
Oracle® REST Data Services
SODA for REST Developer's Guide

Release 3.0

E58123-13

November 2016

Oracle REST Data Services SODA for REST Developer's Guide, Release 3.0

E58123-13

Copyright © 2014, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Drew Adams

Contributing Authors: Douglas McMahon, Sheila Moore, Maxim Orgiyan, Josh Spiegel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. ix

Audience ... ix

Documentation Accessibility ... ix

Related Documents.. ix

Conventions.. ix

1 SODA for REST

1.1 SODA for REST Overview.. 1-1

1.1.1 REST ... 1-2

1.1.2 Document Collections and Document-Centric APIs... 1-2

1.1.3 SODA for REST Operations .. 1-3

1.2 Installing SODA for REST .. 1-3

1.3 Getting Started with SODA for REST ... 1-5

1.3.1 Creating a New Collection.. 1-6

1.3.2 Getting the List of Available Collections .. 1-7

1.3.3 Deleting a Collection.. 1-7

1.3.4 Inserting a Document into a Collection .. 1-8

1.3.5 Retrieving a Document from a Collection .. 1-9

1.3.6 Deleting a Document from a Collection.. 1-9

1.3.7 Bulk-Inserting Documents from a JSON Array ... 1-10

1.3.8 Listing the Documents in a Collection .. 1-11

1.3.9 Updating a Document in a Collection... 1-13

1.3.10 Using a Filter Specification to Select Documents From a Collection 1-14

1.4 SODA for REST HTTP Operations.. 1-16

1.4.1 SODA for REST HTTP Operation URIs .. 1-16

1.4.2 SODA for REST HTTP Operation Response Bodies ... 1-17

1.4.3 GET schema... 1-18

1.4.4 GET collection ... 1-19

1.4.5 GET object.. 1-22

1.4.6 PUT collection ... 1-23

1.4.7 PUT object.. 1-24

1.4.8 DELETE collection.. 1-24

iii

1.4.9 DELETE object .. 1-25

1.4.10 POST object ... 1-26

1.4.11 POST query ... 1-27

1.4.12 POST array insert ... 1-28

1.4.13 POST bulk delete .. 1-29

1.5 Collection Specifications ... 1-30

1.5.1 Key Assignment Method... 1-34

1.5.2 Versioning Method .. 1-35

1.6 Security.. 1-37

1.6.1 Authentication Mechanisms ... 1-37

1.6.2 Security Considerations for Development and Testing.. 1-38

Index

iv

List of Examples

1-1 Response Body... 1-18
1-2 Collection Specification.. 1-33

v

vi

List of Tables

1-1 SODA for REST HTTP Operations... 1-16
1-2 Fields That Can Appear in Response Bodies.. 1-17
1-3 Additional Response Body Fields for Operations that Return Objects............................. 1-18
1-4 Relationship of GET collection Parameters to Mode and Links Array............................. 1-22
1-5 Collection Specification Fields... 1-30
1-6 Key Assignment Methods.. 1-34
1-7 Versioning Methods.. 1-35

vii

viii

Preface

This document explains how to use the Oracle SODA for REST API.

Audience
This document is intended for SODA for REST users.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
None

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
SODA for REST

The Oracle SODA for REST API is described, including how to install and use it.

Familiarity with the following can help you take best advantage of the information
presented here:

• Oracle relational database management system (RDBMS)

• JavaScript Object Notation (JSON)

• Hypertext Transfer Protocol (HTTP)

See Also:

• Oracle Database SODA for Java Developer's Guide, which explains how to use
the Java client API on which SODA for REST is built.

• Oracle Database JSON Developer’s Guide for information about JSON in
Oracle Database

Topics

• SODA for REST Overview (page 1-1)

• Installing SODA for REST (page 1-3)

• Getting Started with SODA for REST (page 1-5)

• SODA for REST HTTP Operations (page 1-16)

• Collection Specifications (page 1-30)

• Security (page 1-37)

1.1 SODA for REST Overview
Simple Oracle Document Access (SODA, for short) lets you create and store
collections of documents in Oracle Database, retrieve them, and query them, without
needing to know Structured Query Language (SQL) or how the data in the documents
is stored in the database.

SODA for REST is a REST API that provides SODA using the representational state
transfer (REST) architectural style. You can use it to perform create, read, update, and
delete (CRUD) operations on documents of any kind, and you can use it to query
JSON documents.

SODA for REST 1-1

Note:

Documents used with SODA for REST are limited to approximately 2
gigabytes.

Note:

Oracle recommends that you use AL32UTF8 (Unicode) for your database
character set. Otherwise:

• Data can be altered during input, because of lossy conversion to the
database character set.

• Query-by-example (QBE) can return unpredictable results.

1.1.1 REST
The REST architectural style was used to define HTTP 1.1 and Uniform Resource
Identifiers (URIs). A REST-based API strongly resembles the basic functionality
provided by an HTTP server, and most REST-based systems are implemented using
an HTTP client and an HTTP server.

A typical REST implementation maps create, read, update, and delete (CRUD)
operations to HTTP verbs POST, GET, PUT, and DELETE, respectively.

A key characteristic of a REST-based system is that it is stateless: the server does not
track or manage client object state. Each operation performed against a REST-based
server is atomic; it is considered a transaction in its own right. In a typical REST-based
system, many facilities that are taken for granted in an RDBMS environment, such as
locking and concurrency control, are left to the application to manage.

A main advantage of a REST-based system is that its services can be used from almost
any modern programming platform, including traditional programming languages
(such as C, C#, C++, JAVA, and PL/SQL) and modern scripting languages (such as
JavaScript, Perl, Python, and Ruby).

See Also:

Principled Design of the Modern Web Architecture, by Roy T. Fielding and
Richard N. Taylor, at:

http://www.ics.uci.edu/~taylor/documents/2002-REST-
TOIT.pdf

1.1.2 Document Collections and Document-Centric APIs
A REST-based application typically uses a document collection to persist state.

In a document collection, each document has a unique identifier. The identifier is
typically assigned by the server when the document is created, but client-assigned
identifiers can also be used. Document identifiers are metadata—data about the
individual documents. Other metadata that a document collection can track for each
document include the date and time that it was created and the date and time that it
was last modified.

SODA for REST Overview

1-2 SODA for REST Developer's Guide

http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf

1.1.3 SODA for REST Operations
SODA for REST provides an HTTP-based service that implements the REST
architectural style and allows documents to be stored in, and retrieved from,
document collections managed by Oracle Database.

The API defines a set of simple operations that you can perform, including the
following:

• List the set of available collections

• Create a collection

• Drop a collection

• Insert a document into a collection

• Retrieving a document from a collection

• Update a document in a collection

• Delete a document from a collection

• List the contents of a collection

• Search a collection

Your application can use the API operations to create and manipulate the JSON objects
that it uses to persist application objects and state. To generate the JSON documents,
your application can use JSON serialization techniques. When your application
retrieves a document object, a JSON parser converts it to an application object.

See Also:

SODA for REST HTTP Operations (page 1-16) for detailed information about
the operations defined by SODA for REST

1.2 Installing SODA for REST
Complete instructions are provided for installing SODA for REST.

To install SODA for REST:

1. Ensure that Oracle Database 12c Release 1 (12.1.0.2) with Merge Label Request
(MLR) bundle patch 20885778 is installed. (Patch 20885778 obsoletes patch
20080249.)

Obtain the patch from My Oracle Support (https://support.oracle.com).
Select tab Patches & Updates. Search for the patch number, 20885778 or access it
directly at this URL: https://support.oracle.com/rs?
type=patch&id=20885778.

2. Start the database.

3. Download Oracle REST Data Services (ORDS), and extract the zip file.

For instructions, see Oracle REST Data Services Installation, Configuration, and
Development Guide.

Installing SODA for REST

SODA for REST 1-3

https://support.oracle.com
https://support.oracle.com/rs?type=patch&id=20885778
https://support.oracle.com/rs?type=patch&id=20885778

4. Configure ORDS.

• If the database uses standard port 1521:

java -jar ords.war install

• If the database uses a nonstandard port (any port except 1521):

java -jar ords.war install advanced

Note:

When prompted:

• Do not skip the step of verifying/installing the Oracle REST Data Services
schema.

• Skip the steps that configure the PL/SQL Gateway.

• Skip the steps that configure Application Express RESTful Services
database users.

