each Oracle Database Gateway might have further limitations regarding data types.
For a data type to be supported in an Oracle to non-Oracle environment, the data type
must be supported by both Oracle Streams and the Oracle Database Gateway being
used.

See Also:

• Oracle Database SQL Language Reference for more information about
these data types

• The Oracle documentation for your specific Oracle Database Gateway

11.1.2.3 Types of DML Changes Applied at Non-Oracle Databases
When you specify that DML changes made to certain tables should be applied at a
non-Oracle database, an apply process can apply only the following types of DML
changes:

• INSERT

• UPDATE

• DELETE

Note:

The apply process cannot apply DDL changes at non-Oracle databases.

11.1.2.4 Instantiation in an Oracle to Non-Oracle Environment
Before you start an apply process that applies changes to a non-Oracle database,
complete the following steps to instantiate each table at the non-Oracle database:

1. Use the DBMS_HS_PASSTHROUGH package or the tools supplied with the non-Oracle
database to create the table at the non-Oracle database.

Chapter 11
Oracle to Non-Oracle Data Sharing with Oracle Streams

11-6

The following is an example that uses the DBMS_HS_PASSTHROUGH package to create
the hr.regions table in the het.example.com non-Oracle database:

DECLARE
 ret INTEGER;
BEGIN
ret := DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@het.example.com (
 'CREATE TABLE regions (region_id INTEGER, region_name VARCHAR(50))');
END;
/
COMMIT;

See Also:

Oracle Database Heterogeneous Connectivity User's Guide and the Oracle
documentation for your specific Oracle Database Gateway for more
information about Heterogeneous Services and Oracle Database Gateway

2. If the changes that will be shared between the Oracle and non-Oracle database
are captured by a capture process or synchronous capture at the Oracle database,
then prepare all tables that will share data for instantiation.

See Also:

"Preparing Database Objects for Instantiation at a Source Database"

3. Create a PL/SQL procedure (or a C program) that performs the following actions:

• Gets the current SCN using the GET_SYSTEM_CHANGE_NUMBER function in the
DBMS_FLASHBACK package.

• Invokes the ENABLE_AT_SYSTEM_CHANGE_NUMBER procedure in the DBMS_FLASHBACK
package to set the current session to the obtained SCN. This action ensures
that all fetches are done using the same SCN.

• Populates the table at the non-Oracle site by fetching row by row from the
table at the Oracle database and then inserting row by row into the table at the
non-Oracle database. All fetches should be done at the SCN obtained using
the GET_SYSTEM_CHANGE_NUMBER function.

For example, the following PL/SQL procedure gets the flashback SCN, fetches
each row in the hr.regions table in the current Oracle database, and inserts them
into the hr.regions table in the het.example.com non-Oracle database. Notice that
flashback is disabled before the rows are inserted into the non-Oracle database.

SET SERVEROUTPUT ON
CREATE OR REPLACE PROCEDURE insert_reg IS
 CURSOR c1 IS
 SELECT region_id, region_name FROM hr.regions;
 c1_rec c1 % ROWTYPE;
 scn NUMBER;
BEGIN
 scn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
 DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER(
 query_scn => scn);
 /* Open c1 in flashback mode */

Chapter 11
Oracle to Non-Oracle Data Sharing with Oracle Streams

11-7

 OPEN c1;
 /* Disable Flashback */
 DBMS_FLASHBACK.DISABLE;
 LOOP
 FETCH c1 INTO c1_rec;
 EXIT WHEN c1%NOTFOUND;
 /*
 Note that all the DML operations inside the loop are performed
 with Flashback disabled
 */
 INSERT INTO hr.regions@het.example.com VALUES (
 c1_rec.region_id,
 c1_rec.region_name);
 END LOOP;
 COMMIT;
 DBMS_OUTPUT.PUT_LINE('SCN = ' || scn);
 EXCEPTION WHEN OTHERS THEN
 DBMS_FLASHBACK.DISABLE;
 RAISE;
END;
/

Make a note of the SCN returned.

If the Oracle Database Gateway you are using supports the Heterogeneous
Services callback functionality, then you can replace the loop in the previous
example with the following SQL statement:

INSERT INTO hr.region@het.example.com SELECT * FROM hr.region@!;

Note:

The user who creates and runs the procedure in the previous example must
have EXECUTE privilege on the DBMS_FLASHBACK package and all privileges on the
tables involved.

See Also:

Oracle Database Heterogeneous Connectivity User's Guide and the Oracle
documentation for your specific Oracle Database Gateway for information
about callback functionality and your Oracle Database Gateway

4. Set the instantiation SCN for the table at the non-Oracle database. Specify the
SCN you obtained in Step 3 in the SET_TABLE_INSTANTIATION_SCN procedure in the
DBMS_APPLY_ADM package to instruct the apply process to skip all LCRs with
changes that occurred before the SCN you obtained in Step 3. Ensure that you set
the apply_database_link parameter to the database link for the remote non-Oracle
database.

Chapter 11
Oracle to Non-Oracle Data Sharing with Oracle Streams

11-8

See Also:

"Setting Instantiation SCNs at a Destination Database" and Oracle Database
PL/SQL Packages and Types Reference for more information about the
SET_TABLE_INSTANTIATION_SCN procedure

11.1.3 Transformations in an Oracle to Non-Oracle Environment
In an Oracle to non-Oracle environment, you can specify rule-based transformations
during capture or apply the same way as you would in an Oracle-only environment. In
addition, if your environment propagates LCRs to one or more intermediate Oracle
databases before they are applied at a non-Oracle database, then you can specify a
rule-based transformation during propagation from a queue at an Oracle database to
another queue at an Oracle database.

See Also:

Oracle Streams Concepts and Administration for more information about rule-
based transformations

11.1.4 Messaging Gateway and Oracle Streams
Messaging Gateway is a feature of the Oracle database that provides propagation
between Oracle queues and non-Oracle message queuing systems. Messages
enqueued into an Oracle queue are automatically propagated to a non-Oracle queue,
and the messages enqueued into a non-Oracle queue are automatically propagated to
an Oracle queue. It provides guaranteed message delivery to the non-Oracle
messaging system and supports the native message format for the non-Oracle
messaging system. It also supports specification of user-defined transformations that
are invoked while propagating from an Oracle queue to the non-Oracle messaging
system or from the non-Oracle messaging system to an Oracle queue.

See Also:

Oracle Database Advanced Queuing User's Guide for more information about
the Messaging Gateway

11.1.5 Error Handling in an Oracle to Non-Oracle Environment
If the apply process encounters an unhandled error when it tries to apply an LCR at a
non-Oracle database, then the transaction containing the LCR is placed in the error
queue in the Oracle database that is running the apply process. The apply process
detects data conflicts in the same way as it does in an Oracle-only environment, but
automatic conflict resolution is not supported currently in an Oracle to non-Oracle
environment. Therefore, any data conflicts encountered are treated as apply errors.

Chapter 11
Oracle to Non-Oracle Data Sharing with Oracle Streams

11-9

11.1.6 Example Oracle to Non-Oracle Streams Environment
Oracle Streams Extended Examples contains a detailed example that includes sharing
data in an Oracle to non-Oracle Streams environment.

11.2 Non-Oracle to Oracle Data Sharing with Oracle
Streams

To capture and propagate changes from a non-Oracle database to an Oracle
database, a custom application is required. This application gets the changes made to
the non-Oracle database by reading from transaction logs, by using triggers, or by
some other method. The application must assemble and order the transactions and
must convert each change into a logical change record (LCR). Next, the application
must enqueue the LCRs in an Oracle database using the DBMS_STREAMS_MESSAGING
package or the DBMS_AQ package. The application must commit after enqueuing all
LCRs in each transaction. Figure 11-2 shows a non-Oracle databases sharing data
with an Oracle database.

Figure 11-2 Non-Oracle to Oracle Heterogeneous Data Sharing

Oracle

Database

Non-Oracle

Database

Queue

Get

Changes

Dequeue

LCRs

Enqueue

LCRs

Database

Objects

User

Application

Apply

Changes

Apply

Process�

11.2.1 Change Capture in a Non-Oracle to Oracle Environment
Because the custom user application is responsible for assembling changes at the
non-Oracle database into LCRs and enqueuing the LCRs at the Oracle database, the
application is completely responsible for change capture. Therefore, the application
must construct LCRs that represent changes at the non-Oracle database and then
enqueue these LCRs into the queue at the Oracle database. The application can
enqueue multiple transactions concurrently, but the transactions must be committed in
the same order as the transactions on the non-Oracle source database.

Chapter 11
Non-Oracle to Oracle Data Sharing with Oracle Streams

11-10

See Also:

"Constructing and Enqueuing LCRs" for more information about constructing
and enqueuing LCRs

11.2.2 Staging in a Non-Oracle to Oracle Environment
To ensure the same transactional consistency at both the Oracle database where
changes are applied and the non-Oracle database where changes originate, you must
use a transactional queue to stage the LCRs at the Oracle database. For example,
suppose a single transaction contains three row changes, and the custom application
enqueues three row LCRs, one for each change, and then commits. With a
transactional queue, a commit is performed by the apply process after the third
row LCR, retaining the consistency of the transaction. If you use a nontransactional
queue, then a commit is performed for each row LCR by the apply process. The
SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package creates a transactional queue
automatically.

Also, the queue at the Oracle database should be a commit-time queue. A commit-
time queue orders LCRs by approximate commit system change number (approximate
CSCN) of the transaction that includes the LCRs. Commit-time queues preserve
transactional dependency ordering between LCRs in the queue, if the application that
enqueued the LCRs commits the transactions in the correct order. Also, commit-time
queues ensure consistent browses of LCRs in a queue.

See Also:

Oracle Streams Concepts and Administration for more information about
transactional queues and commit-time queues

11.2.3 Change Apply in a Non-Oracle to Oracle Environment
In a non-Oracle to Oracle environment, the apply process functions the same way as it
would in an Oracle-only environment. That is, it dequeues each LCR from its
associated queue based on apply process rules, performs any rule-based
transformation, and either sends the LCR to a handler or applies it directly. Error
handling and conflict resolution also function the same as they would in an Oracle-only
environment. So, you can specify a prebuilt update conflict handler or create a custom
conflict handler to resolve conflicts.

The apply process should be configured to apply persistent LCRs, not captured LCRs.
So, the apply process should be created using the CREATE_APPLY procedure in the
DBMS_APPLY_ADM package, and the apply_captured parameter should be set to FALSE
when you run this procedure. After the apply process is created, you can use
procedures in the DBMS_STREAMS_ADM package to add rules for LCRs to the apply
process rule sets.

Chapter 11
Non-Oracle to Oracle Data Sharing with Oracle Streams

11-11

See Also:

• Oracle Streams Concepts and Administration for more information about
apply processes, rules, and rule-based transformations

• Oracle Streams Conflict Resolution

11.2.4 Instantiation from a Non-Oracle Database to an Oracle
Database

There is no automatic way to instantiate tables that exist at a non-Oracle database at
an Oracle database. However, you can perform the following general procedure to
instantiate a table manually:

1. At the non-Oracle database, use a non-Oracle utility to export the table to a flat
file.

2. At the Oracle database, create an empty table that matches the table at the non-
Oracle database.

3. At the Oracle database, use SQL*Loader to load the contents of the flat file into
the table.

See Also:

Oracle Database Utilities for information about using SQL*Loader

11.3 Non-Oracle to Non-Oracle Data Sharing with Oracle
Streams

Oracle Streams supports data sharing between two non-Oracle databases through a
combination of non-Oracle to Oracle data sharing and Oracle to non-Oracle data
sharing. Such an environment would use Oracle Streams in an Oracle database as an
intermediate database between two non-Oracle databases.

For example, a non-Oracle to non-Oracle environment can consist of the following
databases:

• A non-Oracle database named het1.example.com

• An Oracle database named dbs1.example.com

• A non-Oracle database named het2.example.com

A user application assembles changes at het1.example.com and enqueues them in
dbs1.example.com. Next, the apply process at dbs1.example.com applies the changes to
het2.example.com using Heterogeneous Services and an Oracle Database Gateway.
Another apply process at dbs1.example.com could apply some or all of the changes in
the queue locally at dbs1.example.com. One or more propagations at dbs1.example.com
could propagate some or all of the changes in the queue to other Oracle databases.

Chapter 11
Non-Oracle to Non-Oracle Data Sharing with Oracle Streams

11-12

Part II
Administering Oracle Streams Replication

This part describes managing Oracle Streams replication and contains the following
chapters:

• Managing Oracle Streams Replication

• Comparing and Converging Data

• Managing Logical Change Records (LCRs)

12
Managing Oracle Streams Replication

This chapter contains instructions for managing an Oracle Streams replication
environment.

This chapter contains these topics:

• About Managing Oracle Streams

• Tracking LCRs Through a Stream

• Splitting and Merging an Oracle Streams Destination

• Changing the DBID or Global Name of a Source Database

• Resynchronizing a Source Database in a Multiple-Source Environment

• Performing Database Point-in-Time Recovery in an Oracle Streams Environment

• Running Flashback Queries in an Oracle Streams Replication Environment

• Recovering from Operation Errors

12.1 About Managing Oracle Streams
After an Oracle Streams replication environment is in place, you can manage the
Oracle Streams components at each database. Management includes administering
the components. For example, you can set capture process parameters to modify the
behavior of a capture process. Management also includes monitoring the Oracle
Streams components and troubleshooting them if there are problems.

The following documentation provides instructions for managing Oracle Streams:

• Oracle Streams Concepts and Administration provides detailed instructions about
managing Oracle Streams components.

• Oracle Streams Replication Administrator's Guide (this document) provides
instructions that are specific to an Oracle Streams replication environment.

• The online help for the Oracle Streams interface in Oracle Enterprise Manager
Cloud Control provides information about managing Oracle Streams with Oracle
Enterprise Manager Cloud Control.

12.2 Tracking LCRs Through a Stream
A logical change record (LCR) typically flows through a stream in the following way:

1. A database change is captured, formatted into an LCR, and enqueued. A capture
process or a synchronous capture can capture database changes implicitly. An
application or user can construct and enqueue LCRs to capture database changes
explicitly.

2. One or more propagations send the LCR to other databases in the Oracle Streams
environment.

12-1

3. One or more apply processes dequeue the LCR and process it.

You can track an LCR through a stream using one of the following methods:

• When LCRs are captured by a capture process, you can set the
message_tracking_frequency capture process parameter to 1 or another relatively
low value.

• When LCRs are captured by a capture process or a synchronous capture, or when
LCRs are constructed by an application, you can run the SET_MESSAGE_TRACKING
procedure in the DBMS_STREAMS_ADM package.

LCR tracking is useful if LCRs are not being applied as expected by one or more apply
processes. When this happens, you can use LCR tracking to determine where the
LCRs are stopping in the stream and address the problem at that location.

After using one of these methods to track LCRs, use the V$STREAMS_MESSAGE_TRACKING
view to monitor the progress of LCRs through a stream. By tracking an LCR through
the stream, you can determine where the LCR is blocked. After LCR tracking is
started, each LCR includes a tracking label.

When LCR tracking is started using the message_tracking_frequency capture process
parameter, the tracking label is capture_process_name:AUTOTRACK, where
capture_process_name is the name of the capture process. Only the first 20 bytes of the
capture process name are used; the rest is truncated if it exceeds 20 bytes.

The SET_MESSAGE_TRACKING procedure enables you to specify a tracking label that
becomes part of each LCR generated by the current session. Using this tracking label,
you can query the V$STREAMS_MESSAGE_TRACKING view to track the LCRs through the
stream and see how they were processed by each Oracle Streams client. When you
use the SET_MESSAGE_TRACKING procedure, the following LCRs are tracked:

• When a capture process or a synchronous capture captures an LCR, and a
tracking label is set for the session that made the captured database change, the
tracking label is included in the LCR automatically.

• When a user or application constructs an LCR and a tracking label is set for the
session that constructs the LCR, the tracking label is included in the LCR
automatically.

To track LCRs through a stream, complete the following steps:

1. Start LCR tracking.

You can start LCR tracking in one of the following ways:

• Connect to database running the capture process and set the
message_tracking_frequency capture process parameter to 1 or another
relatively low value. After setting the capture process parameter, proceed to
Step 2.

See Oracle Streams Concepts and Administration for information about setting
capture process parameters.

See Oracle Database Administrator's Guide for instructions about connecting
to a database in SQL*Plus.

• Run the SET_MESSAGE_TRACKING procedure in the DBMS_STREAMS_ADM package by
completing the following steps:

Chapter 12
Tracking LCRs Through a Stream

12-2

a. In SQL*Plus, start a session. To use a tracking label for database changes
captured by a capture process or synchronous capture, connect to the source
database for the capture process or synchronous capture.

b. Begin message tracking:

BEGIN
 DBMS_STREAMS_ADM.SET_MESSAGE_TRACKING(
 tracking_label => 'TRACK_LCRS');
END;
/

You can use any label you choose to track LCRs. This example uses the
TRACK_LCRS label.

Information about the LCRs is tracked in memory, and the
V$STREAMS_MESSAGE_TRACKING dynamic performance view is populated with
information about the LCRs.

c. Optionally, to ensure that message tracking is set in the session, query the
tracking label:

SELECT DBMS_STREAMS_ADM.GET_MESSAGE_TRACKING() TRACKING_LABEL FROM DUAL;

This query should return the tracking label you specified in Step 1.b:

TRACKING_LABEL
--
TRACK_LCRS

2. Make changes to the source database that will be captured by the capture process
or synchronous capture that starts the stream, or construct and enqueue the LCRs
you want to track. Typically, these LCRs are for testing purposes only. For
example, you can insert several dummy rows into a table and then modify these
rows. When the testing is complete, you can delete the rows.

3. Monitor the entire Oracle Streams environment to track the LCRs. To do so, query
the V$STREAMS_MESSAGE_TRACKING view at each database that processes the LCRs.

For example, run the following query at each database:

COLUMN COMPONENT_NAME HEADING 'Component|Name' FORMAT A10
COLUMN COMPONENT_TYPE HEADING 'Component|Type' FORMAT A12
COLUMN ACTION HEADING 'Action' FORMAT A11
COLUMN SOURCE_DATABASE_NAME HEADING 'Source|Database' FORMAT A10
COLUMN OBJECT_OWNER HEADING 'Object|Owner' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A10
COLUMN COMMAND_TYPE HEADING 'Command|Type' FORMAT A7

SELECT COMPONENT_NAME,
 COMPONENT_TYPE,
 ACTION,
 SOURCE_DATABASE_NAME,
 OBJECT_OWNER,
 OBJECT_NAME,
 COMMAND_TYPE
 FROM V$STREAMS_MESSAGE_TRACKING;

Ensure that you specify the correct tracking label in the WHERE clause.

These queries will show how the LCRs were processed at each database. If the
LCRs are not being applied at destination databases, then these queries will show
where in the stream the LCRs are stopping.

Chapter 12
Tracking LCRs Through a Stream

12-3

For example, the output at a source database with a synchronous capture is
similar to the following:

Component Component Source Object Object Command
Name Type Action Database Owner Name Type
---------- ------------ ----------- ---------- ------ ---------- -------
CAPTURE SYNCHRONOUS Create HUB.EXAMPL HR EMPLOYEES UPDATE
 CAPTURE E.COM
CAPTURE SYNCHRONOUS Rule evalua HUB.EXAMPL HR EMPLOYEES UPDATE
 CAPTURE tion E.COM
CAPTURE SYNCHRONOUS Enqueue HUB.EXAMPL HR EMPLOYEES UPDATE
 CAPTURE E.COM

The output at a destination database with an apply process is similar to the
following:

Component Component Source Object Object Command
Name Type Action Database Owner Name Type
---------- ------------ ----------- ---------- ------ ---------- -------
APPLY_SYNC APPLY READER Dequeue HUB.EXAMPL HR EMPLOYEES UPDATE
_CAP E.COM
APPLY_SYNC APPLY READER Dequeue HUB.EXAMPL HR EMPLOYEES UPDATE
_CAP E.COM
APPLY_SYNC APPLY READER Dequeue HUB.EXAMPL HR EMPLOYEES UPDATE
_CAP E.COM

You can query additional columns in the V$STREAMS_MESSAGE_TRACKING view to
display more information. For example, the ACTION_DETAILS column provides
detailed information about each action.

4. Stop message tracking. Complete one of the following actions based your choice
in Step 1:

• If you set the message_tracking_frequency capture process parameter in Step
1, then set this parameter back to its default value. The default is to track
every two-millionth message.

To set this capture process parameter back to its default value, connect to
database running the capture process and set the message_tracking_frequency
capture process parameter to NULL.

See Oracle Streams Concepts and Administration for information about setting
capture process parameters.

• If you started message tracking in the current session, then stop message
tracking in the session.

To stop message tracking in the current session, set the tracking_label
parameter to NULL in the SET_MESSAGE_TRACKING procedure:

BEGIN
 DBMS_STREAMS_ADM.SET_MESSAGE_TRACKING(
 tracking_label => NULL,
 actions => DBMS_STREAMS_ADM.ACTION_MEMORY);
END;
/

Chapter 12
Tracking LCRs Through a Stream

12-4

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the message_tracking_frequency capture process parameter

12.3 Splitting and Merging an Oracle Streams Destination
The following sections describe how to split and merge streams and provide examples
that do so:

• About Splitting and Merging Oracle Streams

• Split and Merge Options

• Examples That Split and Merge Oracle Streams

12.3.1 About Splitting and Merging Oracle Streams
Splitting and merging an Oracle Streams destination is useful under the following
conditions:

• A single capture process captures changes that are sent to two or more apply
processes.

• An apply process stops accepting changes captured by the capture process. The
apply process might stop accepting changes if, for example, the apply process is
disabled, the database that contains the apply process goes down, there is a
network problem, the computer system running the database that contains the
apply process goes down, or for some other reason.

When these conditions are met, it is best to split the problem destination off from the
other destinations. The reason to split the destination off depends on whether the
configuration uses the combined capture and apply optimization:

• If the apply process at the problem destination is part of a combined capture and
apply optimization and the destination is not split off, then performance will suffer
when the destination becomes available again. In this case, the capture process
must capture the changes that must now be applied at the destination previously
split off. The other destinations will not receive more recent changes until the
problem destination has caught up. However, if the problem destination is split off,
then it can catch up to the other destinations independently, without affecting the
other destinations.

• If the apply process at the destination is not part of a combined capture and apply
optimization, then captured changes that cannot be sent to the problem
destination queue remain in the source queue, causing the source queue size to
increase. Eventually, the source queue will spill captured logical change records
(LCRs) to hard disk, and the performance of the Oracle Streams replication
environment will suffer.

Split and merge operations are possible in the following types of Oracle Streams
replication environments:

• Changes captured by a single capture process are sent to multiple remote
destinations using propagations and are applied by apply processes at the remote
destinations.

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-5

• Changes captured by a single capture process are applied locally by multiple
apply processes on the same database that is running the capture process.

• Changes captured by a single capture process are sent to one or more remote
destinations using propagations and are applied locally by one or more apply
processes on the same database that is running the capture process.

For environment with local capture and apply, split and merge operations are possible
when the capture process and apply processes share the same queue, and when a
propagation sends changes from the capture process's queue to an apply process's
queue within the one database.

Figure 12-1 shows an Oracle Streams replication environment that uses propagations
to send changes to multiple destinations. In this example, destination database A is
down.

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-6

Figure 12-1 Problem Destination in an Oracle Streams Replication Environment

Destination�
Database�

B

Queue
Dequeue

LCRs

Propagation B

Apply

Process�

Capture

Database

Destination�
Database�

A

Queue
Dequeue

LCRs

Propagation A

Apply

Process�

Destination�
Database�

C

Queue
Dequeue

LCRs

Propagation C

Apply

Process�

Queue
Enqueue

LCRs

Capture

Process�

You can use the following data dictionary views to determine when there is a problem
with a stream:

• Query the V$BUFFERED_QUEUES view to identify how many messages are in a
buffered queue and how many of these messages have spilled to hard disk.

• When propagations are used, query the DBA_PROPAGATION and V$PROPAGATION_SENDER
views to show the propagations in a database and the status of each propagation

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-7

To avoid degraded performance in this situation, split the stream that flows to the
problem database off from the other streams flowing from the capture process. When
the problem is corrected, merge the stream back into the other streams flowing from
the capture process.

You can configure capture process parameters to split and merge a problem stream
automatically, or you can split and merge a problem stream manually. Either way, the
SPLIT_STREAMS, MERGE_STREAMS_JOB, and MERGE_STREAMS procedures in the
DBMS_STREAMS_ADM package are used. The SPLIT_STREAMS procedure splits off the stream
for the problem destination from all of the other streams flowing from a capture
process to other destinations. The SPLIT_STREAMS procedure always clones the capture
process and the queue. The SPLIT_STREAMS procedure also clones the propagation in
an environment that sends changes to remote destination databases. The cloned
versions of these components are used by the stream that is split off. While the
problem stream is split off, the streams to other destinations proceed as usual.

Figure 12-2 shows the cloned stream created by the SPLIT_STREAMS procedure.

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-8

Figure 12-2 Splitting Oracle Streams

Destination�
Database�

B

Queue
Dequeue

LCRs

Propagation B

Apply

Process�

Capture

Database

Destination�
Database�

A

Queue
Dequeue

LCRs

Cloned�
Propagation A

Apply

Process�

Destination�
Database�

C

Queue
Dequeue

LCRs

Propagation C

Apply

Process�

Cloned �
Queue

Queue
Enqueue

LCRs

Capture

Process�

Cloned Capture�
Process�

When the problem destination becomes available again, the cloned stream begins to
send captured changes to the destination database again.

Figure 12-3 shows a destination database A that is up and running and a cloned
capture process that is enabled at the capture database. The cloned stream begins to
flow and starts to catch up to the original streams.

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-9

Figure 12-3 Cloned Stream Begins Flowing and Starts to Catch Up to One Original Stream

Destination�
Database�

B

Queue
Dequeue

LCRs

Propagation B

Apply

Process�

Capture

Database

Destination�
Database�

A

Queue
Dequeue

LCRs

Cloned�
Propagation A

Apply

Process�

Destination�
Database�

C

Queue
Dequeue

LCRs

Propagation C

Apply

Process�

Cloned �
Queue

Queue
Enqueue

LCRs

Enqueue

LCRs

Capture

Process�

Cloned Capture�
Process

When the cloned stream catches up to one of the original streams, one of the following
procedures merges the streams:

• The MERGE_STREAMS procedure merges the stream that was split off back into the
other streams flowing from the original capture process.

• The MERGE_STREAMS_JOB procedure determines whether the streams are within the
user-specified merge threshold. If they are, then the MERGE_STREAMS_JOB procedure

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-10

runs the MERGE_STREAMS procedure. If the streams are not within the merge
threshold, then the MERGE_STREAMS_JOB procedure does nothing.

Typically, it is best to run the MERGE_STREAMS_JOB procedure instead of running the
MERGE_STREAMS procedure directly, because the MERGE_STREAMS_JOB procedure
automatically determines whether the streams are ready to merge before merging
them.

Figure 12-4 shows the results of running the MERGE_STREAMS procedure. The Oracle
Streams replication environment has its original components, and all of the streams
are flowing normally.

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-11

Figure 12-4 Merging Oracle Streams

Destination�
Database�

B

Queue
Dequeue

LCRs

Propagation B

Apply

Process�

Capture

Database

Destination�
Database�

A

Queue
Dequeue

LCRs

Propagation A

Apply

Process�

Destination�
Database�

C

Queue
Dequeue

LCRs

Propagation C

Apply

Process�

Queue
Enqueue

LCRs

Capture

Process�

See Also:

Oracle Streams Concepts and Administration for information about combined
capture and apply

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-12

12.3.2 Split and Merge Options
The following split and merge options are available:

• Automatic Split and Merge

• Manual Split and Automatic Merge

• Manual Split and Merge With Generated Scripts

12.3.2.1 Automatic Split and Merge
You can set two capture process parameters, split_threshold and merge_theshold, so
that Oracle Streams performs split and merge operations automatically. When these
parameters are set to specify automatic split and merge, an Oracle Scheduler job
monitors the streams flowing from the capture process. When an Oracle Scheduler job
identifies a problem with a stream, the job splits the problem stream off from the other
streams flowing from the capture process. When a split operation is complete, a new
Oracle Scheduler merge job monitors the split stream. When the problem is corrected,
this job merges the stream back with the other streams.

When the split_threshold capture process parameter is set to INFINITE, automatic
splitting is disabled. When the split_threshold parameter is not set to INFINITE,
automatic splitting is enabled. Automatic splitting only occurs when communication
with an apply process has been lost for the number of seconds specified in the
split_threshold parameter. For example, communication with an apply process is lost
when an apply process becomes disabled or a destination database goes down.
Automatic splitting does not occur when one stream is processing changes slower
than other streams.

When a stream is split, a cloned capture process is created. The cloned capture
process might be enabled or disabled after the split depending on whether the
configuration uses the combined capture and apply optimization:

• If the apply process is part of a combined capture and apply optimization, then the
cloned capture process is enabled. The cloned capture process does not capture
any changes until the apply process is enabled and communication is established
with the apply process.

• If the apply process is not part of a combined capture and apply optimization, then
the cloned capture process is disabled so that LCRs do not build up in a queue.
When the apply process is enabled and the cloned stream can flow, you can start
the cloned capture process manually.

The split stream is merged back with the original streams automatically when the
difference, in seconds, between CAPTURE_MESSAGE_CREATE_TIME in the GV$STREAMS_CAPTURE
view of the cloned capture process and the original capture process is less than or
equal to the value specified for the merge_threshold capture process parameter. The
CAPTURE_MESSAGE_CREATE_TIME records the time when a captured change was recorded
in the redo log. If the difference is greater than the value specified by this capture
process parameter, then automatic merge does not begin, and the value is recorded in
the LAG column of the DBA_STREAMS_SPLIT_MERGE view.

When the capture process and the apply process for a stream run in different
database instances, automatic split and merge is always possible for the stream.
When a capture process and apply process for a stream run on the same database

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-13

instance, automatic split and merge is possible only when all of the following
conditions are met:

• The capture process and apply process use the same queue.

• The apply process has no errors in its error queue.

• The apply process is not an XStream outbound server.

• The apply process is stopped.

• No messages have spilled from the buffered queue to the hard disk.

See Also:

• "Splitting and Merging an Oracle Streams Destination Automatically" for
an example

• Oracle Database PL/SQL Packages and Types Reference for more
information about the capture process parameters

• Oracle Streams Concepts and Administration for information about
monitoring automatic split and merge operations

• Oracle Database XStream Guide

12.3.2.2 Manual Split and Automatic Merge
When you split streams manually with the SPLIT_STREAMS procedure, the
auto_merge_threshold procedure parameter gives you the option of automatically
merging the stream back to the original capture process when the problem at the
destination is corrected. After the apply process for the problem stream is accepting
changes, you can start the cloned capture process and wait for the cloned capture
process to catch up to the original capture process. When the cloned capture process
nearly catches up, the auto_merge_threshold parameter setting determines whether the
split stream is merged automatically or manually:

• When auto_merge_threshold is set to a positive number, the SPLIT_STREAMS
procedure creates an Oracle Scheduler job with a schedule. The job runs the
MERGE_STREAMS_JOB procedure and specifies a merge threshold equal to the value
specified in the auto_merge_threshold parameter. You can modify the schedule for
a job after it is created.

In this case, the split stream is merged back with the original streams
automatically when the difference, in seconds, between
CAPTURE_MESSAGE_CREATE_TIME in the GV$STREAMS_CAPTURE view of the cloned capture
process and the original capture process is less than or equal to the value
specified for the auto_merge_threshold parameter. The CAPTURE_MESSAGE_CREATE_TIME
records the time when a captured change was recorded in the redo log.

• When auto_merge_threshold is set to NULL or 0 (zero), the split stream is not merged
back with the original streams automatically. To merge the split stream with the
original streams, run the MERGE_STREAMS_JOB or MERGE_STREAMS procedure manually.

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-14

See Also:

"Splitting an Oracle Streams Destination Manually and Merging It
Automatically" for an example

12.3.2.3 Manual Split and Merge With Generated Scripts
The SPLIT_STREAMS and MERGE_STREAMS procedures can perform actions directly or
generate a script that performs the actions when the script is run. Using a procedure to
perform actions directly is simpler than running a script, and the split or merge
operation is performed immediately. However, you might choose to generate a script
for the following reasons:

• You want to review the actions performed by the procedure before splitting or
merging streams.

• You want to modify the script to customize its actions.

For example, you might choose to modify the script if you want to change the rules in
the rule set for the cloned capture process. In some Oracle Streams replication
environments, only a subset of the changes made to the source database are sent to
each destination database, and each destination database might receive a different
subset of the changes. In such an environment, you can modify the rule set for the
cloned capture process so that it only captures changes that are propagated by the
cloned propagation.

The perform_actions parameter in each procedure controls whether the procedure
performs actions directly:

• To split or merge streams directly when you run one of these procedures, set the
perform_actions parameter to TRUE. The default value for this parameter is TRUE.

• To generate a script when you run one of these procedures, set the
perform_actions parameter to FALSE, and use the script_name and
script_directory_object parameters to specify the name and location of the script.

See Also:

"Splitting and Merging an Oracle Streams Destination Manually With Scripts"
for an example

12.3.3 Examples That Split and Merge Oracle Streams
The following sections provide instructions for splitting and merging streams:

• Splitting and Merging an Oracle Streams Destination Automatically

• Splitting an Oracle Streams Destination Manually and Merging It Automatically

• Splitting and Merging an Oracle Streams Destination Manually With Scripts

These examples make the following assumptions about the Oracle Streams replication
environment:

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-15

• A single capture process named strms_capture captures changes that are sent to
three destination databases.

• The propagations that send these changes to the destination queues at the
destination databases are the following:

– strms_prop_a

– strms_prop_b

– strms_prop_c

• A queue named streams_queue is the source queue for all three propagations.

• There is a problem at the destination for the strms_prop_a propagation. This
propagation cannot send messages to the destination queue.

• The other two propagations (strms_prop_b and strms_prop_c) are propagating
messages normally.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the SPLIT_STREAMS procedure and the MERGE_STREAMS
procedure

12.3.3.1 Splitting and Merging an Oracle Streams Destination Automatically
Before reviewing this example, see the following sections:

• "Automatic Split and Merge" for conceptual information

• "Examples That Split and Merge Oracle Streams" for assumptions about the
Oracle Streams replication environment in this example

Complete the following steps to split and merge a stream automatically:

1. In SQL*Plus, connect as the Oracle Streams administrator to the database with
the capture process.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Ensure that the following parameters are set properly for the strms_capture capture
process to enable automatic split and merge:

• split_threshold: Ensure that this parameter is not set to INFINITE. The default
setting for this parameter is 1800 seconds.

• merge_threshold: Ensure that this parameter is not set to a negative value. The
default setting for this parameter is 60 seconds.

To check the settings for these parameters, query the DBA_CAPTURE_PARAMETERS
view. See Oracle Streams Concepts and Administration for instructions.

3. If you must reset one or both of the capture process parameters described in
Step 2, then use Oracle Enterprise Manager Cloud Control or the SET_PARAMETER
procedure in the DBMS_CAPTURE_ADM package to reset the parameters. See Oracle
Streams Concepts and Administration for instructions about using the
SET_PARAMETER procedure.

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-16

4. Monitor the DBA_STREAMS_SPLIT_MERGE view periodically to check whether an
automatic split and merge operation is in process.

When an automatic split occurs, certain components, such as the capture process,
queue, and propagation, are cloned, and each is given a system-generated name.
The DBA_STREAMS_SPLIT_MERGE view contains the name of each cloned component,
and other information about the split and merge operation.

Query the DBA_STREAMS_SPLIT_MERGE view to determine whether a stream has been
split off from the original capture process:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original|Capture|Process' FORMAT A10
COLUMN ACTION_TYPE HEADING 'Action|Type' FORMAT A7
COLUMN STATUS_UPDATE_TIME HEADING 'Status|Update|Time' FORMAT A15
COLUMN STATUS HEADING 'Status' FORMAT A16
COLUMN JOB_NEXT_RUN_DATE HEADING 'Next Job|Run Date' FORMAT A20

SELECT ORIGINAL_CAPTURE_NAME,
 ACTION_TYPE,
 STATUS_UPDATE_TIME,
 STATUS,
 JOB_NEXT_RUN_DATE
 FROM DBA_STREAMS_SPLIT_MERGE
 ORDER BY STATUS_UPDATE_TIME DESC;

If a stream has been split off from the original capture process, then your output
looks similar to the following:

Original Status
Capture Action Update Next Job
Process Type Time Status Run Date
---------- ------- --------------- ---------------- --------------------
DB$CAP MERGE 01-APR-09 06.49 NOTHING TO MERGE 01-APR-09 06.54.29.0
 .29.204804 AM 00000 AM -07:00
DB$CAP SPLIT 01-APR-09 06.49 SPLIT DONE 01-APR-09 06.47.59.0
 .17.389146 AM 00000 AM -07:00

This output shows that an automatic split was performed. The merge job was run
at 01-APR-09 06.49.29.204804 AM, but the status shows NOTHING TO MERGE because
the split stream is not ready to merge yet. The SPLIT DONE status indicates that the
stream was split off at the following date and time: 01-APR-09 06.49.17.389146 AM.

5. After an automatic split is performed, correct the problem with the destination. The
problem is corrected when the apply process at the destination database can
accept changes from the cloned capture process. An Oracle Scheduler job
performs an automatic merge when the problem is corrected.

6. If the cloned capture process is disabled, then start the cloned capture process.
The cloned capture process is disabled only if the stream is not a combined
capture and apply optimization. See Oracle Streams Concepts and Administration
for instructions for starting a capture process.

The cloned capture process captures changes that satisfy its rule sets. These changes
are sent to the apply process.

During this time, an Oracle Scheduler job runs the MERGE_STREAMS_JOB procedure
according to its schedule. The MERGE_STREAMS_JOB procedure queries the
CAPTURE_MESSAGE_CREATE_TIME in the GV$STREAMS_CAPTURE view. When the difference
between CAPTURE_MESSAGE_CREATE_TIME of the cloned capture process and the original
capture process is less than or equal to the value of the merge_threshold capture
process parameter, the MERGE_STREAMS_JOB procedure determines that the streams are

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-17

ready to merge. The MERGE_STREAMS_JOB procedure runs the MERGE_STREAMS procedure
automatically to merge the streams back together.

The LAG column in the DBA_STREAMS_SPLIT_MERGE view tracks the time in seconds that the
cloned capture process lags behind the original capture process. The following query
displays the lag time:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original Capture Process' FORMAT A25
COLUMN CLONED_CAPTURE_NAME HEADING 'Cloned Capture Process' FORMAT A25
COLUMN LAG HEADING 'Lag' FORMAT 999999999999999

SELECT ORIGINAL_CAPTURE_NAME,
 CLONED_CAPTURE_NAME,
 LAG
 FROM DBA_STREAMS_SPLIT_MERGE
 WHERE ACTION_TYPE = 'MERGE';

Your output looks similar to the following:

Original Capture Process Cloned Capture Process Lag
------------------------- ------------------------- ----------------
DB$CAP CLONED$_DB$CAP_5 2048

This output shows that there is a lag of 2,048 seconds between the
CAPTURE_MESSAGE_CREATE_TIME values for the original capture process and the cloned
capture process. When the cloned capture process is within the threshold, the merge
job can start the MERGE_STREAMS procedure. By default, the merge threshold is 60
seconds.

The MERGE_STREAMS procedure performs the following actions:

• Stops the cloned capture process.

• Re-creates the original propagation called strms_prop_a.

• Drops the cloned propagation.

• Drops the cloned capture process.

• Drops the cloned queue.

Repeat the query in Step 4 periodically to monitor the split and merge operation. After
the merge operation is complete, the output for this query is similar to the following:

Original Status
Capture Action Update Next Job
Process Type Time Status Run Date
---------- ------- --------------- ---------------- --------------------
DB$CAP MERGE 01-APR-09 07.32 NOTHING TO MERGE 01-APR-09 07.37.04.0
 .04.820795 AM 00000 AM -07:00
DB$CAP MONITOR 01-APR-09 07.32 MERGE DONE 01-APR-09 07.36.20.0
 .04.434925 AM 00000 AM -07:00
DB$CAP SPLIT 01-APR-09 06.49 SPLIT DONE 01-APR-09 06.47.59.0
 .17.389146 AM 00000 AM -07:00

This output shows that the split stream was merged back into the original capture
process at the following date an time: 01-APR-09 07.32.04.434925 AM. The next status
shows NOTHING TO MERGE because there are no remaining split streams.

