{ "cells": [ { "cell_type": "markdown", "id": "2dd24d57", "metadata": {}, "source": [ "***\n", "# Building and Explaining a Regressor using AutoMLx\n", "

by the Oracle AutoMLx Team

\n", "\n", "***" ] }, { "cell_type": "markdown", "id": "57f069e3", "metadata": {}, "source": [ "Regression Demo Notebook.\n", "\n", "Copyright © 2025, Oracle and/or its affiliates.\n", "\n", "Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/" ] }, { "cell_type": "markdown", "id": "a8ff7a02", "metadata": {}, "source": [ "## Overview of this Notebook\n", "\n", "In this notebook we will build a regressor using the Oracle AutoMLx tool for the public California Housing dataset to predict the value of house prices.\n", "We explore the various options provided by the Oracle AutoMLx tool, allowing the user to control the AutoMLx training process. We finally evaluate the different models trained by AutoMLx. Depending on the dataset size and the machine running it, it can take about tens of minutes. The dataset is sampled down for a snappier demo, with the option to run it with the full dataset. We finally provide an overview of the possibilities that Oracle AutoMLx provides for explaining the predictions of the tuned model.\n", "\n", "---\n", "## Prerequisites:\n", "\n", " - Experience level: Novice (Python and Machine Learning)\n", " - Professional experience: Some industry experience\n", "---\n", "\n", "## Business Use:\n", "\n", "Data analytics and modeling problems using Machine Learning (ML) are becoming popular and often rely on data science expertise to build accurate ML models. Such modeling tasks primarily involve the following steps:\n", "- Preprocess dataset (clean, impute, engineer features, normalize).\n", "- Pick an appropriate model for the given dataset and prediction task at hand.\n", "- Tune the chosen model’s hyperparameters for the given dataset.\n", "\n", "All of these steps are significantly time consuming and heavily rely on data scientist expertise. Unfortunately, to make this problem harder, the best feature subset, model, and hyperparameter choice widely varies with the dataset and the prediction task. Hence, there is no one-size-fits-all solution to achieve reasonably good model performance. Using a simple Python API, AutoML can quickly jump-start the datascience process with an accurately-tuned model and appropriate features for a given prediction task.\n", "\n", "## Table of Contents\n", "\n", "- Setup\n", "- Load California housing dataset\n", "- AutoML\n", " - Setting the execution engine\n", " - Create an Instance of AutoMLx\n", " - Train a Model using AutoMLx\n", " - Analyze the AutoMLx optimization process \n", " - Algorithm Selection\n", " - Adaptive Sampling\n", " - Feature Selection\n", " - Hyperparameter Tuning\n", " - Advanced AutoMLx Configuration \n", " - Use a custom validation set\n", "- Machine Learning Explainability (MLX)\n", " - Initialize an MLExplainer\n", " - Model Explanations (Global Feature Importance)\n", " - Feature Dependence Explanations (PDP + ICE)\n", " - Prediction Explanations (Local Feature Importance)\n", " - Aggregate Local Feature Importance\n", " - Interactive What-IF Explanations\n", " - Counterfactuals Explanations\n", " - Advanced Feature Importance Options\n", " - Configure prediction explanation\n", " - Explain the model or explain the world\n", " - Advanced Feature Dependence Options (ALE)\n", "- References" ] }, { "cell_type": "markdown", "id": "30938eba", "metadata": {}, "source": [ "\n", "## Setup\n", "\n", "Basic setup for the Notebook." ] }, { "cell_type": "code", "execution_count": 1, "id": "6dd055c5", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:35:22.798339Z", "iopub.status.busy": "2025-05-22T12:35:22.798146Z", "iopub.status.idle": "2025-05-22T12:35:23.331028Z", "shell.execute_reply": "2025-05-22T12:35:23.330367Z" } }, "outputs": [], "source": [ "\n", "%matplotlib inline\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "markdown", "id": "49707089", "metadata": {}, "source": [ "Load the required modules." ] }, { "cell_type": "code", "execution_count": 2, "id": "9252070e", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:35:23.333979Z", "iopub.status.busy": "2025-05-22T12:35:23.333299Z", "iopub.status.idle": "2025-05-22T12:35:25.862277Z", "shell.execute_reply": "2025-05-22T12:35:25.861563Z" } }, "outputs": [], "source": [ "import time\n", "import datetime\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import plotly.figure_factory as ff\n", "from sklearn.datasets import fetch_california_housing\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.linear_model import LinearRegression\n", "\n", "# Settings for plots\n", "plt.rcParams['figure.figsize'] = [10, 7]\n", "plt.rcParams['font.size'] = 15\n", "\n", "import automlx\n", "from automlx import init" ] }, { "cell_type": "markdown", "id": "4f322166", "metadata": {}, "source": [ "\n", "## Load the California housing dataset using sklearn.datasets\n", "\n", "Dataset details are available here: https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset. The goal is to predict the median price of a house given some features." ] }, { "cell_type": "code", "execution_count": 3, "id": "f4b6c4a1", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:35:25.865282Z", "iopub.status.busy": "2025-05-22T12:35:25.864423Z", "iopub.status.idle": "2025-05-22T12:35:25.914939Z", "shell.execute_reply": "2025-05-22T12:35:25.914392Z" } }, "outputs": [ { "data": { "text/plain": [ "(20640, 9)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X, y = fetch_california_housing(return_X_y=True)\n", "ds = fetch_california_housing(return_X_y=False)\n", "df = pd.concat([pd.DataFrame(X, columns=ds.feature_names),\n", " pd.DataFrame(y.ravel(), columns=['Median Price'])], axis=1)\n", "\n", "target_col='Median Price'\n", "df.shape" ] }, { "cell_type": "code", "execution_count": 4, "id": "ea312805", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:35:25.916837Z", "iopub.status.busy": "2025-05-22T12:35:25.916402Z", "iopub.status.idle": "2025-05-22T12:35:25.949822Z", "shell.execute_reply": "2025-05-22T12:35:25.949225Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MedIncHouseAgeAveRoomsAveBedrmsPopulationAveOccupLatitudeLongitudeMedian Price
08.325241.06.9841271.023810322.02.55555637.88-122.234.526
18.301421.06.2381370.9718802401.02.10984237.86-122.223.585
27.257452.08.2881361.073446496.02.80226037.85-122.243.521
35.643152.05.8173521.073059558.02.54794537.85-122.253.413
43.846252.06.2818531.081081565.02.18146737.85-122.253.422
\n", "
" ], "text/plain": [ " MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \\\n", "0 8.3252 41.0 6.984127 1.023810 322.0 2.555556 37.88 \n", "1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86 \n", "2 7.2574 52.0 8.288136 1.073446 496.0 2.802260 37.85 \n", "3 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85 \n", "4 3.8462 52.0 6.281853 1.081081 565.0 2.181467 37.85 \n", "\n", " Longitude Median Price \n", "0 -122.23 4.526 \n", "1 -122.22 3.585 \n", "2 -122.24 3.521 \n", "3 -122.25 3.413 \n", "4 -122.25 3.422 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "markdown", "id": "570b64f0", "metadata": {}, "source": [ "We first display the density of the target median price." ] }, { "cell_type": "code", "execution_count": 5, "id": "961f54f1", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:35:25.951707Z", "iopub.status.busy": "2025-05-22T12:35:25.951274Z", "iopub.status.idle": "2025-05-22T12:35:26.451583Z", "shell.execute_reply": "2025-05-22T12:35:26.450942Z" }, "lines_to_next_cell": 2 }, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "legendgroup": "Median Price", "marker": { "color": "rgb(31, 119, 180)" }, "mode": "lines", "name": "Median Price", "showlegend": true, "type": "scatter", "x": [ 0.14999, 0.15969004, 0.16939008, 0.17909012000000002, 0.18879016, 0.1984902, 0.20819024, 0.21789028, 0.22759032, 0.23729036, 0.2469904, 0.25669044, 0.26639048, 0.27609052, 0.28579056, 0.2954906, 0.30519064, 0.31489068, 0.32459072, 0.33429076, 0.34399080000000004, 0.35369084, 0.36339087999999997, 0.37309092, 0.38279096, 0.392491, 0.40219104, 0.41189107999999997, 0.42159112, 0.43129116, 0.44099119999999997, 0.45069124, 0.46039128, 0.47009132, 0.47979136, 0.4894914, 0.49919144, 0.50889148, 0.51859152, 0.52829156, 0.5379916, 0.54769164, 0.5573916800000001, 0.5670917200000001, 0.57679176, 0.5864918, 0.59619184, 0.6058918799999999, 0.61559192, 0.62529196, 0.634992, 0.64469204, 0.65439208, 0.6640921200000001, 0.6737921599999999, 0.6834922000000001, 0.6931922399999999, 0.7028922799999999, 0.71259232, 0.72229236, 0.7319924, 0.74169244, 0.75139248, 0.76109252, 0.7707925600000001, 0.7804925999999999, 0.7901926399999999, 0.7998926799999999, 0.8095927199999999, 0.81929276, 0.8289928, 0.83869284, 0.84839288, 0.85809292, 0.8677929600000001, 0.8774929999999999, 0.8871930400000001, 0.8968930799999999, 0.9065931199999999, 0.9162931599999999, 0.9259932, 0.93569324, 0.94539328, 0.95509332, 0.96479336, 0.9744934000000001, 0.9841934400000001, 0.9938934799999999, 1.00359352, 1.01329356, 1.0229936, 1.03269364, 1.04239368, 1.05209372, 1.06179376, 1.0714938, 1.0811938399999999, 1.0908938799999999, 1.10059392, 1.11029396, 1.119994, 1.12969404, 1.13939408, 1.14909412, 1.15879416, 1.1684942, 1.17819424, 1.18789428, 1.1975943199999999, 1.20729436, 1.2169944000000001, 1.22669444, 1.23639448, 1.24609452, 1.25579456, 1.2654946, 1.27519464, 1.2848946799999998, 1.29459472, 1.30429476, 1.3139948, 1.32369484, 1.3333948800000002, 1.34309492, 1.35279496, 1.362495, 1.37219504, 1.38189508, 1.39159512, 1.4012951599999999, 1.4109952, 1.4206952400000001, 1.43039528, 1.44009532, 1.44979536, 1.4594954, 1.46919544, 1.47889548, 1.4885955199999998, 1.49829556, 1.5079956, 1.51769564, 1.52739568, 1.5370957200000002, 1.54679576, 1.5564958, 1.56619584, 1.57589588, 1.58559592, 1.59529596, 1.6049959999999999, 1.61469604, 1.6243960800000001, 1.63409612, 1.64379616, 1.6534962000000002, 1.66319624, 1.67289628, 1.68259632, 1.69229636, 1.7019964, 1.71169644, 1.72139648, 1.73109652, 1.7407965600000002, 1.7504966, 1.76019664, 1.76989668, 1.77959672, 1.78929676, 1.7989968, 1.8086968399999999, 1.81839688, 1.82809692, 1.83779696, 1.847497, 1.85719704, 1.86689708, 1.87659712, 1.8862971599999998, 1.8959972, 1.90569724, 1.9153972799999999, 1.92509732, 1.9347973600000001, 1.9444974, 1.95419744, 1.96389748, 1.97359752, 1.98329756, 1.9929976, 2.0026976399999996, 2.01239768, 2.02209772, 2.03179776, 2.0414977999999997, 2.05119784, 2.0608978799999997, 2.07059792, 2.08029796, 2.0899979999999996, 2.09969804, 2.10939808, 2.11909812, 2.1287981599999997, 2.1384982, 2.1481982399999997, 2.1578982799999995, 2.1675983199999997, 2.17729836, 2.1869984, 2.1966984399999996, 2.20639848, 2.2160985199999996, 2.22579856, 2.2354986, 2.2451986399999995, 2.2548986799999997, 2.2645987199999995, 2.2742987599999998, 2.2839988, 2.29369884, 2.3033988799999996, 2.31309892, 2.3227989599999996, 2.332499, 2.3421990399999997, 2.35189908, 2.3615991199999997, 2.3712991599999995, 2.3809991999999998, 2.3906992399999996, 2.40039928, 2.41009932, 2.4197993599999994, 2.4294993999999996, 2.43919944, 2.4488994799999997, 2.45859952, 2.4682995599999997, 2.4779995999999995, 2.4876996399999998, 2.4973996799999996, 2.50709972, 2.51679976, 2.5264998, 2.5361998399999997, 2.5458998799999994, 2.5555999199999997, 2.56529996, 2.5749999999999997, 2.58470004, 2.5944000799999998, 2.6041001199999996, 2.61380016, 2.6235001999999996, 2.63320024, 2.64290028, 2.6526003199999995, 2.6623003599999997, 2.6720003999999995, 2.6817004399999997, 2.69140048, 2.70110052, 2.7108005599999996, 2.7205006, 2.7302006399999996, 2.73990068, 2.7496007199999997, 2.75930076, 2.7690007999999997, 2.7787008399999995, 2.7884008799999997, 2.79810092, 2.80780096, 2.817501, 2.8272010399999994, 2.8369010799999996, 2.84660112, 2.8563011599999997, 2.8660012, 2.8757012399999997, 2.8854012799999995, 2.8951013199999998, 2.9048013599999996, 2.9145014, 2.92420144, 2.9339014799999994, 2.9436015199999996, 2.9533015599999994, 2.9630015999999997, 2.97270164, 2.9824016799999997, 2.9921017199999995, 3.0018017599999998, 3.0115017999999996, 3.02120184, 3.0309018799999996, 3.04060192, 3.0503019599999996, 3.0600019999999994, 3.0697020399999997, 3.07940208, 3.0891021199999997, 3.09880216, 3.1085021999999993, 3.1182022399999996, 3.12790228, 3.1376023199999996, 3.14730236, 3.1570024, 3.1667024399999995, 3.1764024799999997, 3.1861025199999995, 3.1958025599999997, 3.2055026, 3.21520264, 3.2249026799999996, 3.23460272, 3.2443027599999996, 3.2540028, 3.2637028399999997, 3.27340288, 3.2831029199999997, 3.2928029599999995, 3.3025029999999997, 3.3122030399999995, 3.32190308, 3.33160312, 3.3413031599999994, 3.3510031999999996, 3.36070324, 3.3704032799999997, 3.38010332, 3.3898033599999997, 3.3995033999999995, 3.4092034399999998, 3.4189034799999996, 3.42860352, 3.43830356, 3.4480036, 3.4577036399999996, 3.4674036799999994, 3.4771037199999997, 3.48680376, 3.4965037999999997, 3.5062038399999995, 3.5159038799999998, 3.5256039199999996, 3.53530396, 3.5450039999999996, 3.55470404, 3.5644040799999996, 3.5741041199999994, 3.5838041599999997, 3.5935041999999995, 3.6032042399999997, 3.61290428, 3.6226043199999993, 3.6323043599999996, 3.6420044, 3.6517044399999996, 3.66140448, 3.6711045199999996, 3.6808045599999994, 3.6905045999999997, 3.7002046399999995, 3.7099046799999997, 3.71960472, 3.7293047599999998, 3.7390047999999996, 3.7487048399999994, 3.7584048799999996, 3.76810492, 3.7778049599999997, 3.787505, 3.7972050399999997, 3.8069050799999995, 3.8166051199999997, 3.8263051599999995, 3.8360052, 3.84570524, 3.8554052799999994, 3.8651053199999996, 3.8748053599999994, 3.8845053999999997, 3.89420544, 3.9039054799999997, 3.9136055199999995, 3.9233055599999997, 3.9330055999999995, 3.94270564, 3.9524056799999996, 3.96210572, 3.9718057599999996, 3.9815057999999994, 3.9912058399999997, 4.00090588, 4.01060592, 4.02030596, 4.030005999999999, 4.0397060399999996, 4.04940608, 4.05910612, 4.06880616, 4.0785062000000005, 4.08820624, 4.09790628, 4.1076063199999995, 4.11730636, 4.1270064, 4.136706439999999, 4.14640648, 4.15610652, 4.165806559999999, 4.175506599999999, 4.18520664, 4.19490668, 4.20460672, 4.2143067599999995, 4.2240068, 4.233706839999999, 4.243406879999999, 4.25310692, 4.26280696, 4.272507, 4.282207039999999, 4.29190708, 4.30160712, 4.311307159999999, 4.3210072, 4.33070724, 4.340407279999999, 4.350107319999999, 4.35980736, 4.3695074, 4.379207439999999, 4.38890748, 4.39860752, 4.408307559999999, 4.4180076, 4.4277076399999995, 4.43740768, 4.44710772, 4.456807759999999, 4.4665078, 4.47620784, 4.48590788, 4.495607919999999, 4.50530796, 4.515008, 4.524708039999999, 4.5344080799999995, 4.54410812, 4.55380816, 4.563508199999999, 4.57320824, 4.58290828, 4.592608319999999, 4.60230836, 4.6120084, 4.62170844, 4.631408479999999, 4.6411085199999995, 4.65080856, 4.660508599999999, 4.67020864, 4.67990868, 4.689608719999999, 4.69930876, 4.709008799999999, 4.71870884, 4.72840888, 4.73810892, 4.7478089599999995, 4.757509, 4.76720904, 4.776909079999999, 4.78660912, 4.79630916, 4.806009199999999, 4.8157092399999994, 4.82540928, 4.83510932, 4.844809359999999, 4.8545094, 4.86420944, 4.873909479999999, 4.88360952, 4.89330956, 4.9030096, 4.912709639999999, 4.9224096799999995, 4.93210972, 4.941809759999999, 4.9515098, 4.9612098399999995, 4.970909879999999, 4.98060992, 4.990309959999999 ], "xaxis": "x", "y": [ 0.008902471049679127, 0.009935053279996556, 0.01107405868670814, 0.012327995940826805, 0.013705635029925058, 0.015215950241892323, 0.016868053836628122, 0.018671120523370603, 0.020634303065997884, 0.022766639557396186, 0.025076953132466717, 0.027573745122456642, 0.030265082885259278, 0.03315848377095822, 0.03626079689248977, 0.039578084561096655, 0.04311550540848344, 0.04687720134558632, 0.050866190595628975, 0.05508426908106047, 0.05953192243556771, 0.06420825085009275, 0.06911090884339131, 0.0742360618724203, 0.07957836146637294, 0.0851309402828479, 0.09088542814945136, 0.09683198977461979, 0.1029593843947264, 0.10925504717929709, 0.11570519175197114, 0.12229493271282353, 0.12900842657931103, 0.13582902911055272, 0.14273946655537742, 0.14972201798066306, 0.15675870550470372, 0.163831488991443, 0.17092246156551938, 0.1780140421926036, 0.1850891615417861, 0.19213143741031918, 0.1991253361484073, 0.20605631677210995, 0.212910954793026, 0.21967704321825368, 0.22634366867515127, 0.2329012611814763, 0.23934161669955356, 0.24565789226779666, 0.25184457417731676, 0.2578974203369076, 0.2638133786276417, 0.2695904836688168, 0.2752277349816808, 0.280724960027617, 0.2860826659975303, 0.2913018845246679, 0.2963840136730295, 0.3013306616101475, 0.30614349630222115, 0.3108241053717311, 0.3153738699367229, 0.31979385581631437, 0.3240847249500845, 0.3282466692579404, 0.33227936847942563, 0.3361819728014382, 0.33995311033325964, 0.3435909187434138, 0.347093099658401, 0.35045699376292627, 0.3536796739557529, 0.35675805342478134, 0.3596890051232276, 0.36246948886791813, 0.3650966821462217, 0.3675681107121982, 0.3698817751706047, 0.37203626998249417, 0.3740308916647052, 0.3758657333824987, 0.3775417636304208, 0.3790608872401967, 0.38042598752534174, 0.38164094894664474, 0.38271066024160316, 0.38364099848412914, 0.38443879501252975, 0.38511178457091144, 0.38566853934146783, 0.3861183897984002, 0.38647133448502563, 0.3867379409073227, 0.38692923975392957, 0.38705661460304236, 0.38713168917045643, 0.3871662140016749, 0.3871719543271219, 0.38716058059422664, 0.3871435629759009, 0.387132070940894, 0.3871368787666508, 0.38716827768557255, 0.387235995185486, 0.38734912183663345, 0.38751604589128363, 0.3877443957961197, 0.38804099066986414, 0.38841179872575426, 0.3888619035563847, 0.3893954781441544, 0.3900157664106418, 0.390725072070773, 0.39152475451132523, 0.39241523136832496, 0.39339598743506193, 0.3944655894941911, 0.3956217066356646, 0.39686113560111186, 0.39817983068650203, 0.3995729377419803, 0.4010348318318674, 0.40255915815943494, 0.40413887591941516, 0.4057663048141529, 0.40743317405229906, 0.4091306737371041, 0.4108495086384412, 0.4125799544206853, 0.4143119164608801, 0.41603499143063727, 0.41773853182448095, 0.41941171359238255, 0.4210436069710719, 0.4226232505078438, 0.42413972813239786, 0.42558224896223884, 0.42694022933172665, 0.42820337632384103, 0.4293617718682257, 0.43040595626203093, 0.43132700978510397, 0.4321166309312826, 0.4327672096760681, 0.43327189415800577, 0.43362464917564386, 0.43382030499894103, 0.43385459516545966, 0.4337241821744256, 0.4334266703017446, 0.4329606051226458, 0.43232545973589187, 0.43152160811491264, 0.430550286448965, 0.42941354376178986, 0.42811418348399916, 0.4266556979909398, 0.425042198379858, 0.42327834193521097, 0.42136925980674894, 0.4193204873935815, 0.4171378997882744, 0.41482765438855956, 0.4123961424401798, 0.409849950844288, 0.4071958350639794, 0.40444070341766386, 0.40159161247544894, 0.39865577270285957, 0.3956405629507863, 0.3925535518946618, 0.3894025241043627, 0.3861955080975979, 0.38294080351130066, 0.3796470044283832, 0.37632301592851525, 0.3729780610919888, 0.3696216759709327, 0.3662636904426108, 0.3629141933603337, 0.359583481000114, 0.35628198844253806, 0.3530202042056326, 0.3498085691282535, 0.34665736116886064, 0.3435765684055057, 0.3405757530750076, 0.337663909951517, 0.33484932271956275, 0.33213942223014903, 0.32954065063245197, 0.3270583353435412, 