• Decline to start the standalone server.

For more information, see Oracle REST Data Services Installation, Configuration, and
Development Guide.

5. Connect to the schema that you want ORDS to access.

6. Enable ORDS in the schema by executing this SQL command:

EXEC ords.enable_schema;
COMMIT;

7. Grant role SODA_APP to the database schema (user account) schema that you
enabled in step 6 (page 1-4):

GRANT SODA_APP TO schema;

8. Only if you are in a development environment:

a. Remove the default security constraints:

BEGIN
 ords.delete_privilege_mapping(
 'oracle.soda.privilege.developer',
 '/soda/*');
 COMMIT;
END;

This enables anonymous access to the service and is not recommended for
production systems. For more information about security, see Security
(page 1-37).

b. Start ORDS in standalone mode:

java -jar ords.war standalone

For more information, see Oracle REST Data Services Installation, Configuration,
and Development Guide.

Installing SODA for REST

1-4 SODA for REST Developer's Guide

Note:

Disabling security and running ORDS in standalone mode is not
recommended in production environments.

9. In a web browser, open:

http://localhost:8080/ords/schema/soda/latest/

Where schema is the lowercase name of the schema in which you enabled ORDS
in step 6 (page 1-4). If the installation succeeded, you see:

{"items":[],"more":false}

See Also:

• Security (page 1-37)

• Oracle REST Data Services Installation, Configuration, and Development Guide

1.3 Getting Started with SODA for REST
A step-by-step walkthrough is provided for the basic SODA for REST operations,
using examples that you can run. The examples use command-line tool cURL to send
REST requests to the server.

The examples assume that you started ORDS as instructed in Installing SODA for
REST (page 1-3), enabling ORDS in schema.

Some examples also use the sample JSON documents included in the zip file that you
downloaded in installation step 3 (page 1-3). They are in the directory ORDS_HOME/
examples/soda/getting-started.

See Also:

• http://curl.haxx.se/ for information about command-line tool cURL

• Oracle REST Data Services Installation, Configuration, and Development Guide

Steps

1. Creating a New Collection (page 1-6)

2. Getting the List of Available Collections (page 1-7)

3. Deleting a Collection (page 1-7)

4. Inserting a Document into a Collection (page 1-8)

5. Retrieving a Document from a Collection (page 1-9)

6. Deleting a Document from a Collection (page 1-9)

7. Bulk-Inserting Documents from a JSON Array (page 1-10)

Getting Started with SODA for REST

SODA for REST 1-5

http://curl.haxx.se/

8. Listing the Documents in a Collection (page 1-11)

9. Updating a Document in a Collection (page 1-13)

10. Using a Filter Specification to Select Documents From a Collection (page 1-14)

1.3.1 Creating a New Collection
An example is given of creating a new collection.

To create a new collection, run this command, where MyCollection is the name of
the collection:

curl -i -X PUT http://localhost:8080/ords/schema/soda/latest/MyCollection

The preceding command sends a PUT request with URL http://localhost:8080/
ords/schema/soda/latest/MyCollection, to create a collection named
MyCollection. The -i command-line option causes cURL to include the HTTP
response headers in the output. If the operation succeeds then the output looks similar
to this:

HTTP/1.1 201 Created
Cache-Control: private,must-revalidate,max-age=0
Location: http://localhost:8080/ords/schema/soda/latest/MyCollection/
Content-Length: 0

Response code 201 indicates that the operation succeeded. A PUT operation that
results in the creation of a new collection—a PUT collection operation—returns no
response body.

A successful PUT collection operation creates a database table to store the new
collection. One way to see the details of this table is using SQL*Plus command
describe:

SQL> describe "MyCollection"
Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL VARCHAR2(255)
 CREATED_ON NOT NULL TIMESTAMP(6)
 LAST_MODIFIED NOT NULL TIMESTAMP(6)
 VERSION NOT NULL VARCHAR2(255)
 JSON_DOCUMENT BLOB

The preceding table reflects the default collection configuration. To create a custom
collection configuration, provide a collection specification as the body of the PUT
operation. For information about collection specifications, see Collection Specifications
(page 1-30).

Caution:

To drop a collection, proceed as described in Deleting a Collection
(page 1-7). Do not use SQL to drop the database table that underlies a
collection. Collections have persisted metadata, in addition to the documents
that are stored in the collection table.

Getting Started with SODA for REST

1-6 SODA for REST Developer's Guide

See Also:

• PUT collection (page 1-23) for more information about this operation

• Getting the List of Available Collections (page 1-7)

1.3.2 Getting the List of Available Collections
An example is given of listing available collections.

To obtain a list of the collections available in schema, run this command:

curl -X GET http://localhost:8080/ords/schema/soda/latest

That sends a GET request with the URL http://localhost:8080/ords/schema/
soda/latest and returns this response body:

{
 "items" : [
 {
 "name":"MyCollection",
 "properties": {
 "schemaName":"SCHEMA",
 "tableName":"MyCollection",
 ...
 }
 "links" : [
 {
 "rel" : "canonical",
 "href" :"http://localhost:8080/ords/schema/soda/latest/MyCollection"
 }
]
 }
],
 "more" : false
}

The response body includes all available collections in schema, which in this case is
only collection MyCollection.

A successful GET collection operation returns response code 200, and the response
body is a JSON object that contains an array of available collections and includes the
collection specification for each collection.

See Also:

• GET schema (page 1-18)

• Collection Specifications (page 1-30)

• Deleting a Collection (page 1-7)

1.3.3 Deleting a Collection
An example is given of deleting a collection.

To delete MyCollection, run this command:

Getting Started with SODA for REST

SODA for REST 1-7

curl -i -X DELETE http://localhost:8080/ords/schema/soda/latest/MyCollection

The preceding command sends a DELETE request with the URL http://
localhost:8080/ords/schema/soda/latest/MyCollection and returns:

HTTP/1.1 200 OK
Cache-Control: private,must-revalidate,max-age=0
Content-Length: 0

Response code 200 indicates that the operation succeeded. A DELETE operation that
results in the deletion of a collection—a DELETE collection operation—returns no
response body.

To verify that the collection was deleted, get the list of available collections in schema:

curl -X GET http://localhost:8080/ords/schema/soda/latest

If MyCollection was deleted, the preceding command returns:

{
 "items" : [],
 "more" : false
}

Create MyCollection again, so that you can use it in the next step:

curl -X PUT http://localhost:8080/ords/schema/soda/latest/MyCollection

See Also:

• DELETE collection (page 1-24)

• Inserting a Document into a Collection (page 1-8)

1.3.4 Inserting a Document into a Collection
An example is given of inserting a document into a collection.

The example uses file po.json, which was included in the download. The file
contains a JSON document that contains a purchase order. To load the JSON
document into MyCollection, run this command:

curl -X POST --data-binary @po.json -H "Content-Type: application/json"
http://localhost:8080/ords/schema/soda/latest/MyCollection

The preceding command sends a POST request with the URL http://localhost:
8080/ords/schema/soda/latest/MyCollection. It outputs something like this:

{
 "items" : [
 {
 "id" : "2FFD968C531C49B9A7EAC4398DFC02EE",
 "etag" : "C1354F27A5180FF7B828F01CBBC84022DCF5F7209DBF0E6DFFCC626E3B0400C3",
 "lastModified":"2014-09-22T21:25:19.564394Z",
 "created":"2014-09-22T21:25:19.564394Z"
 }
],
 "hasMore" : false,
 "count" : 1
}

Getting Started with SODA for REST

1-8 SODA for REST Developer's Guide

A successful POST object operation returns response code 200. The response body
is a JSON document that contains the identifier that the server assigned to the
document when you inserted it into the collection, as well as the current ETag and
last-modified time stamp for the inserted document.

Note:

If you intend to retrieve the document then copy the document identifier (the
value of field "id"), to use for retrieval.

See Also:

• POST object (page 1-26) for more information about this operation

• Retrieving a Document from a Collection (page 1-9)

1.3.5 Retrieving a Document from a Collection
An example is given of retrieving a document from a collection.

To retrieve the document that was inserted in Inserting a Document into a Collection
(page 1-8), run this command, where id is the document identifier that you copied
when inserting the document:

curl -X GET http://localhost:8080/ords/schema/soda/latest/MyCollection/id

A successful GET document operation returns response code 200. The response body
contains the retrieved document.

