{ "cells": [ { "cell_type": "markdown", "id": "2d81f97a", "metadata": {}, "source": [ "***\n", "# Building and Explaining an Anomaly Detector using AutoMLx - Experimental\n", "

by the Oracle AutoMLx Team

\n", "\n", "***" ] }, { "cell_type": "markdown", "id": "df59469c", "metadata": {}, "source": [ "Anomaly Detection Demo Notebook.\n", "\n", "Copyright © 2025, Oracle and/or its affiliates.\n", "\n", "Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/" ] }, { "cell_type": "markdown", "id": "7b851de5", "metadata": {}, "source": [ "## Overview of this Notebook\n", "\n", "In this notebook we will build an anomaly detection model using the experimental, fully unsupervised anomaly detection pipeline in Oracle AutoMLx for the public Credit Card Fraud dataset. The dataset is a binary anomaly detection dataset, and more details about the dataset can be found at https://www.openml.org/d/1597.\n", "We explore the various options provided by the Oracle AutoMLx tool, allowing the user to control the AutoML training process. We then evaluate the different models trained by AutoML. Finally we provide an overview of the possibilities that Oracle AutoMLx provides for explaining the predictions of the tuned model.\n", "\n", "---\n", "## Prerequisites\n", "\n", " - Experience level: novice (Python and Machine Learning)\n", " - Professional experience: some industry experience\n", "---\n", "\n", "## Business Use\n", "\n", "Data analytics and modeling problems using Machine Learning (ML) are becoming popular and often rely on data science expertise to build accurate ML models. Such modeling tasks primarily involve the following steps:\n", "- Preprocess dataset (clean, impute, engineer features, normalize).\n", "- Pick an appropriate model for the given dataset and prediction task at hand.\n", "\n", "- Tune the chosen model’s hyperparameters for the given dataset.\n", "\n", "All of these steps are significantly time consuming and heavily rely on data scientist expertise. Unfortunately, to make this problem harder, the best feature subset, model, and hyperparameter choice widely varies with the dataset and the prediction task. Hence, there is no one-size-fits-all solution to achieve reasonably good model performance. Using a simple Python API, AutoML can quickly jump-start the datascience process with an accurately-tuned model and appropriate features for a given prediction task.\n", "\n", "## Table of Contents\n", "\n", "- Setup\n", "- Load the Credit Card dataset\n", "- AutoML\n", " - Setting the execution engine\n", " - Create an Instance of AutoMLx\n", " - Train a Model using AutoMLx\n", " - Analyze the AutoMLx optimization process \n", " - Algorithm Selection\n", " - Hyperparameter Tuning\n", " - Specify a Time Budget to AutoML\n", "- Machine Learning Explainability (MLX)\n", " - Initialize an MLExplainer\n", " - Model Explanations (Global Feature Importance)\n", " - Feature Dependence Explanations\n", " - Prediction Explanations (Local Feature Importance)\n", " - Interactive What-If Explanations\n", " - Counterfactual Explanations\n", " - Aggregate Local Feature Importance & Local Feature Importance Built-in Sampling\n", " - Advanced Feature Importance Options\n", " - Change the number of iterations\n", " - Include the effects of feature interactions (with Shapley feature importance)\n", " - Advanced Feature Dependence Options (ALE)\n", "- References" ] }, { "cell_type": "markdown", "id": "787c63e4", "metadata": {}, "source": [ "\n", "## Setup\n", "\n", "Basic setup for the Notebook." ] }, { "cell_type": "code", "execution_count": 1, "id": "75c6f5b2", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T11:59:52.057462Z", "iopub.status.busy": "2025-05-22T11:59:52.057165Z", "iopub.status.idle": "2025-05-22T11:59:55.189640Z", "shell.execute_reply": "2025-05-22T11:59:55.188969Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: rdata==0.9 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev2441/lib/python3.9/site-packages (0.9)\r\n", "Requirement already satisfied: numpy in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev2441/lib/python3.9/site-packages (from rdata==0.9) (1.26.4)\r\n", "Requirement already satisfied: xarray in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev2441/lib/python3.9/site-packages (from rdata==0.9) (2024.7.0)\r\n", "Requirement already satisfied: pandas in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev2441/lib/python3.9/site-packages (from rdata==0.9) (2.2.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: python-dateutil>=2.8.2 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev2441/lib/python3.9/site-packages (from pandas->rdata==0.9) (2.9.0.post0)\r\n", "Requirement already satisfied: pytz>=2020.1 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev2441/lib/python3.9/site-packages (from pandas->rdata==0.9) (2025.2)\r\n", "Requirement already satisfied: tzdata>=2022.7 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev2441/lib/python3.9/site-packages (from pandas->rdata==0.9) (2025.2)\r\n", "Requirement already satisfied: six>=1.5 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev2441/lib/python3.9/site-packages (from python-dateutil>=2.8.2->pandas->rdata==0.9) (1.17.0)\r\n", "Requirement already satisfied: packaging>=23.1 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev2441/lib/python3.9/site-packages (from xarray->rdata==0.9) (25.0)\r\n" ] } ], "source": [ "! pip install rdata==0.9\n", "\n", "%matplotlib inline\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "markdown", "id": "edba22b0", "metadata": {}, "source": [ "Load the required modules." ] }, { "cell_type": "code", "execution_count": 2, "id": "3d13a955", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T11:59:55.192371Z", "iopub.status.busy": "2025-05-22T11:59:55.191773Z", "iopub.status.idle": "2025-05-22T12:00:11.509401Z", "shell.execute_reply": "2025-05-22T12:00:11.508656Z" } }, "outputs": [], "source": [ "import urllib\n", "import rdata\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "import plotly.figure_factory as ff\n", "import plotly.express as px\n", "from sklearn.metrics import f1_score, confusion_matrix\n", "from sklearn.model_selection import train_test_split\n", "from pyod.models.iforest import IForest\n", "import time\n", "import datetime\n", "\n", "# Settings for plots\n", "plt.rcParams['figure.figsize'] = [10, 7]\n", "plt.rcParams['font.size'] = 15\n", "import automlx\n", "from automlx import init" ] }, { "cell_type": "markdown", "id": "cc44cd1b", "metadata": {}, "source": [ "\n", "## Load the Credit Card Fraud Dataset\n", "We start by retrieving and reading in the dataset from provided URL." ] }, { "cell_type": "code", "execution_count": 3, "id": "580f562a", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:11.512371Z", "iopub.status.busy": "2025-05-22T12:00:11.511661Z", "iopub.status.idle": "2025-05-22T12:00:33.942328Z", "shell.execute_reply": "2025-05-22T12:00:33.941607Z" } }, "outputs": [], "source": [ "url = \"http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata\"\n", "dst_path = \"./creditcard.Rdata\"\n", "\n", "with open(dst_path, 'wb') as fout:\n", " fout.write(urllib.request.urlopen(url).read())\n", "parsed_res = rdata.parser.parse_file(dst_path)\n", "res = rdata.conversion.convert(parsed_res)\n", "dataset = res['creditcard'].reset_index(drop=True).drop(['Time'], axis=1)" ] }, { "cell_type": "markdown", "id": "0dec14a9", "metadata": {}, "source": [ "In this case, the target is identified by the `Class` column." ] }, { "cell_type": "code", "execution_count": 4, "id": "50de68bb", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:33.944992Z", "iopub.status.busy": "2025-05-22T12:00:33.944532Z", "iopub.status.idle": "2025-05-22T12:00:34.436342Z", "shell.execute_reply": "2025-05-22T12:00:34.435757Z" } }, "outputs": [], "source": [ "y = dataset.loc[:, 'Class']" ] }, { "cell_type": "markdown", "id": "d5b7e1ca", "metadata": {}, "source": [ "We reduce the total number of features to 20 to have a reasonable training time for this demonstration." ] }, { "cell_type": "code", "execution_count": 5, "id": "7b307814", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:34.438674Z", "iopub.status.busy": "2025-05-22T12:00:34.438095Z", "iopub.status.idle": "2025-05-22T12:00:34.492832Z", "shell.execute_reply": "2025-05-22T12:00:34.492130Z" } }, "outputs": [], "source": [ "df = dataset.iloc[:, :20]" ] }, { "cell_type": "markdown", "id": "9aacaf3c", "metadata": {}, "source": [ "Since the dataset is not split into training and validation sets by default, we now split it into training (60%) and test (40%) datasets. The training set will be used to create a Machine Learning model using AutoML, and the test set will be used to evaluate the model's performance on unseen data." ] }, { "cell_type": "code", "execution_count": 6, "id": "1291c12f", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:34.495481Z", "iopub.status.busy": "2025-05-22T12:00:34.495037Z", "iopub.status.idle": "2025-05-22T12:00:34.798338Z", "shell.execute_reply": "2025-05-22T12:00:34.797703Z" } }, "outputs": [ { "data": { "text/plain": [ "((170884, 20), (56962, 20))" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train, X_test, y_train, y_test = train_test_split(df, y, train_size=0.6, random_state=0, stratify=y)\n", "X_valid, X_test, y_valid, y_test = train_test_split(X_test, y_test, train_size=0.5, random_state=0, stratify=y_test)\n", "\n", "X_train.shape, X_test.shape" ] }, { "cell_type": "markdown", "id": "ea7c53e9", "metadata": {}, "source": [ "Again to keep the training time reasonable, we also downsample to use 5% of the total training set." ] }, { "cell_type": "code", "execution_count": 7, "id": "ae536dbf", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:34.800260Z", "iopub.status.busy": "2025-05-22T12:00:34.800043Z", "iopub.status.idle": "2025-05-22T12:00:34.946739Z", "shell.execute_reply": "2025-05-22T12:00:34.946124Z" } }, "outputs": [ { "data": { "text/plain": [ "(8544, 20)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train, _, y_train, _ = train_test_split(X_train, y_train, train_size=0.05, random_state=0, stratify=y_train)\n", "# X_valid, _, y_valid, _ = train_test_split(X_valid, y_valid, train_size=0.05, random_state=0, stratify=y_valid)\n", "\n", "X_train.shape" ] }, { "cell_type": "markdown", "id": "c479725f", "metadata": {}, "source": [ "We also need to reset the indexes after our downsampling." ] }, { "cell_type": "code", "execution_count": 8, "id": "14aa1abe", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:34.949356Z", "iopub.status.busy": "2025-05-22T12:00:34.948549Z", "iopub.status.idle": "2025-05-22T12:00:34.978022Z", "shell.execute_reply": "2025-05-22T12:00:34.977463Z" } }, "outputs": [], "source": [ "X_train.reset_index(drop=True, inplace=True)\n", "y_train.reset_index(drop=True, inplace=True)" ] }, { "cell_type": "markdown", "id": "fc5cb55a", "metadata": {}, "source": [ "Lets look at a few of the samples in the training dataset." ] }, { "cell_type": "code", "execution_count": 9, "id": "d1e3943d", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:34.980232Z", "iopub.status.busy": "2025-05-22T12:00:34.979749Z", "iopub.status.idle": "2025-05-22T12:00:35.018692Z", "shell.execute_reply": "2025-05-22T12:00:35.018136Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
0-0.7160730.2253223.7611833.207240-0.4958041.865745-0.6780000.458706-0.0096560.4840590.0260321.0703900.905135-1.490118-1.857273-0.4783330.2246690.7639871.7150660.421615
1-0.2876691.3553480.6078570.5640080.823146-0.6233910.846476-0.026066-0.968745-0.9533801.4698070.4704260.426923-1.3882170.1385320.7718830.5039811.289862-0.0738980.021523
2-1.3607010.0689361.5476220.968746-2.5399011.5058302.200844-0.0877981.034511-0.918203-0.8666300.289333-1.194264-0.939673-2.124787-0.9236530.630370-1.355050-0.591845-0.520554
3-1.167623-0.2065861.155390-1.460830-1.248562-0.6370280.0158020.154537-3.1906640.8222850.061631-0.5133461.1037380.0297120.751646-1.2068431.420112-0.8986570.463735-0.318270
4-0.771096-0.882119-0.583668-0.087184-1.9841180.7500641.2435100.4794660.410805-1.674414-0.841014-0.2671140.487951-1.2635361.1607061.723230-0.0836391.335979-1.3302480.989092
\n", "
" ], "text/plain": [ " V1 V2 V3 V4 V5 V6 V7 \\\n", "0 -0.716073 0.225322 3.761183 3.207240 -0.495804 1.865745 -0.678000 \n", "1 -0.287669 1.355348 0.607857 0.564008 0.823146 -0.623391 0.846476 \n", "2 -1.360701 0.068936 1.547622 0.968746 -2.539901 1.505830 2.200844 \n", "3 -1.167623 -0.206586 1.155390 -1.460830 -1.248562 -0.637028 0.015802 \n", "4 -0.771096 -0.882119 -0.583668 -0.087184 -1.984118 0.750064 1.243510 \n", "\n", " V8 V9 V10 V11 V12 V13 V14 \\\n", "0 0.458706 -0.009656 0.484059 0.026032 1.070390 0.905135 -1.490118 \n", "1 -0.026066 -0.968745 -0.953380 1.469807 0.470426 0.426923 -1.388217 \n", "2 -0.087798 1.034511 -0.918203 -0.866630 0.289333 -1.194264 -0.939673 \n", "3 0.154537 -3.190664 0.822285 0.061631 -0.513346 1.103738 0.029712 \n", "4 0.479466 0.410805 -1.674414 -0.841014 -0.267114 0.487951 -1.263536 \n", "\n", " V15 V16 V17 V18 V19 V20 \n", "0 -1.857273 -0.478333 0.224669 0.763987 1.715066 0.421615 \n", "1 0.138532 0.771883 0.503981 1.289862 -0.073898 0.021523 \n", "2 -2.124787 -0.923653 0.630370 -1.355050 -0.591845 -0.520554 \n", "3 0.751646 -1.206843 1.420112 -0.898657 0.463735 -0.318270 \n", "4 1.160706 1.723230 -0.083639 1.335979 -1.330248 0.989092 " ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train.head()" ] }, { "cell_type": "markdown", "id": "6aab1c83", "metadata": {}, "source": [ "The Credit card fraud dataset contains numerical data." ] }, { "cell_type": "code", "execution_count": 10, "id": "4bb6f0e9", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:35.020637Z", "iopub.status.busy": "2025-05-22T12:00:35.020163Z", "iopub.status.idle": "2025-05-22T12:00:35.052405Z", "shell.execute_reply": "2025-05-22T12:00:35.051833Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
Data typefloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64
\n", "
" ], "text/plain": [ " V1 V2 V3 V4 V5 V6 V7 \\\n", "Data type float64 float64 float64 float64 float64 float64 float64 \n", "\n", " V8 V9 V10 V11 V12 V13 V14 \\\n", "Data type float64 float64 float64 float64 float64 float64 float64 \n", "\n", " V15 V16 V17 V18 V19 V20 \n", "Data type float64 float64 float64 float64 float64 float64 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame({'Data type': X_train.dtypes}).T" ] }, { "cell_type": "markdown", "id": "739a657a", "metadata": {}, "source": [ "The Oracle AutoMLx solution automatically handles missing values by dropping features with too many missing values, and filling in the remaining missing values based on the feature type.\n", "\n", "In this case, there are no such missing values in our training dataset." ] }, { "cell_type": "code", "execution_count": 11, "id": "15190aa6", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:35.054114Z", "iopub.status.busy": "2025-05-22T12:00:35.053912Z", "iopub.status.idle": "2025-05-22T12:00:35.088415Z", "shell.execute_reply": "2025-05-22T12:00:35.087846Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
% missing values0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
\n", "
" ], "text/plain": [ " V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 \\\n", "% missing values 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", "\n", " V13 V14 V15 V16 V17 V18 V19 V20 \n", "% missing values 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame({'% missing values': X_train.isnull().sum() * 100 / len(df)}).T" ] }, { "cell_type": "markdown", "id": "d2757d99", "metadata": {}, "source": [ "We visualize the distribution of the target variable in the data. The dataset is heavily unbalanced, as is often the case in the anomaly detection use-case." ] }, { "cell_type": "code", "execution_count": 12, "id": "a9cf1e6c", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:35.090411Z", "iopub.status.busy": "2025-05-22T12:00:35.089933Z", "iopub.status.idle": "2025-05-22T12:00:37.257388Z", "shell.execute_reply": "2025-05-22T12:00:37.256737Z" } }, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "bingroup": "x", "hovertemplate": "income=%{x}
count=%{y}", "legendgroup": "", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "", "offsetgroup": "", "orientation": "v", "showlegend": false, "type": "histogram", "x": [ "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False" ], "xaxis": "x", "yaxis": "y" } ], "layout": { "barmode": "relative", "legend": { "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "anchor": "y", "domain": [ 0.0, 1.0 ], "title": { "text": "Anomaly" } }, "yaxis": { "anchor": "x", "domain": [ 0.0, 1.0 ], "title": { "text": "count" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "y_df = pd.DataFrame(y_train)\n", "y_df.columns = ['income']\n", "\n", "fig = px.histogram(y_df[\"income\"].apply(lambda x: \"False\" if x == \"0\" else \"True\"), x=\"income\")\n", "fig.update_layout(xaxis_title=\"Anomaly\")\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "483f6d6e", "metadata": {}, "source": [ "\n", "## AutoML" ] }, { "cell_type": "markdown", "id": "a9413aac", "metadata": {}, "source": [ "\n", "### Setting the execution engine\n", "The AutoMLx package offers the function `init`, which allows to initialize the parallelization engine." ] }, { "cell_type": "code", "execution_count": 13, "id": "6a1ea2d5", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:37.292032Z", "iopub.status.busy": "2025-05-22T12:00:37.291466Z", "iopub.status.idle": "2025-05-22T12:00:42.323928Z", "shell.execute_reply": "2025-05-22T12:00:42.323114Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:00:37,860] [automlx.backend] Overwriting ray session directory to /tmp/86d_l4fi/ray, which will be deleted at engine shutdown. If you wish to retain ray logs, provide _temp_dir in ray_setup dict of engine_opts when initializing the AutoMLx engine.\n" ] } ], "source": [ "init(engine='ray')" ] }, { "cell_type": "markdown", "id": "4060505a", "metadata": {}, "source": [ "\n", "### Create an instance of AutoML for Unsupervised Anomaly Detection - Experimental Feature\n", "\n", "The Oracle AutoMLx solution provides a pipeline that automatically finds a tuned model given a prediction task and a training dataset. In particular it allows to find a tuned model for the task of Unsupervised Anomaly Detection (UAD), where the training labels (whether a training point is an anomaly or not) are unknown.\n", "\n", "The AutoML UAD Pipeline consists of three main modules:\n", "- **Preprocessing** : Clean, impute, engineer, and normalize features.\n", "- **Algorithm Selection** : Identify the right algorithm for a given dataset, choosing from amongst the following Outlier Detectors (OD):\n", " - IsolationForestOD\n", " - SubspaceOD\n", " - HistogramOD\n", " - ClusteringLocalFactorOD\n", " - PrincipalCompOD\n", " - MinCovOD\n", " - AutoEncoder\n", " - KNearestNeighborsOD\n", " - OneClassSVMOD\n", "- **Hyperparameter Tuning** : Find the best model hyperparameters that maximize score for the given dataset.\n", "\n", "All these pieces are readily combined into a simple AutoML pipeline which automates the entire Machine Learning process with minimal user input/interaction." ] }, { "cell_type": "markdown", "id": "6b7f0c9c", "metadata": {}, "source": [ "\n", "### Train a model using Oracle AutoMLx\n", "\n", "The AutoMLx API is quite simple to work with. We create an instance of the pipeline. Next, the training data is passed to the `fit()` function which successively executes the three previously mentioned modules.\n", "\n", "A model is then generated and can be used for prediction tasks. We then evaluate the performance of the model on unseen data (`X_test`) using the F1-score." ] }, { "cell_type": "code", "execution_count": 14, "id": "0db2ae5e", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:00:42.327093Z", "iopub.status.busy": "2025-05-22T12:00:42.326410Z", "iopub.status.idle": "2025-05-22T12:01:49.894041Z", "shell.execute_reply": "2025-05-22T12:01:49.893249Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:00:42,987] [automlx.interface] Dataset shape: (65505,19)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:00:55,484] [sanerec.autotuning.parameter] Hyperparameter epsilon autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:00:56,531] [sanerec.autotuning.parameter] Hyperparameter repeat_quality_threshold autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:00:56,550] [sanerec.autotuning.parameter] Hyperparameter scope autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:00:56,642] [automlx.data_transform] Running preprocessing. Number of features: 20\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:00:56,863] [automlx.data_transform] Preprocessing completed. Took 0.221 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:00:56,906] [automlx.process] Running Model Generation\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:00:56,953] [automlx.process] Model Generation completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:00:57,017] [automlx.model_selection] Running Model Selection\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:40,010] [automlx.model_selection] Model Selection completed - Took 42.993 sec - Selected models: [['IsolationForestOD']]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:40,085] [automlx.trials] Running Model Tuning for ['IsolationForestOD']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:45,973] [automlx.trials] Best parameters for IsolationForestOD: {'contamination': 0.1, 'n_estimators': 5, 'max_samples': 6, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:45,974] [automlx.trials] Model Tuning completed. Took: 5.889 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:46,535] [automlx.interface] Re-fitting pipeline\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:46,550] [automlx.final_fit] Skipping updating parameter seed, already fixed by FinalFit_7d2df977-d\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "F1-Score on test data : 0.026709401709401708\n" ] } ], "source": [ "est = automlx.Pipeline(task='anomaly_detection', score_metric='f1')\n", "est.fit(X_train, X_valid=X_valid, y_valid=y_valid)\n", "\n", "y_pred = est.predict(X_test)\n", "\n", "score_default = f1_score(y_test.astype(int), y_pred)\n", "\n", "print(f'F1-Score on test data : {score_default}')" ] }, { "cell_type": "markdown", "id": "49b22089", "metadata": {}, "source": [ "\n", "### Analyze the AutoML optimization process\n", "\n", "During AutoML training, a summary of the optimization process is logged, containing:\n", "- Information about the training data.\n", "- Information about the AutoML pipeline, such as:\n", " - Selected algorithm that was the best choice for this data;\n", " - Selected hyperparameters for the selected algorithm." ] }, { "cell_type": "markdown", "id": "a7fcf288", "metadata": {}, "source": [ "AutoML provides a `print_summary()` API to output all the different trials performed." ] }, { "cell_type": "code", "execution_count": 15, "id": "f93c9eec", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:01:49.897458Z", "iopub.status.busy": "2025-05-22T12:01:49.896329Z", "iopub.status.idle": "2025-05-22T12:01:50.466324Z", "shell.execute_reply": "2025-05-22T12:01:50.465716Z" } }, "outputs": [ { "data": { "text/html": [ "
General Summary
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
(8544, 20)
(56961, 20)
ManualSplit(Shuffle=True, Seed=7)
f1
IsolationForestOD
{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 6, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}
24.4.1
3.9.21 (main, Dec 11 2024, 16:24:11) \\n[GCC 11.2.0]
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trials Summary
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Step# Samples# FeaturesAlgorithmHyperparametersScore (f1)Runtime (Seconds)Memory Usage (GB)Finished
Model Selection854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 100, 'max_samples': 5, 'max_features': 1.0, 'bootstrap': False, 'behaviour': 'old'}0.0310.95250.2631Thu May 22 05:01:04 2025
Model Selection854420HistogramOD{'contamination': 0.1, 'n_bins': 10, 'alpha': 0.1, 'tol': 0.5}0.02994.37530.3768Thu May 22 05:01:08 2025
Model Selection854420PrincipalCompOD{'contamination': 0.1, 'whiten': False, 'n_components': 0.9999, 'weighted': True, 'svd_solver': 'full', 'n_selected_components': None, 'copy': True, 'tol': 0.0, 'iterated_power': 'auto', 'standardization': True}0.02930.60360.2580Thu May 22 05:01:04 2025
Model Selection854420AutoEncoder{'contamination': 0.1, 'middle_layer_size': 2, 'encoder_length': 2, 'layer_size_growth': 'exponential', 'hidden_activation': 'relu', 'batch_norm': True, 'learning_rate': 0.001, 'epochs': 100, 'batch_size': 256, 'dropout_rate': 0.05, 'weight_decay': 1e-05, 'preprocessing': False, 'input_dim': 20}0.029136.20930.6341Thu May 22 05:01:39 2025
Model Selection854420ClusteringLocalFactorOD{'contamination': 0.1, 'n_clusters': 9, 'alpha': 0.8, 'beta': 5, 'use_weights': False, 'clustering_estimator': None, 'check_estimator': False}0.02843.88460.3943Thu May 22 05:01:07 2025
Model Selection854420MinCovOD{'contamination': 0.1, 'assume_centered': False, 'support_fraction': 0.5012289325842697, 'store_precision': True}0.02833.41580.3396Thu May 22 05:01:07 2025
Model Selection854420KNearestNeighborsOD{'contamination': 0.1, 'n_neighbors': 5, 'method': 'largest', 'radius': 1.0, 'algorithm': 'ball_tree', 'leaf_size': 30, 'metric': 'minkowski', 'p': 2, 'metric_params': None}0.026220.59940.3468Thu May 22 05:01:24 2025
Model Selection854420OneClassSVMOD{'contamination': 0.1, 'gamma': 0.5, 'kernel': 'rbf', 'nu': 0.5, 'coef0': 0, 'degree': 3, 'tol': 0.001, 'shrinking': True, 'cache_size': 200, 'max_iter': -1}0.013627.81900.5240Thu May 22 05:01:31 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 6, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}0.0320.16200.6596Thu May 22 05:01:41 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 101, 'max_samples': 5, 'max_features': 1.0, 'bootstrap': False, 'behaviour': 'old'}0.03150.41800.6573Thu May 22 05:01:41 2025
...........................
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 37, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}0.02370.15210.3528Thu May 22 05:01:41 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 36, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}0.02360.11780.4223Thu May 22 05:01:41 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 1.0, 'bootstrap': False, 'behaviour': 'old'}0.00380.15240.3528Thu May 22 05:01:41 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.9999905, 'bootstrap': False, 'behaviour': 'old'}0.00120.16470.3465Thu May 22 05:01:41 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}0.00120.10390.3398Thu May 22 05:01:45 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}0.00120.11830.4148Thu May 22 05:01:41 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.050009500000000005, 'bootstrap': False, 'behaviour': 'old'}0.00120.13060.4212Thu May 22 05:01:41 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.05001900000000001, 'bootstrap': False, 'behaviour': 'old'}0.00120.13950.3465Thu May 22 05:01:41 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.472893264264607, 'bootstrap': False, 'behaviour': 'old'}0.00050.12930.6596Thu May 22 05:01:41 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.472902764264607, 'bootstrap': False, 'behaviour': 'old'}0.00050.12190.4212Thu May 22 05:01:41 2025
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "est.print_summary()" ] }, { "cell_type": "markdown", "id": "660a3670", "metadata": {}, "source": [ "We also provide the capability to visualize the results of each stage of the AutoML pipeline." ] }, { "cell_type": "markdown", "id": "04a14d54", "metadata": {}, "source": [ "\n", "#### Algorithm Selection\n", "\n", "The plot below shows the scores predicted by Algorithm Selection for each algorithm. The horizontal line shows the average score across all algorithms. Algorithms below the line are colored turquoise, whereas those with a score higher than the mean are colored teal. Here we can see that the `MinCovOD` achieved the highest predicted score (orange bar), and is chosen for subsequent stages of the Pipeline." ] }, { "cell_type": "code", "execution_count": 16, "id": "142d84d5", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:01:50.468095Z", "iopub.status.busy": "2025-05-22T12:01:50.467890Z", "iopub.status.idle": "2025-05-22T12:01:50.836286Z", "shell.execute_reply": "2025-05-22T12:01:50.835610Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4cAAANUCAYAAAAAR1gXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADteUlEQVR4nOzde3zP9f//8fv7vdlmtr1Zm5lsY8J85BCL8PEhKVLEUnL4fi2fPh2QY4oOzKGPysdC8qmvPqiolmNOOVTm4xMj5hBCaEaE1Q7GDra9fn/47f3p3d6z92bb+43b9XJ5X2qv5+H1eL1eG7t7nUyGYRgCAAAAANzSzM4uAAAAAADgfIRDAAAAAADhEAAAAABAOAQAAAAAiHAIAAAAABDhEAAAAAAgwiEAAAAAQIRDAAAAAIAIhwAAAAAAEQ4B4IYSExMjk8mkTp06ObuUMjOZTDKZTIqPjy/T+IULF8pkMqlu3brlWtetolOnTjKZTIqJiXF2KaVSt25dmUwmLVy40NmluITo6GiZTCZFR0eX67z8fAG3NsIhADhJamqqqlatag1LP/74o7NLcqq0tDTFxMQoJiZGaWlpzi6nwl24cEGvv/66/vznPysgIEBVqlRRQECAmjRpoh49eujNN9/Utm3bnF1mhVu4cKFiYmLK/I8FrigpKcn6c12Wz820LwDcWNydXQAA3KoWL16s7Oxs69fz58/XtGnTnFhR5WjUqJEkydvb22Z5WlqaJk2aJOnqWZHq1atXdmmV5uuvv9bjjz+u3377zbqsWrVqunLlig4dOqRDhw5pzZo1kiTDMJxVZqVYuHChtmzZIknXPCNev359eXl5yWKxVFJlZefm5qagoCC7benp6crOzpbZbFZgYKDdPh4eHiWuIzg4WI0aNVJwcPB11QoAv0c4BAAn+de//iVJev755/XOO+/oww8/1NSpU+Xm5ubkyirW4cOHnV2CUyUnJ6tXr17KzMxU3bp1NWHCBPXu3dsahtPT07Vjxw6tWrVKn3zyiXOLdSFff/21s0twWEhIiH755Re7bdHR0frwww8VEhKipKSkMq9j2rRpt8Q/JgGoXFxWCgBOkJiYqL1796p69ep66623VK9ePZ09e1br1q1zdmmoYO+//74yMzPl4eGhLVu26Mknn7Q5S2qxWPTAAw9ozpw5+vnnn51XKADglkM4BAAnKDxr2LdvX3l5eel///d/JV29tPR6ffHFF+rcubOqV68uHx8fNW/eXG+99ZauXLni0ANt4uPj9dhjj+n222+Xp6enAgICdN9992nBggXKz8+3O+aP8y5btkwPPPCAatasKbPZbPPwE3v3VXXq1En16tWzfl2vXj2be7CuVe/u3bv1+OOPKzg4WJ6engoPD9fo0aOVmprqUK2rVq3Sfffdp9tuu01+fn5q166dVq5caTPm448/Vvv27VWjRg35+PjoL3/5S5nPZO3du1eS1KJFC4WGhl6zb9WqVYttKygo0OLFi9W9e3cFBQXJw8NDgYGBeuCBB/Tpp59e1+WoBw4c0NNPP60GDRrI29tbPj4+atasmV555RWlpKRcc+ylS5cUGxurjh07KiAgQB4eHqpTp446duyoGTNm6Ny5c5L+++CTwktKJ02aVOTeu9+fWSvpgTT5+fmaP3++OnfurICAAHl6eur222/XY489ds17+H7/gB7DMDRv3jy1adNGfn5+8vX1Vdu2bbVo0aJS7b+y+v29iklJSTp+/Liefvpp1atXT56enjYPibnWA2lSU1P1r3/9S48//riaNm0qf39/eXl5KSwsTP3791dCQkKZa9yxY4cGDBigevXqycvLS9WqVVNYWJg6duyoKVOm6PTp02WeG4ALMAAAlSorK8uoXr26Icn49ttvDcMwjOPHjxsmk8lwd3c3fvnll2LHTpw40ZBkdOzY0W77mDFjDEnWT/Xq1Q13d3dDkvGXv/zFePnll685ftSoUdaxJpPJqF69uuHm5mZd1rlzZyMjI+OadY0ePdo6vkaNGoabm5sxceJEa9/CuTZv3mxd1rt3byMgIMDaFhAQYAQFBVk/vXv3tvZdsGCBIckICwszFi9ebFSpUsWQZFgsFsNsNlvnaNKkiXHx4sVr1jphwgRDkmE2mw2LxWKz79577z2joKDAGDRokCHJcHd3N3x9fa3tbm5uxpo1a4o9VsXp3r27IcmoU6eOUVBQUOrxhmEYv/76q/GXv/zFpt4/1t+zZ08jJyenyNiOHTsakmyOye+9+eabNvvR29vb8PDwsH4dHBxsJCYm2h27e/duIyQkxNrXbDYb/v7+hqenp3XZ22+/bRiGYXz22WdGUFCQ9fhVq1bN5pgHBQUZycnJ1rnDwsIMScaCBQuKrDctLc3o1KmTzbGpXr26YTKZrMteeOEFuzUX7o9XX33VeOSRR6zH2s/Pz2Z/Tpgw4doHxUGF309hYWFF2n766Sfr+hYvXmz4+PhYj0G1atVsxhTOM2jQoCLzFH6PF+6LGjVq2BwDk8lkzJo1y259v//5+qOFCxfa7FNPT88i+8ne8QFw4yAcAkAlW7RokSHJuOOOO2yWd+jQwZBkvPXWW8WOvVY4/PTTT62/oPXv3984ffq0YRhXw+j//d//GV5eXkaNGjWKHf/OO+9Yxz/99NPG2bNnDcMwjMzMTOPtt9+2hsy+ffsWW1fhL7MvvfSScf78ecMwDCM7O9tISkqy9rUXDg3D9hfjn376qdh9UPjLq7e3t+Hp6Wk89dRT1hBx6dIlY86cOdbA8dprrxVbq8ViMdzc3IzXX3/dSEtLMwzDME6fPm107drVkGT4+voaEyZMMKpWrWq89957xqVLlwzDMIyjR48akZGRhiQjNDTUyM/PL7ZWe2JiYqzbOXr0aCMzM7NU4/Py8qyBpkWLFsbq1auttWVmZhoffvihUbNmTUOSMXLkyCLjrxUOP/jgA+txfP31163fA3l5ecauXbuMzp07W4PtH4N3cnKyNeCHhIQYn332mbWugoIC4+DBg0ZMTIyxaNEih+v5vWuFw0cffdSQZHh4eBizZ8+2rvfs2bPG4MGDrfv7n//8Z7H7o0aNGobFYjEWLlxoXL582TAMwzh16pTRo0cPa9A9evToNWt0hKPh0MfHx2jTpo3x3XffWduPHDlSZB574fD99983Jk6caOzatcv6DwQFBQXGiRMnjBEjRhgmk8lwc3OzG/KLC4eXLl2y/uPIwIEDjWPHjlnbMjMzjV27dhljx4411q5dW8o9AsCVEA4BoJLde++9hiRj8uTJNsvnzZtnSDIiIiKKHVtcOCwoKDDuuOMOQ5Jx//332z0jVfhLn73xly9fNvz9/Q1JRr9+/eyue/bs2dbxu3btsltXYeC5lvIKh8X9YmwYhvXs5R8D+B9rnTp1apH29PR0o1q1atY+fwwzhmEYx44ds7Zv3br1mtv7RxcuXDBq165tHV+tWjWjW7duxmuvvWasXLnSOHfu3DXHf/TRR9bvk8JQ+0e7du0yTCaT4eHhUWS+4sJYRkaG9Yz2+vXr7c575coVo1WrVjZnAAsNHDjQkGTcdtttNmf8SnK94TAhIcG6L99//327YwvDY0BAgJGVlWV3/ZKMb775psjY7Oxs6/Gy9/1SWo6Gw7CwMLtnvv84T3E/A9cydOhQQ5Lx17/+tUhbceFwx44d1u/XK1eulHqdAG4M3HMIAJXoxIkTio+Pl8lk0v/8z//YtD3++OOqWrWqDh8+XOr32+3du1fHjh2TJL388ssymUxF+gwaNKjYe9w2bdpkfa1CcS9HHzJkiPWx+cU9RdNsNuull14qVe3X49VXX7W7/JFHHpEkHTt2TJcvX7bbx8vLSyNHjiyy3M/PT23btpUkhYaGqn///kX61K9fX3fccYckaf/+/aWqOSAgQP/5z390//33S7p6j9769es1ZcoU9erVS0FBQYqMjNTChQtVUFBQZHzh/arPPfdcsa91aNWqlZo0aaLc3Fxt3rzZobqWLVumtLQ03XXXXeratavdPu7u7urXr58kacOGDdblly5dUlxcnCRp3LhxCgkJcWid5aFwvXXq1NFTTz1lt8+UKVMkSSkpKdq0aZPdPu3bt9e9995bZLmnp6d1f5T2WF+PYcOGycfHp0LmfuihhyRJ//nPfxweU/jQpNzcXP36668VURYAF0A4BIBKtGDBAhmGoQ4dOtg8XEK6Gkp69eol6b8BwFGJiYmSpCpVqqhdu3Z2+5hMJnXs2NFu265duyRdfQR/w4YN7fZxc3NT586dbfr/0R133KGaNWuWqvay8vf3twa0P6pdu7b1/4t7MM2f/vQnVatWzW5b4TvqIiMj7Qbt3/cpbv5rqVevnjZu3KhDhw7pjTfe0COPPGIT3Hfv3q0nn3xSDz74oM27MPPz860PE4mJiVGtWrWK/Rw5ckSSdPLkSYdq+vbbbyVJP/zwwzXnnTx5cpF5d+3apStXrkiSevToUer9cT0Kvxfvvfdemc32f61p3Lixbr/9dpv+f9SmTZti11H4/fT791JWtPbt21/X+BMnTuiFF15Qq1atVL16dbm5uVkfdtO9e3dJKtXDY+rXr6+IiAhduXJFbdq00Ztvvqm9e/cW+5AqADcm3nMIAJWkoKDA+qTFwqeT/tGgQYP06aef6vPPP9esWbMcPnNw4cIFSdJtt912zRdoF/6C/Efnz5+/ZnuhOnXq2PT/o8oKhpLk6+tbbJu7+3//eisMLWUZ70if4uZ3ROPGjdW4cWPr17/88ou++OILTZs2TSdPntTGjRv16quv6h//+Iekq+EkJydHkuOhtLgzp3905swZSVJ2drZNIHVk3t+/0y8sLMyh9ZWX0nzv/vzzz8V+71b0sS6t6/lZWrFihfr162f9XpGu/uOTl5eXTCaTcnNzlZqaqkuXLjk8p5ubmz777DP17t1bP/30k8aNG6dx48bJ29tb7dq1U1RUlAYNGiRvb+8y1w3A+ThzCACVZMOGDdZ/qX/qqaeKPLbfZDKpW7dukqTMzEx9/vnnpV5HcWe5Koubm5tT13+jq1Wrlp555hnt2LHDGg7mz59vvbz092dpvvzySxlXnx1wzU9xlwn/UeHcffv2dWje379mwtnfdzejsv4s/frrr4qOjlZOTo46d+6s+Ph4Xb58Wenp6Tp37px++eUXLVmypExzN2/eXIcPH9ayZcv09NNP684771RWVpa++uorDRkyRBEREfr+++/LNDcA10A4BIBKUtpLRUvTPzAwUNLVe6pyc3OL7VfcS9ULg0hJl5kVtlfmGcJbUVBQkPW+ydTUVJszw4VnsRy9XNRRtWrVKvO8hWPLOv568L1ra926dcrIyFCNGjW0evVqdezYscj7Mn9/pre0PDw8FBUVpffff1/ff/+9Lly4oPfee0/+/v46deqUBg0adL2bAMCJCIcAUAkuXLigVatWSZKWLl2qixcvFvvZuXOnJGnbtm3W+8ZK0rJlS0lXL3sr7mE2hmHo3//+t922yMhISVd/gT569KjdPvn5+daHm9x9990O1VUav79fzLiOF7jfLH5/SbGnp6ekq/eUtm7dWpK0evXqcl1f4T1uu3fv1tmzZ0s1NjIy0no5c2nrKjzuZT3mhd+7mzdvtvsAH0k6fPiw9R9GKuJ715WcOnVKktSoUaNiL/H86quvym19t912m5555hm9+eabkqQ9e/bwwBrgBkY4BIBK8PHHH+vKlSuyWCzq0aOHfHx8iv3cfffdioiIkOT42cMWLVpYH87yxhtv2P1Fe9GiRcWe1bn//vt12223SSr+aaXvv/++9b60widWlic/Pz/r/6elpZX7/K5i69atJd4HmJmZqeXLl0u6+vCawidFStLTTz8t6eoZonXr1l1zntI8QOWxxx5T9erVdeXKFY0ePfqaYa2goMDmGHl7e+uJJ56QdPX7rzCgOKLwuJf1mBeu9+eff9YHH3xgt8+ECRMkXX1SbJcuXcq0nhtF4RNsjx49avfe0b179xb7tOFr+f39i/b8/uxkcQ8GAuD6+OkFgEpQGPIeeeSRaz4wptBjjz0mSfroo4+Ul5dXYn+TyaRJkyZJunpv46BBg2weMPKvf/1LzzzzjGrUqGF3fNWqVa2h8NNPP9Wzzz6rc+fOSbr64JHZs2dbX/vQt29ftWrVqsSaSqt69erWh4osWLDAoe2+Ec2aNUuhoaF6/vnn9dVXXykjI8PalpGRoc8//1zt2rWzBvkxY8bYjB84cKC6dOkiwzDUu3dvTZ061Xqspauvldi8ebOGDh2q8PBwh+uqXr26Zs6cKUn67LPP9NBDD2nHjh3Ws3EFBQX64YcfNGPGDDVp0kRr1qyxGf/6668rICBAv/76q9q3b6/PP/9cWVlZkq6eFTxw4IDGjh2rjz/+2GbcnXfeKelq2C3usudrad26tR599FFJ0vPPP685c+ZYw/cvv/yiv/3tb9Z77KZMmSIvL69Sr+NG8sADD8hsNuu3337TgAEDrPs0NzdXn3/+uR544IFrPnynOJ999pnat2+v999/XydOnLAuz8/P14YNGzRu3DhJUtu2bYv9cwaA6yMcAkAFS0hI0KFDhyT9N/SVpLDfuXPntHbtWofG9O/f3xrgPv74Y9WpU0f+/v7y8/PTU089pbZt2+rZZ5+VJLu/IA8bNkyjRo2SdPUsYXBwsPz9/WWxWDRixAhduXJF9957r+bNm+dQPWVRWN8777wjHx8fhYaGqm7dutazQzeDKlWq6Ndff9WcOXN0//33y2KxyM/PT76+vrJYLOrbt6++//576zsjhw4dajPezc1Ny5Yt08MPP6zc3Fy99tpruv3222WxWFSjRg35+vqqc+fOmjt3bqmeRildfVruP//5T3l4eOjLL7/UPffcI29vbwUEBMjLy0t/+tOf9MILL+jw4cNFHkJTp04dbdiwQbfffrtOnTqlvn37ytfXVwEBAfL29lbTpk31j3/8o8glh4MGDZKXl5eOHTum0NBQ1apVS3Xr1lXdunUdftXCv/71L3Xs2FG5ubl6/vnnZbFY5O/vr9q1a1vPJr7wwgvW76+bWYMGDTR27FhJ0vLly1WnTh1Vr15dPj4+6tu3r3x8fDR79uxSz2sYhrZt26Znn31W9evXl5eXlwICAuTh4aFu3brp9OnTql27tubPn1/emwSgEhEOAaCCFZ41tFgseuCBBxwa07RpU+srDkrzYJq3335by5cvV6dOneTr66ucnBw1btxY06dP14YNG6xh4feXKf5ebGysvvnmGz366KMKCgpSZmamfH19de+992r+/PnatGlTmc46OOrll1/WrFmzFBkZqSpVquj06dM6efLkdT1Aw9V8/PHH+uabbzR+/Hjdd999qlOnjnJzc5Wdna0aNWro7rvv1qhRo7Rnzx698cYbdufw8/PT6tWrtW7dOvXt21ehoaHKycnR5cuXdfvtt+uBBx7QtGnTHL5n9feeffZZHTlyRC+88IKaN28uT09PpaWlycfHR5GRkXr++ee1adMmu5cWt2zZUj/88IPeeOMN3XPPPfL19dXFixcVGBioTp06KTY2Vv3797cZ06BBA23evFk9e/ZUYGCgfv31V508eVInT550+OyxxWLR119/rX/961/W7/3MzEzVqlVLjz76qDZv3qzp06eXel/cqN544w199NFHat26tapWraorV67ojjvu0Msvv6w9e/bYvAfUUT179tRHH32kJ598Us2bN5fFYlF6erp8fX3VunVrTZkyRQcPHrReEg/gxmQyuOsfAG4Z7du317Zt2zR58mS99tprzi4HAAC4EM4cAsAtYsuWLdYnmRa+TxEAAKAQ4RAAbiJDhw7VwoUL9csvv1ifNpmWlqb333/f+t68zp073/SP8wcAAKXHZaUAcBNp0aKF9u3bJ+nqu/G8vb2VlpZmDYp/+tOftHHjRutTQQEAAAoRDgHgJrJq1SqtXLlSO3bs0Llz55Seni4/Pz81adJEUVFRevrpp4t9MTYAALi1EQ4BAAAAANxzCAAAAACQ3J1dwLVkZWVp2rRp+uyzz5ScnCx/f39169ZNU6ZMKfX9MqmpqYqJidHKlSv1yy+/qFatWurdu7diYmLsvu9r4cKFWr9+vfbt26dz584pMzNTAQEBateunUaNGqX27dsXGbN7926tXr1aGzdu1KFDh3T58mUFBQWpY8eOevHFF9WsWbMiY5KSklSvXr1i6w4KCir1+70KCgp05swZ+fr6FnlJMQAAAIBbh2EYunjxomrXri2z+drnBl32stLs7Gzde++9SkhIUHBwsDp06KCkpCTt3LlTgYGBSkhIUHh4uENzpaSkqG3btjp27JjCw8MVGRmpgwcP6uDBg2rYsKG2b98uf39/mzGRkZHat2+fmjZtqjp16sjLy0tHjhzR/v37ZTKZNHfuXD377LPW/nl5eapSpYokyd/fX23atFG1atW0Z88eHT9+XB4eHlq8eLH69Oljs57CcBgUFGT30fIWi0WzZs0q1b47ffq0QkJCSjUGAAAAwM3r1KlTqlOnzjX7uGw4fPXVV/X666+rbdu22rhxo3x8fCRJsbGxGjNmjDp27Kj4+HiH5ho4cKAWL16sqKgoxcXFyd396gnT4cOH65133tGgQYO0cOFCmzE7duzQn/70J/n6+tosX7VqlaKiolSlShWdOnVKAQEBkq6Gw3bt2umVV17Rww8/LDc3N0lXz+JNmDBBr7/+unx9fXXixAnrGOm/4bA021OS9PR0Va9eXadOnZKfn1+5zAkAAADgxpORkaGQkBClpaXJYrFcs69LhsPc3FzVrFlT6enpSkxM1F133WXT3rx5c+3fv1+7du1Sq1atrjnX2bNnVadOHbm7uys5OVlBQUHWtpycHIWEhOi3337TmTNnVLNmTYfq69Kli77++mt98cUX6tmzZ4n9DcNQ48aNdeTIES1cuFCDBg2ytlVEOMzIyJDFYrE+pRAAAADArak02cAlH0jz7bffKj09XfXr1y8SDCVZL81cvXp1iXOtX79eBQUF6tChg00wlK6+A6xHjx7Kz8/XunXrHK6v8PJRDw8Ph/qbTCbr/YZnzpxxeD0AAAAAUFlc8oE0hS9wbtmypd32wuX79+8vl7nmz5/v0FyS9PXXX+ubb75RjRo1dM899zg0RpJOnDghSapVq5bd9nPnzmnixIk6e/asLBaL2rRpo549ezocQAEAAADgerhkOExOTpakYm+YLFx+8uTJCp9rwYIF2rJli7Kzs3X8+HHt2rVLFotFn376qd2nnNrzn//8R7t375aHh4fdh85I0uHDhzV58mSbZaGhoVqyZIlat259zflzcnKUk5Nj/TojI8OhugAAAACgkEteVpqZmSlJ8vb2ttterVo1SdLFixcrfK5vv/1WH374oeLi4rRr1y75+/tr/vz56tq1a4nrlq4GtcGDB0uSRo0apeDgYJt2T09PPffcc4qPj9e5c+eUkZGh7du3q3v37kpOTlbXrl1LDMHTpk2TxWKxfnhSKQAAAIDScslw6Eo++OAD67tBdu3apS5duujRRx/V008/XeLY/Px8DRgwQD/++KNat25d5MygJAUHB2vu3Lnq2LGjatasKV9fX91zzz1au3at+vfvr7S0NP3973+/5nrGjx+v9PR06+fUqVNl3l4AAAAAtyaXDIeFr624fPmy3fZLly5JUpHXTFTkXD4+PmrVqpXi4uLUs2dPzZs3T8uWLbvmmOeee05r1qxRo0aNtHbt2lLfP/jyyy9LkjZs2HDNfp6envLz87P5AAAAAEBpuGQ4DA0NlXT1Ze72FC4PCwur1LkKDRw4UJL0xRdfFNtn3LhxmjdvnkJCQrRp0yabdxs6qkGDBpKuvo4DAAAAACqSS4bD5s2bS5ISExPtthcuL3w9RGXNVagw6F24cMFu+1tvvaU333xTNWvW1KZNm8p8D2Bqaqqk/94XCQAAAAAVxSXDYfv27WWxWHT8+HHt3bu3SPvSpUslST169Chxrm7duslsNmvr1q06f/68TVtOTo5Wr14tNzc3de/e3eH6tmzZIkmqX79+kbZ58+bppZdeUvXq1bVhwwY1atTI4Xn/qPCy1eJewwEAAAAA5cUlw6GHh4eGDRsmSRo6dKj1vkBJio2N1f79+9WxY0e1atXKunzOnDmKiIjQ+PHjbeYKDg5Wv379lJubqyFDhigvL8/a9uKLL+rChQsaOHCgatasaV3+ww8/6PPPP1dubq7NXIZh6LPPPtNbb70lk8mkQYMG2bQvXbpUzz77rHx8fLRu3Tq1aNGixG2dN2+eDh8+XGT58uXLNW7cOOs+AAAAAICKZDIMw3B2EfZkZ2erU6dO2rFjh4KDg9WhQwedPHlSO3bsUGBgoBISEhQeHm7tHxMTo0mTJmnQoEFauHChzVwpKSm65557dPz4cdWvX1+RkZE6ePCgDhw4oAYNGighIUH+/v7W/vHx8br33ntlsVjUqlUr1apVS2lpaTp06JCSkpJkNps1Y8YMjRw50jrm/PnzCgkJUW5urpo2bVrs2b5evXqpV69e1q87deqkLVu2qFmzZmrYsKEKCgp06NAha2AcO3as3nrrrVLtu4yMDFksFqWnp/NwGgAAAOAWVpps4F5JNZWal5eXNm/erGnTpumTTz7RypUr5e/vr+joaE2ZMqXYl9rbExAQoJ07dyomJkYrV67UihUrFBQUpOHDh2vSpElFXmbfpEkTTZ48WfHx8Tp69Ki+/fZbmc1m1alTR4MHD9bQoUOLhL/Lly9bzzR+//33+v777+3WUrduXZtw+Le//U2BgYHau3evNm7cqKysLAUGBioqKkrPPfecunTp4vB2AgAAAEBZueyZQ5QdZw4BAAAASKXLBi55zyEAAAAAoHIRDgEAAAAAhEMAAAAAAOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDJ3dkF4MaUnJyslJQUZ5dxXQICAhQaGursMgAAAACXQDhEqSUnJ6txRCNdzsp2dinXxbuql344fISACAAAAIhwiDJISUnR5axsLRoiNa7t7GrK5ocz0sC52UpJSSEcAgAAACIc4jo0ri21rOfsKgAAAACUBx5IAwAAAAAgHAIAAAAACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAACQi4fDrKwsTZgwQQ0bNpSXl5dq166twYMH6+effy71XKmpqRoxYoTCwsLk6empsLAwjRw5UmlpaXb7L1y4UE888YQaN24sf39/eXh4qHbt2urTp4++/fbba65r9erV6tixo/z8/OTn56dOnTpp7dq11xxz8OBBPfbYYwoMDFTVqlXVtGlTzZw5UwUFBaXeVgAAAAAoLZcNh9nZ2ercubOmTJmizMxMPfLIIwoJCdGCBQt011136cSJEw7PlZKSotatW2v27Nlyd3dXr1695Ovrq1mzZqlNmzb67bffioyZM2eOli1bpqpVq+rPf/6zevXqpcDAQC1btkwdOnTQe++9Z3ddM2fOVM+ePbVt2za1b99enTt31s6dO/Xwww9rzpw5dsds375dd999t5YuXarw8HD17NlTKSkpGjVqlJ544gkZhuHwtgIAAABAWbhsOJw6daoSEhLUtm1bHT16VHFxcdqxY4dmzJihCxcuaPDgwQ7PNXLkSB07dkxRUVE6cuSI4uLidODAAT3//PM6evSoRo8eXWTMu+++q99++02JiYlatWqVPv/8c+3bt09ffPGFzGazRo0apZSUFJsxR44c0QsvvCBPT0/9+9//1pdffqmVK1dq7969uu222zRq1CgdO3bMZsyVK1c0YMAAZWVlKTY2Vjt27FBcXJx+/PFHtW3bVkuWLNGHH35Ytp0IAAAAAA5yyXCYm5trPcv27rvvysfHx9o2evRoNWvWTFu2bNHu3btLnOvs2bP69NNP5eHhoblz58rd3d3aNn36dAUGBmrRokU6f/68zbg2bdrI19e3yHw9e/ZUp06dlJ2drW3bttm0zZo1S/n5+Xr22WfVtm1b6/KGDRvqlVdeUV5enmbNmmUzZsWKFfrpp5/UvHlzjRo1yrrcx8fHug9mzJhR4nYCAAAAwPVwyXD47bffKj09XfXr19ddd91VpL1Pnz6Srt7bV5L169eroKBAHTp0UFBQkE2bp6enevToofz8fK1bt87h+qpUqSJJ8vDwsFleeF9hYX2O1HytMS1btlR4eLgOHDigpKQkh+sDAAAAgNJyyXC4b98+SVfDkT2Fy/fv31+pc0nS119/rW+++UY1atTQPffcY12elpam5ORkSbIbaENCQhQQEKCTJ08qIyOjwuoDAAAAgLJwL7lL5SsMWXXq1LHbXrj85MmTFT7XggULtGXLFmVnZ+v48ePatWuXLBaLPv30U1WvXr3IemrUqKFq1aoVu66UlBSdPHlSTZs2LZf6JCknJ0c5OTnWr38fPgEAAADAES4ZDjMzMyVJ3t7edtsLw9fFixcrfK5vv/3W5oEw/v7+mjdvnrp27Vqq9RS3rvLY1mnTpmnSpEnFtgMAAABASVwyHLqSDz74QB988IEyMzN15MgRvfXWW3r00Uf1t7/9Tf/3f//n7PIkSePHj7d54mpGRoZCQkKcWBEqQ3JycpEn5t5oAgICFBoa6uwyAAAAIBcNh4VPJ718+bLd9kuXLkmS3aeJVtRcPj4+atWqleLi4pSdnW09e/joo486tJ7i1uXj46PU1NTrqs/T01Oenp7XrB83l+TkZDWKiFB2VpazS7kuXlWr6sjhwwREAAAAF+CS4bDwF8XTp0/bbS9cHhYWVqlzFRo4cKBWrVqlL774whoOC9eTmpqqS5cu2b3v0N66QkNDlZqaqtOnT6tZs2blUh9ufikpKVeDYVSUFBDg7HLKJiVF2cuXKyUlhXAIAADgAlwyHDZv3lySlJiYaLe9cLm9MFWRcxUK+P+/jF+4cMG6rHr16goNDVVycrL27NmjP//5zzZjTp06pZSUFIWFhcnPz8+mvn379ikxMVHdu3cvl/pwCwkIkGrXdnYVAAAAuAm45Kss2rdvL4vFouPHj2vv3r1F2pcuXSpJ6tGjR4lzdevWTWazWVu3bi3yovucnBytXr1abm5udoNZcbZs2SJJql+/vs3yhx56yKY+R2q+1pg9e/boxIkTuvPOO1W3bl2H6wMAAACA0nLJcOjh4aFhw4ZJkoYOHWq9706SYmNjtX//fnXs2FGtWrWyLp8zZ44iIiI0fvx4m7mCg4PVr18/5ebmasiQIcrLy7O2vfjii7pw4YIGDhyomjVrWpf/8MMP+vzzz5Wbm2szl2EY+uyzz/TWW2/JZDJp0KBBNu0jRoyQm5ub3nvvPSUkJFiX//jjj3r99dfl7u6uESNG2Izp3bu36tWrp3379untt9+2Lr906ZKGDh0qSRozZoxjOw4AAAAAysglLyuVpFdffVVfffWVtm3bpgYNGqhDhw46efKkduzYocDAQM2fP9+mf0pKio4cOaKzZ88WmWvmzJlKSEjQsmXLFBERocjISB08eFAHDhxQgwYNFBsba9P/3Llz6tu3rywWi1q1aqVatWopLS1Nhw4dUlJSksxms2JjY3X33XfbjGvUqJGmT5+u0aNHq0OHDrr//vvl4eGhjRs3KisrS7Nnz9Ydd9xhM6ZKlSpatGiRunTpotGjRysuLk5hYWHaunWrzp49qz59+hQJoQAAAABQ3lzyzKEkeXl5afPmzXrttdfk7e2tlStX6uTJk4qOjlZiYqLCw8MdnisgIEA7d+7U888/r9zcXK1YsULp6ekaPny4du7cKX9/f5v+TZo00eTJk9WqVSsdPXpUy5Yt0+bNm1WlShUNHjxY3333nUaOHGl3XaNGjdKqVavUtm1bbd26VV9//bUiIyO1evVqPf/883bHtGvXTt99950effRRHTt2TKtWrZK/v79iY2MVFxcnk8nk8LYCAAAAQFmYDMMwnF0EyldGRoYsFovS09NtHn5TXhITE9WqVSvtniq1rFfu01eKxJ+kVq9Ku3fvVsuWLZ1dTqkVHgM9/fSN+0CaM2ek//u/G/YYAAAA3AhKkw1c9swhAAAAAKDyEA4BAAAAAIRDAAAAAADhEAAAAAAgwiEAAAAAQIRDAAAAAIAIhwAAAAAASe7OLgAAblTJyclKSUlxdhnXJSAgQKGhoc4uAwAAuADCIQCUQXJyshpFRCg7K8vZpVwXr6pVdeTwYQIiAAAgHAJAWaSkpFwNhlFRUkCAs8spm5QUZS9frpSUFMIhAAAgHALAdQkIkGrXdnYVAAAA140H0gAAAAAACIcAAAAAAC4rBQDcwG70J8bytFgAgCshHAIAbkg3wxNjeVosAMCVEA4BADekG/6JsTwtFgDgYgiHAIAbG0+MBQCgXPBAGgAAAAAA4RAAAAAAQDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMnd2QUAAIAbV3JyslJSUpxdRpkFBAQoNDTU2WUAgEsgHAIAgDJJTk5Wo4gIZWdlObuUMvOqWlVHDh8mIAKACIcAAKCMUlJSrgbDqCgpIMDZ5ZReSoqyly9XSkoK4RAARDgEAADXKyBAql3b2VUAAK4T4RAAAOAGxn2fAMoL4RAAAOAGxX2fAMoT4RAAAOAGxX2fAMoT4RAAAOBGx32fAMqB2dkFAAAAAACcj3AIAAAAACAcAgAAAAAIhwAAAAAAEQ4BAAAAACIcAgAAAABEOAQAAAAAiHAIAAAAABDhEAAAAAAgwiEAAAAAQC4eDrOysjRhwgQ1bNhQXl5eql27tgYPHqyff/651HOlpqZqxIgRCgsLk6enp8LCwjRy5EilpaUV6XvlyhVt3LhRw4YN05133ilvb29VrVpVjRs31gsvvKALFy7YXUfdunVlMpmu+QkPD7cZk5SUdM3+tWrVKvW2AgAAAEBpuTu7gOJkZ2erc+fOSkhIUHBwsB555BElJSVpwYIFWrNmjRISEooEreKkpKSobdu2OnbsmMLDw9WrVy8dPHhQs2bN0pdffqnt27fL39/f2n/Lli3q2rWrpKuB78EHH9SVK1e0fft2zZgxQ4sXL1Z8fLwaNWpks54+ffooJSXFbg1btmxRUlKSOnToYLc9KChI3bp1K7LcYrE4tI0AAAAAcD1cNhxOnTpVCQkJatu2rTZu3CgfHx9JUmxsrMaMGaPBgwcrPj7eoblGjhypY8eOKSoqSnFxcXJ3v7rZw4cP1zvvvKPRo0dr4cKF1v5ms1mPP/64xowZo9atW1uXp6enq2/fvtqwYYOefPJJbdu2zWY9//jHP+yuv6CgQHXq1JEk/c///I/dPhERETY1AAAAAEBlcsnLSnNzczVnzhxJ0rvvvmsNhpI0evRoNWvWTFu2bNHu3btLnOvs2bP69NNP5eHhoblz51qDoSRNnz5dgYGBWrRokc6fP29d3rlzZ8XFxdkEQ+nqWbz58+dLkrZv366TJ086tD1ff/21zp49q9tvv12dO3d2aAwAAAAAVCaXDIfffvut0tPTVb9+fd11111F2vv06SNJWr16dYlzrV+/XgUFBerQoYOCgoJs2jw9PdWjRw/l5+dr3bp1DtVWu3ZtBQYGSpLOnDnj0JhFixZJkvr37y+z2SV3OQAAAIBbnEteVrpv3z5JUsuWLe22Fy7fv39/ucw1f/58h+aSpLS0NKWmpkqSQw+LycrK0ooVKyRJAwcOLLbfuXPnNHHiRJ09e1YWi0Vt2rRRz5495eHh4VBdAAAAAHA9XDIcJicnS5L1Pr0/KlzuyGWd5TmXdPUy17y8PDVt2lT16tUrsf/KlSt18eJFNWvWTM2aNSu23+HDhzV58mSbZaGhoVqyZEmRy1v/KCcnRzk5OdavMzIySqwLAAAAAH7PJa9xzMzMlCR5e3vbba9WrZok6eLFi5U61549ezR16lRJ0ptvvllif0n6+OOPJRX/IBpPT08999xzio+P17lz55SRkaHt27ere/fuSk5OVteuXUsMrtOmTZPFYrF+QkJCHKoNAAAAAAq5ZDh0RefOnVNUVJSys7M1cuRIPfjggyWOOX/+vDZt2iSz2az+/fvb7RMcHKy5c+eqY8eOqlmzpnx9fXXPPfdo7dq16t+/v9LS0vT3v//9musZP3680tPTrZ9Tp06VaRsBAAAA3LpcMhwWPp308uXLdtsvXbokSfL19a2UuS5evKju3bsrKSlJjz32mGbMmFHieiXps88+U15enu677z7Vrl3boTG/9/LLL0uSNmzYcM1+np6e8vPzs/kAAAAAQGm4ZDgMDQ2VJJ0+fdpue+HysLCwCp8rOztbPXv2VGJioh544AEtWrTI4SeOFj6l9FoPormWBg0aSLr6Og4AAAAAqEguGQ6bN28uSUpMTLTbXrj8Wg94KY+58vLy1LdvX8XHx6tdu3Zavny5w08PPXr0qL777jt5e3srKirKoTF/VPhU1ML7IgEAAACgorhkOGzfvr0sFouOHz+uvXv3FmlfunSpJKlHjx4lztWtWzeZzWZt3brV5kX30tWnfK5evVpubm7q3r27TZthGHryySe1atUqtWjRQmvXri1VSCs8a9i7d2/rpa2ltWzZMknFv4YDAAAAAMqLS4ZDDw8PDRs2TJI0dOhQ632BkhQbG6v9+/erY8eOatWqlXX5nDlzFBERofHjx9vMFRwcrH79+ik3N1dDhgxRXl6ete3FF1/UhQsXNHDgQNWsWdNm3MiRI7Vo0SJFRERo48aNql69eqm2YfHixZKKf0ppoXnz5unw4cNFli9fvlzjxo2TdHUfAAAAAEBFcsn3HErSq6++qq+++krbtm1TgwYN1KFDB508eVI7duxQYGCg5s+fb9M/JSVFR44csXt/3syZM5WQkKBly5YpIiJCkZGROnjwoA4cOKAGDRooNjbWpv8XX3yh2bNnS5JCQkI0duxYuzWOGzdOERERRZZv27ZNJ06cUK1atdSlS5drbufixYv19NNPq1mzZmrYsKEKCgp06NAha2AcO3asevfufc05AAAAAOB6uWw49PLy0ubNmzVt2jR98sknWrlypfz9/RUdHa0pU6YU+1J7ewICArRz507FxMRo5cqVWrFihYKCgjR8+HBNmjSpyFnBwnv9JGnTpk3FzhsdHW03HBZeUtqvXz+5ublds7a//e1vCgwM1N69e7Vx40ZlZWUpMDBQUVFReu6550oMlwAAAABQHlw2HEpS1apVNXnyZE2ePLnEvjExMYqJiSm23d/fX7Nnz7aeEbyW6OhoRUdHl6JSW3PnztXcuXMd6jtgwAANGDCgzOsCAAAAgPLgkvccAgAAAAAqF+EQAAAAAEA4BAAAAAC4+D2HuD59+/ZVlSpVyn3e9PR0SdKoRZLFu9ynrxTpl6/+d9SoUbJYLM4tpgwKj4HWr5e8vJxbTFllZ0viGDgVx8C5bvD9L3EMXAHHAEBJrly54nBfk2EYRgXWAifIyMiQxWJRenq6/Pz8yn3+xMREtWrVSrunSi3rlfv0lSLxJ6nVq9Lu3bvVsmVLZ5dTaoXHQE8/LdWu7exyyubMGen//o9j4EwcA+e6wfe/xDFwBRwDACUpTTbgslIAAAAAAOEQAAAAAEA4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAktydXQAAAABwI0tOTlZKSoqzyyizgIAAhYaGOrsMuADCIQAAAFBGycnJatS4sbIvX3Z2KWXm5e2tIz/8QEAE4RAAAAAoq5SUFGVfvqzGM1+X9x3hzi6n1C4fO6EfRr6ilJQUwiEIhwAAAMD18r4jXL53NnZ2GcB14YE0AAAAAADCIQAAAACAcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABALh4Os7KyNGHCBDVs2FBeXl6qXbu2Bg8erJ9//rnUc6WmpmrEiBEKCwuTp6enwsLCNHLkSKWlpRXpe+XKFW3cuFHDhg3TnXfeKW9vb1WtWlWNGzfWCy+8oAsXLthdx8KFC2UymYr9PPHEE8XWd/DgQT322GMKDAxU1apV1bRpU82cOVMFBQWl3lYAAAAAKC13ZxdQnOzsbHXu3FkJCQkKDg7WI488oqSkJC1YsEBr1qxRQkKCwsPDHZorJSVFbdu21bFjxxQeHq5evXrp4MGDmjVrlr788ktt375d/v7+1v5btmxR165dJUl169bVgw8+qCtXrmj79u2aMWOGFi9erPj4eDVq1Mju+po3b64WLVoUWd6mTRu7/bdv36777rtPWVlZat26terWrat///vfGjVqlLZt26a4uDiZTCaHthUAAAAAysJlw+HUqVOVkJCgtm3bauPGjfLx8ZEkxcbGasyYMRo8eLDi4+MdmmvkyJE6duyYoqKiFBcXJ3f3q5s9fPhwvfPOOxo9erQWLlxo7W82m/X4449rzJgxat26tXV5enq6+vbtqw0bNujJJ5/Utm3b7K6vV69eiomJcai2K1euaMCAAcrKylJsbKxGjRolScrMzNQDDzygJUuWqHv37oqOjnZoPgAAAAAoC5e8rDQ3N1dz5syRJL377rvWYChJo0ePVrNmzbRlyxbt3r27xLnOnj2rTz/9VB4eHpo7d641GErS9OnTFRgYqEWLFun8+fPW5Z07d1ZcXJxNMJQki8Wi+fPnS7p6tu/kyZPXtZ2StGLFCv30009q3ry5NRhKko+Pj3UfzJgx47rXAwAAAADX4pLh8Ntvv1V6errq16+vu+66q0h7nz59JEmrV68uca7169eroKBAHTp0UFBQkE2bp6enevToofz8fK1bt86h2mrXrq3AwEBJ0pkzZxwacy1r166V9N9t+r2WLVsqPDxcBw4cUFJS0nWvCwAAAACK45LhcN++fZKuhiN7Cpfv37+/UueSpLS0NKWmpkqSatWqZbfP7t27NXbsWD3zzDOaOHGitmzZUmn1AQAAAEBZuOQ9h8nJyZKkOnXq2G0vXO7IZZ3lOZd09TLXvLw8NW3aVPXq1bPbZ82aNVqzZo3168mTJ6tjx46Ki4srcvayPOrLyclRTk6O9euMjAyHtgUAAAAACrnkmcPMzExJkre3t932atWqSZIuXrxYqXPt2bNHU6dOlSS9+eabRdqDg4MVExOjPXv2KD09Xb/88otWrVqliIgIbdmyRQ8//LDy8/PLvb5p06bJYrFYPyEhISVuCwAAAAD8nkuGQ1d07tw5RUVFKTs7WyNHjtSDDz5YpE/Xrl01ceJEtWjRQn5+fgoKClKPHj303XffqWHDhtq1a5c+//zzcq9t/PjxSk9Pt35OnTpV7usAAAAAcHNzyXBY+HTSy5cv222/dOmSJMnX17dS5rp48aK6d++upKQkPfbYY6V+eqiPj4+GDx8uSdqwYUO51+fp6Sk/Pz+bDwAAAACUhkuGw9DQUEnS6dOn7bYXLg8LC6vwubKzs9WzZ08lJibqgQce0KJFi2Q2l363NWjQQNLVV2uUZ30AAAAAUB5cMhw2b95ckpSYmGi3vXB5s2bNKnSuvLw89e3bV/Hx8WrXrp2WL18uDw+PkjfAjsInnBbeQ1ge9QEAAABAeXHJcNi+fXtZLBYdP35ce/fuLdK+dOlSSVKPHj1KnKtbt24ym83aunWrzYvupatP+Vy9erXc3NzUvXt3mzbDMPTkk09q1apVatGihdauXVsk2JXGsmXLJBV9ZcVDDz1ks02/t2fPHp04cUJ33nmn6tatW+Z1AwAAAEBJXDIcenh4aNiwYZKkoUOHWu+7k6TY2Fjt379fHTt2VKtWrazL58yZo4iICI0fP95mruDgYPXr10+5ubkaMmSI8vLyrG0vvviiLly4oIEDB6pmzZo240aOHKlFixYpIiJCGzduVPXq1Uuse9q0aUpJSbFZduXKFU2aNElLlixR1apV9eSTT9q09+7dW/Xq1dO+ffv09ttvW5dfunRJQ4cOlSSNGTOmxHUDAAAAwPVwyfccStKrr76qr776Stu2bVODBg3UoUMHnTx5Ujt27FBgYKDmz59v0z8lJUVHjhwpck+fJM2cOVMJCQlatmyZIiIiFBkZqYMHD+rAgQNq0KCBYmNjbfp/8cUXmj17tiQpJCREY8eOtVvjuHHjFBERYf365Zdf1qRJkxQZGamQkBBlZGRo7969OnPmjLy8vLRo0SLdfvvtNnNUqVJFixYtUpcuXTR69GjFxcUpLCxMW7du1dmzZ9WnTx8NGjSoTPsQAAAAABzlsuHQy8tLmzdv1rRp0/TJJ59o5cqV8vf3V3R0tKZMmVLsS+PtCQgI0M6dOxUTE6OVK1dqxYoVCgoK0vDhwzVp0qQiZwUL7w+UpE2bNhU7b3R0tE04nDBhgrZv364jR44oMTFRhmGoTp06euaZZzRq1Cg1atTI7jzt2rXTd999p4kTJyo+Pl779u1T/fr1NXbsWI0YMUImk8nhbQUAAACAsnDZcChJVatW1eTJkzV58uQS+8bExCgmJqbYdn9/f82ePdt6RvBaoqOjFR0dXYpKr5o0aVKpxxRq0qSJ3fsOAQAAAKAyuOQ9hwAAAACAykU4BAAAAAAQDgEAAAAAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAOTi4TArK0sTJkxQw4YN5eXlpdq1a2vw4MH6+eefSz1XamqqRowYobCwMHl6eiosLEwjR45UWlpakb5XrlzRxo0bNWzYMN15553y9vZW1apV1bhxY73wwgu6cOGC3XXs3r1bMTExateunapXry4PDw+FhIRo4MCB2r9/v90xSUlJMplMxX5q1apV6m0FAAAAgNJyd3YBxcnOzlbnzp2VkJCg4OBgPfLII0pKStKCBQu0Zs0aJSQkKDw83KG5UlJS1LZtWx07dkzh4eHq1auXDh48qFmzZunLL7/U9u3b5e/vb+2/ZcsWde3aVZJUt25dPfjgg7py5Yq2b9+uGTNmaPHixYqPj1ejRo2sY/Ly8hQZGSlJ8vf3V7t27VStWjXt2bNHixcv1pIlS7R48WL16dPHbo1BQUHq1q1bkeUWi8XhfQYAAAAAZeWy4XDq1KlKSEhQ27ZttXHjRvn4+EiSYmNjNWbMGA0ePFjx8fEOzTVy5EgdO3ZMUVFRiouLk7v71c0ePny43nnnHY0ePVoLFy609jebzXr88cc1ZswYtW7d2ro8PT1dffv21YYNG/Tkk09q27ZtNuu5++679corr+jhhx+Wm5ubJKmgoEATJkzQ66+/rsGDB6tTp04KCAgoUmNERIRNDQAAAABQmVzystLc3FzNmTNHkvTuu+9ag6EkjR49Ws2aNdOWLVu0e/fuEuc6e/asPv30U3l4eGju3LnWYChJ06dPV2BgoBYtWqTz589bl3fu3FlxcXE2wVC6ehZv/vz5kqTt27fr5MmT1jZ3d3ft3LlTjzzyiDUYSleD5pQpU9SoUSNdvHhRa9euLeXeAAAAAICK55Lh8Ntvv1V6errq16+vu+66q0h74aWZq1evLnGu9evXq6CgQB06dFBQUJBNm6enp3r06KH8/HytW7fOodpq166twMBASdKZM2ccGmMymdSsWbNSjQEAAACAyuSSl5Xu27dPktSyZUu77YXLi3vIS2nnmj9/vkNzSVJaWppSU1MlqVQPizlx4sQ1x5w7d04TJ07U2bNnZbFY1KZNG/Xs2VMeHh4OrwMAAAAAysolw2FycrIkqU6dOnbbC5f//rLOyphLunqZa15enpo2bap69eo5NOY///mPdu/eLQ8PD7sPnZGkw4cPa/LkyTbLQkNDtWTJkiKXt/5RTk6OcnJyrF9nZGQ4VBcAAAAAFKrQy0qHDh2q++67r9TjMjMzJUne3t5226tVqyZJunjxYqXOtWfPHk2dOlWS9Oabb5bYX7oa1AYPHixJGjVqlIKDg23aPT099dxzzyk+Pl7nzp1TRkaGtm/fru7duys5OVldu3YtMbhOmzZNFovF+gkJCXGoNgAAAAAoVKHhMDEx0eEnirq6c+fOKSoqStnZ2Ro5cqQefPDBEsfk5+drwIAB+vHHH9W6desiZwYlKTg4WHPnzlXHjh1Vs2ZN+fr66p577tHatWvVv39/paWl6e9///s11zN+/Hilp6dbP6dOnSrzdgIAAAC4NbnkA2kKn056+fJlu+2XLl2SJPn6+lbKXBcvXlT37t2VlJSkxx57TDNmzChxvZL03HPPac2aNWrUqJHWrl1b6vsHX375ZUnShg0brtnP09NTfn5+Nh8AAAAAKA2H7jn86KOPyjT5hQsXyjQuNDRUknT69Gm77YXLw8LCKnyu7Oxs9ezZU4mJiXrggQe0aNEimc0lZ+px48Zp3rx5CgkJ0aZNm+y+27AkDRo0kHT1dRwAAAAAUJEcCofR0dEymUylntwwjDKNa968uaSrl6XaU7i88PUQFTVXXl6e+vbtq/j4eLVr107Lly936OzfW2+9pTfffFM1a9bUpk2bynwPYOFTUQvviwQAAACAiuJQOHRzc1NBQYGeeuoph86aFVqxYkWZzh62b99eFotFx48f1969e9WiRQub9qVLl0qSevToUeJc3bp1k9ls1tatW3X+/HnVrFnT2paTk6PVq1fLzc1N3bt3txlnGIaefPJJrVq1Si1atNDatWsdCmnz5s3TSy+9pOrVq2vDhg1q1KiRA1ts37JlyyQV/xoOAAAAACgvDoXDO++8U/v379eIESP0pz/9yeHJ9+7dW6Zw6OHhoWHDhun111/X0KFDtXHjRmswi42N1f79+9WxY0e1atXKOmbOnDmaM2eOevfurWnTplmXBwcHq1+/flq8eLGGDBmizz77TO7uVzf7xRdf1IULFzRo0CCb0ChJI0eO1KJFixQREaGNGzeqevXqJda9dOlSPfvss/Lx8dG6deuKhFp75s2bpw4dOigiIsJm+fLlyzVu3DhJV5/6CgAAAAAVyaFw2Lp1a+3fv1+7du0qVTi8Hq+++qq++uorbdu2TQ0aNFCHDh108uRJ7dixQ4GBgZo/f75N/5SUFB05csTu/XkzZ85UQkKCli1bpoiICEVGRurgwYM6cOCAGjRooNjYWJv+X3zxhWbPni1JCgkJ0dixY+3WOG7cOGuoO3/+vAYMGKCCggLVq1dP77//vt5///0iY3r16qVevXpZv168eLGefvppNWvWTA0bNlRBQYEOHTqkw4cPS5LGjh2r3r17O77jAAAAAKAMHA6H8+bN03fffaf//d//dXhywzBkGEaZCvPy8tLmzZs1bdo0ffLJJ1q5cqX8/f0VHR2tKVOmFPtSe3sCAgK0c+dOxcTEaOXKlVqxYoWCgoI0fPhwTZo0qchZwcJ7/SRp06ZNxc4bHR1tDYeXL19Wbm6uJOn777/X999/b3dM3bp1bcLh3/72NwUGBmrv3r3auHGjsrKyFBgYqKioKD333HPq0qWLw9sJAAAAAGXlUDjs3bu3AgICFBQUVKrJExISylRUoapVq2ry5Ml23w/4RzExMYqJiSm23d/fX7Nnz7aeEbyW6OhoRUdHl6LSq6GvLEF4wIABGjBgQKnHAQAAAEB5cujpMn369NGRI0d0zz33SJL+/e9/6+jRoxVaGAAAAACg8jgUDuPj4633wElSp06d9Oabb1ZYUQAAAACAyuVQOPTw8NClS5dslpX1XkIAAAAAgOtx6J7DO+64Q19//bW2bNmievXqSZIyMzOVnJzs0EpCQ0PLXiEAAAAAoMI5FA6ffvppjRw5Up07d7YuW7ZsmfUl7ddiMpmUl5dX9goBAAAAABXOoXA4fPhw1alTR1988YVOnz6tzZs3q2bNmkVe3A4AAAAAuDE5FA4lKSoqSlFRUZIks9msBx98sMiL6AEAAAAANyaHw+HvTZw4UXfddVd51wIAAAAAcJIyh0MAAAAAwM3DoVdZAAAAAABuboRDAAAAAADhEAAAAABAOAQAAAAAiHAIAAAAABDhEAAAAAAgwiEAAAAAQIRDAAAAAIAIhwAAAAAAEQ4BAAAAACIcAgAAAABEOAQAAAAAiHAIAAAAABDhEAAAAAAgwiEAAAAAQIRDAAAAAIAIhwAAAAAAEQ4BAAAAACIcAgAAAABEOAQAAAAAiHAIAAAAABDhEAAAAAAgwiEAAAAAQIRDAAAAAIAIhwAAAAAAEQ4BAAAAACIcAgAAAABEOAQAAAAAiHAIAAAAABDhEAAAAAAgwiEAAAAAQIRDAAAAAIAIhwAAAAAAEQ4BAAAAACIcAgAAAABEOAQAAAAAiHAIAAAAABDhEAAAAAAgFw+HWVlZmjBhgho2bCgvLy/Vrl1bgwcP1s8//1zquVJTUzVixAiFhYXJ09NTYWFhGjlypNLS0or0vXLlijZu3Khhw4bpzjvvlLe3t6pWrarGjRvrhRde0IULF665rtWrV6tjx47y8/OTn5+fOnXqpLVr115zzMGDB/XYY48pMDBQVatWVdOmTTVz5kwVFBSUelsBAAAAoLRcNhxmZ2erc+fOmjJlijIzM/XII48oJCRECxYs0F133aUTJ044PFdKSopat26t2bNny93dXb169ZKvr69mzZqlNm3a6LfffrPpv2XLFnXt2lXvvvuuLl26pAcffFD333+/UlJSNGPGDDVr1kxHjhyxu66ZM2eqZ8+e2rZtm9q3b6/OnTtr586devjhhzVnzhy7Y7Zv3667775bS5cuVXh4uHr27KmUlBSNGjVKTzzxhAzDcHzHAQAAAEAZuGw4nDp1qhISEtS2bVsdPXpUcXFx2rFjh2bMmKELFy5o8ODBDs81cuRIHTt2TFFRUTpy5Iji4uJ04MABPf/88zp69KhGjx5t099sNuvxxx/Xjh079NNPP2nZsmVatWqVjh07pq5du+qXX37Rk08+WWQ9R44c0QsvvCBPT0/9+9//1pdffqmVK1dq7969uu222zRq1CgdO3bMZsyVK1c0YMAAZWVlKTY2Vjt27FBcXJx+/PFHtW3bVkuWLNGHH35Ytp0IAAAAAA5yyXCYm5trPcv27rvvysfHx9o2evRoNWvWTFu2bNHu3btLnOvs2bP69NNP5eHhoblz58rd3d3aNn36dAUGBmrRokU6f/68dXnnzp0VFxen1q1b28xlsVg0f/58SVfP9p08edKmfdasWcrPz9ezzz6rtm3bWpc3bNhQr7zyivLy8jRr1iybMStWrNBPP/2k5s2ba9SoUdblPj4+1n0wY8aMErcTAAAAAK6HS4bDb7/9Vunp6apfv77uuuuuIu19+vSRdPXevpKsX79eBQUF6tChg4KCgmzaPD091aNHD+Xn52vdunUO1Va7dm0FBgZKks6cOWPTVnhfYWF9jtR8rTEtW7ZUeHi4Dhw4oKSkJIfqAwAAAICycMlwuG/fPklXw5E9hcv3799fqXNJUlpamlJTUyVJtWrVslmenJwsSXYDbUhIiAICAnTy5EllZGRUWH0AAAAAUBYuGQ4LQ1adOnXsthcu/+NlnRU9l3T1Mte8vDw1bdpU9erVK7KeGjVqqFq1ag6vq7zrAwAAAICycC+5S+XLzMyUJHl7e9ttLwxfFy9erNS59uzZo6lTp0qS3nzzzVKtp7h1lUd9OTk5ysnJsX79+zOTAAAAAOAIlzxz6IrOnTunqKgoZWdna+TIkXrwwQedXZLVtGnTZLFYrJ+QkBBnlwQAAADgBuOS4bDw6aSXL1+2237p0iVJkq+vb6XMdfHiRXXv3l1JSUl67LHH7D49tKT1FLeu8qhv/PjxSk9Pt35OnTpVbF8AAAAAsMclw2FoaKgk6fTp03bbC5eHhYVV+FzZ2dnq2bOnEhMT9cADD2jRokUym4vutsL1pKamWgOdI+sqj2319PSUn5+fzQcAAAAASsMlw2Hz5s0lSYmJiXbbC5c3a9asQufKy8tT3759FR8fr3bt2mn58uXy8PCwO0/16tWtQW/Pnj1F2k+dOqWUlBSFhYXZhLfy3FYAAAAAKCuXDIft27eXxWLR8ePHtXfv3iLtS5culST16NGjxLm6desms9msrVu32rzoXrr6IJfVq1fLzc1N3bt3t2kzDENPPvmkVq1apRYtWmjt2rXFPoW00EMPPWRTnyM1X2vMnj17dOLECd15552qW7futTcUAAAAAK6DS4ZDDw8PDRs2TJI0dOhQm8s0Y2NjtX//fnXs2FGtWrWyLp8zZ44iIiI0fvx4m7mCg4PVr18/5ebmasiQIcrLy7O2vfjii7pw4YIGDhyomjVr2owbOXKkFi1apIiICG3cuFHVq1cvse4RI0bIzc1N7733nhISEqzLf/zxR73++utyd3fXiBEjbMb07t1b9erV0759+/T2229bl1+6dElDhw6VJI0ZM6bEdQMAAADA9XDJV1lI0quvvqqvvvpK27ZtU4MGDdShQwedPHlSO3bsUGBgoObPn2/TPyUlRUeOHNHZs2eLzDVz5kwlJCRo2bJlioiIUGRkpA4ePKgDBw6oQYMGio2Nten/xRdfaPbs2ZKuvrx+7NixdmscN26cIiIirF83atRI06dP1+jRo9WhQwfdf//98vDw0MaNG5WVlaXZs2frjjvusJmjSpUqWrRokbp06aLRo0crLi5OYWFh2rp1q86ePas+ffpo0KBBZdqHAAAAAOAolw2HXl5e2rx5s6ZNm6ZPPvlEK1eulL+/v6KjozVlypRiXxpvT0BAgHbu3KmYmBitXLlSK1asUFBQkIYPH65JkyYVOSuYmppq/f9NmzYVO290dLRNOJSkUaNG6Y477tD06dO1detWSVJkZKRefPFFPfzww3bnadeunb777jtNnDhR8fHx2rdvn+rXr6+xY8dqxIgRMplMDm8rAAAAAJSFy4ZDSapataomT56syZMnl9g3JiZGMTExxbb7+/tr9uzZ1jOC1xIdHa3o6OhSVGqrR48eDt0P+XtNmjSxe98hAAAAAFQGl7znEAAAAABQuQiHAAAAAADCIQAAAACAcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAC5eDjMysrShAkT1LBhQ3l5eal27doaPHiwfv7551LPlZqaqhEjRigsLEyenp4KCwvTyJEjlZaWZrf/kSNH9Pbbb6tfv36qX7++TCaTTCaTkpKSil1H3bp1rf2K+4SHh9uMSUpKumb/WrVqlXpbAQAAAKC03J1dQHGys7PVuXNnJSQkKDg4WI888oiSkpK0YMECrVmzRgkJCUWCVnFSUlLUtm1bHTt2TOHh4erVq5cOHjyoWbNm6csvv9T27dvl7+9vM+af//ynZs2aVaqa+/Tpo5SUFLttW7ZsUVJSkjp06GC3PSgoSN26dSuy3GKxlKoGAAAAACgLlw2HU6dOVUJCgtq2bauNGzfKx8dHkhQbG6sxY8Zo8ODBio+Pd2iukSNH6tixY4qKilJcXJzc3a9u9vDhw/XOO+9o9OjRWrhwoc2Ypk2b6qWXXtLdd9+tyMhIde3aVUeOHLnmev7xj3/YXV5QUKA6depIkv7nf/7Hbp+IiIgiNQAAAABAZXHJy0pzc3M1Z84cSdK7775rDYaSNHr0aDVr1kxbtmzR7t27S5zr7Nmz+vTTT+Xh4aG5c+dag6EkTZ8+XYGBgVq0aJHOnz9vM+6vf/2r3njjDT366KMKCwu7ru35+uuvdfbsWd1+++3q3Lnzdc0FAAAAABXBJcPht99+q/T0dNWvX1933XVXkfY+ffpIklavXl3iXOvXr1dBQYE6dOigoKAgmzZPT0/16NFD+fn5WrduXfkUb8eiRYskSf3795fZ7JK7HAAAAMAtziUvK923b58kqWXLlnbbC5fv37+/XOaaP3++Q3OVRVZWllasWCFJGjhwYLH9zp07p4kTJ+rs2bOyWCxq06aNevbsKQ8PjwqpCwAAAAB+zyXDYXJysiRZ79P7o8LlJ0+erNS5ymLlypW6ePGimjVrpmbNmhXb7/Dhw5o8ebLNstDQUC1ZskStW7e+5jpycnKUk5Nj/TojI+P6igYAAABwy3HJaxwzMzMlSd7e3nbbq1WrJkm6ePFipc5VFh9//LGk4h9E4+npqeeee07x8fE6d+6cMjIytH37dnXv3l3Jycnq2rVricF12rRpslgs1k9ISEi5bwcAAACAm5tLhsObxfnz57Vp0yaZzWb179/fbp/g4GDNnTtXHTt2VM2aNeXr66t77rlHa9euVf/+/ZWWlqa///3v11zP+PHjlZ6ebv2cOnWqIjYHAAAAwE3MJcNh4dNJL1++bLf90qVLkiRfX99Knau0PvvsM+Xl5em+++5T7dq1Sz3+5ZdfliRt2LDhmv08PT3l5+dn8wEAAACA0nDJcBgaGipJOn36tN32wuWOvGKiPOcqrcKnlF7rQTTX0qBBA0lXX8cBAAAAABXJJcNh8+bNJUmJiYl22wuXX+sBLxUxV2kcPXpU3333nby9vRUVFVWmOVJTUyX9975IAAAAAKgoLhkO27dvL4vFouPHj2vv3r1F2pcuXSpJ6tGjR4lzdevWTWazWVu3bi3yovucnBytXr1abm5u6t69e7nUXqjwrGHv3r2tl7aW1rJlyyQV/xoOAAAAACgvLhkOPTw8NGzYMEnS0KFDrfcFSlJsbKz279+vjh07qlWrVtblc+bMUUREhMaPH28zV3BwsPr166fc3FwNGTJEeXl51rYXX3xRFy5c0MCBA1WzZs1y3YbFixdLKv4ppYXmzZunw4cPF1m+fPlyjRs3TtLVfQAAAAAAFckl33MoSa+++qq++uorbdu2TQ0aNFCHDh108uRJ7dixQ4GBgZo/f75N/5SUFB05csTu/XkzZ85UQkKCli1bpoiICEVGRurgwYM6cOCAGjRooNjY2CJjEhMTNWTIEOvXha+T6N27tzw9PSVJTz31lJ566qkiY7dt26YTJ06oVq1a6tKlyzW3c/HixXr66afVrFkzNWzYUAUFBTp06JA1MI4dO1a9e/cuYW8BAAAAwPVxyTOHkuTl5aXNmzfrtddek7e3t1auXKmTJ08qOjpaiYmJCg8Pd3iugIAA7dy5U88//7xyc3O1YsUKpaena/jw4dq5c6f8/f2LjMnIyNCOHTusn+zsbEnS3r17rcuKe8hN4SWl/fr1k5ub2zVr+9vf/qY+ffro8uXL2rhxo1avXq2MjAxFRUVp06ZNeuuttxzeTgAAAAAoK5c9cyhJVatW1eTJkzV58uQS+8bExCgmJqbYdn9/f82ePVuzZ892aN2dOnWSYRiOlmpj7ty5mjt3rkN9BwwYoAEDBpRpPQAAAABQXlz2zCEAAAAAoPIQDgEAAAAAhEMAAAAAAOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAC5eDjMysrShAkT1LBhQ3l5eal27doaPHiwfv7551LPlZqaqhEjRigsLEyenp4KCwvTyJEjlZaWZrf/kSNH9Pbbb6tfv36qX7++TCaTTCaTkpKSil3HwoULrf3sfZ544olixx48eFCPPfaYAgMDVbVqVTVt2lQzZ85UQUFBqbcVAAAAAErL3dkFFCc7O1udO3dWQkKCgoOD9cgjjygpKUkLFizQmjVrlJCQoPDwcIfmSklJUdu2bXXs2DGFh4erV69eOnjwoGbNmqUvv/xS27dvl7+/v82Yf/7zn5o1a1aZam/evLlatGhRZHmbNm3s9t++fbvuu+8+ZWVlqXXr1qpbt67+/e9/a9SoUdq2bZvi4uJkMpnKVAsAAAAAOMJlw+HUqVOVkJCgtm3bauPGjfLx8ZEkxcbGasyYMRo8eLDi4+MdmmvkyJE6duyYoqKiFBcXJ3f3q5s9fPhwvfPOOxo9erQWLlxoM6Zp06Z66aWXdPfddysyMlJdu3bVkSNHHFpfr169FBMT41DfK1euaMCAAcrKylJsbKxGjRolScrMzNQDDzygJUuWqHv37oqOjnZoPgAAAAAoC5e8rDQ3N1dz5syRJL377rvWYChJo0ePVrNmzbRlyxbt3r27xLnOnj2rTz/9VB4eHpo7d641GErS9OnTFRgYqEWLFun8+fM24/7617/qjTfe0KOPPqqwsLBy2rKiVqxYoZ9++knNmze3BkNJ8vHxse6DGTNmVNj6AQAAAEBy0XD47bffKj09XfXr19ddd91VpL1Pnz6SpNWrV5c41/r161VQUKAOHTooKCjIps3T01M9evRQfn6+1q1bVz7Fl9LatWsl/Xebfq9ly5YKDw/XgQMHrnmvIwAAAABcL5cMh/v27ZN0NRzZU7h8//79lTqXo3bv3q2xY8fqmWee0cSJE7VlyxaXqg8AAAAA/sgl7zlMTk6WJNWpU8due+HykydPVupcjlqzZo3WrFlj/Xry5Mnq2LGj4uLiipy9LI/6cnJylJOTY/06IyOjzLUDAAAAuDW55JnDzMxMSZK3t7fd9mrVqkmSLl68WKlzlSQ4OFgxMTHas2eP0tPT9csvv2jVqlWKiIjQli1b9PDDDys/P7/c65s2bZosFov1ExISct3bAgAAAODW4pLh8EbVtWtXTZw4US1atJCfn5+CgoLUo0cPfffdd2rYsKF27dqlzz//vNzXO378eKWnp1s/p06dKvd1AAAAALi5uWQ4LHw66eXLl+22X7p0SZLk6+tbqXOVlY+Pj4YPHy5J2rBhQ7nX5+npKT8/P5sPAAAAAJSGS4bD0NBQSdLp06ftthcud+QVE+U51/Vo0KCBpKuv1vg9V6kPAAAAwK3NJcNh8+bNJUmJiYl22wuXN2vWrFLnuh6pqamS/nsPYSFXqQ8AAADArc0lw2H79u1lsVh0/Phx7d27t0j70qVLJUk9evQoca5u3brJbDZr69atRV50n5OTo9WrV8vNzU3du3cvl9qLs2zZMklFX1nx0EMPSfrvNv3enj17dOLECd15552qW7duhdYHAAAA4NbmkuHQw8NDw4YNkyQNHTrUet+dJMXGxmr//v3q2LGjWrVqZV0+Z84cRUREaPz48TZzBQcHq1+/fsrNzdWQIUOUl5dnbXvxxRd14cIFDRw4UDVr1rzuuqdNm6aUlBSbZVeuXNGkSZO0ZMkSVa1aVU8++aRNe+/evVWvXj3t27dPb7/9tnX5pUuXNHToUEnSmDFjrrs2AAAAALgWl3zPoSS9+uqr+uqrr7Rt2zY1aNBAHTp00MmTJ7Vjxw4FBgZq/vz5Nv1TUlJ05MiRIvf0SdLMmTOVkJCgZcuWKSIiQpGRkTp48KAOHDigBg0aKDY2tsiYxMREDRkyxPp14XsGe/fuLU9PT0nSU089paeeesra5+WXX9akSZMUGRmpkJAQZWRkaO/evTpz5oy8vLy0aNEi3X777TbrqVKlihYtWqQuXbpo9OjRiouLU1hYmLZu3aqzZ8+qT58+GjRoUNl3JAAAAAA4wCXPHEqSl5eXNm/erNdee03e3t5auXKlTp48qejoaCUmJio8PNzhuQICArRz5049//zzys3N1YoVK5Senq7hw4dr586d8vf3LzImIyNDO3bssH6ys7MlSXv37rUu++NDZCZMmKC//OUvOnXqlL744gt988038vb21jPPPKO9e/cqKirKbn3t2rXTd999p0cffVTHjh3TqlWr5O/vr9jYWMXFxclkMpVizwEAAABA6bnsmUNJqlq1qiZPnqzJkyeX2DcmJkYxMTHFtvv7+2v27NmaPXu2Q+vu1KmTDMNwtFRJ0qRJk0rV//eaNGli975DAAAAAKgMLnvmEAAAAABQeQiHAAAAAADCIQAAAACAcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAABIcnd2AQAAAABQVsnJyUpJSXF2GdclICBAoaGhzi6DcAgAAADgxpScnKxGjRsr+/JlZ5dyXby8vXXkhx+cHhAJhwAAAABuSCkpKcq+fFmNZ74u7zvCnV1OmVw+dkI/jHxFKSkphEMAAAAAuB7ed4TL987Gzi7jhscDaQAAAAAAhEMAAAAAAOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAOTi4TArK0sTJkxQw4YN5eXlpdq1a2vw4MH6+eefSz1XamqqRowYobCwMHl6eiosLEwjR45UWlqa3f5HjhzR22+/rX79+ql+/foymUwymUxKSkoqdh27d+9WTEyM2rVrp+rVq8vDw0MhISEaOHCg9u/fb3dMUlKSdW57n1q1apV6WwEAAACgtNydXUBxsrOz1blzZyUkJCg4OFiPPPKIkpKStGDBAq1Zs0YJCQkKDw93aK6UlBS1bdtWx44dU3h4uHr16qWDBw9q1qxZ+vLLL7V9+3b5+/vbjPnnP/+pWbNmOVxvXl6eIiMjJUn+/v5q166dqlWrpj179mjx4sVasmSJFi9erD59+tgdHxQUpG7duhVZbrFYHK4BAAAAAMrKZcPh1KlTlZCQoLZt22rjxo3y8fGRJMXGxmrMmDEaPHiw4uPjHZpr5MiROnbsmKKiohQXFyd396ubPXz4cL3zzjsaPXq0Fi5caDOmadOmeumll3T33XcrMjJSXbt21ZEjR665nrvvvluvvPKKHn74Ybm5uUmSCgoKNGHCBL3++usaPHiwOnXqpICAgCJjIyIiitQAAAAAAJXFJS8rzc3N1Zw5cyRJ7777rjUYStLo0aPVrFkzbdmyRbt37y5xrrNnz+rTTz+Vh4eH5s6daw2GkjR9+nQFBgZq0aJFOn/+vM24v/71r3rjjTf06KOPKiwsrMT1uLu7a+fOnXrkkUeswVCSzGazpkyZokaNGunixYtau3ZtiXMBAAAAQGVzyXD47bffKj09XfXr19ddd91VpL3w0szVq1eXONf69etVUFCgDh06KCgoyKbN09NTPXr0UH5+vtatW1c+xdthMpnUrFkzSdKZM2cqbD0AAAAAUFYueVnpvn37JEktW7a02164vLiHvJR2rvnz5zs01/U4ceKEJBX7gJlz585p4sSJOnv2rCwWi9q0aaOePXvKw8OjQusCAAAAAMlFw2FycrIkqU6dOnbbC5efPHmyUucqq//85z/avXu3PDw87D50RpIOHz6syZMn2ywLDQ3VkiVL1Lp16wqrDQAAAAAkF72sNDMzU5Lk7e1tt71atWqSpIsXL1bqXGWRkZGhwYMHS5JGjRql4OBgm3ZPT08999xzio+P17lz55SRkaHt27ere/fuSk5OVteuXUsMrjk5OcrIyLD5AAAAAEBpuGQ4vFnk5+drwIAB+vHHH9W6desiZwYlKTg4WHPnzlXHjh1Vs2ZN+fr66p577tHatWvVv39/paWl6e9///s11zNt2jRZLBbrJyQkpKI2CQAAAMBNyiXDYeHTSS9fvmy3/dKlS5IkX1/fSp2rtJ577jmtWbNGjRo10tq1a0t9/+DLL78sSdqwYcM1+40fP17p6enWz6lTp8pcMwAAAIBbk0vecxgaGipJOn36tN32wuWOvGKiPOcqjXHjxmnevHkKCQnRpk2b7L7bsCQNGjSQdPV1HNfi6ekpT0/PMtUJAAAAAJKLnjls3ry5JCkxMdFue+HywtdDVNZcjnrrrbf05ptvqmbNmtq0aVOZL/NMTU2V9N/7IgEAAACgorhkOGzfvr0sFouOHz+uvXv3FmlfunSpJKlHjx4lztWtWzeZzWZt3bq1yIvuc3JytHr1arm5ual79+7lUvu8efP00ksvqXr16tqwYYMaNWpU5rmWLVsmqfjXcAAAAABAeXHJcOjh4aFhw4ZJkoYOHWq9L1CSYmNjtX//fnXs2FGtWrWyLp8zZ44iIiI0fvx4m7mCg4PVr18/5ebmasiQIcrLy7O2vfjii7pw4YIGDhyomjVrXnfdS5cu1bPPPisfHx+tW7dOLVq0KHHMvHnzdPjw4SLLly9frnHjxkm6ug8AAAAAoCK55D2HkvTqq6/qq6++0rZt29SgQQN16NBBJ0+e1I4dOxQYGKj58+fb9E9JSdGRI0fs3p83c+ZMJSQkaNmyZYqIiFBkZKQOHjyoAwcOqEGDBoqNjS0yJjExUUOGDLF+Xfg6id69e1vv73vqqaf01FNPSZLOnz+vAQMGqKCgQPXq1dP777+v999/v8i8vXr1Uq9evaxfL168WE8//bSaNWumhg0bqqCgQIcOHbIGxrFjx6p3796l3HsAAAAAUDouGw69vLy0efNmTZs2TZ988olWrlwpf39/RUdHa8qUKcW+1N6egIAA7dy5UzExMVq5cqVWrFihoKAgDR8+XJMmTVL16tWLjMnIyNCOHTuKLP/9Za6/f6H95cuXlZubK0n6/vvv9f3339utpW7dujbh8G9/+5sCAwO1d+9ebdy4UVlZWQoMDFRUVJSee+45denSxeHtBAAAAICyctlwKElVq1bV5MmT7b4f8I9iYmIUExNTbLu/v79mz56t2bNnO7TuTp06yTAMR0tV3bp1S9W/0IABAzRgwIBSjwMAAACA8uSS9xwCAAAAACoX4RAAAAAAQDgEAAAAABAOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMnd2QWg/BmGIUnKyMiokPkzMzOv/jdbyrhcIauocJnZ//+/mZkVtp8qUuExUG6ulJ3t3GLKKjdXEsfAqTgGznWD73+JY+AKOAbOV3gM8i9fVt7FTCdXU3r5l6/+MnejHoMbff9LFX8MCucszAjXYjIc6YUbyunTpxUSEuLsMgAAAAC4iFOnTqlOnTrX7EM4vAkVFBTozJkz8vX1lclkcnY5ZZKRkaGQkBCdOnVKfn5+zi7nlsP+dz6OgfNxDJyPY+B8HAPn4xg4341+DAzD0MWLF1W7dm2Zzde+q5DLSm9CZrO5xH8VuFH4+fndkD+ENwv2v/NxDJyPY+B8HAPn4xg4H8fA+W7kY2CxWBzqxwNpAAAAAACEQwAAAAAA4RAuytPTUxMnTpSnp6ezS7klsf+dj2PgfBwD5+MYOB/HwPk4Bs53Kx0DHkgDAAAAAODMIQAAAACAcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAIBb3OzZs/XBBx84uwwAAJyOV1kAAG5pVapUUffu3fXFF184uxQAAJzK3dkFAIXy8vKUlJSk1NRUmUwm+fv7q27dujKbOcFdGdj/znPlyhUtWbJEmzdv1g8//GBzDP70pz/p3nvv1aOPPip3d/7Irgi1atWSl5eXs8uApDNnzujQoUNFfgZq1arl7NJuGadPn9aWLVvs/ln0l7/8RbVr13Z2iTe1CxcuaN68ecX+fdC5c2f99a9/1W233ebsUm9a27Ztu+bfx23atHF2iRXLAJxs9erVxv33329Uq1bNMJvNNh8fHx/jwQcfNNavX+/sMm9a7H/n2rBhg1G7dm3DbDYbJpPJ7sdsNhuhoaHG119/7exyb0p//etfjdq1axs5OTnOLuWWlJeXZ7zzzjtGgwYNivwZVPhp3Lix8d577xn5+fnOLvemdfr0aePRRx813NzcrPv9938Gmc1mw93d3XjiiSeMs2fPOrvcm9IHH3xgeHt7l/j3gY+Pj/Hhhx86u9ybzr59+4xWrVoV+f7/48/BPffcYxw8eNDZ5VYYLiuF01y5ckWDBw/WJ598osJvQ09PT9WoUUOGYSg1NVW5ubmSJJPJpEGDBmnevHlyc3NzZtk3Dfa/861fv149evRQfn6+wsLC9Nhjj6lFixYKCAiQYRhKSUnRnj17tHTpUiUnJ8vd3V3r1q1Tly5dnF36TeXcuXO6++671aZNG82ePVvBwcHOLumWcfHiRT3yyCPasmWLDMOQ2WxWeHi4zc/AiRMnZBiGTCaT7rvvPq1YsULVqlVzduk3lR9//FEdO3bUuXPnJEmtWrWy+2fRnj17ZBiGbr/9dm3ZskXh4eFOrvzm8eGHH2rw4MEyDEN//vOf9cQTT9g9Bp999pm2bdsmk8mkjz/+WP3793d26TeF7777Tp07d9alS5dUrVo1Pfjgg3b3/4YNG3Tp0iX5+voqPj5ed911l7NLL39OCKSAYRiGMXr0aMNkMhm+vr7Ga6+9Zhw8eNAoKCiwthcUFBjff/+98corrxg+Pj6G2Ww2XnzxRSdWfHNh/ztXdna2UatWLcNkMhmvv/76Nc+I5OfnG5MnTzZMJpNx++23c4arnD355JPGww8/bJjNZqNq1apG+/btjX79+hlPPvlkkc/gwYOdXe5NZeDAgdbv63/961/GxYsXi/TJyMgw5s2bZwQHBxtms9mIjo52QqU3t8jISMNkMhldu3Y1fvzxx2L7HT161HjggQcMk8lk3HPPPZVY4c0tPT3d8PPzM6pUqWIsXry4xP4fffSR4e7ubtSoUcPuzwxKJy8vz2jQoIFhMpmMp556ykhPTy+2b3p6uvHXv/7VMJlMRkREhM3vTTcLwiGcIikpyXBzczMCAwONw4cPl9j/hx9+MAICAgx3d3cjOTm5Eiq8ubH/ne/DDz80TCaT8fzzzzs8ZtiwYYbZbDYWLVpUgZXdeoq7fKu4S7pQPg4ePGiYTCYjPDzcOH/+fIn9z507Z9StW9cwm83GoUOHKqHCW8OmTZsMk8lkdOnSxaFfdPPz843OnTsbZrPZ+Oqrryqhwpvfu+++a5hMJmPSpEkOj4mJiTHMZrPx3nvvVWBlt4Zly5YZJpPJeOKJJxwe8/jjjxtms9n44osvKrAy5+BJE3CKhQsXyjAMzZw5U40aNSqxf0REhGbOnKn8/Hx9+OGHlVDhzY3973wbNmyQu7u7Xn31VYfHvPrqqzKbzVq3bl0FVnbr2bx5s8Ofb775xtnl3jQ++ugjmUwmvfPOOwoMDCyxf82aNfXuu+/KMAx9/PHHlVDhrWHp0qUymUyKjY2VyWQqsb/ZbNbbb78twzC0bNmySqjw5vfNN9/Iw8NDo0aNcnjMqFGjVKVKFX311VcVWNmtYfXq1TKbzfr73//u8Jhp06ZJklauXFlBVTkP9xzCKbp27aqdO3fq119/dfhpmPn5+brtttt0zz33aP369RVc4c2N/e98jRs3VtWqVZWYmFiqcS1btlR2drYOHTpUQZUBlePee+/VoUOHrPe5OapmzZpq0qSJNm/eXEGV3VoiIyOVmpqq48ePl2rcHXfcoRo1aui7776roMpuHQ0aNNBtt92mhISEUo1r27atUlJS9OOPP1ZQZbeGZs2aKT8/XwcPHizVuCZNmsjd3V379u2roMqcgzOHcIoffvhBLVu2LNVrEtzc3BQZGckvxeWA/e9858+fV7169Uo9rl69eqX+ZRpwRUePHi3TwxxatmzJL8Pl6NSpU7rzzjtLPa5JkyZKTk6ugIpuPb/++qtCQkJKPa5OnTr69ddfK6CiW8vZs2fVsGHDUo9r2LChzpw5UwEVORfhEE6RlpamoKCgUo8LDAxUWlpa+Rd0i2H/O19GRob8/PxKPc7X11cZGRkVUBF+/fVXzZo1SwMGDFDXrl311ltvWdsOHjyoVatW6fLly06s8OaSnp6ugICAUo+77bbb+HOoHKWnp6t69eqlHmexWJSenl7+Bd2CMjIy5OvrW+pxPj4+unjxYgVUdGtJT0+XxWIp9Tg/P7+b8u9j3qgMp8jMzCzTS6e9vLx06dKlCqjo1sL+d778/HyH7u/5I5PJpIKCggqo6Na2ZMkSPfXUU8rMzLS+NuH222+3tv/888/q3bu3PvzwQw0cONCJld48Ll++LA8Pj1KP8/DwUFZWVgVUdGvKzc0t0yuK3NzcdOXKlQqo6NZzPX+m8/fB9cvLyyvVlVSFzGaz8vLyKqAi5yIcAoCTZGZmlvqyrMzMzAqq5ta1fft29e/fX35+fpoxY4b+/Oc/q3Xr1jZ97rvvPlksFi1fvpxwCKDc/fLLL/r3v/9d6jFAeeOBNHAKs9msFi1aqFevXqUat2LFCu3fv1/5+fkVU9gtgv3vfGazuUxnDgtxDMpPjx49tHHjRm3fvl0tW7aUdPX4REdHa/78+dZ+Xbp0UXJyso4ePeqsUm8qZrNZd9xxh/785z+XatzWrVt14sQJfgbKidlslo+PT6kv8U1JSdGlS5c4DuWgrH8fFF7lwDG4Pvx9bIszh3CavXv3au/evQ73N5lM1j8Icf3Y/84VGhrKvnQR27ZtU9u2ba3BsDi1atXSjh07KqmqW8OxY8d07NixUo/jZ6d8ZWZmlumqBI5D+fjLX/7CvnSysp4ruxmPG+EQTjFx4kRnl3BLY/87X1JSkrNLwP93+fJlh96zl5qaWgnV3DoWLFjg7BIg6aeffnJ2Cbe8+Ph4Z5dwS+O+TVtcVgoAuKXdcccd8vDwsHlNyx8vKzUMQ3Xr1pXFYtH+/fudVSoAABWKV1kAAG5p3bp105EjR/TZZ58V2+eDDz7QqVOn9NBDD1ViZQBuZfn5+bpw4YIuXLhw093XBtfFmUO4jN9++0379u1TSkqKJCkgIEDNmzeXv7+/kyu7NbD/nScrK0sffvihvvzyS+3du9fmGLRo0ULdu3fX//zP/8jb29vJld6cTp8+rWbNmikzM1OjRo1S79691a5dOz322GMaN26cVqxYobfeeksWi0Xff/+9atas6eySb0qGYVjvhf7jz0CLFi1uynt7XNHhw4eL/bPowQcfVEREhJMrvLmdOnVK7777rr788ksdPHjQei+cyWRSkyZN1L17dw0ZMkQhISFOrvTmtX79+mv+DHTr1s3JFVYwA3Cyzz//3GjTpo3h5uZmmM3mIp977rnHWLJkibPLvGmx/51r1apVRs2aNQ2z2WyYTCa7H7PZbAQFBRmrV692drk3rW3bthnBwcHW/f37j8lkMoKCgoyEhARnl3lTys/PN9566y3j9ttvt/tnkNlsNm6//XZj+vTpRl5enrPLvWmdOnXK6N69u833/R//HDKbzcZDDz1kJCcnO7vcm9KcOXOMqlWrlvj3QdWqVY05c+Y4u9ybzu7du40777yz2J+Bwv3ftGlTY/fu3c4ut8Jw5hBOk5ubqwEDBmj58uXWp2DWrVvX+q/y58+fV1JSkrUtKipKixcvLtNLk1EU+9/5PvnkE/3v//6vCgoKFBkZqf79+6tVq1Y2xyAxMVGLFy/Wrl27ZDab9fHHH6tfv35OrvzmdPHiRf3rX//Spk2blJSUpIKCAtWpU0f333+/nnnmGVksFmeXeNNJS0tT9+7dtWPHDhmGoRo1aqhFixY2PwP79u3Tb7/9JpPJpDZt2ujLL7/kWJSz/fv3q3Pnzvrtt9/k6emprl272v2zaMOGDcrOztZtt92mzZs3684773Ry5TeP6dOna9y4cZKkqKgoDRgwoNi/D5YtWyZJevPNN/XCCy84reabyTfffKOHHnpIOTk5Cg4O1mOPPWZ3/y9ZskRnzpyRp6en1q1bp3vvvdfJlVcAJwZT3OIef/xx67/Iz5kzx/jtt9+K9Pntt9+Md9991wgKCjLMZrPRt29fJ1R6c2L/O9epU6cMb29vw9PT01i4cGGJ/T/66CPD09PT8Pb2Nk6dOlUJFQIVr1OnTobJZDKaNGlirFmzxsjPzy/Sp6CgwFi7dq3RpEkTw2QyGffee68TKr15Xb582QgJCTFMJpMRHR1tpKSkFNv3119/NQYPHmyYTCYjLCzMuHz5ciVWevM6dOiQ4e7ubtSoUcPYvHlzif3j4+ON6tWrG1WqVDEOHTpU8QXe5H799VfD39/fMJvNRkxMjJGbm1ts3ytXrhiTJ082/l97dx6XU/r/D/x17qY9KtRUKgpllxSVJFGRfYlEJIx1xr4NYxtj/diNZcauhmxZo9C+MBUZSyppky20oLSe7x9+3b9pVMp0n3PPud/Px6PHZ+77XOfxeH1C3e9zXdf7EolEbOPGjav87PRfR8Uh4cWVK1dYhmHYjh07sq9evfri+FevXrEdO3ZkRSIRGxAQwEFCYaPvP//mzZvHikQi9sCBA7W+5+DBgyzDMOz8+fMlmIwQbpw4cYJlGIa1t7evVZFRWFjI2tvbsyKRiPX19eUgoWzYtGkTyzAM+/3339f6nu+//54ViUTs//73Pwkmkx3Tpk1jRSJRnbYOXLx4kWUYhp0+fboEk8mGFStWsAzDsL/88kut71m7di3LMAy7cuVKCSbjBy0rJbwYOXIkzp49i7/++gtt27at1T0PHz5Ehw4dMGLECPj6+ko4obDR959/HTp0QH5+PtLT0+t0X7NmzdCgQQPcv39fQsmELyMj41/db2hoWE9JZNvAgQMRGBiIlJQU6Ovr1+qezMxMtGjRAn379sWFCxcknFA2dO/eHQ8ePMCLFy+gpKRUq3sKCwuhq6uLdu3aITIyUsIJhc/U1BQMw+DRo0d1uq9169YoLy9HUlKShJLJhi5duuDp06d4/vw5RKLaHeRQVlYGPT096OvrIy4uTsIJufUN3wGIbIqOjoalpWWtCxMAaNu2Lbp27YqoqCgJJpMN9P3nX0ZGBvr06VPn+ywtLREYGCiBRLKjefPmX935kmEYlJaW1nMi2RQXFwdra+taF4YAYGBggO7duyM2NlaCyWRLYmIibG1ta10YAoCysjJsbW1x8+ZNCSaTHVlZWV91TE6nTp1w+fJlCSSSLU+ePEHPnj1rXRgCgJycHKytrREaGirBZPyg4pDwIjs7G3Z2dnW+z9jYGPHx8fUfSMbQ959/ZWVl+Oabuv8IlpOTAy34+Hfs7Ow+Kw6LiorEH3Q1NTXRrFkzAJ+K+L83Q1FUVOQ8r1C9ffu2ToVhBT09PURHR0sgkWz68OHDVzX4adiwIT58+CCBRLJHTk7uqx46lZWV1amgIVUrKiqCsrJyne9TVlZGUVGRBBLxi4pDwosGDRogNze3zvfl5uZCVVW1/gPJGPr+809fX/+rCu34+Hjo6enVfyAZEhISUun1u3fv4ODggPbt22PTpk1wdnaudD0wMBALFy5ESUkJAgICOEwqbBoaGnj16lWd78vOzqZupfVIS0sLKSkpdb7vyZMn0NLSkkAi2dOsWTPExMTU+b4///xT/CCLfD0dHR08fPiwzvclJCRAR0dHAon4RY8bCC9MTU0RGRmJwsLCWt9TWFiIiIgIOoC3HtD3n38ODg54/PgxLl68WOt7Ll68iOTk5K9ajkqq99NPPyElJQVBQUGfFYYA4OTkhOvXryMlJQVLly7lIaEwtW/fHhEREXj79m2t73n79i0iIiLQsWNHCSaTLdbW1oiNja3Th+OHDx8iJiYGNjY2EkwmO5ycnJCVlYUDBw7U+p6DBw/i6dOn6NevnwSTyQY7Ozvcv3+/Tvtno6Ki8Ndff6Fnz54STMYPKg4JL4YOHYr8/HwsXLiw1vcsWrQI79+/x7BhwySYTDbQ959/P/zwA+Tk5DBu3DiEhYV9cXxERATGjx+Pb775Bt9//z0HCWXH2bNn4eDggCZNmlQ7pkmTJnBwcICfnx+HyYRt5MiR+PjxI6ZOnVrrpdJTp05FUVERRo0aJeF0ssPLywvl5eUYPXo03rx588Xxb968EZ+16uXlJel4MmHOnDlQUlLCzJkz4e3t/cXxPj4+mD59OlRUVDBr1iwOEgrbtGnTwLIs3N3dkZyc/MXxjx8/xujRo8EwDKZNm8ZBQo7x2iuVyKyKc5VEIhE7ceLEGs+JycnJYSdNmsSKRCLW0NCQLSws5DCpMNH3Xzps2LCBZRiGlZOTY0eNGsWeP3+ezcrKYouLi9ni4mI2KyuLPX/+POvm5sbKycmxDMOwGzdu5Du24CgpKbGDBw/+4rjBgwezSkpKkg8kI0pLS9n27duzIpGIdXJyYhMSEqodm5CQwDo7O7MikYjt0KEDW1paymFS4as491ZHR4fds2cPm5OT89mY3Nxcdu/evayenh6deysB3t7erEgkYkUiEWtlZcVu376djYyMZJOSktikpCQ2MjKS3b59O2tlZSUe5+Pjw3dswZg1axbLMAyroqLCLlq0iL179y5bXl4uvl5eXs7evXuXXbx4MauqqsoyDMPOnj2bx8SSQ0dZEN7cvXsXvXr1Ql5eHpSUlODs7AwLCwvxHobs7GzExsYiICAAhYWF0NDQQEhICC0nqif0/ZcOO3bswKJFi1BUVFRtB02WZaGoqIgNGzbghx9+4Dih8LVp0wZPnz7Fw4cPYWBgUOWYzMxMtG3bFvr6+khISOA4oXBlZGSgZ8+eSE9PB8Mw6NSpU5U/h+7evQuWZdG8eXOEhYV9VSMbUr2ioiKMHj0a586dA8MwYBgGxsbGlf4cnjx5AvbT+dgYMmQITpw4AQUFBZ6TC8u5c+cwefJkvHnzpsbfB40bN8b+/fsxePBgjhMKF8uymDdvHrZv3y5+T0FBAY0aNQIA5OTkiJvPsCyL2bNnY/PmzV/d+Vqq8VaWEsKybHp6Ouvs7MwyDMMyDCN+GlbxVfG+s7Mzm5aWxndcwaHvv3RIT09nFyxYwLZr167S910kErHt2rVjFyxYQN9/Cao4BNzIyIg9cuRIpdnxjx8/skePHmWNjIxYkUjEbtq0icekwpSXl8dOmTKFVVZW/uxnUcVrJSUldsqUKWxubi7fcQXt+PHjrKWlpfj7/s8vS0tL9vjx43zHFLT379+zv/76K9u/f39WX1+fVVZWZpWVlVl9fX22f//+7K+//sq+f/+e75iCFR0dzbq6urLq6uqf/f1v2LAh6+rqykZFRfEdU6Jo5pBIhYcPH8Lf3x93794V73lo3LgxOnXqBBcXlzqdx0fqjr7/0qOkpAQ5OTkAPh2pIC8vz3Mi4SsvL8eYMWPg6+srfgr89xkT4NOTYldXVxw/fpxax0vI27dvERQUVOXPIQcHB/ETfCJ5r1+/rvLPoaZ9uYQISXl5OVJTUyv9GzAyMpKJn/9UHBJCCCEAfH19sXv3bty6dQvFxcUAPi0r6tatG6ZNmwY3NzeeEwrbX3/9BZFIhPbt2/MdhRBCZBYVh0QqeHl5wdbW9oudzw4fPoywsDAcPHiQo2SEcC8qKgrh4eF49uwZgE+Hftva2qJ79+48J5MNpaWllZ4Wf/MNHQnMBZFIBHt7ewQFBfEdRaaNGDECHh4ecHFxoZULPHn58iUSExNhamqKb7/9Vvx+xXE69+/fh6GhIZYvXw4rKysekxIhouKQSAWRSARPT88vFn2TJ0/GwYMHUVZWxlEy2VJQUIDY2Fg8f/5cvPG6KuPGjeMwley4d+8ePD09ER8fDwDi9v4VSx07deqEw4cPU1MgIkhNmjSBs7MzfHx8+I4i00QiERiGgbq6OlxdXTFmzBjY2dnxHUumzJkzBzt27EBCQgJMTEwAAPn5+TA1NcWrV6/EvxuUlZURHx+PVq1a8Rn3P+/fHMnCMEydzqf8L6DikEiF2haH48ePx/Hjx8VLvkj9YFkWy5cvx7Zt21BQUFDjOIZhqDiXgMTERFhbWyM3Nxf6+voYMWIEmjdvDgBIT0/HmTNnkJGRAQ0NDURFRaF169b8Bhao6OhohIeHIysrCwDQtGlT9OjRA9bW1jwnE74BAwYgIyMDf/31F99RZNrFixfh4+ODixcvorCwEAzDQF9fH+7u7hgzZgwt++VA586dUVpainv37onf27FjB2bPng13d3esWLECly9fxty5c/Hdd99h7969PKb976t4IPI1JZEQPxNRcUikQm2KQ5Zl0bFjR7x9+1b8wY3Uj1WrVmHVqlVQUFBA//79YWxsDDU1tWrHr1ixgsN0smH48OHw8/PD4sWLsXr16s+WMpaVlWH58uVYt24dhg4dijNnzvCUVJiSkpLg4eGB2NhYAJ/P2lpYWMDb25ue0EtQTEwMbG1tsXbtWsybN4/vODLv/fv3OHv2LHx8fBAUFISysjIwDIMOHTpgzJgxGD16NB0pIiHa2tqwtrbG+fPnxe85OzsjODgYz549EzcG6ty5Mz5+/EjH6/xLFcWhubk53N3doaenV6f7R40aJaFk/KDikPDGwcFB/N8hISHQ0dGpdjaktLQUKSkpePHiBTw8PHD48GGOUsoGQ0ND5OfnIzo6Gm3atOE7jkxq1KgRmjZtWulJcVU6dOiArKwsvH37lqNkwvf8+XOYm5vj5cuX0NPTg6urK5o3bw6GYZCWloZTp04hKysLurq6iI2Nha6uLt+RBeno0aMIDQ0VL53u378/DA0NoaSkVOV4Wt7OnVevXuH48ePw8fERP0ARiUSws7OjPaISoKysjCFDhuD48eMAPj0c1NTURLt27RAdHS0eN3r0aFy6dAnv3r3jK6ogTJ8+HadOncKbN28gJycHe3t7jBkzBiNGjKjxQblgcXluBiF/9/ezY/5+nlV1XwoKCuygQYPY7OxsvqMLjrKyMjto0CC+Y8g0NTU11t3d/Yvj3N3dWTU1NQ4SyY7p06ezDMOwc+fOZYuKij67XlxczM6bN49lGIadOXMmDwllQ1W/C/559mrFdZFIxHdcmZWcnMxOmTKF/hwkyNjYmDUzMxO/DgkJYRmGYRcvXlxp3IgRI9hGjRpxHU+QSkpK2PPnz7Ourq6ssrIyKxKJWBUVFdbNzY29dOkSW1payndEztDMIeFNeno6gE/Lt4yNjTFixAhs2rSpyrEKCgpo0qQJdU6TkE6dOsHQ0BAXL17kO4rMsrW1RWlpKW7evFnjOCsrK3zzzTeIiIjgKJnwGRkZQUlJqcalWSzLom3btvj48SNSU1M5TCc7Vq5cKV7GWxu0vJ1b7969w5kzZ/DHH38gODhYvMxUaPutpMHYsWNx/PhxbN68Gb1798b06dPFXaxtbGzE49q3bw+RSET7dOvZu3fvcPr0aXh7eyM0NBQsy6Jx48YYNWoUxowZI/wOsbyWpoT8PytXrmTPnTvHdwyZtWfPHlZVVZVNTU3lO4rM8vf3Z0UiEXvgwIFqxxw8eJAViUTs5cuXOUwmfIqKirWetVVUVOQgESHSobi4mPXz82NHjBghnk1hGIZt2bIlu2LFCjYpKYnviIJ0//598fe74nvu4OBQaUxqairLMAw7adIknlLKhqysLHbjxo1sp06dxLPlXbp04TuWRNHhTUQq0BNgfk2dOhUJCQno0aMHfv75Zzg6OqJp06Z8x5IpqqqqmDZtGiZPnozDhw9j1KhRaNasGYBPs+wnT55EREQEpk2bBjU1NYSFhVW6n1rNf72GDRsiMzPzi+MyMzPRsGFDDhIRwq/g4GD88ccfOHPmDPLy8sCyLLS0tDBp0iSMGTMG3bp14zuioLVr1w7h4eHYsWMHXr9+jS5dumDBggWVxgQEBKBTp04YMmQIPyFlhJ6eHhYsWAAnJycsWbIEV69eRUZGBt+xJIqWlRKpkJycjOjoaPTo0QNGRkbi92/evInZs2eLD3xds2YNhg0bxmNS4Xr48CFGjhz5xa5nDMOgtLSUo1Sy45+ttP+5vK669yvQ0q6vN3jwYFy6dAkXLlxA//79qxzj7++PgQMHYuDAgTh37hy3AWVQVlYWIiMjKx0p0r17d3poxQF9fX08f/4cLMtCVVUVgwcPxpgxY+Dk5AQ5OTm+4xHCmczMTPzxxx/w8fHBgwcPwLIsWrVqBS8vLyxatIjveBJDxSGRClOnTsX+/fuRlpYmbo398uVLmJiY4N27d+IPzXJycrh16xbMzc15Tiws0dHRcHJywocPH8AwDBo1alRjhy7ac1X/PD0967Tf6p8OHTpUj2lkS3R0NOzs7MAwDEaNGgV3d/dKZ0weP34cJ06cQHl5OcLDw4W/34RH2dnZmDFjBvz8/FBeXl7pGsMwGD58OHbt2gUtLS2eEgrfN998AycnJ4wZMwZDhw6FiooK35FkTqNGjdChQweEhobyHUXm5OXl4eTJk/Dx8UFERATKy8uhra0NNzc3jBkzBpaWlnxHlDgqDolUaN++PZSUlMQtsgFg3bp1WLp0KebOnYu1a9fC398fw4cPx+jRo+Ht7c1jWuHp0aMHIiMjsWLFCsyZM4eWzhGZ4+3tjSlTpogP/f47lmWhrKyMffv2YezYsTwlFL68vDxYWVkhMTERysrKcHJyqnSkSEBAAAoLC2FqaoqbN29CXV2d78iClJ2dTcU3zxo2bIiBAwfCx8eH7ygyobi4GJcuXYK3tzeuXLmCoqIiqKqqYsiQIRgzZgwcHR1latacikMiFRo3bgx7e/tKB3v37NkTf/75J7Kzs8WzWDY2NsjOzkZycjJfUQVJTU0NHTt2RFRUFN9RCOHN06dP8fvvvyMiIgLPnj0D8Gm/SY8ePTBx4kQYGBjwnFDYlixZgg0bNsDV1bXK2cHXr19j5syZOHnyJBYvXoy1a9fylJQQybK2toaioiJCQkL4jiITNDU1kZ+fDzk5OTg6OmLs2LEYPHiwzM6aU3FIpIKqqir69++PkydPAgCKioqgqamJrl27VvrhOGbMGJw7dw4fPnzgKakw6erqolevXvjjjz/4jkIIkVGtW7dGYWEhHj9+XO2xRSUlJWjZsiWUlJSQmJjIcULZ8tdff+HXX39FeHh4pb2fdnZ2mD59Ojp27MhzQuH6448/MG7cOISEhMDW1pbvOIJXsee/Q4cO0NbWrtO9DMMgICBAQsn4Qd1KiVTQ19evdE7P9evX8fHjRzg4OFQaV1hYCFVVVa7jCZ6Li4v43CpZWjohbYqKinDixAmEhobi+fPnKCoqqnIcwzC4ceMGx+kIkaz09HQMHTq0xvNs5eXl0b17d/j5+XGYTPZs374dCxYsQFlZGf4+h/Do0SM8evQIBw8exKZNmzBr1iweUwqXra0tJk2aBGdnZ0yaNAkDBw6EoaEhlJSUqhxvaGjIcULhYVn2q86L/De9AqQVzRwSqTBt2jT89ttv+P7779G7d28sWbIECQkJuH37Njp16iQe16pVKzRs2BBxcXE8phWe7OxsWFtbw9bWFtu3b6e9PDzIyMhAnz59kJKSgi/9WKaDp+tXUFAQdu3ahTlz5qBHjx5VjgkLC8O2bdswe/ZsOjZEQho1agQLCwsEBgbWOM7JyQmxsbF4+/YtR8lky7Vr1+Ds7AwVFRVMnToVHh4elfZ+Hjt2DHv37kVBQQECAwPRu3dvviMLzt+7V3+p+KAO4v/ev23807Nnz3pKIh2oOCRSISMjA507d0Zubi6AT09wRo0ahePHj4vHPHjwAB06dMDMmTOxY8cOnpIKk5eXF3JycnDhwgU0bNgQFhYWaNq0KUQi0WdjGYbBgQMHeEgpbEOGDMGFCxfg4OCAWbNmwdjYuMaOsRVnIJJ/b9SoUfD398ezZ8/QoEGDKsfk5+dDT08PgwYNouXXEuLo6IiwsDBERkbCwsKiyjFxcXGwtraGvb39F4tI8nX69euHGzduICQkBDY2NlWOqejw6+joCH9/f44TCp+9vX2dZqSCg4MlmIbIGioOidR4+vQp9u/fj+zsbHTp0gWenp6VihNvb2+cOXMG8+bNozX49ayqIrA6NGslGQ0aNICenh4ePHiAb76hFf9cMjIygoGBAcLCwmocZ2dnh6ysLKSkpHCUTLb4+/tjwIABaNCgAX744YcqjxTZsWMH8vPzcenSJfTr14/fwALVuHFjmJub49q1azWOc3R0xO3bt/HmzRuOkhEiGb/++ivc3NzQuHFjvqNIBSoOCSF1XlIhtCUU0qBx48ZwcnKqNFtOuKGsrIxhw4Z9sW38mDFj4Ofnh4KCAo6SyZ5169bhp59+qnZpNcMw+Pnnn7FkyRKOk8kOZWVlDB069Isz5O7u7vDz80NhYSFHyQiRDJFIBHl5efTr1w9jx47FwIEDoaioyHcs3lBxSAghUmDgwIF48eIFYmJi+I4ic5o0aQIzMzNcv369xnGOjo6Ii4ujvW4SFhsbi507d1Z5pMiMGTNk4hBqPpmYmKCkpATJycnVrmIoLS1Fq1atIC8vj6SkJI4Typ5Xr15V6hhb146apGYuLi64fv06SktLwTAMGjZsCFdXV4wdO1Ym95jXfi0ZIRwIDAzE0KFD0bRpUygqKmLixIniawEBAZg7d674wwIhQrJq1SokJCTg999/5zuKzOncuTMiIyORkZFR7ZiMjAyEh4dXapBFJMPCwgJHjhxBSkoKCgsLUVhYiJSUFBw+fJgKQw4MHjwY6enp8PLyEvcB+Lv8/HxMnjwZGRkZGDJkCOf5ZMnu3bthamoKXV1dWFhYwMLCArq6umjdujX27NnDdzzB8Pf3R1ZWFrZt24YuXbogLy8P+/fvR69evdC8eXMsW7YMjx494jsmZ2jmkEiNWbNmYdeuXWBZFmpqanj//j08PT1x8OBBAJ/OXDIzM8PmzZsxZ84cntMSUv+ioqIwduxYGBgYwMnJqdqmQAAwbtw4jtMJ1/HjxzFmzBi0b98eBw8e/KwZSmxsLCZOnIj79+/j8OHD8PDw4CmpsB09ehQtW7astglKhZs3byIpKYn+DUjI27dvYWlpibS0NKipqaFv376V9n5evXoV+fn5MDY2RkxMDDQ1NfkNLEDl5eUYOXIk/Pz8wLIsNDQ00KxZMzAMg/T0dOTk5IBhGAwdOhSnTp0S5HEKfHr8+DGOHTuGP/74AykpKeLvb5cuXTB27Fi4ubkJe/aWJUQKHDlyhGUYhrW0tGTv3LnDsizLMgzDTpgwodI4Q0NDtlevXjwkFL4PHz6wP//8M2thYcGqq6uzIpGoyi85OTm+owrWypUrWVVVVZZhmGq//xXXSP1ydXUVf287d+7Mjhgxgh0xYgTbuXNn8fd92LBhfMcUtKp+5ldl0qRJ9G9AwrKystgBAwawDMNU+TVgwAA2KyuL75iCtWfPHpZhGLZ169bsxYsXP7t+6dIltk2bNqxIJGL37t3LQ0LZER0dzc6YMYPV0tIS/46Ql5dnXVxc2OPHj7OFhYV8R6x3NHNIpIK1tTUSExORmJgILS0tAJ82CP995hD4tC/r3r17SEtL4ympMOXl5aFHjx548OAB5OTkoKCggIKCAujq6uLFixfi5hAVxyekpqbyGVeQNm3ahEWLFkFRUREuLi5fPMpixYoVHKYTvvLycqxduxZbtmz5bCmdhoYG5syZgx9//BFycnL8BJQBVf3Mr8rEiRNx5MgROtuNA6mpqZ/t/bS1tYWRkRHPyYStW7du4s9E3377bZVjXrx4AVNTU7Ru3Rq3bt3iOKHsKSsrw5UrV+Dt7Y2LFy/i48ePAD51Gq9q+fV/GfVLJ1Lh/v376Nmzp7gwrI66ujpevnzJUSrZsX79ety/fx9TpkzB1q1bMXXqVBw7dgxZWVn4+PEjTp48icWLF6Nbt27UTVNC9uzZg4YNG+LWrVswNTXlO47MEYlEWLZsGRYtWoTY2FhkZmYCAAwMDNClSxcoKCjwnJBUePLkCRo2bMh3DJlgZGREhSAPHj58CEdHx2oLQwDQ0dFB7969v3jkCKkfcnJyGDBgAFxcXHD69GnMnDkTr1+/xrt37/iOVu+oOCRSozZr5p89ewZlZWUO0siWc+fOQU9PDzt27IC8vHylPwslJSWMGzcOFhYW6Ny5MzZv3oz58+fzmFaYXrx4AUdHRyoMeSYvLw9ra2tYW1vzHUUmrF69utLr+Pj4z96rUFpaisTERISFhcHR0ZGLeDIjISEB2dnZaN68OQwNDWscm56ejvT0dGhra6N169YcJZQ9tflMRHsNuRMTEwNvb2/4+voiOzsbLMtCTk4Ozs7OfEerd1QcEqnQqlUr3L59GyUlJZCXl69yzLt37xAfH4927dpxnE740tPT0adPH/H3vqIJyt//PNq2bYuePXvi8OHDVBxKQIsWLVBeXs53DEI4tXLlSjAMA5ZlwTAM4uPjER8fX+M92traWLt2LTcBZcDr169hbW0NFRUVxMXFfXG8goIC3NzcUFxcjMePH0NDQ0PyIWWMqakpgoKC8Pr1azRp0qTKMa9fv0ZQUBA9UJSgJ0+ewNvbGz4+Pnj8+LF4i425uTk8PDwwevRoQTamoeKQSAVXV1csXboUixcvxubNm6scs2TJEuTl5cHNzY3jdMKnpKQEJSUl8euKJVsvXryAgYGB+P1GjRohMjKS83yyYOrUqVi0aBHS0tLEnQEJd4qKinD8+HGEhYXh+fPnKCoqqnIcwzC4ceMGx+mE69ChQwAAlmXh5eUFW1vbSkcY/Z2CggL09PRgZWUl0wdU17dDhw4hPz8f27Ztg66u7hfH6+rqYv369fD09MShQ4eoe7gEjB8/HrNmzULv3r2xZcsW9O7du9L14OBgzJ07F/n5+fD09OQnpEC9efMGvr6+8Pb2Fu/lZFkWhoaGGDNmDDw8PAQ/Y04NaYhUKCwshJWVFe7fv4+uXbti8ODB+PHHH9GjRw8MGTIEfn5+iIiIgLm5OaKiomj/Tz3r1KkTVFRUEB0dDQDYt28fpk+fjiNHjmDs2LEAPi3pMjU1RUlJSY3nwZGvN3fuXJw6dQo///wzHB0d0bRpU74jyYSsrCz07t0bycnJ+NKvRIZhUFZWxlEy2dKrVy/069cPCxcu5DuKTLG3t8fdu3eRnZ1d7aH3/1RWVgYtLS106tQJwcHBEk4oe8rKyjBo0CBcuXIFDMNAS0tL3BAuPT1dvKzRxcUFFy5cqPbII1I7Hz9+xPnz5+Ht7Y3AwECUlpaCZVmoq6tjxIgRGDt2LHr27Ml3TM5QcUikRnZ2Njw9PcU/DP/5V9PR0RHe3t5fbFpD6m7mzJk4dOgQXrx4gQYNGuDZs2cwMjKCqqoq1q5di6ZNm+LAgQO4ePEi3N3dcezYMb4jC05FF8yK5XU1YRiGOjXWI3d3d5w4cQI2NjaYO3cuTExM0KBBg2rHV3xII0QItLS0YGFhgStXrtTpvn79+iEuLg6vXr2SUDLZVl5ejq1bt2LHjh3iBlkVDA0N8f3332POnDlUGNYDdXV1vH//HizLQl5eHs7OzvDw8MCgQYNkcpUCFYdE6ty9exeBgYFIS0tDeXk59PX14ejoiK5du/IdTbAiIiKwYMECrFy5Ury5esuWLZg/f764UGFZFjo6OoiNjYWenh6fcQWpefPmdWouQMeJ1J/GjRujQYMGePToUaXl1YRbjx8/hr+/PxwcHNC+ffsqx9y/fx9BQUEYMGAAjI2NOU4oTAoKChg5ciS8vb3rdN/YsWNx6tSpapdgk/qTmZlZ6TiRv2/3IP+eSCRC165d4eHhATc3NzRu3JjvSLyi4pBIhWHDhkFXVxe//vor31HI39y6dQt+fn7IycmBiYkJJkyYgEaNGvEdi5B6paamhv79+8PX15fvKDJt5syZ2LdvH1JSUqrtmJmeno4WLVpg5syZ2LZtG7cBBUpbWxsWFhbw9/ev030uLi6IiYlBdna2hJIRwo3k5GS0atWK7xhSg4pDIhWUlJQwZMgQnDhxgu8oMik/Px8Mw9S4lI4Qoaro1EiNZvjVpk0bqKmpISYmpsZxFhYWKCwsxIMHDzhKJmw2NjZITEzEq1evxMvbv6S0tFR8lEVUVJSEE8q2rKwsREREVJo57N69O/T19XlOJlsKCgoQFRWF169fo2nTprC2tq71Ht3/GlqoTKSCkZERPnz4wHcMmaWhoQEnJye+Y5B/yMnJQU5ODt8xBG/RokUICwvDn3/+yXcUmZaZmVmrpaItWrTA06dPOUgkG/r27Yvc3Fzs2rWr1vfs2rULeXl56NevnwSTybZnz55h2LBhaNasGdzd3TF//nzMnz8f7u7uaN68OYYOHUr/DupJSkoKNm7ciIsXL1Z5/fTp0zAwMICzszPGjBkDe3t7GBsbIzQ0lOOk3KDikEiF0aNHIzQ0FC9evOA7ikxSV1en/TtSwt/fH87OzlBTU0OTJk3QpEkTqKmpoW/fvnVe9kVqx9zcHHPnzkXv3r2xYsUKREREIC0tDRkZGVV+EcmQk5Or1f61oqIi6hhbj2bOnAk1NTUsXLiwVvsOjx07hoULF6JBgwaYMWMGBwllz7Nnz2BtbY1z585BSUkJgwcPxqxZszBr1iwMGTIEysrKOH/+PGxsbMQziuTrnThxAkuWLKlykiIuLg7u7u7IycmBsrIyzM3NoampiadPn2LgwIGfNQsSBJYQKVBcXMy6uLiwJiYm7NmzZ9ni4mK+I8mUXr16sd26deM7hsybPXs2KxKJWIZhWIZhWA0NDVZTU1P8WiQSsXPmzOE7puBUfG8r/remLzk5Ob7jCpaFhQXbuHFj9sOHD9WO+fDhA9u4cWPWzMyMw2TC5+fnx8rJybEikYi1sbFhd+7cyUZGRrJJSUlsUlISGxkZye7cuZO1sbER/zs4d+4c37EFa/z48SzDMOzYsWPZN2/efHb97du37Lhx41iGYVhPT08eEgqLk5MTq6qqyhYUFHx2bdCgQSzDMGz79u3ZFy9esCzLsmVlZezkyZNZhmHYBQsWcB1X4mjPIZEKxsbGKC8vFz+BYRgG2traVXYOZBgGKSkpXEcUtICAALi4uMDX1xcjRozgO45M8vX1xejRo6GtrY1ly5bBw8MD6urqAD7tCT127BjWrFmDV69e4fjx4xg5ciTPiYXD3t6+Tp1i6Vw3ydiwYQOWLFkCNzc3/P7771BVVa10vaCgAJMnT8aJEyewevVqLF26lKekwnTlyhWMHz8er1+/rvbfA8uy0NLSwuHDh2lJqQR9++23UFNTQ1JSUrX7QMvKymBiYoJ3797RcSL/UosWLWBgYICQkJBK7xcWFkJDQwOlpaW4dOlSpb/zBQUFMDAwgKGhIe7cucNxYsmi4pBIhbqe01NeXi6hJLIpLCwMPj4+2L9/PwYMGICBAwfC0NCw2rb+dnZ2HCcUvp49eyImJgbx8fEwMTGpckxSUhLMzMzQtWvXz36JEfJfV1BQgK5duyIhIQHa2toYPXo0WrRoAeDTnqDjx4/j1atXMDU1RUxMzGfFI/n3CgoKcOTIEfj7+yM+Ph5v3rwB8Om4FzMzM/Tv3x/jxo2DiooKz0mFTVVVFUOGDIGPj0+N49zd3XH+/Hnq2fAvNWjQAIMHD/5sWXV4eDh69uyJBg0a4M2bN581oHF2dsatW7eQm5vLYVrJE2abHfKfQ8UevypmTliWxcWLF3Hp0qUax9N+n/p39+5dODg4VFsYAoCJiQkcHBwQERHBYTJCuKGiooLr169j7NixCAoKwrZt2yqdswoAvXr1wrFjx6gwlBAVFRVMmzYN06ZN4zuKTGvTpk2t9hI+f/4crVu35iCRsJWWllZZ4MXFxQEAunTpUmVnUi0tLRQWFko6HueoOCSEYNy4cXVaVkfqX3Fxca0+8KqqqqK4uJiDROSfPn78iOLiYjRs2JDvKIKlo6OD69evIyYmBtevXxdvNTAwMECfPn1gaWnJc0JCJG/27NkYP348AgIC4OzsXOWYwMBAhIWF4dChQxynEx4DAwPEx8ejrKys0jLeGzdugGEYWFlZVXlfTk4OtLS0uIrJGVpWSgghUqBDhw7Izs5GSkpKtUViQUEBjI2NoaWlhXv37nGcUDiMjY3h6uqKDRs2fHZt7ty56Nq1K9zc3D67NmHCBBw7dgylpaVcxCSEd6WlpXjz5k2NXWQNDQ05TCRMVXVB3rRpE3777TeMGjUKo0aNQrNmzQAA6enpOHnyJHx9ffHdd99h/vz59GfwL02dOhW///47li5ditWrVwMAIiMjYW9vj/LyckRGRlZZIOrp6cHQ0BA3b97kOrJk8dYKh5Aq3L17l/3uu+/YNm3asA0bNmQbNmzItmnThp0yZQp79+5dvuMRIjGrV69mGYZh+/TpwyYlJX12/fHjx6yzszMrEonYn3/+mYeEwsEwDDthwoQ6X/P09GRFIpEkoxEiFa5du8b27NmTVVRUpO69HKiuU3JNHZQrrtGfwb+XnJzMqqiosCKRiDUwMGDNzc1ZeXl5lmEY1tbWtsp7oqKiWIZh2NmzZ3OcVvJoWSmRGtu3b8eCBQtQVlYm3l8CAI8ePcKjR49w8OBBbNq0CbNmzeIxJSGSMX/+fJw/fx43btxA27ZtYW5ujubNmwP49KQ4Li4OZWVlsLCwwLx58/gNS4iEPXjwAMnJyXj37l2l3wd/N27cOI5TyYZLly5h6NChKCsrg6amJoyMjNCgQQO+YwmanZ0dbe3gUcuWLeHn5wcPDw88ffoUT58+BQC0bdu22qZA27ZtA4Bql/3+l9GyUiIVrl27BmdnZ6ioqGDq1Knw8PBA8+bNwTAM0tLScOzYMezduxcFBQUIDAxE7969+Y4sKF5eXrUap6CgIO5aN2DAACgrK0s4mWx5//49lixZgoMHD362yV1ZWRleXl5Yt24d1NTUeEooDCKRCJ6enjh48GCdrk2YMAFHjx6lhkwSdP36dUyfPr3G44pYlgXDMPTnICGWlpa4ffs2tmzZgpkzZ1Z7lAIhQvPx40dEREQgOzsbBgYGsLGxqbab/sWLF1FeXo5+/fpBQUGB46SSRcUhkQr9+vXDjRs3EBISAhsbmyrHREdHw87ODo6OjvD39+c4obBV/PD7Z2fACv98n2EYaGpqYt++fRg+fDiHSWVDQUEB4uLixN3q9PT00KVLF2ofX0+oOJROsbGx6N69OxiGgaurK+7du4d79+5h8eLFSElJwfXr15GTkwNPT08YGhpixYoVfEcWJBUVFZibm1NXZEJkFC0rJVLhzz//RM+ePastDAHA2toa9vb2uHXrFofJZENwcDDOnj2LnTt3onv37hg1apR4g3tmZiZ8fX0RERGBmTNnwsrKCmFhYThw4ABGjx6N8PBwdOvWjef/B8KioqKCHj168B2DEE6tW7cOpaWluHr1KhwdHTFhwgTcu3cPv/zyCwAgNzcXU6ZMwaVLlxAbG8tzWuFSU1OjBieEVCMvLw/JycnQ19eHjo4O33EkgopDIhUKCgpq1Q5YS0sLBQUFHCSSLSUlJdi9ezcOHDiACRMmfHZ9xowZOHz4MCZNmoSBAwdi79696NWrF0aPHo3Nmzfj5MmTPKT+7wsKCsLTp09hYWGBtm3b1jj24cOHiI2NhYGBAXr16sVRQkK4ExUVhc6dO8PR0bHK6xoaGjh69CiaN2+OZcuW4ciRIxwnlA19+vSh4ltKhISEICwsDM+fP6+2YyzDMDhw4ADHyYQtMDAQJ06cwPfff4/OnTuL39+5cycWLlyI4uJiMAyD77//Hlu3buUxqWTQslIiFUxMTFBSUoLk5OQqDxoFPrXUbtWqFeTl5ZGUlMRxQmHr2bMnioqKvtiO2crKCgoKCggLCwPw6aDe/Px8ZGVlcRFTUDIzM2FiYgIDAwPExcV9seHDu3fvYGFhgadPnyI5ORl6enocJRUekUiEvn37YvHixZ9ds7e3r/baunXrEBgYSMtKJURRURHDhg3D8ePHAQBTpkzB/v37kZ+fX+l4l5EjRyIiIqJWh4STusvMzISlpSXGjx+PX375pdrfyURy8vLyMHjwYISHh1fbkKkC7b+tfyNHjsSVK1fw/Plz8R7/e/fuwczMDHJycrC0tERCQgLy8vJw9uxZDB48mOfE9Yv+xROpMHjwYGzevBleXl7YsWMHNDQ0Kl3Pz8/HrFmzkJGRQZ0aJeDOnTsYOHDgF8e1aNECFy9eFL9u06YNLl++LMlogrV//34UFxdj48aNteoE2KBBA2zatAlDhgzBgQMH8NNPP3GQUrgCAgIQEBBQp2sVjVCIZGhpaSE/P7/SawB48uQJOnToIH6/sLAQeXl5nOeTFYcOHUK/fv3wv//9D2fOnIG9vT309fWrbMzBMAz9LJKARYsWISwsDC1btsTUqVNhYmJCHWM5dPv2bZiZmVVq/nb48GHx/7q7uyM1NRVt27bF7t27BVcc0swhkQpv376FpaUl0tLSoKamhr59+1Zq43/16lXk5+fD2NgYMTEx0NTU5DewwGhqaqJ58+a4c+dOjeM6d+6MtLQ05OTkAACGDRuGkJAQvH37louYgmJjY4MnT57gxYsXdbpPV1cXRkZGiIqKklAy4bO3t/9XRV5wcHA9piEV7O3t8erVKzx8+BAAcOHCBQwZMgTTp0/Hrl27AACPHz9Gp06dYGxsjHv37vEZV7BEIhEYhvnijBVAs1aSoqurC+DTkS6NGjXiOY3sadCgAQYMGCBexQAAZmZmyMzMRHZ2tvhBSd++ffHw4UNkZGTwFVUiaOaQSIVGjRohPDwcU6ZMweXLl3Hq1KnPxvTv3x/79u2jwlACbG1t4e/vjw0bNmDRokVVjtm4cSPu3r1baYbxyZMntLzxKz169Ajdu3ev830WFhZUGP5LISEhfEcgVXBxccGSJUuQkJCANm3aoG/fvmjWrBn27NmDmJgY6OvrIygoCB8/fsTEiRP5jitYhw4d4juCzMvLy4OLiwsVhjyRk5PDx48fxa/fvn2L+/fvY8CAAZVm0LW0tJCdnc1HRImi4pBIDT09PVy8eBGpqamV9pPo6enB1tYWRkZGPCcUrrVr1yI4OBg//vgjDh06hOHDh8PAwADAp/0nfn5+SExMhKqqKtasWQPg04zuX3/9hZkzZ/IZ/T/rw4cPUFdXr/N96urqeP/+vQQSEcKvcePGQV1dHeXl5QA+nat64cIFjBw5EjExMYiJiYFIJMKkSZMwa9YsntMK1/jx4/mOIPNatWqFDx8+8B1DZjVv3hxRUVEoKSmBvLw8zp49C5ZlP2uW9ebNGzRu3JinlJJDy0oJIQA+nSPp6emJ5ORkAJ+fbdiqVSscOXIEVlZWAICcnBwkJSXB2Ni4Vp1mSWU6Ojro0KEDrl27Vqf7HB0dce/evTovRyV1U7F0mlYqSE5GRgbU1NRqNTvy6NEj5OTkoGXLlvTzhgje/v378f333+PevXto2bIl33Fkzrp167B06VJ069YNNjY2OHToEAoKCpCSkoKmTZsC+PTZSEdHB6ampuImfUJBxSHhhbGxMVxdXbFhw4bProWFhUFHRwcmJiY8JJNtLMsiKCgIkZGReP78OYBPex+6d+8OBwcHasZRjxwcHBATE4NXr15BWVm5VvcUFBRAW1sbXbt2RVBQkIQTyh5/f39s374dkZGRKCwsBAAoKyvD1tYWP/zwA1xcXHhOKCxycnLw9PSssg3/6tWrYWZmhkGDBvGQjBD+LVq0CN7e3lizZg0cHR2hr6/PdySZ8eHDB/Tu3Rt//vkngE/7cDdt2oQ5c+aIx9y4cQOOjo746aefsGrVKr6iSgQtKyW8SEtLq3adtr29PSZMmEDn9vCAYRj07t0bvXv35juK4A0YMAAhISFYs2aN+JDvL1mzZg0KCwtr1VmW1M2cOXOwY8cO8Uy5uro6GIZBbm4uAgMDce3aNcyaNQtbtmzhOalwsCxbbdOTlStXwtPTk4pDDlQ8+Dty5Aj09fXh4OBQ63sZhsGNGzckmE42yMnJVfk+y7KYNGlSjfcyDIPS0lJJxJJZqqqqiIqKQlhYGLKzs2FmZoZWrVpVGiMnJ4etW7cK8vcxFYdEKtGENv9oWZ1kTZ06FZs2bcL69euhrKyMH3/8scpW8QBQXl6OX375BevXr4eOjg6mTJnCcVph8/X1xfbt26GtrY1ly5bBw8NDvB80Pz8fx44dw5o1a7B9+3ZYWVlh5MiRPCcmpP6EhISAYRgUFBSIX9cWrSapHwYGBvS9lDIikQj29vbVXre3t6/x+n8ZFYeEEDFaVscdFRUVnDlzBn369MGKFSvw+++/w9XVFebm5uI9VdnZ2bh9+zZOnTqFp0+fQklJCWfOnIGKigrP6YVl9+7dUFJSQlhY2GfL2Rs2bIgZM2bA0dERZmZm2L17NxWHRFBSU1MBQLyXquI14U5aWhrfEUgtJSQk4MGDBzAwMEC3bt34jiMRVBwSQgDQsjo+2NjYICoqCh4eHnjw4AG2bt362ZiKP4927drB29sbnTp14jqm4N29excODg417nM2MTGBg4MDIiIiOExGiOQ1a9asxteEyBpfX1/s27cP69atq1QALliwoNJnoEGDBuH06dPVLgv+r6p6DRMhRKZULKvT0tLCjh07kJOTg5ycHLx9+xa5ubnYuXMntLW1sX37dpw8eZLvuIJiZmaGe/fuwd/fH9OnT4eNjQ1MTU1hamoKGxsbzJgxA/7+/rh37x4VhhJSXFwMVVXVL45TVVVFcXExB4kIIYTwxdvbG/Hx8ejcubP4vaioKGzevBkNGjSAm5sbmjdvjgsXLsDHx4fHpJJBM4eEN+/fv0dGRkadrwGAoaGhpGLJJFpWx7++ffuib9++fMeQSS1atEBoaCg+fPhQbZFYUFCA0NBQtGjRguN0wvb48WMcPXq0zteAT+ciEiJENf29/zsFBQU0btwYnTp1gra2toRTyY779++jY8eOUFBQEL937NgxMAyDkydPwsnJCW/fvoWRkRH2798vuJ9FdJQF4YVIJPrqzdfUmav+aWhowNbWFpcuXapx3IABAxAREYHc3FxughHCgZ9//hkrVqxA7969sXv37s+60qWkpGDGjBm4du0aVq1ahWXLlvGUVFhq+j1Q8dGkpt8TZWVlEskla4yNjb/6XoZhkJKSUo9pCFD3z0gMw6BPnz7YuXPnZz+/SN2pqqpiyJAhlWYFW7dujby8PPExXwAwcOBAxMXF4dmzZ3zElBiaOSS8MDQ0pM5cUoSW1RFZNn/+fJw/fx43btxA27ZtYW5ujubNmwMA0tPTERcXh7KyMlhYWGDevHn8hhWQ8ePH8x2B4FMzFIZhvqpLOP0el4zly5cjLS0NR48ehZqaGpycnMQrpjIzMxEYGIh3797Bw8MDioqKiIqKQmBgIHr06IG4uDhxcyHydZSVlZGfny9+/fz5cyQlJX22akpDQ0Pc2V1IqDgkvKDOXNKFltVx799sYKfZ8/qlrKyMkJAQLFmyBAcPHkRMTAxiYmIqXffy8sK6deugrKzMY1JhOXToEN8RyN906dIFY8eOxeDBg+nvOc88PDzQtWtXeHl5YfPmzeKjdSrk5+dj7ty58PPzw61bt2BsbIwFCxZg69atWL9+PXbu3MlTcmEwNjZGeHg4cnNzoaGhAR8fHzAMAycnp0rjXrx4IcjlvLSslBBCy+p40Lx583/11J3azUtGQUFBpWVCenp66NKlCx0fQgTr5MmT8PHxwdWrV1FaWgo1NTUMGzYMY8eOhYODA80O8mDkyJG4ffs2kpKSajz/1sTEBObm5jh58iSKi4thZGQEFRUVJCcnc5xYWHbv3o2ZM2fCyMgIZmZmuHz5MhQVFfHkyRM0btwYAFBSUgJtbW1YWFjg2rVrPCeuX1QcEkJQWFiIHj164Pbt25CTk6txWV1oaCg9VSaEEIF5+/YtTpw4AW9vb9y8eRMMw0BXVxejR4/GmDFjYGZmxndEmaGlpQUnJ6cvdsJ0d3dHYGAgXr9+DQBwcXFBSEgICgoKuIgpWCUlJXB3d8eZM2cAfNpS8/vvv8PNzU08xs/PD8OHD8cvv/yCJUuW8BVVIqg4JFKloKAAsbGxeP78OYqKiqodJ7TOUNLg/fv34mV1hYWFla79fVmdmpoaTwkJkQw5OTl4enriwIEDNY6bPHkyDh06REt660ltOzJWh34PSE5qaiq8vb3xxx9/IDExEQzDoE2bNvDw8IC7uzsMDAz4jihoqqqqsLKywo0bN2oc17t3b9y6dQvv378HALi5ucHf37/Sfjny9dLS0pCdnY3WrVujQYMGla7Fx8cjPT0dVlZW+Pbbb3lKKBlUHBKpsXz5cmzdurXGJ14sy4JhGOpSJ0G0rI7IGpFIBE9PTxw8eLDGcZMnT8bBgwfp5089+dqu1fR7gFsxMTHw8fGBr68vXr16BS0tLbx48YLvWIJmZWWFuLg43LhxA3Z2dlWOCQ8PR69evWBpaYno6GgAQPfu3fHixQvqIEv+FWpIQ6TCxo0bsWbNGsjJyaF///4wMTH57CkN4YaKigp69OjBdwyZ9u7dO6SkpODdu3fVdhCs7gMDkZy8vDwoKiryHUMwli9fTvvZ/gOaNWsGY2Nj6Onp4eXLlygvL+c7kuAtXLgQI0aMgLOzM8aNG4cRI0aIZ2szMzNx5swZHD16FCzLYuHChQA+/XyKi4vD8OHD+YxOBIBmDolUaNWqFZ49e4bw8HCYm5vzHUfm0LI66XD//n3Mnj0bISEhX2wrT7Mm/05GRob4v5s3b44RI0bgf//7X5VjS0tLkZiYiNGjR8PAwAD37t3jKiYhvCgoKMDZs2fh4+ODGzduoKysDOrq6nB1dYWHhwdsbW35jih427dvx6JFi1BcXPzZQxSWZaGgoICNGzfihx9+AAA8efIEp06dQu/evWFhYcFHZMHJyMjAxYsXkZycXO3DWoZhvvjZ6b+GZg6JVMjMzISDgwMVhjxhWbbWZ1zR8yTJSE5Ohq2tLfLz89G9e3c8f/4cqampcHNzw5MnT3D79m2UlpZi0KBB0NDQ4Dvuf94/u8WeOXNG3HygOizLYvLkyZKORggvysvLERAQAG9vb1y4cAEFBQVQUFDAoEGDMHbsWLi4uEBBQYHvmDJj1qxZGDRoEA4cOICoqCjx4eu6urro3r07JkyYAGNjY/F4Y2NjLFq0iK+4grN69Wr8/PPPlWbKKz7/VPzuqFjiTsUhIRKgo6NTq0PYCb9oWZ3krFmzBu/evcOhQ4cwfvx4TJgwAampqeJudY8fP8bEiRPx8OFD3Lx5k+e0/312dnbiX/ChoaHQ1tZG69atqxyroKAAPT09DBo0CEOHDuUyJiESd+vWLfGewuzsbDAMAzs7O4wdOxYjRoz47Iw9wh0jIyOsWbOG7xgyx9fXFytXrkTz5s2xdOlSnDp1CteuXUNAQACePHkCX19fhISEYO7cuRg4cCDfcesdFYdEKri5ueHAgQM1HsJO6tffl9UBn7qV/vO9ChXL6gIDA9GiRQsu4smcoKAgtGnTBuPHj6/yesuWLXH+/HkYGxvjp59+wq5duzhOKCwhISHi/xaJROjXr98XG9IQbsjqUi6+WFtbg2EYdOjQAfPnz4e7uzuaNm3KdyxCeLN7924oKCggODgYzZo1Q0REBADA0dERADBlyhRs3boVCxcuxJAhQ3hMKhm055BIhY8fP8LJyQny8vLYt28fWrZsyXckwft7p8CKpRFfwrIstm3bJt7jQOqPoqIiBg8ejJMnTwIAvvvuO/EDEyUlJfG4YcOG4fbt20hLS+MpqfCkp6dDTU1NfLgx4U9dlnLRvtv6UfG7QE5Ors73MgxT47FThPwXaWpqonPnzggKCgIAeHl54ciRIygtLa30Wal9+/bQ19fH1atX+YoqETRzSKSCi4sLysvLERISgjZt2qBZs2bQ19eHSCT6bCzDMF88+4d8GS2rky6NGjWq9CGrUaNGAD4VLqamppXGvnr1itNsQtesWTO+IxDQUi4+sSxLjcZ4JBKJIBKJ8PDhQ5iYmNSpUGcYhv7s6llRURF0dHTEryse0Obm5kJTU1P8fqdOnQRXGAJUHBIp8fclXmVlZXjy5AmePHlS5VhqfV4/aFmddDEyMkJ6err4tZmZGViWha+vL5YvXw4AeP36NUJCQmBoaMhXTEFavXp1rccyDIOffvpJgmlkl6wv5eILHU3BP0NDQzAMA3l5eQCAgYEBfdbhka6ubqWHsBXLrB88eFCpU+/Tp08FuYKBlpUSqfD3D8W1QU/66xctq+PfypUrsWbNGqSkpKBZs2b48OEDjIyM8PbtW4wYMQJNmzbF2bNnkZGRgaVLl9apoCE1q1hWV92vQ1rOyA1ZX8pFCJEOQ4YMQVxcHDIzMwEAkZGR6NGjB3r16oULFy5AVVUVJ0+ehJubG6ytrREZGclz4vpFM4dEKlCxx6+avv8JCQl48OABDAwM0K1bNw5TyRYPDw8UFRXh5cuXaNasGVRVVXHixAmMHDlSvA8R+DSLsnTpUh6TCs+hQ4eqfL+8vByZmZm4du0aIiMjMWPGDDo/TIJkfSkXIUQ6DBw4EBcuXEBQUBAcHBzQvXt39OrVC8HBwdDU1ETDhg2Rk5Mj2JUkNHNICIGvry/27duHdevWVSoAFyxYgC1btohfDxo0CKdPn/6qxgXk63z48AHh4eHIycmBiYkJunTpwnckmbRx40asXr0a0dHR6NChA99xBKlFixYwMjLC9evXAQC//PILli9fjtDQ0EpLuXr27Im7d+8iNzeXp6SEECErKipCWloatLS0xPv/8/PzsXDhQpw7d078+3jJkiVwd3fnOW39o+KQSJWXL1/i4MGDCA8PR1ZWFoBPa73t7OwwYcIEfPvttzwnFKaBAwciMjISL168EB9yHBUVBVtbWzRs2BD9+/fHzZs3kZaWhkOHDmHcuHE8JyaEe61bt0arVq1w8eJFvqMIkqwv5SLknwIDA7Fnzx78+eefeP36NcaOHSs+wiUgIAABAQGYP38+9PT0eE5KhISWlRKpcebMGXh5eeH9+/eV9v7cu3cPAQEBWL9+PQ4cOIDhw4fzmFKY7t+/j44dO4oLQwA4duwYGIbByZMn4eTkhLdv38LIyAj79++n4pADL1++xLNnzwAAenp69GBECnTo0EE8q0Xqn6wv5SLk72bNmoVdu3aBZVmoqamhpKSk0mcjXV1dbNu2DQYGBpgzZw6PSYnQfH5OACE8iI2NxejRo/HhwwcMHToUfn5+uHPnDuLj43Hu3DkMGzYM79+/h7u7O2JjY/mOKzivXr367NDj4OBgaGtrw8nJCcCnoxXs7Ozw+PFjPiLKBJZlsWPHDpiYmEBPTw8WFhawsLCAnp4eWrVqhe3bt1NnQR6lpKRQy3gJGjt2LBISEmBmZiZ+z8/PD9999x0aNWqEd+/eoW3btjh27Bj69u3LX1BCJOzo0aPYuXMnunTpgtu3byM/P/+zMR07doSBgQGtZCD1jmYOiVRYt24dysrKcPr06c/O0evYsSMGDRoEPz8/DB8+HOvXr8fp06d5SipMysrKlX75PH/+HElJSRg5cmSlcRoaGsjJyeE6nkwoKirCwIEDcePGDbAsC01NTXGjoIyMDKSkpGDu3Lm4dOkSLl26BEVFRZ4Ty46cnBysWbMG8fHx6NWrF99xBEtRUfGzMz0bNmyIvXv3Yu/evTylIoR7e/bsgYaGBi5fvgwtLa1qx3Xs2BH37t3jMJkwOTg4fPW9Qjx7m4pDIhUiIiJgY2NT4wHrQ4cORffu3REeHs5hMtlgbGyM8PBw5ObmQkNDAz4+PmAYRjxrWOHFixfQ1tbmKaWwrV27FtevX0f79u2xadMmODs7V7oeGBiIBQsWICgoCGvXrsWqVat4Sio8xsbG1V57//493rx5A5ZloaysjHXr1nGYjBAii+7fv4+ePXvWWBgCgLq6Ol6+fMlRKuH6+7nPdSXE8yipOCRSIS8vr1YHexsaGiImJoaDRLLF09MTM2fORJcuXWBmZobLly9DTU0NgwcPFo8pKSlBbGwstfKXEG9vb2hoaCA4OLjK8yadnJxgbm4OExMTHDt2jIrDepSWllbtNXl5eRgYGKBnz55YtGgR2rZty10wGfP48WP4+/vDwcEB7du3r3LM/fv3ERQUhAEDBtRY1BPyX1ebouPZs2dQVlbmII2wpaam8h1BqlBxSKSCjo4O7ty588Vx8fHxlc7BIvVj8uTJCA4OxpkzZ5CamgpVVVXs27evUpFy6dIl5OXl/avlF6R6z549w4ABA6osDCs0adIEDg4OuHz5MofJhK8u+zjLy8shEtF2fUnYtm0b9u3bh5SUlGrHNGjQAHPnzsWTJ0+wbds27sIRwqFWrVrh9u3bKCkpgby8fJVj3r17h/j4eLRr147jdMJDZ21XRr/hiFRwdnZGYmIifvzxR5SVlX12nWVZLFu2DI8ePaJGBBIgLy+PU6dO4cmTJ7h16xaePXsGNze3SmOMjIzg5+cHLy8vnlIKW9OmTVFcXPzFcSUlJdS2nAd37tzB3Llzoa+vz3cUwbpx4wbMzMxqXEXSrFkzmJmZ4dq1axwmI4Rbrq6ueP78ORYvXlztmCVLliAvL++z39WE/Ft0ziGRCk+fPkXnzp3x9u1bGBoaYuTIkWjevDkAID09HadOnUJaWhoaN26M27dv0wc0IjgrVqzA5s2b8eDBg2qfYqanp6Ndu3aYM2cOfv75Z44Typ7MzEz4+PjA29sbCQkJYFkWDMNU+QCL/Htqamro378/fH19axw3atQoXL16FXl5eRwlI4RbhYWFsLKywv3799G1a1cMHjwYP/74I3r06IEhQ4bAz88PERERMDc3R1RUVKVjqMjXmTx5MlJSUrBmzRrY2NjUODY6OhpLly6Fqakp9uzZw1FCDrGESIm//vqL7dChA8swDMswDCsSiViRSCR+3bFjR/bevXt8xyREIoqLi9mBAweyhoaG7IEDB9j379+Lr71//549ePAg26xZM3bQoEFscXExj0mFLT8/nz1w4ADbq1cvVk5OTvwzSF9fn503bx4bGxvLd0TBatiwITt48OAvjhs8eDCrqqoq+UCE8OjVq1esi4uL+PNQxWehii8nJyf21atXfMcUhOvXr7MMw7AjR46s9T2jRo1iRSIRGxoaKsFk/KCZQyJ1QkJCEB4eXukA8B49esDe3p7fYAKyevVqMAyDGTNmoFGjRli9enWt76UDqCXD2NgYLMsiIyND/J6mpiYAVDo+xNDQ8LNGBQzD1LhPi9SsrKwMV69exbFjx3Dx4kV8/PhRfNg0wzAIDg5Gjx49BNmVTppYWloiNTUVGRkZUFFRqXJMQUEBDA0NYWBgUKt96oT81929exeBgYFIS0tDeXk59PX14ejoiK5du/IdTTA8PT1x7NgxJCYmomXLlrW658mTJ2jZsiUmTJiAAwcOSDght6g4JEQGiUQiMAyDhIQEmJiYiF/X5scBLauTjH/b5KQuTVXIJzExMTh27Bh8fX3x+vVrsCwLeXl5uLi4YOzYsdi4cSNiY2Pp7ztHNmzYgCVLlsDNzQ2///47VFVVK10vKCjA5MmTceLECaxevRpLly7lKSkhREhMTU2hrKyM+Pj4Ot3XuXNnFBYW4tGjR5IJxhPqVkqIDDp06BAAQFdXt9Jrwh8q7rizZs0a+Pj4ICkpSfxAxMbGBmPHjsXIkSPRqFEjAKBumBz7/vvvxcV6cHAwRo8ejRYtWgAAUlJScPz4cbx69QqmpqaYPXs2v2EJIYLx9OlT9O/fv873tWrVCv7+/hJIxC8qDgkvwsLCAABdu3aFkpKS+HVt2dnZSSKWzBg/fnyNrwkRsuXLl4NhGOjo6GD69OkYM2aMuAEW4Y+KigquX7+OsWPHIigoCNu2bRMv5a0o4nv16oVjx459NqtIyH9ZXT8D/RN9JuJHbVdc/dfQslLCi+qWNdYWLfMihHytiiW8DMOge/fu8PDwgKurKzQ0NCqN69GjB6KioujnDQ9iYmJw/fp1ZGZmAgAMDAzQp08fWFpa8pyMkPpX189Af8cwDEpLS+s5kWwxNjaGhoYGbt++Xaf7zM3NkZubiydPnkgoGT9o5pDwYty4cWAYBurq6pVeEyIrKhrPNG3aFHJycpUa0dRGTWfBkZrdunULR48eha+vLyIiIhAZGYkffvgBLi4uGDNmDAYOHFjtwdOEG5aWllQIEpnh5ORUp89ALMsiPDwchYWFEkwlO6ytreHr64tHjx6hdevWtbonISEBd+/exejRoyWcjns0c0iIDPo3B9kzDCO4zlx8EIlEEIlEePjwYZ1nz+lJcf0oLS3FlStX4O3tLe5SyjAMNDU1MXz4cAQHByMlJYVmDnlU0am3onMvIbLOz88PK1euxL179wAAPXv2RHBwMM+p/tuuXr0KFxcXWFtb48aNG1BSUqpx/MePH+Hg4IBbt27B398fzs7OHCXlBhWHhMigmjpj/nOPT1XX6cPyv2dvbw+GYXDs2DHo6+uLX9cWfRioX/n5+Th16hSOHTuG8PBw8YH3ALBgwQK4ubnBzMyM35Aywt/fH9u3b0dkZKR4ZkRZWRm2trbiGV5CZM3FixexcuVKxMfHg2VZ2NraYtWqVejVqxff0QRhwIAB8Pf3R4cOHfC///0Pjo6OVY4LDAzE/Pnz8eDBA7i4uODixYscJ5U8Kg6JVDA2Noarqys2bNhQ47glS5bg5MmTdKbbv3TkyJEq32dZFl5eXrC1tcXEiROrvZ8a2BAhy8zMhLe3N7y9vZGQkCAuEk1MTODu7k7nfErQnDlzsGPHDvHDKXV1dTAMg9zcXACfHk7NmjULW7Zs4TElIdzx9/fHypUrERcXB5ZlYW1tjVWrVqFPnz58RxOU9+/fo1+/foiMjATDMGjcuDHMzMygpaUFAMjOzkZ8fDzevHkjLs79/f2hpqbGc3IJYAmRAgzDsBMmTPjiuEmTJrEikYiDRLKrtn8WhMiCuLg4dvbs2ayOjg7LMAz9/JGgEydOsAzDsN9++y27c+dONjc3V3wtLy+P3bVrF6ujo8OKRCLW19eXx6SESF5AQABrZWXFikQilmEYtlu3buzVq1f5jiVopaWl7MaNG1k9PT2WYZgqv/T09NhNmzaxpaWlfMeVGJo5JFJBJBLB09MTBw8erHGcu7s7zp49i48fP3KUTPbU9s+CEFlSXl6OgIAAeHt7w8fHh+84gtSzZ0/ExMQgPj4eJiYmVY5JSkqCmZkZunbtipCQEG4DEsKBGzduYMWKFYiOjgbLsrCwsMCqVavQr18/vqPJjPLycty5c0c8UwhAPJPYuXPnGrfmCAF1KyX/CeXl5UhMTERwcDB1aSSCtH//fixcuBB//PEH+vbtW+WYK1euYMyYMdiyZQs8PT25DSjjRCIR+vXrRx/QJOju3btwcHCotjAEPi3tdXBwQEREBIfJCJG8kJAQrFixAhEREWBZFubm5li5ciUGDBjAdzSZIxKJ0KVLF3Tp0oXvKLwQdulLpJqcnJz4C/i0D+7v7/39S15eHu3bt8fLly8F2TaYkBMnTkBRURFOTk7VjnFycoKCggL++OMPDpMRwo3i4uJaHW6vqqqK4uJiDhIRwg0HBwf07t0bERER6NSpE86dO4fY2FgqDKVEcnIyoqOjkZSUxHcUTtDMIeGNgYGBuNFDRkYGVFRU0KRJkyrHKigoQE9PD4MGDcIPP/zAZUxCOPHw4UN07NixxuUqcnJy6NSpEx48eMBhMkK40aJFC4SGhuLDhw/VFokFBQUIDQ1FixYtOE5HiOSEhISAYRgoKyujcePG2LVrF3bt2lWrexmGQUBAgIQTyp6ioiKsWrUKv/32m/hInfHjx4u33Hh7e2PLli04ePCg4DpZU3FIeJOWlib+b5FIBFdXV9rnRmTW27dvq3048ndNmjTB69evOUhECLdGjhyJFStWYMiQIdi9ezdatWpV6XpKSgpmzJiB7OxszJw5k6eUhEgGy7IoKCjAjRs36nRfXY5AIrVTWFgIBwcH/Pnnn/j222/h4uKCy5cvVxrj4OCA8ePH4+TJk1QcEiIJwcHB0NHR4TsGIbxp0qQJkpOTvzguOTmZDgQngjR//nycP38eN27cQNu2bWFubo7mzZsDANLT0xEXF4eysjJYWFhg3rx5/IYlpB7RubXSZePGjbh16xYmTpyInTt3QklJ6bNVPXp6emjbti2uX7+OtWvX8pRUMqhbKSEyqGKf59dgGAalpaX1mIYAgJubG06dOoUbN27A3t6+yjEhISFwcHDAsGHDcPr0aW4DEsKB9+/fY8mSJTh48CAKCwsrXVNWVoaXlxfWrVsnzLPFCCFSoW3btigoKMDjx4/xzTef5tGq6uQ+YsQIREZG4vnz53xFlQiaOSRS58GDB0hOTsa7d+9Q3bOLcePGcZxKWP7NMyF6niQZc+fOxenTpzFkyBAsW7YMkydPhrq6OgAgPz8fv/32G3755ReIRCLMmTOH57SESIaamhp27tyJDRs2IC4uDs+ePQPw6Sl9ly5doKKiwnNCQiQvLCwMOjo6NXbuBT6tJHn+/Dns7Ow4SiYbUlNT0b9/f3FhWB0FBQXxfkQhoZlDIjWuX7+O6dOnIyUlpdoxLMuCYRiUlZVxmIwQbmzfvh1z584Vv27UqBGAT/sRK2zatKnSGEJkzYwZM/Do0aM6780i5L9CJBJhwoQJOHDgQI3jJk+ejIMHD9JnonrWqFEjdO7cudLPmKpmDq2trZGWlia4mUM6yoJIhdjYWPTv3x8ZGRlwd3dHhw4dAACLFy+Gq6ureI/VhAkTsHz5cj6jEiIxs2bNQnBwMJydnaGkpIQ3b97gzZs3UFJSQt++fREcHEyFIZF5t2/fRkhICN8xCJGo2szd0PyOZJiZmSE2NhbZ2dnVjklNTcWdO3dgaWnJYTJu0LJSIhXWrVuH0tJSXL16FY6OjpgwYQLu3buHX375BQCQm5uLKVOm4NKlS4iNjeU5LSGSY2dnBzs7O5SVleHNmzcAPjWrqemIC0IIIbLn2bNntP9WAiZPnoyQkBCMHj0aJ06c+KyTeG5uLry8vFBSUoLvvvuOp5SSQ8UhkQpRUVHo3LkzHB0dq7yuoaGBo0ePonnz5li2bBmOHDnCcUJCuCUnJwdtbW2+YxBCCOHA0aNHK71+/PjxZ+9VKC0tRWJiIq5fvw4rKysu4smU0aNH4+LFizhx4gSMjY1hY2MDAIiMjMTgwYMRGhqK/Px8jBs3DgMGDOA5bf2j4pBIhbdv31bq0KigoAAAlQ5DVlRURI8ePXDt2jU+IhJCCCGESISnp6f4zEKGYRAZGYnIyMhqx7MsCyUlJdpqIyE+Pj7o3LkzNm3ahMDAQACfGgAlJydDXV0dv/zyCxYvXsxzSsmg4pBIBS0tLeTn51d6DQBPnjwR7z8EPh1MmpeXx3k+Qrjw8OFDbNy4EWFhYXj+/DmKi4urHEfHiRBCiLAsX74cDMOAZVmsXr0aZmZmGDx4cJVjFRQUoKenBycnJ+jq6nKcVDYwDIMFCxZg7ty5uH37NtLS0lBeXg59fX1YWlqKJzGEiIpDIhVatmyJ1NRU8euuXbuCZVns27cPu3btAvBpiUVQUBCMjY35ikmIxERHR6NPnz7is90aNWoEHR0dnlMRQgjhwsqVK8X/ffjwYfTp0wcrVqzgLxAB8GmLh6WlpSAbz1SHikMiFVxcXLBkyRIkJCSgTZs26Nu3L5o1a4Y9e/YgJiYG+vr6CAoKwsePHzFx4kS+4xJS75YsWYLCwkLMnj0by5YtEx9jQYhQhYWFfdV9f19lQogQpaWl8R2ByDA655BIhRcvXuD8+fOwtbVFu3btAAD37t3DyJEjkZiYCODTGTMTJ07E3r17xevyCREKNTU1mJiY4Pbt23xHIYQTIpHoq36W03m3RFaVlpZi//79uH//PgwMDPDdd9+Jj/oi9auoqAjHjx8Xb/MoKiqqchzDMII7c5WKQyL1Hj16hJycHLRs2VK8F5EQoWnUqBH69u2LP/74g+8ohHDC3t7+Xz3oCw4Orsc0hEiP1atXY9WqVQgODoadnR0AoLy8HHZ2doiOjhY/IDEyMkJsbCw0NDT4DSwwWVlZ6N27N5KTk794lqQQH1TRslIi9Vq3bs13BEIkztbWFg8fPuQ7BiGcoYPsCanatWvXoK+vLy4MAeD06dOIiopCx44dMWPGDFy5cgXnzp3Dr7/+iqVLl/KYVngWLFiApKQk2NjYYO7cuTAxMUGDBg34jsUZmjkkhBApcP/+fVhZWWHDhg2YMWMG33EIIYTwpGnTpujQoQOuXr0qfs/NzQ2nTp3C/fv30aZNG7Asi+bNm6NRo0a4c+cOj2mFp3HjxmjQoAEePXoEJSUlvuNwjmYOCS9Wr1791fcyDIOffvqpHtMQwr/bt29jwoQJ+OGHH3Dy5Ek4OjpCX18fIpGoyvHjxo3jOCEhhBAuvHnzBk2aNKn0XmhoKFq1aoU2bdoA+PRZyNLSkpZXS0BRURH69Okjk4UhQDOHhCcVjQi+5q+fENd3E1LVv4mq9mNRMw4iVEePHq3VOAUFBTRu3BidOnWCtra2hFMRwj19fX20atVKXPg9fPgQ7du3x3fffYe9e/eKx7m7u+PixYt49+4dX1EFydraGioqKoJrNFNbNHNIeHHo0CG+IxAiVSoOQCZEVnl6etbp3wDDMOjTpw927tyJVq1aSTAZIdxq06YNQkNDcefOHXTu3BlbtmwBwzBwcXGpNC4tLQ26uro8pRSuRYsWwdXVFX/++Se6du3KdxzO0cwhIYQQQni3cuVKpKWl4ejRo1BTU4OTkxMMDQ0BAJmZmQgMDMS7d+/g4eEBRUVFREVF4eHDh9DW1kZcXByaNm3K8/8DQuqHv78/BgwYAJFIBA0NDeTk5MDIyAgPHz6EgoICACAvLw/a2toYNGgQTp06xXNiYcnIyMCvv/6K3bt3Y+7cuV/c5lHxc0ooqDgkhBBCCO9SUlLQtWtXDB06FJs3b4a6unql6/n5+Zg7dy78/Pxw69YtGBsbY8GCBdi6dStmzJiBnTt38pSckPr366+/YuPGjXj9+jW6dOmCX3/9FR06dBBf37lzJ2bNmoXdu3dj6tSpPCYVnr9v8/jSagaGYVBaWspRMm5QcUikTlZWFiIjI5GVlQXgU9eu7t2701NhQggRsJEjR+L27dtISkqq9gl9eXk5TExMYG5ujpMnT6K4uBhGRkZQUVFBcnIyx4kJ4U9hYSGKi4uhpqYGOTk5vuMISl3PYBVaUyDac0ikRnZ2NmbMmAE/Pz+Ul5dXusYwDIYPH45du3ZBS0uLp4SE1B8vLy8wDIO1a9fi22+/hZeXV63vZRgGBw4ckGA6QrgXHBwMJyenagtD4NMT/a5duyIwMBDAp+Y0nTp1ojMTicxRVlaGsrIy3zEESdZ/ntDMIZEKeXl5sLKyQmJiIpSVleHk5ITmzZuDYRikpaUhICAAhYWFMDU1xc2bNz9bbkTIf03FspWEhASYmJjU+IH4n6hbKREiVVVVWFlZfbFDYO/evXHr1i28f/8ewKfz3/z9/ZGfn89FTEI4U1paisuXL+PPP//E69ev0a1bN/GDxGfPnuH169do27YtvvmG5nokITU1Fa9fvwYANGnSBEZGRjwn4gb9bSJSYf369UhMTISrq2uVs4OvX7/GzJkzcfLkSWzYsAFr167lKSkh9aNiGUrFRnahLUshpK46dOiAsLAwhIWFwc7Orsox4eHhCA0NhaWlpfi9zMxMWlFCBCciIgJjx45FZmameO9bSUmJuDiMjo7GyJEjcerUKQwbNozntMLx559/YsuWLQgMDEReXl6la+rq6nB2dsacOXME3cWUZg6JVGjdujUKCwvx+PFjyMvLVzmmpKQELVu2hJKSEhITEzlOSAghRJLOnj2LESNGQFFREePGjcOIESNgYGAA4FMBeObMGRw9ehRFRUU4ffo0hg4diry8PHz77bcYPnw4fHx8eP5/QEj9ePjwIbp27YqSkhJMmzYNtra2GDlyJDw9PXHw4EEAQHFxMRo3boxBgwbR3/16UtHgqmJrk4KCAjQ1NQEAOTk5KC4uBvBp5c+cOXOwadMm3rJKEs0cEqmQnp6OoUOHVlsYAoC8vDy6d+8OPz8/DpMRwo1hw4ZBV1cXv/76K99RCOHFsGHDsHXrVixatAi///479u/fX+k6y7JQUFDA1q1bMXToUADAmzdvsGrVKvTu3ZuPyIRIxM8//4yPHz/C398fTk5OVY5RUFCAubk57ty5w3E6YZo7dy62bdsGJSUlzJgxA2PGjEGHDh3EzX7Kyspw//59+Pj44Ndff8WWLVtQWlqKrVu38py8/tHMIZEKjRo1goWFhbjJQHWcnJwQGxuLt2/fcpSMEG4oKSlhyJAhOHHiBN9RCOFVamoqDhw4gKioKDx//hwAoKuri+7du2PChAkwNjbmOSEhkqWjowNjY2NERUWJ3xOJRJVmDgHA3d0d/v7+yM3N5SGlcNy8eRM2NjYwMDBAQEAAWrduXeP4xMREODo6IisrC1FRUejWrRtHSblBM4dEKnTp0gWhoaGIjY2FhYVFlWPi4uIQEhICe3t7bsMRwgEjIyN8+PCB7xiE8M7IyAhr1qzhOwYhvMnNzRUvqa7Jhw8fUFJSwkEiYdu7dy8YhsHx48e/WBgCgKmpKU6cOAFbW1vs3btXcMVh7dvjESJBc+bMQUlJCXr37o2ffvoJCQkJKCwsRGFhIR49eoQVK1agT58+KCsrw5w5c/iOS0i9Gz16NEJDQ/HixQu+oxBCCOGRtrY2Hj9+/MVxCQkJtSoiSc3CwsLQsWNH2NjY1PoeGxsbwR6jQzOHRCq4uLjgl19+wU8//YS1a9dW2Y2UYRisWbMG/fr14yEhIZK1ZMkS3Lp1Cz179sT69esxYMCAGvfgEiJkGRkZeP78OYqKiqodU11HU0L+6xwcHHDs2DEEBwejV69eVY7x8/PD48ePMWPGDI7TCc+LFy9gZWVV5/tat26N8+fPSyARv6g4JFJjyZIlcHR0xM6dOxEREYFnz54BAPT09NCjRw/MmDGjUvtyQoTE1NQU5eXlyMzMxIgRI8AwDLS1taGkpPTZWIZhkJKSwkNKQiTr4MGD+Pnnn5GRkfHFsXTWJxGqxYsXw9fXF0OGDMH69evFDZiAT10z/fz8MH/+fKiqqmLu3Lk8JhUGJSUlFBQU1Pm+wsJCKCoqSiARv6ghDSGESAGRqG6r/CtabRMiFIcOHcLEiRMBAO3bt4eJiQkaNGhQ43hChOrcuXPw8PCotmhRUlLC8ePHMWjQII6TCY+lpSXS09Px/PlzcXfSLykrK4Ouri4MDQ0RGxsr4YTcoplDQgiRAlTsEVm3ZcsWfPPNNzh9+jR94CUyb8iQIbh//z62bt2Ka9euIS0tDeXl5dDX14ejoyPmzZuHFi1a8B1TEPr374+ff/4ZGzZswI8//lirezZu3Ig3b94IclkvzRwSqfDy5UskJibC1NQU3377rfj9lJQULF26FPfv34ehoSGWL1/+VevCCSGESDclJSXY2tri+vXrfEchhFcXLlyAvLw89VjgSE5ODlq0aIH8/HysXLkSS5YsqXYGsaysDOvXr8fy5cuhqamJ5ORkaGpqcpxYsqg4JFJhzpw52LFjBxISEmBiYgIAyM/Ph6mpKV69eoWKv6bKysqIj49Hq1at+IxLSL3x9/fHuXPnkJmZCUVFRXTs2BETJkyAkZER39EI4ZSenh7s7OzorE8i8+Tk5ODk5IQrV67wHUVm3LhxA/3790dJSQn09PTg6uoKCwsLaGlpAQCys7MRGxuL06dPIysrC/Ly8vD394eDgwPPyesfFYdEKnTu3BmlpaW4d++e+L0dO3Zg9uzZcHd3x4oVK3D58mXMnTsX3333Hfbu3ctjWkLqx5gxY8QfhCt+FDMMA0VFRZw4cYKW1hGZMm3aNFy6dAlPnjyhTr1Epuno6MDBwQF//PEH31FkSkxMDMaPH49Hjx6BYZjPrlf8nm7dujWOHj1a7bnc/3VUHBKpoK2tDWtr60otgZ2dnREcHIxnz56hSZMmAD4VkR8/fkRCQgJfUQmpFwcOHMDkyZPxzTffwMPDA507d8a7d+9w6dIlREdHo2HDhkhPT4e6ujrfUQnhRE5ODqytrWFhYYGdO3cKbqkWIbXl5uaG2NhYJCcnV1mkEMm6cuUKLl++jLt37+LNmzcAgMaNG6NTp05wcXFBv379BP3nQsUhkQrKysoYMmQIjh8/DuDTmm5NTU20a9cO0dHR4nGjR4/GpUuX8O7dO76iElIv7OzsEBUVhYCAAPTu3bvStQkTJuDo0aPYv38/JkyYwFNCQrjl5eWF3NxcnD9/Hg0bNkSXLl2gr69fZSdfhmFw4MABHlISInnJycmwtLSEp6cn1q9fX+WRRoRICnUrJVJBT08Pjx49Er+OiIjA+/fvYW9vX2lcaWkpFBQUOE5HSP27d+8erKysPisMAeDHH3/EkSNHKi2zJkToDh8+LP7vvLw8BAUFVTuWikMiZMePH4eLiwt27tyJEydOoE+fPjA0NKz23NuffvqJh5REqKg4JFLB2toax48fx7Zt29C7d28sW7YMDMNg4MCBlcYlJCSgadOmPKUkpP7k5+dX24a84v38/HwuIxHCq+DgYL4jECIVVq5cCYZhwLIsXr16VePeQyoOSX2j4pBIhSVLluDs2bOYN28egE+bfnv16gUbGxvxmLS0NDx8+FB8SDIh/2Usy1bbKrtiGR2dfUhkSc+ePfmOQIhUOHToEN8RiAyj4pBIhXbt2iEiIgLbt2/H69ev0aVLFyxYsKDSmICAAHTq1AlDhgzhJyQhhBBCiISNHz+e7whEhlFDGkII4YFIJPrqbmcMw6C0tLSeExFCCCFE1tHMISGE8ORrn83RMz0iBMbGxmAYBtevX4eRkRGMjY1rfS/DMEhJSZFgOkIIkU1UHBJCCA9oPyGRdWlpaQCAkpKSSq8JIZ8eAvr4+OD8+fNITk7Gu3fvqnwwSA9KSH2jZaWEF9U14qgNWlJHCCGEEKEqLi5G//79ERQUVO1KkYpupgA9bCT16/OTZQnhAMuyX/1FPwQJIYQQIlSbN2/GjRs3MGDAACQnJ8PDwwMMw6CoqAgJCQlYuXIlVFVVsWDBAvpMROodzRwSQgghhHeNGjVChw4dEBoayncUQnhlZmaGp0+fIj09HaqqqpgwYQKOHj2KsrIy8Zjw8HD06tULv/32G7y8vHhMS4SGZg4JIYQQwrvS0lLo6+vzHYMQ3j1+/Bhdu3aFqqoqgP9/9u3fi8MePXqge/fu2L17Ny8ZiXBRcUgIIYQQ3rVr1w5ZWVl8xyCEd3JyclBXVxe/rigSs7OzK41r2rQpEhMTOc1GhI+KQ0IIIYTw7vvvv0dERAQiIiL4jkIIr5o2bYqnT5+KX7ds2RIAcPPmzUrj/vrrL6ipqXGajQgfHWVBCCGEEN7Z2tpi0qRJcHZ2xqRJkzBw4EAYGhpCSUmpyvGGhoYcJySEG1ZWVvDz80NRUREUFRXh4uKCOXPmYPbs2VBSUkLTpk3x22+/ISEhAQMHDuQ7LhEYakhDCCGEEN6JRCJxe36GYWocS0caESG7fPkyJk2ahN9++01c/M2bNw9bt24V/9tgWRaqqqqIi4uDiYkJn3GJwFBxSAghhBDe2dvbf7Eo/Lvg4GAJpiFE+pw4cQLnzp1DTk4OTExM8MMPP6BVq1Z8xyICQ8UhIYQQQgghhBBqSEMIIYQQQgghhIpDQgghhEih5ORkREdHIykpie8ohPDi4cOHmDNnDrp37w5TU1MsXLhQfC0qKgo7duzA27dveUxIhIiKQ0IIIYRIhaKiIvz4449o0qQJWrduDVtbW6xfv1583dvbG+bm5oiPj+cvJCEc2LJlC8zMzLB9+3ZER0fj8ePHeP36daUxc+bMwalTp3hKSISKikNCCCGE8K6wsBD29vbYsGEDFBQU4OLign+2RXBwcMDdu3dx8uRJnlISInmXL1/G/PnzYWBggLNnz+LVq1ef/VuwsbGBlpYWzp8/z1NKIlRUHBJCCCGEdxs3bsStW7fg5eWFJ0+e4OLFi5+N0dPTQ9u2bXH9+nUeEhLCjS1btkBVVRXXrl3DkCFD0KRJkyrHmZmZITExkeN0ROioOCSEEEII73x9fWFoaIg9e/ZUe/A9AJiamiIzM5PDZIRwKy4uDlZWVjA2Nq5xXJMmTfDixQuOUhFZQcUhIYQQQniXmpoKCwsLfPPNNzWOU1BQQE5ODkepCOFecXExGjRo8MVxr169+uK/F0LqiopDQgghhPBOWVm5VkVfamoqNDU1OUhECD+MjIxw9+7dGscUFxfjr7/+gomJCUepiKyg4pAQQgghvDMzM0NsbCyys7OrHZOamoo7d+7A0tKSw2SEcGvQoEFIS0vDli1bqh2zceNGZGdnY9iwYRwmI7KAikNCCCGE8G7y5Ml49+4dRo8e/VnLfgDIzc2Fl5cXSkpK8N133/GQkBBuLFy4EE2bNsWCBQswatQonDhxAgDw8uVL+Pn5Ydy4cVixYgWMjIwwc+ZMntMSoWHYf/bGJYQQQgjhgbu7O06cOAE1NTXY2NggMDAQrVq1QuvWrREaGor8/HyMGzcOhw8f5jsqIRKVlJSEESNG4P79+2AYBizLgmEYAADLsmjbti3OnTuHli1b8pyUCA0Vh4QQQgiRCizL4n//+x82bdr02eyhuro6Fi5ciMWLF4s/JBMiZOXl5bh48SICAwORlpaG8vJy6Ovrw9HREcOHD4ecnBzfEYkAUXFICCGEEKlSVlaG27dvV/pAbGlpCQUFBb6jEUKIoFFxSAghhBBCCCEEdDgKIYQQQngnJycHT09PHDhwoMZxkydPxqFDh1BaWspRMkIkKyMj41/db2hoWE9JCKHikBBCCCFSgGVZ1HYxEy16IkLSvHnzr95HyzAMPSgh9YqKQ0IIIYT8Z+Tl5UFRUZHvGITUGxMTkzoXhxkZGSgsLJRQIiLLqDgkhBBCCC/+uZzu/fv31S6xKy0tRWJiIgIDA9GiRQsu4hHCiUePHtV67O3bt7FixQokJiYCAP1bIPWOGtIQQgghhBcikajS2W21mT1hWRbbtm3DDz/8IOl4hEiNv/76CytWrMCFCxfAsiyMjIywbNkyjBs3jo60IPWKZg4JIYQQwgs7OztxQRgaGgptbW20bt26yrEKCgrQ09PDoEGDMHToUC5jEsKbBw8eYOXKlfDz80N5eTmaNWuGpUuXwtPTE998Qx/jSf2jmUNCCCGE8E4kEsHT0xMHDx7kOwohvHv06BFWrlyJ06dPo7y8HAYGBvjxxx8xceJEKgqJRNHfLkIIIYTwLjU1FWpqanzHIIRXycnJWLlyJU6ePImysjI0bdoUP/74IyZNmgR5eXm+4xEZQDOHhBBCCJFqCQkJePDgAQwMDNCtWze+4xBS71JSUrB69WocP34cpaWl0NXVxZIlS/Ddd99BQUGB73hEhoj4DkAIIYQQ4uvrCwcHB9y6davS+wsWLED79u0xatQo2NjYYOjQoSgrK+MpJSH1z8vLC23atIG3tzeaNGmCbdu24cmTJ5g5cyYVhoRzNHNICCGEEN4NHDgQkZGRePHihfgDcVRUFGxtbdGwYUP0798fN2/eRFpaGg4dOoRx48bxnJiQ+lHRtVdZWRlDhw6FsrJyre9lGAb79u2TYDoia6g4JIQQQgjvjIyM0KxZM4SEhIjfmzZtGn777TdcuXIFTk5OePv2LYyMjNCpUyeEhYXxF5aQeiQSff1CPoZhaCad1CtqSEMIIYQQ3r169Qo2NjaV3gsODoa2tjacnJwAAI0aNYKdnR3i4uL4iEiIRBw6dIjvCISIUXFICCGEEN4pKysjPz9f/Pr58+dISkrCyJEjK43T0NBATk4O1/EIkZjx48fzHYEQMWpIQwghhBDeGRsbIzw8HLm5uQAAHx8fMAwjnjWs8OLFC2hra/OQkBDJyMrK+up7Fy9eXI9JCKHikBBCCCFSwNPTE/n5+ejSpQuGDx+OZcuWQU1NDYMHDxaPKSkpQWxsLExMTHhMSkj96tWrF168eFHn+2bMmIFNmzZJIBGRZVQcEkIIIYR3kydPxvDhw5Gamgo/Pz/Iy8tj3759aNy4sXjMpUuXkJeXBwcHBx6TElK/Hj9+jF69euHly5e1Gs+yLMaPH489e/ZATU1NwumIrKFupYQQQgiRGmlpacjOzkbr1q3RoEGDStfi4+ORnp4OKysrfPvttzwlJKR+jRo1CqdOnUKbNm3ETZiqU1paCjc3N5w9exaampq4cuUKunbtymFaInRUHBJCCCGEEMKTsrIyuLm54cyZM2jXrh2Cg4PRpEmTz8Z9/PgRQ4cORUBAALS1tREYGIiOHTvykJgIGRWHhBBCCCGE8KisrAwjR46En58fOnTogKCgoEpLqt+/f4/+/fsjPDwc+vr6uH79Ou29JRJBxSEhhBBCeOfl5VXrsQzD4MCBAxJMQwj3SktL4erqivPnz8PMzAw3btyApqYm3r59i759+yI2NhYtWrTA9evX0axZM77jEoGi4pAQQgghvBOJvtwjj2EYsCwLhmFQVlbGQSpCuFVaWooRI0bgwoULMDc3x9GjRzFq1Cg8ePAA7dq1w7Vr16Cjo8N3TCJgVBwSQgghhHehoaFVvl9eXo7MzEwEBgbixIkTmD17NgYOHIiePXtynJAQbpSUlGD48OG4dOkSRCIRysvLYW5ujoCAgEpLTQmRBCoOCSGEEPKfcPz4cYwfPx7Xr1+HnZ0d33EIkZiSkhIMGzYMly9fhq2tLS5fvvxZ915CJIGKQ0IIIYT8Z3Tu3BmampoICgriOwoh9UJOTu6r72UYBqWlpfWYhsi6Ly/wJ4QQQgiREq1atUJsbCzfMQipNyzLfvVXeXk53/GJwHzDdwBCCCGEkNooLy/HX3/9VavmNYT8V1CBR6QJ/XQlhBBCiFQrKChAfHw8Ro8ejeTkZGpGQwghEkJ7DgkhhBDCu9rsu2JZFlpaWggPD6cDwAkhRAJoWSkhhBBCeGdgYACGYaq8pqCgAF1dXfTs2RMzZsyAtrY2x+kIIUQ20MwhIYQQQgghhBDac0gIIYQQQgghhIpDQgghhBBCCCGgPYeEEEII4cHRo0f/1f3jxo2rpySEEEIq0J5DQgghhHBOJBJV24CmJizLgmEYlJWVSSAVIYTINpo5JIQQQgjnli9f/lXFISGEEMmhmUNCCCGEEEIIITRzSAghhBB+BAUF4enTp7CwsEDbtm1rHPvw4UPExsbCwMAAvXr14ighIYTIFpo5JIQQQgjnMjMzYWJiAgMDA8TFxaFBgwY1jn/37h0sLCzw9OlTJCcnQ09Pj6OkhBAiO+goC0IIIYRwbv/+/SguLsbGjRu/WBgCQIMGDbBp0yYUFhbiwIEDHCQkhBDZQzOHhBBCCOGcjY0Nnjx5ghcvXtTpPl1dXRgZGSEqKkpCyQghRHbRzCEhhBBCOPfo0SNYWlrW+T4LCwskJiZKIBEhhBAqDgkhhBDCuQ8fPkBdXb3O96mrq+P9+/cSSEQIIYSKQ0IIIYRwTlNTEy9fvqzzfS9fvoSmpqYEEhFCCKHikBBCCCGca9u2LW7evInCwsJa31NQUIDo6OgvHntBCCHk61BxSAghhBDODRgwAB8+fMCaNWtqfc+aNWtQWFiIgQMHSjAZIYTILupWSgghhBDOFRQUoEWLFnj16hVWrVqFH3/8ESJR1c+sy8vL8csvv2DFihXQ0dHB48ePoaKiwnFiQggRPioOCSGEEMKLqKgo9OnTB0VFRdDX14erqyvMzc2hpaUFAMjOzsbt27dx6tQpPH36FIqKirhx4wasra15Tk4IIcJExSEhhBBCeBMfHw8PDw88ePAADMN8dr3iY0q7du3g7e2NTp06cR2REEJkBhWHhBBCCOHd1atXcfnyZcTHx+PNmzcAgMaNG8PMzAz9+/dH3759eU5ICCHCR8UhIYQQQgghhBDqVkoIIYQQQgghhIpDQgghhBBCCCGg4pAQQgghhBBCCKg4JIQQQgghhBACKg4JIYQQQgghhICKQ0IIIYQQQgghoOKQEEIIIYQQQgiA/wMWL2f0n5oymwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est.completed_trials_summary_[est.completed_trials_summary_[\"Step\"].str.contains('Model Selection')]\n", "name_of_score_column = f\"Score ({est._inferred_score_metric[0].name})\"\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "models = trials['Algorithm'].tolist()\n", "colors = []\n", "\n", "y_margin = 0.10 * (max(scores) - min(scores))\n", "s = pd.Series(scores, index=models).sort_values(ascending=False)\n", "s = s.dropna()\n", "for f in s.keys():\n", " if f.strip() == est.selected_model_.strip():\n", " colors.append('orange')\n", " elif s[f] >= s.mean():\n", " colors.append('teal')\n", " else:\n", " colors.append('turquoise')\n", "\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Algorithm Selection Trials\")\n", "ax.set_ylim(min(scores) - y_margin, max(scores) + y_margin)\n", "ax.set_ylabel(est._inferred_score_metric[0].name)\n", "s.plot.bar(ax=ax, color=colors, edgecolor='black')\n", "ax.axhline(y=s.mean(), color='black', linewidth=0.5)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "3d5ef338", "metadata": {}, "source": [ "\n", "#### Hyperparameter Tuning\n", "\n", "Hyperparameter Tuning is the last stage of the AutoML pipeline, and focuses on improving the chosen algorithm's score on the dataset. We use a novel algorithm to search across many hyperparameters dimensions, and converge automatically when optimal hyperparameters are identified. Each trial in the graph below represents a particular hyperparameters configuration for the selected model." ] }, { "cell_type": "code", "execution_count": 17, "id": "5af6006c", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:01:50.838771Z", "iopub.status.busy": "2025-05-22T12:01:50.838255Z", "iopub.status.idle": "2025-05-22T12:01:51.130136Z", "shell.execute_reply": "2025-05-22T12:01:51.129499Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4cAAAKBCAYAAADkw94/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJyklEQVR4nOzdeXgUVdr38V9nTwjpJCSELQmELSirAQUxA7gMqIPK4qAjz4A48jIKgjjjjMu4L486IsryOOKIu6CiAhNUZBWBsAqRIGFNkEVIyL5v9f4B6UmTzko61ZDv57pyXeRU1am7uu8ucvepOmUxDMMQAAAAAKBZczM7AAAAAACA+SgOAQAAAAAUhwAAAAAAikMAAAAAgCgOAQAAAACiOAQAAAAAiOIQAAAAACCKQwAAAACAKA4BAAAAAKI4BAAAsLFYLLJYLFq3bp3ZobiE5ORk22uSnJzcqH137NhRFotF7777bqP2C6DhKA4BQNJTTz1l+wOoNpX/WOKPGpjhqaee0lNPPdXof6w3pqFDh9o+J/X9mThxotnhXzQmTpzY4Nd56NChZocPwMV4mB0AAACon6efflrS2QKsY8eO5gZTjeDgYIWFhVVpLy4uVkZGhiQpKChIXl5eVdaxWq1Oj6863bt3lyT5+fmZFkN9WK1Wh69zWVmZ0tLSJEkBAQHy9fWtsk5wcHCt/Xt6etpeE09PzwuMFoCrozgEAACN7osvvnDYvm7dOg0bNsy2jquNXu3bt8/sEOrl9ddf1+uvv16lPTk5WZ06dbKt09DR2Pbt2190rwmAhuOyUgAAAAAAxSEANJZ9+/bZ7uXZunVrjev+z//8T5V7fs6f+OHAgQOaOHGiOnToIG9vb0VERGjKlCk6ceJEjX2Xl5fro48+0k033aSwsDB5eXkpNDRUv/3tb/XJJ5/IMAyH21WeHCI3N1dPPPGEevXqpZYtW9pNRlFxf2ZF7J9++qmGDBmi4OBgtWjRQjExMZo7d67Kysoc7ic/P1+ffPKJ/vjHP6pv374KDQ2Vt7e32rVrp9tuu01ff/11tcf27rvvymKx2C6lXLt2rW677Ta1bdtW7u7udqMjR44c0UsvvaQRI0aoW7duatGihfz9/XXZZZdpxowZOnr0aLX7qbhf7qmnnlJpaalee+019evXT/7+/mrdurVuu+027d692+6YnnvuOfXs2VMtWrRQq1atNG7cOB06dKjafUhnL7GcP3++hg0bppCQEHl5ealNmza69dZbHb4OFfeXVRg2bJjdPWSOLjF1dj40trpMCFP5/alp+5ycHD3++OOKjo6Wr6+vWrVqpd/97nfasmVLvfd//ufz1KlTmj59ujp16iQfHx+FhYXpjjvuqHWULSUlRffcc4/tc92hQwfdfffdOnjwoFMnfzlfRS5NnDhRhmHo7bff1jXXXKNWrVrZ3U9dW0zx8fH629/+ptjYWEVGRsrHx0eBgYEaOHCgXnrpJeXm5jYovoKCAv3zn//UoEGDFBQUJE9PT4WGhuqyyy7ThAkTtGTJkgs4egDVMgAAxpNPPmlIMupyWjxy5Iht3YULF9otGzJkiCHJuOeee6rdPj093fDx8TEkGR999JHDfhctWmS0bNnSkGT4+/sbvr6+tmXBwcHGjh07HPZ95swZ4ze/+Y1tXUmG1Wq1+/2WW24xioqKqmwbGRlpSDL++c9/Gt26dTMkGV5eXkZgYKAhyThy5IjdazVkyBDj4YcfNiQZFovFCAoKMtzc3Gz7GT58uFFYWFhlPwsXLrStY7FYDKvVavj5+dnF+NBDDzk8voptIyMjjdmzZxsWi8V2jJ6ensaECROqvBcVx9GqVSu7+KxWq7FhwwaH+6nY9tFHHzWuu+46Wx8tWrSwbe/v729s27bNSEtLM/r162dIMnx8fOzeq9atWxspKSkO95GcnGxcfvnlVV6Lyq/DlClT7LZ54IEHjLCwMNvyoKAgIywszPbTv3//Js+H+lq7dq1t32vXrq2yvKZlFSrenyeffLLa7T/++GOjS5cutvelco55eXkZ3377rcO+q9t/5c/nf/7zH6N169aGJMPPz8/w9va2LQsICDB27drlsO9NmzbZPteSDF9fX8Pf39+23aeffmpb1tDX11G855+nDMMwJkyYYEgy/vjHPxpjxowxJBlubm62z3HFNpX7cRRT5Vzy8/MzgoKC7Nouu+wy49SpUw5jrMix8+PLzs42+vTpY/fZCAwMNDw8PGxtkZGRF/T6AHCM4hAAjMYrDhctWmRIMlq0aGFkZ2c73P6NN94wJBmtWrWyK54q92u1Wo3evXsbW7ZsMQzDMMrLy41vv/3WiIiIMCQZERERVfovLS21/dHct29fY/ny5UZeXp5hGIaRm5trvPfee7Y/aGfMmFElroo/1Pz9/Y02bdoYX375pVFcXGwYhmH88ssvtr4qXquKImPq1KnG6dOnDcMwjKysLOPZZ5+1FW0PPvhglf189dVXxl/+8hfjhx9+sPVpGIZx4sQJ4+mnnzY8PT0NScbSpUurbFtRHPr4+Bju7u7GxIkTjaNHj9qO/+DBg7Z1p0+fbsybN8/Yv3+/UVZWZhiGYZSUlBhbtmwxRowYYUgy2rVrZ+Tn51fZT8XrGBgYaLRq1cr47LPPjOLiYqO8vNzYunWrERUVZUgyrr76amPUqFFGx44djW+//dYoKyszysrKjFWrVhmhoaGGJOOuu+6q0n9ubq4RHR1tSDKGDh1qrFu3zpYLmZmZxqxZs2xFw+zZs6tsX5cCqqnyob6aqjgMCgoyLrvsMmPNmjVGWVmZ7b3r3r27rbioyIu67L/y5zMoKMgYPHiwsW3bNsMwzubVd999Z7Rt29aQZMTGxlbpNyMjw7Y8KirKWLNmjVFeXm4YhmFs3brV6NOnj11h1VTFob+/v+Hh4WH885//NLKysgzDMIycnBzjxIkTVfpxFNPIkSONxYsXGydPnrS15efnG1988YXttR41apTDGKsrDp999llDOvtF2JIlS2yfjbKyMuP48ePG+++/b9x7770NeFUA1IbiEAAM++Kw8kiMo5+QkJBq/+gqLi62/cH95ptvOtxXr169DEnGzJkz7dor/xHWqlUrh9+279271/Dy8jIkGS+//LLdsvfff9+QZERHRxuZmZkO9719+3bDYrEYXl5eVfqv+EPN3d3d2LlzZ51eq//5n/9xuM7jjz9uSDI8PDyM48ePV9uXI6+88oohybjuuuuqLKs86jh69Oh69VtZaWmp0bt3b0OS8cEHH1RZXnnU0dHo4urVq+1Gfw4cOFBlnX//+9+25RVFVYVnnnnGkM6Ovp6/rMIXX3xhSDJCQkKMkpISu2V1KaCaKh/qq6mKw9DQUIefoYSEBNs6P/zwQ533X/nzGR0d7fBLhWXLltnW+eWXX+yWVRQ8Pj4+DvMlNTXV7tzSVMWhJOONN96oUz/1jenYsWOGt7e3YbFYHI6gV1cc3njjjYYk44UXXqjX/gBcOO45BIDznDp1qsafiunhHfH09NQ999wjSXrrrbeqLI+Pj9dPP/0kSZo8eXK1/UyZMkWtW7eu0t6jRw+NHTtWkrRo0SK7Zf/+978lSX/+85+rfRRATEyMLr/8chUXF2vt2rUO1xkxYoT69etXbWyVPfHEEw7b//rXv8rX11elpaX1vjfo5ptvliRt3ry52vsWJemRRx6pV7+Vubu7a8SIEZKkH374odr1rrnmGl1zzTVV2ocMGSJvb29J0tixY9WlS5cq6wwfPlzS2XunDhw4YLes4r2aOXNmtY8HuO222xQQEKC0tDTt2LGjDkdlz4x8cCWTJ092+Bnq1auXbRbPhISEBvX90EMPOXw0xI033mh7NEfF57zCZ599JkkaN26cw3wJCQnRn//85wbFcyGCgoL0//7f/3NK3+3bt1efPn1kGIY2bdpU5+0CAwMlSSdPnnRKXACqR3EIAOcxzl5VUe3PkSNHatx+8uTJcnNz086dO7Vz5067ZQsWLJB0trioeHaYI9dee22tyxISElRSUiLp7DPN4uPjJZ2dMKZNmzbV/iQlJUk6OzGGI4MHD67x+CqEh4c7/CNXOvtctZiYGEnS9u3bqyw/deqUnnzySQ0aNEitWrWSh4eHbdKLyy67TNLZSV4qnod3Pl9fX11xxRW1xrhhwwZNnDhR0dHR8vf3t5u85eWXX5YkHTt2rNrtr7zySoft7u7uCgkJkSQNGDDA4TqVnz1X+TiOHz9ue+3vueeeat+ntm3b2ibzqO69qo4Z+eBqrrrqqmqXtWvXTpKUnp7eqH17eHgoNDS0St/FxcVKTEyUdPazXx0zHusxYMAAh8+arKvy8nJ9/PHHuuWWWxQRESFfX1+7z1nF5Fw1fc7O97vf/U6SNHfuXN1555366quvavxSDkDj4TmHANDIOnbsqOHDh+vrr7/WW2+9pTfffFOSlJ2drcWLF0tSrd/Ut2/fvtZlpaWlSk9PV1hYmNLT01VUVCRJ1RZU58vPz3fY7mi0pb4xVl5++vRpu/bNmzfrpptuUmZmpq3N399ffn5+slgsdg/vzsvLsxVhlbVq1UpubjV/v/m3v/3NVgBKZwu6yg9dz83NVV5envLy8qrto2XLltUu8/DwqHGdiuWSbEW8JLvZZuv6B29171V1zMgHV1OX967y++LMvtPT022j4BWFqSO1faac4ULe3/z8fP3ud7+zG3X28vJScHCwbUQ8PT1dJSUlNX7OzveHP/xBW7du1Zw5c7Ro0SLbVRJdunTRb3/7W02aNMn25ROAxsXIIQA4QcXlYR9//LHtj6KKf7dq1UqjR49u1P1Vvvzy66+/rnX00zAMh48BkM4WUc5SWlqqO++8U5mZmerbt69WrFih7Oxs5eTk6NSpU/r1119tI16Sqn3MQm0xfvfdd7bC8L777tNPP/2koqIipaen69dff9Wvv/6qBx98sMZ9OEvl9+rnn3+u03tV3weYXyz50BxVfhSJK7iQ9/f555/X2rVr5evrq9dee00pKSkqLCzUmTNnbJ+zilHW+n7OZs+eraSkJL3wwgu68cYbFRgYqIMHD2r+/Pnq37+/ZsyY0eC4AVSP4hAAnOCmm25SeHi4cnJybN96V1xSOnHiRNv9atU5fvx4rcs8PDwUHBwsSbZLM6X6X4LYUDXFWHl55ZGJzZs3KyUlRe7u7vrPf/6jG2+8scoozK+//nrBsVW85sOHD9e8efPUs2fPKn8EN8Z+GqJNmza2fzvrvTIjHxpLxftUWFhY7TpZWVlNFU6jCA4Oth1XTc8pre0z5WoqPmdPPPGEZsyYoYiIiCrF74V8zrp06aJHHnlEK1as0JkzZ7R582bddtttkqTXX39dy5Yta3DfAByjOAQAJ3B3d7dNOPPWW2/Z3X9Y00Q0FaqbHKTyst69e9su3fL09LTdH7d8+fILir2ufvnll2of8p6Tk2ObRKV///5220hSaGhotZfQrVq1qlFik1TtRCqGYWjNmjUXvJ+G6Nixo+3YG/peVfwBXt1ojBn50FiCgoIk/fc9PF9OTo5+/vnnpgzpgnl5eenyyy+XJK1bt67a9Wpa5opq+5wlJyfr4MGDjbIvNzc3DRw4UJ9//rkiIiIknb1CAEDjojgEACe555575OHhoa1bt9ouYRwyZIi6detW67Zvvvmmw/vRkpKS9Pnnn0s6O+thZRVF54oVK7RixYoa+2/oRBzne/bZZx22v/rqqyooKJCHh4fGjBlja6+YNbNi5tfzHTt2TG+88cYFx1Wxn927dztc/uabb+rw4cMXvJ+GuvfeeyWdnVH0xx9/rHFdR+9VQECAJNndt3k+M/KhMfTp00eSqp3l9p///KftfsqLScUsw4sXL3b4pcqZM2ds9ydfLGr7nP39739vUL81vb/u7u62+4Zru+8YQP3xqQIAJ2nbtq1uvfVWSdL3338vqfaJaCqUlJTohhtu0LZt2ySdHSFatWqVhg8frqKiIoWHh2vKlCl224wfP17XX3+9DMPQqFGj9Nxzz9ldwpaXl6e1a9fq/vvvV1RU1AUfn9Vq1Xvvvafp06fbCtmcnBy98MILeuaZZyRJ999/v90EHNdcc41atGghwzD0+9//Xvv375d09h65b7/9VkOHDm2Ue7IqHlPx9ddf69lnn7Xd95mZmakXXnhB06ZNU6tWrS54Pw310EMPqVevXiosLNSwYcM0d+5cnTlzxrY8MzNTX3/9tf74xz8qNja2yvY9e/aUJH300UfVTiTT1PnQWO68805J0rfffqsnn3xS2dnZks5O3vPoo4/queeesz3q4GIydepUhYWFqbCwUCNGjND69ettI7/bt2/XDTfcoNLSUpOjrJ+Kz9lzzz2nL774whb/kSNH9Ic//EGffvqpbSS4Pq666io98MADWrdund1ENidOnNC0adNso5E33XRTIxwFADvOeHgiAFxsKj/YvTa1PVy6slWrVtk92L6wsLBO/S5atMho2bKlIcnw9/c3/Pz8bMsCAwONbdu2OewjKyvL+N3vfmdbV5IREBBgBAYGGhaLxdbm4eFRZdvqHkh9vorXasiQIcbDDz9sSDIsFosRFBRkuLu72/Zx/fXXGwUFBVW2/7//+z+7+Pz9/Q0fHx/bA98rP0j8/IduL1y40JBkREZG1hhjcXGxERsba+unIj43NzdDknHzzTcbjz/+uO04zlfTQ9br83pV7N/RA92PHz9uDBw40C7GwMBAIyAgwO716dKlS5VtP/jgA9tyT09Po3379kZkZKQxePBgu/WaIh/qa+3atTW+LqWlpcawYcOqvHcWi8WwWCzGK6+8UuP7U1PfFRqyfV0fBl/T67ZhwwbD39/f1o+fn5/t98DAQOOzzz6zLTt58mS1+6iL2s5TEyZMMCQZEyZMqHM/5x93cnKyERYWZpdHVqvV9vsLL7xQ42td3WtV0V75c9GiRQu7PH7wwQfr94IAqBNGDgHAia699lrbpDF1mYimwlVXXaXt27frj3/8o6xWq0pLS9W+fXvde++9+umnn+zu46ssICBAy5cv14oVKzRu3DhFRESoqKhI+fn5at++vX7729/qxRdftD3b7kK99NJLWrRoka655hoZhiEvLy/17dtXr7/+ur755hv5+PhU2WbKlCmKi4vT0KFD5e/vbzu2adOmaffu3erVq9cFx+Xp6amVK1fqySefVLdu3eTp6SnDMHTllVfq//7v/7Rs2TLTZ+Fs166dfvjhB33yySe65ZZb1LZtW+Xn56u4uFgdO3bUyJEjNXv2bNuoc2Xjx4/XBx98oGuuuUZ+fn46efKkUlJSqjxLrqnzoTG4u7srLi5OTz/9tKKjo+Xl5SWLxaLf/va3+u677/SXv/zF7BAb7JprrlFCQoLuvvtutWvXTqWlpQoMDNSkSZO0c+dOde7c2bbuxTA6GhkZqe3bt+uee+6xXSHg4+Oj3/3ud/r222/1yCOPNKjfRYsW6emnn9Z1112nTp06qbi4WCUlJYqMjNS4ceO0evVqzZo1qzEPBcA5FsNo4jm8AaAZ2bFjh62QS0pKqvF+w+TkZHXq1EnS2cuyOnbs2BQh1ttTTz2lp59+WkOGDLnoJtAAXNmCBQs0efJkRUVFVTvZEwA4EyOHAOBEc+bMkXR2BLEuE9EAaJ4KCws1e/ZsSf+9lw8AmhrFIQA4yYoVK/Thhx9K0kV9KRyAxrFo0SI9/vjj2rNnj4qLiyVJpaWl+v7773Xttddq79698vHx0fTp002OFEBz5WF2AABwKTl27JiuueYa5efnKzU1VZL0u9/9TjfeeKPJkQEw26+//qrnn39ezz//vCwWi4KCgpSbm2srFL28vLRw4UKuMgBgGopDAGhEpaWlSklJkcViUYcOHTR27NhqnwUIoHn53e9+p9TUVK1bt04pKSlKS0uTp6enoqKiNGzYMM2YMYPCEICpmJAGAAAAAMA9hwAAAAAALiu9JJWXl+vEiRNq2bKlLBaL2eEAAAAAMIlhGMrJyVG7du3k5lbz2CDF4SXoxIkTCg8PNzsMAAAAAC7il19+UYcOHWpch+LwEtSyZUtJZxMgICDggvtLL0iXJAX7Bl9wX4Aj5BiaAnkGZyPH4GzkGBoiOztb4eHhthqhJhSHl6CKS0kDAgIapTgs9Sw925/vhfcFOEKOoSmQZ3A2cgzORo7hQtTldjMmpAEAAAAAUBwCAAAAACgOAQAAAACiOAQAAAAAiOIQAAAAACCKQwAAAACAKA4BAAAAAKI4BAAAAACI4hAAAAAAIIpDAAAAAIAoDgEAAAAAojgEAAAAAIjiEAAAAAAgikMAAAAAgCgOAQAAAACiOAQAAAAAiOIQAAAAACCKQwAAAACAKA4BAAAAAKI4BAAAAACI4hAAAAAAIIpDAAAAAIAoDgEAAAAAojgEAAAAAIjiEAAAAAAgikMAAAAAgCgOAQAAAACiOAQAAAAAiOIQAAAAACCKQwAAAACAXLw4LCgo0BNPPKFu3brJx8dH7dq106RJk3T8+PF695WRkaHp06crMjJS3t7eioyM1IwZM5SZmelw/XfffVd33HGHevTooeDgYHl5ealdu3YaO3asNm7c6HCbHTt26KmnntLVV1+twMBAeXl5KTw8XOPHj1dCQkKN8SUmJur2229XaGiofH191atXL82ePVvl5eX1PlYAAAAAqC+LYRiG2UE4UlhYqGHDhik+Pl5t27ZVbGyskpOTtXXrVoWGhio+Pl5RUVF16istLU2DBg3SwYMHFRUVpf79+ysxMVGJiYnq1q2bNm/erODgYLtt+vfvr927d6tXr17q0KGDfHx8lJSUpISEBFksFs2fP19TpkyxrV9aWipPT09JUnBwsK666iq1aNFCP/74ow4dOiQvLy999NFHGjt2bJX4Nm/erOuuu04FBQW68sor1bFjR33//ff69ddfdfvtt2vx4sWyWCx1fu2ys7NltVqVlZWlgICAOm9XnfSC9LPH5Rtcy5pAw5BjaArkGZyNHIOzkWNoiHrVBoaLeuyxxwxJxqBBg4ycnBxb+6uvvmpIMoYMGVLnvu666y5DkjF69GijpKTE1j5t2jRDkjFhwoQq28THxxvZ2dlV2pcuXWq4u7sbPj4+Rmpqqq29pKTEGDBggPHVV18ZpaWltvaysjLbsbRs2dJuG8MwjOLiYqNTp06GJGPWrFm29pycHGPQoEGGJGPhwoV1PlbDMIysrCxDkpGVlVWv7apzJv+McSb/TKP0BThCjqEpkGdwNnIMzkaOoSHqUxu45MhhcXGxWrduraysLO3cuVP9+vWzW96nTx8lJCRo+/btiomJqbGvkydPqkOHDvLw8NDRo0cVFhZmW1ZUVKTw8HClp6frxIkTat26dZ3iu/7667V69WotXbpUt9xyS63rG4ahHj16KCkpSe+++64mTJhgW/bpp59q3Lhx6tOnj3bt2mW33c6dOxUTE6OePXvqp59+qlNsEiOHuPiQY2gK5BmcjRyDs5FjaIj61AYuec/hxo0blZWVpc6dO1cpDCXZLs1cvnx5rX198803Ki8vV2xsrF1hKEne3t4aOXKkysrKtGLFijrHV3H5qJeXV53Wt1gs6t27tyTpxIkTdsvi4uIkyeHlpldccYWioqK0Z88eJScn1zk+AAAAAKgvlywOd+/eLelsceRIRXttk7w0dl+StHr1aq1Zs0ZBQUEaOHBgnbaRpMOHD0uS2rRp49T4AAAAAKAhPMwOwJGjR49Kkjp06OBweUV7SkqK0/tauHCh1q9fr8LCQh06dEjbt2+X1WrVJ598osDAwFr3L0k//PCDduzYIS8vL40YMaJR4wMAAACAxuCSxWFubq4kyc/Pz+HyFi1aSJJycnKc3tfGjRv13nvv2X4PDg7WggULNHz48Fr3LZ29xnfSpEmSpAcffFBt27Zt1Piks/dOFhUV2e1TOntdeqlnaZ3irElGQcYF9wHUhBxDUyDP4GzkGJyNHENDZBdk13ldl7ys1JW8/fbbMgxDOTk52r59u66//nqNGTNGkydPrnXbsrIy3XXXXTpw4ICuvPJKPfPMM06J8cUXX5TVarX9hIeHO2U/AAAAAC5dLjly6O/vL0nKz893uDwvL0+S1LJlyybry9/fXzExMVq8eLEKCwtto4djxoypdps///nP+s9//qPu3bsrLi7O4QQ2/v7+ysjIuKD4HnnkEc2cOdP2e3Z2tsLDwxXsG6wA3wufrbQCM2OhOkezspRWKYdD/PwUYbXWedujWSWSpKyionpt2xj7NmNbM/fdnONuaJ5dzMdM3OSYq+6buBu2b3Ls0o/bGTxK6l7yuWRxGBERIUk6duyYw+UV7ZGRkU3aV4Xx48dr2bJlWrp0abXF4d///nctWLBA4eHh+u677xQSElJtfBkZGTp27JhtRtP6xuft7S1vb+86xw80pqNZWeo+d64KS/97CbOPh4eSpk7V8exsJZw6pb5t2uiqc/fPlpaX6987d0qSrouKUq//+z+7bb3c3XVg2jTbSfStHTtkGIb+p08f+Z2bKfjHkye19fhxBfr4aOLSpXbbe7i56cf/9//U89yjafacPq2NR4+qc3Cwro+Ksq332ubNenjVKpWWl9vt+6khQ9S3TRvd2LWrrf2Tn35SdlGRbouOVpi/v45mZanbnDkqKiurcsxbjh1TekGBftetm9qfmy46JTNT3xw8qNYtWmhUjx41vmbuFov+s3+/gn19dfvll9uWL09K0omcHPUIDdXwDz+029bTzU0HH3jA9pp9feCAjmZlaUjHjoo+d+45k5+vt3bs0JPr1qmk0jF7urnp6aFDNbJ7d9trllVYqEV79sjT3V2TKs0YvXjPHo3/8ku718zb3V1PDhmiVn5+mlzp0UI/HD2qxNOndUXbthrQvn2Nr9nJnBzt+vVX9Q4L06BzVz6UG4YW7NghSRrWqZP6vPlmjXny9s6dKisv1129e8v/3Bdxu3/9VfHHjinA21uTli2rkic7J09Wr3OzWO9NTdWGlBR1CgrSbzt3tq03Oz5ef/3uO4d50jssTDd362b3+mQWFuqW7t3VtmXLGo952/HjSsvP101duyr83DH8kpWlFQcOKMTPTwPat6+SI97u7tp/7phP5uRoWVKSAn18NK5nT9s6cfv361h2trqHhOjGjz6qMU9WHjqkIxkZio2M1GWhoZKkjIICvbl9e5U88XJz01NDh+qmrl3V59zEarnFxfooIUHubm7607nJ045mZanrnDkqPu+Yd0+ZorVHjkiS7o2JkZvFIkna/MsvdueIo1lZ6j5njgodvGancnO18+RJXd66ta4593+79N9zxNCOHdX3X/+qMU/e+fFHlZSV6Y6ePWX18ZF09hyxPCmp2s/G5JgYtTp368e+tDStT05WhNVqd46Ys2WLZq5c6fCz0bN1a43s3t3W/lliot05oqY82XHihE7n5WlEly6KPDfPwfHsbNs54qoOHWrMk1O5ufpq3z4FeHvrzl69bOtUnCO6tmqlmz/+uMY8WXX4sA6lp2twRITdOWL+tm1V8+TcZ2NEly7qd+42mvySEn2we7csFovtHFFdnvz05z9r9bkJ/O654gp5uJ29wG3LsWN254iazqGpeXnafuKEeoSG6jeV/naqOEf8JjJSV7z1ln2euLnpQKVjfnfXLhWVlur3l1+uIF9fSWfPEUv37as2T/50xRUKPXcr0P4zZ7T2yBF1CAiwO0fM27pVM7791mGeXBYaqlujo23tS/butTtH1JQnP548qV9zc3VD586KCgqSJLtzxKDw8CqvV+XPRmpenr74+We18PLS+Ep/i648dEg7TpzQU+vX271XHm5u+t/rrtNDV19ta1tz5IgOnDmjgR062J0j5mzZoifWrXN4Dv1t586KaddOklRYWqr3zj3SreIcUV2eJN53n747dEiSdHe/fvJyd5ckbTt+3HaOiLBaa/xsVPwd0T0kREM7drStU3GOGBwRoQELFtT42Xh/924VlJRo7GWX2Z0jvvz55yp5UvFemVkg1pVLXlbap08fSWef8+dIRbujYsqZfVWoKPRSU1MdLn/55Zf10ksvqXXr1vruu+9qvMzTGfEBTSktP9/u5CmdPcmn5efr8717NSUuTl/u22dbVlperilxcZoSF6eTOTlVti0uK7P7tu3P59bNrnRf7beHDmlKXJw+/umnKtuXlpfrUHq67fe1R45oSlyc3j7vM/bc99/b/WdVse9H16zR/O3b7dofX7tWU+LidCQz03bMlf+DrnzMz3z/vabExWlfWpptWcKpU5oSF6eXNm6s9TXbl5amKXFxeub77+2Wz96yRVPi4rTx6NEq25aUl9u9ZvO3b7etW+FETo4eXbPG7j+rim0fXbPG9od7RXxT4uI0/Ztv7Nb9+KefqrxmRedesz+feyxPhcV79mhKXJyWJSXV+pp9uW+fpsTF6fO9e23LDMOw5cmx7Oxa82TqihWaEhenjIICW9uqw4c1JS5OHyQkOMyT/ZXy5PuUFE2Ji9O/zhWkFV784Ydq82TO1q127U+uW6cpcXE6eK7fmo75hR9+0JS4OCVW+n8kMTVVU+Li9MIPPzjMkaJKx3wwPV1T4uL05Lp1duvM2bpVU+LitCElpdY8+deOHZoSF6fvK014diovz2GeFJ/Lk1Xn/nCXzhaSU+LiNLXSo6DS8vPt/pCrOOZj2dm297Py45XPP0ek5efbFYaVX7NlSUmaEhenxXv22C2vOEekZGXVmifTv/lGU+Li7NrWHjlS42fjRKV7/jcePaopcXFVzhEvbdxY7Wdj9pYtdu3nnyNqypOXNm7UlLg4JZw6ZVtW+RxRW54cyczUlLg4Pb52rd06FeeIdUeO1Jonb+/cqSlxcVXOEQ7z5Nwxf3vuD3dJyi4q0pS4OLtzRHV5cjInx5YnlV/P888RNZ1DVxw4YPv/obKKc8SRzMyqeXLeMT+0cqWmxMXp1Lmrt6Sz54ia8uRoVpatbcuxY5oSF1flHPHKpk3V5sk/N2+2az//HFFTnvxz82ZNiYvTjydP2pZVPkc4er0qfzaOZmVpSlycHlm92m6df+3YoUfXrKnyXpWWl1f5P2rhrl2aEhdX5Rzx6Jo11Z5DVxw4YGvLKy6uco6oLk9O5eba1i2qdFyVzxG1fTYq/o744NxTAypUnCMOpafX+tl4+LvvNCUurso5wlGeVLxXFwOXHDkcPHiwrFarDh06pF27dqlv3752yz///HNJ0siRI2vta8SIEXJzc9OGDRt0+vRpuwfdFxUVafny5XJ3d9dNN91U5/jWr18vSepc6dvlCgsWLNDf/vY3BQYG6ttvv1X3St8WOnLzzTfr/fff1+eff67HH3/cbtmPP/6ow4cPq2fPnupY6VsN4GLRKyxMo6Kjdfm5UQlJcrNYNOrct6PubrV/PzUqOlrlhiHvc98MSlK3Vq00Kjpa3YKDtWz//irb+J4bYZSkqKAgjYqO1oBz305WGBwRoeUOth3WsaMGnTd78G+jonQqL09B50YaanJdp07qGhxs+wZZktr4+5+Nt1WrWrcPbdFCo6Kjq3y7eE14uKze3mpdqd/qDOrQQZ5ubraRBkkK8PbWsI4dtdbBM1OHdexo+7ZZklp4eWlUdLR8POz/i+gREuLw9R7WsaOCz327XqFPmzYaFR2tHpXe++pcHhqqUdHRtlG8ChV54lmHPLk1OlolZWV2732X4GCNio5WVFCQvj54sMo2fpWOr1NgoEZFR+uq9u3t1rm6Qwd9da7ArWxYx466+rwv/m6IitJloaG2b5BrMqxjR0VarQqr9H6GnXvvK78X1Wnl56dR0dFqf94tB1eHh8vP01Nh526pqMlV7dvLMAx1qpQn/l5eNeZJl+D/3l7g6+mpUdHR8qz02ayOp5ub7f2szNE5ojo9zuVJn/MeCVVxjvCqQ56M7NZNhaWlalHpNo+ooKAajzmg0pU5kefypP9555OBHTpoyc8/O9z+mvPyxNE5ojpDO3ZUu5Yt1abS+1ndOcKRIB8fjYqOtssz6b/niLZ1uD1nQLt2Ki4rq3KOqOk1q3yu83Z316joaNtocU3cK+VJ5fWrO0c4Eh0SolHR0ep7Xp5UnCO8PWr/0/fmrl2VW1xsuwpBOnuOqOmYAyv9/xButTqM4ar27ZVSqYisvP35/+84OkdU5zcREQr181O7Su9ndecIRwLP5Umr887jV7Vvr4yCAofHfH5e92/bVnnFxVXOETW9ZtGVrqrzOpcndVH57wiPSp/76s4RjlT8HXHFeRNFVpwjKv9fUp2bunZVZmFhlXNEdcd8sbAYlb/CcyGPP/64nn/+eV199dVauXKlbdbOWbNm6aGHHtKQIUO0rtI3pnPnztXcuXM1atQovfjii3Z9jR8/Xh999JHGjBmjRYsWyePciWH69Ol64403NGHCBL377ru29X/++Wf99NNPuu222+zuEzQMQ4sXL9akSZNUWFioLVu2aMCAAbbln3/+ucaNGyc/Pz+tXLlSgwYNqvU4S0pK1L17dx05ckSzZs3Sgw8+KOnsvYY33HCDNm/erIULF2rixIl1fu2ys7NltVqVlZWlgIALv+cwveDst+DccwhHdp48qZi33qrSvmPy5Con3cbc1sx9E3fT7rs5xt0cj9nMfRN30+6buJt23xxz/bY1e9/OUJ/awCVHDqWzxeGqVau0adMmde3aVbGxsUpJSdGWLVsUGhqqd955x279tLQ0JSUl6WSlIfUKs2fPVnx8vJYsWaLo6Gj1799fiYmJ2rNnj7p27apZs2bZrX/q1CmNGzdOVqtVMTExatOmjTIzM7V3714lJyfLzc1Ns2bNsisMT58+rbvuukvl5eXq1KmT/vWvf+lf//pXlVhuu+023XbbbbbfPT099eGHH+r666/XzJkztXjxYkVGRmrDhg06efKkxo4dqwkTJlzgqwk4T4ifn3w8PKrc+xFSh9GTC9nWzH0TN3G78rbETdzE7XrbXqxxN8djNnvfZnPZkUNJKigo0IsvvqiPP/5Yv/zyi4KDgzVixAg9++yzVR4a/9RTT+npp5+uMgpYIT09XU899ZS++uornTp1SmFhYRo1apSefvrpKg+zT01N1Ztvvql169Zp//79Sk1NlZubmzp06KDY2Fjdf//9uuLczfcVkpOT1alTp1qP6cknn9RTTz1VpT0xMVFPPvmk1q1bp7y8PHXu3Fn33HOPpk+fLrc6XCpTGSOHaGoXOqPXofSzX+pYfawXzWxiF+ssaM057obm2cV8zMRNjrnqvom7Yfsmxy79uJ2hPrWBSxeHaBiKQzS1f+/cqZc3bdK4yy/XM8OG1Xt7cgxNgTyDs5FjcDZyDA1Rn9rAJWcrBXBxScnK0v4zZ3TmIpmJCwAAAFW57D2HAC4eU/r313WdOtVp9j0AAAC4JopDABesXcuWdlNoAwAA4OLDZaUAAAAAAEYOAVy4TxMT5ePhoaHnPTAaAAAAFw9GDgFcsMnLl+vWRYt0IifH7FAAAADQQIwcArgg5Yah2MhInc7LUxgT0gAAAFy0KA4BXBA3i0XL77zT7DAAAABwgbisFAAAAABAcQgAAAAAoDgEcIE+S0xUtzlzNOObb8wOBQAAABeA4hDABfklO1sH0tN1Oi/P7FAAAABwAZiQBsAFuatXLw1o147nGwIAAFzkKA4BXJAwf3+F+fubHQYAAAAuEJeVAgAAAAAYOQRwYb7at0+S9JvISAX7+pocDQAAABqKkUMAF+TBb7/VqMWLlZSWZnYoAAAAuACMHAK4IFe2b6+wFi3UrmVLs0MBAADABaA4BHBBFo8da3YIAAAAaARcVgoAAAAAoDgEAAAAAFAcArgAKw8dUtc5c/SnZcvMDgUAAAAXiOIQQIMdz87WwfR0ncjJMTsUAAAAXCAmpAHQYCO7d9f3EyfK19PT7FAAAABwgSgOATRYiJ+fYiMjzQ4DAAAAjYDLSgEAAAAAjBwCaLgVBw6ouKxMgzp0UJi/v9nhAAAA4AIwcgigwR5fs0ajFi/WjpMnzQ4FAAAAF4iRQwAN1q9NG3l7eCg8IMDsUAAAAHCBKA4BNNi/b73V7BAAAADQSLisFAAAAABAcQgAAAAAoDgE0EBbjx9Xlzfe0O8/+8zsUAAAANAIuOcQQIOcyMnRoYwMhbZoYXYoAAAAaAQUhwAaZEhkpH64+265WSxmhwIAAIBGQHEIoEGCfH01OCLC7DAAAADQSLjnEAAAAADAyCGAhll1+LByiop0Zfv2ah8QYHY4AAAAuECMHAJokBd/+EGjP/1U61NSzA4FAAAAjYCRQwAN0jM0VPklJYq0Ws0OBQAAAI2A4hBAg7x+441mhwAAAIBGxGWlAAAAAACKQwAAAAAAxSGABtiXlqbOb7yhER9+aHYoAAAAaCTccwig3n7NzdXhjAx5uvH9EgAAwKWC4hBAvV3Rtq1+uPtulRmG2aEAAACgkVAcAqi3AG9vDY6IMDsMAAAANCKuCQMAAAAAMHIIoP42pKQoNT9fMW3bKjIw0OxwAAAA0AgYOQRQb69v2aIxn36q/+zfb3YoAAAAaCQUhwDqrXurVro6PFydg4PNDgUAAACNhMtKAdTb89ddZ3YIAAAAaGSMHAIAAAAAKA4BAAAAABSHAOrp19xcdX7jDV3zzjsyDMPscAAAANBIuOcQQL2cys3V4YwM5RUXy2KxmB0OAAAAGgnFIYB66RIcrI2TJqmgpMTsUAAAANCIKA4B1EsLLy9dHR5udhgAAABoZNxzCAAAAABg5BBA/Ww5dkzHsrPVp00bdQkONjscAAAANBJGDgHUy4KdOzX2s8+0aM8es0MBAABAI6I4BFAvUUFBujo8XF0ZNQQAALikcFkpgHp5NDZWj8bGmh0GAAAAGhkjhwAAAAAAikMAAAAAAMUhgHooKClRp9df18C331ZBSYnZ4QAAAKARcc8hgDpLzc9XcmamTuTkyMeD0wcAAMClhL/uANRZ6xYttGnSJGUVFclisZgdDgAAABoRxSGAOvPx8NCg8HCzwwAAAIATcM8hAAAAAICRQwB1t+vXX3UwPV09W7dWdEiI2eEAAACgETFyCKDOPkpI0O2ffaa3d+40OxQAAAA0MopDAHUWbrXqmogIRg0BAAAuQVxWCqDOHrjqKj1w1VVmhwEAAAAnYOQQAAAAAEBxCAAAAABw8eKwoKBATzzxhLp16yYfHx+1a9dOkyZN0vHjx+vdV0ZGhqZPn67IyEh5e3srMjJSM2bMUGZmpsP13333Xd1xxx3q0aOHgoOD5eXlpXbt2mns2LHauHGjw23S0tL073//W5MnT1bfvn3l4eEhi8Wid999t9q4kpOTZbFYqv1p06ZNvY8VcAbDMNR97lxduWCBTuflmR0OAAAAGpnL3nNYWFioa6+9VvHx8Wrbtq1uvfVWJScna+HChfrPf/6j+Ph4RUVF1amvtLQ0DRo0SAcPHlRUVJRuu+02JSYm6vXXX9fXX3+tzZs3Kzg42G6buXPnavfu3erVq5euueYa+fj4KCkpSUuWLNEXX3yh+fPna8qUKXbb/PDDD/rTn/7UoOMNCwvTiBEjqrRbrdYG9Qc0tpziYu0/c0aS1MLT0+RoAAAA0Nhctjh87rnnFB8fr0GDBmnlypXy9/eXJM2aNUsPPfSQJk2apHXr1tWprxkzZujgwYMaPXq0Fi9eLA+Ps4f9wAMPaM6cOZo5c2aV0b158+bpsssuU8uWLe3aly1bptGjR+vBBx/U2LFjFVJp1sawsDDdd9996t+/vwYMGKA33nhDCxYsqFOM0dHRNY4wAmbz9fDQ5nvuUWpenlp4eZkdDgAAABqZS15WWlxcrLlz50o6W6RVFIaSNHPmTPXu3Vvr16/Xjh07au3r5MmT+uSTT+Tl5aX58+fbCkNJeuWVVxQaGqoPP/xQp0+fttvuqquuqlIYStItt9yioUOHqrCwUJs2bbJbNmjQIM2bN0933323evbsKTc3l3x5gQbxdHfXwA4dNLJ7d7NDAQAAgBO4ZPWyceNGZWVlqXPnzurXr1+V5WPHjpUkLV++vNa+vvnmG5WXlys2NlZhYWF2y7y9vTVy5EiVlZVpxYoVdY7P89wldV6MngAAAAC4RLjkZaW7d++WJF1xxRUOl1e0JyQkNEpf77zzTp36kqTVq1drzZo1CgoK0sCBA+u0TV2cOnVKTz75pE6ePCmr1aqrrrpKt9xyCwUoXMbe1FQlnj6t6JAQ9TrvixYAAABc/FyyODx69KgkqUOHDg6XV7SnpKQ4va+FCxdq/fr1Kiws1KFDh7R9+3ZZrVZ98sknCgwMrHX/dbVv3z4988wzdm0RERH67LPPdOWVVzbafoCG+mrfPj22Zo0m9e2rf996q9nhAAAAoJG5ZHGYm5srSfLz83O4vEWLFpKknJwcp/e1ceNGvffee7bfg4ODtWDBAg0fPrzWfdeFt7e3/vznP2vcuHHq0aOHfH19lZiYqGeffVYrVqzQ8OHDtWvXLkVGRlbbR1FRkYqKimy/Z2dnS5LSC9JV6ll6wTFmFGRccB+4+LX0smhgh7bqFOSv9IL0Ru2bHENTIM/gbOQYnI0cQ0NkF2TXeV2XvOfQlbz99tsyDEM5OTnavn27rr/+eo0ZM0aTJ09ulP7btm2r+fPna8iQIWrdurVatmypgQMHKi4uTn/4wx+UmZmpF154ocY+XnzxRVmtVttPeHh4o8QGVHZX78sU94exum9A1fuAAQAAcPFzyZHDitlJ8/PzHS7PO/cAbkeziTqrL39/f8XExGjx4sUqLCy0jR6OGTOm1hga6tFHH9XHH3+sb7/9tsb1HnnkEc2cOdP2e3Z2tsLDwxXsG6wA34BGiyfYN7j2lYALQI6hKZBncDZyDM5GjqE+PErqXvK55MhhRESEJOnYsWMOl1e013SppTP6qjB+/HhJ0tKlS+u8TUN07dpV0tnHcdTE29tbAQEBdj8AAAAAUB8uWRz26dNHkrRz506Hyyvae/fu3aR9Vah48H1qamqdt2mIjIyz15VX3BcJmGnAggW6csECHc7gfgcAAIBLkUsWh4MHD5bVatWhQ4e0a9euKss///xzSdLIkSNr7WvEiBFyc3PThg0bqjzovqioSMuXL5e7u7tuuummOse3fv16SVLnzp3rvE1DLFmyRFL1j+EAmkq5YejHkye17cQJ+Xi45NXoAAAAuEAuWRx6eXlp6tSpkqT777/fdl+gJM2aNUsJCQkaMmSIYmJibO1z585VdHS0HnnkEbu+2rZtqzvvvFPFxcW67777VFr639k7H374YaWmpmr8+PFq3bq1rf3nn3/Wp59+quLiYru+DMPQokWL9PLLL8tisWjChAkXfKwLFizQvn37qrR/8cUX+vvf/y7p7GsAmG3jpEladscdas1INgAAwCXJZYcAHn/8ca1atUqbNm1S165dFRsbq5SUFG3ZskWhoaF655137NZPS0tTUlKSw/vzZs+erfj4eC1ZskTR0dHq37+/EhMTtWfPHnXt2lWzZs2yW//UqVMaN26crFarYmJi1KZNG2VmZmrv3r1KTk6Wm5ubZs2apQEDBlTZ18CBA23/PnLkiCTp2Wef1Ztvvinp7Cjg/Pnzbet89NFHmjx5snr37q1u3bqpvLxce/futRWMf/3rXzVq1KgGvopA43CzWHRVNc8KBQAAwKXBZYtDHx8frV27Vi+++KI+/vhjffXVVwoODtbEiRP17LPPVvtQe0dCQkK0detWPfXUU/rqq6/05ZdfKiwsTA888ICefvrpKg+zv/zyy/XMM89o3bp12r9/vzZu3Cg3Nzd16NBBkyZN0v3331/tpZ5btmyp0nb48GEdPnzYdlyV3XvvvQoNDdWuXbu0cuVKFRQUKDQ0VKNHj9af//xnXX/99XU+TgAAAABoKIthGIbZQaBxZWdny2q1Kisrq1FmLq144DnTJjdfB9PTtfPkSXUNDla/tm0bvX9yDE2BPIOzkWNwNnIMDVGf2sAl7zkE4FpWHjqkcZ9/rme//97sUAAAAOAkFIcAatXK11exERHqExZmdigAAABwEpe95xCA6xjXs6fG9expdhgAAABwIkYOAQAAAAAUhwAAAAAAikMAdXD9++9rwIIFSjh1yuxQAAAA4CTccwigVrt+/VVnCgrkbrGYHQoAAACchOIQQK2+vusuncrLU6egILNDAQAAgJNQHAKo1YD27c0OAQAAAE7GPYcAAAAAAIpDADX7JStLi/fs0dbjx80OBQAAAE5EcQigRj8cPao7lizR31etMjsUAAAAOBHFIYAaBXh76zeRkerXpo3ZoQAAAMCJmJAGQI1u7tZNN3frZnYYAAAAcDJGDgEAAAAAFIcAAAAAAIpDALUYvXix+r/1ljYePWp2KAAAAHAi7jkEUKOEU6d0KCNDhtmBAAAAwKkoDgHU6NPbb9fJnBz1bN3a7FAAAADgRBSHAGp0Rdu2Utu2ZocBAAAAJ+OeQwAAAAAAxSGA6p3KzdXiPXu06ZdfzA4FAAAATkZxCKBaP/76q+5YskT3r1hhdigAAABwMu45BFAtXw8PDYmMVLdWrcwOBQAAAE5GcQigWkM6dtS6iRPNDgMAAABNgMtKAQAAAAAUhwAAAAAAikMANbh76VLFvPWWvj140OxQAAAA4GQUhwCqtef0ae08eVIl5eVmhwIAAAAnY0IaANX69y236Fh2tvq3a2d2KAAAAHAyikMA1eodFqbeYWFmhwEAAIAmwGWlAAAAAACKQwCOZRYW6pOfftL65GSzQwEAAEAToDgE4NC+tDT94YsvNOGrr8wOBQAAAE2Aew4BOOTh5qahHTuqdYsWZocCAACAJkBxCMCh/u3aae2ECWaHAQAAgCbCZaUAAAAAAIpDAAAAAADFIYBqzPjmG13xr3/p8717zQ4FAAAATYDiEIBDe1NT9eOvv6qgpMTsUAAAANAEmJAGgEOzR4xQSmameoeFmR0KAAAAmgDFIQCHLgsN1WWhoWaHAQAAgCbCZaUAAAAAAIpDAFXll5Tok59+0urDh80OBQAAAE2E4hBAFb9kZekPX3yhMZ9+anYoAAAAaCLccwigCkPSsI4d5evpaXYoAAAAaCIUhwCqiA4J0ZoJE8wOAwAAAE2Iy0oBAAAAABSHAAAAAACKQwAO/GPNGvX717/07q5dZocCAACAJkJxCKCKpDNntOvXX5VdVGR2KAAAAGgiTEgDoIpnhw3T3X37KjokxOxQAAAA0EQoDgFU0T0kRN0pDAEAAJoVLisFAAAAAFAcArBXVl6ujxIS9N2hQyotLzc7HAAAADQRikMAds4UFGj8l19q+Icfmh0KAAAAmhD3HAKwU1xWpms7dVJxWZk83Pj+CAAAoLmgOARgp0NAgFb/8Y9mhwEAAIAmxrAAAAAAAIDiEAAAAABAcQjgPP/ctEl933xTc7ZsMTsUAAAANCGKQwB2Dpw5o92nTim9oMDsUAAAANCEmJAGgJ2HBw/WqB49FBUUZHYoAAAAaEIUhwDsdA4OVufgYLPDAAAAQBPjslIAAAAAAMUhAHuL9+zRd4cOqai01OxQAAAA0IS4rBSATVFpqe5YskSSdObhh+XtwSkCAACgueAvPwA2+SUluq5TJ6Xl5yvQx8fscAAAANCEKA4B2AT5+mrVH/9odhgAAAAwAfccAgAAAAAoDgEAAAAAFIcAKlmwY4f6vPmmXtywwexQAAAA0MQoDgHYHMrIUMKpUzqdl2d2KAAAAGhiTEgDwGZK//4a1rGj2gcEmB0KAAAAmhjFIQCbjoGB6hgYaHYYAAAAMAGXlQIAAAAAXLs4LCgo0BNPPKFu3brJx8dH7dq106RJk3T8+PF695WRkaHp06crMjJS3t7eioyM1IwZM5SZmelw/XfffVd33HGHevTooeDgYHl5ealdu3YaO3asNm7c6HCbtLQ0/fvf/9bkyZPVt29feXh4yGKx6N133601vsTERN1+++0KDQ2Vr6+vevXqpdmzZ6u8vLzexwo01Bc//6yVhw4pr7jY7FAAAADQxCyGYRhmB+FIYWGhhg0bpvj4eLVt21axsbFKTk7W1q1bFRoaqvj4eEVFRdWpr7S0NA0aNEgHDx5UVFSU+vfvr8TERCUmJqpbt27avHmzgoOD7bbp37+/du/erV69eqlDhw7y8fFRUlKSEhISZLFYNH/+fE2ZMsVum6+++kqjRo2qsv+FCxdq4sSJ1ca3efNmXXfddSooKNCVV16pjh076vvvv9evv/6q22+/XYsXL5bFYqnTsUpSdna2rFarsrKyFNAI946lF6RLkoJ9g2tZExe7Fi+8oPySEh2cNk2dg5vu/SbH0BTIMzgbOQZnI8fQEPWpDVx25PC5555TfHy8Bg0apP3792vx4sXasmWLXn31VaWmpmrSpEl17mvGjBk6ePCgRo8eraSkJC1evFh79uzRtGnTtH//fs2cObPKNvPmzVN6erp27typZcuW6dNPP9Xu3bu1dOlSubm56cEHH1RaWprdNmFhYbrvvvv0zjvv6KefftK9995ba2wlJSW66667VFBQoFmzZmnLli1avHixDhw4oEGDBumzzz7Te++9V+djBRqqpKxMgzp0UO+wMLVu0cLscAAAANDEXHLksLi4WK1bt1ZWVpZ27typfv362S3v06ePEhIStH37dsXExNTY18mTJ9WhQwd5eHjo6NGjCgsLsy0rKipSeHi40tPTdeLECbVu3bpO8V1//fVavXq1li5dqltuuaXa9aZMmaJ//etfNY4cfvrppxo3bpz69OmjXbt22S3buXOnYmJi1LNnT/300091ik26dEYOj2ZlKS0/3/Z7iJ+fIqxWl97WzH2bGfeF4ptQNAXyDM5GjsHZyDE0RH1qA5ecrXTjxo3KyspS586dqxSGkjR27FglJCRo+fLltRaH33zzjcrLyxUbG2tXGEqSt7e3Ro4cqXfeeUcrVqyo8dLPyjw9PSVJXl5edTugGsTFxUk6e0znu+KKKxQVFaU9e/YoOTlZHTt2vOD9XSyOZmWp+9y5KiwttbV5ubtr3/33q1NQkCQpLT9fZ/LzZfXxURt/f9t665KTNfzDD1VcVmZr83Z319d33aXokBC1bdnS1n7gzBmVG4Y6BgbK28NDR7Oy1G3OHBVV2tbHw0NJU6eqpKxMpeXligwMlI/H2Y9OVmGhfs3NlZ+np8KtVodxV2wf5OOjEzk58vX0tCu6kjMzVVRaKsMw1O+tt+y29XZ31/5p02zrH83KUkFJidq1bKmW3t6SpPySEm05dkw3fvSRXdwVx3xF27ay+vhIkgpLS5WSmSkPNze7y0a3Hjum2HfftXvNKuJuqgIRAAAA5nLJy0p3794t6Wxx5EhFe0JCQpP2JUmrV6/WmjVrFBQUpIEDB9Zpm6aM71KRlp9vVyRJUnFZmZIrTSA0f9s2Rc+bp6fWrbNb77cffGBX5EhSUVmZrn3/ff1t1Sq79qveflvR8+bpyLl+0/Lz7Qos6WxBlZafr6HvvafoefO0NzXVtmxpUpKi583TvcuXVxt3xfYrDx1S9Lx5Gv/FF3bLRy9erOh587TqyJEq2xaVldmN5t31xReKnjdP3x0+bGvbfuKErn3//SpxVxzzsqQkW1vi6dOKnjdPw867VPnvq1dXec0q4gYAAEDz4JIjh0ePHpUkdejQweHyivaUlBSn97Vw4UKtX79ehYWFOnTokLZv3y6r1apPPvlEgY3wPLjGONaioiIVFRXZfs/OzpZ09tKDUs/S6jars4yCjAvuo76yCrMctucU59guqSg3ihXo4y03S5mtTZJaenkpvbCwyrb+Xp5ydyu3WzfA20uGDGUXZSm9wK3a/WYVZsnfy0OBPt7KLc5WesHZUbvisgIF+njLy/3s613T9oWl+Qr08ZaPh8UuBj9PdwX6eKuwtKDabSv25+NhObduvq2P/JJc+Xt5Kre4xOExF5cV2NbNLc5RoI+3/L087WLwcHN8dXnlfTuTGTmG5oc8g7ORY3A2cgwNkV2QXed1XbI4zM3NlST5+fk5XN7i3GQZOTk5Tu9r48aNdhPCBAcHa8GCBRo+fHit+66LxjjWF198UU8//XSjxOPqWla6lPeBq2L0wFVVLyv+/Pe36tr3F1dpX3bHaPVpY39f6c7/N6HO+9446a4qbaN7dNPoHt3qtP2NXaN0qOvkqnHdOVqStPvX07X2sXhs1Xtcr2zfVsvuGF2nY+4VFqpDD1SN4ZFrBuq7w7V/2QIAAIBLl0sWh67k7bff1ttvv63c3FwlJSXp5Zdf1pgxY3TvvffqrbfeMjs8SdIjjzxiN+Nqdna2wsPDFewbrADfC5+QpkJT3vzcOdhdnm5uKqn0nEcfDw91Dm6rYN+a74HrHOwuHw+PKvf9OXtbM/dtZtyNiRvs0RTIMzgbOQZnI8dQHx4ldS/5XLI49D83uUh+Nfc75eXlSZJaVppYxNl9+fv7KyYmRosXL1ZhYaFt9HDMmDG1xlBbvxkZGRcUn7e3t7y9nX/pX1OKsFr1aGysnl6/XjdERel/r7++zrNnRlitSpo6tUEzb17Itmbu28y4AQAAcGlwyeIwIiJCknTs2DGHyyvaIyMjm7SvCuPHj9eyZcu0dOnSCy4OIyIilJGRoWPHjql3796NEt+l4s/9++uGqChZfXzUs46PGakQYbU2uLC5kG3N3LeZcQMAAODi55Kzlfbp00fS2ef8OVLR7qiYcmZfFUJCQiRJqZVmrWwoZ8R3qQjz99fgiIh6F4YAAAAA6s8li8PBgwfLarXq0KFDVR4ML0mff/65JGnkyJG19jVixAi5ublpw4YNOn3afsKPoqIiLV++XO7u7rrpppvqHN/69eslSZ07d67zNtW5+eabJf33mCr78ccfdfjwYfXs2bNZPeMQAAAAQNNzyeLQy8tLU6dOlSTdf//9tvvuJGnWrFlKSEjQkCFDFBPz35kq586dq+joaD3yyCN2fbVt21Z33nmniouLdd9996m00oQbDz/8sFJTUzV+/Hi1rjQ69fPPP+vTTz9VcXGxXV+GYWjRokV6+eWXZbFYNGFC3We6rM6oUaPUqVMn7d69W6+99pqtPS8vT/fff78k6aGHHrrg/VyM1h45os8SE5VS6dmGAAAAAJzDJe85lKTHH39cq1at0qZNm9S1a1fFxsYqJSVFW7ZsUWhoqN555x279dPS0pSUlKSTJ09W6Wv27NmKj4/XkiVLFB0drf79+ysxMVF79uxR165dNWvWLLv1T506pXHjxslqtSomJkZt2rRRZmam9u7dq+TkZLm5uWnWrFkaMGBAlX0NHDjQ9u8jR45Ikp599lm9+eabks4+1H7+/Pm2dTw9PfXhhx/q+uuv18yZM7V48WJFRkZqw4YNOnnypMaOHdsoRejF6OVNm/TNwYNaeOutmti3r9nhAAAAAJc0lxw5lCQfHx+tXbtW//jHP+Tn56evvvpKKSkpmjhxonbu3KmoqKg69xUSEqKtW7dq2rRpKi4u1pdffqmsrCw98MAD2rp1q4KD7acDvvzyy/XMM88oJiZG+/fv15IlS7R27Vp5enpq0qRJ2rZtm2bMmOFwX1u2bLH9VFzGevjwYVvb3r17q2xz9dVXa9u2bRozZowOHjyoZcuWKTg4WLNmzdLixYtlsVjq/sJdQnqGhio2IoJJUgAAAIAmYDEMwzA7CDSu7OxsWa1WZWVlKSDgwp9zmF6QLoln6sB5yDE0BfIMzkaOwdnIMTREfWoDlx05BAAAAAA0HYpDAAAAAADFIVxTuWGo25w5innrLWUUFJgdDgAAAHDJc9nZStG85RQV6UD62evqfT09TY4GAAAAuPRRHMIl+Xl66oe771Z2UZF8PEhTAAAAwNn4qxsuydPdXYMjIswOAwAAAGg2uOcQAAAAAEBxCNd0LDtbn+/dqy3HjpkdCgAAANAsUBzCJW08elS3f/aZ/r56tdmhAAAAAM0CxSFcktXHR9dERKhPWJjZoQAAAADNAhPSwCWN6NJFI7p0MTsMAAAAoNlg5BAAAAAAQHEIAAAAAKA4hIv6+6pV6v/WW1q0Z4/ZoQAAAADNAsUhXFLSmTPacfKkMgsLzQ4FAAAAaBaYkAYu6ZmhQ3XvFVfo8tBQs0MBAAAAmgWKQ7ikXmFh6sVjLAAAAIAmw2WlAAAAAABGDuGa/rN/v3w8PHR1eLj8PD3NDgcAAAC45DFyCJc09tNPdcMHHyg1L8/sUAAAAIBmgZFDuJyy8nINaN9eWYWFCvTxMTscAAAAoFmgOITLcXdz04a77zY7DAAAAKBZ4bJSAAAAAADFIQAAAACA4hAuaMuxYxqwYIHuWbrU7FAAAACAZoN7DuFyTubmavuJE/Jw47sLAAAAoKlQHMLlDOrQQf+5806ebwgAAAA0IacWh/fff7/27dun1atXO3M3uMSE+fvr5m7dzA4DAAAAaFacWhzu3LlTW7dudeYuAAAAAACNgMtK4XL2nD6tX3Nz1a1VK0VYrWaHAwAAADQLdSoO33///QZ1npqa2qDt0LzN2bJFb+3cqaeGDNGTQ4eaHQ4AAADQLNSpOJw4caIsFku9OzcMo0HboXlr4++vXq1bK5xRQwAAAKDJ1Kk4dHd3V3l5uf70pz/JrR6PF/jyyy8ZPUS9PT1smJ4eNszsMAAAAIBmpU7FYc+ePZWQkKDp06frsssuq3Pnu3btojgEAAAAgItAnYYBr7zySknS9u3bnRoMAAAAAMAcdS4ODcPQtm3b6tW5YRgyDKNBgaH5uuWTT3T9++/rwJkzZocCAAAANBt1uqx01KhRCgkJUVhYWL06j4+Pb1BQaN6+T0lRVlGRyvliAQAAAGgydRo5HDt2rJKSkjRw4EBJ0vfff6/9+/c7NTA0Xx+PGaMPR41S+4AAs0MBAAAAmo06FYfr1q3Tvn37bL8PHTpUL730ktOCQvN2U9euuqt3b/l7eZkdCgAAANBs1Kk49PLyUl5enl0b9xICAAAAwKWjTvccdunSRatXr9b69evVqVMnSVJubq6OHj1ap51EREQ0PEI0K9lFRdp2/Lha+fmpb5s2ZocDAAAANBt1Kg4nT56sGTNm6Nprr7W1LVmyREuWLKl1W4vFotLS0oZHiGYl8fRpXf/BB+oUGKjD06ebHQ4AAADQbNSpOHzggQfUoUMHLV26VMeOHdPatWvVunVrRUdHOzs+NDNuFosuDw1VByajAQAAAJpUnYpDSRo9erRGjx4tSXJzc9ONN96od955x2mBoXm6qkMH7bnvPrPDAAAAAJqdOheHlT355JPq169fY8cCAAAAADBJg4tDAAAAAMClo06PsgCayls7duiGDz7Qgh07zA4FAAAAaFYoDuFS9qamatXhwzqckWF2KAAAAECz0qDLSgFnmdi3rwa0a6ceoaFmhwIAAAA0KxSHcCl927RR3zZtzA4DAAAAaHa4rBQAAAAAwMghXMu248dlsVgUHRIify8vs8MBAAAAmg1GDuFSxn/5pQYsWKAfT540OxQAAACgWWHkEC6lXcuWyi8pUZCvr9mhAAAAAM0KxSFcytoJE8wOAQAAAGiWuKwUAAAAAEBxCAAAAACgOIQLOZ6drRs++ED/8+WXZocCAAAANDvccwiXcTovT6sOH1Zbf3+zQwEAAACaHYpDuIwIq1UfjBoli9mBAAAAAM0QxSFcRis/P43v3dvsMAAAAIBmiXsOAQAAAACMHMJ1HM/O1q+5uWrbsqXatWxpdjgAAABAs8LIIVzGe7t3q/+CBXp8zRqzQwEAAACaHYpDuAwfDw+1b9lSbZitFAAAAGhyXFYKlzFz0CDNHDTI7DAAAACAZomRQwAAAAAAxSEAAAAAgOIQLuShb7/V2E8/1fYTJ8wOBQAAAGh2KA7hMlYdOaIlP/+s9IICs0MBAAAAmh0mpIHLeHroUB3PztbloaFmhwIAAAA0OxSHcBm3RUebHQIAAADQbHFZKQAAAACA4hCuobS8XDtOnNDB9HQZhmF2OAAAAECzQ3EIl3A6L0/9FyxQ97lzzQ4FAAAAaJa45xAuobC0VO1btpTFYpHFYjE7HAAAAKDZcemRw4KCAj3xxBPq1q2bfHx81K5dO02aNEnHjx+vd18ZGRmaPn26IiMj5e3trcjISM2YMUOZmZkO13/33Xd1xx13qEePHgoODpaXl5fatWunsWPHauPGjTXua/ny5RoyZIgCAgIUEBCgoUOHKi4uzuG6ycnJtoLI0U+bNm3qfawXo6igIB2bOVO/PPig2aEAAAAAzZLFcNEbvAoLCzVs2DDFx8erbdu2io2NVXJysrZu3arQ0FDFx8crKiqqTn2lpaVp0KBBOnjwoKKiotS/f38lJiYqMTFR3bp10+bNmxUcHGy3Tf/+/bV792716tVLHTp0kI+Pj5KSkpSQkCCLxaL58+drypQpVfY1e/ZsPfjgg/Lw8ND1118vb29vrVy5UgUFBZozZ46mTp1qt35ycrI6deqksLAwjRgxokp/VqtVr7/+ej1eOSk7O1tWq1VZWVkKCAio17aOpBekS5KCfYNrWRNoGHIMTYE8g7ORY3A2cgwNUa/awHBRjz32mCHJGDRokJGTk2Nrf/XVVw1JxpAhQ+rc11133WVIMkaPHm2UlJTY2qdNm2ZIMiZMmFBlm/j4eCM7O7tK+9KlSw13d3fDx8fHSE1NtVu2b98+w93d3fD29jY2bdpka09KSjJatWpleHh4GAcOHLDb5siRI/U+ntpkZWUZkoysrKxG6e9M/hnjTP6ZRukLcIQcQ1Mgz+Bs5BicjRxDQ9SnNnDJy0qLi4s199zEJPPmzZO/v79t2cyZM9W7d2+tX79eO3bsqLWvkydP6pNPPpGXl5fmz58vD4//3mb5yiuvKDQ0VB9++KFOnz5tt91VV12lli1bVunvlltu0dChQ1VYWKhNmzbZLXv99ddVVlamKVOmaNCgQbb2bt266bHHHlNpaWm9RwGbi28PHtTtn32mN7ZsMTsUAAAAoFlyyeJw48aNysrKUufOndWvX78qy8eOHSvp7L19tfnmm29UXl6u2NhYhYWF2S3z9vbWyJEjVVZWphUrVtQ5Pk9PT0mSl5eXXXvFfYUV8TU05uZob2qqPt+7V/HHjpkdCgAAANAsueRspbt375YkXXHFFQ6XV7QnJCQ0Sl/vvPNOnfqSpNWrV2vNmjUKCgrSwIEDbe2ZmZk6evSoJDksaMPDwxUSEqKUlBRlZ2dXud731KlTevLJJ3Xy5ElZrVZdddVVuuWWW6oUoJeqazt10pwbb1TnoCCzQwEAAACaJZcsDiuKrA4dOjhcXtGekpLi9L4WLlyo9evXq7CwUIcOHdL27dtltVr1ySefKDAwsMp+goKC1KJFi2r3lZaWppSUFPXq1ctu2b59+/TMM8/YtUVEROizzz7TlVdeWeMxFhUVqaioyPZ7dna2pLM3LZd6lta4bV1kFGRccB+1Cbd66Q+9ukj6783WaD6aIscA8gzORo7B2cgxNER2QXad13XJy0pzc3MlSX5+fg6XVxRfOTk5Tu9r48aNeu+997R48WJt375dwcHBeueddzR8+PB67ae6fXl7e+vPf/6z1q1bp1OnTik7O1ubN2/WTTfdpKNHj2r48OG1FsEvvviirFar7Sc8PLzG9QEAAADgfC45cuhK3n77bb399tvKzc1VUlKSXn75ZY0ZM0b33nuv3nrrrQvuv23btpo/f75d28CBAxUXF6e77rpLH3/8sV544QX961//qraPRx55RDNnzrT9np2drfDwcAX7BivA98IfZVHBmdMmH8nIUJlhqF3LlvI7d08nmh+m5kZTIM/gbOQYnI0cQ314lNS95HPJkcOK2Unz8/MdLs/Ly5Mkh7OJOqsvf39/xcTEaPHixbrlllu0YMECLVmypM77qW/ckvToo49Kkr799tsa1/P29lZAQIDdz8Xm//3nP+o6Z46++Plns0MBAAAAmiWXLA4jIiIkSceqmbmyoj0yMrJJ+6owfvx4SdLSpUur7CcjI8NWBF7ovrp27Srp7OM4LnVe7u5q4empAG9vs0MBAAAAmiWXvKy0T58+kqSdO3c6XF7R3rt37ybtq0JISIgkKTU11dYWGBioiIgIHT16VD/++KOuueYau21++eUXpaWlKTIyss4jexkZZ286rm6Cm0vJf/7wB7NDAAAAAJo1lxw5HDx4sKxWqw4dOqRdu3ZVWf75559LkkaOHFlrXyNGjJCbm5s2bNhQ5UH3RUVFWr58udzd3XXTTTfVOb7169dLkjp37mzXfvPNN9vF19CYK1RctlrdYzgAAAAAoLG4ZHHo5eWlqVOnSpLuv/9+u8s0Z82apYSEBA0ZMkQxMTG29rlz5yo6OlqPPPKIXV9t27bVnXfeqeLiYt13330qLf3vox0efvhhpaamavz48WrdurWt/eeff9ann36q4uJiu74Mw9CiRYv08ssvy2KxaMKECXbLp0+fLnd3d7355puKj4+3tR84cEDPP/+8PDw8NH36dLttFixYoH379lV5Db744gv9/e9/t70GAAAAAOBMLnlZqSQ9/vjjWrVqlTZt2qSuXbsqNjZWKSkp2rJli0JDQ/XOO+/YrZ+WlqakpCSH9+fNnj1b8fHxWrJkiaKjo9W/f38lJiZqz5496tq1q2bNmmW3/qlTpzRu3DhZrVbFxMSoTZs2yszM1N69e5WcnCw3NzfNmjVLAwYMsNuue/fueuWVVzRz5kzFxsbqhhtukJeXl1auXKmCggK98cYb6tKli902H330kSZPnqzevXurW7duKi8v1969e20F41//+leNGjWqMV5Sl1VaXq4/LFmiAG9vvXHjjcxWCgAAAJjAJUcOJcnHx0dr167VP/7xD/n5+emrr75SSkqKJk6cqJ07dyoqKqrOfYWEhGjr1q2aNm2aiouL9eWXXyorK0sPPPCAtm7dquBg++mAL7/8cj3zzDOKiYnR/v37tWTJEq1du1aenp6aNGmStm3bphkzZjjc14MPPqhly5Zp0KBB2rBhg1avXq3+/ftr+fLlmjZtWpX17733Xo0dO1b5+flauXKlli9fruzsbI0ePVrfffedXn755Xq9bhej7KIifbZ3r/7944/ycHPZlAQAAAAuaRbDMAyzg0Djys7OltVqVVZWVqM81iK9IF2S856pk1dcrHd+/FG5xcV6JDbWKfuAa3N2jgESeQbnI8fgbOQYGqI+tYHLXlaK5qOFl5emXXWV2WEAAAAAzRrX8AEAAAAAKA5hvqzCQh1KT1dGQYHZoQAAAADNFsUhTBd34IC6zJmj2z/7zOxQAAAAgGaL4hCmKykrUwtPT1l9fMwOBQAAAGi2mJAGppvQt68m9O0rJs4FAAAAzMPIIVyGxWIxOwQAAACg2aI4BAAAAABQHMJ8c7du1b3Llml9crLZoQAAAADNFsUhTLfy0CG9/eOP2n/mjNmhAAAAAM0WE9LAdBP79tWV7dvryvbtzQ4FAAAAaLYoDmG60T16aHSPHmaHAQAAADRrXFYKAAAAAKA4hPmSMzN1Jj9f5TznEAAAADANxSFMZRiGus6Zo5BXXtGJnByzwwEAAACaLYpDmKqorExe7u6SJKu3t8nRAAAAAM0XE9LAVD4eHsp79FGVlpfL3WIxOxwAAACg2aI4hEvwcGMQGwAAADATf5EDAAAAACgOYa6fTp3SvcuWadbmzWaHAgAAADRrFIcw1YH0dL3944/64uefzQ4FAAAAaNa45xCmig4J0bPDhqmtv7/ZoQAAAADNGsUhTHVZaKguCw01OwwAAACg2eOyUgAAAAAAI4cwV3pBgQzDkNXHh8dZAAAAACbir3GY6m/ffaeQV17RSz/8YHYoAAAAQLNGcQhTFZSWSpICvL1NjgQAAABo3risFKb6cPRoLbz1VhlmBwIAAAA0cxSHMJ2nu7vZIQAAAADNHpeVAgAAAAAYOYS5Hv7uOxmGoYeuvlpt/P3NDgcAAABotigOYar/275ducXF+n/9+5sdCgAAANCsURzCVH8bPFhZhYVq3aKF2aEAAAAAzRrFIUz1+G9+Y3YIAAAAAMSENAAAAAAAURzCRMVlZUovKFBpebnZoQAAAADNHsUhTLP1+HG1evll9Zg3z+xQAAAAgGaP4hCmySkqkiRZvb1NjgQAAAAAE9LANDd27arixx9XQWmp2aEAAAAAzR7FIUzl6e4uT3d3s8MAAAAAmj0uKwUAAAAAMHII8yzdt08bf/lF13XqpOFdupgdDgAAANCsMXII03x3+LBe2bRJG44eNTsUAAAAoNlj5BCmuT4qSj4eHoqNiDA7FAAAAKDZoziEaW6LjtZt0dFmhwEAAABAXFYKAAAAABDFIUyUU1Sk0vJys8MAAAAAIIpDmKjfv/4lz2ef1eZffjE7FAAAAKDZoziEabKLiiRJLb29TY4EAAAAABPSwDTHZs5UdlGRAn18zA4FAAAAaPYoDmEaL3d3hfj5mR0GAAAAAHFZKQAAAABAFIcwyancXD383Xd6ddMms0MBAAAAIIpDmOSX7Gy9smmTZm/ZYnYoAAAAAMQ9hzBJK19fzRw4UC28vMwOBQAAAIAoDmGSTkFBenX4cLPDAAAAAHAOl5UCAAAAACgOYY7isjKVlZebHQYAAACAcygOYYqXfvhBHs8+q6krVpgdCgAAAABRHMIk2UVFkiRfD257BQAAAFwBf5nDFM9fd50eHjxYHm58PwEAAAC4AopDmMLL3V2hLVqYHQYAAACAcxi2AQAAAAAwcghzzN+2TZmFhbqjZ09FBQWZHQ4AAADQ7FEcwhTzt21TYmqqBnboQHEIAAAAuACKQ5jijp49dSQjQxFWq9mhAAAAABDFIUzy+G9+Y3YIAAAAACphQhoAAAAAAMUhmp5hGCorLzc7DAAAAACVUByiyR3LzpbHs8+q1csvmx0KAAAAgHMoDtHksoqKJEluFovJkQAAAACowIQ0aHI9QkJ0+i9/UV5JidmhAAAAADiH4hBNzt3NTaEtWijU7EAAAAAA2HBZKQAAAACAkUM0va3Hj2vV4cPq26aNbura1exwAAAAAMjFRw4LCgr0xBNPqFu3bvLx8VG7du00adIkHT9+vN59ZWRkaPr06YqMjJS3t7ciIyM1Y8YMZWZmOlz/3Xff1R133KEePXooODhYXl5eateuncaOHauNGzfWuK/ly5dryJAhCggIUEBAgIYOHaq4uLgat0lMTNTtt9+u0NBQ+fr6qlevXpo9e7bKL8FHPnyfkqLH1qzRoj17zA4FAAAAwDkWwzAMs4NwpLCwUMOGDVN8fLzatm2r2NhYJScna+vWrQoNDVV8fLyioqLq1FdaWpoGDRqkgwcPKioqSv3791diYqISExPVrVs3bd68WcHBwXbb9O/fX7t371avXr3UoUMH+fj4KCkpSQkJCbJYLJo/f76mTJlSZV+zZ8/Wgw8+KA8PD11//fXy9vbWypUrVVBQoDlz5mjq1KlVttm8ebOuu+46FRQU6Morr1THjh31/fff69dff9Xtt9+uxYsXy1KPmT2zs7NltVqVlZWlgICAOm9XnfSCdElSsG9wLWvWzdcHDujzvXt1dXi47rniikbpExe3xs4xwBHyDM5GjsHZyDE0RL1qA8NFPfbYY4YkY9CgQUZOTo6t/dVXXzUkGUOGDKlzX3fddZchyRg9erRRUlJia582bZohyZgwYUKVbeLj443s7Owq7UuXLjXc3d0NHx8fIzU11W7Zvn37DHd3d8Pb29vYtGmTrT0pKclo1aqV4eHhYRw4cMBum+LiYqNTp06GJGPWrFm29pycHGPQoEGGJGPhwoV1PlbDMIysrCxDkpGVlVWv7apzJv+McSb/TKP0BThCjqEpkGdwNnIMzkaOoSHqUxu45GWlxcXFmjt3riRp3rx58vf3ty2bOXOmevfurfXr12vHjh219nXy5El98skn8vLy0vz58+Xh8d/bLF955RWFhobqww8/1OnTp+22u+qqq9SyZcsq/d1yyy0aOnSoCgsLtWnTJrtlr7/+usrKyjRlyhQNGjTI1t6tWzc99thjKi0t1euvv263zZdffqkjR46oT58+evDBB23t/v7+ttfg1VdfrfU4AQAAAOBCuGRxuHHjRmVlZalz587q169fleVjx46VdPbevtp88803Ki8vV2xsrMLCwuyWeXt7a+TIkSorK9OKFSvqHJ+np6ckycvLy6694r7CivjqEnNN21xxxRWKiorSnj17lJycXOf4XJ3hmlcyAwAAAM2aSxaHu3fvlnS2OHKkoj0hIaFJ+5Kk1atXa82aNQoKCtLAgQNt7ZmZmTp69KgkOSxow8PDFRISopSUFGVnZzstvovBDR98oIAXX9SXP/9sdigAAAAAznHJR1lUFFkdOnRwuLyiPSUlxel9LVy4UOvXr1dhYaEOHTqk7du3y2q16pNPPlFgYGCV/QQFBalFixbV7istLU0pKSnq1atXo8R3McosLFROcbG83N3NDgUAAADAOS5ZHObm5kqS/Pz8HC6vKL5ycnKc3tfGjRv13nvv2X4PDg7WggULNHz48Hrtp7p9NcaxFhUVqaioyPZ7xchkekG6Sj1Lq92urjIKMi64j8oWjb1ZGQVFCvP3s826heatsXMMcIQ8g7ORY3A2cgwNkV2QXftK57jkZaWu5O2335ZhGMrJydH27dt1/fXXa8yYMZo8ebLZodm8+OKLslqttp/w8HCzQ6pRsK+vOgcHyv+8ezYBAAAAmMclRw4rZifNz893uDwvL0+SHM4m6qy+/P39FRMTo8WLF6uwsNA2ejhmzJg67ae6ffn7+ysjI+OC4nvkkUc0c+ZM2+/Z2dkKDw9XsG+wAnwv/DmHFXimDpyNHENTIM/gbOQYnI0cQ314lNS95HPJkcOIiAhJ0rFjxxwur2iPjIxs0r4qjB8/XpK0dOnSKvvJyMiwFXR12VdjxOft7a2AgAC7H1dVUlamFzds0LytW1VSVmZ2OAAAAADOccnisE+fPpKknTt3Olxe0d67d+8m7atCSEiIJCk1NdXWFhgYaCv0fvzxxyrb/PLLL0pLS1NkZKRd8eaM+FxZZmGhHl2zRlO//lpuFovZ4QAAAAA4xyWLw8GDB8tqterQoUPatWtXleWff/65JGnkyJG19jVixAi5ublpw4YNVR50X1RUpOXLl8vd3V033XRTneNbv369JKlz58527TfffLNdfHWJuaZtfvzxRx0+fFg9e/ZUx44d6xyfK3OzWDSpb1/9oVcvubu5ZPoBAAAAzZJL/nXu5eWlqVOnSpLuv/9+u8s0Z82apYSEBA0ZMkQxMTG29rlz5yo6OlqPPPKIXV9t27bVnXfeqeLiYt13330qLf3v7J0PP/ywUlNTNX78eLVu3drW/vPPP+vTTz9VcXGxXV+GYWjRokV6+eWXZbFYNGHCBLvl06dPl7u7u958803Fx8fb2g8cOKDnn39eHh4emj59ut02o0aNUqdOnbR792699tprtva8vDzdf//9kqSHHnqobi/cRaCVn5/+feut+mj0aLNDAQAAAFCJS05II0mPP/64Vq1apU2bNqlr166KjY1VSkqKtmzZotDQUL3zzjt266elpSkpKUknT56s0tfs2bMVHx+vJUuWKDo6Wv3791diYqL27Nmjrl27atasWXbrnzp1SuPGjZPValVMTIzatGmjzMxM7d27V8nJyXJzc9OsWbM0YMAAu+26d++uV155RTNnzlRsbKxuuOEGeXl5aeXKlSooKNAbb7yhLl262G3j6empDz/8UNdff71mzpypxYsXKzIyUhs2bNDJkyc1duzYKkUoAAAAADQ2lxw5lCQfHx+tXbtW//jHP+Tn56evvvpKKSkpmjhxonbu3KmoqKg69xUSEqKtW7dq2rRpKi4u1pdffqmsrCw98MAD2rp1q4KD7Wd8uvzyy/XMM88oJiZG+/fv15IlS7R27Vp5enpq0qRJ2rZtm2bMmOFwXw8++KCWLVumQYMGacOGDVq9erX69++v5cuXa9q0aQ63ufrqq7Vt2zaNGTNGBw8e1LJlyxQcHKxZs2Zp8eLFsnBvHgAAAAAnsxiGYZgdBBpXdna2rFarsrKyGmXm0ooH1TfGtMkfJiTovrg4jezenUtLYdOYOQZUhzyDs5FjcDZyDA1Rn9rAZUcOcWnKLCxUTnGxinmMBQAAAOBSXPaeQ1yaJvbtq+GdO8vL3d3sUAAAAABUQnGIJuXv5aWurVqZHQYAAACA83BZKQAAAACAkUM0raX79ul4To6u7dRJ0SEhZocDAAAA4BxGDtGk3tq5U/evWKHNv/xidigAAAAAKmHkEE3qmvBw+Xh4qEswUzADAAAAroTiEE3qkdhYs0MAAAAA4ACXlQIAAAAAKA4BAAAAABSHaEKGYSj4pZcU/tprSs3LMzscAAAAAJVwzyGaTG5xsTIKC5VRWKgWXl5mhwMAAACgEopDNBk/T08lTZ2qrMJC+XqQegAAAIAr4S90NBl3Nzd1a9XK7DAAAAAAOMA9hwAAAAAARg7RdA5nZOibgwfVMTBQN3XtanY4AAAAACph5BBNZseJE7p/xQq9tHGj2aEAAAAAOA8jh2gyYf7+GhUdrctCQ80OBQAAAMB5KA7RZH4TGanfREaaHQYAAAAAB7isFAAAAABAcQgAAAAAoDhEE5q2YoUiXntNC3bsMDsUAAAAAOehOESTOZGbq1+ys1VSXm52KAAAAADOw4Q0aDKvDR+uvw8erHCr1exQAAAAAJyH4hBNJsJqVQSFIQAAAOCSuKwUAAAAAMDIIZrOu7t2ycvdXb/r1k0B3t5mhwMAAACgEkYO0WTui4vTXV98oTP5+WaHAgAAAOA8jByiSZQbhkZ06aKsoiIF+/qaHQ4AAACA81Acokm4WSz6Ytw4s8MAAAAAUA0uKwUAAAAAUBwCAAAAACgO0UQ2/fKLImfP1q2LFpkdCgAAAAAHKA7RJM7k5+toVpZ+zc01OxQAAAAADjAhDZrEbyIjteVPf5KHG99HAAAAAK6I4hBNwurjoyvbtzc7DAAAAADVYBgHAAAAAMDIIZrGlmPHdCgjQ33btNFloaFmhwMAAADgPIwcokm8t3u37vriC32amGh2KAAAAAAcoDhEk+gaHKxrO3VS1+Bgs0MBAAAA4ACXlaJJPDhokB4cNMjsMAAAAABUg5FDAAAAAADFIQAAAACA4hBNJHbhQvX+v/9T4unTZocCAAAAwAHuOUSTSDx9WhmFhXKzWMwOBQAAAIADFIdoEt+OH6/MwkJFBgaaHQoAAAAABygO0SQGtG9vdggAAAAAasA9hwAAAAAAikM4X0ZBgT756SetOnzY7FAAAAAAVIPiEE53ID1df/jiC/1p2TKzQwEAAABQDe45hNN5u7trWMeOat2ihdmhAAAAAKgGxSGcrk+bNlozYYLZYQAAAACoAZeVAgAAAAAoDgEAAAAAFIdoAq/Hx6vPm2/qn5s2mR0KAAAAgGpQHMLpUrKylHDqlFLz8swOBQAAAEA1mJAGTnf/gAG6sUsXhVutZocCAAAAoBoUh3C6zsHB6hwcbHYYAAAAAGrAZaUAAAAAAEYO4XwrDx1SaXm5rmrfXq38/MwOBwAAAIADjBzC6aZ/841u/vhj/XT6tNmhAAAAAKgGI4dwul6tW8vP01OtW7QwOxQAAAAA1aA4hNN9evvtZocAAAAAoBZcVgoAAAAAoDgEAAAAAFAcwsmOZWer75tvaviHH5odCgAAAIAacM8hnOpMfr52nzqlsNxcs0MBAAAAUAOKQzhVp6AgfTt+vMrKy80OBQAAAEANKA7hVAHe3vpt585mhwEAAACgFtxzCAAAAABg5BDO9X1KihJOnVLbli3VKTBQIX5+irBazQ4LAAAAwHkoDuE0R7OydN3776u00v2GPh4eSpo6lQIRAAAAcDFcVgqnScvPtysMJamwtFRp+fkmRQQAAACgOhSHAAAAAACKQwAAAAAAxSGcKMTPTz4e9re1+nh4KMTPz6SIAAAAAFTHpYvDgoICPfHEE+rWrZt8fHzUrl07TZo0ScePH693XxkZGZo+fboiIyPl7e2tyMhIzZgxQ5mZmVXWLSkp0cqVKzV16lT17NlTfn5+8vX1VY8ePfSXv/xFqamp1e4nPz9fzz33nC6//HL5+vqqVatWuvHGG7Vu3bpqt7FYLDX+FBYW1vt4XUGE1aqkqVO1Y/Jk2w+T0QAAAACuyWIYhmF2EI4UFhZq2LBhio+PV9u2bRUbG6vk5GRt3bpVoaGhio+PV1RUVJ36SktL06BBg3Tw4EFFRUWpf//+SkxMVGJiorp166bNmzcrODjYtv6qVat0ww03SJI6duyoK664QiUlJdq8ebPS0tLUpk0brVu3Tt27d7fbT25uroYNG6bt27crODhYV199tbKyshQfH6/S0lK9/fbbmjRpUpX4LBaLWrRoobFjxzqMf8GCBfL09KzrS6fs7GxZrVZlZWUpICCgzttVJ70gXZIU7Btcy5pAw5BjaArkGZyNHIOzkWNoiHrVBoaLeuyxxwxJxqBBg4ycnBxb+6uvvmpIMoYMGVLnvu666y5DkjF69GijpKTE1j5t2jRDkjFhwgS79VevXm38/ve/N7Zs2WLXnpmZaQwfPtwW1/mmTp1qSDJiYmKM06dP29o3btxo+Pv7G15eXkZycnKV7SQZkZGRdT6e2mRlZRmSjKysrEbp70z+GeNM/plG6QtwhBxDUyDP4GzkGJyNHEND1Kc2cMmRw+LiYrVu3VpZWVnauXOn+vXrZ7e8T58+SkhI0Pbt2xUTE1NjXydPnlSHDh3k4eGho0ePKiwszLasqKhI4eHhSk9P14kTJ9S6detaYztx4oTat28vSUpOTlZkZKQt5qCgIOXn52vjxo26+uqr7bZ77LHH9MILL2jGjBl67bXX7JZZLBZFRkYqOTm51v3XBSOHuNiQY2gK5BmcjRyDs5FjaIj61AYuec/hxo0blZWVpc6dO1cpDCXZLr9cvnx5rX198803Ki8vV2xsrF1hKEne3t4aOXKkysrKtGLFijrF1q5dO4WGhko6WyhW+Pnnn5Wfny9vb28NGjSoynbDhg2TJC1durRO+wEAAACApuRR+ypNb/fu3ZKkK664wuHyivaEhIRG6eudd96pU1+SlJmZqYyMDElSmzZtbO15eXmSJKvVKovFUmW7Vq1aSZKOHDmi7OzsKlV7Xl6enn/+eR09elR+fn7q16+fRo8eLX9//zrFBQAAAAAXwiWLw6NHj0qSOnTo4HB5RXtKSkqT9iVJ8+bNU2lpqXr16qVOnTrZ2itGE1NTU1VQUCBfX1+77Y4cOWIXU8+ePe2Wp6Wl6fHHH7drmzlzpt577z3dfPPNdYoNAAAAABrKJYvD3NxcSZJfNc/Da9GihSQpJyenSfv68ccf9dxzz0mSXnrpJbtlXbp0Udu2bXXy5Em99957mjJlit3yd955x/bv8/f1xz/+UX/4wx/Uq1cvWa1WHThwQLNmzdIHH3yg0aNH64cfftCAAQOqjauoqEhFRUW237OzsyWdvS691LO01uOqTUZBxgX3AdSEHENTIM/gbOQYnI0cQ0NkF2TXeV2XvOfQFZ06dUqjR49WYWGhZsyYoRtvvNFuucVi0d///ndJ0l//+lctXLhQ6enpSk5O1vTp0xUXFyePcw+Ed3Ozf9nfe+89DR8+XO3atVOLFi3Ut29fvf/++3r00UdVXFxcZUTxfC+++KKsVqvtJzw8vBGPHAAAAEBz4JIjhxX32eXn5ztcXnF/X8uWLZukr5ycHN10001KTk7W7bffrldffdXhetOmTdPBgwc1Z84cu+cZWiwWPffcc3r99deVmpqqoKCgWuOWpIcfflgvvfSS1q1bp+LiYnl5eTlc75FHHtHMmTNtv2dnZys8PFzBvsEK8L3w2UorMDMWnI0cQ1Mgz+Bs5BicjRxDfXiU1L3kc8niMCIiQpJ07Ngxh8sr2iseI+HMvgoLC3XLLbdo586d+u1vf6sPP/ywyshfBYvFojfeeEOTJk3S0qVLdfz4cbVu3VpjxozRZZddpieffFK+vr6KioqqNW7p7OQ2rVu31smTJ3XmzBm1bdvW4Xre3t7y9vauU58AAAAA4IhLFod9+vSRJO3cudPh8or23r17O7Wv0tJSjRs3TuvWrdPVV1+tL774otrRu8r69u2rvn372rV9//33Kisr0+DBg22Xl9amvLzcdv9gxb2RAAAAAOAMLnnP4eDBg2W1WnXo0CHt2rWryvLPP/9ckjRy5Mha+xoxYoTc3Ny0YcMGnT592m5ZUVGRli9fLnd3d9100012ywzD0N13361ly5apb9++iouLu6ACbc6cOZKkyZMn13mbb775Rnl5eercuXOjPMweAAAAAKrjksWhl5eXpk6dKkm6//77bfcFStKsWbOUkJCgIUOGKCYmxtY+d+5cRUdH65FHHrHrq23btrrzzjtVXFys++67T6Wl/5298+GHH1ZqaqrGjx+v1q1b2203Y8YMffjhh4qOjtbKlSsVGBhYa9ynT5+2PTqjQmlpqZ588kl9/vnnGjZsmG6//Xa75YsWLdK2bduq9LV+/Xrde++9ttcAAAAAAJzJJS8rlaTHH39cq1at0qZNm9S1a1fFxsYqJSVFW7ZsUWhoqN2jIaSzzwlMSkrSyZMnq/Q1e/ZsxcfHa8mSJYqOjlb//v2VmJioPXv2qGvXrpo1a5bd+kuXLtUbb7whSQoPD9df//pXhzH+/e9/V3R0tO33vXv36tprr1W/fv3UqVMnGYahzZs36+TJk+rXr59txLOyb775Ru+99566deumyy+/XJ6entq/f79txPSOO+7Q9OnT6/XaAQAAAEB9uWxx6OPjo7Vr1+rFF1/Uxx9/rK+++krBwcGaOHGinn322Wofau9ISEiItm7dqqeeekpfffWVvvzyS4WFhemBBx7Q008/XWVUMCPjv8+Q+e6776rtd+LEiXbFYefOnTVhwgRt3LhRX3/9tdzc3NS9e3f95S9/0dSpUx3erzhu3DiVlpZqx44dWrt2rXJzcxUcHKwbb7xRkyZN0tixY+t8nAAAAADQUBbDMAyzg0Djys7OltVqVVZWVqPcq5hekC6JaZPhPOQYmgJ5Bmcjx+Bs5Bgaoj61gUvecwgAAAAAaFoUhwAAAAAAikMAAAAAAMUhAAAAAEAUhwAAAAAAURwCAAAAAERxCAAAAAAQxSEAAAAAQBSHAAAAAABRHAIAAAAARHEIAAAAABDFIQAAAABAFIcAAAAAAFEcAgAAAABEcQgAAAAAEMUhAAAAAEAUhwAAAAAAURwCAAAAAERxCAAAAAAQxSEAAAAAQBSHAAAAAABRHAIAAAAARHEIAAAAABDFIQAAAABAkofZAaDxGYYhScrOzm6U/rILzvbjUUK6wDnIMTQF8gzORo7B2cgxNERFTVBRI9SEzLoE5eTkSJLCw8NNjgQAAACAK8jJyZHVaq1xHYtRlxISF5Xy8nKdOHFCLVu2lMViueD+srOzFR4erl9++UUBAQGNECFgjxxDUyDP4GzkGJyNHENDGIahnJwctWvXTm5uNd9VyMjhJcjNzU0dOnRo9H4DAgI4EcGpyDE0BfIMzkaOwdnIMdRXbSOGFZiQBgAAAABAcQgAAAAAoDhEHXh7e+vJJ5+Ut7e32aHgEkWOoSmQZ3A2cgzORo7B2ZiQBgAAAADAyCEAAAAAgOIQAAAAACCKQwAAAACAKA5Rg4KCAj3xxBPq1q2bfHx81K5dO02aNEnHjx83OzRcJHbs2KH//d//1ejRo9WhQwdZLBZZLJZat3v33Xd15ZVXyt/fX8HBwbrpppu0adOmJogYF5v8/Hx99dVXuueee9S9e3f5+PioRYsW6tOnj5555hnl5uZWuy15hrqaNWuWRo8era5du8pqtcrb21uRkZH64x//qJ9++qna7cgxNNSZM2fUunVrWSwWdenSpcZ1yTM0KgNwoKCgwBg4cKAhyWjbtq3x+9//3rjyyisNSUZoaKhx6NAhs0PEReDWW281JFX5qcn06dMNSYavr69x6623GsOHDzc8PDwMd3d348svv2yawHHRWLBggS2vevToYdx+++3G8OHDjZYtWxqSjOjoaOPUqVNVtiPPUB+tWrUyfHx8jCuvvNIYNWqUMWrUKKNbt26GJMPT09NYvnx5lW3IMVyICRMmGBaLxZBkdO7cudr1yDM0NopDOPTYY48ZkoxBgwYZOTk5tvZXX33VkGQMGTLEvOBw0fjf//1f4x//+IexbNky4+TJk4a3t3eNxeF3331nSDJatWpl7N+/39a+adMmw8vLywgMDDQyMjKaIHJcLN59911j8uTJxt69e+3aT5w4YfTr18+QZNx55512y8gz1NcPP/xgFBQUVGmfN2+eIckICwszSkpKbO3kGC7EqlWrDEnG5MmTaywOyTM4A8UhqigqKjKsVqshydi5c2eV5b179zYkGdu3bzchOlzMaisOb7zxRkOS8dprr1VZ9sADDxiSjH/+859OjBCXkk2bNhmSDG9vb6OoqMjWTp6hMXXu3NmQZOzevdvWRo6hofLz843OnTsbl112mbF///4ai0PyDM7APYeoYuPGjcrKylLnzp3Vr1+/KsvHjh0rSVq+fHlTh4ZLWEFBgdasWSPpvzlWGXmH+urTp48kqaioSGfOnJFEnqHxeXp6SpK8vLwkkWO4ME8//bQOHz6sN99805ZbjpBncBaKQ1Sxe/duSdIVV1zhcHlFe0JCQpPFhEtfUlKSioqKFBoaqg4dOlRZTt6hvg4fPizp7B/vwcHBksgzNK4PPvhASUlJ6tq1q7p27SqJHEPDJSQk6NVXX9Xdd9+t2NjYGtclz+AsHmYHANdz9OhRSXJ4sqncnpKS0mQx4dJXW961aNFCgYGBysjIUE5Ojlq2bNmU4eEi9Prrr0uSRowYIW9vb0nkGS7MK6+8osTEROXl5ennn39WYmKi2rVrp08++UTu7u6SyDE0THl5uf70pz8pMDBQL7/8cq3rk2dwFopDVFEx9bufn5/D5S1atJAk5eTkNFlMuPTVlnfS2dzLzMzkPzrUasWKFfr3v/8tT09PPfvss7Z28gwX4ttvv9Xq1attv0dGRur9999XTEyMrY0cQ0PMmTNH27Zt08KFC9WqVata1yfP4CxcVgoAuKTs27dP48ePl2EYeuWVV2z3HgIXatWqVTIMQxkZGfr+++/VtWtXDRkyRM8//7zZoeEidvToUT3++OMaMmSIJk6caHY4aOYoDlGFv7+/pLMPl3YkLy9PkvgWCo2qtryTyD3U7vjx4xoxYoQyMjI0c+ZMTZ8+3W45eYbGEBgYqNjYWK1YsUIxMTH6xz/+oW3btkkix1B/999/v4qLi/Xmm2/WeRvyDM7CZaWoIiIiQpJ07Ngxh8sr2iMjI5ssJlz6asu7vLw8ZWZmKigoiP/o4FB6erp++9vfKiUlRXfffbf++c9/VlmHPENj8vT01Lhx47Rjxw4tX75cAwYMIMdQb//5z38UGBioKVOm2LUXFhZKOvul19ChQyVJixYtUps2bcgzOA3FIaqouARr586dDpdXtPfu3bvJYsKlr3v37vL29lZqaqqOHz+u9u3b2y0n71CT3Nxc3Xjjjdq7d69Gjx6tBQsWyGKxVFmPPENjCwkJkSSlpqZKIsfQMJmZmVq/fr3DZYWFhbZlFQUjeQZn4bJSVDF48GBZrVYdOnRIu3btqrL8888/lySNHDmyiSPDpczX11fXXnutJOmzzz6rspy8Q3WKiop06623auvW/9/e/cdUXf1xHH9d6HL5EYQKGSgC3aaZDCpYRUSXrSgKzMyylbORtlmt2l1rxXD0Y6tWljH8I4ez0I1+W0kblTq3GKlJ9NOmGSQ/nNGMIuRX3IDz/aPdW9d7L1wCgfZ9PjY2OO/POZ/3h50B753zOTTo+uuv9zo58nTMM0w29x/tdrtdEnMM42eM8fvR0tIi6a+55W5LSUmRxDzDGWQAP9avX28kmSuvvNL09vZ62jdu3GgkGYfDMX3J4T/LZrOZ0X7s7Nmzx0gyc+bMMT/88IOnff/+/cZms5nY2FjT1dU1BZniv2JoaMgsX77cSDK5ubmmr69vzD7MM4zHp59+aj766CMzPDzs1e5yucymTZtMSEiIiYiIMO3t7Z4YcwyToaWlxUgydrvdb5x5hjPBYowx01aZYsb6448/lJeXp4MHDyohIUG5ublqa2vTwYMHFR8fr88++0znn3/+dKeJGa62ttbr3wg0NDTIGKPLL7/c01ZWVqbCwkLP106nUxUVFYqMjFR+fr5cLpf27NkjY4x27Nihm2++eSofATNcRUWFnE6nJGn58uWKiYnxe92LL77o2f4nMc8QvG3btunuu+9WXFycMjMzNWfOHHV2durQoUPq6OhQeHi4tm/frpUrV3r1Y45holpbW5Wamiq73a7m5ma/1zDPMOmmsTDFDNff32/KysqM3W43YWFh5rzzzjPFxcXm+PHj050a/iOqqqqMpFE/qqqq/PbLzMw0kZGRJjY21hQUFJh9+/ZN/QNgxnviiSfGnGOSTEtLi09f5hmCcezYMVNaWmpycnJMQkKCsVqtJioqyixZssQ8+OCDpqmpKWBf5hgmYqyVQzfmGSYTK4cAAAAAAA6kAQAAAABQHAIAAAAARHEIAAAAABDFIQAAAABAFIcAAAAAAFEcAgAAAABEcQgAAAAAEMUhAAAAAEAUhwAAAAAAURwCAODFYrHIYrFMdxpnjMViUUpKynSnAQCYgSgOAQAYQ2trqywWi/Ly8qY7lVH9V/IEAMxMZ013AgAAYOocOXJEVqt1utMAAMxAFIcAAPwfufDCC6c7BQDADMW2UgAARvHkk08qNTVVklRXV+d5J9Fisai4uNjr2uPHj+uBBx6Q3W5XeHi4Zs+eraKiIu3fv99n3H9uAT116pQefvhhpaamymq1yul0SpJqa2u1Zs0aLV68WDExMYqKilJGRoaeffZZDQ4O/qs8R3vn8MCBA1q2bJni4+Nls9mUkpKi+++/Xz/99NOo+Q8MDKikpETJycmy2Wy64IIL9Pzzz8sYE+R3+S/Nzc2yWCzKz89XX1+fnnrqKS1evFiRkZGy2+3asGHDuMcEAASPlUMAAEZx8cUXa8WKFXr33Xc1d+5cFRQUeGJXXXWV5/MDBw6osLBQXV1dWrRokQoLC/XLL79o165d+vjjj/Xaa6/p9ttv9xl/YGBADodDbW1tcjgcuvTSSzVr1ixJ0tq1azUwMKC0tDSlp6eru7tbDQ0NWr9+vfbu3avdu3crNDR0XHkGUl1dreLiYg0PDysnJ0dJSUn68ssvtXnzZr333nv65JNP/K46ulwuXXfddTp8+LDy8vLU19enuro6lZSUqKenR08//XTQ3+tvvvlGkjR79mxlZGRocHBQ2dnZSkpK0t69e/XYY48pLi5Oa9asCXpMAMA4GAAA4CHJnP7rsaWlxUgyDofDb5/u7m6TkJBgQkNDTXV1tVfs888/N7NmzTJnn322OXnypM+Ykkx2drbp6uryGXfnzp2mv7/fq+3UqVOmqKjISDLbt28fV57u50tOTvZqa29vNxERESY0NNTU1NR42oeHh43T6TSSTFZWlt97ue/X3d3t9cyhoaEmMjLS9PT0BMzldGVlZZ4xS0tLzZ9//umJVVVVGUmmsLAw6PEAAOPDtlIAACbo1VdfVUdHh5xOp1atWuUVy8rKUllZmXp7e1VdXe23/6ZNmxQbG+vTvmzZMkVERHi1RUdHq7y8XJJUU1MzKflv3bpVAwMDWrlypW666SZPe0hIiJ577jklJiaqsbFR+/bt8+kbEhKiyspKxcTEeNqysrJ0ww03qL+/X42NjUHn8fXXX0uSVqxYoWeeeUZnnfX3Bif3SujJkyfH+3gAgCCxrRQAgAnavXu3JOmWW27xG8/NzZUkNTQ0+MQSEhKUlZUVcOympiZ9+OGHam5uVl9fn0ZGRjzv3TU1NU00dUlSfX29JPkUtpJks9l02223qaKiQvX19crJyfGKJycna9GiRT79Fi5cKEnq6OgIOg/3ttLHH3/cJ9bZ2SlJSkxMDHo8AMD4UBwCADBBra2tkuRTOJ3OXeD804IFC/xea4zRI488ovLy8oCHsPT09Iwv0QDcB84EOqjG3X7ixAmf2Pz58/32iY6OliSfg3MC+f3339Xe3q7U1FSlp6f7xL/99ltJUlpaWlDjAQDGj+IQAIAJGhkZkSTdeuutioqKCnidvwNdwsPD/V771ltv6aWXXlJSUpLKy8uVnZ2t+Ph4Wa1WuVwu2Wy2KTu502KxBIyFhEzOGyruLaWXXXaZ3/hXX30l6a+DdwAAZwbFIQAAEzR//nwdPXpUJSUlyszMnJQx33//fUnS5s2bVVhY6BU7duzYpNzDLTExUUePHlVbW5uWLFniE3evjM6bN29S7/tP7i2ll1xyid84xSEAnHkcSAMAwBjCwsIkSUNDQ37j+fn5kv4u6CZDV1eXJP/bNt9++22/fcbKMxD3O5FvvPGGT8zlcumdd97xuu5MCKY4jI6Olt1uP2M5AMD/O4pDAADGEBcXJ6vVqh9//FHDw8M+8XXr1uncc8/Vhg0btGXLFs82U7ehoSHt2rVL3333XdD3dB/osmXLFq/to/X19XrhhRf+VZ6BrF27VhEREXrzzTdVW1vraR8ZGVFpaalOnDihzMzMMd+pnAj3tlJ/xWF7e7t+++03paenj7rFFQAwMRSHAACMISwsTAUFBfr555+VkZGhu+66S/fcc4+qqqokSbGxsaqpqdE555yjdevWKSUlRTfeeKNWrVqla665RvHx8SooKFBzc3PQ93zooYcUFRWll19+WWlpabrjjjt09dVXy+Fw6N577/1XeQayYMECVVZWamRkREuXLlVubq7uvPNOXXTRRdq4caPmzp0b8N9wTIahoSEdPnxY8+bNU3x8vE+cLaUAMDUoDgEACMLWrVu1evVq/frrr3r99df1yiuvqK6uzhO/4oordOjQIT366KOKiYlRXV2ddu7cqba2NjkcDm3btk3XXntt0PdbuHChGhsbtXTpUnV2duqDDz5Qb2+vKisrA64cBpNnIKtXr1Z9fb2Kiop05MgR7dixQwMDA7rvvvv0xRdf+D1MZ7J8//33GhwcDFj8URwCwNSwmKk66gwAAAAAMGOxcggAAAAAoDgEAAAAAFAcAgAAAABEcQgAAAAAEMUhAAAAAEAUhwAAAAAAURwCAAAAAERxCAAAAAAQxSEAAAAAQBSHAAAAAABRHAIAAAAARHEIAAAAAJD0P2oGu0syveJSAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est.completed_trials_summary_[est.completed_trials_summary_[\"Step\"].str.contains('Model Tuning')]\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "trials.drop(trials[trials['Finished'] == -1].index, inplace = True)\n", "trials['Finished']= trials['Finished'].apply(lambda x: time.mktime(datetime.datetime.strptime(x,\n", " \"%a %b %d %H:%M:%S %Y\").timetuple()))\n", "trials.sort_values(by=['Finished'],ascending=True, inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "score = []\n", "score.append(scores[0])\n", "for i in range(1,len(scores)):\n", " if scores[i]>= score[i-1]:\n", " score.append(scores[i])\n", " else:\n", " score.append(score[i-1])\n", "y_margin = 0.10 * (max(score) - min(score))\n", "\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Hyperparameter Tuning Trials\")\n", "ax.set_xlabel(\"Iteration $n$\")\n", "ax.set_ylabel(est._inferred_score_metric[0].name)\n", "ax.grid(color='g', linestyle='-', linewidth=0.1)\n", "ax.set_ylim(min(score) - y_margin, max(score) + y_margin)\n", "ax.plot(range(1, len(trials) + 1), score, 'k:', marker=\"s\", color='teal', markersize=3)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "fa9953d5", "metadata": {}, "source": [ "#### Confusion Matrix\n", "Evaluating an anomaly detection model is slightly more involved. Essentially, we would like to know when the model was wrong and when the model was right. We use a **Confusion Matrix** to help us visualize the model's behavior." ] }, { "cell_type": "code", "execution_count": 18, "id": "968c45df", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:01:51.132115Z", "iopub.status.busy": "2025-05-22T12:01:51.131681Z", "iopub.status.idle": "2025-05-22T12:01:51.260829Z", "shell.execute_reply": "2025-05-22T12:01:51.260224Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "colorscale": [ [ 0.0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1.0, "#fde725" ] ], "reversescale": false, "showscale": false, "type": "heatmap", "x": [ "Normal", "Fraud" ], "y": [ "Normal", "Fraud" ], "z": [ [ 0.9367778696164466, 0.06322213038355345 ], [ 0.494949494949495, 0.5050505050505051 ] ] } ], "layout": { "annotations": [ { "font": { "color": "#000000" }, "showarrow": false, "text": "93.68", "x": "Normal", "xref": "x", "y": "Normal", "yref": "y" }, { "font": { "color": "#FFFFFF" }, "showarrow": false, "text": "6.32", "x": "Fraud", "xref": "x", "y": "Normal", "yref": "y" }, { "font": { "color": "#FFFFFF" }, "showarrow": false, "text": "49.49", "x": "Normal", "xref": "x", "y": "Fraud", "yref": "y" }, { "font": { "color": "#000000" }, "showarrow": false, "text": "50.51", "x": "Fraud", "xref": "x", "y": "Fraud", "yref": "y" }, { "font": { "color": "black", "size": 14 }, "showarrow": false, "text": "Predicted value", "x": 0.5, "xref": "paper", "y": -0.15, "yref": "paper" }, { "font": { "color": "black", "size": 14 }, "showarrow": false, "text": "Actual", "textangle": -90, "x": -0.15, "xref": "paper", "y": 0.5, "yref": "paper" } ], "margin": { "l": 150, "t": 50 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "dtick": 1, "gridcolor": "rgb(0, 0, 0)", "side": "top", "ticks": "" }, "yaxis": { "dtick": 1, "ticks": "", "ticksuffix": " " } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cm = confusion_matrix(y_test.astype(int), y_pred, labels=[False, True])\n", "cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n", "\n", "text = [[f\"{y*100:.2f}\" for y in x] for x in cm]\n", "fig = ff.create_annotated_heatmap(cm, x=['Normal', 'Fraud'], y=['Normal', 'Fraud'], annotation_text=text, colorscale='Viridis')\n", "fig.add_annotation(dict(font=dict(color=\"black\",size=14),\n", " x=0.5,\n", " y=-0.15,\n", " showarrow=False,\n", " text=\"Predicted value\",\n", " xref=\"paper\",\n", " yref=\"paper\"))\n", "\n", "fig.add_annotation(dict(font=dict(color=\"black\",size=14),\n", " x=-0.15,\n", " y=0.5,\n", " showarrow=False,\n", " text=\"Actual\",\n", " textangle=-90,\n", " xref=\"paper\",\n", " yref=\"paper\"))\n", "fig.update_layout(margin=dict(t=50, l=150))\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "414bd44a", "metadata": {}, "source": [ "\n", "### Specify a time budget to Oracle AutoMLx\n", "The Oracle AutoMLx tool also allows a user to specify a time budget in seconds. Given the small size of this dataset, we give a small time budget of 10 seconds using the `time_budget` argument to `fit()`." ] }, { "cell_type": "code", "execution_count": 19, "id": "f8c3302e", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:01:51.262955Z", "iopub.status.busy": "2025-05-22T12:01:51.262471Z", "iopub.status.idle": "2025-05-22T12:02:07.897981Z", "shell.execute_reply": "2025-05-22T12:02:07.897296Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:51,361] [automlx.interface] Dataset shape: (17088,19)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:51,462] [automlx.data_transform] Running preprocessing. Number of features: 20\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:51,638] [automlx.data_transform] Preprocessing completed. Took 0.176 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:51,686] [automlx.process] Running Model Generation\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:51,734] [automlx.process] Model Generation completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:01:51,801] [automlx.model_selection] Running Model Selection\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:02:01,746] [automlx.model_selection] Model Selection completed - Took 9.945 sec - Selected models: [['MinCovOD']]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:02:01,758] [automlx.process] Timebudget exceeded for steps ['HyperparameterOptimization'], skipping processing of [MinCovOD (InputTargetDataTransformer_MinCovOD)]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:02:01,840] [automlx.interface] Re-fitting pipeline\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:02:01,852] [automlx.final_fit] Skipping updating parameter seed, already fixed by FinalFit_90fdbdb5-6\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "F1-Score on test data : 0.3114754098360656\n" ] } ], "source": [ "est_timebudget = automlx.Pipeline(task='anomaly_detection', score_metric='unsupervised_unify95')\n", "est_timebudget.fit(X_train, time_budget=10)\n", "y_pred = est_timebudget.predict(X_test)\n", "score_timebudget = f1_score(y_test.astype(int), y_pred)\n", "\n", "print(f'F1-Score on test data : {score_timebudget}')" ] }, { "cell_type": "markdown", "id": "24fbd3a5", "metadata": {}, "source": [ "\n", "## Machine Learning Explainability" ] }, { "cell_type": "markdown", "id": "54d2c848", "metadata": {}, "source": [ "For a variety of decision-making tasks, getting only a prediction as model output is not sufficient. A user may wish to know why the model outputs that prediction, or which data features are relevant for that prediction. For that purpose the Oracle AutoMLx solution defines the `MLExplainer` object, which allows to compute a variety of model explanations.\n", "\n", "\n", "### Initialize an MLExplainer\n", "\n", "The `MLExplainer` object takes as argument the trained model, the training data and the task. If you know the labels for your dataset, you may provide them; however, since we are dealing with anomaly detection they are optional. When the labels are not provided, we will use the model's predictions instead." ] }, { "cell_type": "code", "execution_count": 20, "id": "b2474f3b", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:07.900224Z", "iopub.status.busy": "2025-05-22T12:02:07.899810Z", "iopub.status.idle": "2025-05-22T12:02:09.755139Z", "shell.execute_reply": "2025-05-22T12:02:09.754340Z" } }, "outputs": [], "source": [ "explainer = automlx.MLExplainer(est,\n", " X_train,\n", " target_names=['Normal', 'Anomaly'],\n", " task='anomaly_detection')" ] }, { "cell_type": "markdown", "id": "e0624efa", "metadata": {}, "source": [ "\n", "### Model Explanations (Global Feature Importance)" ] }, { "cell_type": "markdown", "id": "7533eb1c", "metadata": {}, "source": [ "The notion of Global Feature Importance intuitively measures how much the model's performance (relative to the model's original predictions or the provided train labels, if available) would change if a given feature were dropped from the dataset, ***and the model was retrained***. (Note that this is unlike the default explainers for classification and regression tasks, which explain the model as if it were not retrained. Also unlike these supervised explainers, the anomaly detection explainer does not support interventional explanations.) Note that this notion of feature importance still considers each feature independently from all other features." ] }, { "cell_type": "markdown", "id": "f613aabd", "metadata": {}, "source": [ "#### Compute the importance" ] }, { "cell_type": "markdown", "id": "7c3a3a30", "metadata": {}, "source": [ "By default we use a permutation method to successively measure the importance of each feature. Such a method therefore runs in linear time with respect to the\n", "number of features in the dataset.\n", "\n", "The method `explain_model()` allows to compute such feature importances. It also provides 95% confidence intervals for each feature importance." ] }, { "cell_type": "code", "execution_count": 21, "id": "ad6cf5d0", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:09.758678Z", "iopub.status.busy": "2025-05-22T12:02:09.757470Z", "iopub.status.idle": "2025-05-22T12:02:16.616164Z", "shell.execute_reply": "2025-05-22T12:02:16.615474Z" } }, "outputs": [], "source": [ "result_explain_model_default = explainer.explain_model()" ] }, { "cell_type": "markdown", "id": "211502e3", "metadata": {}, "source": [ "#### Visualization" ] }, { "cell_type": "markdown", "id": "844a4fdd", "metadata": {}, "source": [ "There are two options to show the explanation's results:\n", "- `to_dataframe()` will return a dataframe of the results.\n", "- `show_in_notebook()` will show the results as a bar plot.\n", "\n", "The features are returned in decreasing order of importance." ] }, { "cell_type": "code", "execution_count": 22, "id": "edb42d64", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:16.618915Z", "iopub.status.busy": "2025-05-22T12:02:16.618311Z", "iopub.status.idle": "2025-05-22T12:02:16.862712Z", "shell.execute_reply": "2025-05-22T12:02:16.862169Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
featureattributionupper_boundlower_bound
0V190.0608430.0668870.054799
1V80.0476810.0520800.043281
2V40.0345760.0379380.031213
3V30.0313040.0386600.023947
4V140.0152000.0183720.012027
12V110.0000000.0000000.000000
18V180.0000000.0000000.000000
17V170.0000000.0000000.000000
16V160.0000000.0000000.000000
15V150.0000000.0000000.000000
14V130.0000000.0000000.000000
13V120.0000000.0000000.000000
10V90.0000000.0000000.000000
11V100.0000000.0000000.000000
9V70.0000000.0000000.000000
8V60.0000000.0000000.000000
7V50.0000000.0000000.000000
6V20.0000000.0000000.000000
5V10.0000000.0000000.000000
19V200.0000000.0000000.000000
\n", "
" ], "text/plain": [ " feature attribution upper_bound lower_bound\n", "0 V19 0.060843 0.066887 0.054799\n", "1 V8 0.047681 0.052080 0.043281\n", "2 V4 0.034576 0.037938 0.031213\n", "3 V3 0.031304 0.038660 0.023947\n", "4 V14 0.015200 0.018372 0.012027\n", "12 V11 0.000000 0.000000 0.000000\n", "18 V18 0.000000 0.000000 0.000000\n", "17 V17 0.000000 0.000000 0.000000\n", "16 V16 0.000000 0.000000 0.000000\n", "15 V15 0.000000 0.000000 0.000000\n", "14 V13 0.000000 0.000000 0.000000\n", "13 V12 0.000000 0.000000 0.000000\n", "10 V9 0.000000 0.000000 0.000000\n", "11 V10 0.000000 0.000000 0.000000\n", "9 V7 0.000000 0.000000 0.000000\n", "8 V6 0.000000 0.000000 0.000000\n", "7 V5 0.000000 0.000000 0.000000\n", "6 V2 0.000000 0.000000 0.000000\n", "5 V1 0.000000 0.000000 0.000000\n", "19 V20 0.000000 0.000000 0.000000" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result_explain_model_default.to_dataframe()" ] }, { "cell_type": "code", "execution_count": 23, "id": "2edf6c4c", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:16.864746Z", "iopub.status.busy": "2025-05-22T12:02:16.864236Z", "iopub.status.idle": "2025-05-22T12:02:17.023886Z", "shell.execute_reply": "2025-05-22T12:02:17.023401Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ 0.006044378461099016, 0.004399772202423456, 0.0033627454511062013, 0.007356655013361371, 0.003172578810437138, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], "arrayminus": [ 0.006044378461099009, 0.004399772202423456, 0.003362745451106205, 0.007356655013361371, 0.003172578810437138, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], "type": "data" }, "legendgroup": "None", "marker": { "color": "rgb(248,0,0)" }, "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.06084288653751644, 0.04768071420221923, 0.03457566433304058, 0.03130383892138132, 0.015199673894619648, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], "y": [ "V19", "V8", "V4", "V3", "V14", "V11", "V18", "V17", "V16", "V15", "V13", "V12", "V9", "V10", "V7", "V6", "V5", "V2", "V1", "V20" ] } ], "layout": { "height": 900, "margin": { "b": 20, "t": 80 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "The Features' Impact on the Model's f1_weighted Score", "x": 0.5 }, "xaxis": { "categoryorder": "total ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "total ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_model_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "f74e50e7", "metadata": {}, "source": [ "### Feature Dependence Explanations (Partial Dependence Plots)\n", "\n", "Another way to measure dependency on a feature is through a partial dependence plot (PDP). Given a dataset, a PDP displays the average output of the model as a function of the value of the selected set of features.\n", "\n", "The X-axis is the value of the feature `V17` and the y-axis is the corresponding outputted price. Since we are considering the whole dataset, while the shaded interval corresponds to a 95% confidence interval for the average.\n", "\n", "The histogram on top shows the distribution of the value of the feature `V17` in the dataset." ] }, { "cell_type": "code", "execution_count": 24, "id": "eab90711", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:17.025982Z", "iopub.status.busy": "2025-05-22T12:02:17.025518Z", "iopub.status.idle": "2025-05-22T12:02:18.095209Z", "shell.execute_reply": "2025-05-22T12:02:18.094527Z" }, "lines_to_next_cell": 0 }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "toself", "fillcolor": "rgb(248,0,0)", "legendgroup": "None", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": false, "type": "scatter", "x": [ -0.9681906615873594, -0.8017234237392098, -0.6787820074723984, -0.5896843618672288, -0.5109317592570508, -0.43888694964219055, -0.3670797584787029, -0.302867960118549, -0.23518605154435954, -0.15454016905499768, -0.07470404565405854, 0.004879234685813854, 0.08496403402246253, 0.1658227814655644, 0.24561722980815148, 0.339656108508978, 0.44665516823345264, 0.5519310539344573, 0.7201165656244733, 0.9333951382939861, 1.2848218824098692, 1.2848218824098692, 0.9333951382939861, 0.7201165656244733, 0.5519310539344573, 0.44665516823345264, 0.339656108508978, 0.24561722980815148, 0.1658227814655644, 0.08496403402246253, 0.004879234685813854, -0.07470404565405854, -0.15454016905499768, -0.23518605154435954, -0.302867960118549, -0.3670797584787029, -0.43888694964219055, -0.5109317592570508, -0.5896843618672288, -0.6787820074723984, -0.8017234237392098, -0.9681906615873594 ], "xaxis": "x2", "y": [ 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904 ], "yaxis": "y2" }, { "legendgroup": "None", "line": { "color": "rgb(248,0,0)" }, "mode": "lines+markers", "opacity": 1, "showlegend": false, "type": "scatter", "x": [ -0.9681906615873594, -0.8017234237392098, -0.6787820074723984, -0.5896843618672288, -0.5109317592570508, -0.43888694964219055, -0.3670797584787029, -0.302867960118549, -0.23518605154435954, -0.15454016905499768, -0.07470404565405854, 0.004879234685813854, 0.08496403402246253, 0.1658227814655644, 0.24561722980815148, 0.339656108508978, 0.44665516823345264, 0.5519310539344573, 0.7201165656244733, 0.9333951382939861, 1.2848218824098692 ], "xaxis": "x2", "y": [ 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317 ], "yaxis": "y2" }, { "legendgroup": "None", "marker": { "color": "Black" }, "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.15158992591571793, "x": [ -6.029783577722469, -5.8645505584743365, -5.704982215405159, -5.545413872335981, -5.385845529266804, -5.226277186197628, -5.06670884312845, -4.907140500059273, -4.7475721569900955, -4.588003813920919, -4.428435470851741, -4.268867127782564, -4.1092987847133875, -3.9497304416442103, -3.790162098575033, -3.6305937555058554, -3.4710254124366786, -3.311457069367501, -3.151888726298324, -2.9923203832291465, -2.8327520401599697, -2.673183697090793, -2.5136153540216153, -2.3540470109524385, -2.194478667883261, -2.034910324814084, -1.8753419817449068, -1.7157736386757296, -1.5562052956065524, -1.3966369525373752, -1.237068609468198, -1.0775002663990207, -0.917931923329844, -0.7583635802606667, -0.5987952371914895, -0.4392268941223123, -0.2796585510531351, -0.12009020798395786, 0.03947813508521936, 0.19904647815439658, 0.3586148212235738, 0.5181831642927506, 0.6777515073619278, 0.837319850431105, 0.9968881935002822, 1.1564565365694595, 1.3160248796386367, 1.475593222707814, 1.6351615657769907, 1.794729908846168, 1.9542982519153451, 2.113866594984522, 2.2734349380536996, 2.4330032811228772, 2.592571624192054, 2.752139967261231, 2.9117083103304076, 3.071276653399585, 3.230844996468763, 3.3904133395379397, 3.5499816826071164, 3.709550025676294, 3.8691183687454718, 4.0286867118146485, 4.188255054883825, 4.347823397953002, 4.50739174102218, 4.666960084091357, 4.826528427160534, 4.986096770229711, 5.145665113298889 ], "xaxis": "x", "y": [ 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0002, 0.0002, 0.001, 0.0024, 0.0042, 0.0112, 0.0242, 0.04, 0.056, 0.085, 0.0994, 0.1076, 0.0858, 0.0926, 0.0884, 0.0678, 0.063, 0.0414, 0.0308, 0.0244, 0.0188, 0.0154, 0.0078, 0.0088, 0.0068, 0.004, 0.0034, 0.0014, 0.001, 0.001, 0.0012, 0.0006, 0.0002, 0.0002, 0.0012, 0.0002, 0.0002, 0.0002, 0.0004, 0.0002, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0004 ], "yaxis": "y" } ], "layout": { "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Partial Dependence Plot (PDP)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ -1.080841288787221, 1.3974725096097307 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "V17" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.11298000000000001 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ 0.7524011504500363, 0.7833799059996271 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "P(Normal)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_feature_dependence_default = explainer.explain_feature_dependence('V17')\n", "result_explain_feature_dependence_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "f8b9ae12", "metadata": {}, "source": [ "\n", "### Prediction Explanations" ] }, { "cell_type": "markdown", "id": "6d067689", "metadata": {}, "source": [ "In addition to the Model's behavior, a user might be curious about decision-logic behind the specific predictions made by the model or the impact of specific feature values on the prediction. The Oracle AutoMLx offers prediction explanations to address such concerns." ] }, { "cell_type": "markdown", "id": "466fa274", "metadata": {}, "source": [ "\n", "### Local Feature Importance" ] }, { "cell_type": "markdown", "id": "e88e1b78", "metadata": {}, "source": [ "Given a data sample, one can also obtain the local importance, which is the importance of the features for the model's prediction on that sample.\n", "In the following cell, we consider sample $1$. The function `explain_prediction()` computes the local importance for a given sample.\n", "\n", "In the plot, `V8=0.8878` means that the value of feature `V8` for that sample is `0.8878`. Removing that feature and retraining the model would change the model's prediction by the magnitude of the bar. That is, in this case, the model's prediction for the probability that the point is anomalous is approximately 0.4% larger because the model was able to observe the value for `V8`." ] }, { "cell_type": "code", "execution_count": 25, "id": "1da1a8b2", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:18.097462Z", "iopub.status.busy": "2025-05-22T12:02:18.097083Z", "iopub.status.idle": "2025-05-22T12:02:18.157763Z", "shell.execute_reply": "2025-05-22T12:02:18.157142Z" } }, "outputs": [], "source": [ "anomaly_indices = np.where(y_pred == 1)[0]" ] }, { "cell_type": "code", "execution_count": 26, "id": "a5ba2f6f", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:18.159940Z", "iopub.status.busy": "2025-05-22T12:02:18.159585Z", "iopub.status.idle": "2025-05-22T12:02:18.514376Z", "shell.execute_reply": "2025-05-22T12:02:18.513750Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ 0.005382542896500111, 0.004105319788107381 ], "arrayminus": [ 0.005382542896500111, 0.004105319788107381 ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "negative", "marker": { "color": "#626567" }, "name": "21702=negative", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ -0.024053776334732723, -0.04653394113354835 ], "y": [ "V3", "V19" ] }, { "error_x": { "array": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05281468841204537, 0.02916953661548438, 0.05026616375490922 ], "arrayminus": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05281468841204537, 0.029169536615484368, 0.05026616375490922 ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "positive", "marker": { "color": "#F80000" }, "name": "21702=positive", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.13664114897249124, 0.15312663305239846, 0.3153644800294522 ], "y": [ "V16", "V6", "V7", "V9", "V10", "V2", "V12", "V11", "V15", "V20", "V17", "V18", "V13", "V1", "V5", "V8", "V14", "V4" ] }, { "marker": { "line": { "color": "rgba(0,0,0,0)", "width": 1 } }, "name": "", "orientation": "h", "showlegend": false, "type": "bar", "width": 0, "x": [ -0.3153644800294522 ], "y": [ " " ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "V16 = 0.3018", "x": 0, "xanchor": "right", "xref": "x", "y": 1, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V6 = -0.1358", "x": 0, "xanchor": "right", "xref": "x", "y": 2, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V7 = 1.7098", "x": 0, "xanchor": "right", "xref": "x", "y": 3, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V9 = -0.4301", "x": 0, "xanchor": "right", "xref": "x", "y": 4, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V10 = -1.9344", "x": 0, "xanchor": "right", "xref": "x", "y": 5, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V2 = -0.0110", "x": 0, "xanchor": "right", "xref": "x", "y": 6, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V12 = 0.2940", "x": 0, "xanchor": "right", "xref": "x", "y": 7, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V11 = 0.5189", "x": 0, "xanchor": "right", "xref": "x", "y": 8, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V15 = -0.9451", "x": 0, "xanchor": "right", "xref": "x", "y": 9, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V20 = 0.7061", "x": 0, "xanchor": "right", "xref": "x", "y": 10, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V17 = 0.9598", "x": 0, "xanchor": "right", "xref": "x", "y": 11, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V18 = 1.0687", "x": 0, "xanchor": "right", "xref": "x", "y": 12, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V13 = -0.5863", "x": 0, "xanchor": "right", "xref": "x", "y": 13, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V1 = -1.4029", "x": 0, "xanchor": "right", "xref": "x", "y": 14, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V5 = -0.4015", "x": 0, "xanchor": "right", "xref": "x", "y": 15, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V3 = -0.6727", "x": 0, "xanchor": "right", "xref": "x", "y": 16, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V19 = 0.7451", "x": 0, "xanchor": "right", "xref": "x", "y": 17, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V8 = 0.3195", "x": 0, "xanchor": "left", "xref": "x", "y": 18, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V14 = -0.8725", "x": 0, "xanchor": "left", "xref": "x", "y": 19, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V4 = -0.2399", "x": 0, "xanchor": "left", "xref": "x", "y": 20, "yref": "y", "yshift": 12.0 }, { "font": { "color": "#626567", "size": 14 }, "showarrow": false, "text": "⇩ P(Normal)", "x": 0.15, "xref": "paper", "y": 1.015, "yref": "paper", "yshift": 40 }, { "font": { "color": "#F80000", "size": 14 }, "showarrow": false, "text": "⇧ P(Normal)", "x": 0.85, "xref": "paper", "y": 1.015, "yref": "paper", "yshift": 40 } ], "barmode": "overlay", "height": 890, "margin": { "b": 20, "t": 70 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryarray": [ " ", "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V3", "V19", "V8", "V14", "V4" ], "categoryorder": "array", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "title": { "text": " " }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryarray": [ " ", "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V3", "V19", "V8", "V14", "V4" ], "categoryorder": "array", "gridcolor": "white", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": false, "side": "top", "type": "category", "visible": false, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "index = anomaly_indices[0]\n", "result_explain_prediction_default = explainer.explain_prediction(X_train.iloc[index:index+1,:])\n", "result_explain_prediction_default[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "8800d4ef", "metadata": {}, "source": [ "\n", "## Interactive What-If Explanations" ] }, { "cell_type": "markdown", "id": "9d8599bd", "metadata": {}, "source": [ "The Oracle AutoMLx solution offers also What-IF tool to explain a trained ML model's predictions through a simple interactive interface.\n", "\n", "You can use What-IF explainer to explore and visualize immediately how changing a sample value will affect the model's prediction. Furthermore, What-IF can be used to visualize how model's predictions are related to any feature of the dataset." ] }, { "cell_type": "code", "execution_count": 27, "id": "803bac52", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:18.516435Z", "iopub.status.busy": "2025-05-22T12:02:18.516039Z", "iopub.status.idle": "2025-05-22T12:02:19.112109Z", "shell.execute_reply": "2025-05-22T12:02:19.111509Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4559c4c003d640e880e56a7bade8407f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value=\"