0.32469657665662804, 0.32245815249959775, 0.3203444434511528, 0.3183553806170004, 0.31648941837934297, 0.3147435333823722, 0.3131132504246702, 0.3115926952208473, 0.31017467329187737, 0.3088507735689186, 0.30761149466923227, 0.30644639124356565, 0.3053442373173522, 0.3042932031651881, 0.3032810419777995, 0.3022952824076881, 0.3013234230149928, 0.30035312467585723, 0.2993723971565425, 0.2983697762880841, 0.29733448848824445, 0.2962565997561257, 0.2951271466963173, 0.2939382475986371, 0.2926831920914732, 0.2913565083866285, 0.2899540076278543, 0.28847280533137126, 0.2869113203538242, 0.28526925223247424, 0.28354753810703215, 0.2817482907475865, 0.2798747194756988, 0.27793103597496566, 0.2759223471443135, 0.2738545372533791, 0.2717341417189472, 0.2695682148379607, 0.26736419379109694, 0.2651297611764966, 0.2628727082505743, 0.26060080094670973, 0.2583216506173593, 0.25604259130402696, 0.2537705651860627, 0.25151201769502857, 0.24927280360885673, 0.24705810525970742, 0.2448723638022517, 0.2427192242958986, 0.24060149515515633, 0.23852112231754966, 0.23647917826952639, 0.2344758658579997, 0.23251053660087814, 0.2305817229961159, 0.22868718411838693, 0.22682396358859944, 0.2249884588081914, 0.223176500171572, 0.221383438810156, 0.21960424128502493, 0.21783358953573612, 0.21606598431430973, 0.21429585028833215, 0.2125176409880262, 0.2107259417996098, 0.20891556927167235, 0.20708166510128964, 0.20521978329986182, 0.2033259692018714, 0.2013968291684579, 0.19942959004660576, 0.19742214766828226, 0.19537310390535592, 0.19328179202953075, 0.19114829035552477, 0.18897342436404807, 0.1867587577038723, 0.18450657265452464, 0.18221984078923967, 0.1799021847093546, 0.17755783182442855, 0.17519156122680452, 0.17280864475552316, 0.17041478336396818, 0.16801603990061154, 0.16561876938571285, 0.16322954782204663, 0.16085510051833715, 0.15850223083372092, 0.15617775017367314, 0.15388840998571124, 0.1516408364196134, 0.1494414682342639, 0.14729649845310852, 0.14521182019415885, 0.14319297702871112, 0.14124511815616594, 0.13937295861979537, 0.13758074472993675, 0.1358722248058528, 0.1342506252948703, 0.13271863227635142, 0.13127837830823003, 0.12993143452461353, 0.1286788078442816, 0.1275209431018913, 0.12645772986677278, 0.12548851366917618, 0.12461211131148305, 0.12382682990362506, 0.1231304892287657, 0.12252044701862137, 0.12199362669875863, 0.12154654715378088, 0.12117535406145907, 0.1208758523538631, 0.12064353938265225, 0.1204736383946631, 0.12036113196187133, 0.12030079505600232, 0.12028722751064858, 0.12031488567126228, 0.12037811309358504, 0.12047117021180502, 0.12058826295655971, 0.12072357035766948, 0.12087127121468445, 0.1210255699581768, 0.12118072185424081, 0.12133105772265962, 0.12147100834455171, 0.12159512872774675, 0.12169812237762617, 0.12177486568843622, 0.12182043252621877, 0.12183011902136849, 0.12179946852832271, 0.12172429664482366, 0.1216007161161128, 0.12142516138348815, 0.12119441247482071, 0.12090561787982175, 0.12055631600791966, 0.12014445479382771, 0.11966840899734896, 0.11912699474105204, 0.11851948084295781, 0.11784559653160585, 0.11710553517708489, 0.11629995373290927, 0.11542996765799404, 0.11449714117318954, 0.11350347280010187, 0.11245137622808049, 0.1113436566549882, 0.11018348284533597, 0.10897435524226104, 0.10772007055464437, 0.10642468331458933, 0.10509246496149556, 0.10372786105515405, 0.10233544725076678, 0.1009198846830088, 0.09948587540439376, 0.0980381185060717, 0.09658126751801129, 0.0951198896420421, 0.0936584273175207, 0.09220116255767463, 0.09075218442740134, 0.08931535996274925, 0.08789430876086732, 0.08649238139872915, 0.08511264177142489, 0.0837578533774713, 0.08243046952067708, 0.08113262734618666, 0.07986614558289927, 0.07863252582542195, 0.07743295715600104, 0.07626832387992254, 0.0751392161261925, 0.07404594304828167, 0.0729885483465999, 0.07196682782473918, 0.07098034868462802, 0.07002847026147536, 0.06911036589724877, 0.06822504565149251, 0.06737137955040748, 0.06654812107952379, 0.06575393063206518, 0.06498739863447897, 0.06424706808271308, 0.06353145623786877, 0.06283907524777586, 0.062168451481832976, 0.061518143389889694, 0.06088675772163788, 0.0602729639705992, 0.05967550693558732, 0.05909321732207197, 0.05852502033520444, 0.057969942245076844, 0.057427114932025326, 0.05689577844522078, 0.05637528163078757, 0.055865080905982106, 0.05536473727348022, 0.05487391168441757, 0.054392358870896426, 0.053919919778315784, 0.05345651273569997, 0.0530021235086489, 0.052556794385136024, 0.052120612449751975, 0.051693697207612584, 0.05127618772538444, 0.050868229464143516, 0.05046996098694183, 0.050081500733420346, 0.049702934063727104, 0.049334300784697645, 0.048975583381526695, 0.048626696187876885, 0.04828747573532665, 0.04795767252888168, 0.04763694449771795, 0.04732485236906112, 0.047020857207184324, 0.04672432034852018, 0.046434505947568906, 0.04615058632637765, 0.04587165029298456, 0.04559671456174607, 0.045324738371234255, 0.04505464135415304, 0.04478532466927388, 0.04451569535860041, 0.04424469384471628, 0.043971324434477405, 0.04369468864662521, 0.04341402113308631, 0.043128727917246625, 0.042838426627149345, 0.04254298835757925, 0.04224258075156402, 0.04193771184833488, 0.041629274200285685, 0.0413185887144571, 0.0410074476237579, 0.040698155937700195, 0.04039357066138182, 0.04009713700367574, 0.03981292072121407, 0.039545635664239985, 0.03930066550530486, 0.03908407854454659, 0.03890263439967334, 0.03876378130966391, 0.038675642714619575, 0.03864699172758272, 0.03868721209540064, 0.03880624426403549, 0.039014515228042064, 0.03932285096357759, 0.03974237042752782, 0.040284360359513535, 0.040960130453897174, 0.041780848878381974, 0.04275735860400403, 0.04389997557454526, 0.04521827037335771, 0.04672083573009672, 0.04841504293202493, 0.05030679094288642, 0.052400252761978114, 0.054697624247834746, 0.05719888125411717, 0.05990155144687576, 0.06280050755979147, 0.06588778906588574, 0.06915245927213293, 0.07258050465372959, 0.07615478281979583, 0.0798550248323511, 0.08365789668421575, 0.08753712358798858, 0.09146367935674105, 0.09540604159644059, 0.0993305117206903, 0.10320159698787953, 0.10698244990634186, 0.1106353585156147, 0.11412227929787662, 0.11740540286863231, 0.12044774120459607, 0.12321372404905759, 0.1256697913427082, 0.1277849681036149, 0.1295314081520889, 0.13088489346187943, 0.1318252767168587, 0.13233685584840235, 0.13240867089054736 ], "yaxis": "y" } ], "layout": { "barmode": "overlay", "hovermode": "closest", "legend": { "traceorder": "reversed" }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "anchor": "y2", "domain": [ 0.0, 1.0 ], "title": { "text": "Median Price" }, "zeroline": false }, "yaxis": { "anchor": "free", "domain": [ 0.0, 1 ], "position": 0.0, "title": { "text": "Density" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# drop unlabeled data in train/test dataset\n", "df = df[df[target_col].notna()]\n", "\n", "\n", "df[target_col]\n", "fig = ff.create_distplot([df[target_col]], group_labels=[target_col], show_hist=False, show_rug=False)\n", "fig.update_layout( \n", " xaxis_title=target_col,\n", " yaxis_title=\"Density\", \n", " showlegend=False)\n", "fig.update_xaxes()\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "4e045069", "metadata": {}, "source": [ "We now separate the targets (`y`) from the training features (`X`) and split the dataset into training (70%) and test (30%) datasets. The training set will be used to create a Machine Learning model using Oracle AutoMLx, and the test set will be used to evaluate the model's performance on unseen data." ] }, { "cell_type": "code", "execution_count": 6, "id": "82f18169", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:35:26.492594Z", "iopub.status.busy": "2025-05-22T12:35:26.491920Z", "iopub.status.idle": "2025-05-22T12:35:26.523036Z", "shell.execute_reply": "2025-05-22T12:35:26.522507Z" } }, "outputs": [ { "data": { "text/plain": [ "((14448, 8), (6192, 8))" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_full = df.drop(target_col, axis=1)\n", "y_full = df[target_col]\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(X_full, y_full, test_size=0.3, random_state=7)\n", "\n", "X_train.shape, X_test.shape" ] }, { "cell_type": "markdown", "id": "303550f3", "metadata": {}, "source": [ "\n", "## AutoML" ] }, { "cell_type": "markdown", "id": "0f3a1172", "metadata": {}, "source": [ "\n", "### Setting the execution engine\n", "The AutoMLx package offers the function `init`, which allows to initialize the parallelization engine." ] }, { "cell_type": "code", "execution_count": 7, "id": "ce432422", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:35:26.524777Z", "iopub.status.busy": "2025-05-22T12:35:26.524587Z", "iopub.status.idle": "2025-05-22T12:35:30.755071Z", "shell.execute_reply": "2025-05-22T12:35:30.753860Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:26,721] [automlx.backend] Overwriting ray session directory to /tmp/7dliinvt/ray, which will be deleted at engine shutdown. If you wish to retain ray logs, provide _temp_dir in ray_setup dict of engine_opts when initializing the AutoMLx engine.\n" ] } ], "source": [ "init(engine='ray')" ] }, { "cell_type": "markdown", "id": "4bd43b81", "metadata": {}, "source": [ "\n", "### Create an instance of Oracle AutoMLx\n", "\n", "The Oracle AutoMLx solution provides a pipeline that automatically finds a tuned model given a prediction task and a training dataset. In particular it allows to find a tuned model for any supervised prediction task, for example, classification or regression, where the target can be binary, categorical or real-valued.\n", "\n", "AutoML consists of five main steps:\n", "- **Preprocessing** : Clean, impute, engineer, and normalize features.\n", "- **Algorithm Selection** : Identify the right regression algorithm -in this notebook- for a given dataset, choosing from amongst:\n", " - AdaBoostRegressor\n", " - DecisionTreeRegressor\n", " - ExtraTreesRegressor\n", " - KNeighborsRegressor\n", " - LGBMRegressor\n", " - LinearSVR\n", " - LinearRegression\n", " - RandomForestRegressor\n", " - SVR\n", " - XGBRegressor\n", " - TorchMLPRegressor\n", "- **Adaptive Sampling** : Select a subset of the data samples for the model to be trained on.\n", "- **Feature Selection** : Select a subset of the data features, based on the previously selected model.\n", "- **Hyperparameter Tuning** : Find the right model parameters that maximize score for the given dataset.\n", "\n", "\n", "All these pieces are readily combined into a simple AutoML pipeline which automates the entire Machine Learning process with minimal user input/interaction." ] }, { "cell_type": "markdown", "id": "0cbf96d1", "metadata": {}, "source": [ "\n", "### Train a model using Oracle AutoMLx\n", "\n", "The AutoMLx API is quite simple to work with. We create an instance of AutoMLx pipeline. Next, the training data is passed to the `fit()` function which successively executes the previously mentioned modules." ] }, { "cell_type": "code", "execution_count": 8, "id": "dfadd08b", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:35:30.758751Z", "iopub.status.busy": "2025-05-22T12:35:30.758259Z", "iopub.status.idle": "2025-05-22T12:37:35.058960Z", "shell.execute_reply": "2025-05-22T12:37:35.058296Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:30,856] [automlx.interface] Dataset shape: (14448,8)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:33,431] [sanerec.autotuning.parameter] Hyperparameter epsilon autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:33,745] [sanerec.autotuning.parameter] Hyperparameter repeat_quality_threshold autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:33,752] [sanerec.autotuning.parameter] Hyperparameter scope autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:33,823] [automlx.data_transform] Running preprocessing. Number of features: 9\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:33,985] [automlx.data_transform] Preprocessing completed. Took 0.162 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:34,029] [automlx.process] Running Model Generation\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:34,077] [automlx.process] KNeighborsRegressor is disabled. The KNeighborsRegressor model is only recommended for datasets with less than 10000 samples and 1000 features.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:34,078] [automlx.process] SVR is disabled. The SVR model is only recommended for datasets with less than 10000 samples and 1000 features.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:34,079] [automlx.process] Model Generation completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:35:34,148] [automlx.model_selection] Running Model Selection\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:36:14,592] [automlx.model_selection] Model Selection completed - Took 40.444 sec - Selected models: [['LGBMRegressor']]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:36:14,633] [automlx.adaptive_sampling] Running Adaptive Sampling. Dataset shape: (14448,9).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:36:17,686] [automlx.trials] Adaptive Sampling completed - Took 3.0524 sec.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:36:17,782] [automlx.feature_selection] Starting feature ranking for LGBMRegressor\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:36:26,157] [automlx.feature_selection] Feature Selection completed. Took 8.402 secs.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:36:26,215] [automlx.trials] Running Model Tuning for ['LGBMRegressor']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:18,586] [automlx.trials] Best parameters for LGBMRegressor: {'num_leaves': 31, 'boosting_type': 'gbdt', 'subsample': 1, 'colsample_bytree': 0.7952797110155084, 'max_depth': 63, 'reg_alpha': 0, 'reg_lambda': 0, 'n_estimators': 377, 'learning_rate': 0.1, 'min_child_weight': 0.001}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:18,587] [automlx.trials] Model Tuning completed. Took: 52.372 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:31,673] [automlx.interface] Re-fitting pipeline\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:31,687] [automlx.final_fit] Skipping updating parameter seed, already fixed by FinalFit_5653c38b-7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:33,814] [automlx.interface] AutoMLx completed.\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "est1 = automlx.Pipeline(task='regression')\n", "est1.fit(X_train, y_train)" ] }, { "cell_type": "markdown", "id": "4f53f86c", "metadata": {}, "source": [ "A model is then generated (`est1`) and can be used for prediction tasks. We use the `mean_squared_error` scoring metric to evaluate the performance of this model on unseen data (`X_test`)." ] }, { "cell_type": "code", "execution_count": 9, "id": "5c425f85", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:35.061654Z", "iopub.status.busy": "2025-05-22T12:37:35.061060Z", "iopub.status.idle": "2025-05-22T12:37:36.406427Z", "shell.execute_reply": "2025-05-22T12:37:36.405630Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean squared error on test data : 0.2007340045930796\n" ] } ], "source": [ "y_pred = est1.predict(X_test)\n", "score_default = mean_squared_error(y_test, y_pred)\n", "\n", "print(f'Mean squared error on test data : {score_default}')" ] }, { "cell_type": "markdown", "id": "d8e50b30", "metadata": {}, "source": [ "\n", "### Analyze the AutoMLx optimization process\n", "\n", "During the Oracle AutoMLx process, a summary of the optimization process is logged, containing:\n", "- Information about the training data.\n", "- Information about the AutoMLx Pipeline, such as:\n", " - Selected features that the pipeline found to be most predictive in the training data;\n", " - Selected algorithm that was the best choice for this data;\n", " - Selected hyperparameters for the selected algorithm." ] }, { "cell_type": "markdown", "id": "bf13f67c", "metadata": {}, "source": [ "AutoMLx provides a `print_summary` API to output all the different trials performed." ] }, { "cell_type": "code", "execution_count": 10, "id": "32ba0af6", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:36.408724Z", "iopub.status.busy": "2025-05-22T12:37:36.408523Z", "iopub.status.idle": "2025-05-22T12:37:36.468520Z", "shell.execute_reply": "2025-05-22T12:37:36.468015Z" } }, "outputs": [ { "data": { "text/html": [ "
General Summary
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
(14448, 8)
None
RepeatedKFoldSplit(Shuffle=True, Seed=7, number of splits=5, number of repeats=2)
neg_mean_squared_error
LGBMRegressor
{'num_leaves': 31, 'boosting_type': 'gbdt', 'subsample': 1, 'colsample_bytree': 0.7952797110155084, 'max_depth': 63, 'reg_alpha': 0, 'reg_lambda': 0, 'n_estimators': 377, 'learning_rate': 0.1, 'min_child_weight': 0.001}
24.4.1
3.9.21 (main, Dec 11 2024, 16:24:11) \\n[GCC 11.2.0]
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trials Summary
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Step# Samples# FeaturesAlgorithmHyperparametersScore (neg_mean_squared_error)Runtime (Seconds)Memory Usage (GB)Finished
Model Selection115598LGBMRegressor{'num_leaves': 31, 'boosting_type': 'gbdt', 'subsample': 1, 'colsample_bytree': 1, 'max_depth': 63, 'reg_alpha': 0, 'reg_lambda': 0, 'n_estimators': 100, 'learning_rate': 0.1, 'min_child_weight': 0.001}-0.21835.30760.3075Thu May 22 05:35:44 2025
Model Selection115598XGBRegressor{'n_estimators': 100, 'min_child_weight': 1, 'reg_alpha': 0, 'booster': 'gbtree', 'max_depth': 6, 'learning_rate': 0.1, 'reg_lambda': 1}-0.228316.45690.3459Thu May 22 05:35:56 2025
Model Selection115598RandomForestRegressor{'n_estimators': 100, 'min_samples_split': 0.0003, 'min_samples_leaf': 0.00015, 'max_features': 0.777777778}-0.258534.32750.3597Thu May 22 05:35:48 2025
Model Selection115598ExtraTreesRegressor{'n_estimators': 100, 'min_samples_split': 0.00125, 'min_samples_leaf': 0.000625, 'max_features': 0.777777778}-0.29836.59710.2965Thu May 22 05:35:43 2025
Model Selection115598DecisionTreeRegressor{'min_samples_split': 0.004, 'min_samples_leaf': 0.002, 'max_features': 1.0}-0.38773.42460.2808Thu May 22 05:35:42 2025
Model Selection115598LinearRegression{}-0.52960.76900.3102Thu May 22 05:35:43 2025
Model Selection115598AdaBoostRegressor{'learning_rate': 0.667, 'n_estimators': 50}-0.70113.90890.2777Thu May 22 05:35:42 2025
Model Selection115598LinearSVR{'C': 1.0}-1.68786.53630.3188Thu May 22 05:35:44 2025
Model Selection115588TorchMLPRegressor{'optimizer_class': 'Adam', 'shuffle_dataset_each_epoch': True, 'optimizer_params': {}, 'criterion_class': None, 'criterion_params': {}, 'scheduler_class': None, 'scheduler_params': {}, 'batch_size': 128, 'lr': 0.001, 'epochs': 18, 'input_transform': 'auto', 'tensorboard_dir': None, 'use_tqdm': None, 'prediction_batch_size': 128, 'prediction_input_transform': 'auto', 'shuffling_buffer_size': None, 'depth': 4, 'num_logits': 1000, 'div_factor': 2, 'activation': 'ReLU', 'dropout': 0.1}-3.1322256.04260.6121Thu May 22 05:36:14 2025
Adaptive Sampling115598AdaptiveSamplingStage_LGBMRegressor{'num_leaves': 31, 'boosting_type': 'gbdt', 'subsample': 1, 'colsample_bytree': 1, 'max_depth': 63, 'reg_alpha': 0, 'reg_lambda': 0, 'n_estimators': 100, 'learning_rate': 0.1, 'min_child_weight': 0.001}-0.21832.81070.6115Thu May 22 05:36:17 2025
...........................
