ORACLE"

Oracle® Database

SODA for Java Developer's Guide
Release 1.0

E58124-08

November 2016

Oracle Database SODA for Java Developer's Guide, Release 1.0
E58124-08

Copyright © 2014, 2016, Oracle and/or its affiliates. All rights reserved.
Primary Author: Drew Adams

Contributors: Sheila Moore, Maxim Orgiyan, Josh Spiegel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACEoooi ix
AUGIEIICE ..o a ettt IX
Documentation AcCeSSIDILILYcccvvviimiiiiiiiiiiiiiic s iX
Related DOCUMENES...........coiuiiiiiiiieiii s iX
CONVENEIONS ...ttt iX

1 SODA for Java
1.1 SODA for Java PrerequiSitescccovvniiiiiininiiiiiiiiiiniiininicnns s 1-1
1.2 SODA fOT JAVA OVEIVIEW ..ottt ettt ettt sttt st et st et e st et et et et et e st eaeeseebeebesbeseesbenes 1-2
1.3 USINg SODA fOT JAVa....oiiiiueiiieiiieiicici s 1-3

1.3.1 Getting Started with SODA fOr JavVa.......ccccceciiuiiiiieicceceeeeeeeee e 1-3
1.3.2 Creating a New Document Collection with SODA for Java........ccccceoeciiccciiiennes 1-6
1.3.3 Opening an Existing Document Collection with SODA for Java.........cccccceeuiuiuiinnnes 1-8
1.3.4 Checking Whether a Given Collection Exists with SODA for Javaccccceeeueiinnce. 1-9
1.3.5 Discovering Existing Collections with SODA for Javac.ccccecoueininininniciciciecne 1-9
1.3.6 Dropping a Document Collection with SODA for Java.......cccccccoeeeueeeecceeccceenes 1-9
1.3.7 Creating and Using Documents with SODA for Java.........ccccoeeieiiiiiniccciccnna. 1-10
1.3.8 Handling Transactions with SODA for Javacccccoeceiiiiiiiiiiiiiicicccccnes 1-12
1.3.9 Inserting Documents into Collections with SODA for Java........c.cccoooreiniirininnnine. 1-13
1.3.10 Saving Documents into Collections with SODA for Java.......c.cccccvivviniininninnnnn 1-14
1.3.11 Finding Documents in Collections with SODA for Javacccccococeueiicccccccnenns 1-15
1.3.12 Replacing Documents in a Collection with SODA for Javaccccceeeiiiiiccnnes 1-19
1.3.13 Removing Documents from a Collection with SODA for Javaccccccoeeuiiiiuincnnns 1-20
1.3.14 OracleOperationBuilder Methods, Terminal and Nonterminal..............cccccceoeeeee. 1-21
1.3.15 Using Filter Specifications (QBEs) with SODA for Javacccccccoeveueueucccccccecnenns 1-22
1.4 SODA PathiS ...oviiiiiiiic s 1-29
1.5 SODA Filter Specifications (QBES). ... 1-31
1.5.1 Composite Filters.........cooooiiiiiiiiii e 1-32
1.5.2 Filter CONAItiONS.......couiuiiiiiiiiiiiiiiiiiiitciit s 1-33
1.6 SODA Collection Metadata Cachingccocciiiiiiiiiiiiiicceeecceeeeeeeeeeeenenenes 1-40
1.6.1 Enabling Collection Metadata Caching...........cccccccoeeuiuiiiiiiiiiiiicccccceceenenes 1-40
1.6.2 Shared Collection Metadata Cache............cccccoeiiiiiiiiiiiiiiicccccce 1-41

1.7

1.6.3 Local Collection Metadata Cachie..........ooovuveiieieiciiiieeeeeeeeee ettt 1-41

SODA Collection Configuration Using Custom Metadata..........c.cccceueueeeeiccccccccncnenne 1-41
1.7.1 Getting the Metadata of an Existing Collection ... 1-42
1.7.2 Creating Custom Metadata for a Collection..........ccccoevviriieieiiiieiiicce 1-43
1.7.3 Collection Metadata COMPONENLSceveiieiiiiiiiiicieiece e 1-44

A SODA for Java Core Interfaces

Index

List of Examples

1-1

1-2

1-3

1-4

1-5

1-6

1-7

1-8

1-9

1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-28
1-29
1-30
1-31
1-32
1-33
1-34

teStSOA@JAVA....viiiii s 1-4
Opening an Existing Document Collection.............ccooereioiiiciciecccc e 1-9
Printing the Names of All Existing Collections............ccccccevviviiiininiiiniiinniiinnnrccceees 1-9
Dropping a Document COLLECHOMN.cuvuriveririririririeieerreeeeeeee e 1-9
Creating a Document with JSON Content............cccooiiioiiiiii 1-12
Creating a Document with Document Key and JSON Content............ccccoeevviriiiieinnnnen. 1-12
Inserting a Document into a Collection..........cccccccuiiiiiiiiiiiiicccccccceecceeeenes 1-14
Inserting a Document into a Collection and Getting the Result Document..................... 1-14
Saving a Document into @ Collection............c.cccuiiiiiiiiic e, 1-15
Finding All Documents in a Collection..........cccevviieieieiniiinicce e 1-16
Finding the Unique Document That Has a Given Document Key..............cccccceceuecuennnes 1-16
Finding Multiple Documents with Specified Document Keys...........ccccoeuiiiiiiiiinnnnan. 1-17
Finding Documents with a Filter Specification............ccccccoeiiiiiiiiiiiiiiiiccccen 1-17
Specifying Pagination Queries with Methods skip() and lHmit()..........cccccoereininiinnnnce. 1-18
Specifying Document VeISION..........ccccocueimieiiieiiieiiie s 1-18
Finding Documents and Returning Only Their Headers............ccccoooeiiiiriiinine. 1-18
Counting the Number of Documents Found............ccccccccuiiiiiiiiiiiiiiiiiccccccene 1-18
Replacing a Document in a Collection and Getting the Result Document....................... 1-19
Replacing a Document Only If the Version Has Not Changed............cccccooniniinnn. 1-20
Removing a Document from a Collection Using a Document Key.............cccccovvrirnnnnne. 1-20
Removing a Document Only If the Version Has Not Changed...........cccccccccocceccinnnne. 1-20
Removing Documents from a Collection Using Document Keys.........c..ccoovriririeininnee. 1-20
Removing JSON Documents from a Collection Using a Filter..........c.ccccooeeieiiiiininnnnn. 1-20
Sample JSON DOCUMENt T.......cocviiiiiiiiiiiiiiiiiiiiiiiieeeereee e 1-23
Sample JSON DOCUMENt 2.......c.coveviiiiiiiiiiiiiiiieceee e 1-23
Sample JSON Document 3...........cccoiiiiiiiiiicee e 1-23
Using $id To Find Documents That Have Given Keys.........cccccocoiiiiiiiiiiiiiicnne. 1-28
Executing a Filter SpecifiCation...........cccccccueiiiiiiiiiiciecccceeecceeee e 1-29
Filter Specification with Explicit $and Operator.........c..ccoooveininiiicininiicicce 1-38
Filter Specification with Implicit $and Operator............cccccceiiiiiiiiiiiiicccce 1-38
Use of Operator $id in the Outermost QBE Condition..........ccceevevirvevnninnrnnnnnncncnes 1-40
Enabling Collection Metadata Caching............cooeueviiiiiiiiiii e 1-40
getMetadata Output for Collection with Default Configuration.............cccccceviiiinnnnes 1-42
Creating a Collection That Has Custom Metadata...........cccccceeurviniiiininniiiiccee 1-44

Vi

List of Tables

11
1-2
1-3
1-4
1-5
A-1

OracleOperationBuilder Nonterminal Methods...........c.cccooiiiiiiiie, 1-21
OracleOperationBuilder Terminal Methods for Read Operations.........ccccccoviriineinncnen. 1-22
Query-By-Example (QBE) Comparison Operators............cccocvvvuviririvivirinininnnniiieenenenns 1-34
Key Assignment Methods..........cccccciiiiiiiiiiccccecceeeee e 1-48
Version Generation Methods............ccccciiiiiiiiiiiiiiii s 1-53
SODA for Java Core INEErfaces........cocvvirriririirienierieseieieseteteeet ettt sttt sttt aesae e nene A-1

Vii

viii

Preface

This document explains how to use Simple Oracle Document Access (SODA) for Java.

Audience

This document is intended for users of SODA for Java.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle

Accessibility Program website at http:/ /www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http:/ /www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the SODA Javadoc.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

SODA for Java

The Oracle SODA for Java APl is described, including how to install and use it. The
content here assumes that you are familiar with Java, JSON, and Oracle Database. The
code samples here are Java code.

For information about JSON in Oracle Database, see Oracle Database [SON Developer’s

Guide.
Note:
SODA for Java supports the version of JSON described in RFC 4627. For
further details, see Creating and Using Documents with SODA for Java
(page 1-10).

Topics

SODA for Java Prerequisites (page 1-1)

* SODA for Java Overview (page 1-2)

e Using SODA for Java (page 1-3)

¢ SODA Paths (page 1-29)

* SODA Filter Specifications (QBEs) (page 1-31)

¢ SODA Collection Metadata Caching (page 1-40)

¢ SODA Collection Configuration Using Custom Metadata (page 1-41)

1.1 SODA for Java Prerequisites

Before you can use SODA for Java you must configure your Java environment.

To use SODA for Java with Oracle Database:
* You must have Java Runtime Environment 1.6 (JRE 1.6).

¢ The following Java archive (JAR) files must be either in your CLASSPATH
environment variable or passed using command-line option cl asspat h:

- orajsoda. jar (SODA for Java RDBMS implementation). Obtain the latest
version at ht t ps: // gi t hub. coni or acl e/ soda-for-javal/rel eases.

— 0j dbcé6. j ar (the Oracle JDBC JAR file that is shipped with Oracle
Database 12¢ Release 1 (12.1.0.2))

- javax.json-1.0.4.jar (JSR353: the Java API for JSON processing)

SODA for Java 1-1

https://github.com/oracle/soda-for-java/releases

SODA for Java Overview

* You must have Oracle Database 12c Release 1 (12.1.0.2) with Merge Label Request
(MLR) bundle patch 20885778.

Obtain the patch from My Oracle Support (ht t ps: / / support. oracl e. com).
Select tab Patches & Updates. Search for patch number 20885778, or access it
directly at this URL: ht t ps: // support. oracl e. con’rs?

t ype=pat ch& d=20885778.

Note:

Oracle recommends that you use AL32UTEFS8 (Unicode) for your database
character set. Otherwise:

¢ Data can be altered by SODA for Java during input, because of lossy
conversion to the database character set.

* Query-by-example (QBE) can return unpredictable results.

1.2 SODA for Java Overview

Simple Oracle Document Access (SODA) is a set of NoSQL-style APIs that let you
create and store collections of documents in Oracle Database, retrieve them, and query
them, without needing to know Structured Query Language (SQL) or how the data in
the documents is stored in the database.

SODA for Java is a Java API that provides SODA. You can use it to perform create,
read (retrieve), update, and delete (CRUD) operations on documents of any kind, and
you can use it to query JSON documents.

Oracle relational database management system (RDBMS) supports storing and
querying JSON data. To access this functionality, you need structured query language
(SQL) with special JSON SQL operators and Java Database Connectivity (JDBC).

SODA for Java hides the complex SQL/JDBC programming with these SODA
abstractions:

e Database
e (Collection

e Document

A database contains collections, and each collection contains documents. SODA for
Java is designed primarily for working with JSON documents, but a document can be
of any Multipurpose Internet Mail Extensions (MIME) type.

SODA for Java provides CRUD operations on collections. These operations are
transparently translated to SQL with JSON SQL operators and are executed by JDBC.

A (SODA) database is analogous to an Oracle Database schema, a collection is analogous
to a table, and a document is analogous to a table row with one column for the
document key (unique document identifier) and another column for the document
content.

The remaining topics of this document describe various features of SODA for Java. For
detailed information about specific Java methods, see the SODA for Java Javadoc.

1-2 SODA for Java Developer's Guide

https://support.oracle.com
https://support.oracle.com/rs?type=patch&id=20885778
https://support.oracle.com/rs?type=patch&id=20885778

Using SODA for Java

1.3 Using SODA for Java

How to access SODA for Java is described, as well as how to use it to perform create,
read (retrieve), update, and delete (CRUD) operations on collections.

(CRUD operations are also called “read and write operations” in this document.)

Topics

Getting Started with SODA for Java (page 1-3)

Creating a New Document Collection with SODA for Java (page 1-6)
Opening an Existing Document Collection with SODA for Java (page 1-8)
Checking Whether a Given Collection Exists with SODA for Java (page 1-9)
Discovering Existing Collections with SODA for Java (page 1-9)
Dropping a Document Collection with SODA for Java (page 1-9)
Creating and Using Documents with SODA for Java (page 1-10)
Handling Transactions with SODA for Java (page 1-12)

Inserting Documents into Collections with SODA for Java (page 1-13)
Saving Documents into Collections with SODA for Java (page 1-14)
Finding Documents in Collections with SODA for Java (page 1-15)
Replacing Documents in a Collection with SODA for Java (page 1-19)
Removing Documents from a Collection with SODA for Java (page 1-20)
OracleOperationBuilder Methods, Terminal and Nonterminal (page 1-21)

Using Filter Specifications (QBEs) with SODA for Java (page 1-22)

1.3.1 Getting Started with SODA for Java

How to access SODA for Java is described, as well as how to use it to create a database
collection, insert a document into a collection, and retrieve a document from a
collection.

Follow these steps to get started with SODA for Java:

1.

Ensure that all of the prerequisites have been met for using SODA for Java. See
SODA for Java Prerequisites (page 1-1).

Identify the database schema (user account) used to store collections, and grant
database role SODA_APP to that schema:

GRANT SODA_APP TO schenmaNane;

Place all required jar files and file t est Soda. j ava (which contains the text in
Example 1-1 (page 1-4)) into a directory.

Int est Soda. j ava:

SODA for Java 1-3

Using SODA for Java

* Replace host Nane, por t, and ser vi ceNane with the hostname, port, and
service name for your Oracle RDBMS instance.

* Replace schenmaNamne and passwor d with the name and password of the
database schema identified in step 2. It will store the collection created in
Example 1-1 (page 1-4).

5. Use the cd command to go to the directory that contains the jar files and file
t est Soda. j ava.

6. Execute these commands:

javac -classpath "*" testSoda.|ava
java -classpath "*:." testSoda

Instead of the second of these commands, you can optionally use the following
command. It has the additional effect of dropping the collection, cleaning up the
database table that is used to store the collection and its metadata.

java -classpath "*:." testSoda drop

Using argument dr op here has the effect of invoking method dr op() , which is
the proper way to drop a collection.

Caution:

Do not use SQL to drop the database table that underlies a collection. In
addition to the documents that are stored in its table, a collection has
metadata, which is also persisted in Oracle Database. Dropping the collection
table does not also drop the associated metadata.

To work with SODA for Java you must first open a JDBC connection. This is illustrated
in Example 1-1 (page 1-4). For details of how to open a JDBC connection, see Oracle
Database JDBC Developer’s Guide.