Select and Explore Predictions

\"), HTML(value='
proba_Anomaly: %{y}
predictions: Anomaly", "marker": { "color": "#F58518", "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "predictions = Anomaly", "showlegend": true, "type": "scatter", "uid": "0ec1dc56-f99e-4914-b1df-3a811656d3e0", "x": [ -25.82598214908204, -21.54695869109135, -17.16121797587335, -14.168840338203823, -13.099603188207958, -12.895214273782607, -12.168192373697991, -11.781492369315966, -11.600726722185927, -11.404624498836816, -10.600084488573145, -10.367551052965783, -10.341397676035639, -10.314106399978499, -10.018404240546426, -9.791064134052476, -9.746103094922773, -9.585064275518956, -9.244064915558052, -9.087466765062766, -9.031134968661847, -9.027645357721685, -8.929352495086533, -8.604196015593166, -8.33802934806713, -8.273786439106438, -8.090821419575567, -7.377021178693565, -7.340417569722156, -6.9927149153487305, -6.762462974464353, -6.539363349601182, -6.498406248092652, -6.49350395422021, -6.402300718190642, -6.344769671682791, -6.342419776587651, -6.33335099269692, -6.330189684734026, -6.272390906787591, -6.1875719163200715, -6.166951467945777, -5.805874331579731, -5.597923416704058, -5.532113419106975, -5.328098817125729, -5.316156846163715, -5.308335753160266, -5.267759743252558, -5.138294031460804, -5.08641282750896, -5.014377764465811, -4.887432655441375, -4.845463162506854, -4.7075435266294505, -4.662434507991007, -4.652697234624175, -4.652382011469939, -4.6332852993739015, -4.609840345006821, -4.557703507537022, -4.551603441629876, -4.546554033891308, -4.526720683122548, -4.470198659402664, -4.432155242407828, -4.4197595992776595, -4.304654981916208, -4.303095260406437, -4.243184528258507, -4.236847805151216, -4.1476987713709965, -4.1329516499557934, -4.093768860572933, -3.9955772652688095, -3.969857793390769, -3.9606349963378458, -3.8580495527340264, -3.843009034385356, -3.816202305999768, -3.7656801220835026, -3.752122456877792, -3.7464934300007924, -3.7426472902486876, -3.6148682597284303, -3.6138504550280266, -3.561821038452652, -3.55041166425956, -3.503829232567002, -3.4844617845028654, -3.4529058068294103, -3.432364545500777, -3.3873206879674775, -3.3536577671774306, -3.299774265071045, -3.280387409941566, -3.272474226111106, -3.2302104966508844, -3.217204329445234, -3.1986224467449142, -3.1202222607986916, -3.10685542308555, -3.102040170920318, -3.0871061503747805, -3.0552781615871756, -3.0496198095685836, -3.023142024714601, -2.999123048606325, -2.9985633351068754, -2.9606072219590893, -2.955041011888766, -2.9169595537988506, -2.8579529517534694, -2.8576211482397196, -2.7837821674789183, -2.7432789109074673, -2.7299922138964847, -2.7284032678269345, -2.6771376642441695, -2.6731184494821894, -2.6582901703061452, -2.6224270892664707, -2.600733304322984, -2.5947039454524514, -2.591170127513333, -2.577645849985487, -2.57401261792607, -2.5560685078276792, -2.540086184118168, -2.5313270154110254, -2.431957914835535, -2.427815560318021, -2.417479145367062, -2.395577777381831, -2.378720568555439, -2.3694194149979717, -2.334472896707939, -2.334101591623868, -2.3225104201431073, -2.315405052620483, -2.307034888937906, -2.295034671741157, -2.284996057870793, -2.2781351700213093, -2.244061125490211, -2.238468232598654, -2.2274808451908723, -2.204609329497442, -2.202808026017903, -2.202358076771364, -2.1937919052663406, -2.18246229238143, -2.165094548178382, -2.155383237205875, -2.153508950483386, -2.1528569879386534, -2.1342937470792323, -2.1297761655927117, -2.119941619968649, -2.108448940697483, -2.106075079173892, -2.09536365876054, -2.056861939731818, -2.0535207202278607, -2.0223169044887253, -2.0173531521110264, -2.010256530924594, -1.9966932838940192, -1.972698466903061, -1.9620454284451045, -1.9585182883374297, -1.9433752074092536, -1.9429052657973545, -1.92242058702926, -1.916546907454266, -1.9075940158849982, -1.9053473398677774, -1.8939192471400195, -1.885934100336204, -1.8780781353260299, -1.8741235365504032, -1.8345473434447532, -1.825853323514203, -1.8155500891842768, -1.7643525225286019, -1.7594683064214771, -1.7532372745814764, -1.7361631938786601, -1.7353881663710689, -1.7332961448545545, -1.7320688901458192, -1.7096245669024253, -1.7092287455849848, -1.7079745268350717, -1.7000501607983796, -1.692289045268709, -1.6823623039108089, -1.679938127786842, -1.6726963346568577, -1.6165737260809676, -1.6158259087996258, -1.6150431648961348, -1.6003353823438875, -1.5862007786701358, -1.5815559590244468, -1.5783644355878308, -1.5616586516221662, -1.5613569258723818, -1.5539749906096971, -1.5537585768217341, -1.5506109794509202, -1.5463833959512225, -1.5442893197792644, -1.5434692282237408, -1.5416784923309996, -1.529665521399583, -1.511221664184681, -1.508399204053847, -1.5051052476248312, -1.4924772790127898, -1.4857907529740193, -1.4734969779206681, -1.4722215540599715, -1.46339546154916, -1.4555444865861653, -1.4468314873308143, -1.4341253547138777, -1.4320515468224218, -1.428927675595634, -1.4288280497877306, -1.4251860528970788, -1.4239506549443979, -1.4149684341221755, -1.4096845218546976, -1.393265185442497, -1.3920828701676546, -1.3778023956046954, -1.3742684349651726, -1.3665843084175036, -1.3650434403100649, -1.3610502963917708, -1.361013782616143, -1.3545073697268664, -1.3516533451127746, -1.3496803658688057, -1.3464931603143713, -1.3327315954357637, -1.307383522629344, -1.3050452668217174, -1.2828153246322462, -1.2825221804046998, -1.2598912468094936, -1.255834189719037, -1.2540893968856326, -1.2404394517010018, -1.230678026910383, -1.2152898159090375, -1.2125384621997832, -1.1971249205628491, -1.1811123256905551, -1.1769243365776632, -1.1735960983253917, -1.1732962065364614, -1.1698267693152284, -1.1646254099756175, -1.1401940810213684, -1.13958541059085, -1.135387603353729, -1.1326858509794928, -1.130906155003961, -1.117579261031668, -1.1033395761480898, -1.0991230306114628, -1.0989058129170797, -1.0979567436103246, -1.097198589001901, -1.0859623777918999, -1.0760282712189997, -1.0759884306034975, -1.0759738591293981, -1.0744154612395844, -1.067926503103193, -1.065059412631916, -1.0632763845447308, -1.0593969136865335, -1.0547398408385975, -1.0545227853589594, -1.0544414834264035, -1.0453496147908874, -1.0406712266006775, -1.0387465479243918, -1.0364454018435718, -1.0290890680043847, -1.0284402680635762, -1.025782880612446, -1.0150819618585418, -1.012452972377516, -1.010985853493478, -1.005017929593162, -1.0038971328985318, -0.9975255714925678, -0.9882714598748314, -0.9882714598748314, -0.986658027404755, -0.9667250347827901, -0.9659445368701332, -0.9657118273213195, -0.9559213266898594, -0.9505553854208872, -0.9477708696165221, -0.9457345974058884, -0.9374349676680178, -0.9181499048477612, -0.9031226189263677, -0.9005260883525279, -0.8855595388739863, -0.8852195814949178, -0.8849063521903298, -0.8795400616802879, -0.8788582118497669, -0.8703064421337554, -0.8640238518381171, -0.8637813544401001, -0.8499904347730566, -0.846536323129639, -0.842795649169891, -0.8359694088083357, -0.8268336624017519, -0.8116352255620936, -0.8077272411686739, -0.800308356566318, -0.8000452082289433, -0.7953237748331297, -0.7928015334255751, -0.7845913797234699, -0.7790800512570732, -0.7771905043947585, -0.7767378554719307, -0.764685686463101, -0.7547130360250504, -0.7516131081702944, -0.7447904067186384, -0.7429468601713095, -0.7289495849608756, -0.7255664898388187, -0.7254591375759828, -0.7250701086342909, -0.7125464434168434, -0.710855013642642, -0.7057459202341717, -0.7055123025905949, -0.7048846195323462, -0.6967981424280306, -0.6963957077812597, -0.6951987900624899, -0.6930535039373799, -0.6928946006541287, -0.6909861166155514, -0.6862294288549, -0.6713590282762287, -0.6676595147792793, -0.652522791153058, -0.6509425314237585, -0.6399381230221114, -0.637777054272442, -0.6284443261215578, -0.6108915998038126, -0.6090916145326153, -0.6071128674393078, -0.5967493980798954, -0.5943203458564998, -0.5874785696951633, -0.5872658983685697, -0.574982155016942, -0.5492052095488984, -0.5475045490665102, -0.5225358549344087, -0.521270058384854, -0.5177063780363368, -0.49141267227519075, -0.4854514403640183, -0.4763118265082858, -0.4745358133625449, -0.4654068931465112, -0.46109600780711857, -0.4513421734041581, -0.4507245087464743, -0.44494204044065455, -0.4415334280575053, -0.44033852825888, -0.42521449021884605, -0.4203012966760842, -0.4183945197740075, -0.4103706621660454, -0.4052412418024276, -0.3776091155982027, -0.3768341688124299, -0.3564398747763019, -0.34886446990601194, -0.334056191458149, -0.29776955978535674, -0.2973151117750134, -0.2785916601786609, -0.2680605690603257, -0.2638507621196347, -0.2562925994372762, -0.25488785964033395, -0.2271931827405354, -0.22597286347789167, -0.22131517954008587, -0.20967909685269226, -0.1975825647343974, -0.17846612280848, -0.1731744952089076, -0.16573395576896452, -0.14026723032571908, -0.13722884222597853, -0.13113998756965023, -0.0963661175783797, -0.09082129499061387, -0.08890094945416438, -0.061474650075677886, -0.05323626329525677, -0.04678595084946341, -0.043739000384283966, -0.009993471742840598, -0.0001752566911591702, 0.00877706286759622, 0.04441074625346095, 0.04825820359456673, 0.06516811682106129, 0.0685782901449208, 0.07216073974097925, 0.08947135594822508, 0.11137129299395282, 0.12509515753185171, 0.15335504819548523, 0.15740362698428945, 0.1669060117033913, 0.19453565830039585, 0.21543689755074, 0.22322482933661766, 0.23704824787648926, 0.23968039204056377, 0.244758170387809, 0.24495375844105052, 0.2718564859688479, 0.32240253470738567, 0.3364032123729952, 0.3497193712248977, 0.38365441061671246, 0.44112350575387016, 0.49348330708265364, 0.5337609245746159, 0.622927118717105, 0.8081615880397914, 0.8774988764823772, 0.9107451396214591, 0.9138763233411911, 0.9153872480169043, 0.9320034394055317, 0.9526580056105411, 0.9732119022379848, 0.9744975297713381, 0.9787429208340992, 0.9812412501583352, 1.1028043254207514, 1.1033923074091556, 1.106382408973424, 1.1278220103298224, 1.1357831365692788, 1.1480720701144727, 1.167436594197233, 1.1678343605696693, 1.1740436503978247, 1.174318070783524, 1.1900261360782207, 1.1907702841537882, 1.216248049224972, 1.219881153277918, 1.2373384020591873, 1.2395837989043952, 1.2561992204141743, 1.2660157533075032, 1.285784084578048, 1.2951492622838152, 1.299682590348633, 1.3009161950106047, 1.3023779650863732, 1.3023779650863732, 1.3108445800513069, 1.318392336245094, 1.3257270704252502, 1.339513794676097, 1.3447298916765642, 1.3483367566259985, 1.3596979719410376, 1.3911417796288412, 1.395185293891621, 1.4048447327813753, 1.4071060962784006, 1.4207481303886127, 1.4208838046838033, 1.429595682834524, 1.4399796003116991, 1.4481448966686141, 1.4525616345043888, 1.4569146149421672, 1.4584697567475846, 1.461753965970101, 1.4790219701036174, 1.5059164883618759, 1.5060487132035831, 1.5331101105350347, 1.6765349412416097, 1.6997013107229697, 1.7067924510444623, 1.744153555482917, 1.7893261299297007, 1.7981604170062033, 1.8011983037954822, 1.8029790341156462, 1.8070995803481995, 1.8124756609179873, 1.8443723085974137, 1.8753697108194527, 1.8772856589051354, 1.8874775826229355, 1.9114856021491808, 1.9128109408683447, 1.9142302887366853, 1.947330425119458, 1.948341884894875, 1.9503747188780427, 1.9531745934981546, 1.9549987635435213, 1.955412889348832, 1.9562662936038835, 1.9574762844508313, 1.9584183321715807, 1.9598143169360929, 1.966561316903353, 1.9672561846920202, 1.9692088591861918, 1.9694002699675937, 1.9722645551871096, 1.975829988072802, 1.979636111200052, 1.9821243559709212, 1.9977024794512528, 2.0191457816205296, 2.0296115244240487, 2.0339500542123643, 2.0349967947838543, 2.035601660206364, 2.035918661944381, 2.0443544766221904, 2.053681207378386, 2.0576349597251955, 2.0592402237096765, 2.06187752970339, 2.0653891368230655, 2.0697937098427284, 2.0791522372791267, 2.0845555041898387, 2.0897960585466455, 2.0918138375814963, 2.1046456290296383, 2.109945648070672, 2.1142896651088905, 2.114637495696687, 2.1190917127848787, 2.1216299877402225, 2.1236260057334255, 2.1290680708741037, 2.136193506497301, 2.1408365147532677, 2.140989156272971, 2.142183663260241, 2.147534205860913, 2.149730419654411, 2.1504718377181224, 2.1615958023959196, 2.1647466834327855, 2.1670985332760044, 2.167195312344244, 2.1716040175738267, 2.1749925779873087, 2.178797642596215, 2.1796925697412353, 2.181677161131839, 2.1822561264339133, 2.1838950103647865, 2.186384667329362, 2.1891794744794915, 2.1894472535657097, 2.1909793048181743, 2.1915149149729443, 2.1917940019199227, 2.1938272556438636, 2.195078408574305, 2.203659661092085, 2.2039958602459997, 2.205107067696311, 2.20876904264384, 2.2114563293644243, 2.221646070517236, 2.224640086214373, 2.227201368978326, 2.2280972255964424, 2.232632922651304, 2.2357490246457394, 2.2374852952097948, 2.2406686759394012, 2.243022387913166, 2.244868368758247, 2.244988444743312, 2.253040859324309, 2.2547011335761553, 2.2560864922545028, 2.2567826984528323, 2.2575641962971313, 2.2598690281447342, 2.2616786663603983, 2.2621985739518378, 2.263300911608167, 2.2641329913992303, 2.264875962786481, 2.2709969145919673, 2.274293264340098, 2.2768118468665044, 2.2769688220720488, 2.2804169121002373, 2.2823219040651623, 2.283077942393863, 2.2899163762936823, 2.29011846333318, 2.2916005308408893, 2.2929883666451767, 2.346989922200498, 2.3629061325166965 ], "y": [ 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9959703121006424, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9959703121006424, 0.9959703121006424, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9959703121006424, 0.9818005244925988, 0.9959703121006424, 0.9959703121006424, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988 ] }, { "hovertemplate": "V1: %{x}
proba_Anomaly: %{y}
predictions: Normal", "marker": { "color": "#4C78A8", "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "predictions = Normal", "showlegend": true, "type": "scatter", "uid": "2599247d-bf24-427a-ad07-bf4c99b69b0f", "x": [ -37.054294919092264, -24.743105349012062, -20.15759677328142, -17.250564238391373, -15.541846589004797, -15.26046248440387, -15.20758639081963, -14.026513679057143, -12.429802235116673, -11.636704310637306, -11.38684545516942, -11.05285192095455, -11.036513814985183, -10.950172503109549, -10.602632545607465, -10.49510861055629, -10.376794263427978, -10.292451158041613, -10.13740627466657, -9.970943036707858, -9.85540661098824, -9.831637044486667, -9.757109727770407, -9.534024978176426, -9.353045073484287, -9.28304667774172, -8.940223323298207, -8.937254389736498, -8.83820072754434, -8.739464348598744, -8.639459026291076, -8.581119036832314, -8.563571298209844, -8.337322549229881, -8.307015956021198, -8.271097401171932, -8.214681001646083, -8.2002848276188, -8.061471931752795, -8.0588144834066, -7.9526157219456355, -7.80315232461139, -7.706728632621434, -7.562713156139745, -7.472894789282337, -7.462226533977816, -7.459541642975566, -7.400806910183055, -7.399877868493811, -7.395696638139859, -7.38701820348202, -7.37974730082325, -7.362686703630298, -7.3158843442884836, -7.3138797130905795, -7.24115374488965, -7.240696844567247, -7.234880944899878, -7.103081621733259, -7.024326355429981, -6.978554077806528, -6.964204770192771, -6.947358397281105, -6.938487898035257, -6.8834918839104375, -6.854858433867695, -6.811662210898274, -6.654656338174231, -6.587117564122824, -6.5497395810065635, -6.501403638853702, -6.491016311252049, -6.43960115795192, -6.4187708490366475, -6.356880553350123, -6.305011827705233, -6.292664262972466, -6.280438351012001, -6.239523267744309, -6.212572219489465, -6.20507628280701, -6.199522431492543, -6.191697767501621, -6.131228646785272, -6.130029502937058, -6.110982124988889, -6.04350586772662, -6.000789231576138, -5.981156981442916, -5.903290445237281, -5.89230860422456, -5.8550747376575645, -5.824230139982569, -5.793048136592772, -5.791455156883635, -5.771262556933774, -5.7608772901696845, -5.734340929579904, -5.715305644020729, -5.6330071749275845, -5.631898957116035, -5.611686017255003, -5.596404549008362, -5.544491322285097, -5.529094610082949, -5.499200271214684, -5.4495609760418136, -5.3926368581730575, -5.383223718229092, -5.376927683704877, -5.36746229152497, -5.323923258973274, -5.32288215944762, -5.309430855716334, -5.297258428576258, -5.2971903518052015, -5.234481026702533, -5.201038815699219, -5.1893386126338745, -5.088887815727264, -5.071344428722767, -5.039281849773687, -5.039264235884164, -5.0078379699630675, -4.982160123236707, -4.977022177439704, -4.975953218466913, -4.961053968008, -4.961007490097596, -4.9292562982691575, -4.902893055109475, -4.892195617260668, -4.888568390880147, -4.885238222086432, -4.881143275793933, -4.875753572897217, -4.872509833129062, -4.841445713750879, -4.831749895227401, -4.826287087047524, -4.814707828454667, -4.8049294981033706, -4.801075695451381, -4.782025452447735, -4.779951591420814, -4.728782257436745, -4.676729964448829, -4.674201901681669, -4.661996718924935, -4.645034432391764, -4.642808015467126, -4.634511454071406, -4.6298416740016695, -4.587878269058748, -4.574505775462628, -4.558992040108122, -4.554169496904416, -4.553689352799543, -4.535855711370655, -4.516625760913551, -4.5095575799255405, -4.508456094479672, -4.500648728284285, -4.493662251720887, -4.479390498139445, -4.478412230916769, -4.475568413247864, -4.462334966989543, -4.457652780771292, -4.456114285888329, -4.454666018119171, -4.445182674389323, -4.444983738359779, -4.435241742913196, -4.423073011297871, -4.422952234332861, -4.411862801274617, -4.374231686467894, -4.3587553817905516, -4.3497697044520836, -4.3453436095610956, -4.343206570127752, -4.328688453018185, -4.325016745539716, -4.303960910909992, -4.280683427768788, -4.280108348041402, -4.278000578285286, -4.268679197061748, -4.2616702694962285, -4.260670526139987, -4.2497208204124615, -4.247633062789179, -4.231892273015328, -4.205298026004195, -4.202216473506703, -4.200440332848499, -4.191600670784562, -4.155169195135518, -4.152941974598466, -4.144815484523806, -4.134466663781816, -4.129444443357612, -4.101315829680643, -4.0953696110439, -4.091221502265404, -4.090163103996517, -4.086293334772995, -4.080051002125552, -4.072938346935308, -4.071102909764436, -4.071060171041875, -4.068305815036753, -4.0663713551107605, -4.057922917481905, -4.0455057981731155, -4.029427590781278, -4.016097760594417, -4.01413754071656, -3.9980440069653316, -3.965824286854013, -3.960480347131211, -3.9559486531235546, -3.9532173695205954, -3.9492593110408842, -3.9472987697357804, -3.93169054035583, -3.9239119979087467, -3.9120598169169627, -3.908278935130219, -3.887706218983566, -3.8747996684056347, -3.8685879973908386, -3.8658531410349055, -3.8414733266190524, -3.833235035312595, -3.828099967878823, -3.815070709141671, -3.8038044697940108, -3.80221372007909, -3.7710708931614816, -3.7689730377358894, -3.766632868206704, -3.7664255029321474, -3.7556753416445128, -3.7541395086386204, -3.7529095031145587, -3.7525072962415758, -3.752419897562859, -3.7408701496487216, -3.7327271291147293, -3.730371067269548, -3.7254787386340644, -3.7198109703700224, -3.7193309714994425, -3.71742763105553, -3.715780908863868, -3.715719840449888, -3.705855945641297, -3.6628500806257422, -3.6511382313737792, -3.6427867364341275, -3.6323640854155186, -3.621515761472733, -3.6213363458081735, -3.617580916556297, -3.61123373105845, -3.6092471099590204, -3.5997308745682157, -3.595839032222769, -3.5923463350523703, -3.5908992294081172, -3.590455054455489, -3.5869125311998187, -3.584133348682777, -3.5805991313400103, -3.5787117446333974, -3.568661066435895, -3.56542638588892, -3.5584696915922294, -3.5507839476904888, -3.541231763210297, -3.540642783069312, -3.5365541086090375, -3.5346627425797537, -3.5336414631386033, -3.532497526458662, -3.5208832273336084, -3.5006421952285782, -3.4997687733426632, -3.498782168522496, -3.497687117599389, -3.493490784601748, -3.4933462332619425, -3.4891017862836886, -3.4834307136925053, -3.4804257804514296, -3.4760700367508583, -3.4717602156447116, -3.464285766278736, -3.4608740566709173, -3.4564287203619584, -3.451390159389204, -3.434640057824265, -3.415621864530732, -3.4110928323981424, -3.4051662640283147, -3.4038865429529728, -3.3928510365281443, -3.3917912112628104, -3.3714950875808256, -3.362044296304001, -3.3609791168700647, -3.357035791872004, -3.339993656143648, -3.324327804795388, -3.3236122497963736, -3.3218630313740287, -3.3181976810288587, -3.3179357546926997, -3.3170561101237785, -3.3153643847223027, -3.3096083242189547, -3.304594800343151, -3.2906173076160172, -3.2905044209773306, -3.289486476869865, -3.282972026229063, -3.2799197324199847, -3.2710145971376137, -3.269966286526633, -3.2633314890491194, -3.245398903960878, -3.2387046804184965, -3.2383575777955715, -3.2374117453124516, -3.235862683296215, -3.2354964910768675, -3.2330081243702016, -3.2287101016860786, -3.217700347437462, -3.215362357784538, -3.2144500008444608, -3.2054014177981345, -3.2036765884941367, -3.203250381976881, -3.189127537543394, -3.1822646727538664, -3.180495809476702, -3.178537574344268, -3.175174282758567, -3.1644223539613145, -3.1636925216787555, -3.1634745781748963, -3.161561167958072, -3.160011144463136, -3.1548264166235978, -3.15029594759925, -3.1494032715554394, -3.1337347646795886, -3.1332655405749428, -3.1205896447127492, -3.1205680953083315, -3.119707693739916, -3.119434043536261, -3.1181818357082216, -3.1129681896958266, -3.110197180059539, -3.1049541291693057, -3.098458206919608, -3.097615894744142, -3.0972844270551096, -3.0949255841162104, -3.086575662436363, -3.085516022151893, -3.0845183535160903, -3.080728757965237, -3.077054486746596, -3.074561530089011, -3.0672877037450816, -3.065822398810255, -3.057758359112589, -3.0542656750295336, -3.0509837527381727, -3.0500094810648015, -3.0261320697825695, -3.0260254353155016, -3.0223014216121333, -3.0213630382544805, -3.0097457427081094, -2.9906223553271167, -2.9794993027703764, -2.95792591664629, -2.9505576587648665, -2.9484710240837133, -2.944998536821501, -2.9417372655282756, -2.935527465000775, -2.9352569162735143, -2.9342971610096726, -2.931912980707013, -2.9312755887057804, -2.9232436280701553, -2.9184757505745975, -2.9141468745820753, -2.9074683207558927, -2.907230289596716, -2.9020662191820263, -2.898533620452314, -2.8985213603614923, -2.8978065108620616, -2.8971346896893535, -2.8902925350513344, -2.8831345180348604, -2.882050421419315, -2.881242532338263, -2.880240986673397, -2.8795335600910974, -2.8628804667313372, -2.8627023988678313, -2.85427172471053, -2.8489208956927934, -2.848048086987353, -2.847858998491285, -2.841237917582565, -2.8385586737082233, -2.8325608028828704, -2.8304267859292898, -2.830384278928912, -2.821078179555863, -2.8207796966778815, -2.8202666832503995, -2.8104067141742894, -2.8102131046399834, -2.8090555858445, -2.803864296874325, -2.801434682010326, -2.796331303783576, -2.794329390079482, -2.7936357224535526, -2.7922040512039366, -2.7897529705024464, -2.7842530050805276, -2.783532756908407, -2.7829927490114166, -2.781977793272267, -2.7796156163520727, -2.77909186607018, -2.778471551248017, -2.7707620869841976, -2.7691716884305904, -2.7687718649064803, -2.7684633415956346, -2.7632549660361114, -2.762378375509809, -2.761880236149727, -2.7559973050444846, -2.750749064657166, -2.7495252547892957, -2.7493226396317123, -2.746065151401689, -2.745710052196853, -2.740725227886721, -2.7387172285396537, -2.7349134744765515, -2.7315084880430094, -2.727242613884564, -2.725837858269338, -2.723491487129089, -2.7165214560793123, -2.712957665052887, -2.7110613823607372, -2.705255500545453, -2.702172957278835, -2.700293502786802, -2.693968428832131, -2.691983990955189, -2.6913134659290474, -2.67662846342404, -2.6736501022562686, -2.6667495694039784, -2.6649298870920646, -2.6638186311784176, -2.6619700948900977, -2.6596015194837896, -2.6572145179534306, -2.657111129602755, -2.653336636823937, -2.6521973110605463, -2.6507629964822645, -2.6499168436810097, -2.648623915015731, -2.6464201516920247, -2.6299702137626575, -2.6227844887202725, -2.6173613986686957, -2.6167142848885336, -2.614189631959371, -2.613840671427758, -2.612740958272104, -2.611659592090739, -2.609436431582701, -2.6094164057232505, -2.608459793449947, -2.6079521384340985, -2.6071354617476454, -2.6025994243079347, -2.598967467608927, -2.5981014327935346, -2.5971950510912696, -2.5966487681303594, -2.5943898469224274, -2.5899642473399727, -2.588603776708868, -2.580494329940519, -2.578039076204175, -2.5779542982100705, -2.5760798068513493, -2.5746659243304153, -2.5729576414930526, -2.572560937057502, -2.57137108813824, -2.570171663766711, -2.5642942617041173, -2.5632299998841654, -2.5618116777768623, -2.5617831345335973, -2.55582263295929, -2.5534400017968855, -2.551854211439868, -2.547924560965164, -2.5477189916003695, -2.5475665671878227, -2.544327950330973, -2.543203689263143, -2.540630574965802, -2.5357963205701806, -2.533356742300321, -2.531487387650852, -2.5246622960323304, -2.5237391163700784, -2.522030631486723, -2.5219625011981948, -2.5157641677940106, -2.515115403870545, -2.510493816901468, -2.5049897007681023, -2.5047876849843043, -2.5000498360754806, -2.4964818366785715, -2.487717214214716, -2.486666403859707, -2.4839589107719924, -2.4778207643381776, -2.4771221001239163, -2.4759823332278788, -2.4755140235828192, -2.4742739916260086, -2.4732563161535492, -2.472348885999922, -2.470795517051129, -2.4695494074752973, -2.466082372647201, -2.4628675327519898, -2.461666422698058, -2.461115349724979, -2.454642401952057, -2.452489231995755, -2.451833615243305, -2.450400511503665, -2.4457233873406885, -2.4441779404313255, -2.441722929995294, -2.4389596779682567, -2.4365656626035777, -2.4349323438254995, -2.4344732144307093, -2.4305139137435043, -2.430240979685255, -2.4253411132069678, -2.425205420236901, -2.4221245685112396, -2.420819598075893, -2.4196676342990235, -2.4193896530763683, -2.4185313684998806, -2.4148919468083347, -2.413406658189228, -2.4130543586575013, -2.412787390309065, -2.4057890062450955, -2.3998269151143132, -2.3982532670517056, -2.398231319403758, -2.3943650566824433, -2.392513088300355, -2.3922469472104004, -2.3893183925499213, -2.3880377595660938, -2.382990536767202, -2.3778696144255833, -2.3731420481457652, -2.370586769167007, -2.370318431532568, -2.366229568312728, -2.365736241625306, -2.3583771886955125, -2.3574071657378477, -2.355840979013014, -2.352340702721763, -2.3519803042054677, -2.3514811817835204, -2.3467731752143783, -2.3381424025025055, -2.3356549285567145, -2.333593228999858, -2.3324149400578245, -2.3311527968234365, -2.3288847386892337, -2.3285758232599134, -2.3283298372457524, -2.3267061107336207, -2.325516942087456, -2.3220944010541062, -2.3205068049134754, -2.318126897587363, -2.3148743876707476, -2.312121891667579, -2.311221490984343, -2.311185120602692, -2.309211584521677, -2.308262690671698, -2.308199901754037, -2.307802723474616, -2.3064190406443683, -2.3062617412340027, -2.30604867640211, -2.305284637373993, -2.3051179730577025, -2.301533553198019, -2.3013122298474773, -2.2988775468834595, -2.2987714813894806, -2.2974301005234135, -2.2956488408263427, -2.2937524939978795, -2.2935432540983998, -2.291320565680856, -2.2901545735082998, -2.2897770712534684, -2.2896341325266127, -2.28963336669158, -2.2890154801296614, -2.279762861489124, -2.274698382822315, -2.2743304395740203, -2.272900013962414, -2.271322443741778, -2.270833121402799, -2.2639668113658806, -2.25673338352884, -2.2516017369162213, -2.2514044745479023, -2.246697487594535, -2.2439330617426863, -2.2425291598507155, -2.240291728292374, -2.240281023441552, -2.238190604514372, -2.23801951573907, -2.233903520106049, -2.233408277051703, -2.233079167300531, -2.2320279854571194, -2.2290600903478595, -2.2263334536555317, -2.220504513132273, -2.2152251815758524, -2.2143185771866065, -2.211790082052363, -2.209137354097856, -2.2079965542519036, -2.2012303182536654, -2.200916937963519, -2.1973855141847256, -2.19295680711653, -2.1914305699986527, -2.1877209833181546, -2.18120354340424, -2.180222764237963, -2.1795985948694288, -2.1777703421701444, -2.1766728969468017, -2.1739615497587974, -2.173235948697655, -2.171916526164163, -2.1678743596811985, -2.165631681199309, -2.1650266310774278, -2.1641378663647313, -2.1640426133127377, -2.1631892239913815, -2.16278242195319, -2.16152566990699, -2.1604850394767574, -2.1595635031811584, -2.1555527795236205, -2.155366162025092, -2.151284062451576, -2.149517040022772, -2.1485708188470873, -2.1469006980028107, -2.144464721075804, -2.1421735663795873, -2.140424110677971, -2.1384811860874313, -2.1375412689232736, -2.1366100474950924, -2.1361955024821833, -2.1354751388740985, -2.134859302165031, -2.130403420386862, -2.1291373018994935, -2.1249342572910765, -2.122788022748154, -2.122609826199282, -2.121367092910477, -2.118623300580052, -2.1174532028657316, -2.1134761772830015, -2.1133490931077876, -2.111525964792515, -2.1091534025626113, -2.108840709941615, -2.1081731222911024, -2.107660904084315, -2.1060582639311547, -2.100586067672596, -2.098891542515191, -2.098205520280306, -2.097773008372942, -2.0960057274924444, -2.0950130349085043, -2.0938239420543128, -2.0907077087533184, -2.086244703277549, -2.0858306741824273, -2.084291831370115, -2.0825140650148404, -2.082477896100677, -2.0818086285473734, -2.07740024343624, -2.075421730971824, -2.0753130469456265, -2.074697105982261, -2.0733651782157074, -2.071055246823978, -2.069444492370133, -2.067860573717046, -2.0660747800440653, -2.0658909934806986, -2.0642630869023377, -2.0589758867020067, -2.058407109033757, -2.053795240475792, -2.0535730507314147, -2.052262961292669, -2.0517634771105113, -2.0512677400491404, -2.0445178747151793, -2.0428616433418076, -2.0427263263805755, -2.0422408981181825, -2.0397302628388436, -2.0394494653652484, -2.0391001129166435, -2.0386984424756545, -2.03822535271046, -2.0301808876724046, -2.0298565789933085, -2.0297554148903907, -2.0292067139894274, -2.027273202353827, -2.0260058676401163, -2.0257375924817667, -2.0248175189026147, -2.02430945137604, -2.0232155677357593, -2.0221179914282716, -2.0183707205234125, -2.016732617011224, -2.016720758811679, -2.0143498636863377, -2.0135371274784255, -2.010278219651153, -2.00783373634606, -2.0069916627814193, -2.0060985979805515, -2.0036306145230482, -2.00361486273191, -2.003388249944677, -2.0014443323049966, -2.001213727145139, -1.9987599420584479, -1.9980201550146464, -1.9977395156539512, -1.997250545299416, -1.9924857491555503, -1.9915471417957717, -1.9866961918445765, -1.984442048719227, -1.981159382129536, -1.98114096740027, -1.9792198568647663, -1.9757334384545662, -1.975010756889708, -1.9733346737424453, -1.9690390390014443, -1.968301763220686, -1.9681974742831088, -1.9654607905927712, -1.9637389308678983, -1.9607515343818853, -1.9594851950482748, -1.9590698138542857, -1.9583032530048687, -1.9565092408407487, -1.9529599981846903, -1.9521788565505185, -1.9490381448653171, -1.9440049905827539, -1.9396552741722863, -1.9392488812026165, -1.9367525071985585, -1.936471193191395, -1.933186015438023, -1.9328147491509369, -1.9314740232597463, -1.9289275851677528, -1.9269940580979892, -1.9251444676697065, -1.9248647908937029, -1.9239046616576347, -1.9229855523642965, -1.9225971800427244, -1.921991176400423, -1.9212811499200804, -1.9189729267219817, -1.9179800238857996, -1.9178624890291451, -1.916035698187897, -1.9128462004142457, -1.912028201975625, -1.9074379338147485, -1.9034584118156226, -1.903044295141501, -1.9028458971747966, -1.899339246487672, -1.8979296912945784, -1.8960369879555186, -1.8922652714131931, -1.8919235250587563, -1.890666574862638, -1.8902422936009737, -1.890137410423531, -1.887444134998987, -1.886747241117971, -1.8857226689969109, -1.8857118679401115, -1.8837695045719036, -1.8835207130260772, -1.883480578165996, -1.8826766516696596, -1.8810409640640695, -1.8786546879303796, -1.8774759832463621, -1.8745027543408836, -1.8731642089642082, -1.868475730233587, -1.8664426446868059, -1.8646693833246313, -1.8597228984084853, -1.8567730024168856, -1.8562600123602926, -1.8526159019200947, -1.8506609049209537, -1.850646690772314, -1.8485796410297248, -1.8475339597448246, -1.8445587197763498, -1.8436836045812168, -1.8422216648091994, -1.8413106573476115, -1.84111925431167, -1.83854701655494, -1.8372977275997666, -1.8361649764724097, -1.8342107382537693, -1.8340279231231147, -1.833583107772448, -1.8325126841237664, -1.831827833591643, -1.8306030932633046, -1.8304215794825431, -1.830079765201585, -1.8288340898456208, -1.8288002652214241, -1.8287651672614575, -1.8264259376339678, -1.8258140204272966, -1.8257538124087864, -1.8250141071506305, -1.8245655180692244, -1.8238131456321875, -1.8233427076544095, -1.8213585342185996, -1.8196024326253455, -1.8188160216808873, -1.817392196808397, -1.8172230382905312, -1.8171218236374134, -1.816338119681081, -1.814533356148491, -1.8131886443871497, -1.8118060672641132, -1.8106025109725927, -1.8101346221383858, -1.809161546143978, -1.808579348289947, -1.808424436460195, -1.8066174968703268, -1.805170268464008, -1.8047055535712808, -1.8004960495464175, -1.7994876935021802, -1.7986619355408062, -1.796335011607455, -1.7959419106157468, -1.7930046547371519, -1.7915323337882856, -1.7900636647486068, -1.7888756303041435, -1.7879303696636235, -1.7878060395517268, -1.787397296541385, -1.7873854947567693, -1.7866143183679968, -1.785675854222931, -1.784093839819986, -1.783097156251384, -1.7819641728055908, -1.7817106705679744, -1.781606664255726, -1.7815094972497643, -1.7809198465145561, -1.7802162288812513, -1.7796834367656023, -1.7780477837937647, -1.7774151482854728, -1.777028506195195, -1.7767684313186571, -1.7751349634023743, -1.775077102140032, -1.7737647611461078, -1.7726862418201097, -1.770445568035199, -1.7691017869033738, -1.769095025916932, -1.7684874362644762, -1.767801513507394, -1.7670850476923365, -1.7661177428792365, -1.7650116131782574, -1.764649630379647, -1.7638342510377822, -1.7616976731901985, -1.7612104056010311, -1.7580874345123592, -1.7554981752129866, -1.7550252870000298, -1.7548079342321423, -1.7535278479261311, -1.752951777483667, -1.7521981292766844, -1.7500144192837221, -1.7481206521877108, -1.748011591443683, -1.7466063320356957, -1.7447167702488935, -1.7443502022697852, -1.743951302940257, -1.7426080764200413, -1.7416541964589376, -1.7409619083907515, -1.7404172162082874, -1.7398164895359183, -1.739611585788884, -1.7389848048017853, -1.7375283945715245, -1.7324085924972747, -1.7320754935854152, -1.7316004876594855, -1.731428755078226, -1.7313466448495376, -1.7310698857186222, -1.7308361843792175, -1.7305168548700858, -1.7300225645931384, -1.7299551414208483, -1.7278153194853687, -1.7277150958944145, -1.723883116571605, -1.7237413682354323, -1.723622409317732, -1.7226194798748315, -1.720168541888345, -1.7194603581581493, -1.7190583402665265, -1.718568937869061, -1.7178129116786431, -1.7164670480679873, -1.7145242608162024, -1.7128336403891091, -1.7113966155750275, -1.708280039121381, -1.705862405692858, -1.7058505297737838, -1.7056233013703146, -1.7022004803399438, -1.7020629043525872, -1.6982523927942101, -1.697590363677352, -1.6966806194766682, -1.6960703649151365, -1.693300353264962, -1.6928653786219332, -1.6875969595493072, -1.687503229220207, -1.6864261009935673, -1.6850425347304632, -1.6841122824822503, -1.683828178289689, -1.6801178954406564, -1.67900001322684, -1.6789422404796077, -1.6785745995136556, -1.6781353440402802, -1.6767686997510558, -1.674389675258163, -1.674003942598675, -1.672372793428035, -1.671857331635756, -1.6712265526174703, -1.6710499572978146, -1.6707318357176462, -1.6685941268210551, -1.6662103742882564, -1.666091736389958, -1.6640911576299722, -1.663150984132368, -1.6624195015939023, -1.6613398279543221, -1.660808039263102, -1.6596026972757878, -1.6593105453654662, -1.6579204742445128, -1.6571835060125357, -1.6558494712658312, -1.6549223040058014, -1.6534928623794962, -1.6500456342644032, -1.6496854378715364, -1.6475992614532748, -1.6469053542629288, -1.6465265416868995, -1.646298315447873, -1.645696125832401, -1.6455230392512, -1.6437686787475072, -1.6407919550992807, -1.639851363522225, -1.6383176171444491, -1.6342100357025489, -1.6333590206972273, -1.6328373431800218, -1.6317905009117686, -1.6274066778801068, -1.6262770387621195, -1.6232116500907885, -1.6229373928164736, -1.6224266610621965, -1.6210607552930838, -1.620925845669871, -1.6208355525462599, -1.6190951107577432, -1.618766569189908, -1.6185289742177873, -1.6181561198588947, -1.6174527139459702, -1.617051283479428, -1.6167619286333859, -1.6156656291726446, -1.6152394201405778, -1.614546488398167, -1.6101015234537495, -1.6098244812472056, -1.609594600927572, -1.6093544408691083, -1.6093482747772634, -1.608137742639066, -1.6080802173852191, -1.6055806404384128, -1.6041178342225662, -1.6024675249727456, -1.6017967394743509, -1.6013595715616522, -1.6007810720347468, -1.6001535048416602, -1.5998953292087315, -1.5986970583427076, -1.5980804680934502, -1.597878723635209, -1.5975972197700266, -1.594378746164964, -1.5919332751972557, -1.5893342184916723, -1.587266370387229, -1.5867998562589836, -1.5856055063536447, -1.5853781928986697, -1.5833700673248936, -1.58313462755512, -1.5826741245684528, -1.5822548177402043, -1.5813759871960942, -1.5812428857189222, -1.580798604949434, -1.5801441032963628, -1.5798211419747688, -1.5794954458520065, -1.5787769824753006, -1.5740090657903125, -1.570025771823183, -1.5685465935694967, -1.5679259902281788, -1.5660151438601528, -1.5656707859890986, -1.5646113115213804, -1.5632305997910212, -1.5624553718675667, -1.560744640793041, -1.5593794211686647, -1.5584559110270035, -1.5580773841222018, -1.5561403684161084, -1.555340118077349, -1.5538840241034937, -1.5521359454813621, -1.551718630773348, -1.5468885134649937, -1.5461307309501193, -1.542873339822136, -1.540983764726456, -1.538941877071073, -1.5382750272918964, -1.538273791552308, -1.5375227173741068, -1.5373822184489865, -1.5370794781239971, -1.5360588048929578, -1.5358930624752123, -1.5354843290404656, -1.5337666113097481, -1.533061837517855, -1.5324505198785578, -1.5309664809967543, -1.5303240363964572, -1.5293250953738635, -1.5274440962734874, -1.5273654081841062, -1.5269839616513219, -1.5266796525007673, -1.526569157801672, -1.5245428881511411, -1.5242179875066215, -1.5239382533398114, -1.5237529885328045, -1.5215149271358739, -1.5210495038590093, -1.5207462299659724, -1.5200594160695635, -1.5196783143102246, -1.51824395745602, -1.5171726748111123, -1.516757493049874, -1.5161214943359047, -1.5158144158340532, -1.515663620266778, -1.5154174039797919, -1.5152379906486904, -1.5134750922362699, -1.513444484604706, -1.5131420770120874, -1.5128213209001098, -1.5123575970707632, -1.5115372241946616, -1.511014716532323, -1.5100891593581198, -1.5094561898179713, -1.509192471956639, -1.5081732481600736, -1.5079716569095492, -1.505668671337086, -1.5056180954041063, -1.505417392767142, -1.5049065183701098, -1.5045347928733612, -1.5032835692787507, -1.5018357292845983, -1.50127886643534, -1.500120438035403, -1.4989728039033192, -1.4973105198575807, -1.4950221052493058, -1.494840970444674, -1.4947756130327554, -1.4945237318203923, -1.4925784554769352, -1.491921923887588, -1.4913505671525535, -1.491244391782839, -1.4908329277338905, -1.4904922481802902, -1.490134661293718, -1.4892648035565108, -1.488408880465113, -1.487805371285248, -1.4877231462204215, -1.4868599019998956, -1.4849174399671492, -1.4843744197421365, -1.4826121509067565, -1.4819728128502434, -1.481759863198838, -1.4814612906336637, -1.4783550850080296, -1.4783548561556878, -1.477894057497934, -1.476673162539584, -1.4765953628500488, -1.4755357408301348, -1.4751766279500504, -1.4710787175089726, -1.4696488411291826, -1.4688556827767814, -1.4686627732553124, -1.4646120241369305, -1.4636740258667367, -1.4631841573968467, -1.4621743332408352, -1.4618465537030159, -1.4592419551872158, -1.458638810587777, -1.4575675498855045, -1.4543760655510694, -1.454182987648894, -1.4524883293469983, -1.4524725628375803, -1.450859637228325, -1.450275460540586, -1.4492949921740799, -1.4478241473589195, -1.446767485439766, -1.4456322589787969, -1.4455827903149365, -1.4451916420796125, -1.4451500925234244, -1.444957565663299, -1.444330229040557, -1.4428271167147302, -1.442260419269604, -1.4394177205294072, -1.4389865980036836, -1.4366323925672826, -1.436009574277765, -1.435919393094452, -1.4359076165359232, -1.435091064274423, -1.434896388833275, -1.4344125342355567, -1.434396447298909, -1.4343601417610377, -1.4343331090542886, -1.434282360088404, -1.4342526494153023, -1.4328647815228817, -1.4308637277889134, -1.4250724352863895, -1.424884750467688, -1.4218072264447792, -1.421496814493311, -1.4201750221405574, -1.419095070355087, -1.4185859616964265, -1.4183433515460655, -1.4183156421972751, -1.4180862926717936, -1.4176678413885124, -1.4167321691491193, -1.416687629642896, -1.4162118517481128, -1.415541343067234, -1.414844892145453, -1.4147415029003612, -1.4134560082505034, -1.4119819773332678, -1.4107388550303248, -1.409398705879759, -1.4076495961218183, -1.407516069200291, -1.406339593539074, -1.4062527426162175, -1.4042650284920042, -1.4036483754037525, -1.4029472466734627, -1.4025543480014724, -1.4017303158370333, -1.4015811377617262, -1.4015109231607834, -1.4011805744117423, -1.4006402397879842, -1.4001457968405895, -1.3977129321353934, -1.3977128936753889, -1.397546927512642, -1.39701852792814, -1.396544640908036, -1.3964763225725656, -1.3942942314612456, -1.3933113092661007, -1.3924516847120607, -1.391837481325188, -1.3917469341510955, -1.3889589888921579, -1.388911059092929, -1.3888808063259828, -1.386541895445666, -1.3863804831470645, -1.3861018238779284, -1.3844854048441486, -1.3840329797548576, -1.3836597263025525, -1.3828303014770222, -1.3825401774325172, -1.3825112224937859, -1.382323083114249, -1.3819520047913656, -1.3801791529980736, -1.3800924631511466, -1.3797429113821544, -1.378503314839788, -1.3782250464226802, -1.3778846359073451, -1.3777182709178153, -1.3774181709251188, -1.3754261354182313, -1.3750719805526255, -1.3750010776198325, -1.374871004022537, -1.374862102248969, -1.374735093871835, -1.3743033539819822, -1.373115417033687, -1.3728673263709248, -1.372301722444305, -1.3703948419366172, -1.369279292657256, -1.3660139678261223, -1.3657771530041525, -1.3638435337113648, -1.3636118542034428, -1.3628847211516146, -1.3605783952219257, -1.3596609546226541, -1.3592328969643437, -1.359060795585846, -1.3589864009478183, -1.3584839783777793, -1.3584314646549291, -1.3578179480806947, -1.3572500609851026, -1.3571295217936368, -1.3569657634744656, -1.3564129302523928, -1.3550761083583034, -1.354764425833954, -1.3536244367371488, -1.353088909119002, -1.3529293782293599, -1.3521463095109583, -1.3516425631018203, -1.3501623308081674, -1.3483389491063664, -1.347583539204554, -1.3468977867373804, -1.3453655542981873, -1.345166487092824, -1.3434460219183386, -1.3429739319605747, -1.3425311078329127, -1.3416783747708874, -1.3411764325409294, -1.3409354769218205, -1.3397242966555614, -1.3395905861520707, -1.3391055031021062, -1.338994816145964, -1.3378916030736292, -1.3368301023177362, -1.3351312257349746, -1.334573089347476, -1.3327245671325394, -1.3325926074676258, -1.3306848426727649, -1.3305808823913483, -1.3295244426962292, -1.3292729575504112, -1.329272526349475, -1.3291112306262105, -1.328853491137921, -1.328639261097243, -1.328195888136658, -1.3281191214884034, -1.3278491567832185, -1.326942974532695, -1.3262866990254416, -1.3259992591186427, -1.3259491258620608, -1.3254063003396201, -1.3252597060371223, -1.3248793703625679, -1.324586954438372, -1.324454984904195, -1.3242203657721439, -1.3241609901792613, -1.3238425525475541, -1.3238333049848108, -1.3237348439467351, -1.3223546813475024, -1.3211955122036863, -1.3206237515166868, -1.3196353548497, -1.3181084195384274, -1.3169954260342025, -1.3162798333534083, -1.3161365203197397, -1.3148250465841895, -1.3143395042161714, -1.3139149006095958, -1.3105702307603255, -1.3103454001055255, -1.3097743133262578, -1.3090360944907067, -1.3078829596582109, -1.3077947027744061, -1.3077661561859995, -1.307469702757416, -1.3069816694542875, -1.3064129173707313, -1.306162011153666, -1.306030309820788, -1.3051644758209866, -1.3049252878837265, -1.3047425952578293, -1.3046617646532177, -1.3043532272300016, -1.3037969111047745, -1.3029131176098818, -1.3028933432714562, -1.3027539305338112, -1.3024139188935369, -1.301258416761776, -1.2980899887070811, -1.2969147662492713, -1.295707688197268, -1.2952312881958783, -1.2929636425998203, -1.291610635981941, -1.2885346272484886, -1.2874966746106034, -1.2870814265987818, -1.2869220713576344, -1.2868190673520528, -1.2852493842694654, -1.284954743546552, -1.2846720940814427, -1.2835774082323776, -1.283248062645454, -1.2820605295485543, -1.2817876988634687, -1.2815528069120237, -1.2808532127627257, -1.2789975546830399, -1.2788873820092794, -1.2760019066426986, -1.27558525216095, -1.2739362194607566, -1.2736851829779126, -1.272358505623041, -1.272339171841797, -1.2716069115869568, -1.270153266785181, -1.268871694154723, -1.2688082315106954, -1.2684532997262319, -1.2679716378347963, -1.2665464818128398, -1.2656889122604758, -1.2644541427904057, -1.264403484795378, -1.2630349972258492, -1.2620321191059525, -1.261345394778986, -1.2578099134672471, -1.257641756947562, -1.2575141282054587, -1.2571139553986803, -1.2568979607721578, -1.2568889234465703, -1.2566676048827703, -1.2557292506303463, -1.255703956438579, -1.255205865096627, -1.255051321716096, -1.2543368500791963, -1.2531317846056733, -1.2531199962678634, -1.2519603348169537, -1.251696692663299, -1.2514614264188586, -1.2509260890856726, -1.2501490775028268, -1.2491044054999416, -1.2487400016500394, -1.2480170218077342, -1.247568866368352, -1.2469213771670087, -1.2465009824272961, -1.2452471363277022, -1.2450525707812283, -1.2447905143043339, -1.2446234592451049, -1.2443889729534128, -1.2442681364474673, -1.2430569250803591, -1.2424859820841148, -1.2413622742041417, -1.2401454668820617, -1.238502752449329, -1.2383221698127078, -1.237327774668037, -1.2363994696634166, -1.2361315823933565, -1.2360572603060704, -1.2357219841554283, -1.2348529043545573, -1.2348403338118057, -1.2340349725513344, -1.2337699199770797, -1.233495361151754, -1.2326885155721934, -1.232453787425864, -1.232321914913416, -1.2312728733941098, -1.2310608908619936, -1.2307502885121602, -1.2299297226281856, -1.2294284369443134, -1.22930296936695, -1.2290628887158905, -1.2287377449643087, -1.228192479601502, -1.2275889109387557, -1.2270288193012622, -1.2264266450418355, -1.2261436915664548, -1.2259816494581983, -1.2258919135055641, -1.225591002207067, -1.2252558369965025, -1.2247428016232205, -1.2247146675562124, -1.2233079500673987, -1.2199076830316031, -1.2191313979338494, -1.2187738560612467, -1.218108220674043, -1.217129105828585, -1.215499785368067, -1.2145983122413724, -1.2144800668325182, -1.2135908259610195, -1.2132626266583197, -1.2114159322163367, -1.2095140642153854, -1.2093254180754205, -1.2092497565611715, -1.2092147574019467, -1.2088498937772454, -1.2086824496409194, -1.2085557941536371, -1.208142107348749, -1.2073003512542877, -1.2067977181318583, -1.2065867631190381, -1.2048254253486166, -1.2045032606919968, -1.2043608464902875, -1.203617338702235, -1.2022285051207218, -1.2022079871198956, -1.2017039587939506, -1.2016781507983687, -1.201571858693462, -1.2014066544130535, -1.2007086802521658, -1.2005289679053424, -1.1990242885771374, -1.1970613988819383, -1.1967711775060208, -1.1965691032732777, -1.1955065027218892, -1.195223142886094, -1.1892048313582277, -1.188981122667049, -1.1886638464892019, -1.1884908255863893, -1.1879741148567697, -1.1871457937485388, -1.1868364793748496, -1.1858699009010967, -1.185609071813256, -1.1848863494768564, -1.184561026920096, -1.1840497925903588, -1.1830940872806837, -1.182843997495031, -1.1825796947934268, -1.182185139121212, -1.1813829617206646, -1.1811512990744675, -1.1811321656370732, -1.1808570902551179, -1.1806475534661907, -1.180026940472136, -1.179577379475424, -1.1792552757815185, -1.1781356133955987, -1.1780808627724149, -1.177886405013387, -1.1776973967388304, -1.1773294496951, -1.176659799725949, -1.1762874885681107, -1.176023808526324, -1.1757752233969665, -1.1752883587973675, -1.17478648123674, -1.1744476428071415, -1.1732656362580565, -1.1724355129456479, -1.172123361120395, -1.1714023994896947, -1.1708900331306913, -1.170482505468269, -1.169678352997313, -1.167807366419792, -1.1677805205336766, -1.1669768525432431, -1.1669448065837256, -1.1668030090600567, -1.1665377427071006, -1.1651296445925485, -1.1646669161918974, -1.1644087653458106, -1.1642121394476723, -1.1617602130847986, -1.1613170647962692, -1.160791654404448, -1.15990630034644, -1.1593879523405701, -1.159061211892351, -1.1585519948280454, -1.1580766112000873, -1.157021593373351, -1.1568254057650689, -1.1565369932206528, -1.1561674167723002, -1.1545240985019718, -1.1541713350099765, -1.1536343268485614, -1.1527288249927614, -1.152714227258616, -1.152448622764395, -1.1518950317662529, -1.1503425344581293, -1.150319094461162, -1.1502550810017156, -1.1501200680521126, -1.1501200346853453, -1.1498559511068793, -1.1474627081443778, -1.147342603867393, -1.1471125962550208, -1.1467461153635676, -1.1459478889231114, -1.1458840866260216, -1.1455989879107555, -1.1452547012078695, -1.1449006582893626, -1.1448561708814455, -1.1445252458063324, -1.1442547693018335, -1.1441931514664716, -1.1441486008951112, -1.1422850346308504, -1.1420780088669833, -1.1416827341809839, -1.1413620615944462, -1.1410881508862887, -1.1408618903550973, -1.1407189555540562, -1.139470098816471, -1.139332495796612, -1.139119156230506, -1.1390311960984056, -1.1388870031217406, -1.1373786923807034, -1.137284979427792, -1.1370911917500441, -1.1365436156190518, -1.1357725206772702, -1.135496539952926, -1.1337415068446137, -1.1335050067164745, -1.1328764062393162, -1.132855823333573, -1.1321641247496685, -1.1316892155665776, -1.130977436507548, -1.1307151911306899, -1.129799121502586, -1.1296897152859935, -1.1285979835633027, -1.1280977467567304, -1.1277033391309155, -1.127399320808168, -1.1255381640352347, -1.1252712144464694, -1.1249265136412356, -1.1247143215691495, -1.124293747878332, -1.1242518476767351, -1.1240405546824164, -1.1236431103074416, -1.121474107344421, -1.1213866600235856, -1.120544197917515, -1.119063937905389, -1.118672647910414, -1.1172915403807773, -1.1171830635840063, -1.1169321631908788, -1.1167144925929957, -1.1166408807481898, -1.1165163617434959, -1.1162102091915163, -1.1160702977745958, -1.1156564831618794, -1.1140268256303738, -1.1139153568340965, -1.1135622051277867, -1.1127836791792056, -1.1121963229282126, -1.1120848304361197, -1.112068070764872, -1.1111815476790126, -1.1109060706547087, -1.1106864831702867, -1.1103586615884589, -1.1103258620059713, -1.1098862279096646, -1.1072388751773559, -1.1072138815154582, -1.105465460806117, -1.1053170097308058, -1.1050119541667898, -1.1046252617550718, -1.1037634984432394, -1.1036846599657515, -1.1035413304038626, -1.1035253387433182, -1.103477150322139, -1.1032816386065172, -1.103078444459758, -1.1027965406098341, -1.1022745367866782, -1.10183904461456, -1.100120431180488, -1.0999543458489032, -1.0984799142926802, -1.098363290191821, -1.0977326680940185, -1.0973348560262468, -1.0961847135840084, -1.0956613268880888, -1.0956565308499244, -1.0955846408066376, -1.0942764886015701, -1.0936839110943528, -1.092301405661208, -1.0922251669277125, -1.091773093831344, -1.0900178834818257, -1.0897693511729136, -1.0897077123942094, -1.0896899181156245, -1.0894551182581946, -1.089055268201972, -1.0888428115896365, -1.088498795175314, -1.086937831734224, -1.0865173250946427, -1.085383955423767, -1.0847906380508836, -1.0846657124175696, -1.0842268826115438, -1.0836378187655757, -1.082682830599079, -1.0812438333591046, -1.0812319423031533, -1.0809232623156726, -1.080878265787017, -1.080746729305017, -1.079366430922501, -1.0790285352583806, -1.0781048099788595, -1.0780454238138795, -1.077883361237618, -1.0774825359641582, -1.0769594103388578, -1.076118907995855, -1.0755613189345044, -1.07514101309273, -1.0748872605500925, -1.0720488239163728, -1.0719280596353948, -1.0705325833850745, -1.069643378683806, -1.0684486461277134, -1.0679842700177626, -1.0678949453355084, -1.0677567966695616, -1.0677497216897889, -1.067657663208413, -1.0674840527411422, -1.0663149668291976, -1.0659486472698227, -1.0653403669883161, -1.0652541909430813, -1.065175413097446, -1.0650409647936803, -1.0645113710073364, -1.064079230674844, -1.0625126607645536, -1.0619747978030998, -1.0615354385130245, -1.061043001505177, -1.060062213308007, -1.0597104998954863, -1.059217676347091, -1.0591035036542422, -1.0587753502881436, -1.0582891488061195, -1.0561812784952092, -1.0560108200748133, -1.0557807428747612, -1.0554553255998846, -1.0539973321934808, -1.053012219469498, -1.0524668696770132, -1.0518751354672427, -1.0512039563669224, -1.0504220568275158, -1.0503592017959638, -1.050170811950938, -1.0501256395893268, -1.0490348729410643, -1.0489986219735525, -1.0485380991641273, -1.0482264252873006, -1.0480322506050497, -1.0477002967560805, -1.0473557321255935, -1.0469705100855986, -1.04692237088692, -1.0464643345812326, -1.045990003474735, -1.0459240178919313, -1.045853999029133, -1.0453967694691193, -1.045106358908852, -1.0447754058057082, -1.0443369628220616, -1.0441631071003, -1.0440965068428176, -1.0433494194963226, -1.0429791138386355, -1.042264460251633, -1.0421087472584916, -1.041852032702907, -1.041533322811925, -1.0414918957189594, -1.041272966123842, -1.0407812311980507, -1.0400821050459537, -1.0393969842694197, -1.0376965167998682, -1.036269230008709, -1.0358586633785891, -1.0355593256263123, -1.035334225943767, -1.0345383373164854, -1.0335435539250122, -1.0333841634119565, -1.033112656409254, -1.0330809193536012, -1.0327528929701826, -1.032125565023283, -1.0319018743141333, -1.0312251397046255, -1.0299253912161261, -1.0297057893969417, -1.0290771437349888, -1.029032442792385, -1.027328881369609, -1.0271327881585939, -1.027052161139272, -1.0259722041262949, -1.0253376483314227, -1.0243437781943117, -1.024322190970433, -1.0238198216430565, -1.0226053887499145, -1.0210052928116728, -1.0206963178925015, -1.0203922694311542, -1.0199831884889483, -1.0194495500274057, -1.0194411091854634, -1.018918068601334, -1.0186066684926844, -1.0183124981864182, -1.0178585345481275, -1.0178302985908811, -1.0174221015481757, -1.0168251186709314, -1.016505787133813, -1.0155954473418782, -1.0150416789803207, -1.0138743658963754, -1.0138102649288085, -1.013534109234592, -1.0133444258908808, -1.012020604260355, -1.0114823750016098, -1.0106099970850126, -1.0095970732340027, -1.0094748709207655, -1.0092150918197687, -1.009175461833963, -1.0077738725131593, -1.006515380921695, -1.0063494892849891, -1.0051788837236182, -1.0050121734154573, -1.004997375168589, -1.0048826588041095, -1.00484527057522, -1.0046871146814556, -1.0037654522581292, -1.0032539440349606, -1.0024213216740399, -1.0019287836123543, -1.0003398369246912, -1.0001837561477376, -1.0001410676285176, -0.9996382032363476, -0.999021350697423, -0.9987881910774162, -0.9984125815767948, -0.9984116308977201, -0.9980241454975307, -0.9967951324446737, -0.9965262782639652, -0.9963132446268536, -0.9960759072743198, -0.9956382376621704, -0.9955932850825134, -0.9955556722623592, -0.9954212379598851, -0.9946707637438937, -0.9944314418547553, -0.9941124241300084, -0.9914754250175546, -0.9914703518847783, -0.9909953091675909, -0.9909089550932573, -0.9902568060290831, -0.990038449436808, -0.9889818389873304, -0.988600657744265, -0.9883727182090853, -0.9883304148724018, -0.9881879898464073, -0.9881014597643721, -0.9878481031383691, -0.9871659842439838, -0.9867728290240674, -0.9866796733950541, -0.9853622533822133, -0.984334828289686, -0.9831240133237836, -0.9827996055243584, -0.9824263683021422, -0.982305766076849, -0.9817684927224998, -0.9802976588565221, -0.978645706740632, -0.9770967474003689, -0.9769426958823552, -0.9763438852953037, -0.9760278242607778, -0.9752581801143626, -0.9751964328117537, -0.975071420510844, -0.9747380806546122, -0.9743037543515798, -0.9742169064635504, -0.9737708996848092, -0.9730313305608329, -0.9726623774714707, -0.9725223533348377, -0.972364620537398, -0.9709929767752697, -0.9706541801877442, -0.9705402617820933, -0.97024984402675, -0.9694020826423493, -0.9691634084499038, -0.969155347845091, -0.9690343508640461, -0.968640224937302, -0.9684475582716929, -0.9682538906863271, -0.967908441811274, -0.9677284224540852, -0.9663770995923233, -0.9662717115720868, -0.9651067419557456, -0.9650449086636889, -0.9648142467026279, -0.9646978914409743, -0.9640759573541615, -0.9639257833157306, -0.9636758812479835, -0.9636026721616491, -0.9634853471928322, -0.962985299766009, -0.9628796610050951, -0.9626128568612884, -0.9625506748680913, -0.9615073773545715, -0.9614264117120606, -0.9612667717979819, -0.9606417181609891, -0.9604608980756363, -0.9603751891270748, -0.9598773547295503, -0.959248618232213, -0.9590431517797898, -0.9587390651632132, -0.9584675658121694, -0.9581014921417585, -0.9573170375799478, -0.9567655801487218, -0.9566196925582707, -0.9565581464726659, -0.9564705431836025, -0.9564657311736018, -0.9539940521402155, -0.9533790229917626, -0.9525982631826209, -0.9508018699897219, -0.950694661839446, -0.9501364896130442, -0.9490226288070376, -0.9476007160086565, -0.9469237148392173, -0.9460241744606539, -0.9456809653323768, -0.9456104640129438, -0.9455804761408717, -0.9455407653956924, -0.9446649755883023, -0.9438926805007146, -0.9434121817049865, -0.9432416840337763, -0.9425293283048428, -0.9422699618556069, -0.9422085846591643, -0.94180506612856, -0.94167432473698, -0.9415207314032358, -0.9414427883865404, -0.9411148702857837, -0.9409125489586136, -0.9406838519721603, -0.9402697223110659, -0.940081276991428, -0.9398724329846784, -0.9396958191703557, -0.9394839919300956, -0.9390869680540564, -0.9382726623927836, -0.9379270864316641, -0.9373053790846904, -0.9368012529771703, -0.936684666277742, -0.9365417653422078, -0.9364880369330737, -0.9363659753951358, -0.9362386757153838, -0.9361245781593432, -0.9354069252486383, -0.9343711701371715, -0.9343632537265872, -0.9343105349257647, -0.9333821965170354, -0.9333441486511833, -0.9326864600508167, -0.9323486206605085, -0.9320585878923268, -0.9317814759444193, -0.9317440452949834, -0.9315371672289312, -0.9309943118968861, -0.9309787018831222, -0.9306722867986685, -0.9303812734496875, -0.9303131131409359, -0.9297886801346364, -0.9291793205375065, -0.9291130946450342, -0.9284174035367616, -0.9282493167718057, -0.9277727504638265, -0.9273302760090844, -0.9272469231443987, -0.9268824905086921, -0.9268152366525614, -0.9260038911585692, -0.9257958566667092, -0.925283112020264, -0.9251750445154941, -0.9238228789622598, -0.9232558538465212, -0.9231048822584536, -0.9229862497055756, -0.9228832061529789, -0.9227948988203447, -0.9227818208027394, -0.9224420051840778, -0.922360271808077, -0.9220772739373835, -0.921620018938619, -0.9216001124967556, -0.9207668106639599, -0.9204654739675685, -0.9202478991904417, -0.9198499408536498, -0.9188980630903256, -0.917905459113501, -0.9176490910306665, -0.917281236804758, -0.9168145995142473, -0.9167538721733872, -0.9166902285002878, -0.9141972108895864, -0.9140009863825589, -0.9139005122011625, -0.9138951496402606, -0.913853000554557, -0.9137519721149159, -0.91320528851746, -0.9130445965839926, -0.9121717407628396, -0.9118065016760153, -0.911272479257593, -0.911039742497892, -0.9109425848083825, -0.9108365706782933, -0.9106721585772233, -0.9105417784849291, -0.9099048834005882, -0.9099011964027359, -0.9096896011783053, -0.909413314766568, -0.9090692285332833, -0.90848901205722, -0.9072902246985091, -0.9072462404165316, -0.9069288481264216, -0.9068311484378094, -0.9067454748053408, -0.9066220292043928, -0.9064992764583673, -0.9060908297721922, -0.9060889246244832, -0.9059962944750811, -0.9058304434056512, -0.9056038343118599, -0.9052245300079034, -0.9035284850931826, -0.9034210649793428, -0.9033593108243272, -0.9033130753294707, -0.9032564529413835, -0.903209340813799, -0.9031572945023443, -0.903007966602297, -0.9027738498847695, -0.9024072078169988, -0.9020660337628124, -0.9020089657716456, -0.9018477739171055, -0.9009299566632172, -0.9009219035798284, -0.9004646415402727, -0.9002651442122165, -0.9001324585538228, -0.9000889754142287, -0.8999363134548601, -0.899798093244145, -0.8997660028647696, -0.8996908647166083, -0.8996811432933223, -0.8994265240519002, -0.8986799716245057, -0.8980711277479595, -0.8980672731315584, -0.8963146568576981, -0.8962380608910671, -0.8950350566671286, -0.8949767793616287, -0.8941510720665781, -0.8935812990665675, -0.8923628326665194, -0.8923127824101332, -0.8913113505136603, -0.8911667479078378, -0.8910764492836132, -0.8910381424637553, -0.8885683923981978, -0.8885293749407994, -0.8870917565718899, -0.8865553890958058, -0.8865367507174354, -0.8858156172988865, -0.8854600198139857, -0.8850349101045731, -0.8846034628162378, -0.8837384276285002, -0.8834514386760649, -0.8831083237466313, -0.8830017199581831, -0.8823306273204674, -0.881305037968108, -0.8812297207988393, -0.8810667699577936, -0.8806566738421016, -0.879878886362446, -0.8795779492565712, -0.8779686138493743, -0.876900529013646, -0.8766896048170558, -0.8766850930954154, -0.8760834684621857, -0.8751687186032453, -0.8746629965274282, -0.8746585688926949, -0.8744569393237591, -0.8742962275597942, -0.874290788799668, -0.8741943394223755, -0.8741563328045799, -0.8739429025829707, -0.872031850475512, -0.8711177511878376, -0.8702856100967822, -0.8698277140628813, -0.8696834401558082, -0.8695954694618933, -0.868315917968751, -0.8676907469918086, -0.8675641222506827, -0.8674465638425632, -0.8671585196074569, -0.8662268652415283, -0.8659412931392794, -0.8651073891911305, -0.8648965714137128, -0.8645998474632376, -0.8643820281783219, -0.8643084012242985, -0.8642730613340642, -0.863859766244111, -0.8637148235650376, -0.863635001091759, -0.8631124138900077, -0.8630369851951168, -0.8630169825589252, -0.8627648552278528, -0.8621280077712279, -0.8619266298273304, -0.8613162307363362, -0.8611982537251119, -0.8610283324655614, -0.8608710179070833, -0.8606472600168005, -0.8597622811394721, -0.8597052701421172, -0.8592971701149233, -0.8591093710614807, -0.8584745426622663, -0.857682690241565, -0.8570536600012117, -0.8569303960986399, -0.856867130292926, -0.8567833682654431, -0.8567222994308631, -0.8556517999301906, -0.855534728177721, -0.854970876472251, -0.8549427621678349, -0.854678503166621, -0.8536261362860361, -0.8532383254779352, -0.8530526858478508, -0.8529990718950853, -0.8517431236464796, -0.8508937086041164, -0.8501001278751261, -0.8499505603089368, -0.8498380544177948, -0.84940961207013, -0.8493459920019377, -0.8490917769210036, -0.8488670732989244, -0.8485560256431798, -0.8482297107521071, -0.8481101431437272, -0.847230517353648, -0.8468720337060711, -0.8466902430773761, -0.8465397451579504, -0.8464049412747889, -0.8457533043194839, -0.8454731710786016, -0.8449711389750298, -0.8446894564856258, -0.8443878050263636, -0.8443353608501126, -0.8434697421473019, -0.8429562832918884, -0.8424883858412894, -0.8422651898989119, -0.8422271770144139, -0.8414218825645541, -0.8403458563769718, -0.8403219397536252, -0.8397776106364487, -0.8395379371136613, -0.8391405151280231, -0.838777360427269, -0.8386227342032596, -0.838148067608158, -0.8379764573568537, -0.8376844154986334, -0.8375546335098818, -0.8371263543980895, -0.8359797756886763, -0.8358702337947399, -0.835487348131821, -0.8348539499973167, -0.8344725932663986, -0.8337016276906168, -0.8335032332036957, -0.8333501685218008, -0.833321735690097, -0.8333000104505676, -0.8330755991105543, -0.8330237019005824, -0.8319989177792768, -0.8316952362639423, -0.8310797274411168, -0.8309221033499133, -0.8302452042313011, -0.8301544532217037, -0.8299381317925236, -0.8293915462820162, -0.8289975682585091, -0.8288755381790199, -0.8288573100317085, -0.8285928389619581, -0.8273852105735646, -0.827167349741108, -0.8271555005528469, -0.8267070206772482, -0.826624945834342, -0.8265728804435337, -0.8265706132289086, -0.8264424520036567, -0.8257258041073496, -0.8252736488380948, -0.8250983310561468, -0.8244189788362039, -0.8233391431915795, -0.8214339232988838, -0.8212029563058343, -0.8211091383854014, -0.8209215277225586, -0.8208551158751866, -0.820214594377384, -0.8198057610714184, -0.8197281095736474, -0.8195323649823276, -0.8194558537017695, -0.8191836795247637, -0.8191549954619135, -0.8187883857660347, -0.8185770866321394, -0.8184122408977055, -0.8178103624646516, -0.8172822127660913, -0.8171898757249143, -0.8171644899691208, -0.8169859826660999, -0.8163762841781179, -0.8162437957317751, -0.8159736366567969, -0.8157681321589726, -0.8156316546284849, -0.8152957648592257, -0.8151929945362499, -0.814808586653172, -0.814796946774827, -0.814426121001928, -0.8142345973061034, -0.8142112925023117, -0.8141003596442454, -0.8136092838632816, -0.8135679473137001, -0.8135002638902995, -0.8128879929329753, -0.812849115691543, -0.8125998618021937, -0.8124061746783402, -0.8118687740092437, -0.8109410178118492, -0.8106514784010517, -0.8103786633981197, -0.8100745826037854, -0.8094902671659351, -0.8081882681341659, -0.8071286588921202, -0.8071125972182251, -0.806866567486662, -0.8061274096335995, -0.8054521946002406, -0.8053234609451425, -0.8050381968784329, -0.8047600878788903, -0.8042714739659942, -0.8039925293118759, -0.8038649593958797, -0.8037275853290298, -0.8036874553764264, -0.8034879147382797, -0.8032797354509102, -0.8032570457578432, -0.8028955746517406, -0.8028708610617716, -0.8028639084218205, -0.802484239618278, -0.8020400142240385, -0.8019152306708444, -0.8016497806883649, -0.8015386536763214, -0.8010632299646915, -0.8007878242588297, -0.8001644422109203, -0.799701284305669, -0.7996671923211026, -0.7994182350138479, -0.7989379678210101, -0.7987626153116693, -0.7983448998699716, -0.7982835372394605, -0.7982813181535445, -0.797747945371841, -0.7976597845568859, -0.7972654405458494, -0.7971720983225777, -0.7968977135454339, -0.7960380128661945, -0.7959906150576521, -0.7951888036699675, -0.7950772368629355, -0.7946050000990907, -0.7939668180195418, -0.7938788008823608, -0.7936785079510109, -0.7934869670771917, -0.7931203213752456, -0.7928710993673236, -0.7925770037343881, -0.7922845128701042, -0.7921893250982125, -0.7920251582455846, -0.7917817340447117, -0.7916356589286845, -0.7915175757333561, -0.7911012873947444, -0.7909664015750782, -0.7908747993533982, -0.7903572135746497, -0.790104141461015, -0.7899363930409387, -0.789490461759627, -0.7893408294013768, -0.7890332688942844, -0.7887662913716582, -0.7887560453268644, -0.7883523498630203, -0.7878862194789764, -0.7875897725733418, -0.7865306411358882, -0.7863431037102738, -0.7863214055845832, -0.7861457957510314, -0.7853436090268879, -0.7849398089874078, -0.7844518561225994, -0.7841871658447506, -0.7839071375837089, -0.7835911103544799, -0.7835050232322396, -0.7832060550661286, -0.7829222641417506, -0.7828770209806231, -0.7823044100622794, -0.781529789142306, -0.7809266004756978, -0.7805892897258142, -0.7802287866595898, -0.7802070311779788, -0.7801822183394729, -0.7797108554107222, -0.7796837480820996, -0.7796639219525614, -0.7796426054423955, -0.7794397866371795, -0.778895274923117, -0.7782190691662092, -0.7780340032484454, -0.7774142558246644, -0.776537682047897, -0.7744172200425312, -0.7742877930324219, -0.7729738804116216, -0.7724572579323891, -0.772386087946216, -0.7722234649720182, -0.7719550404320201, -0.7719323046349, -0.7714499956884884, -0.7713684133037005, -0.7707385158613513, -0.7707091527631107, -0.7702704128446788, -0.7699500996654072, -0.7696127366593453, -0.7694810353524071, -0.768719250520982, -0.7683410346963438, -0.7681833372328537, -0.7679733094557649, -0.767564972807143, -0.767346831640234, -0.7669309947154095, -0.7652155775616168, -0.7649125664224826, -0.7648292874719308, -0.7642460224546509, -0.7641328386709294, -0.7640908940196749, -0.7639992207142983, -0.7634892699077473, -0.7632780232857106, -0.7632724590336415, -0.7626420791886912, -0.762368496982182, -0.7615807289338266, -0.7603396468629621, -0.758210783416158, -0.7577496456477641, -0.757243855216216, -0.7571347988420883, -0.7570683815706518, -0.7569907320552636, -0.7566128764674647, -0.7563909584698656, -0.7547561648132921, -0.7547238336235168, -0.7546354530672091, -0.7542150142702074, -0.7541602777870717, -0.7540490042853278, -0.7536746834113675, -0.7530530507582585, -0.7529542534826179, -0.7524291261768049, -0.7518697037080502, -0.7515967933592416, -0.7512188576709531, -0.75104527367328, -0.7508461495884144, -0.7502379991778804, -0.7491105890546965, -0.7488648001832583, -0.748194545418368, -0.7477571281756812, -0.7469626218405021, -0.746881636564137, -0.7467626599361539, -0.7466043525465581, -0.7465315426059904, -0.7464731915530582, -0.7460242156957237, -0.7453779591681853, -0.7453537407289634, -0.7450605604972691, -0.7449954793341917, -0.7447810789377595, -0.7446148383514843, -0.7443436691429056, -0.7443398015809987, -0.7439681934294872, -0.7439363357476008, -0.7438929373951099, -0.7436748017710286, -0.7432187689669718, -0.7430818838461447, -0.7427136149566077, -0.7426301351666175, -0.7426202419748966, -0.7425555924390177, -0.7423884658122443, -0.7419222844902664, -0.7417796778776702, -0.7412306801950354, -0.7397758603113623, -0.739737723002795, -0.7394553119706415, -0.7392690101328458, -0.7388412925851915, -0.7387395891509652, -0.7386015556200178, -0.7383682666512008, -0.738301792227899, -0.7375716911120767, -0.7375337875084633, -0.737475036676183, -0.736492326327555, -0.7362732094394855, -0.7356581408764484, -0.7356092763650586, -0.735559310153825, -0.7348292322157355, -0.7343620210790013, -0.7333597272286176, -0.7332262369779019, -0.7332102372284582, -0.7318355007294175, -0.7316718056607706, -0.7314881971419953, -0.7314206301988547, -0.7312541434259636, -0.7310159262716593, -0.7309130626506283, -0.7308545867430329, -0.7300667956987553, -0.7297338896192399, -0.7296907855680561, -0.7295967008574267, -0.7293066048174168, -0.7292898167202901, -0.7289422969116854, -0.7281414301943009, -0.7278900025884807, -0.7274998677621826, -0.7269173292898429, -0.726801014821494, -0.7267725383680199, -0.7259132378939068, -0.7256253384184707, -0.7256110222940986, -0.7253742355830441, -0.725122148319968, -0.7250875456504224, -0.7250779249291337, -0.724897593721723, -0.7247199874203241, -0.7244715185440704, -0.7243302105829947, -0.7240616486471834, -0.7240388598157752, -0.723997583652182, -0.7237664476908974, -0.723639194161778, -0.7235500807218497, -0.7229953469295414, -0.7228026000692048, -0.7226963497348482, -0.7212095527821505, -0.7208847501574064, -0.7202191167260799, -0.7202080273077336, -0.7192024887137527, -0.7189161012626577, -0.7186011675178225, -0.7180019155221394, -0.7179472656486706, -0.7173504282169265, -0.7171543740681648, -0.7169799012518077, -0.7164095540822656, -0.7162438962567833, -0.7161380735976087, -0.7152516299527683, -0.715134660233433, -0.7148090714868072, -0.7147531193721305, -0.7141908908588581, -0.7141724595261184, -0.7141365923731364, -0.7126816564639813, -0.7125282743603643, -0.7124564714437327, -0.712270103163986, -0.7120618376111074, -0.7113788753271016, -0.7111974288794087, -0.7107795178574396, -0.7103151461224717, -0.7099667836372208, -0.7087841699949122, -0.7085096367668869, -0.7079426329941669, -0.7077687712454503, -0.7077510421378556, -0.7075552125656452, -0.7074229692664932, -0.7074091953812525, -0.7063961104959184, -0.705690185600845, -0.7052310401931454, -0.7050323905256805, -0.7049578505091789, -0.7047328788947038, -0.704586985972357, -0.7036770422343768, -0.703505557142915, -0.7034209390121612, -0.703217464571571, -0.7030816692039061, -0.7028459828128597, -0.7027841823361196, -0.7018986233112063, -0.7018459157598542, -0.7012572821445732, -0.7011054611789924, -0.7004345863971331, -0.7002459628058384, -0.699873734951326, -0.6997734471417058, -0.6992928767775408, -0.6989891799542971, -0.6987125542438708, -0.69823394985958, -0.6973823161491459, -0.6971228727179293, -0.6968410985617499, -0.6965623106856951, -0.6962610363982773, -0.6960382624000514, -0.696029584831104, -0.6955231914812494, -0.6953501664550022, -0.6949673763622086, -0.694823757835298, -0.6939186094734395, -0.6937299691646361, -0.6935609541366035, -0.6935156061149607, -0.6933382281649202, -0.6926587649222439, -0.692433727661039, -0.6923627492284189, -0.692020196849422, -0.6919193526640326, -0.691643771709223, -0.691359716167691, -0.6909482358320747, -0.6908322098591069, -0.6906542248925713, -0.6902060349851956, -0.6900666610686005, -0.6899525233069126, -0.6896655028086595, -0.6892749534384587, -0.688483535992155, -0.688483535992155, -0.6884681118152807, -0.6882722300055824, -0.6882357950556882, -0.6878683132895516, -0.6876429602459766, -0.68708462860434, -0.6867871531991578, -0.6860216256095949, -0.6854539670922246, -0.6853286477281406, -0.6850533617988712, -0.6850250847154475, -0.6846768480827614, -0.6845676295667702, -0.6838545544168573, -0.6838536239433995, -0.683790099177331, -0.6832043351651893, -0.6825367356820835, -0.6823637625225729, -0.6823158517219001, -0.6822317146371413, -0.682218631103908, -0.6821418442861652, -0.6818399549139866, -0.6817764348304918, -0.6817052396780753, -0.681225003957266, -0.681067110371848, -0.6804469737048894, -0.6801328726268343, -0.6800205052197138, -0.6800180306286403, -0.679760102870216, -0.6796851092517069, -0.678912520167353, -0.6785011092678304, -0.6782184529594144, -0.6781237303187435, -0.6777535470892336, -0.6773168245490296, -0.6772606174646486, -0.677061552102769, -0.6765895668642685, -0.6763242662131534, -0.6763203721428651, -0.6761838521616649, -0.6750448488256043, -0.6747257350918092, -0.674713781753145, -0.6740500210763639, -0.6734554527143697, -0.6734331852907304, -0.6731031492674344, -0.672713047422532, -0.6725419486699695, -0.6724306748814625, -0.6723159385558093, -0.6719951525889776, -0.6716015254361184, -0.6715732856152334, -0.6713701789419741, -0.6712437868088744, -0.6704064892823325, -0.669862771185081, -0.6695052009805254, -0.6691907038347277, -0.6689216702689447, -0.6685744432067332, -0.6684505665318767, -0.6660677541819537, -0.6653032523351342, -0.6646748867402069, -0.6640490280442543, -0.6640227217871733, -0.66339724958429, -0.6632781389539196, -0.663060284494132, -0.6626249664395774, -0.6618316059922515, -0.660820658519141, -0.6606420266007729, -0.6602330510880146, -0.6594766630278959, -0.6593262530083899, -0.6591121542249393, -0.6588761322647432, -0.6587820517545357, -0.6582254521144644, -0.6581049544247622, -0.6579741118202675, -0.6578226723314167, -0.6563816421368127, -0.656079528797585, -0.6559067721278466, -0.6548961027957448, -0.6545157765683031, -0.6544011214308619, -0.6543971111750712, -0.6543184738119777, -0.6542461827570474, -0.6533639891381966, -0.6532135704699911, -0.6530443583057579, -0.6522537239143444, -0.6521481284883499, -0.6510601352691885, -0.6508969563306963, -0.6507087335360437, -0.6506448897798119, -0.6505950031769667, -0.6504194479473184, -0.649978989951977, -0.6492726775675682, -0.6489023997402223, -0.648399909395142, -0.6481119423370177, -0.6481044973623387, -0.6480718384222173, -0.6478364916343133, -0.6471969605250529, -0.6470485319573301, -0.6467297315059102, -0.6466223518098011, -0.6463951396517864, -0.64622691015908, -0.6459890808832187, -0.6459221263377612, -0.6453939736570666, -0.6448850083350813, -0.6447793233007353, -0.6445719959566022, -0.6444038091582406, -0.6433279372839368, -0.6427316208270408, -0.6408980697882214, -0.6407517958476874, -0.640625290744478, -0.6402912430865929, -0.6401713525125271, -0.6401404149723808, -0.6396559192320793, -0.639615167687336, -0.6388607763108715, -0.6371757422380693, -0.6360183477133652, -0.6359367312536258, -0.6356206211662687, -0.6355268621034751, -0.6349234585109245, -0.6343579074878277, -0.6342783221182083, -0.6334813082451664, -0.6333807108243947, -0.633265111703569, -0.6332384091913597, -0.6326730048581786, -0.6321964152312736, -0.6312408118185109, -0.6311363031031128, -0.6298972207753981, -0.6298819683820351, -0.6295230656273847, -0.6293778560967722, -0.6288614414088797, -0.6269942642047304, -0.6269919913828638, -0.6261381229461884, -0.6260573612579492, -0.626013219066117, -0.6259624564828093, -0.625961077746878, -0.6255377888481213, -0.6254054298364178, -0.6253986776366096, -0.6248410527626311, -0.6244623731453649, -0.623227549538846, -0.622693217422992, -0.6226791004696024, -0.6220666626004547, -0.6219788730948959, -0.6210942252605763, -0.6210310455817705, -0.6210136403483492, -0.6206109324178898, -0.619973262712154, -0.6199654777477557, -0.6198699109351958, -0.6196972957408533, -0.619366504272708, -0.6192054915511862, -0.6191843765776377, -0.6190857000203493, -0.6189169860566782, -0.6189020813780521, -0.618674194392628, -0.6182054936366391, -0.617901683502847, -0.6178758749125769, -0.617742864079824, -0.6177116008808559, -0.6173032871667479, -0.6170263657570385, -0.6168766906460285, -0.6164688501803495, -0.6161343887693741, -0.6161210660601494, -0.615461048250596, -0.6151660366347564, -0.6146676229886687, -0.6144098576446126, -0.6138560067972523, -0.6134393104837448, -0.6134150427518559, -0.6116862470258668, -0.6113579412018966, -0.611013991838681, -0.6108705332098736, -0.6108149204830389, -0.6107065575348793, -0.6105779964606325, -0.6103921664821557, -0.6101683433767472, -0.6098940587914802, -0.6097583430532738, -0.6095502609417125, -0.6094202900870349, -0.6092376400660724, -0.6089674890440072, -0.608768026759926, -0.6084463333077579, -0.6079051818655938, -0.607480982558483, -0.6070478286374473, -0.6068081860426422, -0.6065701083670219, -0.6064326900129992, -0.6064044887848279, -0.6063760527554832, -0.6063622722412223, -0.6058195833670028, -0.6052028186604913, -0.6051707812607401, -0.6051363991867307, -0.6047597220675144, -0.6045812888690667, -0.6044804985670312, -0.6043028812786664, -0.6040799499374128, -0.6040504892334361, -0.6038667603400256, -0.6036952834398498, -0.603392150139406, -0.6032854360058224, -0.603072558806772, -0.6024511743124373, -0.6022593936998807, -0.6017051629677683, -0.6012012945316548, -0.6010622094205611, -0.6009481829343801, -0.6008588959460583, -0.6007869813047404, -0.6007150862754749, -0.6004950838679248, -0.6001510214659735, -0.6001252920378309, -0.5994835616685097, -0.5994779282229845, -0.599013053663604, -0.5988413479897847, -0.5988024972448315, -0.5984413432773565, -0.5981706423857931, -0.5980498397987781, -0.5976865783262966, -0.597170606025096, -0.5970864091802375, -0.5965593024452139, -0.5965199328233362, -0.5964654916095372, -0.5955509304543173, -0.5954870160556014, -0.5950873329260062, -0.5945912978847354, -0.5945612487187442, -0.5944292614249863, -0.5940452139315298, -0.5933675641493378, -0.5931481215662309, -0.5930977814397704, -0.5930488997704773, -0.5927045312738293, -0.5923752352038264, -0.5919325377311337, -0.5915732808738766, -0.5914718741701477, -0.5910874783190047, -0.5910586397082789, -0.5905479085875216, -0.5904717220646656, -0.5902494616024527, -0.5899637588400908, -0.5898462133324482, -0.5897593390771183, -0.5894445672761219, -0.5893402796653388, -0.5892273776595054, -0.5891633514117866, -0.589153288421997, -0.589012700178983, -0.5885581024118525, -0.5884277541137395, -0.588184233633724, -0.5876190393643232, -0.5874185905461783, -0.5873000751436765, -0.586924129359581, -0.5866752005365734, -0.5866441184762059, -0.5862168111224716, -0.5861712943028319, -0.5857925249369275, -0.5857101864431284, -0.585464780399476, -0.585213886579834, -0.5848519545318882, -0.5841573416588436, -0.5840726175529471, -0.5838795268132606, -0.583516908195136, -0.5834324230748023, -0.583166372931105, -0.5822022594085985, -0.5818805519213883, -0.5816228493000262, -0.5816037426750993, -0.5815697382704603, -0.5815509955811242, -0.5813883395373665, -0.5808312378853105, -0.5797990863643746, -0.5796050674190665, -0.5791954827178901, -0.5791292437056963, -0.5789040983312368, -0.5788135487332301, -0.5770108321198936, -0.5769563048229766, -0.5768082149675393, -0.5763042109721828, -0.576161085476173, -0.5758613919357932, -0.5756501838945501, -0.5749142999312489, -0.5748707960730753, -0.574724605361405, -0.5743806901045196, -0.5737664431920529, -0.5735548642042628, -0.5734321182983764, -0.5729998454964116, -0.5727473746497146, -0.5720561136642223, -0.5714169962020978, -0.5712875409043094, -0.5710924789089206, -0.5697127285178754, -0.5695833006824543, -0.5648537718328782, -0.5640996478761487, -0.5633969316065157, -0.5630359023104298, -0.5628070745992261, -0.5625412354224416, -0.5623983309083541, -0.5622668678684454, -0.5620403756175414, -0.5609507326883938, -0.5609234018914557, -0.5607028606880684, -0.560605273497636, -0.5603844822189032, -0.5603482999869837, -0.560181889090448, -0.5597248749453018, -0.5593563204203216, -0.5591775945003697, -0.5591704394717518, -0.5590794418443856, -0.5586266897076939, -0.5585849968496301, -0.5582898185327609, -0.5578313738942373, -0.5575116192561689, -0.557052922698563, -0.557030767000871, -0.5567514689552855, -0.5564923500346376, -0.5562451110370615, -0.5561964003352616, -0.5561546182869679, -0.5555593269461869, -0.5553213612813054, -0.5552191066100323, -0.5551879837638646, -0.5551075618901056, -0.5540676019436531, -0.5536524545888476, -0.5536264556739778, -0.5535375138272718, -0.5526750573102777, -0.5523020989939238, -0.5520342733321743, -0.5515910840199345, -0.5512896237915479, -0.5511647911701028, -0.5510258503365472, -0.5509524018444759, -0.5508327985886933, -0.5504115259705603, -0.5500843966712038, -0.5495902452372657, -0.5495792739887526, -0.5495060575823503, -0.5489500293721217, -0.548922625637438, -0.5489054340035561, -0.5488763854748391, -0.5483823066177699, -0.5483797011836814, -0.5480451717805047, -0.547639980885596, -0.5473292723908826, -0.5472820846159441, -0.5470752792195381, -0.546641661462573, -0.5464846179015204, -0.5460056331522704, -0.5454253617219111, -0.5451526094529988, -0.5441644665713143, -0.5437274853189337, -0.5428457258267074, -0.54270584448223, -0.5425764117050154, -0.5417057166232534, -0.5413201065711921, -0.5401768142011888, -0.5397529472068142, -0.5396855217259131, -0.5394664505423283, -0.5393650245367824, -0.5392816876068249, -0.5392681597512032, -0.5390115925883187, -0.5384520909628392, -0.5377320837129238, -0.536911329401291, -0.5368953150682338, -0.5366564119530615, -0.5363818536568801, -0.5361050570650099, -0.5350269107430495, -0.5349930967173656, -0.5346655357580917, -0.534104481444013, -0.5340163965221212, -0.5336079967301417, -0.5332379839204496, -0.5331229973156222, -0.5330211438601351, -0.5328389780128999, -0.5326156020857697, -0.5312828906162996, -0.5312735902652792, -0.5312558888340715, -0.5312101589589454, -0.530959299552852, -0.5309098751557458, -0.5306328110330385, -0.5294330495875523, -0.5291381115669873, -0.5288899346442119, -0.527932841182645, -0.5277992735556736, -0.5275598228553198, -0.5274010143998845, -0.5260261845908956, -0.5259993045061513, -0.5258892502285312, -0.5256591369158765, -0.5255317990624463, -0.525401362876767, -0.5250141519623686, -0.5248468576584266, -0.5241387315111995, -0.523751505097104, -0.523594572005428, -0.523194116999773, -0.5228305414830138, -0.5226725201228865, -0.5225234684479023, -0.5214508036789481, -0.521016822160606, -0.5206376143808805, -0.5204001900662226, -0.5199479292357148, -0.5194046945611626, -0.5186167956038874, -0.5183269538577134, -0.5183202861605073, -0.5181928863241129, -0.5175708416544678, -0.5172340289256002, -0.516780272652351, -0.5160494041536761, -0.5160351249750943, -0.5159235886356232, -0.5149545855356883, -0.514793477779222, -0.5140276382729334, -0.5138995216752337, -0.5138908017304826, -0.5138402799706082, -0.5136489478370668, -0.5133569983576779, -0.5133350623718647, -0.5129945344690798, -0.5129677790257707, -0.5127313927381957, -0.5120581977456011, -0.5119552555128009, -0.5118962841110162, -0.5115924949428327, -0.5113511028902484, -0.5110651532138735, -0.5110289870476522, -0.5109372465970123, -0.51060661189903, -0.5103008662754404, -0.5098259719394425, -0.5083253209977335, -0.507830494624971, -0.5067614157495746, -0.5065917424312258, -0.5064479440345699, -0.5060633482399666, -0.5059450082221006, -0.505871952752753, -0.5057857943793171, -0.505744169251501, -0.5057372768805339, -0.5052097753127498, -0.5049406719796615, -0.5048833218560309, -0.5047329457874683, -0.5038834767552801, -0.5037505710165078, -0.5028740191104788, -0.5027689812774699, -0.5027133781706712, -0.5026407838131934, -0.5023466115301721, -0.5021545123839508, -0.501290718303302, -0.5011175280119069, -0.5004703770285269, -0.5001741233991226, -0.4999656657181877, -0.4992072483441461, -0.4991696999200879, -0.4990145189244396, -0.49861731182454816, -0.4984196778244035, -0.498248117246044, -0.4980802617329543, -0.49774331694830826, -0.4977306696605792, -0.49699007148774144, -0.496387937769024, -0.4956298875952331, -0.4951985337979866, -0.49509268213817714, -0.4950475864323616, -0.4947534404688719, -0.4945813903937706, -0.494352599914125, -0.4940780897832728, -0.4940149544152854, -0.4939399511270138, -0.493824445242977, -0.49300334691319486, -0.4929609653141354, -0.49270763139619694, -0.4921238580183221, -0.491265716289777, -0.4909200983820699, -0.4907369783855983, -0.4903629760422657, -0.4896508562841441, -0.4893926788177952, -0.4890132255865695, -0.488857024740041, -0.48833967025209496, -0.4873377127151161, -0.48733758831035157, -0.4868236587702842, -0.4866565518535013, -0.4866215536131123, -0.48635269549542604, -0.4857568254003459, -0.4852459107553535, -0.4852364153774043, -0.4844574674012153, -0.4841701673496688, -0.4838181110424763, -0.48364030709683503, -0.4836372915334609, -0.48347247540144156, -0.4831458483040737, -0.48312185444860534, -0.4816017491180167, -0.48142278845668385, -0.4811421137243247, -0.4800511374585896, -0.47986312024952094, -0.4798520201092127, -0.4793149844465325, -0.4784214861921369, -0.47825053112212723, -0.4782358655593254, -0.47787101213878663, -0.47732757520017227, -0.4763300618482337, -0.47570062549773523, -0.47539754326336603, -0.4753796452865928, -0.4753303339825649, -0.47500382451628065, -0.4749115456510828, -0.47414830109357475, -0.47391058795356983, -0.4736760262710267, -0.4734851742782821, -0.473481942514688, -0.47325047370117346, -0.47317033334242137, -0.4729834692814439, -0.472492877278052, -0.47242613518695575, -0.4718360943996853, -0.4714879716030198, -0.47133087680094166, -0.4709609013721411, -0.47078063812263754, -0.47049272002202125, -0.47034531421738046, -0.4701420998562314, -0.46944609665835485, -0.469304741656514, -0.46877211777234395, -0.46864092510141125, -0.4683498986210576, -0.46822978944575544, -0.46795209072984667, -0.46793892768018897, -0.46790075806866066, -0.46779171809629017, -0.4675907331748417, -0.46737807612435056, -0.46698865547033475, -0.4665347560643774, -0.4663277982172381, -0.46605634714498734, -0.4658629194501176, -0.46577239038644114, -0.46557619059189725, -0.46539712567550584, -0.46517026181174564, -0.464458698253581, -0.46354947983535577, -0.4633514143396529, -0.4633161749918727, -0.46254157179263294, -0.46228833449224294, -0.46104306434296627, -0.46048700477326027, -0.45993441522826534, -0.45948164002034586, -0.4590120854068741, -0.4586098707984966, -0.45852934891174746, -0.4582228622799551, -0.4579488769908451, -0.45774759614883753, -0.4573973692529204, -0.4568259867966135, -0.4566586075350983, -0.45662998835355223, -0.45656362706451864, -0.4561561145870468, -0.4558174675061441, -0.4557455897459998, -0.45566284908995563, -0.4546435212167499, -0.454593455402455, -0.4544714523718565, -0.45446317410386416, -0.45437402851545816, -0.4542758156152961, -0.4537375330462389, -0.4537271105458326, -0.4533196775956442, -0.45330541946969394, -0.4531121404189903, -0.45286393956140847, -0.4521910878923868, -0.45176539882319383, -0.45136525066324545, -0.45108223316841006, -0.45053968913451503, -0.4505178360268247, -0.4505054159474078, -0.4504559377851007, -0.450359069075421, -0.45010588851948685, -0.4494958295845037, -0.4485898888737719, -0.4479397468161171, -0.44767747790526075, -0.4473584687419073, -0.44715569159413665, -0.44690215700245556, -0.44641822483552274, -0.44641674278975496, -0.44577410798638883, -0.44566269028804134, -0.4453243976144809, -0.4439717779667437, -0.44330396521587434, -0.4424870420404727, -0.44218389274079994, -0.44052694523526603, -0.4403650834791751, -0.43966790455406596, -0.43917837425152667, -0.4385585992360278, -0.4377500027718016, -0.43769341901777015, -0.4376789186773332, -0.43755500677465065, -0.437256253635726, -0.4369899333211138, -0.4368251982512246, -0.4367353942322122, -0.4366836090952487, -0.43624369814696173, -0.4357922897218009, -0.4349418567240881, -0.43448016749572016, -0.43439152093360034, -0.4339442884964417, -0.4337571070911224, -0.43347995955761975, -0.43347803609686186, -0.433100754003296, -0.4323023952206886, -0.4321779297626366, -0.4318179679349752, -0.4316712720892287, -0.4310327556255207, -0.43071534776504056, -0.43063597735295506, -0.43050912269801495, -0.4304563282338705, -0.4295523859118446, -0.429080244183491, -0.42886958251111595, -0.42873979177521476, -0.4280607196304573, -0.42794253774798274, -0.4274916868779293, -0.42744200144753064, -0.42712023045526726, -0.4266686758979875, -0.42596195277725535, -0.42570557207886406, -0.4248051422745798, -0.424785040975091, -0.4247384250181503, -0.4245002972721066, -0.42412333536004065, -0.4236748180449771, -0.4234869126715437, -0.4228074797699794, -0.4225904713131722, -0.42196064921226417, -0.42073606090097737, -0.42069819686215315, -0.42054734943315353, -0.41949038883442846, -0.4192864465672029, -0.4189518667436696, -0.4188751176376347, -0.41882682320161646, -0.41872469711864446, -0.41856583997860775, -0.41829667656814573, -0.4173444129333001, -0.4171687526220637, -0.41713189640849, -0.416091955118614, -0.4159854097813822, -0.414994136063406, -0.414587503237017, -0.41437170456274053, -0.41411420443441316, -0.413595624540396, -0.41250751018152704, -0.41212354580430355, -0.41188434553323416, -0.41178115855441444, -0.4109717603490741, -0.41092744888289, -0.4103810534732655, -0.4102913957794889, -0.4099725421861503, -0.40992557463450524, -0.4099014555800415, -0.40977624039759547, -0.40965291785775226, -0.4085097376590813, -0.4080795910762139, -0.40764593584648934, -0.4068374944241687, -0.4063055698490306, -0.40598812942305107, -0.40588983844021753, -0.4058782166195604, -0.4057742949774531, -0.4056244664186946, -0.4051519982505867, -0.4047649561990261, -0.4041359635552956, -0.4025842954741449, -0.40219626454382673, -0.40185143511826105, -0.40173391767135536, -0.4016651761090918, -0.40113909874261744, -0.40111890004435624, -0.40021693502718403, -0.40020032282378815, -0.39982612192233385, -0.3994243448463622, -0.3994052455206332, -0.3992269768082869, -0.3990075422169755, -0.3988142035486352, -0.39880731713969775, -0.3987875942694721, -0.398383196426555, -0.3982775888372796, -0.39825434054266245, -0.39755500990664444, -0.3973909736754265, -0.39693013705038493, -0.39691154381122074, -0.3965570941695485, -0.395991124607141, -0.3959414860801861, -0.3957406473476867, -0.395674165216054, -0.39555869794867915, -0.39487345432265686, -0.39482701012826704, -0.3947526682992257, -0.39450873149098825, -0.3944339882744381, -0.3941917398269005, -0.3936106953121103, -0.39355147063325396, -0.3935146909426247, -0.3928958157348773, -0.3928266312293278, -0.39254193687502636, -0.39205435835755514, -0.39200423711235, -0.39073833664860375, -0.39054572826861844, -0.3898097366055685, -0.3897298855072714, -0.38969184892938247, -0.3895342940261474, -0.3889539529276034, -0.3885357482915014, -0.38804314038666154, -0.3879772271166821, -0.38752165161278795, -0.3874622741615101, -0.3873327522144511, -0.38728875004197116, -0.3868916487931214, -0.3866837824751051, -0.3860833006351316, -0.38598104183989435, -0.38570447650925654, -0.38553815759568455, -0.38528637813504724, -0.3851752987244884, -0.38510944901873817, -0.38486262563165985, -0.38482529191530207, -0.38473151578834397, -0.38419043913896717, -0.3836412122345677, -0.3831523279955857, -0.38314684254669773, -0.3831047900197564, -0.3830479033937969, -0.38283379057726924, -0.38236796997268946, -0.38233215975452456, -0.382210099237216, -0.3807104802210416, -0.3803278200135441, -0.3799187102144746, -0.37981429123255284, -0.379371883751664, -0.3793462486873845, -0.37916502682391895, -0.37899156333840855, -0.3788661156927327, -0.37873562935893984, -0.3784222620296388, -0.3783376488357377, -0.37829062968110827, -0.3781910600567664, -0.3780798226318222, -0.3775521157890809, -0.3771988620516591, -0.3767613842550971, -0.3766662658039856, -0.376317958469102, -0.3759769122416876, -0.37576344267131057, -0.3757488375788389, -0.37569687131202884, -0.37450712357420257, -0.37389668752185706, -0.3738829408104344, -0.3735848971916415, -0.37349123795303063, -0.3733289627494758, -0.3719174311774399, -0.3719089952146851, -0.37155211279747874, -0.37149595564095284, -0.3710482633583886, -0.3709735953803679, -0.3706952877220304, -0.370638979966654, -0.37027495580733444, -0.36968679082591016, -0.3687516994812694, -0.3686694222430362, -0.3682777004657672, -0.3673974320822603, -0.3671087638318913, -0.3668655866856525, -0.3667685626421569, -0.36649348967318557, -0.3661093376250897, -0.36597412832075255, -0.3659232621171136, -0.3655441336190393, -0.36536556840268036, -0.3647738969831009, -0.36476469294675967, -0.3644631684661328, -0.3643868835832474, -0.3641362442578725, -0.36391337817228575, -0.36374782516801607, -0.3637385847847907, -0.3637378039770086, -0.3634212418927613, -0.3633909861484049, -0.3631879809600417, -0.36296743986756896, -0.3624514249039807, -0.36221445079123366, -0.3622113112397052, -0.3621316747053716, -0.3617205697162033, -0.36157494159527287, -0.36125136994081153, -0.3610362752774788, -0.36038398677794525, -0.36008559822780706, -0.3594813365122251, -0.35944170456292857, -0.3589817235686248, -0.3585801842350671, -0.35840259041571076, -0.3580527013442689, -0.35728540658304603, -0.35702432699533426, -0.3562641248125979, -0.35606322724448186, -0.35529678899373646, -0.35498072446036455, -0.3542191062796297, -0.3535975272779263, -0.353127865943462, -0.3527095918565575, -0.35270719753189334, -0.3524320112404172, -0.3517490542262065, -0.3517089489499157, -0.3514957479452546, -0.3513705652509316, -0.35130383710220353, -0.35113987741149577, -0.3511130577795195, -0.3505887395394304, -0.350222734953762, -0.3496599758707909, -0.34951092531689204, -0.34878077677111424, -0.34865152411926037, -0.3485463558179125, -0.3470329337864222, -0.34701414812345105, -0.3463999618299962, -0.346250350901957, -0.34619749305707925, -0.34608968210666907, -0.3454776976258003, -0.3452919411593881, -0.3452622150600326, -0.3451970418957383, -0.34472935224262946, -0.34465344070418724, -0.34375056021723255, -0.3428611437784802, -0.34249880924211273, -0.3421968094699228, -0.3420140015833042, -0.34148835740641426, -0.3414237591957785, -0.3411073136307424, -0.34110649063721865, -0.3407418756018137, -0.3403171053914859, -0.3401000727825411, -0.3400452794838865, -0.3395650067984055, -0.3394831795028826, -0.33946979289023915, -0.3381981736667399, -0.33816936101881423, -0.3378725694428604, -0.3373054304302763, -0.33704279602904846, -0.3367696782740106, -0.33644701498871793, -0.33639329299838894, -0.33526144389109924, -0.3349009939367631, -0.3341513278334134, -0.3340425359340885, -0.33284637902879305, -0.33264605991393636, -0.3326173015529263, -0.33216204745442607, -0.332020588772743, -0.3317782338829207, -0.33143884467503487, -0.33064144496887304, -0.33038254973192005, -0.3302964920120943, -0.3299582031197753, -0.32957827824762465, -0.328371616045231, -0.3283237794686612, -0.3283040664209792, -0.3275736274443526, -0.32692349573946755, -0.3264333333207423, -0.32604620936049766, -0.3252735833998919, -0.325066901035093, -0.3248729240437833, -0.32479544801118376, -0.32460985412101423, -0.3243519055406546, -0.3234297370721462, -0.3234225437144835, -0.3232567135927322, -0.32291085183756874, -0.32266981365890546, -0.32263047964913394, -0.3221732830174753, -0.3220519402752628, -0.322003992414802, -0.32175745406452017, -0.3215362154014326, -0.3208942018818245, -0.3202452583769906, -0.3199918738291421, -0.3193777003404318, -0.31929898547236013, -0.319229870181874, -0.31921999673642465, -0.3186717673213965, -0.31860118305655716, -0.3185251558152483, -0.3180984510332126, -0.3178269368282367, -0.31771531140317577, -0.3171809118983482, -0.31706306226260744, -0.3170552836361418, -0.31675973791896733, -0.31588965278471925, -0.31501088774162517, -0.3149410801072186, -0.314776908988128, -0.3142348878510435, -0.31385741481257706, -0.3137167884650756, -0.31363801994664664, -0.31331559930126585, -0.31276601666975073, -0.3124896850228473, -0.3123646110457011, -0.31191418076045374, -0.3117853530255449, -0.311372412903895, -0.310973510529254, -0.3106587250288795, -0.3102248043363573, -0.30997804462516576, -0.309869155773667, -0.30945412233841324, -0.30889396297893823, -0.3086781503543751, -0.3081675353018925, -0.3077683704252936, -0.30755204835232647, -0.3072744255250896, -0.3067946288535315, -0.3065650323783655, -0.30650659343971537, -0.3056362203277336, -0.3053570603187613, -0.3049660341137225, -0.3047650563768906, -0.30454562775794297, -0.30437755008193124, -0.30435956926953567, -0.3039668253060645, -0.3025206900136824, -0.3025206900136824, -0.3014437172693535, -0.3008352756286561, -0.30071976049107535, -0.3002235079608468, -0.29968814358861023, -0.29808664664531226, -0.29802615394897924, -0.29790550323052034, -0.2978190528473062, -0.29766288305363703, -0.29737906332943803, -0.2973296849682687, -0.2968261052144046, -0.29675048206298815, -0.29651199533415934, -0.29574831995193895, -0.29574349210809897, -0.29347456512160974, -0.29296861027311777, -0.2928975365625798, -0.2922576102178618, -0.2915022153185143, -0.29146845893111356, -0.2900120244371152, -0.28983064947678955, -0.28968561450280594, -0.28944549873144854, -0.28940003106120094, -0.2886156769727474, -0.28847225345284444, -0.28823777387800664, -0.2878790049037384, -0.28784407638243814, -0.2872741619924568, -0.28697936885981534, -0.28660497805378504, -0.28642888521727966, -0.2861583785453862, -0.2861013027466043, -0.28586214888565287, -0.28564734065366315, -0.2855510707127508, -0.2854711000580475, -0.2854321293749599, -0.28504721691035195, -0.2850225900590921, -0.28451466925807034, -0.2838262318474781, -0.28336520446177055, -0.2827058020516599, -0.28244119645615445, -0.2813410372968078, -0.28132581996648903, -0.2810263247205312, -0.2807435197097398, -0.28073837138958513, -0.2806414436534921, -0.2798503322374718, -0.279629793463737, -0.2791798942462561, -0.278924260013389, -0.27871440634808853, -0.278401815825125, -0.2779359160383921, -0.27726331610545496, -0.2768160036531799, -0.275361401296943, -0.275170000301646, -0.27468338317643104, -0.2746302194091728, -0.2743722210401058, -0.2735286107188232, -0.27345233931783086, -0.2732108949021205, -0.27319646790132257, -0.27297046666174785, -0.2728619029238118, -0.2727163423252221, -0.2722944452230173, -0.27219504226631536, -0.27106922560833036, -0.270909277421504, -0.27044416954223516, -0.26966994924561516, -0.26950225174231784, -0.26917549966690335, -0.26891404617300707, -0.2687672435259199, -0.2687155216004865, -0.2681899418231989, -0.26760998635234673, -0.26706984174286397, -0.2663461435677772, -0.26615608582221795, -0.26480353910336446, -0.26383271113160767, -0.2635814152467422, -0.26338049428814136, -0.2632476154124656, -0.26324401541507836, -0.2628022868995156, -0.26209340658759483, -0.26208950346965143, -0.2619273833431154, -0.26047502816763085, -0.2593838993574415, -0.2583028777395967, -0.25785325992107244, -0.25770612220466593, -0.25759809695738395, -0.2574047574400002, -0.2573897350054498, -0.2572983442102576, -0.25645804461085214, -0.256375794728401, -0.2563738493458497, -0.25556492318071117, -0.25545521810043065, -0.2553492837610881, -0.25477183466894426, -0.25444521206723403, -0.25350975496798517, -0.2519925101686478, -0.2517649209401712, -0.25137326978963376, -0.25048514937038746, -0.25006599517026123, -0.25005984037129103, -0.2491196485003657, -0.24864755344625122, -0.24825677194455198, -0.2476348696881076, -0.24694079361614696, -0.24396651963306556, -0.2434839521534975, -0.24234926203299167, -0.242215293836154, -0.24218488886113237, -0.24178485708124647, -0.23904799080491954, -0.2389436880598764, -0.23869279221784195, -0.23841095604765122, -0.23832451884169586, -0.23782910897789328, -0.23777378339572608, -0.2377436087577313, -0.23676731400661077, -0.2364521882419704, -0.2363340014051109, -0.2362055724940309, -0.23602227022443284, -0.23533241540989533, -0.2350199118226037, -0.23496050248133832, -0.23459064798176082, -0.23445137404991812, -0.23416773245386652, -0.23401030519313326, -0.23224098230585077, -0.23102611389153746, -0.23088009385912178, -0.2307921327282993, -0.23075595391982423, -0.23068787371591087, -0.23018498898968015, -0.22985299081637733, -0.2290176897455344, -0.22884721858553647, -0.2285278733949764, -0.22840136970528196, -0.22793387443294294, -0.2276626529886282, -0.22708060951682116, -0.22696222661618415, -0.22547645066595312, -0.22529448585536033, -0.22475018856486517, -0.22366284578359144, -0.22362821798036767, -0.2236080665123391, -0.22321814487054772, -0.22240108329479802, -0.22235036001266606, -0.2220388686932732, -0.22125157286361166, -0.22083612484835694, -0.2195227274538501, -0.21867763455926031, -0.21851008906295555, -0.21782543871053933, -0.21704722745756738, -0.21687696701801945, -0.21651195945761276, -0.21614335251162142, -0.21484912280307863, -0.21412466036560088, -0.21256119981181798, -0.2123159148659486, -0.21113075894797131, -0.21102277450499266, -0.21054223964349142, -0.21050015180611914, -0.2103265367978102, -0.21027952445473033, -0.20940343588191507, -0.20921595584459457, -0.20881977240998567, -0.20872722686839515, -0.20831213863771547, -0.2079677317013698, -0.20725788052363917, -0.20725211975385543, -0.2070672177162305, -0.20705523057259667, -0.20594022001765833, -0.2053700985680887, -0.20531004826130286, -0.2049903053300972, -0.20353518586878908, -0.20315411766571723, -0.20313239753019363, -0.20194767066320066, -0.2017930749602056, -0.20024889633342968, -0.19921366847749056, -0.19887774073943426, -0.19824905378754903, -0.1974247471982525, -0.19629915119167313, -0.1962095421847363, -0.19617698655723137, -0.1959929057495547, -0.1959779186011114, -0.19592787689628255, -0.19547769839928197, -0.1954497862745058, -0.19520362633686456, -0.19495830501358546, -0.19444792004257144, -0.1939557205274942, -0.19387270473009646, -0.19312186431034525, -0.1912094744996699, -0.1908798603361804, -0.19086936158311088, -0.1907965279910937, -0.18984996611379776, -0.18877733775849542, -0.1877577614816223, -0.18740239507525686, -0.18721835345475485, -0.18717822068579043, -0.18700996628417188, -0.18617354876266687, -0.18584766925248855, -0.1856489406192458, -0.18563891556337095, -0.1846573867803979, -0.18445958111486382, -0.18412193100301605, -0.18405980646735903, -0.18386008255978126, -0.18347584213569681, -0.18329720992921697, -0.18218353993988606, -0.18155678529255215, -0.18002131773603594, -0.17987230775163324, -0.1782065405077887, -0.17754592090653776, -0.1772797153208068, -0.17709329072767624, -0.17673888005806532, -0.17626079756998633, -0.17540531942962506, -0.175113925286534, -0.17494440320438062, -0.1745726954879312, -0.17440052045450735, -0.1743010571957664, -0.17416821299882357, -0.17364587888774044, -0.17357394950401986, -0.17332984085369277, -0.17310061606442886, -0.17289268716337622, -0.17255927372856775, -0.17114501272413157, -0.17100021911667737, -0.1699820365906727, -0.16972097489687954, -0.16960721147901628, -0.16938757685440772, -0.16923227724510342, -0.16848933183700565, -0.16844187240755187, -0.16833862223369633, -0.16767460627671243, -0.1665470232221903, -0.1656072284002108, -0.16553083370368885, -0.16546234860247655, -0.1648135382267068, -0.16437880353286827, -0.16368287841828735, -0.16229096276782082, -0.16146382320584876, -0.16076252099331392, -0.1590687710802501, -0.1589411081078235, -0.15888129339182985, -0.15871374872783353, -0.15857603081201188, -0.15798955999336836, -0.1576354628003116, -0.1548010430658391, -0.15424845842252, -0.15386120400923337, -0.1535387671906636, -0.15304672348816878, -0.15253191438694635, -0.15196213100948913, -0.15104077852059122, -0.1510231639392562, -0.15099551932861333, -0.15029695673580581, -0.15021104674771918, -0.14858281403505244, -0.14852415391882523, -0.1482123672890872, -0.1468870549139439, -0.14540307607555628, -0.1453176724625426, -0.1448316742996777, -0.14477660023121575, -0.14357736443331284, -0.14352741268916033, -0.14332908167011887, -0.14200167445956746, -0.14178400782683215, -0.14133189739889923, -0.14036395387057998, -0.13947385939790308, -0.1387697012118469, -0.13809367735240782, -0.13808311914331517, -0.1379720444846938, -0.13764742295498514, -0.13606538052497774, -0.1354384440580976, -0.13439156111215786, -0.13412621443243716, -0.1332911311505292, -0.13321995530032563, -0.13305644876724454, -0.13303127743583246, -0.13273417380931524, -0.1303664420318474, -0.13009841304272904, -0.12865944551835704, -0.12852206750379494, -0.12772478207532215, -0.12704475312007615, -0.1265394296895337, -0.12640106970278875, -0.1252307398844459, -0.12485352579652789, -0.12374185308728333, -0.12224577330242123, -0.12189181052344843, -0.12174298534709455, -0.12105414258571934, -0.12058390961275592, -0.11928977858967034, -0.11911928869159916, -0.11876051305657978, -0.11697131670163496, -0.1148449132548543, -0.1146724782996238, -0.1146341218560652, -0.11456802006045735, -0.1141397996807893, -0.11282338229324054, -0.11153561330828898, -0.11002105617679245, -0.10989121145600586, -0.10978843810930239, -0.10942626595668434, -0.10858774315582631, -0.10830906909996987, -0.1082283537386236, -0.10728884829543088, -0.10705368196983964, -0.10642855354509383, -0.10618396309478237, -0.10522826251241807, -0.10429669218018718, -0.10397916215245719, -0.10352730261550314, -0.10267187917277075, -0.10258598976622142, -0.10248794314416898, -0.1020239440132086, -0.10099832608664755, -0.10045820888279589, -0.10016651965972163, -0.09928181160629769, -0.09875972350325785, -0.09843438850388253, -0.0974281163708418, -0.09616614977465662, -0.09578720497759946, -0.09513698741818594, -0.09472647737304679, -0.09350470616249365, -0.09316337533703493, -0.09286622034564249, -0.09152643257664572, -0.090599998060607, -0.09057589848143525, -0.08652893582816001, -0.08650009865458953, -0.08560577221243702, -0.08422099741552588, -0.08314188743035354, -0.08222142846939869, -0.08207529203487746, -0.08098212809222538, -0.08039414039198753, -0.07929775227838146, -0.07811616970227808, -0.07784992247857436, -0.07774862322075976, -0.07772782836535355, -0.07754985411293652, -0.07433761110617262, -0.07424864111946286, -0.07347256569793525, -0.07315109513493934, -0.07263691531286873, -0.07132160752857321, -0.06869833527877106, -0.06866151801970057, -0.06800071610012154, -0.06793716563812724, -0.06770630557441829, -0.06722392397129374, -0.06667791985282331, -0.06397998753526203, -0.06314576517862101, -0.06272473862135589, -0.06210626462136576, -0.060556931886502435, -0.06052487657204901, -0.05928861565934479, -0.05760400832288662, -0.05677395789427341, -0.05590297172255937, -0.055580733396814824, -0.05407650001345041, -0.05378772999438147, -0.05327492390641819, -0.052932673315068436, -0.05111167485569897, -0.050163150131385836, -0.04982118899944182, -0.04965082490558764, -0.04873434417990136, -0.048671155556379575, -0.04856238020608885, -0.04827572391934837, -0.04741792878304779, -0.046040294002777996, -0.045221368466411165, -0.045183095229243575, -0.04434875334107691, -0.04392651864859377, -0.043604981023607214, -0.04202033291150967, -0.041477681369545855, -0.03966589742493601, -0.03947789668435797, -0.0372545210019386, -0.03477785289914537, -0.033947530574739204, -0.0337964974721949, -0.033016166058016286, -0.030742235218756547, -0.029191505335971896, -0.028363734017359865, -0.028277017702230123, -0.02722617069698477, -0.024791948466723335, -0.023630223916575564, -0.023337268256526933, -0.02306745344923783, -0.022842961409428708, -0.0227166492460093, -0.020934301950220557, -0.020666971581883326, -0.020463349743055113, -0.020093347065584972, -0.017987298327009786, -0.017622567475139017, -0.01609306499351315, -0.015628268847400206, -0.015349772952626588, -0.015067682143523336, -0.013977196501378297, -0.01347495980545201, -0.012503596046483045, -0.012076375516808568, -0.01134825122455999, -0.01051626088700161, -0.010266079792853766, -0.009786735491606196, -0.008350579406634492, -0.008217410529469338, -0.006528431088486634, -0.0065078294879563625, -0.006147506389224273, -0.006133696150598644, -0.006051171304852665, -0.0060117387056584145, -0.0058427012812387515, -0.005774313199065328, -0.004867934710459876, -0.004394348891974726, -0.004392603328218244, -0.003435909304073786, -0.0029830459694450695, -0.0016597749708661125, -0.0015310054995519573, -0.0007165829693597438, 0.0007477657378770364, 0.0008456339825394388, 0.0008825313306785043, 0.001122622497462894, 0.0015296754018230222, 0.0017011134895633662, 0.0018181167579289226, 0.002061258130716309, 0.002087255327157084, 0.002522893035855678, 0.003427572971072129, 0.003537752167021513, 0.004598522270684413, 0.0048429961095612095, 0.005171923871437204, 0.0053128347874683846, 0.005540671724408308, 0.005596874845878785, 0.005900723781718631, 0.006956704003504005, 0.007618740555688799, 0.007722386356787953, 0.008983792624448816, 0.009198798597330466, 0.009461242212184065, 0.009554854652739456, 0.009608508529512283, 0.011681067161902337, 0.011715089410006535, 0.011847350887564792, 0.012222259404636115, 0.01255782509596863, 0.013343622344670536, 0.01435038356736019, 0.014471961655885998, 0.014857498656499568, 0.015112723178069942, 0.015128251956788127, 0.015816880844458203, 0.01602007781753053, 0.016136855472093724, 0.016598964949320588, 0.016607558342612343, 0.016928437132213897, 0.017253734789952846, 0.017286639893192894, 0.017474568111095504, 0.01774618124035427, 0.01782892798683563, 0.018894811500439333, 0.019878724674020735, 0.019949984316043556, 0.020326201497453344, 0.02056400362437677, 0.0238645827649197, 0.023871351314658854, 0.0238898021116678, 0.02473567344177493, 0.024817455215231356, 0.025931977009164088, 0.026750516705436093, 0.02688409182997397, 0.02706232841266812, 0.02741742236887501, 0.027727441798902484, 0.028046137213471684, 0.028089157258141338, 0.02849632270047537, 0.02890056978221641, 0.028965761125806226, 0.029054383753604578, 0.030229181768284118, 0.030247443991867552, 0.030248043179619755, 0.030604782662554335, 0.031138873400393757, 0.031406009539884434, 0.03165508875131134, 0.032698516846814484, 0.03277442441017785, 0.0329143246948886, 0.03408264960335655, 0.03431508873428863, 0.034378430033254914, 0.035428742550359084, 0.03583952920844385, 0.036030246256994185, 0.037662105346943274, 0.038020408751818946, 0.03813573162609312, 0.03834847875569775, 0.0391322246908565, 0.03979743555494784, 0.04018992738972974, 0.040488765092051696, 0.04074160823241274, 0.04132717144004696, 0.041875087516625185, 0.04323910885408216, 0.0441017715549687, 0.04418891619078997, 0.04445679297505066, 0.044571680912457334, 0.046621716173380734, 0.04676295927848281, 0.04718502079028302, 0.047388214468817254, 0.04741737715809381, 0.04747958356383521, 0.04771166582101983, 0.04935986456995778, 0.05125047631858227, 0.052638848931473435, 0.05378885667245072, 0.054109107899380914, 0.05416037875234877, 0.054403967462838494, 0.05504594837929555, 0.05568387963472967, 0.05574574079140322, 0.05635214075950385, 0.057269039641326944, 0.05791285880056699, 0.05816654929640644, 0.05846686791570175, 0.05956425340535032, 0.06005203407651599, 0.060720997081719755, 0.060725418694247656, 0.061761393421442656, 0.06340792048438296, 0.06369942216480992, 0.06483338211991226, 0.06497886224633949, 0.06504061953562354, 0.06532812702632773, 0.06552104456169684, 0.06659248944883964, 0.0666374341243873, 0.0668281483105841, 0.06718968467224783, 0.06760251497656665, 0.07176815646901281, 0.07193637242260824, 0.07204365693960518, 0.07250901636895624, 0.07305240390626148, 0.0742675317484658, 0.07643696027351683, 0.07847816272760892, 0.07901151324001247, 0.0796749872883028, 0.07973810762023242, 0.07976593056349995, 0.08011818027851281, 0.08126678383279004, 0.08133930418714558, 0.08163911887905284, 0.08169015022444621, 0.08216630014372878, 0.08270095265174351, 0.08291209835126687, 0.08345641067822038, 0.08378185767991203, 0.08400602285653425, 0.08408498823915819, 0.08485811673454902, 0.08631722285629696, 0.0873142841929492, 0.0874687236389949, 0.08887319006596793, 0.08901836593436344, 0.08906848168231014, 0.08985712137640478, 0.09027204564781183, 0.09077823939780438, 0.09128968755028952, 0.09230420931421543, 0.09286391512273767, 0.09372046686934687, 0.09412561488596652, 0.09421122918921043, 0.09464716596299563, 0.09490717690336459, 0.09554207573122861, 0.09559294786052303, 0.09675936298299542, 0.09766052701854894, 0.09789205640022254, 0.09822909323105619, 0.098674227703237, 0.09940390758153225, 0.09986000870024317, 0.1004825548387806, 0.10215690038127546, 0.1026856995728637, 0.10348201962863421, 0.10560453152273294, 0.10593732601216543, 0.10637098818443466, 0.1072912333649812, 0.10753068757593616, 0.10862044707891001, 0.10949981921060409, 0.10994261249250092, 0.11035498265990634, 0.1108267024676998, 0.1114252168362595, 0.1116918421013613, 0.11172632212245776, 0.11209659906652965, 0.11263916506007689, 0.11304781241295961, 0.11371890400742257, 0.11413446812649555, 0.11455859127943276, 0.11456234623622699, 0.11459102397224269, 0.1147544872387467, 0.11504168268109637, 0.11678510647950194, 0.11883460566378601, 0.11938041681789016, 0.12130861251900707, 0.12206534378902534, 0.12217465468396582, 0.12249397975405685, 0.12420045476239547, 0.1243879168026505, 0.12548012440886497, 0.1257750238584505, 0.12578898966490046, 0.1271012580982917, 0.1285485268195689, 0.12901714257556574, 0.129382886904779, 0.13068072376216866, 0.1309288066903489, 0.1313828216546401, 0.13156653488929607, 0.13184662889026982, 0.13259195283512218, 0.13344284598468345, 0.134175412201686, 0.1347095765162104, 0.13509129244644014, 0.1364021291702579, 0.13720159848280253, 0.1373978426882102, 0.13755802653008928, 0.13802286304794564, 0.13810916865165623, 0.13829452005885332, 0.1385927622546301, 0.13894536807509478, 0.13953147325750143, 0.14058850904303102, 0.14103104134357844, 0.14120440813516008, 0.14212544681637398, 0.14276207556291115, 0.14372872434907125, 0.1439183745663863, 0.14427669918421274, 0.14474508308908687, 0.14555713940823067, 0.1457537420736519, 0.14581860982405942, 0.14600676519263153, 0.14603655429923043, 0.14614433447305758, 0.14617742890319865, 0.14724140166816577, 0.14809390952742657, 0.1483713589686982, 0.1493613112740874, 0.1494005491203836, 0.1494038841688846, 0.14963923135181775, 0.15044039579601504, 0.15053594839398826, 0.15120056729694312, 0.1514491726878294, 0.15156318664918406, 0.15165371017762855, 0.15197810676035498, 0.15222309533566503, 0.1554674052336788, 0.15565481942610526, 0.15584257443433583, 0.1598290172986977, 0.1604054470824966, 0.16078259166114311, 0.16206260954732388, 0.1629955439318608, 0.16333562599203227, 0.16538075378500022, 0.16598061206908912, 0.16644596679928342, 0.16809657995058744, 0.16835140966157205, 0.1704406031068968, 0.17080233815475257, 0.171211265826739, 0.17189380715898087, 0.17284726586898108, 0.1742852845645497, 0.17512921174046484, 0.17519903439918305, 0.1778355515585995, 0.1784309722393602, 0.17970528650137021, 0.18304836993656362, 0.18357154557678942, 0.18582340347057372, 0.187429774088387, 0.18743963393091104, 0.1907169915487934, 0.19273151034258718, 0.19372227446092694, 0.19537183237855776, 0.19551893643126766, 0.1955364592066704, 0.1966609276249835, 0.1979941044891141, 0.19820327799193632, 0.1985335083639322, 0.2004526039405251, 0.2018404923531589, 0.20233614872463634, 0.2032604478939438, 0.20387118662809722, 0.20998121839998346, 0.21022703641799914, 0.21083671728860465, 0.21182219660967447, 0.21211276316386493, 0.21323076975725816, 0.2142390456352931, 0.2155394232213231, 0.21672673774470905, 0.21770330271297872, 0.22123399608078528, 0.22417893431165067, 0.22526165499234913, 0.2253337493233547, 0.22696476398390658, 0.23197037032589002, 0.23293734709406647, 0.2329381470119764, 0.23653209945611153, 0.23767880087272802, 0.23810331138873164, 0.24153913604838934, 0.2429796868984477, 0.24814661077005362, 0.24837538704535875, 0.25085798726784975, 0.2526928252413075, 0.2529232771387254, 0.25959184359724496, 0.2636782082477014, 0.26907435548395353, 0.2698278971233359, 0.2759021445644218, 0.2767211954054327, 0.2768499835253916, 0.27774303703224973, 0.28059694110853534, 0.28181056202945903, 0.28274282257329153, 0.2828299889025404, 0.2835802336680006, 0.2886570470178047, 0.28888744652909426, 0.2900666383553566, 0.2926891444077886, 0.29556456766132255, 0.3050403582392598, 0.30557543599377557, 0.3113436182899402, 0.31572752327632186, 0.31589121495028016, 0.31880385329528904, 0.31887910667593217, 0.3190051041404515, 0.3248315478614392, 0.32669812611092863, 0.32901568012633575, 0.3290894821299545, 0.33042504763366526, 0.33218011706199785, 0.3347065630926771, 0.34116873593216723, 0.34456890963411735, 0.34823470490313946, 0.3512938846764565, 0.35414710047712905, 0.3551666163098563, 0.35584101970712567, 0.35585391723343807, 0.3565515675995379, 0.35821253594564795, 0.35939405547986647, 0.3598943357973243, 0.36145153929141993, 0.36295797024407195, 0.3638619454170011, 0.36779162443146474, 0.3689757234330376, 0.3766334839386029, 0.3769455649221466, 0.38037390393450804, 0.38700251944589514, 0.38767409810173803, 0.38859764041133016, 0.4020048686751819, 0.4038714027583941, 0.40403569069323697, 0.4060961626046573, 0.40662330278746117, 0.40753463650008814, 0.415492675239337, 0.4160700729616855, 0.4169369451591683, 0.4193661906235915, 0.4240009187264477, 0.42424641423593923, 0.4264444410096681, 0.4276807449876359, 0.4277544457434235, 0.42901329312621256, 0.4302695441796476, 0.4309799375265007, 0.433129963224773, 0.43315727062564374, 0.4346015697990043, 0.4360258213493719, 0.439635113494111, 0.44136000322778435, 0.44451052734866325, 0.4475017219285249, 0.44809260567329967, 0.45367663671138814, 0.4547126792268209, 0.45481494244810955, 0.4563154132128612, 0.4584451323854573, 0.4585941365098755, 0.4755106736691333, 0.4756073929452872, 0.4788372142910955, 0.4815159527638133, 0.48244380724202623, 0.4885520250878045, 0.4893146850982526, 0.4926626959485815, 0.4954514319524056, 0.502732438876242, 0.5029516429318047, 0.5035588288569328, 0.5050632590870019, 0.5068623394306598, 0.5092412123574797, 0.5119724914394723, 0.5196471633965205, 0.5243258207032226, 0.535016105142783, 0.5350927632325091, 0.536987954458749, 0.545920949551282, 0.5466957392509031, 0.5468790649163333, 0.5500538531900852, 0.5500694139132033, 0.5514649483029866, 0.554103890910881, 0.5565550631440839, 0.5576580125713121, 0.5605541244452772, 0.5609471874680533, 0.5679789636072758, 0.5695024036481744, 0.5755266179208105, 0.5769938629515861, 0.5855001213048485, 0.5864525847057732, 0.5865341827958768, 0.5880572580769285, 0.5971547659968801, 0.6002914253166198, 0.6006484495086621, 0.6012173336541917, 0.6031125444564351, 0.6032854668453758, 0.6038228974848782, 0.6052527779504686, 0.6060590275545077, 0.606688731857066, 0.6105123248889883, 0.6107010353393797, 0.6152472749206692, 0.6163567554119171, 0.6192305849771289, 0.6239078941905299, 0.6253700231443748, 0.6336258278017621, 0.634093605455893, 0.634468487791203, 0.635821521201496, 0.6377828544388453, 0.6431064706298966, 0.6444662888255461, 0.646864691675668, 0.6477043995699567, 0.6491933391955057, 0.6523094411409722, 0.6525406982749216, 0.6593057028030885, 0.6597061690179942, 0.6633028882456686, 0.6644351165431103, 0.6645502680576636, 0.6646554550663483, 0.6684384074995027, 0.6746085335295076, 0.6748905345837436, 0.6766926232746691, 0.6781529259950074, 0.678799807896417, 0.6812593750706277, 0.6820767154531666, 0.6835059259274894, 0.6840693404511264, 0.6898691562027004, 0.6907944023702113, 0.6930792940105559, 0.6953096138693677, 0.6971469462672062, 0.6974104621169168, 0.6981318729269138, 0.699102735256558, 0.699955877413067, 0.6999810634621928, 0.7025069283679277, 0.7026286720769583, 0.702702054102889, 0.7027909440001456, 0.7046298498222796, 0.706785116190817, 0.7075804770526022, 0.7133607081135671, 0.7142404142738368, 0.7160755961330565, 0.7161636247637841, 0.719092640070653, 0.719291418069463, 0.7226028664968718, 0.7228989907825518, 0.7229649947069802, 0.7259595893208677, 0.7275343738745268, 0.7276131860677757, 0.7283707187531414, 0.7292623943905683, 0.7311010752578655, 0.7314942128984334, 0.7331210874644571, 0.7333123695276382, 0.7338773899030832, 0.7346269050232821, 0.7358329936646275, 0.7364217102389861, 0.739112240729277, 0.7399556799104923, 0.7401679766377762, 0.740612376557751, 0.7408386393029714, 0.7413267066524769, 0.7422955231001969, 0.7426804681308303, 0.7433920288616538, 0.7434010993880329, 0.7445589456119941, 0.7445831329854957, 0.7465472953656233, 0.7497242192906954, 0.7500475778577588, 0.752541853545017, 0.7526020420559236, 0.753208443272428, 0.7533453433998929, 0.754188113808135, 0.7549380044366818, 0.7556587125540585, 0.7579341928141634, 0.7579421412975829, 0.7587687997071833, 0.7590130506289261, 0.7590697070114656, 0.7592763320911516, 0.7609076557761303, 0.7613400534938235, 0.7620705903149996, 0.7630202403166073, 0.7643958084657885, 0.7654427141398366, 0.7664162252962925, 0.7683068274157636, 0.7699505556858772, 0.7733778701021408, 0.7736489107006779, 0.7740648124069514, 0.7784758779655903, 0.7804004115888252, 0.7835975818661742, 0.7876097179701129, 0.7878553238768817, 0.788822738029265, 0.7953561818812134, 0.7968652642310712, 0.8002872021843324, 0.8005940055024692, 0.800679936346187, 0.8033327600649356, 0.8039459384120502, 0.8056895728975997, 0.8057897322219325, 0.8073522272975646, 0.8088550695044159, 0.8088824889399957, 0.8111884529172189, 0.8125643186982696, 0.8127998424135285, 0.8160161829219723, 0.8169551081114801, 0.8183463866394602, 0.8189443727901677, 0.8192279091952293, 0.8201905221764758, 0.820351026250079, 0.8215466288542959, 0.8227857023503748, 0.823032730764695, 0.8232687811122077, 0.8238001140501773, 0.8244456453527194, 0.8247310929022151, 0.8262345455289093, 0.8269418281630638, 0.8322056846015378, 0.8324548015575148, 0.8325591473156965, 0.8334730776489521, 0.8343284737810419, 0.835128893722759, 0.8353646762572073, 0.8359636471623975, 0.837802995030053, 0.8380930157499571, 0.8381005100475429, 0.8381932993803031, 0.8397854147412926, 0.8417239372759426, 0.8421455851445954, 0.8428459182227263, 0.8450601558469204, 0.8458999050465292, 0.8469543130821129, 0.8494263653352117, 0.8515862009993242, 0.8521940483573719, 0.8523954236733908, 0.8534217986425772, 0.8540008655266551, 0.8542525803516652, 0.8561474935928979, 0.856621091403712, 0.8576287632146489, 0.8580956972649221, 0.8591536808725395, 0.8594297954297732, 0.8621989256231195, 0.8646489986438557, 0.8684579995875299, 0.8684764226517996, 0.8726080917949495, 0.8731552921331265, 0.8741975801205442, 0.8750597540637126, 0.875980209226539, 0.8761348833620726, 0.8765432405143407, 0.8766474798112096, 0.8769149481945919, 0.877265140026795, 0.8774247530096202, 0.8776130450590798, 0.8776140528469378, 0.8776629843238593, 0.8785224240290133, 0.8792637947435338, 0.880046505919517, 0.8812480496172217, 0.88231846144265, 0.8830699985735504, 0.8833812716639391, 0.8835969118477691, 0.8837876322954477, 0.8837950744783538, 0.8860014300727996, 0.8865651533701913, 0.88690895619732, 0.8877824419921565, 0.8913303052455357, 0.894623796693363, 0.8946269208904458, 0.8946713035469482, 0.89582167479734, 0.8962323076055057, 0.8979752707354263, 0.8986142745559056, 0.8986142745559056, 0.8986870123874702, 0.898813903091578, 0.899610973922325, 0.9001708652061127, 0.9007424713454135, 0.9009872224796174, 0.9010456019046595, 0.9016584142964288, 0.9033544302634964, 0.9034025738576617, 0.903704545408553, 0.9062923523784983, 0.9079650437843216, 0.908319691008961, 0.908622855093357, 0.9090390273004791, 0.9097380797831474, 0.9106744289557578, 0.9114602495014688, 0.9118498282155572, 0.9122536173894815, 0.9128165476169134, 0.9146404272022024, 0.915143465482354, 0.9163180679944807, 0.9166799789535274, 0.916829842450462, 0.9175784840938579, 0.9190668761490044, 0.9193912539037339, 0.9206099525842335, 0.92141318169496, 0.9218290710126189, 0.9223343216836617, 0.923196766085334, 0.9237901331153637, 0.9243751316808859, 0.9250765885203545, 0.9252592414427494, 0.9253722899195307, 0.9269793210275694, 0.9270121687740442, 0.9272380572258783, 0.9282931403984896, 0.9290026512282477, 0.9291556956058185, 0.9293742431295389, 0.9306913303621767, 0.9311843273547615, 0.9314159431971178, 0.9319716825557358, 0.9320445195550708, 0.9334153622158394, 0.9356165263686755, 0.9368567651923958, 0.9373641704581503, 0.9374764369271309, 0.93982009575565, 0.9401272389386934, 0.9404701739295183, 0.9408062187308723, 0.9417103126332751, 0.9419756258062935, 0.9425233816102923, 0.9448272337303758, 0.9452228617139966, 0.9453269814409822, 0.946700038544741, 0.9469154315449455, 0.9470358909470222, 0.9472597170751713, 0.9477747238599494, 0.9478431014803106, 0.9480056203931382, 0.9489235864704897, 0.9492874890527159, 0.9494130995707688, 0.9500169690003184, 0.9516531925055081, 0.9525008965504969, 0.9529189470766997, 0.9534344147809428, 0.9545993108919946, 0.9548496101994863, 0.9548586924353559, 0.9564504085464425, 0.95710688953708, 0.9571472321851264, 0.9578217469853141, 0.9593077163214905, 0.9597356718491352, 0.9597994762265873, 0.9604446073527013, 0.9605427692977984, 0.9607303734538775, 0.9610510124339122, 0.9617113928482368, 0.9617972681922875, 0.9624960699148521, 0.9636265072757575, 0.9640802712624235, 0.9644400737567993, 0.9645520180232108, 0.9648644925956431, 0.9660076858091631, 0.9661274990649122, 0.966223423803559, 0.9662272454463612, 0.96641764648039, 0.9667364055287384, 0.9667990117904792, 0.9676656770789303, 0.9679286046817206, 0.967993926165233, 0.9683398764876818, 0.971166692712834, 0.9728447569831673, 0.9729857473351655, 0.9737600712797423, 0.97393529101394, 0.9742188776237646, 0.9746129079145767, 0.9751339779288768, 0.9758414554901287, 0.9759880478623013, 0.9762564076367677, 0.976320379924567, 0.9763450257989155, 0.9766120874768756, 0.9772159441046127, 0.9772624201371043, 0.9790793164308471, 0.9791039604998664, 0.9795441516881878, 0.9808325449440969, 0.981952708577754, 0.9820637664355478, 0.9822559426919564, 0.9824645836869426, 0.9825387054356876, 0.9831884196010112, 0.9839899008370727, 0.9846075037540596, 0.9848373375338357, 0.9864002098066496, 0.9865073604765078, 0.9869718969428916, 0.9872527182290163, 0.9874167512469092, 0.9880156254242518, 0.9890811621813711, 0.9899707486919105, 0.9903746789258248, 0.9906517733372702, 0.9910930685767698, 0.9917915081656039, 0.9922954987525172, 0.9925462924119022, 0.992626882359833, 0.9926391242237829, 0.9934439889276778, 0.9937956627105571, 0.9938685552395015, 0.9940818106569158, 0.9944126774464879, 0.9953340402672441, 0.9954914717499321, 0.9961500764707081, 0.996255168387264, 0.9963310768236078, 0.9968075138572725, 0.996971118271291, 0.9969755067254622, 0.9979671976301827, 0.9982395365704781, 0.9984955955571659, 0.9990935674541588, 0.999722976401684, 0.9998787234367241, 1.0003093843000892, 1.00122168707199, 1.0020374086889072, 1.0021548129393878, 1.0030905588066799, 1.0032806352470478, 1.0039780494430561, 1.004841897957751, 1.0049605000246677, 1.0050886688316716, 1.0054272010428298, 1.0057903080261037, 1.0063919890380395, 1.0064637774314473, 1.0065417701956139, 1.0069915725581644, 1.0072686810221998, 1.0073014604197754, 1.0073017752104316, 1.0083387659952028, 1.0093653598925398, 1.009430404937134, 1.0095369128329823, 1.0095369128329823, 1.0103346922904937, 1.0104722726180106, 1.010636148223765, 1.0108195152463368, 1.0112310697079914, 1.011266579086519, 1.0116316900253182, 1.0118361506706544, 1.012387184434732, 1.0127407038936254, 1.0135136281526462, 1.0135142732370044, 1.0137941643940165, 1.0144857579438593, 1.0149125800747112, 1.0153497909561007, 1.0155547248996384, 1.0157008154319536, 1.0164525566822806, 1.0167211937720442, 1.0167229574060526, 1.016990726900727, 1.0174677371138938, 1.017595430149371, 1.0176659501048626, 1.0183159518245541, 1.018407561783998, 1.0184118198155507, 1.0184118198155507, 1.0184216052777, 1.0193376298734709, 1.0196944637030547, 1.0204894438756462, 1.020628699358549, 1.02064011574191, 1.0215584414384813, 1.0218111489310653, 1.021910197498945, 1.0225556716653985, 1.0226319186981876, 1.0231547753412924, 1.0233291465328491, 1.0237978909118837, 1.0239400562899552, 1.0243969277228109, 1.0253034065471822, 1.0258438076724974, 1.025982666173763, 1.0259903251533016, 1.0262604483958562, 1.0279425608297283, 1.0279559226918455, 1.028135539992881, 1.0281802433155014, 1.0285837529143878, 1.0286777561653857, 1.0288037797390737, 1.0294318680008994, 1.0294897569803698, 1.0298810285178708, 1.0299118384103672, 1.0299211252454028, 1.0299573774658373, 1.030626021201467, 1.031222311464441, 1.0312932085850228, 1.032213865730435, 1.0333012346460582, 1.0349592822550195, 1.0350036327037941, 1.0355520929592983, 1.0369299546215458, 1.0383928555980535, 1.0387472455227111, 1.038969311229419, 1.039282331032404, 1.0394373767708616, 1.0397022471964108, 1.040278116854193, 1.0410416610827822, 1.0412627301880315, 1.0414121827669283, 1.0417886255190076, 1.041828945138574, 1.0422043200969073, 1.0429559220632625, 1.0437174910946625, 1.044118613681405, 1.0446820933234258, 1.0448031372479591, 1.0450903291210638, 1.0453660194149375, 1.0454932389153164, 1.0455231939100298, 1.0460710373990645, 1.046084364764301, 1.0461586529508784, 1.0468174696912553, 1.0468917103306754, 1.0469971076705562, 1.0470551392880372, 1.047282989805571, 1.0476998832806856, 1.0478912070585786, 1.0479472301278148, 1.0485985116968197, 1.0487781868858481, 1.0495473237723856, 1.049741560138531, 1.0500526695694223, 1.0501775212338118, 1.0502822461298704, 1.050831617652059, 1.0509268451130884, 1.0510336003970198, 1.0514348692037716, 1.0514704225235054, 1.0516448484898284, 1.0519480588393946, 1.0531393116186394, 1.0532753799431944, 1.0532815043728392, 1.0544333089173665, 1.0546440622410338, 1.0547600036025317, 1.0549478178520748, 1.0554659217572122, 1.0554795615410233, 1.055601561431271, 1.0557338607618643, 1.0561927748750843, 1.0564023360659378, 1.0564132387802667, 1.0568710237908052, 1.05860462911839, 1.05860462911839, 1.05860462911839, 1.058678993431847, 1.0588341741527405, 1.0590853417311188, 1.0590916641025232, 1.0591563123337073, 1.0594857769349035, 1.0595238043090103, 1.059716385649049, 1.0598260673817574, 1.059873655462577, 1.0602367375056412, 1.0602630486121922, 1.0609605212562425, 1.0610114879792336, 1.0612888275642238, 1.0614894003410622, 1.061547851251072, 1.061678075423562, 1.0619000090785145, 1.0620557684060778, 1.062269386661297, 1.0623000064857064, 1.0627635210420383, 1.063195416354899, 1.0632229819492005, 1.0642563001915835, 1.064722885724349, 1.065334343631359, 1.065335485896114, 1.065639729929558, 1.0656505708178208, 1.0657434083498702, 1.065762810719923, 1.0658723144374114, 1.0660332989402936, 1.0663475379114742, 1.0674371923279136, 1.0676497061463806, 1.0682648874334713, 1.0688397250935378, 1.0689283401359628, 1.0689365682495597, 1.0693495757590912, 1.0695303977251138, 1.0696536071295661, 1.0696701070545895, 1.0697599736033638, 1.0697797385690553, 1.0697814551021347, 1.0699028961621915, 1.0699344939392994, 1.0700402602128438, 1.0703577120388448, 1.0704212017085364, 1.0708449552239077, 1.070858466259962, 1.0709546276320783, 1.071132303447881, 1.0713045319918277, 1.0713399951788387, 1.0716600662362161, 1.0718264680108742, 1.0718730850099472, 1.072070198770573, 1.072133254905818, 1.072309354824643, 1.0728229806614635, 1.0729513178733734, 1.0731914333408912, 1.0735362972290188, 1.074118274286257, 1.0743755111543325, 1.0752232909294634, 1.0752453886485378, 1.0760693190929504, 1.0761922982248946, 1.0763746437392354, 1.0774121903872578, 1.077584028806773, 1.0778632138893802, 1.0781755320415012, 1.079030564388512, 1.0797617140862006, 1.0802891038248494, 1.0803926587847652, 1.0805775697323867, 1.0807858972638669, 1.0808752853924342, 1.0810268084193233, 1.0810586199311476, 1.0810765536490512, 1.0813953495118664, 1.0815136180596034, 1.0816619242880736, 1.0821070128387267, 1.0823376362431305, 1.0825379785262634, 1.082957494788706, 1.0830395478803754, 1.0834740103467209, 1.0835966503561891, 1.0840065427150978, 1.0840330905601747, 1.0840456823911762, 1.0840647693615904, 1.084817712120599, 1.0848492513526027, 1.0851767372400285, 1.0851970296155495, 1.085366867250486, 1.0856526137080975, 1.085719594491346, 1.0859934473155743, 1.086060733218168, 1.0864559204169808, 1.0866266109897433, 1.086684218680888, 1.0867213729465897, 1.08722176461211, 1.088245291840203, 1.088571486928913, 1.0889660847650482, 1.089051440299751, 1.0891013596758314, 1.0897435416725125, 1.0901378126148136, 1.0901819236152763, 1.0901985608263842, 1.0907560923234845, 1.091084631291931, 1.0911088406711362, 1.0916049652801958, 1.091608444829063, 1.0917890578818739, 1.09180067267378, 1.0918716100470711, 1.09201325047135, 1.0922685600456352, 1.0922930625478744, 1.092362090615471, 1.0924365740668271, 1.0924400114192026, 1.0929204864435575, 1.0932895969776248, 1.0938403461119328, 1.0942986352025517, 1.0944570129031197, 1.094499560071241, 1.095117939346325, 1.095384905271602, 1.096032123082531, 1.096320529976919, 1.096417251730236, 1.0965795936151215, 1.0966245957917036, 1.0972955499683092, 1.0973261947120898, 1.0974984149812779, 1.0976229946342722, 1.0976688397325913, 1.0978546985147057, 1.0978926142005674, 1.0980692221892168, 1.0981156923922952, 1.0982399345269762, 1.0983167555667552, 1.098893573741501, 1.099051357230178, 1.0994238533099596, 1.1005111778432144, 1.1005404898151177, 1.1005776675648855, 1.10058585378707, 1.1008282658066386, 1.1012480508071996, 1.101762442394343, 1.101981701562726, 1.1029080731207277, 1.1031976820584228, 1.103284573420952, 1.1033555748742858, 1.104028237763621, 1.104173496989624, 1.1042058892143838, 1.104306711606253, 1.104345331556803, 1.104583912567925, 1.105082737355821, 1.1054729374408407, 1.1055500850510154, 1.105621533740317, 1.1064044352953502, 1.1066506057690417, 1.106732701562692, 1.1069874458796523, 1.107732466208003, 1.107900946970596, 1.1079806103278653, 1.1081382145910637, 1.1081687899179151, 1.1082016926243121, 1.1086402910380262, 1.108774482766663, 1.109061286783722, 1.1095597021783954, 1.1098290010131695, 1.1099845736858103, 1.1100872100395602, 1.1101840537283472, 1.1102401820727639, 1.1103462421622423, 1.1103557617374087, 1.1105661957608028, 1.1105803340574676, 1.1110292222926919, 1.1110529430279885, 1.111383049634003, 1.111532310944961, 1.1116209067329712, 1.1116829878134502, 1.1122500533901563, 1.1125792981207943, 1.1126826585651493, 1.1128679824627306, 1.113062010127452, 1.1130924308282393, 1.1130954035312155, 1.1132200608465797, 1.1135130700580935, 1.1135275687216353, 1.113689190693931, 1.113905537814739, 1.1140493048644098, 1.1141290776674384, 1.114346209509054, 1.1145304985369762, 1.11546774429115, 1.1158623533083623, 1.1159341396909066, 1.1162704888894985, 1.1162704888894985, 1.1166154417082046, 1.1167501170955119, 1.1168224091978276, 1.1168662572699344, 1.1179333723095617, 1.118175747569414, 1.118185419645572, 1.1182307701868497, 1.1183342835986003, 1.1185514205095852, 1.1189065741735917, 1.1190381444575863, 1.1190869339991438, 1.1193007134554662, 1.1193146656163024, 1.119416691395049, 1.1196586935353263, 1.1196805538328354, 1.1197116299031322, 1.1197312138072975, 1.119786442982959, 1.1201021076207076, 1.1203704776862564, 1.1203797136383244, 1.1204086924323886, 1.120498714598593, 1.1206069962448972, 1.1206548788972372, 1.1210908041182355, 1.1212199114655383, 1.121648490123256, 1.1221745092219704, 1.1221780320981236, 1.1222698271468865, 1.1223788116063345, 1.1223808360494232, 1.122435090014309, 1.1226477491134728, 1.1228679223579436, 1.1229201465437246, 1.1230088331191523, 1.1234114474849453, 1.1238627873063207, 1.1239327058747413, 1.1242683441434598, 1.1244927177402313, 1.1247383379599512, 1.1247593093167427, 1.1247673616377931, 1.124822985917294, 1.1250248266060987, 1.1255526832862817, 1.126299295621334, 1.1266123685320644, 1.1266245323594215, 1.1266521405800338, 1.1268992137707352, 1.1271273145661944, 1.1279928850883578, 1.1279966862870392, 1.1283327549455764, 1.1287098216167768, 1.1289004551878183, 1.1291301617212932, 1.1291549611103797, 1.1293277668489465, 1.1293454580760958, 1.1295093169582395, 1.1296796878923834, 1.129928768397269, 1.1300821625553263, 1.1301001275391662, 1.1301772514960162, 1.1304085190144437, 1.1306717841802214, 1.1308014174128644, 1.130836937331759, 1.1308822670801388, 1.1312425986180927, 1.131266323708886, 1.131539571153896, 1.1318501438998978, 1.1318965865525439, 1.1323114845198607, 1.132672990349171, 1.1327986290512546, 1.133319940370267, 1.1335335740236823, 1.13385208688405, 1.1338528510805856, 1.1341243316041134, 1.1341747947846386, 1.134463714782807, 1.1348803252636215, 1.1351378817214395, 1.1351602306719606, 1.1352448339915973, 1.1353385156252982, 1.1353691792680616, 1.135403106810238, 1.1358459186447918, 1.1361444454862604, 1.1364816203339974, 1.1364977355246888, 1.1365790925125057, 1.136796675154233, 1.1372047010832955, 1.1372267034257586, 1.1374312885717046, 1.1374721473653744, 1.1377926671943766, 1.138077434524172, 1.1381804949975638, 1.1387157780825434, 1.1387777327975555, 1.1390485458371438, 1.1391241456317631, 1.1391242763852967, 1.139129673414873, 1.1391756803347572, 1.1393068947600242, 1.1393471818126697, 1.1396655387289556, 1.1401698482052522, 1.1403714888991463, 1.140513044024208, 1.1406225937555716, 1.1406535476289883, 1.1407558619138816, 1.141013343486507, 1.1410143981546308, 1.1411630526624563, 1.1413488637643268, 1.1417762511001677, 1.142115539034733, 1.1423238987970008, 1.1424616302915078, 1.1424636896081306, 1.142666187562656, 1.143544792505702, 1.143772248982625, 1.1440846722263398, 1.1441879887056763, 1.1442318070662567, 1.144238307603471, 1.1442832108308416, 1.1443670272558992, 1.1443907280327057, 1.1446373099975664, 1.1446936575804076, 1.1447437280642943, 1.1448264678127613, 1.1453035262515439, 1.1454434308567123, 1.146138542454201, 1.146269147763354, 1.146405799379127, 1.1465578864256167, 1.1471430887983514, 1.1471949623171687, 1.1472818215595952, 1.1473054839221801, 1.1473229741521347, 1.1475790057262962, 1.1480004284942764, 1.1483749697749566, 1.1484477590734299, 1.1487314317106272, 1.149875434949718, 1.149885003529576, 1.1499157431594125, 1.15025515164925, 1.1505638355447474, 1.1506227766053847, 1.1507036064401535, 1.1508493265893314, 1.150966919651365, 1.150969263878582, 1.1510785269962447, 1.1511074123766154, 1.1511947687643231, 1.1512795594837515, 1.1513308641837843, 1.1513940665055633, 1.1515321682831232, 1.1515723924189616, 1.1516298653191221, 1.151633211802872, 1.1517001114920797, 1.151936342362118, 1.1522829458856396, 1.1526941687602337, 1.1527368614152398, 1.15277620033198, 1.1527974154190925, 1.152808593884522, 1.1530700544685186, 1.1531843946447624, 1.153428891483015, 1.1534573426443402, 1.1534598598086074, 1.1540847975465804, 1.1540958177590508, 1.1541948983228592, 1.1543430078832266, 1.1543622922627128, 1.1546489270227336, 1.1546611137390879, 1.1550734929447595, 1.1551773893144883, 1.1551871260000897, 1.155327950106122, 1.1555050083603369, 1.1556421773085914, 1.1556451193525217, 1.1558789250537558, 1.1560313050879112, 1.1561362530702601, 1.1561783771533585, 1.1562294532804405, 1.1563032234348083, 1.1563201594560608, 1.1566283718723758, 1.1567372787419683, 1.1567398016739945, 1.1570717644341002, 1.1576229450700013, 1.1577044444158378, 1.1581609053761361, 1.1584762456596753, 1.1584838943885964, 1.1585334078436795, 1.158615928813111, 1.158700436304173, 1.158703394702807, 1.1588053420938762, 1.1590276840565392, 1.1590338166560066, 1.1590377340009799, 1.1593844270257645, 1.1593962491838332, 1.159618084369635, 1.159636296486932, 1.159940808209, 1.160092373488623, 1.1601275890891665, 1.1602135391161117, 1.16026611175954, 1.1603019150030638, 1.1603253890078762, 1.1603907374660682, 1.1605033222828043, 1.160978720029589, 1.161047197140083, 1.1610626043746166, 1.1610787870774248, 1.1611091675314902, 1.161171021899267, 1.1614645610004262, 1.1615279419295326, 1.1616894765244838, 1.1617473465314954, 1.1617761052032363, 1.1619619650775919, 1.162036803013874, 1.162348960985632, 1.1623642528143605, 1.1623642528143605, 1.1624702658823216, 1.1624874016437672, 1.1625434425127195, 1.1626200263899604, 1.1626655854988301, 1.162695478442342, 1.1628815532198193, 1.163106453942359, 1.163141112442799, 1.1633498092625891, 1.1633793957225176, 1.1635118086108565, 1.1639424013103075, 1.1639534627869037, 1.1640145502700834, 1.1640365344206094, 1.1640928312326388, 1.1641164224974305, 1.164123227114729, 1.1647674669924508, 1.1651144872095558, 1.1652654709713393, 1.16527182825873, 1.165504405326717, 1.1656356388564537, 1.1656939263940538, 1.1657532492702394, 1.165764366196491, 1.1657745903290164, 1.1659399840609173, 1.1659859356285842, 1.166286807906398, 1.1668830133738521, 1.1668928515934844, 1.1674881386810012, 1.1676295546509345, 1.1678379308219509, 1.1680314977675932, 1.168068770276241, 1.1681278658025738, 1.168186441817315, 1.1682414127080407, 1.1683754726779683, 1.1684314697417646, 1.168657038393056, 1.1691585268237072, 1.1691766359815783, 1.1694219426518644, 1.1699084234370514, 1.169994109482194, 1.1700258410482152, 1.1701647907070183, 1.1701956338857984, 1.1702534433062814, 1.170756215266871, 1.1708925647870354, 1.1709518468855749, 1.1709772077189171, 1.1713976630771763, 1.171553443507868, 1.1715695293979744, 1.1716350653612149, 1.1717361088809637, 1.1717592805818358, 1.171959649301871, 1.1722565329950405, 1.1725119960548147, 1.173160401587883, 1.173326348244415, 1.1733532208211521, 1.1737051146118374, 1.1738060428866142, 1.173936247773951, 1.1740562008920596, 1.1740988940318222, 1.1742077661716828, 1.1742965405569068, 1.1744744888847243, 1.1745621891585385, 1.1745752687730078, 1.1747523680170833, 1.1747797498891221, 1.1748400265058507, 1.1750285543810541, 1.1751306020427568, 1.175263647634303, 1.175275890804572, 1.1756011339467003, 1.1756474480779289, 1.1759268322035854, 1.1759579327304714, 1.1762091094570781, 1.1763687129463516, 1.1769097013208216, 1.17715771754703, 1.1772209767273305, 1.177400678216696, 1.1775359323164385, 1.1775375119853846, 1.1776950016110914, 1.1777185408082225, 1.177741975410674, 1.177763295609452, 1.177980352383503, 1.1780421602759965, 1.178187510382217, 1.1784303940134473, 1.1786263804552637, 1.1787231527580517, 1.178770450993774, 1.1788280171494048, 1.178900419316691, 1.1790303752446554, 1.1791588533021091, 1.1791722099039728, 1.1792053485741396, 1.1792752412970386, 1.1795139236642886, 1.179550187722359, 1.179610681498862, 1.1798654428779864, 1.179929284361765, 1.1800143736116373, 1.1801726077789088, 1.1806654459947983, 1.1812550896640188, 1.1813549251001032, 1.181680760634417, 1.181722626098257, 1.181841762083008, 1.1818726645101056, 1.1819965674855126, 1.1820099784785645, 1.182135384593187, 1.1821724373567482, 1.1823174635807223, 1.1823293882581878, 1.1823881717672042, 1.1825094290278657, 1.1825253046452415, 1.182622651004572, 1.182656971321323, 1.1826810126680956, 1.1827362017853775, 1.1829883307145814, 1.1830983654865623, 1.1831135260251608, 1.1832581983103267, 1.183438839066211, 1.1834893608260852, 1.1834893608260852, 1.183590404345834, 1.183590404345834, 1.1836974648773337, 1.1837176433146197, 1.183886246990781, 1.183940178561169, 1.184267596318737, 1.1845196080816531, 1.184646490946477, 1.184662318238816, 1.1848331162199566, 1.1849187693091299, 1.1852036671997759, 1.1852250940733235, 1.1852851254042602, 1.1858554036599314, 1.1860798040468479, 1.1861090039225084, 1.1862213538985091, 1.1862787433757476, 1.1863671045270123, 1.1864965653090154, 1.18676490546722, 1.1871135124587806, 1.187276648754802, 1.1873184876406735, 1.1876457508336653, 1.1880335009020695, 1.1882237938644342, 1.1887674605057739, 1.188983538093655, 1.189190460672948, 1.1892202214659395, 1.1894260257020597, 1.189582502224922, 1.1896197667988275, 1.1896451146913776, 1.189696366961386, 1.1897037246291, 1.1899047462292407, 1.1899173808305532, 1.1906302019963149, 1.1907359452653616, 1.1908407435285542, 1.191020567354323, 1.1911242216667648, 1.1914558299879456, 1.191512298024072, 1.191657917027443, 1.1916775548131242, 1.1918141423607205, 1.1918141423607205, 1.1918608677697138, 1.192067284678606, 1.1923498740008556, 1.192452963010953, 1.1926997070636915, 1.1929006395003008, 1.1930981936366076, 1.193187385077819, 1.1933232811796044, 1.1936828765676417, 1.193683447476072, 1.1937881490236038, 1.1938994368333444, 1.193939136978419, 1.1940058955367678, 1.1940189580808949, 1.1941687752886059, 1.1942230305979329, 1.1943530658046986, 1.1943607966996992, 1.1950163307342552, 1.1952054075167313, 1.1953407448898745, 1.195805563433787, 1.1958957490292823, 1.1959035311159152, 1.1969652945627491, 1.1971183854229974, 1.1971698998103335, 1.197325762243606, 1.1973306334485487, 1.1977914528557574, 1.1982950423337984, 1.1986646817196207, 1.1987025826980813, 1.198728326386167, 1.1987768331006994, 1.1988366745815189, 1.1990350554256477, 1.199048492113003, 1.1990936472105589, 1.1991455392656303, 1.1991693662403975, 1.1993476263051277, 1.1995327663038924, 1.1996695878496273, 1.1997321968217047, 1.1997407666869635, 1.2001709031761822, 1.2001809599721696, 1.2002284570275525, 1.2002400709421335, 1.200369287907318, 1.200488688197914, 1.2004950055035493, 1.200535116486264, 1.2007152356762152, 1.20072137852852, 1.20123076576945, 1.201303094256898, 1.2014380363182657, 1.2018652616393333, 1.2019698075472949, 1.2021082255553224, 1.2024679449471234, 1.2024717730339805, 1.2025418145625622, 1.2027121070867963, 1.2027544046555485, 1.202866051953438, 1.2028701219726998, 1.2032293491559412, 1.2033569342678918, 1.2035263697147789, 1.203860980881421, 1.2038759211395786, 1.2038922657058062, 1.2038974463153524, 1.204098065416887, 1.2041952456607665, 1.2042653800123322, 1.2043619115561632, 1.2043924296869388, 1.2044418713929257, 1.2046390924266703, 1.2046952540444342, 1.2046981300654556, 1.2048835569747736, 1.2050999612807394, 1.2051556645910582, 1.2053120555918344, 1.2055227493280143, 1.2064115049529844, 1.206696186861252, 1.2067782859934157, 1.207446480136824, 1.2075978873414868, 1.2079318877285443, 1.2080489152848244, 1.208147737495634, 1.2081984088948434, 1.2082997971701834, 1.2083420675299892, 1.2085100441984076, 1.2087154782015228, 1.2088822768185918, 1.2089192876325137, 1.2091531022353161, 1.2094091394068773, 1.2094445619637688, 1.209633389863702, 1.2097981018790094, 1.2098903233594185, 1.2099646855451114, 1.2102393443709318, 1.2102393443709318, 1.210385924243823, 1.2104207120860446, 1.2104767416389481, 1.2106780206347147, 1.2106837895565103, 1.2107500719560118, 1.2108080703645028, 1.211031598944646, 1.2110844829394627, 1.2110847322625666, 1.2113687434919764, 1.2114415770835134, 1.2115125077124924, 1.211550492067329, 1.2118678943455052, 1.2118681059720655, 1.211907783009697, 1.2120453227319703, 1.2122265971648212, 1.2124315608236884, 1.2125695460656358, 1.2127928652005868, 1.2128171746874354, 1.2130250943003869, 1.21309725024804, 1.213256038721493, 1.2133969033908392, 1.2135623360538559, 1.213940307158255, 1.2139768626986496, 1.2140718433846958, 1.2140874538259714, 1.21413230286171, 1.2142750477487372, 1.2142887322768228, 1.2143671930067836, 1.2143675431732601, 1.2144266130283603, 1.2144389983630308, 1.2144478966247332, 1.2144771347882346, 1.2144783229186338, 1.2146161715959063, 1.2146287000678577, 1.2146406422347558, 1.214643405011338, 1.2147537867157059, 1.214815557950761, 1.2149180949367484, 1.2150119072100076, 1.215146303001272, 1.2155021317220076, 1.2155797152437682, 1.2157216550928716, 1.215821450347986, 1.2159291608517966, 1.215938873633897, 1.216292404373877, 1.2165936984173629, 1.2167023393447238, 1.2168708328213031, 1.21698248938322, 1.2169935277432942, 1.2173427162309736, 1.217492682809648, 1.2175877057549902, 1.2177356137523287, 1.2180254189735888, 1.2180894119831618, 1.2181005426290892, 1.2183112526483602, 1.2187063521477537, 1.2194236213634357, 1.21946860205155, 1.2197541570494639, 1.2197925681526482, 1.2200460997477103, 1.2200766717162796, 1.2203306602356074, 1.220579060310638, 1.2206029462515418, 1.2206328936806836, 1.220761091118451, 1.220995940386658, 1.2212590502145464, 1.2214009507049766, 1.2214469349403374, 1.2216220276405223, 1.2217007665873998, 1.221745930127575, 1.2219458883687877, 1.2222511897528268, 1.2223575744493915, 1.2224348817235515, 1.2225011725187085, 1.2225055652505767, 1.2229644337168772, 1.2233699797821769, 1.223515735347061, 1.2238102267665276, 1.2239761582512636, 1.2240485362112667, 1.2241315091250682, 1.2243341134135113, 1.224579618281956, 1.2254056962408106, 1.2258966896940375, 1.2259093869717799, 1.225929027402696, 1.2262630392909004, 1.2263563524687784, 1.2264651263303978, 1.2265586671847548, 1.2266357188787933, 1.2266635817504852, 1.226906811912246, 1.2269374329061882, 1.2270737467135564, 1.227206253627846, 1.2273162105658697, 1.2274120295109894, 1.2274242706022394, 1.2275689464013133, 1.2277464510921572, 1.2277489957370524, 1.2279904141873552, 1.228059505412601, 1.228092034173926, 1.2288472243916646, 1.2288707372159902, 1.2289376358031372, 1.2290597294955004, 1.2294717144211944, 1.2295066434504083, 1.2300177169930422, 1.2303276892553903, 1.2303284469172002, 1.2303636736584478, 1.230634933666493, 1.2308343463189932, 1.2309751493826668, 1.2313464875666265, 1.231791847747904, 1.2318370260485836, 1.2319614771430536, 1.2319614771430536, 1.2319614771430536, 1.2320502093043362, 1.232267360947628, 1.2323557239400684, 1.2323982940619234, 1.232533240019397, 1.2325414298458668, 1.2330049040758058, 1.2333566529767448, 1.2334904859659748, 1.233584118918484, 1.2336899253308997, 1.2338705597920532, 1.2340101415796223, 1.2340512234462875, 1.2343270883119966, 1.234487333644594, 1.234498155124556, 1.2345177566748329, 1.2345824636401463, 1.234642580793458, 1.2349873348508762, 1.2350883783706248, 1.235441307899816, 1.235598256023023, 1.2356774965624977, 1.2357422638625466, 1.2360265520730982, 1.2360529518618921, 1.2361587585277265, 1.236232585997756, 1.2363560824211384, 1.2364358991724413, 1.2365110940062194, 1.236559809931603, 1.2365803794754224, 1.2366076314199534, 1.23660869122051, 1.2366189027480587, 1.236630446767175, 1.2366789279598327, 1.2367989610777557, 1.2369550855645761, 1.23698628143663, 1.2370584264659328, 1.237127315177944, 1.237185734903647, 1.237284791600327, 1.2373503613818686, 1.2374364761885526, 1.237601571834329, 1.2377040137009891, 1.237992096238568, 1.2380895251465691, 1.2380918007300283, 1.2383908783438726, 1.2384206288604485, 1.2385117909505488, 1.238588699630586, 1.2386283766900625, 1.238656378451494, 1.2386765726010727, 1.2387227762517488, 1.238773298011623, 1.238789731667333, 1.238853003921078, 1.2390086583459254, 1.2390700196736406, 1.239084459497346, 1.2392455012302752, 1.239742953372393, 1.2398521397976727, 1.2401454164547077, 1.2401836690800572, 1.2402679973304873, 1.2402803210471658, 1.2402847125998058, 1.2404964599148622, 1.2405347245241163, 1.2408237366891053, 1.2408273812146273, 1.240852736489341, 1.2409626377066476, 1.2415470154741683, 1.2416144972032561, 1.2417716488179436, 1.2418703239659636, 1.241943287848108, 1.2420139521313605, 1.2429071897466792, 1.2431004942650172, 1.2434085913055954, 1.2437908173903394, 1.2442701980247752, 1.2446554750010996, 1.2448932438100262, 1.2448975020273314, 1.2449144608237166, 1.2450231682922182, 1.245548331781887, 1.2456738194482366, 1.2456738194482366, 1.2456738194482366, 1.2456738194482366, 1.2457171845040425, 1.2457569198475946, 1.245822606068131, 1.2458514623411332, 1.2461247437195777, 1.2464990726462515, 1.2465587669793743, 1.2466468002421014, 1.2469072972014357, 1.2469499308013476, 1.2470541833015212, 1.2470893955115754, 1.247304070125149, 1.247810150688669, 1.2478218109762333, 1.2478933623599295, 1.2481357898072951, 1.2481955505797622, 1.2483169742034415, 1.2484015891352414, 1.2488330005878712, 1.2492930349950837, 1.2500800246667503, 1.2501097637570242, 1.250284805485554, 1.2502943066217571, 1.2510103378123685, 1.2510954671487142, 1.2511555620851496, 1.2512815015291494, 1.2517015003362577, 1.2517732091915086, 1.2521621647261065, 1.2524911095619424, 1.2527469637764963, 1.2532100014355076, 1.253236763542836, 1.2535505755452043, 1.253753698022037, 1.2539721573808769, 1.2540016726969887, 1.2540078486632449, 1.254113168847628, 1.2544781538721035, 1.255216637770371, 1.2552877225930044, 1.255420865451391, 1.2554262776156058, 1.2554392878726275, 1.2556303584458743, 1.2556899128799737, 1.255911069400973, 1.255944505471371, 1.2559611679228526, 1.2559950272312455, 1.2561465925108686, 1.2561971142707429, 1.2563432730962014, 1.2564780402708802, 1.2565704815693115, 1.2566077149027688, 1.256618029104686, 1.2566712469196644, 1.2567023318694865, 1.2567528536293608, 1.2567611407851333, 1.2567903651322136, 1.2568617953383447, 1.2568733339591618, 1.256924133888432, 1.2569419304118368, 1.2569786580472924, 1.2570002215877474, 1.2571149126178658, 1.2572457791812304, 1.2572775080381566, 1.2575806385974029, 1.2576663207395542, 1.2579350977649468, 1.25829875995339, 1.2583250357867333, 1.2585090481334307, 1.2588282607075407, 1.2588282607075407, 1.2588544993120079, 1.2588839735067465, 1.2591658310117975, 1.2591868143676723, 1.2595087016722126, 1.2596680756760708, 1.2598230099918326, 1.2601451812594628, 1.2602114684380532, 1.2606384094253003, 1.2608877855313358, 1.2611332129903268, 1.2615627298161038, 1.262387982623883, 1.2624067853063086, 1.2628418528408234, 1.2628882601339824, 1.262955944084904, 1.2632590746441503, 1.2634064899675987, 1.2639103396862468, 1.2641061307668093, 1.2641304184578992, 1.2641352546014015, 1.264540060966611, 1.2645832428312407, 1.2649852237381194, 1.2650194849950327, 1.2650875928753071, 1.265271610484653, 1.2656393195460278, 1.265679092311243, 1.2659490146289738, 1.2660329032032143, 1.2663182263049055, 1.2664007167516638, 1.2664418689671364, 1.2668768544501028, 1.2669678917535092, 1.2670615095805515, 1.2675619318901814, 1.2680350773783218, 1.2683572324199583, 1.2683812948550668, 1.2683842399953453, 1.2684574372683937, 1.26846285366558, 1.2684896249208848, 1.2685436312070426, 1.268616627120193, 1.2691893812307022, 1.26927868575098, 1.2692853668352262, 1.269562647162478, 1.270328871256743, 1.2715448961194002, 1.2720277131158515, 1.2721498804395368, 1.272269324398056, 1.272833086263953, 1.2731899681327303, 1.2733261223786134, 1.2737325232683292, 1.2741219851999994, 1.2744793708734485, 1.2748807765116232, 1.2749023838859632, 1.275298161558253, 1.2757785646484092, 1.275863359236689, 1.276294830352174, 1.276691561984542, 1.2768051190875722, 1.2769450682443224, 1.276958667224978, 1.277382736529635, 1.2774037960544962, 1.2775203628461802, 1.2776155090694812, 1.2780064845737245, 1.2783444882901425, 1.278662404413793, 1.2787949744578797, 1.2788649360903572, 1.2791631593883963, 1.2792211196119825, 1.2793964493099887, 1.279606257388586, 1.2796580540468758, 1.279787674003862, 1.2798240676395019, 1.2800694453413735, 1.2802663323247196, 1.2803449418447497, 1.2809435005210552, 1.2810179081552093, 1.2812225216601518, 1.2813829850689766, 1.2816646513660923, 1.2819032670456514, 1.281963941256057, 1.2822803502378706, 1.2823581097975374, 1.2824044900584497, 1.2824782937665156, 1.282482202568814, 1.2830804808281955, 1.2831273535894976, 1.2831567911015318, 1.2831989776110095, 1.28370722636276, 1.283764435061003, 1.283783624847876, 1.2839099831157021, 1.28396203844924, 1.2840469722070353, 1.2842132635502737, 1.284217976542991, 1.2842414074859194, 1.2844198350983909, 1.2846119118146209, 1.2854003651988413, 1.2854014317563942, 1.2857375372495594, 1.2858527914810833, 1.286259259080334, 1.2864017927364488, 1.2865095743594501, 1.2866634331593287, 1.2868069118475804, 1.287037039720891, 1.287103315503321, 1.2871268040582324, 1.2871868388806587, 1.287839751388049, 1.2881066787540552, 1.2889825815473417, 1.289500946202632, 1.2896241381797298, 1.2898652467829077, 1.2899930716041887, 1.2901581872016634, 1.2903415819487665, 1.2906200311563718, 1.2906885002193942, 1.2908214850653956, 1.2915498942846264, 1.2915549904580985, 1.2915596102567597, 1.291720866849799, 1.2919890986317815, 1.29271055614399, 1.293174749263581, 1.29325299527144, 1.2933673845706801, 1.2933890322659556, 1.2934175240813914, 1.2935971050665147, 1.2937759450895925, 1.2940237851998837, 1.29413238152537, 1.2941573371571222, 1.2944201275014235, 1.294740079013773, 1.2949397658331256, 1.2950002924073785, 1.295004657801924, 1.2951528540454083, 1.2953511387446897, 1.295655396154453, 1.2957628953061853, 1.2958598235990346, 1.295908004953825, 1.2959252452610985, 1.2959350086440902, 1.2965263410495174, 1.2965310516877038, 1.2965722565487068, 1.2969391831949648, 1.2972990961606978, 1.2973962874402147, 1.2975424770370934, 1.2976248447894863, 1.297696633778412, 1.2977552160525716, 1.2978335879602256, 1.2978781855302837, 1.2979210891620245, 1.2980229147954438, 1.2986193023575527, 1.2987088112420866, 1.2988812765991877, 1.2992614455372486, 1.2997487292006802, 1.300408958519399, 1.3005979979222186, 1.3006981512023237, 1.3012156079593287, 1.301472662600447, 1.3017612799639648, 1.3018616383144967, 1.3020234544304734, 1.3023377109313026, 1.3024064897236056, 1.3024408854155403, 1.3025581295206687, 1.302863571196775, 1.3032874713085456, 1.3033067901863253, 1.3038039876482532, 1.3040650693716536, 1.3042096650255584, 1.3049511857499936, 1.3053209845276261, 1.305327496091682, 1.3056249346895328, 1.3062237982451759, 1.3062417837534388, 1.306355104260922, 1.3063712309687965, 1.306442158667021, 1.3066247383863856, 1.3067736656036764, 1.3071106346474326, 1.3072380969606412, 1.3078811274928588, 1.308823140453704, 1.3091063676814338, 1.3091544915817932, 1.310071419280379, 1.3101111878133462, 1.3102408022151164, 1.311493189785632, 1.3118081374902368, 1.3119816957610086, 1.3120827392807572, 1.3124725265158035, 1.3134916810866062, 1.3137087849758209, 1.3140325313155867, 1.3145412213226861, 1.314557668827372, 1.3145906279934163, 1.3146497596384907, 1.314880156284634, 1.3148967566884502, 1.3154041716379319, 1.3155452047474774, 1.3157662771107026, 1.3158554026918623, 1.3159194044717761, 1.316084376110089, 1.3161259598811859, 1.3165479304835854, 1.3166311774799295, 1.3169836554290069, 1.3170387819337654, 1.3171524802966847, 1.3173267557732038, 1.3178130999010278, 1.3180477953773666, 1.31842220454816, 1.3187597853569817, 1.3195134098416053, 1.3196800619914377, 1.3197341193407381, 1.3199995999300669, 1.3200484242393409, 1.3202729538020503, 1.3205268947447228, 1.3208872012254327, 1.3209251062964218, 1.3209520285707694, 1.3209587024804477, 1.3210918003472525, 1.321970876092185, 1.3221926738715326, 1.322378986887382, 1.3227039624607972, 1.322707269112338, 1.3233217085496465, 1.3237204817504926, 1.3239658473437514, 1.3243243011467265, 1.3243940387492201, 1.3245597600582908, 1.324657914970233, 1.3267206336601383, 1.3288497224368552, 1.3296791480045211, 1.3298634282275512, 1.3303384495604336, 1.330635984933835, 1.331169553445845, 1.3321000057343826, 1.3321962705524728, 1.3328493117945759, 1.3328493117945759, 1.3328493117945759, 1.3330875337499988, 1.3338234328899397, 1.3339797155176187, 1.3342759561005488, 1.3347363227515547, 1.3348923493850708, 1.335043914664694, 1.3350531537705899, 1.335498610503563, 1.3355942841800639, 1.3356080276732527, 1.3356529165788307, 1.3362252326432542, 1.336477841442626, 1.3365449578406938, 1.3367122360207238, 1.33719170056253, 1.3374142483746352, 1.3381511051281452, 1.339147072273772, 1.3394464950232272, 1.3395919412737975, 1.3396187455594941, 1.3402482141198173, 1.3403069115934547, 1.3404626219745266, 1.3411330316109602, 1.3412714319909855, 1.3420417277098553, 1.3422929524262606, 1.3429515848859428, 1.3438068785228219, 1.3441372427702283, 1.344328428173936, 1.3449887400551555, 1.3455497297821755, 1.345901930708933, 1.34667665217982, 1.3467282832471952, 1.3467330018278125, 1.34675826137049, 1.3471715982127388, 1.3472180515249126, 1.3477406312424631, 1.348320625062926, 1.3485125475877557, 1.3490367939490757, 1.349105852903204, 1.3491080515199037, 1.349571717985465, 1.349892230860131, 1.3505896812593716, 1.3514218953604455, 1.3515763000950274, 1.3515763000950274, 1.3516275188991465, 1.3519776347734007, 1.3526390964576969, 1.3526866103634618, 1.352725394502496, 1.3536139595979386, 1.3537966432478952, 1.3539616097340759, 1.354769305716963, 1.3548255293605558, 1.3558376019768565, 1.3568189777566861, 1.356867457596078, 1.3573066885082365, 1.3580678817535157, 1.359002453185051, 1.359104070819131, 1.3592750043549235, 1.3596936568151081, 1.3598001484276487, 1.3598469740412407, 1.361176952760481, 1.3614740690190117, 1.3615591741773874, 1.361686707040823, 1.3618690215276277, 1.3625440944245872, 1.3634507682492365, 1.3636190627953704, 1.36419791059927, 1.3642910843245137, 1.3651226953982163, 1.3657419049503376, 1.3674192611883966, 1.3687541138541217, 1.3689064511960414, 1.3691160610250235, 1.3694826449223636, 1.3696173807169072, 1.370017955121575, 1.371571717504135, 1.3717150741534359, 1.3718716633445032, 1.3724281535649219, 1.3726679238793205, 1.3731290939293173, 1.3731996152822483, 1.3741932335498515, 1.3747179436926205, 1.3763634732193772, 1.3769988091087515, 1.3773754367524105, 1.3775751435394534, 1.3780560225150658, 1.3794793810417865, 1.3796576581994322, 1.3799986833354017, 1.3804874736131305, 1.3807929070360907, 1.3811326917137208, 1.3820889130354774, 1.3827874790570882, 1.383002890163191, 1.3833447802892431, 1.383907141452306, 1.3840717470080501, 1.38484206714136, 1.3851512671568038, 1.3854244331068943, 1.385651333827528, 1.3856853906649824, 1.3859789792177577, 1.3863736683240169, 1.386482069505791, 1.3872246065098106, 1.387353627257483, 1.3875796071909479, 1.3881248727903308, 1.3887657511222389, 1.3906054105952341, 1.3914769334725934, 1.3917035311466535, 1.3929657072430293, 1.3934417038061535, 1.3934803068392205, 1.3939948232952668, 1.394150728633914, 1.3946235543962315, 1.3981120878834257, 1.3981833122701177, 1.398886246679261, 1.3989635744572761, 1.3993328081236691, 1.4027153199473945, 1.403220865274668, 1.4033151041785032, 1.4035501345328047, 1.4038066891702146, 1.405095055961765, 1.405991526547398, 1.4069309740783003, 1.4083158221866143, 1.4084806521422628, 1.409459338563542, 1.4100969969466157, 1.4105040773570412, 1.4116567355566367, 1.4120992721799923, 1.4122452588091243, 1.4144642298007963, 1.416999035655278, 1.4171437466223598, 1.4171815566615877, 1.417628544065523, 1.4178443134768326, 1.4188172563537613, 1.4194924987195523, 1.4197234935178096, 1.4222191342513066, 1.4236676687830836, 1.4237807343737836, 1.4241171779677178, 1.425641979134903, 1.426700928745885, 1.4267146548743965, 1.4270873509061222, 1.4275127628217854, 1.4282072667293229, 1.4284594336385394, 1.4295324035896684, 1.4295554176217222, 1.429978944615379, 1.4303159568190988, 1.4303520382762984, 1.4314391314282586, 1.4323392362438392, 1.432464818923908, 1.432625761219155, 1.4339293148164165, 1.435711865917356, 1.4371729816810435, 1.437223814170797, 1.4375961684132599, 1.439172611730097, 1.4392693319264893, 1.4417629645562178, 1.4424953072889655, 1.4427470201098855, 1.4432685082343304, 1.443539605512345, 1.4446564972100386, 1.4448776809096529, 1.445023931061829, 1.4451704120831224, 1.4462541997144023, 1.4463455186507135, 1.4464223518798174, 1.4472507831204289, 1.448481864500307, 1.4501351393530229, 1.4501792349927403, 1.4525471859254848, 1.453660848237571, 1.454064009578542, 1.4548052260143134, 1.456587694850322, 1.4566333609170363, 1.4571012820833324, 1.458918414730289, 1.459535543323248, 1.459603455201865, 1.4603767965681793, 1.4623322644842376, 1.4632417644756515, 1.4648089967018514, 1.4650356312182669, 1.465736880687139, 1.4661921916002756, 1.466484629495476, 1.4665503793336754, 1.469339304331124, 1.4697651077422846, 1.4720691457562565, 1.472095714051496, 1.4732325437160028, 1.4740756919774003, 1.4746060212004104, 1.4756186168724672, 1.4763752228371594, 1.476546456182321, 1.4788234257540096, 1.4791244930415965, 1.479129505534458, 1.4792037544443453, 1.4799500254838298, 1.4799522331677608, 1.480468655664633, 1.4812725756277767, 1.4816571764333917, 1.4829753755684143, 1.4831106414763524, 1.4853167552125148, 1.4857386500327903, 1.4858733694727744, 1.4861089704279002, 1.4865016870179906, 1.4875314768687928, 1.4877392302489996, 1.4893245475502122, 1.4903540436904867, 1.4931946619845347, 1.4940630177681689, 1.4948555347730976, 1.4996082074014785, 1.49995996888534, 1.5004824818434248, 1.500500080535006, 1.5009159309612345, 1.50474558625322, 1.5055392261930862, 1.5057811259800378, 1.5071383242846537, 1.5072332133897888, 1.5081070036870121, 1.508835222413667, 1.5095481077958666, 1.509669447234685, 1.5119590794799587, 1.5121611665194559, 1.5131306611549271, 1.5160869385473905, 1.5164235176845229, 1.5172147817777346, 1.5187596266648726, 1.5193154238883961, 1.5211293415920584, 1.5223051027944419, 1.5242933761294508, 1.5246166661068474, 1.5251512020051425, 1.5271835267447078, 1.5275602090640834, 1.5277234498651477, 1.52828189190775, 1.5283359054897705, 1.528925020942166, 1.530047885598337, 1.5308142009576886, 1.5330244098593147, 1.5330881445992186, 1.5379771636967177, 1.5386605164689744, 1.5390123886164078, 1.5396682813386566, 1.5401332586071845, 1.5407641629521762, 1.5411394831887177, 1.5423157459489607, 1.5426726017974923, 1.5427845214026847, 1.5466175962687139, 1.5485103732354215, 1.5485173214903458, 1.5515231631880657, 1.5517455473331263, 1.5517456046125746, 1.552583895589235, 1.5530094612933478, 1.5530694169352366, 1.5531224232019993, 1.5553506734111677, 1.557464898320021, 1.5579571056617434, 1.5590194512352804, 1.5595377906078, 1.5610438962105855, 1.5627818620917533, 1.5659457446360538, 1.5688062114197392, 1.5695556502606438, 1.572224358279475, 1.5724413009815073, 1.5724413009815073, 1.5726914743885108, 1.5731885132697374, 1.576635957982546, 1.5770247334975642, 1.5778225465666278, 1.5800285850240523, 1.5815055127743178, 1.5818246697020224, 1.5821007398712612, 1.5831070552247128, 1.585135118645892, 1.5852032032602135, 1.5870043397185494, 1.589809485886368, 1.590098136183439, 1.590291251388742, 1.5908698333765232, 1.5914978945476148, 1.5928648276727593, 1.5937645093531427, 1.5970091463770495, 1.5971673761320975, 1.603456253686294, 1.6035592580564035, 1.6098629694063484, 1.6106972372465418, 1.6107617372759933, 1.6166988052079974, 1.6169803567587273, 1.6169855194794496, 1.6176382053431275, 1.6180816117586527, 1.6193137986234087, 1.6209456591830351, 1.6232204922141382, 1.6295650475414167, 1.632962757992743, 1.633016604650178, 1.6337319744566272, 1.6344234239371023, 1.6347714493320569, 1.6360685742869245, 1.6368010586757242, 1.6384779890252814, 1.6386098662733901, 1.6386332106285924, 1.644292763934761, 1.6459179020433938, 1.6468871416428592, 1.6479026914912736, 1.6486249962705564, 1.649318362132641, 1.6527211982721233, 1.6549237362460407, 1.6557271946625178, 1.6603264508995124, 1.660608541857537, 1.6612918697115067, 1.662551654035553, 1.6649982189318453, 1.6672554679294807, 1.6713130507496248, 1.6739952011902575, 1.6743463401038663, 1.6766225854416565, 1.6791525070139326, 1.685400597939904, 1.685728540761685, 1.6858130599550223, 1.68879050470555, 1.6901719142438973, 1.690289749438284, 1.692606507635792, 1.6927967101683317, 1.69363524228432, 1.6944965675614012, 1.6976302409459518, 1.6976972186189516, 1.698310141118317, 1.7003462268420457, 1.7011998134486035, 1.7052013965245794, 1.7062718353855633, 1.7076171399635791, 1.7100170326823714, 1.710613341185544, 1.7107622399385904, 1.7130499862234403, 1.7137956136503667, 1.7141265404525647, 1.7162477014047361, 1.7175863303927252, 1.7197237707651774, 1.7201520991961643, 1.7222168240730018, 1.725148456872735, 1.7254808114702975, 1.7257100672371182, 1.7261267008779286, 1.7263979191580063, 1.7296329258604792, 1.731961514125392, 1.7326457914310303, 1.7329163775492322, 1.7331043917928335, 1.7342552748518514, 1.7352238002721307, 1.7370597644099832, 1.7371795202823117, 1.7373215921445349, 1.7379935323714735, 1.7410588706224093, 1.741526300624624, 1.741744167141162, 1.7417582124524391, 1.7420242275437328, 1.742910459419347, 1.7433758571464022, 1.7439899590996712, 1.7447571908205777, 1.745275355545904, 1.7461891279867605, 1.74670841804289, 1.7477775461742522, 1.7478108710701923, 1.7489581817396944, 1.7492896035507801, 1.7503658243503155, 1.7529926413436476, 1.7536357211304823, 1.7545216851691212, 1.7546520993925137, 1.756091389711332, 1.756717693123358, 1.7568245788864725, 1.7580382805095356, 1.7583984758780058, 1.7591166025091889, 1.7592569538003124, 1.7594288162646177, 1.7611882809519444, 1.7625287240306544, 1.7627352365084108, 1.7651857567249387, 1.7668812297201513, 1.7676858023373296, 1.7684541043671653, 1.7685382977213626, 1.7689484400495945, 1.7692130036554299, 1.7694857257085441, 1.7709051438470924, 1.7724010890272954, 1.7733521651883473, 1.7739580439093443, 1.7739963708724895, 1.7741396848255067, 1.774735538513683, 1.7760990903655236, 1.776352979043308, 1.7765511599199628, 1.7773281252447728, 1.7773771286470745, 1.7782818890312557, 1.7790409024290856, 1.7792079515876926, 1.7798573891877374, 1.7801220088509584, 1.7805832659169216, 1.7808969209533603, 1.7828210034931402, 1.7832929957556802, 1.7835891591214563, 1.7838106019421667, 1.7840048370353976, 1.784841044595387, 1.78580482435389, 1.786146483703405, 1.7865479317578223, 1.7866852599868772, 1.7867933351690477, 1.7881765598399535, 1.7884912447186825, 1.7892442061060603, 1.789907017480902, 1.7901115771091793, 1.7901229819789835, 1.7908563729060145, 1.7918027346150422, 1.7918027346150422, 1.7928095411690326, 1.7931186702405844, 1.7943950107953588, 1.7946272711162254, 1.7947325063362762, 1.7955038769637728, 1.7960944008963662, 1.7964886436257061, 1.796873076514818, 1.797222957551437, 1.798461218236368, 1.7996509215454872, 1.8012141833136313, 1.8012386464807617, 1.8016251215579915, 1.8021730356977765, 1.802878922916173, 1.8045703558821615, 1.8051908352276478, 1.806336507608917, 1.8063611812908722, 1.806425171446575, 1.8064985144653907, 1.8079716029905948, 1.808380125829203, 1.8099665719620313, 1.8112473933428201, 1.8119496791537797, 1.8133988412445603, 1.8134670206032457, 1.8135463932328177, 1.8145834931626328, 1.8151037842036173, 1.8157826074837948, 1.8169830498080255, 1.817600568831249, 1.8181086128673034, 1.81829227306689, 1.8190316294500868, 1.8205742821447557, 1.8206400927860236, 1.821432587917204, 1.821859096756501, 1.8222440544837475, 1.8228302922089932, 1.8230038336954506, 1.8231443102380473, 1.8234611841441783, 1.8259737199804342, 1.8260046446422995, 1.826200137534665, 1.8262702979271783, 1.8266888638725078, 1.826702780769511, 1.827925663021346, 1.8289000111053277, 1.8298198626880116, 1.8314641323058252, 1.832134897747999, 1.8323947006144683, 1.8327196360768494, 1.8328484446272348, 1.8329843513684334, 1.8331743350278111, 1.833415867647466, 1.8338457613124068, 1.834517413701365, 1.8347163330531608, 1.8350661864806368, 1.8352482904879308, 1.8361497209740099, 1.8362516109082774, 1.8378538158390079, 1.838644124353768, 1.8394542385340338, 1.8402343574233029, 1.8404490245576857, 1.8413574035626892, 1.8418567149246117, 1.8419041219752488, 1.841970915482719, 1.8422982429892074, 1.8425257280599312, 1.842966847703083, 1.8438580878592374, 1.844029377509263, 1.8441061039580426, 1.8443487526230924, 1.8444874131794036, 1.8445052376104816, 1.8464228964667049, 1.8477831922846517, 1.8486588855341517, 1.8487387774637012, 1.8494347377231413, 1.8499819735228777, 1.8509274317312656, 1.8511370669491782, 1.85132965965833, 1.8514061744798935, 1.8519839747908164, 1.8522505036983143, 1.8524204466105554, 1.8526904283029417, 1.8534388734271516, 1.8539863153359506, 1.8540205603652182, 1.854147028397111, 1.8542136303071768, 1.8542989122247913, 1.8543911829806257, 1.8546185724275328, 1.8557756737410016, 1.8562363610612107, 1.857971040395518, 1.8587302310611291, 1.859548309912215, 1.860519881788775, 1.8610059285542935, 1.8611072007351415, 1.8611694006963044, 1.861170178375772, 1.8611727698090765, 1.8615971330802563, 1.8617079790011202, 1.8618710889186434, 1.8621262623506163, 1.8626851486039475, 1.863110113581175, 1.8636438002011315, 1.863749649151531, 1.8637578320454216, 1.8641237791757923, 1.8651173577539981, 1.865176713058759, 1.865537407299702, 1.8658963694154813, 1.8660371594793832, 1.8666118669872147, 1.8666443520677278, 1.8667056356611966, 1.8680534333541434, 1.8685642835398784, 1.8693093623808388, 1.8693671247934571, 1.8695391771412257, 1.8701490835202665, 1.8701764240143337, 1.8701764240143337, 1.8703265110693728, 1.8703590604261098, 1.8705086609233499, 1.8709314074570866, 1.8709318953464176, 1.8710509868072456, 1.8710648450829237, 1.8711092912935803, 1.871283018884327, 1.8714291271950763, 1.8716512960363516, 1.8716999057734873, 1.8720986665858848, 1.8729137982549053, 1.8741399440743958, 1.8746552055260106, 1.875211973263994, 1.8754247941954325, 1.8756436506230358, 1.8761749484763843, 1.8762653041918123, 1.8763498967859087, 1.8769333886393107, 1.8769702076067687, 1.8770604835239557, 1.8773179378770268, 1.8780623411043216, 1.8781511795590424, 1.8782244808264437, 1.8794708718487174, 1.8796881140982638, 1.8799604999459332, 1.880096987587304, 1.8805035404726689, 1.8809216049420536, 1.881135823215396, 1.8811488123533149, 1.8813771356387754, 1.8815619116397746, 1.881568162067604, 1.881571689244736, 1.8816833329121427, 1.881872941165407, 1.882152130226587, 1.8822352390571677, 1.8823593250669832, 1.882723816602312, 1.8837000131470407, 1.8840175140706397, 1.8841042820617622, 1.8841089502798316, 1.8844841072306837, 1.8845341508226412, 1.884625611713708, 1.8846799996470458, 1.8849219756432694, 1.8860412016592152, 1.88615917121707, 1.8865559399763927, 1.8868902191577333, 1.8875165254878843, 1.887570662168628, 1.8875769636727913, 1.8877609771614576, 1.8877614240300213, 1.888553097279754, 1.8886813315828577, 1.8888242727314086, 1.888965499829081, 1.8890202774671263, 1.889037699837914, 1.8891377701544347, 1.8893811071348898, 1.8894746078505427, 1.889862001551937, 1.8898624909229618, 1.8898982356697698, 1.890075707743667, 1.8901006747772637, 1.8904761072604814, 1.8906275982105167, 1.8910916333687995, 1.8911198859114184, 1.8914176832710883, 1.8915051448446307, 1.8919411533963197, 1.8927363267531103, 1.892990687065728, 1.8930844560418727, 1.893165570666435, 1.8940532388218343, 1.8946348872620622, 1.8952410309654488, 1.8963197349466607, 1.8966955489226798, 1.8967911592962523, 1.8968165777736965, 1.8970392207172273, 1.8974696439848309, 1.8975475013479437, 1.8976185373505088, 1.8978052951580986, 1.8980019665279082, 1.898441976478483, 1.8985007893724346, 1.8986129624122368, 1.8986291599274616, 1.8990141686052675, 1.8990291706113913, 1.8993957107235622, 1.899704087834557, 1.899873626171115, 1.9005950640527327, 1.9007678821902019, 1.9009259580251154, 1.9009260089841735, 1.9012822724042584, 1.901371204496918, 1.901446306382862, 1.9015877583793097, 1.9017635020314363, 1.9020290856953646, 1.9024587073974113, 1.9026663119777791, 1.9036523022785128, 1.9037311303897686, 1.9037578944968065, 1.9040744287359976, 1.9041275004501557, 1.9042500649354543, 1.9045795411056237, 1.9046344648147977, 1.904767670681492, 1.9050667949412003, 1.9052074603199547, 1.9052770853348495, 1.905299792367698, 1.9054248510039957, 1.9054836330905978, 1.905529110957984, 1.9055847556545555, 1.9056295255462385, 1.906130721568388, 1.906793468712919, 1.9068070403433013, 1.9071432497836076, 1.9082547090476691, 1.9082867436607451, 1.9090717181895096, 1.909284652862774, 1.9093315676077303, 1.9095533295920455, 1.9098393104530795, 1.910036996730239, 1.9102665430206236, 1.9105125353780466, 1.910743960848851, 1.910801207705014, 1.9108489532506199, 1.9110629564449222, 1.9117103783621117, 1.9123931064482262, 1.9129380449578886, 1.9129395042183457, 1.9130405348486512, 1.913167856664802, 1.9137267036794399, 1.9138813807137394, 1.9141352255533206, 1.9142815082790807, 1.9144161061460794, 1.914685822528482, 1.9156212292654216, 1.915703860929331, 1.9162904523273065, 1.9163746630015492, 1.917387838267761, 1.9179187314656334, 1.918103796430017, 1.9182749551689344, 1.9184221545516709, 1.9184403228154798, 1.91854399713091, 1.9185715291916843, 1.9187706319701938, 1.9195360929622267, 1.9201567046224648, 1.920289018585273, 1.9203921649634716, 1.9206160885084351, 1.9211547157309408, 1.9214404519783284, 1.9214447524214426, 1.9215991538994563, 1.9216183638755715, 1.9224084888257231, 1.9226262062599886, 1.922933177734774, 1.9231377369605784, 1.924448034652493, 1.9245060908458098, 1.924620174838, 1.9247128571575731, 1.9252936451134097, 1.925516718821389, 1.9256025165163264, 1.9260560885248177, 1.926076222322531, 1.9262682023690059, 1.926457616686603, 1.9264856513888742, 1.9266805183369498, 1.9272930818309064, 1.9276444523544956, 1.9277494167387124, 1.9281502584088661, 1.9283472116837654, 1.9284757601483322, 1.928527598930371, 1.9286166523160468, 1.9290246806059939, 1.9293838325978083, 1.929476893303354, 1.929548625438611, 1.9296124476120646, 1.9297016896994295, 1.929766591355173, 1.9298598246386183, 1.9301469403833564, 1.930247385980613, 1.9303993281318856, 1.9306990719067096, 1.9307132947112957, 1.9307538800494566, 1.9312256461825228, 1.9315172740747124, 1.9317554139848585, 1.931845488525468, 1.9318490841029352, 1.9319378188848688, 1.9320161380950989, 1.9323030587545542, 1.932514900997526, 1.932608848147375, 1.9331267965411012, 1.933259306339688, 1.9333029639734007, 1.9333706417540797, 1.9338075173578662, 1.9340697517134784, 1.9345383444470934, 1.934857163706471, 1.9351446913733283, 1.935319518123409, 1.935452159901881, 1.9356159450879789, 1.9356310018947658, 1.9357348462923512, 1.935780045217912, 1.9359432421728442, 1.9360287391759432, 1.9362208760671862, 1.9363708597165907, 1.9364284345825329, 1.9365106736608226, 1.9366602170689258, 1.9368188165128393, 1.93705273569191, 1.9379031428908107, 1.9379090533074677, 1.9382320182174886, 1.9384593298206743, 1.9387239515264736, 1.939723765097251, 1.939832349818129, 1.9400339076901978, 1.9401457466884966, 1.9401869939049514, 1.94029640565529, 1.9403807245927627, 1.9404587464384202, 1.940543687758279, 1.9407374061858924, 1.9408465784715674, 1.9409901587672316, 1.9409909966561303, 1.9412401169366273, 1.9412976537408229, 1.9413481755006974, 1.9420363246968932, 1.9421024952990515, 1.9422420412437342, 1.9424062374008988, 1.9425974243403061, 1.9431982465164996, 1.9434439461568729, 1.9436411268302067, 1.9436657110465434, 1.943949980052604, 1.9440876314355824, 1.9442940650948215, 1.9445048325107577, 1.9446125710503313, 1.9449687779880256, 1.9451093129158405, 1.945589877018199, 1.9460202373486117, 1.9460509815155995, 1.9461701646187115, 1.9463588502151299, 1.9463657932975706, 1.9466400773780557, 1.9467091538697634, 1.9467881617523062, 1.9468003515108052, 1.9468663312817838, 1.9470702652209413, 1.9475023482490768, 1.9476265762016607, 1.9479340702879966, 1.9480289959021984, 1.9481942968460275, 1.9482860442631451, 1.9483453443557963, 1.9486724830847588, 1.9490697914681612, 1.9490994163752553, 1.9492111764328925, 1.9495175412089056, 1.949534622410786, 1.9496344549210105, 1.9498200896499378, 1.9501987535103877, 1.9502039445715333, 1.9502657686178526, 1.9504943504087622, 1.9505122876586416, 1.9506413327603986, 1.9509527162049376, 1.9511930167726241, 1.9513675017676704, 1.9514490541796312, 1.9514757201752269, 1.952101444198861, 1.9522600110342185, 1.9524244985826444, 1.9525222812246683, 1.9528084258122385, 1.953121095116239, 1.9533929997406971, 1.953536629607106, 1.9549522978215674, 1.9551622447685229, 1.9552047823369938, 1.9554800442027778, 1.9557161594548937, 1.9560194384536198, 1.956346222283452, 1.9563703251309421, 1.956425313521094, 1.9566833276801965, 1.9567320369952736, 1.9567346813617246, 1.956926349523956, 1.9570856893143942, 1.9570989960204055, 1.9576672391785375, 1.957682477971086, 1.9577048525073484, 1.9577768790331678, 1.9577779007618183, 1.9579935165927271, 1.9580201282392538, 1.9580352460312676, 1.958210372910867, 1.9583777701611973, 1.9584256463906502, 1.9587237345412418, 1.9587544626488933, 1.959108530776321, 1.9591186743126303, 1.9595079738884678, 1.959508981977144, 1.9596155013291703, 1.9596687623118585, 1.9597803213368332, 1.95979931064274, 1.9602393873374728, 1.960622096517887, 1.960783734065515, 1.9608150371740019, 1.9608351195891234, 1.9610397924766494, 1.9612335045286244, 1.9613427969353558, 1.9613427969353558, 1.9623763377016843, 1.962444321056558, 1.962511126236768, 1.9637324676367758, 1.9645569132736476, 1.9647084354035431, 1.9653047754177622, 1.965667739206416, 1.9657595818926654, 1.9659939017954209, 1.966106664373782, 1.9662773306682328, 1.96662133761987, 1.9672285300651944, 1.9679053025761013, 1.9683244049405477, 1.9684252100446327, 1.9684551898464169, 1.9685172462564442, 1.968800913866715, 1.9689138550718701, 1.9689856931934748, 1.9690659094957703, 1.9694064997275624, 1.9694436755730995, 1.9694575271158055, 1.9704026735752473, 1.9705475177609268, 1.9706375351414969, 1.9710370219535263, 1.9711371499826886, 1.9714517037980337, 1.97205362931804, 1.9722161148733501, 1.972456540530216, 1.9724728637950164, 1.972673535190296, 1.9728304148077718, 1.9733793408813676, 1.9733881987491757, 1.9735309061609905, 1.9735687257596124, 1.9736125265731754, 1.9736607047074013, 1.9736930184736399, 1.9737276415486966, 1.973856979937279, 1.9738855222542568, 1.9739725621633304, 1.9740934274591917, 1.9741987755866524, 1.9745496136604135, 1.9745625376556941, 1.9748210573846363, 1.9748683338908386, 1.974910518865841, 1.9749195256549459, 1.9752367955783496, 1.975287622160742, 1.9754188950775544, 1.9754770853546106, 1.9755298747704073, 1.976323190858537, 1.976365123770989, 1.9764369113102487, 1.9769613536212676, 1.9770396657107376, 1.977129614513754, 1.9771720699277298, 1.9774664532774797, 1.977595784289195, 1.9776836733510004, 1.9779655604292974, 1.978016480102369, 1.978133045011534, 1.9783111911057334, 1.9785577085137105, 1.9786452742326022, 1.978876761997217, 1.9789048523645252, 1.978939202371058, 1.9790597451721443, 1.9793450777863166, 1.9794804246119353, 1.9796995640854822, 1.9797861314496419, 1.979876556390837, 1.9800701656818758, 1.980093061292807, 1.9801092637438107, 1.9802156033690481, 1.9807040572964085, 1.9809605933913685, 1.981072467129429, 1.9813287449316643, 1.981539300399054, 1.9815743848370675, 1.982106648777679, 1.9821481815956632, 1.9825846999195673, 1.9827905009675224, 1.9829022717131046, 1.9829166486754004, 1.9829961847044864, 1.9830944179318457, 1.9831625459192785, 1.98317631830621, 1.9832385954660687, 1.9833288704938385, 1.9834298917882733, 1.983556042074362, 1.983706612864369, 1.98392625773355, 1.983941406966174, 1.984138668767429, 1.984284710764321, 1.984324977881119, 1.9852487464810575, 1.9852630801289048, 1.9852993813277855, 1.9853369037810555, 1.9853821020424074, 1.9857047410429287, 1.9857114677302579, 1.986355302709681, 1.9865697878178383, 1.9866801963656182, 1.9867709184377313, 1.9868213011573619, 1.986919045526879, 1.9869649738642465, 1.986989589762956, 1.9871366238583947, 1.9876428968462658, 1.9877521193409728, 1.9880268654044913, 1.988341382483355, 1.988493212677349, 1.988539098876396, 1.9885446722639812, 1.9886743400901283, 1.9889693514128577, 1.9890803925658334, 1.989233218480148, 1.9892905786735213, 1.9892928830631786, 1.9894143464551535, 1.9894724918430595, 1.9895712754879424, 1.98984135754874, 1.9899699153972186, 1.9900134198747703, 1.9902004424218547, 1.9902004424218547, 1.990214805359769, 1.990258826952154, 1.9905201274792903, 1.9906981411081872, 1.9908019137569857, 1.9912152742591698, 1.991282559976068, 1.9914979526870873, 1.9915306415407898, 1.9916594607173335, 1.9917347400855647, 1.9918297079068814, 1.9920137511068945, 1.9922725988107348, 1.99242146202378, 1.9927981133050168, 1.992876157862649, 1.9930136048217988, 1.9931090735873738, 1.993251905656521, 1.9934033053332358, 1.993592979547573, 1.993737260034522, 1.9940283611658558, 1.9940723334262151, 1.9941457692046531, 1.9942084012390087, 1.9942888383336124, 1.9943590286871167, 1.9945989269504707, 1.9946935585124193, 1.9951768528761744, 1.9952791629317936, 1.995314708102863, 1.995367116035083, 1.9954517699671663, 1.9955578907058278, 1.9955912609599162, 1.995694006364696, 1.99627303272582, 1.9963639551863959, 1.996432613147202, 1.9964530549921757, 1.9964911442821391, 1.9965577001264618, 1.996630771672147, 1.9975922614984747, 1.9977341260868033, 1.9977571373058416, 1.9980420070273262, 1.99815190882543, 1.9981580749329946, 1.99828236168242, 1.998332675878975, 1.99842850078683, 1.9986248202028944, 1.99876212262834, 1.9987690139955447, 1.9988777195351493, 1.9989544797219327, 1.999000954134696, 1.9994574019960596, 1.9995605127729597, 1.999871340057763, 2.0000026840323883, 2.0000485380428654, 2.00056474974706, 2.000605402259281, 2.0009146346496007, 2.001402604269373, 2.001437106008016, 2.001975258294385, 2.0020225708406, 2.0021626758865008, 2.002194152512412, 2.0024163666947077, 2.0024985902114714, 2.0025330248114175, 2.002782123684046, 2.003257845233177, 2.003369227270003, 2.0035901081779453, 2.0038544073111964, 2.0041094261134895, 2.004192534277345, 2.00431469276571, 2.0043362416498365, 2.004452851686643, 2.004468435901194, 2.004915734837404, 2.0049191563324644, 2.005078549615188, 2.0053804925616947, 2.005532281618423, 2.005565467571023, 2.005897071195997, 2.0061544352856147, 2.0063257355458126, 2.006508466504181, 2.0068787151843637, 2.007124747007991, 2.0073785224225196, 2.0074340908126245, 2.007461515021433, 2.007897886506201, 2.0081804046447598, 2.008953395281868, 2.0090224679351865, 2.0093657521551007, 2.009629235807965, 2.009892080876618, 2.0103513062933263, 2.010516355515273, 2.010595173429543, 2.0109982770307657, 2.0110440831742915, 2.0115535632307324, 2.011598271637062, 2.011689222209173, 2.0119103004580103, 2.0120618657376337, 2.0122483459653897, 2.0124081706908994, 2.0128436133878305, 2.012902998090185, 2.012919276751751, 2.0129518537921784, 2.0129967177924533, 2.013340845789351, 2.013433997467978, 2.0135324918320943, 2.013554196569591, 2.013763232660796, 2.01380563228668, 2.013815521992327, 2.0139076672503733, 2.013964894063475, 2.013993782057057, 2.0140075503642247, 2.0140450804744914, 2.014164503782583, 2.0144519947745683, 2.0145061558494413, 2.014513928368866, 2.015259461201018, 2.0154478032817615, 2.0155381318735204, 2.0162190420805, 2.0163865887944947, 2.016419231846888, 2.0169503151877923, 2.017123695779227, 2.0173933900316476, 2.0175364232280075, 2.0176984972926575, 2.0178570332326045, 2.0180542142370936, 2.018314782319686, 2.01844357250324, 2.018463829155053, 2.018624146618638, 2.019119846228039, 2.019120008778874, 2.0191734262796013, 2.01917897915777, 2.0193355337308065, 2.019358115633203, 2.019374381944758, 2.019592365997172, 2.0199072429604388, 2.0200405182091035, 2.020078602984291, 2.020093360128922, 2.0201449230467454, 2.0202964883263688, 2.020412460559182, 2.0204145882495763, 2.020432185045734, 2.0204480536059917, 2.020492608043015, 2.020589733865223, 2.020648369192733, 2.020665069358554, 2.0207340978486035, 2.0208671563980514, 2.0211702869572976, 2.021252323831518, 2.021320999103994, 2.021406813882086, 2.0215958496425985, 2.0216684417538904, 2.0217550676810028, 2.022079018622093, 2.022361926253068, 2.0228185379028285, 2.0228931466860716, 2.0230086996369465, 2.0232460971845017, 2.0233723614505554, 2.0233821372103207, 2.023549009893741, 2.0236861277490066, 2.0238519377500186, 2.024066758114799, 2.024129888516185, 2.02431678104614, 2.02431678104614, 2.024362376035375, 2.0244315318251296, 2.0244869045510065, 2.024613537397031, 2.0248892099100595, 2.0249671204194066, 2.025245294533226, 2.025275496672284, 2.0253614291524844, 2.0254247990635363, 2.0258550390846626, 2.026363550109015, 2.0264570679117986, 2.02647571351991, 2.026612865482778, 2.027334685203435, 2.0273972520021024, 2.027739444484772, 2.02797582356692, 2.028013734206897, 2.0281410413074945, 2.028454563567272, 2.0287953988334158, 2.0288283282099564, 2.028911391055925, 2.0289540147641536, 2.029011507317685, 2.0290264940776237, 2.0292945968277274, 2.0293768708086932, 2.0295416455622433, 2.0296749430309293, 2.0297433702369645, 2.0299401289135424, 2.0300311454799598, 2.0300762130958465, 2.0302125288207034, 2.0302603687611795, 2.0302869464257207, 2.030343981006187, 2.0304550228299996, 2.0305397016629803, 2.0306468176277095, 2.0306623622825914, 2.0307092061042096, 2.0309065354272584, 2.0311551991996324, 2.031367798689151, 2.0314635620125907, 2.031736749421384, 2.0319202745675047, 2.032326476859185, 2.0323738368100117, 2.0324479051043656, 2.0324609300406418, 2.0328602992620874, 2.0329812048054063, 2.0331499655454017, 2.033217298459238, 2.033367013940951, 2.0337987551368593, 2.0338144203636173, 2.03435496021847, 2.0343853311051117, 2.0344989125337825, 2.034511200400171, 2.0345977632365346, 2.034648328758463, 2.0346767713958624, 2.0347949969331363, 2.034879530448903, 2.0349478655526436, 2.035036226331994, 2.035159000522965, 2.0353071667895217, 2.0364124034869495, 2.0364879024936062, 2.036619242723517, 2.0366693185676987, 2.0367814990862674, 2.0368761908498283, 2.037116770153608, 2.037530111754277, 2.0378019358922215, 2.0381658823401607, 2.0381790114937215, 2.0382229717928984, 2.038304452745049, 2.0384047560269583, 2.038405496264798, 2.038501709036291, 2.0385333776141676, 2.038665563811288, 2.0387218405555507, 2.0388904391227305, 2.039070671155583, 2.0391766992187557, 2.039177072444456, 2.0393324696130253, 2.0394335131327743, 2.039776407346345, 2.039975251640467, 2.0400364766562245, 2.040154269373747, 2.0402110577663164, 2.0402110577663164, 2.0402269803661905, 2.0403129124303634, 2.040429067405688, 2.0404928868546968, 2.0405584434527424, 2.040789144517594, 2.040811052252114, 2.0408914730529206, 2.041120094947866, 2.04113133294296, 2.041208501788579, 2.0413171128945016, 2.041366791610732, 2.0416060321675062, 2.041683328528668, 2.04192253096935, 2.0421362580445725, 2.042225661528596, 2.042423506943459, 2.042490251639629, 2.0425018215035315, 2.0426759572720847, 2.043112018546948, 2.0431544900163874, 2.043204189796859, 2.0432122471479226, 2.0432639150600345, 2.04355126135424, 2.043573592808447, 2.0436080300908426, 2.043675665795425, 2.043737782114245, 2.043941406351285, 2.0439752157815376, 2.044069065026702, 2.044352457342729, 2.0443769710785484, 2.0450617028483036, 2.045089907907001, 2.0453141961489476, 2.0453292282799556, 2.0453946480231835, 2.0454257414769845, 2.045455112706623, 2.0458344458786994, 2.045897392533502, 2.0459618123593946, 2.045963152237214, 2.0461655921190274, 2.0461766751154626, 2.046212356389789, 2.046232538739127, 2.046302691150616, 2.046486698434346, 2.0468499828702003, 2.0470113528431426, 2.047231236406045, 2.047256939669891, 2.0472859475292373, 2.047315845560923, 2.047317080500648, 2.047328149543077, 2.0474819223210243, 2.047489868359491, 2.0477418088882677, 2.0478874220403385, 2.0479341154537645, 2.0479694333284804, 2.048032186430633, 2.0480414099007502, 2.048232821130321, 2.0484045869780627, 2.0486288003688546, 2.048636995209316, 2.0488390822488136, 2.0488791211367205, 2.0489956386700467, 2.049039122062251, 2.0499171481784653, 2.0499615825590225, 2.0503326394266197, 2.0503456589885616, 2.050411682057301, 2.0504782101970833, 2.050718863656625, 2.050811293894624, 2.050933225190388, 2.0511540071465513, 2.0512841495051943, 2.051305572426174, 2.0514571377057975, 2.0515318011511394, 2.051583327244184, 2.0516119811653337, 2.05167392990316, 2.051675621736562, 2.0517416096610517, 2.0517568523048952, 2.0517905805250787, 2.0519055175112744, 2.052132621825291, 2.0521410257388446, 2.0522017546496825, 2.0522888005791473, 2.0525462366054037, 2.0525586061765293, 2.052581646897139, 2.052601875121231, 2.052763588895362, 2.052866494736978, 2.053037681876721, 2.0531430570227784, 2.053151460936332, 2.0531682864157763, 2.053311213527846, 2.053311213527846, 2.053311213527846, 2.0534174760943933, 2.053757722054824, 2.0538082438146987, 2.0540718855105693, 2.0541504978982643, 2.054187298223517, 2.0542234507901926, 2.054246783416811, 2.054430262005213, 2.054457768718011, 2.0545925531827587, 2.054807280776631, 2.0548886375821125, 2.054939159341987, 2.055021325927698, 2.055048253152171, 2.0554852603790255, 2.0557970063003905, 2.05597198451442, 2.0564211625836433, 2.0567410588083272, 2.0569095502996633, 2.057204036307152, 2.0572339085310665, 2.057358150739673, 2.0579302724961615, 2.0579302724961615, 2.0581332088390125, 2.0581497697638675, 2.058236070811143, 2.0584037806521467, 2.058405678870126, 2.058436813348656, 2.0584999363606524, 2.0587770503112157, 2.0587838356215515, 2.0589126850082873, 2.058949684318537, 2.058955274924562, 2.0590236661780286, 2.0592399670639514, 2.059305808170976, 2.059340512029199, 2.059366034205703, 2.0594677337601737, 2.0596251692953187, 2.0597096809032838, 2.0598813016878665, 2.060032371380494, 2.0603028867880804, 2.060478168957661, 2.0605005188220953, 2.0605434877762328, 2.0606654904604085, 2.060722877469351, 2.060756334726822, 2.0608157547483987, 2.0609833865564045, 2.0610696645394033, 2.061157301700462, 2.0613323829793977, 2.0617635628189546, 2.0618424625387757, 2.0619159711422217, 2.0619389424075436, 2.0619924024172587, 2.0621133821228605, 2.062259116200165, 2.062280207607187, 2.062389260747499, 2.0623982828570964, 2.0624130877222666, 2.0625408260271225, 2.062750228815374, 2.062793434826494, 2.0628210221830066, 2.0629450001061174, 2.0630609723389313, 2.0630965653857403, 2.0631099363186234, 2.0631338551443252, 2.0631470871456146, 2.063364102898177, 2.0633849404529947, 2.063423522919754, 2.0634740446796282, 2.063730070625624, 2.0639703640166696, 2.064026722685936, 2.06410287415561, 2.0642304340779227, 2.0642726105705824, 2.064390291369489, 2.0644555618139764, 2.064624595789132, 2.064658023973147, 2.0646923674906814, 2.0649460307281067, 2.0650421762268167, 2.06509759600773, 2.0652016843743968, 2.0654018589973, 2.065438850466936, 2.0654607098063344, 2.065538369102012, 2.065703857126222, 2.065824782741532, 2.0658989964634293, 2.065945926429585, 2.0659547933935674, 2.0660245997247046, 2.0660586418756663, 2.0663595330682902, 2.066449792365407, 2.0665254856971393, 2.066535832854789, 2.0665937454420127, 2.066724913564399, 2.0667808752269723, 2.0667905557649444, 2.066870484693177, 2.06698296226647, 2.0670127875403863, 2.0671246950124957, 2.0673589644500248, 2.0673817871636873, 2.0676355155404678, 2.0677112546106113, 2.0679341406186955, 2.068001451807583, 2.0681200648668145, 2.0681659504494805, 2.0681880895508993, 2.068302721650881, 2.0685939515032428, 2.0687986920622454, 2.0691976533930028, 2.0693168129914996, 2.069646524386169, 2.0699682336043947, 2.070610504386646, 2.070767407119894, 2.070863168283382, 2.070896540676996, 2.07104039597031, 2.0710500984340916, 2.071242351068817, 2.07180477183878, 2.0719729618096436, 2.072125153619179, 2.0724920331883947, 2.0725738095647563, 2.0726435984680176, 2.072795163747641, 2.073001639652034, 2.073473941183612, 2.0735002534264124, 2.073512594617209, 2.0735292209446885, 2.073582934541207, 2.073793296331774, 2.0738599361968952, 2.0738951793751754, 2.074034438543432, 2.074043126986145, 2.074050949769445, 2.074312928172155, 2.0744462255867377, 2.074707732647812, 2.0747144585449355, 2.0747361942312286, 2.074808776167561, 2.074846721318025, 2.0749269236056196, 2.075001964945356, 2.0754088422850296, 2.0754826629642373, 2.0755098858047787, 2.075583706483986, 2.0762609585260656, 2.076612235754369, 2.07732086848222, 2.07733152430002, 2.077481173700973, 2.0780947875703144, 2.0782390000990882, 2.0782895218589625, 2.078448225607176, 2.078794908447136, 2.078818566432473, 2.0790189977579088, 2.0791779673572663, 2.0792860367039916, 2.0794516171118675, 2.079611292996974, 2.079738496658562, 2.0800415275014545, 2.08012020712794, 2.0803803508238636, 2.080474663615946, 2.080493763613673, 2.080527311522338, 2.0805678634278877, 2.0806240604419006, 2.081044865224613, 2.0812923053101846, 2.081452764565318, 2.0815426712140024, 2.081879826045378, 2.0822578799536156, 2.082970485776891, 2.0831412573522807, 2.0831672716313543, 2.083279664094948, 2.0833098176190843, 2.0835902388856606, 2.083690793609827, 2.0845765097794957, 2.0848265769178056, 2.0848399108360094, 2.0849677741260204, 2.0851340911755725, 2.0851748755254103, 2.0851748755254103, 2.0851748755254103, 2.0851748755254103, 2.0851789805119934, 2.0851912366567062, 2.0851997712185715, 2.0853933236962034, 2.0854701177068673, 2.085746976015324, 2.085746976015324, 2.085880059270206, 2.085926065155633, 2.086099925033788, 2.0861534765927425, 2.0863674646974166, 2.086915666486985, 2.087195950814924, 2.0872637447178484, 2.0872798873618104, 2.0873122718807906, 2.0873292202031255, 2.087650646653793, 2.087954859349088, 2.088081245457526, 2.0881299736762613, 2.0882443433796665, 2.088289240894815, 2.089101778061562, 2.089109691388644, 2.0897154097003607, 2.08989644542182, 2.0906248013780995, 2.090645927507835, 2.0906969719144244, 2.0907635724971385, 2.0911212909301002, 2.091208027066205, 2.091394969916885, 2.0926936056823116, 2.0927639916758003, 2.0928460892670264, 2.092900058882413, 2.0933321260486473, 2.0934202146098584, 2.093564257947524, 2.0939179065610003, 2.0943319084620415, 2.0944786519081564, 2.0945377088328647, 2.094645761889798, 2.094904140233445, 2.0949376158030497, 2.095310811331431, 2.095424941175552, 2.0956576590914726, 2.0957916895575823, 2.0960054142072653, 2.096081139244549, 2.096445071534694, 2.096650194347093, 2.096886977992527, 2.097023301007366, 2.097028440296343, 2.097182361320247, 2.097230638206657, 2.097339265618065, 2.097563866016468, 2.0976859082942245, 2.097892553458697, 2.0979773152548047, 2.0983297768725295, 2.0987636356087105, 2.0992353751073347, 2.0995991641327736, 2.099676666992356, 2.100178206007556, 2.100327716446589, 2.10078571575123, 2.1021785552413386, 2.102502062712318, 2.1029760861008135, 2.103021779647587, 2.103065461921722, 2.1031276513804364, 2.1031781731403107, 2.1032760456584882, 2.1033063976586073, 2.1035514104964643, 2.103819971662515, 2.1038266930189673, 2.1041011278558415, 2.1042396784382404, 2.104284072915969, 2.104982966613241, 2.105473962435859, 2.1055823756815384, 2.105902227347949, 2.1062684420226367, 2.106340413213075, 2.1065264671604935, 2.106626419995932, 2.106761689995582, 2.1068362325864416, 2.107167521079143, 2.107167521079143, 2.1072388118309324, 2.1080973823935834, 2.108695109364018, 2.108724079321026, 2.109276795420178, 2.109692498642179, 2.109809050349337, 2.110061659148709, 2.11076896378695, 2.110846971876312, 2.1109968425428187, 2.111071848964311, 2.1110818167103362, 2.1111226161060705, 2.111237065984509, 2.1112741813856934, 2.111336826705245, 2.111356145583024, 2.111540196543755, 2.1115907183036295, 2.1119750684858745, 2.112012600900303, 2.112478772371431, 2.113019076294455, 2.113131069581025, 2.1135003734365587, 2.1140570305057635, 2.114068778905835, 2.114312714399758, 2.114862950944634, 2.1148661658879195, 2.115162849206705, 2.11524885982874, 2.115514799711822, 2.115556114054994, 2.115624795576037, 2.1157995263499476, 2.1164750361138838, 2.1167180177371407, 2.117123488845509, 2.1174491452049122, 2.1175343869743926, 2.1176527373216656, 2.118255474364472, 2.118344604427996, 2.118487902332161, 2.11868785448122, 2.118717704458428, 2.1187609994593672, 2.1187745946503553, 2.1190091312713584, 2.119100700134773, 2.119208776982535, 2.1192980464451603, 2.1196914826344155, 2.121067108311994, 2.121540754571376, 2.1218309848491543, 2.121844706152262, 2.1218632436856444, 2.1219976483720466, 2.122315600763603, 2.1228920519479315, 2.123578672254494, 2.1242921607714, 2.1243475038159296, 2.1243527796010797, 2.125034496443312, 2.125102975293337, 2.125353341581154, 2.125657552954037, 2.126345785480759, 2.126603587582365, 2.126657639842914, 2.1269982088862913, 2.1270782681523204, 2.127116382376127, 2.1273357356782703, 2.127373474883205, 2.128058544060719, 2.1282026542795283, 2.1298014020966796, 2.1302944783685467, 2.1303957523482784, 2.130722293349399, 2.1307714531319526, 2.1313598262555864, 2.1314182435201383, 2.1320252886156292, 2.1320721482510554, 2.1322917109339876, 2.1324713049728223, 2.132671146818795, 2.1327615838727616, 2.1331626173488325, 2.1337475372605605, 2.133876716348107, 2.1352961023848502, 2.135527838025726, 2.135643110826541, 2.1357231777778787, 2.135942978834315, 2.1359935005941897, 2.1362804749166786, 2.136845112536999, 2.1376251688692904, 2.137745605953035, 2.138382839215621, 2.139182367914942, 2.139462423581211, 2.1396619949059748, 2.1403943324265375, 2.140717554959104, 2.1411103276246544, 2.1412985723792053, 2.141333686744775, 2.1414420335146906, 2.1416112549492383, 2.1417496939200653, 2.1418155780015096, 2.1421669732627584, 2.143076652380713, 2.1433456694380197, 2.1438127405496963, 2.1445496208248116, 2.145102766285977, 2.145217529706479, 2.1459173728867063, 2.1459832624965722, 2.146705230190897, 2.1472514456126666, 2.148696466491826, 2.1488126495376383, 2.1490046294381635, 2.1498743929886697, 2.150270547742206, 2.1507149109639796, 2.151015001604502, 2.151015001604502, 2.151065519700772, 2.1513984819001166, 2.151482337004465, 2.151509601673539, 2.1557542221382624, 2.156352985496186, 2.161279651021206, 2.161310644415839, 2.162147216676491, 2.1625535997665635, 2.162854990779436, 2.1629985922859225, 2.1634583200268764, 2.1640816808539713, 2.1645579024224806, 2.1652063504424124, 2.165208866680252, 2.167478459152707, 2.169427137130716, 2.1696206960600444, 2.1699328030412075, 2.1706466711156907, 2.1708929244274486, 2.172417541871096, 2.17247794628544, 2.1733223742619328, 2.173613752291056, 2.173825518175098, 2.1742056155246137, 2.1744364549704827, 2.174441699700217, 2.1749185988343047, 2.1752405763921576, 2.1756923173960705, 2.1757516325679465, 2.1774612488134517, 2.1780831034236297, 2.178272004945684, 2.178954218742362, 2.181070925011751, 2.1811344975150964, 2.1826772158275256, 2.1827954168283696, 2.1833500368736045, 2.1843816914314274, 2.1845080656174747, 2.1850719896275455, 2.1855563367026805, 2.1856266999141365, 2.187543762005915, 2.1881854155663096, 2.188316244331753, 2.1890898165193526, 2.1891989820632665, 2.1901683609756053, 2.19157589221068, 2.1931841633427145, 2.1934795470689874, 2.1942668075363225, 2.194329937587141, 2.195464876970142, 2.2012782053651962, 2.202586422486432, 2.203155197025427, 2.203405411858189, 2.204191723661679, 2.2043713158562173, 2.204833944629899, 2.2048726067174504, 2.204926896963824, 2.2050193386413897, 2.20522480214997, 2.2081363403415932, 2.212497751690932, 2.2132210962697676, 2.2133780404105377, 2.21386498172827, 2.2143817865397555, 2.2144516150250544, 2.2148536613633105, 2.215365487068925, 2.2157029619484945, 2.216660359704154, 2.217639413758015, 2.219855798679947, 2.222608448401753, 2.22288761603753, 2.2250097049284174, 2.226539211405696, 2.2297724623208737, 2.2305252307196324, 2.230767769558314, 2.2344798534187458, 2.2357100138358357, 2.2392250665268745, 2.239869472725377, 2.2414307623632546, 2.2416833711626265, 2.2425672314301064, 2.243919680009444, 2.246632016957188, 2.247368818422103, 2.248875771877642, 2.251783740553033, 2.25251274577382, 2.2554152663016214, 2.255973778974056, 2.2571426833311166, 2.257161426055973, 2.2582746560386733, 2.262327911669664, 2.263084362116333, 2.263974353027532, 2.2640961550991623, 2.264510483941737, 2.264529779722437, 2.26550897992622, 2.2667259920238227, 2.267717477203537, 2.2684038177693204, 2.269755258907045, 2.2703250074979895, 2.2728760410365356, 2.2793176425627544, 2.280157803862091, 2.2821815444363125, 2.282258127949769, 2.2823897595984146, 2.282411603443069, 2.286920056425581, 2.290285694893768, 2.291976160733645, 2.292271677201494, 2.2923660535830246, 2.294419767335993, 2.296579495315335, 2.297018524873239, 2.2988023441243857, 2.2992932516806124, 2.2999539957325505, 2.3007487239403095, 2.3025513298562355, 2.3043665979179235, 2.3109294203694013, 2.3114884070010446, 2.313966485316892, 2.316180494402646, 2.320038774432498, 2.3206236627669545, 2.3209502079821527, 2.3212750449571624, 2.3219207293956177, 2.323610323888926, 2.3317486700363474, 2.331814707666266, 2.338891931829686, 2.3416662022206065, 2.342064891804468, 2.3510675478158554, 2.3520890814532542, 2.3534471529302796, 2.3664551439513137, 2.3794905534954727, 2.3892594151674085, 2.409346575382717 ], "y": [ 0.6205893103979385, 0.6205893103979385, 0.811612554688695, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.0, 0.8410758130408128, 0.6667843600749501, 0.3576307920214454, 0.811612554688695, 0.8410758130408128, 0.0, 0.8410758130408128, 0.8410758130408128, 0.8410758130408128, 0.6667843600749501, 0.8410758130408128, 0.416744646232613, 0.416744646232613, 0.0, 0.05620041199703903, 0.6667843600749501, 0.6667843600749501, 0.8410758130408128, 0.8410758130408128, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.811612554688695, 0.05620041199703903, 0.0, 0.8410758130408128, 0.6667843600749501, 0.3576307920214454, 0.6205893103979385, 0.6667843600749501, 0.811612554688695, 0.6205893103979385, 0.0, 0.3576307920214454, 0.05620041199703903, 0.811612554688695, 0.416744646232613, 0.8410758130408128, 0.8410758130408128, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.6667843600749501, 0.0, 0.3576307920214454, 0.6667843600749501, 0.8410758130408128, 0.0, 0.8410758130408128, 0.416744646232613, 0.6667843600749501, 0.6205893103979385, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.1196581275117085, 0.8410758130408128, 0.0, 0.6205893103979385, 0.416744646232613, 0.8410758130408128, 0.0, 0.05620041199703903, 0.811612554688695, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.811612554688695, 0.6205893103979385, 0.6667843600749501, 0.0, 0.6667843600749501, 0.811612554688695, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.0, 0.3576307920214454, 0.6667843600749501, 0.8410758130408128, 0.6205893103979385, 0.6205893103979385, 0.6667843600749501, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.0, 0.811612554688695, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.0, 0.416744646232613, 0.8410758130408128, 0.8410758130408128, 0.416744646232613, 0.6667843600749501, 0.6667843600749501, 0.6667843600749501, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.416744646232613, 0.811612554688695, 0.6667843600749501, 0.6205893103979385, 0.0, 0.811612554688695, 0.811612554688695, 0.0, 0.416744646232613, 0.416744646232613, 0.3576307920214454, 0.8410758130408128, 0.0, 0.8410758130408128, 0.0, 0.8410758130408128, 0.6205893103979385, 0.6667843600749501, 0.416744646232613, 0.0, 0.05620041199703903, 0.811612554688695, 0.3576307920214454, 0.6667843600749501, 0.8410758130408128, 0.416744646232613, 0.6667843600749501, 0.416744646232613, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.6205893103979385, 0.811612554688695, 0.3576307920214454, 0.6667843600749501, 0.0, 0.1196581275117085, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.416744646232613, 0.8410758130408128, 0.0, 0.1196581275117085, 0.0, 0.6205893103979385, 0.8410758130408128, 0.05620041199703903, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.6667843600749501, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.416744646232613, 0.8410758130408128, 0.0, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.811612554688695, 0.811612554688695, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.8410758130408128, 0.3576307920214454, 0.6667843600749501, 0.6667843600749501, 0.1196581275117085, 0.6667843600749501, 0.8410758130408128, 0.0, 0.3576307920214454, 0.811612554688695, 0.6667843600749501, 0.8410758130408128, 0.6667843600749501, 0.811612554688695, 0.416744646232613, 0.8410758130408128, 0.0, 0.416744646232613, 0.6667843600749501, 0.8410758130408128, 0.05620041199703903, 0.811612554688695, 0.0, 0.6205893103979385, 0.8410758130408128, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.811612554688695, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.416744646232613, 0.0, 0.811612554688695, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.0, 0.1196581275117085, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.811612554688695, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.1196581275117085, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.416744646232613, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6205893103979385, 0.8410758130408128, 0.3576307920214454, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.05620041199703903, 0.1196581275117085, 0.416744646232613, 0.05620041199703903, 0.416744646232613, 0.8410758130408128, 0.811612554688695, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.416744646232613, 0.8410758130408128, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.1196581275117085, 0.6205893103979385, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.6667843600749501, 0.0, 0.811612554688695, 0.416744646232613, 0.8410758130408128, 0.0, 0.0, 0.811612554688695, 0.6667843600749501, 0.8410758130408128, 0.0, 0.416744646232613, 0.6667843600749501, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.416744646232613, 0.3576307920214454, 0.05620041199703903, 0.416744646232613, 0.0, 0.6667843600749501, 0.0, 0.0, 0.416744646232613, 0.0, 0.8410758130408128, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.8410758130408128, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.416744646232613, 0.416744646232613, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.416744646232613, 0.416744646232613, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.416744646232613, 0.416744646232613, 0.6667843600749501, 0.811612554688695, 0.6205893103979385, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.1196581275117085, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.416744646232613, 0.0, 0.8410758130408128, 0.416744646232613, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.416744646232613, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.416744646232613, 0.1196581275117085, 0.0, 0.811612554688695, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.811612554688695, 0.811612554688695, 0.0, 0.1196581275117085, 0.1196581275117085, 0.05620041199703903, 0.6667843600749501, 0.811612554688695, 0.8410758130408128, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.416744646232613, 0.8410758130408128, 0.3576307920214454, 0.8410758130408128, 0.8410758130408128, 0.811612554688695, 0.3576307920214454, 0.1196581275117085, 0.3576307920214454, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.6205893103979385, 0.416744646232613, 0.8410758130408128, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.811612554688695, 0.8410758130408128, 0.6667843600749501, 0.6205893103979385, 0.6667843600749501, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.416744646232613, 0.811612554688695, 0.6667843600749501, 0.05620041199703903, 0.0, 0.811612554688695, 0.416744646232613, 0.0, 0.0, 0.6205893103979385, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.416744646232613, 0.6667843600749501, 0.0, 0.6205893103979385, 0.416744646232613, 0.0, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.6667843600749501, 0.6205893103979385, 0.416744646232613, 0.05620041199703903, 0.416744646232613, 0.416744646232613, 0.3576307920214454, 0.6205893103979385, 0.0, 0.416744646232613, 0.6205893103979385, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.3576307920214454, 0.416744646232613, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.811612554688695, 0.3576307920214454, 0.0, 0.416744646232613, 0.811612554688695, 0.8410758130408128, 0.6205893103979385, 0.811612554688695, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.811612554688695, 0.6667843600749501, 0.416744646232613, 0.6667843600749501, 0.6667843600749501, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.0, 0.8410758130408128, 0.6667843600749501, 0.0, 0.6205893103979385, 0.8410758130408128, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.8410758130408128, 0.811612554688695, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.8410758130408128, 0.0, 0.3576307920214454, 0.8410758130408128, 0.8410758130408128, 0.0, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.8410758130408128, 0.0, 0.6667843600749501, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6667843600749501, 0.6667843600749501, 0.8410758130408128, 0.6205893103979385, 0.811612554688695, 0.0, 0.1196581275117085, 0.6667843600749501, 0.811612554688695, 0.3576307920214454, 0.0, 0.05620041199703903, 0.6667843600749501, 0.1196581275117085, 0.0, 0.0, 0.8410758130408128, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6205893103979385, 0.811612554688695, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.6205893103979385, 0.8410758130408128, 0.0, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.811612554688695, 0.0, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.416744646232613, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.6667843600749501, 0.8410758130408128, 0.1196581275117085, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.8410758130408128, 0.8410758130408128, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.6667843600749501, 0.416744646232613, 0.1196581275117085, 0.05620041199703903, 0.3576307920214454, 0.0, 0.416744646232613, 0.6667843600749501, 0.0, 0.0, 0.1196581275117085, 0.6667843600749501, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.8410758130408128, 0.8410758130408128, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.416744646232613, 0.3576307920214454, 0.6667843600749501, 0.0, 0.416744646232613, 0.6667843600749501, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.811612554688695, 0.1196581275117085, 0.6667843600749501, 0.416744646232613, 0.416744646232613, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.0, 0.416744646232613, 0.0, 0.0, 0.6205893103979385, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.1196581275117085, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.811612554688695, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.416744646232613, 0.8410758130408128, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.8410758130408128, 0.6667843600749501, 0.8410758130408128, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.1196581275117085, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.1196581275117085, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.6667843600749501, 0.6667843600749501, 0.0, 0.0, 0.416744646232613, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.1196581275117085, 0.0, 0.8410758130408128, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.6205893103979385, 0.6667843600749501, 0.8410758130408128, 0.6205893103979385, 0.6667843600749501, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.6667843600749501, 0.8410758130408128, 0.8410758130408128, 0.416744646232613, 0.416744646232613, 0.6205893103979385, 0.3576307920214454, 0.416744646232613, 0.1196581275117085, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.416744646232613, 0.8410758130408128, 0.416744646232613, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.1196581275117085, 0.0, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.1196581275117085, 0.05620041199703903, 0.6667843600749501, 0.8410758130408128, 0.6667843600749501, 0.8410758130408128, 0.3576307920214454, 0.0, 0.6667843600749501, 0.8410758130408128, 0.0, 0.6667843600749501, 0.1196581275117085, 0.0, 0.8410758130408128, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.416744646232613, 0.6205893103979385, 0.05620041199703903, 0.6667843600749501, 0.811612554688695, 0.1196581275117085, 0.0, 0.0, 0.6205893103979385, 0.416744646232613, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.6205893103979385, 0.811612554688695, 0.0, 0.05620041199703903, 0.6667843600749501, 0.8410758130408128, 0.6205893103979385, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.8410758130408128, 0.8410758130408128, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.416744646232613, 0.0, 0.8410758130408128, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.05620041199703903, 0.811612554688695, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.416744646232613, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.6667843600749501, 0.416744646232613, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.8410758130408128, 0.0, 0.6667843600749501, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.1196581275117085, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.416744646232613, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.416744646232613, 0.3576307920214454, 0.05620041199703903, 0.0, 0.1196581275117085, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.6667843600749501, 0.416744646232613, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.811612554688695, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.0, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.0, 0.6205893103979385, 0.05620041199703903, 0.8410758130408128, 0.05620041199703903, 0.0, 0.8410758130408128, 0.1196581275117085, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.811612554688695, 0.6205893103979385, 0.416744646232613, 0.0, 0.8410758130408128, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.416744646232613, 0.8410758130408128, 0.811612554688695, 0.0, 0.416744646232613, 0.8410758130408128, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.05620041199703903, 0.811612554688695, 0.3576307920214454, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.1196581275117085, 0.3576307920214454, 0.811612554688695, 0.0, 0.6205893103979385, 0.6667843600749501, 0.6667843600749501, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.1196581275117085, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.8410758130408128, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.8410758130408128, 0.6205893103979385, 0.6205893103979385, 0.6667843600749501, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.811612554688695, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.1196581275117085, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.6667843600749501, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.6205893103979385, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.6667843600749501, 0.8410758130408128, 0.05620041199703903, 0.416744646232613, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.8410758130408128, 0.6205893103979385, 0.8410758130408128, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.416744646232613, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.1196581275117085, 0.6667843600749501, 0.6205893103979385, 0.8410758130408128, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6667843600749501, 0.811612554688695, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.1196581275117085, 0.6667843600749501, 0.0, 0.0, 0.8410758130408128, 0.0, 0.811612554688695, 0.0, 0.416744646232613, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.8410758130408128, 0.416744646232613, 0.6667843600749501, 0.8410758130408128, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.0, 0.416744646232613, 0.8410758130408128, 0.0, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.6667843600749501, 0.6205893103979385, 0.0, 0.6667843600749501, 0.6205893103979385, 0.416744646232613, 0.0, 0.811612554688695, 0.6667843600749501, 0.3576307920214454, 0.0, 0.3576307920214454, 0.416744646232613, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.811612554688695, 0.0, 0.05620041199703903, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.1196581275117085, 0.8410758130408128, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.416744646232613, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6667843600749501, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.6205893103979385, 0.1196581275117085, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6667843600749501, 0.416744646232613, 0.3576307920214454, 0.416744646232613, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.8410758130408128, 0.8410758130408128, 0.6667843600749501, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.416744646232613, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.416744646232613, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.8410758130408128, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.1196581275117085, 0.6667843600749501, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.811612554688695, 0.6205893103979385, 0.05620041199703903, 0.811612554688695, 0.0, 0.6667843600749501, 0.3576307920214454, 0.1196581275117085, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.0, 0.8410758130408128, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.1196581275117085, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.3576307920214454, 0.6667843600749501, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6667843600749501, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.416744646232613, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.0, 0.0, 0.6205893103979385, 0.0, 0.1196581275117085, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.6667843600749501, 0.6205893103979385, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.811612554688695, 0.6205893103979385, 0.3576307920214454, 0.1196581275117085, 0.0, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.416744646232613, 0.0, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.1196581275117085, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.1196581275117085, 0.3576307920214454, 0.0, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.0, 0.1196581275117085, 0.8410758130408128, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.05620041199703903, 0.0, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.6667843600749501, 0.3576307920214454, 0.416744646232613, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.1196581275117085, 0.6667843600749501, 0.0, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.3576307920214454, 0.416744646232613, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.6205893103979385, 0.416744646232613, 0.8410758130408128, 0.05620041199703903, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.6667843600749501, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.8410758130408128, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.8410758130408128, 0.0, 0.811612554688695, 0.0, 0.8410758130408128, 0.6667843600749501, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.0, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.6205893103979385, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.811612554688695, 0.0, 0.8410758130408128, 0.0, 0.416744646232613, 0.0, 0.0, 0.416744646232613, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.8410758130408128, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.416744646232613, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.8410758130408128, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.6667843600749501, 0.1196581275117085, 0.6667843600749501, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.416744646232613, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.1196581275117085, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.1196581275117085, 0.6667843600749501, 0.0, 0.0, 0.416744646232613, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.8410758130408128, 0.416744646232613, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.811612554688695, 0.1196581275117085, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.0, 0.8410758130408128, 0.3576307920214454, 0.1196581275117085, 0.0, 0.416744646232613, 0.6667843600749501, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.811612554688695, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.6667843600749501, 0.6667843600749501, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.0, 0.416744646232613, 0.6667843600749501, 0.0, 0.8410758130408128, 0.416744646232613, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.8410758130408128, 0.6667843600749501, 0.6667843600749501, 0.0, 0.0, 0.0, 0.811612554688695, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.416744646232613, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.0, 0.05620041199703903, 0.416744646232613, 0.811612554688695, 0.0, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6667843600749501, 0.6205893103979385, 0.6667843600749501, 0.05620041199703903, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.3576307920214454, 0.416744646232613, 0.6205893103979385, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.416744646232613, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.6667843600749501, 0.416744646232613, 0.1196581275117085, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.6667843600749501, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.3576307920214454, 0.416744646232613, 0.6667843600749501, 0.811612554688695, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.6667843600749501, 0.05620041199703903, 0.0, 0.6667843600749501, 0.416744646232613, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.416744646232613, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.1196581275117085, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.416744646232613, 0.8410758130408128, 0.6205893103979385, 0.6667843600749501, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.1196581275117085, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.8410758130408128, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.1196581275117085, 0.3576307920214454, 0.6667843600749501, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.416744646232613, 0.8410758130408128, 0.8410758130408128, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.3576307920214454, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.6205893103979385, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.1196581275117085, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.0, 0.6205893103979385, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.6205893103979385, 0.0, 0.1196581275117085, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.1196581275117085, 0.0, 0.416744646232613, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6667843600749501, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.416744646232613, 0.3576307920214454, 0.6205893103979385, 0.0, 0.6667843600749501, 0.1196581275117085, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.8410758130408128, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.416744646232613, 0.1196581275117085, 0.8410758130408128, 0.0, 0.6205893103979385, 0.8410758130408128, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.1196581275117085, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.811612554688695, 0.3576307920214454, 0.1196581275117085, 0.8410758130408128, 0.6667843600749501, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.8410758130408128, 0.416744646232613, 0.3576307920214454, 0.0, 0.6205893103979385, 0.416744646232613, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.8410758130408128, 0.0, 0.6667843600749501, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.6205893103979385, 0.1196581275117085, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.6205893103979385, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.05620041199703903, 0.8410758130408128, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.3576307920214454, 0.416744646232613, 0.8410758130408128, 0.0, 0.811612554688695, 0.05620041199703903, 0.6205893103979385, 0.811612554688695, 0.416744646232613, 0.0, 0.811612554688695, 0.0, 0.416744646232613, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.1196581275117085, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.8410758130408128, 0.0, 0.6667843600749501, 0.1196581275117085, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.811612554688695, 0.416744646232613, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.0, 0.416744646232613, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.416744646232613, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.0, 0.811612554688695, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6205893103979385, 0.8410758130408128, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.1196581275117085, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.1196581275117085, 0.0, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.1196581275117085, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.05620041199703903, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.811612554688695, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6205893103979385, 0.6667843600749501, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.6205893103979385, 0.0, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.1196581275117085, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.8410758130408128, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.811612554688695, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.811612554688695, 0.0, 0.6667843600749501, 0.416744646232613, 0.416744646232613, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6205893103979385, 0.3576307920214454, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.8410758130408128, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.1196581275117085, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.416744646232613, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.1196581275117085, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.811612554688695, 0.416744646232613, 0.0, 0.1196581275117085, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.1196581275117085, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.1196581275117085, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.6667843600749501, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.811612554688695, 0.3576307920214454, 0.6205893103979385, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.6667843600749501, 0.811612554688695, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.0, 0.6667843600749501, 0.416744646232613, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.811612554688695, 0.416744646232613, 0.1196581275117085, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.1196581275117085, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.6205893103979385, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.811612554688695, 0.6205893103979385, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.416744646232613, 0.0, 0.0, 0.6205893103979385, 0.1196581275117085, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.6205893103979385, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.416744646232613, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.416744646232613, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.1196581275117085, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.0, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.1196581275117085, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.0, 0.1196581275117085, 0.1196581275117085, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.416744646232613, 0.6205893103979385, 0.0, 0.0, 0.416744646232613, 0.0, 0.416744646232613, 0.0, 0.0, 0.6667843600749501, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.1196581275117085, 0.0, 0.6667843600749501, 0.0, 0.416744646232613, 0.0, 0.1196581275117085, 0.0, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.811612554688695, 0.3576307920214454, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.1196581275117085, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.0, 0.6205893103979385, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.416744646232613, 0.6667843600749501, 0.0, 0.416744646232613, 0.0, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.6667843600749501, 0.1196581275117085, 0.0, 0.0, 0.0, 0.05620041199703903, 0.1196581275117085, 0.8410758130408128, 0.0, 0.811612554688695, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.0, 0.8410758130408128, 0.0, 0.1196581275117085, 0.05620041199703903, 0.6205893103979385, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.6667843600749501, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.1196581275117085, 0.0, 0.1196581275117085, 0.416744646232613, 0.0, 0.1196581275117085, 0.811612554688695, 0.6205893103979385, 0.05620041199703903, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.1196581275117085, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.1196581275117085, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.416744646232613, 0.8410758130408128, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.416744646232613, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.1196581275117085, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.1196581275117085, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.1196581275117085, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.1196581275117085, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.8410758130408128, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.1196581275117085, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6205893103979385, 0.811612554688695, 0.8410758130408128, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.811612554688695, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.811612554688695, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.811612554688695, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.1196581275117085, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6205893103979385, 0.416744646232613, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.416744646232613, 0.6205893103979385, 0.0, 0.6205893103979385, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.416744646232613, 0.3576307920214454, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.6205893103979385, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.1196581275117085, 0.6205893103979385, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.6205893103979385, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.6205893103979385, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.811612554688695, 0.6667843600749501, 0.0, 0.0, 0.0, 0.1196581275117085, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6667843600749501, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.416744646232613, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.6205893103979385, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.1196581275117085, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.1196581275117085, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.0, 0.811612554688695, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.1196581275117085, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.8410758130408128, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.811612554688695, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.1196581275117085, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.811612554688695, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.8410758130408128, 0.6667843600749501, 0.0, 0.0, 0.811612554688695, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.416744646232613, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.0, 0.811612554688695, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.811612554688695, 0.0, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.6667843600749501, 0.0, 0.6667843600749501, 0.811612554688695, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.416744646232613, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.1196581275117085, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.0, 0.05620041199703903, 0.6667843600749501, 0.6205893103979385, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.1196581275117085, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.0, 0.05620041199703903, 0.6667843600749501, 0.6667843600749501, 0.0, 0.811612554688695, 0.8410758130408128, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.811612554688695, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.416744646232613, 0.05620041199703903, 0.416744646232613, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.6205893103979385, 0.0, 0.8410758130408128, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.6205893103979385, 0.0, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.811612554688695, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.6205893103979385, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.416744646232613, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6667843600749501, 0.6667843600749501, 0.6667843600749501, 0.6667843600749501, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.05620041199703903, 0.8410758130408128, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.0, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.6205893103979385, 0.05620041199703903, 0.811612554688695, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.8410758130408128, 0.8410758130408128, 0.8410758130408128, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.0, 0.6667843600749501, 0.6205893103979385, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.8410758130408128, 0.8410758130408128, 0.05620041199703903, 0.811612554688695, 0.6667843600749501, 0.8410758130408128, 0.0, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.6205893103979385, 0.0, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.6667843600749501, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.811612554688695, 0.05620041199703903, 0.6667843600749501, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.8410758130408128, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.0, 0.811612554688695, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.8410758130408128, 0.416744646232613, 0.0, 0.811612554688695, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.6667843600749501, 0.6205893103979385, 0.0, 0.6205893103979385, 0.811612554688695, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.1196581275117085, 0.811612554688695, 0.6205893103979385, 0.811612554688695, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.8410758130408128, 0.811612554688695, 0.6205893103979385, 0.811612554688695, 0.6205893103979385, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.811612554688695, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.0, 0.6667843600749501, 0.6205893103979385, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.0, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385 ] } ], "layout": { "height": 600, "legend": { "itemsizing": "constant" }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "V1" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Prediction probability (Anomaly)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3715b42c19044e35b42e45a43951ed9d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(VBox(children=(HTML(value='\\n

Select and Explore Samp…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "explainer.explore_whatif(X_test, y_test)" ] }, { "cell_type": "markdown", "id": "9b59c430", "metadata": {}, "source": [ "\n", "### Counterfactual Explainers" ] }, { "cell_type": "markdown", "id": "d0b1c3b9", "metadata": {}, "source": [ "Counterfactual explainers are another set of advanced features that Oracle AutoMLx supports, which help to explain a trained ML model's predictions by identifying the minimal set of changes necessary to flip the model's decision, resulting in a different outcome. To achieve this, the solution frames the explanation process as an optimization problem, similar to adversarial discoveries, while ensuring that the counterfactual perturbations used are feasible and diverse.\n", "\n", "With the Oracle AutoMLx solution, users are guaranteed a close to zero-failure rate in generating a set of counterfactual explanations; the explainers might only fail if the reference training set doesn't contain any example with the desired class.\n", "AutoMLx also provides support for simple constraints on features, using `features_to_fix` and `permitted_range`, to ensure the feasibility of the generated counterfactual examples. Additionally, users can use tunable parameters to control the proximity and diversity of the explanations to the original input.\n", "\n", "The Oracle AutoMLx solution supports the following strategy for creating counterfactual examples. \n", "\n", "- `ace`: The AutoMLx counterfactual explainer introduced by Oracle Labs that uses KDTree structures to find a set of nearest but diverse counterfactuals per sample.\n", "\n", "The final results can be returned either through the interactive interface of `What-IF` tools to show the model's prediction sensitivity or static tables and figures." ] }, { "cell_type": "code", "execution_count": 28, "id": "fbd68c5e", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:19.122855Z", "iopub.status.busy": "2025-05-22T12:02:19.122494Z", "iopub.status.idle": "2025-05-22T12:02:19.683607Z", "shell.execute_reply": "2025-05-22T12:02:19.682779Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9e66cd24f8af4b5fbd86f6f62005a778", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(VBox(children=(HTML(value='\\n