Model Tuning115596LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1e-10, 'reg_lambda': 9.999999990000003e-07, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.10750.77270.6235Thu May 22 05:36:45 2025
Model Tuning115596LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 9.999999990000003e-07, 'reg_lambda': 1e-10, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.10750.78740.6233Thu May 22 05:36:44 2025
Model Tuning115596LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1e-10, 'reg_lambda': 1.7784127779939314e-05, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.10750.79080.6235Thu May 22 05:36:46 2025
Model Tuning115596LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1e-10, 'reg_lambda': 1.8784127778939314e-05, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.10750.80870.6235Thu May 22 05:36:46 2025
Model Tuning115596LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1.7784127779939314e-05, 'reg_lambda': 1e-10, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.10750.84320.6233Thu May 22 05:36:44 2025
Model Tuning115596LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1.8784127778939314e-05, 'reg_lambda': 1e-10, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.10750.75510.6233Thu May 22 05:36:45 2025
Model Tuning115596LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1e-10, 'reg_lambda': 0.005623553830557401, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.10750.67370.6156Thu May 22 05:36:46 2025
Model Tuning115596LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1e-10, 'reg_lambda': 0.0056245538305564015, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.10750.97090.6156Thu May 22 05:36:46 2025
Model Tuning115596LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 0.005623553830557401, 'reg_lambda': 1e-10, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.10750.80670.6233Thu May 22 05:36:45 2025
Model Tuning115596LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 0.0056245538305564015, 'reg_lambda': 1e-10, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.10750.78160.6233Thu May 22 05:36:45 2025
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "est1.print_summary()" ] }, { "cell_type": "markdown", "id": "95a0255b", "metadata": {}, "source": [ "We also provide the capability to visualize the results of each stage of the AutoMLx pipeline." ] }, { "cell_type": "markdown", "id": "647507cd", "metadata": {}, "source": [ "\n", "#### Algorithm Selection\n", "\n", "The plot below shows the scores predicted by Algorithm Selection for each algorithm. The horizontal line shows the average score across all algorithms. Algorithms below the line are colored turquoise, whereas those with a score higher than the mean are colored teal." ] }, { "cell_type": "code", "execution_count": 11, "id": "da595933", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:36.470691Z", "iopub.status.busy": "2025-05-22T12:37:36.470152Z", "iopub.status.idle": "2025-05-22T12:37:36.723647Z", "shell.execute_reply": "2025-05-22T12:37:36.723064Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3EAAANRCAYAAABN2DV6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADpR0lEQVR4nOzdd3gVZf7//9dJQhoplEAoSShSgqh0EBACSFsBqYqAUtQVdgEpgoKLCCigoiigawOlfgWpS1GaAiIIGjoCQXpHQklCCyG5f3/wy/kYU0g4JzlM8nxcV67dM3PP3O9z5+DkdWbmHpsxxggAAAAAYAluri4AAAAAAJB5hDgAAAAAsBBCHAAAAABYCCEOAAAAACyEEAcAAAAAFkKIAwAAAAALIcQBAAAAgIUQ4gAAAADAQghxAAAAAGAhhDgAyCajRo2SzWZTo0aNXF3KPbPZbLLZbFq/fv09bT99+nTZbDaVLl3aqXXlFY0aNZLNZtOoUaNcXUqWlC5dWjabTdOnT3d1KfeFnj17ymazqWfPnk7dL/++gLyLEAcAmXD58mX5+PjYQ80ff/zh6pJc6sqVKxo1apRGjRqlK1euuLqcbHfhwgWNHTtWjz32mIKCgpQvXz4FBQWpcuXKatOmjd59911t3rzZ1WVmu+nTp2vUqFH3HOrvR8eOHbP/u76Xn9w0FgCsw8PVBQCAFcyZM0c3b960v/7qq680fvx4F1aUMypWrChJ8vX1TbH8ypUrGj16tKQ7ZxkKFCiQ06XlmB9++EFPP/20Ll26ZF+WP39+JSQkaN++fdq3b5+WL18uSTLGuKrMHDF9+nRt2LBBkjI8w/zAAw/I29tbgYGBOVTZvXN3d1dwcHCa62JiYnTz5k25ubmpSJEiabbx9PS8ax/FixdXxYoVVbx4cYdqBYBkhDgAyIRp06ZJkvr3768pU6ZoxowZevvtt+Xu7u7iyrLXgQMHXF2CS504cULt2rXT1atXVbp0aY0cOVLt27e3h9aYmBht3bpVS5cu1f/7f//PtcXeR3744QdXl5BpoaGhOnfuXJrrevbsqRkzZig0NFTHjh275z7Gjx+fJ770AZBzuJwSAO5i+/bt2rlzpwoUKKD33ntPZcqU0dmzZ/Xdd9+5ujRks88//1xXr16Vp6enNmzYoF69eqU46xgYGKjmzZvr448/1unTp11XKAAgTyHEAcBdJJ+F69y5s7y9vdW9e3dJdy6pdNT//vc/NWnSRAUKFJCfn5+qVKmi9957TwkJCZmaGGX9+vV66qmnVLJkSXl5eSkoKEiPP/64vv76ayUmJqa5zd/3u3DhQjVv3lxFixaVm5tbikk00rrvp1GjRipTpoz9dZkyZVLcI5RRvdu2bdPTTz+t4sWLy8vLS2XLltXgwYN1+fLlTNW6dOlSPf744ypcuLACAgJUr149LVmyJMU2s2bNUv369VWwYEH5+fmpYcOG93xmaOfOnZKkqlWrKiwsLMO2Pj4+6a5LSkrSnDlz9MQTTyg4OFienp4qUqSImjdvrm+++cahyzD37t2rl156SeXLl5evr6/8/Pz0yCOP6D//+Y+io6Mz3PbatWuaOHGiIiIiFBQUJE9PT4WEhCgiIkIffPCBzp8/L+n/JtBIvpRy9OjRqe4N++uZqrtNbJKYmKivvvpKTZo0UVBQkLy8vFSyZEk99dRTGd5j9teJXowx+vLLL1WnTh0FBATI399fdevW1ezZs7M0fvfqr/fSHTt2TIcPH9ZLL72kMmXKyMvLK8VkIxlNbHL58mVNmzZNTz/9tB5++GEVKlRI3t7eKlWqlLp27aotW7bcc41bt25Vt27dVKZMGXl7eyt//vwqVaqUIiIi9NZbb+nUqVP3vG8ALmYAAOm6ceOGKVCggJFkNm3aZIwx5vDhw8ZmsxkPDw9z7ty5dLd98803jSQTERGR5vpXXnnFSLL/FChQwHh4eBhJpmHDhub111/PcPtBgwbZt7XZbKZAgQLG3d3dvqxJkyYmNjY2w7oGDx5s375gwYLG3d3dvPnmm/a2yftat26dfVn79u1NUFCQfV1QUJAJDg62/7Rv397e9uuvvzaSTKlSpcycOXNMvnz5jCQTGBho3Nzc7PuoXLmyiYuLy7DWkSNHGknGzc3NBAYGphi7zz77zCQlJZkePXoYScbDw8P4+/vb17u7u5vly5en+7tKzxNPPGEkmZCQEJOUlJTl7Y0x5uLFi6Zhw4Yp6v17/U8++aSJj49PtW1ERISRlOJ38lfvvvtuinH09fU1np6e9tfFixc327dvT3Pbbdu2mdDQUHtbNzc3U6hQIePl5WVf9uGHHxpjjJk7d64JDg62//7y58+f4nceHBxsTpw4Yd93qVKljCTz9ddfp+r3ypUrplGjRil+NwUKFDA2m82+bMiQIWnWnDweI0aMMG3btrX/rgMCAlKM58iRIzP+pWRS8uepVKlSqdYdPXrU3t+cOXOMn5+f/XeQP3/+FNsk76dHjx6p9pP8GU8ei4IFC6b4HdhsNjNp0qQ06/vrv6+/mz59eoox9fLySjVOaf1+AFgDIQ4AMjB79mwjyZQrVy7F8gYNGhhJ5r333kt324xC3DfffGP/Q6pr167m1KlTxpg7ofGLL74w3t7epmDBguluP2XKFPv2L730kjl79qwxxpirV6+aDz/80B4GO3funG5dyX90vvbaa+bPP/80xhhz8+ZNc+zYMXvbtEKcMSn/gD169Gi6Y5D8R6avr6/x8vIyL774ov2P/WvXrpmPP/7YHgzeeOONdGsNDAw07u7uZuzYsebKlSvGGGNOnTplWrRoYSQZf39/M3LkSOPj42M+++wzc+3aNWOMMQcPHjQ1a9Y0kkxYWJhJTExMt9a0jBo1yv4+Bw8ebK5evZql7W/fvm0PHlWrVjXLli2z13b16lUzY8YMU7RoUSPJDBw4MNX2GYW4qVOn2n+PY8eOtX8Gbt++bSIjI02TJk3sAfTvAfnEiRP2IB4aGmrmzp1rryspKcn8/vvvZtSoUWb27NmZruevMgpxHTt2NJKMp6enmTx5sr3fs2fPmueff94+3p9++mm641GwYEETGBhopk+fbq5fv26MMebkyZOmTZs29kB68ODBDGvMjMyGOD8/P1OnTh3z22+/2ddHRUWl2k9aIe7zzz83b775pomMjLQH+aSkJHPkyBEzYMAAY7PZjLu7e5phPL0Qd+3aNfuXGM8++6w5dOiQfd3Vq1dNZGSkGTp0qFmxYkUWRwTA/YIQBwAZaNy4sZFkxowZk2L5l19+aSSZ8PDwdLdNL8QlJSWZcuXKGUmmWbNmaZ7hSf7jLK3tr1+/bgoVKmQkmS5duqTZ9+TJk+3bR0ZGpllXcjDJiLNCXHp/wBpj7GcD/x6U/17r22+/nWp9TEyMyZ8/v73N30OHMcYcOnTIvn7jxo0Zvt+/u3DhgilRooR9+/z585uWLVuaN954wyxZssScP38+w+1nzpxp/5wkh8+/i4yMNDabzXh6eqbaX3qhKTY21n6GeOXKlWnuNyEhwdSoUSPFGbVkzz77rJFkChcunOIM2t04GuK2bNliH8vPP/88zW2TQ15QUJC5ceNGmv1LMj/++GOqbW/evGn/faX1ecmqzIa4UqVKpXkm+e/7Se/fQEb69u1rJJkXXngh1br0QtzWrVvtn9eEhIQs9wng/sc9cQCQjiNHjmj9+vWy2Wx67rnnUqx7+umn5ePjowMHDmT5+WA7d+7UoUOHJEmvv/66bDZbqjY9evRI9x6sNWvW2Ke7T+8h0P/+97/t05mnN2uim5ubXnvttSzV7ogRI0akubxt27aSpEOHDun69etptvH29tbAgQNTLQ8ICFDdunUlSWFhYeratWuqNg888IDKlSsnSdq9e3eWag4KCtLPP/+sZs2aSbpzD9nKlSv11ltvqV27dgoODlbNmjU1ffp0JSUlpdo++X7Kf/3rX+lOt1+jRg1VrlxZt27d0rp16zJV18KFC3XlyhVVq1ZNLVq0SLONh4eHunTpIklatWqVffm1a9c0b948SdKwYcMUGhqaqT6dIbnfkJAQvfjii2m2eeuttyRJ0dHRWrNmTZpt6tevr8aNG6da7uXlZR+PrP6uHdGvXz/5+flly75btWolSfr5558zvU3y5Du3bt3SxYsXs6MsAC5GiAOAdHz99dcyxqhBgwYpJimQ7oSHdu3aSfq/P9Qza/v27ZKkfPnyqV69emm2sdlsioiISHNdZGSkpDtTo1eoUCHNNu7u7mrSpEmK9n9Xrlw5FS1aNEu136tChQrZg9TflShRwv7/05vg5MEHH1T+/PnTXJf8jK+aNWumGYj/2ia9/WekTJkyWr16tfbt26d33nlHbdu2TRGwt23bpl69eukf//hHimcJJiYm2ielGDVqlIoVK5buT1RUlCTp+PHjmapp06ZNkqT9+/dnuN8xY8ak2m9kZKQSEhIkSW3atMnyeDgi+bPYuHFjubml/SdIpUqVVLJkyRTt/65OnTrp9pH8efrrc/2yW/369R3a/siRIxoyZIhq1KihAgUKyN3d3T5pyhNPPCFJWZqE5IEHHlB4eLgSEhJUp04dvfvuu9q5c2e6kx0BsB6eEwcAaUhKSrLPrJc8G+Xf9ejRQ998842+/fZbTZo0KdPfxF+4cEGSVLhw4QwfFJz8h+zf/fnnnxmuTxYSEpKi/d/lVICTJH9//3TXeXj836EoOVzcy/aZaZPe/jOjUqVKqlSpkv31uXPn9L///U/jx4/X8ePHtXr1ao0YMULvv/++pDshIj4+XlLmw2N6ZyL/7syZM5KkmzdvpgiOmdnvX5+JVqpUqUz15yxZ+eyePn063c9udv+us8qRf0uLFy9Wly5d7J8V6c6XRN7e3rLZbLp165YuX76sa9euZXqf7u7umjt3rtq3b6+jR49q2LBhGjZsmHx9fVWvXj116NBBPXr0kK+v7z3XDcC1OBMHAGlYtWqV/ZvvF198MdV06jabTS1btpQkXb16Vd9++22W+0jvrFFOye0PKs9uxYoVU+/evbV161b7H/FfffWV/bLKv571+P7772Xu3Iee4U96l8f+XfK+O3funKn9/nX6f1d/7nKje/23dPHiRfXs2VPx8fFq0qSJ1q9fr+vXrysmJkbnz5/XuXPnNH/+/Hvad5UqVXTgwAEtXLhQL730kh566CHduHFDa9eu1b///W+Fh4drz54997RvAK5HiAOANGT1EsmstC9SpIikO/f83Lp1K9126T08Ojkw3O3yquT1OXnGLS8KDg6239d3+fLlFGdak88KZfYyycwqVqzYPe83edt73d4RfHZT+u677xQbG6uCBQtq2bJlioiISPW8wb+eOc0qT09PdejQQZ9//rn27NmjCxcu6LPPPlOhQoV08uRJ9ejRw9G3AMBFCHEA8DcXLlzQ0qVLJUkLFixQXFxcuj+//vqrJGnz5s32+5rupnr16pLuXO6V3qQoxhj99NNPaa6rWbOmpDt/6B48eDDNNomJifZJMmrVqpWpurLir/czGQceVJ1b/PVSWi8vL0l37nmsXbu2JGnZsmVO7S/5Hqxt27bp7NmzWdq2Zs2a9st4s1pX8u/9Xn/nyZ/ddevWpTkRjCQdOHDA/gVGdnx27ycnT56UJFWsWDHdSxvXrl3rtP4KFy6s3r17691335Uk7dixg4lPAIsixAHA38yaNUsJCQkKDAxUmzZt5Ofnl+5PrVq1FB4eLinzZ+OqVq1qn+TjnXfeSfMP4tmzZ6d7lqRZs2YqXLiwpPRnp/z888/t900lz1DoTAEBAfb/f+XKFafv/36xcePGu96ndvXqVS1atEjSnUlQkmcGlKSXXnpJ0p0zLt99912G+8nKRBxPPfWUChQooISEBA0ePDjDUJWUlJTid+Tr66tnnnlG0p3PX3KQyIzk3/u9/s6T+z19+rSmTp2aZpuRI0dKujMzaNOmTe+pH6tInrH04MGDad7buHPnznRnl83IX++vS8tfz/alN8EMgPsb/3IB4G+Sw1jbtm0znHgk2VNPPSVJmjlzpm7fvn3X9jabTaNHj5Z05967Hj16pJioYtq0aerdu7cKFiyY5vY+Pj728PbNN9+oT58+On/+vKQ7E1hMnjzZPh1/586dVaNGjbvWlFUFChSwT07x9ddfZ+p9W9GkSZMUFham/v37a+3atYqNjbWvi42N1bfffqt69erZA/crr7ySYvtnn31WTZs2lTFG7du319tvv23/XUt3pvtft26d+vbtq7Jly2a6rgIFCuijjz6SJM2dO1etWrXS1q1b7We3kpKStH//fn3wwQeqXLmyli9fnmL7sWPHKigoSBcvXlT9+vX17bff6saNG5LunGXbu3evhg4dqlmzZqXY7qGHHpJ0J5Smd7lvRmrXrq2OHTtKkvr376+PP/7YHpLPnTunf/7zn/Z7wN566y15e3tnuQ8rad68udzc3HTp0iV169bNPqa3bt3St99+q+bNm2c4iUt65s6dq/r16+vzzz/XkSNH7MsTExO1atUqDRs2TJJUt27ddP87A+D+RogDgL/YsmWL9u3bJ+n/wtndJLc7f/68VqxYkaltunbtag9as2bNUkhIiAoVKqSAgAC9+OKLqlu3rvr06SNJaf4h269fPw0aNEjSnbNuxYsXV6FChRQYGKgBAwYoISFBjRs31pdffpmpeu5Fcn1TpkyRn5+fwsLCVLp0afvZltwgX758unjxoj7++GM1a9ZMgYGBCggIkL+/vwIDA9W5c2ft2bPH/sy9vn37ptje3d1dCxcuVOvWrXXr1i298cYbKlmypAIDA1WwYEH5+/urSZMm+u9//5ul2QelO7Ojfvrpp/L09NT333+vRx99VL6+vgoKCpK3t7cefPBBDRkyRAcOHEg1mUlISIhWrVqlkiVL6uTJk+rcubP8/f0VFBQkX19fPfzww3r//fdTXWrXo0cPeXt769ChQwoLC1OxYsVUunRplS5dOtNT4E+bNk0RERG6deuW+vfvr8DAQBUqVEglSpSwn50bMmSI/fOVm5UvX15Dhw6VJC1atEghISEqUKCA/Pz81LlzZ/n5+Wny5MlZ3q8xRps3b1afPn30wAMPyNvbW0FBQfL09FTLli116tQplShRQl999ZWz3xKAHEKIA4C/SD4LFxgYqObNm2dqm4cfftg+9XxWJjj58MMPtWjRIjVq1Ej+/v6Kj49XpUqVNGHCBK1atcr+R/1fL8/7q4kTJ+rHH39Ux44dFRwcrKtXr8rf31+NGzfWV199pTVr1tzTt/iZ9frrr2vSpEmqWbOm8uXLp1OnTun48eMOTcRwv5k1a5Z+/PFHDR8+XI8//rhCQkJ069Yt3bx5UwULFlStWrU0aNAg7dixQ++8806a+wgICNCyZcv03XffqXPnzgoLC1N8fLyuX7+ukiVLqnnz5ho/fnym76n8qz59+igqKkpDhgxRlSpV5OXlpStXrsjPz081a9ZU//79tWbNmjQvqa1evbr279+vd955R48++qj8/f0VFxenIkWKqFGjRpo4cWKqh6eXL19e69at05NPPqkiRYro4sWLOn78uI4fP57ps7GBgYH64YcfNG3aNPtn/+rVqypWrJg6duyodevWacKECVkeC6t65513NHPmTNWuXVs+Pj5KSEhQuXLl9Prrr2vHjh0pnqOYWU8++aRmzpypXr16qUqVKgoMDFRMTIz8/f1Vu3ZtvfXWW/r999/tl4IDsB6b4Y50ALgv1a9fX5s3b9aYMWP0xhtvuLocAABwn+BMHADchzZs2GCfuTL5eXQAAAASIQ4AXKZv376aPn26zp07Z59d8MqVK/r888/tzx1r0qRJrp9mHQAAZA2XUwKAi1StWlW7du2SdOfZYr6+vrpy5Yo90D344INavXq1fRZIAAAAiRAHAC6zdOlSLVmyRFu3btX58+cVExOjgIAAVa5cWR06dNBLL72U7gOAAQBA3kWIAwAAAAAL4Z44AAAAALAQD1cXkNclJSXpzJkz8vf3T/UwVgAAAAB5hzFGcXFxKlGihNzc0j/fRohzsTNnzig0NNTVZQAAAAC4T5w8eVIhISHprifEuZi/v7+kO7+ogIAAF1cDAAAAwFViY2MVGhpqzwjpIcS5WPIllAEBAYQ4AAAAAHe9zYqJTQAAAADAQvJEiLtx44ZGjhypChUqyNvbWyVKlNDzzz+v06dPZ3lfly9f1oABA1SqVCl5eXmpVKlSGjhwoK5cueL8wgEAAADgb3L9c+Ju3rypxo0ba8uWLSpevLgaNGigY8eO6ddff1WRIkW0ZcsWlS1bNlP7io6OVt26dXXo0CGVLVtWNWvW1O+//67ff/9dFSpU0C+//KJChQplqb7Y2FgFBgbaH/ILAAAAIG/KbDbI9Wfi3n77bW3ZskV169bVwYMHNW/ePG3dulUffPCBLly4oOeffz7T+xo4cKAOHTqkDh06KCoqSvPmzdPevXvVv39/HTx4UIMHD87GdwIAAAAAufxM3K1bt1S0aFHFxMRo+/btqlatWor1VapU0e7duxUZGakaNWpkuK+zZ88qJCREHh4eOnHihIKDg+3r4uPjFRoaqkuXLunMmTMqWrRopmvkTBwAAAAAiTNxkqRNmzYpJiZGDzzwQKoAJ0mdOnWSJC1btuyu+1q5cqWSkpLUoEGDFAFOkry8vNSmTRslJibqu+++c07xAAAAAJCGXB3idu3aJUmqXr16muuTl+/evTtH9wUAAAAA9ypXPyfuxIkTkpTu086Tlx8/fjzH9hUfH6/4+Hj769jY2Lv2fS9OnDih6OjobNm3swUFBSksLMzVZWQaY5s9GNfswbhmD8Y1ezCu2YNxzR6Ma/ZgXDMnV4e4q1evSpJ8fX3TXJ8/f35JUlxcXI7ta/z48Ro9evRd+3PEiRMnVCm8oq7fuJmt/TiLr4+39h+IssR/XE6cOKGK4eG6eeOGq0vJFG8fH0UdOHDfjy3jmj0Y1+zBuGYPxjV7MK7Z48SJE6pYqZJuXr/u6lIyxdvXV1H79zOuTubKcc3VIe5+NHz48BSzWMbGxio0NNSpfURHR+v6jZua/W+pUgmn7trp9p+Rnv3vTUVHR9/3/2GR7oztzRs3pA4dpKAgV5eTseho3Vy0yBJjy7hmD8Y1ezCu2YNxzR6Ma/aIjo7WzevXVemjsfItl7lHVbnK9UNHtH/gfxhXJ3P1uObqEOfn5ydJup5Omr927Zokyd/fP8f25eXlJS8vr7v25wyVSkjVy+RIV3lPUJBU4j5PyFbEuGYPxjV7MK7Zg3HNHoxrtvAtV1b+D1VydRm5DuN6d7l6YpPkVHzq1Kk01ycvL1WqVI7uCwAAAADuVa4OcVWqVJEkbd++Pc31ycsfeeSRHN0XAAAAANyrXB3i6tevr8DAQB0+fFg7d+5MtX7BggWSpDZt2tx1Xy1btpSbm5s2btyoP//8M8W6+Ph4LVu2TO7u7nriiSecUjsAAAAApCVXhzhPT0/169dPktS3b1/7fWuSNHHiRO3evVsRERGqUaOGffnHH3+s8PBwDR8+PMW+ihcvri5duujWrVv697//rdu3b9vXvfrqq7pw4YKeffZZFS1aNJvfFQAAAIC8LFdPbCJJI0aM0Nq1a7V582aVL19eDRo00PHjx7V161YVKVJEX331VYr20dHRioqK0tmzZ1Pt66OPPtKWLVu0cOFChYeHq2bNmvr999+1d+9elS9fXhMnTsyptwUAAAAgj8rVZ+IkydvbW+vWrdMbb7whX19fLVmyRMePH1fPnj21fft2lS2b+elLg4KC9Ouvv6p///66deuWFi9erJiYGL388sv69ddfVahQoWx8JwAAAACQB87ESZKPj4/GjBmjMWPG3LXtqFGjNGrUqHTXFypUSJMnT9bkyZOdWCEAAAAAZE6uPxMHAAAAALkJIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCPFxdALLP/jOuruDurFAjAAAAcD8hxOVCQUFB8vXx1rP/venqUjLF18dbQUFBri4DAAAAsARCXC4UFham/QeiFB0d7epSMiUoKEhhYWGuLiNrrDC2VqgRAAAAWUaIy6XCwsKsF4wsICgoSN4+Prq5aJGrS8kUbx8fznICAADkMoQ4IAvCwsIUdeAAZzkBAADgMoQ4IIs4ywkAAABX4hEDAAAAAGAhnIkDcP+wwmWqVqgRAADkaoQ4AC7HhDEAAACZR4gD4HJMGAMAAJB5hDgA9wUmjAEAAMgcJjYBAAAAAAshxAEAAACAhXA5JQDkdla419AKNQIAcJ8gxAFALsWsnwAA5E6EOADIpZj1EwCA3IkQBwC5GLN+AgCQ+zCxCQAAAABYCCEOAAAAACyEEAcAAAAAFkKIAwAAAAALIcQBAAAAgIUQ4gAAAADAQghxAAAAAGAhhDgAAAAAsBBCHAAAAABYCCEOAAAAACzEw9UFAABgSdHRrq7g7qxQIwAgywhxAABkQVBQkLx9fHRz0SJXl5Ip3j4+CgoKcnUZAAAnIsQBAJAFYWFhijpwQNEWOcsVFBSksLAwV5cBAHAiQhwAAFkUFhZGMAIAuAwTmwAAAACAhRDiAAAAAMBCCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWkidC3KZNm/TEE0+oUKFC8vPzU+3atTVz5sws72f69Omy2Wzp/jzzzDPZUD0AAAAA/J9c/7DvhQsXqnPnzkpKSlLDhg0VFBSkH374QT169NDu3bv1/vvvZ3mfVapUUdWqVVMtr1OnjhMqBgAAAID05eoQd+nSJT3//PNKTEzUwoUL1aFDB0nS+fPn9dhjj+mDDz5Q69at1ahRoyztt127dho1apTzCwYAAACAu8jVl1NOnTpVsbGxatu2rT3ASVJwcLDee+89SdIHH3zgqvIAAAAAIMtydYhbsWKFJKlTp06p1rVq1Ure3t5au3atbt68mdOlAQAAAMA9ydWXU+7atUuSVL169VTrPD099dBDDykyMlIHDx7UI488kun9btu2TUOHDlVsbKyKFSumJk2aKCIiwml1AwAAAEB6cm2Ii42NVUxMjCQpJCQkzTYhISGKjIzU8ePHsxTili9fruXLl9tfjxkzRhEREZo3b56Cg4Mz3DY+Pl7x8fEp6gQAAACAzMq1l1NevXrV/v99fX3TbJM/f35JUlxcXKb2Wbx4cY0aNUo7duxQTEyMzp07p6VLlyo8PFwbNmxQ69atlZiYmOE+xo8fr8DAQPtPaGhoJt8RAAAAANznZ+Lat2+v/fv3Z2mbmTNnqnbt2tlST4sWLdSiRQv764CAALVp00aNGzdWjRo1FBkZqW+//VZdunRJdx/Dhw/X4MGD7a9jY2MJcgAAAAAy7b4OcUePHlVUVFSWtrl+/bokyc/PL8WygICAVG2vXbsmSfL393egyjt9vfzyy+rXr59WrVqVYYjz8vKSl5eXQ/0BAAAAyLvu6xC3c+fOe942ICBAgYGBiomJ0alTp/Tggw+manPq1ClJUqlSpe65n2Tly5eXJJ09e9bhfQEAkGdFR7u6gruzQo0AcrX7OsQ5qkqVKvrpp5+0ffv2VCEuISFBe/fulbe3typUqOBwX5cvX5b0f/fZAQCAzAsKCpK3j49uLlrk6lIyxdvHR0FBQa4uA0AelatDXKtWrfTTTz9pwYIFevbZZ1OsW758uW7evKnWrVvL29vb4b4WLlwoKe3HGQAAgIyFhYUp6sABRVvkLFdQUJDCwsJcXQaAPCpXh7gXX3xRY8eO1f/+9z8tWrRIHTp0kCT9+eefevXVVyVJr7zySqrtwsPDJUk//PCDSpYsaV8+fvx4/fOf/0zxzVtCQoLGjRun+fPny8fHR7169crOtwQAQK4VFhZGMAKATMjVIa5QoUL66quv9PTTT6tTp05q1KiRChcurLVr1+rKlSsaPHiwGjVqlGq75MlUEhISUix//fXXNXr0aNWsWVOhoaGKjY3Vzp07debMGXl7e2v27NkpQh8AAAAAOFuuDnGS1LFjR/300096++23tWXLFt26dUsPPvig+vXrpx49emRpXyNHjtQvv/yiqKgobd++XcYYhYSEqHfv3ho0aJAqVqyYTe8CAAAAAO7I9SFOkurXr6/vv/8+0+2NMWkuHz16tLNKAgAAAIB74ubqAgAAAAAAmUeIAwAAAAALIcQBAAAAgIUQ4gAAAADAQghxAAAAAGAhhDgAAAAAsBBCHAAAAABYCCEOAAAAACyEEAcAAAAAFkKIAwAAAAALIcQBAAAAgIUQ4gAAAADAQghxAAAAAGAhhDgAAAAAsBBCHAAAAABYCCEOAAAAACyEEAcAAAAAFkKIAwAAAAALIcQBAAAAgIUQ4gAAAADAQjxcXQAAAACyWXS0qyu4OyvUCNwnCHEAAAC5VFBQkLx9fHRz0SJXl5Ip3j4+CgoKcnUZwH2PEAcAAJBLhYWFKerAAUVb5CxXUFCQwsLCXF0GcN8jxAEAAORiYWFhBCMgl2FiEwAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCCHEAAAAAYCEeri4Ad3Tu3Fn58uVzdRkAAAC4i5iYGEnSoTET5BHg7+JqMnY7Nk6SNGjQIAUGBrq4mowxrlJCQkKm2tmMMcZpvSLLYmNjFRgYqJiYGAUEBLi6HAAAANzF9u3bVaNGDdVY/o38H6rk6nIyFLd3v7a17qJt27apevXqri4nQ4xr5rOBQ5dTDh48WG+99ZYjuwAAAAAAZIFDIe7jjz/W7t27nVULAAAAAOAuHApxISEhSkpKclYtAAAAAIC7cCjEtWvXThs2bFBcXJyz6gEAAAAAZMChEDd69GiFhYXpiSee0I4dO5xVEwAAAAAgHQ49YqBt27by8vLSpk2bVLNmTRUvXlxhYWHy9vZO1dZms+mHH35wpDsAAAAAyPMcCnHr16+3/39jjM6cOaMzZ86k2dZmsznSFQAAAABADoa4o0ePOqsOAAAAAEAmOBTiSpUq5aw6AAAAAACZ4NDEJgAAAACAnOXQmbhk58+f11dffaWNGzfq9OnTkqSSJUuqYcOG6tWrl4KDg53RDQAAAADkeQ6HuIULF+r555/X1atXZYyxL9+zZ49WrVqld955R9OmTVPHjh0d7QoAAAAA8jyHLqeMjIxUly5ddO3aNbVv316LFy/Wjh07tHPnTi1ZskQdOnTQ1atX1bVrV0VGRjqrZgAAAADIsxw6Ezd+/HglJiZqwYIFat++fYp1jzzyiJ588kktXrxYHTt21DvvvKMFCxY4VCwAAAAA5HUOnYn7+eefVa9evVQB7q/at2+v+vXra+PGjY50BQAAAACQgyEuJiZGYWFhd20XFhammJgYR7oCAAAAAMjBEFesWDHt2LHjru127typYsWKOdIVAAAAAEAOhrgWLVooKipKr7/+uhITE1OtN8ZoxIgROnDggFq2bOlIVwAAAAAAORji3njjDRUqVEjvvvuuypUrp9dee02ffvqpPv30Uw0bNkzlypXT+PHjVbhwYY0YMcJZNWfatWvXNGvWLPXv31916tSRl5eXbDabRo0a5dB+ly1bpoiICAUEBCggIECNGjXSihUrnFM0AAAAAGTAodkpQ0JC9OOPP6pbt27au3evJkyYIJvNJkn2Z8Y9/PDDmjNnjkJCQhyvNov++OMPde/e3an7/OijjzRo0CB5eHioadOm8vLy0urVq9W6dWtNmTJF/fr1c2p/AAAAAPBXDj/s++GHH9bu3bu1fv16bdy4UWfOnJEklShRQg0aNFCjRo0c7eKe+fv764UXXlCtWrVUq1YtrVixQiNHjrzn/UVFRWnIkCHy8vLSunXrVLduXUnSwYMHVa9ePQ0aNEgtW7ZUuXLlnPUWAAAAACAFh0Jchw4dVLx4cX3yySdq1KiRSwNbWh544AFNnTrV/nr16tUO7W/SpElKTExUv3797AFOkipUqKD//Oc/Gjx4sCZNmqQpU6Y41A8AAAAApMehe+K+++47Xbx40Vm13PeS73vr1KlTqnXJy5YtW5ajNQEAAADIWxwKcWXKlNG1a9ecVct97cqVKzpx4oQkqVq1aqnWh4aGKigoSMePH1dsbGxOlwcAAAAgj3AoxHXp0kUbNmzQuXPnnFXPfSs5wBUsWFD58+dPs03y5C3Hjx9Pdz/x8fGKjY1N8QMAAAAAmeVQiBs+fLgaNGigiIgILV68WAkJCc6q675z9epVSZKvr2+6bZLDXVxcXLptxo8fr8DAQPtPaGiocwsFAAAAkKs5NLFJxYoVlZSUpJMnT6pTp06y2WwqWrSovL29U7W12Ww6fPhwlvbfvn177d+/P0vbzJw5U7Vr187SNjlp+PDhGjx4sP11bGwsQQ4AAABApjkU4o4dO5bitTHGqZdWHj16VFFRUVna5vr1607r/6/8/Pzuuv/k+wP9/f3TbePl5SUvLy/nFgcAAAAgz3AoxCUlJTmrjjTt3LkzW/efFWFhYZKky5cv69q1a2neF3fq1ClJUqlSpXK0NgAAAAB5h0P3xE2ePDnFc9hyswIFCtiD3I4dO1KtP3nypKKjo1WqVCkFBATkdHkAAAAA8giHQtwrr7ySp56L1qpVK0nSggULUq1LXtamTZscrQkAAABA3uJQiCtWrFiak5hYXXh4uMLDw3X69OkUywcMGCB3d3d99tln2rJli335H3/8obFjx8rDw0MDBgzI6XIBAAAA5CEO3RPXokULff/997p165Y8PT2dVZNTtW/fXmfPnpUknTlzRpI0depUrVy5UpJUvHhxLV68OMU2yZOp/P2RCRUrVtSECRM0ePBgNWjQQM2aNZOnp6dWr16tGzduaPLkySpXrlx2vyUAAAAAeZhDIW7s2LFavXq1unXrpsmTJ6t48eLOqstpduzYkerh26dPn7afZcvqJCSDBg1SuXLlNGHCBG3cuFGSVLNmTb366qtq3bq1c4oGAAAAgHQ4FOKGDx+uKlWqaNGiRVqxYoWqV6+usLCwdJ8TN23aNEe6uyd/fwxCZhhjMlzfpk0b7n0DAAAA4BIOhbjp06fb///Nmze1efNmbd68Oc22rgpxAAAAAJCbOBTi1q1b56w6AAAAAACZ4FCIi4iIcFYdAAAAAIBMcOgRAwAAAACAnOXQmbhkFy9e1OzZs/Xrr78qOjpajz/+uF599VVJ0u+//67Dhw+radOm8vX1dUZ3AAAAAJBnORzi5s+frxdffFFXr16VMUY2m00lS5a0rz99+rTat2+vGTNm6Nlnn3W0OwAAAADI0xy6nPKXX35R165d5eHhoQ8++EC//vprqun5H3/8cQUGBmrRokUOFQoAAAAAcPBM3Lhx4+Tm5qY1a9aoevXqabZxd3dX9erVtXfvXke6AgAAAADIwTNxmzdvVt26ddMNcMmKFSums2fPOtIVAAAAAEAOhrjr16+rSJEid213+fJlR7oBAAAAAPz/HApxJUuW1O+//55hG2OM9u7dqzJlyjjSFQAAAABADoa4li1bKioqSnPnzk23zdSpU3Xy5Em1atXKka4AAAAAAHJwYpNhw4bp//2//6fu3btrx44dat++vSTp2rVr2rFjhxYvXqz33ntPRYoU0aBBg5xSMAAAAADkZQ6diQsJCdGKFSsUFBSkCRMmqH79+rLZbFqwYIFq1qypt99+WwUKFNDSpUtVtGhRZ9UMAAAAAHmWww/7rlu3rqKiojRt2jStWbNGx44dU1JSkkJCQtSsWTP17t1bgYGBzqgVAAAAAPI8h0OcJPn7+2vgwIEaOHBgpre5dOmSrl69qrCwMGeUAAAAAAB5gkOXUzrilVdeUdmyZV3VPQAAAABYkstCnHTn8QMAAAAAgMxzaYgDAAAAAGQNIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCCHEAAAAAYCGEOAAAAACwEJeFuPDwcDVs2NBV3QMAAACAJbksxL322mtat26dq7oHAAAAAEvyyErj559//p47stlsmjZt2j1vDwAAAADIYoibPn16msttNpskyRiT7nJCHAAAAAA4LkshLq3LH+fPn6///ve/qlOnjrp06aLSpUtLko4fP65vvvlGW7ZsUd++fdWpUyenFAwAAAAAeVmWQlxERESK16tWrdJnn32m//73v+rTp0+q9v3799fnn3+uvn37qlWrVo5VCgAAAABwbGKTsWPHqnr16mkGuGS9e/dWjRo19PbbbzvSFQAAAABADoa4nTt3qnz58ndtV65cOe3evduRrgAAAAAAcjDEeXh4aO/evXdtt3fvXnl4ZOnKTQAAAABAGhwKcQ0bNtTevXs1ZsyYVDNTJnvrrbe0Z88eHuwNAAAAAE7g0OmxcePG6ccff9To0aM1a9YsderUSaVKlZJ0Z3bKhQsX6vDhw/Lz89PYsWOdUjAAAAAA5GUOhbgHH3xQP/74o3r06KH9+/fr3XffTfXMuPDwcE2fPl2VK1d2vFoAAAAAyOMcvlGtZs2a+v3337V+/Xpt3LhRZ86ckSQVL15cDRo0UKNGjezBDgAAAADgGKfNNtKoUSM1atTIWbsDAAAAAKTBoYlN/i4+Pl5nz57VpUuXnLlbAAAAAMD/zykh7osvvlC1atWUP39+hYSEaMiQIfZ1ixYtUocOHXTo0CFndAUAAAAAeZpDIS4xMVHt27fXv/71L+3fv1+VKlVK9aiBKlWqaMmSJZo3b55DhQIAAAAAHAxxH3/8sf73v//pH//4h44fP649e/akavPAAw+oXLly+v777x3pCgAAAAAgB0Pc9OnTFRwcrHnz5ik4ODjddg8++KCOHz/uSFcAAAAAADkY4qKiolSnTh3lz58/w3b58+fXhQsXHOkKAAAAACAHQ1y+fPl08+bNu7Y7ceKE/P39HekKAAAAACAHQ1zlypW1bds2xcXFpdvmzz//1M6dO1W1alVHugIAAAAAyMEQ99xzz+nixYvq06ePbt26lWp9YmKi+vbtq+vXr6tHjx6OdAUAAAAAkOThyMYvvfSS5s+fr2+++UabN29WixYtJEm7du3SgAEDtHz5ch09elTNmzdXt27dnFIwAAAAAORlDp2Jc3d313fffad//etfOnPmjL744gtJ0o4dOzRlyhSdOHFC//znP7VkyRLZbDanFAwAAAAAeZlDZ+IkydvbW5988olGjRql9evX69ixY0pKSlJISIgaN26sEiVKOKNOAAAAAIAcDHHVq1fXAw88oPnz56tIkSJ66qmnnFUXAAAAACANDj8nLl++fM6qBQAAAABwFw6FuPLly+vixYvOqgUAAAAAcBcOhbgXXnhBGzZs0IEDB5xVDwAAAAAgAw6FuP79+6tnz56KiIjQhx9+qEOHDqX5vDgAAAAAgHM4NLGJu7u7JMkYoyFDhmjIkCHptrXZbLp9+7Yj3QEAAABAnudQiAsNDeX5bwAAAACQgxwKcceOHXNSGQAAAACAzHDonrj73bVr1zRr1iz1799fderUkZeXl2w2m0aNGnVP+5s+fbpsNlu6P88884xz3wAAAAAA/I1DZ+Lud3/88Ye6d+/u9P1WqVJFVatWTbW8Tp06Tu8LAAAAAP7KaSHu999/1x9//KG4uDgZY9Jskx2BKiP+/v564YUXVKtWLdWqVUsrVqzQyJEjHd5vu3bt7vlsHgAAAAA4wuEQt3btWv373//W4cOH021jjJHNZsvxEPfAAw9o6tSp9terV6/O0f4BAAAAwNkcCnGRkZFq1aqVbDabunbtqj179mjPnj0aNmyYDh8+rLVr1+ry5cvq1auXwsLCnFUzAAAAAORZDoW48ePH6/bt21q5cqWaNWumXr16ac+ePRo7dqwk6cqVK+rdu7eWL1+uyMhIpxR8P9i2bZuGDh2q2NhYFStWTE2aNFFERISrywIAAACQBzgU4jZv3qxq1aqpWbNmaa4vUKCAZs6cqdKlS2vEiBGaMWOGI93dN5YvX67ly5fbX48ZM0YRERGaN2+egoODM9w2Pj5e8fHx9texsbHZVicAAACA3MehRwxcunRJ5cuXt7/29PSUdGdq/2ReXl5q0KCB1qxZ40hX94XixYtr1KhR2rFjh2JiYnTu3DktXbpU4eHh2rBhg1q3bq3ExMQM9zF+/HgFBgbaf0JDQ3OoegAAAAC5gUNn4ooUKZLiTFKRIkUkSUeOHNHDDz9sX37jxg3FxMRkef/t27fX/v37s7TNzJkzVbt27Sz3lRktWrRQixYt7K8DAgLUpk0bNW7cWDVq1FBkZKS+/fZbdenSJd19DB8+XIMHD7a/jo2NJcgBAAAAyDSHQly5cuV09OhR++vatWvLGKPPP/9cH3/8sSTp0KFD+vHHH1W2bNks7//o0aOKiorK0jbXr1/Pcj+O8vPz08svv6x+/fpp1apVGYY4Ly8veXl55WB1AAAAAHIThy6nfOKJJxQVFWU/W9ayZUuVKlVKn376qerUqaOOHTuqVq1aunnzpl544YUs73/nzp0yxmTpp1GjRo68pXuWfFnp2bNnXdI/AAAAgLzBoTNx3bt3V2BgoJKSkiTduSdu6dKlevrpp/Xbb7/pt99+k5ubm1588UUNGDDAKQXfry5fvixJyp8/v4srAQAAAJCbORTiihUrpt69e6dY9vDDD2v//v06cOCALl++rHLlytnvlcvNFi5cKEmqXr26iysBAAAAkJs5dDllRsLDw1W3bl1LBrjw8HCFh4fr9OnTKZaPHz9e0dHRKZYlJCRo9OjRmj9/vnx8fNSrV6+cLBUAAABAHuPQmTgraN++vf0+tTNnzkiSpk6dqpUrV0q689iAxYsXp9gmeTKVhISEFMtff/11jR49WjVr1lRoaKhiY2O1c+dOnTlzRt7e3po9e7ZKliyZ3W8JAAAAQB7mUIh7/vnnM93WZrNp2rRpjnR3T3bs2KHjx4+nWHb69Gn7WbZSpUplel8jR47UL7/8oqioKG3fvl3GGIWEhKh3794aNGiQKlas6NTaAQAAAODvHApx06dPv2sbm80mY4zLQtyxY8eyvI0xJs3lo0ePdrAaAAAAAHCMQyFu3bp1aS5PSkrSyZMntXr1as2dO1eDBg1SmzZtHOkKAAAAACAHQ1xERESG67t3765WrVqpR48eevLJJx3pCgAAAACgbJydMlmXLl1UuXJljRo1Kru7AgAAAIBcL9tDnCSVL19ekZGROdEVAAAAAORq2R7ikpKStHv3brm55UheBAAAAIBcLduS1fXr17Vz50516dJFf/zxx13vnwMAAAAA3J1DE5u4u7vftY0xRkWKFNGECRMc6QoAAAAAIAdDXGhoqGw2W5rrPD09Vbx4cUVERKhv374qWrSoI10BAAAAAORgiLuXB2kDAAAAAO4ds40AAAAAgIUQ4gAAAADAQhy6nHLMmDH3vK3NZtMbb7zhSPcAAAAAkOc4FOJGjRqVamITY4wkpVievOyvCHEAAAAAkHUOhbivv/5av/zyi7744guFhISoU6dOKl26tCTp+PHjWrhwoU6cOKGXXnpJdevWdUa9AAAAAJCnORTiKlWqpD59+mjYsGEaM2aMPDxS7u69997TyJEj9cEHH6hXr16qU6eOQ8UCAAAAQF7n0MQmI0eO1AMPPKBx48alCnDSnYeBjx07VuXKldPIkSMd6QoAAAAAIAdD3NatW1WlSpW7tqtSpYp+/fVXR7oCAAAAAMjBEJeYmKgjR47ctd2RI0eUmJjoSFcAAAAAADl4T1zt2rW1bt06zZw5U927d0+zzcyZM7V161Y1adLEka4AAACA+8r1Q3c/meFqVqgRWedQiBs9erR++ukn9erVS9OnT1fnzp1VqlQpSXdmp/z222+1fv16eXh4aPTo0U4pGAAAAHCloKAgefv6av/A/7i6lEzx9vVVUFCQq8uAEzkU4urXr69Fixbp+eef1/r167Vhw4YU640xKly4sKZNm6b69es7VCgAAABwPwgLC1PU/v2Kjo52dSmZEhQUpLCwMFeXASdyKMRJUuvWrXXkyBEtWLBAGzdu1JkzZyRJxYsXV4MGDfTUU0/Jz8/P4UIBAACA+0VYWBjBCC7jcIiTJD8/P/Xs2VM9e/Z0xu4AAAAAAOlwaHbKu4mOjtbt27ezswsAAAAAyFMcCnGRkZEaM2aM9u3bl2L54sWLVaxYMQUHB6tw4cKaNGmSQ0UCAAAAAO5wKMRNmTJF48aNU3BwsH3Z0aNH9cwzz+jPP/9UsWLFdO3aNQ0ePFjr1693tFYAAAAAyPMcCnFbtmxRtWrVVLhwYfuyr776SgkJCXr//fd1+vRpbd26VW5ubpyNAwAAAAAncCjEnT9/PtWsPGvWrFH+/PnVr18/SVKNGjXUoEED7dq1y5GuAAAAAAByMMQlJiammLjk6tWr2r59u+rXry9PT0/78hIlSujcuXOOdAUAAAAAkIMhLiwsTNu2bbO/XrFihW7fvq2mTZumaBcbG6vAwEBHugIAAAAAyMEQ16ZNG504cUIdOnTQlClTNGTIELm5ualt27Yp2u3YsUOlSpVyqFAAAAAAgIMhbsiQISpdurSWLFmiAQMG6PTp0xo4cKDKly9vb7N161adPn1aDRs2dLhYAAAAAMjrPBzZOCgoSLt379aCBQt04cIF1ahRQ02aNEnR5ty5cxowYICeffZZhwoFAAAAADgY4iTJz89PPXv2THd927ZtU11eKUmbN2/WoUOH1L17d0dLAAAAAIA8w6HLKR3x5ZdfqlevXq7qHgAAAAAsyWUhDgAAAACQdYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIR6u6rhdu3YqXbq0q7oHAAAAAEtyWYhr27at2rZt66ruAQAAAMCSHL6cct++ferZs6fKli0rHx8fubu7p/nj4eGyvAgAAAAAuYZDyeqXX35R06ZNdePGDUlSoUKFVKxYMacUBgAAAABIzaEQN3z4cN24cUMDBw7UiBEjVKhQIWfVBQAAAABIg0MhLjIyUlWrVtXEiROdVQ8AAAAAIAMO3RPn6emp8PBwZ9UCAAAAALgLh0LcY489pn379jmrFgAAAADAXTgU4saNG6dDhw7pk08+cVY9AAAAAIAMOHRP3Pbt29WrVy+9/PLL+vbbb9WsWTOFhITIzS3tbNi9e3dHugMAAACAPM+hENezZ0/ZbDYZY7Rx40Zt3LhRNpstVTtjjGw2GyEOAAAAABzkUIgbOXJkmqENAAAAAJA9HApxo0aNclIZAAAAAIDMcGhiEwAAAABAziLEAQAAAICFOHQ5ZbKff/5Z//vf//THH38oLi5OxphUbWw2m3744QdndAcAAAAAeZZDIc4YoxdeeEEzZsywB7fk2SqTJb92xQQoBw4c0P/+9z+tXLlSe/bsUUxMjAoXLqx69epp0KBBatCgwT3td9myZXr//fe1Y8cOSVL16tU1dOhQtWrVypnlAwAAAEAqDl1O+dlnn2n69OmqUaOG1qxZow4dOkiSoqKi9P3336tnz55yc3PT0KFDdeTIEacUnBVNmzbVsGHDFBkZqWrVqqlDhw4qUqSIFi9erIiICH300UdZ3udHH32kJ598Ups3b1b9+vXVpEkT/frrr2rdurU+/vhj578JAAAAAPgLh0Lc9OnTlT9/fn3//fd6/PHH5e/vL0kqX768WrRooa+++krffPON3n//fe3cudMZ9WZJeHi4Zs6cqQsXLmjNmjWaN2+e9uzZo88++0zGGA0ZMkT79u3L9P6ioqI0ZMgQeXl56aefftL333+vJUuWaOfOnSpcuLAGDRqkQ4cOZeM7AgAAAJDXORTi9u/fr3r16qlw4cKSZL9kMjEx0d6mU6dOqlGjht5//31Hurona9eu1XPPPSdvb+8Uy3v37q3mzZsrMTFR8+fPz/T+Jk2apMTERPXp00d169a1L69QoYL+85//6Pbt25o0aZLT6gcAAACAv3MoxCUlJdkDnCT5+vpKki5fvpyiXfny5bVnzx5HunK6KlWqSJLOnDmT6W1WrFgh6U4w/bvkZcuWLXNCdQAAAACQNodCXMmSJVOEoFKlSkmSfcKPZAcPHpSHh1MmwnSa5Hv0ihUrlqn2V65c0YkTJyRJ1apVS7U+NDRUQUFBOn78uGJjY51XKAAAAAD8hUMhrnr16tq3b5/98snmzZvLGKNXX31VBw4cUFxcnCZMmKBt27alGXxc5fDhw1q+fLkk6cknn8zUNskBrmDBgsqfP3+abUJCQiRJx48fT3c/8fHxio2NTfEDAAAAAJnlUIh78sknFR0dbb/MsEqVKnrmmWe0a9cuVa5cWQUKFNCwYcPk4eGhsWPHOqVgR92+fVs9e/ZUfHy8OnfurBo1amRqu6tXr0r6v0tG05Ic7uLi4tJtM378eAUGBtp/QkNDs1A9AAAAgLzOoWscu3Tpog4dOqS4VHLGjBl65JFHtGTJEl2+fFkVKlTQq6++qtq1a2d5/+3bt9f+/fuztM3MmTMz7Ovll1/Wzz//rLJly+q///1vlmty1PDhwzV48GD769jYWIIcAAAAgExz+EY1Ly+vFK/z5cunYcOGadiwYY7uWkePHlVUVFSWtrl+/Xq668aOHatPP/1UwcHBWrVqlQoVKpTp/fr5+d11/9euXZMk+6MW0uLl5ZVqzAAAAAAgs+6v2Ub+xpnPlvvss880YsQIBQYGauXKlSpXrlyWtg8LC5N0Z+bNa9eupXlf3KlTpyT93wQvAAAAAOBsDt0Tl+zixYuaNGmSunXrphYtWui9996zr/v999+1dOnSDM9gZbe5c+eqb9++8vX11YoVK1S1atUs76NAgQL2IPf32Tcl6eTJk4qOjlapUqUUEBDgaMkAAAAAkCaHQ9z8+fNVtmxZDR48WN98843Wrl2rAwcO2NefPn1a7du316JFixzt6p5899136t69uzw8PLR48WLVr1//nvfVqlUrSdKCBQtSrUte1qZNm3vePwAAAADcjUMh7pdfflHXrl3l4eGhDz74QL/++quMMSnaPP744woMDHRJiNu0aZM6deokY4zmzZun5s2bZ2q78PBwhYeH6/Tp0ymWDxgwQO7u7vrss8+0ZcsW+/I//vhDY8eOlYeHhwYMGODU9wAAAAAAf+XQPXHjxo2Tm5ub1qxZo+rVq6fZxt3dXdWrV9fevXsd6eqetG7dWjdu3FCZMmW0ZMkSLVmyJFWbxx57TC+++GKKZcmTqSQkJKRYXrFiRU2YMEGDBw9WgwYN1KxZM3l6emr16tW6ceOGJk+enOV77QAAAAAgKxwKcZs3b1bdunXTDXDJihUrpq1btzrS1T25cuWKpDuzXB49ejTddn8PcRkZNGiQypUrpwkTJmjjxo2SpJo1a+rVV19V69atHaoXAAAAAO7GoRB3/fp1FSlS5K7tLl++7Eg39+zvl3Y6a7s2bdpw7xsAAAAAl3DonriSJUvq999/z7CNMUZ79+5VmTJlHOkKAAAAACAHQ1zLli0VFRWluXPnpttm6tSpOnnypH1mRwAAAADAvXPocsphw4bp//2//6fu3btrx44dat++vSTp2rVr2rFjhxYvXqz33ntPRYoU0aBBg5xSMAAAAADkZQ6diQsJCdGKFSsUFBSkCRMmqH79+rLZbFqwYIFq1qypt99+WwUKFNDSpUtVtGhRZ9UMAAAAAHmWQ2fiJKlu3bqKiorStGnTtGbNGh07dkxJSUkKCQlRs2bN1Lt3bwUGBjqjVgAAAADI8xwOcZLk7++vgQMHauDAgc7YHQAAAAAgHQ5dTgkAAAAAyFlOORMnSSdOnNDZs2cVHx+fbpuGDRs6qzsAAAAAyJMcDnHTpk3T2LFjdfz48bu2TUxMdLQ7AAAAAMjTHApx//3vf9W/f38ZY1StWjWVLVtWfn5+zqoNAAAAAPA3DoW4Dz/8UJ6enlqxYoWaNGnirJoAAAAAAOlwaGKTU6dOqXHjxgQ4AAAAAMghDoW4sLAw+fj4OKsWAAAAAMBdOBTievTooXXr1unSpUvOqgcAAAAAkAGHQtxrr72mhg0bqnHjxlq/fr2MMc6qCwAAAACQBocmNnF3d9fnn3+uxx9/XI8//rjy5cunYsWKyc0tdTa02Ww6fPiwI90BAAAAQJ7nUIjbv3+/GjdurAsXLsgYo1u3bunEiRPOqg0AAAAA8DcOXU75yiuv6M8//1SPHj20a9cuxcXFKSkpKd0fAAAAAIBjHDoTt2nTJj3yyCP66quvnFUPAAAAACADDp2J8/T01IMPPuisWgAAAAAAd+FQiGvcuLF2797trFoAAAAAAHfhUIh75513dO7cOY0YMUKJiYnOqgkAAAAAkA6H7ombPXu2WrdurfHjx2vevHlq1KiRSpYsme4jBt544w1HugMAAACAPM+hEDdq1CjZbDYZY3T48OEMnwNHiAMAAAAAxzkU4r7++mtn1QEAAAAAyASHQlyPHj2cVQcAAAAAIBMcmtjEEUOHDtUDDzzgqu4BAAAAwJJcFuKio6N17NgxV3UPAAAAAJbkshAHAAAAAMg6QhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIS4LccYYGWNc1T0AAAAAWJLLQtz06dOVlJTkqu4BAAAAwJI8HNl45syZmWrn6empwoULq0qVKipatKgjXQIAAABAnuZQiOvZs6dsNlum29tsNjVt2lRTpkxR+fLlHekaAAAAAPIkh0LcyJEjdezYMc2cOVN+fn5q3ry5wsLCJEknT57U6tWrFRcXp+eee05eXl7avHmzVq9erQYNGmjbtm0qWbKkU94EAAAAAOQVDoW45557TrVr19bzzz+vDz74QIGBgSnWx8bGavDgwVq8eLG2bt2qsmXLaujQofrwww/1zjvvaMqUKQ4VDwAAAAB5jUMTmwwfPlwFCxbUF198kSrASVJAQIC++OILFSxYUK+//rrc3Nw0fvx4FS9eXCtXrnSkawAAAADIkxwKcevWrVOdOnXk5pb+btzc3FS7dm39+OOPku5MclKlShWdPn3aka4BAAAAIE9yKMRdv35d586du2u78+fP6+bNm/bXAQEB8vBw6EpOAAAAAMiTHApxDz/8sH766Sf99NNP6bbZuHGjNmzYoIcffti+7OTJkypSpIgjXQMAAABAnuRQiHv11VeVmJioFi1aqHfv3lqzZo0OHDigAwcOaM2aNerTp49atGghY4xeffVVSVJMTIy2bdumRx991ClvAAAAAADyEoeuaezQoYM+/PBDvfbaa/ryyy81derUFOuNMfL09NSHH36o9u3bS5IuXryo0aNH6/HHH3ekawAAAADIkxy+MW3AgAF68sknNW3aNG3evFlnz56VJBUvXlz169dXr169VLZsWXv7smXL6rXXXnO0WwAAAADIk5wyu0iZMmX09ttvO2NXAAAAAIAMOHRPHAAAAAAgZzklxO3bt0+DBg1S/fr1VbFiRfskJpK0efNmTZ48WZcuXXJGVwAAAACQpzl8OeXEiRM1bNgw3b59W5Jks9kUHR2dos2gQYPk5eWl3r17O9odAAAAAORpDp2JW7FihYYMGaLQ0FAtWrRIf/75p4wxKdrUq1dPRYoU0f/+9z+HCgUAAAAAOHgmbuLEicqfP7/WrFmTYgbKv6tataqioqIc6QoAAAAAIAfPxCU/tDujACdJQUFBOnfunCNdAQAAAADkYIi7deuW/P3979ruzz//lIeHU55mAAAAAAB5mkMhrkyZMtq1a1eGbW7duqXdu3erQoUKjnQFAAAAAJCDIe7JJ5/UsWPHNHHixHTbvPfee7pw4YI6dOjgSFcAAAAAADk4scmrr76qOXPmaOjQodq6davat28vSTp//rwWL16sxYsXa86cOSpTpoz69evnlIIBAAAAIC9z6ExcwYIFtXbtWlWuXFnz589Xt27dJEkrV65Up06dNHv2bFWqVEkrV67M1L1zznbgwAG9++67aty4sYKCgpQvXz4VK1ZMHTp00MaNG7O8v+nTp8tms6X788wzz2TDuwAAAACA/+PwbCMVKlTQzp07tXTpUq1Zs0bHjh1TUlKSQkJC1KxZM3Xs2FHu7u7OqDXLmjZtqtOnT8vPz0+PPvqoChUqpH379mnx4sVasmSJJk6cqIEDB2Z5v1WqVFHVqlVTLa9Tp47jRQMAAABABpwyZaSbm5vatWundu3aOWN3ThMeHq7x48frqaeekre3t335559/rj59+mjIkCFq3ry5HnzwwSztt127dho1apSTqwUAAACAu3NKiLt+/boiIyN19uxZxcfHp9uue/fuzugu09auXZvm8t69e2vRokVavXq15s+frzfffDNH6wIAAACAe+VwiBs5cqQ+/PBDXb9+Pd02xhjZbLYcD3EZqVKlilavXq0zZ864uhQAAAAAyDSHQtx7772nt99+W+7u7mrVqpUqVKjgkglM7sWRI0ckScWKFcvyttu2bdPQoUMVGxurYsWKqUmTJoqIiHB2iQAAAACQikMh7ssvv5SPj482btyo6tWrO6umbHf48GEtX75c0p1n3WXV8uXL7dtL0pgxYxQREaF58+YpODg4w23j4+NTXHIaGxub5f4BAAAA5F0OPWLg5MmTioiIsFSAu337tnr27Kn4+Hh17txZNWrUyPS2xYsX16hRo7Rjxw7FxMTo3LlzWrp0qcLDw7Vhwwa1bt1aiYmJGe5j/PjxCgwMtP+EhoY6+pYAAAAA5CEOnYkrVqyY8ufP76xaUmnfvr3279+fpW1mzpyp2rVrp7v+5Zdf1s8//6yyZcvqv//9b5b23aJFC7Vo0cL+OiAgQG3atFHjxo1Vo0YNRUZG6ttvv1WXLl3S3cfw4cM1ePBg++vY2FiCHAAAAIBMcyjEPfPMM5o2bZquXbuWLWHu6NGjioqKytI2GU2wMnbsWH366acKDg7WqlWrVKhQIUdLlCT5+fnp5ZdfVr9+/bRq1aoMQ5yXl5e8vLyc0i8AAACAvMehyylHjRqlSpUq6cknn9ShQ4ecVZPdzp07ZYzJ0k+jRo3S3Ndnn32mESNGKDAwUCtXrlS5cuWcWmv58uUlSWfPnnXqfgEAAADgrxw6E/fEE08oKSlJ69evV6VKlVSqVCmFhITIzS11NrTZbPrhhx8c6e6ezZ07V3379pWvr69WrFihqlWrOr2Py5cvS1K2Xl4KAAAAAA6FuPXr19v/f2Jioo4cOWKfuv/vbDabI13ds++++07du3eXh4eHFi9erPr162dLPwsXLpQkS03yAgAAAMB6HApxR48edVYd2WLTpk3q1KmTjDH69ttv1bx580xtFx4eLkn64YcfVLJkSfvy8ePH65///KeCgoLsyxISEjRu3DjNnz9fPj4+6tWrl3PfBAAAAAD8hUMhrlSpUs6qI1u0bt1aN27cUJkyZbRkyRItWbIkVZvHHntML774YoplyZOpJCQkpFj++uuva/To0apZs6ZCQ0MVGxurnTt36syZM/L29tbs2bNThD4AAAAAcDaHQtz97sqVK5LunDHM6Kzh30NcekaOHKlffvlFUVFR2r59u4wxCgkJUe/evTVo0CBVrFjRGWUDAAAAQLpydYgzxjh1u9GjRztSDgAAAAA4zKFHDAAAAAAAchYhDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAAC8nVIW737t3q16+fHn30UZUoUUJeXl4KDAxU3bp1NWXKFCUkJNzTfpctW6aIiAgFBAQoICBAjRo10ooVK5xcPQAAAACklqtD3E8//aRPPvlE586d04MPPqgOHTqoVq1a2rlzp15++WU1a9ZMt27dytI+P/roIz355JPavHmz6tevryZNmujXX39V69at9fHHH2fTOwEAAACAOzxcXUB2euKJJ/TEE0+obNmyKZafP39eTZs21YYNG/TFF1+oX79+mdpfVFSUhgwZIi8vL61bt05169aVJB08eFD16tXToEGD1LJlS5UrV87p7wUAAAAApFx+Jq5s2bKpApwkBQcH67XXXpMk/fjjj5ne36RJk5SYmKg+ffrYA5wkVahQQf/5z390+/ZtTZo0yfHCAQAAACAduTrEZSRfvnySJE9Pz0xvk3zfW6dOnVKtS162bNkyJ1QHAAAAAGnLkyHu8uXL+uCDDyRJrVq1ytQ2V65c0YkTJyRJ1apVS7U+NDRUQUFBOn78uGJjY51XLAAAAAD8Ra6+Jy7ZH3/8obFjxyopKUnnz5/X5s2bdfXqVfXp00fdunXL1D6SA1zBggWVP3/+NNuEhIQoOjpax48f18MPP5xmm/j4eMXHx9tfE/gAAAAAZEWeCHHnz5/XjBkzUix7+eWX9dZbb8nNLXMnI69evSpJ8vX1TbdNcriLi4tLt8348eM1evToTPUJAAAAAH93X4e49u3ba//+/VnaZubMmapdu3aKZY899piMMUpMTNSJEye0ePFijR49Wt9//71Wr16t0qVLO7HqjA0fPlyDBw+2v46NjVVoaGiO9Q8AAADA2u7rEHf06FFFRUVlaZvr16+nu87d3V1lypTR4MGDVbp0aXXs2FH9+/fP1GQkfn5+d93/tWvXJEn+/v7ptvHy8pKXl9dd+wMAAACAtNzXIW7nzp3Ztu/27dvLz89PK1eu1K1bt+46S2VYWJikO5OiXLt2Lc374k6dOiVJKlWqlPMLBgAAAADl0dkpJclms6lQoUK6ffu2Ll++fNf2BQoUsAe5HTt2pFp/8uRJRUdHq1SpUgoICHB6vQAAAAAg5eEQd+TIEZ08eVIBAQEKCgrK1DbJjyNYsGBBqnXJy9q0aeO8IgEAAADgb3J1iJsyZYrOnTuXanlUVJS6du0qY4y6d+8ud3f3FOvDw8MVHh6u06dPp1g+YMAAubu767PPPtOWLVvsy5MfYeDh4aEBAwZkz5sBAAAAAN3n98Q56oMPPtDAgQNVpUoVlStXTsYYHT9+XNu2bVNSUpIaNmyo8ePHp9oueTKVhISEFMsrVqyoCRMmaPDgwWrQoIGaNWsmT09PrV69Wjdu3NDkyZNVrly5HHlvAAAAAPKmXB3ixo4dq++++06RkZFatWqVbty4oUKFCqlZs2bq0qWLnnvuuUw/Jy7ZoEGDVK5cOU2YMEEbN26UJNWsWVOvvvqqWrdunR1vAwAAAADscnWI69atm7p165bl7YwxGa5v06YN974BAAAAcIlcfU8cAAAAAOQ2hDgAAAAAsBBCHAAAAABYCCEOAAAAACyEEAcAAAAAFkKIAwAAAAALIcQBAAAAgIUQ4gAAAADAQghxAAAAAGAhhDgAAAAAsBAPVxcAAAAAAMmuHzri6hLuytU1EuIAAAAAuFxQUJC8fX21f+B/XF1Kpnj7+iooKMglfRPiAAAAALhcWFiYovbvV3R0tKtLyZSgoCCFhYW5pG9CHAAAAID7QlhYmMuCkZUwsQkAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWIiHqwvI64wxkqTY2FgXVwIAAADAlZIzQXJGSA8hzsXi4uIkSaGhoS6uBAAAAMD9IC4uToGBgemut5m7xTxkq6SkJJ05c0b+/v6y2WyuLidDsbGxCg0N1cmTJxUQEODqcnINxjV7MK7Zg3HNHoxr9mFsswfjmj0Y1+xhpXE1xiguLk4lSpSQm1v6d75xJs7F3NzcFBIS4uoysiQgIOC+/wdgRYxr9mBcswfjmj0Y1+zD2GYPxjV7MK7ZwyrjmtEZuGRMbAIAAAAAFkKIAwAAAAALIcQh07y8vPTmm2/Ky8vL1aXkKoxr9mBcswfjmj0Y1+zD2GYPxjV7MK7ZIzeOKxObAAAAAICFcCYOAAAAACyEEAcAAAAAFkKIAwAAAAALIcQBAAAAgIUQ4oActHTpUn3//feuLgMAgEzhuAUrGTx4sN566y1Xl5EjmJ0SyEHu7u5q3rw5B0RYxu7du+Xm5qaHHnrI1aXkKowrrILjFqzE09NTbdu21fz5811dSrbjTBzSlZe+zcgpRYoUUcGCBV1dRq7UoUMH9e3b19Vl5DpVq1bVyy+/7Ooych3GFVbBcev+cfv2bVeXcN8LCQlRUlKSq8vIER6uLgD3r48//lht27Z1dRm5SqNGjfTrr7/KGCObzebqcnKV7777Tu3atXN1GblOoUKFVLx4cVeXkeswrjnjxIkTOnv2rOLj49Nt07BhwxysyHo4brnezZs39cUXX2jixIk6duyYq8u5r7Vr104zZ85UXFyc/P39XV1OtuJySqSrbNmyqlatmhYuXOjqUnKNP/74Q7Vq1VLPnj31zjvvyNvb29Ul5RqVKlVSuXLltGzZMleXkqu0bt1aJ06c0O7du11dSq7CuGavr776Sm+99ZZOnDhx17aJiYk5UJF1cdzKPrdu3dLly5dVuHBheXikPq8SFxenTz75RB999JEuXLggic/r3cTFxSkiIkL58+fX5MmTVa1aNVeXlG0IcUjX4MGDNXPmTB09ejTXf5uRU8aMGaMDBw5o3rx5KlKkiJo2baqwsLA0D4o2m01vvPGGC6q0pjFjxuj999/XwYMHVaxYMVeXk2v89ttveuyxxzRu3Di98sorri4n12Bcs8/XX3+tF154QZL00EMPqUKFChkew77++uucKs2SOG453969ezV48GBt2LBBt2/flpubmx5//HF99NFHCg8PlzFGH374ocaNG6fLly/LGKPq1atr1KhRat26tavLv681adJEN27c0NatW2Wz2VS8ePEMP68//PCDC6p0DkIc0pWXvs3IKW5ubrLZbMrMPzubzcY3blmQkJCgdu3a6dChQ3rnnXfUunVr5cuXz9VlWd7MmTO1YcMGTZ8+XY888ohatWqV7gFRkrp3757DFVoT45p9Hn74YUVFRWnBggV68sknXV2O5XHccq5jx46patWqiouLSzWmwcHB2r59u7p3764ff/xRxhhVrVpVo0aN4rOcSW5umZ/uw+qfV0Ic0pWXvs3IKTNmzMhS+x49emRTJblP2bJllZSUpJMnT0q685ksWrRoup/Xw4cP53SJlpTWH3Bp3ReTfL+MlQ+IOYlxzT7e3t567LHHtHbtWleXkitw3HKuPn366IsvvlBERITeffddVa5cWXFxcfr+++81dOhQBQQE6NixYwoKCtLkyZP1zDPPuLpkSzl+/HiW2pcqVSqbKsl+hDikKy99mwHry8rnVVKemb3KUaNGjcrSZAZvvvlmNlaTezCu2adEiRJq2LCh5s6d6+pSgFQqVKigmJgYHTp0KNVlvnPmzNFzzz0nDw8P7d69W+Hh4S6qElZAiEO68tK3GQCA3OFf//qXli9friNHjnBJNe47vr6+atq0qZYuXZpq3cWLF1WkSBE9/vjjWrNmjQuqg5XwiAGki1CWvX755Rdt3LhRp0+fliSVLFlSDRo0UN26dV1cGQBY17hx47Ru3Tr16tVLU6ZM4RlnTsRxy3E3b95UUFBQmusKFy4s6c64wjHnz5/XV199lerz2rBhQ/Xq1UvBwcEurtBxhDgghx08eFDPPfecIiMjJcl+T0zypVU1a9bU7NmzVb58eZfVCKTl9OnT2rRpU4oDYv369fmDw0GMq3O98sorevDBB/XNN99oxYoVqlGjhkJCQtK85Npms2natGkuqNJaOG7lrKzeHoCUFi5cqOeff15Xr15Ncd/xnj17tGrVKr3zzjuaNm2aOnbs6MIqHcfllLirvPBtRk45e/asqlevrvPnz6tEiRJ66qmnVLp0adlsNh07dkzz58/X6dOnVbx4cUVGRvIw4Huwe/duffLJJ2l+Xv/973/rkUcecXGF1nPhwgX17dtXixcvTnUvoc1mU8eOHfXxxx+rSJEiLqrQmhjX7MH93M7Fccu53Nzc9Nhjj+nFF19Mc33Pnj0zXM9MtRmLjIxUvXr1lJSUpHbt2um5555L8XmdNWuWFi9eLHd3d23atEk1a9Z0dcn3jBCHDKX3bYZ05+Dn7++fK77NyCl9+/bVp59+qkGDBmn8+PHy9PRMsT4hIUHDhw/XxIkT1bdvX02ZMsVFlVrTpEmTNHToUCUmJqY5HbaHh4cmTJigAQMGuKA6a4qJidGjjz6qqKgo+fj4qHnz5ikOiKtWrdKNGzdUsWJFbdmyRYGBga4u2RIY1+yzYcOGLLWPiIjIpkpyB45bzpU8M216/n6W8+/40iFjHTt21JIlS7RgwQK1b98+zTaLFy9Wx44d1aFDBy1YsCCHK3QeQhzSlZe+zcgpZcqUkbe3t/bv359uG2OMHnzwQd28eVNHjx7Nweqsbc2aNWrRooV8fX3Vp0+fND+vn332ma5fv67Vq1fr8ccfd3XJljB8+HC9++67euqpp9I8KxQdHa1+/frp22+/1bBhwzRu3DgXVWotjCusguOWc/Xs2TNLM9P+HQ+nz1hwcLAqVKigjRs3ZtiuQYMGOnjwoM6fP59DlWUDA6SjQ4cOxs3NzSxatCjdNosWLTI2m8107NgxByuzLi8vL9O1a9e7tuvatavx8vLKgYpyj5YtW5p8+fKZTZs2pdtm8+bNxsPDw/zjH//IwcqsrWLFiiYsLMzcunUr3Ta3bt0yYWFhpkKFCjlYmbUxrrAKjluwkrz0eWViE6Tr559/Vr169dI9HS1J7du3V/369e/6jQfuCAgIsD+MOiMnT55UQEBADlSUe/z666+KiIhQvXr10m1Tt25dNWrUSFu3bs3Byqzt+PHjat++fYZTtefLl0/169fX4sWLc7Aya2Ncs9+tW7e0cOHCNGdT7NixY6rLApE2jlvOdfnyZWZMzUbFihXTjh077tpu586dKlasWA5UlH2Y/gbpiomJUVhY2F3bhYWFKSYmJgcqsr66detq06ZNWrFiRbptvvvuO23atCnDMILUrl+/nqkJIIoUKaLr16/nQEW5g4+Pj6Kjo+/aLjo6Wj4+PjlQUe7AuGavTZs2qXz58nr22Wf12WefadmyZVq2bJk+++wzPfvssypfvrw2b97s6jItgeOWcxUvXlwdO3bU4sWLlZCQ4Opycp0WLVooKipKr7/+epr3DxpjNGLECB04cEAtW7Z0QYXOwz1xSFfp0qXl6+urffv2ZdiucuXKunbtmo4dO5YzhVnYL7/8ooYNG8pms6lz587q2rWrSpcuLenON/PffPON5s6dq6SkJG3cuFGPPvqoawu2kAoVKighIUF//PGHPDzSvsjg9u3bKl++vPLly6eDBw/mcIXW1KxZM/30008Z3ve6bds2+1nO1atX53CF1sS4Zp+DBw+qZs2aunr1qmrUqKFnn3021f2x27ZtU0BAgH777Temxb8LjlvO5eHhoaSkJNlsNhUoUEBPP/20nn32WdWvX9/VpeUKp06dUrVq1XTp0iWFhYXp6aefTvF5nT9/vo4dO6bChQtr+/btCgkJcW3BjnDx5Zy4j7300kvGzc3NDB8+3Ny+fTvV+qSkJPOf//zHuLm5md69e7ugQmuaNWuW8fX1NTabzbi5uaX4sdlsxtfX18yaNcvVZVrOkCFDjM1mM88995y5fPlyqvUxMTGmZ8+exs3NzQwdOjTnC7SoFStWGJvNZgICAsyIESPMvn37zPXr183169fN/v37zciRI02BAgWMm5ub+e6771xdrmUwrtmne/fuxmazmY8++ijdNpMmTTI2m8306NEj5wqzMI5bznP27FnzwQcfmGrVqhmbzWYf07Jly5qRI0eagwcPurpEy9u9e7d5+OGHU4xv8mfVZrOZRx55xOzZs8fVZTqMM3FIV576NiOHnTp1Sl9++aV+/vlnnTlzRpJUokQJNWjQQC+88IJCQ0NdXKH1XLp0SbVq1dKxY8fk5+enli1bpvi8rly5UrGxsSpbtqx+++037knIgvHjx+uNN95I87EN0p2psN966y0NHz48hyuzNsY1e4SEhCg4OFjbtm3LsF2NGjV0/vx5nTp1KocqszaOW8534MABzZo1S998842OHTtmn7Wydu3aeu6559S5c2cVLlzYxVVa1/r167Vx48ZUn9dGjRq5tjAnIcQhQ3v27FG3bt20d+9eSf/33JLkj83DDz+sOXPm6KGHHnJZjUCyM2fOqHfv3uneu9GqVSt9/vnnKlGiRA5XZn2RkZGaMmVKmn/A9e3bV7Vq1XJxhdbEuDqfl5eXOnXqpDlz5mTYrlu3blq4cKFu3ryZQ5UB6fv55581a9YsLViwQJcvX5bNZpOHh4datmyp5557Tm3atJGXl5ery8R9hBCHTMnt32Ygdzl69GiqP4ofe+wxlSlTxsWVAchuJUqUUIkSJRQZGZlhu1q1aun06dP2/04A94OEhAR99913mjVrllasWKH4+HjZbDYFBASoU6dO+vLLL11domXFxMTojz/+UEhIiOVnppTEPXFATjp48KCZMWOGOXLkSIrlv/zyi6lTp47Jnz+/qVSpklm4cKGLKgQAa+vatatxc3Mzn376abptvvjiC2Oz2Uy3bt1ysDJr4rjlOjExMeaLL74wRYoUsd/bhYytWrXK9OrVy2zfvj3F8kmTJhlvb2/j5uZm3N3dzcCBA11UofNwJg73JNd9m5FD+vTpo6lTp+rYsWP2ewjPnz+vChUqKC4uTjabTcYYubu7a+vWrapevbqLK84d9u/fr99//12hoaGqU6eOq8uxlPPnzysqKkoVK1ZUcHCwffnhw4f1n//8R3v37lVYWJhGjhzJrHRZwLhmn/3796tmzZq6efOm6tWrl+Zsij///LN8fHz022+/qVKlSq4t+D7Hccs1duzYodmzZ2vu3Lk6d+6cjDHy8PDQrVu3XF3afe3pp5/W999/r7Nnz8rPz0/SnVuDqlatKnd3d9WqVUv79+9XTEyMFi1apLZt27q4Yge4NELivpaXvs3IKZUrVzY1atRIsWzcuHHGZrOZV155xcTHx5vFixcbNzc3viHOorlz55rGjRubLVu2pFj+yiuvpJhJrV27dmnOtoq0DRw40Li5uZmoqCj7spiYGFOsWLEUs335+voyq1oWMK7Za+3atSY4ODjd2RSLFStmfvjhB1eXaQkct3LOsWPHzLhx40zlypVT/HegatWq5oMPPjBnz551dYn3vQceeMA89thjKZYNHjzYuLm5mTlz5hhjjDly5Ijx9vY2zZs3d0WJTkOIQ7qeeuop4+fnZ+Li4uzLdu/ebdzc3Ey+fPlMvXr1TMGCBY2bm5tZsmSJCyu1jkKFCpkOHTqkWNawYUPj7e2dYpzr1q1rypUrl9PlWVrr1q1NwYIFTXx8vH3Zpk2bjM1mM4GBgaZr166mbNmyxs3NzcyYMcOFlVpL1apVzUMPPZRiWfL07N26dTMHDx40H374obHZbDxqJAsY1+x37do18/XXX5vnn3/etGzZ0rRs2dI8//zz5uuvvzbXrl1zdXmWwXEre12+fNl8/vnnpkGDBsbd3d0e3kJCQsxrr72WK6bCz0l+fn7mmWeeSbGsSpUqplChQiYxMdG+rEWLFiY0NDSny3MqQhzSlZe+zcgpvr6+5qmnnrK/vnnzpvHx8TEREREp2nXt2tX4+vrmcHXWVrp06VTj2KdPH+Pm5mZWrVpljDHm4sWLJiAgwDRo0MAFFVpTkSJFzJNPPpliWfPmzU2+fPnMhQsX7MuqVq1qwsPDc7o8y2JcYRUct5wvPj7eLFiwwLRr1854eXnZg1tAQIDp2bOn+eGHH0xSUpKry7SkwMBA065dO/vrixcvGnd3d9O2bdsU7Z599lnj7e2dw9U5l4erL+fE/ev8+fOpprf+4YcfVKBAAT3zzDOSpDJlyigiIkL79u1zRYmWExISot27d9tfr127Vjdv3lSTJk1StLtx44by58+f0+VZ2p9//ql69eqlWLZu3ToVLVpUzZs3lyQVKlRIDRs2vOvzo/B/4uLi5Ovra3+dmJioX375RTVq1FBQUJB9eXh4uJYvX+6KEi2JcYVVcNxyrn/+859auHChYmJi7PcSJj9GoF27dvL29nZ1iZZWunRpbd68WQkJCcqXL58WLVokY4yaNWuWot3Fixct/ww+QhzS5e7unuL5OZcuXdLevXvVunVrubm52ZcXKVJEFy5ccEWJltOkSRN98cUXGjhwoB5//HENHz5cNpst1Y21e/bs4cGpWeTj46PY2Fj767Nnz+rgwYN6+umnU7QrUKCALl++nNPlWVaJEiV04MAB++uff/5ZV69eTfV4kdu3b8vT0zOHq7MuxtV5Tpw4IUkqWbKk3N3d7a8zKywsLDvKyjU4bjnXtGnTJN152Pxzzz2nLl26qEiRIi6uKvfo3Lmz/vOf/6hhw4aqV6+evv76a+XLl0/t2rWztzHGaNu2bapYsaLrCnUGF58JxH2sSpUqpmjRoubWrVvGGGO+/PJL4+bmZj7++OMU7f7xj3+YkiVLuqJEyzl+/LgpVKhQihvs/37t9t69e43NZjP9+/d3UZXWVKtWLRMYGGguX75sjDFmwoQJxs3NzUybNi1Fu6ZNm5qwsDAXVGhN3bp1M25ububDDz80u3fvNo899phxc3MzmzZtStGucuXK5uGHH3ZRldbDuDqPzWYz7u7u9kli0prMJL0fd3d3F1d//+O45Vyvv/662b9/v6vLyLWuXr1q6tSpY58Uxt3d3UycODFFm7Vr1xqbzWZGjhzpoiqdgzNxSFee+jYjh4SFhWnXrl2aOnWqLly4oBo1aqhnz54p2uzYsUNt27ZNdQYJGevZs6f69eunGjVqqGrVqlqxYoX8/PxSfFuckJCgyMhI1axZ04WVWsvw4cO1aNEivfLKK5Lu/Jtv3LhxiktXjx07pn379umFF15wVZmWw7g6T8OGDWWz2eyXpya/hnNw3HKusWPHurqEXC1//vzavHmzfvrpJ124cEFVq1ZV+fLlU7Rxd3fXhx9+qDZt2rioSidxcYjEfSwvfZsB67t165bp1KmT/fPq5+dnvvnmmxRtFi1aZGw2mxk3bpyLqrSmbdu2me7du5snnnjCvPHGGyY2NjbF+s8++8xUrVrVLF++3EUVWhPjCuQ9CQkJ5vz58+bKlStprr9w4YJ56aWXTMmSJY2Xl5cpW7asee2111LMBAoYw8O+cRdJSUkZfpuxfv167dq1S23atFHZsmVdVGXuER0drQIFCsjDg5Pk9+rYsWO6cOGCwsPD5e/vn2Ldzp07dfz4cT366KMpHrAMALg3HLeyZtq0aXrppZc0YsQIjR49OsW62NhY1axZU4cPH9Zf/zy32WyqU6eONm7cKHd395wuOdfYv3+/fv/9d4WGhqpOnTquLsdhbndvgrzMzc1NjRo10lNPPZUqwElSo0aNNGDAAAJcJkVGRmrMmDGpZvNcvHixihUrpuDgYBUuXFiTJk1yUYXWV7p0adWqVStVgJOkqlWrqm3btgQ4II+KiYlRZGSkzp075+pSLIPjlnNt2LBBktK8TPqdd97RoUOH5OPjo0mTJmnPnj1atGiRSpcura1bt+rrr7/O6XItZ968eWrSpIm2bt2aYvnQoUP10EMPqXPnzqpXr57at2+vxMREF1XpJC4+EwiL2rdvn5k/f77ZsmWLq0uxlO7duxsvLy8THR1tX3bkyBHj6elpbDabKVGihP1hn+vWrXNdobnM999/byZMmGDmzp1rn6gHmXPw4EEzY8YMc+TIkRTLf/nlF1OnTh2TP39+U6lSJbNw4UIXVWhNjGv2WbVqlenVq5fZvn17iuWTJ0823t7e9glNBg4c6KIKrYXjlnNVrlzZPPjgg2muK1asmHFzczPvvvtuiuUHDhww7u7uplmzZjlRoqW1bt3aFCxY0MTHx9uXbdq0ydhsNhMYGGi6du1qypYta9zc3MyMGTNcWKnjCHFI19y5c03jxo1TBbUhQ4akmN2rXbt25vbt2y6q0loqVKhgHn300RTLRowYYWw2m/nggw+MMcZERkYaDw+PFA+rxN198sknpkyZMubnn39Osfypp55K8XmtU6eOuXHjhouqtJ7evXsbd3d3c/LkSfuyc+fOmYCAAPssgDabzXh4eJht27a5sFJrYVyzz1NPPWX8/PxS3EO0e/du4+bmZvLly2fq1atnChYsaNzc3MySJUtcWKk1cNxyrqCgoBQPT0+2b98++/wDf/75Z6r1jz76qAkODs6JEi2tdOnSqR5E36dPH+Pm5mZWrVpljLnzAPCAgADToEEDF1ToPFxOiXTNnj1bO3fuVLVq1ezLNm/erA8++ED+/v565plnVLp0aS1dulRz5sxxYaXWcf78+VTPJFqzZo3y58+vfv36Sbrz7JgGDRpo165drijRshYvXqzr16+rbt269mUrV67UggULVLJkSQ0bNky1a9fWb7/9pi+//NKFlVrLzz//rKpVqyokJMS+7KuvvlJcXJwGDx6sGzduaNGiRUpKStLEiRNdWKm1MK7ZZ/v27apatar8/Pzsy6ZPn27/302bNmnbtm3y9PTUf//7XxdVaR0ct5wrJiYmzdlTt23bJkmqXLlyms+NK1WqFM84zYQ///xTJUuWTLFs3bp1Klq0qJo3by5JKlSokBo2bKhDhw65okSnIcQhXXv37tUjjzyS4kGzs2bNks1m07fffqs5c+bot99+k5+fn6ZOnerCSq0jMTFRt2/ftr++evWqtm/frvr166cY5xIlSnDPRhZFRUXpoYceSvEg+rlz58pms2nBggUaO3as1q1bp6CgIM2ePduFlVrL2bNnVapUqRTLVq5cKS8vL40aNUqenp5q166d6tSpk+oeBKSPcc0+58+fTxGOJemHH35QgQIF9Mwzz0iSypQpo4iICO3fv98VJVoKxy3nKliwoA4fPpxq+ebNmyVJtWrVSnO7xMTEFF9MIG0+Pj6KjY21vz579qwOHjyoiIiIFO0KFChg+VBMiEO68tK3GTklLCzM/m2bJK1YsUK3b99W06ZNU7SLjY1VYGBgTpdnaRcuXFCxYsVSLNuwYYNCQ0NVu3ZtSZK3t7fq1auno0ePuqJES7p582aK2dDi4+P122+/qU6dOin+oChTpozOnDnjihItiXHNPu7u7rp586b99aVLl7R37141aNAgxZc8RYoU0YULF1xRoqVw3HKuGjVqaMeOHSm+nLl27ZoWLlwom82mxx9/PM3tDh48qBIlSuRUmZZVtmxZbdy4UVeuXJEkzZkzRzabzf53a7Jz586paNGiLqjQeQhxSFde+jYjp7Rp00YnTpxQhw4dNGXKFA0ZMkRubm4pHkgt3Xlw6t+/pUfGAgMDFR0dbX999OhRHT9+XI0aNUrRLn/+/Lp27VoOV2ddISEh2r17t/312rVrdfPmTTVp0iRFuxs3bih//vw5XZ5lMa7Zp3Tp0tq8ebMSEhIkSYsWLZIxRs2aNUvR7uLFiypcuLArSrQUjlvO9eKLL8oYo3/84x968803NWXKFDVq1EgXLlxQ4cKF1a5du1TbnD17Vr///rsefPDBnC/YYnr27KnY2FjVqFFDHTt21IgRI+Tn55fi85qQkKDIyEhVqFDBhZU6gatvysP9q1atWiYwMNBcvnzZGGPMhAkTjJubm5k2bVqKdk2bNjVhYWEuqNB6Lly4YMqUKWN/ILXNZjOvvPJKijZbtmwxNpvNDB061EVVWlP9+vWNj4+POX78uDHGmGHDhhk3N7dUD/yOiIgwZcuWdUWJlpR8Q/iAAQPM0qVLTeXKlY2bm5vZuXNninblypUz1atXd1GV1sO4Zp9x48YZm81mHn30UTN48GBTsGBB4+XlZU6dOmVvk5SUZIoWLWr5iQ1yAsct53v++eftExglT2Lk7u5u5s6dm2b7t99+29hstlR/fyG1W7dumU6dOtk/q35+fqn+Dli0aJGx2Wxm3LhxLqrSOQhxSNcnn3xibDabKVu2rOnQoYPx8vIyAQEBKaYZvnXrlilQoIBp2rSpCyu1lri4OPP111+b9957z/zwww+p1i9ZssQMHDjQ7Nq1ywXVWdfs2bPtUwhXr17duLm5meDg4BQz1F2/ft3kz5/ftG7d2oWVWsvx48dNoUKFUvyx8cwzz6Ros3fvXmOz2Uz//v1dVKX1MK7Z5+rVq6ZOnTr2P+Lc3d3NxIkTU7RZu3atsdlsZuTIkS6q0lo4bjnfwoULTbdu3Uzz5s3NCy+8YDZt2pRu2xdeeMG0a9fOnDlzJgcrtLajR4+aX3/91cTGxqZat2PHDrNkyRJz7tw5F1TmPDZj/vJIeOAvEhIS1LVrVy1cuFDSncvQvvzyS/uN4dKdGQE7duyosWPHavjw4a4qFZB052GeH3/8seLj4xUSEqIZM2aocePG9vUzZsxQr169NHHiRA0cONB1hVrMqVOnNHXqVF24cEE1atRQz549U9xbNHv2bC1cuFCvvPKKHnvsMRdWai2Ma/ZJSkrSTz/9pAsXLqhq1aoqX758ivXr16/Xrl271KZNG5UtW9ZFVQLAvSPE4a6OHTumCxcuKDw8XP7+/inW7dy5U8ePH9ejjz6q4OBgF1VoXfHx8bp06ZK8vLxUqFAhV5eTK8THxys2NjbNKZpPnjypS5cu6YEHHmCWLwC4Bxy3nKt69ep64IEHNH/+fFeXkutcunRJ27ZtU3R0tEqVKqV69eq5uiSnYmIT3FXp0qVVq1atVAFOkqpWraq2bdsS4LLoiy++ULVq1ZQ/f36FhIRoyJAh9nWLFi1Shw4dmPHzHnl5eaUZ4CQpNDRUVapUIcABedT+/fu1YMECHttwDzhuZY+oqCjly5fP1WXkKhcuXFDXrl1VrFgxtWzZUs8++2yKR2FNnTpVhQoV0s8//+zCKh1HiEOmXLp0SWvWrNE333xjf5YJsi4xMVHt27fXv/71L+3fv1+VKlXS30+GV6lSRUuWLNG8efNcVKX17dq1S19++aXGjx+vpUuX2pcnn6VD1q1evVrt27dXyZIl5eXlpRdeeMG+btWqVRo8eDBT4d8DxtX55s2bpyZNmqQKakOHDtVDDz2kzp07q169emrfvr0SExNdVKV1cNzKXuXLl9fFixddXUaucenSJdWrV09z587VQw89pH//+9+pPq8dOnRQXFycFixY4KIqncSF9+PBAv7880/TpUsXky9fPvsN+L169bKv//LLL03BggXNxo0bXVildXz00UfGZrOZVq1a2W+otdlsKcbUGGPKly9v6tev74oSLe3AgQOmbt269s/q3z+vX331lXFzczPff/+9C6u0npdfftk++Ya/v3+qz+yuXbuMzWZLNXkEMsa4Zo/WrVubggULmvj