Example 1-1 testSoda.java

In this example, replace placeholders host Nare, por t , schermaNane, and passwor d
with appropriate information for your database instance.

import java.sql.Connection;
import java.sql.DriverMnager;

i mport oracl e.soda. rdbns. Oracl eRDBVSC i ent ;

i mport oracl e. soda. Oracl eDat abase;

i mport oracle.soda. Oracl eCursor;

i mport oracle.soda. Oracl eCol | ection;
i mport oracl e. soda. Oracl eDocunent ;

i mport oracl e. soda. Oracl eExcepti on;

inport java.util.Properties;
i mport oracle.jdbc. Oracl eConnection;

public class testSoda
{
public static void main(String[] arg)
{
/1 Set up the JDBC connection string, schemaNane, and password.
/'l Replace with info appropriate for your Oracle Database instance.
String url = "jdbc:oracle:thin: @/ host Nane: port/serviceNane";
Properties props = new Properties();

1-4 SODA for Java Developer's Guide

Using SODA for Java

props. set Property("user", schemaNane);
props. set Property("password", password);

Oracl eConnection conn = null;

try
{

/1 CGet a JDBC connection to an Oracle instance.
conn = (Oracl eConnection) DriverManager.get Connection(url, props);

/1 Enable JDBC inplicit statenment caching
conn. set | nplicit Cachi ngEnabl ed(true);
conn. set St at ement CacheSi ze(50) ;

/1 Get an Oracl eRDBMBCient - starting point of SODA for Java application.
Oracl eRDBMSO i ent cl = new Oracl eRDBMSC i ent();

/1 CGet a database.
Oracl eDat abase db = cl . get Dat abase(conn);

Il Create a collection with the name "M/JSONCol | ection”.
Il This creates a database table, also named "MyJSONCol | ection", to store the collection.
OracleCol I ection col = db.adnin().createCollection("MJSONCol | ection");

/1 Create a JSON docunent.
Oracl eDocunent doc =
db. creat eDocunent FronBtring("{ \"nanme\" : \"Al exander\" }");

Il Insert the docunent into a collection.
col .insert(doc);

/1 Find all documents in the collection.
Oracl eCursor ¢ = null;

try

c = col.find().getCursor();
Oracl eDocunent resul t Doc;

while (c.hasNext())
{

/1 Get the next document.
resultDoc = c.next();

/1 Print document conponents

Systemout.println ("Key: " + resul t Doc. get Key());
Systemout.println ("Content: " + resul tDoc. get Content AsString());
Systemout.println ("Version: " + resul tDoc. get Version());
Systemout.println ("Last nodified: " + resultDoc.getLastMdified());
Systemout.printin ("Created on: " + resul t Doc. get CreatedOn());
Systemout.println ("Mdia: " + resul t Doc. get Medi aType());
Systemout.println ("\n");
}
}
finally
/1 1 MPORTANT: YOU MUST CLOSE THE CURSOR TO RELEASE RESCURCES.
if (c!=null) c.close();
}

/1 Drop the collection, deleting the table underlying it and the collection netadata.
if (arg.length > 0 & arg[0].equal s("drop")) {

col .admin().drop();

Systemout.printin ("\nCol |l ection dropped");

}

[/ SODA for Java throws a checked O acl eException
catch (OracleException e) { e.printStackTrace(); }
catch (Exception e) { e.printStackTrace(); }

SODA for Java 1-5

Using SODA for Java

finally

try { if (conn = null) conn.close(); }
catch (Exception e) { }
}
}
}

1.3.2 Creating a New Document Collection with SODA for Java

How to use SODA for Java to create a new document collection is explained.

In your Java application, first create an Or acl eRDBMSQ i ent object, which is the
starting point for any Java application working with SODA for Java:

Oracl eRDBVSC i ent client = new Oracl eRDBMSC i ent();

Caution:

The Or acl eRDBMSC i ent object, cl i ent, is thread-safe. Other SODA for
Java interfaces are not thread-safe, however — do not share them among
multiple threads.

Next, pass the JDBC connection to method Or acl e i ent . get Dat abase(), to
obtain an Or acl eDat abase object:

Oracl eDat abase db = client. get Dat abase(j dbcConnection);

Note:

Oracle recommends that you enable implicit statement caching for the JDBC
connection that you pass to SODA. This can improve the performance of read
and write operations. The underlying implementation of read and write
operations generates JDBC prepared statements.

If you do not enable implicit caching then each time a read or write operation
is created a new JDBC prepared statement is constructed. With implicit
caching enabled, a new JDBC prepared statement is created only if it is not
already in the cache.

See also: Oracle Database JDBC Developer's Guide and Oracle Universal
Connection Pool for [DBC Developer’s Guide

Collection creation methods are available on interface Or acl eDat abaseAdm n. To
access this interface, invoke method admi n() on the Or acl eDat abase object:

O acl eDat abaseAdmi n dbAdmi n = db. adnin();

Now you can create a collection — an Or acl eCol | ect i on object — using the
following code, where col | ect i onNane is the name of the collection:

Oracl eCol lection col = dbAdmin. createCol | ection("collectionName");

Method cr eat eCol | ection(String col | ecti onName) creates the following in
Oracle Database:

e Persistent default collection metadata.

1-6 SODA for Java Developer's Guide

Using SODA for Java

* A table for storing the collection, in the schema with which the input JDBC
connection is configured.

By default, the table name is derived from the collection name. If you want a
different table name from that provided by default then use custom collection
metadata to explicitly provide the table name (see below).

The default table name is derived from the collection name as follows:

1.

Each ASCII control character and double quotation mark character (") in the
collection name is replaced by an underscore character (_).

If all of the following conditions apply, then all letters in the name are
converted to uppercase, to provide the table name. In this case, you need not
quote the table name in SQL code; otherwise, you must quote it.

— The letters in the name are either all lowercase or all uppercase.
— The name begins with an ASCII letter.

— Each character in the name is alphanumeric ASCII, an underscore (_), a
dollar sign ($), or a number sign (#).

Note:

Oracle recommends that you do not use dollar signs ($) or number signs (#) in
Oracle identifier names.

For example:

Collection names "col" and "COL" both result in a table named "COL". When
used in SQL, the table name is interpreted case-insensitively, so it need not be
enclosed in double quotation marks ().

Collection name "myCol" results in a table named "myCol". When used in SQL,
the table name is interpreted case-sensitively, so it must be enclosed in double
quotation marks ().

Note:

If the table name used by method cr eat eCol | ect i on names an existing
table, in the schema with which the JDBC connection is configured, then the
method tries to map that table to the collection. This behavior includes the
default case, where the table name is derived from the collection name.

The default collection metadata has the following characteristics.

* Each document in the collection has these document components:

Key

Content

Creation timestamp
Last-modified timestamp

Version

SODA for Java 1-7

Using SODA for Java

* The collection can store only JSON documents.

¢ Document keys are automatically generated for documents that you add to the
collection.

The default collection configuration is recommended in most cases, but collections are
highly configurable. When you create a collection you can specify things such as the
following:

e Storage details, such as the name of the table that stores the collection and the
names and data types of its columns.

* The presence or absence of columns for creation timestamp, last-modified
timestamp, and version.

e Whether the collection can store only JSON documents.

* Methods of document key generation, and whether document keys are client-
assigned or generated automatically.

® Methods of version generation.
This configurability also lets you map a new collection to an existing table.

To configure a collection in a nondefault way, you must create a JSON

Or acl eDocunent instance of custom collection metadata and pass it to method
createCol l ection(String collectionName, O acl eDocunent

col | ecti onMet adat a) . To build and generate this Or acl eDocunent instance
easily, you can use Or acl eRDBVSMet adat aBui | der .

If you do not care about the details of collection storage and configuration, then use
method cr eat eCol | ecti on(col | ecti onNane), as in Example 1-2 (page 1-9).

You can search or change a collection only if it is open. A newly created collection is
open for the life of your session.

Note:

Unless otherwise stated, the remainder of this documentation assumes that a
collection has the default configuration.

See Also:

* Opening an Existing Document Collection with SODA for Java
(page 1-8)

¢ SODA Collection Configuration Using Custom Metadata (page 1-41) for
information about creating custom metadata and using
Or acl eRDBVBMet adat aBui | der

1.3.3 Opening an Existing Document Collection with SODA for Java

You can use O acl eDat abase method openCol | ecti on() to open an existing
document collection or to test whether a given name names an existing collection.

1-8 SODA for Java Developer's Guide

Using SODA for Java

Example 1-2 (page 1-9) opens the collection named nyCol | ect i onNane and
returns the Or acl eCol | ect i on object that represents this collection. If the value
returned is nul | then there is no existing collection named nmyCol | ect i onNarre.

Example 1-2 Opening an Existing Document Collection

Oracl eCol | ection ocol = dh. openCol | ection("nyCol | ectionNane");

1.3.4 Checking Whether a Given Collection Exists with SODA for Java

You can use Or acl eDat abase method openCol | ecti on() to check for the
existence of a given collection. It returns nul | if the collection argument does not
name an existing collection; otherwise, it opens the collection having that name.

In Example 1-2 (page 1-9), if nyCol | ect i onName does not name an existing
collection then ocol is assigned the value nul | .

1.3.5 Discovering Existing Collections with SODA for Java

You can use Or acl eDat abaseAdm n method get Col | ect i onNanes to discover
existing collections.

Example 1-3 (page 1-9) illustrates this, using method get Col | ect i onNanes with
the simplest signature, which accepts no arguments. The example prints the names of
all existing collections.

Example 1-3 Printing the Names of All Existing Collections

List<String> names = db.adnmin().getCol | ectionNanes();

for (String name : nanes)
Systemout.println ("Collection name: " + name);

1.3.6 Dropping a Document Collection with SODA for Java
You use Or acl eCol | ect i onAdmi n method dr op() to drop a document collection.

Example 1-4 (page 1-9) drops collection col .

Caution:

This is the proper way to drop a collection — use method dr op() . Do not use
SQL to drop the database table that underlies the collection. Collections have
persisted metadata, in addition to the documents that are stored in the
collection table.

Note:

Commit all writes to a collection before using method dr op() . For dr op() to
succeed, all uncommitted writes to the collection must first be committed.
Otherwise, an exception is raised.

Example 1-4 Dropping a Document Collection

col . admin().drop();

SODA for Java 1-9

Using SODA for Java

1.3.6.1 If You Need To Drop and Re-Create a Collection...

Day-to-day use of a typical application that makes use of SODA does not require you
to drop and re-create collections. But if you do need to do that for any reason then be
aware of the important guideline presented here.

Do not drop a collection and then re-create it with different metadata if there is any
application running that uses SODA objects. Shut down any such applications before
re-creating the collection, so that all live SODA objects are released.

There is no problem just dropping a collection. Any read or write operation on a stale
Or acl eCol | ect i on object that corresponds to a dropped collection raises an error.
And there is no problem dropping a collection and then re-creating it with the same
metadata.

But if you re-create a collection with different metadata, and if there are any live
applications using SODA objects, then there is a risk that a stale collection object (an
O acl eCol | ect i on instance) is accessed, and no error is raised in this case.

This risk is increased if collection metadata is cached. If caching is enabled, a (shared
or local) cache can return an entry for a stale collection object even if the collection has
been dropped.

See Also:

SODA Collection Metadata Caching (page 1-40)

1.3.7 Creating and Using Documents with SODA for Java

Creation and use of documents by SODA for Java are described.

SODA for Java represents a document using Java interface Or acl eDocurent . This
interface is designed primarily to represent JSON documents, but it also supports
other content types. An Or acl eDocunent is simply a carrier of content.

To create JSON content for an Or acl eDocunent instance, you can use your favorite
package — for example, JSR353, the Java API for JSON processing (htt ps: //
j sonp. j ava. net /). Here is an example of a simple JSON document:

{ "name" : "Al exander ",
"address" : "1234 Main Street",
"city" " Anyt own",

"state" : "CA",
“zip" "12345"
}
Note:

In SODA for Java, JSON content must conform to RFC 4627. In particular,
JSON content must be either an object (as in the preceding example) or an
array; it cannot be a scalar value. For example, according to RFC 4627, the
string value " hel | 0" is not, by itself, valid JSON content.

Also in SODA for Java, JSON content encoding must be either UTF-8 or
UTF-16 (big endian (BE) or little endian (LE)). Although RFC 4627 also allows
UTEF-32 (BE and LE) encodings, SODA for Java does not support them.

1-10 SODA for Java Developer's Guide

https://jsonp.java.net/
https://jsonp.java.net/

Using SODA for Java

To create an Or acl eDocunent instance from content that is represented as a byte
array or a St ri ng instance, use the following methods (which Or acl eDat abase
inherits from Or acl eDocurnent Fact or y), respectively:

e creat eDocunent Fr onByt eArray()

e creat eDocunent Frontt ri ng()

Note:

Documents used with SODA for Java are limited to approximately 2
gigabytes.

A document has these components:
¢ Key

¢ Content

* Creation time stamp

* Last-modified time stamp

* Version

* Media type ("appl i cati on/j son" for JSON documents)

Interface Or acl eDocumnent provides getter methods for accessing document
components. If a document is missing a given component, then the corresponding
getter method returns nul | .

When you create a document by invoking method cr eat eDocunent Frontt ri ng()
or cr eat eDocunent FronByt eArray() :

* You might need to provide the document key as a method argument.

In a collection, each document must have a key. You must provide the key when
you create the document only if you expect to insert the document into a collection
that does not automatically generate keys for inserted documents. By default,
collections are configured to automatically generate document keys.

* You can provide the document content as a method argument (the cont ent
parameter is required, but its value can be nul |).

¢ The method sets the values of the creation time stamp, last-modified time stamp,
and version to nul | .

Methods cr eat eDocunent FronStri ng() and
creat eDocunent Fr onByt eArr ay() each have multiple variants:

® The simplest variant accepts only document content. The media type defaults to
“appl i cation/json", and the other components default to nul | . This variant is
useful for creating documents for insertion into collections that automatically
generate document keys.

* Another variant accepts both document key and document content. The media
type defaults to " appl i cati on/j son", and the other components default to
nul I . This variant is useful for creating documents for insertion into collections
that have client-assigned document keys.

SODA for Java 1-11

Using SODA for Java

* The most flexible (and most verbose) variant accepts key, content, and content

type. Because it lets you specify content type, this variant is useful for creating non-
JSON documents.

Example 1-5 (page 1-12) creates an Or acl eDocunent instance with content only.
The media type defaults to " appl i cati on/j son", and the other document
components default to nul | .

Example 1-6 (page 1-12) creates an Or acl eDocunent instance with document key
and content. The media type defaults to " appl i cati on/j son", and the other
document components default to nul | .