After the streams are merged, the Oracle Streams replication environment has the
same components as it had before the split and merge operation. Information about

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-18

the completed split and merge operation is stored in the DBA_STREAMS_SPLIT_MERGE_HIST
for future reference.

See Also:

Oracle Streams Concepts and Administration for information about monitoring
automatic split and merge operations

12.3.3.2 Splitting an Oracle Streams Destination Manually and Merging It
Automatically

Before reviewing this example, see the following sections:

• "Manual Split and Automatic Merge" for conceptual information

• "Examples That Split and Merge Oracle Streams" for assumptions about the
Oracle Streams replication environment in this example

The example in this section splits the stream manually and merges it automatically.
That is, the perform_actions parameter is set to TRUE in the SPLIT_STREAMS procedure.
Also, the example merges the streams automatically at the appropriate time because
the auto_merge_threshold parameter is to set a positive number (60) in the
SPLIT_STREAMS procedure.

Complete the following steps to split streams directly and merge streams
automatically:

1. In SQL*Plus, connect as the Oracle Streams administrator to the database with
the capture process.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Run the following procedure to split the stream flowing through propagation
strms_prop_a from the other propagations flowing from the strms_capture capture
process:

DECLARE
 schedule_name VARCHAR2(30);
 job_name VARCHAR2(30);
BEGIN
 schedule_name := 'merge_job1_schedule';
 job_name := 'merge_job1';
 DBMS_STREAMS_ADM.SPLIT_STREAMS(
 propagation_name => 'strms_prop_a',
 cloned_propagation_name => 'cloned_prop_a',
 cloned_queue_name => 'cloned_queue',
 cloned_capture_name => 'cloned_capture',
 perform_actions => TRUE,
 auto_merge_threshold => 60,
 schedule_name => schedule_name,
 merge_job_name => job_name);
END;
/

Running this procedure performs the following actions:

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-19

• Creates a new queue called cloned_queue.

• Creates a new propagation called cloned_prop_a that propagates messages
from the cloned_queue queue to the existing destination queue used by the
strms_prop_a propagation. The cloned propagation cloned_prop_a uses the
same rule set as the original propagation strms_prop_a.

• Stops the capture process strms_capture.

• Queries the acknowledge SCN for the original propagation strms_prop_a. The
acknowledged SCN is the last SCN acknowledged by the apply process that
applies the changes sent by the propagation. The ACKED_SCN value in the
DBA_PROPAGATION view shows the acknowledged SCN for a propagation.

• Creates a new capture process called cloned_capture. The start SCN for
cloned_capture is set to the value of the acknowledged SCN for the
strms_prop_a propagation. The cloned capture process cloned_capture uses
the same rule set as the original capture process strms_capture.

• Drops the original propagation strms_prop_a.

• Starts the original capture process strms_capture with the start SCN set to the
value of the acknowledged SCN for the strms_prop_a propagation.

• Creates an Oracle Scheduler job named merge_job1 with a schedule named
merge_job1_schedule. Both the job and the schedule are owned by the user
who ran the SPLIT_STREAMS procedure. The schedule starts to run when the
SPLIT_STREAMS procedure completes. The system defines the initial schedule,
but you can modify it in the same way that you would modify any Oracle
Scheduler job. See Oracle Database Administrator's Guide for instructions.

3. Correct the problem with the destination of cloned_prop_a. The problem is
corrected when the apply process at the destination database can accept changes
from the cloned capture process.

4. While connected as the Oracle Streams administrator, start the cloned capture
process by running the following procedure:

exec DBMS_CAPTURE_ADM.START_CAPTURE('cloned_capture');

After the cloned capture process cloned_capture starts running, it captures changes
that satisfy its rule sets from the acknowledged SCN forward. These changes are
propagated by the cloned_prop_a propagation and processed by the apply process at
the destination database.

During this time, the Oracle Scheduler job runs the MERGE_STREAMS_JOB procedure
according to its schedule. The MERGE_STREAMS_JOB procedure queries the
CAPTURE_MESSAGE_CREATE_TIME in the GV$STREAMS_CAPTURE view. When the difference
between CAPTURE_MESSAGE_CREATE_TIME of the cloned capture process cloned_capture
and the original capture process strms_capture is less than or equal 60 seconds, the
MERGE_STREAMS_JOB procedure determines that the streams are ready to merge. The
MERGE_STREAMS_JOB procedure runs the MERGE_STREAMS procedure automatically to merge
the streams back together.

The following query displays the CAPTURE_MESSAGE_CREATE_TIME for the original capture
process and cloned capture process:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A17
COLUMN STATE HEADING 'State' FORMAT A20
COLUMN CREATE_MESSAGE HEADING 'Last Message|Create Time'

SELECT CAPTURE_NAME,

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-20

 STATE,
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_MESSAGE
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

Capture Last Message
Name State Create Time
----------------- -------------------- -----------------
DB$CAP CAPTURING CHANGES 07:22:55 04/01/09
CLONED$_DB$CAP_5 CAPTURING CHANGES 06:50:39 04/01/09

This output shows that there is more than a 30 minute difference between the
CAPTURE_MESSAGE_CREATE_TIME values for the original capture process and the cloned
capture process. When the cloned capture process is within the threshold, the merge
job can start the MERGE_STREAMS procedure. By default, the merge threshold is 60
seconds.

The MERGE_STREAMS procedure performs the following actions:

• Stops the cloned capture process cloned_capture.

• Re-creates the propagation called strms_prop_a.

• Drops the cloned propagation cloned_prop_a.

• Drops the cloned capture process cloned_capture.

• Drops the cloned queue cloned_queue.

After the streams are merged, the Oracle Streams replication environment has the
same components as it had before the split and merge operation. Information about
the completed split and merge operation is stored in the DBA_STREAMS_SPLIT_MERGE_HIST
for future reference.

12.3.3.3 Splitting and Merging an Oracle Streams Destination Manually With
Scripts

Before reviewing this example, see the following sections:

• "Manual Split and Merge With Generated Scripts" for conceptual information

• "Examples That Split and Merge Oracle Streams" for assumptions about the
Oracle Streams replication environment in this example

The example in this section splits and merges streams by generating and running
scripts. That is, the perform_actions parameter is set to FALSE in the SPLIT_STREAMS
procedure. Also, the example merges the streams manually at the appropriate time
because the auto_merge_threshold parameter is set to NULL in the SPLIT_STREAMS
procedure.

Complete the following steps to use scripts to split and merge streams:

1. In SQL*Plus, connect as the Oracle Streams administrator to the database with
the capture process.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. If it does not already exist, then create a directory object named db_dir to hold the
scripts generated by the procedures:

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-21

CREATE DIRECTORY db_dir AS '/usr/db_files';

3. Run the following procedure to generate a script to split the streams:

DECLARE
 schedule_name VARCHAR2(30);
 job_name VARCHAR2(30);
BEGIN
 DBMS_STREAMS_ADM.SPLIT_STREAMS(
 propagation_name => 'strms_prop_a',
 cloned_propagation_name => 'cloned_prop_a',
 cloned_queue_name => 'cloned_queue',
 cloned_capture_name => 'cloned_capture',
 perform_actions => FALSE,
 script_name => 'split.sql',
 script_directory_object => 'db_dir',
 auto_merge_threshold => NULL,
 schedule_name => schedule_name,
 merge_job_name => job_name);
END;
/

Running this procedure generates the split.sql script. The script contains the
actions that will split the stream flowing through propagation strms_prop_a from the
other propagations flowing from the strms_capture capture process.

4. Go to the directory used by the db_dir directory object, and open the split.sql
script with a text editor.

5. Examine the script and make modifications, if necessary.

6. Save and close the script.

7. While connected as the Oracle Streams administrator in SQL*Plus, run the script:

@/usr/db_files/split.sql

Running the script performs the following actions:

• Runs the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package to create a
queue called cloned_queue.

• Runs the CREATE_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package
to create a propagation called cloned_prop_a. This new propagation
propagates messages from the cloned_queue queue to the existing destination
queue used by the strms_prop_a propagation. The cloned propagation
cloned_prop_a uses the same rule set as the original propagation strms_prop_a.

The CREATE_PROPAGATION procedure sets the original_propagation_name
parameter to strms_prop_a and the auto_merge_threshold parameter to NULL.

• Runs the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop the
capture process strms_capture.

• Queries the acknowledge SCN for the original propagation strms_prop_a. The
acknowledged SCN is the last SCN acknowledged by the apply process that
applies the changes sent by the propagation. The ACKED_SCN value in the
DBA_PROPAGATION view shows the acknowledged SCN for a propagation.

• Runs the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package to create
a capture process called cloned_capture. The start SCN for cloned_capture is
set to the value of the acknowledged SCN for the strms_prop_a propagation.

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-22

The cloned capture process cloned_capture uses the same rule set as the
original capture process strms_capture.

• Runs the DROP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package to
drop the original propagation strms_prop_a.

• Runs the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package to start the
original capture process strms_capture with the start SCN set to the value of
the acknowledged SCN for the strms_prop_a propagation.

8. Correct the problem with the destination of cloned_prop_a. The problem is
corrected when the apply process at the destination database can accept changes
from the cloned capture process.

9. While connected as the Oracle Streams administrator, start the cloned capture
process by running the following procedure:

exec DBMS_CAPTURE_ADM.START_CAPTURE('cloned_capture');

10. Monitor the Oracle Streams replication environment until the cloned capture
process catches up to, or nearly catches up to, the original capture process.
Specifically, query the CAPTURE_MESSAGE_CREATION_TIME column in the
GV$STREAMS_CAPTURE view for each capture process.

Run the following query to check the CAPTURE_MESSAGE_CREATE_TIME for each capture
process periodically:

SELECT CAPTURE_NAME,
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY')
 FROM GV$STREAMS_CAPTURE;

Do not move on to the next step until the difference between
CAPTURE_MESSAGE_CREATE_TIME of the cloned capture process cloned_capture and the
original capture process strms_capture is relatively small.

11. Run the following procedure to generate a script to merge the streams:

BEGIN
 DBMS_STREAMS_ADM.MERGE_STREAMS(
 cloned_propagation_name => 'cloned_prop_a',
 perform_actions => FALSE,
 script_name => 'merge.sql',
 script_directory_object => 'db_dir');
END;
/

Running this procedure generates the merge.sql script. The script contains the
actions that will merge the stream flowing through propagation cloned_prop_a with
the other propagations flowing from the strms_capture capture process.

12. Go to the directory used by the db_dir directory object, and open the merge.sql
script with a text editor.

13. Examine the script and make modifications, if necessary.

14. Save and close the script.

15. While connected as the Oracle Streams administrator in SQL*Plus, run the script:

@/usr/db_files/merge.sql

Running the script performs the following actions:

Chapter 12
Splitting and Merging an Oracle Streams Destination

12-23

• Runs the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop the
cloned capture process cloned_capture.

• Runs the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop the
original capture process strms_capture.

• Runs the CREATE_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package
to re-create the propagation called strms_prop_a.

• Starts the original capture process strms_capture from the lower SCN value of
these two SCN values:

– The acknowledged SCN of the cloned propagation cloned_prop_a.

– The lowest acknowledged SCN of the other propagations that propagate
changes captured by the original capture process (propagations
strms_prop_b and strms_prop_c in this example).

When the strms_capture capture process is started, it might recapture changes
that it already captured, or it might capture changes that were already
captured by the cloned capture process cloned_capture. In either case, the
relevant apply processes will discard any duplicate changes they receive.

• Runs the DROP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package to
drop the cloned propagation cloned_prop_a.

• Runs the DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to drop the
cloned capture process cloned_capture.

• Runs the REMOVE_QUEUE procedure in the DBMS_STREAMS_ADM package to drop the
cloned queue cloned_queue.

After the script runs successfully, the streams are merged, and the Oracle Streams
replication environment has the same components as it had before the split and merge
operation. Information about the completed split and merge operation is stored in the
DBA_STREAMS_SPLIT_MERGE_HIST for future reference.

12.4 Changing the DBID or Global Name of a Source
Database

Typically, database administrators change the DBID and global name of a database
when it is a clone of another database. You can view the DBID of a database by
querying the DBID column in the V$DATABASE dynamic performance view, and you can
view the global name of a database by querying the GLOBAL_NAME static data dictionary
view. When you change the DBID or global name of a source database, any existing
capture processes that capture changes originating at this source database become
unusable. The capture processes can be local capture processes or downstream
capture processes that capture changes that originated at the source database. Also,
any existing apply processes that apply changes from the source database become
unusable. However, existing synchronous captures and propagations do not need to
be re-created, although modifications to propagation rules might be necessary.

If a capture process or synchronous capture is capturing changes to a source
database for which you have changed the DBID or global name, then complete the
following steps:

1. Shut down the source database.

Chapter 12
Changing the DBID or Global Name of a Source Database

12-24

2. Restart the source database with RESTRICTED SESSION enabled using STARTUP
RESTRICT.

3. Drop the capture process using the DROP_CAPTURE procedure in the
DBMS_CAPTURE_ADM package. The capture process can be a local capture process at
the source database or a downstream capture process at a remote database.
Synchronous captures do not need to be dropped.

4. At the source database, run the ALTER SYSTEM SWITCH LOGFILE statement on the
database.

5. If any changes have been captured from the source database, then manually
resynchronize the data at all destination databases that apply changes originating
at this source database. If the database never captured any changes, then this
step is not necessary.

6. Modify any rules that use the source database name as a condition. The source
database name should be changed to the new global name of the source
database where appropriate in these rules. You might need to modify capture
process rules, propagation rules, and apply process rules at the local database
and at remote databases in the environment. Typically, synchronous capture rules
do not contain a condition for the source database.

7. Drop the apply processes that apply changes from the capture process that you
dropped in Step 3. Use the DROP_APPLY procedure in the DBMS_APPLY_ADM package to
drop an apply process. Apply processes that apply changes captured by
synchronous capture do not need to be dropped.

8. At each destination database that applies changes from the source database, re-
create the apply processes you dropped in Step 7. You might want to associate
the each apply process with the same rule sets it used before it was dropped. See
Configuring Implicit Apply for instructions.

9. Re-create the capture process you dropped in Step 3, if necessary. You might
want to associate the capture process with the same rule sets used by the capture
process you dropped in Step 3. See "Configuring a Capture Process" for
instructions.

10. At the source database, prepare database objects whose changes will be captured
by the re-created capture process for instantiation. See "Preparing Database
Objects for Instantiation at a Source Database".

11. At each destination database that applies changes from the source database, set
the instantiation SCN for all databases objects to which changes from the source
database will be applied. See "Setting Instantiation SCNs at a Destination
Database" for instructions.

12. Disable the restricted session using the ALTER SYSTEM DISABLE RESTRICTED SESSION
statement.

13. At each destination database that applies changes from the source database, start
the apply processes you created in Step 8.

14. At the source database, start the capture process you created in Step 9.

Chapter 12
Changing the DBID or Global Name of a Source Database

12-25

See Also:

Oracle Database Utilities for more information about changing the DBID of a
database using the DBNEWID utility

12.5 Resynchronizing a Source Database in a Multiple-
Source Environment

A multiple-source environment is one in which there is more than one source database
for any of the shared data. If a source database in a multiple-source environment
cannot be recovered to the current point in time, then you can use the method
described in this section to resynchronize the source database with the other source
databases in the environment. Some reasons why a database cannot be recovered to
the current point in time include corrupted archived redo logs or the media failure of an
online redo log group.

For example, a bidirectional Oracle Streams environment is one in which exactly two
databases share the replicated database objects and data. In this example, assume
that database A is the database that must be resynchronized and that database B is
the other source database in the environment. To resynchronize database A in this
bidirectional Oracle Streams environment, complete the following steps:

1. Verify that database B has applied all of the changes sent from database A. You
can query the V$BUFFERED_SUBSCRIBERS data dictionary view at database B to
determine whether the apply process that applies these changes has any
unapplied changes in its queue. See the example on viewing propagations
dequeuing LCRs from each buffered queue in Oracle Streams Concepts and
Administration for an example of such a query. Do not continue until all of these
changes have been applied.

2. Remove the Oracle Streams configuration from database A by running the
REMOVE_STREAMS_CONFIGURATION procedure in the DBMS_STREAMS_ADM package. See
Oracle Database PL/SQL Packages and Types Reference for more information
about this procedure.

3. At database B, drop the apply process that applies changes from database A. Do
not drop the rule sets used by this apply process because you will re-create the
apply process in a subsequent step.

4. Complete the steps in "Adding a New Database to an Existing Multiple-Source
Environment" to add database A back into the Oracle Streams environment.

12.6 Performing Database Point-in-Time Recovery in an
Oracle Streams Environment

Point-in-time recovery is the recovery of a database to a specified noncurrent time,
SCN, or log sequence number. The following sections discuss performing point-in-time
recovery in an Oracle Streams replication environment:

• Performing Point-in-Time Recovery on the Source in a Single-Source Environment

• Performing Point-in-Time Recovery in a Multiple-Source Environment

Chapter 12
Resynchronizing a Source Database in a Multiple-Source Environment

12-26

• Performing Point-in-Time Recovery on a Destination Database

See Also:

Oracle Database Backup and Recovery User's Guide for more information
about point-in-time recovery

12.6.1 Performing Point-in-Time Recovery on the Source in a Single-
Source Environment

A single-source Oracle Streams replication environment is one in which there is only
one source database for shared data. If database point-in-time recovery is required at
the source database in a single-source Oracle Streams environment, and any capture
processes that capture changes generated at a source database are running, then you
must stop these capture processes before you perform the recovery operation. Both
local and downstream capture process that capture changes generated at the source
database must be stopped. Typically, database administrators reset the log sequence
number of a database during point-in-time recovery. The ALTER DATABASE OPEN RESETLOGS
statement is an example of a statement that resets the log sequence number.

The instructions in this section assume that the single-source replication environment
has the following characteristics:

• Only one capture process named strm01_capture, which can be a local or
downstream capture process

• Only one destination database with the global name dest.example.com

• Only one apply process named strm01_apply at the destination database

If point-in-time recovery must be performed on the source database, then you can
follow these instructions to recover as many transactions as possible at the source
database by using transactions applied at the destination database. These instructions
assume that you can identify the transactions applied at the destination database after
the source point-in-time SCN and execute these transactions at the source database.

Note:

Oracle recommends that you set the apply process parameter
commit_serialization to FULL when performing point-in-time recovery in a
single-source Oracle Streams replication environment.

Complete the following steps to perform point-in-time recovery on the source database
in a single-source Oracle Streams replication environment:

1. Perform point-in-time recovery on the source database if you have not already
done so. Note the point-in-time recovery SCN because it is needed in subsequent
steps.

2. Ensure that the source database is in restricted mode.

Chapter 12
Performing Database Point-in-Time Recovery in an Oracle Streams Environment

12-27

3. Connect to the database running the capture process and list the rule sets used by
the capture process.

To list the rule sets used by the capture process, run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN RULE_SET_OWNER HEADING 'Positive|Rule Owner' FORMAT A15
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A15
COLUMN NEGATIVE_RULE_SET_OWNER HEADING 'Negative|Rule Owner' FORMAT A15
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A15

SELECT CAPTURE_NAME,
 RULE_SET_OWNER,
 RULE_SET_NAME,
 NEGATIVE_RULE_SET_OWNER,
 NEGATIVE_RULE_SET_NAME
 FROM DBA_CAPTURE;

Make a note of the rule sets used by the capture process. You will need to specify
these rule sets for the new capture process in Step 12.

4. Connect to the destination database and list the rule sets used by the apply
process.

To list the rule sets used by the capture process, run the following query:

COLUMN APPLY_NAME HEADING 'Apply|Process|Name' FORMAT A15
COLUMN RULE_SET_OWNER HEADING 'Positive|Rule Owner' FORMAT A15
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A15
COLUMN NEGATIVE_RULE_SET_OWNER HEADING 'Negative|Rule Owner' FORMAT A15
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A15

SELECT APPLY_NAME,
 RULE_SET_OWNER,
 RULE_SET_NAME,
 NEGATIVE_RULE_SET_OWNER,
 NEGATIVE_RULE_SET_NAME
 FROM DBA_APPLY;

Make a note of the rule sets used by the apply process. You will need to specify
these rule sets for the new apply process in Step 10.k.

5. Stop the capture process using the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM
package.

6. At the source database, perform a data dictionary build:

SET SERVEROUTPUT ON
DECLARE
 scn NUMBER;
BEGIN
 DBMS_CAPTURE_ADM.BUILD(
 first_scn => scn);
 DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/

Note the SCN value returned because it is needed in Step 12.

7. At the destination database, wait until all of the transactions from the source
database in the apply process's queue have been applied. The apply processes
should become idle when these transactions have been applied. You can query

Chapter 12
Performing Database Point-in-Time Recovery in an Oracle Streams Environment

12-28

the STATE column in both the V$STREAMS_APPLY_READER and V$STREAMS_APPLY_SERVER.
The state should be IDLE for the apply process in both views before you continue.

8. Perform a query at the destination database to determine the highest SCN for a
transaction that was applied.

If the apply process is running, then perform the following query:

SELECT HWM_MESSAGE_NUMBER FROM V$STREAMS_APPLY_COORDINATOR
 WHERE APPLY_NAME = 'STRM01_APPLY';

If the apply process is disabled, then perform the following query:

SELECT APPLIED_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS
 WHERE APPLY_NAME = 'STRM01_APPLY';

Note the highest apply SCN returned by the query because it is needed in
subsequent steps.

9. If the highest apply SCN obtained in Step 8 is less than the point-in-time recovery
SCN noted in Step 1, then proceed to Step 10. Otherwise, if the highest apply
SCN obtained in Step 8 is greater than or equal to the point-in-time recovery SCN
noted in Step 1, then the apply process has applied some transactions from the
source database after point-in-time recovery SCN, and you must complete the
following steps:

a. Manually execute the transactions that were applied after the point-in-time
SCN at the source database. When you execute these transactions at the
source database, ensure that you set an Oracle Streams tag in the session so
that the transactions will not be captured by the capture process. If no such
Oracle Streams session tag is set, then these changes can be cycled back to
the destination database. See "Managing Oracle Streams Tags for the Current
Session" for instructions.

b. Disable the restricted session at the source database.

c. Proceed to Step 11. Do not complete Step 10.

10. If the highest apply SCN obtained in Step 8 is less than the point-in-time recovery
SCN noted in Step 1, then the apply process has not applied any transactions
from the source database after point-in-time recovery SCN, and you must
complete the following steps:

a. Disable the restricted session at the source database.

b. Ensure that the apply process is running at the destination database.

c. Set the maximum_scn capture process parameter of the original capture process
to the point-in-time recovery SCN using the SET_PARAMETER procedure in the
DBMS_CAPTURE_ADM package.

d. Set the start SCN of the original capture process to the oldest SCN of the
apply process. You can determine the oldest SCN of a running apply process
by querying the OLDEST_SCN_NUM column in the V$STREAMS_APPLY_READER dynamic
performance view at the destination database. To set the start SCN of the
capture process, specify the start_scn parameter when you run the
ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

e. Ensure that the capture process writes information to the alert log by running
the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(

Chapter 12
Performing Database Point-in-Time Recovery in an Oracle Streams Environment

12-29

 capture_name => 'strm01_capture',
 parameter => 'write_alert_log',
 value => 'Y');
END;
/

f. Start the original capture process using the START_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

g. Ensure that the original capture process has captured all changes up to the
maximum_scn setting by querying the CAPTURED_SCN column in the DBA_CAPTURE
data dictionary view. When the value returned by the query is equal to or
greater than the maximum_scn value, the capture process should stop
automatically. When the capture process is stopped, proceed to the next step.

h. Find the value of the LAST_ENQUEUE_MESSAGE_NUMBER in the alert log. Note this
value because it is needed in subsequent steps.

i. At the destination database, wait until all the changes are applied. You can
monitor the applied changes for the apply process strm01_apply by running the
following queries at the destination database:

SELECT DEQUEUED_MESSAGE_NUMBER
 FROM V$STREAMS_APPLY_READER
 WHERE APPLY_NAME = 'STRM01_APPLY' AND
 DEQUEUED_MESSAGE_NUMBER = last_enqueue_message_number;

Substitute the LAST_ENQUEUE_MESSAGE_NUMBER found in the alert log in Step 10.h
for last_enqueue_message_number on the last line of the query. When this
query returns a row, all of the changes from the capture database have been
applied at the destination database.

Also, ensure that the state of the apply process reader server and each apply
server is IDLE. For example, run the following queries for an apply process
named strm01_apply:

SELECT STATE FROM V$STREAMS_APPLY_READER
 WHERE APPLY_NAME = 'STRM01_APPLY';

SELECT STATE FROM V$STREAMS_APPLY_SERVER
 WHERE APPLY_NAME = 'STRM01_APPLY';

When both of these queries return IDLE, move on to the next step.

j. At the destination database, drop the apply process using the DROP_APPLY
procedure in the DBMS_APPLY_ADM package.

k. At the destination database, create a new apply process. The new apply
process should use the same queue and rule sets used by the original apply
process.

l. At the destination database, start the new apply process using the START_APPLY
procedure in the DBMS_APPLY_ADM package.

11. Drop the original capture process using the DROP_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

12. Create a new capture process using the CREATE_CAPTURE procedure in the
DBMS_CAPTURE_ADM package to replace the capture process you dropped in Step 11.
Specify the SCN returned by the data dictionary build in Step 6 for both the
first_scn and start_scn parameters. The new capture process should use the
same queue and rule sets as the original capture process.

Chapter 12
Performing Database Point-in-Time Recovery in an Oracle Streams Environment

12-30

13. Start the new capture process using the START_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

12.6.2 Performing Point-in-Time Recovery in a Multiple-Source
Environment

A multiple-source environment is one in which there is more than one source database
for any of the shared data. If database point-in-time recovery is required at a source
database in a multiple-source Oracle Streams environment, then you can use another
source database in the environment to recapture the changes made to the recovered
source database after the point-in-time recovery.

For example, in a multiple-source Oracle Streams environment, one source database
can become unavailable at time T2 and undergo point in time recovery to an earlier
time T1. After recovery to T1, transactions performed at the recovered database
between T1 and T2 are lost at the recovered database. However, before the recovered
database became unavailable, assume that these transactions were propagated to
another source database and applied. In this case, you can use this other source
database to restore the lost changes to the recovered database.

Specifically, to restore changes made to the recovered database after the point-in-time
recovery, you configure a capture process to recapture these changes from the redo
logs at the other source database, a propagation to propagate these changes from the
database where changes are recaptured to the recovered database, and an apply
process at the recovered database to apply these changes.

Changes originating at the other source database that were applied at the recovered
database between T1 and T2 also have been lost and must be recovered. To
accomplish this, alter the capture process at the other source database to start
capturing changes at an earlier SCN. This SCN is the oldest SCN for the apply
process at the recovered database.

The following SCN values are required to restore lost changes to the recovered
database:

• Point-in-time SCN: The SCN for the point-in-time recovery at the recovered
database.

• Instantiation SCN: The SCN value to which the instantiation SCN must be set for
each database object involved in the recovery at the recovered database while
changes are being reapplied. At the other source database, this SCN value
corresponds to one less than the commit SCN of the first transaction that was
applied at the other source database and lost at the recovered database.

• Start SCN: The SCN value to which the start SCN is set for the capture process
created to recapture changes at the other source database. This SCN value
corresponds to the earliest SCN at which the apply process at the other source
database started applying a transaction that was lost at the recovered database.
This capture process can be a local or downstream capture process that uses the
other source database for its source database.

• Maximum SCN: The SCN value to which the maximum_scn parameter for the
capture process created to recapture lost changes should be set. The capture
process stops capturing changes when it reaches this SCN value. The current
SCN for the other source database is used for this value.

Chapter 12
Performing Database Point-in-Time Recovery in an Oracle Streams Environment

12-31

You should record the point-in-time SCN when you perform point-in-time recovery on
the recovered database. You can use the GET_SCN_MAPPING procedure in the
DBMS_STREAMS_ADM package to determine the other necessary SCN values.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the GET_SCN_MAPPING procedure

12.6.3 Performing Point-in-Time Recovery on a Destination Database
If database point-in-time recovery is required at a destination database in an Oracle
Streams environment, then you must reapply the captured changes that had already
been applied after the point-in-time recovery.

For each relevant capture process, you can choose either of the following methods to
perform point-in-time recovery at a destination database in an Oracle Streams
environment:

• Reset the start SCN for the existing capture process that captures the changes
that are applied at the destination database.

• Create a new capture process to capture the changes that must be reapplied at
the destination database.

Resetting the start SCN for the capture process is simpler than creating a new capture
process. However, if the capture process captures changes that are applied at multiple
destination databases, then the changes are resent to all the destination databases,
including the ones that did not perform point-in-time recovery. If a change is already
applied at a destination database, then it is discarded by the apply process, but you
might not want to use the network and computer resources required to resend the
changes to multiple destination databases. In this case, you can create and
temporarily use a new capture process and a new propagation that propagates
changes only to the destination database that was recovered.

The following sections provide instructions for each task:

• Resetting the Start SCN for the Existing Capture Process to Perform Recovery

• Creating a New Capture Process to Perform Recovery

If there are multiple apply processes at the destination database where you performed
point-in-time recovery, then complete one of the tasks in this section for each apply
process.

Neither of these methods should be used if any of the following conditions are true
regarding the destination database you are recovering:

• A propagation propagates persistent LCRs to the destination database. Both of
these methods reapply only captured LCRs at the destination database, not
persistent LCRs.

• In a directed networks configuration, the destination database is used to propagate
LCRs from a capture process to other databases, but the destination database
does not apply LCRs from this capture process.

Chapter 12
Performing Database Point-in-Time Recovery in an Oracle Streams Environment

12-32

• The oldest message number for an apply process at the destination database is
lower than the first SCN of a capture process that captures changes for this apply
process. The following query at a destination database lists the oldest message
number (oldest SCN) for each apply process:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

The following query at a source database lists the first SCN for each capture
process:

SELECT CAPTURE_NAME, FIRST_SCN FROM DBA_CAPTURE;

• The archived log files that contain the intended start SCN are no longer available.

If any of these conditions are true in your environment, then you cannot use the
methods described in this section. Instead, you must manually resynchronize the data
at all destination databases.

Note:

If you are using combined capture and apply in a single-source replication
environment, and the destination database has undergone point-in-time
recovery, then the Oracle Streams capture process automatically detects
where to capture changes upon restart, and no extra steps are required for it.
See Oracle Streams Concepts and Administration for more information.

See Also:

Oracle Streams Concepts and Administration for more information about SCN
values relating to a capture process and directed networks

12.6.3.1 Resetting the Start SCN for the Existing Capture Process to Perform
Recovery

If you decide to reset the start SCN for the existing capture process to perform point-
in-time recovery, then complete the following steps:

1. If the destination database is also a source database in a multiple-source Oracle
Streams environment, then complete the actions described in "Performing Point-
in-Time Recovery in a Multiple-Source Environment".

2. Drop the propagation that propagates changes from the source queue at the
source database to the destination queue at the destination database. Use the
DROP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package to drop the
propagation.

If you are using directed networks, and there are intermediate databases between
the source database and destination database, then drop the propagation at each
intermediate database in the path to the destination database, including the
propagation at the source database.

Do not drop the rule sets used by the propagations you drop.

Chapter 12
Performing Database Point-in-Time Recovery in an Oracle Streams Environment

12-33

If the existing capture process is a downstream capture process that is configured
at the destination database, then the downstream capture process is recovered to
the same point-in-time as the destination database when you perform point-in-time
recovery in Step 3. In this case, the remaining steps in this section after Step 3 are
not required. Ensure that the required redo log files are available to the capture
process.

Note:

You must drop the appropriate propagation(s). Disabling them is not sufficient.
You will re-create the propagation(s) in Step 7, and dropping them now
ensures that only LCRs created after resetting the start SCN for the capture
process are propagated.

See Also:

Oracle Streams Concepts and Administration for more information about
directed networks

3. Perform the point-in-time recovery at the destination database.

4. Query for the oldest message number (oldest SCN) from the source database for
the apply process at the destination database. Make a note of the results of the
query. The oldest message number is the earliest system change number (SCN)
that might need to be applied.

The following query at a destination database lists the oldest message number for
each apply process:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

5. Stop the existing capture process using the STOP_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

6. Reset the start SCN of the existing capture process.

To reset the start SCN for an existing capture process, run the ALTER_CAPTURE
procedure in the DBMS_CAPTURE_ADM package and set the start_scn parameter to the
value you recorded from the query in Step 4. For example, to reset the start SCN
for a capture process named strm01_capture to the value 829381993, run the
following ALTER_CAPTURE procedure:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 start_scn => 829381993);
END;
/

7. If you are not using directed networks between the source database and
destination database, then create a new propagation to propagate changes from
the source queue to the destination queue using the CREATE_PROPAGATION procedure
in the DBMS_PROPAGATION_ADM package. Specify any rule sets used by the original
propagation when you create the propagation.

Chapter 12
Performing Database Point-in-Time Recovery in an Oracle Streams Environment

12-34

If you are using directed networks, and there are intermediate databases between
the source database and destination database, then create a new propagation at
each intermediate database in the path to the destination database, including the
propagation at the source database.

8. Start the existing capture process using the START_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

12.6.3.2 Creating a New Capture Process to Perform Recovery
If you decide to create a capture process to perform point-in-time recovery, then
complete the following steps:

1. If the destination database is also a source database in a multiple-source Oracle
Streams environment, then complete the actions described in "Performing Point-
in-Time Recovery in a Multiple-Source Environment".

2. If you are not using directed networks between the source database and
destination database, then drop the propagation that propagates changes from the
source queue at the source database to the destination queue at the destination
database. Use the DROP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM
package to drop the propagation.

If you are using directed networks, and there are intermediate databases between
the source database and destination database, then drop the propagation that
propagates LCRs between the last intermediate database and the destination
database. You do not need to drop the propagations at the other intermediate
databases nor at the source database.

Note:

You must drop the appropriate propagation. Disabling it is not sufficient.

See Also:

Oracle Streams Concepts and Administration for more information about
directed networks

3. Perform the point-in-time recovery at the destination database.

4. Query for the oldest message number (oldest SCN) from the source database for
the apply process at the destination database. Make a note of the results of the
query. The oldest message number is the earliest system change number (SCN)
that might need to be applied.

The following query at a destination database lists the oldest message number for
each apply process:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

5. Create a queue at the source database to be used by the capture process using
the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package.

If you are using directed networks, and there are intermediate databases between
the source database and destination database, then create a queue at each

Chapter 12
Performing Database Point-in-Time Recovery in an Oracle Streams Environment

12-35

intermediate database in the path to the destination database, including the new
queue at the source database. Do not create a new queue at the destination
database.

6. If you are not using directed networks between the source database and
destination database, then create a new propagation to propagate changes from
the source queue created in Step 5 to the destination queue using the
CREATE_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package. Specify any
rule sets used by the original propagation when you create the propagation.

If you are using directed networks, and there are intermediate databases between
the source database and destination database, then create a propagation at each
intermediate database in the path to the destination database, including the
propagation from the source database to the first intermediate database. These
propagations propagate changes captured by the capture process you will create
in Step 7 between the queues created in Step 5.

7. Create a new capture process at the source database using the CREATE_CAPTURE
procedure in the DBMS_CAPTURE_ADM package. Set the source_queue parameter to the
local queue you created in Step 5 and the start_scn parameter to the value you
recorded from the query in Step 4. Also, specify any rule sets used by the original
capture process. If the rule sets used by the original capture process instruct the
capture process to capture changes that should not be sent to the destination
database that was recovered, then you can create and use smaller, customized
rule sets that share some rules with the original rule sets.

8. Start the capture process you created in Step 7 using the START_CAPTURE procedure
in the DBMS_CAPTURE_ADM package.

9. When the oldest message number of the apply process at the recovered database
is approaching the capture number of the original capture process at the source
database, stop the original capture process using the STOP_CAPTURE procedure in
the DBMS_CAPTURE_ADM package.

At the destination database, you can use the following query to determine the
oldest message number from the source database for the apply process:

SELECT APPLY_NAME, OLDEST_MESSAGE_NUMBER FROM DBA_APPLY_PROGRESS;

At the source database, you can use the following query to determine the capture
number of the original capture process:

SELECT CAPTURE_NAME, CAPTURE_MESSAGE_NUMBER FROM V$STREAMS_CAPTURE;

10. When the oldest message number of the apply process at the recovered database
is beyond the capture number of the original capture process at the source
database, drop the new capture process created in Step 7.

11. If you are not using directed networks between the source database and
destination database, then drop the new propagation created in Step 6.

If you are using directed networks, and there are intermediate databases between
the source database and destination database, then drop the new propagation at
each intermediate database in the path to the destination database, including the
new propagation at the source database.

12. If you are not using directed networks between the source database and
destination database, then remove the queue created in Step 5.

If you are using directed networks, and there are intermediate databases between
the source database and destination database, then drop the new queue at each

Chapter 12
Performing Database Point-in-Time Recovery in an Oracle Streams Environment

12-36

intermediate database in the path to the destination database, including the new
queue at the source database. Do not drop the queue at the destination database.

13. If you are not using directed networks between the source database and
destination database, then create a propagation that propagates changes from the
original source queue at the source database to the destination queue at the
destination database. Use the CREATE_PROPAGATION procedure in the
DBMS_PROPAGATION_ADM package to create the propagation. Specify any rule sets
used by the original propagation when you create the propagation.

If you are using directed networks, and there are intermediate databases between
the source database and destination database, then re-create the propagation
from the last intermediate database to the destination database. You dropped this
propagation in Step 2.

14. Start the capture process you stopped in Step 9.

All of the steps after Step 8 can be deferred to a later time, or they can be done as
soon as the condition described in Step 9 is met.

12.7 Running Flashback Queries in an Oracle Streams
Replication Environment

Oracle Flashback Query enables you to view and repair historical data. You can
perform queries on a database as of a certain clock time or system change number
(SCN). In an Oracle Streams single-source replication environment, you can use
Flashback Query at the source database and a destination database at a past time
when the replicated database objects should be identical.

You can run the queries at corresponding SCNS at the source and destination
databases to determine whether all of the changes to the replicated objects performed
at the source database have been applied at the destination database. If there are
apply errors at the destination database, then such a Flashback Query can show how
the replicated objects looked at the time when the error was raised. This information
could be useful in determining the cause of the error and the best way to correct the
error.

Running a Flashback Query at each database can also check whether tables have
certain rows at the corresponding SCNs. If the table data does not match at the
corresponding SCNs, then there is a problem with the replication environment.

To run queries, the Oracle Streams replication environment must have the following
characteristics:

• The replication environment must be a single-source environment, where changes
to replicated objects are captured at only one database.

• No modifications are made to the replicated objects in the Stream. That is, no
transformations, subset rules (row migration), or apply handlers modify the LCRs
for the replicated objects.

• No DML or DDL changes are made to the replicated objects at the destination
database.

• Both the source database and the destination database must be configured to use
Oracle Flashback, and the Oracle Streams administrator at both databases must
be able to execute subprograms in the DBMS_FLASHBACK package.

Chapter 12
Running Flashback Queries in an Oracle Streams Replication Environment

12-37

• The information in the undo tablespace must go back far enough to perform the
query at each database. Oracle Flashback features use the Automatic Undo
Management system to obtain historical data and metadata for a transaction. The
UNDO_RETENTION initialization parameter at each database must be set to a value
that is large enough to perform the Flashback Query.

Because Oracle Streams replication is asynchronous, you cannot use a past time in
the Flashback Query. However, you can use the GET_SCN_MAPPING procedure in the
DBMS_STREAMS_ADM package to determine the SCN at the destination database that
corresponds to an SCN at the source database.

These instructions assume that you know the SCN for the Flashback Query at the
source database. Using this SCN, you can determine the corresponding SCN for the
Flashback Query at the destination database. To run these queries, complete the
following steps:

1. At the destination database, ensure that the archived redo log file for the
approximate time of the Flashback Query is available to the database. The
GET_SCN_MAPPING procedure requires that this redo log file be available.

2. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Run the GET_SCN_MAPPING procedure. In this example, assume that the SCN for the
source database is 52073983 and that the name of the apply process that applies
changes from the source database is strm01_apply:

SET SERVEROUTPUT ON
DECLARE
 dest_scn NUMBER;
 start_scn NUMBER;
 dest_skip DBMS_UTILITY.NAME_ARRAY;
BEGIN
 DBMS_STREAMS_ADM.GET_SCN_MAPPING(
 apply_name => 'strm01_apply',
 src_pit_scn => '52073983',
 dest_instantiation_scn => dest_scn,
 dest_start_scn => start_scn,
 dest_skip_txn_ids => dest_skip);
 IF dest_skip.count = 0 THEN
 DBMS_OUTPUT.PUT_LINE('No Skipped Transactions');
 DBMS_OUTPUT.PUT_LINE('Destination SCN: ' || dest_scn);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Destination SCN invalid for Flashback Query.');
 DBMS_OUTPUT.PUT_LINE('At least one transaction was skipped.');
 END IF;
END;
/

If a valid destination SCN is returned, then proceed to Step 4.

If the destination SCN was not valid for Flashback Query because one or more
transactions were skipped by the apply process, then the apply process parameter
commit_serialization was set to DEPENDENT_TRANSACTIONS, and nondependent
transactions have been applied out of order. There is at least one transaction with
a source commit SCN less than src_pit_scn that was committed at the destination
database after the returned dest_instantiation_scn. Therefore, tables might not be

Chapter 12
Running Flashback Queries in an Oracle Streams Replication Environment

12-38

the same at the source and destination databases for the specified source SCN.
You can choose a different source SCN and restart at Step 1.

4. Run the Flashback Query at the source database using the source SCN.

5. Run the Flashback Query at the destination database using the SCN returned in
Step 3.

6. Compare the results of the queries in Steps 4 and 5 and take any necessary
action.

See Also:

• Oracle Database Development Guide for more information about
Flashback Query

• Oracle Database PL/SQL Packages and Types Reference for more
information about the GET_SCN_MAPPING procedure

12.8 Recovering from Operation Errors
You can recover from the following operations using the RECOVER_OPERATION procedure
in the DBMS_STREAMS_ADM package:

• Split and merge operations using:

– Automatic split and merge operations invoked by the split_threshold and
merge_threshold capture process parameters.

– Spit and merge operations that use the SPLIT_STREAMS and MERGE_STREAMS_JOB
procedures in the DBMS_STREAMS_ADM package.

• Change table configuration operations performed by the MAINTAIN_CHANGE_TABLE
procedure in the DBMS_STREAMS_ADM package.

• Replication configuration operations performed by the following procedures in the
DBMS_STREAMS_ADM package:

– MAINTAIN_GLOBAL

– MAINTAIN_SCHEMAS

– MAINTAIN_SIMPLE_TTS

– MAINTAIN_TABLES

– MAINTAIN_TTS

– PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP

Information about the operation is stored in the following data dictionary views when
the operation is in process:

• DBA_RECOVERABLE_SCRIPT

• DBA_RECOVERABLE_SCRIPT_HIST

• DBA_RECOVERABLE_SCRIPT_PARAMS

• DBA_RECOVERABLE_SCRIPT_BLOCKS

Chapter 12
Recovering from Operation Errors

12-39

• DBA_RECOVERABLE_SCRIPT_ERRORS

Note:

If the perform_actions parameter is set to FALSE when one of the configuration
procedures is run, and a script is used to configure the Oracle Streams
replication environment, then these data dictionary views are not populated,
and the RECOVER_OPERATION procedure cannot be used for the operation.

When the operation completes successfully, metadata about the operation is moved
from the DBA_RECOVERABLE_SCRIPT view to the DBA_RECOVERABLE_SCRIPT_HIST view. The
other views, DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and
DBA_RECOVERABLE_SCRIPT_ERRORS, retain information about the operation until it is purged
automatically after 30 days.

When the operation encounters an error, you can use the RECOVER_OPERATION procedure
in the DBMS_STREAMS_ADM package to either roll the operation forward, roll the operation
back, or purge the metadata about the operation. Specifically, the operation_mode
parameter in the RECOVER_OPERATION procedure provides the following options:

• FORWARD: This option attempts to complete the operation from the point at which it
failed. Before specifying this option, correct the conditions that caused the errors
reported in the DBA_RECOVERABLE_SCRIPT_ERRORS view.

You can also use the FORWARD option to obtain more information about what caused
the error. To do so, run SET SERVEROUTPUT ON in SQL*Plus and run the
RECOVER_OPERATION procedure with the appropriate script ID. The RECOVER_OPERATION
procedure shows the actions that lead to the error and the error numbers and
messages.

• ROLLBACK: This option rolls back all of the actions performed by the operation. If the
rollback is successful, then this option also moves the metadata about the
operation from the DBA_RECOVERABLE_SCRIPT view to the DBA_RECOVERABLE_SCRIPT_HIST
view. The other views retain information about the operation for 30 days.

• PURGE: This option moves the metadata about the operation from the
DBA_RECOVERABLE_SCRIPT view to the DBA_RECOVERABLE_SCRIPT_HIST view without
rolling the operation back. The other views retain information about the operation
for 30 days.

When a recovery operation is complete, information about the operation is stored in
the DBA_RECOVERABLE_SCRIPT_HIST view. The STATUS column shows either EXECUTED or
PURGED for each recovery operation.

Note:

To run the RECOVER_OPERATION procedure, both databases must be Oracle
Database 10g Release 2 or later databases.

Chapter 12
Recovering from Operation Errors

12-40

See Also:

• "Configuring Replication Using the DBMS_STREAMS_ADM Package" for
more information about configuring an Oracle Streams replication
environment with these procedures

• "Tasks to Complete Before Configuring Oracle Streams Replication" for
information about prerequisites that must be met before running these
procedures

• Oracle Database PL/SQL Packages and Types Reference

12.8.1 Recovery Scenario
This section contains a scenario in which the MAINTAIN_SCHEMAS procedure stops
because it encounters an error. Assume that the following procedure encountered an
error when it was run at the capture database:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS(
 schema_names => 'hr',
 source_directory_object => 'SOURCE_DIRECTORY',
 destination_directory_object => 'DEST_DIRECTORY',
 source_database => 'dbs1.example.com',
 destination_database => 'dbs2.example.com',
 perform_actions => TRUE,
 dump_file_name => 'export_hr.dmp',
 capture_queue_table => 'rep_capture_queue_table',
 capture_queue_name => 'rep_capture_queue',
 capture_queue_user => NULL,
 apply_queue_table => 'rep_dest_queue_table',
 apply_queue_name => 'rep_dest_queue',
 apply_queue_user => NULL,
 capture_name => 'capture_hr',
 propagation_name => 'prop_hr',
 apply_name => 'apply_hr',
 log_file => 'export_hr.clg',
 bi_directional => FALSE,
 include_ddl => TRUE,
 instantiation => DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA);
END;
/

Complete the following steps to diagnose the problem and recover the operation:

1. In SQL*Plus, connect to the capture database as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Determine the SCRIPT_ID value for the operation by running the following query:

SELECT SCRIPT_ID FROM DBA_RECOVERABLE_SCRIPT ORDER BY CREATION_TIME DESC;

Chapter 12
Recovering from Operation Errors

12-41

This query assumes that the most recent configuration operation is the one that
encountered errors. Therefore, if more than one SCRIPT_ID is returned by the
query, then use the first SCRIPT_ID in the list.

3. Query the DBA_RECOVERABLE_SCRIPT_ERRORS data dictionary view to determine the
error and specify the SCRIPT_ID returned in Step 2 in the WHERE clause.

For example, if the SCRIPT_ID is F73ED2C9E96B27B0E030578CB10B2424, then run the
following query:

COLUMN SCRIPT_ID HEADING 'Script ID' FORMAT A35
COLUMN BLOCK_NUM HEADING 'Block|Number' FORMAT 999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A33

SELECT BLOCK_NUM, ERROR_MESSAGE
 FROM DBA_RECOVERABLE_SCRIPT_ERRORS
 WHERE SCRIPT_ID = 'F73ED2C9E96B27B0E030578CB10B2424';

The query returns the following output:

Block
Number Error Message
------- ---------------------------------
 12 ORA-39001: invalid argument value

4. Query the DBA_RECOVERABLE_SCRIPT_BLOCKS data dictionary view for the script ID
returned in Step 2 and block number returned in Step 3 for information about the
block in which the error occurred.

For example, if the script ID is F73ED2C9E96B27B0E030578CB10B2424 and the block
number is 12, run the following query:

COLUMN FORWARD_BLOCK HEADING 'Forward Block' FORMAT A50
COLUMN FORWARD_BLOCK_DBLINK HEADING 'Forward Block|Database Link' FORMAT A13
COLUMN STATUS HEADING 'Status' FORMAT A12

SET LONG 10000
SELECT FORWARD_BLOCK,
 FORWARD_BLOCK_DBLINK,
 STATUS
 FROM DBA_RECOVERABLE_SCRIPT_BLOCKS
 WHERE SCRIPT_ID = 'F73ED2C9E96B27B0E030578CB10B2424' AND
 BLOCK_NUM = 12;

The output contains the following information:

• The FORWARD_BLOCK column contains detailed information about the actions
performed by the procedure in the specified block. If necessary, spool the
output into a file. In this scenario, the FORWARD_BLOCK column for block 12
contains the code for the Data Pump export.

• The FORWARD_BLOCK_DBLINK column shows the database where the block is
executed. In this scenario, the FORWARD_BLOCK_DBLINK column for block 12 shows
DBS1.EXAMPLE.COM because the Data Pump export was being performed on
DBS1.EXAMPLE.COM when the error occurred.

• The STATUS column shows the status of the block execution. In this scenario,
the STATUS column for block 12 shows ERROR.

5. Optionally, run the RECOVER_OPERATION procedure operation at the capture database
with SET SERVEROUTPUT ON to display more information about the errors:

Chapter 12
Recovering from Operation Errors

12-42

SET SERVEROUTPUT ON
BEGIN
 DBMS_STREAMS_ADM.RECOVER_OPERATION(
 script_id => 'F73ED2C9E96B27B0E030578CB10B2424',
 operation_mode => 'FORWARD');
END;
/

With server output on, the actions that caused the error run again, and the actions
and the resulting errors are displayed.

6. Interpret the output from the previous steps and diagnose the problem. The output
returned in Step 3 provides the following information:

• The unique identifier for the configuration operation is
F73ED2C9E96B27B0E030578CB10B2424. This value is the RAW value returned in the
SCRIPT_ID field.

• Only one Oracle Streams configuration procedure is in the process of running
because only one row was returned by the query. If multiple rows were
returned by the query, then query the DBA_RECOVERABLE_SCRIPT and
DBA_RECOVERABLE_SCRIPT_PARAMS views to determine which script ID applies to
the configuration operation.

• The cause in Oracle Database Error Messages for the ORA-39001 error is the
following: The user specified API parameters were of the wrong type or value
range. Subsequent messages supplied by DBMS_DATAPUMP.GET_STATUS will
further describe the error.

• The query on the DBA_RECOVERABLE_SCRIPT_BLOCKS view shows that the error
occurred during Data Pump export.

The output from the queries shows that the MAINTAIN_SCHEMAS procedure
encountered a Data Pump error. Notice that the instantiation parameter in the
MAINTAIN_SCHEMAS procedure was set to DBMS_STREAMS_ADM.INSTANTIATION_SCHEMA.
This setting means that the MAINTAIN_SCHEMAS procedure performs the instantiation
using a Data Pump export and import. A Data Pump export dump file is generated
to complete the export/import.

Data Pump errors usually are caused by one of the following conditions:

• One or more of the directory objects used to store the export dump file do not
exist.

• The user running the procedure does not have access to specified directory
objects.

• An export dump file with the same name as the one generated by the
procedure already exists in a directory specified in the
source_directory_object or destination_directory_object parameter.

7. Query the DBA_RECOVERABLE_SCRIPT_PARAMS data dictionary view at the capture
database to determine the names of the directory objects specified when the
MAINTAIN_SCHEMAS procedure was run:

COLUMN PARAMETER HEADING 'Parameter' FORMAT A30
COLUMN VALUE HEADING 'Value' FORMAT A45

SELECT PARAMETER,
 VALUE
 FROM DBA_RECOVERABLE_SCRIPT_PARAMS
 WHERE SCRIPT_ID = 'F73ED2C9E96B27B0E030578CB10B2424';

Chapter 12
Recovering from Operation Errors

12-43

The query returns the following output:

Parameter Value
------------------------------ ---
SOURCE_DIRECTORY_OBJECT SOURCE_DIRECTORY
DESTINATION_DIRECTORY_OBJECT DEST_DIRECTORY
SOURCE_DATABASE DBS1.EXAMPLE
DESTINATION_DATABASE DBS2.EXAMPLE
CAPTURE_QUEUE_TABLE REP_CAPTURE_QUEUE_TABLE
CAPTURE_QUEUE_OWNER STRMADMIN
CAPTURE_QUEUE_NAME REP_CAPTURE_QUEUE
CAPTURE_QUEUE_USER
APPLY_QUEUE_TABLE REP_DEST_QUEUE_TABLE
APPLY_QUEUE_OWNER STRMADMIN
APPLY_QUEUE_NAME REP_DEST_QUEUE
APPLY_QUEUE_USER
CAPTURE_NAME CAPTURE_HR
APPLY_NAME APPLY_HR
PROPAGATION_NAME PROP_HR
INSTANTIATION INSTANTIATION_SCHEMA
BI_DIRECTIONAL TRUE
INCLUDE_DDL TRUE
LOG_FILE export_hr.clg
DUMP_FILE_NAME export_hr.dmp
SCHEMA_NAMES HR

8. Ensure that the directory object specified for the source_directory_object
parameter exists at the source database, and ensure that the directory object
specified for the destination_directory_object parameter exists at the destination
database. Check for these directory objects by querying the DBA_DIRECTORIES data
dictionary view.

For this scenario, assume that the SOURCE_DIRECTORY directory object does not exist
at the source database, and the DEST_DIRECTORY directory object does not exist at
the destination database. The Data Pump error occurred because the directory
objects used for the export dump file did not exist.

9. Create the required directory objects at the source and destination databases
using the SQL statement CREATE DIRECTORY. See "Creating the Required Directory
Objects" for instructions.

10. Run the RECOVER_OPERATION procedure at the capture database:

BEGIN
 DBMS_STREAMS_ADM.RECOVER_OPERATION(
 script_id => 'F73ED2C9E96B27B0E030578CB10B2424',
 operation_mode => 'FORWARD');
END;
/

Notice that the script_id parameter is set to the value determined in Step 3, and
the operation_mode parameter is set to FORWARD to complete the configuration. Also,
the RECOVER_OPERATION procedure must be run at the database where the
configuration procedure was run.

Chapter 12
Recovering from Operation Errors

12-44

13
Comparing and Converging Data

This chapter contains instructions for comparing and converging data in database
objects at two different databases using the DBMS_COMPARISON package. It also contains
instructions for managing comparisons after they are created and for querying data
dictionary views to obtain information about comparisons and comparison results.

This chapter contains these topics:

• About Comparing and Converging Data

• Other Documentation About the DBMS_COMPARISON Package

• Quick Start: A Simple Compare and Converge Scenario

• Preparing To Compare and Converge a Shared Database Object

• Diverging a Database Object at Two Databases to Complete Examples

• Comparing a Shared Database Object at Two Databases

• Viewing Information About Comparisons and Comparison Results

• Converging a Shared Database Object

• Rechecking the Comparison Results for a Comparison

• Purging Comparison Results

• Dropping a Comparison

• Using DBMS_COMPARISON in an Oracle Streams Replication Environment

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_COMPARISON package

13.1 About Comparing and Converging Data
The DBMS_COMPARISON package enables you to compare database objects at different
databases and identify differences in them. This package also enables you to
converge the database objects so that they are consistent at different databases.
Typically, this package is used in environments that share a database object at
multiple databases. When copies of the same database object exist at multiple
databases, the database object is a shared database object.

Shared database objects might be maintained by data replication. For example,
materialized views or Oracle Streams components might replicate the database
objects and maintain them at multiple databases. A custom application might also
maintain shared database objects. When a database object is shared, it can diverge at
the databases that share it. You can use the DBMS_COMPARISON package to identify

13-1

differences in the shared database objects. After identifying the differences, you can
optionally use this package to synchronize the shared database objects.

The DBMS_COMPARISON package can compare the following types of database objects:

• Tables

• Single-table views

• Materialized views

• Synonyms for tables, single-table views, and materialized views

Database objects of different types can be compared and converged at different
databases. For example, a table at one database and a materialized view at another
database can be compared and converged with this package.

You create a comparison between two database objects using the CREATE_COMPARISON
procedure in the DBMS_COMPARISON package. After you create a comparison, you can run
the comparison at any time using the COMPARE function. When you run the COMPARE
function, it records comparison results in the appropriate data dictionary views.
Separate comparison results are generated for each execution of the COMPARE function.

13.1.1 Scans
Each time the COMPARE function is run, one or more new scans are performed for the
specified comparison. A scan checks for differences in some or all of the rows in a
shared database object at a single point in time. The comparison results for a single
execution of the COMPARE function can include one or more scans. You can compare
database objects multiple times, and a unique scan ID identifies each scan in the
comparison results.

13.1.2 Buckets
A bucket is a range of rows in a database object that is being compared. Buckets
improve performance by splitting the database object into ranges and comparing the
ranges independently. Every comparison divides the rows being compared into an
appropriate number of buckets. The number of buckets used depends on the size of
the database object and is always less than the maximum number of buckets specified
for the comparison by the max_num_buckets parameter in the CREATE_COMPARISON
procedure.

When a bucket is compared using the COMPARE function, the following results are
possible:

• No differences are found. In this case, the comparison proceeds to the next
bucket.

• Differences are found. In this case, the comparison can split the bucket into
smaller buckets and compare each smaller bucket. When differences are found in
a smaller bucket, the bucket is split into still smaller buckets. This process
continues until the minimum number of rows allowed in a bucket is reached. The
minimum number of rows in a bucket for a comparison is specified by the
min_rows_in_bucket parameter in the CREATE_COMPARISON procedure.

When the minimum number of rows in a bucket is reached, the COMPARE function
reports whether there are differences in the bucket. The COMPARE function includes
the perform_row_dif parameter. This parameter controls whether the COMPARE
function identifies each row difference in a bucket that has differences. When this

Chapter 13
About Comparing and Converging Data

13-2

parameter is set to TRUE, the COMPARE function identifies each row difference. When
this parameter is set to FALSE, the COMPARE function does not identify specific row
differences. Instead, it only reports that there are differences in the bucket.

You can adjust the max_num_buckets and min_rows_in_bucket parameters in the
CREATE_COMPARISON procedure to achieve the best performance when comparing a
particular database object. After a comparison is created, you can view the bucket
specifications for the comparison by querying the MAX_NUM_BUCKETS and
MIN_ROWS_IN_BUCKET columns in the DBA_COMPARISON data dictionary view.

The DBMS_COMPARISON package uses the ORA_HASH function on the specified columns in
all the rows in a bucket to compute a hash value for the bucket. If the hash values for
two corresponding buckets match, then the contents of the buckets are assumed to
match. The ORA_HASH function is an efficient way to compare buckets because row
values are not transferred between databases. Instead, only the hash value is
transferred.

Note:

If an index column for a comparison is a VARCHAR2 or CHAR column, then the
number of buckets might exceed the value specified for the max_num_buckets
parameter.

See Also:

• Oracle Database SQL Language Reference for more information about
the ORA_HASH function

• Oracle Database PL/SQL Packages and Types Reference for information
about index columns

13.1.3 Parent Scans and Root Scans
Each time the COMPARE function splits a bucket into smaller buckets, it performs new
scans of the smaller buckets. The scan that analyzes a larger bucket is the parent
scan of each scan that analyzes the smaller buckets into which the larger bucket was
split. The root scan in the comparison results is the highest level parent scan. The
root scan does not have a parent. You can identify parent and root scan IDs by
querying the DBA_COMPARISON_SCAN data dictionary view.

You can recheck a scan using the RECHECK function, and you can converge a scan
using the CONVERGE procedure. When you want to recheck or converge all of the rows in
the comparison results, specify the root scan ID for the comparison results in the
appropriate subprogram. When you want to recheck or converge a portion of the rows
in comparison results, specify the scan ID of the scan that contains the differences.

For example, a scan with differences in 20 buckets is the parent scan for 20 additional
scans, if each bucket with differences has more rows than the specified minimum
number of rows in a bucket for the comparison. To view the minimum number of rows
in a bucket for the comparison, query the MIN_ROWS_IN_BUCKET column in the
DBA_COMPARISON data dictionary view.

Chapter 13
About Comparing and Converging Data

13-3

See Also:

Oracle Database Reference for information about the views related to the
DBMS_COMPARISON package

13.1.4 How Scans and Buckets Identify Differences
This section describes two different comparison scenarios to show how scans and
buckets identify differences in shared database objects. In each scenario, the
max_num_buckets parameter is set to 3 in the CREATE_COMPARISON procedure. Therefore,
when the COMPARE or RECHECK function is run for the comparison, the comparison uses a
maximum of three buckets in each scan.

Figure 13-1 shows the first scenario.

Figure 13-1 Comparison with max_num_buckets=3 and Differences in Each Bucket of Each
Scan

3 Scans

9 Buckets

Differences Found�
in Each Bucket

Root Scan of Rows Compared�
3 Buckets

Differences Found�
in Each Bucket

9 Scans

27 Buckets

Comparison Complete �
Companion Results �
Recorded

Scan

Buckets

Figure 13-1 shows a line that represents the rows being compared in the shared
database object. This figure illustrates how scans and buckets are used to identify
differences when each bucket used by each scan has differences.

With the max_num_buckets parameter set to 3, the comparison is executed in the
following steps:

1. The root scan compares all of the rows in the current comparison. The root scan
uses three buckets, and differences are found in each bucket.

2. A separate scan is performed on the rows in each bucket that was used by the
root scan in the previous step. The current step uses three scans, and each scan

Chapter 13
About Comparing and Converging Data

13-4

uses three buckets. Therefore, this step uses a total of nine buckets. Differences
are found in each bucket. In Figure 13-1, arrows show how each bucket from the
root scan is split into three buckets for each of the scans in the current step.

3. A separate scan is performed on the rows in each bucket used by the scans in
Step 2. This step uses nine scans, and each scan uses three buckets. Therefore,
this step uses a total of 27 buckets. In Figure 13-1, arrows show how each bucket
from Step 2 is split into three buckets for each of the scans in the current step.

After Step 3, the comparison results are recorded in the appropriate data dictionary
views.

Figure 13-2 shows the second scenario.

Figure 13-2 Comparison with max_num_buckets=3 and Differences in One Bucket of Each
Scan

1 Scan

3 Buckets

Differences Found in �
Only One Bucket

Root Scan of Rows Compared�
3 Buckets

Differences Found in �
Only One Bucket

1 Scan

3 Buckets

Comparison Complete �
Comparison Results �
Reported

Scan

Buckets

No Dif Dif

No�
Dif

No�
Dif

Dif

No Dif

Figure 13-2 shows a line that represents the rows being compared in the shared
database object. This figure illustrates how scans and buckets are used to identify
differences when only one bucket used by each scan has differences.

With the max_num_buckets parameter set to 3, the comparison is executed in the
following steps:

1. The root scan compares all of the rows in the current comparison. The root scan
uses three buckets, but differences are found in only one bucket.

2. A separate scan is performed on the rows in the one bucket that had differences.
This step uses one scan, and the scan uses three buckets. Differences are found
in only one bucket. In Figure 13-2, arrows show how the bucket with differences
from the root scan is split into three buckets for the scan in the current step.

3. A separate scan is performed on the rows in the one bucket that had differences in
Step 2. This step uses one scan, and the scan uses three buckets. In Figure 13-2,

Chapter 13
About Comparing and Converging Data

13-5

arrows show how the bucket with differences in Step 2 is split into three buckets
for the scan in the current step.

After Step 3, the comparison results are recorded in the appropriate data dictionary
views.

Note:

This section describes scenarios in which the max_num_buckets parameter is set
to 3 in the CREATE_COMPARISON procedure. This setting was chosen to illustrate
how scans and buckets identify differences. Typically, the max_num_buckets
parameter is set to a higher value. The default for this parameter is 1000. You
can adjust the parameter setting to achieve the best performance.

See Also:

• "Comparing a Shared Database Object at Two Databases"

• "Viewing Information About Comparisons and Comparison Results"

13.2 Other Documentation About the
DBMS_COMPARISON Package

The chapter about the DBMS_COMPARISON package in the Oracle Database PL/SQL
Packages and Types Reference contains advanced conceptual information about the
package and detailed information about the subprograms in the package, including:

• Requirements for using the package

• Descriptions of constants used in the package

• Descriptions of each subprogram in the package and its parameters

13.3 Quick Start: A Simple Compare and Converge
Scenario

This section describes a simple scenario that compares and converges the
hr.departments table. This section is designed to get you started with using the
DBMS_COMPARISON package by illustrating how to compare and converge a single table.

This section contains the following topics:

• Tutorial: Preparing to Compare and Converge Data

• Tutorial: Comparing Data in Two Different Databases

• Tutorial: Converging Divergent Data

Chapter 13
Other Documentation About the DBMS_COMPARISON Package

13-6

13.3.1 Tutorial: Preparing to Compare and Converge Data
Suppose you share the hr.departments table in two databases. You want to compare
this table at these databases to see if their data is consistent. If the tables have
diverged at the two databases, then you want to converge them to make them
consistent.

Meet the following prerequisites to complete this tutorial:

• Configure network connectivity so that the two databases can communicate with
each other. See Oracle Database 2 Day DBA for information about configuring
network connectivity between databases.

• Ensure that the hr sample schema is installed on both databases.

In this example, the global names of the databases are ii1.example.com and
ii2.example.com, but you can substitute any two databases in your environment that
meet the prerequisites.

To prepare for comparison and convergence of the hr.departments table at the
ii1.example.com and ii2.example.com databases:

1. For the purposes of this example, make the hr.departments table diverge at the
two databases:

a. On a command line, open SQL*Plus and connect to the ii2.example.com
database as hr user.

See Oracle Database 2 Day DBA for more information about starting
SQL*Plus.

b. Delete the department in the hr.departments table with the department_id equal
to 270:

DELETE FROM hr.departments WHERE department_id=270;
COMMIT;

c. Modify the data in a row in the hr.departments table:

UPDATE hr.departments SET manager_id=114 WHERE department_id=10;
COMMIT;

d. Insert a row into the hr.departments table:

INSERT INTO hr.departments VALUES(280, 'Bean Counters', 108, 2700);
COMMIT;

e. Exit SQL*Plus:

EXIT;

Note:

Usually, Step 1 is not required. It is included in this example to ensure that the
hr.departments table diverges at the two databases.

2. Create a database link from the ii1.example.com database to the ii2.example.com
database.

Chapter 13
Quick Start: A Simple Compare and Converge Scenario

13-7

The database link should connect from an administrative user in ii1.example.com
to an administrative user schema in ii2.example.com. The administrative user at
both databases should have the necessary privileges to access and modify the
hr.departments table and the necessary privileges to run subprograms in the
DBMS_COMPARISON package. If you are not sure which user has these privileges, then
use SYSTEM user. Also, both the name and the service name of the database link
must be ii2.example.com. See "Configuring Network Connectivity and Database
Links" for more information.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_COMPARISON package

13.3.2 Tutorial: Comparing Data in Two Different Databases
This example continues the scenario described in "Tutorial: Preparing to Compare and
Converge Data". Complete the steps in that topic before continuing.

You can use the CREATE_COMPARISON procedure in the DBMS_COMPARISON package to define
a comparison of a shared database object at two different databases. Once the
comparison is defined, you can use the COMPARE function in this package to compare
the database object specified in the comparison at the current point in time. You can
run the COMPARE function multiple times for a specific comparison. Each time you run
the function, it results one or more scans of the database objects, and each scan has
its own scan ID.

To compare the entire hr.departments table at the ii1.example.com and
ii2.example.com databases:

1. On a command line, open SQL*Plus and connect to the ii1.example.com database
as the administrative user who owns the database link created in "Tutorial:
Preparing to Compare and Converge Data". For example, if SYSTEM user owns the
database link, then connect as SYSTEM user:

sqlplus system@ii1.example.com
Enter password: password

See Oracle Database 2 Day DBA for more information about starting SQL*Plus.

2. Run the CREATE_COMPARISON procedure to create the comparison for the
hr.departments table:

BEGIN
 DBMS_COMPARISON.CREATE_COMPARISON(
 comparison_name => 'compare_departments',
 schema_name => 'hr',
 object_name => 'departments',
 dblink_name => 'ii2.example.com');
END;
/

Note that the name of the new comparison is compare_departments. This
comparison is owned by the user who runs the CREATE_COMPARISON procedure.

Chapter 13
Quick Start: A Simple Compare and Converge Scenario

13-8

3. Run the COMPARE function to compare the hr.departments table at the two
databases:

SET SERVEROUTPUT ON
DECLARE
 consistent BOOLEAN;
 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 consistent := DBMS_COMPARISON.COMPARE(
 comparison_name => 'compare_departments',
 scan_info => scan_info,
 perform_row_dif => TRUE);
 DBMS_OUTPUT.PUT_LINE('Scan ID: '||scan_info.scan_id);
 IF consistent=TRUE THEN
 DBMS_OUTPUT.PUT_LINE('No differences were found.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Differences were found.');
 END IF;
END;
/

Scan ID: 1
Differences were found.

PL/SQL procedure successfully completed.

Specify the name of the comparison created in Step 2 for the comparison_name
parameter.

The function prints the scan ID for the comparison. The scan ID is important when
you are querying data dictionary views for information about the comparison and
when you are converging the database objects.

The function also prints whether differences were found in the table at the two
databases:

• If the function prints 'No differences were found', then the table is consistent
at the two databases.

• If the function prints 'Differences were found', then the table has diverged at
the two databases.

4. Make a note of the scan ID returned by the function in the previous step. In this
example, assume the scan ID is 1.

5. If differences were found in Step 3, then run the following query to show the
number of differences found:

COLUMN OWNER HEADING 'Comparison Owner' FORMAT A16
COLUMN COMPARISON_NAME HEADING 'Comparison Name' FORMAT A20
COLUMN SCHEMA_NAME HEADING 'Schema Name' FORMAT A11
COLUMN OBJECT_NAME HEADING 'Object Name' FORMAT A11
COLUMN CURRENT_DIF_COUNT HEADING 'Differences' FORMAT 9999999

SELECT c.OWNER,
 c.COMPARISON_NAME,
 c.SCHEMA_NAME,
 c.OBJECT_NAME,
 s.CURRENT_DIF_COUNT
 FROM DBA_COMPARISON c, DBA_COMPARISON_SCAN s
 WHERE c.COMPARISON_NAME = s.COMPARISON_NAME AND
 c.OWNER = s.OWNER AND
 s.SCAN_ID = 1;

Chapter 13
Quick Start: A Simple Compare and Converge Scenario

13-9

Specify the scan ID you recorded in Step 4 in the WHERE clause of the query.

The output will be similar to the following:

Comparison Owner Comparison Name Schema Name Object Name Differences
---------------- -------------------- ----------- ----------- -----------
SYSTEM COMPARE_DEPARTMENTS HR DEPARTMENTS 3

6. To see which rows were different in the database object being compared, run the
following query:

COLUMN COLUMN_NAME HEADING 'Index Column' FORMAT A15
COLUMN INDEX_VALUE HEADING 'Index Value' FORMAT A15
COLUMN LOCAL_ROWID HEADING 'Local Row Exists?' FORMAT A20
COLUMN REMOTE_ROWID HEADING 'Remote Row Exists?' FORMAT A20

SELECT c.COLUMN_NAME,
 r.INDEX_VALUE,
 DECODE(r.LOCAL_ROWID,
 NULL, 'No',
 'Yes') LOCAL_ROWID,
 DECODE(r.REMOTE_ROWID,
 NULL, 'No',
 'Yes') REMOTE_ROWID
 FROM DBA_COMPARISON_COLUMNS c,
 DBA_COMPARISON_ROW_DIF r,
 DBA_COMPARISON_SCAN s
 WHERE c.COMPARISON_NAME = 'COMPARE_DEPARTMENTS' AND
 r.SCAN_ID = s.SCAN_ID AND
 s.PARENT_SCAN_ID = 1 AND
 r.STATUS = 'DIF' AND
 c.INDEX_COLUMN = 'Y' AND
 c.COMPARISON_NAME = r.COMPARISON_NAME AND
 c.OWNER = r.OWNER
 ORDER BY r.INDEX_VALUE;

In the WHERE clause, specify the name of the comparison and the scan ID for the
comparison. In this example, the name of the comparison is compare_departments
and the scan ID is 1.

The output will be similar to the following:

Index Column Index Value Local Row Exists? Remote Row Exists?
--------------- --------------- -------------------- --------------------
DEPARTMENT_ID 10 Yes Yes
DEPARTMENT_ID 270 Yes No
DEPARTMENT_ID 280 No Yes

This output shows the index column for the table being compared and the index
value for each row that is different in the shared database object. In this example,
the index column is the primary key column for the hr.departments table
(department_id). The output also shows the type of difference for each row:

• If Local Row Exists? and Remote Row Exists? are both Yes for a row, then the row
exists in both instances of the database object, but the data in the row is
different.

• If Local Row Exists? is Yes and Remote Row Exists? is No for a row, then the row
exists in the local database object but not in the remote database object.

• If Local Row Exists? is No and Remote Row Exists? is Yes for a row, then the row
exists in the remote database object but not in the local database object.

Chapter 13
Quick Start: A Simple Compare and Converge Scenario

13-10

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_COMPARISON package

13.3.3 Tutorial: Converging Divergent Data
This example continues the scenario described in "Tutorial: Comparing Data in Two
Different Databases". Complete the steps in that topic before continuing.

When a shared database object has diverged at two different databases, you can use
the CONVERGE procedure in the DBMS_COMPARISON package to converge the two instances
of the database object. After the CONVERGE procedure runs successfully, the shared
database object is consistent at the two databases. To run the CONVERGE procedure,
you must specify the following information:

• The name of an existing comparison created using the CREATE_COMPARISON
procedure in the DBMS_COMPARISON package

• The scan ID of the comparison that you want to converge

The scan ID contains information about the differences that will be converged. In this
example, the name of the comparison is compare_departments and the scan ID is 1.

Also, when you run the CONVERGE procedure, you must specify which database "wins"
when the shared database object is converged. If you specify that the local database
wins, then the data in the database object at the local database replaces the data in
the database object at the remote database when the data is different. If you specify
that the remote database wins, then the data in the database object at the remote
database replaces the data in the database object at the local database when the data
is different. In this example, the local database ii1.example.com wins.

To converge divergent data in the hr.departments table at the ii1.example.com
and ii2.example.com databases:

1. On a command line, open SQL*Plus and connect to the ii1.example.com database
as the administrative user who owns the database link created in "Tutorial:
Preparing to Compare and Converge Data". For example, if the SYSTEM user owns
the database link, then connect as the SYSTEM user:

sqlplus system@ii1.example.com
Enter password: password

See Oracle Database 2 Day DBA for more information about starting SQL*Plus.

2. Run the CONVERGE procedure to converge the hr.departments table at the two
databases:

SET SERVEROUTPUT ON
DECLARE
 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 DBMS_COMPARISON.CONVERGE(
 comparison_name => 'compare_departments',
 scan_id => 1,
 scan_info => scan_info,
 converge_options => DBMS_COMPARISON.CMP_CONVERGE_LOCAL_WINS);

Chapter 13
Quick Start: A Simple Compare and Converge Scenario

13-11

 DBMS_OUTPUT.PUT_LINE('Local Rows Merged: '||scan_info.loc_rows_merged);
 DBMS_OUTPUT.PUT_LINE('Remote Rows Merged: '||scan_info.rmt_rows_merged);
 DBMS_OUTPUT.PUT_LINE('Local Rows Deleted: '||scan_info.loc_rows_deleted);
 DBMS_OUTPUT.PUT_LINE('Remote Rows Deleted: '||scan_info.rmt_rows_deleted);
END;
/

Local Rows Merged: 0
Remote Rows Merged: 2
Local Rows Deleted: 0
Remote Rows Deleted: 1

PL/SQL procedure successfully completed.

The CONVERGE procedure synchronizes the portion of the database object compared by
the specified scan and returns information about the changes it made. Some scans
might compare a subset of the database object. In this example, the specified scan
compared the entire table. So, the entire table is synchronized, assuming no new
differences appeared after the comparison scan completed.

The local table wins in this example because the converge_options parameter is set to
DBMS_COMPARISON.CMP_CONVERGE_LOCAL_WINS in the procedure. That is, for the rows that
are different in the two databases, the rows at the local database replace the
corresponding rows at the remote database. If some rows exist at the remote
database but not at the local database, then the extra rows at the remote database are
deleted. If instead you want the remote database to win, then set the converge_options
parameter to DBMS_COMPARISON.CMP_CONVERGE_REMOTE_WINS in the procedure.

In addition, if you run the CONVERGE procedure on a shared database object that is part
of an Oracle Streams replication environment, then you might not want the changes
made by the procedure to be replicated to other databases. In this case, you can set
the following parameters in the CONVERGE procedure to values that will prevent the
changes from being replicated:

• local_converge_tag

• remote_converge_tag

When one of these parameters is set to a non-NULL value, a tag is set in the session
that makes the changes during convergence. The local_converge_tag parameter sets
the tag in the session at the local database, while the remote_converge_tag parameter
sets the tag in the session at the remote database. If you do not want the changes
made by the CONVERGE procedure to be replicated, then set these parameters to a value
that will prevent Oracle Streams capture processes and synchronous captures from
capturing the changes.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_COMPARISON package

Chapter 13
Quick Start: A Simple Compare and Converge Scenario

13-12

13.4 Preparing To Compare and Converge a Shared
Database Object

Meet the following prerequisites before comparing and converging a shared database
object at two databases:

• Configure network connectivity so that the two databases can communicate with
each other. See Oracle Database Net Services Administrator's Guide for
information about configuring network connectivity between databases.

• Identify or create a database user who will create, run, and manage comparisons.
The database user must meet the privilege requirements described in the
documentation for the DBMS_COMPARISON package in the Oracle Database PL/SQL
Packages and Types Reference.

After you identify or create a user with the required privileges, create a database
link from the database that will run the subprograms in the DBMS_COMPARISON
package to the other database that shares the database object. The identified user
should own the database link, and the link should connect to a user with the
required privileges on the remote database.

For example, the following example creates a database link owned by a user
named admin at the comp1.example.com database that connects to the admin user at
the remote database comp2.example.com:

1. In SQL*Plus, connect to the local database as admin user.

See Oracle Database Administrator's Guide for instructions about connecting
to a database in SQL*Plus.

2. Create the database link:

CREATE DATABASE LINK comp2.example.com CONNECT TO admin
 IDENTIFIED BY password USING 'comp2.example.com';

13.5 Diverging a Database Object at Two Databases to
Complete Examples

The following sections contain examples that compare and converge a shared
database object at two databases:

• "Comparing a Shared Database Object at Two Databases"

• "Converging a Shared Database Object"

Most of these examples compare and converge data in the oe.orders table. This table
is part of the oe sample schema. In these examples, the global names of the
databases are comp1.example.com and comp2.example.com, but you can substitute any
two databases in your environment that meet the prerequisites described in "Preparing
To Compare and Converge a Shared Database Object".

For the purposes of the examples, make the oe.orders table diverge at two databases
by completing the following steps:

1. In SQL*Plus, connect to the comp2.example.com database as oe user.

Chapter 13
Preparing To Compare and Converge a Shared Database Object

13-13

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Delete the orders in the oe.orders table with a customer_id equal to 147:

DELETE FROM oe.orders WHERE customer_id=147;

3. Modify the data in a row in the oe.orders table:

UPDATE oe.orders SET sales_rep_id=163 WHERE order_id=2440;

4. Insert a row into the oe.orders table:

INSERT INTO oe.orders VALUES(3000, TIMESTAMP '2006-01-01 2:00:00', 'direct',
107, 3, 16285.21, 156, NULL);

5. Commit your changes and exit SQL*Plus:

COMMIT;
EXIT

Note:

Usually, these steps are not required. They are included to ensure that the
oe.orders table diverges at the two databases.

13.6 Comparing a Shared Database Object at Two
Databases

The examples in this section use the DBMS_COMPARISON package to compare the
oe.orders table at the comp1.example.com and comp2.example.com databases. The
examples use the package to create different types of comparisons and compare the
tables with the comparisons.

This section contains the following examples:

• Comparing a Subset of Columns in a Shared Database Object

• Comparing a Shared Database Object without Identifying Row Differences

• Comparing a Random Portion of a Shared Database Object

• Comparing a Shared Database Object Cyclically

• Comparing a Custom Portion of a Shared Database Object

• Comparing a Shared Database Object That Contains CLOB or BLOB Columns

13.6.1 Comparing a Subset of Columns in a Shared Database Object
The column_list parameter in the CREATE_COMPARISON procedure enables you to
compare a subset of the columns in a database object. The following are reasons to
compare a subset of columns:

• A database object contains extra columns that do not exist in the database object
to which it is being compared. In this case, the column_list parameter must only
contain the columns that exist in both database objects.