If id does not exist in MyCollection then the response code is 404, as you can see by
changing id to such an identifier:

curl -X GET http://localhost:8080/ords/schema/soda/latest/MyCollection/
2FFD968C531C49B9A7EAC4398DFC02EF

{
 "type" : "http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1",
 "status" : 404,
 "title" : "Key 2FFD968C531C49B9A7EAC4398DFC02EF not found in collection MyCollection.",
 "o:errorCode" : "REST-02001"
}

See Also:

• GET object (page 1-22)

• Deleting a Document from a Collection (page 1-9)

1.3.6 Deleting a Document from a Collection
An example is given of deleting a document from a collection.

To delete, from MyCollection, the document that you retrieved in Retrieving a
Document from a Collection (page 1-9), run this command (where id is the document
identifier):

Getting Started with SODA for REST

SODA for REST 1-9

curl -i -X DELETE http://localhost:8080/ords/schema/soda/latest/MyCollection/id

The preceding command sends a DELETE request with URL http://localhost:
8080/ords/schema/soda/latest/MyCollection/id, and it returns this:

HTTP/1.1 200 OK
Cache-Control: private,must-revalidate,max-age=0
Content-Length: 0

Response code 200 indicates that the operation succeeded. A DELETE operation that
results in the deletion of an object from a collection—a DELETE object operation—
returns no response body.

See Also:

• DELETE object (page 1-25)

• Bulk-Inserting Documents from a JSON Array (page 1-10)

1.3.7 Bulk-Inserting Documents from a JSON Array
An example is given of bulk-inserting a set of documents into a collection from a JSON
array of documents. The bulk insert operation is also called POST array insert.

This example uses file POList.json, which was included in the download. The file
contains a JSON array of 70 purchase orders. To load the purchase orders into
collection MyCollection, run this command:

curl -X POST --data-binary @POList.json -H "Content-Type: application/json"
http://localhost:8080/ords/schema/soda/latest/MyCollection?action=insert

Parameter value action=insert causes the array to be inserted as a set of
documents, rather than as a single document.

The preceding command sends a POST request with the URL http://localhost:
8080/ords/schema/soda/latest/MyCollection, and it outputs something like
this:

{
 "items" : [
 {
 "id" : "6DEAF8F011FD43249E5F60A93B850AB9",
 "etag" : "49205D7E916EAED914465FCFF029B2795885A1914966E0AE82D4CCDBBE2EAF8E",
 "lastModified" : "2014-09-22T22:39:15.546435Z",
 "created" : "2014-09-22T22:39:15.546435Z"
 },
 {
 "id" : "C9FF7685D48E4E4B8641D8401ED0FB68",
 "etag" : "F3EB514BEDE6A6CC337ADA0F5BE6DEFC5D451E68CE645729224BB6707FBE1F4F",
 "lastModified" : "2014-09-22T22:39:15.546435Z",
 "created":"2014-09-22T22:39:15.546435Z"
 },
 ...
],
 "hasMore":false,
 "count":70
}

Getting Started with SODA for REST

1-10 SODA for REST Developer's Guide

A successful POST array insert operation returns response code 200. The response
body is a JSON document that contains the identifier, ETag, and last-modified time
stamp for each inserted document.

Copy an "id" field value returned by your own POST array insert operation (not a
value from the preceding example). Query the collection using SQL*Plus or SQL
Developer, substituting your copied value for identifier:

SELECT json_value(json_document FORMAT JSON, '$.Reference')
 FROM "MyCollection" WHERE id = 'identifier';

JSON_VALUE(JSON_DOCUMENTFORMATJSON,'$.REFERENCE')
--
MSULLIVA-20141102

Note:

In the SQL SELECT statement, you must specify the table name
MyCollection as a quoted identifier, because it is mixed-case (the table
name is the same as the collection name).

Because MyCollection has the default configuration, which stores the JSON
document in a BLOB column, you must include FORMAT JSON when using the
SQL/JSON function json_value. You cannot use the simplified JSON
syntax.

See Also:

• POST array insert (page 1-28)

• Listing the Documents in a Collection (page 1-11)

1.3.8 Listing the Documents in a Collection
An example is given of listing the documents in a collection, using a GET operation.

You can use parameters to control the result. For example, you can:

• Limit the number of documents returned

• Return only document identifiers (keys), only document contents, or both keys and
contents

• Return a range of documents, based on keys or last-modified time stamps

• Specify the order of the list of returned documents

To list the documents in MyCollection, returning their keys and other metadata but
not their content, run the following command.

curl -X GET http://localhost:8080/ords/schema/soda/latest/MyCollection?fields=id

The preceding command outputs something like this:

{
 "items" : [
 {
 "id" : "023C4A6581D84B71A5C0D5D364CE8484",

Getting Started with SODA for REST

SODA for REST 1-11

 "etag":"3484DFB604DDA3FBC0C681C37972E7DD8C5F4457ACE32BD16960D4388C5A7C0E",
 "lastModified" : "2014-09-22T22:39:15.546435Z",
 "created":"2014-09-22T22:39:15.546435Z"
 },
 {
 "id" : "06DD0319148E40A7B8AA48E39E739184",
 "etag" : "A19A1E9A3A38B1BAE3EE52B93350FBD76309CBFC4072A2BECD95BCA44D4849DD",
 "lastModified" : "2014-09-22T22:39:15.546435Z",
 "created" : "2014-09-22T22:39:15.546435Z"
 },
 ...
],
 "hasMore" : false,
 "count" : 70,
 "offset":0,
 "limit":100,
 "totalResults":70
}

A successful GET collection operation returns response code 200, and the response
body is a JSON document that lists the documents in the collection. If the collection is
empty, the response body is an empty items array.

To list at most 10 documents in MyCollection, returning their keys, content, and
other metadata, run this command:

curl -X GET "http://localhost:8080/ords/schema/soda/latest/MyCollection?fields=all&limit=10"

The preceding command outputs something like this:

{
 "items": [...],
 "hasMore" : true,
 "count" : 10,
 "offset" : 0,
 "limit" : 10,
 "links" : [{
 "rel" : "next",
 "href" :
"http://localhost:8080/ords/schema/soda/latest/MyCollection?offset=10&limit=10"
 }]
}

Note:

Including document content makes the response body much larger. Oracle
recommends including the content in the response body only if you will need
the content later. Retrieving the content from the response body is more
efficient that retrieving it from the server.

The metadata in the response body shows that 10 documents were requested
("limit" : 10)) and 10 documents were returned ("count" : 10)) , and that
more documents are available ("hasMore" : true). To fetch the next set of
documents, you can use the URL in the field "links"."href".

The maximum number of documents returned from a collection by the server is
controlled by the following:

• URL parameter limit

Getting Started with SODA for REST

1-12 SODA for REST Developer's Guide

• Configuration parameters soda.maxLimit and soda.defaultLimit

Note:

If you intend to update the document then copy the document identifier
(value of field "id"), to use for updating.

See Also:

• GET collection (page 1-19)

• Updating a Document in a Collection (page 1-13)

• Using a Filter Specification to Select Documents From a Collection
(page 1-14), which lets you list documents based on content

• Oracle REST Data Services Installation, Configuration, and Development Guide
for information about configuration parameters soda.maxLimit and
soda.defaultLimit

1.3.9 Updating a Document in a Collection
An example is given of updating a document in a collection, that is, replacing it with a
newer version. For this, you use a PUT operation.

The behavior of the PUT operation for a nonexistent document depends on the key-
assignment method used by the collection.

• If the collection uses server-assigned keys (as does collection MyCollection) then
an error is raised if you try to update a nonexistent document (that is, you specify a
key that does not belong to any document in the collection).

• If the collection uses client-assigned keys, then trying to update a nonexistent
document inserts into the collection a new document with the specified key.

Retrieve a document from MyCollection by running this command, where id is the
document identifier that you copied in Listing the Documents in a Collection
(page 1-11):

curl -X GET http://localhost:8080/ords/schema/soda/latest/MyCollection/id

The preceding command outputs the retrieved document.