You write documents to collections using SODA for Java write operations, and you
read documents from collections using SODA for Java read operations. The SODA for
Java read and write operations are described in the following topics:

* Inserting Documents into Collections with SODA for Java (page 1-13) (write)
¢ Saving Documents into Collections with SODA for Java (page 1-14) (write)

¢ Finding Documents in Collections with SODA for Java (page 1-15) (read)

¢ Replacing Documents in a Collection with SODA for Java (page 1-19) (write)

* Removing Documents from a Collection with SODA for Java (page 1-20) (write)

See Also:

e Oracl eDocunent Fact ory Javadoc for more information about
methodscr eat eDocunent FronStri ng() and
cr eat eDocunent Fr onByt eArray()

e Oracl eDocunent Javadoc for more information about getter methods

Example 1-5 Creating a Document with JSON Content

O acl eDocunent doc =
odb. creat eDocunent FronString("{ \"name\" : \"Alexander\"}");

/1 Get the content
String content = doc. getContent AsString();

/1 Get the content type (it is "application/json")
String content Type = doc. get Cont ent Type();

Example 1-6 Creating a Document with Document Key and JSON Content

O acl eDocunent doc
= odb. creat eDocunent FronSt ri ng("nyKey", "{ \"name\" : \"Al exander\"}");

1.3.8 Handling Transactions with SODA for Java

You can cause SODA for Java to treat individual read and write operations, or groups
of them, as a single transaction.

The JDBC connection that you pass to method Or acl eCl i ent . get Dat abase() has
auto-commit mode either on or off.

1-12 SODA for Java Developer's Guide

Using SODA for Java

If auto-commit mode is on, then each SODA for Java read operation and write
operation is treated as a single transaction. If the operation succeeds, then the
transaction automatically commits. If the operation fails, then an Or acl eExcepti on
or Runt i meExcept i on is thrown, and the transaction automatically rolls back.
SODA for Java itself throws only checked exceptions (Or acl eExcept i on and
exceptions derived from Or acl eExcept i on). However, SODA for Java is built upon
JDBC, which can throw a Runt i meExcept i on that SODA for Java passes through.

If auto-commit is off, then you can combine multiple SODA for Java read or write
operations into one transaction. If the transaction succeeds, then your application must
explicitly commit it, by calling method conmi t () on the JDBC connection. If the
transaction fails, then an Or acl eExcepti on or Runt i meExcepti on, is thrown.
Your application must handle the exception and explicitly roll back the transaction, by
invoking method r ol | back() on the JDBC connection. (Runt i meExcept i on can be
thrown only by JDBC, as mentioned in the preceding paragraph.)

To facilitate transactional programming, SODA for Java supports optimistic locking.

See Also:
* Replacing Documents in a Collection with SODA for Java (page 1-19)

* Removing Documents from a Collection with SODA for Java (page 1-20)

1.3.9 Inserting Documents into Collections with SODA for Java

To insert a document into a collection, you invoke Or acl eCol | ect i on method

i nsert (Oracl eDocunent) ori nsert AndGet (Or acl eDocunent) . These
methods create document keys automatically, unless the collection is configured with
client-assigned keys and the input document provides the key.

Method i nsert (Oracl eDocument) only inserts the document into the collection.
Method i nsert AndGet (Or acl eDocunent) also returns a result document, which
contains the document key and any other generated document components (except
the content).

Both methods automatically set the values of the creation time stamp, last-modified
time stamp, and version (if the collection is configured to include these components
and to generate the version automatically, as is the case by default).

Note:

If the collection is configured with client-assigned document keys (which is
not the default case), and the input document provides a key that identifies an
existing document in the collection, then these methods throw an exception. If
you want the input document to replace the existing document instead of
causing an exception, see Saving Documents into Collections with SODA for
Java (page 1-14).

Example 1-7 (page 1-14) creates a document and inserts it into a collection using
method i nsert ().

Example 1-8 (page 1-14) creates a document, inserts it into a collection using method
i nsert AndGet (), and then gets each of the generated components from the result
document (which contains them).

SODA for Java 1-13

Using SODA for Java

To efficiently insert a large number of documents into a collection, invoke

O acl eCol | ecti on method i nsert (Iterator<Oacl eDocunent >) or

i nsert AndCet (It er at or <Or acl eDocunent >) . These methods are analogous to
i nsert (Oracl eDocurent) andi nsert AndGet (Or acl eDocunent), but instead
of handling a single document, they handle multiple documents. Parameter

| t er at or <or acl eDocument > is an iterator over multiple input documents.

Method i nsert AndGet (It er at or <Or acl eDocurnent >) returns a list of result
documents — one Or acl eDocunent instance for each input document. Each such
result document contains the document key and any other generated document
components (except the content). The order of the result documents corresponds to the
order of input documents, allowing correlation of result and input documents.

See Also:

Or acl eCol | ecti on Javadoc for more information about methods

i nsert (Oracl eDocurnent), i nsert AndGet (Or acl eDocunent),
i nsert(Iterator<Oacl eDocunent >), and

i nsert AndGet (I terator<Oacl eDocunent >)

Example 1-7 Inserting a Document into a Collection

O acl eDocunent doc =
db. creat eDocunent FronString("{ \"name\" : \"A exander\"}");

col .insert(doc);

Example 1-8 Inserting a Document into a Collection and Getting the Result
Document

O acl eDocunent doc =
db. creat eDocunent FronString("{ \"name\" : \"A exander\"}");

Oracl eDocunent insertedDoc = col.insertAndGet (doc);

/1 Get the generated docunent key
String key = insertedDoc. getKey();

/1 Get the generated creation timestanp
String createdOn = insertedDoc. get CreatedOn();

/1 Get the generated last-nodified timestanp
String lastMdified = insertedDoc. getLast Mdified();

/1 Get the generated version
String version = insertedDoc. get Version();

1.3.10 Saving Documents into Collections with SODA for Java

You use Or acl eCol | ecti on methods save(O acl eDocunent) and
saveAndGet (Or acl eDocunent) to save documents into collections.

These methods are similar to methods i hsert (Or acl eDocunent) and

i nsert AndGet (Or acl eDocunent) except that, if the collection is configured with
client-assigned document keys and the input document provides a key that already

identifies a document in the collection, then the input document replaces the existing
document. (Methods i nsert (Oracl eDocunent) and

i nsert AndCet (Or acl eDocunment) throw an exception in that case.)

1-14 SODA for Java Developer's Guide

Using SODA for Java

Note:

By default, collections are configured with automatically generated document
keys. Therefore, for a default collection, methods save(Or acl eDocurnent)
and saveAndCet (Or acl eDocunent) are equivalent to methods

i nsert (Oracl eDocunent) and i nsert AndGet (Or acl eDocunent),
respectively.

Example 1-9 (page 1-15) saves a document into a collection that is configured with
client-assigned document keys, using method saveAndGet () . It then gets the key
and the generated document components (except the content) from the result
document (which contains them).

See Also:

O acl eCol | ect i on Javadoc for more information about methods
save(Oracl eDocument) and saveAndGet (Or acl eDocunent)

Example 1-9 Saving a Document into a Collection

Oracl eRDBMBC i ent ¢l = new Oracl eRDBMBC ient();
O acl eDat abase db = ...

/1 Configures the collection with client-assigned document keys
O acl eDocunent col | Meta =

cl . creat eMet adat aBui | der (). keyCol utmAssi gnnent Met hod("client™). build();
Oracl eCol l ection cKeyColl = db.createCollection("collectionNane", collMeta);

/1 For a collection configured with client-assigned docunent keys,
/1 you nust provide the key for the input docunment.
Oracl eDocunent cKeyDoc =
db. creat eDocunent FronSt ri ng(" nmyKey", "{ \"nanme\" : \"A exander\"}");

[l 1f key "nyKey" already identifies a docunment in the collection
/1 then cKeyDoc replaces the existing doc.
Oracl eDocunent savedDoc = client KeysCol | . saveAndGet (cKeyDoc) ;

/1 Get document key ("myKey")
String key = savedDoc. get Key();

/] Get the generated creation timestanp
String createdOn = savedDoc. get Creat edOn();

/] Get the generated last-nodified timestanp
String lastMdified = savedDoc. get Last Modi fied();

/] Get the generated version
String version = savedDoc. get Version();

1.3.11 Finding Documents in Collections with SODA for Java

To find documents in a collection, you invoke Or acl eCol | ect i on method fi nd(),
which returns an Or acl eOper at i onBui | der object that represents a query that
finds all documents in the collection.

To execute the query, obtain a cursor for its results by invoking
O acl eOper ati onBui | der method get Cur sor () . Then use the cursor to visit

SODA for Java 1-15

Using SODA for Java

each document in the result list. To determine whether the result list has a next
document, and to obtain the next document, invoke Or acl eCur sor methods
hasNext () and next (), respectively. This is illustrated by Example 1-10 (page 1-16)
and other examples here.

However, you typically do not work directly with the Or acl eQper at i onBui | der
object. Instead, you chain together some of its methods, to specify various find
operations. This is illustrated in the other examples here, which find documents by
their keys or using query-by-example (QBE) filter specifications.

Note:

Examples here that use method get Cont ent AsSt ri ng() assume that all
documents in the collection are JSON documents. If they are not, this method
throws an exception.

See Also:

¢ OracleOperationBuilder Methods, Terminal and Nonterminal (page 1-21)
for information about Or acl eQper at i onBui | der methods and chaining
them together

* Replacing Documents in a Collection with SODA for Java (page 1-19) and
Removing Documents from a Collection with SODA for Java (page 1-20)
for information about using terminal Or acl eCQper ati onBui | der
methods for write operations

¢ Using Filter Specifications (QBEs) with SODA for Java (page 1-22) for
information about queries that can be expressed as filter specifications

Example 1-10 Finding All Documents in a Collection

This example first obtains a cursor for a query result list that contains each document
in a collection. It then uses the cursor in a whi | e statement to get and print the content
of each document in the result list, as a string. Finally, it closes the cursor.

Note:

To avoid resource leaks, close any cursor that you no longer need.

Oracl eCursor ¢ = col.find().getCursor();

while (c.hasNext()) {

Oral ceDocunment resultDoc = c.next();

Systemout. println("Document content: " + resultDoc.getContentAsString());
}

/1 I MPORTANT: You rmust close the cursor to rel ease resources!
c.close;

Example 1-11 Finding the Unique Document That Has a Given Document Key

This example chains together Or acl eQper at i onBui | der methods to specify an
operation that finds the unique document whose key is " key1" . It uses nonterminal

1-16 SODA for Java Developer's Guide

Using SODA for Java

method key () to specify the document. It then uses terminal method get One() to
execute the read operation and return the document (or nul | if no such document is
found).

Oracl eDocunent doc = col . find(). key("keyl"). get One();

Example 1-12 Finding Multiple Documents with Specified Document Keys

This example defines HashSet nyKeys, with (string) keys " key1", " key2", and
"key3".It then finds the documents that have those keys, and it prints the key and
content of each of those documents.

Nonterminal method keys() specifies the documents with the given keys. Terminal
method get Cur sor () executes the read operation and returns a cursor over the
result documents.

Note:

The maximum number of keys in the set supplied to method keys() must
not exceed 1000.

Set<String> nyKeys = new HashSet <String>();
myKeys. put ("keyl");
myKeys. put ("key2");
myKeys. put ("key3");

Oracl eCursor ¢ = col . find().keys(myKeys).get Cursor();

while (c.hasNext(()) {
Oracl eDocunent resultDoc = c.next();

/1 Print the docunment key and docunment content
Systemout.printin ("Document key: " + resultDoc.getKey() + "\n" +
" docunent content: " + resultDoc.getContentAsString());

}
c.close();

Example 1-13 Finding Documents with a Filter Specification

Nonterminal method fi | t er () provides a powerful way to filter JSON documents in
a collection. Its Or acl eDocunent parameter is a JSON query-by-example (QBE, also
called a filter specification).

This example does the following:

1. Creates a filter specification that looks for all J[SON documents whose nane field
has value " Al exander " .

2. Uses the filter specification to find the matching documents.

3. Prints the key and content of each document.

/1 Create the filter specification
Oracl eDocunent filterSpec =

db. creat eDocunent Frontring("{ /"name/" : /"A exander/"}");
Oracl eCursor ¢ = col .find().filter(filterSpec).getCursor();

while (c.hasNext(()) {

SODA for Java 1-17

Using SODA for Java

Oracl eDocunment resultDoc = c.next();

/1 Print the docunent key and docunent content
Systemout.printin ("Docunent key: " + resultDoc.getKey() + "\n" +
" document content: " + resultDoc.getContent());

}

c.close();

Example 1-14 Specifying Pagination Queries with Methods skip() and limit()

This example uses nonterminal methods ski p() and i mi t () in a pagination query.
(Filter specification f i | t er Spec is from Example 1-13 (page 1-17).)

/1 Find all docunents matching the filterSpec, skip the first 1000,

[/ and limt the number of returned docunments to 100.

Oracl eCursor ¢ =
col.find().filter(filterSpec).skip(1000).!imt(100).getCursor();

while (c.hasNext(()) {
Oracl eDocunment resultDoc = c.next();

/1 Print the docunent key and docunent content
Systemout.printin ("Docunent key: " + resultDoc.getKey() + "\n" +
" document content: " + resultDoc.getContent());

}

c.close();

Example 1-15 Specifying Document Version

Nonterminal method ver si on() specifies the document version. It is useful for
implementing optimistic locking, when used with the terminal methods for write
operations.

Nonterminal method header Onl y() specifies the return of document headers only.
A document header has all the document components except the content.

/1 Find a document with key "keyl" and version "versionl".
O acl eDocunent doc = col . find().key("keyl").version("versionl").getOne();

Example 1-16 Finding Documents and Returning Only Their Headers

This example finds all documents with the specified document keys and returns only
their headers. (The keys are those in HashSet myKeys, which is defined in Example
1-12 (page 1-17).)

/1 Find all documents matching the keys in HashSet nyKeys.
/1 For each docunent, return all document conponents except the content.
Oracl eCursor ¢ = col . find().keys(myKeys).headerOnly().get Cursor();

Example 1-17 Counting the Number of Documents Found

This example uses terminal method count () to get a count of all of the documents in
the collection. It then gets a count of all of the documents that are returned by the filter
specification fi | t er Spec from Example 1-13 (page 1-17).

/I Get a count of all documents in the collection
int nunDocs = col.find().count();

/] Get a count of all docunents in the collection that match a filter spec
nunDocs = col .find().filter(filterSpec).count();

1-18 SODA for Java Developer's Guide

Using SODA for Java

1.3.12 Replacing Documents in a Collection with SODA for Java

To replace the content of one document in a collection with the content of another, you
chain together Or acl eOper at i onBui | der method key(St ri ng) with either
method r epl aceOne(Or acl eDocunent) or method

repl aceOneAndGet (Or acl eDocunent) . Method

repl aceOne(Or acl eDocunent) only replaces the document. Method

repl aceOneAndGet (Or acl eDocunent) also returns a result document, which
contains all document components except the content.

Both r epl aceOne(Or acl eDocunent) and

r epl aceOneAndCet (Or acl eDocunent) update the values of the last-modified
timestamp and the version. Replacement does not change the document key or the
creation timestamp.

Note:

Some version-generation methods, including the default method, generate
hash values of the document content. In such a case, if the document content
does not change then neither does the version. For more information about
version-generation methods, see SODA Collection Configuration Using
Custom Metadata (page 1-41).

See Also:

e Oracl eOperati onBui |l der Javadoc for more information about
repl aceOne() and repl aceOneAndGet ()

¢ OracleOperationBuilder Methods, Terminal and Nonterminal (page 1-21)
for information about Or acl eQper at i onBui | der methods and chaining
them together

Example 1-18 Replacing a Document in a Collection and Getting the Result
Document

This example replaces a document in a collection, gets the result document, and gets
the generated components from the result document.