Chapter 13
Comparing a Shared Database Object at Two Databases

13-14

• You want to focus a comparison on a specific set of columns. For example, if a
table contains hundreds of columns, then you might want to list specific columns in
the column_list parameter to make the comparison more efficient.

• Differences are expected in some columns. In this case, exclude the columns in
which differences are expected from the column_list parameter.

The columns in the column list must meet the following requirements:

• The column list must meet the index column requirements for the DBMS_COMPARISON
package. See Oracle Database PL/SQL Packages and Types Reference for
information about index column requirements.

• If you plan to use the CONVERGE procedure to make changes to a database object
based on comparison results, then you must include in the column list any column
in this database object that has a NOT NULL constraint but no default value.

This example compares the order_id, order_date, and customer_id columns in the
oe.orders table at the comp1.example.com and comp2.example.com databases:

1. Complete the tasks described in "Preparing To Compare and Converge a Shared
Database Object" and "Diverging a Database Object at Two Databases to
Complete Examples".

2. In SQL*Plus, connect to the comp1.example.com database as the administrative user
who owns the database link created in "Preparing To Compare and Converge a
Shared Database Object".

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Run the CREATE_COMPARISON procedure to create the comparison:

BEGIN
 DBMS_COMPARISON.CREATE_COMPARISON(
 comparison_name => 'compare_subset_columns',
 schema_name => 'oe',
 object_name => 'orders',
 dblink_name => 'comp2.example.com',
 column_list => 'order_id,order_date,customer_id');
END;
/

Note that the name of the new comparison is compare_subset_columns. This
comparison is owned by the user who runs the CREATE_COMPARISON procedure.

4. Run the COMPARE function to compare the oe.orders table at the two databases:

SET SERVEROUTPUT ON
DECLARE
 consistent BOOLEAN;
 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 consistent := DBMS_COMPARISON.COMPARE(
 comparison_name => 'compare_subset_columns',
 scan_info => scan_info,
 perform_row_dif => TRUE);
 DBMS_OUTPUT.PUT_LINE('Scan ID: '||scan_info.scan_id);
 IF consistent=TRUE THEN
 DBMS_OUTPUT.PUT_LINE('No differences were found.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Differences were found.');
 END IF;

Chapter 13
Comparing a Shared Database Object at Two Databases

13-15

END;
/

Notice that the perform_row_dif parameter is set to TRUE in the COMPARE function.
This setting instructs the COMPARE function to identify each individual row difference
in the tables. When the perform_row_dif parameter is set to FALSE, the COMPARE
function records whether there are differences in the tables, but does not record
each individual row difference.

Your output is similar to the following:

Scan ID: 1
Differences were found.

PL/SQL procedure successfully completed.

See Also:

• "Viewing Detailed Information About the Row Differences Found in a
Scan"

• "Converging a Shared Database Object" to converge the differences
found in the comparison results

• "Rechecking the Comparison Results for a Comparison" to recheck the
comparison results

13.6.2 Comparing a Shared Database Object without Identifying Row
Differences

When you run the COMPARE procedure for an existing comparison, the perform_row_dif
parameter controls whether the COMPARE procedure identifies each individual row
difference in the database objects:

• When the perform_row_dif parameter is set to TRUE, the COMPARE procedure records
whether there are differences in the database objects, and it records each
individual row difference. Set this parameter to TRUE when you must identify each
difference in the database objects.

• When the perform_row_dif parameter is set to FALSE, the COMPARE procedure records
whether there are differences in the database objects, but does not record each
individual row difference. Set this parameter to FALSE when you want to know if
there are differences in the database objects, but you do not need to identify each
individual difference. Setting this parameter to FALSE is the most efficient way to
perform a comparison.

See Oracle Database PL/SQL Packages and Types Reference for information about
the perform_row_dif parameter in the COMPARE function.

This example compares the entire oe.orders table at the comp1.example.com and
comp2.example.com databases without identifying individual row differences:

1. Complete the tasks described in "Preparing To Compare and Converge a Shared
Database Object" and "Diverging a Database Object at Two Databases to
Complete Examples".

Chapter 13
Comparing a Shared Database Object at Two Databases

13-16

2. In SQL*Plus, connect to the comp1.example.com database as the administrative user
who owns the database link created in "Preparing To Compare and Converge a
Shared Database Object".

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Run the CREATE_COMPARISON procedure to create the comparison:

BEGIN
 DBMS_COMPARISON.CREATE_COMPARISON(
 comparison_name => 'compare_orders',
 schema_name => 'oe',
 object_name => 'orders',
 dblink_name => 'comp2.example.com');
END;
/

4. Run the COMPARE function to compare the oe.orders table at the two databases:

SET SERVEROUTPUT ON
DECLARE
 consistent BOOLEAN;
 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 consistent := DBMS_COMPARISON.COMPARE(
 comparison_name => 'compare_orders',
 scan_info => scan_info,
 perform_row_dif => FALSE);
 DBMS_OUTPUT.PUT_LINE('Scan ID: '||scan_info.scan_id);
 IF consistent=TRUE THEN
 DBMS_OUTPUT.PUT_LINE('No differences were found.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Differences were found.');
 END IF;
END;
/

Notice that the perform_row_dif parameter is set to FALSE in the COMPARE function.

Your output is similar to the following:

Scan ID: 4
Differences were found.

PL/SQL procedure successfully completed.

See Also:

• "Viewing Detailed Information About the Row Differences Found in a
Scan"

• "Converging a Shared Database Object" to converge the differences
found in the comparison results

• "Rechecking the Comparison Results for a Comparison" to recheck the
comparison results

Chapter 13
Comparing a Shared Database Object at Two Databases

13-17

13.6.3 Comparing a Random Portion of a Shared Database Object
The scan_percent and scan_mode parameters in the CREATE_COMPARISON procedure enable
you to compare a random portion of a shared database object instead of the entire
database object. Typically, you use this option under the following conditions:

• You are comparing a relatively large shared database object, and you want to
determine whether there might be differences without devoting the resources and
time to comparing the entire database object.

• You do not intend to use subsequent comparisons to compare different portions of
the database object. If you want to compare different portions of the database
object in subsequent comparisons, then see "Comparing a Shared Database
Object Cyclically" for instructions.

This example compares a random portion of the oe.orders table at the
comp1.example.com and comp2.example.com databases:

1. Complete the tasks described in "Preparing To Compare and Converge a Shared
Database Object" and "Diverging a Database Object at Two Databases to
Complete Examples".

2. In SQL*Plus, connect to the comp1.example.com database as the administrative user
who owns the database link created in "Preparing To Compare and Converge a
Shared Database Object".

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Run the CREATE_COMPARISON procedure to create the comparison:

BEGIN
 DBMS_COMPARISON.CREATE_COMPARISON(
 comparison_name => 'compare_random',
 schema_name => 'oe',
 object_name => 'orders',
 dblink_name => 'comp2.example.com',
 scan_mode => DBMS_COMPARISON.CMP_SCAN_MODE_RANDOM,
 scan_percent => 50);
END;
/

Notice that the scan_percent parameter is set to 50 to specify that the comparison
scans half of the table. The scan_mode parameter is set to
DBMS_COMPARISON.CMP_SCAN_MODE_RANDOM to specify that the comparison compares
random rows in the table.

4. Run the COMPARE function to compare the oe.orders table at the two databases:

SET SERVEROUTPUT ON
DECLARE
 consistent BOOLEAN;
 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 consistent := DBMS_COMPARISON.COMPARE(
 comparison_name => 'compare_random',
 scan_info => scan_info,
 perform_row_dif => TRUE);
 DBMS_OUTPUT.PUT_LINE('Scan ID: '||scan_info.scan_id);
 IF consistent=TRUE THEN

Chapter 13
Comparing a Shared Database Object at Two Databases

13-18

 DBMS_OUTPUT.PUT_LINE('No differences were found.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Differences were found.');
 END IF;
END;
/

Notice that the perform_row_dif parameter is set to TRUE in the COMPARE function.
This setting instructs the COMPARE function to identify each individual row difference
in the tables. When the perform_row_dif parameter is set to FALSE, the COMPARE
function records whether there are differences in the tables, but does not record
each individual row difference.

Your output is similar to the following:

Scan ID: 7
Differences were found.

PL/SQL procedure successfully completed.

This comparison scan might or might not find differences, depending on the
portion of the table that is compared.

See Also:

• "Viewing Detailed Information About the Row Differences Found in a
Scan"

• "Converging a Shared Database Object" to converge the differences
found in the comparison results

• "Rechecking the Comparison Results for a Comparison" to recheck the
comparison results

13.6.4 Comparing a Shared Database Object Cyclically
The scan_percent and scan_mode parameters in the CREATE_COMPARISON procedure enable
you to compare a portion of a shared database object cyclically. A cyclic comparison
scans a portion of the database object being compared during a single comparison.
When the database object is compared again, another portion of the database object
is compared, starting where the last comparison ended.

Typically, you use this option under the following conditions:

• You are comparing a relatively large shared database object, and you want to
determine whether there might be differences without devoting the resources and
time to comparing the entire database object.

• You want each comparison to compare a different portion of the shared database
object, so that the entire database object is compared with the appropriate number
of scans. For example, if you compare 25% of the shared database object, then
the entire database object is compared after four comparisons. If you do not want
to compare different portions of the database object in subsequent comparisons,
see "Comparing a Random Portion of a Shared Database Object" for instructions.

Chapter 13
Comparing a Shared Database Object at Two Databases

13-19

This example compares oe.orders table cyclically at the comp1.example.com and
comp2.example.com databases:

1. Complete the tasks described in "Preparing To Compare and Converge a Shared
Database Object" and "Diverging a Database Object at Two Databases to
Complete Examples".

2. In SQL*Plus, connect to the comp1.example.com database as the administrative user
who owns the database link created in "Preparing To Compare and Converge a
Shared Database Object".

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Run the CREATE_COMPARISON procedure to create the comparison:

BEGIN
 DBMS_COMPARISON.CREATE_COMPARISON(
 comparison_name => 'compare_cyclic',
 schema_name => 'oe',
 object_name => 'orders',
 dblink_name => 'comp2.example.com',
 scan_mode => DBMS_COMPARISON.CMP_SCAN_MODE_CYCLIC,
 scan_percent => 50);
END;
/

Notice that the scan_percent parameter is set to 50 to specify that the comparison
scans half of the table. The scan_mode parameter is set to
DBMS_COMPARISON.CMP_SCAN_MODE_CYCLIC to specify that the comparison compares
rows in the table cyclically.

4. Run the COMPARE function to compare the oe.orders table at the two databases:

SET SERVEROUTPUT ON
DECLARE
 consistent BOOLEAN;
 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 consistent := DBMS_COMPARISON.COMPARE(
 comparison_name => 'compare_cyclic',
 scan_info => scan_info,
 perform_row_dif => TRUE);
 DBMS_OUTPUT.PUT_LINE('Scan ID: '||scan_info.scan_id);
 IF consistent=TRUE THEN
 DBMS_OUTPUT.PUT_LINE('No differences were found.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Differences were found.');
 END IF;
END;
/

Notice that the perform_row_dif parameter is set to TRUE in the COMPARE function.
This setting instructs the COMPARE function to identify each individual row difference
in the tables. When the perform_row_dif parameter is set to FALSE, the COMPARE
function records whether there are differences in the tables, but does not record
each individual row difference.

Your output is similar to the following:

Scan ID: 8
Differences were found.

Chapter 13
Comparing a Shared Database Object at Two Databases

13-20

PL/SQL procedure successfully completed.

This comparison scan might or might not find differences, depending on the
portion of the table that is compared.

5. To compare the next portion of the database object, starting where the last
comparison ended, rerun the COMPARE function that was run in Step 4. In this
example, running the COMPARE function twice compares the entire database object
because the scan_percent parameter was set to 50 in Step 3.

See Also:

• "Viewing Detailed Information About the Row Differences Found in a
Scan"

• "Converging a Shared Database Object" to converge the differences
found in the comparison results

• "Rechecking the Comparison Results for a Comparison" to recheck the
comparison results

13.6.5 Comparing a Custom Portion of a Shared Database Object
The scan_mode parameter in the CREATE_COMPARISON procedure enables you to compare
a custom portion of a shared database object. After a comparison is created with the
scan_mode parameter set to CMP_SCAN_MODE_CUSTOM in the CREATE_COMPARISON procedure,
you can specify the exact portion of the database object to compare when you run the
COMPARE function.

Typically, you use this option under the following conditions:

• You have a specific portion of a shared database object that you want to compare.

• You are comparing a relatively large shared database object, and you want to
determine whether there might be difference in a specific portion of it without
devoting the resources and time to comparing the entire database object.

See Oracle Database PL/SQL Packages and Types Reference for information about
the scan_mode parameter in the CREATE_COMPARISON procedure.

This example compares a custom portion of the oe.orders table at the
comp1.example.com and comp2.example.com databases:

1. Complete the tasks described in "Preparing To Compare and Converge a Shared
Database Object" and "Diverging a Database Object at Two Databases to
Complete Examples".

2. In SQL*Plus, connect to the comp1.example.com database as the administrative user
who owns the database link created in "Preparing To Compare and Converge a
Shared Database Object".

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

3. Run the CREATE_COMPARISON procedure to create the comparison:

Chapter 13
Comparing a Shared Database Object at Two Databases

13-21

BEGIN
 DBMS_COMPARISON.CREATE_COMPARISON(
 comparison_name => 'compare_custom',
 schema_name => 'oe',
 object_name => 'orders',
 dblink_name => 'comp2.example.com',
 index_schema_name => 'oe',
 index_name => 'order_pk',
 scan_mode => DBMS_COMPARISON.CMP_SCAN_MODE_CUSTOM);
END;
/

Notice that the scan_mode parameter is set to
DBMS_COMPARISON.CMP_SCAN_MODE_CUSTOM. When you specify this scan mode, you
should specify the index to use for the comparison. This example specifies the
or.order_pk index.

4. Identify the index column or columns for the comparison created in Step 3 by
running the following query:

SELECT COLUMN_NAME, COLUMN_POSITION FROM DBA_COMPARISON_COLUMNS
 WHERE COMPARISON_NAME = 'COMPARE_CUSTOM' AND
 INDEX_COLUMN = 'Y';

For a custom comparison, you use the index column to specify the portion of the
table to compare when you run the COMPARE function in the next step. In this
example, the query should return the following output:

COLUMN_NAME COLUMN_POSITION
------------------------------ ---------------
ORDER_ID 1

This output shows that the order_id column in the oe.orders table is the index
column for the comparison.

For other database objects, the CREATE_COMPARISON procedure might identify
multiple index columns. If there are multiple index columns, then specify values for
the lead index column in the next step. The lead index column shows 1 for its
COLUMN_POSITION value.

5. Run the COMPARE function to compare the oe.orders table at the two databases:

SET SERVEROUTPUT ON
DECLARE
 consistent BOOLEAN;
 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 consistent := DBMS_COMPARISON.COMPARE(
 comparison_name => 'compare_custom',
 scan_info => scan_info,
 min_value => '2430',
 max_value => '2460',
 perform_row_dif => TRUE);
 DBMS_OUTPUT.PUT_LINE('Scan ID: '||scan_info.scan_id);
 IF consistent=TRUE THEN
 DBMS_OUTPUT.PUT_LINE('No differences were found.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Differences were found.');
 END IF;
END;
/

Chapter 13
Comparing a Shared Database Object at Two Databases

13-22

Notice the following parameter settings in the COMPARE function:

• The min_value and max_value parameters are set to 2430 and 2460, respectively.
Therefore, the COMPARE function only compares the range of rows that begins
with 2430 and ends with 2460 in the order_id column.

• The min_value and max_value parameters are specified as VARCHAR2 data type
values, even though the column data type for the order_id column is NUMBER.

• The perform_row_dif parameter is set to TRUE in the COMPARE function. This
setting instructs the COMPARE function to identify each individual row difference
in the tables. When the perform_row_dif parameter is set to FALSE, the COMPARE
function records whether there are differences in the tables, but does not
record each individual row difference.

Your output is similar to the following:

Scan ID: 10
Differences were found.

PL/SQL procedure successfully completed.

See Also:

• "Viewing Detailed Information About the Row Differences Found in a
Scan"

• "Converging a Shared Database Object" to converge the differences
found in the comparison results

• "Rechecking the Comparison Results for a Comparison" to recheck the
comparison results

13.6.6 Comparing a Shared Database Object That Contains CLOB or
BLOB Columns

The DBMS_COMPARISON package does not support directly comparing a shared database
object that contains a column of either CLOB or BLOB data type. However, you can
complete these basic steps to compare a table with a CLOB or BLOB column:

1. At each database, create a view based on the table and replace the CLOB or BLOB
column with a RAW data type column that is generated using the DBMS_CRYPTO.HASH
function.

2. Compare the views created in Step 1.

The illustrates how complete these steps for a simple table with a NUMBER column and a
CLOB column. In this example, the global names of the databases are comp1.example.com
and comp2.example.com, but you can substitute any two databases in your environment
that meet the prerequisites described in "Preparing To Compare and Converge a
Shared Database Object".

Chapter 13
Comparing a Shared Database Object at Two Databases

13-23

Note:

The DBMS_COMPARISON package cannot converge a shared database object that
contains LOB columns.

Complete the following steps:

1. Complete the tasks described in "Preparing To Compare and Converge a Shared
Database Object".

2. At the comp1.example.com database, ensure that the user who owns or will own the
table with the CLOB or BLOB column has EXECUTE privilege on the DBMS_CRYPTO
package.

In this example, assume the user who will own the table is oe. Complete the
following steps to grant this privilege to oe user:

a. In SQL*Plus, connect to the comp1.example.com database as an administrative
user who can grant privileges.

b. Grant EXECUTE on the DBMS_CRYPTO package to the user:

GRANT EXECUTE ON DBMS_CRYPTO TO oe;

3. At the comp2.example.com database, ensure that the user who owns or will own the
table with the CLOB or BLOB column has EXECUTE privilege on the DBMS_CRYPTO
package.

In this example, assume the user who will own the table is oe. Complete the
following steps to grant this privilege to oe user:

a. In SQL*Plus, connect to the comp2.example.com database as an administrative
user who can grant privileges.

b. Grant EXECUTE on the DBMS_CRYPTO package to the user:

GRANT EXECUTE ON DBMS_CRYPTO TO oe;

4. Create the table with the CLOB column and the view based on the table in the
comp1.example.com database:

a. In SQL*Plus, connect to the comp1.example.com database as the user who will
own the table.

See Oracle Database Administrator's Guide for instructions about connecting
to a database in SQL*Plus.

b. Create the table:

CREATE TABLE oe.tab_lob(
 c1 NUMBER PRIMARY KEY,
 c2 CLOB DEFAULT to_clob('c2'));

c. Insert a row into the tab_lob table and commit the change:

INSERT INTO oe.tab_lob VALUES(1, TO_CLOB('row 1'));COMMIT;

d. Create the view:

BEGIN
 EXECUTE IMMEDIATE 'CREATE VIEW view_lob AS SELECT
 c1,
 DBMS_CRYPTO.HASH(c2, '||DBMS_CRYPTO.HASH_SH1||') c2_hash

Chapter 13
Comparing a Shared Database Object at Two Databases

13-24

 FROM tab_lob';
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the cryptographic hash functions used in the DBMS_CRYPTO
package

5. Create the table with the CLOB column and the view based on the table in the
comp2.example.com database:

a. In SQL*Plus, connect to the comp2.example.com database as the user who will
own the table.

See Oracle Database Administrator's Guide for instructions about connecting
to a database in SQL*Plus.

b. Create the table:

CREATE TABLE oe.tab_lob(
 c1 NUMBER PRIMARY KEY,
 c2 CLOB DEFAULT to_clob('c2'));

c. Insert a row into the tab_lob table and commit the change:

INSERT INTO oe.tab_lob VALUES(1, TO_CLOB('row 1'));COMMIT;

d. Create the view:

BEGIN
 EXECUTE IMMEDIATE 'CREATE VIEW view_lob AS SELECT
 c1,
 DBMS_CRYPTO.HASH(c2, '||DBMS_CRYPTO.HASH_SH1||') c2_hash
 FROM tab_lob';
END;
/

6. In SQL*Plus, connect to the comp1.example.com database as the administrative user
who owns the database link created in "Preparing To Compare and Converge a
Shared Database Object".

7. Run the CREATE_COMPARISON procedure to create the comparison:

BEGIN
 DBMS_COMPARISON.CREATE_COMPARISON(
 comparison_name => 'compare_lob',
 schema_name => 'oe',
 object_name => 'view_lob',
 dblink_name => 'comp2.example.com');
END;
/

Notice that the schema_name and object_name parameters specify the view
oe.view_lob and not the table that contains the CLOB column.

8. Run the COMPARE function to compare the oe.view_lob view at the two databases:

SET SERVEROUTPUT ON
DECLARE
 consistent BOOLEAN;

Chapter 13
Comparing a Shared Database Object at Two Databases

13-25

 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 consistent := DBMS_COMPARISON.COMPARE(
 comparison_name => 'compare_lob',
 scan_info => scan_info,
 perform_row_dif => TRUE);
 DBMS_OUTPUT.PUT_LINE('Scan ID: '||scan_info.scan_id);
 IF consistent=TRUE THEN
 DBMS_OUTPUT.PUT_LINE('No differences were found.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Differences were found.');
 END IF;
END;
/

Scan ID: 1
No differences were found.

PL/SQL procedure successfully completed.

9. Make the oe.tab_lob table diverge at two databases by completing the following
steps:

a. In SQL*Plus, connect to the comp1.example.com database as the user who owns
the table.

See Oracle Database Administrator's Guide for instructions about connecting
to a database in SQL*Plus.

b. Insert a row and commit the change:

INSERT INTO oe.tab_lob VALUES(2, TO_CLOB('row a'));
COMMIT;

c. In SQL*Plus, connect to the comp2.example.com database as the user who owns
the table.

See Oracle Database Administrator's Guide for instructions about connecting
to a database in SQL*Plus.

d. Insert a row and commit the change:

INSERT INTO oe.tab_lob VALUES(2, TO_CLOB('row b'));
COMMIT;

10. Run the COMPARE function again to compare the oe.view_lob view at the two
databases. See Step 8.

The shared table with the CLOB column has diverged at the two databases.
Therefore, when you compare the view, the COMPARE function returns the following
output:

Scan ID: 2
Differences were found.

PL/SQL procedure successfully completed.

Chapter 13
Comparing a Shared Database Object at Two Databases

13-26

13.7 Viewing Information About Comparisons and
Comparison Results

The following data dictionary views contain information about comparisons created
with the DBMS_COMPARISON package:

• DBA_COMPARISON

• USER_COMPARISON

• DBA_COMPARISON_COLUMNS

• USER_COMPARISON_COLUMNS

• DBA_COMPARISON_SCAN

• USER_COMPARISON_SCAN

• DBA_COMPARISON_SCAN_VALUES

• USER_COMPARISON_SCAN_VALUES

• DBA_COMPARISON_ROW_DIF

• USER_COMPARISON_ROW_DIF

The following sections contain sample queries that you can use to monitor
comparisons and comparison results:

• Viewing General Information About the Comparisons in a Database

• Viewing Information Specific to Random and Cyclic Comparisons

• Viewing the Columns Compared by Each Comparison in a Database

• Viewing General Information About Each Scan in a Database

• Viewing the Parent Scan ID and Root Scan ID for Each Scan in a Database

• Viewing Detailed Information About the Row Differences Found in a Scan

• Viewing Information About the Rows Compared in Specific Scans

See Also:

Oracle Database Reference for detailed information about the data dictionary
views related to comparisons

13.7.1 Viewing General Information About the Comparisons in a
Database

The DBA_COMPARISON data dictionary view contains information about the comparisons in
the local database. The query in this section displays the following information about
each comparison:

• The owner of the comparison

• The name of the comparison

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-27

• The schema that contains the database object compared by the comparison

• The name of the database object compared by the comparison

• The data type of the database object compared by the comparison

• The scan mode used by the comparison. The following scan modes are possible:

– FULL indicates that the entire database object is compared.

– RANDOM indicates that a random portion of the database object is compared.

– CYCLIC indicates that a portion of the database object is compared during a
single comparison. When the database object is compared again, another
portion of the database object is compared, starting where the last compare
ended.

– CUSTOM indicates that the COMPARE function specifies the range to compare in the
database object.

• The name of the database link used to connect with the remote database

To view this information, run the following query:

COLUMN OWNER HEADING 'Comparison|Owner' FORMAT A10
COLUMN COMPARISON_NAME HEADING 'Comparison|Name' FORMAT A22
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A8
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A8
COLUMN OBJECT_TYPE HEADING 'Object|Type' FORMAT A8
COLUMN SCAN_MODE HEADING 'Scan|Mode' FORMAT A6
COLUMN DBLINK_NAME HEADING 'Database|Link' FORMAT A15

SELECT OWNER,
 COMPARISON_NAME,
 SCHEMA_NAME,
 OBJECT_NAME,
 OBJECT_TYPE,
 SCAN_MODE,
 DBLINK_NAME
 FROM DBA_COMPARISON;

Your output is similar to the following:

Comparison Comparison Schema Object Object Scan Database
Owner Name Name Name Type Mode Link
---------- ---------------------- -------- -------- -------- ------ ----------
ADMIN COMPARE_SUBSET_COLUMNS OE ORDERS TABLE FULL COMP2.EXAM
 PLE
ADMIN COMPARE_ORDERS OE ORDERS TABLE FULL COMP2.EXAM
 PLE
ADMIN COMPARE_RANDOM OE ORDERS TABLE RANDOM COMP2.EXAM
 PLE
ADMIN COMPARE_CYCLIC OE ORDERS TABLE CYCLIC COMP2.EXAM
 PLE
ADMIN COMPARE_CUSTOM OE ORDERS TABLE CUSTOM COMP2.EXAM
 PLE

A comparison compares the local database object with a database object at a remote
database. The comparison uses the database link shown by the query to connect to
the remote database and perform the comparison.

By default, a comparison assumes that the owner, name, and data type of the
database objects being compared are the same at both databases. However, they can
be different at the local and remote databases. The query in this section does not

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-28

display information about the remote database object, but you can query the
REMOTE_SCHEMA_NAME, REMOTE_OBJECT_NAME, and REMOTE_OBJECT_TYPE columns to view this
information.

See Also:

Comparing a Shared Database Object at Two Databases for information about
creating the comparisons shown in the output of this query

13.7.2 Viewing Information Specific to Random and Cyclic
Comparisons

When you create comparisons that use the scan modes RANDOM or CYCLIC, you specify
the percentage of the shared database object to compare. The query in this section
shows the following information about random and cyclic comparisons:

• The owner of the comparison

• The name of the comparison

• The schema that contains the database object compared by the comparison

• The name of the database object compared by the comparison

• The data type of the database object compared by the comparison

• The scan percentage for the comparison. Each time the COMPARE function is run to
perform a comparison scan, the specified percentage of the database object is
compared.

• The last lead index column value used by the comparison. The next time the
COMPARE function is run, it will start with row that has a lead index column value that
directly follows the value shown by the query. This value only applies to cyclic
comparisons.

To view this information, run the following query:

COLUMN OWNER HEADING 'Comparison|Owner' FORMAT A10
COLUMN COMPARISON_NAME HEADING 'Comparison|Name' FORMAT A22
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A8
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A8
COLUMN OBJECT_TYPE HEADING 'Object|Type' FORMAT A8
COLUMN SCAN_PERCENT HEADING 'Scan|Percent' FORMAT 999
COLUMN CYCLIC_INDEX_VALUE HEADING 'Cyclic|Index|Value' FORMAT A10

SELECT OWNER,
 COMPARISON_NAME,
 SCHEMA_NAME,
 OBJECT_NAME,
 OBJECT_TYPE,
 SCAN_PERCENT,
 CYCLIC_INDEX_VALUE
 FROM DBA_COMPARISON
 WHERE SCAN_PERCENT IS NOT NULL;

Your output is similar to the following:

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-29

 Cyclic
Comparison Comparison Schema Object Object Scan Index
Owner Name Name Name Type Percent Value
---------- ---------------------- -------- -------- -------- ------- ----------
ADMIN COMPARE_RANDOM OE ORDERS TABLE 50
ADMIN COMPARE_CYCLIC OE ORDERS TABLE 50 2677

See Also:

• "Comparing a Random Portion of a Shared Database Object"

• "Comparing a Shared Database Object Cyclically"

• "Viewing General Information About the Comparisons in a Database"

13.7.3 Viewing the Columns Compared by Each Comparison in a
Database

When you create a comparison, you can specify that the comparison compares all of
the columns in the shared database object or a subset of the columns. Also, you can
specify an index for the comparison to use or let the system identify an index
automatically.

The query in this section displays the following information:

• The owner of the comparison

• The name of the comparison

• The schema that contains the database object compared by the comparison

• The name of the database object compared by the comparison

• The column name of each column being compared in each database object

• The column position of each column

• Whether a column is an index column

To display this information, run the following query:

COLUMN OWNER HEADING 'Comparison|Owner' FORMAT A10
COLUMN COMPARISON_NAME HEADING 'Comparison|Name' FORMAT A15
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A10
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A10
COLUMN COLUMN_NAME HEADING 'Column|Name' FORMAT A12
COLUMN COLUMN_POSITION HEADING 'Column|Position' FORMAT 9999
COLUMN INDEX_COLUMN HEADING 'Index|Column?' FORMAT A7

SELECT c.OWNER,
 c.COMPARISON_NAME,
 c.SCHEMA_NAME,
 c.OBJECT_NAME,
 o.COLUMN_NAME,
 o.COLUMN_POSITION,
 o.INDEX_COLUMN
 FROM DBA_COMPARISON c, DBA_COMPARISON_COLUMNS o
 WHERE c.OWNER = o.OWNER AND

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-30

 c.COMPARISON_NAME = o.COMPARISON_NAME
 ORDER BY COMPARISON_NAME, COLUMN_POSITION;

Your output is similar to the following:

Comparison Comparison Schema Object Column Column Index
Owner Name Name Name Name Position Column?
---------- --------------- ---------- ---------- ------------ -------- -------
ADMIN COMPARE_CUSTOM OE ORDERS ORDER_ID 1 Y
ADMIN COMPARE_CUSTOM OE ORDERS ORDER_DATE 2 N
ADMIN COMPARE_CUSTOM OE ORDERS ORDER_MODE 3 N
ADMIN COMPARE_CUSTOM OE ORDERS CUSTOMER_ID 4 N
ADMIN COMPARE_CUSTOM OE ORDERS ORDER_STATUS 5 N
ADMIN COMPARE_CUSTOM OE ORDERS ORDER_TOTAL 6 N
ADMIN COMPARE_CUSTOM OE ORDERS SALES_REP_ID 7 N
ADMIN COMPARE_CUSTOM OE ORDERS PROMOTION_ID 8 N
ADMIN COMPARE_CYCLIC OE ORDERS ORDER_ID 1 Y
ADMIN COMPARE_CYCLIC OE ORDERS ORDER_DATE 2 N
ADMIN COMPARE_CYCLIC OE ORDERS ORDER_MODE 3 N
ADMIN COMPARE_CYCLIC OE ORDERS CUSTOMER_ID 4 N
ADMIN COMPARE_CYCLIC OE ORDERS ORDER_STATUS 5 N
ADMIN COMPARE_CYCLIC OE ORDERS ORDER_TOTAL 6 N
ADMIN COMPARE_CYCLIC OE ORDERS SALES_REP_ID 7 N
ADMIN COMPARE_CYCLIC OE ORDERS PROMOTION_ID 8 N
.
.
.

See Also:

• "About Comparing and Converging Data"

• Oracle Database PL/SQL Packages and Types Reference

13.7.4 Viewing General Information About Each Scan in a Database
Each scan compares a bucket at the local database with a bucket at the remote
database. The buckets being compared contain the same range of rows in the shared
database object. The comparison results generated by a single execution of the
COMPARE function can include multiple buckets and multiple scans. Each scan has a
unique scan ID.

The query in this section shows the following information about each scan:

• The owner of the comparison that ran the scan

• The name of the comparison that ran the scan

• The schema that contains the database object compared by the scan

• The name of the database object compared by the scan

• The scan ID of the scan

• The status of the scan. The following status values are possible:

– SUC indicates that the two buckets in the two tables matched the last time this
data dictionary row was updated.

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-31

– BUCKET DIF indicates that the two buckets in the two tables did not match. Each
bucket consists of smaller buckets.

– FINAL BUCKET DIF indicates that the two buckets in the two tables did not match.
Neither bucket is composed of smaller buckets. Because the perform_row_dif
parameter in the COMPARE function or the RECHECK function was set to FALSE,
individual row differences were not identified for the bucket.

– ROW DIF indicates that the two buckets in the two tables did not match. Neither
bucket is composed of smaller buckets. Because the perform_row_dif
parameter in the COMPARE function or the RECHECK function was set to TRUE,
individual row differences were identified for the bucket.

• The number of rows compared in the scan

• The last time the scan was updated

To view this information, run the following query:

COLUMN OWNER HEADING 'Comparison|Owner' FORMAT A10
COLUMN COMPARISON_NAME HEADING 'Comparison|Name' FORMAT A15
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A6
COLUMN SCAN_ID HEADING 'Scan|ID' FORMAT 9999
COLUMN STATUS HEADING 'Scan|Status' FORMAT A10
COLUMN COUNT_ROWS HEADING 'Number|of|Rows' FORMAT 9999999
COLUMN SCAN_NULLS HEADING 'Scan|NULLs?' FORMAT A6
COLUMN LAST_UPDATE_TIME HEADING 'Last|Update' FORMAT A11

SELECT c.OWNER,
 c.COMPARISON_NAME,
 c.SCHEMA_NAME,
 c.OBJECT_NAME,
 s.SCAN_ID,
 s.STATUS,
 s.COUNT_ROWS,
 TO_CHAR(s.LAST_UPDATE_TIME, 'DD-MON-YYYY HH24:MI:SS') LAST_UPDATE_TIME
 FROM DBA_COMPARISON c, DBA_COMPARISON_SCAN s
 WHERE c.OWNER = s.OWNER AND
 c.COMPARISON_NAME = s.COMPARISON_NAME
 ORDER BY SCAN_ID;

Your output is similar to the following:

 Number
Comparison Comparison Schema Object Scan Scan of Last
Owner Name Name Name ID Status Rows Update
---------- --------------- ------ ------ ----- ---------- -------- -----------
ADMIN COMPARE_SUBSET_ OE ORDERS 1 BUCKET DIF 20-DEC-2006
 COLUMNS 09:46:34
ADMIN COMPARE_SUBSET_ OE ORDERS 2 ROW DIF 105 20-DEC-2006
 COLUMNS 09:46:34
ADMIN COMPARE_SUBSET_ OE ORDERS 3 ROW DIF 1 20-DEC-2006
 COLUMNS 09:46:35
ADMIN COMPARE_ORDERS OE ORDERS 4 BUCKET DIF 20-DEC-2006
 09:47:02
ADMIN COMPARE_ORDERS OE ORDERS 5 FINAL BUCK 105 20-DEC-2006
 ET DIF 09:47:02
ADMIN COMPARE_ORDERS OE ORDERS 6 FINAL BUCK 1 20-DEC-2006
 ET DIF 09:47:02
ADMIN COMPARE_RANDOM OE ORDERS 7 SUC 20-DEC-2006
 09:47:37

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-32

ADMIN COMPARE_CYCLIC OE ORDERS 8 BUCKET DIF 20-DEC-2006
 09:48:22
ADMIN COMPARE_CYCLIC OE ORDERS 9 ROW DIF 105 20-DEC-2006
 09:48:22
ADMIN COMPARE_CUSTOM OE ORDERS 10 BUCKET DIF 20-DEC-2006
 09:49:15
ADMIN COMPARE_CUSTOM OE ORDERS 11 ROW DIF 16 20-DEC-2006
 09:49:15
ADMIN COMPARE_CUSTOM OE ORDERS 12 ROW DIF 13 20-DEC-2006
 09:49:15

When a scan has a status of BUCKET DIF, FINAL BUCKET DIF, or ROW DIF, you can converge
the differences found in the scan by running the CONVERGE procedure and specifying the
scan ID. However, to converge the all of the rows in the comparison results instead of
the portion checked in a specific scan, specify the root scan ID for the comparison
results when you run the CONVERGE procedure.

Also, when a scan shows that differences were found, you can recheck the scan using
the RECHECK function. To recheck all of the rows in the comparison results, run the
RECHECK function and specify the root scan ID for the comparison results.

See Also:

• "Viewing the Parent Scan ID and Root Scan ID for Each Scan in a
Database" for information about viewing the root scan for a scan

• "Converging a Shared Database Object"

• "Rechecking the Comparison Results for a Comparison"

• "About Comparing and Converging Data" for more information about
scans and buckets

• Oracle Database PL/SQL Packages and Types Reference

13.7.5 Viewing the Parent Scan ID and Root Scan ID for Each Scan in
a Database

The query in this section shows the parent scan ID and root scan ID of each scan in
the database. Specifically, the query shows the following information:

• The owner of the comparison that ran the scan

• The name of the comparison that ran the scan

• The schema that contains the database object compared by the scan

• The name of the database object compared by the scan

• The scan ID of the scan

• The scan ID of the scan's parent scan

• The scan ID of the scan's root scan

To view this information, run the following query:

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-33

COLUMN OWNER HEADING 'Comparison|Owner' FORMAT A10
COLUMN COMPARISON_NAME HEADING 'Comparison|Name' FORMAT A15
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A10
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A10
COLUMN SCAN_ID HEADING 'Scan|ID' FORMAT 9999
COLUMN PARENT_SCAN_ID HEADING 'Parent|Scan ID' FORMAT 9999
COLUMN ROOT_SCAN_ID HEADING 'Root|Scan ID' FORMAT 9999

SELECT c.OWNER,
 c.COMPARISON_NAME,
 c.SCHEMA_NAME,
 c.OBJECT_NAME,
 s.SCAN_ID,
 s.PARENT_SCAN_ID,
 s.ROOT_SCAN_ID
 FROM DBA_COMPARISON c, DBA_COMPARISON_SCAN s
 WHERE c.OWNER = s.OWNER AND
 c.COMPARISON_NAME = s.COMPARISON_NAME
 ORDER BY s.SCAN_ID;

Your output is similar to the following:

Comparison Comparison Schema Object Scan Parent Root
Owner Name Name Name ID Scan ID Scan ID
---------- --------------- ---------- ---------- ----- ------- -------
ADMIN COMPARE_SUBSET_ OE ORDERS 1 1
 COLUMNS
ADMIN COMPARE_SUBSET_ OE ORDERS 2 1 1
 COLUMNS
ADMIN COMPARE_SUBSET_ OE ORDERS 3 1 1
 COLUMNS
ADMIN COMPARE_ORDERS OE ORDERS 4 4
ADMIN COMPARE_ORDERS OE ORDERS 5 4 4
ADMIN COMPARE_ORDERS OE ORDERS 6 4 4
ADMIN COMPARE_RANDOM OE ORDERS 7 7
ADMIN COMPARE_CYCLIC OE ORDERS 8 8
ADMIN COMPARE_CYCLIC OE ORDERS 9 8 8
ADMIN COMPARE_CUSTOM OE ORDERS 10 10
ADMIN COMPARE_CUSTOM OE ORDERS 11 10 10
ADMIN COMPARE_CUSTOM OE ORDERS 12 10 10

This output shows, for example, that the scan with scan ID 1 is the root scan in the
comparison results for the COMPARE_SUBSET_COLUMNS comparison. Differences were found
in this root scan, and it was split into two smaller buckets. The scan with scan ID 2 and
the scan with scan ID 3 are the scans for these smaller buckets.

To see if there were differences found in a specific scan, run the query in "Viewing
General Information About Each Scan in a Database". When you RECHECK for
differences or CONVERGE differences in a shared database object, you specify the scan
ID of the scan you want to recheck or converge. To recheck or converge all of the
rows in the comparison results, specify the root scan ID for the comparison results.

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-34

See Also:

• "Converging a Shared Database Object"

• "Rechecking the Comparison Results for a Comparison"

• "About Comparing and Converging Data"

• Oracle Database PL/SQL Packages and Types Reference

13.7.6 Viewing Detailed Information About the Row Differences Found
in a Scan

The queries in this section display detailed information about the row differences found
in comparison results. To view the information in the queries in this section, the
perform_row_dif parameter in the COMPARE function or the RECHECK function that
performed the comparison must have been set to TRUE.

If this parameter was set to FALSE, then you can query the STATUS column in the
DBA_COMPARISON_SCAN view to determine whether the scan found any differences, without
showing detailed information about the differences. See "Viewing General Information
About Each Scan in a Database" for more information and a sample query.

The following query shows the total number of differences found for a scan with the
scan ID of 8:

COLUMN OWNER HEADING 'Comparison Owner' FORMAT A16
COLUMN COMPARISON_NAME HEADING 'Comparison Name' FORMAT A25
COLUMN SCHEMA_NAME HEADING 'Schema Name' FORMAT A11
COLUMN OBJECT_NAME HEADING 'Object Name' FORMAT A11
COLUMN CURRENT_DIF_COUNT HEADING 'Differences' FORMAT 9999999

SELECT c.OWNER,
 c.COMPARISON_NAME,
 c.SCHEMA_NAME,
 c.OBJECT_NAME,
 s.CURRENT_DIF_COUNT
 FROM DBA_COMPARISON c, DBA_COMPARISON_SCAN s
 WHERE c.COMPARISON_NAME = s.COMPARISON_NAME AND
 c.OWNER = s.OWNER AND
 s.SCAN_ID = 8;

Your output is similar to the following:

Comparison Owner Comparison Name Schema Name Object Name Differences
---------------- ------------------------- ----------- ----------- -----------
ADMIN COMPARE_CYCLIC OE ORDERS 6

To view detailed information about each row difference found in the scan with scan ID
8 of the comparison results for the COMPARE_CYCLIC comparison, run the following query:

COLUMN COLUMN_NAME HEADING 'Index Column' FORMAT A15
COLUMN INDEX_VALUE HEADING 'Index Value' FORMAT A15
COLUMN LOCAL_ROWID HEADING 'Local Row Exists?' FORMAT A20
COLUMN REMOTE_ROWID HEADING 'Remote Row Exists?' FORMAT A20

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-35

SELECT c.COLUMN_NAME,
 r.INDEX_VALUE,
 DECODE(r.LOCAL_ROWID,
 NULL, 'No',
 'Yes') LOCAL_ROWID,
 DECODE(r.REMOTE_ROWID,
 NULL, 'No',
 'Yes') REMOTE_ROWID
 FROM DBA_COMPARISON_COLUMNS c,
 DBA_COMPARISON_ROW_DIF r,
 DBA_COMPARISON_SCAN s
 WHERE c.COMPARISON_NAME = 'COMPARE_CYCLIC' AND
 r.SCAN_ID = s.SCAN_ID AND
 s.PARENT_SCAN_ID = 8 AND
 r.STATUS = 'DIF' AND
 c.INDEX_COLUMN = 'Y' AND
 c.COMPARISON_NAME = r.COMPARISON_NAME AND
 c.OWNER = r.OWNER
 ORDER BY r.INDEX_VALUE;

Your output is similar to the following:

Index Column Index Value Local Row Exists? Remote Row Exists?
--------------- --------------- -------------------- --------------------
ORDER_ID 2366 Yes No
ORDER_ID 2385 Yes No
ORDER_ID 2396 Yes No
ORDER_ID 2425 Yes No
ORDER_ID 2440 Yes Yes
ORDER_ID 2450 Yes No

This output shows the index column for the table being compared and the index value
for each row that is different in the shared database object. In this example, the index
column is the primary key column for the oe.orders table (order_id). The output also
shows the type of difference for each row:

• If Local Row Exists? and Remote Row Exists? are both Yes for a row, then the row
exists in both instances of the database object, but the data in the row is different.

• If Local Row Exists? is Yes and Remote Row Exists? is No for a row, then the row exists
in the local database object but not in the remote database object.

• If Local Row Exists? is No and Remote Row Exists? is Yes for a row, then the row exists
in the remote database object but not in the local database object.

13.7.7 Viewing Information About the Rows Compared in Specific
Scans

Each scan compares a range of rows in a shared database object. The query in this
section provides the following information about the rows compared in each scan in
the database:

• The owner of the comparison that ran the scan

• The name of the comparison that ran the scan

• The column position of the row values displayed by the query

• The minimum value for the range of rows compared by the scan

• The maximum value for the range of rows compared by the scan

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-36

A scan compares the row with the minimum value, the row with the maximum value,
and all of the rows in between the minimum and maximum values in the database
object. For each row returned by the query, the value displayed for the minimum value
and the maximum value are the values for the column in the displayed the column
position. The column position is an index column for the comparison.

To view this information, run the following query:

COLUMN OWNER HEADING 'Comparison|Owner' FORMAT A10
COLUMN COMPARISON_NAME HEADING 'Comparison|Name' FORMAT A22
COLUMN SCAN_ID HEADING 'Scan|ID' FORMAT 9999
COLUMN COLUMN_POSITION HEADING 'Column|Position' FORMAT 999
COLUMN MIN_VALUE HEADING 'Minimum|Value' FORMAT A15
COLUMN MAX_VALUE HEADING 'Maximum|Value' FORMAT A15

SELECT OWNER,
 COMPARISON_NAME,
 SCAN_ID,
 COLUMN_POSITION,
 MIN_VALUE,
 MAX_VALUE
 FROM DBA_COMPARISON_SCAN_VALUES
 ORDER BY SCAN_ID;

Your output is similar to the following:

Comparison Comparison Scan Column Minimum Maximum
Owner Name ID Position Value Value
---------- ---------------------- ----- -------- --------------- ---------------
ADMIN COMPARE_SUBSET_COLUMNS 1 1 2354 3000
ADMIN COMPARE_SUBSET_COLUMNS 2 1 2354 2458
ADMIN COMPARE_SUBSET_COLUMNS 3 1 3000 3000
ADMIN COMPARE_ORDERS 4 1 2354 3000
ADMIN COMPARE_ORDERS 5 1 2354 2458
ADMIN COMPARE_ORDERS 6 1 3000 3000
ADMIN COMPARE_RANDOM 7 1 2617.3400241505 2940.3400241505
 667163579712423 667163579712423
 44590999096 44590999096
ADMIN COMPARE_CYCLIC 8 1 2354 2677
ADMIN COMPARE_CYCLIC 9 1 2354 2458
ADMIN COMPARE_CUSTOM 10 1 2430 2460
ADMIN COMPARE_CUSTOM 11 1 2430 2445
ADMIN COMPARE_CUSTOM 12 1 2446 2458

This output shows the rows that were compared in each scan. For some comparisons,
the scan was split into smaller buckets, and the query shows the rows compared in
each smaller bucket.

For example, consider the output for the comparison results of the COMPARE_CUSTOM
comparison:

• Each scan in the comparison results displays column position 1. To determine
which column is in column position 1 for the scan, run the query in "Viewing the
Columns Compared by Each Comparison in a Database". In this example, the
column in column position 1 for the COMPARE_CUSTOM comparison is the order_id
column in the oe.orders table.

• Scan ID 10 is a root scan. This scan found differences, and the rows were split into
two buckets that are represented by scan ID 11 and scan ID 12.

Chapter 13
Viewing Information About Comparisons and Comparison Results

13-37

• Scan ID 11 compared the rows from the row with 2430 for order_id to the row with
2445 for order_id.

• Scan ID 12 compared the rows from the row with 2446 for order_id to the row with
2458 for order_id.

To recheck or converge the differences found in a scan, you can run the RECHECK
function or CONVERGE procedure, respectively. Specify the scan ID of the scan you want
to recheck or converge. To recheck or converge all of the rows in comparison results,
specify the root scan ID for the comparison results.

See Also:

• "Converging a Shared Database Object"

• "Rechecking the Comparison Results for a Comparison"

• "About Comparing and Converging Data"

• Oracle Database PL/SQL Packages and Types Reference

13.8 Converging a Shared Database Object
The CONVERGE procedure in the DBMS_COMPARISON package synchronizes the portion of
the database object compared by the specified comparison scan and returns
information about the changes it made. The CONVERGE procedure only converges the
differences identified in the specified scan. A scan might only identify differences in a
subset of the rows or columns in a table, and differences might arise after the specified
scan completed. In these cases, the CONVERGE procedure might not make the shared
database object completely consistent.

To ensure that a scan has the most current differences, it is usually best to run the
CONVERGE procedure as soon as possible after running the comparison scan that is
being converged. Also, you should only converge rows that are not being updated on
either database. For example, if the shared database object is updated by replication
components, then only converge rows for which replication changes have already
been applied and ensure that no new changes are in the process of being replicated
for these rows.

Note:

If a scan identifies that a row is different in the shared database object at two
databases, and the row is modified after the scan, then it can result in
unexpected data in the row after the CONVERGE procedure is run.

This section contains the following examples:

• Converging a Shared Database Object for Consistency with the Local Object

• Converging a Shared Database Object for Consistency with the Remote Object

• Converging a Shared Database Object with a Session Tag Set

Chapter 13
Converging a Shared Database Object

13-38

These examples converge the comparison results generated in "Comparing a Shared
Database Object without Identifying Row Differences". In that example, the
comparison name is compare_orders and the returned scan ID is 4. If you completed
this example, then the scan ID returned on your system might have been different.
Run the following query to determine the scan ID:

SELECT DISTINCT ROOT_SCAN_ID FROM DBA_COMPARISON_SCAN
 WHERE COMPARISON_NAME = 'COMPARE_ORDERS';

If multiple values are returned, then the comparison was run more than once. In this
case, use the largest scan ID returned.

When you want to converge all of the rows in comparison results, specify the root scan
ID for the comparison results. If, however, you want to converge a portion of the rows
in comparison results, then you can specify the scan ID of the scan that contains
differences you want to converge.

See Also:

• "Comparing a Shared Database Object at Two Databases" for information
about comparing database objects and comparison scans

• "Viewing General Information About Each Scan in a Database" for a query
that shows which scans found differences

• "Viewing the Parent Scan ID and Root Scan ID for Each Scan in a
Database" for a query that shows the root scan ID of each scan

• Oracle Database PL/SQL Packages and Types Reference for more
information about the CONVERGE procedure

13.8.1 Converging a Shared Database Object for Consistency with the
Local Object

The converge_options parameter in the CONVERGE procedure determines which database
"wins" during a conversion. To specify that the local database wins, set the
converge_options parameter to DBMS_COMPARISON.CMP_CONVERGE_LOCAL_WINS. When you
specify that the local database wins, the data in the database object at the local
database replaces the data in the database object at the remote database for each
difference found in the specified comparison scan.

To converge a scan of the compare_orders comparison so that both database objects
are consistent with the local database, complete the following steps:

1. In SQL*Plus, connect to the comp1.example.com database as the administrative user
who owns the comparison. The user must also have access to the database link
created in "Preparing To Compare and Converge a Shared Database Object".

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Run the CONVERGE procedure:

SET SERVEROUTPUT ON
DECLARE

Chapter 13
Converging a Shared Database Object

13-39

 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 DBMS_COMPARISON.CONVERGE(
 comparison_name => 'compare_orders',
 scan_id => 4, -- Substitute the scan ID from your scan.
 scan_info => scan_info,
 converge_options => DBMS_COMPARISON.CMP_CONVERGE_LOCAL_WINS);
DBMS_OUTPUT.PUT_LINE('Local Rows Merged: '||scan_info.loc_rows_merged);
DBMS_OUTPUT.PUT_LINE('Remote Rows Merged: '||scan_info.rmt_rows_merged);
DBMS_OUTPUT.PUT_LINE('Local Rows Deleted: '||scan_info.loc_rows_deleted);
DBMS_OUTPUT.PUT_LINE('Remote Rows Deleted: '||scan_info.rmt_rows_deleted);
END;
/

Your output is similar to the following:

Local Rows Merged: 0
Remote Rows Merged: 6
Local Rows Deleted: 0
Remote Rows Deleted: 1

PL/SQL procedure successfully completed.

13.8.2 Converging a Shared Database Object for Consistency with the
Remote Object

The converge_options parameter in the CONVERGE procedure determines which database
"wins" during a conversion. To specify that the remote database wins, set the
converge_options parameter to DBMS_COMPARISON.CMP_CONVERGE_REMOTE_WINS. When you
specify that the remote database wins, the data in the database object at the remote
database replaces the data in the database object at the local database for each
difference found in the specified comparison scan.

To converge a scan of the compare_orders comparison so that both database objects
are consistent with the remote database, complete the following steps:

1. In SQL*Plus, connect to the comp1.example.com database as the administrative user
who owns the comparison. The user must also have access to the database link
created in "Preparing To Compare and Converge a Shared Database Object".

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Run the CONVERGE procedure:

SET SERVEROUTPUT ON
DECLARE
 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 DBMS_COMPARISON.CONVERGE(
 comparison_name => 'compare_orders',
 scan_id => 4, -- Substitute the scan ID from your scan.
 scan_info => scan_info,
 converge_options => DBMS_COMPARISON.CMP_CONVERGE_REMOTE_WINS);
DBMS_OUTPUT.PUT_LINE('Local Rows Merged: '||scan_info.loc_rows_merged);
DBMS_OUTPUT.PUT_LINE('Remote Rows Merged: '||scan_info.rmt_rows_merged);
DBMS_OUTPUT.PUT_LINE('Local Rows Deleted: '||scan_info.loc_rows_deleted);
DBMS_OUTPUT.PUT_LINE('Remote Rows Deleted: '||scan_info.rmt_rows_deleted);
END;
/

Chapter 13
Converging a Shared Database Object

13-40

Your output is similar to the following:

Local Rows Merged: 2
Remote Rows Merged: 0
Local Rows Deleted: 5
Remote Rows Deleted: 0

PL/SQL procedure successfully completed.

13.8.3 Converging a Shared Database Object with a Session Tag Set
If the shared database object being converged is part of an Oracle Streams replication
environment, then you can set a session tag so that changes made by the CONVERGE
procedure are not replicated. Typically, changes made by the CONVERGE procedure
should not be replicated to avoid change cycling, which means sending a change back
to the database where it originated. In an Oracle Streams replication environment, you
can use session tags to ensure that changes made by the CONVERGE procedure are not
captured by Oracle Streams capture processes or synchronous captures and therefore
not replicated.

To set a session tag in the session running the CONVERGE procedure, use the following
procedure parameters:

• The local_converge_tag parameter sets a session tag at the local database. Set
this parameter to a value that prevents replication when the remote database wins
and the CONVERGE procedure makes changes to the local database.

• The remote_converge_tag parameter sets a session tag at the remote database. Set
this parameter to a value that prevents replication when the local database wins
and the CONVERGE procedure makes changes to the remote database.

The appropriate value for a session tag depends on the Oracle Streams replication
environment. Set the tag to a value that prevents capture processes and synchronous
captures from capturing changes made by the session.

See Also:

"Oracle Streams Tags in a Replication Environment"

The example in this section specifies that the local database wins the converge
operation by setting the converge_options parameter to
DBMS_COMPARISON.CMP_CONVERGE_LOCAL_WINS. Therefore, the example sets the
remote_converge_tag parameter to the hexadecimal equivalent of '11'. The session tag
can be set to any non-NULL value that prevents the changes made by the CONVERGE
procedure to the remote database from being replicated.

To converge a scan of the compare_orders comparison so that the database objects are
consistent with the local database and a session tag is set at the remote database,
complete the following steps:

1. In SQL*Plus, connect to the comp1.example.com database as the administrative user
who owns the comparison. The user must also have access to the database link
created in "Preparing To Compare and Converge a Shared Database Object".

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

Chapter 13
Converging a Shared Database Object

13-41

2. Run the CONVERGE procedure:

SET SERVEROUTPUT ON
DECLARE
 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
BEGIN
 DBMS_COMPARISON.CONVERGE(
 comparison_name => 'compare_orders',
 scan_id => 4, -- Substitute the scan ID from your scan.
 scan_info => scan_info,
 converge_options => DBMS_COMPARISON.CMP_CONVERGE_LOCAL_WINS,
 remote_converge_tag => HEXTORAW('11'));
DBMS_OUTPUT.PUT_LINE('Local Rows Merged: '||scan_info.loc_rows_merged);
DBMS_OUTPUT.PUT_LINE('Remote Rows Merged: '||scan_info.rmt_rows_merged);
DBMS_OUTPUT.PUT_LINE('Local Rows Deleted: '||scan_info.loc_rows_deleted);
DBMS_OUTPUT.PUT_LINE('Remote Rows Deleted: '||scan_info.rmt_rows_deleted);
END;
/

Your output is similar to the following:

Local Rows Merged: 0
Remote Rows Merged: 6
Local Rows Deleted: 0
Remote Rows Deleted: 1

PL/SQL procedure successfully completed.

Note:

The CREATE_COMPARISON procedure also enables you to set local and remote
convergence tag values. If a tag parameter in the CONVERGE procedure is non-
NULL, then it takes precedence over the corresponding tag parameter in the
CREATE_COMPARISON procedure. If a tag parameter in the CONVERGE procedure is
NULL, then it is ignored, and the corresponding tag value in the
CREATE_COMPARISON procedure is used.

13.9 Rechecking the Comparison Results for a Comparison
You can recheck a previous comparison scan by using the RECHECK function in the
DBMS_COMPARISON package. The RECHECK function checks the current data in the
database objects for differences that were recorded in the specified comparison scan.

For example, to recheck the results for scan ID 4 of a comparison named
compare_orders, log in to SQL*Plus as the owner of the comparison, and run the
following procedure:

SET SERVEROUTPUT ON
DECLARE
 consistent BOOLEAN;
BEGIN
 consistent := DBMS_COMPARISON.RECHECK(
 comparison_name => 'compare_orders',
 scan_id => 4);
 IF consistent=TRUE THEN
 DBMS_OUTPUT.PUT_LINE('No differences were found.');

Chapter 13
Rechecking the Comparison Results for a Comparison

13-42

 ELSE
 DBMS_OUTPUT.PUT_LINE('Differences were found.');
 END IF;
END;
/

Your output is similar to the following:

Differences were found.

PL/SQL procedure successfully completed.

The function returns TRUE if no differences were found or FALSE if differences were
found. The compare_orders comparison is created in "Comparing a Shared Database
Object without Identifying Row Differences".

Note:

• The RECHECK function does not compare the shared database object for
differences that were not recorded in the specified comparison scan. To
check for those differences, run the COMPARE function.

• If the specified comparison scan did not complete successfully, then the
RECHECK function starts where the comparison scan previously ended.

See Also:

"Comparing a Shared Database Object at Two Databases" for information
about the compare function

13.10 Purging Comparison Results
You can purge the comparison results of one or more comparisons when they are no
longer needed by using the PURGE_COMPARISON procedure in the DBMS_COMPARISON
package. You can either purge all of the comparison results for a comparison or a
subset of the comparison results. When comparison results are purged, they can no
longer be used to recheck the comparison or converge divergent data. Also,
information about the comparison results is removed from data dictionary views.

This section contains these topics:

• Purging All of the Comparison Results for a Comparison

• Purging the Comparison Results for a Specific Scan ID of a Comparison

• Purging the Comparison Results of a Comparison Before a Specified Time

See Also:

"About Comparing and Converging Data"

Chapter 13
Purging Comparison Results

13-43

13.10.1 Purging All of the Comparison Results for a Comparison
To purge all of the comparison results for a comparison, specify the comparison name
in the comparison_name parameter, and specify the default value of NULL for the scan_id
and purge_time parameters.

For example, to purge all of the comparison results for a comparison named
compare_orders, log in to SQL*Plus as the owner of the comparison, and run the
following procedure:

BEGIN
 DBMS_COMPARISON.PURGE_COMPARISON(
 comparison_name => 'compare_orders',
 scan_id => NULL,
 purge_time => NULL);
END;
/

13.10.2 Purging the Comparison Results for a Specific Scan ID of a
Comparison

To purge the comparison results for a specific scan of a comparison, specify the
comparison name in the comparison_name parameter, and specify the scan ID in the
scan_id parameter. The specified scan ID must identify a root scan. The root scan in
comparison results is the highest level parent scan. The root scan does not have a
parent. You can identify root scan IDs by querying the ROOT_SCAN_ID column of the
DBA_COMPARISON_SCAN data dictionary view.

When you run the PURGE_COMPARISON procedure and specify a root scan, the root scan is
purged. In addition, all direct and indirect child scans of the specified root scan are
purged. Results for other scans are not purged.

For example, to purge the comparison results for scan ID 4 of a comparison named
compare_orders, log in to SQL*Plus as the owner of the comparison, and run the
following procedure:

BEGIN
 DBMS_COMPARISON.PURGE_COMPARISON(
 comparison_name => 'compare_orders',
 scan_id => 4); -- Substitute the scan ID from your scan.
END;
/

See Also:

• "Viewing the Parent Scan ID and Root Scan ID for Each Scan in a
Database"

• Oracle Database PL/SQL Packages and Types Reference

Chapter 13
Purging Comparison Results

13-44

13.10.3 Purging the Comparison Results of a Comparison Before a
Specified Time

To purge the comparison results that were recorded on or before a specific date and
time for a comparison, specify the comparison name in the comparison_name parameter,
and specify the date and time in the purge_time parameter. Results are purged
regardless of scan ID. Comparison results that were recorded after the specified date
and time are retained.

For example, assume that the NLS_TIMESTAMP_FORMAT initialization parameter setting in
the current session is YYYY-MM-DD HH24:MI:SS. To purge the results for any scans that
were recorded before 1PM on August 16, 2006 for the compare_orders comparison, log
in to SQL*Plus as the owner of the comparison, and run the following procedure:

BEGIN
 DBMS_COMPARISON.PURGE_COMPARISON(
 comparison_name => 'compare_orders',
 purge_time => '2006-08-16 13:00:00');
END;
/

13.11 Dropping a Comparison
To drop a comparison and all of its comparison results, use the DROP_COMPARISON
procedure in the DBMS_COMPARISON package. For example, to drop a comparison named
compare_subset_columns, log in to SQL*Plus as the owner of the comparison, and run
the following procedure:

exec DBMS_COMPARISON.DROP_COMPARISON('compare_subset_columns');

13.12 Using DBMS_COMPARISON in an Oracle Streams
Replication Environment

This section describes the typical uses for the DBMS_COMPARISON package in an Oracle
Streams replication environment. These uses are:

• Checking for Consistency After Instantiation

• Checking for Consistency in a Running Oracle Streams Replication Environment

13.12.1 Checking for Consistency After Instantiation
After an instantiation, you can use the DBMS_COMPARISON package to verify the
consistency of the database objects that were instantiated. Typically, you should verify
consistency before the Oracle Streams replication environment is replicating changes.
Ensure that you check for consistency before you allow changes to the source
database object and the instantiated database object. Changes to these database
objects are identified as differences by the DBMS_COMPARISON package.

To verify the consistency of instantiated database objects, complete the following
steps:

Chapter 13
Dropping a Comparison

13-45

1. Create a comparison for each database object that was instantiated using the
CREATE_COMPARISON procedure. Each comparison should specify the database object
that was instantiated and its corresponding database object at the source
database.

When you run the CREATE_COMPARISON procedure, ensure that the comparison_mode,
scan_mode, and scan_percent parameters are set to their default values of
CMP_COMPARE_MODE_OBJECT, CMP_SCAN_MODE_FULL, and NULL, respectively.

2. Run the COMPARE function to compare each database object that was instantiated.
The database objects are consistent if no differences are found.

When you run the COMPARE function, ensure that the min_value, max_value, and
perform_row_dif parameters are set to their default values of NULL, NULL, and FALSE,
respectively.

3. If differences are found by the COMPARE function, then you can either re-instantiate
the database objects or use the CONVERGE procedure to converge them. If you use
the CONVERGE procedure, then typically the source database object should "win"
during convergence.

4. When the comparison results show that the database objects are consistent, you
can purge the comparison results using the PURGE_COMPARISON procedure.

See Also:

• "Comparing a Shared Database Object at Two Databases" for instructions
about creating a comparison with the CREATE_COMPARISON procedure and
comparing database objects with the COMPARE function

• "Converging a Shared Database Object"

• "Purging Comparison Results"

• Instantiation and Oracle Streams Replication

13.12.2 Checking for Consistency in a Running Oracle Streams
Replication Environment

Oracle Streams replication environments continually replicate changes to database
objects. Therefore, the following applies to the replicated database objects:

• Replicated database objects should be nearly synchronized most of the time
because Oracle Streams components replicate and apply changes to keep them
synchronized.

• If there are differences in replicated database objects, then Oracle Streams
components will typically send and apply changes to synchronize the database
objects in the near future. That is, a COMPARE function might show differences that
are in the process of being replicated.

Because differences are expected in database objects while changes are being
replicated, using the DBMS_COMPARISON package to compare replicated database objects
can be challenging. For example, assume that there is an existing comparison that
compares an entire table at two databases, and consider the following scenario:

Chapter 13
Using DBMS_COMPARISON in an Oracle Streams Replication Environment

13-46

1. A change is made to a row in the table at one of the databases.

2. The change is captured by an Oracle Streams capture process, but it has not yet
been propagated to the other database.

3. The COMPARE function is run to compare the table tables at the two databases.

4. The COMPARE function identifies a difference in the row that was changed in Step 1.

5. The change is propagated and applied at the destination database. Therefore, the
difference identified in Step 4 no longer exists.

When differences are found, and you suspect that the differences are transient, you
can run the RECHECK function after some time has passed. If Oracle Streams has
synchronized the database objects, then the differences will disappear.

If some rows in a replicated database object are constantly updated, then these rows
might always show differences in comparison results. In this case, as you monitor the
environment, ensure the following:

• No apply errors are accumulating at the destination database for these rows.

• The rows are being updated correctly by the Oracle Streams apply process at the
destination database. You can query the table that contains the rows at the
destination database to ensure that the replicated changes are being applied.

When both of these statements are true for the rows, then you can ignore differences
in the comparison results for them.

Because the COMPARE function might show differences that are in the process of being
replicated, it is best to run this function during times when there is the least amount of
replication activity in your environment. During times of relatively little replication
activity, comparison results show the following types of differences in an Oracle
Streams replication environment:

• Differences resulting when rows are manually manipulated at only one database
by an administrator or procedure. For example, an administrator or procedure
might set a session tag before making changes, and the session tag might prevent
a capture process from capturing the changes.

• Differences resulting from recovery situations in which data is lost at one database
and must be identified and recovered from another database.

• Differences resulting from apply errors. In this case, the error transactions are not
applied at one database because of apply errors.

In any of these situations, you can run the CONVERGE procedure to synchronize the
database objects if it is appropriate. For example, if there are apply errors, and it is not
easy to reexecute the error transactions, then you can use the CONVERGE procedure to
synchronize the database objects.

Chapter 13
Using DBMS_COMPARISON in an Oracle Streams Replication Environment

13-47

See Also:

• "Comparing a Shared Database Object at Two Databases" for instructions
on creating a comparison with the CREATE_COMPARISON procedure and
comparing database objects with the COMPARE function

• Rechecking the Comparison Results for a Comparison for information
about the RECHECK function

• "Converging a Shared Database Object"

• Oracle Streams Tags

• Oracle Streams Concepts and Administration for information about apply
errors

Chapter 13
Using DBMS_COMPARISON in an Oracle Streams Replication Environment

13-48

14
Managing Logical Change Records (LCRs)

This chapter contains instructions for managing logical change records (LCRs) in an
Oracle Streams replication environment.

This chapter contains these topics:

• Requirements for Managing LCRs

• Constructing and Enqueuing LCRs

• Executing LCRs

• Managing LCRs Containing LOB Columns

• Managing LCRs Containing LONG or LONG RAW Columns

See Also:

Oracle Database PL/SQL Packages and Types Reference and Oracle
Streams Concepts and Administration for more information about LCRs

14.1 Requirements for Managing LCRs
This section describes requirements for creating or modifying logical change records
(LCRs). You can create an LCR using a constructor for an LCR type, and then
enqueue the LCR into an persistent queue portion of an ANYDATA queue. Such an LCR
is a persistent LCR.

Also, you can modify an LCR using an apply handler or a rule-based transformation.
You can modify captured LCRs or persistent LCRs.

Ensure that you meet the following requirements when you manage an LCR:

• If you create or modify a row LCR, then ensure that the command_type attribute is
consistent with the presence or absence of old column values and the presence or
absence of new column values.

• If you create or modify a DDL LCR, then ensure that the ddl_text is consistent with
the base_table_name, base_table_owner, object_type, object_owner, object_name, and
command_type attributes.

• The following data types are allowed for columns in a user-constructed row LCR:

– CHAR

– VARCHAR2

– NCHAR

– NVARCHAR2

– NUMBER

14-1

– DATE

– BINARY_FLOAT

– BINARY_DOUBLE

– RAW

– TIMESTAMP

– TIMESTAMP WITH TIME ZONE

– TIMESTAMP WITH LOCAL TIME ZONE

– INTERVAL YEAR TO MONTH

– INTERVAL DAY TO SECOND

These data types are the only data types allowed for columns in a user-
constructed row LCR. However, you can use certain techniques to construct LCRs
that contain LOB information. Also, LCRs captured by a capture process support
more data types, while LCRs captured by a synchronous capture support fewer
data types.

See Also:

• Oracle Streams Concepts and Administration for more information about
apply handlers

• "Managing LCRs Containing LOB Columns"

• Oracle Streams Concepts and Administration for information about the
data types captured by a capture process or a synchronous capture, and
for information about rule-based transformations

14.2 Constructing and Enqueuing LCRs
Use the following LCR constructors to create LCRs:

• To create a row LCR that contains a change to a row that resulted from a data
manipulation language (DML) statement, use the SYS.LCR$_ROW_RECORD constructor.

• To create a DDL LCR that contains a data definition language change, use the
SYS.LCR$_DDL_RECORD constructor. Ensure that the DDL text specified in the ddl_text
attribute of each DDL LCR conforms to Oracle SQL syntax.

The following example creates a queue in an Oracle database and an apply process
associated with the queue. Next, it creates a PL/SQL procedure that constructs a row
LCR based on information passed to it and enqueues the row LCR into the queue.
This example assumes that you have configured an Oracle Streams administrator
named strmadmin and granted this administrator DBA role.

Complete the following steps:

1. In SQL*Plus, connect to the database as an administrative user.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

Chapter 14
Constructing and Enqueuing LCRs

14-2

2. Grant the Oracle Streams administrator EXECUTE privilege on the
DBMS_STREAMS_MESSAGING package. For example:

GRANT EXECUTE ON DBMS_STREAMS_MESSAGING TO strmadmin;

Explicit EXECUTE privilege on the package is required because a procedure in the
package is called within a PL/SQL procedure in Step 9. In this case, granting the
privilege through a role is not sufficient.

3. In SQL*Plus, connect to the database as the Oracle Streams administrator.

4. Create an ANYDATA queue in an Oracle database.

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strm04_queue_table',
 storage_clause => NULL,
 queue_name => 'strm04_queue');
END;
/

5. Create an apply process at the Oracle database to receive messages in the
queue. Ensure that the apply_captured parameter is set to FALSE when you create
the apply process, because the apply process will be applying persistent LCRs,
not captured LCRs. Also, ensure that the apply_user parameter is set to hr,
because changes will be applied in to the hr.regions table, and the apply user
must have privileges to make DML changes to this table.

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strm04_queue',
 apply_name => 'strm04_apply',
 apply_captured => FALSE,
 apply_user => 'hr');
END;
/

6. Create a positive rule set for the apply process and add a rule that applies DML
changes to the hr.regions table made at the dbs1.example.com source database.

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.regions',
 streams_type => 'apply',
 streams_name => 'strm04_apply',
 queue_name => 'strm04_queue',
 include_dml => TRUE,
 include_ddl => FALSE,
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

7. Set the disable_on_error parameter for the apply process to n.

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'strm04_apply',
 parameter => 'disable_on_error',
 value => 'N');
END;
/

Chapter 14
Constructing and Enqueuing LCRs

14-3

8. Start the apply process.

EXEC DBMS_APPLY_ADM.START_APPLY('strm04_apply');

9. Create a procedure called construct_row_lcr that constructs a row LCR and
enqueues it into the queue created in Step 4.

CREATE OR REPLACE PROCEDURE construct_row_lcr(
 source_dbname VARCHAR2,
 cmd_type VARCHAR2,
 obj_owner VARCHAR2,
 obj_name VARCHAR2,
 old_vals SYS.LCR$_ROW_LIST,
 new_vals SYS.LCR$_ROW_LIST) AS
 row_lcr SYS.LCR$_ROW_RECORD;
BEGIN
 -- Construct the LCR based on information passed to procedure
 row_lcr := SYS.LCR$_ROW_RECORD.CONSTRUCT(
 source_database_name => source_dbname,
 command_type => cmd_type,
 object_owner => obj_owner,
 object_name => obj_name,
 old_values => old_vals,
 new_values => new_vals);
 -- Enqueue the created row LCR
 DBMS_STREAMS_MESSAGING.ENQUEUE(
 queue_name => 'strm04_queue',
 payload => ANYDATA.ConvertObject(row_lcr));
END construct_row_lcr;
/

Note:

The application does not need to specify a transaction identifier or SCN when
it creates an LCR because the apply process generates these values and
stores them in memory. If a transaction identifier or SCN is specified in the
LCR, then the apply process ignores it and assigns a new value.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about LCR constructors

10. Create and enqueue LCRs using the construct_row_lcr procedure created in Step
5.

a. In SQL*Plus, connect to the database as the Oracle Streams administrator.

b. Create a row LCR that inserts a row into the hr.regions table.

DECLARE
 newunit1 SYS.LCR$_ROW_UNIT;
 newunit2 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 newunit1 := SYS.LCR$_ROW_UNIT(
 'region_id',

Chapter 14
Constructing and Enqueuing LCRs

14-4

 ANYDATA.ConvertNumber(5),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newunit2 := SYS.LCR$_ROW_UNIT(
 'region_name',
 ANYDATA.ConvertVarchar2('Moon'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1,newunit2);
construct_row_lcr(
 source_dbname => 'dbs1.example.com',
 cmd_type => 'INSERT',
 obj_owner => 'hr',
 obj_name => 'regions',
 old_vals => NULL,
 new_vals => newvals);
END;
/
COMMIT;

c. In SQL*Plus, connect to the database as the hr user.

d. Query the hr.regions table to view the applied row change. The row with a
region_id of 5 should have Moon for the region_name.

SELECT * FROM hr.regions;

e. In SQL*Plus, connect to the database as the Oracle Streams administrator.

f. Create a row LCR that updates a row in the hr.regions table.

DECLARE
 oldunit1 SYS.LCR$_ROW_UNIT;
 oldunit2 SYS.LCR$_ROW_UNIT;
 oldvals SYS.LCR$_ROW_LIST;
 newunit1 SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 oldunit1 := SYS.LCR$_ROW_UNIT(
 'region_id',
 ANYDATA.ConvertNumber(5),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldunit2 := SYS.LCR$_ROW_UNIT(
 'region_name',
 ANYDATA.ConvertVarchar2('Moon'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldvals := SYS.LCR$_ROW_LIST(oldunit1,oldunit2);
 newunit1 := SYS.LCR$_ROW_UNIT(
 'region_name',
 ANYDATA.ConvertVarchar2('Mars'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newunit1);
construct_row_lcr(
 source_dbname => 'dbs1.example.com',
 cmd_type => 'UPDATE',

Chapter 14
Constructing and Enqueuing LCRs

14-5

 obj_owner => 'hr',
 obj_name => 'regions',
 old_vals => oldvals,
 new_vals => newvals);
END;
/
COMMIT;

g. In SQL*Plus, connect to the database as the hr user.

h. Query the hr.regions table to view the applied row change. The row with a
region_id of 5 should have Mars for the region_name.

SELECT * FROM hr.regions;

i. Create a row LCR that deletes a row from the hr.regions table.

DECLARE
 oldunit1 SYS.LCR$_ROW_UNIT;
 oldunit2 SYS.LCR$_ROW_UNIT;
 oldvals SYS.LCR$_ROW_LIST;
BEGIN
 oldunit1 := SYS.LCR$_ROW_UNIT(
 'region_id',
 ANYDATA.ConvertNumber(5),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldunit2 := SYS.LCR$_ROW_UNIT(
 'region_name',
 ANYDATA.ConvertVarchar2('Mars'),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldvals := SYS.LCR$_ROW_LIST(oldunit1,oldunit2);
construct_row_lcr(
 source_dbname => 'dbs1.example.com',
 cmd_type => 'DELETE',
 obj_owner => 'hr',
 obj_name => 'regions',
 old_vals => oldvals,
 new_vals => NULL);
END;
/
COMMIT;

j. In SQL*Plus, connect to the database as the hr user.

k. Query the hr.regions table to view the applied row change. The row with a
region_id of 5 should have been deleted.

SELECT * FROM hr.regions;

14.3 Executing LCRs
There are separate EXECUTE member procedures for row LCRs and DDL LCRs. These
member procedures execute an LCR under the security domain of the current user.
When an LCR is executed successfully, the change recorded in the LCR is made to
the local database. The following sections describe executing row LCRs and DDL
LCRs:

• Executing Row LCRs

Chapter 14
Executing LCRs

14-6

• Executing DDL LCRs

14.3.1 Executing Row LCRs
The EXECUTE member procedure for row LCRs is a subprogram of the LCR$_ROW_RECORD
type. When the EXECUTE member procedure is run on a row LCR, the row LCR is
executed. If the row LCR is executed by an apply process, then any apply process
handlers that would be run for the LCR are not run.

The EXECUTE member procedure can be run on a row LCR under any of the following
conditions:

• The LCR is being processed by an apply handler.

• The LCR is in a queue and was last enqueued by an apply process, an
application, or a user.

• The LCR has been constructed using the LCR$_ROW_RECORD constructor function but
has not been enqueued.

• The LCR is in the error queue.

When you run the EXECUTE member procedure on a row LCR, the conflict_resolution
parameter controls whether conflict resolution is performed. Specifically, if the
conflict_resolution parameter is set to TRUE, then any conflict resolution defined for
the table being changed is used to resolve conflicts resulting from the execution of the
LCR. If the conflict_resolution parameter is set to FALSE, then conflict resolution is not
used. If the conflict_resolution parameter is not set or is set to NULL, then an error is
raised.

Note:

A custom rule-based transformation should not run the EXECUTE member
procedure on a row LCR. Doing so could execute the row LCR outside of its
transactional context.

See Also:

• Oracle Streams Concepts and Administration

• Oracle Database PL/SQL Packages and Types Reference for more
information about row LCRs and the LCR$_ROW_RECORD type

14.3.1.1 Example of Constructing and Executing Row LCRs
The example in this section creates PL/SQL procedures to insert, update, and delete
rows in the hr.jobs table by constructing and executing row LCRs. The row LCRs are
executed without being enqueued or processed by an apply process. This example
assumes that you have configured an Oracle Streams administrator named strmadmin
and granted this administrator DBA role.