Select and Explore Samp…" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "explainer.configure_explain_counterfactual(strategy='ace')\n", "explanations = explainer.explain_counterfactual(X_test[0:1],\n", " n_counterfactuals=3,\n", " desired_pred='auto')\n", "explanations[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "c5d84729", "metadata": {}, "source": [ "\n", "### Aggregate Local Feature Importance & Local Feature Importance Built-in Sampling\n", "We now summarize all of the individual local feature importance explanations into one single aggregate explanation.\n", "\n", "To speed up the computation of the local feature importance explanations, we enable the explainer's built-in sampling." ] }, { "cell_type": "code", "execution_count": 29, "id": "910ec5aa", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:19.718604Z", "iopub.status.busy": "2025-05-22T12:02:19.718146Z", "iopub.status.idle": "2025-05-22T12:02:19.782696Z", "shell.execute_reply": "2025-05-22T12:02:19.782003Z" } }, "outputs": [], "source": [ "explainer.configure_explain_prediction(sampling={'technique': 'random', 'n_samples': 2000})" ] }, { "cell_type": "code", "execution_count": 30, "id": "222afb2d", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:19.784981Z", "iopub.status.busy": "2025-05-22T12:02:19.784616Z", "iopub.status.idle": "2025-05-22T12:02:20.588737Z", "shell.execute_reply": "2025-05-22T12:02:20.588117Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 1, 2, 4, 0, 3 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Anomaly", "marker": { "color": "#4C78A8", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Anomaly", "orientation": "h", "showlegend": false, "type": "box", "uid": "de6e4173-d478-4560-97a3-e40e963f71ca", "x": [ 0.0, 0.0, 0.0, 0.416744646232613, 0.9389204021853998 ], "xaxis": "x", "y": [ "Anomaly", "Anomaly", "Anomaly", "Anomaly", "Anomaly" ], "yaxis": "y" }, { "boxmean": true, "boxpoints": "all", "customdata": [ 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 0, 1, 2 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Normal", "marker": { "color": "#4C78A8", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Normal", "orientation": "h", "showlegend": false, "type": "box", "uid": "9822cd8c-1d29-4d3b-a850-4413f51b2191", "x": [ -0.2705211402854634, -0.23558199262941965, -0.07724249486743517, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.011978922912729848, 0.049647144831835084, 0.19547646074019098, 0.27482982650443605, 0.287126151818167, 0.30720510410964535 ], "xaxis": "x2", "y": [ "V8", "V19", "V14", "V20", "V3", "V4", "V5", "V6", "V7", "V9", "V10", "V11", "V20", "V13", "V14", "V15", "V16", "V17", "V18", "V2", "V1", "V19", "V12", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V2", "V1", "V20", "V12", "V17", "V16", "V15", "V11", "V12", "V2", "V10", "V9", "V7", "V6", "V5", "V20", "V1", "V1", "V18", "V13", "V17", "V3", "V3", "V4", "V5", "V6", "V7", "V9", "V10", "V2", "V11", "V13", "V14", "V15", "V16", "V18", "V4", "V8", "V8", "V3", "V19", "V19" ], "yaxis": "y2" } ], "layout": { "annotations": [ { "font": { "size": 16 }, "showarrow": false, "text": "Model Predictions", "x": 0.225, "xanchor": "center", "xref": "paper", "y": 1.0, "yanchor": "bottom", "yref": "paper" }, { "font": { "size": 16 }, "showarrow": false, "text": "Aggregated Feature Attributions", "x": 0.775, "xanchor": "center", "xref": "paper", "y": 1.0, "yanchor": "bottom", "yref": "paper" } ], "height": 600, "plot_bgcolor": "white", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "5 Sample Predictions to Explain", "x": 0.5 }, "width": 1080, "xaxis": { "anchor": "y", "domain": [ 0.0, 0.45 ] }, "xaxis2": { "anchor": "y2", "domain": [ 0.55, 1.0 ] }, "yaxis": { "anchor": "x", "domain": [ 0.0, 1.0 ] }, "yaxis2": { "anchor": "x2", "domain": [ 0.0, 1.0 ] } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8e531d805e454202b5ea1e1cbc625e00", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value='

Samples

'), Output()), layout=Layout(align_items…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# We select 5 random instances here as an example and show the aggregate explanation of those instances.\n", "local_explanations = explainer.explain_prediction(X_train.sample(n=5))\n", "alfi = explainer.aggregate(explanations=local_explanations)\n", "alfi.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "b086945a", "metadata": {}, "source": [ "\n", "### Advanced Feature Importance Configurations\n", "We now display more advanced configuration for computing feature importance. Here, we will explain a custom isolation forest model from the `PyOD` package. Note that the MLExplainer object is capable to explain any anomaly detection model, as long as the model follows a pyod-style interface with the `predict` and `predict_proba` functions." ] }, { "cell_type": "code", "execution_count": 31, "id": "ca57acaa", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:20.592347Z", "iopub.status.busy": "2025-05-22T12:02:20.592155Z", "iopub.status.idle": "2025-05-22T12:02:20.906446Z", "shell.execute_reply": "2025-05-22T12:02:20.905753Z" } }, "outputs": [], "source": [ "pyod_model = IForest()\n", "pyod_model.fit(X_train, y_train)\n", "\n", "y_pred = pd.Series(pyod_model.predict(X_train), index=X_train.index)\n", "explainer_pyod = automlx.MLExplainer(pyod_model,\n", " X_train,\n", " target_names=['Normal', 'Anomaly'],\n", " task=\"anomaly_detection\")" ] }, { "cell_type": "markdown", "id": "f52e9750", "metadata": {}, "source": [ "\n", "#### Changing the number of iterations\n", "\n", "One can modify the number of iterations `n_iter` used to evaluate the global importance of the model, or the local importance of a prediction.\n", "\n", "Increasing `n_iter` requires a linear increase in computation time. It however provides more\n", "accurate importance estimates, thereby decreasing the variance in repeated calls to\n", "`explain_model`/`explain_prediction`.\n", "\n", "The default value is auto, which selects a suitable default value based on the choice of\n", "the method of explanation. Decreasing the number of iterations to 1 also means that the confidence intervals are no longer available.\n", "\n", "In this example, because we are explaining a different model, the order of the most important features has changed." ] }, { "cell_type": "code", "execution_count": 32, "id": "5155d27c", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:20.908984Z", "iopub.status.busy": "2025-05-22T12:02:20.908464Z", "iopub.status.idle": "2025-05-22T12:02:22.329800Z", "shell.execute_reply": "2025-05-22T12:02:22.329252Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null ], "arrayminus": [ null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null ], "type": "data" }, "legendgroup": "None", "marker": { "color": "rgb(248,0,0)" }, "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.023897649596628212, 0.01807816124588446, 0.017570793231801107, 0.016220316573902216, 0.014956579994798047, 0.014782135460996715, 0.014756317490257631, 0.01393563115820784, 0.013840558981070394, 0.012988257575757611, 0.012821426810918246, 0.012144744213484215, 0.010836316041500371, 0.010713490780597912, 0.010569316529657424, 0.010212791916901387, 0.010076493818681254, 0.010000000000000009, 0.009795921030522403, 0.008618014813626007 ], "y": [ "V11", "V13", "V15", "V6", "V9", "V3", "V4", "V18", "V20", "V2", "V17", "V19", "V8", "V14", "V12", "V5", "V7", "V16", "V1", "V10" ] } ], "layout": { "height": 900, "margin": { "b": 20, "t": 80 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "The Features' Impact on the Model's f1_weighted Score", "x": 0.5 }, "xaxis": { "categoryorder": "total ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "total ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_model_increase_n_iter = explainer_pyod.explain_model(n_iter=1)\n", "result_explain_model_increase_n_iter.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "64db1b64", "metadata": {}, "source": [ "\n", "#### Including the effects of feature interactions (with Shapley feature importance)\n", "\n", "The Oracle AutoMLx solution allows one to change the effect of feature interactions. This can be done through the `tabulator_type` argument of both global and local importance methods.\n", "\n", "`tabulator_type` can be set to one of those three options: `permutation`, `kernel_shap`, `shapley`, `shap_pi`\n", "\n", "- `permutation`: This value is the default method in the MLExplainer object, and the behaviour was described above\n", "\n", "- `kernel_shap`: Feature importance attributions will be calculated using an approximation of the Shapley value method. It typically provides relatively high-quality approximations; however, it currently does not provide confidence intervals.\n", "\n", "- `shapley`: Feature importance is computed using the popular game-theoretic Shapley value method. Technically, this measures the importance of each feature while including the effect of all feature interactions. As a result, it runs in exponential time with respect to the number of features in the dataset. This method also includes the interaction effects of the other features, which means that if two features contain duplicate information, they will be less important. Note that the interpretation of this method's result is a bit different from the permutation method's result. An interested reader may find this a good source for learning more about it.\n", "\n", "- `shap_pi`: Feature importance attributions will be computed using an approximation of the Shapley value method. It runs in linear time, but may miss the effect of interactions between some features, which may therefore produce lower-quality results. Most likely, you will notice that this method yields larger confidence intervals than the other two.\n", "\n", "**Summary: `permutation` can miss important features for AD. Exact SHAP (`shapley`) doesn't, but it is exponential in running time. `kernel_shap` is an approximation of exact SHAP method that does not provide confidence intervals. `shap_pi` is linear, thus faster than exact SHAP and kernel_shap but unstable and very random leads to lower quality approximations.**" ] }, { "cell_type": "markdown", "id": "889724c0", "metadata": {}, "source": [ "\n", "##### Local feature importance with kernel_shap" ] }, { "cell_type": "code", "execution_count": 33, "id": "793169ea", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:22.332179Z", "iopub.status.busy": "2025-05-22T12:02:22.331558Z", "iopub.status.idle": "2025-05-22T12:02:22.403761Z", "shell.execute_reply": "2025-05-22T12:02:22.403239Z" } }, "outputs": [], "source": [ "explainer_pyod.configure_explain_prediction(tabulator_type=\"kernel_shap\",\n", " sampling={'technique': 'random', 'n_samples': 2000})" ] }, { "cell_type": "code", "execution_count": 34, "id": "a731e0eb", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:22.405986Z", "iopub.status.busy": "2025-05-22T12:02:22.405460Z", "iopub.status.idle": "2025-05-22T12:02:30.240185Z", "shell.execute_reply": "2025-05-22T12:02:30.239518Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ null, null, null, null, null, null, null, null, null, null, null ], "arrayminus": [ null, null, null, null, null, null, null, null, null, null, null ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "negative", "marker": { "color": "#626567" }, "name": "82720=negative", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ -0.0019200062991352447, -0.0070249782240367695, -0.007234159528856726, -0.00795595251447277, -0.00824659502344358, -0.017554002942574858, -0.018067959111693, -0.018190098840214008, -0.018317937855901984, -0.01839287260341726, -0.02911693859282299 ], "y": [ "V6", "V3", "V18", "V15", "V13", "V10", "V17", "V16", "V8", "V12", "V9" ] }, { "error_x": { "array": [ null, null, null, null, null, null, null, null, null ], "arrayminus": [ null, null, null, null, null, null, null, null, null ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "positive", "marker": { "color": "#F80000" }, "name": "82720=positive", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.0022039861810713066, 0.002425667646587737, 0.0026412395238031156, 0.004464117791720834, 0.0076780787247154, 0.01936479661670154, 0.02045458125335413, 0.10676049028053712, 0.11880309378028696 ], "y": [ "V1", "V11", "V19", "V5", "V4", "V14", "V7", "V2", "V20" ] }, { "marker": { "line": { "color": "rgba(0,0,0,0)", "width": 1 } }, "name": "", "orientation": "h", "showlegend": false, "type": "bar", "width": 0, "x": [ -0.11880309378028696 ], "y": [ " " ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "V6 = 0.4579", "x": 0, "xanchor": "right", "xref": "x", "y": 1, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V1 = -1.3072", "x": 0, "xanchor": "left", "xref": "x", "y": 2, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V11 = 1.1026", "x": 0, "xanchor": "left", "xref": "x", "y": 3, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V19 = -0.7213", "x": 0, "xanchor": "left", "xref": "x", "y": 4, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V5 = -1.2140", "x": 0, "xanchor": "left", "xref": "x", "y": 5, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V3 = -1.3100", "x": 0, "xanchor": "right", "xref": "x", "y": 6, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V18 = 0.3727", "x": 0, "xanchor": "right", "xref": "x", "y": 7, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V4 = 1.9304", "x": 0, "xanchor": "left", "xref": "x", "y": 8, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V15 = 0.7529", "x": 0, "xanchor": "right", "xref": "x", "y": 9, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V13 = -0.6938", "x": 0, "xanchor": "right", "xref": "x", "y": 10, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V10 = -0.4339", "x": 0, "xanchor": "right", "xref": "x", "y": 11, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V17 = -0.4295", "x": 0, "xanchor": "right", "xref": "x", "y": 12, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V16 = 0.2593", "x": 0, "xanchor": "right", "xref": "x", "y": 13, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V8 = -0.2112", "x": 0, "xanchor": "right", "xref": "x", "y": 14, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V12 = 0.4422", "x": 0, "xanchor": "right", "xref": "x", "y": 15, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V14 = 1.0599", "x": 0, "xanchor": "left", "xref": "x", "y": 16, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V7 = 1.6803", "x": 0, "xanchor": "left", "xref": "x", "y": 17, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V9 = -0.2777", "x": 0, "xanchor": "right", "xref": "x", "y": 18, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V2 = -3.9167", "x": 0, "xanchor": "left", "xref": "x", "y": 19, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V20 = 2.4126", "x": 0, "xanchor": "left", "xref": "x", "y": 20, "yref": "y", "yshift": 12.0 }, { "font": { "color": "#626567", "size": 14 }, "showarrow": false, "text": "⇩ P(Anomaly)", "x": 0.15, "xref": "paper", "y": 1.015, "yref": "paper", "yshift": 40 }, { "font": { "color": "#F80000", "size": 14 }, "showarrow": false, "text": "⇧ P(Anomaly)", "x": 0.85, "xref": "paper", "y": 1.015, "yref": "paper", "yshift": 40 } ], "barmode": "overlay", "height": 890, "margin": { "b": 20, "t": 70 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryarray": [ " ", "V6", "V1", "V11", "V19", "V5", "V3", "V18", "V4", "V15", "V13", "V10", "V17", "V16", "V8", "V12", "V14", "V7", "V9", "V2", "V20" ], "categoryorder": "array", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "title": { "text": " " }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryarray": [ " ", "V6", "V1", "V11", "V19", "V5", "V3", "V18", "V4", "V15", "V13", "V10", "V17", "V16", "V8", "V12", "V14", "V7", "V9", "V2", "V20" ], "categoryorder": "array", "gridcolor": "white", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": false, "side": "top", "type": "category", "visible": false, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "anomaly_indices = np.where(y_pred == 1)[0]\n", "index = anomaly_indices[0]\n", "result_explain_prediction_kernel_shap = explainer_pyod.explain_prediction(X_train.iloc[index:index+1,:])\n", "result_explain_prediction_kernel_shap[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "ecae1f4a", "metadata": {}, "source": [ "\n", "### Advanced Feature Dependence Options (ALE)\n", "\n", "We now show how to use an alternative method for computing feature dependence: accumulated local effects (ALE). ALE explanations are sometimes considered a better alternative to PDPs when features are correlated, because it does not evaluate the model outside of its training distribution in these cases. For more information, see https://christophm.github.io/interpretable-ml-book/ale.html.\n", "\n", "Given a dataset, an ALE displays the average change in the output of the model, accumulated of multiple small changes in one or two features, when all other features are held fixed. By default, the ALE explanations are centered around 0, and thus, unlike PDPs, ALEs show the change in the prediction measured by changing a given feature, rather than the average model's prediction for a particular feature value." ] }, { "cell_type": "markdown", "id": "4407b57c", "metadata": {}, "source": [ "The X-axis is the value of the `V17` feature and the y-axis is the corresponding computed ALE (price unit).\n", "\n", "The histogram on top shows the distribution of the value of the `V17` feature in the dataset." ] }, { "cell_type": "code", "execution_count": 35, "id": "6eb56333", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:02:30.242621Z", "iopub.status.busy": "2025-05-22T12:02:30.242065Z", "iopub.status.idle": "2025-05-22T12:02:30.827704Z", "shell.execute_reply": "2025-05-22T12:02:30.827079Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "toself", "fillcolor": "rgb(248,0,0)", "legendgroup": "None", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": false, "type": "scatter", "x": [ -6.103903073078102, -0.9681906615873594, -0.7863334792500472, -0.6580089061566698, -0.5637941363954295, -0.4750380944036825, -0.40042695398493944, -0.3256612776821922, -0.24972460755267928, -0.16512496602480217, -0.07500609244230359, 0.013395881151394007, 0.10260479460903567, 0.18381736267281618, 0.2847323369049084, 0.39617716339815545, 0.5153865383029284, 0.6845262237328771, 0.901243870487793, 1.284719228193855, 5.225449284833478, 5.225449284833478, 1.284719228193855, 0.901243870487793, 0.6845262237328771, 0.5153865383029284, 0.39617716339815545, 0.2847323369049084, 0.18381736267281618, 0.10260479460903567, 0.013395881151394007, -0.07500609244230359, -0.16512496602480217, -0.24972460755267928, -0.3256612776821922, -0.40042695398493944, -0.4750380944036825, -0.5637941363954295, -0.6580089061566698, -0.7863334792500472, -0.9681906615873594, -6.103903073078102 ], "xaxis": "x2", "y": [ -0.027554024906132235, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -0.027554024906132235 ], "yaxis": "y2" }, { "legendgroup": "None", "line": { "color": "rgb(248,0,0)" }, "mode": "lines+markers", "opacity": 1, "showlegend": false, "type": "scatter", "x": [ -6.103903073078102, -0.9681906615873594, -0.7863334792500472, -0.6580089061566698, -0.5637941363954295, -0.4750380944036825, -0.40042695398493944, -0.3256612776821922, -0.24972460755267928, -0.16512496602480217, -0.07500609244230359, 0.013395881151394007, 0.10260479460903567, 0.18381736267281618, 0.2847323369049084, 0.39617716339815545, 0.5153865383029284, 0.6845262237328771, 0.901243870487793, 1.284719228193855, 5.225449284833478 ], "xaxis": "x2", "y": [ -0.027554024906132235, -0.005729812257852494, 0.0005072843284317646, 0.0018745178462278925, 0.0027173386267097324, 0.0043089077115591665, 0.004733850036438544, 0.00485330053232149, 0.005089914502276423, 0.005205266842596562, 0.006605787328632345, 0.00573366833803321, 0.005972083189711333, 0.005690900693019474, 0.00510296258958548, 0.004752012337026712, 0.002805418172917535, -0.0006746989330167659, -0.0010315948401562712, -0.012998237931114627, -0.06333362984177233 ], "yaxis": "y2" }, { "legendgroup": "None", "marker": { "color": "Black" }, "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.15158992591571793, "x": [ -6.029783577722469, -5.8645505584743365, -5.704982215405159, -5.545413872335981, -5.385845529266804, -5.226277186197628, -5.06670884312845, -4.907140500059273, -4.7475721569900955, -4.588003813920919, -4.428435470851741, -4.268867127782564, -4.1092987847133875, -3.9497304416442103, -3.790162098575033, -3.6305937555058554, -3.4710254124366786, -3.311457069367501, -3.151888726298324, -2.9923203832291465, -2.8327520401599697, -2.673183697090793, -2.5136153540216153, -2.3540470109524385, -2.194478667883261, -2.034910324814084, -1.8753419817449068, -1.7157736386757296, -1.5562052956065524, -1.3966369525373752, -1.237068609468198, -1.0775002663990207, -0.917931923329844, -0.7583635802606667, -0.5987952371914895, -0.4392268941223123, -0.2796585510531351, -0.12009020798395786, 0.03947813508521936, 0.19904647815439658, 0.3586148212235738, 0.5181831642927506, 0.6777515073619278, 0.837319850431105, 0.9968881935002822, 1.1564565365694595, 1.3160248796386367, 1.475593222707814, 1.6351615657769907, 1.794729908846168, 1.9542982519153451, 2.113866594984522, 2.2734349380536996, 2.4330032811228772, 2.592571624192054, 2.752139967261231, 2.9117083103304076, 3.071276653399585, 3.230844996468763, 3.3904133395379397, 3.5499816826071164, 3.709550025676294, 3.8691183687454718, 4.0286867118146485, 4.188255054883825, 4.347823397953002, 4.50739174102218, 4.666960084091357, 4.826528427160534, 4.986096770229711, 5.145665113298889 ], "xaxis": "x", "y": [ 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0002, 0.0002, 0.001, 0.0024, 0.0042, 0.0112, 0.0242, 0.04, 0.056, 0.085, 0.0994, 0.1076, 0.0858, 0.0926, 0.0884, 0.0678, 0.063, 0.0414, 0.0308, 0.0244, 0.0188, 0.0154, 0.0078, 0.0088, 0.0068, 0.004, 0.0034, 0.0014, 0.001, 0.001, 0.0012, 0.0006, 0.0002, 0.0002, 0.0012, 0.0002, 0.0002, 0.0002, 0.0004, 0.0002, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0004 ], "yaxis": "y" } ], "layout": { "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Accumulated Local Effects (ALE)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ -6.67037069097368, 5.7919169027290565 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "V17" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.11298000000000001 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ -0.06683060070029256, 0.01010275818715258 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "ALE of P(Normal)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "explainer_pyod.configure_explain_feature_dependence(explanation_type='ale')\n", "result_explain_feature_dependence_default = explainer_pyod.explain_feature_dependence(['V17'])\n", "result_explain_feature_dependence_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "502a1b93", "metadata": { "lines_to_next_cell": 2 }, "source": [ "\n", "## References\n", "* Oracle AutoML http://www.vldb.org/pvldb/vol13/p3166-yakovlev.pdf\n", "* scikit-learn https://scikit-learn.org/stable/\n", "* Interpretable Machine Learning https://christophm.github.io/interpretable-ml-book/\n", "* LIME https://arxiv.org/pdf/1602.04938\n", "* OpenML (Credit Card Fraud Dataset) https://www.openml.org/d/1597\n" ] } ], "metadata": { "jupytext": { "formats": "ipynb,py:percent" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "00636021253f458fa9a2597266edfd1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "007200526ed34551b8f607a23c2e46d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ee9d705c855e4812bef1cfcfc236cad8", "IPY_MODEL_0b89a00423824dd7a0bc59c4addeca64", "IPY_MODEL_4b4fbc622d31409aa012349a6731fc42", "IPY_MODEL_c5fdc4f0f17147c3a45fca1906436c20", "IPY_MODEL_d42e5d96a9104da897c74c2fcab927fd" ], "layout": "IPY_MODEL_0961b7a2c29046f4a44034333db9bfae", "tabbable": null, "tooltip": null } }, "01cc94f694674675b289faba395a1829": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "0231394803c341ec89ae4dee360ea6bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1100px" } }, "026b0f7eede44db59eb5ea6c9b4af9bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "0712585fcbfd40d0a1d9345181ca2803": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0fe693cdcbdf46f894ea2e5eae28fbce", "placeholder": "​", "style": "IPY_MODEL_5d2380d3eb04456d8fac5e10fe5571f5", "tabbable": null, "tooltip": null, "value": "" } }, "078a822e055545bc9826969101920cf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "08978101d4894b8db80423184a797b4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0940aa14f46f4e229c531586229c2b27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0961b7a2c29046f4a44034333db9bfae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "15px 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "09950898fe174629a1975d3543f6b986": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 18px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "0a2aedfc221844fdbb8223f629a7f2ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 18px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "0b87aab443194aa8b7ddc5dc2e637dec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "0b89a00423824dd7a0bc59c4addeca64": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "predictions", "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Y-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_25a4c506ef1746e7bda7593935f69f1d", "style": "IPY_MODEL_c36c62a26d31496f9e37a46099f8cee3", "tabbable": null, "tooltip": null } }, "0c2646c3bb3844f6b78e92f6b848f3a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "0c2a077a7750448eb384da0bdc69cfae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "0c8330d2b69642718b422e61dabf3396": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "0d1ffb15d03147d993ad104c6cb967b5": { "buffers": [ { "data": "AAAAAAAAAAADhvzu6GrvPw==", "encoding": "base64", "path": [ "_data", 0, "x", "buffer" ] }, { "data": "AAAAAAAA8D+gP28g4qKSPw==", "encoding": "base64", "path": [ "_data", 1, "x", "buffer" ] } ], "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "legendgroup": "Anomaly", "marker": { "color": "#F58518" }, "name": "Target=Anomaly", "orientation": "h", "showlegend": true, "text": "", "textposition": "outside", "type": "bar", "uid": "33dfe709-04fb-4539-8623-f94c23beb0ae", "x": { "dtype": "float64", "shape": [ 2 ] }, "y": [ "Original Sample", "Modified Sample" ] }, { "legendgroup": "Normal", "marker": { "color": "#4C78A8" }, "name": "Target=Normal", "orientation": "h", "showlegend": true, "text": "", "textposition": "outside", "type": "bar", "uid": "a4a356a2-29de-4c9c-b295-a0aa34916d7a", "x": { "dtype": "float64", "shape": [ 2 ] }, "y": [ "Original Sample", "Modified Sample" ] } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "autosize": false, "barmode": "relative", "height": 300, "legend": { "y": 0.98 }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "width": 700, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "range": [ -0.05, 1.0 ], "showline": false, "showticklabels": true, "side": "bottom", "title": { "text": "Prediction Probability" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "showgrid": false, "showline": false, "showticklabels": true, "side": "left", "title": { "text": "Sample" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "0f8b90df9fd24d4ab6caca4f3513917e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7beb84505047415ea6048c0f8b567207", "placeholder": "​", "style": "IPY_MODEL_788c44f38d6d4a679fcd44a721d7faa9", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
Original Sample-0.8146012926822080.85278547639831541.0423288727328561-2.22239521255123270.28871233525783424-0.83950585325203510.9928911115798961-0.209096513744378960.7806740947971558-0.61379035756185521.83014364342828671.1944318873587512-0.126993629505732150.165162199409388340.4184581901658031-0.7801235968866925-0.4978313765414018-0.028500870424174533-0.273660857534723970.12669591871187177
Modified Sample-0.8146012926822080.85278547639831541.0423288727328561-2.22239521255123270.28871233525783424-0.83950585325203510.9928911115798961-0.209096513744378960.7806740947971558-0.61379035756185521.83014364342828671.1944318873587512-0.126993629505732150.165162199409388340.4184581901658031-0.7801235968866925-0.4978313765414018-0.028500870424174533-0.273660857534723970.12669591871187177
\n" } }, "0fe693cdcbdf46f894ea2e5eae28fbce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1109eed9b34e44acabd6b3f2c8cef86c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "11325e2cec2b4c45b80ebbfb8f980ed1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V14", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_845498de789640d9af94bcba9ed7a51d", "step": null, "style": "IPY_MODEL_c05e2cc9098246f0b955e356f42536b3", "tabbable": null, "tooltip": null, "value": 0.190972732145639 } }, "157495e59de64d4298c71b4f16d9f6db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "15da74327b74476abdcae48d9ae93a30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "166fe3a3780c47a8bad728f784bf152d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "" } }, "17a1f266a9ac4d9b933b45b157ede88a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V18", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_e0d4cd15189b49628cbb8ad52ffdb8a1", "step": null, "style": "IPY_MODEL_026b0f7eede44db59eb5ea6c9b4af9bd", "tabbable": null, "tooltip": null, "value": -0.028500870424174533 } }, "17fadde189d94c2fa8dcc6463316c5eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "1d2eac7238f349e7a0403f484a35113f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "20ae3b7b565543559341e5ebff6b41df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V11", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_9e50eee6c9e741c3acd5bb35665592fc", "step": null, "style": "IPY_MODEL_e52ccc4f87624378ab24ce0b5620da0c", "tabbable": null, "tooltip": null, "value": 1.8301436434282867 } }, "213cea55761e41fd941c01fa17fe8964": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "CheckboxView", "description": "Show all features", "description_allow_html": false, "disabled": true, "indent": false, "layout": "IPY_MODEL_d3588efa551145a3850bd27dff0f9e8d", "style": "IPY_MODEL_166fe3a3780c47a8bad728f784bf152d", "tabbable": null, "tooltip": null, "value": true } }, "21a9199a77c84a93b5613dca5b5b027d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "21e31e3a5b1548ea811c369fe36b3851": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "220f7867df0245e2b327cb06f71b270b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "227ab023169f4ccca6a2855cba5593ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V16", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_f5ba118be0a94480ad9abb368deec85a", "step": null, "style": "IPY_MODEL_3d3c1dc40d6348b08a5a2fb39cdc01c8", "tabbable": null, "tooltip": null, "value": -0.6842405108849071 } }, "230c7649f6824cf6862878253ab12fd8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "237356fb541b40e3b76a9b7c254c31d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "24671b5c3e5041949de5d56fafbda570": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "25a4c506ef1746e7bda7593935f69f1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "264e7e08c29d4755a8d7df1030fa8cff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "27b2d956191b469c9b873ed30789e6ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e40af4991d314ba995ecd4ac2cb2f3d1", "placeholder": "​", "style": "IPY_MODEL_48f1562b01e344d2b099fe7cd7b10073", "tabbable": null, "tooltip": null, "value": "

Sample Values

" } }, "27b7a6cb0b914f0fbf8cad280d92dcfd": { "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 0, 1, 2 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Normal", "marker": { "color": "#4C78A8", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Normal", "orientation": "h", "showlegend": false, "type": "box", "uid": "9822cd8c-1d29-4d3b-a850-4413f51b2191", "x": [ -0.2705211402854634, -0.23558199262941965, -0.07724249486743517, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.011978922912729848, 0.049647144831835084, 0.19547646074019098, 0.27482982650443605, 0.287126151818167, 0.30720510410964535 ], "xaxis": "x", "y": [ "V8", "V19", "V14", "V20", "V3", "V4", "V5", "V6", "V7", "V9", "V10", "V11", "V20", "V13", "V14", "V15", "V16", "V17", "V18", "V2", "V1", "V19", "V12", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V2", "V1", "V20", "V12", "V17", "V16", "V15", "V11", "V12", "V2", "V10", "V9", "V7", "V6", "V5", "V20", "V1", "V1", "V18", "V13", "V17", "V3", "V3", "V4", "V5", "V6", "V7", "V9", "V10", "V2", "V11", "V13", "V14", "V15", "V16", "V18", "V4", "V8", "V8", "V3", "V19", "V19" ], "yaxis": "y" }, { "boxmean": true, "boxpoints": "all", "customdata": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Anomaly", "marker": { "color": "#F58518", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Anomaly", "orientation": "h", "showlegend": false, "type": "box", "uid": "e556b589-992e-41d6-af92-8c593b74a70a", "x": [ -0.015865645253663612, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08729751072857703, 0.08751148798181015, 0.15088490650419453, 0.22195039512013587 ], "xaxis": "x2", "y": [ "V14", "V16", "V6", "V7", "V9", "V10", "V2", "V12", "V11", "V15", "V20", "V17", "V18", "V13", "V1", "V5", "V3", "V4", "V19", "V8" ], "yaxis": "y2" } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 1, "_last_trace_edit_id": 1, "_layout": { "annotations": [ { "font": { "size": 16 }, "showarrow": false, "text": "Predicted Target = \"Normal\"", "textangle": 90, "x": 0.98, "xanchor": "left", "xref": "paper", "y": 0.8, "yanchor": "middle", "yref": "paper" }, { "font": { "size": 16 }, "showarrow": false, "text": "Predicted Target = \"Anomaly\"", "textangle": 90, "x": 0.98, "xanchor": "left", "xref": "paper", "y": 0.3, "yanchor": "middle", "yref": "paper" } ], "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryarray": [ "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V14", "V4", "V3", "V8", "V19" ], "categoryorder": "array", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x", "mirror": true, "scaleanchor": "x", "showline": true, "showticklabels": true, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryarray": [ "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V14", "V4", "V3", "V8", "V19" ], "categoryorder": "array", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x", "mirror": true, "scaleanchor": "x", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Attribution" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryarray": [ "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V14", "V4", "V3", "V8", "V19" ], "categoryorder": "array", "domain": [ 0.6, 1.0 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y", "mirror": true, "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Feature" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryarray": [ "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V14", "V4", "V3", "V8", "V19" ], "categoryorder": "array", "domain": [ 0.1, 0.5 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y", "mirror": true, "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Feature" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": null, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "27dff7d708ff42aa815044761ce72b28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "284244559e87456195bfaef789288da4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_264e7e08c29d4755a8d7df1030fa8cff", "placeholder": "​", "style": "IPY_MODEL_c22b0d4571514391997de37ac73970ff", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 Prediction (True value: 0)
Original SampleNormal
Modified SampleNormal
\n" } }, "2acf50de02524e96912be8a846d8fe01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V11", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_fb6fd1e013374a8eb0091c226e594d8c", "step": null, "style": "IPY_MODEL_0c8330d2b69642718b422e61dabf3396", "tabbable": null, "tooltip": null, "value": 1.5804787237379154 } }, "2ba5cd52420b4dc6bb4d4692ba710df3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "2c0dcf899a4041dfbd2aa4f72efed968": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "2e1ad3a225a146ff95df85a86e06d346": { "buffers": [ { "data": "WS7rujYR6r8=", "encoding": "base64", "path": [ "_data", 0, "x", "buffer" ] }, { "data": "AAAAAAAAAAA=", "encoding": "base64", "path": [ "_data", 0, "y", "buffer" ] } ], "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "hovertemplate": "V1: %{x}
proba_Anomaly: %{y}
predictions: Normal", "marker": { "color": "rgb(248,0,0)", "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "predictions = Normal", "showlegend": true, "type": "scatter", "uid": "f9cee63e-1ade-47b8-be9e-ca5f1f85b2e0", "x": { "dtype": "float64", "shape": [ 1 ] }, "y": { "dtype": "float64", "shape": [ 1 ] } } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "height": 600, "legend": { "itemsizing": "constant" }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "V1" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Prediction probability (Anomaly)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "2e495e3ec6854900aa80836893a8b41a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6224bcc88c3a4bc0bf5343cae79ac5be", "placeholder": "​", "style": "IPY_MODEL_4472722d1f2c446294491f5711eb41f1", "tabbable": null, "tooltip": null, "value": "

Select and Explore Predictions

" } }, "2e99e3c5c1a845f484281d7cad7e84b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "", "description": "Select Sample", "disabled": false, "icon": "", "layout": "IPY_MODEL_7fe681e5536b4faca5b80cc07936fc54", "style": "IPY_MODEL_b2a21d6a3fb2428d9329e60331858ffa", "tabbable": null, "tooltip": "Select the sample at the specified row index" } }, "2f0fc1db51a3447796469a9c532be386": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V2", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_74df56d400c64654afccfc20404b50d7", "step": null, "style": "IPY_MODEL_cbc10284a740447e8af1eb07feec7da3", "tabbable": null, "tooltip": null, "value": 0.8527854763983154 } }, "305aaa630e5d448b9c551b90382f95f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "" } }, "31f21b32e632402eabf9d2df1b5aff5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "32082bb4be914767aa3d0c36f4e7f1b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "339241d7f167419abd9496bd55f1ee45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "33a6e422767c44c0b79fb70ccb4358aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "34afec76580b41e5a8c1955ccd9abb3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3521494b9086474b8c34ec060e4b58e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_883f3e768e48482dbc1c69fe4b85b51a", "placeholder": "​", "style": "IPY_MODEL_c31a162c05284f65930839b36dd8ae8f", "tabbable": null, "tooltip": null, "value": "
Randomly down sampled data from 56962 to 10000 to improve visualization performance.
" } }, "35c4ee7df85d4bae8137a6f5c14d34b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V13", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_7987a499f6fc43b392d1eae9f780684b", "step": null, "style": "IPY_MODEL_2ba5cd52420b4dc6bb4d4692ba710df3", "tabbable": null, "tooltip": null, "value": -0.12699362950573215 } }, "36a86484b3c0412e980a81650e2b5343": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V12", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_eca49f4697e74a209ec756fa43b4bee1", "step": null, "style": "IPY_MODEL_44219c7056d340edb31ec95cfce2db38", "tabbable": null, "tooltip": null, "value": 1.1943593787150457 } }, "3715b42c19044e35b42e45a43951ed9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_8e86b2c95bb541da819d443762167c15", "IPY_MODEL_64acd5e102ea45659ec3108f841c71c1" ], "layout": "IPY_MODEL_0231394803c341ec89ae4dee360ea6bd", "tabbable": null, "tooltip": null } }, "3763e94a48b9491f881e531704071abb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32082bb4be914767aa3d0c36f4e7f1b0", "placeholder": "​", "style": "IPY_MODEL_4a8e7f92162a4c85b0db635bb5f18613", "tabbable": null, "tooltip": null, "value": "

Model Predictions

" } }, "3817fc705744461683fbeb8d86a80eaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c24cdb5b6b746bba3f3e6082591ed28", "placeholder": "​", "style": "IPY_MODEL_4e6397747d5a4be9aba93504e2bb9895", "tabbable": null, "tooltip": null, "value": "\n

Select and Explore Sample

\n " } }, "38352c8b946d421da5b731238458de54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V7", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_7abad250e9e2447eb9a0d869101c4ead", "step": null, "style": "IPY_MODEL_dad62b0fd0304711b851731a6c560937", "tabbable": null, "tooltip": null, "value": 0.9928911115798961 } }, "39c51262882f4b2287467dc0eeef81ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_faa6f085bd6d449e924fa7271eb520e7", "placeholder": "​", "style": "IPY_MODEL_99a19d0f9d8346e197c2b0800c910bfc", "tabbable": null, "tooltip": null, "value": "\n

Row Selection

\n Select a sample between 0 and 56961\n " } }, "3a30d4da0ae247288727c51509078f14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3b6018ce169546ab954129109cbd3eff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3c9b9456d444442dacf4f9927cb09281": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "3d3c1dc40d6348b08a5a2fb39cdc01c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "3d5d0600b692489f938e9d3ac04c63bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "3e583c2f7c1948239e33fa2d56bb2d50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "3fa7bedcd5c34b629c0a8fbcf71154fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "401fa1830f724e108e59d1e90f0521a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "41ed759526bc408a8fc4a52d556e6b4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "41f51bbfe2a248cc83b764f5edd68ce3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "44219c7056d340edb31ec95cfce2db38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "446bf13091ca42d19984ef2b4b68f8c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V6", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_078a822e055545bc9826969101920cf3", "step": null, "style": "IPY_MODEL_4d6a2daf0bdd4a848babf9a65947a441", "tabbable": null, "tooltip": null, "value": -0.8395058532520351 } }, "4472722d1f2c446294491f5711eb41f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "4559c4c003d640e880e56a7bade8407f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_2e495e3ec6854900aa80836893a8b41a", "IPY_MODEL_3521494b9086474b8c34ec060e4b58e2", "IPY_MODEL_72b65bb042b948ecb51965f88969f785" ], "layout": "IPY_MODEL_fb7194a7ccc446428d60868883deda8c", "tabbable": null, "tooltip": null } }, "47049f3d92674abb93df5841be1e59f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "4801834be7044937b4bfdde212df2bff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "48f1562b01e344d2b099fe7cd7b10073": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "49af99d9725241b49b6253789440fc31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "4a8e7f92162a4c85b0db635bb5f18613": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "4b4fbc622d31409aa012349a6731fc42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "scatter", "bar", "box" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Plot Type", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_73cee26b02ba4af4ad0d5f850ae758e3", "style": "IPY_MODEL_9426bb6a5d6143e8b53a6dec9aefc2a3", "tabbable": null, "tooltip": null } }, "4c87ed7742b94bcfb5631900ff5042a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V9", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_e1068c8e51394f3f8d4bf39c3a1be103", "step": null, "style": "IPY_MODEL_6d7582b9f78147ba8693475fa9c5d456", "tabbable": null, "tooltip": null, "value": 0.6773519221316778 } }, "4d6a2daf0bdd4a848babf9a65947a441": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "4e2d8b29940d45e8891c280c3980140c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V17", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_9cf0f507f2dc4eb1a691acdd9f4134e1", "step": null, "style": "IPY_MODEL_cfee861c139041e48b82aab6ce9df20f", "tabbable": null, "tooltip": null, "value": -0.4566465445838895 } }, "4e395b1676f74c58a091a18fb8103719": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ff62c19678bf433cb56c198a0b3cf99c", "placeholder": "​", "style": "IPY_MODEL_f49b492329bb4bcba15f3a5a4335c7b3", "tabbable": null, "tooltip": null, "value": "\n