O acl eDocunent newboc = ...
Oracl eDocunent resultDoc = col.find().key("k1").repl aceOneAndGet (newDoc) ;

if (resultDoc !'= null)
{

Il Get the generated document key (unchanged by repl acement operation)
String key = resul tDoc. get Key();

Il Get the generated version
String version = resul tDoc. get Version();

Il Get the generated last-nodified timestanp
String lastMdified = resultDoc. get Last Modified();

Il Get the creation tinestanp (unchanged by repl acenent operation)
String createdOn = resul t Doc. get CreatedOn();

SODA for Java 1-19

Using SODA for Java

Example 1-19 Replacing a Document Only If the Version Has Not Changed

To implement optimistic locking when replacing a document, you can chain together
methods key() and ver si on(), as in this example.

O acl eDocunent resul t Doc =
col.find().key("k1").version("v1").repl aceOneAndCet (newboc);

1.3.13 Removing Documents from a Collection with SODA for Java

To remove a document from a collection, you chain together (1) Or acl eCol | ecti on
method f i nd() with these Or acl eOper ati onBui | der methods: (2) key(),
keys(),orfilter();(3)version() (optional); and (4) r enove() . Examples are
provided.

See Also:

e O acl eOperationBuil der Javadoc for more information about key(),
keys(),filter(),version(),andrenove()

* OracleOperationBuilder Methods, Terminal and Nonterminal (page 1-21)
for information about Or acl eQper at i onBui | der methods and chaining
them together

* Using Filter Specifications (QBEs) with SODA for Java (page 1-22)

Example 1-20 Removing a Document from a Collection Using a Document Key

This example removes the document whose document key is " k1" . The number of
documents removed is returned.

/] Count is 1, if the document with key "k1" is found in the collection.
/1 Count is 0, otherwi se.
int count = col.find().key("k1").renmove();

Example 1-21 Removing a Document Only If the Version Has Not Changed

To implement optimistic locking when removing a document, you can chain together
methods key() and ver si on(), as in this example.

col . find().key("k1").version("v1").renove();

Example 1-22 Removing Documents from a Collection Using Document Keys
This example removes the documents whose keys are " k1" and "k2".

Set<String> nyKeys = new HashSet <String>();
myKeys. add("k1");
myKeys. add("k2");

/1 Count is 2 if two documents with keys "k1" and "k2"
/1 were found in the collection.
int count = col.find().keys(nyKeys).renmove();

Example 1-23 Removing JSON Documents from a Collection Using a Filter

This example uses a filter to remove the JSON documents whose gr eet i ng field has
value "hel | 0" . It then prints the number of documents removed.

1-20 SODA for Java Developer's Guide

Using SODA for Java

Oracl eDocunent filterSpec =
db. creat eDocument FronString("{ \"greeting\" : \"hello\" }");

int count = col.find().filter(filterSpec).renmove();

[l Print the number of docunents renoved
Systemout.println ("Renoved " + count + " docunents"):

1.3.14 OracleOperationBuilder Methods, Terminal and Nonterminal

You can chain together Or acl eQper at i onBui | der methods, to specify read and
write operations against a collection.

Oracl eQper at i onBui | der provides the following nonterminal methods, which
you can chain together to specify a read or write operation: key() , keys(),
filter(),version(),skip(),limt(),and headerOnly().

These are called nonterminal methods because they return the same

Oracl eQper ati onBui | der object on which they are invoked, which allows them to
be chained together. Nonterminal methods let you specify parts of an operation; they
do not create or execute an operation.

Or acl eOper at i onBui | der also provides terminal methods. A terminal method
always appears at the end of a method chain, and it creates and executes the operation.

The terminal methods for read operations are get Cur sor (), get One(), and
count () . The terminal methods for write operations are r epl aceOne(),
repl aceOneAndGet () ,and remove().

Note:

If you use Or acl eCur sor method next () or Or acl eCper at i onBui | der
method get One(), and if the underlying document is larger than 2 gigabytes,
then an exception is thrown.

Unless the Javadoc documentation for a method states otherwise, you can chain
together any nonterminal methods, and you can end the chain with any terminal
method. However, not all combinations make sense. For example, it does not make
sense to chain method ver si on() together with any method except key(), or to
chain method key() or keys() together with methodfilter().

Table 1-1 (page 1-21) briefly describes Or acl eOper at i onBui | der nonterminal
methods for building operations against a collection.

Table 1-1 OracleOperationBuilder Nonterminal Methods
|

Method Description
key() Find a document that has the specified document key.
keys() Find documents that have the specified document keys. The maximum

number of keys passed as argument must not exceed 1000.

filter() Find documents that match a filter specification (a query-by-example
expressed in JSON).

SODA for Java 1-21

Using SODA for Java

Table 1-1 (Cont.) OracleOperationBuilder Nonterminal Methods

Method Description

version() Find documents that have the specified version. This is typically used
with key() . For example:
find().key("keyl").version("versionl").

header Onl y() Exclude document content from the result.
ski p() Skip the specified number of documents in the result.
limt() Limit the number of documents in the result to the specified number.

Table 1-2 (page 1-22) briefly describes Or acl eOper at i onBui | der terminal
methods for creating and executing read operations against a collection.

Table 1-2 OracleOperationBuilder Terminal Methods for Read Operations

Method Description

get One() Create and execute an operation that returns at most one document — for
example, an operation that includes an invocation of nonterminal method
key().

get Cursor () Get a cursor over read operation results.

count () Count the number of documents found by the operation.

See Also:

¢ Finding Documents in Collections with SODA for Java (page 1-15) for
descriptions and examples of using Or acl eOper at i onBui | der methods
to find documents

¢ Replacing Documents in a Collection with SODA for Java (page 1-19) and
Removing Documents from a Collection with SODA for Java (page 1-20)
for descriptions and examples of using the Or acl eQper at i onBui | der
terminal write methods

¢ Using Filter Specifications (QBEs) with SODA for Java (page 1-22) for
information about queries that can be expressed as filter specifications

* The SODA for Java Javadoc for complete information about
O acl eOper at i onBui | der methods

1.3.15 Using Filter Specifications (QBEs) with SODA for Java

A filter specification, also called a query-by-example or QBE, is a SODA query that
uses a pattern that is expressed in JSON. The query selects the JSON documents in a
collection that satisfy it, meaning that the filter specification evaluates to true for only
those documents.

QBE patterns use operators for this document selection or matching, including basic
field operators, such as testing for field existence or value comparison, and logical
operators, such as union ($0or), intersection ($and), and negation ($not).

1-22 SODA for Java Developer's Guide

Using SODA for Java

Note:

QBE is not supported on a heterogeneous collection, that is, a collection that

has the media type column. Such a collection is designed for storing both
JSON and non-JSON content.

See Also:

* Querying With a Filter Specification (page 1-29)

SODA Paths (page 1-29)

SODA Filter Specifications (QBEs) (page 1-31)

Media Type Column Name (page 1-55)

1.3.15.1 Sample JSON Documents

A few sample JSON documents are presented here. They are referenced in some
query-by-example (QBE) examples, as well as in some reference descriptions.

See Also:
e Example 1-13 (page 1-17) and Example 1-23 (page 1-20)
* Basic Field Clause (page 1-33)

Example 1-24 Sample JSON Document 1

{ "name" : "Jason",
"age" : 45,
"address" : [{ "street" : "25 A street",
“city" @ "Mno Vista",
"zip" : 94088,
"state" : "CA" }],
"drinks" : "tea" }

Example 1-25 Sample JSON Document 2
{ n r.]arr.ell : n '\mr y|I ,

"age" : 50,

"address" : [{ "street" : "15 C street",
“city" @ "Mno Vista",
"zip" : 97090,
"state" . "OR' },

{ "street" : "30 ABC avenue",

"city" : "Markstown",
"zip" : 90001,

"state" . "CA" }]}

Example 1-26 Sample JSON Document 3

{ n r.]arr.ell : n '\mr k!l ,
"age" : 65,
"drinks" : ["soda", "tea"] }

SODA for Java 1-23

Using SODA for Java

1.3.15.2 Using Paths in QBEs

A query-by-example (QBE) contains zero or more paths to document fields. (In the
context of a QBE, "path to a field" is often shortened informally to "field".) A path to a
field can have multiple steps, and it can cross the boundaries of both objects and
arrays.

For example, this QBE matches all documents where a zi p field exists under field
addr ess and has value 94088:

{ "address.zip" : 94088 }

The preceding filter specification matches sample document 1.

Paths can target particular elements of an array in a JSON document, by enclosing the
array position in square brackets ([and]).

For example, path addr ess[1] . zi p targets all zi p fields in the second object of
array addr esses. (Array position numbers start at 0, not 1.) The following QBE
matches sample document 2 because the second object of its addr ess array has a zi p
field with value 90001.

{ "address[1].zip" : 90001}
Instead of specifying a particular array position, you can specify a list of positions (for
example, [1, 2]) or a range of positions (for example, [1 t o 3]). The following QBE

matches sample document 3 because it has " soda" as the first element (position 0) of
array dr i nks.

{ "drinks[0,1]" : "soda" }

And this QBE does not match any of the sample documents because they do not have
"soda" as the second or third array element (position 1 or 2).

{ "drinks[1 to 2]" : "soda" }

If you do not specify an array step then [*] is assumed, which matches any array

element —* acts as a wildcard. For example, if the value of field dr i nks is an array
then the following QBE matches if the value of any array element is the string "t ea":

{"drinks" : "tea"}

This QBE thus matches sample documents 1 and 2. An equivalent QBE that uses the
wildcard explicitly is the following:

{"drinks[*]" : "tea"}

See Also:

* SODA Paths (page 1-29)

¢ Sample JSON Documents (page 1-23)

1.3.15.3 Using QBE Basic Field Operators

A query-by-example (QBE) basic field operator tests whether a given field satisfies a
given set of criteria. A basic field operator is either $exi st s or a comparison operator.

1-24 SODA for Java Developer's Guide

Using SODA for Java

A comparison operator compares the value of a field with one or more other values.
The comparison operators are $eq, $ne, $gt , $gt e, $l t e, $st art sWt h, $r egex,
$in,$ni n,and $al | .

One of the simplest and most useful filter specifications tests a field for equality to a
specific value. For example, this filter specification matches any document that has a
field name whose value is " Jason":

{ "name" : { "$eq" : "Jason" } }
For convenience, you can omit QBE operator $eq. This scalar-equality filter
specification is thus equivalent to the preceding one, which uses $eq:

{ "name" : "Jason" }

Both of the preceding filter specifications match sample document 1.

$eq is an example of a QBE comparison operator. You can combine multiple
comparison operators in the object that is the value of a single QBE field.

For example, the following QBE uses comparison operators $gt and $I t . It matches
sample document 2, because that document contains an age field with a value (50)
that is both greater than ($gt) 45 and less than ($I t) 55.

{ "age" : { "$gt" : 45, "S$It" : 551} }

See Also:
e Table 1-3 (page 1-34)

¢ Basic Field Clause (page 1-33) for more information about basic field
clauses

* Sample JSON Documents (page 1-23)

1.3.15.4 Using QBE Logical Combining Operators

You use the query-by-example (QBE) logical combining operators, $and, $or, and
$nor , to combine conditions to form more complex QBEs. Each accepts an array of
conditions as its argument.

QBE logical combining operator $and matches a document if each condition in its
array argument matches it. For example, this QBE matches sample document 1,
because that document contains a field name whose value starts with " Ja" , and it
contains a field dr i nks whose valueis "t ea".

{"$and" : [{"nane" : {"$startsWth" : "Ja"}}, {"drinks" : "tea"}]}

Often you can omit operator $and. For example, the following query is equivalent to
the previous one:

{"name" : {"$startsWth" : "Ja"}, "drinks" : "tea"}

QBE logical combining operator $or matches a document if at least one of the

conditions in its array argument matches it.

For example, the following QBE matches sample documents 2 and 3, because those
documents contain a field zi p under a field addr ess, where the value of zi p is less
than 94000, or a field dr i nks whose value is " soda", or both:

SODA for Java 1-25

Using SODA for Java

{"$or" : [{"address.zip" : {"$le" : 94000}}, {"drinks" : "soda"}]}

QBE logical combining operator $nor matches a document if no condition in its array
argument matches it. (Operators $nor and $or are logical complements.)

The following query matches sample document 1, because in that document there is
neither a field zi p under a field addr ess, where the value of zi p is less than 94000
nor a field dr i nks whose valueis " soda":

{"$nor" : [{"address.zip" : {"$le" : 94000}}, {"drinks" : "soda"}]}

Each element in the array argument of a logical combining operator is a condition.

For example, the following condition has a single logical combining clause, with
operator $and. The array value of $and has two conditions: the first condition
restricts the value of field age. The second condition has a single logical combining
clause with $or, and it restricts either the value of field nane or the value of field
dri nks.

{ "$and" : [{ "age" : {"$gte" : 60} },
{ "$or" : [{"name" : "Jason"},
{"drinks" : {"$in" : ["tea", "soda"]}}] }]}

¢ The condition with the comparison for field age matches sample document 3.

¢ The condition with logical combining operator $or matches sample documents 1
and 3.

® The overall condition matches only sample document 3, because that is the only
document that satisfies both the condition on age and the condition that uses $or .

This condition has two conditions in the array argument of operator $or . The first of
these has a single logical combining clause with $and, and it restricts the values of
fields name and dr i nks. The second has a single logical combining clause with $nor,
and it restricts the values of fields age and nane.

{ "$or" : [{ "$and" : [{"name" : "Jason"},
{"drinks" : {"$in" : ["tea", "soda"]}}] },
{ "$nor" : [{"age" : {"S$It" : 65}},
{"name" : "Jason"}] }]}

¢ The condition with operator $and matches sample document 1.
* The condition with operator $nor matches sample document 3.

® The overall condition matches both sample documents 1 and 3, because each of
these documents satisfies at least one condition in the $or argument.

See Also:

* Logical Clause (page 1-37)

¢ Omitting $and (page 1-37)

e Sample JSON Documents (page 1-23)

1-26 SODA for Java Developer's Guide

Using SODA for Java

1.3.15.5 Using Logical Operator $not

You use query-by-example (QBE) logical operator $not to negate the value of its
operand, which is either a single existence or comparison criterion. When the operand
criterion is true, the $not clause evaluates to false; when the criterion is false, $not
evaluates to true.

For example, this QBE matches sample documents 1 and 3: document 1 has a field
matching path addr ess. zi p and whose value is not " 90001", and document 3 has
no field matching path addr ess. zi p.

{"address.zip" : {"$not" : { "$eq" : "90001" }}}

See Also:
* Logical Clause (page 1-37)
¢ Sample JSON Documents (page 1-23)

1.3.15.6 Using Nested Conditions

You can use a query-by-example (QBE) with a nested condition to match a document
that has a field with an array value with object elements, where a given object of the
array satisfies multiple criteria.

The following condition matches documents that have both a ci t y value of " Mono
Vi sta" and a st at e value of" CA" in the sarme object under array addr ess.