4ePuyTZs22Sc+6tq1qylbtqxxc3MzM2bMcGGl1sBxK3tNnjzZeHl5mf3797u6lFxh8ODBxmazmTfffNO+LK3Pa/Xq1U3VqlVzuDrn4kwc0pWnvs3IIdOnT1dwcLDmzZuX4SWoDz74oI4fP56DlVnfyZMn1bBhQ23ZskVt2rTRe++9l+rz+vTTT8vT09M+WQ/ububMmZoyZYpq1Kih7du3p3km85FHHlFoaKiWLVvmggqtiXHNPnv37tUjjzwiT09P+7JZs2bJZrPp22+/1Zw5c/Tbb7/Jz88vxSVWSBvHrezVv39/9ezZUxEREfrwww916NAh3bp1y9VlWdaSJUtUoUIFjRo1KsN2DzzwgE6fPp0zRWUTQhzSNXbsWB0+fFgjR47U9u3bNWXKlFRtChUqpEceeUQbNmxwQYXWExUVpTp16tz14b358+fXhQsXcqiq3GHMmDGKjo7W1KlTtWTJEr3yyiup2uTPn19Vq1blfpgs+PTTT1WgQAGtWLFCVatWTbfdI488oiNHjuRcYRbHuGafP//8UyVLlkyxbN26dSpatKiaN28u6c6xq2HDhtzDlQkct7KXu7u7vvzyS124cEFDhgxRxYoV5ePjI3d391Q/Hh4eri73vnf69GlVqVLlru1sNpvlb6/g04B0ZeXbjPXr1+dITVaXL18+3bx5867tTpw4keZEMkjfypUr9cgjj+j555/PsF3p0qW1evXqHKrK+vbu3auIiIh0J4tJFhgYqPPnz+dQVdbHuGYfHx+fFH+cnT17VgcPHtTTTz+dol2BAgV0+fLlnC7PcjhuZa/Q0FDZbDZXl5FrBAQE6OzZs3dtd/jw4bv+9/d+R4hDuk6fPq22bdvetV1u+DYjp1SuXFnbtm1TXFxcuge7P//8Uzt37tSjjz6aw9VZ259//qn69evftV1CQoKuX7+eAxXlHpn5A+PMmTPy8fHJgWpyD8Y1e5QtW1YbN27UlStXVKBAAc2ZM0c2m81+Fi7ZuXPnVLRoURdVaR0ct7LXsWPHXF1CrlKrVi39+OOPOnr0qMqUKZNmm127dmnnzp3q1KlTDlfnXFxOiXTlpW8zcspzzz2nixcvqk+fPmle856YmKi+ffvq+vXr6tGjhwsqtK7ChQvrxIkTd2138OBBFS9ePAcqyh3Kly+v7du3KyEhId02cXFx2rlzpypXrpyDlVkb45p9evbsqdjYWNWoUUMdO3bUiBEj5Ofnl+JLyYSEBEVGRqpChQourNQaOG7BSvr37///tXffUVFcbx/AvzN0QVRAVFSkK1aKqCggYu8iilFBUBI1ltiiIbHExBLFEnuJXbDFrrGgRlEQjNhABRuCYqGJEQQLsPf9w5f9ZYUFVHaHWZ7POZyTnbl7zjdzxp155t65F+/evYOnpyfi4+OL7H/w4AF8fX3BGMO4ceMESFh+qIgjcjk5OSE6OhqJiYly2xQ+zShLDwgBRo4cCXd3d+zatQsNGzbE6NGjAXw4jhMmTICNjQ3279+Pzp07Y+jQoQKnFZd27dohOjoaN27ckNvm/PnzuHXrFtzd3ZWWS+wGDhyI58+fIzAwUG6bH3/8Ea9evcJXX32lxGTiRsdVcb755ht4eXkhMTERBw8ehIaGBtavXw9DQ0Npm7/++guvXr2Ch4eHgEnFga5bREy6deuGadOmITY2Fk2bNkWjRo3AcRxCQ0PRokUL2Nra4tatW/jpp5/g4uIidNwvI/DsmKQCO3HiBOM4jrVo0YLFxcUxxmSnab1//z5r1qwZ43melhj4BG/evGFjxoxhmpqajOM4mT91dXU2cuRI9ubNG6Fjis6lS5eYmpoaMzU1ZcePH2f5+fky5+vff//N6tevzzQ0NFhMTIzAacUjNzeXNW/enPE8z9q0acN+++03xnEcc3NzY0uXLmWurq6M4zjm6OgoM6U7KRkdV8VLTExkly9fZllZWUX2Xb9+nR06dEg6ZT4pGV23lOPWrVvs4MGDbPv27Wzbtm3F/pGy+fPPP1mLFi2KnK+2trZs586dQscrFxxjH83BTch/BAYGIigoCBzHwdraGvfv30ft2rVhZGSEuLg4FBQUYPr06ZgzZ47QUUUnPT0dYWFhSEpKgkQiQb169dChQweYmJgIHU201qxZgwkTJkAikaBKlSrIzc2Fnp4eeJ5HVlYWOI7DmjVrMHLkSKGjikp6ejr8/f1x4sQJcBxXZOmGzp07IyQkhIZVfyI6rkRs6LqlGGfOnMGYMWOQkJAgtw1jDBzH0QL1pSi81he+v5meni5zvn48c62YURFHSrV3717MmzcPsbGxMtsbNWqEmTNnYvDgwQIlEx8HBwdYWlpi7969QkdRWZcuXcKCBQtw9uxZvH79GgCgra0Nd3d3TJ8+nYb+foGYmBicOnVK5oLYuXNntGrVSuhookbHVXEyMzNx9epVZGRkoEGDBmjbtq3QkUSHrluKdeXKFbRr1w4cx2HgwIG4efMmbt68icDAQCQkJODMmTN4+fIl/P39YWpqip9//lnoyBUaz/No3bo1oqKihI6icFTEEbkq09MMZdHV1UXfvn2xc+dOoaOonNjYWPA8j6ZNmwL48NQyIyMDEokERkZGUFNTEzihOPXv3x916tTB6tWrhY6iUui4KlZ6ejomTJiAffv2SXsu/Pz8sHnzZgDAxo0bMW3aNBw5ckT878UoGF23FMvLywuHDh3CyZMn0blzZwwfPhzbt2+Xnrf//vsvRo0ahbCwMFy5cgX169cXOHHFVqNGDfTo0QM7duwQOorC0cQmRK7q1avLTMlcs2ZNODk5oXXr1lTAfSZra2u8ePFC6Bgqyc7ODuPHj5d+5jgONWvWRK1ataiA+wLHjx+nc1YB6LgqTmZmJtq2bYvdu3ejadOmGDNmTJGhqv3790d2djb27dsnUErxoOuWYkVGRsLe3h6dO3cudn/16tWxfft28DyPGTNmKDmd+Njb25c4LFWVUBFH5KpWrRosLCyEjqFSAgICcP78edy5c0foKCrHwMCA3stQAHNzc+Tk5AgdQ+XQcVWcefPmISEhAbNmzcK1a9ewcuXKIm0MDAzQvHlznD9/XoCE4kLXLcXKzMyEtbW19LOmpiYAyPw+aGlpwdXVFadPn1Z6PrH54YcfEB0dXSke0NBi30SuyvQ0Q1nGjx+P27dvo3379ggMDETv3r1hamoq/dEmn69Nmza4efOm0DFUzuDBg7F48WKkpKSgdu3aQsdRGXRcFefQoUOwsbHB7NmzS2xnaWmJsLAwpWQSM7puKVbNmjWRlZUl8xkAHj58iGbNmkm3v3nzBq9evVJ6PrHR0dHB119/jUGDBqFXr17S81VbW7vY9m5ubkpOWH7onTgiV2hoKHr06IE9e/aIflX7iqJwWF/hLFMl4TgO+fn5yoilEqKjo+Hi4oL58+djypQpQsdRGXl5eejXrx8ePHiABQsWoFevXtDQ0BA6lujRcVUcbW1t9O3bF3v27JFu43ke/v7+0nfiAGDQoEE4fPgw3r59K0RM0aDrlmK5u7sjLS0NcXFxAIAjR46gX79+GDNmDFatWgXgwwLVLVq0gIWFBT2sLAXP8zKz/ZZ2zop5tk/qiSNyVaanGcpSv379Un9QyOeJj4+Hj48Ppk2bhpCQEPTs2bPE83XYsGFKTihODRs2hEQiQXJyMgYMGACO42BsbFzsceU4jnrvy4iOq+Lo6+vj+fPnpbZLSEig5RvKgK5bitWjRw/8+OOPiI+Ph62tLbp164YGDRpg7dq1iI6ORr169XD27Fm8ffsWAQEBQset8IYNG1ZpzlfqiSNyVaanGUT8Pj5fgeLPWVpr59Pw/Ke9Oi2RSBSURLXQcVWcnj174uzZs4iLi4O5uTmAoj1xMTExcHR0xIABA7B7924h45JKLiUlBYcPH4aLiwuaNGkCALh58ya8vb1x9+5dAB/O34CAAKxbt67SFCikdNQTR+SqTE8ziPjNmjWLzlcFoOJBMei4Ks748eNx4sQJeHp6YteuXbC1tZXZ/+DBA/j6+oIxhnHjxgmUkpAPateujVGjRslsa9asGeLj43Hnzh28fPkSVlZW1GtMiqCeOEIIIYSolMDAQAQFBYHjOFhbW+P+/fuoXbs2jIyMEBcXh4KCAkyfPh1z5swROiohhHwWKuIIUaLt27eXqZ2mpiYMDQ3RokULGBsbKzgVIYSonr1792LevHmIjY2V2d6oUSPMnDkTgwcPFiiZuNB1S3kyMzNx9epVZGRkoEGDBmjbtq3QkURnxIgRZWpXeL7a2dmhV69e0NHRUXCy8kdFHCFKVPjeVllxHIdOnTph5cqVMuvIEKIsFy5cKFO7wguilZUVDWstAzquipOVlQWO41C1alUAQHp6OpKSkiCRSFCvXj3UrVtX4ITiQtctxUtPT8eECROwb98+6fvafn5+0nc4N27ciGnTpuHIkSNwcXERMmqFV/i+ceE5+3GZ8/F2juNQo0YNrF+/Hl5eXkpM+uWoiCNyVaanGcoye/ZsJCUlYfv27dDT00OXLl1gamoKAEhOTsapU6eQnZ0NX19faGlpITIyEnFxcTA2NsbVq1fp5qMEHh4eZWr33/P1q6++Qv369RWcTNw+9QZOT08PgwcPxrx582BoaKjAZOJGx1VxeJ5H69atERUVJXQUlUDXLcXKzMxE69atkZCQADs7O7Rr1w6rV6+WmYgnMzMTtWrVwtixY7Fs2TJhA1dw58+fx4EDB7By5Uq0a9cOgwYNkjlf9+zZg4iICIwbNw5t2rTBhQsXsGnTJnAch/DwcLRu3Vrg/4NPwAiRg+M4xnEc43me8Twv/SxvO8/zzNDQkO3bt0/o6BXWgwcPmIGBAQsICGD//vtvkf2vXr1iAQEBzMDAgN2/f58VFBSwyZMnM47j2Lhx4wRILB7/PQ8/Plfl7dPU1GS///670NErND8/P9a3b1/GcRxTU1Njjo6OzNPTk3l6erKWLVsyNTU1xvM869OnD+vcuTOrWbMm4ziOWVtbs8zMTKHjV1h0XBWnevXqbMiQIULHUBl03VKswmP1888/S7dxHMeGDx8u087BwYHZ2dkpOZ34nD59mqmrq7PNmzfLbbNlyxampqbGTp06xRhjbPfu3YzjODZw4EBlxSwXVMQRucLCwth3333HOI5jLi4ubOXKlezw4cPs8OHDbNWqVczV1ZVxHMfGjx/PduzYwUaNGsXU1dWZhoYGu3TpktDxK6SBAwcyS0tLVlBQILdNQUEBs7S0lP6YvHv3jpmYmDArKytlxRSlpKQkNnHiRKapqcl8fHzY0aNHWUxMDIuJiWF//fUX8/X1ZZqamuy7775jFy9eZL/99hvT19dnPM+z0NBQoeNXWGlpaczc3Jx169aN3bt3r8j++/fvs+7duzNzc3OWmprKXr9+zQYPHsx4nmc//vijAInFgY6r4nTo0IG1bt1a6Bgqg65bimVhYcEaNmwos624Im7gwIGsZs2ayowmSm5ubmX699+6dWvm6uoq/dyoUSNmYmKiyGjljoo4IldlepqhLEZGRmV6Qjx48GBmaGgo/dy9e3emo6OjyGiit3v3bplzsTinTp1i6urqbOfOnYwxxs6ePcs4jmO9evVSVkzRCQgIYCYmJuzNmzdy2+Tm5jITExM2YsQIxtiHJ/OGhoasSZMmyoopOnRcFefkyZOM53m2d+9eoaOoBLpuKZaWlhbz9vaW2VZcEeft7c20tLSUGU2UqlatWqbzdciQIaxq1arSz56enkxTU1OR0codrRNH5JozZw4cHR0xfPhwuW38/f2xbt06zJkzB507d8agQYMwe/ZsXLx4UYlJxSM3NxcpKSmltktNTcXbt2+ln/X19aGuTv9cS7J48WK4urqic+fOctt07twZLi4uWLJkCQYPHowOHTqgRYsWuHz5shKTisuxY8fg7u4ObW1tuW10dHTg6uqK48ePA/hwvtrb2yMyMlJZMUWHjqvi6Ojo4Ouvv8agQYPQq1cv9O7dG6ampnKPtZubm5ITigtdtxRLX18fz58/L7VdQkICrRVXBmpqaoiLiyu1XVxcHNTU1GS26erqKiqWQvBCByAV1/Xr12FpaVlqO0tLS9y4cUP62dbWFhkZGQpMJl7NmjXDhQsXSpyZLjw8HOfPn0ezZs2k25KTk+nHuxTx8fEwMTEptZ2JiQnu3Lkj/WxtbY1///1XgcnE7dWrV3j16lWp7bKysmTaGRkZKTKW6NFxVRx3d3ds3LgRjDEcPXoUo0aNQvfu3dGhQ4di/0jJ6LqlWE5OToiOjkZiYqLcNjExMbhx4wbatWunxGTi5OLigtjYWCxcuFBum6CgIMTExMg8wHn48GGZ7iEqEnpEQuSqTE8zlGXatGkYMGAAunbtimHDhmHAgAHS2RGTk5Oxf/9+bN++HYwxTJs2DcCHm72rV6+KbupbZatSpQquXLkCxpjcWf8YY7hy5QqqVKki3fb27Vvo6+srK6boWFtb49y5c4iPj4etrW2xbeLj43Hu3Dk0bNhQuu358+dUcJSAjqviDBs2jJZjKEd03VKs8ePH48SJE/D09MSuXbuK/B48ePAAvr6+YIxh3LhxAqUUj/nz5+PcuXP46aefsGXLFnh5ecmcrwcPHsTdu3ehq6uLuXPnAgAePXqE2NhY8R1fIcdykoqtV69ejOd5tmDBArltFi5cyDiOY3369JFua9GiBb2zUYJly5YxLS0tmRk+/zvTp5aWFlu+fLm0fUJCAluwYAGLjo4WMHXFVzjpw9ixY1lOTk6R/bm5uWz8+PGM53k2dOhQ6fZGjRoxe3t7ZUYVlfXr1zOO45iRkRGbP38+u3fvHnvz5g178+YNu3fvHvvtt99YzZo1Gc/z7I8//mCMfTjWenp6zNPTU+D0FRcdVyImdN1SrB9++EF6bBs2bMh4nmcmJiasefPmTF1dnXEcx2bMmCF0TNGIjIxkNjY2cmdTt7GxYVFRUdL2mZmZ7NKlSywtLU3A1J+O1okjct28eRPOzs548+YNrK2t5T7NqFKlCiIjI9GsWTM8evQI5ubmGDduHFasWCHw/0HFlZiYiE2bNiEyMlI6Fr5OnTpo164dhg8fDgsLC4ETis+jR4/g5OSEFy9eoHr16ujWrZvM+RoaGoqXL1+iZs2a+Oeff9CgQQPEx8ejSZMmmDp1aolDLyq7SZMmYfny5SX2cE6cOBFLly4FANy5cwfLly+Hl5cXOnXqpMyookLHlYgJXbcUa+/evZg3bx5iY2Nltjdq1AgzZ87E4MGDBUomTowxnD17FhcvXixyvnp4eKhEbz0VcaREUVFR8Pf3x/379wEUXene2toa27ZtQ5s2bQAAL1++xL1792BhYUFj4YnSJSQkYNSoUTh79myx+zt27Ii1a9fCysoKAPDu3Tv8+++/qFatWokTTBDg4sWLWLt2bbE3cKNGjYKLi4vACcWJjish5L/S09ORlJQEiUSCevXq0WLpRC4q4kipKsPTDKJaEhISipyvbdu2lRZvhBDVNWLEiDK109TUhKGhIezs7NCrVy/o6OgoOBkhRNnevXuHzMxMaGlpwcDAQOg45YqKOEIEEBcXhw0bNuDy5cvIyMhA3759ERQUBACIjIzElStX4OPjo3I/OIQQomg8/2Hi7Y9HjhT6eDvHcahRowbWr19PE3GUgK5bREz++OMPrF27Fjdv3gRjDH5+fti8eTMA4MCBAwgJCUFQUJCoH+7S7JSkzFT5aYYyLV26FIGBgcjPzwfw4Qbi4yUZJk2aBC0tLYwaNUqIiCrh/v37yMjIgKGhIWxsbISOI3ovXrxASEiI9AauY8eO0pnobt++jYSEBHTq1Elm5k9SOjqu5e/cuXM4cOAAVq5ciXbt2mHQoEEwNTUF8OH92D179iAiIgLjxo1DmzZtcOHCBWzatAmDBw9GeHg4WrduLfD/QcVD1y3FSktLw5o1a3DhwgU8f/4c7969K7Ydx3FISEhQcjpxKSgowIABA3DkyBFoaGjA1tYWt2/flmnTokULDBgwAI6Ojpg+fbpAScuB8udSIWKzfv16Zmdnx9TU1BjP82z48OHSffv372eenp7s/v37AiYUj7/++otxHMcsLCzYwYMHWXp6OuM4TuaYMsZYrVq1WPfu3QVKKV5v375lP/74IzM0NJTORvXfYxscHMzs7e3Z9evXhQspQn/++SfT19eXzu718XENDQ1lPM+z4OBgAVOKDx1XxTh9+jRTV1dnmzdvlttmy5YtTE1NjZ06dYoxxtju3bsZx3Fs4MCByoopGnTdUqy4uDjpTLSFsyeW9EdKtmzZMsZxHOvZsydLSUlhjLFiz1dra2vWrl07ISKWG1rsm8hVUFAAT09PfPvtt9K1jNhHw1JatGiBQ4cOYc+ePQKlFJelS5dCV1cXp0+fRr9+/eSu92RnZ4e7d+8qOZ24vXnzBu7u7li4cCE0NTXRo0ePIuerh4cHYmJi8OeffwqUUnyioqIwZMgQqKurY8mSJbh8+XKR49qxY0dUq1YNBw4cECil+NBxVZw5c+bA0dERw4cPl9vG398fLVu2xJw5cwAAgwYNQsOGDXHx4kVlxRQNum4p1tSpU5GRkYH+/fvjypUryMrKgkQikftHSrZ161bUqlULe/bsQa1ateS2a9y4MR49eqTEZOWPijgi16pVq3D48GF0794djx49ws2bN4u0sbS0hJWVFU6cOCFAQvG5evUq2rRpU+pUzEZGRkhJSVFSKtUQFBSEf/75ByNGjMDDhw9x9OjRIm1MTEzQuHFjnDlzRoCE4jR//nzwPI/Tp09j4sSJaNmyZZE2ampqcHBwwK1btwRIKE50XBXn+vXrsLS0LLWdpaUlbty4If1sa2tbZIggoeuWooWHh6Nhw4b4888/4eDgAD09PaEjidrdu3fRunVr6OrqlthOV1cX6enpSkqlGFTEEbkq09MMZXn//j2qVq1aaru0tDSoq9Mrq59iz549MDU1xdq1a0tcLqBhw4ZITk5WYjJxi4yMhLOzMxwcHEpsV7t2belsoKR0dFwVR01NDXFxcaW2i4uLg5qamsy20m78KiO6bikWYwx2dnY003c50dDQwNu3b0tt9/jx4zKd1xUZFXFErsr0NENZzM3NERMTU2Kb9+/fIzY2libj+ESJiYlo2bJlqTcRmpqaePnypZJSiV9ubm6Z1nykY/pp6LgqjouLC2JjY7Fw4UK5bYKCghATEwM3NzfptocPH8LExEQZEUWFrluK1bJlS3oQXo6aNGmCq1evIjs7W26btLQ03LhxA3Z2dsoLpgBUxBG5KtPTDGXp06cPkpKSsHTpUrltgoKCkJ6ejv79+ysxmfjp6OiU6YY3MTERNWrUUEIi1VC3bt0iM3t9jDGGW7duwdzcXEmpxI+Oq+LMnz8fOjo6+Omnn9CoUSNMnz4d69atw7p16zB9+nQ0btwYP/74I3R1dTF37lwAwKNHjxAbGwsPDw+B01c8dN1SrNmzZyM6OrrYVwDIp/P19cWLFy8wevRovH//vsj+goICjB07Frm5ufDz8xMgYTkScFIVUsE5OzszIyMjlpWVJd328Qw/qampTE9Pj3Xq1EmIiKKTmZnJ6tevz3ieZ97e3mzXrl2M4zjWo0cPduDAAebr68t4nmeWlpYyx52UrkOHDkxfX5+lpaVJt318vj58+JBpaWmx3r17CxFRlMaOHct4nme7du2Sbvv4uP7xxx+M4zgWGBgoRERRouOqWJGRkczGxkY6o1/hbLWFn21sbFhUVJS0fWZmJrt06ZLM7wf5gK5binX+/Hk2ZcoUpq6uzoYNG8aCg4PZuXPn2Pnz54v9IyXLz89nHTp0YBzHMTMzMzZq1CjGcRxzcHBg3333HbOwsGAcx7GuXbsyiUQidNwvQkUckWvNmjWM4zg2ZMgQ9u7dO8aY7E1Gfn4+GzBgAE2B/Ynu3r3LmjVrJr2x+PgGo0mTJrRkw2fYuXMn4ziOdezYkaWnpzPGZM/Xly9fMnd3d8bzPDt69KiQUUUlOTmZ1ahRg2loaLBp06axqKgoxnEc8/b2ZteuXWMzZ85kWlpazNjYmKWmpgodVzTouCqeRCJhZ86cYb/88gsbPXo0Gz16NPvll1/YmTNnRH/zpmx03VKc/x7T/x5XeX+kdG/evGFjxoxhmpqaRZZoUFdXZyNHjmRv3rwROuYX4xj7aE5jQv5fQUEBOnfujLCwMDRo0ABdu3bFH3/8AXt7e7i4uOCvv/5CYmIiunTpghMnTtBLuZ9AIpHg6NGjOHXqFJKSkiCRSFCvXj107twZXl5eRV62J2UzZMgQ7N69G3p6emjbti1OnToFa2trNGrUCOfPn0dWVhaGDRuGrVu3Ch1VVKKiouDl5YWUlJQi/84ZYzA2Nsbhw4dpkeRPRMeViAldtxTD39//k+6ftmzZosA0qiU9PR1hYWEy52uHDh1U5t1XKuJIid6+fYspU6Zg48aNyMvLk9mnpqaGESNGYPny5SXOBkg+T+HafKTsGGNYvHgxFi1aVGSq8GrVqmHatGkIDAykBw6fITs7G5s2bcLp06eL3MCNGjUK1apVEzqiKNFxVbx3794hMzMTWlpaMDAwEDqOSqPrFhGL9+/fY/PmzRg9erTQUT4bFXGkTFT9aUZFcvXqVcyfPx9HjhwpUjiTsikoKMC1a9dkzlcnJydoamoKHU2lZWZm0k2yAtBx/Tx//PEH1q5di5s3b4IxBj8/P2zevBkAcODAAYSEhCAoKAhWVlYCJxU/um4RscjNzcXatWuxdOlSpKSkoKCgQOhIn40W9CBlUrNmTQwcOLDYfarwNEPR3rx5g0uXLiEtLQ3GxsZo06YNdHR0ZNpERERg7ty5OH36NBhjqFKlikBpxU9NTQ1OTk5wcnIqsi8tLQ1Lly7FggULBEimmp4/f45FixZh48aNyMrKEjqOyqDj+nkKCgowYMAAHDlyBBoaGrC1tS0yE2iLFi0wYMAAODo6Yvr06QIlrdjoukXEJDIyEqGhodLztVu3bnB2dpbuz8nJwe+//47ly5cjMzMTjDE4OjoKmPjLUU8c+Wyq9DRDkbZu3YrJkyfj1atX0m01