Row Selection

\n Select a sample between 0 and 0\n " } }, "4e6397747d5a4be9aba93504e2bb9895": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "4ea1d5438b2a4336a84f4be5161b05aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V5", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_3fa7bedcd5c34b629c0a8fbcf71154fd", "step": null, "style": "IPY_MODEL_c02011c820d543f0b48e5ceee1e750a3", "tabbable": null, "tooltip": null, "value": 0.28871233525783424 } }, "4f45ba82a16648b0a876557703e798cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "51e6e768f5034fc2a5cc52f046abff41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "55632eec02404357ad83155b730c88d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V2", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_24671b5c3e5041949de5d56fafbda570", "step": null, "style": "IPY_MODEL_8415500257cc4d5280dbb6897a565f46", "tabbable": null, "tooltip": null, "value": 0.862175862566815 } }, "56551e205df4451aa6106b00d3ce65fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V16", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_3a30d4da0ae247288727c51509078f14", "step": null, "style": "IPY_MODEL_c6f96404aff54551a9ba82e2c7271897", "tabbable": null, "tooltip": null, "value": -0.7801235968866925 } }, "56cd87956409437cbebe5216f5f07052": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V19", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_723c50ee0a6840be85674ffc0e41fa07", "step": null, "style": "IPY_MODEL_7dc9aad76db54a26980ccb4b033af814", "tabbable": null, "tooltip": null, "value": -0.27366085753472397 } }, "58d19a4683df4774a3db1fd1d7efd4cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V3", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_00636021253f458fa9a2597266edfd1e", "step": null, "style": "IPY_MODEL_7c73eb13d83a4b2aaa6d27f6052395f9", "tabbable": null, "tooltip": null, "value": 1.0423288727328561 } }, "59ad5a1a258644d4957a67cdf9493135": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V8", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_7a1c994a3060404fa04c6b0869550e9f", "step": null, "style": "IPY_MODEL_5aaf9b6607cc4dd790e1b972ed857b63", "tabbable": null, "tooltip": null, "value": -0.20909651374437896 } }, "59b22a2813c74f008bb4809da372da9d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5aaa02e706434143b5bb604732a74f6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_c06ad32d23264e679204748b58ce690d", "IPY_MODEL_55632eec02404357ad83155b730c88d7", "IPY_MODEL_9c476dde04154397bdc482d2866014cb", "IPY_MODEL_c73fcd779f48414096b6344b21f6dae9", "IPY_MODEL_a1748d80da2541cf8ce969ae6c596ad5", "IPY_MODEL_bb50ac5347d146a6a0227355f0353fec", "IPY_MODEL_931d20bb08ff4214907ec952973479db", "IPY_MODEL_e52bc00f730d4058900cbb914eecf7c5", "IPY_MODEL_4c87ed7742b94bcfb5631900ff5042a9", "IPY_MODEL_818ed9d3006b477b9ae93b672b06da6a", "IPY_MODEL_2acf50de02524e96912be8a846d8fe01", "IPY_MODEL_36a86484b3c0412e980a81650e2b5343", "IPY_MODEL_6aefcc128a8c490bb11a93aab0e7b267", "IPY_MODEL_11325e2cec2b4c45b80ebbfb8f980ed1", "IPY_MODEL_ae9ec8262652462d912b04d90cd356e7", "IPY_MODEL_227ab023169f4ccca6a2855cba5593ab", "IPY_MODEL_4e2d8b29940d45e8891c280c3980140c", "IPY_MODEL_aea6997190a2441ea6f2a799d206fed7", "IPY_MODEL_7afbafb9371a4eda9e03aff8be535bda", "IPY_MODEL_6f32c219e5a840eb9660bb4c76d84c61" ], "layout": "IPY_MODEL_bed6c726e75f44f6a70b7334122e0816", "tabbable": null, "tooltip": null } }, "5aaf9b6607cc4dd790e1b972ed857b63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "5be9b52ea2eb4dfab9a5792fcf699b27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "5c43b18a39f347be9473f20a2059babc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_b454958fc72346b7aba50ae3115e7fe1", "IPY_MODEL_726fb5aea6c04d819b012bddaa8bc37c", "IPY_MODEL_007200526ed34551b8f607a23c2e46d7" ], "layout": "IPY_MODEL_d756cb99b77a4f6d9884aeca37e01fbe", "tabbable": null, "tooltip": null } }, "5d2380d3eb04456d8fac5e10fe5571f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "5dd5780ce7c64100bccace1fb3f7b027": { "buffers": [ { "data": "AAAAAAAAAAAAAAAAAAAAAA==", "encoding": "base64", "path": [ "_data", 0, "x", "buffer" ] }, { "data": "AAAAAAAA8D8AAAAAAADwPw==", "encoding": "base64", "path": [ "_data", 1, "x", "buffer" ] } ], "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "legendgroup": "Anomaly", "marker": { "color": "#F58518" }, "name": "Target=Anomaly", "orientation": "h", "showlegend": true, "text": "", "textposition": "outside", "type": "bar", "uid": "95e8f8d5-4765-4073-8ae2-263e1290fc39", "x": { "dtype": "float64", "shape": [ 2 ] }, "y": [ "Original Sample", "Modified Sample" ] }, { "legendgroup": "Normal", "marker": { "color": "#4C78A8" }, "name": "Target=Normal", "orientation": "h", "showlegend": true, "text": "", "textposition": "outside", "type": "bar", "uid": "77144840-1dc4-4888-9aae-1a60fad6bafd", "x": { "dtype": "float64", "shape": [ 2 ] }, "y": [ "Original Sample", "Modified Sample" ] } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "autosize": false, "barmode": "relative", "height": 300, "legend": { "y": 0.98 }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "width": 700, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "range": [ -0.05, 1.0 ], "showline": false, "showticklabels": true, "side": "bottom", "title": { "text": "Prediction Probability" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "showgrid": false, "showline": false, "showticklabels": true, "side": "left", "title": { "text": "Sample" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "5faa7472643c4e80bcf07e287a3b28fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6224bcc88c3a4bc0bf5343cae79ac5be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "64acd5e102ea45659ec3108f841c71c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_fb39ace7658a4ee890a5d3d1cf1398dd", "IPY_MODEL_0f8b90df9fd24d4ab6caca4f3513917e", "IPY_MODEL_a358c19801f1477db74b3a778defc2ec", "IPY_MODEL_d18fca5901b84581a28a276d29b7cc25", "IPY_MODEL_284244559e87456195bfaef789288da4", "IPY_MODEL_76c1d60e28524052aa0b7adfd5cb5d39", "IPY_MODEL_5dd5780ce7c64100bccace1fb3f7b027" ], "layout": "IPY_MODEL_09950898fe174629a1975d3543f6b986", "tabbable": null, "tooltip": null } }, "664ff53bf7924d959dbff3269e6f66f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V15", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_34afec76580b41e5a8c1955ccd9abb3a", "step": null, "style": "IPY_MODEL_c3a1778544474e3cab704692851b1b12", "tabbable": null, "tooltip": null, "value": 0.4184581901658031 } }, "66775c87a016427880108a7ae26b10b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "66b9372b64fe4c7c9ce37d9a521a5f37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "67b9715c16a6455e934fc3ee971bcd95": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6a2b83552d3646a5af24aa120361eba5": { "buffers": [ { "data": "HWPtkHPTOcAVgBp8BYw1wELnzZRFKTHAeamlPXJWLMBs3Gcw/zIqwAyeeYZZyinAYPCQTx1WKMA+kpDEH5AnwGE+83OSMyfAO1Q78SrPJsBghCpGPjMlwGIy0KYvvCTAxwEbrcuuJMBwvtaN0qAkwF2C1kdsCSTAgJaxWwaVI8CARpA5AX4jwN7ScouNKyPAfticE/Z8IsDt3J5xyCwiwElUMOzwDyLACppGiCcOIsCQtBkX1NshwDuxHi5ZNSHAsxLGLhKtIMDUGXS8LYwgwOu0JSWALiDAjY0B1xGCHcAIw2NsllwdwGOyPkKK+BvA7fAOGMMMG8DYyqzdTigawFO4HjVe/hnAOUq/GVn5GcD9JC+49JsZwPgeAk0LYRnAVMo3SqNeGcC+4272WVUZwAOjpT4dUhnAn4VRpO0WGcCV+DjaEsAYwJ5iW1P1qhjAgUjrHjc5F8CqBkEJRmQWwA1PE1fiIBbAKaXlIvlPFcD5t8qevkMVwCILIF68OxXABNIxnC8SFcCybFnznI0UwGpssJp8WBTAVq5wC7kOFMCzF2Ilu4wTwDnCYxjBYRPA4HpNSobUEsC+QE47VaYSwBWa86lcnBLAYAyvBwqcEsDXZAfxe4gSwLVXxvx5cBLAqvHWoBY7EsA8pViI1zQSwHw9VNyrLxLAcI2wqlwbEsCqB+PBe+ERwA2/Y+eGuhHAhlHcddWtEcAIk7959zcRwLASnJpeNhHAzA1vXQX5EMDyAyU7iPIQwI/Kwlg+lxDAmQkyeiSIEMD8LLbxBGAQwObDlzbx9g/AlxKDzUTCD8AiUKVmYa8PwHe4ehVJ3Q7AVVdHhXu+DsCjghkTlYcOwBFeXOYcIA7ArwRXx1gEDsAWQiSM0fgNwCmmABDx8A3AbA7XDEDrDMA712dtKukMwAbfUgecfgzAaKcKOz5nDMAFJ+We1wcMwBfQBIAt4AvAqQFkFI2fC8CFAfeKe3ULwIgTv5Y7GQvADwcAhkrUCsDzTMUM8GUKwPxFH8E7PgrAbTOR9wYuCsDifdKZeNcJwJcinJ/VvAnA0iqIXceWCcBxDbMWN/YIwORrHATX2gjAH9nnb/rQCMACH5m1ZLIIwHGZQa01cQjAgqUaEp9lCMDef/oVZS8IwEiNkzk0/gfAViYaxg79B8D17NTWUq8HwD41w4rsowfACJH64+5VB8BzTepvFt0GwGlhAHpo3AbAYBTElS9FBsCJO7E2PPIFwAopaCgG1wXAAe6sF8XTBcBdjNYmx2oFwMHh9uyLYgXAAPIFoy1EBcAKWsQNu/oEwFt7PUNNzgTA4ClkJPTBBMDYVWBnt7oEwMDckskEnwTA2t5r7ZOXBMCqpLsL1HIEwMN4jrQYUgTAhl/VYChABMBevOtZpnQDwFpJgpAqbAPAk+hgTv9WA8DgCIeuJCoDwCUlQqaeBwPA0mOPKpL0AsBmEkYgAK0CwEuHjHQ9rALAKBLZV4CUAsAt/I8V84UCwCDBNbXOdALA0oNSIztcAsASWmADrEcCwBPfmO6eOQLAraTBUdbzAcBLK2EIYugBwGl9NHrh0QHAGy9VNwqjAcDb53jQWZ8BwAeETultngHAp8k6xeKMAcBfQFTKrnUBwHNkKRcdUgHAsCoRkTk+AcBjwY/mYjoBwOxKoRUNOQHAzRmemQgTAcD2KhgWyAkBwI+OufOj9QDA+6ZsehreAMCixx/kPdkAwNDTnAVOwwDAQkhcCHR0AMDVS3hFnG0AwI9qN3y0LQDAHWWmDIojAMDiIUdgARUAwIV7J6h08v+/3nyDRCyQ/78uAke/iWT/vz5v0EUXVv+/H+H6mRAY/7+UNv3UIxb/vyoq5xY8wv6/lUEMFy2q/r+KV4RNgYX+vxALBH5NfP6/grO7RH5N/r/QrjU8ySz+v2jtqKibDP6/kF0i9mj8/b888bBQTlr9vyKVfPmxNv2/3L0UQH4M/b/WAe61yTr8vyrcJj3IJvy/MUpHh0IN/L/gpKMOU8f7v8rdxmEmxPu/We4GvZS7+79khlnejbb7v5iLNEqfWvu/1rq6PQBZ+7/4hfIY3VP7v24EI8xnM/u/Qu6MrZ0T+79IHzW89Or6vwZeYs0G4fq/K9hXO13D+r8sc1FpfN35v5QupURs2vm/O7dtgDfX+b9IxxxG+Zr5v45yVBEUYfm/1twMnw1O+b/GTgAR+0D5v/u4Q8iN/Pi/YhRgZlH7+L9mhzfhFN34v/pCFfQx3Pi/tPZYdU3P+L+4AQuE/L34v3Q5wLdotfi/OqcZygyy+L+2IRgRt6r4vxGuw42Cefi/3uCKxPYt+L9KlCs0ZyL4v9hieT3pFPi/xCD22i/h97/ij0uGzMX3vyHJLpFxk/e/RHYyMDiO97/YfgdcEWr3v8or/APpSfe/zIoOxjgm97+gxI1tLfL2v8Gd/OGu6fa/ToUwROPc9r/YIRfNetz2v1CI/uOPzfa/3Klhe4DI9r9M1dbwtaP2v3SxcFsRjva/Khhib9BK9r/8EQuw+EX2v9uPV4Z6C/a/upsB5gD99b9MFP6Bh931v1QEXMo31/W/kmvzrNzG9b+L3Vtjtsb1v5qvcusPrPW/KJ0MQl+g9b98W3dwSpj1vxRofWk8i/W/UOGLXd5S9b9gWxD8Cuv0vyzITCV34fS/YqahXGmG9L+KuVP6NYX0v9kDWbmDKPS/uKtgl+UX9L+BJR4LwBD0v2aV2wnX2PO/QsZXcduw87/c2+e703Hzv6qkBLuOZvO/XrTwdWwn878c5bsJ1uXyvyB795yu1PK/BlXQswzH8r/4hDk+0sXyv54bQ0act/K/Uvn+QE6i8r/YRREmPD7yv27IV+m9O/K/ZgILMYwq8r/llOkyex/yv9dkaQ0xGPK/DhqNyprh8b9KBD9mR6fxvzIb7AcClvG/eM/9Qh6V8b/9qSMXO5HxvyuwjxsgjvG/etcUFhpg8b/2T6draTfxv+wPBaU/N/G/oPyEXTA38b/Mc0VEzjDxv/nB1Rk6FvG/GNEYvXsK8b/qqCMZLgPxv55FnC1K8/C/VAoj4jbg8L+TDsBIU9/wv0jLbQj+3vC/5JuGhMC58L+4NULflqbwv8iwQrO0nvC/nh8QxkeV8L/O/zsZJnfwv3+PU8h9dPC/Hm9QT5tp8L9BEk+Vxj3wvzyXUeMBM/C/9pGXgP8s8L+w8DeujRTwv8mOpXD2D/C/S39Pv7rr779Gcfd365/vv0Zx93frn++/5kEB27OS77+/uhNXae/uv0Rtc4QE6e6/L5N2fRzn7r/y0XVS6Jbuv5xrrSDzau6/mFcjkyNU7r+CutEzdUPuv7xZCJ53/+2/U7HE6Hth7b/AIRJoYebsv75nVRYc0ey/0vxD9YBW7L9UlQkEuFPsv5TDVSAnUey/fwkOMzEl7L+957ZBmx/sv5bNTuWM2eu/KnpTWRWm67/C34bLGKTrv09r6CMfM+u/8PjWV9MW678pqsyULvjqv2U56epCwOq/8epn3mt16r/KQ8Jv6vjpv10Mnczm2Om/+F5FRSCc6b84RpVo+Jnpv0Z3VNhKc+m/BAJJUqFe6b+lWJRhXxvpvyyvo0k57ui/NGTknr7e6L/TJdpYCdvov6uB4h1OeOi/cfXy85sm6L8sw9ruNg3ovxhl57BS1ee/y0BjfjjG578a33oUjlPnv73MHTfXN+e/iyTPFPY257+7hnw6xjPnvxho6zIuzea/d155A1O/5r8/HtZ3eJXmvyCsUYmOk+a/2AiLMGqO5r/JijSeK0zmv1zZv6bfSOa/cjBxiBE/5r+RQbmKfi3mv4VNLEwxLOa/n1Kb6o4c5r94gU9rl/Xlv4RDyu3Fe+W/MeOafHdd5b9otPx5d+Hkv7xLgW6F1OS/t/66g1965L/NqMdsq2jkvyyQgUY3HOS/Md9RimyM47/47pWyrX3jv1g+1PZ3beO/kSWVMZIY479qohkarATjv3MhftufzOK/9JFx2uHK4r+SmvL5QGbiv2TFuc0Wk+G/RtyUQiiF4b8tyP0cnbjgv+KzpIs+ruC//xdT9wyR4L8jwxAjTnPfvx42CuuiEd+/cUVjmeR73r+iEMt1y17ev0BsWf45yd2/SkF21JiC3b8R5IRIyuLcv+6XJJyr2Ny/QLgTLu553L+aQWZsFULcvzKagqaBLty/yp1R1rY227/UK+xoN+bav7dR0M75xtq/B21PT4ND2r/oCSL2eO/Zv+Gbimy/Kti/iCTEDw0e2L8u5Ekx6c/Wv4TkPqTLU9a/PLNVOC1h1b9lb0EOqA7Tv3+Ja/Y1B9O/5PZZHXLU0b8YhV2E5yfRv0EGlU7u4tC/NI4yExln0L/9XlMrFVDQvwJU34yqFM2/5+M1xa3szL8p1B1JDlTMv3iN0b/D1sq/GKPlrmJKyb/+AnRY+tfGv3A3tvSUKsa/F6XuL8U2xb8AiHnPRvTBv8zZtva2kMG/gp3n8jHJwL/EDnErc6u4v6jaw3sQQLe/IC59bjbCtr9SVjf3mnmvv4D1oJPIQau/OBWfAVT0p79oo2tQ9WSmv0DVeBJ1d4S/ANSMg6P4Jr/gJMVvtfmBP4zHf10BvaY/iJ1nnEy1qD+JBX2S266wPzFWY8lYjrE/2B8+USB5sj949blDmOe2P4RMHz3Ugrw/514+PR4DwD/eilZiI6HDP9SrFVPNJcQ/RsziGi1dxT8HLCdhi+bIP0ODqq5vk8s/T/bTlqGSzD9QEBrUmFfOP0tBp9rYrc4/qEmfWDxUzz8tr8QOpVrPP5BEHL8YZtE/ds6tPT6i1D+sU9pWoYfVP1YSjFvNYdY/5iekOsuN2D9ibK0VXjvcP9yuQgI7ld8/R8hdypEU4T+mzlXaBO/jP2J10LB13Ok//pcYhngU7D+rSLX90iTtPzbaKo95Pu0/tA6tMtpK7T9qM4Dg+NLtP+LVS6QsfO4/QBWGSY0k7z9m0oxxFS/vPzCRhazcUe8/jFHdDFRm7z+LHPklFqXxP1GvL7F+p/E/oJF2Cr6z8T+ANaEXjwvyPxmdLvAqLPI/nXup0YBe8j8bsYP+0a3yPzirHBVzr/I/1I+o/uHI8j9u39G+AcryP5J1fdhYCvM/jNM3JGUN8z+967ODwHXzP+JdpRmihPM/od0uWiPM8z8SIk/SVdXzP38Ij1pkGfQ/EdMKvJlB9D8jrg9VkpL0PwMpz27uuPQ/qaXL+H/L9D9ThAaAjdD0P2c78UaK1vQ/ZzvxRorW9D/0WJcqOPn0P/OD948iGPU/mF+uli029T+Oy0oEpm71P35Fq30DhPU/BkEbkMmS9T/cyR6pUsH1P4qu+eEdQvY/nP6R0K1S9j/WD3R4Pnr2P45JmK6Bg/Y/rfQ9ZGK79j8dhwio8Lv2P+BuBLmf3/Y/NO+jDCgK9z/Y+bD7mSv3PzTuuUSxPfc/TtsDs4VP9z+o+TZi5FX3P/Q8aiBYY/c/hJH68BKq9z++V0DjOxj4P8BGFonGGPg/gqOed56H+D9yvnNNFtP6PzZgaAD6Mfs/+LrkmQVP+z8fBQCPDej7PyzSnm8Uofw/yQ2A20PF/D+nmAZQtdH8P+lnLosA2fw/m1/jP+Hp/D8VBYd65v/8P74usYmMgv0/cg5+q4MB/j849eOvXAn+P0HHlLEbM/4/7xZA7XGV/j9VXiel35r+P+0vcvCvoP4/NU2m8kMo/z/JzlCKaCz/PxVsCB+8NP8/IT6nADRA/z/fPJLIrEf/P7HhngZfSf8/p7uU4t1M/z8zlwan0lH/P1cFCXauVf8/z5HXQWZb/z+E29r/CHf/PwayAZ/hef8/rSsTJuGB/z8B6YPbqYL/PwBrOUdljv8/+6jT5/+c/z+EWznqlqz/P7EAWAfItv8/khkG4Jb2/z8PVU/nNScAQFHjh/ekPABA9lAkm4dFAEDofUhmrEcAQDgo8oXpSABABfAyuY9JAEAjMBSF1loAQLnMsGnwbQBACAJZUQl2AEC6hjvwUnkAQHV3c6W5fgBAkllhveqFAECi7SkB8I4AQBQndJEaogBAhYmpbyutAEDuI/b+5rcAQL3creQIvABAK9CSclDWAECTaBYvK+EAQM1OL7MQ6gBAB003EMfqAEDfFR1b5vMAQAR1nCQZ+QBAO3ucoS/9AECN5TrXVAgBQPOqAp/sFgFAUJUH5W4gAUCsQzrsviABQGHTPTAxIwFALbbpaSYuAUBxDr3cpTIBQDG/L5QqNAFA2rBzvfJKAUAJv4u1ZlEBQEEKfcE3VgFAF4H0fmpWAUD/u1rtcV8BQFv8O4JiZgFAzmtcdS1uAUCB+3KoAnABQFTuyycTdAFAATw0s0J1AUCRUHvynXgBQFw+lT63fQFACLY/h3CDAUDPDfPr/IMBQEdBYygghwFARgrE+DiIAUAuhS5Ly4gBQLeC4E31jAFA49vHRIWPAUBWPf9QGKEBQCg14pTIoQFAEXmfLA+kAUCHlJQaj6sBQCE4GQQQsQFAe0QBYO7FAUBzSv0ZEMwBQFzyivNO0QFA3/VhoyTTAUD9FFambtwBQLtWd2LQ4gFA4qfBsF7mAUCbpuKy4+wBQFNDwri18QFA3yEdjH31AUA9kHCAvPUBQBLMOkk6BgJAsLV3v6AJAkCOcSkTdwwCQLNEYBbkDQJAz7s90X0PAkDf/4g2NhQCQGWhEPzqFwJApnLhkPsYAkCa6SKCPRsCQLLV/sHxHAJAy1DtSXceAkBN6ituACsCQJfUvqrAMQJA+H4rIek2AkAefQZuOzcCQAO61ThLPgJADTyH/DFCAkCoZ0ZevkMCQLAMVq2/UQJAsdr/oClSAkCyqbuoMlUCQMLL5kgKWAJATCT/pqLGAkCbapVUO+cCQA==", "encoding": "base64", "path": [ "_data", 0, "x", "buffer" ] }, { "data": "5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPyNLyCH93u8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/I0vIIf3e7z/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPyNLyCH93u8/5t6dzKIL7j8jS8gh/d7vP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/I0vIIf3e7z8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/I0vIIf3e7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8jS8gh/d7vP+bencyiC+4/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/I0vIIf3e7z8jS8gh/d7vP+bencyiC+4/I0vIIf3e7z/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8jS8gh/d7vP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/I0vIIf3e7z8jS8gh/d7vPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPyNLyCH93u8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/I0vIIf3e7z/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8jS8gh/d7vPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/I0vIIf3e7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vPyNLyCH93u8/A4b87uhq7z8jS8gh/d7vPyNLyCH93u8/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/I0vIIf3e7z8Dhvzu6GrvPwOG/O7oau8/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j8jS8gh/d7vP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/I0vIIf3e7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8jS8gh/d7vPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPyNLyCH93u8/I0vIIf3e7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPw==", "encoding": "base64", "path": [ "_data", 0, "y", "buffer" ] }, { "data": "jevKIvOGQsBOffMmPL44wOYyG0NYKDTAJ3BZ+iRAMcATc4bqbBUvwPayuFZbhS7AeVRvw0hqLsDm5HAzkw0swMsl3wkP3CjApNF+G/5FJ8AnHoWbEMYmwKcPMGgPGybAV21S8LESJsD006QCfeYlwFHHxUCMNCXAUp004H79JMC2fH0t68AkwJ/ufii8lSTAjup/HVpGJMDc4BlyH/EjwBD09dr3tSPAt2yoVMypI8DFg+Dio4MjwJwH0bhrESPAA0LpUsK0IsDGSIB+65AiwCUBkfNk4SHAwuavzt/fIcCcklClKK0hwECUMxKbeiHAtxpqLGdHIcA9jjRviCkhwBSNzWqMICHAmEqKirWsIMAl7AQyMZ0gwMogUEfNiiDA70gSq+ptIMD3A6G7i2YgwBoAwT95HyDAZIaV7hweIMDSpe1+es8fwDGmH5BtNh/AAAaxq7DTHsC6mKrgN0AewHKqGYg+5B3A1Byb6VHZHcCw654VktYdwPb8bCBtmh3A6Ux+lXmZHcCXyt9/MZUdwNal+39OjB3A2x73edyEHcALJaskZHMdwFcmgC93Qx3AWWj6rmlBHcCXb94B8fYcwLmqzjt59hzAuDFjoYTwHMDnpog6jmkcwLQCFALpGBzAmC+GFArqG8AngMp+WNsbwD6n11EYyhvASgO3+ALBG8AAta4YsogbwKWvYAJgaxvAHdTsYCQ/G8BMTyo7Xp4awERCw1g1WRrAsfXG7u4yGsBg45v0bwEawDuF2vrM9hnAuL9SzibCGcCwhfRD0qwZwGDehBhybRnAdIxDBVU4GcDhsjgusCsZwBeQKDsrHxnAFl9mlkX1GMBG+yqIrNkYwIxdX4T/0RjAxFC4m0/MGMDuimhrTMQYwN32aM1ghhjA6oQ6dCaFGMBLElVMpXEYwJ1HXM2MLBjA4ztv5M4AGMBZKG5qtOwXwGdVpCv4nBfA6FXEWLmRF8AFgEe2mGsXwBlpXvwCTBfAX0eLzxQsF8BXQ3w4cyoXwLyjCtrFFRfADDGWaiMLF8DEo5IR9+8WwF7aLhV53BbAEMppCDOIFsBvwiyFEIcWwHgfvtFdchbAyLTE37diFsBgrhgijy0WwD8vO/rKHRbA6RUcWy7/FcA1oWa2WcwVwNo6hGUPkhXAw2FjzGuIFcC/4KlU+YEVwK1z8ghIeBXA2NDuibJLFcBVKO2eoUoVwCazNnHbPBXAEsh0g2QwFcCjwuaqUjAVwCnhVMsb8BTAbp6KHt3NFMCvhzT74cEUwPM+VmgFWxTA4HaQgw5JFMDgalCAOSgUwIMZROI0KBTANaJCrQYIFMCt8iJiu+0TwOxHboB46BPAIPfOR2DnE8A9JAmIHtgTwIu49FgS2BPAFqyK9o63E8BC7D3/j5wTwJATV7qbkRPAultM3+SNE8AkH3Tje4oTwEKAQmxKhhPAeMtri8WAE8A06bo3c30TwHit9/GjXRPA/c+ZPrZTE8Cm578zHk4TwCoI3MRCQhPAOcI3cD84E8AoVuYvTTQTwEqcu0fLIBPAU3ZGoaseE8AsYmblReoSwLUfJrP4tBLAv366+2GyEsAbXsd34qUSwIyq/+eDlBLA4SawQzySEsBGsuBevYkSwPL6PTf1hBLAr4vOwvxZEsCC5vM9S0wSwG/0y2hoPBLAupRmNXg3EsB2q3lX+jYSwNzYDly3JBLAS5TtVwYREsAf1lR2yQkSwOP35LaoCBLAWw9rD6oAEsDLpOmYgvkRwJgWvlfl6hHA+ixX5eTpEcAJpPdn++YRwL4RbFZu2RHAOVg57qLUEcDcg5SfD9MRwJGy+feT0RHA6f2M993HEcA+By7RqccRwDWq7gKwvRHA3WAtDTqxEcBI6/hjGrERwFmnt1y/pRHAsAZalzZ/EcC4NyCSXW8RwF0DhwcqZhHAPcpTwaFhEcBU4gmLcV8RwM0ksbSTUBHAU/uSMNFMEcCve26HQTcRwDsv+3lrHxHAmLIIudQeEcB/BAAvrBwRwKX7saMgExHAiEmHSvMLEcCdNeM27QoRwA41k9C2/xDA8lmIhZP9EMAKLwMrde0QwEp8TqU50hDA6bHR1RHPEMDeiAk7QM0QwDulW/cyxBDAldBprOSeEMAkWCzSnJwQwMPvp4JKlBDAaWENobGJEMC/eosVjYQQwI8uPFa/ZxDA+NxBkqhhEMAHsGMraV0QwDDie7dTXBDA5tmqR11YEMCqkNDj+FEQwIbYmlmwShDA0lqAM89IEMAssVr/w0gQwILWpvXxRRDAIF4+2vZDEMBCGDElUDsQwEa6axKZLhDAzAUwRCIeEMDdKm3uexAQwA8YTBJ6DhDARBQPf/77D8Caw20VAroPwMMI+1EQrw/APJFOaMilD8CTj6BtMKAPwLLAAkQVmA/AH3OcYBGUD8AekYYrGnQPwGEzO/krZA/AmjttBOZLD8BvPRC/J0QPwP7r17cFGg/ArdTy95b/DsAt75ND3vIOwAMSX2lE7Q7AAEgSXla7DsBaZFQhd6oOwJXdPuDynw7ALoe9ykOFDsCzJrEJMW4OwDUj4Qbvag7AZjVoNycrDsC/pgRW2yYOwEvkx2kQIg7AuE+vsaMhDsDyDXaDnwsOwIrLcUt6CA7AEMzlavUFDsAi35qLIgUOwB8jJ7n0BA7AUZc6VE3tDcCShIMKoNwNwEjwPsnM1w3AWwMDzMfNDcCGVAhBLMINwFm4rJgwwQ3Awwqlskq9DcArX1VX67kNwBWl3lLLuQ3AcbtRzZelDcAagtNXhE0NwMJnB/aHNQ3AFUxaX20kDcBjMtDmFA8NwJnKa0Hd+AzAfn+oMH/4DMCq8XlDzvAMwGXdqILO4wzA7qbj8rzfDMAvYGWzP8wMwN6dKEFHxAzAo6RHEyC9DMDTUAxgKboMwF8n5X9AuQzAKe14Mv+xDMCRw+gaTqwMwOSHSSgRpQzApReInzOhDMAjzlYsnowMwNGB3UT+hQzAEJEp9b53DMB88BNqAWgMwG1blFFxVAzAF88AhjxTDMD9FGjh3EoMwF0ojkL9RgzAVsK/0OVEDMAPuioQjkIMwFZ2U9PEKgzA/gj8sVABDMDajEjFhv8LwIAObYGB/QvAzNYtYkP7C8Bj7+VLq/ILwPm3i4Jf8gvAbAeEMq7pC8CuhwnsEN4LwKeNuXjp1wvAiJqzzv3OC8DK+004KsYLwOJSsXTbtgvAwM/HvN6vC8AmR9cZxKYLwLyAonFynAvAGRgPkSR6C8DaS12OMVMLwAYp9gnrSQvAi41rz8c9C8BbOCreKDsLwGS0kBWPJAvAOt85bmMiC8BARp5q0vgKwNSh4np35QrAlffrBEnjCsDYu8yUNdsKwCHgD5hOuArAwDwWLTmYCsDqrusEwpYKwM9XzOwskwrAtnTNOauLCsDkEqXmIYsKwC7Uv7ZUiQrAxKQ1w92FCsDct9jtE3oKwDsLEGbPbwrAIOa+Ki9TCsBGh1v781IKwJlSNkneUArAhbFy1oZDCsDC/YGORj0KwK2Oe7MJKwrAUjydFeQoCsCayCuKTRsKwMXjV7OT9gnAh2Xe/93oCcAHFosEKOgJwBRtDiE45gnAGNV4+QvjCcC0+/v7S+IJwIH6Dl0z3QnAZg049mXUCcDrkgSu2b0JwNbKW+YPuQnAdgjijzG3CcDN9Z9/qaQJwGhY9DAhoQnA9Ot7vEGgCcDULGRMVYMJwE+NRS5HdQnAziN2yadxCcCPU5cbpW0JwOxiPMbBZgnAIvbHqrxQCcAirlkGPk8JwJrod8LLTgnAxnfllOBKCcC1t0Pss0cJwEyk36EVPQnA50edXM4zCcDZ96lX+jEJwMIYRYjjEQnACKAThu0QCcBbOCK09/YIwIZS0mfs9gjASoqtTin1CMBkI/jVmfQIwNLIelEJ8gjA7trB3VvnCMC2vCMPr+EIwAzmwjDy1gjArfDVdKTJCMCK95vX6scIwPTkxA49xwjAnqk6WGjCCMCHWbaUTrEIwEBpMwYjrwjAZBti9RetCMCKdXoeVaUIwI2xJL7OnQjAGi0qt7OYCMCDELgizokIwODf0eTNhgjAbqy7A0p2CMCwYJzXIm8IwDgadStqaAjAWE7tXmtmCMBQvgi7hDUIwJxazNJMNQjAztMjXqwtCMBmK3ViwCsIwAmncZP1EwjAG4jWacvsB8Ac1P66A9YHwKLkHxDVqQfABNxK+b2aB8A6Je35d5YHwGBUk2RbjwfAgvImjK2IB8BCgdXS9XsHwDsFZvpnewfA7UE6ynB5B8AE1vbKjnQHwJBvqJ1AcwfA5Gkmjs1iB8B5GHfQCVkHwKWQkDwsUAfAuGs+wH5CB8BrET70AUIHwJO0cX5uNwfA5JcRZTIwB8CQFIz3KzAHwLFOEi61LgfAQ5XC81QtB8DqWE+xUR8HwHZth9SoEAfAEFqLc3AOB8CB5YHiyAwHwFrjUsm7CgfAEJsi5EgJB8AZv8ffLecGwG+L6oPQ5gbA4zv8aYzVBsDyId8Jl8oGwExeeG/NyAbAdR1xTGrIBsDKYAHy2roGwObU+j9etQbA6IFioxWpBsA+T3rMtqQGwNPlSIOgpAbAkzbFb5GRBsBQnhPy9JAGwIp4lPrnjwbA+7Lug7Z7BsA9wRkCUXsGwDbJjiLyeAbAZPqLZ1BuBsCE6iiWVmkGwINAVPLiXgbA3iQFXslaBsCzAIevXVkGwNtv3RNvVgbAnNBhAWpRBsB84oRwJkYGwHAhctKsRAbAyBLQs5FDBsDMa8KSfUEGwNt2vRynPAbA7M4qhJQ7BsAf0OtKTzoGwC3AJFCFKgbAQ4x2fEMnBsC53Q7dcSYGwAGgwhvQJQbA2BNtayUbBsAa8G/VWRkGwMzaTapUGAbA2D2oUEgMBsAVpMG5iAEGwMzExhgH/wXA/PY63pz+BcD0pI8B8fcFwBrf89Q29wXA0cMoWQHtBcB7jgyU5OgFwNUh0lAa4QXACiFHHyHaBcBSIleTZNEFwFO5OxSEzgXAEjuh57XJBcCO8eWZb7sFwGit9iUjtAXA24A180CwBcCrVfH+XKQFwIQv/doMngXAlpDgejOaBcD1UtJRP40FwJUQFOcuiQXA7Ji7Ws+HBcCFlw8vvGkFwBIaMaqiYwXAhrJZzIBVBcAQjLnCxlEFwCUYeySATwXAKN0j+rZLBcAomVQp3UYFwPeHaK/5QQXAA9rbesNBBcDgfwOPCDoFwH5aTDmzNwXA0bTaOsM0BcD61SWaBzMFwBsrM7xhMAXA2/AXVN4rBcCYhMzSLQoFwMQTHG92+wTAScJILFvwBMAHlCTmB+8EwFN29kDc6QTALeVFTCXpBMBMlkW75OYEwPGDwsit5ATA8Rs1NSDgBMBd0WG1FeAEwDNjDisg3gTAm9zAAhbdBMB/lUPWadsEwJXtn6Uf0gTAe/yldK/KBMDRT2xn6cgEwBEp7jIOxwTAdIwSyu/FBMCl2cx2T8EEwFQT4Sw/uATAJiKa5XW1BMAc3RQ22qQEwBrbgPPSnwTAuSjLgKafBMAWgNK6z5sEwHr/uHLqmATAy6Xh0GqVBMBeCB3UmpQEwCp4SwErkgTAGN9HKbaPBMCat7q1rIMEwFIH7bp+gQTAB4D0Hpd+BMAdIfIniH4EwH1+9yJTcgTAXiCg83FtBMBSWnKKMmoEwBAqsEUmYgTA0JKifrphBMAyo5OUamEEwA7Dx5zIWgTALZ0DLXtYBMD9kHUfNlMEwBZU0ZRPSQTAcj8qilBEBMA4k6F1fEAEwJw5VyWCMgTAO5BDIp4wBMAz901lHi0EwK0TA636LATA0P3I9kggBMCPUSrT9B4EwFU3Q8h9FQTANu1MCjgKBMD4cjMgzgkEwMqD4iAaAATAZb0ceMv4A8DK/GVI2OYDwG4dBVux5APA6Pxy2SXfA8AjdWGxk9IDwDXZQWQl0QPAB4BV08/OA8DjnuBL2s0DwEUEmylQywPAGQqEmzrJA8CjX03aXscDwD60pnAwxAPAXbOnHqPBA8AyGB5liboDwGlmnOTzswPAHjJZKn6xA8DkBJY+XbADwGASPo4bowPAHraprLKeA8CmoEXxWp0DwE0UWJVrmgPAWIZdbNeQA8C0Dv4prY0DwOHIEQimiAPAQRepSv2CA8DxglsjFn4DwAygBc+9egPAPr63F815A8CyAmBHsXEDwGgtyS4icQPA/vHWPRlnA8DT/m8Z0mYDwEfAhNiCYAPAvQNaqtZdA8AuCGS0elsDwEfzYfboWgPA93Rg+SZZA8AWU3feslEDwJn4ZiaoTgPA2TuPce9NA8AEoax5Y00DwDQxd04OPwPA9s8jdNgyA8AMGaxony8DwBWo6OaTLwPAGhfp3agnA8ARBOzm3SMDwMvLEV5SIwPAmd0d9lIdA8CLmHeKsxoDwK+9sFddEAPATeEggeAFA8BeY+zlMfwCwIQ4LzL29gLAok6Egmn2AsDW2ZXECe4CwO/wZR8H7QLAHqMI3PTdAsDSmcFJ+NsCwAmAuyfD2ALAw+qZAJjRAsBdMLsM29ACwHJbp13VzwLAG2i1AzHGAsDwHAEBhLQCwHEj59lrrwLAfcVF7TKrAsBSAAIqyagCwEuvAnAzpgLAEpdmUo6hAsDGQnlc7KACwA0symRroALAtwjoFxidAsD1eWSgqJoCwEoEtjqmkwLAmv0p32WQAsDi7GgdhosCwK4m69zchALAjp8owzl/AsCNuGyxYX0CwEvs359OfQLAAYVY7EN5AsBjGPhtUncCwOBPlYIxdwLAsIs3RmF2AsCZg3PTi3MCwK/tFFs5cwLAmAwBpslyAsCu8GsSOXECwBujHbHhcALArg5tbIppAsBUo+hiFmkCwD78SukZZALAwlxsTeJjAsCfwFQII2ECwHqYsyN9XQLA8rZW6JpZAsAqg6I0LVkCwBEDcuCfVALAGAagjzxSAsCBUCGkdlECwJsOOLMrUQLAaypuTCtRAsCcjhlZ508CwG3ZpU/0PALAMOPTEJUyAsBLJFIo1DECwEFf2DPmLgLAelX0GasrAsD5yTiOqioCwOtdsKGaHALA4WFwO8oNAsAwYH3FRwMCwKwCYlngAgLAicpJiDz5AcCtyFQtk/MBwNkUzyCz8AHA2h7UER7sAcA8Pwx1GOwBwF/UxHnQ5wHAw0WfxnbnAcC1MgrPCN8BwBRspCgF3gHAQHpHnFjdAcBZXAp9MdsBwCTn5nQd1QHAqYfr6YfPAcApMMTel8MBwM4m4frHuAHAqIh/qOy2AcCmQaD/vrEBwDLHgTRQrAHAeorxGPqpAcDD5x6kHpwBwE8g7lZ6mwHANAVB2z6UAcA/2UDwLIsBwHPKLMAMiAHA2P7g23OAAcBmuebXGnMBwJUs86EYcQHAWPlaY9FvAcBWjm7bEmwBwAnP03rTaQHA2c3380VkAcAHL3GHyWIBwNUijMUVYAHAbVclg85XAcDSde+zNlMBwKiSe3v5UQHA7JKAgydQAcDwoNqS9U8BwCHS4CY2TgHAkzjV3mBNAcBZuG34zUoBwEhmYGGsSAHA2mLeOslGAcDH2KZ0kj4BwCZsRp0wPgHAlhUla9Q1AcCAvWj9NTIBwJi0wOVFMAHAAnTtRdosAcAbkqMe3ScBwOqlD+UrIwHARHQXrZYfAcC+2ioGnBsBwKQBnzyvGQHAFl8yAscXAcClL+iq7RYBwB4VV/1zFQHAq+EiHTEUAcDvyM7yEAsBwOfQQiN5CAHAx7gpiN3/AMDBWXBJePsAwKSNTdwa+wDAhON2T4/4AMB6R+TF8PIAwD7zCE6L8ADA2XGyMmboAMAEb7+RI+gAwHWCm7ln5ADAPwey0YvfAMCbYc3g594AwDhftN6J3QDApszwUX3cAMBTcDgTNdkAwEOyeBEAzgDAQqEnpofKAMDoH8/5H8kAwIUlCzc9yADAS3iepp7EAMCAAa0xlsIAwP2jVcQmwADAirmU9sS5AMAMPiAQobAAwHXbFP7HrwDAzW8YMqGsAMAOl1Ui/agAwJAp0yvqqADA9SFBSIunAMC2FtIEhJ4AwBx0X7V2mgDApr8Muj2aAMCzZdrL+pgAwDvQiHtAlgDAqYvKaYWRAMC07/zpOI4AwIprBnz6igDAiAnbNlKHAMDtzXDb8YYAwDOvhF2cgwDADRqFWch4AMAsO3klnncAwB4x9DIsbgDA/rQmtbdtAMBfWuzXCGsAwP6ISvgCagDAns6WD/9oAMC46f8vLFsAwD4/Y9jHVwDAw9xz5oBXAMAlxV9lglYAwD5vnBleUQDAGbWc4cpQAMCi+VG4E1AAwGy2BiFBTwDA6yf+F0lOAMBIIyx6zz0AwAvGMnIlPQDARaouaPA8AMAHRMu60DsAwMRVQQPbNwDAsSV4kEI1AMBN5S/ptTQAwM5vAIfTMgDAfSZVJ8kxAMAcd8Gkiy8AwHqzjjJMLQDA7NBejJ8lAMC1t9a1RCIAwG8VQn4+IgDACOEZdmMdAMC4aX5auRsAwDoaSr8MFQDAZUtLIgsQAMBG7RelUQ4AwPsF92t9DADAgyDVfG8HAMBltKk6ZwcAwN+fNWvwBgDAux0AP/UCAMA5KLNXfAIAwFwie7Tr+v+/jpZo++P3/7/Skdq1vfb/v6Kq3/y89P+/COilvDjh/78mSCeJYN3/v5L2MPKByf+/ruZATkbA/78MjyYu1LL/v9j/+97Asv+/YD/NcOKq/791anyqmpz/v5puIeGkmf+/DJb8YMeS/7+A71AUL4H/v1wSW/0pfv+/INqBorx9/7/9qJIDh3L/v6NaX4N5a/+/Qwg8AD1f/78GqNslDVr/vwRc0ZZZWP+/tea0yjVV/7+QuTui3E3/v2iXqftSP/+/BDyN5R88/78Vpi2fQi//v/sEHfqkGv+/llcB+NMI/78DHrnVKQf/vy7SbTLw/P6/QnPGN8n7/r/2QJZ1VO7+v4ZGjSjP7P6/IpYvTlHn/r8yXeor49z+vwDgsbj31P6/rncLSWTN/r/sw+EFP8z+v1QQJ0FQyP6/xVyhf4zE/r8spbpC9cL+vzZy3dF5wP6/kD+VTZG9/r+T4qL0HLT+v26IT9ILsP6/dq/Jk5Cv/r/991oMFaj+v6rpEJ4Em/6/aD1I4qqX/r+CJY6j3YT+vwq1wM6QdP6/zI0nk95y/r+zGBuKDnL+vwbIuoyxY/6/QHsjhutd/r+fZ3ThKlb+vzs4AfO3Rv6/+pAqmlFF/r9MziqYK0D+v/GDCLRuPv6/cHGruQA+/r8CkA2f+DL+v/a3BuAdMP6/Wa6KiOsr/r+otSc14Cv+v0lq9X3rI/6/1JF8neYi/r9q/N2HvCL+v9TSfY1xH/6/vnbxaL4Y/r+FNdI3+A7+v9wYsUEkCv6/DH+imfb9/b+un5gIe/j9v06Rq85G5f2/HqJs9vLc/b9etTOQr9X9v6GWRMxswf2/u56Xm1e1/b82XN+yPbP9v9q9bJJQpP2/sPDpm06c/b9bFVW0P5z9v6pi5D7Ik/2/iaf1xH+P/b9Y2w8BUIP9v0WQHWG6f/2/NWmlbL15/b8aWfEpAnb9v1rflHY5df2/fTDERrBq/b/Y5VBNkmX9v1wnwIbuYP2/7lnsW+1Y/b+4O9ypLVj9v2EXpj1bVv2/bhH90fhR/b+y29KzKk/9v3hbGHgmSv2/sFJcI2hJ/b9vy0m4AUj9v14m24jnQv2/nqwgEcRC/b8bO5dDn0L9v7JDa2cKOf2/KAQlw4g2/b8pfS2hSTb9v6Y1D/5BM/2/D0TYnGsx/b8EFWixVi79v5ZpLGdpLP2/bias2Egk/b8Ckb1wFx39v7z2KNTeGf2/OMMU1wkU/b/t7e92WBP9v9vtVVXuEv2/UCJoj7gP/b/QiuIgVAj9vy7xkRjSAv2/+H/ZWyj9/L+d7KpWOvj8vyQRt7hP9vy/KuidYFPy/L9kBRLm8O/8v+kjPnZO7/y/7geXv+fn/L81Oyw4+uH8v734N+4S4Py/oBAW8tTO/L9kV5Kbs8r8vz5T27xRx/y/hjj4x8m9/L8mxLmVLbz8v9q/GqYlsPy/To71zh2q/L+aph3MGaT8v25IjA08n/y/8K8T4Fyb/L+HdHeB2pr8vz2qWegtmfy/oDNViCGZ/L9HSz/l+JX8v0RPMtggkvy/tllw+6WL/L90CzvikIf8v9F/Td3sgvy//mBQDOOB/L8gBlX9dYH8v943QxoQgfy/3DwZz6V+/L+hpy0DxHv8vyJC4laVefy/d+mhO+Jy/L9K0dTdSnD8v4WwYnG1bvy//UIRvKRt/L8oylzr82b8v0QeWT+3Zvy/cLd+KFdh/L/7+6o/7Fz8v/zyYLu+U/y/8bjgrD1O/L+dRf2VNk78v/NIYnu5S/y/QlZlPepI/L9ObZH4+kX8v5fTqK0EQvy/tpI60Xw9/L+uEDZAATz8v9JZfEOqOPy/wKg85ukv/L+05lb26i38v3TTK0ogIfy/qKMrQYUW/L8cFzVllRT8vyqdBHyxE/y/6Hx3N3MO/L9jHrwpFwz8vxyx1ecACfy/3qGlHg8A/L8LvGlcTfj7v/Z4pADb9/u//EYxexny+78kB9AhXOr7v75Q+MHb6Pu/sB4/eznn+79Dg58BueH7v3y3a8rQ3fu/oOvB3/ra+7/HKBC5v9j7v56SudBJ1vu/mEtL9XLV+79z1Q274dL7v7bl6JLqzPu/7FyBEvK3+79McPLKlLb7vyTDg7aitPu/vKNmo+6z+7+AsBqKmLP7v/IHJFZ2svu/T0ZqSIGx+78xgA1xMrD7vzBQBCQsrvu/jjE/ceWt+7+teiutIaX7v5LAmpW4pPu/WtN8dgaV+7/qVTXUcZT7vxbCahf1k/u/KT2YcdmP+7+QS/Byz4X7v1XsUN3ogvu/uMV1UUOB+7/sGoEkQn/7v6TmRGQpfPu/k9HBJqZ2+790d8b9sG77v4pbTz/EZ/u/xhPmauFh+7+U+UZzHVX7v83TvmA2S/u/AOLT7ClL+7+Y5aqoO0r7v5K6JJI2PPu/wN3eT6Y7+79ienazCiz7v8v7X4NUKfu/iYzGk5ol+7+eZ9CtGiP7v4xAeRzCF/u/yGPbAfoV+78yfmGrZQD7v6lS1mIDAPu/7DVu75n7+r+elDAp7/X6v9LZgLgf8vq/SGbd0PXw+r+yeGVNw+H6v36vLB4v3fq/47nrifLc+r9P6wwKcdv6v6miTnKk2fq/FjKGagvU+r/l5v/TTMr6v8ZhrVu4yPq/ruVn+QnC+r8eQS957b/6v4Yuuw1Yvfq/kThJ4Z68+r+AsSxOUbv6v97nT8GPsvq/Bi+dNcyo+r895P7OT6j6vxBWuQweoPq/LorSNESc+r9AQfkwRZn6v4GySRLZlPq/PhpZc6uS+r9EctKOu436v6gK5DaJjPq/4PuDnteG+r8cthza0oP6v1744gNcfvq/ogNSz496+r8KboHutHT6v8grQUCWZvq/8YfFjhxl+r9psA0LkVz6v0mqwm25Wfq/0KgINyxY+r+k7wTnPFf6vz6q+XXFVPq/9l9m9w9U+r8GjtZi4Ez6v5wPqxCvQPq/PBCKyNQ8+r90iaGIjDb6v/QyImy5Jfq/v1aIET0i+r/hVMoMGiD6v5xuNVvQG/q/0pesldsJ+r8jgXsSOwX6v6MEeses+Pm/26IZM433+b/SupaodfX5v3MBDWfd7/m/tUqG8E/v+b+cFaZC8e75v4wWXUbQ5/m/3nUoxnfm+b8aTT6jfuX5v/7b6av34/m/FZfTGBbh+b/G+6cqcd/5v1lfjsFB3vm/mBXpM8TZ+b+qa0tKBdj5vxir2LIu1fm//pOn0PnC+b9RHLRQ18H5v1/VrETmwPm/cUgzceq/+b+KrQD647/5v6CRQaTuuvm/szlwUrK6+b8mYVxTdbD5vwypTnZ3qvm/Yo/K/LSj+b+6Gy6e9aD5v+LmzzYrn/m/9R4Hncyc+b/O/r2POpr5vzCYP9grmfm/frHcXUOU+b9iZy3TvJH5v5PMz0fpkPm/EHwxGsKP+b/CdMNJk4L5v54upgaPePm/Al6tt+lt+b8Mqe1rcWX5v5vg/j6IY/m/wVci4aNe+b9vqSSGtV35vwQDCtp7Vfm/5zqo+YRU+b9y81MaolL5vzQfgm3qUPm/tP066FBN+b+CIBNXxUz5v7cfXXrzSvm/ggDqLkVI+b/g+aSI8kb5v0zYQQSdRfm/MIs2p6tC+b+a1FIhJC/5v0K5/VfTHvm/jiEaUMQY+b9OQSmQORb5v7K4PuVlDvm/QANiz/wM+b/Y+d7epQj5v6hX4xb+Avm/axc6NNH/+L9m0Flfz/j4v+KY/9U38/i/4OYhd2/v+L/JEheN4u34vzxSZXHz5fi/rMjUUazi+L910pR+tdz4v6edTICM1fi/Mj886tbT+L9GPn4rDsD4v2ZXzJPzvPi/fICG9Juv+L9jrJKX3qf4vxhxh4SBn/i/JI5nRsac+L9mLbD6xJz4v1Spv2uxmfi/kgvbGB6Z+L82U56m4Jf4vzb4u2Wyk/i/yL+XmgST+L8l/QsEWJH4v5JatNtOivi/XChu2WuH+L+c3RnW6oT4v8ZzcrXWfvi/HrCJDjV8+L9AU1mXHXj4vw5ofzhpcPi/LhTTtRZw+L9x8Qy8hm74v95Zr6RHbfi/dnL9x9Ns+L8rVl8Vh2T4v9QNhWYyY/i/U3zzEw1i+L/6407QSmH4v1nKRgkgWPi/WL4qAThW+L+ggbP/+VT4vxzuf9IpUvi/93FGNZpQ+L+3+Aktukr4v1gty9pWRvi/ZMtJgaNE+L88966cCEL4v2wA7Z3GQPi/PoYMfyhA+L9rHt5RJj/4v9Xi9zBqPvi/IHKHqDE3+L9GBVuQETf4v69+b3fUNfi/5FEfIYQ0+L/MajThnTL4v6CkCahBL/i/In90xB0t+L/OyxdAUyn4vxA1oIi7Jvi/RcVmAacl+L8yy5hFeiH4vwuLW+OmIPi/qhJgCDgX+L9RbAAAAxf4vzw7TIwwFvi/Uf1+2xgU+L8QXTETkxL4v4OpahJzDfi/1t3T5oQH+L92QBj9PAX4v6LF1kl+APi/GLsl6Mr797/M6yvg+/T3v0R8jUyc6/e/EH6MXd7q9782WE3Vmer3vzo7dLeR6fe/VM1P8pnh979/hfSF6d73vwqpjGmS3Pe/sM9QFCPc97//q8agc9r3v4gDTmYO2fe/6UdOcZfX97/JvqVUB9T3vzTHitSF0Pe/gbtHAQ3O97+QTSjJts33v04szZstyve/BLQeyjjC97+2+zxk/7/3v26/zITHuPe/+gvMHym2979cbo/USbX3vw78GMEQtPe/sMFfqVen97+3JPFrV6f3v36APj10pfe/gtC/CXSg978C3I11IqD3v+wcb13Lm/e/iOfNzlKa97+8rljWiYn3v/QQ1ICug/e/1B4B0W6A979ovz+JpH/3v5TxjwQNb/e//aKRdDVr979kt4DKM2n3v7Ee5ekQZfe/0ss+Nrlj97/brqcXDln3v9hpQqaVVve/ZYHnWTJS978sCFrWH0X3vwqgZWFVRPe/YN8FZ2Q9979smLveUz33v5m2T5i4Nve/FmmTClQ097/YThryTzD3vxRANKdJKve/SBSuqfUl979etKVKTyH3v14CgWsbIfe/mvNyRYEf978UMRO0VR/3vzQbCtOLHve/dKelA/ob97/aJQHj0RX3v0xAUal/E/e/h04v4NoH978P7pzPFgb3vx42Zz9y/Pa/D0HkLOX59r+DhhCdhvn2v+mV0UN6+fa/nHI9DCL29r+o/3LqVfX2vyY6uI5a8/a/wltqsEnz9r8Vy7ieI/P2v6tUL0YH8/a/RPNcD9Ly9r+OCvfnsvL2vwWyA58D7fa/LS0+XdHk9r8lx//AGM32v9Y+vfNTzPa/qr8s77i/9r8G35lxc772v0wJq3EJufa/TnBRCJ209r9T0IAxh7L2v+k6VsyIsfa/0kcqvmux9r9a5p5Ae7D2v1isdXnErva/WPzaWe+q9r+KbN+lwKr2v7FzN8LNqPa/RsHprQ6m9r+A1splNKP2v9oDdPzHova/dFQcDISd9r85AfNpepf2v+PT2Odikva/3nNMqOWM9r8SIjmVu4X2v6D03JEvhfa/xB8V8l2A9r+/JjfgAoD2v3miRJved/a/FhW3/1d19r++nOfPeHL2v3x2+NPccPa/F0+FxHxt9r+KCNZX4Gz2v7hlv7eWbPa/DDluUjxr9r+onXW9BWn2v73+cEf/Zva/CXxLPAhd9r97iPgxCF32v1ysxCpaXPa/AriVGTBa9r9OqoExP1j2v3dmcY73V/a/QgrSdwdP9r8VHqfMAEv2vxCT8Wp7R/a/Fjj6YPdE9r+oy+dumET2v8dujA8tOfa/rLV9zfo49r8yZZMU2zj2v1uR941GL/a/gN4uTZ0u9r/btCcbeS32v96E+SraJva/5h4KxP8k9r86MJRheCP2v6QvjKoSIPa/wKj3cuIe9r+va28WxB72v5e0J8/+Hfa/YIeTtHkc9r+b9ku8NhX2v04Lq9XbFPa/CmOUTW0T9r+3oep9WQ72v6udzrQ1Dfa/ayCOwtAL9r9VGUtQIgv2v+Oh0KLnCfa/pPXa1b4B9r9e6SF6SwD2v5R4RSEBAPa/fe3nvHj/9b/CtFpnb//1vwR9zTnq/vW/7iuCgyX99b98sBzfR/j1v0opyLpD9/W/vkiipvL09b8HmUskI+31v8rYUGeR6PW/CRRbdjHb9b/ebdwkOdr1vxNs4phN0vW/CN7jqVrR9b86B5k1YM71vxT18dntxPW//glc2CvB9b9Cv4H+ar/1vzoSZYi2vvW/Vnk8hmi+9b9MXDSyWbz1vwjOqKEivPW/xNoOUJ+59b/jzAbXS7f1v/qiCHLNtvW/zKF+uyG29b+P43QL3rP1v33WD0lkrvW/V9trdh2t9b+9o+0Ycqj1v2DxU45ApvW/9q6URpml9b9HGywrZKL1v4R2xvNToPW/n8vx0EOa9b+OW6Xcy5L1vxQv2MGzj/W/JHiRseSM9b+RAg4Inob1v3nSW0vNhfW//UmBQcF+9b9Oa9I70nz1v4UUIOYBe/W/JUNWvoN39b8t3j5rdXX1v13ONsJ4dPW/Aq18voJv9b+C19iJ9m71v4p5W+T5bPW/ZcQN1IVs9b9AtYwGAWj1v0s1HPanY/W/2WZmj7Jc9b/R581PaVr1v2qP5v7WUvW/5W8/oExS9b+3/4gwfEr1v87b6C0PSvW/kM4JbLtF9b/tLYK4s0T1v9VGwkSzRPW//5JEIwpE9b8Eztng+0L1vxuC6T0bQvW/bqjjVEpA9b9Uwv/V+T/1v0p75sHePvW/72V0jig79b/w8dZmeDj1v/H0xv9KN/W/JMw7bhY39b+175083TT1vx0tgoVDNPW/BqPttbQy9b84ViAXgjH1v8kA07X3MPW/KQS7sQEw9b+sVzdvwy/1vyPrQ4d1LvW/5j7k1Gsu9b/yOnWWBC71v7OZ4WFdKPW/vZbI550j9b8pXPFeRiH1v9mYO/Y5HfW/J/+n2vgW9b+axrzLaRL1vwwySnF7D/W/KYP9KuUO9b//pvD8hQn1v2AwJ9yIB/W/XoZ9ocsF9b/boIN9GPj0vyCt/rws9/S/vggO6dX09L888PHUz/H0v6ykq64W7fS/FMVkI7rs9L/lJno0nOz0v8Cp3Vll6/S/PnFsnGXp9L8s3jI7Eef0v9zrEiMK5vS/kj3ECYDl9L981Tgl9OH0v6Dxslb54PS/5kmFxTng9L99b7gD5d/0v5soVn2h3vS/GiJdJlrc9L8bn9psu9j0v55uuLCm2PS/AQ1mgRTY9L8IDDj6r9b0v2Avelj00fS/1jAMAvrE9L9416uyKcD0v3+6H/w3u/S/fep4cUS59L/WIf6k+q/0v8dUC+pvqvS/ors8fNad9L+qlPIclpn0vyB+qLHil/S/tbQPmTuX9L8yVyKXz5b0v4xDiqhhkPS/y/WFtCyP9L88nmJTBI70v0vh43aIifS/OnvbHi+I9L+qdN7mUYP0vwOKcNEzgvS/24schD2B9L/SrTzwX370vypx0CPGdvS/XPOPnVJ29L/kn6r5gGr0v7uo1BTMaPS/mmH88Qpi9L95o+S2A2H0v6kDp5eUW/S/Eq/HUYBb9L/+Iip9gFj0v6f/WzuMUvS/NG/TZ0xN9L+avjPcCU30vz497a+VS/S/mhjMoJxJ9L8GAGQ+xkP0v88YUQRDQPS/XzlpRDQ79L81UAIm/zr0v5adbC9kNfS/ffxgl0gx9L9FkziCeC70v5rSrkn9H/S/uMeC9kwf9L8GaG4ixx70v0OF3IUjHfS/4s4+CUEc9L/OhU6PNxz0v1qgjn1PG/S/JGgBjncX9L+6yCUIXRf0v/5lxb5SFfS/wifZsbAU9L/2H1SEwxH0vwtaB+rTDPS/I/KejccM9L8y2V6PBwj0v/QAeBzzBvS/ycqqavwF9L/bYCUTywP0v8T8r1GcAPS/npau5lT887/Ws8TL1vrzv6Q/WLLg9/O/NvWIxQr2879u2XnUY/Pzv1BQnwOr8fO/MXHfQojs87/K5ZQ+vOvzvx7uVHWp6vO/gKzUSfrp878waGVpBOnzv6Pyl7SF6PO/XJWEqI/j87+soiz7OOHzv5weI7Ce3PO/X6joxaLX87/kaRxD6NDzvw8eVOgq0PO/WBtqNRjM878a8G/PSsjzv0bq/ugxx/O/h/dP+uPG878tVU5qhMXzv88seR71wfO/Cw4Y8OfB87/eppN0m77zvwdxEYeFvfO/w6G+oWW8878EmciXF7nzv+40bXYhuPO/zCcrL5e387/Z3zovS7Pzv7EwmudssvO/lzzrNiex878CEPHJyq3zv+0rFye9q/O/aOgklzmr879OMfzYParzv0y43+joqPO/Ok5RKK2m87+doBZFNKTzv+hfovjoofO/6ly2i3Gf878amPfYSJ7zv6C0Hu+enfO/A//O1kCd87/8BIxPBZzzvx4hUt2lmvO/+bpv6IuY87/7XUFobpjzv9aeZ1urkvO/bSgs672E8788cbrsj4Hzv70L0AMZgPO/ToqsC199878osoheXHnzv8A2J+evcvO/5qfNo/5u879wCIumgm7zv7ymwzbeavO//k1vEoZp879wjyus9WHzv8i2XWsrWvO/9a8NnGVZ87/jBNJFFlnzv2gczpLxWPO/0r14/HJX87+HT4dow1bzv7Z/tJk+VvO/ALx/0YxU8783YlEsGlHzv1o4xB8LT/O/0R/26y1O87+BL3QG90bzv1CPCTalRfO/eiME4Q9F87+W/ilBBELzv9///PRTPPO/FLg6cT48879m5ifuLTrzv7DyX94SOvO/Hh7OaaM587/WaR4v9jjzv05NG04aNvO/gt3w3F0187+KxqgXNC/zv+4HeNopJ/O/ufDCiPkl87+GZ9+kJSXzv5mINW3LIPO/xuNhTaIf879M3C6l+wbzv1Sp1hERBvO/Lr2pYcQE879U1bf0DgTzv7fePCXxAfO/M757loz+8r8M1ok/SP3yv0LlmrdS+fK/K3bUN0H48r/GrYdjS/Xyv8zOa0P28/K/xS0AMt7x8r9UYs8Q9O3yv1It2NPt7PK/qNKgr9jr8r8sfOX2Ouryvx5FCtLx5vK/rXGS5/7l8r9eo3rX6uXyv8VTfmfK5PK/0NVjsO7j8r/SoNvtY+Hyv1osv4eM3/K/kt+xxzre8r+Jl5y6pNnyv3BqmlFr2fK/1/c+ap/Y8r/oPbk52dfyvxvusGdX1vK/KnTlOZnT8r8QgWHUEtLyv8ABT1f+0PK/OP4+rvnP8r+id4Yq+83yv44dy+jsy/K/EImLnInK8r/X+xMwssXyvyRUjL1LwvK/MDzubATB8r8GOkRxEL7yv4kj+C/3u/K/9WsY3Uu68r/SZg+mALfyv3jQ7MZWr/K/ZpGJoDqv8r/Ay43r76vyv/I5SFHOq/K/7ZjMoTmr8r9moOd6I6ryv2gAcvtepPK/HnC8xnmi8r88YOUVa6HyvwmLiOicoPK/J+SP4JGW8r8UY9kzwZTyv34wEkWakvK/1pim6PmO8r/S3aph2ozyv4M88sSDi/K/QggI0W2J8r/A3jVXe4fyv6HeBBMpg/K/HxZPW1uC8r828yfvLIHyvyjOu2epf/K/WijYQu548r9+k51cfHfyv4K4lURJdfK/tgHIx5Nx8r/MWjt5hHHyvzt+kfdtcPK/ZsYdfClu8r9vIMuSzWfyv+jMqv60Z/K/+lwv33Fn8r8oHexM5Gbyv8cq90PkZvK/IdeRWs9l8r9QwU3bAVzyv96vDuuDW/K/YuvbvJJa8r8302R0ElnyvyOFHXTNVfK/rAxRjYpV8r+whLaaX1Tyv+Zy9Jf2UvK/0VhIWoNR8r8b9Ei0VFHyv/TzQrT5T/K/KhjHFt5O8r/TsF16nU7yvxG9acNuTvK/GDInrMxG8r8oCBmX80Xyv2hxWx1VRPK/sRd33QRD8r86jh6m5UHyvwA/xWX4QPK/3YIAhWJA8r9x/JL/RDvyv892C7a0OvK/PR0kAtU58r/W3IXGeDnyvwz1A5ThOPK/7hPv/7My8r+K/Q28UTLyv3wtkoiGMfK/lvu4W0gv8r/bEYDOHyzyv4UafWv+KvK/+z5gIs4j8r86MVsl1iLyv3NTswJDIPK/SNCEbS0g8r+TERghWB3yv3CCoSZmG/K/eAXly3sY8r9+8u/PaBfyv0BzXj6oE/K/in7chTUT8r9fxlvCvA7yv+MuEDmwDPK/N4QSqBIL8r+Idcbe0wnyv0PmTk40AvK/OdiSYxwB8r/k4Kfxsv/xv5q3x3HU/vG/WsHjcBv98b+Q02OB7/zxv6DR2/IR/PG/w1ayMnH68b9qrmXVjvHxvzGNbyMz8fG/1HO8wL/t8b9m/HaWr+fxv3tHW0oV5vG/xIYgGG3g8b940BtZ+9/xv/QVjEL03vG/mH8KBBDe8b+yCgPUwt3xvw4yskJA3fG/qAV/PP/b8b90qU+HbNvxv6YCzJy62fG/uC/vyg3T8b921cHomNLxvyheUZom0fG/UI5ZQvbN8b9+VBtfjsvxvwqdkXYZy/G/aMat4wfL8b9MM3NNZsfxv8g8pnFFxvG/zjWVMF/F8b/qpKVxB8Txv51/Ew3lw/G/63GyDxjC8b/z8VscQLfxv+qTLOclt/G/RlEQjfyv8b/oGYjjYK/xv9pdzQMhrvG/8izZiYus8b/wUAXqA6nxv4Nl+j6xqPG/Gec99Bqo8b+kW4MvCqjxvxJFCKjXp/G//XnBpQqn8b8QCT6VNabxv5H6QPwNpfG/tmXrn+qi8b/sNGH6IaHxv0tOmeEXmvG/zjloummZ8b/5MrOsX5Pxv2UDqGLlkvG/Im9TIVCQ8b8uTHb+ro7xv75+c/v4ifG/9J7nK9SH8b9KY3okz4fxvww7pMKDh/G/FjU1ECiC8b9i/GSzun/xvxUJ6wkRevG/pCm9GMF58b+miEoQ53fxv9fAmZe2cPG/aYi3/LFv8b/l6a5acW/xv4FmEbJeb/G/ZQ92fWhu8b91bIc3xWzxv+IxpHDma/G/yjZwtn1q8b+aVoHsGGTxvy0anf1fYvG/CF8Ckbtd8b/i95ZtTVvxv+jQHm/KWvG/dyukSf5Y8b8o6QSclFbxv+7RVTurUvG/5nZ0VcZM8b9XUnnduUzxv2Qa0jB2S/G/7jIoAkdL8b/1+xkVvUrxv+5lE7wVRfG/HyvmbLND8b/bT0jU6j/xvxAh7o6sP/G/orCWnwI/8b+got9TXj3xv71laMo5O/G/3jDHdcg38b9BqRrJfzXxvzQlHRDHM/G/4jHv+7wy8b8z+uaqHCfxv7fHfAmeJvG/hA8vxuYg8b87Rx1gQh3xvyEviZtdGPG/S+aFrHYW8b+4eZwCGRbxv5hwnCaIFfG/LIhvu4AV8b/X3KwzIBXxv1tleChqFPG/hURcSKAP8b9K1DMrIA7xv+AsNVeiC/G/iHCA+kcL8b/wG7xf9Qrxv7wGC2VoCvG/aCVLEz0I8b/nnoHxdwbxv34dmUYNAPG/MtkbSdn98L/ZVX+VDPzwv6TU8TkI+vC/3CGeywP28L96dkT/kvTwvwoY9DuO8vC/QGL0gxby8L++xvRrvvDwv+dXPZrA7vC/3owcVx7m8L9tGAeaa+Xwv4hMJll65PC/1nKdHyXj8L/ZeX1OLN3wv9KOTlcj2fC/JS4WgOfW8L8E66QFe9Twvw9ZYD270fC/xiPRW4fO8L/iQkxzRc7wv1CwyOh/zfC/yKLrilDN8L+BU3rK2Mjwv7/ObseyyPC/pFHI4s/G8L9Sl3YSicXwvwwIGHe9xPC/0jrpYmHD8L/4HowV+MHwv/gaSyZkwPC/yY8GrDHA8L8JT9diUb7wv+DejQNgvPC/8iWv0hq88L/6iCNn0bvwvzZsg/bxufC/uq4FcsG48L8+nHlqZrfwvxAy1ayatfC/8vfKX+S08L+2H+yJnrTwv76YMCmPsfC/aZEF3gqw8L+OBal/Ha3wv62cxTh6rPC/hq57CW2r8L8svnLYHqrwv3GX8mfzqfC/gl971w2p8L9zlGQ4Cqfwvz48JSItpPC/kPhvu16h8L+8Qa2pZ5rwv+3QSwuPlPC/OtSniOCS8L8OIMqnppHwvy66DZ+6kPC/aLhTEniN8L+3lzH3ZInwv1PwINW9iPC/bMgFI6GH8L/g7Kvbf4fwv0yAwuUnhvC/lD+yGJaD8L/Pwy2Kq4Lwv6eCne7lf/C/Bn4JDJN68L89Yx/HrHnwvyZyVpgZd/C/gA8Fuep28L/wf7to8G/wv7alXMoib/C/mBE2P85u8L9UPXXUYWrwv2AOL3PIZ/C/VEozTbZj8L+sj2yqn2Pwv3VBr+SQYfC/2E7Wd5dc8L9itFqlCVbwv0Pvh6nFVPC/ucQk2IZT8L82elDk2VHwv0yi1FSqT/C/emQCe6FP8L+xI18IfU3wvxSeioE2TPC/gBnNCwJL8L9Ka90HJknwv0U2VWwISfC/NwjGZVxH8L9nFmdq6kTwv5HzfpKbQ/C/N8wEA+E/8L8vwvRXnD3wv1ZxvFPUOPC/Rn7DHJE48L9ksMiKbzfwv0yQDKWoNvC/d9JihDwx8L8SzJEkCC/wv0HaZ2N1K/C/dta6Qk8n8L/v0Esfzybwv7/tX7m+JfC/hApIK5Ul8L8SUQN/1x/wv7KsP9+vGvC/jjQN7AEa8L9KkAN0NhXwv5prDqWHFPC/kKOuIHgU8L9NGb7W/xPwv86SaqLYE/C/rk/EyzIT8L9g2uRcbA/wvyVp8wFUDfC/FnOW8OoJ8L/1k+h55gfwv+6jR1hkAfC/zlGqrsAA8L+6nY3rkwDwvx5v10EJ/e+/qAmon/v3778/3wmnEvbvv0gxOfH+8u+/+9rU8vzy77+69zBV0O/vv/kt1ee+5e+/SvLXE4vj77+3zkdQzOHvv5d0wpTa3++/wP6suETc77+/ffFy5tvvvyHatpGX2++/YQLZo33a77/dJxLIV9Tvv2orHONh0u+//fDF28TP779+nqerKrrvvzyPCQgguu+/oKdryzu277/iDG6yhrXvv5gpkQovsO+/8KJDHWWu77+SO9k9vaXvv0Yautidou+/wu6e0r+g779JnDAbZ6Dvv+8WVms8n++/uyva84ae779Fowygc5zvv2WmQR7dlu+/MKynnKST77/RghtA4ZLvv8Cpn2sWiO+/3iz6wKt/77/VaaR9wHXvv1b2hygYc++/e75SbAlw778GHX+ADG/vvy+QD8Klau+/xUokMple779cTBrNEFHvvxKa42VgRO+/bS8cVB1D77/gxR+INT7vv1b0JbSeO++/3+yXpFA1779mRkMmzzTvv4J3y/rIM++/0HlS6g0x77/06ykRfy3vv2YUD+/ILO+/Byv+liEp77+iv9eZEiPvvzBEqdkMIO+/enfGMuce77+/259onB3vv7On/NxfEu+/xjn0WpkP77+WxXlzqg7vv2JooWZJDO+/FvEzhFcF778Vtvj6YgPvvxefdxNSA++/YSy1U1QC77/1Q/bIGf/uvw5g1buF/e6//x5Xle/77r92QeMfG/nuv/Ayu5ih9+6/kEbLqo/s7r/bEAinsuvuv1Mru4gn4u6/Hzg83KXh7r9qr4kgwt/uv+ZKyBzO3u6/wEV20rXZ7r+El2PietjuvyLuPM1u1u6/QrhoRdXV7r8Yygs539Tuv6/CIIzG0O6/sAPAAenP7r8mtV16uc3uv0ejqRI3ze6/PjiTHqvE7r+6C3pSAcTuv45Sc4iywu6/H5dVs5O97r/vSkp+GLzuv2cZpr9ku+6/SIDXtlC37r8jTIEoKrLuv08ai0N7sO6/ccFIjP2t7r9xFC4sxKvuv8js33XEqO6/QOcJV1ei7r/Yq5XZ0p3uv0Xqx+agnO6/vVF61B+c7r8g89EcaJvuv8RUZAVem+6/8KnQiB6H7r9LJY65FILuv3IQU1qve+6/pZsSC/hs7r9hoSI2F2zuvwL6s6OEZ+6/Tnw8tGRe7r8xjJ28vlLuvxJSYfYyTe6/xBVRfdRF7r8urFG6BEPuv38cNuBwQu6/XFuY/DFC7r8MGQ213kHuvzqC+gqyOu6/KuY1bF407r8IRWK+bjDuv+TEJC8JL+6/fOISRDMp7r81icVVEyfuv87jI56SJu6/SFbHYEQj7r+FTYcxMiLuv7NAvBXwIO6/kJtloEwg7r/gA7XunB3uvziLRaL0G+6/QBCDBRUa7r9I11eHsBbuv75SiFQlFe6/vphCWm8T7r+WyXD3/BHuv7mRjrtAEO6/A4v8HAAN7r+/pvZjVAbuv8M1SKp/A+6/ehOx2Wf+7b/McAyfRvrtv4F7Ch9S+e2/03Ovbyb47b8cIXfCtfftv5EYLce19u2/YlWuz6r17b86owWIu/Ttv1qiDIHa7u2/mA9CXl7m7b/93yrETebtv8UP+jTf5e2/r7IWV0Te7b9c1UuM9N3tv3rjakaR2O2/nKRGxszV7b/zgh6IbNPtv4NlxmIn0e2/PBxZ49jQ7b88N4gIJ8/tvyd+S5W0yu2/kom72JPK7b+GAGM/EcjtvyjfyPKuxe2/Wl5/ASDF7b8M0asw1MDtv7p/OkXWu+2/ESV5Yku77b+2SCdqmLXtv0s3Quk3tO2/WparelCw7b/nlgGLsKztvyIZR70BrO2/Hgn/dwWp7b+bbltteKjtv2PVj+nSoe2/efzkoR6g7b9kYTVU65vtv9ue6LEIm+2/KBCO//SP7b9MkEPcT4vtv+J+AkATiu2/lJSkdRqJ7b+pjI5cQojtvxYr6yqJh+2/eh22vW2H7b/kHJcYpYTtv5pzUbD5g+2/xkT+MqiB7b/ExBVE6X3tv0c75YS/fe2/5Gdh9et27b8JNnkCdHTtv3aK57ircu2/7DSmJGlv7b8KlSrpnGftv5bL9kR7X+2/cMlloGFd7b+g8ikuXlrtv8UWLZKLVu2//OluNwxW7b+OFv++hlXtv6CvW4IaQe2/bMsg/34/7b/ac3ZJrD7tv7uxdQqhPu2/IXfXpUg+7b8+c5zGdD3tv37vFkz6OO2/tMRDTak37b9aLV3KgjDtvyRRH9SELe2/mP8E5yQp7b+GT2zRPCftv4gkSRBxJu2/zAxivJIl7b/Y8E7wOSTtv5eAB4MoI+2/l6OV2PAd7b9EgyQd6R3tv65O0l0tHO2/BgWv8+kZ7b9+NstZGBftv5z0cYxXEu2/VvBhgoUI7b8uQYBEKQjtv9MP0KWPBe2/uxqxwcIE7b/BtwIWDwTtv0WDqDMMA+2/LpBHxQoC7b9ZdyIysv7sv3j1UDOu/uy/Qyri8Ov97L8cwEQgkPzsv3ENcOS0+uy/JHj9bpn37L88Wc+RtOnsvxJSE0vT6Oy/+OEQyVHo7L8625LS8OfsvzUYqRN65+y/YZWHRhfn7L9OAWEgqubsv8yykvZw5ey/GA0e/IXj7L879acUheDsv67/Opa53ey/GwQW6EHd7L9HON7c79vsv+xdew9r1Oy/ggMELFrU7L+v1VM5m9Dsv6DYA9n4zuy/2tDxleLN7L/InRxlh83sv4yvWD1HzOy/jJPvXiXL7L8ia4sS4srsvyn4Dn9Eyuy/CLroGzDK7L/cpj4iGsjsv5hR9n/8wey/Lxllqf+87L94p/aT97zsvwYjRBOcruy/k6Qecfut7L8WFSWPIKTsvws0wVemo+y/hbKGteKc7L/62/nON5jsv/L+zn88juy/HSNIidON7L/8T6Bhn4Xsv7Z/sSBwhOy/4hX9wbKD7L932itsYoPsv3mBM/smb+y/aP7cJ9Vu7L/04GBADmPsvxBKSGipXuy/WRLhUYJe7L9utlL+mVjsv9SHYECwVey/SPVWuzRS7L/GK9frq07sv3tAnM+VR+y/nfiW8ztF7L8wJipjbELsv1kHsdKMQey/4jeTcA087L8g8HufpjPsv+YD46sIM+y/XPRR8LIx7L+q/aTnVi7sv27DK8T3J+y//t7Kp4Al7L9yuGyiURjsv76tvrKRD+y/YNatW9cN7L9riXflzQ3svw6QszLgCOy/5EIc1GEB7L/OaaNAPf3rv+Dtkfcz/eu/VPyEHo3767/vVQwVPPrrv/TVIq0w+uu/jltFaGb5678zlZ+zFvnrvxlJJRtX9+u/IJvbVq/n6790I4pVMuDrv1pxMTVh2eu/lb4h7qDV679q8apdctTrv8zVwuC50+u/QrTIdj7J679h5KtiH8Trv/T8h9UVw+u/gmfXSx/C6798LUU5w7/rv3cgJGchuOu/wEDJg8q167+8UgOx9a7rvyGfFJM7reu/8WWfTM2q679Y1ch/BKnrvzhTnRdqqOu/o8un+h+o6788KIs8vaTrvyoICUWNo+u/R9er3uWi678AvM3snZ7rv8nYVL3/neu/Q3Z/ytWd678M8KoKxZvrv1T6ynmNluu/wR3VJ+eU67+I2VAO54/rv7Dk46Pvjuu/3M4bSouN679ghn9gQYzrv9pAZR9siuu/LIL6LyyD678Vsm6gtILrv9ULZsdcf+u/k62M79J9678P26Wan3jrv6nZHfgicuu/8ukTzPts67+8JEZL+WvrvwAEtJ10a+u/IJ5O9MRq67875zniRGrrv6nWLuJ/Yeu/rrLDXYpg67+AYi/i61vrv+jObuywW+u/Xzx2u4ZZ67/pf0vC51Drv57j83W6Teu/S2hvJTVM678K2am1xEvrv8jxlMt6Qeu/bHVacYU6678akvEuBTTrv+DMd4TLMuu/wNxTk98x67/m+RcRXS7rv05iVKXXLeu/ILSlhMIr678vC89H6ynrvxvCXvdeJ+u/eqBlorIk6794qQbityPrv2OghiyDHOu/SEQVYZMZ678DgvsiFhjrv1j2BoXaFuu/LFa+0L8V67/jJ9E7aRDrvzyybcAdDuu/oMX+6QAK67+GN9wusgfrv7RX95I5Beu/maQ2l8sE67/aBbZBtP3qv65IlnR/+eq/Y1cONKr16r8PmqUg1vPqv7aJomiG8+q/xhx4le3s6r+N+07+HOTqv55MK9bq4+q/GBezS3Xf6r+A8fSpft3qv4YmpzU92uq/YiF1nkPX6r8luSJY/9Xqv/OkcuUb0uq/zUzlALTQ6r+q7x2MT87qvwA58V8/zeq/001YNb3J6r+zaJaoWMDqvyAlu+5yv+q/glWO9k+86r+8mIWhH7fqv4iZL97/s+q/jLMxCa+t6r9XC/f4Dqzqv+RZ/fjNquq/sLc6WJKq6r9diJTIZKrqv2LQqCiOqOq/XJaOUiGo6r+ea8UxvJ/qv5bD/1M/neq/Vk03gzSY6r9FKm3z6Zbqv2qy+mNekeq/TelmEqCQ6r8+Erhp2o7qvy+G2yNgiuq/SkiE6CWH6r+D3R3+JYbqvwRg9MP/heq/MFMhIdWD6r/qcJOM8Hnqvy2gbqkneOq/c5fyzw546r8I1iVIYnTqvxZSjSi2c+q/8H4o+Ehz6r/24/Q2RHPqv1c37HA3cuq//laDhVhs6r+bU4BIpGjqv8LZe500Z+q/6bMJ6aNh6r+qyLBUy1jqvwOZjMsvSeq/UskWbEtH6r82/Pmrhkbqv+rSRDn9ROq/3wWu8nFE6r9KsFGtMj/qv+T4m0rZO+q/D2LHcTY76r+wmjPwmznqv4pGhXv7OOq/yzkfscA26r90pXuJhDbqv0i2ZrODM+q/QuEKk8gx6r+upynebjDqv96yI6OAK+q/HtrtBi0n6r/Ei9thaybqvyzW+yQ2Juq/HOyayb8k6r/0zDgowR/qv1tjB0+rHuq/Jtp6vnQc6r/FvBfFxRrqv1PGRo6nGeq/4WfUJOcW6r+cxG6eDxbqv4ScBXXpEuq/wenoC9ES6r/zw1Zexw/qvzpy1rY1Duq/Kpoq1wQO6r8Vr4oyHA3qv9ZFPVYWCeq/fijZpb8I6r9SR5a0MQjqv6SpHq4tA+q/TEkPJtwC6r/YleVs0QDqv1776Ts7/+m/F20gOdT66b8+lM+TOvPpv1z4hV7b8Om/yXkVPJ/u6b/cVPOHIezpv0kO/SFY5+m/OLWUpK3c6b9RZDN7/9Ppv6C9J8zd0+m/ZOny1dnR6b/cIpm1y8vpvzCVSa5Dxum/3L/utDXF6b8t9fN238LpvwQcUjqYwOm/5kS5h5e86b827nOKTrrpv3Uu4AFDuem/DjO86SK46b/AgiHBzrfpv1sHkUkstum/XKMptHe06b/o97keSLTpv25vZw9Ssem/UH5lOx6x6b9G77mmD7Hpv+nolm3zrem/rp7l0U+q6b+IqDwhSqnpvwDe3HAdp+m/JKEAZDSm6b9NP9daT6Lpv99Ah8kNoOm/u/nWdfKa6b98L9UlJ5fpv0GB1qbflum/krzmjNWU6b+1XWpb5pDpv1n+wJ12j+m/aNZ7mgqM6b8oHqzqiYvpv5dFT0OFi+m/FFj6siaH6b8LMwDQbYbpv7sDLNAyg+m/i4hyD2+C6b8B6j2iL4Dpv59C9LUkeem/rA5zT8F46b9QDT3KL3Lpv/DZQ9FFcem/zDwVd2dt6b+GGbAZLWjpv8Hg2IN0Z+m/YAFmeNBl6b+zwqzHPmTpv6gwQ949Yem/ND03NjNf6b9NOtNyylzpv8Dw/AxlWum/NTBxbZ1Z6b+yxAglRVjpv8JZqaVGVum/iUYuThRV6b+qfL+qHFTpv7XipaWzUOm/Ef5fxZhP6b9Qgs6q2E7pv/C+DjabSum/gksAe4hI6b86/sCvKEfpv4JeOICBQ+m/TqX1skdC6b/va6uywj/pv4AcNM6SPem/CXBmUX096b+SXQy1Ljrpv3YzNCldNum/CLt7d+8z6b+vYJ9OQivpv0ndOwO5Kem/Wy0kgosp6b82b1Q6GyjpvzqUnOuIIem/rL0dFzoe6b9xqGrHOhrpv1Dg564PGOm/b7zga8QV6b8KFQ2qLRPpvxQYYSB5Eum/6jgRJQYQ6b8qkvn9sg3pv5TaPBxUDem/cn0XQqMI6b9P6abCSgLpv5rTM8hZ/ei/Il7fY5b66L/uOENcovfov/WYYLx09+i/YgoWs0D36L9WaAouZPPov7+H51Qr8+i//gjVwAHz6L+uL54M1fLov1naGbUr8ei/DLiZyLXs6L9kKGatK+fov9QY5JCn5ei/bMGG3JPg6L9TPJCNZdnov05XMZ8GyOi/RoWYMffG6L/T9iC4M7zovw0UjEj4t+i/+6hzB2O36L+dRuj7Dbbov4xplA7bs+i/8D9kYKuz6L+eZ7/mt6/ov1nRic8Mr+i/7ovs0eOp6L/ADbs9pqnov2vRByMOpui/+KwzZG6j6L+uLtHjqqDov8hiN7GWn+i/S2IZHVmZ6L9XQgbwP5bov3Dp1zj1lOi/WwcKwzyT6L+8YPhq5I/ov1GwUvEajui/BO2S3rKK6L9pigBhpXzovw2wIuspeui/q+AWRXt56L9LThETtHTov2qF/LXGc+i/iowfv25z6L+OZWR+rnLov944owyBbui/npB4CMZs6L9slS9dumzov2RnlVyQZ+i/sEBBnlJl6L+oG4GM3l7ov5UdpM+zVOi/6ubHQkND6L+Im1MvfD/ov/gEKHdXO+i/ARf2wXI66L+oz3V45znov7itsaBEOei/wiAFNSw26L8GyLPPWjTov656imb2Jui/jZfdmLIm6L8Bbeo/+SXov7cqjoaHIui/PDUhvBQi6L9AlJ9gKyHovzZmol4aHui/qBwltgIZ6L8o8cKEMxjov22XLz/mE+i/6O+IDVEP6L+INOi3FA3ovyS6OiH8Cei/WL8HGZAI6L+W6RmB7gbov2Hv1R7zAei/kHgixbb457+WND1Qs/bnv2DC86818ee/nLFbW6Dt57+8dQQoHufnv2PUYFF05ue/jpdJznrl57+bo6fPLuTnv+iaHR6W4+e/xPQhvxvj579o/Q0tbt/nv6grueAi2ue/qjqMFvDZ57+kAZw+idfnv/QPbcIA1+e/4/MWIT/V578ewFp/4tPnv3OCftCp0ee/PdkctKHR5783Z4Fils7nv9bxCpNTzue/wcu6j/jN579A6A4ZL8znv5qRT7pyyOe//9CrqFPH57/JCtFXT8Tnv98R8kWgw+e/OCeUhovD5798mR/yA8PnvyPrsnSlwee/zuWBzdO957/kTSq8qLznvylYR2cpuOe/xwrNbD6s57+tQ/1x7qvnv2aOuC+eqee/kPCuexeo57/4zpJ+lqTnv3A+9TTBo+e/2jTFup+i57/GebV8tqDnv+9NhhQroOe/XgR58i+a579UZyF14Jnnv9l/hD9lmee/LZ7qWliR579k1W7VjI/nv1o3A/GCiue/rOgTdxyK57/DIKyts4nnvyxdEJi4g+e/Ra7+x+R/578G0JTRrnfnv5x0jN6Wdue/26K/UHV257+C6LVIMmvnvyH8lv3aaee/3FCE71lo579/XMo8zGfnvzqH4hZvZue/PiQGg3tk5797t4nKo2Pnv2oshigpY+e/TX5tCrVc57//Udbi+lnnv5yihn2gWee/9HcuLttY57/AUg7Oelbnv8jSA5lXVue/mAS9y35T57+TgrFB70znv/59hvnfSue/tUB8za1H57/ZQYYh6ELnvyV0qzP0Qee/WH19e7hB578KnA9mrjrnvx0ANaFSOOe/VtlLmzQ457/oFWYHRDbnv/t2FF0zNOe/bMbpy+oz57/W6NOe1jPnvxJ8P3BcMue/VEqX+Ocw57+69+Dk3i7nvyCuvoy2Lee/pEenVYMr57/oI/6KUyvnv6VpBfv8Kue/ssjYQBgp57+L6iBiDSjnv/39tn9SJ+e/Kh9HI8ci578hWhjrMiHnv5CXYRhUIOe/TmNYDiYU57/hjkPlfBHnv1JcCfYIDOe/+k5ztPEL57+sRgfwtAPnv8a171ZcAee/Kmgr4Mf+5r8TQTQn3/nmv1fWRots+ea/UNOe4oj05r+5y9m67fLmv6CBeNV/8ea/pWiqutPs5r9zPcxReOvmv5+1sGSa6ua/xtnhYlfj5r+OCT4VYuLmv1ZwHUa33+a/ZVoN70Hf5r944Oraptrmv0PLqzOA2ua/+tKj+zTa5r/cGd/CSc7mv25MexgIzea/mpSVg3HM5r9wQOCr6srmv6yeKOg1yea/kwuToZ3D5r/AKUEcIcLmv8So+6+0vua/HmJO1Oa65r9C+55CDLjmv/KewSNcrua/WxHaZhys5r807gRPd6fmv1gjtLEKpua/7SR2g+Wl5r9IrkLUSqTmv6kKrn41o+a/Pqvhmxij5r8UQBMEzJrmvwtxiJUDlea/qh24r0CR5r9Btn0WoI/mvyjaH8QDj+a/Cplo9yuN5r8QCL4B+ovmvxD3areFhOa/YnUPFh6D5r97HwyhbILmvzDzienBgOa/VLv0IKV/5r96zMnbtn3mv5bz6EA1fea/alQHGvR15r/AoeCQhXXmv7WRnByzcOa/1PFZuHRv5r/gAzLL9WnmvwgHrThqaOa/CkBeml1l5r9jpsJIi2Tmv766gnSbYOa/iiuFjh5e5r+QBjlu2lvmv1RSc7nuV+a/BmsVuPRQ5r8Yv3Og1E7mvxCbGrSFTOa/GK4ACz1K5r/K6Jk5xUfmv367uAjyRea/0rz81d9F5r86sCDauUHmvxEoBv5OQOa/TGcoOSw95r+gXYwI/zvmv2bGuMyUNOa/giY6MQkz5r+ak/m9pjHmv6Hw8KNHMea/DR7hptMv5r8LH9S2Qirmv/Vy3sZqKOa/X/Oc7NUn5r/UeDSKByXmvxgr5Q00JOa/eiR/HvIh5r9SyVZpnh/mv8IVhHk/HOa/5MiLJkwb5r8WQJjj1hnmv4VsePcqFua/jy+rrQYV5r/yqmxQFxTmv0nDd2O9Eea/FQvfWIoO5r+9dt2fDgjmv7123Z8OCOa/brwSR+4H5r+SztN7Uwbmv3Vs9hIHBua/2BCxaAQD5r9amDLPKwHmvwsULueY/OW/1rRJDSn65b9j8cqf4/Plv9Zicig97+W/+CIgWDbu5b+8HB4H9evlv/hb+bm56+W/lADba9/o5b/0dpxf+uflvx4dTvIi4uW/w9DC/iDi5b+NcinGm+HlvxyjgFbP3OW/NFfCR1fX5b+aUYCH7NXlv6gDlg2I1eW/CCPVmtfU5b+EBaoqvNTlv4kmDiIb1OW/JMZuBqLR5b9Y+VjQHNHlv827vYGH0OW/gNgmYZjM5b+2tK1ATcvlv4MwV7s4xuW/uLybA6bD5b/v5dBcusLlv9awRyy1wuW/ZoBeQpjA5b98Dnr8+r/lv8/W3r+mueW/mlxT9Ue25b8KJGAv97Plv3CJi4kws+W/UeHvNCiw5b8z/05VlKzlv08kXHUerOW/8CH1/Hyq5b8a5s8pn6blv9wNnMlypOW/5Rv/nmqk5b/Jw2NRTKPlv2lBoaf3meW/6KS/bFqX5b+kSVlbQZflv9eDjFnRkeW/MBMXc/KM5b9nrFvAw4zlvwoGnp0PiuW/dLZIg92G5b9cOFexdoXlv8strlWNhOW/6KcVt5yD5b8GFm76+4Dlv48jdnvCfeW/0rVSQod95b8kGEJQ3Xvlvw+Y/z/UeuW/Js1PT/hz5b8FiOEMhG/lvw7T1iuWbOW/bzx4nwJq5b+KgSxrzmflv2F1EDv2ZOW/GuhHcfJj5b+MNqRSbVDlv3N11gsqSuW/tbGgRARF5b9HgEy/4z/lv+AOPJSsP+W/aRFn3ow65b+5rl4Tkznlv1i4pTPKN+W/6N8LRjk05b+iROZ5uS3lv3KMm11xJeW/pKFTv/oj5b+IKUUQoSDlv8TChc1uGuW/lBbCXjMZ5b/jWVlfchflvzYlBmaDFeW/xEfvGL4U5b/8PsfSLhDlv6ngEh8yD+W/DD98uR8O5b9gYgci4gzlvzCE1RIUAeW/zVf4fpr+5L/mcvAyMP3kv3Uj+avo9OS/AXbiEcvx5L9hXOCe2vDkv3cA4zXS8OS/TR3GSy3w5L/wLc+wle/kv+Zxt5hb6OS/phpPJSDn5L9QVjhIveXkv5gAnTND3+S/himAwGXe5L9svJYQfNXkv3QzkNol1OS/zEg4H5vS5L/9PV07FdLkvzzBspys0eS/JrczcjzQ5L+OyR29oMzkv5HZin7XxuS//MMl987D5L+im7Iqsb/kv0OBj0FVveS/9vmRpEW95L+0bO8mAb3kvy4xF5gTu+S/lNJwZta15L81z3Ufn7Tkv1xmxYwCsuS/rFe8WyGx5L/6ICPcRK/kv0e1nQ7kreS/wu3+SvGr5L9YRQzhZKvkvxKQPEMRp+S/B1uP4uWi5L9g1lY/CKLkvzWiUXNVoOS/ORS4vPSe5L/Pmmd4JJbkv7DUcedBkeS/AOs5qzyC5L9anADpCYHkv+adF5wAgOS/dxufD0R95L+XE9yhSHzkv5LvZMAHfOS/WW25sA945L/nw2c6unfkv8V5nieMceS/8PHWYb5j5L8st2ImQ1rkvyHn4fyXWeS/hlCSDgFX5L9+2A5uPFbkv3SQOABLUeS/mdBT9KhM5L8V50ENAkzkvwNKsZd6ReS/aA7dn6dE5L8i3g4ytUPkv9qIQTJ9Q+S/krEddds+5L/eIgL68zrkv94mVe4fM+S/xq2kwkQy5L/ESmI3Hijkv3BP0Tr+J+S/HFBejg0l5L8yZJgH3SPkvz8hkgeiH+S/rD5xRlYQ5L9t/DqCURDkv4ilGtFSCeS/ALyAcqkI5L/CFdjfTAjkv3nC42riB+S/dLyvht8H5L+GeTDTZwTkv3BsfD9SA+S/+CVtFkQD5L/sCdqpsv7jv5K9x4OY++O/vInn5nrx47+EuohTGu3jv7Jtjbj87OO/UKB5WPjn478829c8QOfjv/VQJ/8A4OO/ZmHSf3zf479pUHX/V9/jvwHMSHUL3OO/n8f3KtLW47+Ia3LXwdbjvxW3Z2z51eO/Jg1UbI/U478d2gK02dHjvw7p9giI0OO/FAvzwFvQ478AR2DQjM/jv52swf4qzuO/+D3evAvO47+bdPnSLczjv5MPLONWyOO/4DdZwNnF47+5lHego8Xjv03t0a6MxOO/HpSEHkvE47/4BcPS8sDjv2RHthOuvuO/Lal/L3S947/Y39DhHLrjv7uSNndft+O/I1yjhkO347+OV0Ze27Hjv1SZHq9wr+O/Oq9Ub1ur479ajp3cPqnjvxy3NFq1pOO/nngTekuh478WzG+VGKHjv05zTAnvkuO/zpVzhz6Q47+2Dgs3bY3jv2Y/R1xAjOO/kkVsu8uL47/iFIJ66Irjv3GUzt3aieO/dNAYJ1WI47+vcfvCf4bjv2sXkYtAhOO/DhC87SOD47/aaYCMb4Hjvywq7vpegOO/mG5y799+478TrjhjqXzjv0YZuRUHe+O/prHdcWR4478k0GWR9XPjv+76IPV7cOO/eWFjke9s47+E8T8A+Wrjv3JcRbcFaeO/rZhah+Vn479WT+9iqmfjvyUydcBuZ+O/0LwZ2lFn47/OzTrA32Ljv6UAM03SXeO/Ck9AHY9d47/oCYQCR13jvw36hg8xWuO/3uru27pY478bSY1851fjv94N//5yVuO/8NCkeZ9U4785fgyxYVTjvwCpWWLgUuO/k/RjxXhR478+YfAN/U7jvxqKOUIdTuO/fBWm0l5M47+VemOvR0fjv/fK9H21ReO/Qv2YLytB4785cUp/Cj3jv3xUitDmO+O/tmYJr/c647/oKnNvPDrjvyQgkp6lOeO/IIs42A45479y41N3QTfjv2pvO+pvNOO/A8LZ9Dk0478cY3sm+C7jv5yHDFbsLuO/vJdrbB0r479QeqNUtSnjv/O/zdpjKeO/9Gq+dW4m479oLU/CNiTjv5QK6mo5I+O/QG1lmj8g479HVOCHBRzjvxIWCvVUG+O/eQ7EiAMX479UbVz4sBbjvw/6dMw+FuO/z+os08AO47+O2GTJOg7jv0DLJZf0CuO/FNZcVOQG47/i6NZPpQbjv09is4OQBeO/wMzFG2sC478x6lD53fzivwby+cQR++K/pKXTMqj64r/oLK6vQfrivyxjQH5v9+K/zSTF6Lz04r/Myl+BHPHiv5lN0RYr7uK/TBGCbFbt4r9HkY5JMOriv/oW8s7z6eK/6FhDusTl4r+WYO/zJOXiv3QNwtZS4+K/tGNBrfvg4r9w1X0qBeDiv/gYO/pO3+K/pC9o2rrc4r+XGWwl4Nviv8aSnl/z2uK/lRfKGW3a4r+ATkP/V9riv/tQhikx2eK/gvM0zXfV4r+ORf9wZtTiv3BZ771n0uK/XnSSccbN4r/9qW4SIszivxzG9YYpy+K/RKWaHBXI4r/uuPURC8biv6zf5+LJxeK/l10EwknC4r8WT1xN6sHiv0ENG/fPvuK/MqL2SSO+4r970ZiiILziv2jQAHkSuuK/nOo2chu34r+3k8S8arHiv/Yg3A65sOK/7PAOHiSv4r99jqumK6ziv7IIEXl6q+K/kLZ7hkyp4r/SJvqhZqHivw7JlfbDnuK/yDKLhaec4r/+qcBzf5ziv4TgxiM4nOK/+ERf1RCc4r/m1hK4u5riv6nNZmQrluK///BF0LaN4r/+JCXtH4ziv+l0CPfEiOK/FvE7DTqI4r8GTDvjYYbiv0NPyf2jheK/6ZCsa9924r8v8Y0RbXbiv+Ywa4A2deK/BIZVhxVx4r8CI2tf6W/iv6uVrN50beK/a24477lr4r9so4assmXivyXmkXBXZeK/znoH2yRk4r+Gfe6cU2Hiv+GqoXFLXOK/SwIHu49a4r80KVJQjlniv/6koMUDVuK/ObFfTfJT4r8rRXWfSE7iv1Ah4ksMSeK/DnsZz/xH4r/n+Py7Y0biv6gsIzAWO+K/jewYwgY64r8zbKE3SBPiv4cFarQaDeK/4lV9AFkH4r9ttVzeYwTivzOOa/uDAuK/bU4ZelYA4r+ZcdLIKv/hv4XRIxYX/uG/euIJGTz84b9iC3LzTvPhv27qVaIV8+G/iLktIEfx4b9BZnR4evDhv1odCnCr7uG/fQbajl/u4b8kj66RAu3hv3W6FCRE6eG/iITgOT/m4b8HHyFpyOThv9R5zWe55OG/YM3Skfrj4b8A9F4UReDhv3AssKTt3+G/KDcJnILd4b8233Euwdnhv0gMe5si1+G/nDWkpmDT4b8gTuQvMtPhv5A25XTo0OG/O+97C8nO4b+l2Q6Mwszhv8/4smRczOG/AvshxQTM4b+2F4daJMfhvycmr00xxeG/QiQg3FrE4b87vCyXGcThv9CRAu9ww+G/WeDD+uu64b8t5Tlahbfhv34+KtROt+G/uOnfTZS24b9czQ6ag6/hvyQdlnN1rOG/NXPHx0Oq4b+SL1RYoqbhvwjiGSMqpOG/SAgZWCSj4b8hRs72AKLhv7tjcu5moeG/PRXwGmyg4b8DUuyh+Jzhv0vEt5dKmuG/Y9QvSD6W4b9s6gpGJ5bhv46kSLqNleG//FPppv+Q4b9AtqQuxpDhv++K9CCikOG/7CelNWWQ4b+TGxQNWYzhvyf5S5ZTjOG/IeUwB5aJ4b+nV/xHRIbhv3/+oa24g+G/BJfjt1WD4b/kVRYEpIHhv4GcU6cWfuG/Ru40T8184b/JQzrO4Hjhv4IlYOMfdOG/BsCd4uNx4b/oNXKZy2nhv00y7C43ZuG/9F7m//1e4b+Txqyl2F3hv5BU+zTJXOG/738eOqdV4b8Ef0yLflLhv3+m4eIgSeG/P4gF+adF4b/0/z2SGkXhv8TKSyVPQ+G/J7yfcHpC4b/KS3Ory0Hhvwj6vEyvQeG/U51KPZU/4b8mviTh/zrhv3jSMeoZNeG/eCwUq2Au4b9u/3IVPy7hvwbeUBFKLOG/GvnzRgoq4b/SD+rKxSfhv8Phg8HwHuG/R5S/16ke4b9pI8zl+hvhv9JeDkhiF+G/kOPSjakW4b+O4doTURPhv7eLvRpJEOG/POrG9VcP4b/YlZ5bgg7hv9guE1QEDeG/AocJ4C8L4b8e4gP6RADhv0Jf7XgxAOG/JDGLWQwA4b8hA4FyrP/gvyjFYlue/eC/G1vdtDb94L9OSTKp8frgv3zNLJQd8eC/yOqHDLPu4L/9X4+Vquzgv2+k62nT5OC/DMZYTbvj4L/eGzsjxeHgv/swlxd44OC/sgp13TTV4L9GU1J+/NTgv4WVYbEV1OC/fLY8HDPS4L9nZj8QKNHgv52L2oQW0OC/kLKTeurM4L9UpCGji8vgv3UKzZa+xeC/TO4zhJLC4L+4C2RnScHgv+snv5YBvuC/35+gHQe74L8rQ464u7ngvxAKDCODuOC/mcSImLmv4L+SD3t4K6zgv7uq2jYQqeC/31SlTB6n4L8UF/bWaaPgvxTuEJj2nuC/6MwIQIKY4L+liG5oIpbgvys1vWwUluC/aQV5PwmV4L++nMi58I/gvwOk02AujeC/X1BIyHaJ4L/8uj4KeoPgv6ReKxhcg+C/Q5mNL3KC4L/sofkJgnrgvwQw6CsweeC/burzFupy4L81zuBo3XHgv365ZB/LceC/feu6K2Fx4L9ruBLrz2/gv3XO46drbeC/eN8Ypz1t4L9CSZKDc2rgv3goWmc7auC/uy1uqkto4L/y6Z7fx2Lgv3Ir7vzvYeC/dGzmUHRh4L+HElU5917gvx799fz8XOC/3LjlTqVa4L+Br1V2WVrgv5gojhGZWeC/TklnreNW4L9lwHh7YlTgv8QzhI5+UOC/OT+tdjNE4L+UbMq8JUDgv1KccLdjN+C//k3F4v814L9GKJhR0jTgvyajTMOrMeC/jm38lbMw4L/nLKFgGjDgv15/tLBlL+C/Cn5iZQ4v4L9cPRLx/y7gvwDP0rCtKuC/R1USV3ko4L8eXHURASjgv47e67TFJuC/GxS1PdAf4L9mbnuEuR7gv4DNQkGLF+C/g/WA+a4W4L+cJtBdOhbgv5ChAyCiFeC/hel4MzkT4L/sSgdXphHgvz7VHNWSCuC/oG5IoCcJ4L+7ib5z2gPgvxrAySltAeC/oHrY/W//37/MHGT1AvPfv/nlE3hl8t+/9p3Al9rv378mYOCVWOnfvykT/KUb5t+/nGE3Ekzj378wRrsIjODfv28dBskG29+/sCIavdHa37/Sf95xr87fv6YytunRxN+/UhGJa2a437/SIOwwVbHfv+hukTeZr9+/3DRsEtyu378pbZlVCqrfv5zkPLQ4p9+/JbhUFnmj378HhFK1+Z7fv5C1PObwnd+/sdARULac37/kK5LY0Zrfv7/i8+hdjd+/saQOJqyM37/BhdWWhYjfv1lI8RD1ft+/LhRHwuVw37+FAeAhPGvfv/+nRhI8aN+/LVRRZBti378PuYyLcFbfvx0nm6s1Ut+/myvNIP5L37/oaWv5bknfv3eeRAj1QN+/6wGOhIow37/e4vn+iTDfv4aYVWseKN+/HBOmhWEl37+CApO6ziTfv/RaXg5nIN+/JM+5y6MW378MkU3dRA7fv0XztwkdDt+/HqOy5FkB37+czZ3epPzev6b0CD3g9t6/CoiAefbz3r9qyJDT6fPev/5hl4k28d6/0oFqkNzr3r+IvDXtd+vevzwhiiSQ0t6/Ch7+hqHP3r+GJ8tKCMvevxy08mcoud6/KM4BzhO23r94eFI/5bXevwuPq8EYrd6/S4g5J3We3r/otJ0dqJvev+J/lppqm96/pes1THCV3r+ZrT31iIzevzpZbxUxfN6/4cRMCeFx3r/CjTrR6Wzev+gobL+ebN6/sx7Q689r3r8obvFwdmbevwscRGXzZN6/xKepHXJY3r8XRx8TjVTev1TubkC1UN6/FqGqwpRN3r9+N5Y0h03evy4811q8Sd6/2SjJOGxI3r/tMQd1XEXev6Ij4MNSPd6/ZtUZ1Do83r+UN6EEkDLev5yCn+LbLN6/iB9d+0gq3r8+okUxOSTev0vpFB1FId6/6Apgf40c3r/W/Zg7Ixrev+m81uPOFt6/s3oYpGcL3r/tb1HBFgnev9r3xsRcAN6/AS24gTb+3b8SZGracfndv9itKxR6992/mONxU+3y3b+iWbodtvLdv6NsawUW8t2/wgukrEzw3b/IgrmuAe3dvzKT9LuF6d2/Qke2YiTj3b8Nm++XtNvdvyXCo4xQ2N2/Li5FAN7T3b8ERd20stDdv4a6BQA3z92/jtwYFADM3b/Qb5sGEcndv7dnY31Zxd2/FOHV+bC53b9eH/5vy6rdv9Q5ybCMp92/5hDT4vim3b9l8vj2R5rdvwLbfc8hlt2/eqTZxLqB3b9L/G58nnjdv0t17cGQb92/OP0/riVo3b9ipNI5dGDdv/LyLDfdWd2/mEF1e4tY3b8gZ/H7hVPdv0yZes4IT92/NArSkrxL3b9G742d/0Xdv89HUBCjPN2/mTUzBuU53b/PfJb8bDndv4FBsqVWON2/FWWBaqkx3b+HmvgGHSzdv99W0IzvKt2/m/y1gpQp3b/Utb0j4Rjdv6p3+yUPGN2/lMY5bg8W3b/+y4C17BXdv+IKKM52FN2/b5zb3toS3b8mr1kmCQrdv16WRm/dCd2/AgV6iTAD3b+QM+679ALdv7JJIRDK/9y/2A19CLn73L/yloLjsvDcv609Wmu56dy/G5GJEyvj3L879dADiN7cv/R+mGuk1dy/aP7/wkjV3L9AjwqrFNXcv3vdRCRF1Ny/NrNI2K7S3L/sZ7vtiM7cv8s+8CeKxNy/Ld2BXbK13L/t1sl4C6vcvx+RsG+/pty/xnI1aoWh3L85fufnMp7cvweYNYELmty/ynEAvx2S3L9MzqqHF5Lcv5AgzR+Qh9y/r2j1zbyF3L+7XffmMYDcv260rZoIaty/7IMymBdf3L9H7Z0rtVHcv/jwiKu9TNy/PLSy7Zcx3L+5+fUH8S7cv6lGytmEI9y/D1ShnH8b3L+2SkYWWBHcv52kbpYYBNy/kMQWQisD3L/eiXdw7gLcv24VE7fmANy/K5BVpwH827/o5xKgpPfbv8mxI63x9Nu/xunOAnnz27+W2vDOn/Lbv6AlKLBq69u/1w8NWAXk27+Lp5JeFtbbv/DmieeFztu/5nIEGBLN27+HNNhDvsXbv81KVyutwtu/SF5xuiK+279GgCSpGr7bv1NLlDnst9u/CCRdqteq279qi5iezajbv/zGhtTnotu/ub0Pi4Cg27/UpTppCpbbv7lPIhvXkNu/Z5DNM4qP278th6cido3bv8y5B7OYjNu/yz9aSsl927+uLQj8DHbbv0iayGeZctu/BccKBnlw279n9uDJWGXbvx54DBlpY9u/DfecFwZc27/42UmyNVvbv5j7UBfwVdu/HmhNIopO27/gMCHs9ULbv7Bvc5XCPtu/EHxP6AEw27+zWrSYrS/bvySuMxPqLtu/MEN7SwMr279M4LUz1iTbv1YV6ft8Hdu/mFQN2mga27+HcIcaRw/bvxILeee4C9u/1jIkPWcB27/wUnTxVu3av2KVQCG47Nq/QAgPbj/q2r+y7kE37tjav0lh6tGW1dq/EMiQfRvQ2r+hJ9eU2c7av0KqFQUPztq/vLsJrGLM2r+yk3tgyMnav+iueGxfxdq/w+AtV8W12r8zMVuR5LLav+BYTPtJstq/zT3XJkCh2r/Q8qdEgZ/av4Ekm5BDj9q/GO7uBZqI2r8OBt/lEIXavxK2Nt3YgNq/TNxKyFl42r8BYWXmhWbav9QGyW87YNq/uCxzKFBc2r+waUZcn1ravzzYkX9cTdq/MMR+pKJM2r94NOTkrkPav4z/rNc2Qtq/xqM8ef082r9pWTZ6ODzavwskk1DTO9q/V9/LH8Y52r/GPTrfwDfav4b41QYGJdq/1Zd13Pkd2r8KtrP63hbavyKoVSGgCdq/bcqrE+kA2r8G65uitfvZvwpJeF8Z+tm/V4yioOj52b9eFJ+/NPjZv5VyblLA9dm/6EyZpQLu2b+kRFxGq+fZv1bgphZd3dm/M3W86/DD2b+egLJmlb3Zvw7A6xTvt9m/VuqFLQK22b8KKdXa4bTZv/LFj1NDrNm/SN9fm+6r2b+w0M99J53Zv7IdmNDhnNm/NYxvTcCW2b+12JUgK5DZv4Uq1wTbj9m/iqRETu+M2b/ReCvuVonZv7v8WgIshtm/6E8hIA+G2b+MBtxmvIXZv1Fk+zscf9m/YEuySGF92b/lugfG/3zZv1c9epGKcdm/5VbqjNpu2b+mZ1upTWfZv3i9BK3/Ztm/xR6dATFh2b9faWwo61fZv7oEdvUaV9m/g5iDlNBT2b9DZ967uVLZv3ig1W3VUNm/iPUXT5tF2b/6AwWC2ETZv3emFrKgQ9m/F2DvjKE/2b+ocwQOaD7Zv3I7uv1vOtm/Vyru6eow2b/lZuqB8i/ZvxIGBj5YL9m/MkLUfTQl2b8gLohPEiTZv3bzSzdoH9m/AZnZKWsX2b9Mn5LwmBbZv42/TF7bAdm/5GWggrP+2L/Wh5iJpPLYv3bDIZ5V8di/mtiqFLbw2L/r0GA/Ie7Yv7BV3h6f5Ni/6kkPC8Xd2L9YdlnlstXYvz/Fg2+e1Ni/HM4KnSfN2L83R/2QLszYvzuR208Pyti/un7iwFbJ2L/JXaow1cLYvyXy51Vtv9i/t51wu5a12L/AA+XT6bPYv7DLIdRhr9i/ovKOPKis2L/by2syiKjYv9bqz0u2pti/uaA6GqKl2L9YmqLZlqHYv8PK3EL6oNi/4EqD73Cf2L9fauJ+k5bYvzJ//N6Tjdi/xyWIV5GF2L9IcJNVeoXYv+zZBPTJhNi/pix4WtuD2L9BUZVMWYDYv+WEhIG3eNi/57OWTiF42L85LxtZIXbYvxbOcn2PXdi/ueUtf0pX2L9tnuCQllDYv0hs2ZngTti/VA9vAqFH2L8RP/58NUfYv3a5f2M9RNi/auV/1GVB2L8pnx2qVz/Yv89Ne100Pdi/lrjfARI42L/oFCYdrzbYv1ZFt+bpNdi/KFalRkg02L9Hy162dTLYv5xhdlnQKdi/LGsmsgYk2L9+XfHH2xzYv6ecSNNMG9i/Bm0h65cV2L9YQ4h3ARDYv8SPUxyCDNi/8E862kQM2L/pqN/jagvYv9yx97ns99e/iU0/X+zt178mCtS2su3Xv4ft7aDQ6Ne/2HMWy0fn17+EJmopn+TXvzoL7sR+zde/PkLiYlvN179XZE6DgsfXvwa/BPmWxte/8igXN0G/179YpfUICL7XvxwJY7p4ude/zxdljoy4178pGm66lbLXvw4SF8nyqNe/SHRnuqCZ179oa+ShR5jXv/Et1qHckde/Ql/bhHCD17/U6K7BtX7Xv0zvNcy5ete/ee9v2SJ517+99xUcoXTXv/QJ99tVbte/nXYUwB5s17913+hmSWvXvwHcyDgTZde/A+/XQyZi179khX6ddFjXv7FGvAJOWNe/KCZKU11T17/FNQVdHVLXv5oNGBsCTte/Eut0VltK17/GnUX1pEfXv3xqfDN+R9e/apsZ7XpH17+reCYrS0LXvybKSkTMQde/eoMhzXg+17+anu/I2zrXvwN6FnZnMte/Y10ShYUu178MAwFaeC7Xv1Uj7VQqLde/Yy5OCG4m17+PG005CyTXv6D74RC+Hte/lSG/5Dcb17/gp03/hxDXv6iJCXekC9e/g+n1Ab4B1780pHrHFwHXv3SxpXqO+da/ECESTfry1r8+xyhrEfDWv2QooeBV6ta/CS8nnMPd1r9WkRSQfNnWvw+5MwsIzda/Y7AUa73J1r+1hUa+Lr3WvzohkRIBuNa/CrhFnYar1r/3uuaFV6HWv+gj4p6lmda/YJqAQMuS1r+bpp01wZLWv4XUlf4+jta/MDsTdw6D1r+101xAZoLWv0rohgXofta/AOih99p81r+1DNQWw3vWv9hxc2QTeda/XiQX56J41r/bu6rAC3DWvxpLPJ4Mata/2nNFPNRg1r8BK3USY17Wv3klbZtsUta/4rxye05Q1r+8L9hflU7Wv/TYT5/JNda/ISFc1Ho11r+UT9m+aivWvzSOVjv3KNa/OMqohxko1r9BZYhWVSbWv0w2M31OHNa//oW2XkMZ1r8LjY6wxhjWv5KPZ1W1F9a/ap12swsQ1r+k0BFOzQ7Wvx9Xh1kCANa/JkHm3W/x1b/GSCcggOvVv9QBXnKN5tW/tMLksY7j1b+onsH78drVvxiw9Anj2dW/6hsexbPU1b8uX29RsNTVv3CZBQO3ztW/l0B7ZcHH1b+L930YM8TVv963okZNw9W/vCvE3W671b9VcmCoF7rVv9JhnILfudW/AMzd8wml1b8KcYUakaTVv6k+/kS0n9W/9IQdhGmW1b+zBJPyG5LVvxAqnmiijdW/x6eND1mI1b+aZQG8d4fVvwTPR2rsdNW/fM0WlARv1b80aD1AvGLVvwLU0/HzYNW/7VIh5lpN1b+uTx6zEkrVv8s6EBSaSdW/mYGymiRC1b+IKphI0z/Vv2xQA8baO9W/CzagRUs21b/M+zW8OinVv9Yhkdn8JNW/6DrL5ZMj1b8qkdwCCR7VvxDqon3PF9W/+FT2YQoE1b/+SdS9QQPVv7IAGw/vAtW/EPU5YPf21L84rp+GUOzUv3D1u6JI5NS/8AmM6/Dd1L8MI71KSNHUv3tMPWflzdS/qO4HzrfK1L/CQMbYcsnUv3su2mhoxtS/KVCsfi7C1L/81tGjErPUv9e9Anj0stS/YPdF7Tyw1L9wnQpHkqrUvwiSREqfptS/8EqyT/ql1L/cHo2wfJ7Uv0sexr1/nNS/qZcmorab1L+y4pyTrJfUv649aKIMlNS/xr2j1YeJ1L9caNv35X7Uvz0+RTK/etS/eiqCKq9w1L8q/A8DZW/Uvy6ZFR9DbtS/NJSNtRlu1L9rc7NEHmXUv/h3bDf2Y9S/xoHLVbdi1L9RIwabuVvUv8TE3cpGV9S/7pD6mXJV1L8MNeEqsUzUvy0AzN7CStS/XXCPPqJK1L+1S8OiykXUvwS79juJN9S/Qf0ubSMp1L8Njs6h/ifUv2f1aAxOJdS/BEelpWwc1L81iQ5pPRbUvz15qpTvE9S/qP6cM6US1L9C1hTfXA3Uv69kOcFbBNS/i6tgvNT/0792njcjyP3TvwSWYeVm9tO/OnWnjUr0078nIJOOhu3Tvy1PaXD95tO/fNQNItXh07//FkIjudrTv84oCSeu1tO/5JGFcOXU079Xk8OpGM7Tv7hJOy/rxNO/h8EwAGLB078d4HNTBLnTvwQSbht6stO/aW1fye6u07+zwSFaYqrTv4jrYPCFotO/fGIK8cKe07+ZPrXUzZ3Tv2/2sTiLj9O/bv7qVviK079KMbpBkITTv8OMhktFgdO/xwzX8ax907+IQ8/563rTv/YvD4+getO/I4twRTF00782N369f1zTvzY3fr1/XNO/NmvQltpK07/wuZOZ4kDTv998JBj+PtO/s6kLqdw207/zke0tFy7Tv7TRrQPaE9O/1BAkStwS07++Gms+4hDTv0m2BqV3D9O/TbP8nugM07+R9uAxQgjTv4hlRBZzB9O/0ayf6zL/0r/iGOK79f3Svyk+tXIN+tK/6peCXIrt0r/P+6Ycdu3Sv8Dt2YpJyNK/xSr4af+/0r8qYCdP1b7SvygkeUNZtNK/3Epg6Pin0r9/LbtSa6fSv83dGZiOj9K/aWY42pWM0r9YURqINYrSv6ypwWlGhtK/qqE3tYeF0r+Tfm3jrXjSv3aJmFNUdtK/0MgR2Xxy0r+mD9EPnGzSv8Q7mo8JbNK/AJSvKrNi0r/SS/i23l3Sv84n52e8V9K/PdSo0dlU0r9rC1U7a1DSvzLwqNZ7T9K/zjMowZBL0r+q/5LIC0jSv5sjg/93RtK/EfWskyhF0r9yKDkfhUTSv6iHnK42PtK/czO7Y8890r/WhewDfTXSv4oJ4n81KtK/yTV/z6ci0r+T4owT2hfSv3mgdD2EE9K/spmN1n0B0r9tsREDPgHSvzFYf9ZV/NG/p+ftqrP30b++b/YSnvfRv+Q2mYcH9tG/7gQvXhHp0b+7fnpcdOXRvxZC31gV3tG/aGK0I+XZ0b8iGgzzdNbRv1prh9lV0dG/UDJxubPJ0b+Ma8Oirr7Rv+vJrHhat9G/qKtJbYWf0b9BsgiiYpzRv4jV35xplNG/0cO2oIqT0b+vFBOBUI/Rv7awYyV+gdG/NqCYPT6A0b/3/aCMSXzRv5A1wQkNfNG/GILFHll40b9NdFjFkXbRv8zH1z4vdNG/c2FHrkVt0b/JsirBpGvRvxYmvLwyWdG/n1Wt3ZNW0b9W+uQP9U7Rv1RULr9FQtG/kZ9bX4Y/0b80C/3fKzrRv9zgb0LjNdG/YYNLhnsz0b8u6EyWojLRv0bLTyUGKtG/cdjdooUg0b/OJAIbrBfRv0iEArLQC9G/CjgPibMI0b+zGBSLivLQv6A3e5ii4tC/oVyUlYTe0L/qzFfcOdvQv9+TvIYM2dC/sNREbf3Y0L8TCeOuwNHQv/CecmwjxtC/4rqBDRPG0L+erFgSa8PQv9fl2XOfq9C/v1g27b6Z0L8arBbLCIjQv6bKofWqgNC/9EW20UF+0L89Z3y6fHzQvweJws1RedC/OiuLyxJ50L8nrGx5k3fQv/+UmQDPadC/Jgx2BXZo0L8SXZ/cbWjQv9E3xPosW9C/kV7V12BZ0L++5bOFpFfQvwwVdoYuTtC/qPYcktRI0L9vfLP6gDnQv/m4gDGlINC/tvRtneoc0L+ncTXpfxbQv8B8K93yB9C/E0XGzRQB0L/gAhz9+gDQv5/PjBMn48+/lBok267Tz7+0lUG+4MbPvzZvVNl/ss+/8JdQhMGbz793TJJ/SzrPvxjQzG17Ks+/gBpS9UwFz78TBM8m6QDPvwY6nxjq/86/kn7qYs7yzr/rP1fjH5nOv/vB5u60lc6/QusuRHyNzr/uyp0NQITOv1JIIfdqgc6/SmaMKi9xzr9I8sMPX2/Ov91GOfBhbs6/rMc1L2ROzr8ikMi3EETOv97fe0sxQM6/QlZ/9Ps7zr8y7d5N+jXOv1vl72FfH86/5+uX6SEVzr9eKQGNLxPOv+q5g/wQB86/APkFrIACzr+ae1VQNfnNv1ih3bcM9M2/nLPljxK6zb/v0teBQ5LNvzAPNpp6jc2/Vv4eu5iKzb/esbg9aYnNv2LImCQuh82/atLeo7N2zb842Tij0mvNv0XO1J9zUM2/JH/Nm91Kzb9dWTq/ZkDNvxZ2n45BPM2/Gocr7O8szb8kqo3ADCTNv2catzf6EM2/iDZfJhkNzb9EcNCOadzMv2LkWyBz1sy/fPXTOp3EzL+5Q/zv+6DMv78eWHXZn8y/vGllajCfzL+h4AuEaZLMv/hNrIGjd8y/lA1BAvp1zL+9Pb0HxWvMv42i0bb4Ucy/ZeH/rltEzL8STpIbUhnMv5I6ZvSg/cu/ZIsveyP4y7++0r83tOHLv54Rzxs0yMu/Xo1M3J/Cy78GG4j0qbbLv+CBJNuVqsu/t7oBEi2Ay79RyMTWb2jLv0iOy5Q0Ncu/QYFi+yoty7+tO24sVQbLv2nlmlXLAsu/jQLZUAzzyr94uOdBq/HKv0eGg97668q/hZdGgHDqyr+yNGRWu83Kv3KzE6SWx8q/miihNpu6yr+rnpfikrfKv/SGZ9/4qcq/g+0jx6+eyr+h+VcdbYfKv0ZLL8o8h8q/KBwVuC2Byr+UNOMpyYDKv+AU9MY/XMq/8o52QJFJyr/xRmmDmUfKv7DlsVAfPcq/OSRy43ANyr/QA7ZB9ADKv3w7Ew4+AMq/0TuA2GvZyb/EtcEAW9TJv1j1Z37Bocm/AHWDX9V/yb8SajBo03TJv/p/PZk5YMm/o5tR0DZFyb/e5kyhVCDJv5BcbO9kHcm/sN2+1lMcyb/anjioSxbJv1ahkO/NFcm/tHbSJyoUyb9Ec9zIaQXJv5uTB6R/BMm/RraWs278yL/49w7MZPTIvybVrWCr48i/eNNEgorTyL/ljzMf0tDIv3OArZ03uMi/rqnUU415yL/T8c1SwG7Iv/Vn50Bobsi/kL/0RwVsyL8HgM3xAE3IvxII8xXbKci/RR6RQnIIyL+KKAU7zfzHvz5KpmDF9se/cjkvuHT1x7/suJtM8e/Hv+tvqOuI1Me/9Ra9PtvJx78WlD8wWMPHv6PTmhcEw8e/jOOXbtqix7/UPSkeX5zHv3oxEbROkce/3oekkEWPx7/cKtEouojHv6EYyuoifMe/SQkMcUh2x78mpvRMylHHv1hlmbNAPce/KSohRPAKx7916Z9HDgbHvzMGtc94z8a/2HfqIdO5xr/pBcYJGrHGvw0ZAjL+qsa/rvnjLmGfxr/HopC8to/Gv3JRP3euc8a/WwUXEyJqxr9TxjAFlGTGv/CW8uhlWMa/X/XgmcFSxr+JMig+f0/GvziWat0kS8a/ETp0NQc6xr9JVkfSqzfGv3GZ8RasL8a/qQN1Nikoxr8HyYr6WCHGvymSpBpsFsa/7gZDbBToxb/rg1vOVePFv70+CKz4wcW/gExQumq5xb+16ztpsLXFv28cePt9rsW/YgAZPGepxb+Uf/v0DpHFv3o7otaAj8W/zN6Sth6Mxb8GASqLXHbFv40j/rBpUcW/0OT6Hp4yxb+lVJ5GHTDFv0TG+8feLcW/jpVPKpwYxb/MJapYXQrFv0lg3ICP88S/JxfDRPPFxL/h/xO42KrEv7FdC8Xdk8S/CWPNkF1cxL+9E6imLljEvxs0iOM4VsS/7RUbbLtQxL+oLyIpOEzEvxP2o3wAOcS/mGW1GmYtxL8pX61EhdDDv7QKMdppvsO/OuKrU7mxw79vQ+CHKKfDv0IhEvgIl8O/wLDxbyqGw7/ORnW/fnPDv2LdDeJNVcO/3F0HH7pUw79s8a040lPDv7Uu70DuPMO/wsKjlh06w78PnIP7wgTDv5yr3+fWAsO/gkcvc5/4wr+b04fsMc3Cv3m8PWiRnMK/dfRg/cSZwr+MYUUk2InCv7QMnCUKiMK/De5XOr5gwr8PK8ozG1/CvzZgK3ubWMK/dPrjYRwtwr+GJFt2+iXCv/7dmuIpF8K/jKi0L3L3wb8KZWGIR9rBv6a2MKA0w8G/66gBug2twb+w02wotazBv2R5aWURqcG/ITT8RW6ewb9Ufbwjl2rBv0Hi7AMMVsG/q+TqH74zwb9aBUM8DCvBvxq2kQyvD8G/5UCY+1kNwb9gFf1j/gfBv+FL9zwrB8G/lkrJ8279wL+r5oL62K/Av7vXo5YQp8C/u1Jpp+l3wL8FHl8+aXPAv3V88yBJWcC/PbrjoQBDwL+Y5BWscTLAvzzFRgbpLcC/Ufgglo8HwL/6HBaSZva/v34EKMyLrb+/Jntovn9Lv79XM9k7TTS/vyxLlVyMKr+/yHNzf2f9vr9S6jVMlt6+v8UqymHGib6/yNFACZp+vr9aWqLHFme+v3i3zQvV8b2/bKOK6nlmvb/RUwzwLFu9v3SiYGypWL2/NL9Ta1RUvb8cDc0SRDi9v1JvLEH+4by/YJd/E5mNvL9ulCYGVyq8vwZFUpfUIby/MIsoVxgbvL/Ge5sZXAO8v+jImQVozLu/2gKlpSS6u7+4q8532rS7v4OFpy5Id7u/lhL6vt5nu78XNtbU5j67vwYN2kjfLru/rBEbSj3wur+lsP4hMLO6v2kI6dxgnrq/yAf66sOAur/vEkRLtEi6v8XeEk8TQ7q/ANwJXKY8ur8qF/K+PR66v1wufrsG27m/MC/EEaG3ub+dtxdWg6S5v2HK72WIarm/VMabNlFIub8ACm3//jK5v8cNho0M8bi/7q5DRFieuL+kCMGggoW4v9zfmcnlWri/1Oxhkv4/uL+icP2m7O+3vwPuQRKO2be/XqRJoxTGt7/I4KK6Rm63v9YesLyPMbe/u5jIafsvt78wJYqlwia2vwl+0tbeJLa/b1EAiELqtb9eQ4ndgY+1v7/qcGfJSLW/3XROqnYMtb9sdRnn4gK1v4Byt6c+u7S/5gvG27WUtL/KlK6E20y0v2D6KNpr/7O/GKcK9/jts7/szApyVeezv8J70ZD45bO/lIE5p07as7++U5Aoygezv6pqYX31AbO/eGrTGhnPsr8IakW5B7qyv55HwDdVmLK/sVfVAyJCsr/s3E/PNpaxv4FpYx7Nk7G/pC3Bs35osb/YQ5mAVGSxv/LTLFAzVbG/0Sr3SpY1sb9uGCLdzRGxv/H7DxL+YLC/57RSJFIqsL8iZAd9ug6wv4jZ2W5kzK+/HEz/c1EBr7+mWfHaHf2uvzhikNITW66/5Am7x0V+rb+/PNfoeRGtv7hfmHZQn6y/RDt08BN1rL98bxQ+6q+rvyj/gLoQiqu/EPq/z9lGq79NX47J/Rmrv/vk5TdPK6q/8KmOAvyuqb8oBs2yKYKpv0i6YDrVa6m/qK3jPLXzqL9QEb/6bOuov8MlmhUr3ai/SEHZfpi3qL/YB7yqKUeov2KPFOqXkqe/J4ZJVUEnp79g7a4YPSKnv4DEbzrhtKa/QbILYol9pr/g0OBeZFOmv2RyPmewg6W/3AH+CZA8pb9ExmmoFk+kv7AuWWZyNqS/oLapSgYTo78gY6cZZ86hvwBqMhuSYaG/nI+5RsZNob+Svuqyfuegvwhke3vkep+/uL70wmDknb9w7vz3YQudvyC4CYmm9Jy/iJj0Yi3hm7/winl/D2OZv8bmrHuFMpi/AFHCj7nll79weaqY/p6Xv3AFyjAlZJe/cGJYhghDl7+wkPY4zW+Vv5jJNPy4KZW/yfGmJ1j0lL+iMg6yWZOUv85KOyhDa5K/4Lroe6YLkr/AsFtPs3qQv2DnXl7bAJC/aROpprNvj79jfkMQztuOv8DN544ToIy/C0VvfcKYi78g+tBAfJuJv6D2MK9/u4i/k50Cf8A9h7+w36+kjImFvwBav+dhBoW/o+n3ZhELhL9rF6LLGxqBv0Di2itK1IC/Xs5OYI69er8Adxkt9Kd6vy54TK4gLnm/5j/thaUfeb+AmbXtHMl4vwZcINLDn3i/9n/FLoTud78mr4xlzqZ3vwB7FkZm8HO/VLFzDM//cb8WVjl6+v1xvwwD+sKfJWy/wAsznOZvaL8AXv3NmTFbv4CRPKOAFVm/sOSJNSJ7R7+Q+9KxtoBIP5CDUiaxtUs/AJT6mTXrTD+ADmS6nmRSP+i/wXTsD1k/AEJ8s/zeWz8A0/8AvMldP8BAUojF4mA/dBfLq0oZYT+A3pHi46pkP0DTFzokFGw/gI56OzT7bD9ARTNs5tVyP6DIe94/1nM/KuEpvicvdT+gY5Q66cJ1P4DTqr3QsXY/AAPEpr/sdj9AtKR6Wyt4P3qT7QKifnw/kNBfGNQ0fz86eZdNgqF/P8DgIDwYZoI/3awa2dHWgj8VAwxvamCDP1UsA+J+kYM/4EQuL6Ctgz+NwIpLPuyHP73mFa8U/oc/KMLZhGxDiD9gvGjj+weJPxjCxMDqt4k/be+krOZTiz+F3drgu2ONPyUAK9B5o40/jeajtpttjj+gLm1ea/OOP/5OM5uP+44/YITO50wykD82ATk5kWeQPzY7DQouhpA/CExrrlH/kD+urspfkgGRP9jGay+wVZE/QHegivaqkT/e9/7DlrORP4QNMmra5JE/Mo85EA4skj8WOoEav0GSP5Z51VUpWZM/HsZxoRZblD9AwcXIxG2UPyDfu0pk0JQ/MIUq7LoOlT8uNQgK9W+YP/TF1ES7cZg/gC8ce5F2mD/2Z+jxTlSZP/rTEzq/aZk/6i6zhOmNmj+OkprJfGSbPz4ExdyAh5s/iK/xHTq2mz9A5agRUBOcP5aA6R6VZJw/OKdxaCC4nD8mBS9vZ8OcP5IeONgjLp0/NpgzaByYnT/u0vRSM6mdPz7RG7BuwJ0/1odRDGb0nj8qP+6aL/meP43Z5dBX+Z4/riSMMtxWnz+YT45r3uKfPzlLvs9yFKA/N7LghRg1oD8zNPgo3L2gP+9P+THPx6A/etlEeCXaoD94nNDyR3OhP/kHv0+/kaE/sH5csQyaoT9NNC9VtyOiPzdntQuPWaI/R2Wuco5yoj9D+oaNckijP7jXVjhpd6M/x0RJ0IaGoz850jZsaaKjP/utiJIjCaQ/jalYWFRgpD9F9ogvxpOkP/IA2oPxuqQ/GKrjhRXcpD8D2YrD1SilP4NVzcamcKU/l3jfvG8jpj/5agzlgZSmP3kvxfvtn6Y/rmXTbwrDpj9wibFvGdKmP1ACfzTN3qc/nNCHiVDxpz93iU+SoiioP9EDuJ5EQ6g/su1PKBdHqD9TzER1Pk+oP1GMrdipbag/ADwgOLJFqT/xrWKfgD2qP3PMUa1686o/w0WYiDaKqz876a9hMLSrP1vr9b7ouqs/gRMNOtbaqz9g/CGI+y6sPwMh5POYgqw/+kQuq7SKrD/pST4TMNqsP0ZoqhheUq0/NfIhFcGmrT90AuaFAcitP03qMYte760/MPXFsDR/rj+4ddXkI7+uP8IBS5HSFq8/Y8in7mYXrz94DM15MJ+vP9KsyWCAO7A/HtL49ppOsD9d4+Sn65iwP1WBR2h0orA/RizRhYCmsD9gRhYZWLmwP3mdl7f8xbA/voxXlDQMsT/K60CgJg+xP+05ckemG7E/R71L2lczsT/fovP+ZU6xPxm67dxlX7I/u67yDmxqsj/cmXD+c3GyP4hE+G3zj7I/Y+yr9Y+zsj9RqQNsMgOzP32VlGRfkbM/y4BdFiUXtD8zkl85GTq0P9hktniUZbQ/tEx5dLdptD/08Bo/imu0P4h6HASggrQ/fhzQYubNtD/E+VwTp9K0P+DnqCFN5rQ//YueS6XptD/UXPPD2Qi1P5K+/L7jK7U/dobcLro5tT8GJ4E6Zl21P7y8u1K6crU/0PnVMGuBtT/WXJICmIa1P1DPLPRCubU/sdQ/seIYtj/6FRWbOlq2P+XMc6tZZLY/BxTTtGTAtj+ac25a6Mm2P70N7icxzbY/INafVeAAtz8c5cybERy3P1jrZiE+Pbc/zpR9zsJetz9OpkmoP6G3P+xAbvbtxbc/OHErhBD+tz+ar6bFnRi4P0ibSCQ6Hrg/ylt48ss6uD+opPQ01ku4P05XqApydbg/rAfKiMd4uD+MAJi7OMW4P3Sgp8FHALk/3fLGLHQPuT9mcPG2iiW5P5qG8dS2Qrk//kMo1IhyuT/auovvbJC5P/zg2YY5ubk/UcQyYvQmuj87rW4pnEm6P3ZtBzLMfbo//hQzCeYIuz9w36VmtR67PzbPfgshO7s/pDlzMnB3uz91fXSSIYe7Pz194bOMzrs/1G1tHi4IvD9gkxf1MiW8P/yVeWE5QLw/mk6fhiNfvD/w7ULuXIa8P/AqDinWl7w/DEqeoxiavD8ty/vaXLK8P+GILprr1bw/arAykbPwvD+YGqadrhy9P3Ic85/qN70/5V8FO7ZTvT8aCHA69VO9Pzw9YFzWVb0/gHnC0YxgvT9HyMooX3O9P0pF/fSg5b0/KIL12PFrvj8KBAQKt4++P4IFfssUDr8/IIKMo6w/vz+4iUSS1ka/P7gkAPXDW78/JlJa25nLvz8RWa/y4te/P74pUZO7D8A/xxUQX2UZwD9nYGeG2hnAP94DaKHaRMA/pstRM0d0wD9gIv47ooPAPw6E9VGej8A/DFhjXSW6wD/4b2tvRsLAPwymIf0m0cA/KX1MFizXwD+a9ZWvWeDAPzXfkerF+MA/N9exuacUwT8esqrvqCzBP1QtzNQpPsE/FBOE5atKwT8eDfL9n3XBP8+lOG3Sj8E/LINxpECWwT9X4J9cgJvBP0gTcrG7qsE/gHxRrY+twT+LNG+EorPBP79HrFpovcE/ahfoOfbIwT9eqzPVKtzBP4FAROTN/sE/p08lH04Nwj8T635t/BLCPzm7AKkqMcI/qm3TFgdGwj+Qm0nts2XCP4YuB9Tqa8I/TRdJrKh3wj9Z7Q/DAYfCP7iUusidocI/Eey8AQ+owj+u1ysoL6rCPxehv4RZsMI/KyxeaFOxwj8aW4eI27TCP7W7RibxtcI/pxdkZs7Ywj8yGxTBvfTCP1uBNyvV/cI/Zd2afUUewz+Z/Tykjh/DPytLM56qH8M/r2Rt2mAnwz+aePiBoUHDPy69nA/DRMM/hajWSYpawz9zqdm9r2LDP/LH9yhsZsM/SdbDhmNpwz9BMh/DBHTDPyTPFOALfMM/7kuJHlvmwz8sMHNDf+zDP62MQkSm8sM//PYf+UZ1xD8M6KhqKojEP5axeSKGlMQ/kID0s3e+xD+dYEq5Cd3EP9on9Iku6MQ/1ntyUDIrxT+lq01K2j7FP3Yd+vcZTsU/Q4a6UDCExT+NsF37iYzFP/iXIGj/0MU/ST063NncxT+mX7cxQOrFPxH+EMSdAMY/Ah4O9dsfxj9XfLDu+k7GP3Hxf06iasY/vIOEBexsxj+7UQG7UMPGP89GLnvT1sY/eYk4NJUAxz/lWDsFIW7HP/c+XbxFf8c/SWdesA/Jxz8gzgDnsv3HP4mO2pwF/sc/gC2/FGppyD+kQOoWbavIP1yAqDjky8g/XhBQt/EByT+mSdy2wwbJP9jwu7RWB8k/HnFGbi8syT9KcMrt3lfJP/q5d5q5Xsk/UqfKxotpyT/USilRbqjJP18q1cTo1ck/bBPJoibmyT+rLCM4cATKP7wKlXdzGMo/Qq3mIKrgyj9FPRMzuOjKP5R4xpKy/Mo/D7KAX/0cyz/jLm3SgibLP7/dTVclS8s/ptFDXy9syz8T/d26y5bLPzciZKWzvcs/ShSxqrPdyz8zFvdEZVHMP8cLqTPlscw/phOeuF/VzD8IsgN+vNfMP9LeU28uDc0/EmkYgTSxzT8tnOQX5NDNP7YhtM3q0M0/yCHPD69Gzj/itVlKQmzOP6jwvVcres4/LhYEIcHqzj+HG2lY9RnPP4hw76REw88/Q94+wsPKzz8DX9CoDg7QP7kYFoceLNA/Yk/tHOUv0D+yvqMbJ53QP1DfRZAa4NA/Jrw/pYM40T8QXWw63ETRP6s683dhqNE/RBYY0cy10T/G8Ej+6LfRP9exL7uKxtE/k81a30z10T+3XuUqLwnSP5hiCFp1GNI/aoYq9OIZ0j+3WVm1LSbSP9TjLGhbedI/bFDExSF90j8SZ1mpc5DSPwgLyD9ru9I/eI39pYfq0j90Qab+x4XTPyJ4A0aMjtM/E+mXyA3t0z/zzro24TTUP7yHU8mPN9Q/uH3vRkhn1D+zQKPpg2jUP3+UYmKUatQ/PIixQgrK1D8m5tNBn+jUP0DigMiXDtU/sirNVM0P1T/VaVcZryXVPzVqymRwQtU/wFWPE9Vr1T+uw89ktdXVP9QzhsFqDdY/Vgk5N3pJ1j9eF35YmXvWP5BwoZlYqtY/06Jrwgy71j/S6Y1pGcbWP2zzKoJPxtY/9FyLqr3R1j+S17lF9OzWP+hrquxPANc/OPiQQIII1z/MHBajBSLXP0hVARG0Otc/GMz0nINJ1z84Qavh5YnXP+1rSlpMndc/3xEGVMMa2D+Sn21K4B/YP72iackLWNg/olcfN6bE2D/SmzYFp8/YP8KkN6PI3tg/SrvyoHK62T+9w6hwB9nZPyxufIO429k/LMJawnr92T+q39C+HQbaP/5T8CcMFdo/Ilr4lm6X2j/Yvg1f5KDaPz36/EsYr9o//LBxSuXW2j/n29m/1CLbPxSspW7aJts/Q6Tsn91K2z+1czYPH1/bP2zxyy5UYNs/oa/hK/R02z+42S1FiYnbP/EjOuAslds/EfW9vGa42z8ZJ9dF2bjbP1HtRBqD0Ns/xw262Njn2z9gWahQ+yLcP+oM6AY+P9w/mixsSNxy3D+AjCVD3qPcP0yPvJuMrdw/rp5ouwkJ3T9axJY1AxrdP//94iGwG90/3jwakEU03T+Nx6ZAKlfdPyegnDibWd0/6bMTUsRu3j+i5Jv9WXDeP2A739dEpd4/7NxnSSjR3j9jyJD9W+DeP2ZjibZvRN8/KMV8iu5Q3z/+u8MdyYffPyJ8P+x5td8/sJPzVmIW4D/9kTsLLhjgP8yusWcnHeA/PBOGbHop4D8zuG1eNzjgP3o5Gzq0S+A/wORlIhRi4D9C6YcW86DgP2bMi/FGx+A/V31NGNoe4T/iHc3beh/hP2bh11wBL+E/ysQQNi944T/aPh4QiH7hP8jYVYYIgOE/uq/PiQqa4T/jL+krK5rhP8lAu9GZpeE/A45BFTi74T/WEFSQTM/hP5kTy51V2OE/EiwENA/w4T/Jqx6ER/PhP5BLMDjiLOI/kDHVGl054j/YUD7MtmriPyTVa9W7duI/EN4ZwGq84j8x6f41OMTiPyIFo1XjxOI/9rRzdF3R4j+ibdNP5BvjP0K7+VyWNeM/ygzhGIM44z+KqDoiLD3jP3Ltx62yTOM/bBjIUh1O4z+dwKhlhFLjP4CI4xI7XuM/fFnZ5tVk4z+isMV8/mnjPw6ApiRRieM/rU/N5dyK4z++mJcNG7DjPxw2Zc0xueM/aBzlqLzQ4z87dyiwDffjPyq5qf4HA+Q/ZOcJrKlG5D8sJUGsfkrkP0D8rNuQTeQ/n+j0X6ZY5D+2dbiWt2jkP8pxZgVUlOQ/sCo8xHef5D9K5PWUHbPkP+AatJP+ueQ//wUUHDHG5D8GUpIMuN/kPxjLzAed4eQ/wWDzRQgZ5T8A25wcUBzlP45wi/rGOeU/P7v7bg1D5T/iYXvs/kPlP1vGU4TbROU/0Dhz8dhj5T9+k6OiZJblPy1ZzQi0mOU/xhfNSXen5T9+utrDbbPlPzhH7l+6uOU/ILIAduDM5T+agEeMktPlP25iz9FH3+U/VOKtYuXj5T9gHA17aBPmP9gTztz8GuY/ZOypoLQt5j/wOYXy+T/mP1oq1xwHT+Y/4MXVvi9R5j+3hVCnGFfmP/ISD7MMX+Y/OjpE3glm5j8eduyvPmbmP563Uc/veuY/oK35H+975j+ahqYEiXzmP576DG9DfeY/5rQY5lOM5j8Q2urR+53mPwJUB9B/pOY/bCzz1dnT5j8wNJm2DtvmP6ZdW14X6uY/pD9e+s/q5j9munyRzgLnP5rbnG9vBOc/iDLzC5Af5z9wHncQ/SHnP9lqDXyHIuc/FDnLmg875z/EONAq9kfnPyyVyXKbSOc/iBQNHNBO5z9OhsMWHlbnP+ixCRUuZec/xpUzjWZo5z+cXtVaunXnP37zm4BLd+c/6wqdb+x75z80xnpIEILnP2pvY6Lxi+c/gk4xQ8SQ5z9ALcC2zqbnP26Ptoi3rec/bpWmwHSv5z8Sggq6GLPnP79r7TvztOc/KCkXyfK45z+E13WK4sDnPxL/P9QJxOc/KiyCFN7J5z9U0zUa8cnnP9QgK0ht0+c/9m2qAaDT5z9BZ1Ant+PnP+jsW6W9/ec/k/oqx2MA6D8yGzun0hToP2gOseBQFeg/BKPdl0ga6D/A4o+xZxvoP8zPehxPIug/hATyvnMo6D+9bSsuWy7oPxAGVTX/QOg/PESk4A9B6D/69X6B1UfoP54HtrzVSeg/GPTfjUxK6D+nqt7g/UvoP0S0GgNbWeg/8oHc0OVc6D/MrtTc4WLoP4YRS2ypaug/3OvRMu516D96JQa4gX7oP9qu2FF7hug/QmohM/iV6D/epgZZb6PoPxo+cfKCv+g/NnRBXLvB6D8etsiRI8XoP4DJkj5G6eg/3uKxSAr56D944Go8OxPpP3wwlksZNOk/dPtAXhw26T/oqMUuCT7pP1o9u86Oc+k/cBsmlet/6T/gPxno85vpP0o34FF3nuk/kHKlhyuf6T8YGYnn5rTpP8pqJ9Xsuek/SFnKfzXI6T/GEGuMB8npP8gQk1bU1ek/cDXXBiTi6T9YvYmHXeLpP2iDhXxB9ek/MJTW4oYA6j+ahavQdALqPxIDVfjNHOo/SnL0CX8k6j/yUe3C5C/qP2gQTNTKNOo/0ti+ch036j+KlqcxAD/qP/h9n8tQQOo/HC/iJxxK6j+QwmauQlTqP4SAxbxIVuo/GjtWxTdY6j+tK4kOklzqP07Tg9XbYeo/nEwAdjJk6j8m6Pttg3DqPzb0dLVOduo/rBXd0G2h6j9ozoJAeKPqPymcthRTpOo/sihTu8+r6j9+W6Cg0bLqPzB8zzpgueo/RESYs0676j/coqbVNsDqP0CjBDpIz+o/1N20cajR6j+iSC0puNHqP1cSEsF60uo/vhd/qYXf6j90idsJZ+/qP5hWVUzb8uo/q63KAJj46j9ofJCYuwrrP76oe62cEes/LJp87j8a6z88Mm8zgC7rPxqLYLQxQOs/3U3xcyxF6z8u/n3E0kbrP7KgWzs7T+s/aiqGn/lT6z/YSeSBCVbrP24VsW2PZes/kpGUonBp6z8AtUPgsXHrP8LqkhuFdes/Dr0y3C9+6z/ohRLqcoDrPwZThjMil+s/ajl2YDSr6z9cskVuaMrrP6ReFBGPyus/LH8Pzmfs6z+6UAFe4/DrP8CFGzRt+es/fPs3UH0A7D90R9KlBwjsP5aY3QVMCew/ID/xaKQM7D9wHv0Dfw3sP1zR+++vD+w/EMDKV44S7D/+EVwT3RPsP4xL4vNnFew/iJrvEGoV7D9kldKu0BXsP3I7AA/bHOw/5l5f0+0i7D/IRDxKVynsP9ChGBwvM+w/+LMR7fM77D8keH4DHELsP55B9syoROw/zHLnB21G7D/eLioA/UfsP2QDqJsMSOw/pubLqx9a7D848W/ivV7sPxy0LOSOYew/8jdKubZo7D8i094hx4XsP+CuoBXCoOw/hA/rosig7D8w7Ky2JaHsP0SuiTeSquw/phhZYO+t7D/knI2iNrzsP9L2Hblywew/0vYduXLB7D+GafFDC8LsP3j93l8Vw+w/oM8D9JzJ7D+06VshM87sPyB/EeDh0uw/Hj7VJ+PU7D8iUwyWXdXsP8ofMr9i2uw/srXVjEfo7D+A6LqDrOjsP07XeMsl6+w/7pPC0VgA7T824B61DA7tPzJI5nT0EO0/jsXgPHAT7T/4YaED2RbtP8oFkwiTHO0//GM1sz4k7T9Uz2avrirtP7SR4bDfLe0/gA6Lfy4x7T+EZGgMyzXtP4zaTQC8RO0/VKLs8tpI7T94pdhEelLtP5gbUEBxVe0/RkqqiatW7T+2SJaNzVztPwyz/O/+aO0/ytb3NKdr7T+oFdcAo3XtPwp2L383fO0/UgoQrp9/7T9sgnNEw4PtP8qAw/HTiu0/miJDU7CP7T9ew/kne5TtP3yvvzc6mu0/JDDKRLmb7T9KhzpZppztP9o2fInQqe0/Gh18bBWq7T8AiWwl76vtP9Oa49CTtO0/FoadxGO67T+knLC5pLvtP1COfw1vve0/5HBSLznI7T+sKhETQ8ztP84l4M4ozu0/1P8rR7bS7T9E9jwHT9PtP/6hyeSJ3u0/+jfLEZLw7T/ENPEJu/rtP+jqESXj/u0/nuyrlc7/7T+CnOyXARPuP0JBKriFFe4/uID851QY7j8UUqqkFRvuP3YbYqp9Iu4/AvNOEaok7j+4aHfLJinuP2K/p1IGPO4/2sfPA0Q/7j/mF6peHkDuP8R9FeFdS+4/SgZSlyFN7j+OLng2Hk7uP47+NJzzT+4/doZeqCtU7j/MG1MOu1TuPzJoAOIPVu4/qGZJ/5Rd7j/Kd/8nkGDuPzydoZSXYe4/lAuQ/Ilm7j+qPl5l8XPuP8IKAynjeu4/nNwt4E9+7j96rsvjiILuP44WotoTjO4/7PYMxSCO7j8o9QnRM47uP2p9HuM9m+4/QNGqoJ6g7j8qJXY786DuP2Ri1sp5pu4/BNeMGKay7j8ksWyVJ7buP1COI2Sttu4/mGFGVPa77j/aYpEwxLzuP8BDyJ9Nvu4/eh+GDe7A7j9AKY/4VsbuP5aTiBALx+4/ngLajsTM7j/U28lBB9buPzJPed6+2e4/zpf3bbHc7j9wapYxnN3uPzKjGIAr4O4/HIVH84jp7j+QAIg3hOruP6Kxu2JN6+4/+kd2ZlXr7j9YIz2z5OzuPx4nsy+B7+4/TD8uewTw7j+igJACHvfuP6IRv2hF+e4/7mbzZc757j84rJ3oo/zuP7hQBSzME+8/Gn3qU4sh7z++6ogBsyLvPwaCieEKKe8/WGfqV3oq7z/SRlERzSzvPwYVuGgHMO8/fogNLEw07z8UKC3cFzrvP/xfW0lLO+8/fO7pE3497z/KN8Y8BD7vP1Jlbew3Pu8/Vu0S/mdA7z/y4yFfWkXvP1gow9a7Re8/NlaIJZ5U7z9eZDfU0VTvP36kD/psWO8/JGXs7vpi7z8c7DEWKGzvPx6s7f0Qbe8/PDzFA6Ru7z/QPA2RWXDvP4jQ3AL1cO8/qsB/j0d27z94EHZj2HzvP+KigJjnge8/HM2Sl8mD7z8cYzwsl5DvP/hQUOJ3ke8/DBtuFkaV7z+GyDUDk5fvP+wYxAPrmO8/8Erk8dKd7z/AE5WJjabvP8YbtCLXre8/vrsYPSax7z/GpwZZa7PvP1yLms8It+8/eLKAi8G87z+yhWN94sDvPwSbNXHwwu8/orWbc5nD7z/oregfs8PvP+pEWwxLyu8/oPPHjyzN7z+A2Khtxc3vP8Q8SqiEz+8/6IgLiTrS7z82Y/HFxtnvP5qcU+4Q2+8/2C8LIHbg7z96N9aEUuHvP3pE3rXx4e8/1pEN39jl7z8KBIH5L+fvP36QiS055+8/Sq2J51jv7z/snmQKlPHvPzzHAwmt8+8/soG7EpP47z92jxYKu/3vPwwQJKoB/+8/ZDa3aUQB8D+CUiAIAQXwP8T/umBYCPA/oKgxfNMI8D9SBJCvqAzwP++J0f5vDfA/ISiESUsQ8D/VEBYZ1RPwP0kLFnZRFPA/MGUj29cU8D/pzS/VOhbwP7Gx+ZO3F/A/D/99fC4a8D+40wrDeRrwPw7FEIvLGvA/Q8L3MaMc8D8OaLTDxR3wP6F02yLoHfA/a7Rbd+gd8D910HPUJyLwP3lCp0pcJvA/PrAMf6Am8D80j4stECfwPzSPiy0QJ/A/KG7WtVQq8D/ji0b55CrwP3VsTM+QK/A/9EOCFVEs8D/KhFGhAC7wPytuS90lLvA/YBgEtqQv8D/kp4AaezDwP02WgOe8MvA/edGomC808D9pdO8QWjfwP3RQGb5aN/A/zCrPOoA48D/ABgprVTvwP5KEO/kUPfA/noIibN8+8D8m4KtPtj/wP/fPjH9PQPA/+yyOwWND8D+IakZxfUTwPx9sskp/RPA/dPuFEZhF8D+SOvo/jEfwP0PPUCUSSPA/HUBfF1xI8D8eTuGqBUvwPy3IPbplS/A/b3s/MWpL8D9vez8xakvwPxhSA3R0S/A/KDh++TRP8D8jRVgkq1DwP/2+Nb3sU/A/66lRwn5U8D/2jeG6ilTwP2nlDqpNWPA/xI21pVZZ8D9XT9uBvlnwP3RGAlZjXPA/nXhqSbNc8D+sZK2K117wP1NvFmKOX/A/k+Ky5Xlh8D+vRu33DmLwP9wTawjuY/A/ho95i6Rn8D+uHkwy22nwP8uq18xsavA/v7vI1HRq8D+wnXATkGvwP/7hDuZzcvA/Qg7b6IFy8D/f/oFAPnPwPzbvdiBtc/A/h22/PBR18D/dpY3OdnXwPyqwv/P6dfA/hGLojI148D9Iw1xAynjwP+IUhIdkevA/sMX71YR68D9mN+aSjnrwP87VR5a0evA/cHj3tXF98D8mU2r34n/wP3Bat04tgPA/pqO8r/KD8D81ihvgZojwP46h33Yxj/A/jUMb+F+P8D9ZCEkSn5HwPxN6Nd1Dl/A/Wxmz00Gd8D8zSIVutZ7wP7By1Eien/A/Y4Rxguag8D+6iDcWiaHwP6eU1NKeovA/sSGqqvqk8D8s/AFNG6jwP2Q4yxsDqfA/KT0q0p+p8D/QLr+MKqvwP3dX9tNUq/A/4Q7pb96s8D9Z5oaM8q/wP2c8qBwRs/A//oAuuLW08D+qpxiSBLfwP5rPk36Dt/A/tA0Po7C48D8ryhu40bnwP1BJVR5XuvA/RdlQh3a68D+Xv+77tLzwP1BQePXCvPA/fJ8N2xC98D9fSdOsw7/wPxsupYURwPA/4DkHCoDA8D8PncXjvMDwP9Xz7c6rwfA/wGrr82DD8D8qUgGSKcTwP/JSlVBkxPA/LvSlOw/H8D8i7daiy8fwP7lOcyLyyvA/i8Bgzr3L8D/1DC4HBM3wP9oYy/GGzfA/zCerwfTN8D+ksXbQNNDwP5z846qY0PA/wTzLmwjR8D/0qpFerdLwPzUyV6bS0vA/vVR0jInT8D/m5Nx8x9TwP02LWJuo2fA/oJvoSDfa8D9aNey0PdrwP3vPGXb13vA/6u7Dc9Lf8D+hoIkGTODwP2KUivYQ4fA/5tX/OzDj8D9PpGaJPuPwP/JCf3a+4/A/SwhUMEnk8D94wiVlKubwP6cjzSIG5/A/hPZ5kRHn8D9BWDSX8ejwP7dSV2gL8PA/t1JXaAvw8D+3UldoC/DwPx4IXGJZ8PA/lfhdGvzw8D+9h6Z4A/LwP7qVzBkK8vA/KTSt403y8D90M6hbp/PwP4VzjTvP8/A/Kl42K5n08D+lpa0tDPXwP+uoARQ+9fA/5KsZzLr28D9fJe9i1vbwP2VIUr2x+fA/VNGYLuf58D/1+V/+CfvwP4s/OE/c+/A/5zKEmRn88D/TME0movzwP0TUKd2K/fA/6lB9MC7+8D83CTQvDv/wP99Ypkou//A/KB5kUhQB8T+2BWgy2QLxPxc9/Rn2AvE/Lig+nTEH8T850lfdGgnxP6w8UwacC/E/wRLzOJ0L8T8B2tU+3AzxPzYF6pznDPE/7qTM9UgN8T+aXBVOXQ3xPzaHwyDQDfE/L1S27ngO8T+Z/5dvwg/xP7hReQU5FPE/M7m32xcV8T++3i/snBfxP/gT/673GfE/pWxqmlQa8T/WFSI7XRrxP0EH/kwOHPE/ceoE6Msc8T/9t8oZTR3xP7ju9GZeHfE/7SNTorwd8T+IPfFb0R3xP9F+uCjTHfE/xJjOf1Ie8T89TsWhcx7xP6hHMIniHvE/zqaDaC8g8T/rh2T7cSDxP05f3FEuIvE/OrOzfDwi8T/I39JRoSLxP/r2T6BbI/E/P2KPOBAk8T/fCSNoNSTxP7CejgaFJfE/mICxgjMm8T8eSVlkZCbxP/bFqxQzJ/E/b2QsM3Un8T/PqqLaLSjxP2BpBW5IKvE/t3VHAM8q8T9uvsjHyivxP1+uemU0LfE/44bBpJYv8T+Of0BgpDDxP1oIZ1YdNPE/d7k2gjQ08T87u1t2lDfxP/lTUWoVOPE/n6hRntQ48T9kZqCQFD3xPxWsJsDIPfE/InZTf+0+8T9Lc5f8NEDxP+ftlo21Q/E/9ZEXOLRG8T8vcjI63UjxP9gaBdBJSfE/DaustAtK8T8Gnysn5krxP/EKHeJDS/E//SlExOJL8T9bnJofBEzxPy9Spu0WTPE/BTPDNWVN8T8D6js54U3xP85U4rt8TvE/IqJucU9Q8T+aTu5EQVHxPwos51cTUvE/ljXxPMtT8T/Bu+ZGIVTxPwUVCNjoVfE/E1z1cGlW8T8uyJk+F1jxP9rN+xQzWPE/eNcTSUBY8T8FdrJMVFjxP0zfOtFpW/E/Z2R644pb8T/rNk1I4lzxP16kfo/3XPE/gwvwpald8T9ZF2tG1V7xP6h3b4IbX/E/RUA+qjpg8T/dRCo4gWDxP8DIa5ofYvE/0aDSldJi8T8GBcX9DmPxP5e3SvM1Y/E/gCIopkJl8T+jrCflc2nxP/97e+/JavE/A06Is2ds8T9t/PszwWzxP6djHYz1bPE/pCuI7JZv8T+CBNVYNHHxP0HjyZlicfE/U1TOC3Rx8T/vEgepvHPxP68SiSgVdfE/r/Ewiy518T95eaDENnfxP39AqWo6d/E/mLubzfd38T+sJ277A3jxPx1UiV1OePE/cCvZ4uJ48T8vhf2Y7nnxPyGnVEoIevE/k1bpq1B68T8QJOnFnnrxP40ynmCievE/s3QmMZp88T/3NoE7HX7xP4OJGbxegPE/zgkkST+C8T98v1Rb5YLxP73gf/gRg/E/BxZsY5qF8T8Fx4pSsobxPyQUwPpYifE/tfJiZYeK8T+aOe/Q7IrxP0+bQAuXi/E/JaJuO8aL8T9FkFLHhY7xPyRSdemljvE/URp8f1qP8T8kqxQh3Y/xP//VhzMNkPE/8RaeFtCQ8T+fLojY95DxP9+/YAixkfE/88mgwuGR8T/QRZ8JZJLxP7vtHJe0kvE/qRGQbRGV8T802T7gtpXxP4mJZnc9l/E/NoHbm7Gb8T9D4DpY0JvxP+RiDlT3m/E/kEqH6f+b8T83boIZ/pzxP70CsEa2nvE/c7egp9Gg8T+WCZCQt6HxPzXEiO+CpfE/RGzXnLKm8T+IY5C5DafxPwEc3yxYp/E/XeJwgxmq8T/g4irUsarxPz6fY8vTqvE/c6Kxgz2r8T+NbagCZqvxP+CrQi5grPE/GxSFPGuu8T9Svg5kBLDxP2UlNklVsPE/OLCSNKCw8T/T4hsj1bPxP6YG/kPXtPE/AgJqWS218T+7K9J3OLbxP/NKsa1FufE/ZCPnV/a58T9lXV/gSbrxP/nc8SLvuvE/UFNyMg+78T+dF7OyMbvxP3WUEJr9vPE/QvThT4q98T+l7j8Mt77xPyQNnazBwPE/CBD4DdzB8T+OuDAvf8LxP6U+bc7qwvE/A920WlDD8T9bUos1i8PxP1ks1Wv6w/E/vWU5ZwTE8T9dXy0P4cTxP6S4ZeLvxPE/21vqk8bG8T9O4GZz38bxP80buJc5yPE/aUu/GtbI8T/WfP8AM8nxP3bawhl0yfE/Qo9EtsbL8T/JKjrzH83xP4PR1VSMzfE/PRZXqE7O8T/IrT4cGs/xP6JRPQI6z/E/cuk3ID3P8T8hZanWv8/xP88WuRTz0PE/O6mtSALR8T+5Br/Bq9HxPyf2+5yO0vE/BGMoXSXT8T8uqwEDedPxPww15LBc1PE/M8aZ7h3V8T/3kpe09NjxP5HApHuS2vE/vmWnwd3a8T9DU7RxPtzxP0NTtHE+3PE/fIZFJ6jd8T+Zq+teNd7xPxQdryyB3vE/Ra8PJ6/e8T8w05IaDuPxPxPbr0AM5PE/SN4DZRbk8T+nVbXyReTxP0PTYH2y5PE/a7qfLJbl8T/6rXWUCufxP+2/loqU5/E/B4Rus8fn8T8g5Grdp+jxP0cVrH626PE/UDYCeiHp8T84qfY7H+rxP/zdCig26vE/LSj2vVbq8T+6zflGa+rxPwvbcTCl6vE/9pUGMPDr8T/ZDxGYCe3xP+3aUkcT7fE/cmtCqjHt8T9vk2YPkO3xP2qmCJoB7vE/rnZvzzPu8T/vizjp/O/xP2PlNUqE8PE/n/7qr0Xy8T8fNhhCbfTxP9JqwvNw9PE/nSLONNH08T8sKRl8Q/XxP6DUh5tF9fE/i+g3f3718T8S7XV8XfbxP84TxFpE9/E/FcyWHXv38T+m2jUc2PfxP9VlLkh++fE/ucDKi1f78T9WMGrcoPvxP0JjoM0A/fE/Ho10E+z98T+zhqGg7f7xP/swFp4D//E//XqdDwz/8T+O3CRjRv/xP1dhVwgaAPI/6DvKh0MC8j80OQNpUgXyPz3U4bCaBvI/Hq4VcqcG8j98JxxlxAbyP+SIUHjHB/I/fdenprYI8j/zM3lEQgzyP1iW2UBGDPI/B/OXpaYN8j/vSagHMg/yPwKKd+z5D/I/hFLYyeoQ8j8dXeHKBBHyP4ZLEf65EfI/4yoFi8wR8j+Xzo1ceBLyP5xAJwIrE/I/mDYxMDAU8j9EfZ8I0RTyP0PHD9/jFPI/przdvTQV8j/blkQ+JxbyPzsG+Us7F/I/bfAgOsMX8j/nLe946BfyP7/ECwEYGPI/GoLO1pEZ8j9CVXa3qhnyPwnGwzzJGvI/Bl6A5Q4c8j/FJ1uYPxzyP0JerqXyHfI/oMuptm0f8j8PqYt08R/yPy+4/BYUIvI/apjVGfQi8j+LsfoVQiTyPyzhHeNCJPI/gmYdjl8l8j+zwjh4lCXyP27al2zDJvI/+RieRXgo8j/ZG+dWhinyP1BLJ8adKfI/ViavfPYp8j9Z/ye4WCryP6R7Xd94KvI/o224cpwq8j/H/R3FbCzyPyVUTsylLfI/CG/9WQcv8j/R5+A/GC/yP4GJ+o5tL/I/z9LftVEw8j/SKYCO/THyP9iftaAUMvI/QM2dJusy8j8KuZD+FTPyP8WncxVmNPI/54wZr5A18j+jWi/A/DXyPwfcJAkuOPI/2XT8/2448j+K1M73ijnyP2coeT3aOfI/5HiSYNo58j9JhVMJ4DnyPzj7NkcQOvI/OqDR3Zk68j+MzUocxDryP2CBk+4RPPI/WdQevSI+8j91zaEs9j7yPxXtC5uKP/I/WSQUev0/8j9KIDLvHUDyPyI/+jeJQPI/xS8pNZdB8j+ebUVQmEHyP6BraTA0QvI/2RyzBvdC8j/9MZ0st0TyP32FhvEaRvI/eVusbPVG8j8El7DYhUfyPyvAewGIR/I/yzkdV1xI8j9nK9Wf9UvyP3A+NyHkTPI/eBKxuitO8j9peH8QmE7yP+dH5gLGTvI/98vf08xO8j/dFX7p+07yPw71ysxTT/I/CPDrpmxP8j8PiUM2b1DyP47x80uqUPI/bGWlzN5Q8j+5ne2ONVHyP9jmU8opU/I/cCmvfbxT8j8XakhelVbyPxnrYFEeV/I/DHOEm61X8j/XsxIVTVjyP5+KI7ayWvI/b5zUGula8j/hTO4uRFvyP7l5v/5cW/I/C+2+VW9b8j/wurLNe1zyP5nUgrI1XvI/o6erbr5f8j9sKObBCmDyP7VZsTU0YfI/NVO5yONl8j9AIEXR7WXyP0Vn4AwOZvI/jDkm8nFn8j8NANqftWjyP3DYuG3zaPI/octQL0hp8j9jMsX74GnyPzfj6klcavI/jPQwv15q8j9DOklR0WryP7VzJZvvavI/brSyNEtr8j90k4gdpGvyP2K3iOnZa/I/jzJHLxxs8j91FrH+rGzyP5qnRizXbPI/vUcKcBNt8j925FryFm3yP1GHmhhdbfI/d05YzVRu8j/oEwU+wG/yP3zX0XBvcfI/FcEKNZxx8j8phwB1xXHyP5g24rPbcfI/H4KUbOdx8j8SB9+V+XLyP+cb1Hpxc/I/t+Vy2nF08j/t0L+vj3TyPwUHclOSdPI/nl/kniF38j+lmxstLXfyP4wb2BGVd/I/fZizXzB48j8pEFCYRHjyPz7JPidxefI/no6X7n158j+kycpXLnvyP0DzQkmbe/I/zuPufqV78j+qxB0pOXzyP4NZ1NHyfPI/ubLWpoJ98j/lapa8hX3yP0DdU+Z6fvI/kROIrhp/8j8Jgkq6iH/yP9p04+W0f/I/6C6IdOp/8j8Slw7PN4DyP8wbSZFJgPI/zxRtwIyB8j8yLOTy/oHyP8e9IpgBgvI/YOm1rl2D8j86zCKjn4XyP64ycxj1hfI/Q4rButOH8j+V0URjHonyP8R3dWgmifI/SjGgU1qJ8j8YCC7bsInyPwGZ/HcJivI/KjQgkgyK8j+Zkmt4d4ryPz/n4pxgi/I/A+4XC2eL8j+V06Uma4vyP+UTWa/WjPI/FpjVFOOM8j/pe0Oxy43yP6mnCsrejfI//NrIFx6P8j/9j0cFvY/yP2o0ZfLhj/I/9RRuEjyQ8j//oMoyc5DyPw/Kpr2YkPI/7R3oWrGQ8j8o+L/g9ZDyP/Spge5rkfI/fBAebF6T8j8VRM05ppPyP21cpmG2k/I/7jqpWceT8j/2Ito055PyP43swRAolPI/dFsP3VuV8j/2o79SnpXyP/R6XLRHlvI/sRS5YoSW8j9Z9JGKopbyPzRE821ll/I/dRYb57OX8j/fkF85+5jyP9MIPkILmfI/0wg+QguZ8j+Jl+hrepnyP+YmwWOMmfI/mVccJ8eZ8j8GUPB0F5ryP0dvnjpHmvI/9N7xkmaa8j+CNgOwKZvyP/MuV4MVnPI/tjLp2jmc8j9Wc4mwFJ3yP8t+l7YznfI/IeXnjr6d8j8940ARgp/yP3LFi6qNn/I/h6aXuM2f8j+c+OrF5J/yP4pv+s0foPI/x861ijig8j9BjE+tP6DyP17WIjbjovI/2pKqFk+k8j/VrQ9o7aTyP1kklRL0pPI/Co6D8uel8j9vDD+OcabyP/chsKyupvI/gyQN4eym8j9ffzqJ+KbyP+eIv0EDp/I/FT9Kr7Cn8j+D7lHe4KfyP2ttG1scqfI/ki3LhY2r8j+we7jWl6vyPx+l4QoIrvI/1xnxU5yu8j+ViX7Tdq/yP1/BuctBsPI/2Av94Giw8j98sVLYprDyP43GM0TksPI/Op9W6B2x8j9Nm8l6qrHyP4yHYjLlsfI/2jYCudGy8j/+wUiS37TyP16cbI/ytPI/+qFuyPO18j8Foh/l8bfyP5TRS75LuPI/gW4sBG248j/6RjC3/rjyP0dilw4fufI/iYKwrFu58j8kj4LearvyP/E8jtf5u/I/jQf5ADi88j/zObiYUrzyP9Fv2HkLvvI/oB7W0q6+8j8REtywv77yP/4rCWkEv/I///myXG6/8j+0Is6ohr/yPwu738JYwPI/1sb7EJDB8j/ckVPwm8LyP9ODXNdDxfI//OpT2fHF8j9wVOEGDsbyPwx+pgN/x/I/ELlg2OjH8j/8cvxfccjyP1z1pyfvyPI/4i4C7BvJ8j9dqiYVjsnyPzT3VyvryfI/dvD7wqXK8j+M3di4AcvyP64g4W8Py/I/yIKYI8nL8j/vbdzZ5cvyP439PQ4lzPI/sOzOverM8j/C1gS/Vc3yP6FFLEHhzfI/xoasF+7N8j/EEHciQ8/yP9Pt0bJzz/I/O9psp5jQ8j9KyehDudDyP8gBpqTA0fI/a0bi/2fS8j/2SVhEn9TyP3STsVSj1fI/UVizqeXV8j+xqfMXotbyP6Kf8uov1/I/n6X8kjHX8j8fUcm21tfyP2OgimXv1/I/lz44+AfY8j//JVFTHtjyP04VDe0B2fI/EB17vELZ8j9FW5ol29nyPwRnLtTZ2vI/oiHkVafb8j86JALPDNzyP6AmiGc+3PI/WD5UxHrc8j9DS6OvxtzyP5apavRO3fI/8Ip7rNXd8j/YO96t493yP69Odm0G3vI/E6clt0/e8j9CCfX9Sd/yP48hhARw3/I/VMwwc6/f8j/Rdi2WuuDyP83Sfof94PI/74x3wFbh8j8ouiCs/OHyP+IJYXMB5PI/uXKlvGvm8j8lYARs1ObyP63L0xUq6PI/YpAA/FXo8j+1GFPo0ujyP2+3oU/z6PI/QFqVO3Xp8j8Px5FLg+nyP5taBMsG6vI/ouBKpS3q8j8bGnm3xeryP5myejjS6vI/j60O3A/r8j9aLs4Bj+vyP8xMYqef6/I/4yyZugXs8j9GYmO3KezyP3Qn8OxC7PI/Tmqny3zs8j8KgP8rhe3yPxV0O4347fI/pLvbcgju8j/AdwcmoO7yP3iwaZBd7/I/eJc+ipLv8j94lz6Kku/yP3ll6H387/I/eWXoffzv8j+hGcDAbPDyP3PAW+mB8PI/QCeQtDLx8j8vc7VBa/HyP5FsPpTC8vI/K+ci1crz8j//+v7gT/TyP2g6mnlg9PI/pB7WkRP18j+olilibfXyP5CO2x6Y9vI/XRiXlq728j+yviCJ7fbyP4wRCIRD+fI/nzwN0S768j+3aVVvTfryP5v5DD7D+vI/LdJra//68j9T5q8SXPvyP8cYjdLj+/I/GluQMv388j8FZwq9av7yPzpNm8wV//I/XqWlq0H/8j/4BbHUmADzPxLUjmovAvM/76Dv8/YC8z+GvVYHMQXzP4+DOZoTBvM/ReOUk+wG8z9oAm/ICwfzP/ZslpXjB/M/vTJvqYcI8z/AN5G8rgjzP1Mh11DJCPM/g07EDv8I8z/KYdPFBgnzP2mOJo/ZCfM/TL+5zuYJ8z/GQzNB0gzzP8phcSJBDfM/ATEDBq8N8z8mZxqVaw7zP+6DmEXYDvM/BdQG/TMQ8z8euQwzbxDzPwZwWuQHEfM/OsvUexwR8z/kl8W0qxHzP+SXxbSrEfM/5z+Hs9wR8z/ZNyUltRLzPweTI3bdE/M/zGfijkkU8z/tmLxJTBXzPx2AIPseFvM/3l+pIe4W8z86i86nSxfzP4yMIyfaF/M/nXNKN1MZ8z/v+orQUxnzP0CKJprBGfM/r5e+SzYa8z/TyavsXxrzP1v8CO2lGvM/2i58n7Ma8z+PTby3UBvzPyPFyJuJG/M/4iLY9REc8z8GMhcRGhzzP2EIq3HJHvM/YZaUtI8f8z96De6dHSDzP+EqtQMFIvM/XBm4lGMi8z84BbW9ayLzPxWBqRTFJvM/RVCtm2Un8z9ADvefmyfzP7fp9w4/KPM/VJGSKkQo8z/SGddeJyrzP4eFHGw3LPM/QrJtBLst8z+aGmXC4i3zP+Dg6cD9LfM/VevVnTAu8z8VK2ldby7zP6X43GE/L/M/axi/eE0v8z96xfnRfC/zP4WkpDuzL/M/gOGlN8wv8z+GQPgihzDzPw4XHEVJMfM/gh7dvNgx8z9Y61RjGjLzP1qTyV8jMvM/LgqsZ+Yz8z8zzEXz8DPzPw+XKsEiNPM/ErnA7i408z+x9CpttjTzP51ycKAzNfM/pmI6QDo18z/+IHBPZDXzP8ic0C0hNvM/XzXGnic28z933F7APTjzP/ar5peJOPM/woQiFxc58z/dB48R1zrzP+geY7FEO/M/BjSw1dU78z9flCAHTz3zP460uApTPfM/M+ZZfJw98z+ADucMTz7zPzfZEWd7PvM/C70pefA+8z8aVbO99D7zP+VkA2ttQPM/1IZhM/NA8z/8xtzdpEHzPxcPXbsDQ/M/J8jbZRND8z8L0lGJJEPzPwGZ+vcpQ/M/Q0dCVfxD8z9vyeE7YkTzP0i6bcarRPM/g+jq/hBF8z/Y4hD/MEXzP+sM+dZkRfM/bUoXpDNG8z+vRtyHbkbzP4/v4otxRvM/7B0L+zNH8z9JyaHlFkjzP7QfYE5RSPM/CN1DS/VI8z9NKu840knzP8yodCZ2TfM/hW4sqaBO8z+h1X2/9k7zP0K6fWazUfM/JpuNKVJS8z8sbxljsFPzP5PdcRkrVPM/dXvUuJJU8z97hdTax1TzP/y/CSsyVfM/2sHmfV5V8z/Kg8ugDlbzP3G2kArmVvM/32U68ZRX8z8KKj7Au1fzP3FSX+ywWPM/1cbTZb1Z8z/WWX+K4lnzP9bTmYqoWvM/4FQlQVVb8z+GNan0tVvzP+eyG+4DXPM/en1G7iNd8z96fUbuI13zP7+ngqG9XfM/MfjMG+Jd8z/bhh7cHF7zPzfLiervXvM/uBQf9/Ve8z845Kp3O1/zP6wsf0h4X/M/zDx+q2Jg8z9isG4fmmDzP9AKXGKaYPM/Sx0LMcRh8z/laSmQEGLzPyQfdfBaYvM/NBzOxIJi8z/NlNSWz2PzP59yo8/PY/M/U7Zcavlj8z8OdeaiiWTzP92gYrdHZfM/AATmoh5m8z+5owdTr2bzPw+9zX2ZZ/M/WPRU+7Jn8z+r9VMAjWjzP/7siqnYaPM/sLv/KX9p8z/pGRLfEmrzP4YjEFfAavM/h6foq0xs8z8aQ7YAc2zzP6dO5ZjWbPM/z6lK9+Zs8z9v7lz+FW3zP+jfJqyrbfM/63uQBbpt8z+SyjRLDG7zP18MNKkMbvM/6ZSlmUpu8z+oTE+WV27zP/8v6+pgbvM/6Xt6k39u8z/wLmrSgG7zP34n410Rb/M/6jD5gB5v8z/CpqwGK2/zP2Q2Tewtb/M/iC2qqqFv8z/QIEFw4m/zP70m0fRNcPM/KntbU7Bw8z+s7vM/PXHzP81t/1yycvM/mHIqtwNz8z8jm9qMmHPzP3ZRcDEBdPM/b8fBInJ08z8nFQNSfHTzP02LMgbvdfM/YY4z9Cp38z+NPEffnHfzP87H5oxNePM/IEp7ocJ48z8tnpE0znjzPwDGI1s8evM/fJZ8m9l68z9vqwM/PXvzPxLaw1bYe/M/HwPDOAh98z8SJcFSS33zPwVPnf5WffM/dZOn8DN+8z/Ybl470n/zPw6d21fCgvM/xPZEgvGC8z/7/1rvHITzP1/pQTZFhPM/13UgD0+F8z+oJLodb4XzP9FJQHF5hvM/M3ej6H2H8z9t03j0lofzP3F8bFu2h/M/EFQpyDyI8z/BJggKM4nzPxXZCe5GivM/hkwpuduK8z8a5PXwC4vzP8agDIrDi/M/L9tfGhaM8z9ftN51RYzzP+ZowCEXjfM/iMR3Q1eO8z/HcuTQxo7zP2Pg5+AXj/M/0qG0Y12P8z8X3t7+YY/zPyrDbydDkfM/fylhZuyS8z/yT1c8hZPzP7CPRwi6lPM/yl0sBmiV8z+u5/vqs5XzP+wf2+sKlvM/nM8HXt+W8z8Z6D3M4JfzP3b72gBDm/M/OCvo2EWd8z+Fc04pU53zPzCWfsFnnfM/h8Qg/sWe8z8nhrHWJ5/zP4hgdOWZn/M/IvEi+/uf8z+yCYvGTKDzPzsA7f1poPM/inGGCWmh8z/WH0kliaHzP3ujvhQYovM/1nNMBqOi8z9ssqNSFqPzP4x318t6o/M/NNrIoYej8z+jD+ZVH6TzP7iIc3bZpPM/IjOGIdyk8z9qx8tG2aXzP/mfVLkhpvM/ABU01UOm8z9hrgi1W6nzP1iqtVx0qfM/i5Gpgrqp8z9yOPCIOqrzP8C8TIjqq/M/CFl9KA+s8z9txb8OJ67zP0NxSxZsr/M/yJCt4Wyv8z+MysjRka/zP32alkGusPM/4rwDW3+x8z+nmIz/ErLzP0RK4l+Ys/M/E+hYXmu18z/NFs69mrXzPyYu5DwdtvM/Ji7kPB228z8mLuQ8HbbzP47fv0d6tvM/Mizz+l238z+mxrWiurfzP0FGCkbnt/M/EtxRxnS48z8Ac8JcfbjzP+ECrVljuvM/Hm2NL9S78z+IahKFYLzzP/bqebPCvPM/3zarpTG98z+E3VwO773zP9hEEGuBvvM/Rabkfqy+8z/x3s3Czb/zP79GVcp1wPM/g7czI4HA8z++/vOwlcDzP+jKmIrZwPM/bRwslBjB8z8YimIUgsLzPxhYDAjswvM/MurYGl7E8z/50EmtAsXzP6w5QsRVxfM/ujEZrpnF8z/8QyLHw8bzP/vvxXXfxvM/FKYIaE7H8z8HwvHRm8fzP/1Zw1AdyPM/X7xoAnHI8z/GXV7bv8jzP3NEc/DyyPM/K44LggjJ8z9u7G4VJcnzP/7c6zEmyfM/bbEO5zDJ8z9rpeEBPcnzP0/W89dvyfM/TeQYte3J8z+J7nFqkcrzP4bvhSCyyvM/M5nOxv3K8z9D1/oCRsvzP37S50SDy/M/bi88I+vL8z80Q33kL8zzP5G3wTCKzPM/MBtITjfN8z82lE+5os3zP3LR4MzQzvM/G2VA9jbP8z+uTBlZOc/zPyZtIvRy0PM/q1s6JpLQ8z/pfF298dDzP468YWJC0fM/kIAc/WvR8z885cZZidHzP6JJmoae0fM/QvxM+c7R8z9C4yHzA9LzP+Ybgi4V0vM/O0cGh1fS8z/I5zC++tLzP+E8vxU70/M/9F3oOUrT8z+P/DcX89PzP+PkArX81fM/7+eEMm/W8z/6UF+4otfzP9C2u9TK1/M/LvVsQSPY8z+/UYwtMNjzP9CEZcg02PM/sTXi0BLZ8z+bInbwOtnzPzHikv1p2vM/OMXkz23a8z8w+yVmiNrzP44giKP72vM/AIc+Z2Dd8z+2o7spp93zP3lezPJL3vM/Z+i0arPe8z+ctczs/97zP0hHmQVK3/M/180+pvLi8z+rJwhYvePzP0GRM2gA5fM/GRs8M5Hm8z8vdv7dh+jzP1Cs/tsb6vM/gs6SLRXr8z+PRaGkGevzP6ji+Gwr6/M/9DzpaZ3r8z/xcmkWxO3zP6U3wKtH7vM/pTfAq0fu8z+lN8CrR+7zP6U3wKtH7vM/NSl4JHXu8z+ELdjOnu7zP7/hWq/j7vM/89xm8QHv8z8FMdB/IPDzP98o+AKp8fM/934Lm+fx8z/1PkvqQ/LzP5L76RBV8/M/96hIxYHz8z+d61kW7/PzP+yRjgIU9PM/7K7VHPX08z/UMc3GB/fzP/4N1gAU9/M/trPDB1/38z8KCOM7XfjzP3ALzOWb+PM/ZO0zOBv58z/Aw9nxc/nzPxsM+084+/M/n8qGsRr98z+dOXXpUwD0P4HyexhzAPQ/VvDjoyoB9D8ODFWaNAH0P+XKfWojBPQ/uj05rnwE9D/T09WxuwT0PwCFcsA/BfQ/FcYEJ/gG9D+wyDdYQwf0P1eYrDHbCPQ/t5YhHjQK9D9lVXlmQAv0P0v4Mu4lDfQ/W/sY/kEN9D/9k10Miw70PzvmowlgD/Q/FrrgG0UQ9D9JztUOZBD0P6v5rohqEPQ/ke9a+NgQ9D+R1UavVxL0P7LmiQpeFfQ/Zbc5lKgV9D+eRn0wNBb0P2NeTt05FvQ/Zmy4gUcW9D+SPNbbDxf0PwTJW05OF/Q/Xy+cNDYY9D9ocglEWRj0P9Rk1LxqGPQ/aVnePY4Y9D9qDl0rLRn0P2r1MSViGfQ/6vZnZ/sZ9D+LsLG3iBr0P7xYN6bpGvQ/+In2sBAb9D//GKmBGxv0P/l+NU9TG/Q/bfuC53Mb9D9t4lfhqBv0P47k6JGxG/Q/a7vCNtAb9D/eHikdGxz0P/oaiTYnHPQ/vqkJe1wc9D9scEEkbxz0P1RUQaeVHPQ/yousQ6wc9D9CH9CGJB30P/bgCcCtHfQ//FIwBc8d9D/+vC3gDB/0P2e2TbhmH/Q/k0GWjYAg9D/8jWnh/SH0P6ISx24ZIvQ/NEA3Ytoi9D+qTzAaKST0P6pPMBopJPQ//3qPnUQk9D9ZuHqFYyT0Pzj7BhKLJfQ/mze0EqEl9D9qWquY8ib0P+6ATbaZJ/Q/epwqLDwo9D/Lilv+jSn0P+rEL4DTKfQ/jQJJLpMr9D/2hqyrmCz0P/AVGwWaLfQ/N5qmZlwv9D9YusO9vTL0P7U5EnXRMvQ/x4qfqJk09D/ZcfxRyjT0P68iwkoRNfQ/sYy/JU829D+YcD+56Tb0P3p1YAz6OPQ/khClWcc59D/QfFLR4Dn0Pwu9g+PlOfQ/xlXlW4479D8VenCjuzv0PzIOXiVhPfQ/7rNNEoU99D/PmN98zD30P99ruXGNPvQ/y7XfAw9A9D/2Uku4OED0PwXCA8FTQfQ/D6+ut6tB9D/I7oTm1kL0PwpF4WUtQ/Q/xvuXjFhD9D+9wh6qIEX0Pz+dwh+ARfQ/prMaSuJF9D9v9zEF70f0P+BUOCbfSfQ/fjgO9DBL9D+aK0QvSkv0P0+r2EVNS/Q/uPiWBppL9D+284q0n0v0P62b5ca7S/Q/VVUZaPRL9D/1ScryQEz0P70PTYaZTvQ/EvfMKvdO9D8clD0s/k70P5STHOwgUPQ/m2XTXURT9D8bqAN2P1j0PxUDN7s5WvQ/55FB1bla9D8O5j8UN1v0P6lT7DmGXfQ/Epurcfxe9D9iI0w2i1/0P+GftFo1YfQ/CscYvM1i9D/3PxV7RGT0PwOqlmLpZfQ/VR/GCgBm9D97qogLn2f0P9KkwciWafQ/ZmGhsu9p9D/NqcYgtGv0PyDYnCFUbfQ/TItdNMtt9D+bXa7zXW70P1AzITZsbvQ/kepd4Shw9D/ucX32PnD0P9ZfJjG5cPQ/kg3F9Rxx9D8HH3XttnL0P/Wlo1kZdPQ/vU+ZtWZ19D86Xxm48XX0P74lSBQ7dvQ/oCP9yXN39D8hYJGQsHf0P5F6RmloePQ/39ozaUR59D/8G0O5enn0P1u62qMCevQ/XVMyzSh69D/XmUUZKnv0P5cSuIz4e/Q/0idN+kp89D/jL6ycvn70Pw3fUaIMf/Q/M93WL+N/9D+RWuhxi4D0P97nIMuygfQ/yYsJAK2C9D9XiSWf7IL0P4cziWY4hPQ/63P174mE9D+tthCSuoT0P73pmPUHhfQ//MLbDgyF9D9asPRlf4f0P5hRRIywh/Q//L1Was+H9D9ImbGm+4f0P+verZYQivQ/xK2Fk0yK9D+Xyr2yYIr0P3DWxzHlivQ/pB5HxxuL9D86g4LWdIv0Pw2bADUjjPQ/w/8iJiiM9D/0ItW3QIz0PwNNIdD7jPQ/u7tUOMWN9D9Juiz5/5D0Py8BehcBkfQ/f58bhmGS9D/fGm5g2pL0P+rVvpaElPQ/4RnVCxqV9D/j1T0Qi5X0P+wNZmUslvQ/Dm8q2MKW9D9XeKUmtJf0PxaPaqX5l/Q/AcOTRhKY9D9FWA06UZj0PwI169r9mvQ/IiCwvxWc9D90wA0zrJ/0Pyufgb7LofQ/dNOZ60yi9D9437K9SaP0P4q0acbPo/Q/JipL6Xyk9D/BOPI2PaX0P94QljBhpvQ/2D8c/Kim9D/KR/VtNKf0P/es0TgwqvQ/zQzQkDWq9D9WMu5oOqr0P/nj6n/jqvQ/opfWwvyr9D+MUZ1D8a70P+6ZgQHYsPQ/a1GCDSqx9D8kG6f/obH0P9xlqbK4sfQ/wAvgktax9D8UYMfgkrL0P0AuyGdOs/Q/w9/aSFK09D91ifUnxLT0Pxl+71LetPQ/uXEu4fG19D8r9IJfQbf0P9awiMISuPQ/uTMDOlK49D+61NbNVrj0Py8j9zLyuPQ/tOqbHcK59D+n6BUnAbv0P4tdq99xu/Q/Ue6ogte79D+paz4ICrz0P65QJxwcvPQ/seL9WCa89D8PXZNnkr70P2z0E1iXvvQ/H3HsjMK+9D+/kgtNQ8D0P7g/crK8wfQ/4B4InCLC9D/suIDmu8L0PxSR7UQSw/Q/M1Kji13D9D8fjDL5msP0PzoI/ybtw/Q/0bWQ6hvE9D9i1WvnSMT0P5YUCK2zxPQ/yEeZCCXH9D8h/fTjgsf0P3gVxrs3yPQ/JZSYXsbJ9D+j885Sxcv0P4RCxJ95zvQ/pRql2D/P9D82G1bdqM/0P2KuE3XH0fQ/hByo/9TS9D8sT8qiA9T0P9ekh95s1PQ/Fna2ixbV9D9XwkwRYNb0P3Jg9y+o1vQ/FlT9QMzW9D8e4nYxR9f0P+YJ13iH2PQ/auio9kPa9D98FIg4WNr0P4h/9ZFh3PQ/Y+qMVXPd9D8Ylyb0Ct70PybDmn4U4fQ/QkK1QZji9D+SiKQVn+L0P8BWtfjW4/Q/2ITr7Erm9D9PPN7IXeb0P5o2HJzU5vQ/0CMXheXm9D+ucpnkL+f0P645eFfv5/Q/VqvQgIvo9D9OCEHX7On0P+x/qH5y6vQ/7zLawhTt9D9g8oeI8PD0P3HVwoQZ8vQ/vxXs+kvy9D+MvNNyDfb0PziDHCY39vQ/MmE2D7/29D9r5XBI4Pv0Pxdbkocq/fQ/DujDhOD99D8Otm14Sv70P7qKJDHj//Q/Tlxd2g8E9T9WBr+A8wT1P7IWvvlGBvU/hjItYFwI9T/sHEWfbQj1P9jBrS6QCPU/G3e1L84I9T8RblbGvwn1P2p+eS7RCfU/ak+jPuUL9T/2zOwgeQz1PxnslfBgDfU/LTkNZb4N9T+YDGaBAQ71P9m1on2uDvU/abMxGNoO9T8ZshCQlBD1P2y5gtrrEPU/JfIWdF0S9T/Wgf9BlxL1P0KDq3oOE/U/KRFjOMUT9T9zC2UwwxX1P/xe+0i5FvU/Uayt4UEY9T8iNlbcoxn1P0Jz3he6HPU/0Ps212gd9T/GvR+GoR31P23shua3HvU/quizGOse9T9S+GWI1h/1PxysJs/gIPU/xH0vnloi9T+iIkBdgiL1P7K9JJieIvU/ZlKol6Ui9T9YFdgnMSP1P1VJ8e7KJvU/2p9UgbMn9T8slVnedij1P5XwUKHLKfU/rE3wGM8p9T/U60RiUyz1P6SeIof1LfU/Jsz1z/Yu9T9qkqutbjD1P8Yft823MPU/eMQwk2Ux9T+I9HJ/zDH1P6P6R2o/OvU/uKMy7fdC9T8YpG2kXUb1P/Ijxt8eR/U/FJNX+BBJ9T/AvmL1SEr1P3mxF3J4TPU/4RZ6GEhQ9T9BBF4JrVD1PwJ2ysxZU/U/AnbKzFlT9T8CdsrMWVP1P6yVAphTVPU/cGluPVdX9T8Uzzod+1f1P+SntL4xWfU/CAVweRRb9T+7oYQUuFv1P7xWAwJXXPU/itwdsmBc9T++dX/KM171P0xytByYXvU/YBvyhaZe9T+iNbiX1V71Py6vpLUtYfU/LzLNljZi9T+g8zj3fGL1P+LznV4sY/U/CmHmHyNl9T9fk597DGb1PzQbGiIRafU/MjP/eiVt9T+L3a1yX271PwoZnPX3bvU/zZXUEBRv9T8erIIcqHH1P69Y/qjlcfU/jEEu74hy9T+oq+XoR3X1P65ddwjZdfU/QRkmvwB59T82J8UsCHr1P9UkE826fPU/alM2pDuA9T82irANloH1PzdxoYZegvU/92bA6RKF9T+15UgnX4f1Pz5KgHbQiPU/sGI20fyL9T+gUdL0Moz1P7a1dOc3jPU/5EMDZFKM9T++x0bOA471P+IV/oM0jvU/EtTqeliQ9T9ErtKluJL1Py8pouSBk/U/osrxmqeV9T+x+9AE8JX1P7bFAFPylfU/bKqFg9iX9T8us4qYKJn1P18v9ewDnPU/QL66kGyf9T8nT294DqD1PydPb3gOoPU/MLpgLUSg9T8sZ+RMs6H1P5A6qeRopPU/evgTt5qk9T/wtR1iw6T1P4odfhxnqPU/2fJCqyap9T/Vjh2m06n1PxzdWpQirfU/SjvGiF2t9T+21/LEgrH1P/XpANGHtfU/8Ru2prq19T8Yj9w3h7f1P8wRHmOluvU/KtE5W3m+9T9LdQDp4771Py+YnyWXv/U/tJfJIk7B9T+we+nMvcH1P6QlkebuwfU/oc0CfGHH9T+GnowImcj1PwKSykXyyPU/WDYiAHjJ9T/OWM4rN8r1P6mVTgn7zPU/fmK1wLHQ9T9XiO44YtH1P/K5NDDB0/U/4l5W4yLU9T8ONDzlitf1P3SdCC8U2vU/JpjrBPPg9T94TbS2aub1Pwi6cnMK5/U/OX4oPubn9T8eGUaiZun1P5JlI+rz6fU/HuGC8pfr9T/ux2wv9fH1PyK1boGL8vU/7/qFsy/z9T9wvDo5d/X1P0RHFaRy9vU/7Mx5Nlb49T/KRegooPj1P5iyRwuy/PU/lCUWPtj+9T/dLY60lQX2P24MPOcvCPY/JqVy07oJ9j8kjdQ7jAr2P/YgzHiEDPY/8Eqx+FgS9j+2R5roExP2P4It1395FPY/BEx7CHoW9j/qTKRNuhf2P9OM5ZceGfY/zmyaQwkd9j9K5X3D5R/2P+JjeKPHIPY/JPTmIi4i9j/m0JPQeyT2P355i2ooJfY/cPTHJ1Ao9j8QOQdglCn2Pw5gdM+yKvY/Diunu6Ar9j+jN7dxxCv2P5LwSkv4LPY/lsvXJ5Yu9j/KSJDSBy/2P16o0m0SMvY/Au2Qt5ky9j/UtJeshjP2P8tgNm3CNfY/jv+tb2I49j/cWoJ16z/2P1RzJlF9Q/Y/oAoA7GpE9j/i7tBolkn2P96tK4eJS/Y/dumXAbJL9j8kiw2EzU32P/HVkv5wTvY/Oc/FyWBQ9j8eoNnHql72P7Q1AHf1XvY/YPyEi9Zh9j+ebQmhJ2L2P6rGccyqY/Y/FFuMnoVx9j9ctta4l3P2P0Df5on6c/Y/NdZh/PB09j8URr4A/nX2P3sIEvREe/Y/SJaP+PB+9j/iVJYNyoL2P5qx6yt2iPY/EP8fAiOJ9j9awUI8JY32PyotYd7Bj/Y/aPgxuWyR9j9QTYZfJZb2P9p+C2j1l/Y/ikIIfI6Y9j8ys4U+paH2P7alSS4HrPY/SJXX656s9j+6sWWRxqz2P0QzqkSbrvY/uD3ThH2v9j89ozC5ebP2P06vLsQ9tvY/illg+y+39j8+rdXZaMH2Pwa83L9Xx/Y/1/asTs7H9j/IsBAYL8n2P6YGw/Ztz/Y/tC5iWsTT9j8mjfa+0tP2P0jVyotZ1fY/JBNvnxfX9j8dMejc79n2P0w+ckf42vY/oNafXl3f9j8mFGiAdd/2P2R3EZox4fY/eMIX/JLi9j9HnqLRuOL2Pywv+7cs5/Y/Vx4HjNzq9j8RLt86YOv2P3h+ff0I7PY/XJh+3V/x9j/EgWkBrfj2P/w8sBip/vY/1FXuZd7+9j+qCQPXZAD3P/DfStzZBvc/IClsRz8H9z+8pdUKdhH3P4IIl/V1FPc/5l885n0V9z8WaSO4oBf3Pw6AQvy8GPc/WImXIVAd9z/zoiMPOB73Pw6R3WnRHvc/oLOQAmsf9z+9nZdx2yP3P7Qi1TI7JPc/fm+Yw4sk9z9Wzelv8Cf3P/gLzlH7LPc/gNNk58Az9z8oHTok7zP3PwwmNx6iPfc/7H6q4DFC9z8z43af2EP3P3iAPNjhRvc/6DUS5i5O9z92a3bIXk73PxAfGG9JUPc/tMfs1bpX9z9exB7xQVr3P6CHEyeJWvc/q49RD7Rd9z/ahj2EtmX3PzMHSTJwafc/UIn7jttv9z8u6rgzyXD3PyB68YOoc/c/FC6J8YV19z/iUDyWuHb3P+DK0of9dvc/6kUt7mmC9z9m4ehqKIT3P5mUZ2CYjfc/Vu1GPLSN9z8mnKpJXJL3P67xjWTQlfc/qqW4e/yX9z9CYE1EIpz3P3BdK6A7n/c/hz5FLe+f9z8mwaLAQqn3P0Q4xXF+qvc/OxtNs4Oq9z+QV1eO0ar3P7yt8hPgrfc/LZCRZOKt9z+sUq3m/6/3Px6HTN9Ks/c/VKTKJ9609z88by1jRLr3PybZVznSuvc/3Gp9gNvD9z9StATklcX3P1Igficjxvc/I3skMxrH9z+8DjP+tcj3P7PATs7tzPc/p1SupsfN9z8Euw36RdT3P7zKUXt92Pc/zJD8FSDk9z88o3efruf3P06FIaPt6vc//KP5LGX+9z9WvzoG1v/3P5XQO+v5Afg/BLFYXwwC+D/hYVhswAP4P3ggnBtwE/g/4IK1TLAW+D8ISzDzrRf4PwCdVRM9Hfg/IETvkqAd+D+vRDvPNCH4PwYd9WYwJPg/Bo2r6hsn+D8+S3ommyf4P2Qb9AD8MPg/ZLdH6M8x+D+qwwN/yDX4P8hCr2DkQfg/4nF1TkVD+D/u48sBg0b4Pzos8OTWTPg/bIuesB1P+D+C+3G4i1b4P6WTcJhcW/g/RsR/c4Fj+D/u2P1x1GT4PygTYfIEZ/g/Qrxl/ldv+D9bnkn54nD4P7gM6CSOcfg/NAGNttdz+D8IGbZZEHT4Pze5LxV6dvg/RlfffRN7+D+u2RUIN374PxwMhZpEh/g//gUvb4eH+D/mJ0HxjZv4P2gXXn1anvg/5/BTdMuf+D/imzA1e6L4P0Ayk8VipPg/k6erUvim+D8M6+3fgaj4P1xOj0ZTrfg/xHxSd8mu+D9UMYPSPq/4P7BGthfyvvg/mAEp0LLG+D/oclEZusb4P0IRzvMJ0/g/fiaYI/PT+D80Xfgy89P4P/ih/TVi1/g/2CLqciDZ+D9deSJRX9n4P8Zj5eWW2fg/+cxBY7fi+D9CPS9QYOv4P0Q1Fm5k7fg/ZCJOYb7x+D/nlfjl3fP4P6SEHSoJ+vg//nTHjScB+T8CWwggHQ75P3nzvIrUGfk/lPGxYuYc+T8Vj4y61Cf5PzaGqTW4KPk/NoapNbgo+T+VJROJvin5P2777rfHK/k//7hToOY5+T+2rnVJfjv5P1hSxtrCPvk/fsa2DcxH+T9T83y52E35P94EhmInT/k/bpeL3UhQ+T+0HEQQaFT5P/YzZaS2XPk/3kW4CP5c+T9LOJupXmT5P1cKTBLcb/k/MGpFvgpx+T/iRT091XH5P+G4KO0zdPk//8ELf8Z2+T/Q2VzUX3z5P98n0zYPgPk/CqNxdlmN+T+bm+tg/435P5Vjor7Bp/k/8M2owC2o+T93REqs/8H5PwW0W3dqxfk/APpzGa7F+T8nnP2Q/935P7DZaMsm3/k/IVFENSzf+T+DV0uZ2OH5P7gyTIup4/k//sjwlbXo+T98jCy3ZO/5P6IbBA22+Pk/NVKezLIS+j//opKOnSD6P3bC7ATWIPo/E4iLI8Qj+j/oBBotmSb6PyENdRsGKPo/BDbJPVYt+j9pIJFOVjD6P1lFIbI0N/o/GsGo+r43+j/ooBx11zf6P1Fj4u0FT/o/QdaSAq5V+j+q8dhUpln6P1kgbzbPXfo/Q5qlmsRg+j/n1KCmm2P6P1bBf8iLcfo/YtDIT5F6+j8AxoLM2336PybB9HeykPo/KsgrQ9qR+j+IWJjIppT6P/7kX8PPmfo/Tl4jLNWj+j9HWc0RFK36P+GP5cCyvfo/ml4sMa/I+j8+xk5jH8r6P2JPQzRy0/o/pfDpBM/d+j/D+AyeZvf6P3cViH2++Po/+tJ6HRf5+j87FzgxSQX7P165hLTxCvs/mZ+pQ20L+z8VrrSP6hT7P6QwzwCyFfs/U22PRCEZ+z9/xM1uqBz7P/ID2VN+Kfs/LqgHj8Qp+z/TFylBRyz7Pwqewj6eNPs/oJGrSx04+z9hqnJCgUj7P/sRMbLjTPs/17ijWWZS+z95lO/ROlz7PyfkRxisXvs/h0n8OUhf+z8H4zMap2j7P1aBCvO0a/s/sDCH8w9t+z9w5VUmwHX7P5d+0c07e/s/nXGZEv2D+z+mFyM1voX7P4I7gDozjvs/VDawRDWa+z9dP3LEkZv7PweV0iiCnPs/h14QCDee+z9NqKpsU5/7PyN9KpOTrPs/U5bRRh22+z8W+RvL6rj7P4htBIYGuvs/9920q8u6+z+Td4Z1gr/7P+CNFgh6w/s/2mn1Lf/K+z/ES67AfMv7P6xTzrkRzPs/tB5jTtLO+z87vtuLYNv7P+/npK5K3fs/uOu9IS/e+z/CXADcPd77P2s94stU3/s/t//wE/bi+z+4RjEV3uT7P94q7gNi5/s/O5AghIbq+z/TWenZpez7P6JX1QJk8Ps/FEayhoTy+z9SBpiW5fb7P5xvLYgI9/s/PEwKk7v7+z8IvGcYF/37P1TuOZh/Afw/qTELA0IM/D8PpXVU5A78P3XJnlSFEvw/N/prFA4T/D/LjvlI8xj8P2hPBAOEG/w/ngXyFvQb/D/0eH6/7CD8P2u3s3BmIvw/pApac1cl/D+pU52e6iX8P8Xxl9SeJvw/zZdMw9Mt/D9rjr9RUTP8P5r3BN0pNPw/XfqHazM+/D9tB5lAJUX8PxJHauhwSPw/Pr7rh5ZL/D/8/GbQ7kv8P+4rJeGcTfw/XrplS7JO/D8rg6pD0E/8P1RD0qGgVfw/tUWMPsFb/D9XZRyFpl/8P3kRcdQhYvw/pOvBBEpi/D/hx01L4GL8P4dxjxdRZfw/UTQ54eZq/D94SvIZ8Wv8PwdvuOjAbPw/Jf/Cne9v/D8/KQMAI3D8P2FVx7XXc/w/Nd7il/N2/D/8os3Bonf8Pzav4b1Levw/m3kuN2F7/D9VsO7gRH38PyGrEMWNfvw/wP8JUW+G/D/hTX88Xoj8PyfUPsmUifw/SphZ/HyK/D/DkO+nSIv8P9iHsXu1jvw/RTlaFKiS/D/A8dVVDpT8Pzsuukizlfw/6jh+SEOW/D9xMLSbtJb8Pz7IPwZfnPw/NfzT/qid/D84h1yIvqD8P8phb4p1o/w/n/99CUyk/D8Hr/b+V6T8P6VuFwNZp/w/LOEgWDmr/D8s4SBYOav8P7VxtA5Zr/w/L3zoM52w/D/Pi/eK17X8PztD3xXLtvw/yoS8bjm3/D/oaPZFYrr8P8UOhnvNvPw/+h9A4Gq+/D/TGqv7/b/8P3DcJNxswfw/OzE3RX/G/D/qEMTDXsv8PzrGpvbF0fw/n9Fund/R/D/H5QvddNP8Pz7hoGSz1fw/pinJkZfY/D/6hF0qhd/8P313BckP4vw/ugQcHMHm/D8ViGb72ub8PziMoBQe5/w/SGx+/Grn/D+RD6+hc+38P8HDsv8f7/w/6uEWgp/1/D9r9vWL3vr8PyxpX/K+/fw/s/7bgK4D/T8V2Z3+9QP9P1lrCzlJBP0/Tutvs4gI/T+MAQBEqgr9P7adPBByDf0/K/2E0VwS/T+vI4VV5BT9P7V0jQ75Fv0/ykR2o7kX/T8dC+7owBr9P6YBnH8SIf0/idaEgVch/T+OkU9/liT9Pw7UZ7lVJv0/A2m1Yekn/T/KIbMYUCr9P/lFYxEGK/0/NsZFXpkr/T99y3ai5Sz9Pyq+KjgwN/0/D1NxpVA3/T/ql6qiHTj9P/UNNDRnOP0/DcwkGh46/T9Lre6xLDr9P/0h4/ouP/0/ap91qCxD/T89Dz0x8Ub9P//OgFWtTf0/4gG7rmxQ/T+vCwgbfVH9P1L+OtPRUv0/0CwD5FhT/T+rUDNm51P9P9f5jJyuVP0/mjZ44KtV/T+P6yunblf9P0mjfO4uWv0/6md+g/9a/T9Z4I5cblz9Pxn4uk8tXf0/T0mih95g/T//QIFeSWH9P7C3HWfZZ/0/1U/xGRZr/T9K4E+RZ279PxO94ZSZcf0/wuImrXpy/T+fyUguM3b9P6dOKL8+eP0/RwXkdHB4/T9B56J+tnj9P9re8bgNev0/WuUAQvx6/T+G8yfOynz9P9kgnVZxgP0/lT/U8iSB/T8Kqe1mdYH9Pwb0btZzgv0/rNPXOwWD/T9VZ43sF4P9P7yPLrzyiv0/f2DPG4WQ/T+KQ+1WG5T9P5/bwBxvlP0/Nrcp4UiX/T9Xhqeyhpn9P4XhKBVmnf0/gFyv5kGe/T+yjmXZC5/9P8wOsBRcn/0/ExXH8rmh/T/+I5Zs0aL9PxElSp+Do/0/Hcbyt56k/T9AEyiFr6f9P1qX+Y3tqf0/UxWOdhGq/T8ODw8Tlqr9P9h3X+nbqv0/vjgQVjWr/T/XR84Wlqv9P14WMoaErP0/JuE21UGx/T+SdgbmJLP9Pxyfdtc/uv0/uecn6Vu9/T8He4a6tcD9P/5y3X6wxP0/SNgMJ67G/T/iHhhYGMf9P57nxJBZx/0/fqGGYVrH/T9PkigZXcf9P1KDThMayf0/bDFITo7J/T8uYMRWOcr9PwoZXehEy/0/T/s/8Y7N/T8O2eqMTM/9P78cVCl80f0/yJjwJuvR/T98yIS789H9P2MYtHRz0/0/7hVsTIXX/T8Ckn2Jw9f9P9MRncA92f0/g9XFJrba/T/hWtHHSdv9P8aRsGek3f0/1E3Wd8bd/T+ax4a6Bt79Pyj8Nv+L4/0/bnCEqaPl/T9dhBjvsOj9P4VJk4Dt6P0/2JiG6aHp/T+b0gVyIez9P8hELh0+7P0/yEQuHT7s/T/jJ9592+z9PzvrRJ/97P0/BM9YfZrt/T8lZoHFVe/9PwbmeEhW7/0/NsXXKNPv/T8yOeWw4e/9PwmQ1UsQ8P0/gLF6dsbw/T/WWiGrX/H9P9PfH6FI8v0/FpOzmXvy/T8B8j27HfT9Pxy2e3V09/0/K9R+Knr8/T9+KvB0lv79P6DII0XeAP4/o9TSbb0B/j8NBKbqogL+Pyh91AXQBP4/JPmBxC4F/j93xih4hwX+P+qeD07rB/4/ZsyT6REI/j/iltWScAj+Pw4Etoh+Cf4/sEbuGIsM/j8JZlJA6Az+P3Mj+xw1Df4/Yf+FDFAS/j8btgvYMxP+PyyiEHZRFP4/7u0vlOAU/j8qemXhihb+PyQOuUBBGP4/5bSA4CEZ/j+4dz9/Lxn+P9ArUOkeGv4/70W+qeAa/j8qZ5Q35xr+P3wrZurqGv4/L5OE+18b/j8qhhjNJhz+PwK4Vo1LHf4/hRGysqId/j+0u8fPJB7+P9JQOwKjH/4/mw//n6Ij/j/VZICM7yT+P1xXG4hKJf4/Itg4bU8l/j9hM6bO2Cb+P22nH0gNJ/4/3Dp4L20n/j+2jB43pif+P49kDvKjKP4/1I4Aijkt/j8w2DY9tS3+P85eBEhVL/4/uctmzLMw/j+JFDqHRDP+PwF0bkt9M/4/m4X65oMz/j/oLLnaRDT+P9G/rVJFNP4/gDfZc4M3/j/6bHvqCTj+P7Bb9MyfOP4/dJxQ4zM5/j8FPJNTbTn+P0BwW5h/Of4/AjrHhug5/j+pMQ2v5zr+P7Zy9blJO/4/E+Yp8N88/j8wOIdz4Dz+PyWEr+4FPf4/1ZF7BsA9/j/YDYU02j3+P7rZ6N9jP/4/y6pzuQJA/j907vBM6UH+P2/g7OwGQv4/SJtLMD9D/j/HLBXmmkP+PwyzPBZkRf4/RbH14qVI/j8oR0masEn+P7BANO0SSv4/6c4++2dK/j9m9tnECk7+P1Vr6qtsUP4/9opgQuhS/j9Lr8VcU1f+P4N3kW7dWP4/LU/Ir0FZ/j9XxwBXXFn+P2lbQ8xFWv4/8BQhIQlc/j+/Vc7EWlz+P7lCY0GlXP4/FxPOFWld/j9ksl9PN17+P0xCpbEEYP4/gY4cXUJg/j/fJ1X8t2D+PyrtUfjIYP4/181Mrlxi/j+c0F5pbGL+P6mGu8HsY/4/HzsVHTBl/j+DAS/j4WX+P2u6sF7WaP4/oLQ0lYtp/j+NXV1WMWr+P8g+C2Qxav4/vA3H9aZr/j8f7U02BGz+P+86UPZSbP4/zGgLSeds/j8iOd+Qn23+P1Gj8Qy2bv4/cTKkinhw/j/yUxI7UnH+P3Hc0x1cdf4/L2sWxq51/j+C2YXWynX+P8kiib8Wd/4/84/dZU53/j/D24Tqznf+P5XemmUoef4/n2wT/WF5/j+34UCq7Xn+P+d8z1Ene/4/9bVi0bp7/j9VTTXTA3z+P7i3lKIbfP4/7sPAxJ58/j+D//Jn3Hz+P3k/0hcMff4/8q3UcEZ9/j+fNahidX3+P/+XcO2Cf/4//pJF3jmC/j+a6WAZSIL+P1y56aOog/4/hcP8FjaI/j+dnDauV4j+P8R6NcmOi/4/JM5sEG6M/j+jhwFCn4z+P0oNycqHjf4/vi0wqrOO/j/2szH0go/+PzaqjqZzkP4/gL+gl3WR/j9PAW5CaJL+P2MBhEmkkv4/euocWtaS/j++cijAtpP+PyzTJ59dlv4/2aeUgymZ/j+Y5GXsZJv+PwuCHXRmm/4/kI5RZNCb/j/NIwLmVZz+P62PXOSfnv4/32spFUKf/j8z+B1CTKD+P9tWlqXloP4/R1RtyHKh/j+7/t2ZjaL+Pyx+M3Jipv4/1DJ4F7mm/j8RIGYtIKn+P0WYh3p4qf4/Ebux3p6t/j/BfUCNy6/+P34BQJuNsP4/qPtSFEGx/j9hittt27H+P2kf3Xrusf4/fNS5MFuy/j/Qo04PeLL+P1BljdVIs/4/5jpsemu2/j8kx5g89rj+PyMRW/qAuf4/NzSAIu25/j/wCoXv17r+P9jtKboMvf4/hVXnVzi+/j/ciEvaPL7+P5xPIMHevv4/VtHD5fK+/j+98lBnL8L+P3MbZbITw/4/NDpslFXE/j+oL18TLMX+P2PxugWKyv4/PysS5sbK/j+MakKGPsv+P4HrerWfy/4/8FaPtQDO/j9U03Oe6s7+P9mGmJVEz/4/xJxnMCDR/j/rpwdNNdH+P1L+R5v+0f4/98jMOMXS/j8F206e4tL+P3mPgfOu0/4/LVVERTHW/j+u2pK1odf+P9xpvMUP2P4/jz3aFbTZ/j+lOxibgtr+Pwd0D2YJ2/4/+G1twT/b/j+qfoMindv+P8wSxvtI3f4/BQXnlMHe/j9nArIpI9/+PzXPJGFu3/4/XSxHTbHf/j9HuAThDuD+P7WK7O5S4P4/nP4KsrTg/j9TvBbC4eH+P5uePxVL4v4/yL/oZ+ri/j8kHMS1JOT+P37Mq58z5P4/GAA3Ll7k/j9zzvjcTOb+P5f1PKh+5/4/e/luXXjo/j+/RaLQ1uj+P3150JXa6P4/4EFgoTfp/j8YZwfBien+Pzj8tJy26v4/pRKtvpTr/j8iDWxB9+v+P/ikIl0W7v4/aqp2T6Hu/j/zaLgWz+7+P7oV1g0W7/4/zvm8JuDw/j/5rLwf8/H+P8ohpHre8/4/Ts8IySz1/j+Tn6dHWvb+P4loWpkR9/4/rQQcr5z3/j/UTdxsSPj+Pw8wpDZY+P4/DdooGsX4/j+GXSd/9Pj+P5O2AJ+f+f4/VQduRfn5/j8TqMi9wvr+PwWQtgJg+/4/KDnZYZz7/j+Nprud8vv+P55nfGyP/P4/fDMzujX9/j8OyWYCK/7+P6CB2LmmAf8/Dj9p7KwB/z/23aST/wL/P0JLI+7tA/8/EnP8ZwMF/z/r3WXJGwn/Py8RY6WNCf8/VpGq/mAK/z9uAjhE1gr/Px4kb4QBC/8/hV9tPnQL/z+bop6ozAv/P/EKc3geDP8/wRi2iXcM/z+QE5uqQg3/Pw1sUSS1Df8/sDVcsksO/z8Uf0eTTA7/PwXR/stRD/8/1OTpII4P/z/Vy74aww//P6B5Y66UEv8/d6HsENoS/z8R7gBkbBP/P6/uEpAYFP8/AF5tCeEU/z817WYLVxf/P7Ol5a1YGP8/WlcucCcZ/z/n0nQ3QRn/Py8sVktrGv8/zy7Zofsa/z/5OfYX1Bv/PznDaBmxHP8/jtNAEiId/z/JMdOUlx7/P6XlYfEqH/8/mozT2SIh/z9cQ8wd5iL/P8pUn1oGI/8/FtCXU4Mj/z8uRH8tSST/PzNCRHVQJP8/Hb/WEHAl/z+IHGt/uCX/PzN171cLJv8/jUgZIBgm/z/GnmhPXSb/PzQ1giYzJ/8/zM7pOPgo/z+StBl8ein/P/Nqauq8Kv8/XvTQcyAr/z+HUXPIzSv/P47QtfwtLP8/7Sb1Kmws/z8rbZcywy3/P/2iP85jL/8/I8Cf3oIv/z9tbvwO+C//P4GHJ045Mf8/2MhaN0sx/z//pfDlszH/P5cV4ox2Mv8/7G6wmwM0/z9dcCcNCTT/PzuN6+BJNP8/R51gkDk1/z9ICl9fTDX/P4Popq/TNf8//kcCMho3/z9QjTMrFjj/PyAcKSHNOP8/ti+4pCI5/z9Kc9GaPjn/P4XvVLnOO/8/m+NK/nQ8/z+BJZV4IT3/P+cj6QCIPf8/CnhDDLQ+/z9lbsrn+z//PzPyoQQZQf8/mTX7n69B/z+SI4YPfEf/P955ujRYSP8/SexRz4RI/z8XTl1xpUn/Pz3hEQedSv8/MfrnCdtL/z/oxEWyMU3/PyfWVPhKTf8//TsqoYRN/z8DPVAtk07/P/LhnkDGTv8/hVx2BslO/z9JLf4Akk//P/QycRU5UP8/vhJvCUdQ/z8RjwvimlL/P6xordyqUv8/QtXLUsJS/z+b/0TZDVP/Px2oiesOU/8/lbt4AvFT/z86KPvpDFT/P+rpIcQcVP8/NXFlZtRU/z9X5MDtg1X/P/tTbiG2Vf8/0w7csu5W/z9siV/rDlf/P4f7zy+CWP8/bn2y0oxY/z+TooEIJVr/Px72HBcmWv8/SxivyJVa/z+n9NGhzVr/P/HGN5xCW/8/T/GehVZb/z/cIM/5I13/P52/hUa1Xv8/P3HFw15f/z+EraKWf1//P468d6WUX/8/KXjtQmtg/z+NURxiNmH/PwNSEfyoYf8/A1IR/Khh/z/A9w275GX/P52KMgQsZv8/mZETEXJm/z9Ifmm8cmv/P6NB2jrTbv8/m7zDHHJv/z96eJFr43H/P9wZ6wNgc/8/LnHAUcBz/z9djIUFtnT/P73t/kIsdf8/O2HhN991/z8BF4vvR3f/P+o1hp/Eef8/iQdDRYp8/z+INjK7QX7/P9I33G6rfv8/YoKA3sp+/z/ViKTwC3//P35HFmM1gP8/qcyC0KuA/z8D7Wgk94D/P8o+T0FLgf8/Y8HNY7CC/z9vaB5f14L/P7gsXeXlgv8/cU4v9MSG/z9e9H/VXIf/P5Y+Wzm7h/8/Ge7HHV6J/z9is7Ebx4n/P+pLF/EQi/8/vxA+G4iN/z9LZyB8Mo7/P7q85ZYuj/8/8/OjtD+P/z+AO/UfEpD/P7Z0AqC2kP8/CgA7N/aS/z96Cv+A/5L/Pwq1uSSVk/8/H7zYzLyT/z84uYm66pP/P8vlQT8dlP8/QgFrIT+U/z8Wm3pvY5T/P7b9fA7rlP8/IBRC/AiV/z/WFdtAZJX/P/H4Yv3ilf8/qSqPdFGW/z+7A/BVwZf/PyU1MuPOl/8/2bQO992Y/z99eb+JD5n/PwLisMU7mf8/m7duN0WZ/z9s1u3lkZr/P9/7lTHHmv8/ByPk11Cb/z/6hjncjZv/P9mOxjbFm/8/QQXxEAWf/z9+0jgJMZ//P9L0ik98n/8/1CV0OqKh/z9Q9TFY9KH/P3OipKlSov8/tHcuLn+i/z/iOBzds6P/P0qsI3o7pP8/1wKuopek/z/Chyo3v6X/P8HRz5v0pf8/CWL31W6m/z9HwrGiKaf/P5kKtSAsqP8/dGxz8oeo/z+Qevmteqn/P07SbCKYqf8/20svJ7yp/z/igiWNOqr/P/Fzib5lq/8/v3xsqvOr/z8PcTpz2az/P7to+jg0rf8/Sg09CpOt/z8sOdYNXq7/P0ag1A92rv8/tZQkDYeu/z/H+3eO9q7/PwdI0rz2sP8/rH00vAOy/z8eOxULebL/PxizIcWFs/8/FT6vjWK0/z/hdpdXh7T/P9ryGna1tv8/x3f8AuG2/z+yRfu7qrj/P3WZR4iCuf8/EMCCu/e5/z+GE8zOBrr/P3BgFjVauv8/41teNsG6/z+jAVamCLv/P9A6VRcXu/8/XRG7ZFi7/z8Ovb8Nt7v/PzM7cvsgvP8/oeGnQqW8/z9JyDElQ73/P55CqnUpvv8/X5lBWDm+/z+BXFEwCL//PyD4KlOhv/8/TypKjMu//z9r+ogwlMP/PwvCMTijw/8/Yya5SMnD/z8ogRSh8MP/P75f5QUgxP8/GaqkVXLF/z8OGVNjecX/P/j8dX8cyP8/bmPeZv3I/z/eBHAsccn/P9FXdU3Qyf8/+3j3IQXK/z9SZgWga8r/PwC20Mibyv8/v2OYmLXK/z+UfcLFT8v/P3hNYaNizf8/l/yRKtXN/z/6tCdC9c7/P37KsA0/0P8/ZUZMQt7Q/z/n3MdfDtH/PzMk4DcU0f8/wU1RL5zR/z9rCNGG0dL/Pyf2MvZF0/8/L9MXNubT/z+NTJpbItT/Px/ALsYk1P8/VH1DI6TU/z//Howb4dT/P+yBlLBI1f8/u2Yu5GPW/z+jeqqx6tb/P35pz08Y1/8/TfxKa9zX/z9N/Epr3Nf/PzyQ0Hrr1/8/cVvFoxnY/z9U2hiiK9n/P1NIREvm2f8/T2iGG1Pa/z8l0iOMBNz/P/MTAxpL3P8/0HgN9Szd/z+6ZOY7T93/P5LMiE/W3f8/zZcvPyXe/z+jlOrTiN7/P3r7os9J3/8/m76JO1ng/z+q2bNT9eD/Pw3PQkaA4v8/rPgvHNLi/z9GFdM7YuP/P7OyBlfG4/8/P8A3HFzk/z8UUELd+uT/P4cSi8DB5f8/g6OKClnm/z+tD2hIiuf/P7bIHmS45/8/Tw3jZAXo/z8IrosRR+j/Pyy7tmmb6P8/ixhLA+Xo/z8zOX6Q4On/P6yk9cpD6v8/Em5NkD7s/z+96vLXqez/Pyx5iB3P7P8//SauEQbt/z+XEczVXu3/P0uzXRzO7f8/kRkgGvHt/z+pjaLWXO7/Py0b1/278P8/PgWnVBvx/z8tKeJSY/H/PwsNM8J48f8/YSC3sqDx/z8M7Kl85vH/P0tOqBsz8v8/3Q6eTSP2/z/bVRoPuPb/P0lEITDQ9v8/EHdD5fr3/z/shc0ibvj/P141AZp0+P8/HZj57Pb4/z+W2havK/n/P0Nh5CmQ+f8/zOz7BF76/z+WwdL97fr/P43ntTf1+v8/VbQhNGf7/z8Ik0mxt/v/P6vmqmzo+/8/Whd1C8f9/z/DuQsqM/7/P7QXHBd5//8/kKY+aAEAAEApdKpyGQAAQGiNbRcoAQBAfjy3Zz0BAEA5Qy+I3wEAQMC6W17fAgBASHEadfECAEBMNK6aCwQAQOzp3GgkBABAjKJx3W0EAEAWRCpefgQAQGpuP9/yBABAe/QZ+x0FAEDKzNUIMAUAQCjkUaKyBQBA+9qVDKwGAEDofwdy5gYAQP+0KUBaBwBAw8bK0eQHAEAlGtaFaggAQFLebBiWCABAb5FCJNYIAEC8loBw4QgAQM/xopMeCQBArXpQvyYJAEBQ5sJCEQoAQCST/A0TCgBAGBFkn2YKAED3tXztBAsAQLP8RIJUCwBAzaJp6GULAECTbn/DEwwAQG03UrKaDABA21bagfQMAECzQpZPVA0AQPAKhm0WDgBA/SFba5cOAEDu+oN4HA8AQGNTx5o5DwBAIfeX+0cPAEBjA2LELBAAQJxWU+PAEABA6WNfKFYSAEDKryVfehIAQDar+VkuEwBAowsnfrgTAEDw1Z5MQhQAQHcB0BAzFQBA9BZYmYkVAECwABvsshUAQKFGwUOGFgBAEmLAR54WAEB80wFlqRcAQG/4qtXAFwBAJdXYhPAXAEAbn3dtZBgAQJz5NuSzGABAwc8qqRUZAECWkHp0aRkAQKK0m8BNGgBApIoW42waAEANGPlrdRoAQAquY4CGGgBAzv3uBZ4aAEAQ7gJyUhsAQHE8nkiDGwBAX9FO7LYbAEBq63dNwhsAQKdS0eUvHABACWCZIEYcAEDeEvlPSxwAQDMIgJ97HABAm1taoJkcAEBhQqLFqBwAQPywlf2vHABABnbKqsMcAEAEFYRHAh0AQJFZ5wGZHQBAVbZHZ7UdAEA1cn16uR0AQO6ANlpAHwBAJR8PGaMfAEDS5sF00h8AQC93+nI3IQBADLm3So8hAEBtdv5noCEAQJEby9i2IgBAEt6KvxEjAEDr0UolnyMAQF0G4iLqIwBAg3sYHD8kAECm5m06kiQAQFmgnZv5JABAc8V4OIIlAEBWyGW+xSUAQAEKM13QJQBAyCSlaiQmAEAlCFJOKCcAQGk8I2QoJwBA0pW2ZUQnAEC8BgJPRycAQDcyaGOZJwBAUHRMOqUnAEDhqYbBrScAQEWs2QogKABAt7/rIMUoAECHbNIACykAQM9VefgeKQBAufYktSYpAEBlVM29QSkAQOaujDSRKQBAuEIUAs4pAEBZJacfzykAQD51dFnYKQBAZglMq+ApAEAC1koH+CkAQAKtTPMqKgBALDAzsUkqAEA5hKhyUioAQOFfgaN2KgBAOVJSZrwqAEA6B9FTWysAQB+QnlaGKwBAJfUOWKorAEDsR+xV1ysAQOqN33E6LABAhIEFgWAsAECIssHrjSwAQP5Gt8M3LQBAvnXvFswtAEAPSFB8uy4AQL2NIpriLgBAoLZjLx8vAEAqVlmmmy8AQMF7QNndLwBAAwhV+eIvAEA+xpp2OjAAQCpoQFqCMABAFKnkSNkwAEDAMJjpSTEAQN9D0AJrMQBAg7Ia/8wxAECDshr/zDEAQCuZwubkMQBA4HCxKAkyAECV0LEwJjIAQOFFEZVoMgBAJbI0HfkyAEDFaS32ITMAQEwvE86zMwBA68e8o8MzAEBkUWax8DMAQNDhw+oRNABAhHGafPM0AECKMswX/jUAQA5vix8vNgBAdaYd5jg2AEAGNlfOgDYAQDD2Vz/7NwBAXsvqDBw4AEBu+DZ1zzgAQIJjemNLOQBARw/CQ185AECFuqACojkAQA6M32JGOgBATh4CFfk6AECF4bZYCjsAQFmJOOU1OwBA4f8TPkw7AEDTGJliajsAQFk/Fj5yOwBAxZg6zv47AECnDtvwKTwAQJd6jFSAPABAx6BuN8Y8AEBQhpMX6jwAQGssFEBRPQBAMJUd+IA9AEDREv2YmD0AQAy3+RDgPQBAp43xJfk9AEBFJyMVBz4AQIlqMPwkPgBAJW74M18+AEAO+l6Ziz4AQPp/O8LDPgBAUcaZ6Ms+AEDJOt935D4AQFUk9+xLPwBAY00NTM4/AECrI6zCPUAAQMLgzvdvQABAAMVmMv9AAEAxxrpqX0EAQKU9R2I0QgBApcLSNk1CAEDH+RkMdEIAQN9gR+B6QgBA6la1QkxDAEDZLGCmi0MAQFgMDyHkQwBA51lUbgdEAEDrIc3sVUQAQKWqH0g4RQBAbMKsfkBFAEDrv7TkW0YAQPx3BNFrRgBAK6SoXadGAED3g+jOrUYAQOPsLDHbRgBAfAf3s/VGAEDZm3idBEcAQE8jb5lCRwBAfZ9U625HAECs6By/kkcAQForshLBRwBA3D8rcQFIAEA/Z7UfT0gAQGEpEZaSSgBABEdfK7pKAEDeNo8H/0oAQHUeoEgZSwBAEWM9GVRLAEDJm42+hUsAQA2Lj+ADTABAe8xUltxMAECGD/MZa00AQLPKA+opTgBAuRIuzDBOAECRc27YR04AQDmmnpByTgBAVCwZJ6dOAEA6jXOKp04AQDQ16fvZTgBAFkJllupOAEA1aCDkL08AQLuddmVNTwBADkZhyqVPAECbxLZIBFAAQD1Hj987UABANzenETxQAEBXRbWKjVAAQFgsioTCUABAsKMFS3ZRAEC4j3OL3lEAQJwV76T+UQBARwrOZjxSAEDmWdAsWlIAQOZZ0CxaUgBAjLfohWJSAECa9YOTj1IAQI2FknnMUgBAqBdG7+1SAEBJpiFOEFMAQAvhTUKJUwBAyee1vpRTAECalJvovlMAQHQTuMU2VABAr6UOqjxUAEAq/nsfZVQAQBstBRGeVABAS97IHLhUAEBdzhuLNVUAQGyNphFeVQBAzNTbettVAEDSN9KIS1YAQM2JWmh6VgBA9Dq3IuJWAEA0hwkhBVcAQFgG6zELVwBACHkGfmZXAEAcyi0dS1gAQBdemmFhWABATdIxcHtYAEDFS6Kpf1gAQPg8YsCaWABAY7pZZzFZAEDqpqAcPVkAQEyquCpPWQBAbcehoHJZAED3Pb4xk1kAQIvAufP9WQBAE+6MrQ9aAECbcMjhQFoAQChGDnbVWgBAv9I7UOJaAEDGSGBPSVwAQMa4/hhYXABAuQh0sM1cAEBkHwiS1VwAQFBihd73XABAVFLQKwhdAEBoFvSRF10AQGaiMHPeXQBAejm/c/9dAECBlgc6IV4AQHFw3e0hXgBAR9DiEIxeAEDjq2vgkV4AQAPsepWkXgBAMipPKq9eAEBjqwHy014AQNfLC2s0XwBAIvdB4vJfAEAgBPh8R2AAQHi1PcW6YABAPCETP8hgAEBrlnF012AAQE4iSiHnYABAAVcKx+dgAEDgvbOU7WAAQPwovDM+YQBAf/Y7XkJhAECunR51xmEAQI1s/MwSYgBAkuQRSCtiAEDr01rMPWIAQOL/7rJeYgBABgXjiGNiAEDTyarjx2IAQJlgsPEhYwBA1NIZf5djAEDUZf7Km2MAQNUzqL4FZABAXuqVvBpkAEA54E3TV2QAQPnai59uZABAH3039jpmAEDjLRlCUmYAQM0RgswUZwBAwM/2nxtnAED+LW49PmcAQB2orx5hZwBAXJClSt9nAEDdW2zAD2gAQLjHw61PaABAwgeebsNoAECDbAeqB2kAQEJiXeUSaQBAw7wcXGJpAEBZL0WBiWkAQNdC/ISkaQBAuX7ZirNpAEBA63cF1GkAQDzfiujUaQBAY7FKgfdpAECK8h9//2kAQL/EDC4RagBABIuhcE1qAEDaWg6CxGoAQDigAurIagBAFh3owOhqAEDdeQNkFmsAQBX8fVydawBAWTa12KNrAEAhWC7tr2sAQOvUKoi6awBAJc0FUQ9sAECHmM9ERWwAQOrtKAWfbABA3WBfRNZsAEA7plOs2mwAQJG4mn7jbABAuuX0bS5tAEC65fRtLm0AQLrl9G0ubQBA2+FGJGZtAEA8EFGHGG4AQL2DOwQzbgBAJjWfPb1uAEADSMx05m4AQC/UDcD5bgBAp49etAxvAEDXgQXwGG8AQALNGSJ5bwBAg0H9jYdvAEBiM3Q4zm8AQIUltMw+cABAhrI6dGlwAEAGJiXxg3AAQEKJWwWvcABAjex3I71wAEBX55VBonEAQPYyarNFcgBAbdqXcKFyAEDZykDwjHMAQJ9g/6c0dABA3e+K/ox0AEB5G8ljJ3UAQM7nKg03dQBA/q+sMHh1AEAYjo4lpHYAQBiOjiWkdgBAZjM2iw53AED1Pvs5F3cAQLWmHHlEdwBA6ui+Zpx3AEDWLoVlnXcAQC+4UbitdwBAjOWL0M53AEB0vCYaYHgAQFo53KhjeABA73C7Nqd4AECmD7KcungAQEvSDYu9eABAsWVfZuF4AEAOP8nNUnkAQCF11FJ1eQBASvKzhId5AEDyQDvmlHkAQGNWHTjKeQBAhiLBwhx6AECk37URSXoAQGAhQwyjegBAkD5+QPJ6AECi33QUgHsAQGZcbvrbewBA/9otsud7AECo4F85/nsAQKAvTDA+fABAjcymRlx8AECIaTXRbXwAQLTObfiMfABAZ9+W2+R8AEChy58XEn0AQIG4FQpAfQBAeKgY1Zt9AECDIhPlfX4AQHzd0EKnfgBAVD/5zM1+AEDw6R/Y2X4AQFzcZ9/1fgBAouQGTTV/AEAcqR+1gX8AQD7j9sOMfwBAy0HU8MV/AEARlcGryn8AQEng1G7SfwBATJyTZxWAAEDeoCQxg4AAQMzdJ9iZgABA6zfeTqiAAEBNOOdO6YAAQCDMbhwmgQBAzZKmxTiBAEA8VETIP4EAQBfsmFJMgQBATQaRQlOBAEAgge0JxYEAQKhvsvbPgQBATOYlMeSBAEDMWRCu/oEAQODeSOmEggBAIuvq5AKDAECcDEBxIIMAQKOfIF5IgwBANS7uPouDAED+bsNboYMAQBrlnA7fgwBAakoQRwGEAEDMc2vmWYQAQPUbE21rhABA5mKVbn2EAECb269sAoUAQO0JHtU0hQBAHDZv41GFAEDXQfB1iIUAQJXt62jxhQBAhyXVzQSGAEBIVL5DEIYAQBpp//o4hgBAHaBsvo+GAEAmIckkz4YAQHsylQ32hgBAUY5qqA6HAEBUHoVOE4cAQI1kxOc3hwBAFsvTwEmHAED4csKB54cAQIdIKNQWiABAm1uLgz6IAEDP/FDwQ4gAQC9VNk1iiABAPrNMEqeIAEDqyFhpxIgAQGyJpXzJiABAUpmGZPOIAEDrlgJdLokAQLMyFwA+iQBAQakOrHiJAEAFPit/84kAQGq2YXb/iQBA81o6fYSKAEBZ/cAyrIoAQM7pAQ4hiwBAssBcWESLAEBYb1aIgosAQNoM/5aaiwBAXMh0MqaLAEAhvx1M4osAQFlHU/x6jABAwVEjVOaMAEBcQ9J/t40AQDrkJvn1jQBAOCZE1qKOAEDWt1iBS48AQPfBeD2ckABADZ+ZgO6QAEACJXK1IJEAQJzbnDQykQBAVhmLoH2RAEBON8m2gpEAQB1yf4LnkQBAVfRVYQ6TAEBzWWmPZpMAQFcbQFq2kwBAHB7+s3aUAECbA9WToZQAQJx4vSrGlABAHdN8oRWVAEAA4TbigZUAQErvc4F5lgBAlrYFTYeWAEDWzG3FjZYAQPcP+nyWlgBAgC9LprKWAEClRZPwIJcAQD2a0+BDlwBAyvwVW1aXAED4kiJen5cAQEoxR+yjlwBA5Po7BqiXAEDwWmFgMZgAQDqlQUN3mABAZtgjXgCZAEAo6d/kA5kAQLFnMEoPmQBAZ7/4VzWZAECgMOI8SZkAQOfOc0lzmQBAvJtUoZqZAEAijHvzb5oAQGjFhqeWmgBAI3NQ7aSaAEBorFuhy5oAQAWmlrQunABAwk444OacAECFb0tnWp4AQB2Mfv1fngBAnc8Yc66eAEAP0vQo8J8AQB+U1cQ7oABAnwfAQVagAEDhS5t2qaAAQF/5ljlfoQBAHSnpoGuhAEA2EFm21KEAQN3n4g4oogBAgmK1t2CiAEDX4IiHt6IAQKSD3j4LowBAvAvb702jAEBqhvfP7KMAQO/nKhAWpABAazwQdJ6kAEDCGIPmz6QAQH0FEurZpABAz2LLgOukAEBAQJTDAKUAQBTzNjoepQBAAjCt2fqlAEAeyoWUfKYAQIvQ/7TQpgBAsL0Q2P+mAEBbiTicsKcAQJ/pwdF2qABAUo8XbuypAED/Nar2RaoAQKIIPppTqgBAZq1Nh46qAECm4HBWnqoAQNw68lsxqwBAcz4sFGarAEAhGvxyNq0AQICMbY65rQBAX30TjMCtAEBvrpiVA64AQHn9SshargBAf5RGKnCuAEB/lEYqcK4AQH+URipwrgBAf5RGKnCuAEBW2DxRcq4AQFPFOr54rgBAZRW4N32uAEBTk+Sx4q4AQKywAvUKrwBA1LtNHJyvAEDUu00cnK8AQHiNb+LhrwBAQb09AfqvAEBWqlEoVbAAQGI44ztxsABAvoLibOGwAEC6kkjXALIAQPK/aMqTsgBAaISNVbeyAEBSii7Mv7IAQMAjwsbQsgBAlA+GqdmyAEBzz6YugrMAQM1tY60htABAVgyl8GO0AEAj5dV8fbQAQDb7RnO5tABA7NpR/dC0AECiUTb+erYAQMMqUiR/tgBA4OF0try3AEAs6KigG7gAQOMA8X6ZuQBAPUtxkqS5AEDdv4FVv7kAQMBYfEDiuQBA1xykzJ26AEBnDitGy7oAQNJ+NkktuwBAe6EnJda9AECr8zMM+70AQP60JxcmvgBATpLVYkK+AEBYXOjpJL8AQPNG9BhTvwBASawfnp6/AECZgQkIWMAAQIeCbhYxwQBA9OwABn7BAEBLaH38nMEAQGksIKPVwQBADnYUGl3CAEBFRhinbsIAQGL9jFAywwBA4pLMJm7DAEBBR6sp6MMAQPcG724uxABAtxKSfJ7EAEDGijYwxsQAQKzQYP6ExQBAg/t+ifDFAEDjFg+ubMYAQHo2Bie0xgBAY9bO2LbGAEC58ryLB8cAQGgiWtsgxwBA6pETz1nHAEAXf26Qz8cAQOE6q4wPyABAKwQd5HvIAEB2J6ZUqMgAQLofPx9hyQBArMnHlkTKAEDSiZXqO8sAQApGhaX6ywBAakDHRyPMAEBhmDQ7Ks0AQOgpKJ54zQBAonHIvWjOAECi6Yj9QtEAQL/5+Jns0QBAqJVQIOXSAECX5TIV/dIAQE5oIvwT0wBAKPAPlzTTAECoY/oTT9MAQN2BNGSC0wBAUkr7TZLTAEC/SwzDEtQAQHuyt5Cf1ABAEr/XFqPUAEDA8Nz4MtUAQNCzzpx71QBAlldV45LVAEBt7UFPAdcAQLDumbsC2ABAhrCUkjvYAECUQ1hE49gAQDus2ESj2QBAP/KnAMnZAEDj5mSMKtoAQD0t1vNe2gBARvl336XaAECX5Gf0zNoAQJTTMaV62wBAlNMxpXrbAEDxZ60FoNsAQCZPESli3QBA+aCfipveAECqxee6qt4AQK5UNIPM3wBACEfydabgAEAXcUCR4+AAQJiy1AFo4QBAmgOn1triAEAdjri8A+MAQAJyBVBS4wBAuHY2o3njAED6mw/dfuMAQBssEEGU4wBAOw1EQtDjAECbhs+34+MAQMlQ7I8E5ABA0ebbsA7kAEA7wsIvb+QAQLw1rayJ5ABA3elIL1PlAECG2szcZuUAQN6iRkVb5gBADRKki3bnAECVGCBDsecAQFHzP+Jy6ABAgzV/u5bpAEBnKVfknOkAQF7pzsgc6gBAUaJORD3rAECEPs/zPusAQLF0+H/a6wBAAu0emAfsAEDquvcFk+wAQJvAFa+o7ABAm9hcsczsAEDEhVRNKO0AQMJGt3aK7gBAnUco2wnvAECjepFw3u8AQDnJbC2J8ABA865h3rXwAEDGphjr8/AAQDu/F+0v8gBAEGntp17yAED85wvJqfIAQBlvK54S8wBAVdeQRCLzAED9voX3OPMAQJPzPBhA8wBACOM1D7vzAECQE2AR6/MAQAdKNLsj9ABAUqu/iFL0AEBQMtzOIPUAQAiSNgjy9wBALR/wW+r4AEBgiPyFgvkAQOXqoLeJ+QBA7raxb5P5AEAlky/n2fkAQOiPCJqA+gBABnAA1K77AEB8h57QFv0AQHdMbeOM/gBASNRx56n+AEA6bYyrrP4AQE/ECBYSAAFALiMc/TUAAUBySLRAuQABQL12Q79YAQFAsQRFlMECAUC9x+G9SAMBQJdPpxRlAwFAn4kOoxcEAUDn+G2cQQQBQPq6CJhVBAFAW80imcgEAUCMAmhi3AQBQJu21Y5DBgFAtCD7HI8GAUBr10dR1QkBQM6J29TXCgFAQfye7QwLAUCtWTYhuAsBQPidU+fRCwFAODVuYQYNAUBSIhACJQ0BQO/KRkZjDgFAIZur13sOAUBo8t/07g4BQDsilB1NDwFAI63l47UPAUB7MCdO5Q8BQAWB9I+3EAFAH6OTOuoRAUC0SbP0LRIBQFIneB8WFQFABiWAno8VAUDsaycOzBUBQOXrjgj2FQFAsLbBRWkWAUAxKqzCgxYBQMrNtjcaFwFA97UXQEIYAUBdM3s52xkBQE7jRV4aGgFA2xFGdmgbAUAC/zKlCx0BQOhqonmeHQFAGOykGwceAUCehlIQhx8BQPIthIYwIAFAtTSSc/4gAUCuuFolYSEBQKYiU45zIQFAe81hXKwhAUAdBeYUBSIBQGjW3KlNIgFAeaOsNHAiAUD74CVwKCMBQN9eNl8FJQFAgBMSapIlAUDLRUtLhyYBQPC7sKEJKAFAKQ+eoyspAUBxKefOZykBQK67Q7rWKgFAQn3RRfkqAUCRk67KcywBQJ6PeSqSLQFAvefkxYcwAUBO9revxDABQLgd01YpMQFATCeDWPEyAUCY1oALwTMBQPbg7ASqNAFAF8ZoWkc1AUAXxmhaRzUBQDBY1dZhNQFAgGZDaBA2AUC82BpfPDYBQCG+gapKNgFAzmHSEfw+AUBktHr+NUABQMUrVfxMSgFAChoyPF1KAUCIGgbXE0wBQHbB1uboTAFAvxrb6oZNAUDuS7k00k0BQEAyVjzDTgFAxx9pDgpQAUCRn8m7A1EBQPTuAbVXUgFADjW7BllSAUBGw0by/lYBQCtAaJ38WgFA0mtyGGJbAUADo7y6BVwBQMDnfAB8XQFAAEUMHP1dAUCavrxyHGEBQCCeFB48YQFA6fVI1/ZiAUC1zmGbj2MBQKstHqL+YwFAganr6cVkAUCQoKrwPmUBQC8rmrBBZQFA1KTruDtmAUDESgSI5GYBQCH/ql/RZwFAlMjQePBnAUBSsJ/NcGsBQLxlidW2bAFAw0V43xltAUBg1qeMf24BQJx0KVDVcgFAsQm4pPZyAUDioN14H3YBQKAXiXFddgFAfr1gOYB3AUDjbrUbnXkBQPdmXV3feQFAAdn2BQd7AUDtoO31BHwBQDwq69kpfAFA3hKj8RaAAUAhiOtaZ4EBQPOudfKrgQFAeKiPhUGDAUCOL4PBeoMBQEH+WP12hQFAovn98FiIAUDxS30jpIsBQHzZOAE/jAFA34iIwduNAUBekLTa/I0BQNDTsONPkAFAWodrvzecAUD9ilmh5Z4BQKbk+dQPoAFAKRU+BJOgAUAe7TlFL6IBQFe+rm2NogFAZV6q+n+jAUDulM0/lKMBQDs+hLawowFAOhnULeGjAUBef6zmTKQBQJkCt2JDqgFAf+NvBTKzAUALXhpDrbQBQIz7yYv/tAFArULy1/61AUDUXlDMDbcBQB7biGgytwFAqNlHMgW4AUBmL12KEbkBQMDAeXnCuQFAySY6bbi7AUBRSqO7ub0BQKZUycFDwgFANpct8ObHAUBLhGxNecgBQO+ZX+PRzAFAJf5ByvPPAUAwhNnxktYBQNm/tpwd2AFAZMq5xZzYAUD8CDD5NuABQPIdhu674gFASe7o1O7pAUBnUKWvQOsBQMjJZEBz7gFASQv5sPfuAUCslrAWx/ABQEfuQymM8wFANdL3NBr5AUB/YsmAnPoBQI/Zp5Sy/QFA97eaMacDAkCuXwdnJQUCQBdRvSgXCwJA6J0K+zsMAkCtgLrSoA4CQAGgVaaqDgJA8pKITfIQAkDul0tgPxkCQIUHW/nLGgJAWOPplZ4cAkC0M+lx3hwCQMbUL6y3HQJAv84FysEdAkCWngwswx8CQEHipTxBIgJAKUGJD0kkAkC1hpvmsCUCQCxw93F1KAJAZPVTKKApAkA36UCi2S4CQNUFYOMKPAJAdXTqX8M9AkAgHMdl6EECQHWYpIwQQgJAnJrxj1VCAkAnZMYDYUICQJRQF76cSwJA4IVwToFSAkBMgOyY91UCQBcFeYiSVgJAIsx0A8RWAkA7CEDA+FoCQDBZCBJlXwJAAxiVP0tgAkDn27978mMCQMcNP9zzZAJAf87PR05mAkBRGW3y7mcCQC/AGAigawJACWtAwVdvAkB4zl6QyHwCQJM4SaLtfQJAFs9T3ACDAkBkvZijiYcCQLIdLX1wjwJALkOPI6OQAkAFbLdXTpECQELlmKb4kQJA50TlLEuTAkDaAW4CwZYCQIBhwthrpwJAOxEueI6nAkCxsSD5DLYCQPx8ZX27uwJAnkebhIy8AkC4cqSA/M4CQJj2kBQU0QJAUZnVGdzTAkBhxtUIgO4CQGE741cyCQNAz25OCjQdA0Co/E9/V0YDQA==", "encoding": "base64", "path": [ "_data", 1, "x", "buffer" ] }, { "data": "ugANHd7b4z+6AA0d3tvjP44mbeS6+Ok/2/DO0hfq6j9zlPFCbOPWP3OU8UJs49Y/jiZt5Lr46T8AAAAAAAAAANvwztIX6uo/yDKAJ0xW5T9zlPFCbOPWP44mbeS6+Ok/2/DO0hfq6j8AAAAAAAAAANvwztIX6uo/2/DO0hfq6j/b8M7SF+rqP8gygCdMVuU/2/DO0hfq6j/UiZa88avaP9SJlrzxq9o/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/yDKAJ0xW5T/b8M7SF+rqP9vwztIX6uo/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/c5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/2/DO0hfq6j9zlPFCbOPWP7oADR3e2+M/c5TxQmzj1j+OJm3kuvjpP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqP8gygCdMVuU/c5TxQmzj1j+6AA0d3tvjP8gygCdMVuU/jiZt5Lr46T+6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP44mbeS6+Ok/1ImWvPGr2j/b8M7SF+rqP9vwztIX6uo/ugANHd7b4z9zlPFCbOPWP6sXGedMxqw/ugANHd7b4z/IMoAnTFblPwAAAAAAAAAAc5TxQmzj1j/IMoAnTFblP9vwztIX6uo/AAAAAAAAAADb8M7SF+rqP9SJlrzxq9o/yDKAJ0xW5T+6AA0d3tvjP3OU8UJs49Y/yDKAJ0xW5T+rFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2wZdQOqhvj/b8M7SF+rqPwAAAAAAAAAAugANHd7b4z/UiZa88avaP9vwztIX6uo/AAAAAAAAAACrFxnnTMasP44mbeS6+Ok/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAugANHd7b4z+OJm3kuvjpP7oADR3e2+M/yDKAJ0xW5T8AAAAAAAAAAMgygCdMVuU/jiZt5Lr46T9zlPFCbOPWP9vwztIX6uo/yDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T/b8M7SF+rqP7oADR3e2+M/ugANHd7b4z/IMoAnTFblPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAjiZt5Lr46T/IMoAnTFblP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAANSJlrzxq9o/2/DO0hfq6j/b8M7SF+rqP9SJlrzxq9o/yDKAJ0xW5T/IMoAnTFblP8gygCdMVuU/1ImWvPGr2j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP9SJlrzxq9o/jiZt5Lr46T/IMoAnTFblP7oADR3e2+M/AAAAAAAAAACOJm3kuvjpP44mbeS6+Ok/AAAAAAAAAADUiZa88avaP9SJlrzxq9o/c5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAANvwztIX6uo/ugANHd7b4z/IMoAnTFblP9SJlrzxq9o/AAAAAAAAAACrFxnnTMasP44mbeS6+Ok/c5TxQmzj1j/IMoAnTFblP9vwztIX6uo/1ImWvPGr2j/IMoAnTFblP9SJlrzxq9o/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACOJm3kuvjpP7oADR3e2+M/jiZt5Lr46T9zlPFCbOPWP8gygCdMVuU/AAAAAAAAAADbBl1A6qG+P6sXGedMxqw/yDKAJ0xW5T+rFxnnTMasP9SJlrzxq9o/2/DO0hfq6j8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAC6AA0d3tvjP9vwztIX6uo/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADb8M7SF+rqP8gygCdMVuU/AAAAAAAAAABzlPFCbOPWP9SJlrzxq9o/AAAAAAAAAADUiZa88avaP9vwztIX6uo/AAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/c5TxQmzj1j+OJm3kuvjpP44mbeS6+Ok/AAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWP8gygCdMVuU/yDKAJ0xW5T/bBl1A6qG+P8gygCdMVuU/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/jiZt5Lr46T/IMoAnTFblP9vwztIX6uo/yDKAJ0xW5T+OJm3kuvjpP9SJlrzxq9o/2/DO0hfq6j8AAAAAAAAAANSJlrzxq9o/yDKAJ0xW5T/b8M7SF+rqP6sXGedMxqw/jiZt5Lr46T8AAAAAAAAAALoADR3e2+M/2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/jiZt5Lr46T8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/c5TxQmzj1j/UiZa88avaPwAAAAAAAAAAjiZt5Lr46T+rFxnnTMasP9vwztIX6uo/yDKAJ0xW5T8AAAAAAAAAANsGXUDqob4/2/DO0hfq6j9zlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/jiZt5Lr46T9zlPFCbOPWP6sXGedMxqw/c5TxQmzj1j+OJm3kuvjpP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP7oADR3e2+M/qxcZ50zGrD/b8M7SF+rqP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA1ImWvPGr2j9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z/b8M7SF+rqP3OU8UJs49Y/2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqP6sXGedMxqw/2wZdQOqhvj/UiZa88avaP6sXGedMxqw/1ImWvPGr2j/b8M7SF+rqP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/2/DO0hfq6j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/ugANHd7b4z/bBl1A6qG+P7oADR3e2+M/c5TxQmzj1j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAjiZt5Lr46T/UiZa88avaP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/yDKAJ0xW5T/b8M7SF+rqPwAAAAAAAAAA1ImWvPGr2j/IMoAnTFblP8gygCdMVuU/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j9zlPFCbOPWP6sXGedMxqw/1ImWvPGr2j8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T/b8M7SF+rqP3OU8UJs49Y/jiZt5Lr46T9zlPFCbOPWP9SJlrzxq9o/1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j9zlPFCbOPWP9SJlrzxq9o/1ImWvPGr2j9zlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j+6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2/DO0hfq6j/UiZa88avaP9SJlrzxq9o/yDKAJ0xW5T+OJm3kuvjpP7oADR3e2+M/2/DO0hfq6j9zlPFCbOPWP3OU8UJs49Y/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP9sGXUDqob4/yDKAJ0xW5T9zlPFCbOPWP3OU8UJs49Y/1ImWvPGr2j8AAAAAAAAAANvwztIX6uo/1ImWvPGr2j/UiZa88avaPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/1ImWvPGr2j9zlPFCbOPWP3OU8UJs49Y/2/DO0hfq6j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAADUiZa88avaP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/yDKAJ0xW5T+rFxnnTMasP9vwztIX6uo/yDKAJ0xW5T/IMoAnTFblP3OU8UJs49Y/qxcZ50zGrD/UiZa88avaP9sGXUDqob4/AAAAAAAAAACOJm3kuvjpP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAI4mbeS6+Ok/jiZt5Lr46T8AAAAAAAAAANsGXUDqob4/2wZdQOqhvj+rFxnnTMasP8gygCdMVuU/jiZt5Lr46T/b8M7SF+rqP6sXGedMxqw/qxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP9vwztIX6uo/c5TxQmzj1j/b8M7SF+rqP9vwztIX6uo/jiZt5Lr46T9zlPFCbOPWP9sGXUDqob4/c5TxQmzj1j8AAAAAAAAAANSJlrzxq9o/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/1ImWvPGr2j/b8M7SF+rqP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP44mbeS6+Ok/2/DO0hfq6j/IMoAnTFblP7oADR3e2+M/yDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/UiZa88avaP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j+OJm3kuvjpP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAMgygCdMVuU/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j/IMoAnTFblPwAAAAAAAAAAugANHd7b4z/UiZa88avaPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j+rFxnnTMasP6sXGedMxqw/2/DO0hfq6j8AAAAAAAAAALoADR3e2+M/2/DO0hfq6j8AAAAAAAAAAMgygCdMVuU/ugANHd7b4z/UiZa88avaP6sXGedMxqw/1ImWvPGr2j/UiZa88avaP3OU8UJs49Y/ugANHd7b4z8AAAAAAAAAANSJlrzxq9o/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j+rFxnnTMasPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAACOJm3kuvjpP3OU8UJs49Y/AAAAAAAAAADUiZa88avaP44mbeS6+Ok/2/DO0hfq6j+6AA0d3tvjP44mbeS6+Ok/c5TxQmzj1j/b8M7SF+rqP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/1ImWvPGr2j9zlPFCbOPWP44mbeS6+Ok/yDKAJ0xW5T/UiZa88avaP8gygCdMVuU/yDKAJ0xW5T+rFxnnTMasP7oADR3e2+M/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAA2/DO0hfq6j/IMoAnTFblPwAAAAAAAAAAugANHd7b4z/b8M7SF+rqP6sXGedMxqw/qxcZ50zGrD/b8M7SF+rqP9vwztIX6uo/jiZt5Lr46T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADIMoAnTFblP9vwztIX6uo/AAAAAAAAAABzlPFCbOPWP9vwztIX6uo/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD/b8M7SF+rqP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T+OJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/yDKAJ0xW5T/b8M7SF+rqP7oADR3e2+M/jiZt5Lr46T8AAAAAAAAAANsGXUDqob4/yDKAJ0xW5T+OJm3kuvjpP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/UiZa88avaPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j+6AA0d3tvjP44mbeS6+Ok/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j/IMoAnTFblP6sXGedMxqw/ugANHd7b4z/b8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasP6sXGedMxqw/1ImWvPGr2j+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAALoADR3e2+M/ugANHd7b4z+6AA0d3tvjP9SJlrzxq9o/qxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/ugANHd7b4z9zlPFCbOPWP8gygCdMVuU/2/DO0hfq6j/bBl1A6qG+P6sXGedMxqw/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/c5TxQmzj1j/b8M7SF+rqP8gygCdMVuU/yDKAJ0xW5T/UiZa88avaP9sGXUDqob4/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAA1ImWvPGr2j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P8gygCdMVuU/2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j+rFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/2/DO0hfq6j8AAAAAAAAAANvwztIX6uo/2/DO0hfq6j+6AA0d3tvjP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/1ImWvPGr2j9zlPFCbOPWP8gygCdMVuU/AAAAAAAAAADUiZa88avaP8gygCdMVuU/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjP6sXGedMxqw/2/DO0hfq6j/IMoAnTFblP6sXGedMxqw/qxcZ50zGrD9zlPFCbOPWP9vwztIX6uo/yDKAJ0xW5T+OJm3kuvjpP9sGXUDqob4/yDKAJ0xW5T/UiZa88avaP9SJlrzxq9o/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+OJm3kuvjpP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/2/DO0hfq6j+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j/IMoAnTFblP6sXGedMxqw/qxcZ50zGrD/IMoAnTFblP9sGXUDqob4/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/yDKAJ0xW5T+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP6sXGedMxqw/AAAAAAAAAACOJm3kuvjpP7oADR3e2+M/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j/b8M7SF+rqP8gygCdMVuU/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP8gygCdMVuU/AAAAAAAAAADb8M7SF+rqP8gygCdMVuU/2/DO0hfq6j9zlPFCbOPWP8gygCdMVuU/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/2/DO0hfq6j+rFxnnTMasP9vwztIX6uo/yDKAJ0xW5T+rFxnnTMasP9sGXUDqob4/qxcZ50zGrD+6AA0d3tvjP3OU8UJs49Y/c5TxQmzj1j/IMoAnTFblP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAALoADR3e2+M/yDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP8gygCdMVuU/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP6sXGedMxqw/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAANsGXUDqob4/AAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/2/DO0hfq6j/IMoAnTFblP7oADR3e2+M/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAugANHd7b4z/IMoAnTFblP9vwztIX6uo/ugANHd7b4z/IMoAnTFblPwAAAAAAAAAA2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAc5TxQmzj1j/IMoAnTFblP9vwztIX6uo/2/DO0hfq6j/UiZa88avaP9SJlrzxq9o/ugANHd7b4z9zlPFCbOPWP9SJlrzxq9o/2wZdQOqhvj/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWP6sXGedMxqw/1ImWvPGr2j/b8M7SF+rqP9SJlrzxq9o/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAc5TxQmzj1j/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/qxcZ50zGrD/bBl1A6qG+P6sXGedMxqw/yDKAJ0xW5T/b8M7SF+rqP8gygCdMVuU/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T/b8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T/bBl1A6qG+PwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j+6AA0d3tvjP6sXGedMxqw/yDKAJ0xW5T+OJm3kuvjpP9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/1ImWvPGr2j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/2/DO0hfq6j+OJm3kuvjpP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAC6AA0d3tvjP44mbeS6+Ok/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/2/DO0hfq6j+6AA0d3tvjP3OU8UJs49Y/2/DO0hfq6j/IMoAnTFblP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/yDKAJ0xW5T/b8M7SF+rqP9vwztIX6uo/1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/yDKAJ0xW5T9zlPFCbOPWP6sXGedMxqw/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/yDKAJ0xW5T9zlPFCbOPWP9SJlrzxq9o/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAACrFxnnTMasP9SJlrzxq9o/AAAAAAAAAACrFxnnTMasP44mbeS6+Ok/ugANHd7b4z+rFxnnTMasP7oADR3e2+M/1ImWvPGr2j/UiZa88avaPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/IMoAnTFblP9SJlrzxq9o/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/UiZa88avaP9vwztIX6uo/AAAAAAAAAADIMoAnTFblP3OU8UJs49Y/2/DO0hfq6j/IMoAnTFblP9sGXUDqob4/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADUiZa88avaP44mbeS6+Ok/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD/UiZa88avaP3OU8UJs49Y/1ImWvPGr2j9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAADbBl1A6qG+P3OU8UJs49Y/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T/UiZa88avaP9vwztIX6uo/qxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/jiZt5Lr46T9zlPFCbOPWP3OU8UJs49Y/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP9vwztIX6uo/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/2wZdQOqhvj+6AA0d3tvjPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAjiZt5Lr46T+6AA0d3tvjP9SJlrzxq9o/AAAAAAAAAADb8M7SF+rqP7oADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z9zlPFCbOPWP3OU8UJs49Y/yDKAJ0xW5T/UiZa88avaP9vwztIX6uo/jiZt5Lr46T8AAAAAAAAAANSJlrzxq9o/2/DO0hfq6j+rFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAADUiZa88avaP6sXGedMxqw/jiZt5Lr46T9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAugANHd7b4z+rFxnnTMasPwAAAAAAAAAA2wZdQOqhvj9zlPFCbOPWP44mbeS6+Ok/AAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/bBl1A6qG+P8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/yDKAJ0xW5T/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP8gygCdMVuU/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j9zlPFCbOPWP9vwztIX6uo/ugANHd7b4z+6AA0d3tvjP8gygCdMVuU/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/qxcZ50zGrD/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP7oADR3e2+M/jiZt5Lr46T8AAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T/bBl1A6qG+P7oADR3e2+M/c5TxQmzj1j+rFxnnTMasP8gygCdMVuU/yDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD9zlPFCbOPWP9vwztIX6uo/yDKAJ0xW5T9zlPFCbOPWP8gygCdMVuU/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/2/DO0hfq6j+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+rFxnnTMasP7oADR3e2+M/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblP9vwztIX6uo/qxcZ50zGrD/UiZa88avaPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/c5TxQmzj1j8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAADb8M7SF+rqP7oADR3e2+M/2/DO0hfq6j8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAqxcZ50zGrD/UiZa88avaP7oADR3e2+M/ugANHd7b4z+rFxnnTMasP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/bBl1A6qG+P8gygCdMVuU/ugANHd7b4z/b8M7SF+rqP9vwztIX6uo/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAyDKAJ0xW5T+OJm3kuvjpP9SJlrzxq9o/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAANvwztIX6uo/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAANsGXUDqob4/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAADUiZa88avaP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/c5TxQmzj1j/IMoAnTFblP6sXGedMxqw/2/DO0hfq6j/UiZa88avaP8gygCdMVuU/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAANSJlrzxq9o/2/DO0hfq6j8AAAAAAAAAANSJlrzxq9o/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/yDKAJ0xW5T/IMoAnTFblP7oADR3e2+M/AAAAAAAAAADIMoAnTFblP7oADR3e2+M/1ImWvPGr2j8AAAAAAAAAAI4mbeS6+Ok/yDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j/UiZa88avaP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/jiZt5Lr46T8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9vwztIX6uo/qxcZ50zGrD/b8M7SF+rqP8gygCdMVuU/yDKAJ0xW5T9zlPFCbOPWP9sGXUDqob4/2/DO0hfq6j+6AA0d3tvjP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAANvwztIX6uo/c5TxQmzj1j/b8M7SF+rqP6sXGedMxqw/1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z/IMoAnTFblP8gygCdMVuU/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j/IMoAnTFblP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP44mbeS6+Ok/ugANHd7b4z/bBl1A6qG+PwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T/UiZa88avaP3OU8UJs49Y/1ImWvPGr2j8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/yDKAJ0xW5T8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD/UiZa88avaPwAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANvwztIX6uo/1ImWvPGr2j+OJm3kuvjpP6sXGedMxqw/qxcZ50zGrD+6AA0d3tvjP9vwztIX6uo/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/c5TxQmzj1j/bBl1A6qG+P8gygCdMVuU/AAAAAAAAAADIMoAnTFblP8gygCdMVuU/AAAAAAAAAACOJm3kuvjpP7oADR3e2+M/qxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWP9sGXUDqob4/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+rFxnnTMasP9SJlrzxq9o/c5TxQmzj1j/b8M7SF+rqP3OU8UJs49Y/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP7oADR3e2+M/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/2/DO0hfq6j9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj+rFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T9zlPFCbOPWP8gygCdMVuU/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T/IMoAnTFblP6sXGedMxqw/c5TxQmzj1j/UiZa88avaPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAADbBl1A6qG+P9vwztIX6uo/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWP8gygCdMVuU/ugANHd7b4z8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/jiZt5Lr46T+6AA0d3tvjP3OU8UJs49Y/2wZdQOqhvj8AAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j9zlPFCbOPWP9SJlrzxq9o/AAAAAAAAAADIMoAnTFblP3OU8UJs49Y/c5TxQmzj1j/bBl1A6qG+PwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP9sGXUDqob4/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAA2wZdQOqhvj/b8M7SF+rqP6sXGedMxqw/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP44mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/yDKAJ0xW5T9zlPFCbOPWP9SJlrzxq9o/yDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP6sXGedMxqw/c5TxQmzj1j/IMoAnTFblPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/2wZdQOqhvj/IMoAnTFblPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP9vwztIX6uo/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWP9SJlrzxq9o/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP9vwztIX6uo/ugANHd7b4z/UiZa88avaP9vwztIX6uo/qxcZ50zGrD+6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAA2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAANvwztIX6uo/yDKAJ0xW5T+6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasP6sXGedMxqw/2/DO0hfq6j+rFxnnTMasP8gygCdMVuU/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j/b8M7SF+rqP8gygCdMVuU/ugANHd7b4z+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWP7oADR3e2+M/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD/UiZa88avaP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/c5TxQmzj1j8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAADb8M7SF+rqP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j+rFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD/b8M7SF+rqP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/qxcZ50zGrD9zlPFCbOPWP9vwztIX6uo/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAA1ImWvPGr2j+rFxnnTMasP8gygCdMVuU/qxcZ50zGrD+rFxnnTMasP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/2/DO0hfq6j9zlPFCbOPWP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/IMoAnTFblP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/ugANHd7b4z+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP9sGXUDqob4/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/1ImWvPGr2j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j9zlPFCbOPWP6sXGedMxqw/qxcZ50zGrD9zlPFCbOPWP9vwztIX6uo/yDKAJ0xW5T/b8M7SF+rqP9SJlrzxq9o/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/yDKAJ0xW5T+rFxnnTMasP8gygCdMVuU/c5TxQmzj1j+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP44mbeS6+Ok/2wZdQOqhvj8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWP9sGXUDqob4/AAAAAAAAAADUiZa88avaP8gygCdMVuU/c5TxQmzj1j/IMoAnTFblP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+rFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z+OJm3kuvjpP8gygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblP8gygCdMVuU/yDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P44mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP3OU8UJs49Y/qxcZ50zGrD/IMoAnTFblP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP6sXGedMxqw/AAAAAAAAAADUiZa88avaP8gygCdMVuU/AAAAAAAAAADb8M7SF+rqP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/IMoAnTFblP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T+6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j9zlPFCbOPWP3OU8UJs49Y/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP9vwztIX6uo/AAAAAAAAAACrFxnnTMasP9SJlrzxq9o/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9vwztIX6uo/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z/IMoAnTFblP7oADR3e2+M/yDKAJ0xW5T+rFxnnTMasP9vwztIX6uo/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j/UiZa88avaP7oADR3e2+M/AAAAAAAAAADUiZa88avaP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD9zlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j9zlPFCbOPWP7oADR3e2+M/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP3OU8UJs49Y/yDKAJ0xW5T/UiZa88avaP9sGXUDqob4/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP9vwztIX6uo/yDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T9zlPFCbOPWP8gygCdMVuU/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z+6AA0d3tvjP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/AAAAAAAAAABzlPFCbOPWP9SJlrzxq9o/yDKAJ0xW5T+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAA1ImWvPGr2j/IMoAnTFblP6sXGedMxqw/AAAAAAAAAADIMoAnTFblP9SJlrzxq9o/qxcZ50zGrD/IMoAnTFblP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/1ImWvPGr2j9zlPFCbOPWP8gygCdMVuU/c5TxQmzj1j+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaP9sGXUDqob4/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqP9SJlrzxq9o/2/DO0hfq6j+6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/qxcZ50zGrD+OJm3kuvjpP9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/yDKAJ0xW5T8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP9vwztIX6uo/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAALoADR3e2+M/AAAAAAAAAADbBl1A6qG+P3OU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD/IMoAnTFblP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/2/DO0hfq6j/b8M7SF+rqP9vwztIX6uo/qxcZ50zGrD9zlPFCbOPWP9sGXUDqob4/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T9zlPFCbOPWP7oADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaP7oADR3e2+M/AAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/2wZdQOqhvj+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP8gygCdMVuU/AAAAAAAAAADUiZa88avaP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/1ImWvPGr2j9zlPFCbOPWPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP7oADR3e2+M/AAAAAAAAAADbBl1A6qG+P44mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP9SJlrzxq9o/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAALoADR3e2+M/ugANHd7b4z+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAADbBl1A6qG+PwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j/UiZa88avaPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/ugANHd7b4z/IMoAnTFblP3OU8UJs49Y/yDKAJ0xW5T9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/1ImWvPGr2j9zlPFCbOPWP7oADR3e2+M/AAAAAAAAAADIMoAnTFblP9sGXUDqob4/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAugANHd7b4z/UiZa88avaP9sGXUDqob4/2/DO0hfq6j8AAAAAAAAAALoADR3e2+M/2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/2wZdQOqhvj8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAC6AA0d3tvjP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+rFxnnTMasP7oADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/yDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqP44mbeS6+Ok/c5TxQmzj1j/bBl1A6qG+P9vwztIX6uo/yDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j/UiZa88avaP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjP9SJlrzxq9o/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWP9vwztIX6uo/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAugANHd7b4z/IMoAnTFblPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAugANHd7b4z/bBl1A6qG+PwAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD/UiZa88avaP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADIMoAnTFblP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/jiZt5Lr46T+rFxnnTMasP9vwztIX6uo/ugANHd7b4z+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j/b8M7SF+rqPwAAAAAAAAAAjiZt5Lr46T+rFxnnTMasP7oADR3e2+M/jiZt5Lr46T/UiZa88avaPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAANSJlrzxq9o/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWP6sXGedMxqw/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD/UiZa88avaP6sXGedMxqw/2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAANsGXUDqob4/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD/bBl1A6qG+P7oADR3e2+M/qxcZ50zGrD+rFxnnTMasP7oADR3e2+M/2/DO0hfq6j8AAAAAAAAAAMgygCdMVuU/2wZdQOqhvj8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T/UiZa88avaP6sXGedMxqw/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/c5TxQmzj1j+OJm3kuvjpP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP7oADR3e2+M/AAAAAAAAAADUiZa88avaP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP8gygCdMVuU/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j/IMoAnTFblP6sXGedMxqw/AAAAAAAAAACOJm3kuvjpP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z/b8M7SF+rqP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAACrFxnnTMasP9SJlrzxq9o/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/ugANHd7b4z+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/IMoAnTFblP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/2wZdQOqhvj+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD/IMoAnTFblP9vwztIX6uo/c5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T+6AA0d3tvjP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9SJlrzxq9o/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/jiZt5Lr46T+rFxnnTMasP9vwztIX6uo/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j/UiZa88avaPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP6sXGedMxqw/yDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/qxcZ50zGrD/UiZa88avaP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD/UiZa88avaP6sXGedMxqw/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j+6AA0d3tvjP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP8gygCdMVuU/yDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasP9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP8gygCdMVuU/ugANHd7b4z8AAAAAAAAAAMgygCdMVuU/c5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP9sGXUDqob4/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP9SJlrzxq9o/jiZt5Lr46T8AAAAAAAAAALoADR3e2+M/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD/b8M7SF+rqP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/2/DO0hfq6j/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAMgygCdMVuU/c5TxQmzj1j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP8gygCdMVuU/jiZt5Lr46T8AAAAAAAAAAMgygCdMVuU/1ImWvPGr2j/UiZa88avaP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAALoADR3e2+M/c5TxQmzj1j/bBl1A6qG+PwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/jiZt5Lr46T8AAAAAAAAAANvwztIX6uo/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+6AA0d3tvjP9SJlrzxq9o/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T/UiZa88avaPwAAAAAAAAAA2wZdQOqhvj+rFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD/IMoAnTFblPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD/bBl1A6qG+P6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP9vwztIX6uo/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP44mbeS6+Ok/c5TxQmzj1j+OJm3kuvjpP3OU8UJs49Y/2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP9sGXUDqob4/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/2/DO0hfq6j+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+OJm3kuvjpP8gygCdMVuU/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j+rFxnnTMasP9SJlrzxq9o/qxcZ50zGrD/UiZa88avaP3OU8UJs49Y/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAugANHd7b4z/UiZa88avaPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP6sXGedMxqw/AAAAAAAAAACOJm3kuvjpP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP44mbeS6+Ok/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAADIMoAnTFblP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAMgygCdMVuU/jiZt5Lr46T/IMoAnTFblPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAA2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T/UiZa88avaPwAAAAAAAAAAqxcZ50zGrD/UiZa88avaP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP9SJlrzxq9o/2wZdQOqhvj9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAALoADR3e2+M/yDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADbBl1A6qG+P8gygCdMVuU/yDKAJ0xW5T9zlPFCbOPWP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjP44mbeS6+Ok/ugANHd7b4z/UiZa88avaPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/2wZdQOqhvj/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j/UiZa88avaP9SJlrzxq9o/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP9SJlrzxq9o/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAANsGXUDqob4/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+OJm3kuvjpP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAqxcZ50zGrD/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWP7oADR3e2+M/c5TxQmzj1j8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P9sGXUDqob4/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAADUiZa88avaPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAMgygCdMVuU/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADIMoAnTFblP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j+OJm3kuvjpP3OU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+rFxnnTMasP9vwztIX6uo/c5TxQmzj1j/bBl1A6qG+P6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaP9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j9zlPFCbOPWP8gygCdMVuU/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAALoADR3e2+M/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j/UiZa88avaPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9SJlrzxq9o/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/UiZa88avaP9SJlrzxq9o/yDKAJ0xW5T8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAMgygCdMVuU/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9sGXUDqob4/2/DO0hfq6j8AAAAAAAAAAI4mbeS6+Ok/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAADbBl1A6qG+P6sXGedMxqw/ugANHd7b4z/UiZa88avaPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/2wZdQOqhvj8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP9SJlrzxq9o/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAANsGXUDqob4/1ImWvPGr2j8AAAAAAAAAANsGXUDqob4/jiZt5Lr46T+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAADUiZa88avaP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P9SJlrzxq9o/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD/UiZa88avaP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAADbBl1A6qG+P9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/IMoAnTFblP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD/bBl1A6qG+PwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAADUiZa88avaP9vwztIX6uo/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP6sXGedMxqw/1ImWvPGr2j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAA1ImWvPGr2j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAA2wZdQOqhvj+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/qxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z/bBl1A6qG+PwAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j/IMoAnTFblP9vwztIX6uo/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWP44mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/qxcZ50zGrD/UiZa88avaPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP44mbeS6+Ok/qxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP7oADR3e2+M/ugANHd7b4z+6AA0d3tvjP7oADR3e2+M/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2wZdQOqhvj+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/jiZt5Lr46T/b8M7SF+rqP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/ugANHd7b4z+rFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP9SJlrzxq9o/jiZt5Lr46T8AAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/yDKAJ0xW5T+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+OJm3kuvjpPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAC6AA0d3tvjP9sGXUDqob4/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/jiZt5Lr46T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z/UiZa88avaP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/UiZa88avaP7oADR3e2+M/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z+rFxnnTMasP9SJlrzxq9o/ugANHd7b4z8AAAAAAAAAALoADR3e2+M/ugANHd7b4z/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAALoADR3e2+M/1ImWvPGr2j9zlPFCbOPWPwAAAAAAAAAAugANHd7b4z+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/ugANHd7b4z/b8M7SF+rqP3OU8UJs49Y/qxcZ50zGrD+rFxnnTMasP7oADR3e2+M/c5TxQmzj1j8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/UiZa88avaP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP7oADR3e2+M/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/2wZdQOqhvj+6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T+6AA0d3tvjP3OU8UJs49Y/2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+rFxnnTMasP9vwztIX6uo/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/IMoAnTFblP7oADR3e2+M/AAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+6AA0d3tvjP44mbeS6+Ok/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P6sXGedMxqw/jiZt5Lr46T+rFxnnTMasP3OU8UJs49Y/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAC6AA0d3tvjP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACOJm3kuvjpP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/jiZt5Lr46T+rFxnnTMasP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAjiZt5Lr46T+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/2wZdQOqhvj/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP9sGXUDqob4/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/ugANHd7b4z+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAugANHd7b4z+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/2wZdQOqhvj8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+6AA0d3tvjP9vwztIX6uo/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+OJm3kuvjpP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA1ImWvPGr2j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP9sGXUDqob4/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAADUiZa88avaP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/ugANHd7b4z+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP44mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAALoADR3e2+M/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD/UiZa88avaP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j+OJm3kuvjpPwAAAAAAAAAAjiZt5Lr46T+OJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+6AA0d3tvjP3OU8UJs49Y/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/ugANHd7b4z9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP7oADR3e2+M/yDKAJ0xW5T8AAAAAAAAAAMgygCdMVuU/jiZt5Lr46T9zlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j/UiZa88avaPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP9sGXUDqob4/c5TxQmzj1j+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD9zlPFCbOPWP3OU8UJs49Y/jiZt5Lr46T8AAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T+6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P6sXGedMxqw/qxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblP8gygCdMVuU/AAAAAAAAAACOJm3kuvjpP9vwztIX6uo/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/c5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/jiZt5Lr46T+OJm3kuvjpP44mbeS6+Ok/qxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANvwztIX6uo/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/jiZt5Lr46T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+OJm3kuvjpP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z9zlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAADUiZa88avaP6sXGedMxqw/1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADIMoAnTFblP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/yDKAJ0xW5T+rFxnnTMasP7oADR3e2+M/AAAAAAAAAADb8M7SF+rqP7oADR3e2+M/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWP9vwztIX6uo/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z8AAAAAAAAAAI4mbeS6+Ok/c5TxQmzj1j/b8M7SF+rqP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/jiZt5Lr46T+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD+OJm3kuvjpP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/jiZt5Lr46T/IMoAnTFblP6sXGedMxqw/qxcZ50zGrD+OJm3kuvjpP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/qxcZ50zGrD+OJm3kuvjpP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP9vwztIX6uo/c5TxQmzj1j/b8M7SF+rqP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD9zlPFCbOPWP44mbeS6+Ok/c5TxQmzj1j/UiZa88avaP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD/IMoAnTFblP8gygCdMVuU/yDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP8gygCdMVuU/AAAAAAAAAACrFxnnTMasP9vwztIX6uo/1ImWvPGr2j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/jiZt5Lr46T9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP7oADR3e2+M/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP8gygCdMVuU/ugANHd7b4z+rFxnnTMasP44mbeS6+Ok/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z+rFxnnTMasP7oADR3e2+M/ugANHd7b4z8AAAAAAAAAAMgygCdMVuU/ugANHd7b4z+rFxnnTMasP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/2/DO0hfq6j/b8M7SF+rqP6sXGedMxqw/jiZt5Lr46T/IMoAnTFblP9vwztIX6uo/AAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T+6AA0d3tvjPwAAAAAAAAAAyDKAJ0xW5T/IMoAnTFblP3OU8UJs49Y/c5TxQmzj1j+OJm3kuvjpP8gygCdMVuU/jiZt5Lr46T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z/IMoAnTFblP7oADR3e2+M/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/ugANHd7b4z+OJm3kuvjpP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAALoADR3e2+M/ugANHd7b4z+6AA0d3tvjP3OU8UJs49Y/2/DO0hfq6j+6AA0d3tvjP7oADR3e2+M/ugANHd7b4z+6AA0d3tvjP3OU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP7oADR3e2+M/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+OJm3kuvjpP3OU8UJs49Y/2/DO0hfq6j/UiZa88avaPwAAAAAAAAAAjiZt5Lr46T9zlPFCbOPWP44mbeS6+Ok/ugANHd7b4z/IMoAnTFblP7oADR3e2+M/AAAAAAAAAAC6AA0d3tvjP44mbeS6+Ok/c5TxQmzj1j+6AA0d3tvjP7oADR3e2+M/ugANHd7b4z9zlPFCbOPWP44mbeS6+Ok/ugANHd7b4z8AAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2/DO0hfq6j/bBl1A6qG+P44mbeS6+Ok/ugANHd7b4z+OJm3kuvjpPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAALoADR3e2+M/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAA2/DO0hfq6j+OJm3kuvjpP7oADR3e2+M/jiZt5Lr46T+6AA0d3tvjP7oADR3e2+M/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/jiZt5Lr46T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAugANHd7b4z+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/jiZt5Lr46T8AAAAAAAAAALoADR3e2+M/c5TxQmzj1j9zlPFCbOPWP7oADR3e2+M/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPw==", "encoding": "base64", "path": [ "_data", 1, "y", "buffer" ] } ], "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "hovertemplate": "V1: %{x}
proba_Anomaly: %{y}
predictions: Anomaly", "marker": { "color": "#F58518", "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "predictions = Anomaly", "showlegend": true, "type": "scatter", "uid": "0ec1dc56-f99e-4914-b1df-3a811656d3e0", "x": { "dtype": "float64", "shape": [ 641 ] }, "y": { "dtype": "float64", "shape": [ 641 ] } }, { "hovertemplate": "V1: %{x}
proba_Anomaly: %{y}
predictions: Normal", "marker": { "color": "#4C78A8", "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "predictions = Normal", "showlegend": true, "type": "scatter", "uid": "2599247d-bf24-427a-ad07-bf4c99b69b0f", "x": { "dtype": "float64", "shape": [ 9359 ] }, "y": { "dtype": "float64", "shape": [ 9359 ] } } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "height": 600, "legend": { "itemsizing": "constant" }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "V1" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Prediction probability (Anomaly)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "6aefcc128a8c490bb11a93aab0e7b267": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V13", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_08978101d4894b8db80423184a797b4a", "step": null, "style": "IPY_MODEL_5be9b52ea2eb4dfab9a5792fcf699b27", "tabbable": null, "tooltip": null, "value": -0.05667159012072691 } }, "6ba52ddc29194f3fbc058579c2b7c4ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V12", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_1109eed9b34e44acabd6b3f2c8cef86c", "step": null, "style": "IPY_MODEL_a146038e21c2483c8591fb6359a1c239", "tabbable": null, "tooltip": null, "value": 1.1944318873587512 } }, "6be79275a60943f9b594b228f0d84b13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c3715f5a5f294a028d1eea1e51dfbe7e", "placeholder": "​", "style": "IPY_MODEL_b2f754d5336841aaaa0a6cd797eec593", "tabbable": null, "tooltip": null, "value": "