{"address" : { "city" : "Mno Vista", "state" : "CA'}}

It specifies that there must be a parent field addr ess, and if the value of that field is
an array then at least one object in the array must have a ci t y field with value " Mono
Vi st a" and a st at e field with value " CA" . Of the three sample documents, this QBE
matches only sample document 1.

The following QBE also matches sample document 1, but it matches sample document
2 as well:

{"address.city" : "Mno Vista", "address.state" : "CA"}

Unlike the preceding QBE, nothing here constrains the city and state to belong to the
same address. Instead, this QBE specifies only that matching documents must have a
ci ty field with value " Mono Vi st a" in some object of an addr ess array and a

st at e field with value " CA" in some object of an addr ess array. It does not specify
that fields addr ess. ci t y and addr ess. st at e must reside within the same object.

See Also:

¢ Nested-Condition Clause (page 1-38)

* Sample JSON Documents (page 1-23)

SODA for Java 1-27

Using SODA for Java

1.3.15.7 Using QBE Operator $id

Other query-by-example (QBE) operators generally look for particular JSON fields
within documents and try to match their values. Operator $i d instead matches
document keys. You use operator $i d in the outermost condition of a QBE.

Example 1-27 (page 1-28)shows three QBEs that use $i d.

Note:

As an alternative to using a $i d condition in a SODA for Java QBE, you can
use Or acl eQper at or Bui | d method key() or keys() to specify document
keys in conjunction with method filter().

See Also:

¢ Finding Documents in Collections with SODA for Java (page 1-15)
¢ ID Clause (page 1-39)

Example 1-27 Using $id To Find Documents That Have Given Keys

/1 Find the unique document that has key "keyl".
{"$id" : "keyl"}

/1 Find the docunents that have any of the keys "keyl", "key2", and "key3".
{"$id" : ["keyl", "key2", "key3"]}

/1 Find the docunents that have at |east one of the keys "keyl" and "key2",
/1 and that have an object with a field address.zip whose value is at |east 94000.
{"$and" : [{$id : ["keyl", "key2']},

{"address.zip" : { "$gte" : 94000 }}]}

1.3.15.8 Using QBE Operator $orderby
Query-by-example (QBE) operator $or der by is described.
It sorts query results in ascending or descending order.

The following QBE specifies the order of fields age and sal ary. A value of 1 specifies
ascending order for age. A value of -2 specifies descending order for sal ary. Sorting
is done first by age and then by sal ary, because the absolute value of 1 is less than
the absolute value of -2.

{ "$query" : { "age" : { "$gt" : 40} },
"$orderby” : { "age" : 1, "salary" : -2} }

When you use operator $or der by in a filter specification together with one or more
filter conditions, you must wrap those conditions with operator $quer y. In the
preceding query, the returned documents are restricted to those that satisfy a filter
condition that specifies that field age must have a value greater than 40.

See Also:

Orderby Clause Sorts Selected Objects (page 1-32)

1-28 SODA for Java Developer's Guide

SODA Paths

1.3.15.9 Querying With a Filter Specification

You can query a collection for documents that match a particular filter specification
(query-by-example, or QBE). You do this by passing a JSON Or acl eDocunent that
represents the QBE to method Or acl eCperati onBuil der filter().

Example 1-28 (page 1-29) illustrates this.
Example 1-28 Executing a Filter Specification

Oracl ebDat abase db = ...

/1 OracleCol lection - assune it is enpty
O acleCol l ection col = ...

/] Insert into the collection a docunent with field "nane" set to "Jason"
/I and field "location" set to "California".
Oracl eDocument doc =
db. creat eDocument Front ri ng("{\"name\" : \"Jason\",
\"location\" : \"California\"}");
col .insert(doc);

/1 Insert another document into the collection with field "nane" set to "Mry",
/1 and field "location" set to "California".
doc = db. creat eDocunent FronString("{\"name\" : \"Mry\",
\"location\" : \"California\"}");
col .insert(doc);

Il Create a filter specification for matching all docunents with
/1 the field "name" set to "Jason"
Oracl eDocunent filterSpec =

db. creat eDocument FronBtri ng("{\"name\" : \"Jason\"}");

/1 Run the filter specification
OacleCursor ¢ = col.find().filter(filterSpec).getCursor();

/1 The cursor returns a single document with this content:
[1 { "name" : "Json", "location" : "California" } --
/1 the first docunent inserted above.

while (c.hasNext())

{

Oracl eDocunent ¢ = c.next();
}
c.close();

1.4 SODA Paths

SODA specifications contain paths, each of which targets a value in a JSON document.
A path is composed of a series of steps.

Note:

In paths, you must use strict JSON syntax. That is, you must enclose every
nonnumeric value in double quotation marks ("). For information about strict
and lax JSON syntax, see Oracle Database [SON Developer’s Guide.

SODA for Java 1-29

SODA Paths

The characters used in path steps are of two kinds: syntactic and allowed. Syntactic
characters have special syntactic meaning for JSON. They are the following:

® Period (.), which separates a parent-object field name from a child-object field
name.

e Brackets ([and]), which are array delimiters.
e Comma (,), which separates array elements or index components.

* Wildcard (*), which is a placeholder. It matches any index in an array step and any
field name in a field step.

Allowed characters are those that are not syntactic.
There are two kinds of steps in a path: field steps and array steps.

A field step is one of the following;:
* The wildcard character * (by itself)
* A sequence of allowed characters — for example, cat

* A sequence of characters (allowed or syntactic) enclosed in backquote characters (%)
— for example, dog” and " cat *dog’

Within a field step that is enclosed in backquote characters, a syntactic character does
not act syntactically; it is treated literally as an ordinary character. You must enclose
any field step that contains a syntactic character in a pair of backquote characters, if
you intend for the syntactic character to be treated literally.

Because all of the characters in dog are allowed, backquote characters are optional in
“dog’ . Because each of the following field steps contains a syntactic character, they
must be enclosed in backquote characters:

“cat.dog
“cat[dog]”
“cat, dog
“cat*dog

In " cat *dog" the asterisk does not act as a wildcard. Because it is escaped by
backquotes, it acts as an ordinary character. Butin the path { "*.b" : 42 }, the
unescaped asterisk acts as a wildcard; it is a placeholder for a field name. Similarly, the
unescaped period also acts syntactically.

If a step that you enclose in backquote characters contains a backquote character, then
you must represent that character using two consecutive backquote characters. For
example: * Cust omer " °s Conment " .

A period (.) must be followed by a field step. After the first step in a path, each field
step must be preceded by a period.

An array step is delimited by brackets ([and]). Inside the brackets can be either:
® The wildcard character * (by itself)
* One or more of these index components:

— A ssingle index, which is an integer greater than or equal to zero

— Anindex range, which has this syntax:

X toy

1-30 SODA for Java Developer's Guide

SODA Filter Specifications (QBEs)

X and y are integers greater than or equal to zero, and X is less than or equal to
y. There must be at least one whitespace character between x and t 0 and
betweent o andy.

Multiple components must be separated by commas (,). In a list of multiple
components, indexes must be in ascending order, and ranges cannot overlap.

For example, these are valid array steps:

The following are not valid array steps:

[*, 6]
[3, 2, 1]
[3to 1]
[

1to3, 2to 4]

1.5 SODA Filter Specifications (QBEs)

You can select JSON documents in a collection by pattern-matching.

A filter specification, also known as a query-by-example (QBE) or simply a filter, is a
SODA query that uses a pattern expressed in JSON. Some SODA operations use a
filter specification to select all [SON documents in a collection that satisfy it, meaning
that the filter specification evaluates to true for only those objects of the collection. A
filter specification thus specifies characteristics that the documents that satisfy it must
possess.

A filter specification pattern can use QBE operators, which are predefined JSON fields
whose names start with $. The JSON value of an operator is called its operand or its
argument.!

Although a SODA operator is itself a JSON field, for ease of exposition in the context
of filter specification descriptions, the term field refers here to a JSON field that is not a
SODA operator. (In the context of a QBE, "field" is often used informally to mean "path
to a field".)

Note:

You must use strict JSON syntax in a filter specification. That is, you must
enclose every nonnumeric value in double quotation marks. This includes
QBE operators. For information about strict and lax JSON syntax, see Oracle
Database JSON Developer’s Guide.

A filter specification is a JSON object. There are three kinds of filter specification:
¢ Empty filter: { }. An empty filter matches all objects in a collection.
¢ Composite filter.

e Filter-condition filter.

1 A syntax error is raised if the argument to a QBE operator is not of the required type (for example, if $gt is
passed an argument that is not a string or a number).

SODA for Java 1-31

SODA Filter Specifications (QBEs)

A filter specification (QBE) can appear only at the top (root) level of a query. However,
a filter condition can be used either on its own, as a filter-condition filter (a QBE), or at
a lower level, in the query clause of a composite filter.

Note:

QBE is not supported on a heterogeneous collection, that is, a collection that
has the media type column. Such a collection is designed for storing JSON and
non-JSON content.

See Also:

Composite Filters (page 1-32)

Filter Conditions (page 1-33)

Media Type Column Name (page 1-55)

1.5.1 Composite Filters

A composite filter specification (query-by-example, or QBE) can appear only at the top
level. That is, you cannot nest a composite filter inside another composite filter or
inside a filter condition.

A composite filter consists of one or both of these clauses:

¢ Query clause

It has the form $query fi | t er _condi ti on. See Filter Conditions (page 1-33).

* Orderby clause

It has the form $or der by or der by_spec. See Orderby Clause Sorts Selected
Objects (page 1-32).

Neither clause can appear more than once.
The following composite filter contains both clauses:

{ "$query" : { "salary" : { "gt" : 10000 } },
“$orderby" : { "age" : -1, "zipcode" : 2} } }

In this example, the query clause selects documents that have a salary field whose
value is greater than 10,000, and the orderby clause sorts the selected documents first
by descending age and then by ascending zip code.

1.5.1.1 Orderby Clause Sorts Selected Objects

A filter specification (query-by-example, or QBE) with an orderby clause returns the
selected JSON documents in sorted order.

This is the syntax of an orderby clause:

"$orderby" : { fieldl : directionl, field2 : direction2, ... }

The value of operator $or der by is a JSON object with one or more members.

Eachfi el d is a string that is interpreted as a path from the root of the candidate
object.

1-32 SODA for Java Developer's Guide

SODA Filter Specifications (QBEs)

Each di recti on isanon-zero integer. It sorts the returned documents by the fi el d
value in ascending or descending order, depending on whether the value is positive or
negative, respectively.

The fields in the $or der by operand are sorted in the order of their magnitudes
(absolute values), smaller magnitudes before larger ones. For example, a field with
value -1 sorts before a field with value 2, which sorts before a field with value 3.

The following filter specification selects objects in which field sal ary has a value
greater than 10,000 and less than or equal to 20,000. It sorts the objects first in
descending order by age and then in ascending order by zi pcode.

{ "$query" : { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
"$orderby" : { "age" : -1, "zipcode" : 2} }

The following SQL SELECT statement fragment is analogous:

VWHERE (sal ary > 10000) AND (salary <= 20000)
ORDER BY age DESC, zipcode ASC

If the absolute values of two or more sort directions are equal then the order in which
the fields are sorted is determined by the order in which they appear in the serialized
JSON content that you use to create the JSON document.

Oracle recommends that you use sort directions that have unequal absolute values, to
precisely govern the order in which the fields are used, especially if you use an
external tool or library to create the JSON content and you are unsure of the order in
which the resulting content is serialized.

See Also:

SODA Paths (page 1-29), for information about path strings

1.5.2 Filter Conditions

A filter condition can be used either on its own, as a filter specification, or at a lower
level, in the query clause of a composite filter specification.

A filter condition, sometimes called just a condition, consists of one or more of these
clauses:

* Basic Field Clause (page 1-33)
* Logical Clause (page 1-37)
* Nested-Condition Clause (page 1-38)

* Special-Criterion Clause (page 1-39)

A filter condition is true if and only if all of its clauses are true. A filter condition
cannot be empty.

1.5.2.1 Basic Field Clause
A basic field clause specifies that a given field must satisfy a given set of criteria.

It can take the following forms:

 Existence clause: a field” followed by an existence criterion, which is a JSON object
with operator $exi st s followed its operand (argument), a scalar. A JSON scalar is

SODA for Java 1-33

SODA Filter Specifications (QBEs)

a value other than an object or an array; that is, it is a JSON number, string, t r ue,
fal se,ornul | .

An existence clause tests whether the field exists. It matches a document only if one
of these is true:

— The field exists and the operand is any scalar value except f al se, nul |, or 0.

— The field does not exist and the operand is f al se, nul | , or 0.

For example, this existence clause tests whether there is a document with field
addr ess. zi p:

"address.zip" : { "$exists" : true }

Scalar equality clause: a field followed by a scalar value.

A scalar equality clause tests whether the value of the field is equal to the scalar
value. It is equivalent to a comparison clause for the same field that tests the same
value using $eq.

For example, this scalar equality clause tests whether the field sal ar y has the
value 10000:

"salary" : 10000

It is equivalent to the following comparison clause:

"salary" : { "$eq" : 10000 }

Comparison clause: a field followed by a JSON object containing one or more
comparison criteria. A comparison criterion is a comparison operator followed by

its operand. (The operators appear as JSON field names and the field values are the
operands.)

The comparison operators are $eq, $ne, $gt , $l t , $gt e, $l te, $start sWth,
$regex, $in,$nin,and $al | .

A comparison clause tests whether the value of the field satisfies all of the
comparison criteria.

For example, this comparison clause has two criteria. The first tests whether field
age is greater than 18; the second tests whether it is less than or equal to 45:

"age" : { "$gt" : 18, "$lte" : 45}

Table 1-3 (page 1-34) describes the comparison operators. See Sample JSON
Documents (page 1-23) for the documents used in column Example.

Table 1-3 Query-By-Example (QBE) Comparison Operators

Operator

Description

Operand

Example

$eq

Matches document
only if field value
equals argument
value.

JSON scalar.

{"name" : { "$eq" : "Jason" }}

matches sample document 1.

2 A field here is any JSON field that is not an operator. And as always, operators and fields must be enclosed in
double quotation marks (") when used in SODA.

1-34 SODA for Java Developer's Guide

SODA Filter Specifications (QBEs)

Table 1-3 (Cont.) Query-By-Example (QBE) Comparison Operators

least one value in the
argument array.

Operator Description Operand Example
$ne Matches document JSON scalar. . C o we .
only if field value {"name” : { "$ne" : "Jason" }}
does not equal
argument value or matches sample documents 2 and 3.
there is no such field
in the document.
$gt Matches document JSON e
only if field value is number or {"age” : { "$gt" : 45 }}
greater than argument | string.
value. matches sample document 2.
$lt Matches document JSON e e
only if field value is number or {"age” : { "SIt" : 50 }}
less than argument string.
value. matches sample document 1.
$gte Matches document JSON e -
only if field value is number or {"age” @ { "Sgte” @ 45 }}
greater than or equal string.
to argument value. matches sample documents 1, 2, and 3.
$lte Matches document JSON o .
only if field value is number or {"age” : { "Slte" : 45 }}
less than or equal to string.
argument value. matches sample document 1.
$start sW | Matches document JSON string.
th only if field value {"name” : {"$startswth" : "J"}}
starts with argument
value. matches sample document 1.
$regex Matches document SQL regular . C e e
only if field value expression, as {"name” : { "S$regex” : ".*son"}}
matches argument a JSON
regular expression. string. matches sample document 1.
See Oracle
Database SQL
Language
Reference.
$in Matches document Non-empty . . .
only if field exists and | JSON array {"address.zip" : { "$in" : [94088, 90001] }}
its value equals at of scalars.

matches sample documents 1 and 2.

SODA for Java 1-35

SODA Filter Specifications (QBEs)

Table 1-3 (Cont.) Query-By-Example (QBE) Comparison Operators

true:

Field value is an
array that contains
all values in the
argument array.
Field value is a
scalar value and
the argument
array contains a
single matching
value.

of scalars.!

Operator Description Operand Example
$nin Matches document Non-empty . —_— o
only if one of these is | JSON array {"address.zip" : { "$nin" : [90001] }}
true: of scalars.! wch led ts 1 and 2
« Field exists, but its matches sample documents 1 and 2.
value is not equal
to any value in the
argument array.
¢ Field does not
exist.
$al | Matches document Non-empty o . . W W
only if one of these is | JSON array | {"drinks” = { "$all” © ["soda”, "tea']}}

matches sample document 2.
{"drinks": { "$all" : ["tea"]}}

matches sample documents 1 and 2.

1-36 SODA for Java Developer's Guide

1 A syntax error is raised if the array does not contain at least one element.

Note:

When a path that does not end in an array step uses a comparison operator or
$not applied to a comparison clause, and the path targets an array, the test
applies to each element of the array.

For example, the QBE {"ani mal " : {"$eq" : "cat"}} matches the
JSON data { " ani mal " ["dog", "cat"]},eventhough"cat" isan
array element. The QBE {"ani mal " : {$not : {"$eq" : "frog"}}}

matches the same data, because each of the array elements is tested for
equality with " f r og" and this test fails. (See “Logical Clause (page 1-37)” for
information about operator $not .)

See Also:

Basic Field Clause (page 1-33)

Nested-Condition Clause (page 1-38)

* Composite Filters (page 1-32) for information about a query clause

Sample JSON Documents (page 1-23)

SODA Filter Specifications (QBEs)

1.5.2.2 Logical Clause

A logical clause is either a $not clause or logical combining clause.

* A $not clause is a field followed by a JSON object that has operator $not followed
by its operand. The operand for $not is a single existence or comparison criterion.

A $not clause logically negates the value of the $not operand. When the operand
criterion is true, the $not clause evaluates to false; when the criterion is false, $not
evaluates to true.

For example, the following $not clause matches documents that have no field
addr ess. zi p, as well as documents that have such a field but whose value is a
scalar other than " 90001" or an array that has no elements equal to * 90001" :

"address.zip" : {"$not" : { "$eq" : "90001" }}

In contrast, the following comparison clause has the complementary effect: it
matches documents that have a field addr ess. zi p whose value is either the
scalar " 90001" or an array that contains that scalar value.

"address.zip" : { "$eq" : "90001"}}

¢ Alogical combining clause is a logical operator —$and, $or , or $nor —followed
by a non-empty array of one or more filter conditions.?

This logical combining clause uses operator $or .

"$or" [{ "nanme" : "Joe" }, { "salary" : 10000 }]

The following logical combining clause uses operator $and. Its array operand has
two filter conditions as its members. The second of these is a condition with a
logical combining clause that uses operator $or .

"$and" : [{"age" : {"$gte" : 60}},
{"$or" : [{"name" : "Jason"}, {"drinks" : "tea"}]}]

1.5.2.2.1 Omitting $and

Sometimes you can omit the use of $and.

A filter condition is true if and only if all of its clauses are true. And a comparison
clause can contain multiple comparison criteria, all of which must be true for the
comparison as whole to be true. In each of these, logical conjunction (AND) is implied.
Because of this you can often omit the use of $and, for brevity.

This is illustrated by Example 1-29 (page 1-38) and Example 1-30 (page 1-38), which
are equivalent in their effect. Operator $and is explicit in Example 1-29 (page 1-38)
and implicit (omitted) in Example 1-30 (page 1-38).

The filter specifies objects for which the name starts with "Fred" and the salary is
greater than 10,000 and less than or equal to 20,000 and either addr ess. city is
"Bedrock" or addr ess. zi pcode is 12345 and marri ed ist r ue.

A rule of thumb for $and omission is this: If you omit $and, make sure that no field or
operator in the resulting filter appears multiple times at the same level in the same
object.

This rule precludes using a QBE such as this, where field sal ar y appears twice at the
same level in the same object:

3 A syntax error is raised if the array does not contain at least one element.

SODA for Java 1-37

SODA Filter Specifications (QBEs)

{ "salary" : { "$gt" : 10000 }, "age" : { "S$gt" : 40 },
"salary" : { "$It" : 20000 } }

And it precludes using a QBE such as this, where the same comparison operator,
$r egex, is applied more than once to field nane in the same comparison:

{ "name" : { "$regex" : "son", "$regex" : "Jas" } }

The behavior here is not that the field condition is true if and only if both of the
$r egex criteria are true. To be sure to get that effect, you would use a QBE such as
this one:

{ $and : [{ "name" : { "S$regex" : "son" }, { "name" : { "$regex" : "Jas" }] }

If you do not follow the rule of thumb for $and omission then only one of the
conflicting conditions or criteria that use the same field or operator is evaluated; the
others are ignored, and no error is raised. For the sal ary example, only one of the
sal ary comparison clauses is evaluated; for the name example, only one of the

$r egex criteria is evaluated. Which one of the set of multiple conditions or criteria
gets evaluated is undefined.

Example 1-29 Filter Specification with Explicit $and Operator

{ "$and" : [{ "nane" o { "$startsWth" : "Fred" } },

{ "salary" : { "$gt" : 10000, "$lte" : 20000 } },
{ "$or" : [{ "address.city" . "Bedrock" },
{ "address.zipcode" : 123451}] },

{ "married" : true }]}

Example 1-30 Filter Specification with Implicit $and Operator

{ "nanme" o { "$startsWth" . "Fred" },
"salary" : { "$gt" : 10000, "$lte" : 20000 },
“$or" o [{ "address.city" . "Bedrock" },
{ "address. zipcode" : 123451}],
"married" : true}

1.5.2.3 Nested-Condition Clause

A nested-condition clause consists of a parent field followed by a single condition. All
fields contained in the condition are scoped to the parent field.

parent _field : condition

Note:

Since the condition of a nested-condition clause follows a field, it cannot
contain a special-criterion clause. The latter can occur only at root level.

For example, suppose that field addr ess has child fields ci t y and st at e. The
following nested-condition clause tests whether field addr ess. ci t y has the value
"Bost on" and field addr ess. st at e has the value " MA":

"address" : { "city" : "Boston", "state" : "M" }

Similarly, this nested-condition clause tests whether the value of addr ess. ci ty
starts with Bos and addr ess. st at e has the value " MA" :

"address" : { "city" : { "$startsWth : "Bos" }, "state" : "MA" }

1-38 SODA for Java Developer's Guide

SODA Filter Specifications (QBEs)

Suppose that you have this document:

{ "address" : [{ "city" : "Boston', "state" : "M\ },
{ "city" : "Los Angeles", "state" : "CA" }]}

The following query matches each path in the document independently. Each object
element of an addr ess array is matched independently to see if it has a city value of
" Bost on" or a state value of " CA".

{ "address.city" : "Boston", "address.state" : "CA" }

This query without a nested condition thus matches the preceding document, which
has no single object with both city " Bost on" and state " CA".

The following query, with a nested-condition clause for parent field addr ess, does
not match the preceding document, because that document has no single object in an
addr ess array with both a field ci t y of value " Bost on" and a field st at e of value

{ "address" : { "city" : "Boston", "state" : "CA" } }

See Also:

Special-Criterion Clause (page 1-39)

1.5.2.4 Special-Criterion Clause

A special-criterion clause is used only in a root-level condition, that is, a condition
used in a composite filter or in a filter-condition filter.

Currently the only special-criterion clause is the ID clause.

1.5.2.4.1 ID Clause

Other query-by-example (QBE) operators generally look for particular JSON fields
within documents and try to match their values. An ID clause, which uses operator
$i d, instead matches document keys.

A document key uniquely identifies a given document. It is metadata, like the creation
timestamp, last-modified timestamp, and version. It pertains to the document as a
whole and is not part of the document content.

The syntax of an ID clause is QBE operator $i d followed by either a scalar key
(document identifier) or a non-empty array of scalar keys.* The scalar key must be
either an integer or a string. The array elements must be either all integers or all
strings. For example:

"$id" o "USA"

"$id" : [1001, 1002, 1003]

You can use operator $i d only in the outermost condition of a QBE. More precisely, if
a QBE also uses other operators in addition to $i d, then the outermost condition must
have operator $and, and the sole occurrence of a $i d condition must be an element of
the array argument to that $and occurrence.

Example 1-31 (page 1-40) illustrates this. It finds documents that have at least one of
the keys key1 and key?2 and that have a col or field with value "r ed" .

4 A syntax error is raised if the array does not contain at least one element.

SODA for Java 1-39

SODA Collection Metadata Caching

Example 1-31 Use of Operator $id in the Outermost QBE Condition
{ "$and" : [{ $id: ["keyl", "key2"] }, { "color" : "red" }] }

1.6 SODA Collection Metadata Caching

SODA collection metadata is stored persistently in the database, just like collection
data. It is fetched transparently when needed, to perform collection operations.
Fetching metadata from the database carries a performance cost. You can cache
collection metadata in clients, to improve performance by avoiding database access to
retrieve the metadata.

These are the main use cases for collection metadata caching;:
¢ Listing a collection, then opening one or more of the collections listed.
¢ Creating a collection, then opening it.

* Reopening a collection.
In all of these cases, cached metadata can be used to open the collection.

A collection metadata cache can be shared by all of the Or acl eDat abase objects that
are obtained from a given Or acl eRDBMSC! i ent object, or it can be local to a single
Or acl eDat abase object. Both kinds of caching are disabled by default.

If both local and shared caches are enabled for the same Or acl eDat abase object,
entry lookup proceeds as follows:

1. The local cache is checked for an entry pertaining to a given collection used by the
database object.

2. Ifnot found in the local cache, the shared cache is checked for an entry for the
collection.

3. If an entry for the collection is found in neither cache then the database is accessed
to try to obtain the its metadata.

1.6.1 Enabling Collection Metadata Caching

Collection metadata caching is disabled by default. You can use constructor
O acl eRDBMBC i ent (Properties props) toenable shared or local collection
metadata caching.

Parameter pr ops here is a Propert i es instance that you initialize with one or both
of the following properties:

¢ Property or acl e. soda. shar edMet adat aCache with value "t r ue" : enable the
shared cache

* Property or acl e. soda. | ocal Met adat aCache with value "t r ue": enable the
local cache

Example 1-32 (page 1-40) illustrates this; it enables both shared and local caching.
Example 1-32 Enabling Collection Metadata Caching

Properties props = new Properties();
props. put ("oracl e. soda. shar edMet adat aCache", "true");
props. put ("oracl e. soda. | ocal Met adat aCache", "true")
Oracl eRDBVBC i ent ¢l = new Oracl eRDBMSC i ent (props)

1-40 SODA for Java Developer's Guide

SODA Collection Configuration Using Custom Metadata

1.6.2 Shared Collection Metadata Cache

Each SODA client (Or acl eRDBMSCI i ent object) is optionally associated with a
collection metadata cache that records metadata for all collections

(Oracl eCol | ecti on objects) that are created for all Or acl eDat abase objects
created from that client. The cache is released when its associated client is released.

The number of entries in a shared cache is limited to 10,000 entries (100 database
schemas times 100 collections per schema). A shared cache uses a least-recently-used
(LRU) replacement policy: the least recently used entry is replaced by the addition of a
new entry, when the cache is full (it has 10,000 entries).

A shared metadata cache requires locking to avoid access conflict, which can affect
performance negatively because it limits concurrency.

1.6.3 Local Collection Metadata Cache

Each Or acl eDat abase object is optionally associated with a local collection metadata
cache. It records metadata only for collections that are created for that

Or acl eDat abase object. A local cache is released when its associated

Or acl eDat abase object is released.

There is no limit on the number of entries for a local cache — entries are never evicted.
The number of entries continues to grow as new collections are created for the given
database object.

The lack of an eviction policy for local metadata caches means that cached collection
metadata is always available; once cached, the database need never be accessed to
obtain it.

With local caching, because there is no sharing, using different database objects to
access the same collection can result in more round trips and more data replication
than is the case for shared caching.

Unlike a shared metadata cache, a local cache requires no locking.

Caution:

Because the number of entries in the local cache is unbounded, Oracle does
not recommend using the local cache if a particular Oracle Database object is
used to create a large number of collections, as it could result in running out of
memory.

1.7 SODA Collection Configuration Using Custom Metadata

SODA collections are highly configurable. You can use custom metadata, which differs
from the metadata that is provided by default.

However, Oracle recommends against using custom metadata without a compelling
reason. Doing so requires familiarity with Oracle Database concepts, such as SQL data
types (described in Oracle Database SQL Language Reference). SODA collections are
implemented on top of Oracle Database tables (or views). Therefore, many collection
configuration components are related to the underlying table configuration.

Reasons to use custom metadata include:

* To configure SecureFiles LOB storage.

SODA for Java 1-41

SODA Collection Configuration Using Custom Metadata

¢ To configure a collection to store documents other than JSON (a heterogeneous
collection).

¢ To map an existing Oracle RDBMS table or view to a new collection.
¢ To specify that a collection mapping to an existing table is read-only.

e To use a VARCHAR2 column for JSON content, and to increase the default
maximum length of data allowed in the column.

You might want to increase the maximum allowed data length if your database is
configured with extended data types, which extends the maximum length of these
data types to 32767 bytes. For more information about extended data types, see
Oracle Database SQL Language Reference.

Two methods for creating collections are available on interface
Or acl eDat abaseAdmi n (accessed by invoking method admi n() on an
Or acl eDat abase object):

createCol lection(String collectionNane);
createCol lection(String collectionNane, OracleDocunent col | ectionMetadata);

The first method, which accepts only one argument, creates a collection with the
default metadata. The default metadata specifies database schema name, table name
(for the table storing the collection), five table columns (key, content, version, last-
modified timestamp, and creation timestamp), and the details of these table columns.
Each table column is represented by a field with a JSON object as value. That object
contains additional details about the column—name, SQL type, and so on. (See
Example 1-33 (page 1-42).)

The second method, which accepts two arguments, lets you provide custom collection
metadata in the form of a JSON Or acl eDocunent object.

1.7.1 Getting the Metadata of an Existing Collection

O acl eCol | ecti onAdm n method get Met adat a() returns the JSON metadata
document for a collection.

col I ecti onName. admi n(). get Met adat a();

Example 1-33 (page 1-42) shows the result of calling method

get Content AsStri ng() on the metadata document for a collection with the default
configuration that was created using Or acl eDat abaseAdni n method

createCol l ection(String collecti onName).