To update this document with the content of file poUpdated.json, which was
included in the download, execute this command:

curl -i -X PUT --data-binary @poUpdated.json -H "Content-Type: application/json"
http://localhost:8080/ords/schema/soda/latest/MyCollection/id

The preceding command outputs something like this:

HTTP/1.1 200 OK
Cache-Control: no-cache,must-revalidate,no-store,max-age=0
ETag: A0B07E0A6D000358C546DC5D8D5059D9CB548A1A5F6F2CAD66E2180B579CCB6D
Last-Modified: Mon, 22 Sep 2014 16:42:35 PDT
Location: http://localhost:8080/ords/schema/soda/latest/MyCollection/
023C4A6581D84B71A5C0D5D364CE8484/
Content-Length: 0

Getting Started with SODA for REST

SODA for REST 1-13

The response code 200 indicates that the operation succeeded. A PUT operation that
results in the successful update of a document in a collection—a PUT object
operation—returns no response body.

To verify the document has been updated, rerun this command:

curl -X GET http://localhost:8080/ords/schema/soda/latest/MyCollection/id

The preceding command returns:

{
 "PONumber": 1,
 "Content" : "This document has been updated...."
}

See Also:

• PUT object (page 1-24)

• Key Assignment Method (page 1-34)

• Using a Filter Specification to Select Documents From a Collection
(page 1-14)

1.3.10 Using a Filter Specification to Select Documents From a Collection
Examples are given of using a filter specification, or query-by-example (QBE), to
define query criteria for selecting documents from a collection.

The examples use the QBE.*.json files that are included in the zip file that you
downloaded in installation step 3 (page 1-3). They are in directory ORDS_HOME/
examples/soda/getting-started.

See Also:

• POST query (page 1-27)

• Oracle Database SODA for Java Developer's Guide for information about filter
specifications and QBE

1.3.10.1 QBE.1.json
The query-by-example (QBE) in file QBE.1.json returns a list of nine documents,
each of which has "TGATES" as the value of field User.

This is the query in file QBE.1.json:

{ "User" : "TGATES" }

To execute the query, run this command:

curl -X POST --data-binary @QBE.1.json -H "Content-Type: application/json"
http://localhost:8080/ords/schema/soda/latest/MyCollection?action=query

A successful POST query operation returns response code 200 and a list of
documents that satisfy the query criteria.

Getting Started with SODA for REST

1-14 SODA for REST Developer's Guide

Because the command has no fields parameter, the default value fields=all
applies, and the response body contains both the metadata and the content of each
document.

Note:

Including document content makes the response body much larger. Oracle
recommends including the content in the response body only if you need the
content for a subsequent operation. Retrieving the content from the response
body is more efficient that retrieving it from the server.

To execute the queries in the other QBE.*.json files, run commands similar to the
preceding one.

1.3.10.2 QBE.2.json
The query-by-example (QBE) in file QBE.2.json selects documents where the value
of field UPCCode equals "13023015692". UPCCode is a field of object Part, which is
a field of array LineItems. Because no array offset is specified for LineItems, the
query searches all elements of the array.

This is the query in file QBE.2.json:

{ "LineItems.Part.UPCCode" : "13023015692" }

Note:

Keyword "$eq" in the query is implied. See Oracle Database SODA for Java
Developer's Guide for more information.

1.3.10.3 QBE.3.json
The query-by-example (QBE) in file QBE.3.json selects documents where the value
of field ItemNumber, in object LineItems, is greater than 4. Keyword "$gt" is
required.

This is the query in file QBE.3.json:

{ "LineItems.ItemNumber" : { "$gt" : 4 }}

1.3.10.4 QBE.4.json
The query-by-example (QBE) in file QBE.4.json selects documents where the value
of field UPCCode equals "13023015692" and the value of field ItemNumber equals
3. Keyword $and is optional.

This is the query in file QBE.4.json:

{ "$and" : [
 { "LineItems.Part.UPCCode" : "13023015692" },
 { "LineItems.ItemNumber" : 3 }
]
}

Getting Started with SODA for REST

SODA for REST 1-15

See Also:

Oracle Database SODA for Java Developer's Guide

1.4 SODA for REST HTTP Operations
The SODA for REST HTTP operations are described.

Table 1-1 (page 1-16) summarizes the HTTP operations that SODA for REST
provides. For complete descriptions of the operations, click the links in the left
column.

Table 1-1 SODA for REST HTTP Operations

Operation Description

GET schema (page 1-18) Gets some or all collection names in a schema.

GET collection (page 1-19) Gets all or a subset of objects from a collection, using
parameters to specify the subset. You can page through the
return set.

GET object (page 1-22) Gets a specified object from a collection.

PUT collection (page 1-23) Creates a collection if it does not exist.

PUT object (page 1-24) Replaces a specified object with an uploaded object (typically a
new version).

If the collection has client-assigned keys and the uploaded
object is not already in the collection, then PUT inserts the
uploaded object into the collection.

DELETE collection
(page 1-24)

Deletes a collection.

DELETE object (page 1-25) Deletes a specified object from a collection.

POST object (page 1-26) Puts an uploaded object in a specified collection, assigning and
returning its key. Collection must use server-assigned keys.

POST query (page 1-27) Gets all or a subset of objects from a collection, using a filter to
specify the subset. You cannot page through the return set.

POST array insert
(page 1-28)

Inserts an array of objects into a specified collection, assigning
and returning their keys.

POST bulk delete
(page 1-29)

Deletes all or a subset of objects from a collection.

1.4.1 SODA for REST HTTP Operation URIs
A SODA for REST HTTP operation is specified by a Universal Resource Identifier
(URI).

The URI has this form:

/ords/schema/soda/[version/[collection/[{key/|?action=action}]]]

where:

SODA for REST HTTP Operations

1-16 SODA for REST Developer's Guide

• ords is the directory of the Oracle REST Data Services (ORDS) listener, of which
SODA for REST is a component.

• schema is the name of an Oracle Database schema that has been configured as an
end point for SODA for REST.

• soda is the name given to the Oracle Database JSON service when mapped as a
template within ORDS.

• version is the version number of soda.

• collection is the name of a set of objects stored in schema.

Typically, an object is a JSON document, but it can be a Multipurpose Internet Mail
Extensions (MIME) type (for example, image, audio, or video).

A JSON document is represented as textual JSON.

Typically, an application uses a collection to hold all instances of a particular type
of object. Thus, a collection is roughly analogous to a table in a relational database.
One column stores keys and another column stores content.

• key is a string that uniquely identifies an object in collection.

A specified object is specified by its key.

• action is either query, index, unindex, insert, update, or delete.

1.4.2 SODA for REST HTTP Operation Response Bodies
If a SODA for REST HTTP operation returns information or objects, it does so in a
response body.

For the operation GET object (page 1-22), the response body is a single object.

Table 1-2 (page 1-17) lists and describes fields that can appear in response bodies.

Table 1-2 Fields That Can Appear in Response Bodies

Field Description

key String that uniquely identifies an object (typically a JSON document) in a
collection.

etag HTTP entity tag (ETag)—checksum or version.

created Created-on time stamp.

lastModified Last-modified time stamp.

value Object contents (applies only to JSON object).

mediaType HTTP Content-Type (applies only to non-JSON object).

bytes HTTP Content-Length (applies only to non-JSON object).

items List of one or more collections or objects that the operation found or
created. This field can be followed by the fields in Table 1-3 (page 1-18).

If an operation creates or returns objects, then its response body can have the
additional fields in Table 1-3 (page 1-18). The additional fields appear after field
items.

SODA for REST HTTP Operations

SODA for REST 1-17

Table 1-3 Additional Response Body Fields for Operations that Return Objects

Field Description

name Name of collection. This field appears only in the response body of GET
schema (page 1-18).

properties Properties of collection. This field appears only in the response body of
GET schema (page 1-18).

hasMore true if limit was reached before available objects were exhausted,
false otherwise. This field is always present.

limit Server-imposed maximum collection (row) limit.

offset Offset of first object returned (if known).

count Number of objects returned. This is the only field that can appear in the
response body of POST bulk delete (page 1-29).

totalResults Number of objects in collection (if requested)

links Possible final field for GET collection operation. For details, see GET
collection (page 1-19).

Example 1-1 (page 1-18) shows the structure of a response body that returns 25
objects. The first object is a JSON object and the second is a jpeg image. The collection
that contains these objects contains additional objects.