Complete the following steps:

Chapter 14
Executing LCRs

14-7

1. In SQL*Plus, connect to the database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Create a PL/SQL procedure named execute_row_lcr that executes a row LCR:

CREATE OR REPLACE PROCEDURE execute_row_lcr(
 source_dbname VARCHAR2,
 cmd_type VARCHAR2,
 obj_owner VARCHAR2,
 obj_name VARCHAR2,
 old_vals SYS.LCR$_ROW_LIST,
 new_vals SYS.LCR$_ROW_LIST) as
 xrow_lcr SYS.LCR$_ROW_RECORD;
BEGIN
 -- Construct the row LCR based on information passed to procedure
 xrow_lcr := SYS.LCR$_ROW_RECORD.CONSTRUCT(
 source_database_name => source_dbname,
 command_type => cmd_type,
 object_owner => obj_owner,
 object_name => obj_name,
 old_values => old_vals,
 new_values => new_vals);
 -- Execute the row LCR
 xrow_lcr.EXECUTE(FALSE);
END execute_row_lcr;
/

3. Create a PL/SQL procedure named insert_job_lcr that executes a row LCR that
inserts a row into the hr.jobs table:

CREATE OR REPLACE PROCEDURE insert_job_lcr(
 j_id VARCHAR2,
 j_title VARCHAR2,
 min_sal NUMBER,
 max_sal NUMBER) AS
 xrow_lcr SYS.LCR$_ROW_RECORD;
 col1_unit SYS.LCR$_ROW_UNIT;
 col2_unit SYS.LCR$_ROW_UNIT;
 col3_unit SYS.LCR$_ROW_UNIT;
 col4_unit SYS.LCR$_ROW_UNIT;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 col1_unit := SYS.LCR$_ROW_UNIT(
 'job_id',
 ANYDATA.ConvertVarchar2(j_id),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 col2_unit := SYS.LCR$_ROW_UNIT(
 'job_title',
 ANYDATA.ConvertVarchar2(j_title),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 col3_unit := SYS.LCR$_ROW_UNIT(
 'min_salary',
 ANYDATA.ConvertNumber(min_sal),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);

Chapter 14
Executing LCRs

14-8

 col4_unit := SYS.LCR$_ROW_UNIT(
 'max_salary',
 ANYDATA.ConvertNumber(max_sal),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(col1_unit,col2_unit,col3_unit,col4_unit);
 -- Execute the row LCR
 execute_row_lcr(
 source_dbname => 'DB1.EXAMPLE.COM',
 cmd_type => 'INSERT',
 obj_owner => 'HR',
 obj_name => 'JOBS',
 old_vals => NULL,
 new_vals => newvals);
END insert_job_lcr;
/

4. Create a PL/SQL procedure named update_max_salary_lcr that executes a row
LCR that updates the max_salary value for a row in the hr.jobs table:

CREATE OR REPLACE PROCEDURE update_max_salary_lcr(
 j_id VARCHAR2,
 old_max_sal NUMBER,
 new_max_sal NUMBER) AS
 xrow_lcr SYS.LCR$_ROW_RECORD;
 oldcol1_unit SYS.LCR$_ROW_UNIT;
 oldcol2_unit SYS.LCR$_ROW_UNIT;
 newcol1_unit SYS.LCR$_ROW_UNIT;
 oldvals SYS.LCR$_ROW_LIST;
 newvals SYS.LCR$_ROW_LIST;
BEGIN
 oldcol1_unit := SYS.LCR$_ROW_UNIT(
 'job_id',
 ANYDATA.ConvertVarchar2(j_id),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldcol2_unit := SYS.LCR$_ROW_UNIT(
 'max_salary',
 ANYDATA.ConvertNumber(old_max_sal),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldvals := SYS.LCR$_ROW_LIST(oldcol1_unit,oldcol2_unit);
 newcol1_unit := SYS.LCR$_ROW_UNIT(
 'max_salary',
 ANYDATA.ConvertNumber(new_max_sal),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 newvals := SYS.LCR$_ROW_LIST(newcol1_unit);
 -- Execute the row LCR
 execute_row_lcr(
 source_dbname => 'DB1.EXAMPLE.COM',
 cmd_type => 'UPDATE',
 obj_owner => 'HR',
 obj_name => 'JOBS',
 old_vals => oldvals,
 new_vals => newvals);
END update_max_salary_lcr;
/

Chapter 14
Executing LCRs

14-9

5. Create a PL/SQL procedure named delete_job_lcr that executes a row LCR that
deletes a row from the hr.jobs table:

CREATE OR REPLACE PROCEDURE delete_job_lcr(j_id VARCHAR2) AS
 xrow_lcr SYS.LCR$_ROW_RECORD;
 col1_unit SYS.LCR$_ROW_UNIT;
 oldvals SYS.LCR$_ROW_LIST;
BEGIN
 col1_unit := SYS.LCR$_ROW_UNIT(
 'job_id',
 ANYDATA.ConvertVarchar2(j_id),
 DBMS_LCR.NOT_A_LOB,
 NULL,
 NULL);
 oldvals := SYS.LCR$_ROW_LIST(col1_unit);
 -- Execute the row LCR
 execute_row_lcr(
 source_dbname => 'DB1.EXAMPLE.COM',
 cmd_type => 'DELETE',
 obj_owner => 'HR',
 obj_name => 'JOBS',
 old_vals => oldvals,
 new_vals => NULL);
END delete_job_lcr;
/

6. Insert a row into the hr.jobs table using the insert_job_lcr procedure:

EXEC insert_job_lcr('BN_CNTR','BEAN COUNTER',5000,10000);

7. Select the inserted row in the hr.jobs table:

SELECT * FROM hr.jobs WHERE job_id = 'BN_CNTR';

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
BN_CNTR BEAN COUNTER 5000 10000

8. Update the max_salary value for the row inserted into the hr.jobs table in Step 6
using the update_max_salary_lcr procedure:

EXEC update_max_salary_lcr('BN_CNTR',10000,12000);

9. Select the updated row in the hr.jobs table:

SELECT * FROM hr.jobs WHERE job_id = 'BN_CNTR';

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
BN_CNTR BEAN COUNTER 5000 12000

10. Delete the row inserted into the hr.jobs table in Step 6 using the delete_job_lcr
procedure:

EXEC delete_job_lcr('BN_CNTR');

11. Select the deleted row in the hr.jobs table:

SELECT * FROM hr.jobs WHERE job_id = 'BN_CNTR';

no rows selected

Chapter 14
Executing LCRs

14-10

14.3.2 Executing DDL LCRs
The EXECUTE member procedure for DDL LCRs is a subprogram of the LCR$_DDL_RECORD
type. When the EXECUTE member procedure is run on a DDL LCR, the LCR is executed,
and any apply process handlers that would be run for the LCR are not run. The EXECUTE
member procedure for DDL LCRs can be invoked only in an apply handler for an apply
process.

All applied DDL LCRs commit automatically. Therefore, if a DDL handler calls the
EXECUTE member procedure of a DDL LCR, then a commit is performed automatically.

See Also:

• Oracle Streams Concepts and Administration

• Oracle Database PL/SQL Packages and Types Reference for more
information about DDL LCRs and the LCR$_DDL_RECORD type

14.4 Managing LCRs Containing LOB Columns
LOB data types can be present in row LCRs captured by a capture process, but these
data types are represented by other data types. LOB data types cannot be present in
row LCRs captured by synchronous captures. Certain LOB data types cannot be
present in row LCRs constructed by users. Table 14-1 shows the LCR representation
for these data types and whether these data types can be present in row LCRs.

Table 14-1 LOB Data Type Representations in Row LCRs

Data Type Row LCR
Representation

Can Be Present
in a Row LCR
Captured by a
Capture
Process?

Can Be Present
in a Row LCR
Captured by a
Synchronous
Capture?

Can Be Present
in a Row LCR
Constructed by a
User?

Fixed-width
CLOB

VARCHAR2 Yes No Yes

Variable-width
CLOB

RAW in
AL16UTF16
character set

Yes No No

NCLOB RAW in
AL16UTF16
character set

Yes No No

BLOB RAW Yes No Yes

XMLType stored
as CLOB

RAW Yes No No

The following are general considerations for row changes involving LOB data types in
an Oracle Streams environment:

Chapter 14
Managing LCRs Containing LOB Columns

14-11

• A row change involving a LOB column can be captured, propagated, and applied
as several row LCRs.

• Rules used to evaluate these row LCRs must be deterministic, so that either all of
the row LCRs corresponding to the row change cause a rule in a rule set to
evaluate to TRUE, or none of them do.

The following sections contain information about the requirements you must meet
when constructing or processing LOB columns, about apply process behavior for
LCRs containing LOB columns, and about LOB assembly. There is also an example
that constructs and enqueues LCRs containing LOB columns.

Note:

XMLType stored as a CLOB is deprecated in this release.

This section contains the following topics:

• Apply Process Behavior for Direct Apply of LCRs Containing LOBs

• LOB Assembly and Custom Apply of LCRs Containing LOB Columns

• Requirements for Constructing and Processing LCRs Containing LOB Columns

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for
more information about LOBs

• Oracle Streams Extended Examples for an example that constructs and
enqueues LCRs that contain LOBs

14.4.1 Apply Process Behavior for Direct Apply of LCRs Containing
LOBs

An apply process behaves in the following ways when it applies an LCR that contains
a LOB column directly (without the use of an apply handler):

• If an LCR whose command type is INSERT or UPDATE has a new LOB that contains
data, and the lob_information is not DBMS_LCR.LOB_CHUNK or
DBMS_LCR.LAST_LOB_CHUNK, then the data is applied.

• If an LCR whose command type is INSERT or UPDATE has a new LOB that contains
no data, and the lob_information is DBMS_LCR.EMPTY_LOB, then it is applied as an
empty LOB.

• If an LCR whose command type is INSERT or UPDATE has a new LOB that contains
no data, and the lob_information is DBMS_LCR.NULL_LOB or DBMS_LCR.INLINE_LOB, then
it is applied as a NULL.

• If an LCR whose command type is INSERT or UPDATE has a new LOB and the
lob_information is DBMS_LCR.LOB_CHUNK or DBMS_LCR.LAST_LOB_CHUNK, then any LOB

Chapter 14
Managing LCRs Containing LOB Columns

14-12

value is ignored. If the command type is INSERT, then an empty LOB is inserted into
the column under the assumption that LOB chunks will follow. If the command type
is UPDATE, then the column value is ignored under the assumption that LOB chunks
will follow.

• If all of the new columns in an LCR whose command type is UPDATE are LOBs
whose lob_information is DBMS_LCR.LOB_CHUNK or DBMS_LCR.LAST_LOB_CHUNK, then the
update is skipped under the assumption that LOB chunks will follow.

• For any LCR whose command type is UPDATE or DELETE, old LOB values are
ignored.

14.4.2 LOB Assembly and Custom Apply of LCRs Containing LOB
Columns

A change to a row in a table that does not include any LOB columns results in a single
row LCR, but a change to a row that includes one or more LOB columns can result in
multiple row LCRs. An apply process that does not send row LCRs that contain LOB
columns to an apply handler can apply these row LCRs directly. However, before
Oracle Database 10g Release 2, custom processing of row LCRs that contain LOB
columns was complicated because apply handlers had to be configured to process
multiple LCRs correctly for a single row change.

In Oracle Database 10g Release 2 and later, LOB assembly simplifies custom
processing of row LCRs with LOB columns that were captured by a capture process.
LOB assembly automatically combines multiple captured row LCRs resulting from a
change to a row with LOB columns into one row LCR. An apply process passes this
single row LCR to a DML handler or error handler when LOB assembly is enabled.
Also, after LOB assembly, the LOB column values are represented by LOB locators,
not by VARCHAR2 or RAW data type values. To enable LOB assembly for a procedure DML
or error handler, set the assemble_lobs parameter to TRUE in the
DBMS_APPLY_ADM.SET_DML_HANDLER procedure. LOB assembly is always enabled for
statement DML handlers.

If the assemble_lobs parameter is set to FALSE for a DML or error handler, then LOB
assembly is disabled and multiple row LCRs are passed to the handler for a change to
a single row with LOB columns. Table 14-2 shows Oracle Streams behavior when
LOB assembly is disabled. Specifically, the table shows the LCRs passed to a
procedure DML handler or error handler resulting from a change to a single row with
LOB columns.

Table 14-2 Oracle Streams Behavior with LOB Assembly Disabled

Original Row
Change

First Set of
LCRs

Second Set of
LCRs

Third Set of
LCRs

Final LCR

INSERT One INSERT LCR One or more LOB
WRITE LCRs

One or more LOB
TRIM LCRs

UPATE

UPDATE One UPDATE LCR One or more LOB
WRITE LCRs

One or more LOB
TRIM LCRs

UPATE

DELETE One DELETE LCR N/A N/A N/A

DBMS_LOB.WRITE One or more LOB
WRITE LCRs

N/A N/A N/A

Chapter 14
Managing LCRs Containing LOB Columns

14-13

Table 14-2 (Cont.) Oracle Streams Behavior with LOB Assembly Disabled

Original Row
Change

First Set of
LCRs

Second Set of
LCRs

Third Set of
LCRs

Final LCR

DBMS_LOB.TRIM One LOB TRIM
LCR

N/A N/A N/A

DBMS_LOB.ERASE One LOB ERASE
LCR

N/A N/A N/A

Table 14-3 shows Oracle Streams behavior when LOB assembly is enabled.
Specifically, the table shows the row LCR passed to a DML handler or error handler
resulting from a change to a single row with LOB columns.

Table 14-3 Oracle Streams Behavior with LOB Assembly Enabled

Original Row Change Single LCR

INSERT INSERT

UPDATE UPDATE

DELETE DELETE

DBMS_LOB.WRITE LOB WRITE

DBMS_LOB.TRIM LOB TRIM

DBMS_LOB.ERASE LOB ERASE

When LOB assembly is enabled, a DML or error handler can modify LOB columns in a
row LCR. Within the PL/SQL procedure specified as a DML or error handler, the
preferred way to perform operations on a LOB is to use a subprogram in the DBMS_LOB
package. If a row LCR contains a LOB column that is NULL, then a new LOB locator
must replace the NULL. If a row LCR will be applied with the EXECUTE member
procedure, then use the ADD_COLUMN, SET_VALUE, and SET_VALUES member procedures for
row LCRs to make changes to a LOB.

When LOB assembly is enabled, LOB assembly converts non-NULL LOB columns in
persistent LCRs into LOB locators. However, LOB assembly does not combine
multiple persistent row LCRs into a single row LCR. For example, for persistent row
LCRs, LOB assembly does not combine multiple LOB WRITE row LCRs following an
INSERT row LCR into a single INSERT row LCR.

Chapter 14
Managing LCRs Containing LOB Columns

14-14

See Also:

• Oracle Streams Concepts and Administration for more information about
apply handlers

• Oracle Database SecureFiles and Large Objects Developer's Guide and
Oracle Database PL/SQL Packages and Types Reference for more
information about using the DBMS_LOB package

• Oracle Database PL/SQL Packages and Types Reference for more
information about the ADD_COLUMN, SET_VALUE, and SET_VALUES member
procedures for row LCRs

14.4.2.1 LOB Assembly Considerations
The following are issues to consider when you use LOB assembly:

• To use a DML or error handler to process assembled LOBs at multiple destination
databases, LOB assembly must assemble the LOBs separately on each
destination database.

• Row LCRs captured on a database running a release of Oracle before Oracle
Database 10g Release 2 cannot be assembled by LOB assembly.

• Row LCRs captured on a database running Oracle Database 10g Release 2 or
later with a compatibility level lower than 10.2.0 cannot be assembled by LOB
assembly.

• The compatibility level of the database running an apply handler must be 10.2.0 or
higher to specify LOB assembly for the apply handler.

• Row LCRs from a table containing any LONG or LONG RAW columns cannot be
assembled by LOB assembly.

• The SET_ENQUEUE_DESTINATION and the SET_EXECUTE procedures in the DBMS_APPLY_ADM
package always operate on original, nonassembled row LCRs. Therefore, for row
LCRs that contain LOB columns, the original, nonassembled row LCRs are
enqueued or executed, even if these row LCRs are assembled separately for an
apply handler at the destination database.

• If rule-based transformations were performed on row LCRs that contain LOB
columns during capture, propagation, or apply, then an apply handler operates on
the transformed row LCRs. If there are LONG or LONG RAW columns at a source
database, and a rule-based transformation uses the CONVERT_LONG_TO_LOB_CHUNK
member function for row LCRs to convert them to LOBs, then LOB assembly can
be enabled for apply handlers that operate on these row LCRs.

• When a row LCR contains one or more XMLType columns, any XMLType and LOB
columns in the row LCR are always assembled, even if the assemble_lobs
parameter is set to FALSE for a DML or error handler.

Chapter 14
Managing LCRs Containing LOB Columns

14-15

See Also:

• Oracle Database Reference and Oracle Database Upgrade Guide for
more information database compatibility

• Oracle Database PL/SQL Packages and Types Reference for more
information about the subprograms in the DBMS_APPLY_ADM package

14.4.2.2 LOB Assembly Example
This section contains an example that uses LOB assembly with a procedure DML
handler. The example scenario involves a company that shares the
oe.production_information table at several databases, but only some of these
databases are used for the company's online World Wide Web catalog. The company
wants to store a photograph of each product in the catalog databases, but, to save
space, it does not want to store these photographs at the non catalog databases.

To accomplish this goal, a procedure DML handler at a catalog destination database
can add a column named photo of data type BLOB to each INSERT and UPDATE made to
the product_information table at a source database. The source database does not
include the photo column in the table. The procedure DML handler is configured to use
an existing photograph at the destination for updates and inserts.The company also
wants to add a product_long_desc to the oe.product_information table at all databases.
This table already has a product_description column that contains short descriptions.
The product_long_desc column is of CLOB data type and contains detailed descriptions.
The detailed descriptions are in English, but one of the company databases is used to
display the company catalog in Spanish. Therefore, the procedure DML handler
updates the product_long_desc column so that the long description is in the correct
language.

The following steps configure a procedure DML handler that uses LOB assembly to
accomplish the goals described previously:

Step 1 Add the photo Column to the product_information Table
The following statement adds the photo column to the product_information table at the
destination database:

ALTER TABLE oe.product_information ADD(photo BLOB);

Step 2 Add the product_long_desc Column to the product_information Table
The following statement adds the product_long_desc column to the
product_information table at all of the databases in the environment:

ALTER TABLE oe.product_information ADD(product_long_desc CLOB);

Step 3 Create the PL/SQL Procedure for the Procedure DML Handler
This example creates the convert_product_information procedure. This procedure will
be used for the procedure DML handler. This procedure assumes that the following
user-created PL/SQL subprograms exist:

• The get_photo procedure obtains a photo in BLOB format from a URL or table
based on the product_id and updates the BLOB locator that has been passed in as
an argument.

Chapter 14
Managing LCRs Containing LOB Columns

14-16

• The get_product_long_desc procedure has an IN argument of product_id and an IN
OUT argument of product_long_desc and translates the product_long_desc into
Spanish or obtains the Spanish replacement description and updates
product_long_desc.

The following code creates the convert_product_information procedure:

CREATE OR REPLACE PROCEDURE convert_product_information(in_any IN ANYDATA)
IS
 lcr SYS.LCR$_ROW_RECORD;
 rc PLS_INTEGER;
 product_id_anydata ANYDATA;
 photo_anydata ANYDATA;
 long_desc_anydata ANYDATA;
 tmp_photo BLOB;
 tmp_product_id NUMBER;
 tmp_prod_long_desc CLOB;
 tmp_prod_long_desc_src CLOB;
 tmp_prod_long_desc_dest CLOB;
 t PLS_INTEGER;
BEGIN
 -- Access LCR
 rc := in_any.GETOBJECT(lcr);
 product_id_anydata := lcr.GET_VALUE('OLD', 'PRODUCT_ID');
 t := product_id_anydata.GETNUMBER(tmp_product_id);
 IF ((lcr.GET_COMMAND_TYPE = 'INSERT') or (lcr.GET_COMMAND_TYPE = 'UPDATE')) THEN
 -- If there is no photo column in the lcr then it must be added
 photo_anydata := lcr.GET_VALUE('NEW', 'PHOTO');
 -- Check if photo has been sent and if so whether it is NULL
 IF (photo_anydata is NULL) THEN
 tmp_photo := NULL;
 ELSE
 t := photo_anydata.GETBLOB(tmp_photo);
 END IF;
 -- If tmp_photo is NULL then a new temporary LOB must be created and
 -- updated with the photo if it exists
 IF (tmp_photo is NULL) THEN
 DBMS_LOB.CREATETEMPORARY(tmp_photo, TRUE);
 get_photo(tmp_product_id, tmp_photo);
 END IF;
 -- If photo column did not exist then it must be added
 IF (photo_anydata is NULL) THEN
 lcr.ADD_COLUMN('NEW', 'PHOTO', ANYDATA.CONVERTBLOB(tmp_photo));
 -- Else the existing photo column must be set to the new photo
 ELSE
 lcr.SET_VALUE('NEW', 'PHOTO', ANYDATA.CONVERTBLOB(tmp_photo));
 END IF;
 long_desc_anydata := lcr.GET_VALUE('NEW', 'PRODUCT_LONG_DESC');
 IF (long_desc_anydata is NULL) THEN
 tmp_prod_long_desc_src := NULL;
 ELSE
 t := long_desc_anydata.GETCLOB(tmp_prod_long_desc_src);
 END IF;
 IF (tmp_prod_long_desc_src IS NOT NULL) THEN
 get_product_long_desc(tmp_product_id, tmp_prod_long_desc);
 END IF;
 -- If tmp_prod_long_desc IS NOT NULL, then use it to update the LCR
 IF (tmp_prod_long_desc IS NOT NULL) THEN
 lcr.SET_VALUE('NEW', 'PRODUCT_LONG_DESC',

Chapter 14
Managing LCRs Containing LOB Columns

14-17

 ANYDATA.CONVERTCLOB(tmp_prod_long_desc_dest));
 END IF;
 END IF;
 -- DBMS_LOB operations also are executed
 -- Inserts and updates invoke all changes
 lcr.EXECUTE(TRUE);
END;
/

Step 4 Set the Procedure DML Handler for the Apply Process
This step sets the convert_product_information procedure as the procedure DML
handler at the destination database for INSERT, UPDATE, and LOB_UPDATE operations.
Notice that the assemble_lobs parameter is set to TRUE each time the SET_DML_HANDLER
procedure is run.

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'oe.product_information',
 object_type => 'TABLE',
 operation_name => 'INSERT',
 error_handler => FALSE,
 user_procedure => 'strmadmin.convert_product_information',
 apply_database_link => NULL,
 assemble_lobs => TRUE);
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'oe.product_information',
 object_type => 'TABLE',
 operation_name => 'UPDATE',
 error_handler => FALSE,
 user_procedure => 'strmadmin.convert_product_information',
 apply_database_link => NULL,
 assemble_lobs => TRUE);
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'oe.product_information',
 object_type => 'TABLE',
 operation_name => 'LOB_UPDATE',
 error_handler => FALSE,
 user_procedure => 'strmadmin.convert_product_information',
 apply_database_link => NULL,
 assemble_lobs => TRUE);
END;
/

Step 5 Query the DBA_APPLY_DML_HANDLERS View
To ensure that the procedure DML handler is set properly for the
oe.product_information table, run the following query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A5
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A20
COLUMN OPERATION_NAME HEADING 'Operation' FORMAT A10
COLUMN USER_PROCEDURE HEADING 'Handler Procedure' FORMAT A25
COLUMN ASSEMBLE_LOBS HEADING 'LOB Assembly?' FORMAT A15

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 OPERATION_NAME,
 USER_PROCEDURE,
 ASSEMBLE_LOBS
 FROM DBA_APPLY_DML_HANDLERS;

Chapter 14
Managing LCRs Containing LOB Columns

14-18

Your output looks similar to the following:

Table
Owner Table Name Operation Handler Procedure LOB Assembly?
----- -------------------- ---------- ------------------------- ---------------
OE PRODUCT_INFORMATION INSERT "STRMADMIN"."CONVERT_PROD Y
 UCT_INFORMATION"

OE PRODUCT_INFORMATION UPDATE "STRMADMIN"."CONVERT_PROD Y
 UCT_INFORMATION"

OE PRODUCT_INFORMATION LOB_UPDATE "STRMADMIN"."CONVERT_PROD Y
 UCT_INFORMATION"

Notice that the correct procedure, convert_product_information, is used for each
operation on the table. Also, notice that each handler uses LOB assembly.

14.4.3 Requirements for Constructing and Processing LCRs
Containing LOB Columns

If your environment produces row LCRs that contain LOB columns, then you must
meet the requirements in the following sections when you construct or process these
LCRs:

• Requirements for Constructing and Processing LCRs Without LOB Assembly

• Requirements for Apply Handler Processing of LCRs with LOB Assembly

• Requirements for Rule-Based Transformation Processing of LCRs with LOBs

See Also:

Oracle Streams Extended Examples for an example that constructs and
enqueues LCRs that contain LOBs

14.4.3.1 Requirements for Constructing and Processing LCRs Without LOB
Assembly

The following requirements must be met when you are constructing LCRs with LOB
columns and when you are processing LOB columns with a DML or error handler that
has LOB assembly disabled:

• Do not modify LOB column data in a row LCR with a procedure DML handler or
error handler that has LOB assembly disabled. However, you can modify non-LOB
columns in row LCRs with a DML or error handler.

• Do not allow LCRs from a table that contains LOB columns to be processed by an
apply handler that is invoked only for specific operations. For example, an apply
handler that is invoked only for INSERT operations should not process LCRs from a
table with one or more LOB columns.

• The data portion of the LCR LOB column must be of type VARCHAR2 or RAW. A
VARCHAR2 is interpreted as a CLOB, and a RAW is interpreted as a BLOB.

Chapter 14
Managing LCRs Containing LOB Columns

14-19

• A LOB column in a user-constructed row LCR must be either a BLOB or a fixed-
width CLOB. You cannot construct a row LCR with the following types of LOB
columns: NCLOB or variable-width CLOB.

• LOB WRITE, LOB ERASE, and LOB TRIM are the only valid command types for out-of-line
LOBs.

• For LOB WRITE, LOB ERASE, and LOB TRIM LCRs, the old_values collection should be
empty or NULL, and new_values should not be empty.

• The lob_offset should be a valid value for LOB WRITE and LOB ERASE LCRs. For all
other command types, lob_offset should be NULL, under the assumption that LOB
chunks for that column will follow.

• The lob_operation_size should be a valid value for LOB ERASE and LOB TRIM LCRs.
For all other command types, lob_operation_size should be NULL.

• LOB TRIM and LOB ERASE are valid command types only for an LCR containing a LOB
column with lob_information set to LAST_LOB_CHUNK.

• LOB WRITE is a valid command type only for an LCR containing a LOB column with
lob_information set to LAST_LOB_CHUNK or LOB_CHUNK.

• For LOBs with lob_information set to NULL_LOB, the data portion of the column
should be a NULL of VARCHAR2 type (for a CLOB) or a NULL of RAW type (for a BLOB).
Otherwise, it is interpreted as a non-NULL inline LOB column.

• Only one LOB column reference with one new chunk is allowed for each LOB WRITE,
LOB ERASE, and LOB TRIM LCR.

• The new LOB chunk for a LOB ERASE and a LOB TRIM LCR should be a NULL value
encapsulated in an ANYDATA.

An apply process performs all validation of these requirements. If these requirements
are not met, then a row LCR containing LOB columns cannot be applied by an apply
process nor processed by an apply handler. In this case, the LCR is moved to the
error queue with the rest of the LCRs in the same transaction.

See Also:

• "Constructing and Enqueuing LCRs"

• Oracle Streams Concepts and Administration for more information about
apply handlers

14.4.3.2 Requirements for Apply Handler Processing of LCRs with LOB
Assembly

The following requirements must be met when you are processing LOB columns with a
DML or error handler that has LOB assembly enabled:

• Do not use the following row LCR member procedures on LOB columns in row
LCRs that contain assembled LOBs:

– SET_LOB_INFORMATION

– SET_LOB_OFFSET

Chapter 14
Managing LCRs Containing LOB Columns

14-20

– SET_LOB_OPERATION_SIZE

An error is raised if one of these procedures is used on a LOB column in a
row LCR.

• Row LCRs constructed by LOB assembly cannot be enqueued by a procedure
DML handler or error handler. However, even when LOB assembly is enabled for
one or more handlers at a destination database, the original, nonassembled row
LCRs with LOB columns can be enqueued using the SET_ENQUEUE_DESTINATION
procedure in the DBMS_APPLY_ADM package.

An apply process performs all validation of these requirements. If these requirements
are not met, then a row LCR containing LOB columns cannot be applied by an apply
process nor processed by an apply handler. In this case, the LCR is moved to the
error queue with the rest of the LCRs in the same transaction. For row LCRs with LOB
columns, the original, nonassembled row LCRs are placed in the error queue.

See Also:

• Oracle Streams Concepts and Administration for more information about
apply handlers

• Oracle Database PL/SQL Packages and Types Reference for more
information about member procedures for row LCRs and for information
about the SET_ENQUEUE_DESTINATION procedure

14.4.3.3 Requirements for Rule-Based Transformation Processing of LCRs
with LOBs

The following requirements must be met when you are processing row LCRs that
contain LOB columns with a rule-based transformation:

• Do not modify LOB column data in a row LCR with a custom rule-based
transformation. However, a custom rule-based transformation can modify non-LOB
columns in row LCRs that contain LOB columns.

• You cannot use the following row LCR member procedures on a LOB column
when you are processing a row LCR with a custom rule-based transformation:

– ADD_COLUMN

– SET_LOB_INFORMATION

– SET_LOB_OFFSET

– SET_LOB_OPERATION_SIZE

– SET_VALUE

– SET_VALUES

• A declarative rule-based transformation created by the ADD_COLUMN procedure in the
DBMS_STREAMS_ADM package cannot add a LOB column to a row LCR.

• Rule-based transformation functions that are run on row LCRs with LOB columns
must be deterministic, so that all row LCRs corresponding to the row change are
transformed in the same way.

Chapter 14
Managing LCRs Containing LOB Columns

14-21

• Do not allow LCRs from a table that contains LOB columns to be processed by an
a custom rule-based transformation that is invoked only for specific operations. For
example, a custom rule-based transformation that is invoked only for INSERT
operations should not process LCRs from a table with one or more LOB columns.

Note:

If row LCRs contain LOB columns, then rule-based transformations always
operate on the original, nonassembled row LCRs.

See Also:

• "Constructing and Enqueuing LCRs"

• Oracle Streams Concepts and Administration for information about rule-
based transformations

• Oracle Database PL/SQL Packages and Types Reference for more
information about member procedures for row LCRs

• Oracle Database SQL Language Reference for more information about
deterministic functions

14.5 Managing LCRs Containing LONG or LONG RAW
Columns

LONG and LONG RAW data types all can be present in row LCRs captured by a capture
process, but these data types are represented by the following data types in row
LCRs.

• LONG data type is represented as VARCHAR2 data type in row LCRs.

• LONG RAW data type is represented as RAW data type in row LCRs.

A row change involving a LONG or LONG RAW column can be captured, propagated, and
applied as several LCRs. If your environment uses LCRs that contain LONG or LONG RAW
columns, then the data portion of the LCR LONG or LONG RAW column must be of type
VARCHAR2 or RAW. A VARCHAR2 is interpreted as a LONG, and a RAW is interpreted as a LONG
RAW.

You must meet the following requirements when you are processing row LCRs that
contain LONG or LONG RAW column data in Oracle Streams:

• Do not modify LONG or LONG RAW column data in an LCR using a custom rule-based
transformation. However, you can use a rule-based transformation to modify non
LONG and non LONG RAW columns in row LCRs that contain LONG or LONG RAW column
data.

• Do not use the SET_VALUE or SET_VALUES row LCR member procedures in a custom
rule-based transformation that is processing a row LCR that contains LONG or LONG
RAW data. Doing so raises the ORA-26679 error.

Chapter 14
Managing LCRs Containing LONG or LONG RAW Columns

14-22

• Rule-based transformation functions that are run on LCRs that contain LONG or LONG
RAW columns must be deterministic, so that all LCRs corresponding to the row
change are transformed in the same way.

• A declarative rule-based transformation created by the ADD_COLUMN procedure in the
DBMS_STREAMS_ADM package cannot add a LONG or LONG RAW column to a row LCR.

• You cannot use a procedure DML handler or error handler to process row LCRs
that contain LONG or LONG RAW column data.

• Rules used to evaluate LCRs that contain LONG or LONG RAW columns must be
deterministic, so that either all of the LCRs corresponding to the row change cause
a rule in a rule set to evaluate to TRUE, or none of them do.

• You cannot use an apply process to enqueue LCRs that contain LONG or LONG RAW
column data into a destination queue. The SET_DESTINATION_QUEUE procedure in the
DBMS_APPLY_ADM package sets the destination queue for LCRs that satisfy a
specified apply process rule.

Note:

LONG and LONG RAW data types cannot be present in row LCRs captured by
synchronous captures or constructed by users.

See Also:

• Oracle Streams Concepts and Administration for information about rule-
based transformations

• Oracle Database SQL Language Reference for more information about
deterministic functions

Chapter 14
Managing LCRs Containing LONG or LONG RAW Columns

14-23

Part III
Oracle Streams Replication Best Practices

You can configure Oracle Streams replication in many different ways depending on
your business requirements. For example, Oracle Streams can be configured to fulfill
the following requirements:

• Replicate data from one database to one or more databases, even if those
databases have different structures or naming conventions

• Replicate data between hardware platforms, database releases, and character
sets

• Consolidate data from multiple sources with varying structures into a single
database

• Provide high availability while performing database or application upgrades or
while migrating between hardware platforms

The following chapters in this part describe Oracle Streams replication best practices:

• Best Practices for Oracle Streams Replication Databases

• Best Practices for Capture

• Best Practices for Propagation

• Best Practices for Apply

15
Best Practices for Oracle Streams
Replication Databases

An Oracle Streams replication database is a database that participates in an Oracle
Streams replication environment. An Oracle Streams replication environment uses
Oracle Streams clients to replicate database changes from one database to another.
Oracle Streams clients include capture processes, synchronous captures,
propagations, and apply processes. This chapter describes general best practices for
Oracle Streams replication databases.

This chapter contains these topics:

• Best Practices for Oracle Streams Database Configuration

• Best Practices for Oracle Streams Database Operation

• Best Practices for Oracle Real Application Clusters and Oracle Streams

15.1 Best Practices for Oracle Streams Database
Configuration

For your Oracle Streams replication environment to run properly and efficiently, follow
the best practices in this section when you are configuring the environment. This
section contains these topics:

• Use a Separate Queue for Capture and Apply Oracle Streams Clients

• Automate the Oracle Streams Replication Configuration

See Also:

Preparing for Oracle Streams Replication describes best practices to follow
when preparing for Oracle Streams replication

15.1.1 Use a Separate Queue for Capture and Apply Oracle Streams
Clients

Configure a separate queue for each capture process, for each synchronous capture,
and for each apply process, and ensure that each queue has its own queue table.
Using separate queues is especially important when configuring bidirectional
replication between two databases or when a single database receives messages
from several other databases.

For example, suppose a database called db1 is using a capture process to capture
changes that will be sent to other databases and is receiving changes from a database

15-1

named db2. The changes received from db2 are applied by an apply process running
on db1. In this scenario, create a separate queue for the capture process and apply
process at db1, and ensure that these queues use different queue tables.

The following example creates the queue for the capture process. The queue name is
capture_queue, and this queue uses queue table qt_capture_queue:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.qt_capture_queue',
 queue_name => 'strmadmin.capture_queue');
END;
/

The following example creates the queue for the apply process. The queue name is
apply_queue, and this queue uses queue table qt_apply_queue:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.qt_apply_queue',
 queue_name => 'strmadmin.apply_queue');
END;
/

Subsequently, specify the queue strmadmin.capture_queue when you configure the
capture process at db1, and specify the queue strmadmin.apply_queue when you
configure the apply process at db1. If necessary, the SET_UP_QUEUE procedure lets you
specify a storage_clause parameter to configure separate tablespace and storage
specifications for each queue table.

If you automate the configuration, as described in "Automate the Oracle Streams
Replication Configuration", then each Oracle Streams client is configured with its own
queue automatically.

See Also:

• "Creating an ANYDATA Queue"

• "Configuring a Capture Process"

• Configuring Implicit Apply

15.1.2 Automate the Oracle Streams Replication Configuration
Use the following procedures in the DBMS_STREAMS_ADM package to create your Oracle
Streams replication environment whenever possible:

• MAINTAIN_GLOBAL configures an Oracle Streams environment that replicates
changes at the database level between two databases.

• MAINTAIN_SCHEMAS configures an Oracle Streams environment that replicates
changes to specified schemas between two databases.

• MAINTAIN_SIMPLE_TTS clones a simple tablespace from a source database at a
destination database and uses Oracle Streams to maintain this tablespace at both
databases.

Chapter 15
Best Practices for Oracle Streams Database Configuration

15-2

• MAINTAIN_TABLES configures an Oracle Streams environment that replicates
changes to specified tables between two databases.

• MAINTAIN_TTS clones a set of tablespaces from a source database at a destination
database and uses Oracle Streams to maintain these tablespaces at both
databases.

• PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP configure an Oracle
Streams environment that replicates changes either at the database level or to
specified tablespaces between two databases. These procedures must be used
together, and instantiation actions must be performed manually, to complete the
Oracle Streams replication configuration.

These procedures automate the entire configuration of the Oracle Streams clients at
multiple databases. Further, the configuration follows Oracle Streams best practices.
For example, these procedures create queue-to-queue propagations whenever
possible.

If these procedures are not suitable for your environment, then use the following
procedures in the DBMS_STREAMS_ADM package to create Oracle Streams clients, rules
sets, and rules:

• ADD_TABLE_RULES

• ADD_SUBSET_RULES

• ADD_SCHEMA_RULES

• ADD_GLOBAL_RULES

• ADD_TABLE_PROPAGATION_RULES

• ADD_SUBSET_PROPAGATION_RULES

• ADD_SCHEMA_PROPAGATION_RULES

• ADD_GLOBAL_PROPAGATION_RULES

These procedures minimize the number of steps required to configure Oracle Streams
clients. It is also possible to create rules for nonexistent objects, so ensure that you
check the spelling of each object specified in a rule carefully.

Although it is typically not recommended, a propagation or apply process can be used
without rule sets or rules if you always want to propagate or apply all of the messages
in a queue. However, a capture process requires one or more rule sets with rules, and
a synchronous capture requires a positive rule set. You can use the ADD_GLOBAL_RULES
procedure to capture data manipulation language (DML) changes to an entire
database with a capture process if a negative rule set is configured for the capture
process to filter out changes to unsupported objects. You can also use the
ADD_GLOBAL_RULES procedure to capture all data definition language (DDL) changes to
the database with a capture process.

The rules in the rule set for a propagation can differ from the rules specified for a
capture process or a synchronous capture. For example, to configure that all captured
changes be propagated to a destination database, you can run the
ADD_GLOBAL_PROPAGATION_RULES procedure for the propagation even though multiple
rules might have been configured using ADD_TABLE_RULES for the capture process or
synchronous capture. Similarly, the rules in the rule set for an apply process can differ
from the rules specified for the capture process, synchronous capture, and
propagation(s) that capture and propagate messages to the apply process.

Chapter 15
Best Practices for Oracle Streams Database Configuration

15-3

An Oracle Streams client can process changes for multiple tables or schemas. For the
best performance, ensure that the rules for these multiple tables or schemas are
simple. Complex rules will impact the performance of Oracle Streams. For example,
rules with conditions that include LIKE clauses are complex. When you use a
procedure in the DBMS_STREAMS_ADM package to create rules, the rules are always
simple.

When you configure multiple source databases in an Oracle Streams replication
environment, change cycling should be avoided. Change cycling means sending a
change back to the database where it originated. You can use Oracle Streams tags to
prevent change cycling.

See Also:

• "Configuring Replication Using the DBMS_STREAMS_ADM Package"

• "Use Queue-to-Queue Propagations"

• "Oracle Streams Tags in a Replication Environment" for information about
using Oracle Streams tags to avoid change cycling

• Oracle Streams Concepts and Administration for more information about
simple and complex rules

15.2 Best Practices for Oracle Streams Database Operation
After the Oracle Streams replication environment is configured, follow the best
practices in this section to keep it running properly and efficiently. This section
contains these topics:

• Follow the Best Practices for the Global Name of an Oracle Streams Database

• Monitor Performance and Make Adjustments When Necessary

• Monitor Capture Process's and Synchronous Capture's Queues for Size

• Follow the Oracle Streams Best Practices for Backups

• Adjust the Automatic Collection of Optimizer Statistics

• Check the Alert Log for Oracle Streams Information

• Follow the Best Practices for Removing an Oracle Streams Configuration at a
Database

15.2.1 Follow the Best Practices for the Global Name of an Oracle
Streams Database

Oracle Streams uses the global name of a database to identify changes from or to a
particular database. For example, the system-generated rules for capture,
propagation, and apply typically specify the global name of the source database. In
addition, changes captured by an Oracle Streams capture process or synchronous
capture automatically include the current global name of the source database. If
possible, do not modify the global name of a database that is participating in an Oracle
Streams replication environment after the environment has been configured. The

Chapter 15
Best Practices for Oracle Streams Database Operation

15-4

GLOBAL_NAMES initialization parameter must also be set to TRUE to guarantee that
database link names match the global name of each destination database.

If the global name of an Oracle Streams database must be modified, then do so at a
time when no user changes are possible on the database, the queues are empty, and
no outstanding changes must be applied by any apply process. When these
requirements are met, you can modify the global name of a database and re-create
the parts of the Oracle Streams configuration that reference the modified database. All
queue subscribers, including propagations and apply processes, must be re-created if
the source database global name is changed.

See Also:

"Changing the DBID or Global Name of a Source Database"

15.2.2 Monitor Performance and Make Adjustments When Necessary
For Oracle Database 11g Release 1 (11.1) and later databases, the Oracle Streams
Performance Advisor provides information about how Oracle Streams components are
performing. You can use this advisor to monitor the performance of multiple Oracle
Streams components in your environment and make adjustments to improve
performance when necessary.

The UTL_SPADV package also provides performance statistics for an Oracle Streams
environment. This package uses the Oracle Streams Performance Advisor to gather
performance statistics. The package enables you to format the statistics in output that
can be imported into a spreadsheet for analysis.

For databases before Oracle Database 11g Release 1 (11.1), you can use STRMMON to
monitor the performance of an Oracle Streams environment. You can use this tool to
obtain a quick overview of the Oracle Streams activity in a database. STRMMON reports
information in a single line display. You can configure the reporting interval and the
number of iterations to display. STRMMON is available in the rdbms/demo directory in your
Oracle home.