Example 1-33 getMetadata Output for Collection with Default Configuration

{
"schemaNanme" : "nySchemaName",
"tabl eName" : "nyTabl eNane",
"keyCol um" :
{
"name” : "ID',

"sql Type" : "VARCHAR2",
"maxLength" : 255,
"assi gnment Met hod" : "UU D'

}

{

ont ent Col um" :

"name" : "JSON_DOCUMENT",
"sql Type" : "BLOB",

1-42 SODA for Java Developer's Guide

SODA Collection Configuration Using Custom Metadata

"conpress" : "NONE',
"cache" : true,
“encrypt" : "NONE',
"validation" : "STRICT"
}

{
"name" @ "VERSION',

"type":"String",
"met hod" : " SHA256"

ersi onCol um" :

H
"1 ast Modi fi edCol um” :

{
"nane": " LAST_MODI FI ED'
}

{
}

reationTi neCol um":
"nanme": " CREATED_ON'

eadOnl y": fal se
}

1.7.2 Creating Custom Metadata for a Collection

Collection metadata is represented as a JSON Or acl eDocunent instance. You can
create such an instance directly, but Oracle recommends that you instead use

Or acl eRDBVSMet adat aBui | der, which you obtain by invoking

Or acl eRDBMBO i ent method cr eat eMet adat aBui | der () .

Method cr eat eMet adat aBui | der () returns an Or acl eRDBVSMet adat aBui | der
instance that is preloaded with the default collection metadata. You can modify this
preloaded metadata by calling Or acl eRDBMSMet adat aBui | der methods that create
custom metadata.

These methods correspond to different collection metadata components. You can
customize these components by invoking builder methods in a chained manner. At the
end of the chain, you invoke method bui | d() to create collection metadata as a J[SON
Oracl eDocumnent object.

Example 1-34 (page 1-44) illustrates this; it uses Or acl eRDBMSMet adat aBui | der to
create a collection that has custom metadata: no creation time column, a media type
column, and a non-default version column method. It first uses method

cr eat eMet adat aBui | der () to create a metadata builder object. It then invokes
builder methods on that object to define the specific metadata to use, and it invokes
bui | d() tocreateacol | ecti onMet adat a object with that metadata. Finally, it
creates a new collection that has this metadata.

In this case, the metadata that is specified, and the methods that define it, are as
follows:

Method Metadata

creationTi meCol umNa There is to be no creation time column. By default, the column
me() is present. A nul | value here specifies that it is absent.

nedi aTypeCol umName(The media type column is to be named
) MY_MEDI A_TYPE_COLUMN. By default, there is no media type
column.

SODA for Java 1-43

SODA Collection Configuration Using Custom Metadata

Method Metadata

ver si onCol utmMet hod(

)

method, SHA256.

Example 1-34 Creating a Collection That Has Custom Metadata

O acl eRDBMSA i ent ¢l = new Oracl eRDBVSO i ent ();
O acl eRDBVSMet adat aBui | der b = cl . creat eMet adat aBui | der ();
O acl eDat abase db = cl . get Dat abase(j dbcConnecti on);

/1 Create custom netadata
O acl eDocunent col | ectionMetadata = b. creationTi meCol umName(nul |).

medi aTypeCol urmNane(" MY_MEDI A TYPE_COLUMN') .
ver si onCol umhMet hod("UUI D").
bui Id();

/| Create a new col lection with the specified custom netadata
db. admin(). createCol | ection("col | ecti onNane", col | ectionMetadata);

1.7.3 Collection Metadata Components

Collection metadata is composed of multiple components.

* Schema (page 1-45)

Table or View (page 1-45)

Key Column Name (page 1-46)

Key Column Type (page 1-46)

Key Column Max Length (page 1-47)

Key Column Assignment Method (page 1-47)

Key Column Sequence Name (page 1-48)

Content Column Name (page 1-49)

Content Column Type (page 1-49)

Content Column Max Length (page 1-49)

Content Column JSON Validation (page 1-50)

Content Column SecureFiles LOB Compression (page 1-51)
Content Column SecureFiles LOB Cache (page 1-51)
Content Column SecureFiles LOB Encryption (page 1-52)
Version Column Name (page 1-52)

Version Column Generation Method (page 1-52)
Last-Modified Time Stamp Column Name (page 1-54)

Last-Modified Column Index Name (page 1-54)

1-44 SODA for Java Developer's Guide

The version column method is to be UUI D, instead of the default

SODA Collection Configuration Using Custom Metadata

¢ Creation Time Stamp Column Name (page 1-54)
® Media Type Column Name (page 1-55)
* Read Only (page 1-55)

See Also:

Or acl eRDBMSMet adat aBui | der methods Javadoc for more information
about collection metadata components

Note:

The identifiers used for collection metadata components (schema name, table
name, view name, database sequence name, and column names) must be valid
Oracle quoted identifiers. Some characters and words that are allowed in
Oracle quoted identifiers are strongly discouraged. For details, see Oracle
Database SQL Language Reference).

1.7.3.1 Schema

The collection metadata component that specifies the name of the Oracle Database
schema that owns the table or view to which the collection is mapped.

Property Value
Default value None
Allowed values Valid Oracle quoted identifier®. If this value

contains double quotation marks (") or control
characters, SODA for Java replaces them with
underscore characters (_).

O acl eRDBMVBMet adat aBui | der schemaNane()
method for selecting component

JSON collection metadata document path ~ schermaNane

See Also:

Oracle Database SQL Language Reference for information about valid Oracle
quoted identifiers

1.7.3.2 Table or View

The collection metadata component that specifies the name of the table or view to
which the collection is mapped.

Property Value

Default value None

5 Reminder: letter case is significant for a quoted SQL identifier; it is interpreted case-sensitively.

SODA for Java 1-45

SODA Collection Configuration Using Custom Metadata

Property Value

Allowed values Valid Oracle quoted identifier®. If this value

contains double quotation marks (") or control
characters, SODA for Java replaces them with
underscore characters (_).

Or acl eRDBMBSMet adat aBui | der

t abl eName() orvi ewNane()
method for selecting component

JSON collection metadata document path t abl eNane or vi ewNane

See Also:

Oracle Database SQL Language Reference for information about valid Oracle
quoted identifiers

1.7.3.3 Key Column Name

The collection metadata component that specifies the name of the column that stores
the document key.

Property Value

Default value 1D

Allowed values Valid Oracle quoted identifier® (as defined in

Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

O acl eRDBMBMet adat aBui | der keyCol ummNane()
method for selecting component

JSON collection metadata document path ~ keyCol unm. nane

1.7.3.4 Key Column Type

The collection metadata component that specifies the SQL data type of the column that
stores the document key.

Property Value
Default value VARCHAR2
Allowed values VARCHAR2
NUMBER
RAW 16)
O acl eRDBMSMet adat aBui | der keyCol umType()

method for selecting component

JSON collection metadata document path keyCol umm. sql Type

1-46 SODA for Java Developer's Guide

SODA Collection Configuration Using Custom Metadata

Caution:

If client-assigned keys are used and the key column type is VARCHAR2 then
Oracle recommends that the database character set be AL32UTEFS8. This
ensures that conversion of the keys to the database character set is lossless.

Otherwise, if client-assigned keys contain characters that are not supported in
your database character set then conversion of the key into the database
character set during a read or write operation is lossy. This can lead to
duplicate-key errors during insert operations. More generally, it can lead to
unpredictable results. For example, a read operation could return a value that
is associated with a different key from the one you expect.

1.7.3.5 Key Column Max Length

The collection metadata component that specifies the maximum length of the key
column in bytes. This component applies only to keys of type VARCHARZ.

Property

Value

Default value

Allowed values

Or acl eRDBMSMet adat aBui | der
method for selecting component

JSON collection metadata document path

255

At least 32 bytes if key assignment method is
UUI Dor GUI D. See Key Column Assignment
Method (page 1-47).

keyCol utmmMaxLengt h()

keyCol um. maxLengt h

See Also:

Key Column Type (page 1-46)

1.7.3.6 Key Column Assignment Method

The collection metadata component that specifies the method used to assign keys to
objects that are inserted into the collection.

Property Value
Default value UuUl D
Allowed values Uul D
QU D
SEQUENCE
CLI ENT

O acl eRDBVBMet adat aBui | der
method for selecting component

For descriptions of these methods, see Table 1-4
(page 1-48).

keyCol umAssi gnnent Met hod()

SODA for Java 1-47

SODA Collection Configuration Using Custom Metadata

Property Value

JSON collection metadata document path ~ keyCol unm. assi gnment Met hod

Table 1-4 Key Assignment Methods
- ___|

Method Description

QU D Keys are generated in Oracle RDBMS by the SQL function SYS_GUI D,
described in Oracle Database SQL Language Reference.

SEQUENCE Keys are generated in Oracle Database by a database sequence. If you
specify the key assignment method as SEQUENCE then you must also
specify the name of that sequence — see Key Column Sequence Name
(page 1-48).

CLI ENT Keys are assigned by the client application.

UUI D (default) Keys are generated by SODA for Java, based on the UUI D capability of
the Java Virtual Machine (JVM) underlying SODA for Java.

1.7.3.7 Key Column Sequence Name

The collection metadata component that specifies the name of the database sequence
that generates keys for documents that are inserted into a collection if the key
assignment method is SEQUENCE.

If you specify the key assignment method as SEQUENCE then you must also specify the
name of that sequence. If the specified sequence does not exist then SODA for Java

creates it.
Property Value
Default value None
Allowed values Valid Oracle quoted identifier® (as defined in

Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters ().

OracleRDBMSMetadataBuilder method for keyCol utmSequenceNane()
selecting component

JSON collection metadata document path ~ keyCol umrm. sequenceNane

Note:

If you drop a collection using SODA for Java, the sequence used for key
generation is not dropped. This is because it might not have been created
using SODA for Java. To drop the sequence, use SQL command DROP
SEQUENCE, after first dropping the collection.

1-48 SODA for Java Developer's Guide

SODA Collection Configuration Using Custom Metadata

See Also:
¢ Key Column Assignment Method (page 1-47)

® Oracle Database SQL Language Reference for information about DROP
SEQUENCE

® Oracle Database Concepts for information about database sequences

1.7.3.8 Content Column Name

The collection metadata component that specifies the name of the column that stores
the database content.

Property Value
Default value JSON_DOCUMENT
Allowed values Valid Oracle quoted identifier® (as defined in

Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

O acl eRDBMSMet adat aBui | der cont ent Col utmNare()
method for selecting component

JSON collection metadata document path ~ cont ent Col urm. nane

1.7.3.9 Content Column Type

The collection metadata component that specifies the SQL data type of the column that
stores the document content.

Property Value
Default value BLOB
Allowed values VARCHAR2
BLOB
CLOB
O acl eRDBMVBMet adat aBui | der cont ent Col utmType()

method for selecting component

JSON collection metadata document path ~ cont ent Col urm. sql Type

1.7.3.10 Content Column Max Length

The collection metadata component that specifies the maximum length of the content
column in bytes. This component applies only to content of type VARCHAR2.

Property Value

Default value 4000

SODA for Java 1-49

SODA Collection Configuration Using Custom Metadata

Property Value

Allowed values 32767 if extended data types are enabled.
Otherwise, 4000 if content column type is
VARCHAR2.

O acl eRDBMSMet adat aBui | der cont ent Col utmMaxLengt h()

method for selecting component

JSON collection metadata document path cont ent Col utm. maxLengt h

See Also:
e Content Column Type (page 1-49)

® Oracle Database SQL Language Reference for information about extended
data types

1.7.3.11 Content Column JSON Validation

The collection metadata component that specifies the syntax to which JSON content
must conform—strict or lax.

Property Value

Default value STANDARD

Allowed values STANDARD
STRI CT

LAX (default for SQL conditioni s j son)

Or acl eRDBVSMet adat aBui | der cont ent Col umVal i dati on()
method for selecting component

JSON collection metadata document path cont ent Col utm. val i dati on

¢ STANDARD validates according to the JSON RFC 4627 standard. (It corresponds to
the strict syntax defined for Oracle SQL conditioni s j son.)

* STRI CT is the same as STANDARD, except that it also verifies that the document
does not contain duplicate JSON field names. (It corresponds to the strict syntax
defined for Oracle SQL conditioni s j son when the SQL keywords W TH

UNI QUE KEYS are also used.)
¢ LAXvalidates more loosely. (It corresponds to the lax syntax defined for Oracle

SQL conditioni s j son.) Some of the relaxations that LAX allows include the
following;:

— It does not require JSON field names to be enclosed in double quotation marks

(")

— It allows uppercase, lowercase, and mixed case versions of t r ue, f al se, and
nul | .

— Numerals can be represented in additional ways.

1-50 SODA for Java Developer's Guide

SODA Collection Configuration Using Custom Metadata

See Also:

® Oracle Database |[SON Developer’s Guide for information about strict and lax
syntax JSON syntax

e http://tools.ietf.org/htm /rfc4627 for the JSON RFC 4627
standard

1.7.3.12 Content Column SecureFiles LOB Compression

The collection metadata component that specifies the SecureFiles LOB compression
setting.

Property Value
Default value NONE
Allowed values NONE
H GH
MEDI UM
LOW
O acl eRDBMSMet adat aBui | der cont ent Col umConpr ess()

method for selecting component

JSON collection metadata document path cont ent Col umtm. conpr ess

See Also:

Oracle Database SecureFiles and Large Objects Developer’s Guide for information
about SecureFiles LOB storage

1.7.3.13 Content Column SecureFiles LOB Cache

The collection metadata component that specifies the SecureFiles LOB cache setting.

Property Value
Default value TRUE
Allowed values TRUE
FALSE
O acl eRDBMSMet adat aBui | der cont ent Col utmCache()

method for selecting component

JSON collection metadata document path ~ cont ent Col urm. cache

See Also:

Oracle Database SecureFiles and Large Objects Developer’s Guide for information
about SecureFiles LOB storage

SODA for Java 1-51

http://tools.ietf.org/html/rfc4627

SODA Collection Configuration Using Custom Metadata

1.7.3.14 Content Column SecureFiles LOB Encryption

The collection metadata component that specifies the SecureFiles LOB encryption

setting.
Property Value
Default value NONE
Allowed values NONE
3DES168
AES128
AES192
AES256
O acl eRDBMVBMet adat aBui | der cont ent Col utmEncrypt ()

method for selecting component

JSON collection metadata document path ~ cont ent Col urm. encr ypt

See Also:

Oracle Database SecureFiles and Large Objects Developer’s Guide for information
about SecureFiles LOB storage

1.7.3.15 Version Column Name

The collection metadata component that specifies the name of the column that stores
the document version.

Property Value
Default value VERSI ON
Allowed values Valid Oracle quoted identifier® (as defined in

Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

O acl eRDBMSMet adat aBui | der ver si onCol utmmNane()
method for selecting component

JSON collection metadata document path ~ ver si onCol unm. narre

1.7.3.16 Version Column Generation Method

The collection metadata component that specifies the method used to compute version
values for objects when they are inserted into a collection or replaced.

Example 1-34 (page 1-44) uses this metadata component.

Property Value

Default value SHA256

1-52 SODA for Java Developer's Guide

SODA Collection Configuration Using Custom Metadata

Property

Value

Allowed values

uul D

TI MESTAMP
VD5

SHA256
SEQUENTI AL
NONE

O acl eRDBMVBMet adat aBui | der ver si onCol umMet hod()
method for selecting component

JSON collection metadata document path ~ ver si onCol unm. net hod

Table 1-5 (page 1-53) describes the version generation methods.

Table 1-5 Version Generation Methods
- - - - " -

Method

Description

uul D

Ignoring object content, SODA for Java generates a universally
unique identifier (UUID) when the document is inserted and
for every replace operation. Efficient, but the version changes
even if the original and replacement documents have identical
content.

Version column type value is VARCHAR2(255) .

TI MESTAMP

Ignoring object content, SODA for Java generates a value from
the time stamp and coverts it to LONG This method might
require a round trip to the database instance to get the
timestamp. As with UUI D, the version changes even if the
original and replacement documents have identical content.

Version column type value is NUVBER.

SODA for Java uses the MD5 algorithm to compute a hash
value of the document content. This method is less efficient
than UUI D, but the version changes only if the document
content changes.

Version column type value is VARCHAR2(255) .

SHA256 (default)

SODA for Java uses the SHA256 algorithm to compute a hash
value of the document content. This method is less efficient
than UUI D, but the version changes only if the document
content changes.

Version column type value is VARCHAR2(255) .

SEQUENTI AL

Ignoring object content, SODA for Java assigns version 1 when
the object is inserted and increments the version value every
time the object is replaced. Version values are easily
understood by human users, but the version changes even if
the original and replacement documents have identical content.

Version column type value is NUVBER.

NONE

If the version column is present, NONE means that the version is
generated outside SODA for Java (for example, by a database

trigger).

SODA for Java 1-53

SODA Collection Configuration Using Custom Metadata

See Also:

Table 1-5 (page 1-53) for descriptions of the allowed values

1.7.3.17 Last-Modified Time Stamp Column Name

The collection metadata component that specifies the name of the column that stores
the last-modified time stamp of the document.

Property Value
Default value LAST_MODI FI ED
Allowed values Valid Oracle quoted identifier® (as defined in

Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

O acl eRDBMSMet adat aBui | der | ast Modi fi edCol umNane()
method for selecting component

JSON collection metadata document path | ast Modi fi edCol urm. name

1.7.3.18 Last-Modified Column Index Name

The collection metadata component that specifies the name of the index on the last-
modified column.

Note:

This component is currently for internal use only. Do not change its value.

Property Value
Default value None
Allowed values Valid Oracle quoted identifier® (as defined in

Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

O acl eRDBMSMet adat aBui | der | ast Modi fi edCol utml ndex()
method for selecting component

JSON collection metadata document path | ast Modi fi edCol umm. i ndex

1.7.3.19 Creation Time Stamp Column Name

The collection metadata component that specifies the name of the column that stores
the creation time stamp of the document. This timestamp is generated during the
i nsert,insertAndCet,save, or saveAndCet operation.

Example 1-34 (page 1-44) uses this metadata component.

1-54 SODA for Java Developer's Guide

SODA Collection Configuration Using Custom Metadata

Property

Value

Default value

Allowed values

O acl eRDBVBMet adat aBui | der
method for selecting component

JSON collection metadata document path

CREATED_ON

Valid Oracle quoted identifier® (as defined in
Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

creationTi meCol umNane()

creationTi meCol unm. nane

1.7.3.20 Media Type Column Name

The collection metadata component that specifies the name of the column that stores
the media type of the document. A media type column is needed if the collection is to
be heterogeneous, that is, it can store documents other than JSON.

Example 1-34 (page 1-44) uses this metadata component.

Note:

You cannot use query-by-example (QBE) with a heterogeneous collection (an

error is raised if you try).

Property

Value

Default value

Allowed values

O acl eRDBVSMet adat aBui | der
method for selecting component

JSON collection metadata document path

None

Valid Oracle quoted identifier® (as defined in
Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters then SODA for Java replaces
them with underscore characters ().

medi aTypeCol utmNane()

medi aTypeCol um. nane

1.7.3.21 Read Only

The collection metadata component that specifies whether the collection is read-only.

Property Value

Default value FALSE

Allowed values TRUE
FALSE

O acl eRDBMVBMet adat aBui | der readOnl y()

method for selecting component

SODA for Java 1-55

SODA Collection Configuration Using Custom Metadata

Property Value

JSON collection metadata document path readOnly

1-56 SODA for Java Developer's Guide

A

SODA for Java Core Interfaces

The SODA for Java core interfaces are described.

Table A-1 (page A-1) lists and briefly describes these interfaces. For complete
information about them, see the SODA Javadoc.

Table A-1 SODA for Java Core Interfaces
- - - - - - -~ "

Interface Description
Oracl ed i ent SODA for Java entry point (client)
O acl eDocunent Document

Content is typically JSON; possibly a MIME type (for
example, image, audio, or video)

Provides methods that get document content and
metadata.

O acl eDat abase Database of collections of documents

Provides methods that access Or acl eDat abaseAdmni n
and open existing collections.

Inherits methods that create documents suitable for
insertion into collections.

Obtained by invoking
Oracl ed i ent. get Dat abase() .

Oracl eDat abaseAdmi n Provides methods that create collections and get their
metadata.

Obtained by invoking Or acl eDat abase. admi n() .

Oracl eCol | ection Collection of documents
Provides methods that access
Or acl eOper ati onBui | der and
O acl eCol | ecti onAdni n and insert and save
collection documents.
Obtained by invoking
Or acl eDat abase. adnmi n() . createCol | ecti on()
or, if it already exists,
O acl eDat abase. openCol | ection().

Oracl eCol | ecti onAdmi n Provides methods that index and drop collections and
get their metadata.

Obtained by invoking Or acl eDat abase. admi n() .

SODA for Java Core Interfaces A-1

Table A-1 (Cont.) SODA for Java Core Interfaces
__|

Interface Description
Oracl eOper ati onBui | der Builder and executor of read and write operations on a
collection.

Provides nonterminal methods for building operations
(for example, ski p() and | i mt())and terminal
methods for executing operations (for example,

get Cursor (), count (),and renove()).

Obtained by invoking Or acl eCol | ecti on. find(),
which returns an Or acl eQper at i onBui | der object
that represents a query that finds all documents in the
collection.

Oracl eCur sor Cursor for result list of query that
Oracl eCol | ection. find() returns

next () method returns the next document from the
query result list.

Obtained by invoking
Oracl eOperationBui |l der. get Cursor ().

A-2 SODA for Java Developer's Guide

Symbols

$all operator, 1-33
$and operator

omitting, 1-25
$eq operator

omitting, 1-33
$exists operator, 1-33
$gt operator, 1-33
$gte operator, 1-33
$id operator, 1-28
$in operator, 1-33
$lte operator, 1-33
$ne operator, 1-33
$nin operator, 1-33
$nor operator, 1-25, 1-37
$not clause

definition, 1-37
$not operator, 1-37
$or operator, 1-25, 1-37
$orderby operator, 1-28
$regex operator, 1-33
$startsWith operator, 1-33

A

allowed characters, definition, 1-29
array step, definition, 1-29

B

backquotes, 1-29

basic field clause
definition, 1-33

basic field operators, 1-24

C

collection configuration, 1-41, 1-44
collection metadata
components of, 1-44
content column JSON validation, 1-50
content column max length, 1-49

Index

collection metadata (continued)
content column name, 1-49
content column SecureFiles LOB cache, 1-51
content column SecureFiles LOB compression,
1-51
content column SecureFiles LOB encryption, 1-52
content column type, 1-49
creating custom, 1-43
creation time stamp column name, 1-54
getting, 1-42
key column assignment method, 1-47
key column max length, 1-47
key column name, 1-46
key column sequence name, 1-48
key column type, 1-46
last-modified column index name, 1-54
last-modified time stamp column name, 1-54
media type column name, 1-55
read only, 1-565
schema, 1-45
table or view, 1-45
version column name, 1-52
version generation method, 1-52
collections
creating, 1-6, 1-8
dropping, 1-9
opening
during creation, 1-6
comparison clause
definition, 1-33
comparison criterion
definition, 1-33
comparison operator
definition, 1-33
condition
definition, 1-33
content column JSON validation collection metadata
component, 1-50
content column max length collection metadata
component, 1-49
content column name collection metadata component,

1-49

Index-1

content column SecureFiles LOB cache collection
metadata component, 1-51

content column SecureFiles LOB compression
collection metadata component, 1-51

content column SecureFiles LOB encryption collection
metadata component, 1-52

content column type collection metadata component,
1-49

creating a collection, 1-6

creating collections, 1-8

creating documents, 1-10

creation time stamp column name collection metadata
component, 1-54

D

deleting a collection
See dropping a collection
deleting documents from a collection
See removing documents from a collection
documents
creating, 1-10
finding in collections, 1-15
inserting into collections, 1-13
removing from a collection, 1-20
replacing in collections, 1-19
saving into collections, 1-14
dropping a collection, 1-9

E

empty query, 1-31

existence clause
definition, 1-33

existence criterion
definition, 1-33

F

field clause, basic
definition, 1-33

field step, definition, 1-29

filter
definition, 1-31

filter condition
definition, 1-33

filter specification
definition, 1-31
querying with, 1-29

filter specifications
details, 1-31

finding documents in collections, 1-15

H

handling transactions, 1-12

Index-2

inserting documents into collections, 1-13
installing SODA for Java, 1-1

J

JAR files needed for SODA for Java, 1-1
Java Runtime Environment needed for SODA for Java,

1-1

K

key column assignment method collection metadata
component, 1-47

key column max length collection metadata
component, 1-47

key column name collection metadata component,
1-46

key column sequence name collection metadata
component, 1-48

key column type collection metadata component, 1-46

L

last-modified column index name collection metadata
component, 1-54
last-modified time stamp column name collection
metadata component, 1-54
logical clause
definition, 1-37
logical combining clause
definition, 1-37
logical combining operators, 1-25
logical operator
definition, 1-37

M

media type column name collection metadata
component, 1-55
metadata of collections
creating custom, 1-43
getting, 1-42

N

nested conditions, 1-27
nonterminal method
definition, 1-15
nonterminal OracleOperationBuilder methods, 1-21

O

opening a collection
during creation, 1-6
operand, for QBE operator

operand, for QBE operator (continued)

definition, 1-31
operator

$all, 1-33

$and

omitting, 1-25
$eq
omitting, 1-33

$exists, 1-33

$gt, 1-33

$gte, 1-33

$id, 1-28

$in, 1-33

$lte, 1-33

$ne, 1-33

$nin, 1-33

$nor, 1-25, 1-37

$not, 1-37

$or, 1-25,1-37

$orderby, 1-28

$regex, 1-33

$startsWith, 1-33
OracleOperationBuilder methods, 1-21

P

paths, 1-29
paths, QBE, 1-24
prerequisites for using SODA for Java, 1-1

Q

QBE
definition, 1-31
QBE paths, 1-24
query-by-example (QBE)
definition, 1-31
querying with a filter specification, 1-29

R

read only collection metadata component, 1-55
removing documents from a collection, 1-20
replacing documents in collections, 1-19

S

sample JSON documents used in examples, 1-23
saving documents into collections, 1-14
scalar equality clause

definition, 1-33
schema collection metadata component, 1-45
Simple Oracle Document Access (SODA), 1-1
SODA (Simple Oracle Document Access), 1-1
SODA core interfaces, A-1
SODA operator

definition, 1-31
specifications

filter

details, 1-31

syntactic characters, definition, 1-29

T

table or view collection metadata component, 1-45
terminal method

definition, 1-15
terminal OracleOperationBuilder methods, 1-21
transaction handling, 1-12

Vv

version column name collection metadata component,
1-52

version generation method collection metadata
component, 1-52

Index-3

Index-4

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 SODA for Java
	1.1 SODA for Java Prerequisites
	1.2 SODA for Java Overview
	1.3 Using SODA for Java
	1.3.1 Getting Started with SODA for Java
	1.3.2 Creating a New Document Collection with SODA for Java
	1.3.3 Opening an Existing Document Collection with SODA for Java
	1.3.4 Checking Whether a Given Collection Exists with SODA for Java
	1.3.5 Discovering Existing Collections with SODA for Java
	1.3.6 Dropping a Document Collection with SODA for Java
	1.3.6.1 If You Need To Drop and Re-Create a Collection...

	1.3.7 Creating and Using Documents with SODA for Java
	1.3.8 Handling Transactions with SODA for Java
	1.3.9 Inserting Documents into Collections with SODA for Java
	1.3.10 Saving Documents into Collections with SODA for Java
	1.3.11 Finding Documents in Collections with SODA for Java
	1.3.12 Replacing Documents in a Collection with SODA for Java
	1.3.13 Removing Documents from a Collection with SODA for Java
	1.3.14 OracleOperationBuilder Methods, Terminal and Nonterminal
	1.3.15 Using Filter Specifications (QBEs) with SODA for Java
	1.3.15.1 Sample JSON Documents
	1.3.15.2 Using Paths in QBEs
	1.3.15.3 Using QBE Basic Field Operators
	1.3.15.4 Using QBE Logical Combining Operators
	1.3.15.5 Using Logical Operator $not
	1.3.15.6 Using Nested Conditions
	1.3.15.7 Using QBE Operator $id
	1.3.15.8 Using QBE Operator $orderby
	1.3.15.9 Querying With a Filter Specification

	1.4 SODA Paths
	1.5 SODA Filter Specifications (QBEs)
	1.5.1 Composite Filters
	1.5.1.1 Orderby Clause Sorts Selected Objects

	1.5.2 Filter Conditions
	1.5.2.1 Basic Field Clause
	1.5.2.2 Logical Clause
	1.5.2.2.1 Omitting $and

	1.5.2.3 Nested-Condition Clause
	1.5.2.4 Special-Criterion Clause
	1.5.2.4.1 ID Clause

	1.6 SODA Collection Metadata Caching
	1.6.1 Enabling Collection Metadata Caching
	1.6.2 Shared Collection Metadata Cache
	1.6.3 Local Collection Metadata Cache

	1.7 SODA Collection Configuration Using Custom Metadata
	1.7.1 Getting the Metadata of an Existing Collection
	1.7.2 Creating Custom Metadata for a Collection
	1.7.3 Collection Metadata Components
	1.7.3.1 Schema
	1.7.3.2 Table or View
	1.7.3.3 Key Column Name
	1.7.3.4 Key Column Type
	1.7.3.5 Key Column Max Length
	1.7.3.6 Key Column Assignment Method
	1.7.3.7 Key Column Sequence Name
	1.7.3.8 Content Column Name
	1.7.3.9 Content Column Type
	1.7.3.10 Content Column Max Length
	1.7.3.11 Content Column JSON Validation
	1.7.3.12 Content Column SecureFiles LOB Compression
	1.7.3.13 Content Column SecureFiles LOB Cache
	1.7.3.14 Content Column SecureFiles LOB Encryption
	1.7.3.15 Version Column Name
	1.7.3.16 Version Column Generation Method
	1.7.3.17 Last-Modified Time Stamp Column Name
	1.7.3.18 Last-Modified Column Index Name
	1.7.3.19 Creation Time Stamp Column Name
	1.7.3.20 Media Type Column Name
	1.7.3.21 Read Only

	A SODA for Java Core Interfaces
	Index