Sample (Row: 0)

" } }, "6d7582b9f78147ba8693475fa9c5d456": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "6d931e25f12a4c8eb7f511943ce23309": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_85628e7ee2d3497a9dbc437b53ee28f3", "IPY_MODEL_4e395b1676f74c58a091a18fb8103719", "IPY_MODEL_df6f5d7daddd4960aee0407a11634bc6", "IPY_MODEL_6be79275a60943f9b594b228f0d84b13", "IPY_MODEL_5aaa02e706434143b5bb604732a74f6b", "IPY_MODEL_f1185361418548679494b0699c408a61" ], "layout": "IPY_MODEL_76b0ca4cbc7e4f2ca1b6cefe92e9e82c", "tabbable": null, "tooltip": null } }, "6db7b9dd6df243bfafa1db049bdf3c8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_98d1ce06a3e2404db2d992370f98956d", "placeholder": "​", "style": "IPY_MODEL_31f21b32e632402eabf9d2df1b5aff5f", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
Original Sample-0.8146012926822080.85278547639831541.0423288727328561-2.22239521255123270.28871233525783424-0.83950585325203510.9928911115798961-0.209096513744378960.7806740947971558-0.61379035756185521.83014364342828671.1944318873587512-0.126993629505732150.165162199409388340.4184581901658031-0.7801235968866925-0.4978313765414018-0.028500870424174533-0.273660857534723970.12669591871187177
Modified Sample-0.93339053953926990.8621758625668151.2403255208160633-2.17407085547396760.26708633815850985-0.62953213146165420.98288674451139530.61709375896939640.6773519221316778-0.62604860078517771.58047872373791541.1943593787150457-0.056671590120726910.1909727321456390.3931763001513422-0.6842405108849071-0.4566465445838895-0.015606377220705830.474764392413862530.12563598797119724
\n" } }, "6f32c219e5a840eb9660bb4c76d84c61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V20", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_41ed759526bc408a8fc4a52d556e6b4d", "step": null, "style": "IPY_MODEL_47049f3d92674abb93df5841be1e59f4", "tabbable": null, "tooltip": null, "value": 0.12563598797119724 } }, "6f99b45d705b4181a83d8f3ad62db6e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "723c50ee0a6840be85674ffc0e41fa07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "726fb5aea6c04d819b012bddaa8bc37c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_937accc1b74e4d63a6b1242a4b88d6d5", "placeholder": "​", "style": "IPY_MODEL_66775c87a016427880108a7ae26b10b2", "tabbable": null, "tooltip": null, "value": "" } }, "72b65bb042b948ecb51965f88969f785": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_fb30f7783aae4ba9b0eca4bcb800abdd", "IPY_MODEL_bc34e647bf1245bbb10bcefe608f90cc", "IPY_MODEL_cd17f58c8cee4f5e8d0afe4a8d4a5333", "IPY_MODEL_d140285268c34696883bbfb42fcdfc17", "IPY_MODEL_b8dde773e75844db9d96533e94db9c7e" ], "layout": "IPY_MODEL_d47b69f78c874205ab3b094cbafc4518", "tabbable": null, "tooltip": null } }, "73cee26b02ba4af4ad0d5f850ae758e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "74250644347f4546a22998808b72b8c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7425f993e6ee445bb2ff808afa29ac10": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_74250644347f4546a22998808b72b8c6", "msg_id": "", "outputs": [ { "data": { "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
0-2.388431-0.6844490.475848-0.3359752.911623-2.9992831.822584-1.9168862.817123-0.3952902.006237-4.106296-0.384881-2.448070-0.2368870.5460621.6736461.192079-2.300008-0.822763
1-0.5677110.6147361.415348-0.802749-0.055261-0.3788830.5327290.0964070.042233-0.6279880.8526010.281430-0.9069940.4303850.2502210.518384-0.9268720.535412-0.105661-0.211543
21.758437-1.181779-0.842660-0.729181-0.895167-0.500813-0.5378460.0434491.758664-0.428296-0.991081-0.587544-1.7207160.3994501.4919480.404839-0.395784-0.0483950.2150080.048149
3-0.789193-0.628537-0.466716-4.3431821.2428073.717116-0.8167101.399127-2.2469850.057758-0.731886-0.9963470.132592-0.195757-0.7541440.0336770.022405-0.025973-1.601504-0.374528
41.056349-0.1568890.167095-0.039441-0.258194-0.4271400.141715-0.012384-0.293260-0.0626641.8184481.1121560.0544300.6057410.5362780.163810-0.237160-0.9646600.1763110.071200
\n
", "text/plain": " V1 V2 V3 V4 V5 V6 V7 \\\n0 -2.388431 -0.684449 0.475848 -0.335975 2.911623 -2.999283 1.822584 \n1 -0.567711 0.614736 1.415348 -0.802749 -0.055261 -0.378883 0.532729 \n2 1.758437 -1.181779 -0.842660 -0.729181 -0.895167 -0.500813 -0.537846 \n3 -0.789193 -0.628537 -0.466716 -4.343182 1.242807 3.717116 -0.816710 \n4 1.056349 -0.156889 0.167095 -0.039441 -0.258194 -0.427140 0.141715 \n\n V8 V9 V10 V11 V12 V13 V14 \\\n0 -1.916886 2.817123 -0.395290 2.006237 -4.106296 -0.384881 -2.448070 \n1 0.096407 0.042233 -0.627988 0.852601 0.281430 -0.906994 0.430385 \n2 0.043449 1.758664 -0.428296 -0.991081 -0.587544 -1.720716 0.399450 \n3 1.399127 -2.246985 0.057758 -0.731886 -0.996347 0.132592 -0.195757 \n4 -0.012384 -0.293260 -0.062664 1.818448 1.112156 0.054430 0.605741 \n\n V15 V16 V17 V18 V19 V20 \n0 -0.236887 0.546062 1.673646 1.192079 -2.300008 -0.822763 \n1 0.250221 0.518384 -0.926872 0.535412 -0.105661 -0.211543 \n2 1.491948 0.404839 -0.395784 -0.048395 0.215008 0.048149 \n3 -0.754144 0.033677 0.022405 -0.025973 -1.601504 -0.374528 \n4 0.536278 0.163810 -0.237160 -0.964660 0.176311 0.071200 " }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "74df56d400c64654afccfc20404b50d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "74e0204878ee4ec0b473392fcb83177d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "75d7a6f642ee4fd582325a7ff5d35dc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoundedIntTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "BoundedIntTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntTextView", "continuous_update": false, "description": "Row Index:", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_fcf8c568b50f49068e8938eec8a87a51", "max": 56961, "min": 0, "step": 1, "style": "IPY_MODEL_e9b3f3d69b8f414dad0faf02e70523b6", "tabbable": null, "tooltip": null, "value": 0 } }, "76b0ca4cbc7e4f2ca1b6cefe92e9e82c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "76be8742654e43e6b78d827a0da36766": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "76c1d60e28524052aa0b7adfd5cb5d39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_220f7867df0245e2b327cb06f71b270b", "placeholder": "​", "style": "IPY_MODEL_cb3d819e0c414d5385001dfd786089bc", "tabbable": null, "tooltip": null, "value": "

Model Prediction Probabilities

" } }, "76e298be452e4a109964b210beda7383": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V10", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_21e31e3a5b1548ea811c369fe36b3851", "step": null, "style": "IPY_MODEL_230c7649f6824cf6862878253ab12fd8", "tabbable": null, "tooltip": null, "value": -0.6137903575618552 } }, "788c44f38d6d4a679fcd44a721d7faa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "7987a499f6fc43b392d1eae9f780684b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7a1c994a3060404fa04c6b0869550e9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7abad250e9e2447eb9a0d869101c4ead": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7afbafb9371a4eda9e03aff8be535bda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V19", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_866cd317e7d942629fb8100e452d877c", "step": null, "style": "IPY_MODEL_01cc94f694674675b289faba395a1829", "tabbable": null, "tooltip": null, "value": 0.47476439241386253 } }, "7b30e62299ab43a08ae45dafca6552d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7beb84505047415ea6048c0f8b567207": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1025px" } }, "7c73eb13d83a4b2aaa6d27f6052395f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "7dc9aad76db54a26980ccb4b033af814": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "7e6af43400af4485bec7e10d0ec32ad0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7ebab1d7b9ff48518f65cdf48281c8a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "7fe681e5536b4faca5b80cc07936fc54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "81127612f88a41ffab784299676dec67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "8117032691794ee6a81eccb6b61b70aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "818ed9d3006b477b9ae93b672b06da6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V10", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_e6b96190bd1b406da7b2e1416c78999c", "step": null, "style": "IPY_MODEL_0c2646c3bb3844f6b78e92f6b848f3a7", "tabbable": null, "tooltip": null, "value": -0.6260486007851777 } }, "81a445cdf5514807a148f07a5192c9c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "83baab79d5f848f0a2b38eacb0627749": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V1", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_f005ae203ae94bfc920058c1a6fd1a70", "step": null, "style": "IPY_MODEL_e28dbf45db26436883dfc945449f2c2b", "tabbable": null, "tooltip": null, "value": -0.814601292682208 } }, "8415500257cc4d5280dbb6897a565f46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "845498de789640d9af94bcba9ed7a51d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "85628e7ee2d3497a9dbc437b53ee28f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd71f23649a549b28dcfd4f11099121d", "placeholder": "​", "style": "IPY_MODEL_ed572c53b92b4439b93fb5cad8237f7a", "tabbable": null, "tooltip": null, "value": "\n

Select and Explore Sample

\n " } }, "866cd317e7d942629fb8100e452d877c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "883f3e768e48482dbc1c69fe4b85b51a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8c24cdb5b6b746bba3f3e6082591ed28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8e531d805e454202b5ea1e1cbc625e00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_ad54e0fe80b04cab81a462dde53658c5", "IPY_MODEL_7425f993e6ee445bb2ff808afa29ac10" ], "layout": "IPY_MODEL_f8f7312e5c8d45e7ac9868f58b632f12", "tabbable": null, "tooltip": null } }, "8e86b2c95bb541da819d443762167c15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_3817fc705744461683fbeb8d86a80eaf", "IPY_MODEL_39c51262882f4b2287467dc0eeef81ee", "IPY_MODEL_b21d48f453ad448f89ba6d1cee019590", "IPY_MODEL_a409f1d12b0848b3b72f30f336a1a713", "IPY_MODEL_d73ca224d7dd44c39a285044ac580ae5", "IPY_MODEL_95bacba8ad474aea9f95f46a687e64b9" ], "layout": "IPY_MODEL_c6e000315030427abc107c3c9ae5e322", "tabbable": null, "tooltip": null } }, "8ed37f54b1bc4e9ebfa8aa5573cef871": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8eda219de3f6465b81724b28aeafa0a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "9138030099d9444589882bec6176ad67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "931d20bb08ff4214907ec952973479db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V7", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_8ed37f54b1bc4e9ebfa8aa5573cef871", "step": null, "style": "IPY_MODEL_339241d7f167419abd9496bd55f1ee45", "tabbable": null, "tooltip": null, "value": 0.9828867445113953 } }, "937accc1b74e4d63a6b1242a4b88d6d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9426bb6a5d6143e8b53a6dec9aefc2a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "95bacba8ad474aea9f95f46a687e64b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "success", "description": "Run Inference", "disabled": false, "icon": "", "layout": "IPY_MODEL_bbe0180f2fdf432fbe7af3000fce52c0", "style": "IPY_MODEL_8eda219de3f6465b81724b28aeafa0a5", "tabbable": null, "tooltip": "Runs inference on the new sample" } }, "98d1ce06a3e2404db2d992370f98956d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1025px" } }, "99a19d0f9d8346e197c2b0800c910bfc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "99c0b3dbb78e464fb380328bdebe6e2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V17", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_5faa7472643c4e80bcf07e287a3b28fe", "step": null, "style": "IPY_MODEL_9138030099d9444589882bec6176ad67", "tabbable": null, "tooltip": null, "value": -0.4978313765414018 } }, "9c1479fe832d47d6b48a1e167d8213bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9c476dde04154397bdc482d2866014cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V3", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_3b6018ce169546ab954129109cbd3eff", "step": null, "style": "IPY_MODEL_66b9372b64fe4c7c9ce37d9a521a5f37", "tabbable": null, "tooltip": null, "value": 1.2403255208160633 } }, "9cf0f507f2dc4eb1a691acdd9f4134e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9e50eee6c9e741c3acd5bb35665592fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9e66cd24f8af4b5fbd86f6f62005a778": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_6d931e25f12a4c8eb7f511943ce23309", "IPY_MODEL_b31079317b4e426eb399f0ed143f1203" ], "layout": "IPY_MODEL_b892cc81dead4872a480331d4263a271", "tabbable": null, "tooltip": null } }, "9ee4aa7b1f6241af9194b73a7d3a6197": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a146038e21c2483c8591fb6359a1c239": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "a1748d80da2541cf8ce969ae6c596ad5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V5", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_dbec8af348bc405eb46e612b088f4298", "step": null, "style": "IPY_MODEL_dde673911a614828a8bd141cbf1b7f30", "tabbable": null, "tooltip": null, "value": 0.26708633815850985 } }, "a358c19801f1477db74b3a778defc2ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "CheckboxView", "description": "Show all features", "description_allow_html": false, "disabled": true, "indent": false, "layout": "IPY_MODEL_cf91f4947d8a4d6892a70afaa520544e", "style": "IPY_MODEL_305aaa630e5d448b9c551b90382f95f8", "tabbable": null, "tooltip": null, "value": true } }, "a409f1d12b0848b3b72f30f336a1a713": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f7fd342603e74f83bcc1e480cc047718", "placeholder": "​", "style": "IPY_MODEL_0b87aab443194aa8b7ddc5dc2e637dec", "tabbable": null, "tooltip": null, "value": "

Sample (Row: 0)

" } }, "a4267c87f16440738c907911f9531546": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a5a0b1c6f0d643ccad92f5f12b9ea608": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "a5c4dc9717244922b094da80fe22c246": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V4", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_7e6af43400af4485bec7e10d0ec32ad0", "step": null, "style": "IPY_MODEL_afb537790c9b4312830d4cc9ecf75b13", "tabbable": null, "tooltip": null, "value": -2.2223952125512327 } }, "a5f5c178515c42cfb654ce6f23d34ba2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "a886e1f0ba194b52aedc9109986f53c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3732e9a196948eabcc26ea793875cfd", "placeholder": "​", "style": "IPY_MODEL_f70d681439e34667a4412ffefe7f457b", "tabbable": null, "tooltip": null, "value": "" } }, "abdb19248a8d4bd69cf62bf8819ae364": { "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 1, 2, 4, 0, 3 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Anomaly", "marker": { "color": "#4C78A8", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Anomaly", "orientation": "h", "showlegend": false, "type": "box", "uid": "de6e4173-d478-4560-97a3-e40e963f71ca", "x": [ 0.0, 0.0, 0.0, 0.416744646232613, 0.9389204021853998 ], "y": [ "Anomaly", "Anomaly", "Anomaly", "Anomaly", "Anomaly" ] }, { "boxmean": true, "boxpoints": "all", "customdata": [ 3, 0, 1, 2, 4 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Normal", "marker": { "color": "#F58518", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Normal", "orientation": "h", "showlegend": false, "type": "box", "uid": "e9361dcf-1057-4f9c-a84a-b3773922b58d", "x": [ 0.06107959781460015, 0.583255353767387, 1.0, 1.0, 1.0 ], "y": [ "Normal", "Normal", "Normal", "Normal", "Normal" ] } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "boxmode": "group", "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "range": [ 0, 1 ], "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "P(Target)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": true, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Target" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "ad54e0fe80b04cab81a462dde53658c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_21a9199a77c84a93b5613dca5b5b027d", "placeholder": "​", "style": "IPY_MODEL_49af99d9725241b49b6253789440fc31", "tabbable": null, "tooltip": null, "value": "

Samples

" } }, "ae9ec8262652462d912b04d90cd356e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V15", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_a4267c87f16440738c907911f9531546", "step": null, "style": "IPY_MODEL_74e0204878ee4ec0b473392fcb83177d", "tabbable": null, "tooltip": null, "value": 0.3931763001513422 } }, "aea6997190a2441ea6f2a799d206fed7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V18", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_27dff7d708ff42aa815044761ce72b28", "step": null, "style": "IPY_MODEL_c5103f001f4c4f3ab2d9f987ad15db04", "tabbable": null, "tooltip": null, "value": -0.01560637722070583 } }, "afb537790c9b4312830d4cc9ecf75b13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "b03afb25bb654ee585365c5b2d6e5977": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b21d48f453ad448f89ba6d1cee019590": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_75d7a6f642ee4fd582325a7ff5d35dc6", "IPY_MODEL_2e99e3c5c1a845f484281d7cad7e84b3" ], "layout": "IPY_MODEL_b8ba555065884f94874f8add95a64aab", "tabbable": null, "tooltip": null } }, "b2607b9e9c6e4d9e8581a8b693153f40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "b2a21d6a3fb2428d9329e60331858ffa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "b2f754d5336841aaaa0a6cd797eec593": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "b31079317b4e426eb399f0ed143f1203": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_27b2d956191b469c9b873ed30789e6ee", "IPY_MODEL_6db7b9dd6df243bfafa1db049bdf3c8b", "IPY_MODEL_213cea55761e41fd941c01fa17fe8964", "IPY_MODEL_3763e94a48b9491f881e531704071abb", "IPY_MODEL_eb0d180136a04bec9274fd509519e566", "IPY_MODEL_d4fa60057d4a45e8942bbf20bc1b4220", "IPY_MODEL_0d1ffb15d03147d993ad104c6cb967b5" ], "layout": "IPY_MODEL_0a2aedfc221844fdbb8223f629a7f2ea", "tabbable": null, "tooltip": null } }, "b42161850a8e452eae84eac417b7796c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b454958fc72346b7aba50ae3115e7fe1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b03afb25bb654ee585365c5b2d6e5977", "placeholder": "​", "style": "IPY_MODEL_8117032691794ee6a81eccb6b61b70aa", "tabbable": null, "tooltip": null, "value": "

Select and Explore Predictions

" } }, "b892cc81dead4872a480331d4263a271": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1100px" } }, "b89871bc47194fad999d1a41f75f5c5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V20", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_9ee4aa7b1f6241af9194b73a7d3a6197", "step": null, "style": "IPY_MODEL_81127612f88a41ffab784299676dec67", "tabbable": null, "tooltip": null, "value": 0.12669591871187177 } }, "b8ba555065884f94874f8add95a64aab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b8dde773e75844db9d96533e94db9c7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "Normal", "Anomaly" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Labels", "description_allow_html": false, "disabled": false, "index": 1, "layout": "IPY_MODEL_c5438806070f450690e988ce762a31af", "style": "IPY_MODEL_81a445cdf5514807a148f07a5192c9c5", "tabbable": null, "tooltip": null } }, "b9a7a3d28e284ca8b2caf98a7cec68af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "bb50ac5347d146a6a0227355f0353fec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V6", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_67b9715c16a6455e934fc3ee971bcd95", "step": null, "style": "IPY_MODEL_17fadde189d94c2fa8dcc6463316c5eb", "tabbable": null, "tooltip": null, "value": -0.6295321314616542 } }, "bbe0180f2fdf432fbe7af3000fce52c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "20px 0 0 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bc157c4f9cb04608b376205c98aabd86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoundedIntTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "BoundedIntTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntTextView", "continuous_update": false, "description": "Row Index:", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_401fa1830f724e108e59d1e90f0521a4", "max": 0, "min": 0, "step": 1, "style": "IPY_MODEL_237356fb541b40e3b76a9b7c254c31d0", "tabbable": null, "tooltip": null, "value": 0 } }, "bc34e647bf1245bbb10bcefe608f90cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "predictions", "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Y-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_fc563681f7be466780873ff8abd6219e", "style": "IPY_MODEL_157495e59de64d4298c71b4f16d9f6db", "tabbable": null, "tooltip": null } }, "bd71f23649a549b28dcfd4f11099121d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bdf404f7b6754d37ac330ddace1a9bc6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "bed6c726e75f44f6a70b7334122e0816": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%" } }, "c02011c820d543f0b48e5ceee1e750a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "c05e2cc9098246f0b955e356f42536b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "c06ad32d23264e679204748b58ce690d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V1", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_41f51bbfe2a248cc83b764f5edd68ce3", "step": null, "style": "IPY_MODEL_51e6e768f5034fc2a5cc52f046abff41", "tabbable": null, "tooltip": null, "value": -0.9333905395392699 } }, "c22b0d4571514391997de37ac73970ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "c31a162c05284f65930839b36dd8ae8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "c36c62a26d31496f9e37a46099f8cee3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "c3715f5a5f294a028d1eea1e51dfbe7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c3a1778544474e3cab704692851b1b12": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "c5103f001f4c4f3ab2d9f987ad15db04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "c5438806070f450690e988ce762a31af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "c5fdc4f0f17147c3a45fca1906436c20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "None", "quartile", "decile", "percentile" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Binning method", "description_allow_html": false, "disabled": true, "index": 0, "layout": "IPY_MODEL_6f99b45d705b4181a83d8f3ad62db6e4", "style": "IPY_MODEL_3c9b9456d444442dacf4f9927cb09281", "tabbable": null, "tooltip": null } }, "c6319b56e7544c2197f93623b7b6e1ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "20px 0 0 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c6e000315030427abc107c3c9ae5e322": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "c6f96404aff54551a9ba82e2c7271897": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "c73fcd779f48414096b6344b21f6dae9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V4", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_ca8f70fd501b45548bf24589b0d4975e", "step": null, "style": "IPY_MODEL_e37dd9b28ddf4757af0a540234ec45ec", "tabbable": null, "tooltip": null, "value": -2.1740708554739676 } }, "ca8f70fd501b45548bf24589b0d4975e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cb3d819e0c414d5385001dfd786089bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "cbc10284a740447e8af1eb07feec7da3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "cd17f58c8cee4f5e8d0afe4a8d4a5333": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "scatter", "bar", "box" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Plot Type", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_d3b929712ac9441fb062cd4490592b88", "style": "IPY_MODEL_15da74327b74476abdcae48d9ae93a30", "tabbable": null, "tooltip": null } }, "ce21a7d07edc4bb29d3654f6cd369790": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cf91f4947d8a4d6892a70afaa520544e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cfee861c139041e48b82aab6ce9df20f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "d11bb28ff380408ea5d59a010d41d5a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V14", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_1d2eac7238f349e7a0403f484a35113f", "step": null, "style": "IPY_MODEL_fae0b231fc1840d384eee02577593171", "tabbable": null, "tooltip": null, "value": 0.16516219940938834 } }, "d140285268c34696883bbfb42fcdfc17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "None", "quartile", "decile", "percentile" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Binning method", "description_allow_html": false, "disabled": true, "index": 0, "layout": "IPY_MODEL_bdf404f7b6754d37ac330ddace1a9bc6", "style": "IPY_MODEL_a5f5c178515c42cfb654ce6f23d34ba2", "tabbable": null, "tooltip": null } }, "d18fca5901b84581a28a276d29b7cc25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b42161850a8e452eae84eac417b7796c", "placeholder": "​", "style": "IPY_MODEL_f9e8fd5194964aa5bcbd14ec1a1ecb4b", "tabbable": null, "tooltip": null, "value": "

Model Predictions

" } }, "d3588efa551145a3850bd27dff0f9e8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d3b929712ac9441fb062cd4490592b88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "d42e5d96a9104da897c74c2fcab927fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "Normal", "Anomaly" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Labels", "description_allow_html": false, "disabled": false, "index": 1, "layout": "IPY_MODEL_0c2a077a7750448eb384da0bdc69cfae", "style": "IPY_MODEL_7ebab1d7b9ff48518f65cdf48281c8a3", "tabbable": null, "tooltip": null } }, "d47b69f78c874205ab3b094cbafc4518": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "15px 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d4fa60057d4a45e8942bbf20bc1b4220": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0940aa14f46f4e229c531586229c2b27", "placeholder": "​", "style": "IPY_MODEL_b9a7a3d28e284ca8b2caf98a7cec68af", "tabbable": null, "tooltip": null, "value": "

Model Prediction Probabilities

" } }, "d73ca224d7dd44c39a285044ac580ae5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_83baab79d5f848f0a2b38eacb0627749", "IPY_MODEL_2f0fc1db51a3447796469a9c532be386", "IPY_MODEL_58d19a4683df4774a3db1fd1d7efd4cd", "IPY_MODEL_a5c4dc9717244922b094da80fe22c246", "IPY_MODEL_4ea1d5438b2a4336a84f4be5161b05aa", "IPY_MODEL_446bf13091ca42d19984ef2b4b68f8c7", "IPY_MODEL_38352c8b946d421da5b731238458de54", "IPY_MODEL_59ad5a1a258644d4957a67cdf9493135", "IPY_MODEL_e7f494aff10248b69d4761d80c0e6428", "IPY_MODEL_76e298be452e4a109964b210beda7383", "IPY_MODEL_20ae3b7b565543559341e5ebff6b41df", "IPY_MODEL_6ba52ddc29194f3fbc058579c2b7c4ef", "IPY_MODEL_35c4ee7df85d4bae8137a6f5c14d34b2", "IPY_MODEL_d11bb28ff380408ea5d59a010d41d5a6", "IPY_MODEL_664ff53bf7924d959dbff3269e6f66f3", "IPY_MODEL_56551e205df4451aa6106b00d3ce65fe", "IPY_MODEL_99c0b3dbb78e464fb380328bdebe6e2b", "IPY_MODEL_17a1f266a9ac4d9b933b45b157ede88a", "IPY_MODEL_56cd87956409437cbebe5216f5f07052", "IPY_MODEL_b89871bc47194fad999d1a41f75f5c5f" ], "layout": "IPY_MODEL_e65651dbf3774fc38ac1e7c5f3b2f8fa", "tabbable": null, "tooltip": null } }, "d756cb99b77a4f6d9884aeca37e01fbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "dad62b0fd0304711b851731a6c560937": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "dbb27bb1527f40dc987671382e396ab7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "dbec8af348bc405eb46e612b088f4298": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dde673911a614828a8bd141cbf1b7f30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "df6f5d7daddd4960aee0407a11634bc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_bc157c4f9cb04608b376205c98aabd86", "IPY_MODEL_f07b0203988f4d33961578d60763ca65" ], "layout": "IPY_MODEL_76be8742654e43e6b78d827a0da36766", "tabbable": null, "tooltip": null } }, "e0d4cd15189b49628cbb8ad52ffdb8a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e1068c8e51394f3f8d4bf39c3a1be103": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e28dbf45db26436883dfc945449f2c2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "e37dd9b28ddf4757af0a540234ec45ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "e40af4991d314ba995ecd4ac2cb2f3d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e52bc00f730d4058900cbb914eecf7c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V8", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_7b30e62299ab43a08ae45dafca6552d9", "step": null, "style": "IPY_MODEL_f9f3201308124ed6b3aa2f93ab7d2acb", "tabbable": null, "tooltip": null, "value": 0.6170937589693964 } }, "e52ccc4f87624378ab24ce0b5620da0c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "e65651dbf3774fc38ac1e7c5f3b2f8fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%" } }, "e6b96190bd1b406da7b2e1416c78999c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e7f494aff10248b69d4761d80c0e6428": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V9", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_ce21a7d07edc4bb29d3654f6cd369790", "step": null, "style": "IPY_MODEL_4801834be7044937b4bfdde212df2bff", "tabbable": null, "tooltip": null, "value": 0.7806740947971558 } }, "e9b3f3d69b8f414dad0faf02e70523b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "eb0d180136a04bec9274fd509519e566": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59b22a2813c74f008bb4809da372da9d", "placeholder": "​", "style": "IPY_MODEL_2c0dcf899a4041dfbd2aa4f72efed968", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 Prediction (True value: Normal)
Original SampleNormal
Modified SampleAnomaly
\n" } }, "eca49f4697e74a209ec756fa43b4bee1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ed572c53b92b4439b93fb5cad8237f7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "ee9d705c855e4812bef1cfcfc236cad8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "X-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_3d5d0600b692489f938e9d3ac04c63bd", "style": "IPY_MODEL_4f45ba82a16648b0a876557703e798cc", "tabbable": null, "tooltip": null } }, "f005ae203ae94bfc920058c1a6fd1a70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f07b0203988f4d33961578d60763ca65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "", "description": "Select Sample", "disabled": false, "icon": "", "layout": "IPY_MODEL_f537a731b8e1442a847a7789fb2c7221", "style": "IPY_MODEL_3e583c2f7c1948239e33fa2d56bb2d50", "tabbable": null, "tooltip": "Select the sample at the specified row index" } }, "f1185361418548679494b0699c408a61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "success", "description": "Run Inference", "disabled": false, "icon": "", "layout": "IPY_MODEL_c6319b56e7544c2197f93623b7b6e1ef", "style": "IPY_MODEL_b2607b9e9c6e4d9e8581a8b693153f40", "tabbable": null, "tooltip": "Runs inference on the new sample" } }, "f3732e9a196948eabcc26ea793875cfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f49b492329bb4bcba15f3a5a4335c7b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f537a731b8e1442a847a7789fb2c7221": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f5ba118be0a94480ad9abb368deec85a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f70d681439e34667a4412ffefe7f457b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f7fd342603e74f83bcc1e480cc047718": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f8f7312e5c8d45e7ac9868f58b632f12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": "flex-start", "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f9e8fd5194964aa5bcbd14ec1a1ecb4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f9f3201308124ed6b3aa2f93ab7d2acb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "faa6f085bd6d449e924fa7271eb520e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fae0b231fc1840d384eee02577593171": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "fb30f7783aae4ba9b0eca4bcb800abdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "X-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_33a6e422767c44c0b79fb70ccb4358aa", "style": "IPY_MODEL_dbb27bb1527f40dc987671382e396ab7", "tabbable": null, "tooltip": null } }, "fb39ace7658a4ee890a5d3d1cf1398dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9c1479fe832d47d6b48a1e167d8213bb", "placeholder": "​", "style": "IPY_MODEL_a5a0b1c6f0d643ccad92f5f12b9ea608", "tabbable": null, "tooltip": null, "value": "

Sample Values

" } }, "fb6fd1e013374a8eb0091c226e594d8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fb7194a7ccc446428d60868883deda8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "fc563681f7be466780873ff8abd6219e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "fcf8c568b50f49068e8938eec8a87a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ff62c19678bf433cb56c198a0b3cf99c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }