
Oracle® Database
SODA for Java Developer's Guide

Release 1.0

E58124-08

November 2016

Oracle Database SODA for Java Developer's Guide, Release 1.0

E58124-08

Copyright © 2014, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Drew Adams

Contributors: Sheila Moore, Maxim Orgiyan, Josh Spiegel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. ix

Audience ... ix

Documentation Accessibility ... ix

Related Documents.. ix

Conventions.. ix

1 SODA for Java

1.1 SODA for Java Prerequisites .. 1-1

1.2 SODA for Java Overview.. 1-2

1.3 Using SODA for Java... 1-3

1.3.1 Getting Started with SODA for Java.. 1-3

1.3.2 Creating a New Document Collection with SODA for Java .. 1-6

1.3.3 Opening an Existing Document Collection with SODA for Java.................................. 1-8

1.3.4 Checking Whether a Given Collection Exists with SODA for Java 1-9

1.3.5 Discovering Existing Collections with SODA for Java ... 1-9

1.3.6 Dropping a Document Collection with SODA for Java.. 1-9

1.3.7 Creating and Using Documents with SODA for Java... 1-10

1.3.8 Handling Transactions with SODA for Java .. 1-12

1.3.9 Inserting Documents into Collections with SODA for Java... 1-13

1.3.10 Saving Documents into Collections with SODA for Java... 1-14

1.3.11 Finding Documents in Collections with SODA for Java .. 1-15

1.3.12 Replacing Documents in a Collection with SODA for Java 1-19

1.3.13 Removing Documents from a Collection with SODA for Java 1-20

1.3.14 OracleOperationBuilder Methods, Terminal and Nonterminal................................ 1-21

1.3.15 Using Filter Specifications (QBEs) with SODA for Java ... 1-22

1.4 SODA Paths .. 1-29

1.5 SODA Filter Specifications (QBEs).. 1-31

1.5.1 Composite Filters.. 1-32

1.5.2 Filter Conditions... 1-33

1.6 SODA Collection Metadata Caching .. 1-40

1.6.1 Enabling Collection Metadata Caching... 1-40

1.6.2 Shared Collection Metadata Cache.. 1-41

iii

1.6.3 Local Collection Metadata Cache... 1-41

1.7 SODA Collection Configuration Using Custom Metadata.. 1-41

1.7.1 Getting the Metadata of an Existing Collection ... 1-42

1.7.2 Creating Custom Metadata for a Collection... 1-43

1.7.3 Collection Metadata Components ... 1-44

A SODA for Java Core Interfaces

Index

iv

List of Examples

1-1 testSoda.java... 1-4
1-2 Opening an Existing Document Collection... 1-9
1-3 Printing the Names of All Existing Collections... 1-9
1-4 Dropping a Document Collection... 1-9
1-5 Creating a Document with JSON Content... 1-12
1-6 Creating a Document with Document Key and JSON Content... 1-12
1-7 Inserting a Document into a Collection... 1-14
1-8 Inserting a Document into a Collection and Getting the Result Document..................... 1-14
1-9 Saving a Document into a Collection... 1-15
1-10 Finding All Documents in a Collection.. 1-16
1-11 Finding the Unique Document That Has a Given Document Key.................................... 1-16
1-12 Finding Multiple Documents with Specified Document Keys... 1-17
1-13 Finding Documents with a Filter Specification... 1-17
1-14 Specifying Pagination Queries with Methods skip() and limit().. 1-18
1-15 Specifying Document Version... 1-18
1-16 Finding Documents and Returning Only Their Headers.. 1-18
1-17 Counting the Number of Documents Found.. 1-18
1-18 Replacing a Document in a Collection and Getting the Result Document....................... 1-19
1-19 Replacing a Document Only If the Version Has Not Changed.. 1-20
1-20 Removing a Document from a Collection Using a Document Key................................... 1-20
1-21 Removing a Document Only If the Version Has Not Changed... 1-20
1-22 Removing Documents from a Collection Using Document Keys...................................... 1-20
1-23 Removing JSON Documents from a Collection Using a Filter... 1-20
1-24 Sample JSON Document 1... 1-23
1-25 Sample JSON Document 2... 1-23
1-26 Sample JSON Document 3... 1-23
1-27 Using $id To Find Documents That Have Given Keys.. 1-28
1-28 Executing a Filter Specification... 1-29
1-29 Filter Specification with Explicit $and Operator.. 1-38
1-30 Filter Specification with Implicit $and Operator.. 1-38
1-31 Use of Operator $id in the Outermost QBE Condition.. 1-40
1-32 Enabling Collection Metadata Caching.. 1-40
1-33 getMetadata Output for Collection with Default Configuration....................................... 1-42
1-34 Creating a Collection That Has Custom Metadata... 1-44

v

vi

List of Tables

1-1 OracleOperationBuilder Nonterminal Methods... 1-21
1-2 OracleOperationBuilder Terminal Methods for Read Operations..................................... 1-22
1-3 Query-By-Example (QBE) Comparison Operators.. 1-34
1-4 Key Assignment Methods.. 1-48
1-5 Version Generation Methods... 1-53
A-1 SODA for Java Core Interfaces.. A-1

vii

viii

Preface

This document explains how to use Simple Oracle Document Access (SODA) for Java.

Audience
This document is intended for users of SODA for Java.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the SODA Javadoc.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
SODA for Java

The Oracle SODA for Java API is described, including how to install and use it. The
content here assumes that you are familiar with Java, JSON, and Oracle Database. The
code samples here are Java code.

For information about JSON in Oracle Database, see Oracle Database JSON Developer’s
Guide.

Note:

SODA for Java supports the version of JSON described in RFC 4627. For
further details, see Creating and Using Documents with SODA for Java
(page 1-10).

Topics

• SODA for Java Prerequisites (page 1-1)

• SODA for Java Overview (page 1-2)

• Using SODA for Java (page 1-3)

• SODA Paths (page 1-29)

• SODA Filter Specifications (QBEs) (page 1-31)

• SODA Collection Metadata Caching (page 1-40)

• SODA Collection Configuration Using Custom Metadata (page 1-41)

1.1 SODA for Java Prerequisites
Before you can use SODA for Java you must configure your Java environment.

To use SODA for Java with Oracle Database:

• You must have Java Runtime Environment 1.6 (JRE 1.6).

• The following Java archive (JAR) files must be either in your CLASSPATH
environment variable or passed using command-line option classpath:

– orajsoda.jar (SODA for Java RDBMS implementation). Obtain the latest
version at https://github.com/oracle/soda-for-java/releases.

– ojdbc6.jar (the Oracle JDBC JAR file that is shipped with Oracle
Database 12c Release 1 (12.1.0.2))

– javax.json-1.0.4.jar (JSR353: the Java API for JSON processing)

SODA for Java 1-1

https://github.com/oracle/soda-for-java/releases

• You must have Oracle Database 12c Release 1 (12.1.0.2) with Merge Label Request
(MLR) bundle patch 20885778.

Obtain the patch from My Oracle Support (https://support.oracle.com).
Select tab Patches & Updates. Search for patch number 20885778, or access it
directly at this URL: https://support.oracle.com/rs?
type=patch&id=20885778.

Note:

Oracle recommends that you use AL32UTF8 (Unicode) for your database
character set. Otherwise:

• Data can be altered by SODA for Java during input, because of lossy
conversion to the database character set.

• Query-by-example (QBE) can return unpredictable results.

1.2 SODA for Java Overview
Simple Oracle Document Access (SODA) is a set of NoSQL-style APIs that let you
create and store collections of documents in Oracle Database, retrieve them, and query
them, without needing to know Structured Query Language (SQL) or how the data in
the documents is stored in the database.

SODA for Java is a Java API that provides SODA. You can use it to perform create,
read (retrieve), update, and delete (CRUD) operations on documents of any kind, and
you can use it to query JSON documents.

Oracle relational database management system (RDBMS) supports storing and
querying JSON data. To access this functionality, you need structured query language
(SQL) with special JSON SQL operators and Java Database Connectivity (JDBC).

SODA for Java hides the complex SQL/JDBC programming with these SODA
abstractions:

• Database

• Collection

• Document

A database contains collections, and each collection contains documents. SODA for
Java is designed primarily for working with JSON documents, but a document can be
of any Multipurpose Internet Mail Extensions (MIME) type.

SODA for Java provides CRUD operations on collections. These operations are
transparently translated to SQL with JSON SQL operators and are executed by JDBC.

A (SODA) database is analogous to an Oracle Database schema, a collection is analogous
to a table, and a document is analogous to a table row with one column for the
document key (unique document identifier) and another column for the document
content.

The remaining topics of this document describe various features of SODA for Java. For
detailed information about specific Java methods, see the SODA for Java Javadoc.

SODA for Java Overview

1-2 SODA for Java Developer's Guide

https://support.oracle.com
https://support.oracle.com/rs?type=patch&id=20885778
https://support.oracle.com/rs?type=patch&id=20885778

1.3 Using SODA for Java
How to access SODA for Java is described, as well as how to use it to perform create,
read (retrieve), update, and delete (CRUD) operations on collections.

(CRUD operations are also called “read and write operations” in this document.)

Topics

• Getting Started with SODA for Java (page 1-3)

• Creating a New Document Collection with SODA for Java (page 1-6)

• Opening an Existing Document Collection with SODA for Java (page 1-8)

• Checking Whether a Given Collection Exists with SODA for Java (page 1-9)

• Discovering Existing Collections with SODA for Java (page 1-9)

• Dropping a Document Collection with SODA for Java (page 1-9)

• Creating and Using Documents with SODA for Java (page 1-10)

• Handling Transactions with SODA for Java (page 1-12)

• Inserting Documents into Collections with SODA for Java (page 1-13)

• Saving Documents into Collections with SODA for Java (page 1-14)

• Finding Documents in Collections with SODA for Java (page 1-15)

• Replacing Documents in a Collection with SODA for Java (page 1-19)

• Removing Documents from a Collection with SODA for Java (page 1-20)

• OracleOperationBuilder Methods, Terminal and Nonterminal (page 1-21)

• Using Filter Specifications (QBEs) with SODA for Java (page 1-22)

1.3.1 Getting Started with SODA for Java
How to access SODA for Java is described, as well as how to use it to create a database
collection, insert a document into a collection, and retrieve a document from a
collection.

Follow these steps to get started with SODA for Java:

1. Ensure that all of the prerequisites have been met for using SODA for Java. See
SODA for Java Prerequisites (page 1-1).

2. Identify the database schema (user account) used to store collections, and grant
database role SODA_APP to that schema:

GRANT SODA_APP TO schemaName;

3. Place all required jar files and file testSoda.java (which contains the text in
Example 1-1 (page 1-4)) into a directory.

4. In testSoda.java:

Using SODA for Java

SODA for Java 1-3

• Replace hostName, port, and serviceName with the hostname, port, and
service name for your Oracle RDBMS instance.

• Replace schemaName and password with the name and password of the
database schema identified in step 2. It will store the collection created in
Example 1-1 (page 1-4).

5. Use the cd command to go to the directory that contains the jar files and file
testSoda.java.

6. Execute these commands:

javac -classpath "*" testSoda.java
java -classpath "*:." testSoda

Instead of the second of these commands, you can optionally use the following
command. It has the additional effect of dropping the collection, cleaning up the
database table that is used to store the collection and its metadata.

java -classpath "*:." testSoda drop

Using argument drop here has the effect of invoking method drop(), which is
the proper way to drop a collection.

Caution:

Do not use SQL to drop the database table that underlies a collection. In
addition to the documents that are stored in its table, a collection has
metadata, which is also persisted in Oracle Database. Dropping the collection
table does not also drop the associated metadata.

To work with SODA for Java you must first open a JDBC connection. This is illustrated
in Example 1-1 (page 1-4). For details of how to open a JDBC connection, see Oracle
Database JDBC Developer's Guide.

Example 1-1 testSoda.java

In this example, replace placeholders hostName, port, schemaName, and password
with appropriate information for your database instance.

import java.sql.Connection;
import java.sql.DriverManager;

import oracle.soda.rdbms.OracleRDBMSClient;

import oracle.soda.OracleDatabase;
import oracle.soda.OracleCursor;
import oracle.soda.OracleCollection;
import oracle.soda.OracleDocument;
import oracle.soda.OracleException;

import java.util.Properties;

import oracle.jdbc.OracleConnection;

public class testSoda
{
 public static void main(String[] arg)
 {
 // Set up the JDBC connection string, schemaName, and password.
 // Replace with info appropriate for your Oracle Database instance.
 String url = "jdbc:oracle:thin:@//hostName:port/serviceName";
 Properties props = new Properties();

Using SODA for Java

1-4 SODA for Java Developer's Guide

 props.setProperty("user", schemaName);
 props.setProperty("password", password);

 OracleConnection conn = null;

 try
 {
 // Get a JDBC connection to an Oracle instance.
 conn = (OracleConnection) DriverManager.getConnection(url, props);

 // Enable JDBC implicit statement caching
 conn.setImplicitCachingEnabled(true);
 conn.setStatementCacheSize(50);

 // Get an OracleRDBMSClient - starting point of SODA for Java application.
 OracleRDBMSClient cl = new OracleRDBMSClient();

 // Get a database.
 OracleDatabase db = cl.getDatabase(conn);

 // Create a collection with the name "MyJSONCollection".
 // This creates a database table, also named "MyJSONCollection", to store the collection.
 OracleCollection col = db.admin().createCollection("MyJSONCollection");

 // Create a JSON document.
 OracleDocument doc =
 db.createDocumentFromString("{ \"name\" : \"Alexander\" }");

 // Insert the document into a collection.
 col.insert(doc);

 // Find all documents in the collection.
 OracleCursor c = null;

 try
 {
 c = col.find().getCursor();
 OracleDocument resultDoc;

 while (c.hasNext())
 {
 // Get the next document.
 resultDoc = c.next();

 // Print document components
 System.out.println ("Key: " + resultDoc.getKey());
 System.out.println ("Content: " + resultDoc.getContentAsString());
 System.out.println ("Version: " + resultDoc.getVersion());
 System.out.println ("Last modified: " + resultDoc.getLastModified());
 System.out.println ("Created on: " + resultDoc.getCreatedOn());
 System.out.println ("Media: " + resultDoc.getMediaType());
 System.out.println ("\n");
 }
 }
 finally
 {
 // IMPORTANT: YOU MUST CLOSE THE CURSOR TO RELEASE RESOURCES.
 if (c != null) c.close();
 }

 // Drop the collection, deleting the table underlying it and the collection metadata.
 if (arg.length > 0 && arg[0].equals("drop")) {
 col.admin().drop();
 System.out.println ("\nCollection dropped");
 }
 }
 // SODA for Java throws a checked OracleException
 catch (OracleException e) { e.printStackTrace(); }
 catch (Exception e) { e.printStackTrace(); }

Using SODA for Java

SODA for Java 1-5

 finally
 {
 try { if (conn != null) conn.close(); }
 catch (Exception e) { }
 }
 }
}

1.3.2 Creating a New Document Collection with SODA for Java
How to use SODA for Java to create a new document collection is explained.

In your Java application, first create an OracleRDBMSClient object, which is the
starting point for any Java application working with SODA for Java:

OracleRDBMSClient client = new OracleRDBMSClient();

Caution:

The OracleRDBMSClient object, client, is thread-safe. Other SODA for
Java interfaces are not thread-safe, however — do not share them among
multiple threads.

Next, pass the JDBC connection to method OracleClient.getDatabase(), to
obtain an OracleDatabase object:

OracleDatabase db = client.getDatabase(jdbcConnection);

Note:

Oracle recommends that you enable implicit statement caching for the JDBC
connection that you pass to SODA. This can improve the performance of read
and write operations. The underlying implementation of read and write
operations generates JDBC prepared statements.

If you do not enable implicit caching then each time a read or write operation
is created a new JDBC prepared statement is constructed. With implicit
caching enabled, a new JDBC prepared statement is created only if it is not
already in the cache.

See also: Oracle Database JDBC Developer's Guide and Oracle Universal
Connection Pool for JDBC Developer's Guide

Collection creation methods are available on interface OracleDatabaseAdmin. To
access this interface, invoke method admin() on the OracleDatabase object:

OracleDatabaseAdmin dbAdmin = db.admin();

Now you can create a collection — an OracleCollection object — using the
following code, where collectionName is the name of the collection:

OracleCollection col = dbAdmin.createCollection("collectionName");

Method createCollection(String collectionName) creates the following in
Oracle Database:

• Persistent default collection metadata.

Using SODA for Java

1-6 SODA for Java Developer's Guide

• A table for storing the collection, in the schema with which the input JDBC
connection is configured.

By default, the table name is derived from the collection name. If you want a
different table name from that provided by default then use custom collection
metadata to explicitly provide the table name (see below).

The default table name is derived from the collection name as follows:

1. Each ASCII control character and double quotation mark character (") in the
collection name is replaced by an underscore character (_).

2. If all of the following conditions apply, then all letters in the name are
converted to uppercase, to provide the table name. In this case, you need not
quote the table name in SQL code; otherwise, you must quote it.

– The letters in the name are either all lowercase or all uppercase.

– The name begins with an ASCII letter.

– Each character in the name is alphanumeric ASCII, an underscore (_), a
dollar sign ($), or a number sign (#).

Note:

Oracle recommends that you do not use dollar signs ($) or number signs (#) in
Oracle identifier names.

For example:

– Collection names "col" and "COL" both result in a table named "COL". When
used in SQL, the table name is interpreted case-insensitively, so it need not be
enclosed in double quotation marks (").

– Collection name "myCol" results in a table named "myCol". When used in SQL,
the table name is interpreted case-sensitively, so it must be enclosed in double
quotation marks (").

Note:

If the table name used by method createCollection names an existing
table, in the schema with which the JDBC connection is configured, then the
method tries to map that table to the collection. This behavior includes the
default case, where the table name is derived from the collection name.

The default collection metadata has the following characteristics.

• Each document in the collection has these document components:

– Key

– Content

– Creation timestamp

– Last-modified timestamp

– Version

Using SODA for Java

SODA for Java 1-7

• The collection can store only JSON documents.

• Document keys are automatically generated for documents that you add to the
collection.

The default collection configuration is recommended in most cases, but collections are
highly configurable. When you create a collection you can specify things such as the
following:

• Storage details, such as the name of the table that stores the collection and the
names and data types of its columns.

• The presence or absence of columns for creation timestamp, last-modified
timestamp, and version.

• Whether the collection can store only JSON documents.

• Methods of document key generation, and whether document keys are client-
assigned or generated automatically.

• Methods of version generation.

This configurability also lets you map a new collection to an existing table.

To configure a collection in a nondefault way, you must create a JSON
OracleDocument instance of custom collection metadata and pass it to method
createCollection(String collectionName, OracleDocument
collectionMetadata). To build and generate this OracleDocument instance
easily, you can use OracleRDBMSMetadataBuilder.

If you do not care about the details of collection storage and configuration, then use
method createCollection(collectionName), as in Example 1-2 (page 1-9).

You can search or change a collection only if it is open. A newly created collection is
open for the life of your session.

Note:

Unless otherwise stated, the remainder of this documentation assumes that a
collection has the default configuration.

See Also:

• Opening an Existing Document Collection with SODA for Java
(page 1-8)

• SODA Collection Configuration Using Custom Metadata (page 1-41) for
information about creating custom metadata and using
OracleRDBMSMetadataBuilder

1.3.3 Opening an Existing Document Collection with SODA for Java
You can use OracleDatabase method openCollection() to open an existing
document collection or to test whether a given name names an existing collection.

Using SODA for Java

1-8 SODA for Java Developer's Guide

Example 1-2 (page 1-9) opens the collection named myCollectionName and
returns the OracleCollection object that represents this collection. If the value
returned is null then there is no existing collection named myCollectionName.

Example 1-2 Opening an Existing Document Collection

OracleCollection ocol = db.openCollection("myCollectionName");

1.3.4 Checking Whether a Given Collection Exists with SODA for Java
You can use OracleDatabase method openCollection() to check for the
existence of a given collection. It returns null if the collection argument does not
name an existing collection; otherwise, it opens the collection having that name.

In Example 1-2 (page 1-9), if myCollectionName does not name an existing
collection then ocol is assigned the value null.

1.3.5 Discovering Existing Collections with SODA for Java
You can use OracleDatabaseAdmin method getCollectionNames to discover
existing collections.

Example 1-3 (page 1-9) illustrates this, using method getCollectionNames with
the simplest signature, which accepts no arguments. The example prints the names of
all existing collections.

Example 1-3 Printing the Names of All Existing Collections

List<String> names = db.admin().getCollectionNames();

for (String name : names)
 System.out.println ("Collection name: " + name);

1.3.6 Dropping a Document Collection with SODA for Java
You use OracleCollectionAdmin method drop() to drop a document collection.

Example 1-4 (page 1-9) drops collection col.

Caution:

This is the proper way to drop a collection — use method drop(). Do not use
SQL to drop the database table that underlies the collection. Collections have
persisted metadata, in addition to the documents that are stored in the
collection table.

Note:

Commit all writes to a collection before using method drop(). For drop() to
succeed, all uncommitted writes to the collection must first be committed.
Otherwise, an exception is raised.

Example 1-4 Dropping a Document Collection

col.admin().drop();

Using SODA for Java

SODA for Java 1-9

1.3.6.1 If You Need To Drop and Re-Create a Collection...
Day-to-day use of a typical application that makes use of SODA does not require you
to drop and re-create collections. But if you do need to do that for any reason then be
aware of the important guideline presented here.

Do not drop a collection and then re-create it with different metadata if there is any
application running that uses SODA objects. Shut down any such applications before
re-creating the collection, so that all live SODA objects are released.

There is no problem just dropping a collection. Any read or write operation on a stale
OracleCollection object that corresponds to a dropped collection raises an error.
And there is no problem dropping a collection and then re-creating it with the same
metadata.

But if you re-create a collection with different metadata, and if there are any live
applications using SODA objects, then there is a risk that a stale collection object (an
OracleCollection instance) is accessed, and no error is raised in this case.

This risk is increased if collection metadata is cached. If caching is enabled, a (shared
or local) cache can return an entry for a stale collection object even if the collection has
been dropped.

See Also:

SODA Collection Metadata Caching (page 1-40)

1.3.7 Creating and Using Documents with SODA for Java
Creation and use of documents by SODA for Java are described.

SODA for Java represents a document using Java interface OracleDocument. This
interface is designed primarily to represent JSON documents, but it also supports
other content types. An OracleDocument is simply a carrier of content.

To create JSON content for an OracleDocument instance, you can use your favorite
package — for example, JSR353, the Java API for JSON processing (https://
jsonp.java.net/). Here is an example of a simple JSON document:

{ "name" : "Alexander",
 "address" : "1234 Main Street",
 "city" : "Anytown",
 "state" : "CA",
 "zip" : "12345"
}

Note:

In SODA for Java, JSON content must conform to RFC 4627. In particular,
JSON content must be either an object (as in the preceding example) or an
array; it cannot be a scalar value. For example, according to RFC 4627, the
string value "hello" is not, by itself, valid JSON content.

Also in SODA for Java, JSON content encoding must be either UTF-8 or
UTF-16 (big endian (BE) or little endian (LE)). Although RFC 4627 also allows
UTF-32 (BE and LE) encodings, SODA for Java does not support them.

Using SODA for Java

1-10 SODA for Java Developer's Guide

https://jsonp.java.net/
https://jsonp.java.net/

To create an OracleDocument instance from content that is represented as a byte
array or a String instance, use the following methods (which OracleDatabase
inherits from OracleDocumentFactory), respectively:

• createDocumentFromByteArray()

• createDocumentFromString()

Note:

Documents used with SODA for Java are limited to approximately 2
gigabytes.

A document has these components:

• Key

• Content

• Creation time stamp

• Last-modified time stamp

• Version

• Media type ("application/json" for JSON documents)

Interface OracleDocument provides getter methods for accessing document
components. If a document is missing a given component, then the corresponding
getter method returns null.

When you create a document by invoking method createDocumentFromString()
or createDocumentFromByteArray():

• You might need to provide the document key as a method argument.

In a collection, each document must have a key. You must provide the key when
you create the document only if you expect to insert the document into a collection
that does not automatically generate keys for inserted documents. By default,
collections are configured to automatically generate document keys.

• You can provide the document content as a method argument (the content
parameter is required, but its value can be null).

• The method sets the values of the creation time stamp, last-modified time stamp,
and version to null.

Methods createDocumentFromString() and
createDocumentFromByteArray() each have multiple variants:

• The simplest variant accepts only document content. The media type defaults to
"application/json", and the other components default to null. This variant is
useful for creating documents for insertion into collections that automatically
generate document keys.

• Another variant accepts both document key and document content. The media
type defaults to "application/json", and the other components default to
null. This variant is useful for creating documents for insertion into collections
that have client-assigned document keys.

Using SODA for Java

SODA for Java 1-11

• The most flexible (and most verbose) variant accepts key, content, and content
type. Because it lets you specify content type, this variant is useful for creating non-
JSON documents.

Example 1-5 (page 1-12) creates an OracleDocument instance with content only.
The media type defaults to "application/json", and the other document
components default to null.

Example 1-6 (page 1-12) creates an OracleDocument instance with document key
and content. The media type defaults to "application/json", and the other
document components default to null.

You write documents to collections using SODA for Java write operations, and you
read documents from collections using SODA for Java read operations. The SODA for
Java read and write operations are described in the following topics:

• Inserting Documents into Collections with SODA for Java (page 1-13) (write)

• Saving Documents into Collections with SODA for Java (page 1-14) (write)

• Finding Documents in Collections with SODA for Java (page 1-15) (read)

• Replacing Documents in a Collection with SODA for Java (page 1-19) (write)

• Removing Documents from a Collection with SODA for Java (page 1-20) (write)

See Also:

• OracleDocumentFactory Javadoc for more information about
methodscreateDocumentFromString() and
createDocumentFromByteArray()

• OracleDocument Javadoc for more information about getter methods

Example 1-5 Creating a Document with JSON Content

OracleDocument doc =
 odb.createDocumentFromString("{ \"name\" : \"Alexander\"}");

// Get the content
String content = doc.getContentAsString();

// Get the content type (it is "application/json")
String contentType = doc.getContentType();

Example 1-6 Creating a Document with Document Key and JSON Content

OracleDocument doc
 = odb.createDocumentFromString("myKey", "{ \"name\" : \"Alexander\"}");

1.3.8 Handling Transactions with SODA for Java
You can cause SODA for Java to treat individual read and write operations, or groups
of them, as a single transaction.

The JDBC connection that you pass to method OracleClient.getDatabase() has
auto-commit mode either on or off.

Using SODA for Java

1-12 SODA for Java Developer's Guide

If auto-commit mode is on, then each SODA for Java read operation and write
operation is treated as a single transaction. If the operation succeeds, then the
transaction automatically commits. If the operation fails, then an OracleException
or RuntimeException is thrown, and the transaction automatically rolls back.
SODA for Java itself throws only checked exceptions (OracleException and
exceptions derived from OracleException). However, SODA for Java is built upon
JDBC, which can throw a RuntimeException that SODA for Java passes through.

If auto-commit is off, then you can combine multiple SODA for Java read or write
operations into one transaction. If the transaction succeeds, then your application must
explicitly commit it, by calling method commit() on the JDBC connection. If the
transaction fails, then an OracleException or RuntimeException, is thrown.
Your application must handle the exception and explicitly roll back the transaction, by
invoking method rollback() on the JDBC connection. (RuntimeException can be
thrown only by JDBC, as mentioned in the preceding paragraph.)

To facilitate transactional programming, SODA for Java supports optimistic locking.

See Also:

• Replacing Documents in a Collection with SODA for Java (page 1-19)

• Removing Documents from a Collection with SODA for Java (page 1-20)

1.3.9 Inserting Documents into Collections with SODA for Java
To insert a document into a collection, you invoke OracleCollection method
insert(OracleDocument) or insertAndGet(OracleDocument). These
methods create document keys automatically, unless the collection is configured with
client-assigned keys and the input document provides the key.

Method insert(OracleDocument) only inserts the document into the collection.
Method insertAndGet(OracleDocument) also returns a result document, which
contains the document key and any other generated document components (except
the content).

Both methods automatically set the values of the creation time stamp, last-modified
time stamp, and version (if the collection is configured to include these components
and to generate the version automatically, as is the case by default).

Note:

If the collection is configured with client-assigned document keys (which is
not the default case), and the input document provides a key that identifies an
existing document in the collection, then these methods throw an exception. If
you want the input document to replace the existing document instead of
causing an exception, see Saving Documents into Collections with SODA for
Java (page 1-14).

Example 1-7 (page 1-14) creates a document and inserts it into a collection using
method insert().

Example 1-8 (page 1-14) creates a document, inserts it into a collection using method
insertAndGet(), and then gets each of the generated components from the result
document (which contains them).

Using SODA for Java

SODA for Java 1-13

To efficiently insert a large number of documents into a collection, invoke
OracleCollection method insert(Iterator<OracleDocument>) or
insertAndGet(Iterator<OracleDocument>). These methods are analogous to
insert(OracleDocument) and insertAndGet(OracleDocument), but instead
of handling a single document, they handle multiple documents. Parameter
Iterator<oracleDocument> is an iterator over multiple input documents.

Method insertAndGet(Iterator<OracleDocument>) returns a list of result
documents — one OracleDocument instance for each input document. Each such
result document contains the document key and any other generated document
components (except the content). The order of the result documents corresponds to the
order of input documents, allowing correlation of result and input documents.

See Also:

OracleCollection Javadoc for more information about methods
insert(OracleDocument), insertAndGet(OracleDocument),
insert(Iterator<OracleDocument>), and
insertAndGet(Iterator<OracleDocument>)

Example 1-7 Inserting a Document into a Collection

OracleDocument doc =
 db.createDocumentFromString("{ \"name\" : \"Alexander\"}");

col.insert(doc);

Example 1-8 Inserting a Document into a Collection and Getting the Result
Document

OracleDocument doc =
 db.createDocumentFromString("{ \"name\" : \"Alexander\"}");

OracleDocument insertedDoc = col.insertAndGet(doc);

// Get the generated document key
String key = insertedDoc.getKey();

// Get the generated creation timestamp
String createdOn = insertedDoc.getCreatedOn();

// Get the generated last-modified timestamp
String lastModified = insertedDoc.getLastModified();

// Get the generated version
String version = insertedDoc.getVersion();

1.3.10 Saving Documents into Collections with SODA for Java
You use OracleCollection methods save(OracleDocument) and
saveAndGet(OracleDocument) to save documents into collections.

These methods are similar to methods insert(OracleDocument) and
insertAndGet(OracleDocument)except that, if the collection is configured with
client-assigned document keys and the input document provides a key that already
identifies a document in the collection, then the input document replaces the existing
document. (Methods insert(OracleDocument) and
insertAndGet(OracleDocument) throw an exception in that case.)

Using SODA for Java

1-14 SODA for Java Developer's Guide

Note:

By default, collections are configured with automatically generated document
keys. Therefore, for a default collection, methods save(OracleDocument)
and saveAndGet(OracleDocument) are equivalent to methods
insert(OracleDocument) and insertAndGet(OracleDocument),
respectively.

Example 1-9 (page 1-15) saves a document into a collection that is configured with
client-assigned document keys, using method saveAndGet(). It then gets the key
and the generated document components (except the content) from the result
document (which contains them).

See Also:

OracleCollection Javadoc for more information about methods
save(OracleDocument) and saveAndGet(OracleDocument)

Example 1-9 Saving a Document into a Collection

OracleRDBMSClient cl = new OracleRDBMSClient();
OracleDatabase db = ...

// Configures the collection with client-assigned document keys
OracleDocument collMeta =
 cl.createMetadataBuilder().keyColumnAssignmentMethod("client").build();
OracleCollection cKeyColl = db.createCollection("collectionName", collMeta);

// For a collection configured with client-assigned document keys,
// you must provide the key for the input document.
OracleDocument cKeyDoc =
 db.createDocumentFromString("myKey", "{ \"name\" : \"Alexander\"}");

// If key "myKey" already identifies a document in the collection
// then cKeyDoc replaces the existing doc.
OracleDocument savedDoc = clientKeysColl.saveAndGet(cKeyDoc);

// Get document key ("myKey")
String key = savedDoc.getKey();

// Get the generated creation timestamp
String createdOn = savedDoc.getCreatedOn();

// Get the generated last-modified timestamp
String lastModified = savedDoc.getLastModified();

// Get the generated version
String version = savedDoc.getVersion();

1.3.11 Finding Documents in Collections with SODA for Java
To find documents in a collection, you invoke OracleCollection method find(),
which returns an OracleOperationBuilder object that represents a query that
finds all documents in the collection.

To execute the query, obtain a cursor for its results by invoking
OracleOperationBuilder method getCursor(). Then use the cursor to visit

Using SODA for Java

SODA for Java 1-15

each document in the result list. To determine whether the result list has a next
document, and to obtain the next document, invoke OracleCursor methods
hasNext() and next(), respectively. This is illustrated by Example 1-10 (page 1-16)
and other examples here.

However, you typically do not work directly with the OracleOperationBuilder
object. Instead, you chain together some of its methods, to specify various find
operations. This is illustrated in the other examples here, which find documents by
their keys or using query-by-example (QBE) filter specifications.

Note:

Examples here that use method getContentAsString() assume that all
documents in the collection are JSON documents. If they are not, this method
throws an exception.

See Also:

• OracleOperationBuilder Methods, Terminal and Nonterminal (page 1-21)
for information about OracleOperationBuilder methods and chaining
them together

• Replacing Documents in a Collection with SODA for Java (page 1-19) and
Removing Documents from a Collection with SODA for Java (page 1-20)
for information about using terminal OracleOperationBuilder
methods for write operations

• Using Filter Specifications (QBEs) with SODA for Java (page 1-22) for
information about queries that can be expressed as filter specifications

Example 1-10 Finding All Documents in a Collection

This example first obtains a cursor for a query result list that contains each document
in a collection. It then uses the cursor in a while statement to get and print the content
of each document in the result list, as a string. Finally, it closes the cursor.

Note:

To avoid resource leaks, close any cursor that you no longer need.

OracleCursor c = col.find().getCursor();

while (c.hasNext()) {
 OralceDocument resultDoc = c.next();
 System.out.println("Document content: " + resultDoc.getContentAsString());
}

// IMPORTANT: You must close the cursor to release resources!
c.close;

Example 1-11 Finding the Unique Document That Has a Given Document Key

This example chains together OracleOperationBuilder methods to specify an
operation that finds the unique document whose key is "key1". It uses nonterminal

Using SODA for Java

1-16 SODA for Java Developer's Guide

method key() to specify the document. It then uses terminal method getOne() to
execute the read operation and return the document (or null if no such document is
found).

OracleDocument doc = col.find().key("key1").getOne();

Example 1-12 Finding Multiple Documents with Specified Document Keys

This example defines HashSet myKeys, with (string) keys "key1", "key2", and
"key3". It then finds the documents that have those keys, and it prints the key and
content of each of those documents.

Nonterminal method keys() specifies the documents with the given keys. Terminal
method getCursor() executes the read operation and returns a cursor over the
result documents.

Note:

The maximum number of keys in the set supplied to method keys() must
not exceed 1000.

Set<String> myKeys = new HashSet<String>();
myKeys.put("key1");
myKeys.put("key2");
myKeys.put("key3");

OracleCursor c = col.find().keys(myKeys).getCursor();

while (c.hasNext(()) {
 OracleDocument resultDoc = c.next();

 // Print the document key and document content
 System.out.println ("Document key: " + resultDoc.getKey() + "\n" +
 " document content: " + resultDoc.getContentAsString());
}

c.close();

Example 1-13 Finding Documents with a Filter Specification

Nonterminal method filter() provides a powerful way to filter JSON documents in
a collection. Its OracleDocument parameter is a JSON query-by-example (QBE, also
called a filter specification).

This example does the following:

1. Creates a filter specification that looks for all JSON documents whose name field
has value "Alexander".

2. Uses the filter specification to find the matching documents.

3. Prints the key and content of each document.

// Create the filter specification
OracleDocument filterSpec =
 db.createDocumentFromString("{ /"name/" : /"Alexander/"}");

OracleCursor c = col.find().filter(filterSpec).getCursor();

while (c.hasNext(()) {

Using SODA for Java

SODA for Java 1-17

 OracleDocument resultDoc = c.next();

 // Print the document key and document content
 System.out.println ("Document key: " + resultDoc.getKey() + "\n" +
 " document content: " + resultDoc.getContent());
}

c.close();

Example 1-14 Specifying Pagination Queries with Methods skip() and limit()

This example uses nonterminal methods skip() and limit() in a pagination query.
(Filter specification filterSpec is from Example 1-13 (page 1-17).)

// Find all documents matching the filterSpec, skip the first 1000,
// and limit the number of returned documents to 100.
OracleCursor c =
 col.find().filter(filterSpec).skip(1000).limit(100).getCursor();

while (c.hasNext(()) {
 OracleDocument resultDoc = c.next();

 // Print the document key and document content
 System.out.println ("Document key: " + resultDoc.getKey() + "\n" +
 " document content: " + resultDoc.getContent());
}

c.close();

Example 1-15 Specifying Document Version

Nonterminal method version() specifies the document version. It is useful for
implementing optimistic locking, when used with the terminal methods for write
operations.

Nonterminal method headerOnly() specifies the return of document headers only.
A document header has all the document components except the content.

// Find a document with key "key1" and version "version1".
OracleDocument doc = col.find().key("key1").version("version1").getOne();

Example 1-16 Finding Documents and Returning Only Their Headers

This example finds all documents with the specified document keys and returns only
their headers. (The keys are those in HashSet myKeys, which is defined in Example
1-12 (page 1-17).)

// Find all documents matching the keys in HashSet myKeys.
// For each document, return all document components except the content.
OracleCursor c = col.find().keys(myKeys).headerOnly().getCursor();

Example 1-17 Counting the Number of Documents Found

This example uses terminal method count() to get a count of all of the documents in
the collection. It then gets a count of all of the documents that are returned by the filter
specification filterSpec from Example 1-13 (page 1-17).

// Get a count of all documents in the collection
int numDocs = col.find().count();

// Get a count of all documents in the collection that match a filter spec
numDocs = col.find().filter(filterSpec).count();

Using SODA for Java

1-18 SODA for Java Developer's Guide

1.3.12 Replacing Documents in a Collection with SODA for Java
To replace the content of one document in a collection with the content of another, you
chain together OracleOperationBuilder method key(String) with either
method replaceOne(OracleDocument) or method
replaceOneAndGet(OracleDocument). Method
replaceOne(OracleDocument) only replaces the document. Method
replaceOneAndGet(OracleDocument) also returns a result document, which
contains all document components except the content.

Both replaceOne(OracleDocument) and
replaceOneAndGet(OracleDocument) update the values of the last-modified
timestamp and the version. Replacement does not change the document key or the
creation timestamp.

Note:

Some version-generation methods, including the default method, generate
hash values of the document content. In such a case, if the document content
does not change then neither does the version. For more information about
version-generation methods, see SODA Collection Configuration Using
Custom Metadata (page 1-41).

See Also:

• OracleOperationBuilder Javadoc for more information about
replaceOne() and replaceOneAndGet()

• OracleOperationBuilder Methods, Terminal and Nonterminal (page 1-21)
for information about OracleOperationBuilder methods and chaining
them together

Example 1-18 Replacing a Document in a Collection and Getting the Result
Document

This example replaces a document in a collection, gets the result document, and gets
the generated components from the result document.

OracleDocument newDoc = ...
OracleDocument resultDoc = col.find().key("k1").replaceOneAndGet(newDoc);

if (resultDoc != null)
{
 // Get the generated document key (unchanged by replacement operation)
 String key = resultDoc.getKey();

 // Get the generated version
 String version = resultDoc.getVersion();

 // Get the generated last-modified timestamp
 String lastModified = resultDoc.getLastModified();

 // Get the creation timestamp (unchanged by replacement operation)
 String createdOn = resultDoc.getCreatedOn();
}

Using SODA for Java

SODA for Java 1-19

Example 1-19 Replacing a Document Only If the Version Has Not Changed

To implement optimistic locking when replacing a document, you can chain together
methods key() and version(), as in this example.

OracleDocument resultDoc =
 col.find().key("k1").version("v1").replaceOneAndGet(newDoc);

1.3.13 Removing Documents from a Collection with SODA for Java
To remove a document from a collection, you chain together (1) OracleCollection
method find() with these OracleOperationBuilder methods: (2) key(),
keys(), or filter(); (3) version() (optional); and (4) remove(). Examples are
provided.

See Also:

• OracleOperationBuilder Javadoc for more information about key(),
keys(), filter(), version(), and remove()

• OracleOperationBuilder Methods, Terminal and Nonterminal (page 1-21)
for information about OracleOperationBuilder methods and chaining
them together

• Using Filter Specifications (QBEs) with SODA for Java (page 1-22)

Example 1-20 Removing a Document from a Collection Using a Document Key

This example removes the document whose document key is "k1". The number of
documents removed is returned.

// Count is 1, if the document with key "k1" is found in the collection.
// Count is 0, otherwise.
int count = col.find().key("k1").remove();

Example 1-21 Removing a Document Only If the Version Has Not Changed

To implement optimistic locking when removing a document, you can chain together
methods key() and version(), as in this example.

col.find().key("k1").version("v1").remove();

Example 1-22 Removing Documents from a Collection Using Document Keys

This example removes the documents whose keys are "k1" and "k2".

Set<String> myKeys = new HashSet<String>();
myKeys.add("k1");
myKeys.add("k2");

// Count is 2 if two documents with keys "k1" and "k2"
// were found in the collection.
int count = col.find().keys(myKeys).remove();

Example 1-23 Removing JSON Documents from a Collection Using a Filter

This example uses a filter to remove the JSON documents whose greeting field has
value "hello". It then prints the number of documents removed.

Using SODA for Java

1-20 SODA for Java Developer's Guide

OracleDocument filterSpec =
 db.createDocumentFromString("{ \"greeting\" : \"hello\" }");

int count = col.find().filter(filterSpec).remove();

// Print the number of documents removed
System.out.println ("Removed " + count + " documents"):

1.3.14 OracleOperationBuilder Methods, Terminal and Nonterminal
You can chain together OracleOperationBuilder methods, to specify read and
write operations against a collection.

OracleOperationBuilder provides the following nonterminal methods, which
you can chain together to specify a read or write operation: key(), keys(),
filter(), version(), skip(), limit(), and headerOnly().

These are called nonterminal methods because they return the same
OracleOperationBuilder object on which they are invoked, which allows them to
be chained together. Nonterminal methods let you specify parts of an operation; they
do not create or execute an operation.

OracleOperationBuilder also provides terminal methods. A terminal method
always appears at the end of a method chain, and it creates and executes the operation.

The terminal methods for read operations are getCursor(), getOne(), and
count(). The terminal methods for write operations are replaceOne(),
replaceOneAndGet(), and remove().

Note:

If you use OracleCursor method next() or OracleOperationBuilder
method getOne(), and if the underlying document is larger than 2 gigabytes,
then an exception is thrown.

Unless the Javadoc documentation for a method states otherwise, you can chain
together any nonterminal methods, and you can end the chain with any terminal
method. However, not all combinations make sense. For example, it does not make
sense to chain method version() together with any method except key(), or to
chain method key() or keys() together with method filter().

Table 1-1 (page 1-21) briefly describes OracleOperationBuilder nonterminal
methods for building operations against a collection.

Table 1-1 OracleOperationBuilder Nonterminal Methods

Method Description

key() Find a document that has the specified document key.

keys() Find documents that have the specified document keys. The maximum
number of keys passed as argument must not exceed 1000.

filter() Find documents that match a filter specification (a query-by-example
expressed in JSON).

Using SODA for Java

SODA for Java 1-21

Table 1-1 (Cont.) OracleOperationBuilder Nonterminal Methods

Method Description

version() Find documents that have the specified version. This is typically used
with key(). For example:
find().key("key1").version("version1").

headerOnly() Exclude document content from the result.

skip() Skip the specified number of documents in the result.

limit() Limit the number of documents in the result to the specified number.

Table 1-2 (page 1-22) briefly describes OracleOperationBuilder terminal
methods for creating and executing read operations against a collection.

Table 1-2 OracleOperationBuilder Terminal Methods for Read Operations

Method Description

getOne() Create and execute an operation that returns at most one document — for
example, an operation that includes an invocation of nonterminal method
key().

getCursor() Get a cursor over read operation results.

count() Count the number of documents found by the operation.

See Also:

• Finding Documents in Collections with SODA for Java (page 1-15) for
descriptions and examples of using OracleOperationBuilder methods
to find documents

• Replacing Documents in a Collection with SODA for Java (page 1-19) and
Removing Documents from a Collection with SODA for Java (page 1-20)
for descriptions and examples of using the OracleOperationBuilder
terminal write methods

• Using Filter Specifications (QBEs) with SODA for Java (page 1-22) for
information about queries that can be expressed as filter specifications

• The SODA for Java Javadoc for complete information about
OracleOperationBuilder methods

1.3.15 Using Filter Specifications (QBEs) with SODA for Java
A filter specification, also called a query-by-example or QBE, is a SODA query that
uses a pattern that is expressed in JSON. The query selects the JSON documents in a
collection that satisfy it, meaning that the filter specification evaluates to true for only
those documents.

QBE patterns use operators for this document selection or matching, including basic
field operators, such as testing for field existence or value comparison, and logical
operators, such as union ($or), intersection ($and), and negation ($not).

Using SODA for Java

1-22 SODA for Java Developer's Guide

Note:

QBE is not supported on a heterogeneous collection, that is, a collection that
has the media type column. Such a collection is designed for storing both
JSON and non-JSON content.

See Also:

• Querying With a Filter Specification (page 1-29)

• SODA Paths (page 1-29)

• SODA Filter Specifications (QBEs) (page 1-31)

• Media Type Column Name (page 1-55)

1.3.15.1 Sample JSON Documents
A few sample JSON documents are presented here. They are referenced in some
query-by-example (QBE) examples, as well as in some reference descriptions.

See Also:

• Example 1-13 (page 1-17) and Example 1-23 (page 1-20)

• Basic Field Clause (page 1-33)

Example 1-24 Sample JSON Document 1

{ "name" : "Jason",
 "age" : 45,
 "address" : [{ "street" : "25 A street",
 "city" : "Mono Vista",
 "zip" : 94088,
 "state" : "CA" }],
 "drinks" : "tea" }

Example 1-25 Sample JSON Document 2

{ "name" : "Mary",
 "age" : 50,
 "address" : [{ "street" : "15 C street",
 "city" : "Mono Vista",
 "zip" : 97090,
 "state" : "OR" },
 { "street" : "30 ABC avenue",
 "city" : "Markstown",
 "zip" : 90001,
 "state" : "CA" }] }

Example 1-26 Sample JSON Document 3

{ "name" : "Mark",
 "age" : 65,
 "drinks" : ["soda", "tea"] }

Using SODA for Java

SODA for Java 1-23

1.3.15.2 Using Paths in QBEs
A query-by-example (QBE) contains zero or more paths to document fields. (In the
context of a QBE, "path to a field" is often shortened informally to "field".) A path to a
field can have multiple steps, and it can cross the boundaries of both objects and
arrays.

For example, this QBE matches all documents where a zip field exists under field
address and has value 94088:

{ "address.zip" : 94088 }

The preceding filter specification matches sample document 1.

Paths can target particular elements of an array in a JSON document, by enclosing the
array position in square brackets ([and]).

For example, path address[1].zip targets all zip fields in the second object of
array addresses. (Array position numbers start at 0, not 1.) The following QBE
matches sample document 2 because the second object of its address array has a zip
field with value 90001.

{ "address[1].zip" : 90001}

Instead of specifying a particular array position, you can specify a list of positions (for
example, [1,2]) or a range of positions (for example, [1 to 3]). The following QBE
matches sample document 3 because it has "soda" as the first element (position 0) of
array drinks.

{ "drinks[0,1]" : "soda" }

And this QBE does not match any of the sample documents because they do not have
"soda" as the second or third array element (position 1 or 2).

{ "drinks[1 to 2]" : "soda" }

If you do not specify an array step then [*] is assumed, which matches any array
element — * acts as a wildcard. For example, if the value of field drinks is an array
then the following QBE matches if the value of any array element is the string "tea":

{"drinks" : "tea"}

This QBE thus matches sample documents 1 and 2. An equivalent QBE that uses the
wildcard explicitly is the following:

{"drinks[*]" : "tea"}

See Also:

• SODA Paths (page 1-29)

• Sample JSON Documents (page 1-23)

1.3.15.3 Using QBE Basic Field Operators
A query-by-example (QBE) basic field operator tests whether a given field satisfies a
given set of criteria. A basic field operator is either $exists or a comparison operator.

Using SODA for Java

1-24 SODA for Java Developer's Guide

A comparison operator compares the value of a field with one or more other values.
The comparison operators are $eq, $ne, $gt, $gte, $lte, $startsWith, $regex,
$in, $nin, and $all.

One of the simplest and most useful filter specifications tests a field for equality to a
specific value. For example, this filter specification matches any document that has a
field name whose value is "Jason":

{ "name" : { "$eq" : "Jason" } }

For convenience, you can omit QBE operator $eq. This scalar-equality filter
specification is thus equivalent to the preceding one, which uses $eq:

{ "name" : "Jason" }

Both of the preceding filter specifications match sample document 1.

$eq is an example of a QBE comparison operator. You can combine multiple
comparison operators in the object that is the value of a single QBE field.

For example, the following QBE uses comparison operators $gt and $lt. It matches
sample document 2, because that document contains an age field with a value (50)
that is both greater than ($gt) 45 and less than ($lt) 55.

{ "age" : { "$gt" : 45, "$lt" : 55 } }

See Also:

• Table 1-3 (page 1-34)

• Basic Field Clause (page 1-33) for more information about basic field
clauses

• Sample JSON Documents (page 1-23)

1.3.15.4 Using QBE Logical Combining Operators
You use the query-by-example (QBE) logical combining operators, $and, $or, and
$nor, to combine conditions to form more complex QBEs. Each accepts an array of
conditions as its argument.

QBE logical combining operator $and matches a document if each condition in its
array argument matches it. For example, this QBE matches sample document 1,
because that document contains a field name whose value starts with "Ja", and it
contains a field drinks whose value is "tea".

{"$and" : [{"name" : {"$startsWith" : "Ja"}}, {"drinks" : "tea"}]}

Often you can omit operator $and. For example, the following query is equivalent to
the previous one:

{"name" : {"$startsWith" : "Ja"}, "drinks" : "tea"}

QBE logical combining operator $or matches a document if at least one of the
conditions in its array argument matches it.

For example, the following QBE matches sample documents 2 and 3, because those
documents contain a field zip under a field address, where the value of zip is less
than 94000, or a field drinks whose value is "soda", or both:

Using SODA for Java

SODA for Java 1-25

{"$or" : [{"address.zip" : {"$le" : 94000}}, {"drinks" : "soda"}]}

QBE logical combining operator $nor matches a document if no condition in its array
argument matches it. (Operators $nor and $or are logical complements.)

The following query matches sample document 1, because in that document there is
neither a field zip under a field address, where the value of zip is less than 94000
nor a field drinks whose value is "soda":

{"$nor" : [{"address.zip" : {"$le" : 94000}}, {"drinks" : "soda"}]}

Each element in the array argument of a logical combining operator is a condition.

For example, the following condition has a single logical combining clause, with
operator $and. The array value of $and has two conditions: the first condition
restricts the value of field age. The second condition has a single logical combining
clause with $or, and it restricts either the value of field name or the value of field
drinks.

{ "$and" : [{ "age" : {"$gte" : 60} },
 { "$or" : [{"name" : "Jason"},
 {"drinks" : {"$in" : ["tea", "soda"]}}] }] }

• The condition with the comparison for field age matches sample document 3.

• The condition with logical combining operator $or matches sample documents 1
and 3.

• The overall condition matches only sample document 3, because that is the only
document that satisfies both the condition on age and the condition that uses $or.

This condition has two conditions in the array argument of operator $or. The first of
these has a single logical combining clause with $and, and it restricts the values of
fields name and drinks. The second has a single logical combining clause with $nor,
and it restricts the values of fields age and name.

{ "$or" : [{ "$and" : [{"name" : "Jason"},
 {"drinks" : {"$in" : ["tea", "soda"]}}] },
 { "$nor" : [{"age" : {"$lt" : 65}},
 {"name" : "Jason"}] }] }

• The condition with operator $and matches sample document 1.

• The condition with operator $nor matches sample document 3.

• The overall condition matches both sample documents 1 and 3, because each of
these documents satisfies at least one condition in the $or argument.

See Also:

• Logical Clause (page 1-37)

• Omitting $and (page 1-37)

• Sample JSON Documents (page 1-23)

Using SODA for Java

1-26 SODA for Java Developer's Guide

1.3.15.5 Using Logical Operator $not
You use query-by-example (QBE) logical operator $not to negate the value of its
operand, which is either a single existence or comparison criterion. When the operand
criterion is true, the $not clause evaluates to false; when the criterion is false, $not
evaluates to true.

For example, this QBE matches sample documents 1 and 3: document 1 has a field
matching path address.zip and whose value is not "90001", and document 3 has
no field matching path address.zip.

{"address.zip" : {"$not" : { "$eq" : "90001" }}}

See Also:

• Logical Clause (page 1-37)

• Sample JSON Documents (page 1-23)

1.3.15.6 Using Nested Conditions
You can use a query-by-example (QBE) with a nested condition to match a document
that has a field with an array value with object elements, where a given object of the
array satisfies multiple criteria.

The following condition matches documents that have both a city value of "Mono
Vista" and a state value of"CA" in the same object under array address.

{"address" : { "city" : "Mono Vista", "state" : "CA"}}

It specifies that there must be a parent field address, and if the value of that field is
an array then at least one object in the array must have a city field with value "Mono
Vista" and a state field with value "CA". Of the three sample documents, this QBE
matches only sample document 1.

The following QBE also matches sample document 1, but it matches sample document
2 as well:

{"address.city" : "Mono Vista", "address.state" : "CA"}

Unlike the preceding QBE, nothing here constrains the city and state to belong to the
same address. Instead, this QBE specifies only that matching documents must have a
city field with value "Mono Vista" in some object of an address array and a
state field with value "CA" in some object of an address array. It does not specify
that fields address.city and address.state must reside within the same object.

See Also:

• Nested-Condition Clause (page 1-38)

• Sample JSON Documents (page 1-23)

Using SODA for Java

SODA for Java 1-27

1.3.15.7 Using QBE Operator $id
Other query-by-example (QBE) operators generally look for particular JSON fields
within documents and try to match their values. Operator $id instead matches
document keys. You use operator $id in the outermost condition of a QBE.

Example 1-27 (page 1-28)shows three QBEs that use $id.

Note:

As an alternative to using a $id condition in a SODA for Java QBE, you can
use OracleOperatorBuild method key() or keys() to specify document
keys in conjunction with method filter().

See Also:

• Finding Documents in Collections with SODA for Java (page 1-15)

• ID Clause (page 1-39)

Example 1-27 Using $id To Find Documents That Have Given Keys

// Find the unique document that has key "key1".
{"$id" : "key1"}

// Find the documents that have any of the keys "key1", "key2", and "key3".
{"$id" : ["key1","key2","key3"]}

// Find the documents that have at least one of the keys "key1" and "key2",
// and that have an object with a field address.zip whose value is at least 94000.
{"$and" : [{$id : ["key1", "key2"]},
 {"address.zip" : { "$gte" : 94000 }}]}

1.3.15.8 Using QBE Operator $orderby
Query-by-example (QBE) operator $orderby is described.

It sorts query results in ascending or descending order.

The following QBE specifies the order of fields age and salary. A value of 1 specifies
ascending order for age. A value of -2 specifies descending order for salary. Sorting
is done first by age and then by salary, because the absolute value of 1 is less than
the absolute value of -2.

{ "$query" : { "age" : { "$gt" : 40 } },
 "$orderby" : { "age" : 1, "salary" : -2 } }

When you use operator $orderby in a filter specification together with one or more
filter conditions, you must wrap those conditions with operator $query. In the
preceding query, the returned documents are restricted to those that satisfy a filter
condition that specifies that field age must have a value greater than 40.

See Also:

Orderby Clause Sorts Selected Objects (page 1-32)

Using SODA for Java

1-28 SODA for Java Developer's Guide

1.3.15.9 Querying With a Filter Specification
You can query a collection for documents that match a particular filter specification
(query-by-example, or QBE). You do this by passing a JSON OracleDocument that
represents the QBE to method OracleOperationBuilder filter().

Example 1-28 (page 1-29) illustrates this.

Example 1-28 Executing a Filter Specification

OracleDatabase db = ...

// OracleCollection - assume it is empty
OracleCollection col = ...

// Insert into the collection a document with field "name" set to "Jason"
// and field "location" set to "California".
OracleDocument doc =
 db.createDocumentFromString("{\"name\" : \"Jason\",
 \"location\" : \"California\"}");
col.insert(doc);

// Insert another document into the collection with field "name" set to "Mary",
// and field "location" set to "California".
doc = db.createDocumentFromString("{\"name\" : \"Mary\",
 \"location\" : \"California\"}");
col.insert(doc);

// Create a filter specification for matching all documents with
// the field "name" set to "Jason"
OracleDocument filterSpec =
 db.createDocumentFromString("{\"name\" : \"Jason\"}");

// Run the filter specification
OracleCursor c = col.find().filter(filterSpec).getCursor();

// The cursor returns a single document with this content:
// { "name" : "Json", "location" : "California" } --
// the first document inserted above.

while (c.hasNext())
{
 OracleDocument c = c.next();
}

c.close();

1.4 SODA Paths
SODA specifications contain paths, each of which targets a value in a JSON document.
A path is composed of a series of steps.

Note:

In paths, you must use strict JSON syntax. That is, you must enclose every
nonnumeric value in double quotation marks ("). For information about strict
and lax JSON syntax, see Oracle Database JSON Developer’s Guide.

SODA Paths

SODA for Java 1-29

The characters used in path steps are of two kinds: syntactic and allowed. Syntactic
characters have special syntactic meaning for JSON. They are the following:

• Period (.), which separates a parent-object field name from a child-object field
name.

• Brackets ([and]), which are array delimiters.

• Comma (,), which separates array elements or index components.

• Wildcard (*), which is a placeholder. It matches any index in an array step and any
field name in a field step.

Allowed characters are those that are not syntactic.

There are two kinds of steps in a path: field steps and array steps.

A field step is one of the following:

• The wildcard character * (by itself)

• A sequence of allowed characters — for example, cat

• A sequence of characters (allowed or syntactic) enclosed in backquote characters (`)
— for example, `dog`and `cat*dog`

Within a field step that is enclosed in backquote characters, a syntactic character does
not act syntactically; it is treated literally as an ordinary character. You must enclose
any field step that contains a syntactic character in a pair of backquote characters, if
you intend for the syntactic character to be treated literally.

Because all of the characters in dog are allowed, backquote characters are optional in
`dog`. Because each of the following field steps contains a syntactic character, they
must be enclosed in backquote characters:

`cat.dog`
`cat[dog]`
`cat,dog`
`cat*dog`

In `cat*dog` the asterisk does not act as a wildcard. Because it is escaped by
backquotes, it acts as an ordinary character. But in the path { "*.b" : 42 }, the
unescaped asterisk acts as a wildcard; it is a placeholder for a field name. Similarly, the
unescaped period also acts syntactically.

If a step that you enclose in backquote characters contains a backquote character, then
you must represent that character using two consecutive backquote characters. For
example: `Customer``s Comment`.

A period (.) must be followed by a field step. After the first step in a path, each field
step must be preceded by a period.

An array step is delimited by brackets ([and]). Inside the brackets can be either:

• The wildcard character * (by itself)

• One or more of these index components:

– A single index, which is an integer greater than or equal to zero

– An index range, which has this syntax:

x to y

SODA Paths

1-30 SODA for Java Developer's Guide

x and y are integers greater than or equal to zero, and x is less than or equal to
y. There must be at least one whitespace character between x and to and
between to and y.

Multiple components must be separated by commas (,). In a list of multiple
components, indexes must be in ascending order, and ranges cannot overlap.

For example, these are valid array steps:

[*]
[1]
[1,2,3]
[1 to 3]
[1, 3 to 5]

The following are not valid array steps:

[*, 6]
[3, 2, 1]
[3 to 1]
[1 to 3, 2 to 4]

1.5 SODA Filter Specifications (QBEs)
You can select JSON documents in a collection by pattern-matching.

A filter specification, also known as a query-by-example (QBE) or simply a filter, is a
SODA query that uses a pattern expressed in JSON. Some SODA operations use a
filter specification to select all JSON documents in a collection that satisfy it, meaning
that the filter specification evaluates to true for only those objects of the collection. A
filter specification thus specifies characteristics that the documents that satisfy it must
possess.

A filter specification pattern can use QBE operators, which are predefined JSON fields
whose names start with $. The JSON value of an operator is called its operand or its
argument.1

Although a SODA operator is itself a JSON field, for ease of exposition in the context
of filter specification descriptions, the term field refers here to a JSON field that is not a
SODA operator. (In the context of a QBE, "field" is often used informally to mean "path
to a field".)

Note:

You must use strict JSON syntax in a filter specification. That is, you must
enclose every nonnumeric value in double quotation marks. This includes
QBE operators. For information about strict and lax JSON syntax, see Oracle
Database JSON Developer’s Guide.

A filter specification is a JSON object. There are three kinds of filter specification:

• Empty filter: { }. An empty filter matches all objects in a collection.

• Composite filter.

• Filter-condition filter.

1 A syntax error is raised if the argument to a QBE operator is not of the required type (for example, if $gt is
passed an argument that is not a string or a number).

SODA Filter Specifications (QBEs)

SODA for Java 1-31

A filter specification (QBE) can appear only at the top (root) level of a query. However,
a filter condition can be used either on its own, as a filter-condition filter (a QBE), or at
a lower level, in the query clause of a composite filter.

Note:

QBE is not supported on a heterogeneous collection, that is, a collection that
has the media type column. Such a collection is designed for storing JSON and
non-JSON content.

See Also:

• Composite Filters (page 1-32)

• Filter Conditions (page 1-33)

• Media Type Column Name (page 1-55)

1.5.1 Composite Filters
A composite filter specification (query-by-example, or QBE) can appear only at the top
level. That is, you cannot nest a composite filter inside another composite filter or
inside a filter condition.

A composite filter consists of one or both of these clauses:

• Query clause

It has the form $query filter_condition. See Filter Conditions (page 1-33).

• Orderby clause

It has the form $orderby orderby_spec. See Orderby Clause Sorts Selected
Objects (page 1-32).

Neither clause can appear more than once.

The following composite filter contains both clauses:

{ "$query" : { "salary" : { "gt" : 10000 } },
 "$orderby" : { "age" : -1, "zipcode" : 2 } } }

In this example, the query clause selects documents that have a salary field whose
value is greater than 10,000, and the orderby clause sorts the selected documents first
by descending age and then by ascending zip code.

1.5.1.1 Orderby Clause Sorts Selected Objects
A filter specification (query-by-example, or QBE) with an orderby clause returns the
selected JSON documents in sorted order.

This is the syntax of an orderby clause:

"$orderby" : { field1 : direction1, field2 : direction2, ... }

The value of operator $orderby is a JSON object with one or more members.

Each field is a string that is interpreted as a path from the root of the candidate
object.

SODA Filter Specifications (QBEs)

1-32 SODA for Java Developer's Guide

Each direction is a non-zero integer. It sorts the returned documents by the field
value in ascending or descending order, depending on whether the value is positive or
negative, respectively.

The fields in the $orderby operand are sorted in the order of their magnitudes
(absolute values), smaller magnitudes before larger ones. For example, a field with
value -1 sorts before a field with value 2, which sorts before a field with value 3.

The following filter specification selects objects in which field salary has a value
greater than 10,000 and less than or equal to 20,000. It sorts the objects first in
descending order by age and then in ascending order by zipcode.

{ "$query" : { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
 "$orderby" : { "age" : -1, "zipcode" : 2 } }

The following SQL SELECT statement fragment is analogous:

WHERE (salary > 10000) AND (salary <= 20000)
ORDER BY age DESC, zipcode ASC

If the absolute values of two or more sort directions are equal then the order in which
the fields are sorted is determined by the order in which they appear in the serialized
JSON content that you use to create the JSON document.

Oracle recommends that you use sort directions that have unequal absolute values, to
precisely govern the order in which the fields are used, especially if you use an
external tool or library to create the JSON content and you are unsure of the order in
which the resulting content is serialized.

See Also:

SODA Paths (page 1-29), for information about path strings

1.5.2 Filter Conditions
A filter condition can be used either on its own, as a filter specification, or at a lower
level, in the query clause of a composite filter specification.

A filter condition, sometimes called just a condition, consists of one or more of these
clauses:

• Basic Field Clause (page 1-33)

• Logical Clause (page 1-37)

• Nested-Condition Clause (page 1-38)

• Special-Criterion Clause (page 1-39)

A filter condition is true if and only if all of its clauses are true. A filter condition
cannot be empty.

1.5.2.1 Basic Field Clause
A basic field clause specifies that a given field must satisfy a given set of criteria.

It can take the following forms:

• Existence clause: a field2 followed by an existence criterion, which is a JSON object
with operator $exists followed its operand (argument), a scalar. A JSON scalar is

SODA Filter Specifications (QBEs)

SODA for Java 1-33

a value other than an object or an array; that is, it is a JSON number, string, true,
false, or null.

An existence clause tests whether the field exists. It matches a document only if one
of these is true:

– The field exists and the operand is any scalar value except false, null, or 0.

– The field does not exist and the operand is false, null, or 0.

For example, this existence clause tests whether there is a document with field
address.zip:

"address.zip" : { "$exists" : true }

• Scalar equality clause: a field followed by a scalar value.

A scalar equality clause tests whether the value of the field is equal to the scalar
value. It is equivalent to a comparison clause for the same field that tests the same
value using $eq.

For example, this scalar equality clause tests whether the field salary has the
value 10000:

"salary" : 10000

It is equivalent to the following comparison clause:

"salary" : { "$eq" : 10000 }

• Comparison clause: a field followed by a JSON object containing one or more
comparison criteria. A comparison criterion is a comparison operator followed by
its operand. (The operators appear as JSON field names and the field values are the
operands.)

The comparison operators are $eq, $ne, $gt, $lt, $gte, $lte, $startsWith,
$regex, $in, $nin, and $all.

A comparison clause tests whether the value of the field satisfies all of the
comparison criteria.

For example, this comparison clause has two criteria. The first tests whether field
age is greater than 18; the second tests whether it is less than or equal to 45:

"age" : { "$gt" : 18, "$lte" : 45 }

Table 1-3 (page 1-34) describes the comparison operators. See Sample JSON
Documents (page 1-23) for the documents used in column Example.

Table 1-3 Query-By-Example (QBE) Comparison Operators

Operator Description Operand Example

$eq Matches document
only if field value
equals argument
value.

JSON scalar.
{"name" : { "$eq" : "Jason" }}

matches sample document 1.

2 A field here is any JSON field that is not an operator. And as always, operators and fields must be enclosed in
double quotation marks (") when used in SODA.

SODA Filter Specifications (QBEs)

1-34 SODA for Java Developer's Guide

Table 1-3 (Cont.) Query-By-Example (QBE) Comparison Operators

Operator Description Operand Example

$ne Matches document
only if field value
does not equal
argument value or
there is no such field
in the document.

JSON scalar.
{"name" : { "$ne" : "Jason" }}

matches sample documents 2 and 3.

$gt Matches document
only if field value is
greater than argument
value.

JSON
number or
string.

{"age" : { "$gt" : 45 }}

matches sample document 2.

$lt Matches document
only if field value is
less than argument
value.

JSON
number or
string.

{"age" : { "$lt" : 50 }}

matches sample document 1.

$gte Matches document
only if field value is
greater than or equal
to argument value.

JSON
number or
string.

{"age" : { "$gte" : 45 }}

matches sample documents 1, 2, and 3.

$lte Matches document
only if field value is
less than or equal to
argument value.

JSON
number or
string.

{"age" : { "$lte" : 45 }}

matches sample document 1.

$startsWi
th

Matches document
only if field value
starts with argument
value.

JSON string.
{"name" : {"$startsWith" : "J"}}

matches sample document 1.

$regex Matches document
only if field value
matches argument
regular expression.

SQL regular
expression, as
a JSON
string.

See Oracle
Database SQL
Language
Reference.

{"name" : { "$regex" : ".*son"}}

matches sample document 1.

$in Matches document
only if field exists and
its value equals at
least one value in the
argument array.

Non-empty
JSON array
of scalars.

{"address.zip" : { "$in" : [94088, 90001] }}

matches sample documents 1 and 2.

SODA Filter Specifications (QBEs)

SODA for Java 1-35

Table 1-3 (Cont.) Query-By-Example (QBE) Comparison Operators

Operator Description Operand Example

$nin Matches document
only if one of these is
true:

• Field exists, but its
value is not equal
to any value in the
argument array.

• Field does not
exist.

Non-empty
JSON array
of scalars.1

{"address.zip" : { "$nin" : [90001] }}

matches sample documents 1 and 2.

$all Matches document
only if one of these is
true:

• Field value is an
array that contains
all values in the
argument array.

• Field value is a
scalar value and
the argument
array contains a
single matching
value.

Non-empty
JSON array
of scalars.1

{"drinks" : { "$all" : ["soda", "tea"]}}

matches sample document 2.

{"drinks": { "$all" : ["tea"]}}

matches sample documents 1 and 2.

1 A syntax error is raised if the array does not contain at least one element.

Note:

When a path that does not end in an array step uses a comparison operator or
$not applied to a comparison clause, and the path targets an array, the test
applies to each element of the array.

For example, the QBE {"animal" : {"$eq" : "cat"}} matches the
JSON data {"animal" : ["dog", "cat"]}, even though "cat" is an
array element. The QBE {"animal" : {$not : {"$eq" : "frog"}}}
matches the same data, because each of the array elements is tested for
equality with "frog" and this test fails. (See “Logical Clause (page 1-37)” for
information about operator $not.)

See Also:

• Basic Field Clause (page 1-33)

• Nested-Condition Clause (page 1-38)

• Composite Filters (page 1-32) for information about a query clause

• Sample JSON Documents (page 1-23)

SODA Filter Specifications (QBEs)

1-36 SODA for Java Developer's Guide

1.5.2.2 Logical Clause
A logical clause is either a $not clause or logical combining clause.

• A $not clause is a field followed by a JSON object that has operator $not followed
by its operand. The operand for $not is a single existence or comparison criterion.

A $not clause logically negates the value of the $not operand. When the operand
criterion is true, the $not clause evaluates to false; when the criterion is false, $not
evaluates to true.

For example, the following $not clause matches documents that have no field
address.zip, as well as documents that have such a field but whose value is a
scalar other than "90001" or an array that has no elements equal to "90001":

"address.zip" : {"$not" : { "$eq" : "90001" }}

In contrast, the following comparison clause has the complementary effect: it
matches documents that have a field address.zip whose value is either the
scalar "90001" or an array that contains that scalar value.

"address.zip" : { "$eq" : "90001"}}

• A logical combining clause is a logical operator —$and, $or, or $nor—followed
by a non-empty array of one or more filter conditions.3

This logical combining clause uses operator $or.

"$or" [{ "name" : "Joe" }, { "salary" : 10000 }]

The following logical combining clause uses operator $and. Its array operand has
two filter conditions as its members. The second of these is a condition with a
logical combining clause that uses operator $or.

"$and" : [{"age" : {"$gte" : 60}},
 {"$or" : [{"name" : "Jason"}, {"drinks" : "tea"}]}]

1.5.2.2.1 Omitting $and

Sometimes you can omit the use of $and.

A filter condition is true if and only if all of its clauses are true. And a comparison
clause can contain multiple comparison criteria, all of which must be true for the
comparison as whole to be true. In each of these, logical conjunction (AND) is implied.
Because of this you can often omit the use of $and, for brevity.

This is illustrated by Example 1-29 (page 1-38) and Example 1-30 (page 1-38), which
are equivalent in their effect. Operator $and is explicit in Example 1-29 (page 1-38)
and implicit (omitted) in Example 1-30 (page 1-38).

The filter specifies objects for which the name starts with "Fred" and the salary is
greater than 10,000 and less than or equal to 20,000 and either address.city is
"Bedrock" or address.zipcode is 12345 and married is true.

A rule of thumb for $and omission is this: If you omit $and, make sure that no field or
operator in the resulting filter appears multiple times at the same level in the same
object.

This rule precludes using a QBE such as this, where field salary appears twice at the
same level in the same object:

3 A syntax error is raised if the array does not contain at least one element.

SODA Filter Specifications (QBEs)

SODA for Java 1-37

{ "salary" : { "$gt" : 10000 }, "age" : { "$gt" : 40 },
"salary" : { "$lt" : 20000 } }

And it precludes using a QBE such as this, where the same comparison operator,
$regex, is applied more than once to field name in the same comparison:

{ "name" : { "$regex" : "son", "$regex" : "Jas" } }

The behavior here is not that the field condition is true if and only if both of the
$regex criteria are true. To be sure to get that effect, you would use a QBE such as
this one:

{ $and : [{ "name" : { "$regex" : "son" }, { "name" : { "$regex" : "Jas" }] }

If you do not follow the rule of thumb for $and omission then only one of the
conflicting conditions or criteria that use the same field or operator is evaluated; the
others are ignored, and no error is raised. For the salary example, only one of the
salary comparison clauses is evaluated; for the name example, only one of the
$regex criteria is evaluated. Which one of the set of multiple conditions or criteria
gets evaluated is undefined.

Example 1-29 Filter Specification with Explicit $and Operator

{ "$and" : [{ "name" : { "$startsWith" : "Fred" } },
 { "salary" : { "$gt" : 10000, "$lte" : 20000 } },
 { "$or" : [{ "address.city" : "Bedrock" },
 { "address.zipcode" : 12345 }] },
 { "married" : true }] }

Example 1-30 Filter Specification with Implicit $and Operator

{ "name" : { "$startsWith" : "Fred" },
 "salary" : { "$gt" : 10000, "$lte" : 20000 },
 "$or" : [{ "address.city" : "Bedrock" },
 { "address.zipcode" : 12345 }],
 "married" : true }

1.5.2.3 Nested-Condition Clause
A nested-condition clause consists of a parent field followed by a single condition. All
fields contained in the condition are scoped to the parent field.

parent_field : condition

Note:

Since the condition of a nested-condition clause follows a field, it cannot
contain a special-criterion clause. The latter can occur only at root level.

For example, suppose that field address has child fields city and state. The
following nested-condition clause tests whether field address.city has the value
"Boston" and field address.state has the value "MA":

"address" : { "city" : "Boston", "state" : "MA" }

Similarly, this nested-condition clause tests whether the value of address.city
starts with Bos and address.state has the value "MA":

"address" : { "city" : { "$startsWith : "Bos" }, "state" : "MA" }

SODA Filter Specifications (QBEs)

1-38 SODA for Java Developer's Guide

Suppose that you have this document:

{ "address" : [{ "city" : "Boston", "state" : "MA" },
 { "city" : "Los Angeles", "state" : "CA" }] }

The following query matches each path in the document independently. Each object
element of an address array is matched independently to see if it has a city value of
"Boston" or a state value of "CA".

{ "address.city" : "Boston", "address.state" : "CA" }

This query without a nested condition thus matches the preceding document, which
has no single object with both city "Boston" and state "CA".

The following query, with a nested-condition clause for parent field address, does
not match the preceding document, because that document has no single object in an
address array with both a field city of value "Boston" and a field state of value
"CA".

{ "address" : { "city" : "Boston", "state" : "CA" } }

See Also:

Special-Criterion Clause (page 1-39)

1.5.2.4 Special-Criterion Clause
A special-criterion clause is used only in a root-level condition, that is, a condition
used in a composite filter or in a filter-condition filter.

Currently the only special-criterion clause is the ID clause.

1.5.2.4.1 ID Clause

Other query-by-example (QBE) operators generally look for particular JSON fields
within documents and try to match their values. An ID clause, which uses operator
$id, instead matches document keys.

A document key uniquely identifies a given document. It is metadata, like the creation
timestamp, last-modified timestamp, and version. It pertains to the document as a
whole and is not part of the document content.

The syntax of an ID clause is QBE operator $id followed by either a scalar key
(document identifier) or a non-empty array of scalar keys.4 The scalar key must be
either an integer or a string. The array elements must be either all integers or all
strings. For example:

"$id" : "USA"
"$id" : [1001,1002,1003]

You can use operator $id only in the outermost condition of a QBE. More precisely, if
a QBE also uses other operators in addition to $id, then the outermost condition must
have operator $and, and the sole occurrence of a $id condition must be an element of
the array argument to that $and occurrence.

Example 1-31 (page 1-40) illustrates this. It finds documents that have at least one of
the keys key1 and key2 and that have a color field with value "red".

4 A syntax error is raised if the array does not contain at least one element.

SODA Filter Specifications (QBEs)

SODA for Java 1-39

Example 1-31 Use of Operator $id in the Outermost QBE Condition

{ "$and" : [{ $id : ["key1", "key2"] }, { "color" : "red" }] }

1.6 SODA Collection Metadata Caching
SODA collection metadata is stored persistently in the database, just like collection
data. It is fetched transparently when needed, to perform collection operations.
Fetching metadata from the database carries a performance cost. You can cache
collection metadata in clients, to improve performance by avoiding database access to
retrieve the metadata.

These are the main use cases for collection metadata caching:

• Listing a collection, then opening one or more of the collections listed.

• Creating a collection, then opening it.

• Reopening a collection.

In all of these cases, cached metadata can be used to open the collection.

A collection metadata cache can be shared by all of the OracleDatabase objects that
are obtained from a given OracleRDBMSClient object, or it can be local to a single
OracleDatabase object. Both kinds of caching are disabled by default.

If both local and shared caches are enabled for the same OracleDatabase object,
entry lookup proceeds as follows:

1. The local cache is checked for an entry pertaining to a given collection used by the
database object.

2. If not found in the local cache, the shared cache is checked for an entry for the
collection.

3. If an entry for the collection is found in neither cache then the database is accessed
to try to obtain the its metadata.

1.6.1 Enabling Collection Metadata Caching
Collection metadata caching is disabled by default. You can use constructor
OracleRDBMSClient(Properties props) to enable shared or local collection
metadata caching.

Parameter props here is a Properties instance that you initialize with one or both
of the following properties:

• Property oracle.soda.sharedMetadataCache with value "true": enable the
shared cache

• Property oracle.soda.localMetadataCache with value "true": enable the
local cache

Example 1-32 (page 1-40) illustrates this; it enables both shared and local caching.

Example 1-32 Enabling Collection Metadata Caching

Properties props = new Properties();
props.put("oracle.soda.sharedMetadataCache", "true");
props.put("oracle.soda.localMetadataCache", "true");
OracleRDBMSClient cl = new OracleRDBMSClient(props);

SODA Collection Metadata Caching

1-40 SODA for Java Developer's Guide

1.6.2 Shared Collection Metadata Cache
Each SODA client (OracleRDBMSClient object) is optionally associated with a
collection metadata cache that records metadata for all collections
(OracleCollection objects) that are created for all OracleDatabase objects
created from that client. The cache is released when its associated client is released.

The number of entries in a shared cache is limited to 10,000 entries (100 database
schemas times 100 collections per schema). A shared cache uses a least-recently-used
(LRU) replacement policy: the least recently used entry is replaced by the addition of a
new entry, when the cache is full (it has 10,000 entries).

A shared metadata cache requires locking to avoid access conflict, which can affect
performance negatively because it limits concurrency.

1.6.3 Local Collection Metadata Cache
Each OracleDatabase object is optionally associated with a local collection metadata
cache. It records metadata only for collections that are created for that
OracleDatabase object. A local cache is released when its associated
OracleDatabase object is released.

There is no limit on the number of entries for a local cache — entries are never evicted.
The number of entries continues to grow as new collections are created for the given
database object.

The lack of an eviction policy for local metadata caches means that cached collection
metadata is always available; once cached, the database need never be accessed to
obtain it.

With local caching, because there is no sharing, using different database objects to
access the same collection can result in more round trips and more data replication
than is the case for shared caching.

Unlike a shared metadata cache, a local cache requires no locking.

Caution:

Because the number of entries in the local cache is unbounded, Oracle does
not recommend using the local cache if a particular Oracle Database object is
used to create a large number of collections, as it could result in running out of
memory.

1.7 SODA Collection Configuration Using Custom Metadata
SODA collections are highly configurable. You can use custom metadata, which differs
from the metadata that is provided by default.

However, Oracle recommends against using custom metadata without a compelling
reason. Doing so requires familiarity with Oracle Database concepts, such as SQL data
types (described in Oracle Database SQL Language Reference). SODA collections are
implemented on top of Oracle Database tables (or views). Therefore, many collection
configuration components are related to the underlying table configuration.

Reasons to use custom metadata include:

• To configure SecureFiles LOB storage.

SODA Collection Configuration Using Custom Metadata

SODA for Java 1-41

• To configure a collection to store documents other than JSON (a heterogeneous
collection).

• To map an existing Oracle RDBMS table or view to a new collection.

• To specify that a collection mapping to an existing table is read-only.

• To use a VARCHAR2 column for JSON content, and to increase the default
maximum length of data allowed in the column.

You might want to increase the maximum allowed data length if your database is
configured with extended data types, which extends the maximum length of these
data types to 32767 bytes. For more information about extended data types, see
Oracle Database SQL Language Reference.

Two methods for creating collections are available on interface
OracleDatabaseAdmin (accessed by invoking method admin() on an
OracleDatabase object):

createCollection(String collectionName);
createCollection(String collectionName, OracleDocument collectionMetadata);

The first method, which accepts only one argument, creates a collection with the
default metadata. The default metadata specifies database schema name, table name
(for the table storing the collection), five table columns (key, content, version, last-
modified timestamp, and creation timestamp), and the details of these table columns.
Each table column is represented by a field with a JSON object as value. That object
contains additional details about the column—name, SQL type, and so on. (See
Example 1-33 (page 1-42).)

The second method, which accepts two arguments, lets you provide custom collection
metadata in the form of a JSON OracleDocument object.

1.7.1 Getting the Metadata of an Existing Collection
OracleCollectionAdmin method getMetadata() returns the JSON metadata
document for a collection.

collectionName.admin().getMetadata();

Example 1-33 (page 1-42) shows the result of calling method
getContentAsString() on the metadata document for a collection with the default
configuration that was created using OracleDatabaseAdmin method
createCollection(String collectionName).

Example 1-33 getMetadata Output for Collection with Default Configuration

{
 "schemaName" : "mySchemaName",
 "tableName" : "myTableName",
 "keyColumn" :
 {
 "name" : "ID",
 "sqlType" : "VARCHAR2",
 "maxLength" : 255,
 "assignmentMethod" : "UUID"
 },
 "contentColumn" :
 {
 "name" : "JSON_DOCUMENT",
 "sqlType" : "BLOB",

SODA Collection Configuration Using Custom Metadata

1-42 SODA for Java Developer's Guide

 "compress" : "NONE",
 "cache" : true,
 "encrypt" : "NONE",
 "validation" : "STRICT"
 },
 "versionColumn" :
 {
 "name" : "VERSION",
 "type":"String",
 "method":"SHA256"
 },
 "lastModifiedColumn" :
 {
 "name":"LAST_MODIFIED"
 },
 "creationTimeColumn":
 {
 "name":"CREATED_ON"
 },
 "readOnly":false
}

1.7.2 Creating Custom Metadata for a Collection
Collection metadata is represented as a JSON OracleDocument instance. You can
create such an instance directly, but Oracle recommends that you instead use
OracleRDBMSMetadataBuilder, which you obtain by invoking
OracleRDBMSClient method createMetadataBuilder().

Method createMetadataBuilder() returns an OracleRDBMSMetadataBuilder
instance that is preloaded with the default collection metadata. You can modify this
preloaded metadata by calling OracleRDBMSMetadataBuilder methods that create
custom metadata.

These methods correspond to different collection metadata components. You can
customize these components by invoking builder methods in a chained manner. At the
end of the chain, you invoke method build() to create collection metadata as a JSON
OracleDocument object.

Example 1-34 (page 1-44) illustrates this; it uses OracleRDBMSMetadataBuilder to
create a collection that has custom metadata: no creation time column, a media type
column, and a non-default version column method. It first uses method
createMetadataBuilder() to create a metadata builder object. It then invokes
builder methods on that object to define the specific metadata to use, and it invokes
build() to create a collectionMetadata object with that metadata. Finally, it
creates a new collection that has this metadata.

In this case, the metadata that is specified, and the methods that define it, are as
follows:

Method Metadata

creationTimeColumnNa

me()

There is to be no creation time column. By default, the column
is present. A null value here specifies that it is absent.

mediaTypeColumnName(

)

The media type column is to be named
MY_MEDIA_TYPE_COLUMN. By default, there is no media type
column.

SODA Collection Configuration Using Custom Metadata

SODA for Java 1-43

Method Metadata

versionColumnMethod(

)

The version column method is to be UUID, instead of the default
method, SHA256.

Example 1-34 Creating a Collection That Has Custom Metadata

OracleRDBMSClient cl = new OracleRDBMSClient();
OracleRDBMSMetadataBuilder b = cl.createMetadataBuilder();
OracleDatabase db = cl.getDatabase(jdbcConnection);

// Create custom metadata
OracleDocument collectionMetadata = b.creationTimeColumnName(null).
 mediaTypeColumnName("MY_MEDIA_TYPE_COLUMN").
 versionColumnMethod("UUID").
 build();

// Create a new collection with the specified custom metadata
db.admin().createCollection("collectionName", collectionMetadata);

1.7.3 Collection Metadata Components
Collection metadata is composed of multiple components.

• Schema (page 1-45)

• Table or View (page 1-45)

• Key Column Name (page 1-46)

• Key Column Type (page 1-46)

• Key Column Max Length (page 1-47)

• Key Column Assignment Method (page 1-47)

• Key Column Sequence Name (page 1-48)

• Content Column Name (page 1-49)

• Content Column Type (page 1-49)

• Content Column Max Length (page 1-49)

• Content Column JSON Validation (page 1-50)

• Content Column SecureFiles LOB Compression (page 1-51)

• Content Column SecureFiles LOB Cache (page 1-51)

• Content Column SecureFiles LOB Encryption (page 1-52)

• Version Column Name (page 1-52)

• Version Column Generation Method (page 1-52)

• Last-Modified Time Stamp Column Name (page 1-54)

• Last-Modified Column Index Name (page 1-54)

SODA Collection Configuration Using Custom Metadata

1-44 SODA for Java Developer's Guide

• Creation Time Stamp Column Name (page 1-54)

• Media Type Column Name (page 1-55)

• Read Only (page 1-55)

See Also:

OracleRDBMSMetadataBuilder methods Javadoc for more information
about collection metadata components

Note:

The identifiers used for collection metadata components (schema name, table
name, view name, database sequence name, and column names) must be valid
Oracle quoted identifiers. Some characters and words that are allowed in
Oracle quoted identifiers are strongly discouraged. For details, see Oracle
Database SQL Language Reference).

1.7.3.1 Schema
The collection metadata component that specifies the name of the Oracle Database
schema that owns the table or view to which the collection is mapped.

Property Value

Default value None

Allowed values Valid Oracle quoted identifier6. If this value
contains double quotation marks (") or control
characters, SODA for Java replaces them with
underscore characters (_).

OracleRDBMSMetadataBuilder
method for selecting component

schemaName()

JSON collection metadata document path schemaName

See Also:

Oracle Database SQL Language Reference for information about valid Oracle
quoted identifiers

1.7.3.2 Table or View
The collection metadata component that specifies the name of the table or view to
which the collection is mapped.

Property Value

Default value None

5 Reminder: letter case is significant for a quoted SQL identifier; it is interpreted case-sensitively.

SODA Collection Configuration Using Custom Metadata

SODA for Java 1-45

Property Value

Allowed values Valid Oracle quoted identifier6. If this value
contains double quotation marks (") or control
characters, SODA for Java replaces them with
underscore characters (_).

OracleRDBMSMetadataBuilder
method for selecting component

tableName() or viewName()

JSON collection metadata document path tableName or viewName

See Also:

Oracle Database SQL Language Reference for information about valid Oracle
quoted identifiers

1.7.3.3 Key Column Name
The collection metadata component that specifies the name of the column that stores
the document key.

Property Value

Default value ID

Allowed values Valid Oracle quoted identifier6 (as defined in
Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

OracleRDBMSMetadataBuilder
method for selecting component

keyColumnName()

JSON collection metadata document path keyColumn.name

1.7.3.4 Key Column Type
The collection metadata component that specifies the SQL data type of the column that
stores the document key.

Property Value

Default value VARCHAR2

Allowed values VARCHAR2

NUMBER

RAW(16)

OracleRDBMSMetadataBuilder
method for selecting component

keyColumnType()

JSON collection metadata document path keyColumn.sqlType

SODA Collection Configuration Using Custom Metadata

1-46 SODA for Java Developer's Guide

Caution:

If client-assigned keys are used and the key column type is VARCHAR2 then
Oracle recommends that the database character set be AL32UTF8. This
ensures that conversion of the keys to the database character set is lossless.

Otherwise, if client-assigned keys contain characters that are not supported in
your database character set then conversion of the key into the database
character set during a read or write operation is lossy. This can lead to
duplicate-key errors during insert operations. More generally, it can lead to
unpredictable results. For example, a read operation could return a value that
is associated with a different key from the one you expect.

1.7.3.5 Key Column Max Length
The collection metadata component that specifies the maximum length of the key
column in bytes. This component applies only to keys of type VARCHAR2.

Property Value

Default value 255

Allowed values At least 32 bytes if key assignment method is
UUID or GUID. See Key Column Assignment
Method (page 1-47).

OracleRDBMSMetadataBuilder
method for selecting component

keyColumnMaxLength()

JSON collection metadata document path keyColumn.maxLength

See Also:

Key Column Type (page 1-46)

1.7.3.6 Key Column Assignment Method
The collection metadata component that specifies the method used to assign keys to
objects that are inserted into the collection.

Property Value

Default value UUID

Allowed values UUID

GUID

SEQUENCE

CLIENT

For descriptions of these methods, see Table 1-4
(page 1-48).

OracleRDBMSMetadataBuilder
method for selecting component

keyColumnAssignmentMethod()

SODA Collection Configuration Using Custom Metadata

SODA for Java 1-47

Property Value

JSON collection metadata document path keyColumn.assignmentMethod

Table 1-4 Key Assignment Methods

Method Description

GUID Keys are generated in Oracle RDBMS by the SQL function SYS_GUID,
described in Oracle Database SQL Language Reference.

SEQUENCE Keys are generated in Oracle Database by a database sequence. If you
specify the key assignment method as SEQUENCE then you must also
specify the name of that sequence — see Key Column Sequence Name
(page 1-48).

CLIENT Keys are assigned by the client application.

UUID (default) Keys are generated by SODA for Java, based on the UUID capability of
the Java Virtual Machine (JVM) underlying SODA for Java.

1.7.3.7 Key Column Sequence Name
The collection metadata component that specifies the name of the database sequence
that generates keys for documents that are inserted into a collection if the key
assignment method is SEQUENCE.

If you specify the key assignment method as SEQUENCE then you must also specify the
name of that sequence. If the specified sequence does not exist then SODA for Java
creates it.

Property Value

Default value None

Allowed values Valid Oracle quoted identifier6 (as defined in
Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

OracleRDBMSMetadataBuilder method for
selecting component

keyColumnSequenceName()

JSON collection metadata document path keyColumn.sequenceName

Note:

If you drop a collection using SODA for Java, the sequence used for key
generation is not dropped. This is because it might not have been created
using SODA for Java. To drop the sequence, use SQL command DROP
SEQUENCE, after first dropping the collection.

SODA Collection Configuration Using Custom Metadata

1-48 SODA for Java Developer's Guide

See Also:

• Key Column Assignment Method (page 1-47)

• Oracle Database SQL Language Reference for information about DROP
SEQUENCE

• Oracle Database Concepts for information about database sequences

1.7.3.8 Content Column Name
The collection metadata component that specifies the name of the column that stores
the database content.

Property Value

Default value JSON_DOCUMENT

Allowed values Valid Oracle quoted identifier6 (as defined in
Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

OracleRDBMSMetadataBuilder
method for selecting component

contentColumnName()

JSON collection metadata document path contentColumn.name

1.7.3.9 Content Column Type
The collection metadata component that specifies the SQL data type of the column that
stores the document content.

Property Value

Default value BLOB

Allowed values VARCHAR2

BLOB

CLOB

OracleRDBMSMetadataBuilder
method for selecting component

contentColumnType()

JSON collection metadata document path contentColumn.sqlType

1.7.3.10 Content Column Max Length
The collection metadata component that specifies the maximum length of the content
column in bytes. This component applies only to content of type VARCHAR2.

Property Value

Default value 4000

SODA Collection Configuration Using Custom Metadata

SODA for Java 1-49

Property Value

Allowed values 32767 if extended data types are enabled.
Otherwise, 4000 if content column type is
VARCHAR2.

OracleRDBMSMetadataBuilder
method for selecting component

contentColumnMaxLength()

JSON collection metadata document path contentColumn.maxLength

See Also:

• Content Column Type (page 1-49)

• Oracle Database SQL Language Reference for information about extended
data types

1.7.3.11 Content Column JSON Validation
The collection metadata component that specifies the syntax to which JSON content
must conform—strict or lax.

Property Value

Default value STANDARD

Allowed values STANDARD

STRICT

LAX (default for SQL condition is json)

OracleRDBMSMetadataBuilder
method for selecting component

contentColumnValidation()

JSON collection metadata document path contentColumn.validation

• STANDARD validates according to the JSON RFC 4627 standard. (It corresponds to
the strict syntax defined for Oracle SQL condition is json.)

• STRICT is the same as STANDARD, except that it also verifies that the document
does not contain duplicate JSON field names. (It corresponds to the strict syntax
defined for Oracle SQL condition is json when the SQL keywords WITH
UNIQUE KEYS are also used.)

• LAX validates more loosely. (It corresponds to the lax syntax defined for Oracle
SQL condition is json.) Some of the relaxations that LAX allows include the
following:

– It does not require JSON field names to be enclosed in double quotation marks
(").

– It allows uppercase, lowercase, and mixed case versions of true, false, and
null.

– Numerals can be represented in additional ways.

SODA Collection Configuration Using Custom Metadata

1-50 SODA for Java Developer's Guide

See Also:

• Oracle Database JSON Developer’s Guide for information about strict and lax
syntax JSON syntax

• http://tools.ietf.org/html/rfc4627 for the JSON RFC 4627
standard

1.7.3.12 Content Column SecureFiles LOB Compression
The collection metadata component that specifies the SecureFiles LOB compression
setting.

Property Value

Default value NONE

Allowed values NONE

HIGH

MEDIUM

LOW

OracleRDBMSMetadataBuilder
method for selecting component

contentColumnCompress()

JSON collection metadata document path contentColumn.compress

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about SecureFiles LOB storage

1.7.3.13 Content Column SecureFiles LOB Cache
The collection metadata component that specifies the SecureFiles LOB cache setting.

Property Value

Default value TRUE

Allowed values TRUE

FALSE

OracleRDBMSMetadataBuilder
method for selecting component

contentColumnCache()

JSON collection metadata document path contentColumn.cache

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about SecureFiles LOB storage

SODA Collection Configuration Using Custom Metadata

SODA for Java 1-51

http://tools.ietf.org/html/rfc4627

1.7.3.14 Content Column SecureFiles LOB Encryption
The collection metadata component that specifies the SecureFiles LOB encryption
setting.

Property Value

Default value NONE

Allowed values NONE

3DES168

AES128

AES192

AES256

OracleRDBMSMetadataBuilder
method for selecting component

contentColumnEncrypt()

JSON collection metadata document path contentColumn.encrypt

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about SecureFiles LOB storage

1.7.3.15 Version Column Name
The collection metadata component that specifies the name of the column that stores
the document version.

Property Value

Default value VERSION

Allowed values Valid Oracle quoted identifier6 (as defined in
Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

OracleRDBMSMetadataBuilder
method for selecting component

versionColumnName()

JSON collection metadata document path versionColumn.name

1.7.3.16 Version Column Generation Method
The collection metadata component that specifies the method used to compute version
values for objects when they are inserted into a collection or replaced.

Example 1-34 (page 1-44) uses this metadata component.

Property Value

Default value SHA256

SODA Collection Configuration Using Custom Metadata

1-52 SODA for Java Developer's Guide

Property Value

Allowed values UUID

TIMESTAMP

MD5

SHA256

SEQUENTIAL

NONE

OracleRDBMSMetadataBuilder
method for selecting component

versionColumnMethod()

JSON collection metadata document path versionColumn.method

Table 1-5 (page 1-53) describes the version generation methods.

Table 1-5 Version Generation Methods

Method Description

UUID Ignoring object content, SODA for Java generates a universally
unique identifier (UUID) when the document is inserted and
for every replace operation. Efficient, but the version changes
even if the original and replacement documents have identical
content.

Version column type value is VARCHAR2(255).

TIMESTAMP Ignoring object content, SODA for Java generates a value from
the time stamp and coverts it to LONG. This method might
require a round trip to the database instance to get the
timestamp. As with UUID, the version changes even if the
original and replacement documents have identical content.

Version column type value is NUMBER.

MD5 SODA for Java uses the MD5 algorithm to compute a hash
value of the document content. This method is less efficient
than UUID, but the version changes only if the document
content changes.

Version column type value is VARCHAR2(255).

SHA256 (default) SODA for Java uses the SHA256 algorithm to compute a hash
value of the document content. This method is less efficient
than UUID, but the version changes only if the document
content changes.

Version column type value is VARCHAR2(255).

SEQUENTIAL Ignoring object content, SODA for Java assigns version 1 when
the object is inserted and increments the version value every
time the object is replaced. Version values are easily
understood by human users, but the version changes even if
the original and replacement documents have identical content.

Version column type value is NUMBER.

NONE If the version column is present, NONE means that the version is
generated outside SODA for Java (for example, by a database
trigger).

SODA Collection Configuration Using Custom Metadata

SODA for Java 1-53

See Also:

Table 1-5 (page 1-53) for descriptions of the allowed values

1.7.3.17 Last-Modified Time Stamp Column Name
The collection metadata component that specifies the name of the column that stores
the last-modified time stamp of the document.

Property Value

Default value LAST_MODIFIED

Allowed values Valid Oracle quoted identifier6 (as defined in
Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

OracleRDBMSMetadataBuilder
method for selecting component

lastModifiedColumnName()

JSON collection metadata document path lastModifiedColumn.name

1.7.3.18 Last-Modified Column Index Name
The collection metadata component that specifies the name of the index on the last-
modified column.

Note:

This component is currently for internal use only. Do not change its value.

Property Value

Default value None

Allowed values Valid Oracle quoted identifier6 (as defined in
Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

OracleRDBMSMetadataBuilder
method for selecting component

lastModifiedColumnIndex()

JSON collection metadata document path lastModifiedColumn.index

1.7.3.19 Creation Time Stamp Column Name
The collection metadata component that specifies the name of the column that stores
the creation time stamp of the document. This timestamp is generated during the
insert, insertAndGet, save, or saveAndGet operation.

Example 1-34 (page 1-44) uses this metadata component.

SODA Collection Configuration Using Custom Metadata

1-54 SODA for Java Developer's Guide

Property Value

Default value CREATED_ON

Allowed values Valid Oracle quoted identifier6 (as defined in
Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters, SODA for Java replaces them
with underscore characters (_).

OracleRDBMSMetadataBuilder
method for selecting component

creationTimeColumnName()

JSON collection metadata document path creationTimeColumn.name

1.7.3.20 Media Type Column Name
The collection metadata component that specifies the name of the column that stores
the media type of the document. A media type column is needed if the collection is to
be heterogeneous, that is, it can store documents other than JSON.

Example 1-34 (page 1-44) uses this metadata component.

Note:

You cannot use query-by-example (QBE) with a heterogeneous collection (an
error is raised if you try).

Property Value

Default value None

Allowed values Valid Oracle quoted identifier6 (as defined in
Oracle Database SQL Language Reference). If this
value contains double quotation marks (") or
control characters then SODA for Java replaces
them with underscore characters (_).

OracleRDBMSMetadataBuilder
method for selecting component

mediaTypeColumnName()

JSON collection metadata document path mediaTypeColumn.name

1.7.3.21 Read Only
The collection metadata component that specifies whether the collection is read-only.

Property Value

Default value FALSE

Allowed values TRUE

FALSE

OracleRDBMSMetadataBuilder
method for selecting component

readOnly()

SODA Collection Configuration Using Custom Metadata

SODA for Java 1-55

Property Value

JSON collection metadata document path readOnly

SODA Collection Configuration Using Custom Metadata

1-56 SODA for Java Developer's Guide

A
SODA for Java Core Interfaces

The SODA for Java core interfaces are described.

Table A-1 (page A-1) lists and briefly describes these interfaces. For complete
information about them, see the SODA Javadoc.

Table A-1 SODA for Java Core Interfaces

Interface Description

OracleClient SODA for Java entry point (client)

OracleDocument Document

Content is typically JSON; possibly a MIME type (for
example, image, audio, or video)

Provides methods that get document content and
metadata.

OracleDatabase Database of collections of documents

Provides methods that access OracleDatabaseAdmin
and open existing collections.

Inherits methods that create documents suitable for
insertion into collections.

Obtained by invoking
OracleClient.getDatabase().

OracleDatabaseAdmin Provides methods that create collections and get their
metadata.

Obtained by invoking OracleDatabase.admin().

OracleCollection Collection of documents

Provides methods that access
OracleOperationBuilder and
OracleCollectionAdmin and insert and save
collection documents.

Obtained by invoking
OracleDatabase.admin().createCollection()
or, if it already exists,
OracleDatabase.openCollection().

OracleCollectionAdmin Provides methods that index and drop collections and
get their metadata.

Obtained by invoking OracleDatabase.admin().

SODA for Java Core Interfaces A-1

Table A-1 (Cont.) SODA for Java Core Interfaces

Interface Description

OracleOperationBuilder Builder and executor of read and write operations on a
collection.

Provides nonterminal methods for building operations
(for example, skip() and limit()) and terminal
methods for executing operations (for example,
getCursor(), count(), and remove()).

Obtained by invoking OracleCollection.find(),
which returns an OracleOperationBuilder object
that represents a query that finds all documents in the
collection.

OracleCursor Cursor for result list of query that
OracleCollection.find() returns

next() method returns the next document from the
query result list.

Obtained by invoking
OracleOperationBuilder.getCursor().

A-2 SODA for Java Developer's Guide

Index

Symbols

$all operator, 1-33
$and operator

omitting, 1-25
$eq operator

omitting, 1-33
$exists operator, 1-33
$gt operator, 1-33
$gte operator, 1-33
$id operator, 1-28
$in operator, 1-33
$lte operator, 1-33
$ne operator, 1-33
$nin operator, 1-33
$nor operator, 1-25, 1-37
$not clause

definition, 1-37
$not operator, 1-37
$or operator, 1-25, 1-37
$orderby operator, 1-28
$regex operator, 1-33
$startsWith operator, 1-33

A

allowed characters, definition, 1-29
array step, definition, 1-29

B

backquotes, 1-29
basic field clause

definition, 1-33
basic field operators, 1-24

C

collection configuration, 1-41, 1-44
collection metadata

components of, 1-44
content column JSON validation, 1-50
content column max length, 1-49

collection metadata (continued)
content column name, 1-49
content column SecureFiles LOB cache, 1-51
content column SecureFiles LOB compression,

1-51
content column SecureFiles LOB encryption, 1-52
content column type, 1-49
creating custom, 1-43
creation time stamp column name, 1-54
getting, 1-42
key column assignment method, 1-47
key column max length, 1-47
key column name, 1-46
key column sequence name, 1-48
key column type, 1-46
last-modified column index name, 1-54
last-modified time stamp column name, 1-54
media type column name, 1-55
read only, 1-55
schema, 1-45
table or view, 1-45
version column name, 1-52
version generation method, 1-52

collections
creating, 1-6, 1-8
dropping, 1-9
opening

during creation, 1-6
comparison clause

definition, 1-33
comparison criterion

definition, 1-33
comparison operator

definition, 1-33
condition

definition, 1-33
content column JSON validation collection metadata

component, 1-50
content column max length collection metadata

component, 1-49
content column name collection metadata component,

1-49

Index-1

content column SecureFiles LOB cache collection
metadata component, 1-51

content column SecureFiles LOB compression
collection metadata component, 1-51

content column SecureFiles LOB encryption collection
metadata component, 1-52

content column type collection metadata component,
1-49

creating a collection, 1-6
creating collections, 1-8
creating documents, 1-10
creation time stamp column name collection metadata

component, 1-54

D
deleting a collection

 See dropping a collection
deleting documents from a collection

 See removing documents from a collection
documents

creating, 1-10
finding in collections, 1-15
inserting into collections, 1-13
removing from a collection, 1-20
replacing in collections, 1-19
saving into collections, 1-14

dropping a collection, 1-9

E

empty query, 1-31
existence clause

definition, 1-33
existence criterion

definition, 1-33

F
field clause, basic

definition, 1-33
field step, definition, 1-29
filter

definition, 1-31
filter condition

definition, 1-33
filter specification

definition, 1-31
querying with, 1-29

filter specifications
details, 1-31

finding documents in collections, 1-15

H

handling transactions, 1-12

I

inserting documents into collections, 1-13
installing SODA for Java, 1-1

J

JAR files needed for SODA for Java, 1-1
Java Runtime Environment needed for SODA for Java,

1-1

K
key column assignment method collection metadata

component, 1-47
key column max length collection metadata

component, 1-47
key column name collection metadata component,

1-46
key column sequence name collection metadata

component, 1-48
key column type collection metadata component, 1-46

L
last-modified column index name collection metadata

component, 1-54
last-modified time stamp column name collection

metadata component, 1-54
logical clause

definition, 1-37
logical combining clause

definition, 1-37
logical combining operators, 1-25
logical operator

definition, 1-37

M
media type column name collection metadata

component, 1-55
metadata of collections

creating custom, 1-43
getting, 1-42

N

nested conditions, 1-27
nonterminal method

definition, 1-15
nonterminal OracleOperationBuilder methods, 1-21

O
opening a collection

during creation, 1-6
operand, for QBE operator

Index-2

operand, for QBE operator (continued)
definition, 1-31

operator
$all, 1-33
$and

omitting, 1-25
$eq

omitting, 1-33
$exists, 1-33
$gt, 1-33
$gte, 1-33
$id, 1-28
$in, 1-33
$lte, 1-33
$ne, 1-33
$nin, 1-33
$nor, 1-25, 1-37
$not, 1-37
$or, 1-25, 1-37
$orderby, 1-28
$regex, 1-33
$startsWith, 1-33

OracleOperationBuilder methods, 1-21

P

paths, 1-29
paths, QBE, 1-24
prerequisites for using SODA for Java, 1-1

Q
QBE

definition, 1-31
QBE paths, 1-24
query-by-example (QBE)

definition, 1-31
querying with a filter specification, 1-29

R

read only collection metadata component, 1-55
removing documents from a collection, 1-20
replacing documents in collections, 1-19

S

sample JSON documents used in examples, 1-23
saving documents into collections, 1-14
scalar equality clause

definition, 1-33
schema collection metadata component, 1-45
Simple Oracle Document Access (SODA), 1-1
SODA (Simple Oracle Document Access), 1-1
SODA core interfaces, A-1
SODA operator

definition, 1-31
specifications

filter
details, 1-31

syntactic characters, definition, 1-29

T

table or view collection metadata component, 1-45
terminal method

definition, 1-15
terminal OracleOperationBuilder methods, 1-21
transaction handling, 1-12

V
version column name collection metadata component,

1-52
version generation method collection metadata

component, 1-52

Index-3

Index-4

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 SODA for Java
	1.1 SODA for Java Prerequisites
	1.2 SODA for Java Overview
	1.3 Using SODA for Java
	1.3.1 Getting Started with SODA for Java
	1.3.2 Creating a New Document Collection with SODA for Java
	1.3.3 Opening an Existing Document Collection with SODA for Java
	1.3.4 Checking Whether a Given Collection Exists with SODA for Java
	1.3.5 Discovering Existing Collections with SODA for Java
	1.3.6 Dropping a Document Collection with SODA for Java
	1.3.6.1 If You Need To Drop and Re-Create a Collection...

	1.3.7 Creating and Using Documents with SODA for Java
	1.3.8 Handling Transactions with SODA for Java
	1.3.9 Inserting Documents into Collections with SODA for Java
	1.3.10 Saving Documents into Collections with SODA for Java
	1.3.11 Finding Documents in Collections with SODA for Java
	1.3.12 Replacing Documents in a Collection with SODA for Java
	1.3.13 Removing Documents from a Collection with SODA for Java
	1.3.14 OracleOperationBuilder Methods, Terminal and Nonterminal
	1.3.15 Using Filter Specifications (QBEs) with SODA for Java
	1.3.15.1 Sample JSON Documents
	1.3.15.2 Using Paths in QBEs
	1.3.15.3 Using QBE Basic Field Operators
	1.3.15.4 Using QBE Logical Combining Operators
	1.3.15.5 Using Logical Operator $not
	1.3.15.6 Using Nested Conditions
	1.3.15.7 Using QBE Operator $id
	1.3.15.8 Using QBE Operator $orderby
	1.3.15.9 Querying With a Filter Specification

	1.4 SODA Paths
	1.5 SODA Filter Specifications (QBEs)
	1.5.1 Composite Filters
	1.5.1.1 Orderby Clause Sorts Selected Objects

	1.5.2 Filter Conditions
	1.5.2.1 Basic Field Clause
	1.5.2.2 Logical Clause
	1.5.2.2.1 Omitting $and

	1.5.2.3 Nested-Condition Clause
	1.5.2.4 Special-Criterion Clause
	1.5.2.4.1 ID Clause

	1.6 SODA Collection Metadata Caching
	1.6.1 Enabling Collection Metadata Caching
	1.6.2 Shared Collection Metadata Cache
	1.6.3 Local Collection Metadata Cache

	1.7 SODA Collection Configuration Using Custom Metadata
	1.7.1 Getting the Metadata of an Existing Collection
	1.7.2 Creating Custom Metadata for a Collection
	1.7.3 Collection Metadata Components
	1.7.3.1 Schema
	1.7.3.2 Table or View
	1.7.3.3 Key Column Name
	1.7.3.4 Key Column Type
	1.7.3.5 Key Column Max Length
	1.7.3.6 Key Column Assignment Method
	1.7.3.7 Key Column Sequence Name
	1.7.3.8 Content Column Name
	1.7.3.9 Content Column Type
	1.7.3.10 Content Column Max Length
	1.7.3.11 Content Column JSON Validation
	1.7.3.12 Content Column SecureFiles LOB Compression
	1.7.3.13 Content Column SecureFiles LOB Cache
	1.7.3.14 Content Column SecureFiles LOB Encryption
	1.7.3.15 Version Column Name
	1.7.3.16 Version Column Generation Method
	1.7.3.17 Last-Modified Time Stamp Column Name
	1.7.3.18 Last-Modified Column Index Name
	1.7.3.19 Creation Time Stamp Column Name
	1.7.3.20 Media Type Column Name
	1.7.3.21 Read Only

	A SODA for Java Core Interfaces
	Index