See Also:

• Oracle Streams Concepts and Administration for information about the
Oracle Streams Performance Advisor

• Oracle Database PL/SQL Packages and Types Reference for more
information about the UTL_SPADV package

15.2.3 Monitor Capture Process's and Synchronous Capture's Queues
for Size

You should monitor the queues used by a capture process to check for queue size.
The number of messages in a queue used by a capture process or synchronous
capture increases if the messages in the queue cannot be propagated to one or more

Chapter 15
Best Practices for Oracle Streams Database Operation

15-5

destination queues. When a source queue becomes large, it often indicates that there
is a problem with the Oracle Streams replication environment. Common reasons why
messages cannot be propagated include the following:

• One of the destination databases is down for an extended period.

• An apply process at a destination database is disabled for an extended period.

• The queue is the source queue for a propagation that cannot deliver the messages
to a particular destination queue for an extended period due to network problems
or propagation job problems.

When a capture process's queue becomes large, the capture process pauses for flow
control to minimize the number of messages that are spilled to disk. You can monitor
the number of messages in a capture process's queue by querying the
V$BUFFERED_QUEUES dynamic performance view. This view shows the number of
messages in memory and the number of messages spilled to disk.

You can monitor the number of messages in a synchronous capture's queue by
querying the V$PERSISTENT_QUEUES or V$AQ dynamic performance view. This view shows
the number of messages in different message states in the persistent queue.

Propagation is implemented using Oracle Scheduler. If a job cannot execute 16
successive times, the job is marked as "broken" and is aborted. Check propagation
jobs periodically to ensure that they are running successfully to minimize the size of
the source queue.

See Also:

"Restart Broken Propagations"

15.2.4 Follow the Oracle Streams Best Practices for Backups
The following sections contain information about best practices for backing up source
databases and destination databases in an Oracle Streams replication environment. A
single database can be both a source database and a destination database.

15.2.4.1 Best Practices for Backups of an Oracle Streams Source Database
A source database is a database where changes captured by a capture process are
generated in a redo log or a database where an Oracle Streams synchronous capture
is configured. Follow these best practices for backups of an Oracle Streams source
database:

• Use an Oracle Streams tag in the session that runs the online backup SQL
statements to ensure that the capture process which captures changes to the
source database will not capture the backup statements. An online backup
statement uses the BEGIN BACKUP and END BACKUP clauses in an ALTER TABLESPACE or
ALTER DATABASE statement. To set an Oracle Streams session tag, use the
DBMS_STREAMS.SET_TAG procedure.

Chapter 15
Best Practices for Oracle Streams Database Operation

15-6

Note:

Backups performed using Recovery Manager (RMAN) do not need to set an
Oracle Streams session tag.

See Also:

Oracle Streams Tags

• Do not allow any automated backup of the archived logs that might remove
archive logs required by a capture process. It is especially important in an Oracle
Streams environment that all required archive log files remain available online and
in the expected location until the capture process has finished processing them. If
a log required by a capture process is unavailable, then the capture process will
abort.

To list each required archive redo log file in a database, run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 99999
COLUMN NAME HEADING 'Required|Archived Redo Log|File Name' FORMAT A40

SELECT r.CONSUMER_NAME,
 r.SOURCE_DATABASE,
 r.SEQUENCE#,
 r.NAME
 FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
 WHERE r.CONSUMER_NAME = c.CAPTURE_NAME AND
 r.NEXT_SCN >= c.REQUIRED_CHECKPOINT_SCN;

• Ensure that all archive log files from all threads are available. Database recovery
depends on the availability of these logs, and a missing log will result in
incomplete recovery.

• In situations that result in incomplete recovery (point-in-time recovery) at a source
database, follow the instructions in "Performing Point-in-Time Recovery on the
Source in a Single-Source Environment" or "Performing Point-in-Time Recovery in
a Multiple-Source Environment".

15.2.4.2 Best Practices for Backups of an Oracle Streams Destination
Database

In an Oracle Streams replication environment, a destination database is a database
where an apply process applies changes. Follow these best practices for backups of
an Oracle Streams destination database:

• Ensure that the commit_serialization apply process parameter is set to FULL.

• In situations that result in incomplete recovery (point-in-time recovery) at a
destination database, follow the instructions in "Performing Point-in-Time
Recovery on a Destination Database".

Chapter 15
Best Practices for Oracle Streams Database Operation

15-7

15.2.5 Adjust the Automatic Collection of Optimizer Statistics
Every night by default, the optimizer automatically collects statistics on tables whose
statistics have become stale. For volatile tables, such as Oracle Streams queue
tables, it is likely that the statistics collection job runs when these tables might not
have data that is representative of their full load period.

You create these volatile queue tables using the DBMS_AQADM.CREATE_QUEUE_TABLE or
DBMS_STREAMS_ADM.SETUP_QUEUE procedure. You specify the queue table name when you
run these procedures. In addition to the queue table, the following tables are created
when the queue table is created and are also volatile:

• AQ$_queue_table_name_I

• AQ$_queue_table_name_H

• AQ$_queue_table_name_T

• AQ$_queue_table_name_P

• AQ$_queue_table_name_D

• AQ$_queue_table_name_C

Replace queue_table_name with the name of the queue table.

Oracle recommends that you collect statistics on volatile tables by completing the
following steps:

1. Run the DBMS_STATS.GATHER_TABLE_STATS procedure manually on volatile tables
when these tables are at their fullest.

2. Immediately after the statistics are collected on volatile tables, run the
DBMS_STATS.LOCK_TABLE_STATS procedure on these tables.

Locking the statistics on volatile tables ensures that the automatic statistics collection
job skips these tables, and the tables are not analyzed.

See Also:

Oracle Database SQL Tuning Guide for more information about managing
optimizer statistics

15.2.6 Check the Alert Log for Oracle Streams Information
By default, the alert log contains information about why Oracle Streams capture and
apply processes stopped. Also, Oracle Streams capture and apply processes report
long-running and large transactions in the alert log.

Long-running transactions are open transactions with no activity (that is, no new
change records, rollbacks, or commits) for an extended period (20 minutes). Large
transactions are open transactions with a large number of change records. The alert
log reports whether a long-running or large transaction has been seen every 20
minutes. Not all such transactions are reported, because only one transaction is
reported for each 20 minute period. When the commit or rollback is received, this
information is reported in the alert log as well.

Chapter 15
Best Practices for Oracle Streams Database Operation

15-8

You can use the following views for information about long-running transactions:

• The V$STREAMS_TRANSACTION dynamic performance view enables monitoring of long
running transactions that are currently being processed by Oracle Streams capture
processes and apply processes.

• The DBA_APPLY_SPILL_TXN and V$STREAMS_APPLY_READER views enable you to monitor
the number of transactions and messages spilled by an apply process.

Note:

The V$STREAMS_TRANSACTION view does not pertain to synchronous captures.

See Also:

Oracle Streams Concepts and Administration for more information about
Oracle Streams information in the alert log

15.2.7 Follow the Best Practices for Removing an Oracle Streams
Configuration at a Database

To completely remove the Oracle Streams configuration at a database, complete the
following steps:

1. In SQL*Plus, connect to the database as an administrative user.

See Oracle Database Administrator's Guide for instructions about connecting to a
database in SQL*Plus.

2. Run the DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION procedure.

3. Drop the Oracle Streams administrator, if possible.

15.3 Best Practices for Oracle Real Application Clusters and
Oracle Streams

The following best practices are for Oracle Real Application Clusters (Oracle RAC)
databases in Oracle Streams replication environments:

• Make Archive Log Files of All Threads Available to Capture Processes

• Follow the Best Practices for the Global Name of an Oracle RAC Database

• Follow the Best Practices for Configuring and Managing Propagations

• Follow the Best Practices for Queue Ownership

Chapter 15
Best Practices for Oracle Real Application Clusters and Oracle Streams

15-9

See Also:

Oracle Streams Concepts and Administration for more information about how
Oracle Streams works with Oracle RAC

15.3.1 Make Archive Log Files of All Threads Available to Capture
Processes

The archive log files of all threads from all instances must be available to any instance
running a capture process. This requirement pertains to both local and downstream
capture processes.

15.3.2 Follow the Best Practices for the Global Name of an Oracle
RAC Database

The general best practices described in "Follow the Best Practices for the Global
Name of an Oracle Streams Database" also apply to Oracle Real Application Clusters
(Oracle RAC) databases in an Oracle Streams environment. In addition, if the global
name of an Oracle RAC destination database does not match the DB_NAME.DB_DOMAIN of
the database, then include the global name for the database in the list of services for
the database specified by the SERVICE_NAMES initialization parameter.

In the tnsnames.ora file, ensure that the CONNECT_DATA clause in the connect descriptor
specifies the global name of the destination database for the SERVICE_NAME. Also,
ensure that the CONNECT_DATA clause does not include the INSTANCE_NAME parameter.

If the global name of an Oracle RAC database that contains Oracle Streams
propagations is changed, then drop and re-create all propagations. Ensure that the
new propagations are queue-to-queue propagations by setting the queue_to_queue
parameter set to TRUE during creation.

If the global name of an Oracle RAC destination database must be changed, then
ensure that the queue used by each apply process is empty and that there are no
unapplied transactions before changing the global name. After the global name is
changed, drop and re-create each apply process's queue and each apply process.

See Also:

"Follow the Best Practices for Queue Ownership" for more information about
the SERVICE_NAME parameter in the tnsnames.ora file

15.3.3 Follow the Best Practices for Configuring and Managing
Propagations

The general best practices described in "Restart Broken Propagations" also apply to
Oracle Real Application Clusters (Oracle RAC) databases in an Oracle Streams
environment. Use the procedures START_PROPAGATION and STOP_PROPAGATION in the

Chapter 15
Best Practices for Oracle Real Application Clusters and Oracle Streams

15-10

DBMS_PROPAGATION_ADM package to start and stop propagations. These procedures
automatically handle queue-to-queue propagation.

Also, on an Oracle RAC database, a service is created for each buffered queue. This
service always runs on the owner instance of the destination queue and follows the
ownership of this queue upon queue ownership switches, which include instance
startup, instance shutdown, and so on. This service is used by queue-to-queue
propagations. You can query NETWORK_NAME column of the DBA_SERVICES data dictionary
view to determine the service name for a queue-to-queue propagation. If you are
running Oracle RAC instances, and you have queues that were created before Oracle
Database 10g Release 2, then drop and re-create these queues to take advantage of
the automatic service generation and queue-to-queue propagation. Ensure that you re-
create these queues when they are empty and no new messages are being enqueued
into them.

See Also:

"Use Queue-to-Queue Propagations"

15.3.4 Follow the Best Practices for Queue Ownership
All Oracle Streams processing is done at the owning instance of the queue used by
the Oracle Streams client. To determine the owning instance of each ANYDATA queue in
a database, run the following query:

SELECT q.OWNER, q.NAME, t.QUEUE_TABLE, t.OWNER_INSTANCE
 FROM DBA_QUEUES q, DBA_QUEUE_TABLES t
 WHERE t.OBJECT_TYPE = 'SYS.ANYDATA' AND
 q.QUEUE_TABLE = t.QUEUE_TABLE AND
 q.OWNER = t.OWNER;

When Oracle Streams is configured in an Oracle Real Application Clusters (Oracle
RAC) environment, each queue table has an owning instance. Also, all queues within
an individual queue table are owned by the same instance. The following Oracle
Streams clients use the owning instance of the relevant queue to perform their work:

• Each capture process is run at the owning instance of its queue.

• Each propagation is run at the owning instance of the propagation's source queue.

• Each propagation must connect to the owning instance of the propagation's
destination queue.

• Each apply process is run at the owning instance of its queue.

You can configure ownership of a queue to remain on a specific instance, if that
instance is available, by running the DBMS_AQADM.ALTER_QUEUE_TABLE procedure and
setting the primary_instance and secondary_instance parameters. When the primary
instance of a queue table is set to a specific instance, the queue ownership will return
to the specified instance whenever the instance is running.

Capture processes and apply processes automatically follow the ownership of the
queue. If the ownership changes while process is running, then the process stops on
the current instance and restarts on the new owner instance.

Chapter 15
Best Practices for Oracle Real Application Clusters and Oracle Streams

15-11

Queue-to-queue propagations send messages only to the specific queue identified as
the destination queue. Also, the source database link for the destination database
connect descriptor must specify the correct service to connect to the destination
database. The CONNECT_DATA clause in the connect descriptor should specify the global
name of the destination database for the SERVICE_NAME.

For example, consider the tnsnames.ora file for a database with the global name
db.mycompany.com. Assume that the alias name for the first instance is db1 and that the
alias for the second instance is db2. The tnsnames.ora file for this database might
include the following entries:

db.mycompany.com=
 (description=
 (load_balance=on)
 (address=(protocol=tcp)(host=node1-vip)(port=1521))
 (address=(protocol=tcp)(host=node2-vip)(port=1521))
 (connect_data=
 (service_name=db.mycompany.com)))

db1.mycompany.com=
 (description=
 (address=(protocol=tcp)(host=node1-vip)(port=1521))
 (connect_data=
 (service_name=db.mycompany.com)
 (instance_name=db1)))

db2.mycompany.com=
 (description=
 (address=(protocol=tcp)(host=node2-vip)(port=1521))
 (connect_data=
 (service_name=db.mycompany.com)
 (instance_name=db2)))

Chapter 15
Best Practices for Oracle Real Application Clusters and Oracle Streams

15-12

16
Best Practices for Capture

This chapter describes the best practices for capturing changes with a capture process
or a synchronous capture in an Oracle Streams replication environment. This chapter
includes these topics:

• Best Practices for Capture Process Configuration

• Best Practices for Capture Process Operation

• Best Practices for Synchronous Capture Configuration

See Also:

• "Best Practices for Oracle Real Application Clusters and Oracle Streams"

• Preparing for Oracle Streams Replication describes best practices to
follow when preparing for Oracle Streams capture processes

16.1 Best Practices for Capture Process Configuration
The following sections describe best practices for configuring capture processes:

• Grant the Required Privileges to the Capture User

• Set Capture Process Parallelism

• Set the Checkpoint Retention Time

16.1.1 Grant the Required Privileges to the Capture User
The capture user is the user in whose security domain a capture process captures
changes that satisfy its rule sets and runs custom rule-based transformations
configured for capture process rules.

The capture user for a capture process is configured when you create a capture
process, and the capture user can be modified when you alter a capture process.
Grant the following privileges to the apply user:

• EXECUTE privilege on the rule sets used by the capture process

• EXECUTE privilege on all rule-based transformation functions used in the positive
rule set

These privileges can be granted directly to the capture user, or they can be granted
through roles.

In addition, the capture user must be granted EXECUTE privilege on all packages,
including Oracle-supplied packages, that are invoked in rule-based transformations

16-1

run by the capture process. These privileges must be granted directly to the capture
user. They cannot be granted through roles.

See Also:

• Oracle Database Security Guide for general information about granting
privileges

• Oracle Streams Concepts and Administration for information about
granting privileges on rule sets

16.1.2 Set Capture Process Parallelism
Set the parallelism of each capture process by specifying the parallelism parameter in
the DBMS_CAPTURE_ADM.SET_PARAMETER procedure. The parallelism parameter controls the
number of processes that concurrently mine the redo log for changes.

The default setting for the parallelism capture process parameter is 1, and the default
parallelism setting is appropriate for most capture process configurations. Ensure that
the PROCESSES initialization parameter is set appropriately when you set the parallelism
capture process parameter.

See Also:

• Oracle Streams Concepts and Administration

• Oracle Database PL/SQL Packages and Types Reference

16.1.3 Set the Checkpoint Retention Time
Set the checkpoint retention time for each capture process. Periodically, a capture
process takes a checkpoint to facilitate quicker restart. These checkpoints are
maintained in the SYSAUX tablespace by default. The checkpoint retention time for a
capture process controls the amount of checkpoint data it retains. The checkpoint
retention time specifies the number of days before the required checkpoint SCN to
retain checkpoints. When a checkpoint is older than the specified time period, the
capture process purges the checkpoint.

When checkpoints are purged, the first SCN for the capture process moves forward,
and Oracle Database writes a message including the text "first scn changed" to the
alert log. The first SCN is the lowest possible SCN available for capturing changes.
The checkpoint retention time is set when you create a capture process, and it can be
set when you alter a capture process. When the checkpoint retention time is
exceeded, the first SCN is moved forward, and the Oracle Streams metadata tables
before this new first SCN are purged. The space used by these tables in the SYSAUX
tablespace is reclaimed. To alter the checkpoint retention time for a capture process,
use the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package and specify the new
retention time with the checkpoint_retention_time parameter.

Chapter 16
Best Practices for Capture Process Configuration

16-2

The default value for the checkpoint retention time is 60 days. If checkpoints are
available for a time in the past, then the capture process can recapture changes to
recover a destination database. You should set the checkpoint retention time to an
appropriate value for your environment. A typical setting is 7 days.

See Also:

• Oracle Streams Concepts and Administration

• Oracle Database PL/SQL Packages and Types Reference for more
information about the ALTER_CAPTURE procedure

16.2 Best Practices for Capture Process Operation
The following sections describe best practices for operating existing capture
processes:

• Configure a Heartbeat Table at Each Source Database in an Oracle Streams
Environment

• Perform a Dictionary Build and Prepare Database Objects for Instantiation
Periodically

• Minimize the Performance Impact of Batch Processing

16.2.1 Configure a Heartbeat Table at Each Source Database in an
Oracle Streams Environment

You can use a heartbeat table to ensure that changes are being replicated in an
Oracle Streams replication environment. Specifically, you can check the APPLIED_SCN
value in the DBA_CAPTURE data dictionary view at the capture database to ensure that it
is updated periodically. A heartbeat table is especially useful for databases that have a
low activity rate because you can ensure that the replication environment is working
properly even if there are few replicated changes.

An Oracle Streams capture process requests a checkpoint after every 10 MB of
generated redo. During the checkpoint, the metadata for Oracle Streams is maintained
if there are active transactions. Implementing a heartbeat table ensures that there are
open transactions occurring regularly in the source database, thereby providing
additional opportunities for the metadata to be updated frequently. Additionally, the
heartbeat table provides quick feedback to the database administrator about the health
of the Oracle Streams replication environment.

To implement a heartbeat table, complete the following steps:

1. Create a table at the source database that includes a date or time stamp column
and the global name of the source database.

2. Instantiate the table at the destination database. If there are multiple destination
databases, then instantiate the heartbeat table at each destination database.

3. Add a rule to the positive rule set for the capture process that captures changes to
the source database. The rule instructs the capture process to capture changes to
the heartbeat table.

Chapter 16
Best Practices for Capture Process Operation

16-3

4. Add a rule to the positive rule set for the propagation that propagates changes
from the source database to the destination database. The rule instructs the
propagation to propagate LCRs for the heartbeat table. If there are multiple
propagations, then add the rule to the rule set for each propagation. If your
environment uses directed networks, then you might need to add rules to
propagations at several databases.

5. Add a rule to the positive rule set for the apply process that applies changes that
originated at the source database. The rule instructs the apply process to apply
changes to the heartbeat table. If there are multiple apply processes at multiple
databases that apply the changes that originated at the source database, then add
a rule to each the apply process.

6. Configure an automated job to update the heartbeat table at the source database
periodically. For example, the table might be updated every minute.

7. Monitor the Oracle Streams replication environment to verify that changes to the
heartbeat table at the source database are being replicated to the destination
database.

16.2.2 Perform a Dictionary Build and Prepare Database Objects for
Instantiation Periodically

Perform a data dictionary build in the source database redo periodically. Run the
DBMS_CAPTURE_ADM.BUILD procedure to build a current copy of the data dictionary in the
redo log. Ideally, database objects should be prepared for instantiation after a build is
performed. Run one or more of the following procedures in the DBMS_CAPTURE_ADM
package to prepare database objects for instantiation:

• PREPARE_GLOBAL_INSTANTIATION

• PREPARE_SCHEMA_INSTANTIATION

• PREPARE_TABLE_INSTANTIATION

Each of the database objects for which a capture process captures changes should be
prepared for instantiation periodically. You can reduce the amount of redo data that
must be processed if additional capture process are created or if an existing capture
process must be re-created by performing a build and preparing shared objects for
instantiation periodically.

See Also:

• Oracle Streams Concepts and Administration

• "Capture Rules and Preparation for Instantiation"

16.2.3 Minimize the Performance Impact of Batch Processing
For best performance, the commit point for a batch processing job should be kept low.
Also, if a large batch processing job must be run at a source database, then consider
running it at each Oracle Streams replication database independently. If this technique
is used, then ensure that the changes resulting from the batch processing job are not
replicated. To accomplish this, run the DBMS_STREAMS.SET_TAG procedure in the session

Chapter 16
Best Practices for Capture Process Operation

16-4

that runs the batch processing job, and set the session tag to a value that will not be
captured by a capture process.

See Also:

Oracle Streams Tags

16.3 Best Practices for Synchronous Capture Configuration
Creating and managing a synchronous capture is simplified when you use the
DBMS_STREAMS_ADM package. Specifically, use the following procedures in the
DBMS_STREAMS_ADM package to create a synchronous capture and configure synchronous
capture rules:

• ADD_TABLE_RULES

• ADD_SUBSET_RULES

Also, use the REMOVE_RULE procedure in the DBMS_STREAMS_ADM package to remove a rule
from a synchronous capture rule set or to drop a rule in a synchronous capture rule
set.

See Also:

"Configuring Synchronous Capture"

Chapter 16
Best Practices for Synchronous Capture Configuration

16-5

17
Best Practices for Propagation

This chapter describes the best practices for propagating messages in an Oracle
Streams replication environment. This chapter includes these topics:

• Best Practices for Propagation Configuration

• Best Practices for Propagation Operation

See Also:

"Best Practices for Oracle Real Application Clusters and Oracle Streams"

17.1 Best Practices for Propagation Configuration
This following sections describe best practices for configuring propagations:

• Use Queue-to-Queue Propagations

• Set the Propagation Latency for Each Propagation

• Increase the SDU in a Wide Area Network for Better Network Performance

17.1.1 Use Queue-to-Queue Propagations
A propagation can be queue-to-queue or queue-to-database link (queue-to-dblink).
Use queue-to-queue propagations whenever possible. A queue-to-queue propagation
always has its own exclusive propagation job to propagate messages from the source
queue to the destination queue. Because each propagation job has its own
propagation schedule, the propagation schedule of each queue-to-queue propagation
can be managed separately. Even when multiple queue-to-queue propagations use
the same database link, you can enable, disable, or set the propagation schedule for
each queue-to-queue propagation separately.

Propagations configured before Oracle Database 10g Release 2 are queue-to-dblink
propagations. Also, any propagation that includes a queue in a database before
Oracle Database 10g Release 2 must be a queue-to-dblink propagation. When queue-
to-dblink propagations are used, propagation will not succeed if the database link no
longer connects to the owning instance of the destination queue.

If you have queue-to-dblink propagations created in a prior release of Oracle
Database, you can re-create these propagation during a maintenance window to use
queue-to-queue propagation. To re-create a propagation, complete the following
steps:

1. Stop the propagation.

2. Ensure that the source queue is empty.

17-1

3. Ensure that the destination queue is empty and has no unapplied, spilled
messages before you drop the propagation.

4. Re-create the propagation with the queue_to_queue parameter set to TRUE in the
creation procedure.

If you automate the configuration, as described in "Automate the Oracle Streams
Replication Configuration", then each propagation uses queue-to-queue propagation
automatically.

See Also:

• "Follow the Best Practices for Configuring and Managing Propagations"
for information about propagations in an Oracle Real Application Clusters
(Oracle RAC) environment

• "Creating Oracle Streams Propagations Between ANYDATA Queues"

17.1.2 Set the Propagation Latency for Each Propagation
Propagation latency is the maximum wait, in seconds, in the propagation window for a
message to be propagated after it is enqueued. Set the propagation latency to an
appropriate value for each propagation in your Oracle Streams replication
environment. The default propagation latency value is 60.

The following scenarios describe how a propagation will behave given different
propagation latency values:

• If latency is set to 60, and there are no messages enqueued during the
propagation window, then the queue will not be checked for 60 seconds for
messages to be propagated to the specified destination. That is, messages
enqueued into the queue for the propagation destination will not be propagated for
at least 60 more seconds.

• If the latency is set to 600, and there are no messages enqueued during the
propagation window, then the queue will not be checked for 10 minutes for
messages to be propagated to the specified destination. That is, messages
enqueued into the queue for the propagation destination will not be propagated for
at least 10 more minutes.

• If the latency is set to 0, then a job slave will be waiting for messages to be
enqueued for the destination and, as soon as a message is enqueued, it will be
propagated. Setting latency to 0 is not recommended because it might affect the
ability of the database to shut down in NORMAL mode.

You can set propagation parameters using the ALTER_PROPAGATION_SCHEDULE procedure
from the DBMS_AQADM package. For example, to set the latency of a propagation from the
q1 source queue owned by strmadmin to the destination queue q2 at the database with
a global name of dbs2.example.com, log in as the Oracle Streams administrator, and run
the following procedure:

BEGIN
 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name => 'strmadmin.q1',
 destination => 'dbs2.example.com',
 latency => 5,

Chapter 17
Best Practices for Propagation Configuration

17-2

 destination_queue => 'strmadmin.q2');
END;
/

Note:

If the latency parameter is not specified, then propagation latency is set to the
default value of 60.

See Also:

Oracle Streams Concepts and Administration

17.1.3 Increase the SDU in a Wide Area Network for Better Network
Performance

When using Oracle Streams propagation in a Wide Area Network (WAN), increase the
session data unit (SDU) to improve the propagation performance. The maximum value
for SDU is 32K (32767). The SDU value for network transmission is negotiated
between the sender and receiver sides of the connection, and the minimum SDU value
of the two endpoints is used for any individual connection. To take advantage of an
increased SDU for Oracle Streams propagation, the receiving side sqlnet.ora file must
include the DEFAULT_SDU_SIZE parameter. The receiving side listener.ora file must
indicate the SDU change for the system identifier (SID). The sending side tnsnames.ora
file connect string must also include the SDU modification for the particular service.

In addition, the SEND_BUF_SIZE and RECV_BUF_SIZE parameters in the listener.ora and
tnsnames.ora files increase the performance of propagation on your system. These
parameters increase the size of the buffer used to send or receive the propagated
messages. These parameters should only be increased after careful analysis of their
overall impact on system performance.

See Also:

Oracle Database Net Services Administrator's Guide

17.2 Best Practices for Propagation Operation
The following section describes best practices for operating existing propagations.

17.2.1 Restart Broken Propagations
Sometimes, the propagation job for a propagation might become "broken" or fail to
start after it encounters an error or after a database restart. Typically, stopping and

Chapter 17
Best Practices for Propagation Operation

17-3

restarting the propagation solves the problem. For example, to stop and restart a
propagation named prop1, run the following procedures:

BEGIN
 DBMS_PROPAGATION_ADM.STOP_PROPAGATION(
 propagation_name => 'prop1');
END;
/

BEGIN
 DBMS_PROPAGATION_ADM.START_PROPAGATION(
 propagation_name => 'prop1');
END;
/

If running these procedures does not correct the problem, then run the
STOP_PROPAGATION procedure with the force parameter set to TRUE, and restart
propagation. For example:

BEGIN
 DBMS_PROPAGATION_ADM.STOP_PROPAGATION(
 propagation_name => 'prop1',
 force => TRUE);
END;
/

BEGIN
 DBMS_PROPAGATION_ADM.START_PROPAGATION(
 propagation_name => 'prop1');
END;
/

When you stop a propagation with the force parameter set to TRUE, the statistics for the
propagation are cleared.

Chapter 17
Best Practices for Propagation Operation

17-4

18
Best Practices for Apply

This chapter describes the best practices for applying changes with an apply process
in an Oracle Streams replication environment. This chapter includes these topics:

• Best Practices for Destination Database Configuration

• Best Practices for Apply Process Configuration

• Best Practices for Apply Process Operation

See Also:

"Best Practices for Oracle Real Application Clusters and Oracle Streams"

18.1 Best Practices for Destination Database Configuration
In an Oracle Streams replication environment, a destination database is a database
where an apply process applies changes. This section contains these topics:

• Grant Required Privileges to the Apply User

• Set Instantiation SCN Values

• Configure Conflict Resolution

18.1.1 Grant Required Privileges to the Apply User
The apply user is the user in whose security domain an apply process performs the
following actions:

• Dequeues messages that satisfy its rule sets

• Runs custom rule-based transformations configured for apply process rules

• Applies messages directly to database objects

• Runs apply handlers configured for the apply process

The apply user for an apply process is configured when you create an apply process,
and the apply user can be modified when you alter an apply process. Grant the
following privileges to the apply user:

• If the apply process applies data manipulation language (DML) changes to a table,
then grant INSERT, UPDATE, and DELETE privileges on the table to the apply user.

• If the apply process applies data definition language (DDL) changes to a table,
then grant CREATE TABLE or CREATE ANY TABLE, CREAT INDEX or CREATE ANY INDEX, and
CREATE PROCEDURE or CREATE ANY PROCEDURE to the apply user.

• Grant EXECUTE privilege on the rule sets used by the apply process.

18-1

• Grant EXECUTE privilege on all custom rule-based transformation functions specified
for rules in the positive rule set of the apply process.

• Grant EXECUTE privilege on any apply handlers used by the apply process.

• Grant privileges to dequeue messages from the apply process's queue.

These privileges can be granted directly to the apply user, or they can be granted
through roles.

In addition, the apply user must be granted EXECUTE privilege on all packages, including
Oracle-supplied packages, that are invoked in subprograms run by the apply process.
These privileges must be granted directly to the apply user. They cannot be granted
through roles.

See Also:

• Oracle Database Security Guide for general information about granting
privileges

• Oracle Streams Concepts and Administration for information about
granting privileges on rule sets

18.1.2 Set Instantiation SCN Values
An instantiation SCN value must be set for each database object to which an apply
process applies changes. Confirm that an instantiation SCN is set for all such objects,
and set any required instantiation SCN values that are not set.

Instantiation SCN values can be set in various ways, including during export/import, by
Recovery Manager (RMAN), or manually. To set instantiation SCN values manually,
use one of the following procedures in the DBMS_APPLY_ADM package:

• SET_TABLE_INSTANTIATION_SCN

• SET_SCHEMA_INSTANTIATION_SCN

• SET_GLOBAL_INSTANTIATION_SCN

For example, to set the instantiation SCN manually for each table in the a schema, run
the SET_SCHEMA_INSTANTIATION_SCN procedure with the recursive parameter set to TRUE.
If an apply process applies data definition language (DDL) changes, then set the
instantiation SCN values at a level higher than table level using either the
SET_SCHEMA_INSTANTIATION_SCN or SET_GLOBAL_INSTANTIATION_SCN procedure.

See Also:

Instantiation and Oracle Streams Replication for more information about
instantiation and setting instantiation SCN values

Chapter 18
Best Practices for Destination Database Configuration

18-2

18.1.3 Configure Conflict Resolution
If updates will be performed at multiple databases for the same shared database
object, then ensure that you configure conflict resolution for that object. To simplify
conflict resolution for tables with LOB columns, create an error handler to handle
errors for the table. When registering the error handler using the
DBMS_APPLY_ADM.SET_DML_HANDLER procedure, ensure that you set the assemble_lobs
parameter to TRUE.

If you configure conflict resolution at a destination database, then additional
supplemental logging is required at the source database. Specifically, the columns
specified in a column list for conflict resolution during apply must be conditionally
logged if more than one column at the source database is used in the column list at
the destination database.

See Also:

• Oracle Streams Conflict Resolution

• "Specifying Supplemental Logging"

18.2 Best Practices for Apply Process Configuration
The following sections describe best practices for configuring apply processes:

• Set Apply Process Parallelism

• Consider Allowing Apply Processes to Continue When They Encounter Errors

18.2.1 Set Apply Process Parallelism
Set the parallelism of an apply process by specifying the parallelism parameter in the
DBMS_APPLY_ADM.SET_PARAMETER procedure. The parallelism parameter controls the
number of processes that concurrently apply changes. The default setting for the
parallelism apply process parameter is 4.

Typically, apply process parallelism is set to either 1, 4, 8, or 16. The setting that is best
for a particular apply process depends on the load applied and the processing power
of the computer system running the database. Follow these guidelines when setting
apply process parallelism:

• If the load is heavy for the apply process and the computer system running the
database has excellent processing power, then set apply process parallelism to 8
or 16. Multiple high-speed CPUs provide excellent processing power.

• If the is light for the apply process, then set apply process parallelism to 1 or 4.

• If the computer system running the database has less than optimal processing
power, then set apply process parallelism to 1 or 4.

Ensure that the PROCESSES initialization parameter is set appropriately when you set the
parallelism apply process parameter.

Chapter 18
Best Practices for Apply Process Configuration

18-3

In addition, if parallelism is greater than 1 for an apply process, then ensure that any
database objects whose changes are applied by the apply process have the
appropriate settings for the INITRANS and PCTFREE parameters. The INITRANS parameter
specifies the initial number of concurrent transaction entries allocated within each data
block allocated to the database object. Set the INITRANS parameter to the parallelism of
the apply process or higher. The PCTFREE parameter specifies the percentage of space
in each data block of the database object reserved for future updates to rows of the
object. The PCTFREE parameter should be set to 10 or higher. You can modify these
parameters for a table using the ALTER TABLE statement

See Also:

• Oracle Streams Concepts and Administration

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database SQL Language Reference for more information about
the ALTER TABLE statement

18.2.2 Consider Allowing Apply Processes to Continue When They
Encounter Errors

When the disable_on_error apply process parameter is set to Y, the apply process is
disabled on the first unresolved error, even if the error is not irrecoverable. When the
disable_on_error apply process parameter is set to N, the apply process continues
regardless of unresolved errors. The default setting for this parameter is Y. If you do
not want an apply process to become disabled when it encounters errors, then set the
disable_on_error parameter to N.

18.3 Best Practices for Apply Process Operation
The following section describes best practices for operating existing apply processes.

18.3.1 Manage Apply Errors
The error queue contains all of the current apply errors for a database. If there are
multiple apply processes in a database, then the error queue contains the apply errors
for each apply process. If an apply process encounters an error when it tries to apply a
logical change record (LCR) in a transaction, then all of the LCRs in the transaction
are moved to the error queue. To view information about apply errors, query the
DBA_APPLY_ERROR data dictionary view or use Oracle Enterprise Manager Cloud Control.

The MESSAGE_NUMBER column in the DBA_APPLY_ERROR view indicates the LCR within the
transaction that resulted in the error. When apply errors are encountered, correct the
problem(s) that caused the error(s), and either retry or delete the error transaction in
the error queue.