Example 1-1 Response Body

{

 "items" : [
 {
 "id" : "key_of_object_1",
 "etag" : "etag_of_object_1",
 "lastModified" : "lastmodified_timestamp_of_object_1",
 "value" : {object_1}
 },
 {
 "id" : "key_of_object_2",
 "etag" : "etag_of_object_2",
 "lastModified" : "lastmodified_timestamp_of_object_2",
 "mediaType" : "image/jpeg",
 "bytes" : 1234
 },
 ...
],
 "hasMore" : true,
 "limit" : 100,
 "offset" : 50,
 "count" : 25
 "links" : [...]
}

1.4.3 GET schema
GET schema gets all or a subset of collection names in a schema.

SODA for REST HTTP Operations

1-18 SODA for REST Developer's Guide

See Also:

Listing the Documents in a Collection (page 1-11)

1.4.3.1 URL Pattern for GET schema
The URL pattern for GET schema is described.

/ords/schema/soda/version/

Without parameters, GET schema gets all collection names in schema.

Parameter Description

limit=n Limits number of listed collection names to n.

fromID=collection Starts getting with collection (inclusive).

1.4.3.2 Response Codes for GET schema
The response codes for GET schema are described.

200

Success—response body contains names and properties of collections in schema,
ordered by name. For example:

{
 "items" : [
 {"name" : "employees",
 "properties" : {...} },
 {"name" : "departments",
 "properties" : {...} },
 ...
],
 "hasMore" : false
}

If hasMore is true, then to get the next batch of collection names specify
fromID=last_returned_collection. (In the preceding example,
last_returned_collection is "regions").

404

Either the schema was not found or access is not authorized.

1.4.4 GET collection
GET collection gets all or a subset of objects from a collection, using parameters to
specify the subset. You can page through the set of returned objects.

SODA for REST HTTP Operations

SODA for REST 1-19

See Also:

• POST query (page 1-27), which gets all or a subset of objects from a
collection, using a filter instead of parameters. You cannot page through the
set of returned objects.

• Listing the Documents in a Collection (page 1-11)

1.4.4.1 URL Pattern for GET collection
The URL pattern for GET collection is described.

/ords/schema/soda/version/collection/

Without parameters, GET collection gets all objects (both key and content) from
collection and does not return the number of objects in collection.

Note:

For non-JSON objects in the collection, GET collection returns, instead of
content, media type and (if known) size in bytes.

Parameter Description

limit=n Limits number of objects to n.

offset=n Skips n objects before getting first object.

fields={id|value|
all}

Gets only object id fields (keys), only object value fields
(content), or all fields (both key and content).

Regardless of the fields value, GET collection returns the
other metadata that the collection stores for each document.

totalResults=true Returns number of objects in collection. Note: Inefficient

fromID=key Starts getting objects after key, in ascending order.

toID=key Stops getting objects before key, in descending order.

after=key Starts getting objects after key, in ascending order.

before=key Stops getting objects before key, in descending order.

since=timestamp Gets only objects with time stamp later than timestamp.

until=timestamp Gets only objects with time stamp earlier than timestamp.

1.4.4.2 Response Codes for GET collection
The response codes for GET collection are described.

200

Success—response body contains the specified objects from collection (or only
their keys, if you specified fields=id). For example:

SODA for REST HTTP Operations

1-20 SODA for REST Developer's Guide

{
 "items" : [
 {
 "id" : "key_of_object_1",
 "etag" : "etag_of_object_1",
 "lastModified" : "lastmodified_timestamp_of_object_1",
 "value" : {object_1}
 },
 {
 "id" : "key_of_object_2",
 "etag" : "etag_of_object_2",
 "lastModified" : "lastmodified_timestamp_of_object_2",
 "value" : {object_2}
 },
 {
 "id" : "key_of_object_3",
 "etag" : "etag_of_object_3",
 "lastModified" : "lastmodified_timestamp_of_object_3",
 "mediaType" : "image/jpeg",
 "bytes" : 1234
 },
 ...
],
 "hasMore" : true,
 "limit" : 100,
 "offset" : 50,
 "count" : 25
 "links" : [...]
}

If hasMore is true, then to get the next batch of objects repeat the operation with an
appropriate parameter. For example:

• offset=n if the response body includes the offset

• toID=last_returned_key or before=last_returned_key if the response
body includes descending=true

• fromID=last_returned_key or after=last_returned_key if the response
body does not include descending=true

For information about links, see Links Array for GET collection (page 1-21).

401

Read access to collection is not authorized.

404

Collection was not found.

1.4.4.3 Links Array for GET collection
The links array for GET collection is described.

The existence and content of the links array depends on the mode of the GET
collection operation, which is determined by its parameters.

When the links array exists, it has an element for each returned object. Each element
contains links from that object to other objects. The possible links are:

SODA for REST HTTP Operations

SODA for REST 1-21

• first, which links the object to the first object in the collection

• prev, which links the object to the previous object in the collection

• next, which links the object to the next object in the collection

Using prev and next links, you can page through the set of returned objects.

Table 1-4 (page 1-22) shows how GET collection parameters determine mode and
the existence and content of the links array.

Table 1-4 Relationship of GET collection Parameters to Mode and Links Array

Parameter Mode Links Array

fields=id Keys-only Does not exist (regardless of other parameters).

offset=n Offset Has an element for each returned object. Each element
has these links, except as noted:

• first (except for first object)
• prev (except for first object)
• next (except for last object)

fromID=key

toID=key

after=key

before=key

Keyed Has an element for each returned object. Each element
has these links, except as noted:

• prev (except for first object)
• next (except for last object)

since=timestamp

until=timestamp

Timestamp Does not exist.

1.4.5 GET object
GET object gets a specified object from a specified collection.

See Also:

Retrieving a Document from a Collection (page 1-9)

1.4.5.1 URL Pattern for GET object
The URL pattern for GET object is described.

/ords/schema/soda/version/collection/key/

No parameters.

1.4.5.2 Request Headers for GET object
The request headers for GET object are described.

Operation GET object accepts these optional request headers:

Header Description

If-Modified-
Since=timestamp

Returns response code 304 if object has not changed
since timestamp.

SODA for REST HTTP Operations

1-22 SODA for REST Developer's Guide

Header Description

If-None-Match Returns response code 304 if object etag matches the
current checksum or version.

1.4.5.3 Response Codes for GET object
The response codes for GET object are described.

200

Success—response body contains object identified by the URL pattern.

204

Object content is null.

304

Either object was not modified since modification date or checksum matches object
etag (see Request Headers for GET object (page 1-22)).

401

Read access to collection or object is not authorized.

404

Collection or object was not found.

1.4.6 PUT collection
PUT collection creates a collection if it does not exist.

See Also:

Creating a New Collection (page 1-6)

1.4.6.1 URL Pattern for PUT collection
The URL pattern for PUT collection is described.

/ords/schema/soda/version/collection/

No parameters.

1.4.6.2 Request Body for PUT collection (Optional)
The request body for PUT collection is described.

See Collection Specifications (page 1-30).

1.4.6.3 Response Codes for PUT collection
The response codes for PUT collection are described.

SODA for REST HTTP Operations

SODA for REST 1-23

200

Collection with the same name and properties already exists.

201

Success—collection was created.

401

Collection creation is not authorized.

1.4.7 PUT object
PUT object replaces a specified object in a specified collection with an uploaded object
(typically a new version). If the collection has client-assigned keys and the uploaded
object is not already in the collection, then PUT inserts the uploaded object into the
collection.

See Also:

Updating a Document in a Collection (page 1-13)

1.4.7.1 URL Pattern for PUT object
The URL pattern for PUT object is described.

/ords/schema/soda/version/collection/key/

No parameters.

1.4.7.2 Request Body for PUT object
The request body for PUT object is the uploaded object.

1.4.7.3 Response Codes for PUT object
The response codes for PUT object are described.

200

Success—object was replaced.

401

Updating collection is not authorized.

405

Collection is read-only.

1.4.8 DELETE collection
DELETE collection deletes a collection.

To delete all objects from a collection, but not delete the collection itself, use POST bulk
delete (page 1-29).

SODA for REST HTTP Operations

1-24 SODA for REST Developer's Guide

See Also:

Deleting a Collection (page 1-7)

1.4.8.1 URL Pattern for DELETE collection
The URL pattern for DELETE collection is described.

/ords/schema/soda/version/collection/

No parameters.

1.4.8.2 Response Codes for DELETE collection
The response codes for DELETE collection are described.

200

Success—collection was deleted.

401

Deleting collection is not authorized.

404

Collection was not found.

1.4.9 DELETE object
DELETE object deletes a specified object from a specified collection.

See Also:

Deleting a Document from a Collection (page 1-9)

1.4.9.1 URL Pattern for DELETE object
The URL pattern for DELETE object is described.

/ords/schema/soda/version/collection/key/

No parameters.

1.4.9.2 Response Codes for DELETE object
The response codes for DELETE object are described.

200

Success—object was deleted.

401

Either deleting from collection or deleting this object is not authorized.

SODA for REST HTTP Operations

SODA for REST 1-25

404

Object was not found.

405

Collection is read-only.

1.4.10 POST object
POST object inserts an uploaded object into a specified collection, assigning and
returning its key. The collection must use server-assigned keys.

If the collection uses client-assigned keys, use PUT object (page 1-24). For information
about key assignment methods, see Key Assignment Method (page 1-34).

See Also:

Inserting a Document into a Collection (page 1-8)

1.4.10.1 URL Pattern for POST object
The URL pattern for POST object is described.

/ords/schema/soda/version/collection/

No parameters.

1.4.10.2 Request Body for POST object
The request body for POST object is the uploaded object to be inserted in the collection.

1.4.10.3 Response Codes for POST object
The response codes for POST object are described.

201

Success—object is in collection; response body contains server-assigned key and
possibly other information. For example:

{
 "items" : [
 {
 "id" : "key",
 "etag" : "etag",
 "lastModified" : "timestamp"
 "created" : "timestamp"
 }
],
 "hasMore" : false
}

202

Object was accepted and queued for asynchronous insertion; response body contains
server-assigned key.

SODA for REST HTTP Operations

1-26 SODA for REST Developer's Guide

401

Inserting into collection is not authorized.

405

Collection is read-only.

501

Unsupported operation (for example, no server-side key assignment).

1.4.11 POST query
POST query gets all or a subset of objects from a collection, using a filter to specify the
subset. You cannot page through the set of returned objects.

See Also:

• GET collection (page 1-19), which gets all objects, or a subset of these, from
a collection, using parameters instead of a filter. You can page through the
set of returned objects.

• Using a Filter Specification to Select Documents From a Collection
(page 1-14)

1.4.11.1 URL Pattern for POST query
The URL pattern for POST query is described.

/ords/schema/soda/version/collection?action=query

Parameters are optional except as noted.

Parameter Description

action=query Required. Specifies kind of action.

limit=n Limit number of returned objects to n.

offset=n Skip n objects before returning objects.

fields={id|value|
all}

Return object id (key) only, object value (content) only, or all
(object key and content). Default: all

1.4.11.2 Request Body for POST query
If you omit the filter specification object from the request body of POST query then the
operation gets all objects in the collection.

See Also:

Oracle Database SODA for Java Developer's Guide for information about SODA
filter specifications.

SODA for REST HTTP Operations

SODA for REST 1-27

1.4.11.3 Response Codes for POST query
The response codes for POST query are described.

200

Success—object is in collection; response body contains all objects in collection that
match filter.

404

Either collection was not found or read access to collection is not authorized.

1.4.12 POST array insert
POST array insert inserts an array of objects into a specified collection, assigning and
returning their keys.

See Also:

Bulk-Inserting Documents from a JSON Array (page 1-10)

1.4.12.1 URL Pattern for POST array insert
The URL pattern for POST array insert is described.

/ords/schema/soda/version/collection?action=insert

Parameter Description

action=insert Required. Specifies kind of action.

1.4.12.2 Request Body for POST array insert
The request body for POST array insert is an array of objects.

Array of objects.

1.4.12.3 Response Codes for POST array insert
The response codes for POST array insert are described.

200

Success—response body contains an array with the assigned keys for inserted objects.
For example:

{
 "items" : [
 {
 "id" : "12345678",
 "etag" : "...",
 "lastModified" : "..."
 "created" : "..."
 },
 {
 "id" : "23456789",
 "etag" : "...",

SODA for REST HTTP Operations

1-28 SODA for REST Developer's Guide

 "lastModified" : "..."
 "created" : "..."
 }
],
 "hasMore" : false
}

401

Inserting into collection is not authorized.

404

Collection was not found.

405

Collection is read-only.

1.4.13 POST bulk delete
POST bulk delete deletes all or a subset of objects from a specified collection, using a
filter to specify the subset.

Note:

If you delete all objects from the collection, the empty collection continues to
exist. To delete the collection itself, use DELETE collection (page 1-24).

1.4.13.1 URL Pattern for POST bulk delete
The URL pattern for POST bulk delete is described.

Either of the following:

/ords/schema/soda/version/collection?action=delete

/ords/schema/soda/version/collection?action=truncate

Parameter Description

action=delete Required. Specifies the deletion of all or a subset of objects
from collection, using an optional filter to specify the
subset. See the following warning.

action=truncate Required. Specifies the deletion of all objects from
collection. Does not use a filter.

Warning:

If you specify action=delete and omit the filter specification, or if the filter
specification is empty, then the operation deletes all objects from the
collection.

SODA for REST HTTP Operations

SODA for REST 1-29

1.4.13.2 Request Body for POST bulk delete (Optional)

See Oracle Database SODA for Java Developer's Guide for information about SODA filter
specifications.

1.4.13.3 Response Codes for POST bulk delete
The response codes for POST bulk delete are described.

200

Success—response body contains number of deleted collections. For example:

{
 "count" : 42
}

401

Deleting from collection is not authorized.

405

Collection is read-only.

1.5 Collection Specifications
A collection specification provides information about the Oracle Database table or
view underlying the collection object. The table or view is created when you create the
collection.

Note:

In collection specifications, you must use strict JSON syntax. That is, you must
enclose each nonnumeric value in double quotation marks.

Table 1-5 (page 1-30) describes the collection specification fields and their possible
values.

Note:

If you omit one of the optional columns (created-on timestamp, last-modified
timestamp, version, or media type) from the collection specification then no
such column is created. At a minimum, a collection has a key column and a
content column.

Table 1-5 Collection Specification Fields

Field Description Possible Values

schemaName SQL name of schema that owns table or
view underlying collection object.

—

tableName or viewName SQL name of table or view underlying
collection object.

—

Collection Specifications

1-30 SODA for REST Developer's Guide

Table 1-5 (Cont.) Collection Specification Fields

Field Description Possible Values

keyColumn.name Name of key column. Default: ID

keyColumn.sqlType SQL data type of key column. VARCHAR2 (default), NUMBER,
RAW

keyColumn.maxLength Maximum length of key column, if not
of NUMBER data type.

Default: 255

keyColumn.assignmentMethod Key assignment method. SEQUENCE, GUID, UUID (default),
or CLIENT

keyColumn.sequenceName If keyColumn.assignmentMethod is
SEQUENCE, then this field must specify
the name of a database sequence.

Name of existing database
sequence

contentColumn.name Name of content column. Default: JSON_DOCUMENT

contentColumn.sqlType SQL data type of content column. VARCHAR2, BLOB (default), CLOB

contentColumn.maxLength Maximum length of content column, if
not of LOB data type.

The default length is 4000 bytes.
If MAX_STRING_SIZE =
STANDARD then maxLength can
be at most 4000 (bytes). If
MAX_STRING_SIZE =
EXTENDED, then maxLength can
be at most 32767 (bytes).

Collection Specifications

SODA for REST 1-31

Table 1-5 (Cont.) Collection Specification Fields

Field Description Possible Values

contentColumn.validation Validation level of content column.
Corresponds to SQL condition is
json, which determines the syntax to
which JSON content must conform.

STANDARD validates according to the
JSON RFC 4627 standard. (It
corresponds to the strict syntax defined
for Oracle SQL condition is json.)

STRICT is the same as STANDARD,
except that it also verifies that the
document does not contain duplicate
JSON field names. (It corresponds to
the strict syntax defined for Oracle SQL
condition is json when the
keywords WITH UNIQUE KEYS are
also used.)

LAX validates more loosely. (It
corresponds to the lax syntax defined
for Oracle SQL condition is json.)

Some of the relaxations that LAX allows
include the following:

• It does not require JSON field
names to be enclosed in double
quotation marks (").

• It allows uppercase, lowercase, and
mixed case versions of true,
false, and null.

• Numerals can be represented in
additional ways.

STANDARD (default), STRICT,
LAX

contentColumn.compress Compression level for SecureFiles
stored in content column.

NONE (default), HIGH, MEDIUM,
LOW

contentColumn.cache Caching of SecureFiles stored in
content column.

TRUE, FALSE (default)

contentColumn.encrypt Encryption algorithm for SecureFiles
stored in content column.1

NONE (default), 3DES168,
AES128, AES192, AES256

creationTimeColumn.name Name of optional created-on
timestamp column.

This column has SQL data type
TIMESTAMP and default value
SYSTIMESTAMP.

Default: CREATED_ON

lastModifiedColumn.name Name of optional last-modified
timestamp column.

This column has SQL data type
TIMESTAMP and default value
SYSTIMESTAMP.

Default: LAST_MODIFIED

lastModifiedColumn.index Name of nonunique index on
timestamp column. The index is
created if a name is specified.

Collection Specifications

1-32 SODA for REST Developer's Guide

Table 1-5 (Cont.) Collection Specification Fields

Field Description Possible Values

versionColumn.name Name of optional version (ETag)
column.

This column has SQL data type
VARCHAR2(255) unless the method is
SEQUENTIAL or TIMESTAMP, in which
case it has data type NUMBER.

Note: If the method is TIMESTAMP
then the version is stored as an integer
representation of the date and time
with microsecond precision. It does not
store a date/time string or a SQL date/
time type.

Default: VERSION

versionColumn.method Versioning method. SEQUENTIAL, TIMESTAMP,
UUID, SHA256 (default), MD5,
NONE

mediaTypeColumn.name Name of optional object media type
column.

This column has SQL data type
VARCHAR2(255).

readOnly Read/write policy: TRUE means read-
only.

TRUE, FALSE (default)

1 Set up Encryption Wallet before creating a collection with SecureFile encryption. For information about
the SET ENCRYPTION WALLET clause of the ALTER SYSTEM statement, see Oracle Database SQL
Language Reference.

Example 1-2 (page 1-33) is a collection specification for an object whose underlying
table is HR.EMPLOYEES.

Example 1-2 Collection Specification

{
 "schemaName" : "HR",
 "tableName" : "EMPLOYEES",
 "contentColumn" :
 {
 "name" : "EMP_DOC",
 "sqlType" : "VARCHAR2",
 "maxLength" : 4000,
 "validation" : "STRICT",
 "compress" : "HIGH",
 "cache" : true,
 "encrypt" : "AES128",
 },
 "keyColumn" :
 {
 "name" : "EMP_ID",
 "sqlType" : "NUMBER",
 "assignmentMethod" : "SEQUENCE",
 "sequenceName" : "EMPLOYEE_ID_SEQ"
 },
 "creationTimeColumn" :
 {

Collection Specifications

SODA for REST 1-33

 "name" : "CREATED_ON"
 },
 "lastModifiedColumn" :
 {
 "name" : "LAST_UPDATED",
 "index" : "empLastModIndexName"
 },
 "versionColumn" :
 {
 "name" : "VERSION_NUM",
 "method" : "SEQUENTIAL"
 },
 "mediaTypeColumn" :
 {
 "name" : "CONTENT_TYPE"
 },
 "readOnly" : true
}

See Also:

• Key Assignment Method (page 1-34)

• Versioning Method (page 1-35)

• Oracle Database JSON Developer’s Guide for information about the syntax
possibilities used by SQL condition is json

• http://tools.ietf.org/html/rfc4627 for the JSON RFC 4627
standard

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information about SecureFiles LOB storage

1.5.1 Key Assignment Method
The key assignment method determines how keys are assigned to objects that are
inserted into a collection.

Table 1-6 Key Assignment Methods

Method Description

SEQUENCE Keys are integers generated by a database sequence. You must specify the name
of the sequence in the keyColumn.sequenceName field.

GUID Keys are generated by the SQL function SYS_GUID(), which returns a globally
unique RAW value (16 bytes). If necessary, the RAW value is converted to the SQL
data type specified by keyColumn.sqlType.

UUID Keys are generated by the built-in UUID capability of the Java Virtual Machine
(JVM) on which the REST server is running, which returns a universally unique
RAW value. If necessary, the RAW value is converted to the SQL data type
specified by keyColumn.sqlType.

CLIENT Keys are assigned by the client application (not recommended).

Collection Specifications

1-34 SODA for REST Developer's Guide

http://tools.ietf.org/html/rfc4627

Oracle REST standards strongly recommend using server-assigned keys; that is,
avoiding the key assignment method CLIENT. If you need simple numeric keys,
Oracle recommends SEQUENCE. If any unique identifier is sufficient, Oracle
recommends UUID.

If the key assignment method is SEQUENCE, GUID, or UUID, you insert a object into the
collection with the operation POST object (page 1-26). The REST server always
interprets POST as an insert operation, assigning a key and returning the key in the
response body.

If the key assignment method is CLIENT, you cannot use POST to a insert a object in
the collection, because the URL path does not include the necessary key. Instead, you
must insert the object into the collection using PUT object (page 1-24). If the object is
not already in the collection, then the REST server interprets PUT as an insert
operation. If the object is already in the collection, then the REST server interprets PUT
as a replace operation. PUT is effectively equivalent to the SQL statement MERGE.

Caution:

If client-assigned keys are used and the key column type is VARCHAR2 then
Oracle recommends that the database character set be AL32UTF8. This
ensures that conversion of the keys to the database character set is lossless.

Otherwise, if client-assigned keys contain characters that are not supported in
your database character set then conversion of the key into the database
character set during a read or write operation is lossy. This can lead to
duplicate-key errors during insert operations. More generally, it can lead to
unpredictable results. For example, a read operation could return a value that
is associated with a different key from the one you expect.

1.5.2 Versioning Method
The versioning method determines how the REST server computes version values for
objects when they are inserted into a collection or replaced.

Table 1-7 Versioning Methods

Method Description

MD5 The REST server computes an MD5 checksum on the bytes of object content.
For bytes with character data types (such as VARCHAR2 and CLOB), the
computation uses UTF-8 encoding. For bytes with data type BLOB, the
computation uses the encoding used to transmit the POST body, which can
be either UTF-8 or UTF-16.

For a bulk insert, the request body is parsed as an array of objects and the
bytes of the individual objects are re-serialized with UTF-8 encoding,
regardless of the encoding chosen for storage.

In all cases, the checksum is computed on the bytes as they would be
returned by a GET operation for the object.

Collection Specifications

SODA for REST 1-35

Table 1-7 (Cont.) Versioning Methods

Method Description

SHA256
(default)

The REST server computes a SHA256 checksum on the bytes of object
content. For bytes with character data types (such as VARCHAR2 and CLOB),
the computation uses UTF-8 encoding. For bytes with data type BLOB, the
computation uses the encoding used to transmit the POST body, which can
be either UTF-8 or UTF-16.

For a bulk insert, the request body is parsed as an array of objects and the
bytes of the individual objects are re-serialized with UTF-8 encoding,
regardless of the encoding chosen for storage.

In all cases, the checksum is computed on the bytes as they would be
returned by a GET operation for the specific object.

UUID Ignoring object content, the REST server generates a universally unique
identifier (UUID)—a 32-character hexadecimal value—when the object is
inserted and for every replace operation (even if the replace operation does
not change the object content).

TIMESTAMP Ignoring object content, the REST server generates an integer value, derived
from the value returned by the SQL SYSTIMESTAMP function. The integer
value changes at the level of accuracy of the system clock (typically
microseconds or milliseconds).

SEQUENTIAL Ignoring object content, the REST server assigns version 1 when the object is
inserted and increments the version value every time the object is replaced.

NONE The REST server does not assign version values during insert and replace
operations. During GET operations, any non-null value stored in the version
column is used as an ETag. Your application is responsible for populating the
version column (using, for example, a PL/SQL trigger or asynchronous
program).

MD5 and SHA256 compute checksum values that change when the content itself
changes, providing a very accurate way to invalidate client caches. However, they are
costly, because the REST server must perform a byte-by-byte computation over the
objects as they are inserted or replaced.

UUID is most efficient for input operations, because the REST server does not have to
examine every byte of input or wait for SQL to return function values. However,
replacement operations invalidate cached copies even if they do not change object
content.

TIMESTAMP is useful when you need integer values or must compare two versions to
determine which is more recent. As with UUID, replacement operations can invalidate
cached copies without changing object content. Because the accuracy of the system
clock may be limited, TIMESTAMP is not recommended if objects can change at very
high frequency (many times per millisecond).