Chapter 18
Best Practices for Apply Process Operation

18-4

See Also:

Oracle Streams Concepts and Administration for information about managing
apply errors and for information about displaying detailed information for the
column values of each LCR in an error transaction

Chapter 18
Best Practices for Apply Process Operation

18-5

Index

A
ABORT_GLOBAL_INSTANTIATION procedure,

8-14
ABORT_SCHEMA_INSTANTIATION procedure,

8-14
ABORT_SYNC_INSTANTIATION procedure,

8-14
ABORT_TABLE_INSTANTIATION procedure,

8-14
ADD SUPPLEMENTAL LOG, 1-38
ADD SUPPLEMENTAL LOG DATA, 1-39
ADD SUPPLEMENTAL LOG DATA clause of

ALTER DATABASE, 1-41
ADD SUPPLEMENTAL LOG GROUP clause of

ALTER TABLE
conditional log groups, 1-39
unconditional log groups, 1-38

ADD_TABLE_PROPAGATION_RULES
procedure, 2-53

ADD_TABLE_RULES procedure, 2-51, 2-54
alert log

Streams best practices, 15-8
ALTER DATABASE statement

ADD SUPPLEMENTAL LOG DATA clause,
1-41

DROP SUPPLEMENTAL LOG DATA clause,
1-42

ALTER TABLE statement
ADD SUPPLEMENTAL LOG DATA clause

conditional log groups, 1-39
unconditional log groups, 1-38

ADD SUPPLEMENTAL LOG GROUP clause
conditional log groups, 1-39
unconditional log groups, 1-38

DROP SUPPLEMENTAL LOG GROUP
clause, 1-40

ALTER_APPLY procedure, 2-51
removing the tag value, 10-20
setting the tag value, 10-1, 10-5, 10-19

ANYDATA data type
queues

creating, 6-1
apply process

apply handlers, 1-16

apply process (continued)
apply user

best practices, 18-1
best practices

configuration, 18-3
operation, 18-4

conflict resolution, 9-1
creating, 7-1
data types applied

heterogeneous environments, 11-5
DML changes

heterogeneous environments, 11-6
DML handlers

heterogeneous environments, 11-5
error handlers

heterogeneous, 11-5
errors

best practices, 18-4
heterogeneous environments, 11-3, 11-11

database links, 11-3
Oracle Database Gateways, 11-3

LOBs, 14-12
message handlers

heterogeneous environments, 11-5
oldest SCN

point-in-time recovery, 12-32
parallelism

best practices, 18-3
substitute key columns

heterogeneous environments, 11-4, 11-5
tags, 10-5

monitoring, 10-21
removing, 10-20
setting, 10-19

update conflict handlers
monitoring, 9-19

ARCHIVELOG mode, 1-26
capture process, 5-2

B
backups

online
Streams, 10-5

Streams best practices, 15-6

Index-1

batch processing
capture process best practices, 16-4

best practices
Streams replication, 1

alert log, 15-8
apply, 18-1
apply errors, 18-4
apply process configuration, 18-3
apply process operation, 18-4
apply process parallelism, 18-3
apply user, 18-1
archive log threads, 15-10
automate configuration, 15-2
backups, 15-6
batch processing, 16-4
capture, 16-1
capture process configuration, 16-1
capture process operation, 16-3
capture process parallelism, 16-2
capture process’s queue, 15-5
capture user, 16-1
checkpoint retention, 16-2
conflict resolution, 18-3
data dictionary build, 16-4
database configuration, 15-1
database operation, 15-4
DDL replication, 1-16
destination database, 18-1
global name, 15-4
heartbeat table, 16-3
instantiation SCN, 18-2
Oracle Real Application Clusters (Oracle

RAC) databases, 15-9
performance, 15-5
prepare for instantiation, 16-4
propagation, 17-1
propagation latency, 17-2
queue-to-queue propagation, 17-1
removing, 15-9
restarting propagation, 17-3
SDU, 17-3
statistics collection, 15-8
synchronous capture configuration, 16-5

bi-directional replication, 1-14, 1-19

C
capture process

ARCHIVELOG mode, 5-2
best practices

batch processing, 16-4
configuration, 16-1
data dictionary build, 16-4
operation, 16-3
prepare for instantiation, 16-4

capture process (continued)
capture user

best practices, 16-1
configuring, 5-1
creating, 5-1
DBID

changing, 12-24
downstream capture, 1-11, 2-7

creating, 5-1
global name

changing, 12-24
heterogeneous environments, 11-2
local capture, 1-11, 2-7
log sequence number

resetting, 12-27
parallelism

best practices, 16-2
parameters

merge_threshold, 12-13
message_tracking_frequency, 12-1
split_threshold, 12-13

preparing for, 5-2
supplemental logging, 1-36, 8-6

change cycling
avoidance

tags, 10-6
checkpoint retention

best practices, 16-2
column lists, 9-10
COMPARE function, 13-8, 13-14

perform_row_dif parameter, 13-16
COMPARE_OLD_VALUES procedure, 9-4, 9-16
comparing database objects, 13-14
conflict resolution, 9-1

best practices, 18-3
column lists, 9-10
conflict handlers, 9-3, 9-5, 9-6

custom, 9-12
modifying, 9-15
prebuilt, 9-7
removing, 9-15
setting, 9-13

data convergence, 9-12
DISCARD handler, 9-8
MAXIMUM handler, 9-8

latest time, 9-8
MINIMUM handler, 9-9
OVERWRITE handler, 9-8
resolution columns, 9-11
time-based, 9-8

conflicts
avoidance, 9-5

delete, 9-6
primary database ownership, 9-5
sequences, 9-5

Index

Index-2

conflicts (continued)
avoidance (continued)
uniqueness, 9-5
update, 9-6

delete, 9-2
detection, 9-3

identifying rows, 9-4
monitoring, 9-18
stopping, 9-4, 9-16

DML conflicts, 9-1
foreign key, 9-2
transaction ordering, 9-3
types of, 9-2
uniqueness, 9-2
update, 9-2

CONVERGE procedure, 13-11, 13-38
CREATE_APPLY procedure, 2-51, 7-1

tags, 10-1, 10-5
CREATE_CAPTURE procedure, 5-1, 5-4
CREATE_COMPARISON procedure, 13-8, 13-14
CREATE_PROPAGATION procedure, 6-3
CREATE_SYNC_CAPTURE procedure, 5-21

D
data

comparing, 13-8, 13-14
custom, 13-21
cyclic, 13-19
purging results, 13-43
random, 13-18
rechecking, 13-42
subset of columns, 13-14

converging, 13-11, 13-38
session tags, 13-41
tags, 13-12

data types
heterogeneous environments, 11-5

database links, 1-24
databases

adding for replication, 4-8, 4-16, 4-25
DBA_APPLY view, 10-21
DBA_APPLY_CONFLICT_COLUMNS view, 9-19
DBA_APPLY_INSTANTIATED_OBJECTS view,

8-46
DBA_APPLY_TABLE_COLUMNS view, 9-18
DBA_CAPTURE_PREPARED_DATABASE view,

8-45
DBA_CAPTURE_PREPARED_SCHEMAS view,

8-45
DBA_CAPTURE_PREPARED_TABLES view,

8-45
DBA_COMPARISON view, 13-9, 13-27, 13-33,

13-35

DBA_COMPARISON_COLUMNS view, 13-10,
13-30

DBA_COMPARISON_ROW_DIF view, 13-10
DBA_COMPARISON_SCAN view, 13-9, 13-10,

13-31, 13-33, 13-35
DBA_COMPARISON_SCAN_VALUES view,

13-36
DBA_RECOVERABLE_SCRIPT view, 12-39
DBA_RECOVERABLE_SCRIPT_BLOCKS view,

12-39
DBA_RECOVERABLE_SCRIPT_ERRORS view,

12-39
DBA_RECOVERABLE_SCRIPT_PARAMS view,

12-39
DBA_SYNC_CAPTURE_PREPARED_TABS

view, 8-45
DBID (database identifier)

capture process
changing, 12-24

DBMS_APPLY_ADM package, 1-10, 2-49
DBMS_CAPTURE_ADM package, 1-10, 2-49,

5-1
DBMS_COMPARISON package, 13-8, 13-11

buckets, 13-2
comparing database objects, 13-14

custom, 13-21
cyclic, 13-19
purging results, 13-43
random, 13-18
rechecking, 13-42
subset of columns, 13-14

converging database objects, 13-38
session tags, 13-41

monitoring, 13-27
parent scans, 13-3
preparation, 13-13
root scans, 13-3
scans, 13-2
Streams replication, 13-45
using, 13-1

DBMS_PROPAGATION_ADM package, 6-1
DBMS_STREAMS package, 10-18
DBMS_STREAMS_ADM package, 1-4, 1-10,

2-49, 5-1, 6-1
creating a capture process, 5-1
creating a propagation, 6-3
creating an apply process, 7-1
preparation for instantiation, 8-4
tags, 10-2

DDL replication
best practices, 1-16

directory objects, 2-16
creating, 4-9

DISCARD conflict resolution handler, 9-8
DML handlers

Index

3

DML handlers (continued)
LOB assembly, 14-13

downstream capture, 1-11, 2-7
archived-log, 1-12
configuring, 2-34
log file transfer, 1-43
real-time, 1-12, 1-46
standby redo logs, 1-46

DROP SUPPLEMENTAL LOG DATA clause of
ALTER DATABASE, 1-42

DROP SUPPLEMENTAL LOG GROUP clause,
1-40

DROP_COMPARISON procedure, 13-45

E
ENQUEUE procedure, 14-4
error handlers

LOB assembly, 14-13
error queue

heterogeneous environments, 11-9
Export

Oracle Streams, 8-40

F
flashback queries

Streams replication, 12-37

G
GET_MESSAGE_TRACKING function, 12-1
GET_SCN_MAPPING procedure, 12-31, 12-37
GET_TAG function, 10-19, 10-20
global name

best practices, 15-4
capture process

changing, 12-24
GRANT_REMOTE_ADMIN_ACCESS procedure,

5-9, 5-12

H
heartbeat table

Streams best practices, 16-3
heterogeneous information sharing, 11-1

non-Oracle to non-Oracle, 11-12
non-Oracle to Oracle, 11-10

apply process, 11-11
capturing changes, 11-10
instantiation, 11-12
user application, 11-10

Oracle to non-Oracle, 11-1
apply process, 11-3

heterogeneous information sharing (continued)
Oracle to non-Oracle (continued)
capture process, 11-2
data types applied, 11-5
database links, 11-3
DML changes, 11-6
DML handlers, 11-5
error handlers, 11-5
errors, 11-9
instantiation, 11-6
message handlers, 11-5
staging, 11-2
substitute key columns, 11-4, 11-5
transformations, 11-9

hub-and-spoke replication, 1-7, 1-14, 1-19, 10-10
configuring, 2-58

I
Import

Oracle Streams, 8-40
STREAMS_CONFIGURATION parameter,

8-16
initialization parameters

LOG_ARCHIVE_DEST_n, 1-28
LOG_ARCHIVE_DEST_STATE_n, 1-28

instantiation, 2-14, 8-1
aborting preparation, 8-14
Data Pump, 8-15
database, 8-28
example

Data Pump export/import, 8-19
RMAN CONVERT DATABASE, 8-34
RMAN DUPLICATE, 8-29
RMAN TRANSPORT TABLESPACE,

8-22
transportable tablespace, 8-22

heterogeneous environments
non-Oracle to Oracle, 11-12
Oracle to non-Oracle, 11-6

monitoring, 8-45
Oracle Streams, 8-40
preparation for, 8-3
preparing for, 8-1, 8-9
RMAN, 8-21
setting an SCN, 8-40

DDL LCRs, 8-42
export/import, 8-40

supplemental logging specifications, 8-2
instantiation SCN

best practices, 18-2
setting, 2-56

Index

Index-4

L
LCRs

See logical change records
LOB assembly, 14-13
LOBs

Oracle Streams, 14-11
apply process, 14-12

log sequence number
Streams capture process, 12-27

LOG_ARCHIVE_DEST_n initialization
parameter, 1-28

LOG_ARCHIVE_DEST_STATE_n initialization
parameter, 1-28

logical change records (LCRs)
constructing, 14-2
enqueuing, 14-2
executing, 14-6

DDL LCRs, 14-11
row LCRs, 14-7

LOB columns, 14-11, 14-22
apply process, 14-12
requirements, 14-19

LONG columns, 14-22
requirements, 14-22

LONG RAW columns, 14-22
requirements, 14-22

managing, 14-1
requirements, 14-1
tracking, 12-1
XMLType, 14-11

LONG data type
Oracle Streams, 14-22

LONG RAW data type
Oracle, 14-22

M
MAINTAIN_GLOBAL procedure, 2-3, 2-18
MAINTAIN_SCHEMAS procedure, 2-3, 2-25,

2-39, 2-43, 2-58
MAINTAIN_SIMPLE_TTS procedure, 2-3, 2-34
MAINTAIN_TABLES procedure, 2-3, 2-28
MAINTAIN_TTS procedure, 2-3, 2-34
MAXIMUM conflict resolution handler, 9-8

latest time, 9-8
MEMORY_MAX_TARGET initialization

parameter, 1-34
MEMORY_TARGET initialization parameter,

1-34
merge streams, 12-5
MERGE_STREAMS procedure, 12-14
MERGE_STREAMS_JOB procedure, 12-14
message tracking, 12-1

message_tracking_frequency capture process
parameter, 12-1

MINIMUM conflict resolution handler, 9-9
monitoring

apply process
update conflict handlers, 9-19

comparisons, 13-27
conflict detection, 9-18
instantiation, 8-45
tags, 10-20

apply process value, 10-21
current session value, 10-20

N
n-way replication, 1-10, 1-14, 1-19, 10-7

O
objects

adding for replication, 4-4, 4-11, 4-19
oldest SCN

point-in-time recovery, 12-32
one-way replication, 1-19
optimizer

statistics collection
best practices, 15-8

Oracle Data Pump
Import utility

STREAMS_CONFIGURATION
parameter, 8-16

instantiations, 8-19
Streams instantiation, 8-15

Oracle Database Gateways
Oracle Streams, 11-3

Oracle Real Application Clusters
Streams best practices, 15-9

archive log threads, 15-10
global name, 15-10
propagations, 15-10
queue ownership, 15-11

Oracle Streams
conflict resolution, 9-1
DBMS_COMPARISON package, 13-45
Export utility, 8-40
heterogeneous information sharing, 11-1
Import utility, 8-40
instantiation, 8-1, 8-40
LOBs, 14-11
logical change records (LCRs)

managing, 14-1
LONG data type, 14-22
Oracle Database Gateways, 11-3
point-in-time recovery, 12-26
replication, 1-1

Index

5

Oracle Streams (continued)
replication (continued)
adding databases, 4-8, 4-16, 4-25
adding objects, 4-4, 4-11, 4-19
adding to, 4-1
best practices, 1
configuring, 2-1, 3-1
managing, 12-1
sequences, 9-5

rules, 1-3
sequences, 9-5
tags, 10-1
XMLType, 14-11

Oracle Streams Performance Advisor, 15-5
OVERWRITE conflict resolution handler, 9-8

P
performance

Oracle Streams, 15-5
point-in-time recovery

Oracle Streams, 12-26
POST_INSTANTIATION_SETUP procedure, 2-3,

2-18, 2-34
PRE_INSTANTIATION_SETUP procedure, 2-3,

2-18, 2-34
PREPARE_GLOBAL_INSTANTIATION

procedure, 8-3, 8-9
PREPARE_SCHEMA_INSTANTIATION

procedure, 8-3, 8-9
PREPARE_SYNC_INSTANTIATION function,

8-3, 8-9
PREPARE_TABLE_INSTANTIATION procedure,

8-3, 8-9
propagation

best practices, 17-1
broken propagations, 17-3
configuration, 17-1
propagation latency, 17-2
propagation operation, 17-3
queue-to-queue propagation, 17-1
restarting propagation, 17-3
SDU, 17-3

propagation jobs
managing, 6-3

propagations
creating, 6-1, 6-3
managing, 6-3

PURGE_COMPARISON procedure, 13-43

Q
queue-to-queue propagation

best practices, 17-1
queues

queues (continued)
ANYDATA

creating, 6-1
commit-time, 11-11
creating, 6-1
size

best practices, 15-5
transactional, 11-11

R
RECHECK function, 13-42
RECOVER_OPERATION procedure, 12-39
Recovery Manager

CONVERT DATABASE command
Streams instantiation, 8-34

DUPLICATE command
Streams instantiation, 8-29

Streams instantiation, 8-21
TRANSPORT TABLESPACE command

Streams instantiation, 8-22
replication

adding databases, 4-8, 4-16, 4-25
adding objects, 4-4, 4-11, 4-19
adding to, 4-1
bi-directional, 1-5, 2-11
configuration errors

recovering, 12-39
configuring, 2-1, 3-1

apply handlers, 1-16
ARCHIVELOG mode, 1-26
bi-directional, 1-14, 1-19
database, 2-18
database links, 1-24
DBMS_STREAMS_ADM package, 2-3
DDL changes, 1-16, 2-13
directory objects, 2-16
downstream capture, 1-11, 2-7, 2-34
hub-and-spoke, 1-14, 1-19, 2-58
initialization parameters, 1-27
instantiation, 2-14
local capture, 1-11, 2-7
log file transfer, 1-43
multiple-source environment, 3-6
n-way, 1-14, 1-19
one-way, 1-19
Oracle Enterprise Manager Cloud

Control, 2-1
Oracle Streams pool, 1-32
preparation, 1-1
schemas, 2-25, 2-39, 2-43, 2-58
scripts, 2-9
single-source environment, 3-2
standby redo logs, 1-46
supplemental logging, 1-36

Index

Index-6

replication (continued)
configuring (continued)
tables, 2-28
tablespace, 2-34
tablespaces, 2-34
tags, 2-12

hub-and-spoke, 1-5, 10-10
managing, 12-1
n-way, 1-5, 10-7
one-way, 1-5, 2-11
Oracle Streams, 1-1

best practices, 1
configuring, 2-49
hub-and-spoke, 1-7
managing, 12-1
n-way, 1-10
two-database, 1-5, 2-49

sequences, 9-5
split and merge, 12-5

resolution columns, 9-11
rule-based transformations, 1-15
rules, 1-3

system-created
tags, 10-2

S
SDU

Streams best practices, 17-3
sequences, 9-5

replication, 9-5
SET_DML_HANDLER procedure, 9-12
SET_GLOBAL_INSTANTIATION_SCN

procedure, 8-40, 8-42
SET_MESSAGE_TRACKING procedure, 12-1
SET_SCHEMA_INSTANTIATION_SCN

procedure, 8-40, 8-42
SET_TABLE_INSTANTIATION_SCN procedure,

2-56, 8-40
SET_TAG procedure, 10-1, 10-18
SET_UP_QUEUE procedure, 6-1
SET_UPDATE_CONFLICT_HANDLER

procedure, 9-7
modifying an update conflict handler, 9-15
removing an update conflict handler, 9-15
setting an update conflict handler, 9-13

SGA_TARGET initialization parameter, 1-34
split streams, 12-5
SPLIT_STREAMS procedure, 12-14
staging

heterogeneous environments, 11-2
START_APPLY procedure, 2-57
statistics

Oracle Streams, 15-5
Streams pool

Streams pool (continued)
MEMORY_MAX_TARGET initialization

parameter, 1-34
MEMORY_TARGET initialization parameter,

1-34
SGA_TARGET initialization parameter, 1-34

STREAMS_CONFIGURATION parameter
Data Pump Import utility, 8-16
Import utility, 8-16

STRMMON, 15-5
supplemental logging, 1-36

column lists, 9-10
instantiation, 8-2
preparation for instantiation, 8-6, 8-9

synchronous capture
best practices

configuration, 16-5
configuring, 2-49, 5-18
preparing for, 5-19

system change numbers (SCN)
oldest SCN for an apply process

point-in-time recovery, 12-32

T
tags, 2-12, 10-1

ALTER_APPLY procedure, 10-1, 10-5
apply process, 10-5
avoiding change cycling, 2-57
change cycling

avoidance, 10-6
CONVERGE procedure, 13-41
converging data, 13-12
CREATE_APPLY procedure, 10-1, 10-5
examples, 10-6
getting value for current session, 10-19
hub-and-spoke replication, 10-6
managing, 10-18
monitoring, 10-20

apply process value, 10-21
current session value, 10-20

n-way replication, 10-6
online backups, 10-5
removing value for apply process, 10-20
rules, 10-2

include_tagged_lcr parameter, 10-3
SET_TAG procedure, 10-1
setting value for apply process, 10-19
setting value for current session, 10-18

tracking LCRs, 12-1
transformations

heterogeneous environments
Oracle to non-Oracle, 11-9

rule-based, 1-15
transportable tablespace

Index

7

transportable tablespace (continued)
Streams instantiation, 8-22

two-database replication, 1-5
configuring

synchronous capture, 2-49

V
V$STREAMS_MESSAGE_TRACKING view,

12-1

V$STREAMS_POOL_ADVICE view, 1-35
V$STREAMS_TRANSACTION view, 8-9

X
XMLType

logical change records (LCRs), 14-11

Index

Index-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes for Oracle Streams Replication Administrator's Guide
	Changes in Oracle Database 12c Release 1 (12.1)
	Deprecated Features

	Part I Configuring Oracle Streams Replication
	1 Preparing for Oracle Streams Replication
	1.1 Overview of Oracle Streams Replication
	1.1.1 Common Reasons to Use Oracle Streams Replication
	1.1.2 Rules in an Oracle Streams Replication Environment

	1.2 Decisions to Make Before Configuring Oracle Streams Replication
	1.2.1 Decide Which Type of Replication Environment to Configure
	1.2.1.1 About Two-Database Replication Environments
	1.2.1.2 About Hub-And-Spoke Replication Environments
	1.2.1.3 About N-Way Replication Environments

	1.2.2 Decide Whether to Configure Local or Downstream Capture for the Source Database
	1.2.3 Decide Whether Changes Are Allowed at One Database or at Multiple Databases
	1.2.4 Decide Whether the Replication Environment Will Have Nonidentical Replicas
	1.2.5 Decide Whether the Replication Environment Will Use Apply Handlers
	1.2.6 Decide Whether to Maintain DDL Changes
	1.2.7 Decide How to Configure the Replication Environment

	1.3 Tasks to Complete Before Configuring Oracle Streams Replication
	1.3.1 Configuring an Oracle Streams Administrator on All Databases
	1.3.2 Configuring Network Connectivity and Database Links
	1.3.3 Ensuring That Each Source Database Is In ARCHIVELOG Mode
	1.3.4 Setting Initialization Parameters Relevant to Oracle Streams
	1.3.5 Configuring the Oracle Streams Pool
	1.3.5.1 Using Automatic Memory Management to Set the Oracle Streams Pool Size
	1.3.5.2 Using Automatic Shared Memory Management to Set the Oracle Streams Pool Size
	1.3.5.3 Setting the Oracle Streams Pool Size Manually
	1.3.5.4 Using the Default Setting for the Oracle Streams Pool Size

	1.3.6 Specifying Supplemental Logging
	1.3.6.1 Required Supplemental Logging in an Oracle Streams Replication Environment
	1.3.6.2 Specifying Table Supplemental Logging Using Unconditional Log Groups
	1.3.6.2.1 Specifying an Unconditional Supplemental Log Group for Primary Key Column(s)
	1.3.6.2.2 Specifying an Unconditional Supplemental Log Group for All Table Columns
	1.3.6.2.3 Specifying an Unconditional Supplemental Log Group that Includes Selected Columns

	1.3.6.3 Specifying Table Supplemental Logging Using Conditional Log Groups
	1.3.6.3.1 Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG DATA Clause
	1.3.6.3.2 Specifying a Conditional Log Group Using the ADD SUPPLEMENTAL LOG GROUP Clause

	1.3.6.4 Dropping a Supplemental Log Group
	1.3.6.5 Specifying Database Supplemental Logging of Key Columns
	1.3.6.6 Dropping Database Supplemental Logging of Key Columns
	1.3.6.7 Procedures That Automatically Specify Supplemental Logging

	1.3.7 Configuring Log File Transfer to a Downstream Capture Database
	1.3.8 Adding Standby Redo Logs for Real-Time Downstream Capture

	2 Simple Oracle Streams Replication Configuration
	2.1 Configuring Replication Using the Setup Streams Replication Wizard
	2.2 Configuring Replication Using the DBMS_STREAMS_ADM Package
	2.2.1 The Oracle Streams Replication Configuration Procedures
	2.2.2 Important Considerations for the Configuration Procedures
	2.2.2.1 Local or Downstream Capture for the Source Database
	2.2.2.2 Perform Configuration Actions Directly or With a Script
	2.2.2.3 Oracle Streams Components Configured by These Procedures
	2.2.2.4 One-Way or Bi-Directional Replication
	2.2.2.4.1 Change Cycling and Tags

	2.2.2.5 Data Definition Language (DDL) Changes
	2.2.2.6 Instantiation

	2.2.3 Creating the Required Directory Objects
	2.2.4 Examples That Configure Two-Database Replication with Local Capture
	2.2.4.1 Configuring Two-Database Global Replication with Local Capture
	2.2.4.2 Configuring Two-Database Schema Replication with Local Capture
	2.2.4.3 Configuring Two-Database Table Replication with Local Capture

	2.2.5 Examples That Configure Two-Database Replication with Downstream Capture
	2.2.5.1 Configuring Tablespace Replication with Downstream Capture at Destination
	2.2.5.2 Configuring Schema Replication with Downstream Capture at Destination
	2.2.5.3 Configuring Schema Replication with Downstream Capture at Third Database

	2.2.6 Example That Configures Two-Database Replication with Synchronous Captures
	2.2.7 Example That Configures Hub-and-Spoke Replication
	2.2.8 Monitoring Oracle Streams Configuration Progress

	3 Flexible Oracle Streams Replication Configuration
	3.1 Creating a New Oracle Streams Single-Source Environment
	3.2 Creating a New Oracle Streams Multiple-Source Environment
	3.2.1 Configuring Populated Databases When Creating a Multiple-Source Environment
	3.2.2 Adding Replicated Objects to Import Databases When Creating a New Environment
	3.2.3 Complete the Multiple-Source Environment Configuration

	4 Adding to an Oracle Streams Replication Environment
	4.1 About Adding to an Oracle Streams Replication Environment
	4.1.1 About Using the Setup Streams Replication Wizard or a Single Configuration Procedure
	4.1.2 About Adding the Oracle Streams Components Individually in Multiple Steps

	4.2 Adding Multiple Components Using a Single Procedure
	4.2.1 Adding Database Objects to a Replication Environment Using a Single Procedure
	4.2.2 Adding a Database to a Replication Environment Using a Single Procedure

	4.3 Adding Components Individually in Multiple Steps
	4.3.1 Adding Replicated Objects to an Existing Single-Source Environment
	4.3.2 Adding a New Destination Database to a Single-Source Environment
	4.3.3 Adding Replicated Objects to an Existing Multiple-Source Environment
	4.3.3.1 Configuring Populated Databases When Adding Replicated Objects
	4.3.3.2 Adding Replicated Objects to Import Databases in an Existing Environment
	4.3.3.3 Finish Adding Objects to a Multiple-Source Environment Configuration

	4.3.4 Adding a New Database to an Existing Multiple-Source Environment
	4.3.4.1 Configuring Databases If the Replicated Objects Already Exist at the New Database
	4.3.4.2 Adding Replicated Objects to a New Database

	5 Configuring Implicit Capture
	5.1 Configuring a Capture Process
	5.1.1 Preparing to Configure a Capture Process
	5.1.2 Configuring a Local Capture Process
	5.1.2.1 Configuring a Local Capture Process Using DBMS_STREAMS_ADM
	5.1.2.2 Configuring a Local Capture Process Using DBMS_CAPTURE_ADM
	5.1.2.3 Configuring a Local Capture Process with Non-NULL Start SCN

	5.1.3 Configuring a Downstream Capture Process
	5.1.3.1 Configuring a Real-Time Downstream Capture Process
	5.1.3.2 Configuring an Archived-Log Downstream Capture Process
	5.1.3.2.1 Configuring an Archived-Log Downstream Capture Process that Assigns Logs Implicitly
	5.1.3.2.2 Configuring an Archived-Log Downstream Capture Process that Assigns Logs Explicitly

	5.1.4 After Configuring a Capture Process

	5.2 Configuring Synchronous Capture
	5.2.1 Preparing to Configure a Synchronous Capture
	5.2.2 Configuring a Synchronous Capture Using the DBMS_STREAMS_ADM Package
	5.2.3 Configuring a Synchronous Capture Using the DBMS_CAPTURE_ADM Package
	5.2.4 After Configuring a Synchronous Capture

	6 Configuring Queues and Propagations
	6.1 Creating an ANYDATA Queue
	6.2 Creating Oracle Streams Propagations Between ANYDATA Queues
	6.2.1 Preparing to Create a Propagation
	6.2.2 Creating a Propagation Using DBMS_STREAMS_ADM
	6.2.3 Creating a Propagation Using DBMS_PROPAGATION_ADM

	7 Configuring Implicit Apply
	7.1 Overview of Apply Process Creation
	7.2 Preparing to Create an Apply Process
	7.3 Creating an Apply Process for Captured LCRs Using DBMS_STREAMS_ADM
	7.4 Creating an Apply Process Using DBMS_APPLY_ADM
	7.4.1 Creating an Apply Process for Captured LCRs with DBMS_APPLY_ADM
	7.4.2 Creating an Apply Process for Persistent LCRs with DBMS_APPLY_ADM

	8 Instantiation and Oracle Streams Replication
	8.1 Overview of Instantiation and Oracle Streams Replication
	8.2 Capture Rules and Preparation for Instantiation
	8.2.1 DBMS_STREAMS_ADM Package Procedures Automatically Prepare Objects
	8.2.2 When Preparing for Instantiation Is Required
	8.2.3 Supplemental Logging Options During Preparation for Instantiation
	8.2.4 Preparing Database Objects for Instantiation at a Source Database
	8.2.4.1 Preparing Tables for Instantiation
	8.2.4.1.1 Preparing a Table for Instantiation Using DBMS_STREAMS_ADM When a Capture Process Is Used
	8.2.4.1.2 Preparing a Table for Instantiation Using DBMS_CAPTURE_ADM When a Capture Process Is Used
	8.2.4.1.3 Preparing Tables for Instantiation Using DBMS_STREAMS_ADM When a Synchronous Capture Is Used
	8.2.4.1.4 Preparing Tables for Instantiation Using DBMS_CAPTURE_ADM When a Synchronous Capture Is Used

	8.2.4.2 Preparing the Database Objects in a Schema for Instantiation
	8.2.4.2.1 Preparing the Database Objects in a Schema for Instantiation Using DBMS_STREAMS_ADM
	8.2.4.2.1.1 Preparing the Database Objects in a Schema for Instantiation Using DBMS_CAPTURE_ADM

	8.2.4.3 Preparing All of the Database Objects in a Database for Instantiation
	8.2.4.3.1 Preparing All of the Database Objects in a Database for Instantiation Using DBMS_STREAMS_ADM
	8.2.4.3.1.1 Preparing All of the Database Objects in a Database for Instantiation Using DBMS_CAPTURE_ADM

	8.2.5 Aborting Preparation for Instantiation at a Source Database

	8.3 Oracle Data Pump and Oracle Streams Instantiation
	8.3.1 Data Pump Export and Object Consistency
	8.3.2 Oracle Data Pump Import and Oracle Streams Instantiation
	8.3.2.1 Instantiation SCNs and Data Pump Imports
	8.3.2.2 Instantiation SCNs and Oracle Streams Tags Resulting from Data Pump Imports
	8.3.2.3 The STREAMS_CONFIGURATION Data Pump Import Utility Parameter

	8.3.3 Instantiating Objects Using Data Pump Export/Import

	8.4 Recovery Manager (RMAN) and Oracle Streams Instantiation
	8.4.1 Instantiating Objects in a Tablespace Using Transportable Tablespace or RMAN
	8.4.1.1 Instantiating Objects Using Transportable Tablespace
	8.4.1.2 Instantiating Objects Using Transportable Tablespace From Backup With RMAN

	8.4.2 Instantiating an Entire Database Using RMAN
	8.4.2.1 Instantiating an Entire Database on the Same Platform Using RMAN
	8.4.2.2 Instantiating an Entire Database on Different Platforms Using RMAN

	8.5 Setting Instantiation SCNs at a Destination Database
	8.5.1 Setting Instantiation SCNs Using Export/Import
	8.5.1.1 Full Database Export and Full Database Import
	8.5.1.2 Full Database or User Export and User Import
	8.5.1.3 Full Database, User, or Table Export and Table Import

	8.5.2 Setting Instantiation SCNs Using the DBMS_APPLY_ADM Package
	8.5.2.1 Setting the Instantiation SCN While Connected to the Source Database
	8.5.2.2 Setting the Instantiation SCN While Connected to the Destination Database

	8.6 Monitoring Instantiation
	8.6.1 Determining Which Database Objects Are Prepared for Instantiation
	8.6.2 Determining the Tables for Which an Instantiation SCN Has Been Set

	9 Oracle Streams Conflict Resolution
	9.1 About DML Conflicts in an Oracle Streams Environment
	9.2 Conflict Types in an Oracle Streams Environment
	9.2.1 Update Conflicts in an Oracle Streams Environment
	9.2.2 Uniqueness Conflicts in an Oracle Streams Environment
	9.2.3 Delete Conflicts in an Oracle Streams Environment
	9.2.4 Foreign Key Conflicts in an Oracle Streams Environment

	9.3 Conflicts and Transaction Ordering in an Oracle Streams Environment
	9.4 Conflict Detection in an Oracle Streams Environment
	9.4.1 Control Over Conflict Detection for Nonkey Columns
	9.4.2 Rows Identification During Conflict Detection in an Oracle Streams Environment

	9.5 Conflict Avoidance in an Oracle Streams Environment
	9.5.1 Use a Primary Database Ownership Model
	9.5.2 Avoid Specific Types of Conflicts
	9.5.2.1 Avoid Uniqueness Conflicts in an Oracle Streams Environment
	9.5.2.2 Avoid Delete Conflicts in an Oracle Streams Environment
	9.5.2.3 Avoid Update Conflicts in an Oracle Streams Environment

	9.6 Conflict Resolution in an Oracle Streams Environment
	9.6.1 Prebuilt Update Conflict Handlers
	9.6.1.1 Types of Prebuilt Update Conflict Handlers
	9.6.1.1.1 OVERWRITE
	9.6.1.1.2 DISCARD
	9.6.1.1.3 MAXIMUM
	9.6.1.1.4 MINIMUM

	9.6.1.2 Column Lists
	9.6.1.3 Resolution Columns
	9.6.1.4 Data Convergence

	9.6.2 Custom Conflict Handlers

	9.7 Managing Oracle Streams Conflict Detection and Resolution
	9.7.1 Setting an Update Conflict Handler
	9.7.2 Modifying an Existing Update Conflict Handler
	9.7.3 Removing an Existing Update Conflict Handler
	9.7.4 Stopping Conflict Detection for Nonkey Columns

	9.8 Monitoring Conflict Detection and Update Conflict Handlers
	9.8.1 Displaying Information About Conflict Detection
	9.8.2 Displaying Information About Update Conflict Handlers

	10 Oracle Streams Tags
	10.1 Introduction to Tags
	10.2 Tags and Rules Created by the DBMS_STREAMS_ADM Package
	10.3 Tags and Online Backup Statements
	10.4 Tags and an Apply Process
	10.5 Oracle Streams Tags in a Replication Environment
	10.5.1 N-Way Replication Environments
	10.5.2 Hub-and-Spoke Replication Environments
	10.5.3 Hub-and-Spoke Replication Environment with Several Extended Secondary Databases

	10.6 Managing Oracle Streams Tags
	10.6.1 Managing Oracle Streams Tags for the Current Session
	10.6.1.1 Setting the Tag Values Generated by the Current Session
	10.6.1.2 Getting the Tag Value for the Current Session

	10.6.2 Managing Oracle Streams Tags for an Apply Process
	10.6.2.1 Setting the Tag Values Generated by an Apply Process
	10.6.2.2 Removing the Apply Tag for an Apply Process

	10.7 Monitoring Oracle Streams Tags
	10.7.1 Displaying the Tag Value for the Current Session
	10.7.2 Displaying the Default Tag Value for Each Apply Process

	11 Oracle Streams Heterogeneous Information Sharing
	11.1 Oracle to Non-Oracle Data Sharing with Oracle Streams
	11.1.1 Change Capture and Staging in an Oracle to Non-Oracle Environment
	11.1.2 Change Apply in an Oracle to Non-Oracle Environment
	11.1.2.1 Apply Process Configuration in an Oracle to Non-Oracle Environment
	11.1.2.1.1 Before Creating an Apply Process in an Oracle to Non-Oracle Environment
	11.1.2.1.2 Apply Process Creation in an Oracle to Non-Oracle Environment
	11.1.2.1.3 Substitute Key Columns in an Oracle to Non-Oracle Heterogeneous Environment
	11.1.2.1.4 Parallelism in an Oracle to Non-Oracle Heterogeneous Environment
	11.1.2.1.5 Procedure DML Handlers in an Oracle to Non-Oracle Heterogeneous Environment
	11.1.2.1.6 Message Handlers in an Oracle to Non-Oracle Heterogeneous Environment
	11.1.2.1.7 Error and Conflict Handlers in an Oracle to Non-Oracle Heterogeneous Environment

	11.1.2.2 Data Types Applied at Non-Oracle Databases
	11.1.2.3 Types of DML Changes Applied at Non-Oracle Databases
	11.1.2.4 Instantiation in an Oracle to Non-Oracle Environment

	11.1.3 Transformations in an Oracle to Non-Oracle Environment
	11.1.4 Messaging Gateway and Oracle Streams
	11.1.5 Error Handling in an Oracle to Non-Oracle Environment
	11.1.6 Example Oracle to Non-Oracle Streams Environment

	11.2 Non-Oracle to Oracle Data Sharing with Oracle Streams
	11.2.1 Change Capture in a Non-Oracle to Oracle Environment
	11.2.2 Staging in a Non-Oracle to Oracle Environment
	11.2.3 Change Apply in a Non-Oracle to Oracle Environment
	11.2.4 Instantiation from a Non-Oracle Database to an Oracle Database

	11.3 Non-Oracle to Non-Oracle Data Sharing with Oracle Streams

	Part II Administering Oracle Streams Replication
	12 Managing Oracle Streams Replication
	12.1 About Managing Oracle Streams
	12.2 Tracking LCRs Through a Stream
	12.3 Splitting and Merging an Oracle Streams Destination
	12.3.1 About Splitting and Merging Oracle Streams
	12.3.2 Split and Merge Options
	12.3.2.1 Automatic Split and Merge
	12.3.2.2 Manual Split and Automatic Merge
	12.3.2.3 Manual Split and Merge With Generated Scripts

	12.3.3 Examples That Split and Merge Oracle Streams
	12.3.3.1 Splitting and Merging an Oracle Streams Destination Automatically
	12.3.3.2 Splitting an Oracle Streams Destination Manually and Merging It Automatically
	12.3.3.3 Splitting and Merging an Oracle Streams Destination Manually With Scripts

	12.4 Changing the DBID or Global Name of a Source Database
	12.5 Resynchronizing a Source Database in a Multiple-Source Environment
	12.6 Performing Database Point-in-Time Recovery in an Oracle Streams Environment
	12.6.1 Performing Point-in-Time Recovery on the Source in a Single-Source Environment
	12.6.2 Performing Point-in-Time Recovery in a Multiple-Source Environment
	12.6.3 Performing Point-in-Time Recovery on a Destination Database
	12.6.3.1 Resetting the Start SCN for the Existing Capture Process to Perform Recovery
	12.6.3.2 Creating a New Capture Process to Perform Recovery

	12.7 Running Flashback Queries in an Oracle Streams Replication Environment
	12.8 Recovering from Operation Errors
	12.8.1 Recovery Scenario

	13 Comparing and Converging Data
	13.1 About Comparing and Converging Data
	13.1.1 Scans
	13.1.2 Buckets
	13.1.3 Parent Scans and Root Scans
	13.1.4 How Scans and Buckets Identify Differences

	13.2 Other Documentation About the DBMS_COMPARISON Package
	13.3 Quick Start: A Simple Compare and Converge Scenario
	13.3.1 Tutorial: Preparing to Compare and Converge Data
	13.3.2 Tutorial: Comparing Data in Two Different Databases
	13.3.3 Tutorial: Converging Divergent Data

	13.4 Preparing To Compare and Converge a Shared Database Object
	13.5 Diverging a Database Object at Two Databases to Complete Examples
	13.6 Comparing a Shared Database Object at Two Databases
	13.6.1 Comparing a Subset of Columns in a Shared Database Object
	13.6.2 Comparing a Shared Database Object without Identifying Row Differences
	13.6.3 Comparing a Random Portion of a Shared Database Object
	13.6.4 Comparing a Shared Database Object Cyclically
	13.6.5 Comparing a Custom Portion of a Shared Database Object
	13.6.6 Comparing a Shared Database Object That Contains CLOB or BLOB Columns

	13.7 Viewing Information About Comparisons and Comparison Results
	13.7.1 Viewing General Information About the Comparisons in a Database
	13.7.2 Viewing Information Specific to Random and Cyclic Comparisons
	13.7.3 Viewing the Columns Compared by Each Comparison in a Database
	13.7.4 Viewing General Information About Each Scan in a Database
	13.7.5 Viewing the Parent Scan ID and Root Scan ID for Each Scan in a Database
	13.7.6 Viewing Detailed Information About the Row Differences Found in a Scan
	13.7.7 Viewing Information About the Rows Compared in Specific Scans

	13.8 Converging a Shared Database Object
	13.8.1 Converging a Shared Database Object for Consistency with the Local Object
	13.8.2 Converging a Shared Database Object for Consistency with the Remote Object
	13.8.3 Converging a Shared Database Object with a Session Tag Set

	13.9 Rechecking the Comparison Results for a Comparison
	13.10 Purging Comparison Results
	13.10.1 Purging All of the Comparison Results for a Comparison
	13.10.2 Purging the Comparison Results for a Specific Scan ID of a Comparison
	13.10.3 Purging the Comparison Results of a Comparison Before a Specified Time

	13.11 Dropping a Comparison
	13.12 Using DBMS_COMPARISON in an Oracle Streams Replication Environment
	13.12.1 Checking for Consistency After Instantiation
	13.12.2 Checking for Consistency in a Running Oracle Streams Replication Environment

	14 Managing Logical Change Records (LCRs)
	14.1 Requirements for Managing LCRs
	14.2 Constructing and Enqueuing LCRs
	14.3 Executing LCRs
	14.3.1 Executing Row LCRs
	14.3.1.1 Example of Constructing and Executing Row LCRs

	14.3.2 Executing DDL LCRs

	14.4 Managing LCRs Containing LOB Columns
	14.4.1 Apply Process Behavior for Direct Apply of LCRs Containing LOBs
	14.4.2 LOB Assembly and Custom Apply of LCRs Containing LOB Columns
	14.4.2.1 LOB Assembly Considerations
	14.4.2.2 LOB Assembly Example

	14.4.3 Requirements for Constructing and Processing LCRs Containing LOB Columns
	14.4.3.1 Requirements for Constructing and Processing LCRs Without LOB Assembly
	14.4.3.2 Requirements for Apply Handler Processing of LCRs with LOB Assembly
	14.4.3.3 Requirements for Rule-Based Transformation Processing of LCRs with LOBs

	14.5 Managing LCRs Containing LONG or LONG RAW Columns

	Part III Oracle Streams Replication Best Practices
	15 Best Practices for Oracle Streams Replication Databases
	15.1 Best Practices for Oracle Streams Database Configuration
	15.1.1 Use a Separate Queue for Capture and Apply Oracle Streams Clients
	15.1.2 Automate the Oracle Streams Replication Configuration

	15.2 Best Practices for Oracle Streams Database Operation
	15.2.1 Follow the Best Practices for the Global Name of an Oracle Streams Database
	15.2.2 Monitor Performance and Make Adjustments When Necessary
	15.2.3 Monitor Capture Process's and Synchronous Capture's Queues for Size
	15.2.4 Follow the Oracle Streams Best Practices for Backups
	15.2.4.1 Best Practices for Backups of an Oracle Streams Source Database
	15.2.4.2 Best Practices for Backups of an Oracle Streams Destination Database

	15.2.5 Adjust the Automatic Collection of Optimizer Statistics
	15.2.6 Check the Alert Log for Oracle Streams Information
	15.2.7 Follow the Best Practices for Removing an Oracle Streams Configuration at a Database

	15.3 Best Practices for Oracle Real Application Clusters and Oracle Streams
	15.3.1 Make Archive Log Files of All Threads Available to Capture Processes
	15.3.2 Follow the Best Practices for the Global Name of an Oracle RAC Database
	15.3.3 Follow the Best Practices for Configuring and Managing Propagations
	15.3.4 Follow the Best Practices for Queue Ownership

	16 Best Practices for Capture
	16.1 Best Practices for Capture Process Configuration
	16.1.1 Grant the Required Privileges to the Capture User
	16.1.2 Set Capture Process Parallelism
	16.1.3 Set the Checkpoint Retention Time

	16.2 Best Practices for Capture Process Operation
	16.2.1 Configure a Heartbeat Table at Each Source Database in an Oracle Streams Environment
	16.2.2 Perform a Dictionary Build and Prepare Database Objects for Instantiation Periodically
	16.2.3 Minimize the Performance Impact of Batch Processing

	16.3 Best Practices for Synchronous Capture Configuration

	17 Best Practices for Propagation
	17.1 Best Practices for Propagation Configuration
	17.1.1 Use Queue-to-Queue Propagations
	17.1.2 Set the Propagation Latency for Each Propagation
	17.1.3 Increase the SDU in a Wide Area Network for Better Network Performance

	17.2 Best Practices for Propagation Operation
	17.2.1 Restart Broken Propagations

	18 Best Practices for Apply
	18.1 Best Practices for Destination Database Configuration
	18.1.1 Grant Required Privileges to the Apply User
	18.1.2 Set Instantiation SCN Values
	18.1.3 Configure Conflict Resolution

	18.2 Best Practices for Apply Process Configuration
	18.2.1 Set Apply Process Parallelism
	18.2.2 Consider Allowing Apply Processes to Continue When They Encounter Errors

	18.3 Best Practices for Apply Process Operation
	18.3.1 Manage Apply Errors

	Index