SEQUENTIAL is also useful when you need integer values or must compare two
versions to determine which is more recent. Version values are easily understood by
human users, and the version increases despite system clock limitations. However, the
increment operation occurs within SQL; therefore, the new version value is not always
available to be returned in the REST response body.

Collection Specifications

1-36 SODA for REST Developer's Guide

1.6 Security
ORDS, including SODA for REST, uses role-based access control, to secure services.
The roles and privileges you need for SODA for REST are described here.

You should be familiar with the ORDS security features before reading this section.
See Oracle REST Data Services Installation, Configuration, and Development Guide for the
relevant information.

Database role SODA_APP must be granted to database users before they can use REST
SODA. In addition, when a schema is enabled in ORDS using
ords.enable_schema, a privilege is created such that only users with the
application-server role SODA Developer can access the service. Specifically,
ords.enable_schema creates the following privilege mapping:

exec ords.create_role('SODA Developer');
exec ords.create_privilege(p_name => 'oracle.soda.privilege.developer',
 p_role_name => 'SODA Developer');
exec ords.create_privilege_mapping('oracle.soda.privilege.developer', '/soda/*');

This has the effect that, by default, a user must have the application-server role SODA
Developer to access the JSON document store.

You can also add custom privilege mappings. For example:

declare
 l_patterns owa.vc_arr;
begin
 l_patterns(1) := '/soda/latest/employee';
 l_patterns(2) := '/soda/latest/employee/*';
 ords.create_role('EmployeeRole');
 ords.create_privilege(p_name => 'EmployeePrivilege',
 p_role_name => 'EmployeeRole');
 ords.create_privilege_mapping(p_privilege_name => 'EmployeePrivilege',
 p_patterns => l_patterns);
 commit;
end;

This example creates a privilege mapping that specifies that only users with role
EmployeeRole can access the employee collection.

When multiple privilege patterns apply to the same resource, the privilege with the
most specific pattern overrides the others. For example, patterns '/soda/latest/
employees/*' and '/soda/*' both match the request URL, http://
example.org/ords/quine/soda/latest/employee/id1.

Since '/soda/latest/employees/*' is more specific than '/soda/*', only
privilege EmployeePrivilege applies to the request.

Note:

SODA_APP is an Oracle Database role. SODA Developer is an application-
server role.

1.6.1 Authentication Mechanisms
ORDS supports many different authentication mechanisms. JSON document store
REST services are intended to be used in server-to-server interactions. Therefore, two-

Security

SODA for REST 1-37

legged OAuth (the client-credentials flow) is the recommended authentication
mechanism to use with the JSON document store REST services. However, other
mechanisms such as HTTP basic authentication, are also supported.

See Also:

Oracle REST Data Services Installation, Configuration, and Development Guide

1.6.2 Security Considerations for Development and Testing
Security considerations for development and testing are presented.

You can disable security and allow anonymous access by removing the default
privilege mapping:

exec ords.delete_privilege_mapping('oracle.soda.privilege.developer', '/soda/*')

However, Oracle does not recommend that you allow anonymous access in production
systems. That would allow an unauthenticated user to read, update, or drop any
collection.

You can also use command ords.war user to create test users that have particular
roles. For example (where new_password is a placeholder for the password for user
bob):

Create user bob with role SODA Developer
java -jar ords.war user bob "SODA Developer"

Access the JSON document store as user bob using basic authentication
curl -u bob:new_password https://example.com/ords/scott/soda/latest/

Security

1-38 SODA for REST Developer's Guide

Index

C
collections

creating, 1-6
deleting, 1-7
deleting documents from, 1-9
listing, 1-7
listing documents in, 1-11
specifications for, 1-30

D
database role

SODA_APP, 1-37
DELETE collection operation, 1-24
DELETE object operation, 1-25
deleting collections, 1-7
deleting documents from collections, 1-9
documents

deleting from collections, 1-9
filtering in collections, 1-14
inserting into collections

in bulk from JSON array, 1-10
one at a time, 1-8

listing in collections, 1-11
retrieving from collections, 1-9
updating in collections, 1-13

F

filtering documents in collections, 1-14

G

GET collection operation, 1-19
GET object operation, 1-22
GET schema operation, 1-18

I
inserting documents into collections

in bulk from JSON array, 1-10
one at a time, 1-8

installing SODA for REST, 1-3

K

key assignment method, 1-34

L

listing collections in schema, 1-7
listing documents in collections, 1-11

O

Oracle REST API, 1-1
Oracle REST API HTTP operations

response bodies, 1-17
summary of, 1-16
URI form for, 1-16

P

POST array insert operation, 1-28
POST bulk delete operation, 1-29
POST object operation, 1-26
POST query operation, 1-27
PUT collection operation, 1-23
PUT object operation, 1-24

Q
query-by-example (QBE)

examples, 1-14

R

REST architectural style, 1-2
retrieving documents from collections, 1-9

S

security, 1-37
SODA_APP database role, 1-37

Index-1

specifications
collection, 1-30

U

updating documents in collections, 1-13

V

versioning method, 1-35

Index-2

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 SODA for REST
	1.1 SODA for REST Overview
	1.1.1 REST
	1.1.2 Document Collections and Document-Centric APIs
	1.1.3 SODA for REST Operations

	1.2 Installing SODA for REST
	1.3 Getting Started with SODA for REST
	1.3.1 Creating a New Collection
	1.3.2 Getting the List of Available Collections
	1.3.3 Deleting a Collection
	1.3.4 Inserting a Document into a Collection
	1.3.5 Retrieving a Document from a Collection
	1.3.6 Deleting a Document from a Collection
	1.3.7 Bulk-Inserting Documents from a JSON Array
	1.3.8 Listing the Documents in a Collection
	1.3.9 Updating a Document in a Collection
	1.3.10 Using a Filter Specification to Select Documents From a Collection
	1.3.10.1 QBE.1.json
	1.3.10.2 QBE.2.json
	1.3.10.3 QBE.3.json
	1.3.10.4 QBE.4.json

	1.4 SODA for REST HTTP Operations
	1.4.1 SODA for REST HTTP Operation URIs
	1.4.2 SODA for REST HTTP Operation Response Bodies
	1.4.3 GET schema
	1.4.3.1 URL Pattern for GET schema
	1.4.3.2 Response Codes for GET schema

	1.4.4 GET collection
	1.4.4.1 URL Pattern for GET collection
	1.4.4.2 Response Codes for GET collection
	1.4.4.3 Links Array for GET collection

	1.4.5 GET object
	1.4.5.1 URL Pattern for GET object
	1.4.5.2 Request Headers for GET object
	1.4.5.3 Response Codes for GET object

	1.4.6 PUT collection
	1.4.6.1 URL Pattern for PUT collection
	1.4.6.2 Request Body for PUT collection (Optional)
	1.4.6.3 Response Codes for PUT collection

	1.4.7 PUT object
	1.4.7.1 URL Pattern for PUT object
	1.4.7.2 Request Body for PUT object
	1.4.7.3 Response Codes for PUT object

	1.4.8 DELETE collection
	1.4.8.1 URL Pattern for DELETE collection
	1.4.8.2 Response Codes for DELETE collection

	1.4.9 DELETE object
	1.4.9.1 URL Pattern for DELETE object
	1.4.9.2 Response Codes for DELETE object

	1.4.10 POST object
	1.4.10.1 URL Pattern for POST object
	1.4.10.2 Request Body for POST object
	1.4.10.3 Response Codes for POST object

	1.4.11 POST query
	1.4.11.1 URL Pattern for POST query
	1.4.11.2 Request Body for POST query
	1.4.11.3 Response Codes for POST query

	1.4.12 POST array insert
	1.4.12.1 URL Pattern for POST array insert
	1.4.12.2 Request Body for POST array insert
	1.4.12.3 Response Codes for POST array insert

	1.4.13 POST bulk delete
	1.4.13.1 URL Pattern for POST bulk delete
	1.4.13.2 Request Body for POST bulk delete (Optional)
	1.4.13.3 Response Codes for POST bulk delete

	1.5 Collection Specifications
	1.5.1 Key Assignment Method
	1.5.2 Versioning Method

	1.6 Security
	1.6.1 Authentication Mechanisms
	1.6.2 Security Considerations for Development and Testing

	Index