atTA2rVrMXDgQKSkpGDkyJE4duwYGGPQ0dHB6NGj8cMPP8DY2FjA5KolOTkZQUFB2Lx5M96+fUvnaxkkJiZKL4jFTXOflJSEBQsWYNu2bXj37h14nkd+fr4AScWFjqtiLV++HJMmTUKPHj2wadMm1KpVCzzPw9/fX9oTBwA2NjYwNjZGRESEgGkrJrpuKc6vv/4KjuMwduxYGBgY4Ndffy3zdzmOw8yZMxWYTpxGjBiBbdu2AfjwWkXhKxPjxo3D8uXLcebMGfj5+SElJQWMMdjb22P27Nno3bu3kLG/nJInUiEicPHiRTZr1iw2evRoNmvWLBYZGSmz//Xr12zOnDnMyMhIOqNSy5YtBUpbsV24cEF6jKpXr85atmzJGjZsyNTV1ZmGhgY7e/Ysq1+/PuM4jmlra7OJEyeylJQUoWOLRkFBAduxYwcbNmwY69atGxs2bBjbtWsXKygokLZ5/PgxCwgIYJqamtLZvby8vARMXfGdPn2aWVtby8yIZmtry8LDwxljjOXk5LDx48fLHNP+/fuz2NhYgZNXbHRclcPOzo7Vrl2bvX79Wrrt4+UbGGOsb9++rF69esqOV+HRdUuxCmegvHv3rsznj2dRLO6PZqcsauvWrdLj0717d/b999+zUaNGMUtLS8bzPJs/fz7T0tJiHMexpk2bskOHDgkdudxQEUdkDB8+XGba4ML//u677xhjH25CTExMpPsdHBzYkSNHBE5dcfXv359xHMemTp0qXaaBMcbu3bvHmjVrxnR0dBjHcaxt27YsMTFRuKAilJeXxzp37lzk4ld448vYhx93PT09aRtPT08WExMjcPKKLSYmRmZaZiMjI+l5WrVqVXbr1i3WvHlz6THt168fu3HjhtCxKzw6rsqjo6PD+vbtK7OtuCJuyJAhTEtLS4nJxIGuW4q1detWtnXrVumaeoWfy/pHZLVv357xPM8OHz4ssz0vL4/1799feh87YcIElp+fL1BKxaAijkhV5qcZimJiYsJsbGyK3RcWFsY4jmM1atSgBVI/w7JlyxjHcUxHR4d9++23bNWqVey3335jbm5ujOd5NmrUKOkNcdeuXdn169eFjiwKPj4+0vUh//t0/ezZs6xBgwbM0NBQuljyx730RD46rsqjr6/PunbtKrOtuCLOxcWFGRkZKTOaKNB1i4iJgYEBa926dbH74uLiGMdxzNzcXCXXhqQijkhV5qcZiqKhocG8vb2L3ZeTk8M4jmN9+vRRcirV0KZNG6aurs4uX75cZN/o0aOlvXKLFy8WIJ14NWjQgJmamrL3798X2Xf06FHGcRyrUqUKe/bsmQDpxIuOq/I4OzszIyMjmSLj4yIuNTWV6enpsU6dOgkRsUKj61bFtGnTJvbLL78IHaPCUVNTYz4+PsXuy8vLYxzHyT2fxY4X+p08UnHcvHkTTk5O6NOnj8x2dXV1zJ07F4wxNGjQAL///jst6llG+fn50NXVLXZf4SxehoaGyoykMuLj49G2bdtiZ6CcOnUqAKBRo0aYMmWKsqOJWkpKClq2bAkNDY0i+9zc3AAA7u7uqFOnjrKjiRodV+Xx9fXFixcvMHr0aLx//77I/oKCAowdOxa5ubnw8/MTIGHFRtetimnDhg345ZdfhI5R4UgkkmJ/V4EP968A5J7PYkdLDBCpV69ewdrauth9hdudnJxooWRSIWRnZ8PMzKzYfYUz/rVo0UKJiVTD+/fv5S4wra+vDwA0+9xnoOOqPCNHjsTevXuxa9cuREZGomvXrgCAmJgYTJgwAX/99RcSExPRpUsXDB06VOC0hBDyeaiII1KV+WmGIkVERGDEiBGfvJ/jOGzatEmR0USNMSa3R7jwQYO2trYyI1Ua9CBHMei4lg81NTUcP34cU6ZMwcaNG/HHH38AAK5fv47r169DTU0N33zzDZYvX07HXA66bhEx2bdvH8LCwordx3Gc3P0cxyEhIUGx4RSIijhCFOzBgwd48ODBJ++niyERyo0bN0pcu0jeflrDqGR0XJVHW1sbq1evxuzZsxEWFoakpCRIJBLUq1cPHTp0gImJidARKzS6bhExef36NV6/fv3J+8X+EIcW+yZSPM9DT08PRkZGxe5/9OgRdHV1i90v9qcZilK4+OTnovc15ON5/rN/gDmOo8WT5eD5T39VmuM46QKrtIh68ei4Vjzv37/H5s2bMXr0aKGjVCh03aqYnJ2dcfnyZfot+MijR4++6PsNGjQopyTKRz1xREZlfZqhKHQxU6zPfQZFz67k+/nnn4WOoJLouFYcubm5WLt2LZYuXYqUlBQq4j5C1y0iJmIuwr4U9cQRqcr8NIMQQoi4RUZGIjQ0FGlpaTA2Nka3bt3g7Ows3Z+Tk4Pff/8dy5cvR2ZmJhhjcHR0RHR0tICpK77Hjx9DT08PBgYGJbZ7+fIlsrOzYWpqqqRklQv1xJWuoKAAGRkZ0NLSQvXq1YWOo3BUxBFSQbx48QJVqlSBjo6O0FEIIURURowYIR0GWDgEFQDGjRuH5cuX48yZM/Dz80NKSgoYY7C3t8fs2bPRu3dvIWOLgpqaGvz9/Ut91+2bb77Bli1baKh6Kb50iSYq4op6/Pgxvv/+exw7dgxv374FANStWxdjxozBDz/8oLKjxWg4JSFKcOjQIVy4cAH5+fmwtbWFr68v9PT0wBjDL7/8gpUrV+Lff/8Fx3Fwd3fHqlWr0KhRI6Fji8qvv/4KOzu7Iuscfuzo0aO4fv06Zs2apaRkquvkyZO4desW6tevj/79+8ud3ZaULDMzE1evXkVGRgYaNGiAtm3bCh1JVLZt24atW7cCALp164YmTZogOzsbZ86cwapVq1C7dm388ssveP/+PZo0aYK5c+eib9++woYWEcZYmYegU79A6b7kGKlqMfIlUlNT4ezsLH1AU+jJkyeYPn067t+/r7qT7Sh1aXFCKpn8/HzWs2dPxvM843mecRzHeJ5nZmZm7NmzZ2zcuHGM47gif7Vq1WKpqalCxxcVjuPY8OHDS2339ddfM57nlZBINaxevZqZm5uziIgIme0DBw6Untc8z7PWrVuzN2/eCJRSnNLS0tjgwYOZhoaG9Dj+9xzesGEDq1GjBgsPDxcwZcXXvn17xvM8O3z4sMz2vLw81r9/f+mxnTBhAsvPzxcopXiV9be1X79+TFdXVwmJCPmfSZMmMY7jmJOTE7tw4QLLzs5mz549Y+vWrWPVqlVjPM+zmJgYoWMqBPXEESkLC4vP/i7NTlm8tWvX4vjx49DR0cGAAQNgbGyM6OhoXLhwAdOmTcOePXvQo0cPBAUFwdzcHA8fPsTUqVNx8uRJLFmyBAsXLhT6f0HlFBQUfNZMgZXVwYMHkZubK/Nu0cmTJ7Fv3z7Uq1cPvr6+OHv2LC5fvowNGzZg/PjxAqYVj8zMTLRt2xYJCQmws7NDu3btsHr1apk2/fv3x7fffot9+/bBxcVFoKQV382bN+Hk5FSkF15dXR1z587FwYMHYWZmht9//516MsrowoULMp9TUlKKbCuUn5+Pu3fvIjQ0FE2aNFFGPEKkTpw4AQMDA5w4cQKGhoYAAD09PYwaNQqampoICAjAiRMn0Lx5c4GTlj8q4ohUUlKSdErrT0UXxuLt2LEDampqCA8Ph4ODg3T75MmTsWzZMhgaGmLPnj3SRdSbNGmCP//8E2ZmZjh+/DgVcQpw+/Zt1KhRQ+gYonH37l00bdpUpvDdvXu3dAHVVq1a4e3bt2jQoAFCQkKoiCujefPmISEhAbNmzcLs2bMBoEgRZ2BggObNm+P8+fMCJBSPV69ewdrauth9hdudnJzoOvUJ3N3dZY5XaGgoQkND5bZn//8e4pQpU5QRjxCpR48ewcPDQ1rA/VfhO69fOnFfRUVFHCnC0dERPj4+6Nu3L02y8YXi4+PRtm1bmQIOAMaPH49ly5ahZcuW0gKukJ6eHpycnBAeHq7MqKI0YsQImc8RERFFthUqfFp85coV9OvXTwnpVEN6ejrc3Nxktp0/fx7169dHq1atAHxYWLlt27a4ePGiEBFF6dChQ7CxsZEWcPJYWloiLCxMKZnESiKRyH0fU139w23Ox7+zpGTDhg2TFnHbtm2DpaUl2rVrV2xbTU1NmJiYoHfv3kWudYQo2tu3b2FsbFzsvsJ1jQsnO1E1VMQRqd27d2PHjh04efIkJk+ejFmzZqF///7w8fGBh4cHPcX8DFlZWcUuvVA4BXPt2rWL/V6tWrXw5s0bhWZTBYWTGQAfeoMfPHiABw8elPid5s2bY9GiRQpOpjqqVauGjIwM6efExEQ8evQIw4YNk2mnq6uLnJwcZccTradPn5Zpcg2O45CVlaWERIT8z39/W7dt2wYXFxds3rxZuECEkCKoiCNS3t7e8Pb2RmZmJnbv3o2QkBBs27YN27dvR506dTB48GAMHToUdnZ2QkcVlcInwf9VOMWwvMKYCuayOXfuHIAPQ3k8PDzQrVs3/PDDD8W2LXxaTOsZfhorKytcuHABjx8/hqmpKf744w9wHIdu3brJtHvy5InchxKkKH19fTx//rzUdgkJCahZs6YSEonbvn375PZYFg79LW4/vc9dOolEInQEQkr04MEDbN++/bP2f/xAUkyoiCNFGBgYYMyYMRgzZgwSExMREhKCnTt3YsmSJVi6dKl0ivwhQ4agfv36QscllVj79u2l/+3n5wdXV1eZbeTLffvtt/D19UXz5s1haWmJGzduoGbNmujVq5e0zZs3b3DlyhV06NBBwKTi4uTkhLNnzyIxMRHm5ubFtomJicGNGzcwYMAAJacTn9evX+P169efvJ8emH0ZWmaEVAQXL14scTh/RESE3P1UxBGVZW5ujpkzZ2LmzJmIjo7Gjh07sGfPHvz000/4/fffkZKSInTECq+kJ0Dy9pU2JJAUtWXLFqEjqKShQ4fixo0bWLVqFa5fv4569eph27Zt0NPTk7b5888/kZubi44dOwqYVFzGjx+PEydOwNPTE7t27YKtra3M/gcPHsDX1xeMMYwbN06glOKQmJgodASVtmbNGixevBjBwcEy78V5e3tj//790s9OTk4ICwuDtra2EDFJJeXn5yd0BMFw7HOmIiSVUlpaGnbv3o1t27bh+vXrMDIyQlpamtCxKjSe5+U+6S38p1fc/sKZvgoKChSaT5Wkpqbi7t27aNiwIWrVqiXdnpCQgOnTp+PWrVswNTXFrFmz0KZNGwGTitO7d++QlZVV7NC+5ORkZGZmwtLSUqa4IyULDAxEUFAQOI6DtbU17t+/j9q1a8PIyAhxcXEoKCjA9OnTMWfOHKGjkkqsc+fOuHnzJp49eyadpfbkyZPo0aNHkWVGli1bRjPUEqIkVMSREuXm5uLAgQPYsWMH/v77bxQUFKBatWoYOHAgfH19ae2iUgwfPvyLvk+9S2U3adIkrFixAvHx8bCxsQHwYWKZhg0bIi0tTVo06+jo4MaNG3KnJCdEmfbu3Yt58+YhNjZWZnujRo0wc+ZMDB48WKBk4uXg4ABLS0vs3btX6CgqwdTUFDY2Njhz5ox0m7+/P4KDgxEVFSWzzIiZmRn++ecfAdMSUjY3btxAVlZWkdmXxYSKOFKERCJBaGgoQkJCcOTIEeTm5kJTUxM9e/aEj48PevToAU1NTaFjEiLD3t4e+fn5uHnzpnTbihUrMHHiRAwZMgQ///wzjh07hsmTJ2PkyJFYt26dgGnFKSYmBpcvX0ZGRgaaNGkiXVz53bt3ePfuHfT19QVOKF7p6elISkqCRCJBvXr1ULduXaEjiZauri769u2LnTt3Ch1FJejo6MDLywshISHSbebm5mCMISkpSbrN09MTFy9epBE6RBScnZ0RHR2N/Px8oaN8Nnonjkj9888/0nfe0tPTwXEc3Nzc4OPjgwEDBqBatWpCRyRErqdPn8LZ2Vlm27Fjx6Curo5ly5bByMgIEydOxLZt22jx5E909+5dDB8+XOYJu5+fn7SI27lzJ77++mscO3asyKyVpGxq1qxJs1CWE2tra7x48ULoGCqDlhkhqkrs/Vi80AFIxeHs7IzVq1ejTp06WLhwIR4/foxz584hICCACjhS4WVnZ6NKlSrSzwUFBYiKioKjo6N0wU/gwzC1J0+eCBFRlJKTk+Hm5oZLly6hd+/eCAoKKnLh8/b2hqampswkB6TsYmJisGHDBvz22284cuSIdHvhe4jk0wQEBOD8+fO4c+eO0FFUwn+XGQFAy4wQUkFQTxwpIi4uDtOnT8f06dPL/B2O4/Du3TsFphKve/fuISMjAxYWFjIXuM2bNyMiIqLY7/To0YOmFf9EJiYmMjdtEREReP36Ndzd3WXa5efn03DgT/Drr78iIyMDGzduxIgRIwAAU6dOlWmjq6sLOzs7ehfmE1EPp2KMHz8et2/fRvv27REYGIjevXvD1NSU/t1/JlpmhJCKiYo4IoMxJurxwRVNdnY22rZtCzU1NZl3tQAgPDwc27ZtK/Z7R44cQdeuXVG1alVlxFQJzs7O2LVrF5YtW4aOHTtixowZ4DgOvXv3lmkXHx9P7xt9gpMnT6J58+bSAk4eMzMznDp1SkmpxK+whzM9PR19+vSBq6trkeLY29sbY8aMwf79+6mI+wRqamoAPlzPvv/+e3z//fdy23IcR9e8UtAyI4RUTFTEESmJRCJ0BJWzZ88eZGZmYvny5TA2Ni6yn+O4Ii/fR0dHY+nSpdi9eze++eYbZUUVvR9//BEHDhzAlClTAHy4gevQoQPatm0rbZOUlIS4uDgEBAQIFVN00tLSZNaGkicvLw+5ublKSKQaqIdTcerXr0+LeJezRYsWYe7cuXKXGfHw8MD169dhaWkpQDpCKicq4ghRoGPHjkFLS6vEomHQoEEyn/v3749Nmzbh2LFjVMR9giZNmiAiIgLLly9HRkYGHB0di9wUh4aGokWLFujXr58wIUXI0NBQ+i5MSe7du4c6deooIZFqoB5OxfnvjImk/GhpacmdfKd+/fqoX7++khMRUrlREUeIAt24cQMtW7aUmXCjNBoaGmjWrBlu3LihuGAqysHBQe4QVQAYNWoURo0apcRE4teuXTscOnQIN27cgJ2dXbFtzp8/j1u3bsHf31+p2cSMejiJGD19+hQXL17E06dPAQB169ZFu3btaIg6EYyHh8dnfS8uLq6ckygfFXHkkxQUFODYsWO4f/8+9PT00KVLF5ibmwsdq8JKTU1FmzZtit3XpEkTuT8+JiYmuHr1qiKjEVIm33//PQ4ePIi+ffti3bp16NKli8z+s2fPwt/fH+rq6pg4caIwIUWIejiJmKSnp2Ps2LE4ePBgkVcvOI6Dl5cXVq1aRctkEKULCwv77O+Kfdg1FXFExt27d/HDDz/gwoULyM/PR+PGjREYGIh+/frh4cOH6NatGxISEqTt1dTU8Ntvv0nfQyKyOI5DQUFBsftKeuGe3k/8fHFxcdiwYYN0Ueq+ffsiKCgIABAZGYkrV67Ax8cHBgYGAicVh9atW2PFihWYMGECevXqhSpVqoDjOOzfvx8HDx5EVlYWOI7DmjVr0Lx5c6Hjigb1cCrH7du3cf/+fWRnZ8tdE+rj9c6IrFevXsHNzQ13796Fjo4OunTpAjMzM3Ach6SkJISGhmLv3r2IjY3FpUuXaEkiolTnzp0TOoJwGCH/7/Hjx8zAwIDxPM84jpP+qampsTNnzjA7OzvGcRxzcnJi3t7erGXLlozjOMbzPDt//rzQ8SskMzMz5uDg8Mnfs7e3Zw0aNCj/QCpuyZIlTENDQ3ru8jzPhg8fLt1/8eJFxvM8W7dunYApxSkqKor17duXVa1aVXp8dXR0WPfu3VlERITQ8UTn0qVLTE1NjZmamrLjx4+z/Px8xnGc9Hz9+++/Wf369ZmGhgaLiYkROK34nD59mllbWzOe5+X+Ff5GkJIFBgYyjuOYt7c3S0tLK7I/PT2dDRo0iHEcx3788UcBEhJSOVERR6S+/fZbxnEc69ixIzt79iy7desW27JlC6tVqxazsbFhPM+zzZs3y3xn48aNjOM4NnDgQIFSV2ze3t5MTU2NJSUllfk7Dx8+ZDzPM29vbwUmUz1//fUX4ziOWVhYsIMHD7L09HSZm+JCtWrVYt27dxcopfhJJBKWlpbGUlJSWH5+vtBxRG316tVMXV2d8TzP9PT0GM/zTF9fn1WvXp3xPM/U1NTY+vXrhY4pOtHR0UxTU5NpaWkxHx8f1qJFC8bzPPvpp5/YoEGDmKGhIeN5no0YMYLNnj1b6LgVXsOGDZmpqSl7//693Dbv379npqamzMbGRonJCKncqIgjUlZWVszY2Jjl5OTIbN+zZw/jOI41adKk2O81adKE1atXTxkRRWffvn2M4zjWu3dvJpFISm0vkUhYz549Gc/z7MCBA0pIqDo8PDyYnp4eS0hIkG4rrojr2rUrs7CwUHY8QopFPZzlr3///ozneXbq1CnGGGP+/v4yPW4vX75k3t7ezNjYmD1+/FiomKKhra3NBg8eXGq7wYMHM21tbSUkIoQwxhi9E0eknjx5go4dOxaZSbFw8U5bW9tiv2dra4sjR44oPJ8YeXl5oVWrVjh27Bh69eqFFStWyF1HJyEhAePHj0doaChat24NT09PJacVt6tXr6JNmzawsLAosZ2RkRHCw8OVlEp15Ofn49ixY9J3DVu3bi2dHv/Zs2fIyMhA48aNoa5Ol5WyiI2NBc/zaNOmDQ4dOgTGGDIyMiCRSGBkZCRdsJp8usjISNjb26Nz587F7q9evTq2b98OMzMzzJgxo8QZbQmgo6ODjIyMUttlZGRAR0dHCYkI+Z/PnZ0S+DBvwd9//12OaZSLrrZE6t27d8UuSG1oaAgAqFq1arHf09PTQ35+vkKzidnBgwfh5uaGEydOoGHDhnBwcIC9vT2MjIwAfLjwXb9+HdeuXYNEIoGlpSUOHDggcGrxef/+vdxz9L/S0tKo0PhEERER8PHxQXJyMhhj4DgOeXl50iIuKioK3t7e2Lt3L/r37y9wWnGws7ND+/btpS/lcxxHM/uVk8zMTLi7u0s/a2pqAgBycnKgq6sL4MOaZ66urjh9+rQQEUXF0dER58+fx5UrV9CyZcti21y9ehVhYWEyx50QZQgLCwPHcXInLioJzU5JCClRnTp1cO3aNUydOhXbtm3DlStXcOXKFemPR+EPj5aWFvz9/bFw4ULo6+sLGVmUzM3NERMTU2Kb9+/fIzY2FjY2NkpKJX5xcXHo1q0b8vLyMH78eLi4uMDb21umTe/evVGlShXs37+firgyMjAwgImJidAxVFLNmjWRlZUl8xkAHj58iGbNmkm3v3nzBq9evVJ6PrGZNGkS/v77b3Ts2BHfffcdhgwZAjMzMwDAo0ePsGvXLqxYsQIFBQWYNGmSsGFJpeXo6AgfHx+5yzqpIiriCFGCqlWrYt26dZg3bx7OnTuHmJgYvHjxAsCHns4WLVqgQ4cO0l5P8un69OmDoKAgLF26FJMnTy62TVBQENLT0zFhwgQlpxOvOXPm4O3btzh+/HiRNeIKaWpqwsHBAdevX1dyOvFq06YNbt68KXQMlWRlZYXExETp51atWoExhvXr12PVqlUAgAcPHuDs2bOlDr8mQI8ePTBv3jzMnDkT8+fPx/z584u04TgOc+fORffu3QVISCqzBQsWYMeOHbh69SquXbsGS0tLDB06FEOHDoWVlZXQ8RSKY5/T/0hUEs/zqF27Nho1alRkX1hYmNx9d+7cQWpqqtz10CqzFy9efHZhtnfvXgwcOLCcE6muly9fokWLFnj69CkGDBgAT09PDBkyBN27d8fXX3+NgwcPYseOHTA3N8f169fLNPSSALVr14aFhQUiIyOl23ieh7+/PzZv3izdNmTIEBw/fhz//vuvACnFJzo6Gi4uLpg/fz6ts1nOgoKC8OOPP+LWrVuwtbXF+/fv0bBhQzx+/BgtW7ZEvXr1cPbsWWRlZWHJkiW0SH0ZXblyBStXrkRERASePXsGADAxMYGrqyvGjh0LJycngROSyuzmzZsIDg7G7t278eTJE3Ach1atWsHHxweDBg2SvsKiSqiII1I8z3/2d0ta1LoyMzY2xtKlS+Hj41Pm7zx+/BjffvstTp48Scf0E927dw8DBgzArVu3pGPk/ztstXHjxjh06JDKP50rT9ra2ujbty/27Nkj3VZcEde3b1+cOXMGOTk5QsQUne3bt+P8+fPYunUrmjdvjp49e8LU1BTa2trFtqcFqcsuJSUFhw8fhouLC5o0aQLgww2et7c37t69C+DDORwQEIB169aJ/r0YQsj/MMYQFhaGkJAQHDhwAK9evYKGhgY6d+4MHx8f9OvXT+7vrNhQEUekzp8//0Xfb9++fTklUR2FM8x17twZ69atk75HUByJRILff/8ds2fPRk5ODmxsbHDnzh0lJVUdEokER48exalTp5CUlASJRIJ69eqhc+fO8PLyoln/PpGpqSlq1qyJq1evSrcVV8TZ2NiA53k6Z+Xw8PBAt27dMG3aNAAfjuHHL+MXV0wUPoigBzrl486dO3j58iWsrKxoIhlCVNy7d+9w5MgRhISE4OTJk8jPz0f9+vWRlJQkdLRyQe/EESkqwsrfxYsX8c033+DUqVNo2rQpfvnlF0yaNKlIr+fVq1fxzTffICYmBhoaGpg1axZ++ukngVKL0+TJk1GjRg3MnDkTffv2Rd++fYWOpBI8PDwQHByMc+fOoUOHDsW2OXjwIB48eICxY8cqOZ14hIWFyTzEmTVrFvUACaC4VwJI2bx//x779+9HeHg4nj59CgCoW7cuXF1d4eXlJZ0FlJCKQktLC56entDU1EROTg7Onj2L3NxcoWOVH+UvTUdI5ZKXl8fmzJnDtLW1Gc/zzNHRkV27do0xxtjr16/ZhAkTmLq6OuM4jrm5ubH4+HiBE4uThoYGGzBggNAxVE58fDzT1tZm+vr6bM2aNez58+fSRdQzMzPZpk2bWI0aNZienh57+PCh0HErrOIWnieK9+LFC3bq1Cm2c+dOdvHiRaHjiFZERAQzNTVlPM9LF6Uv/ON5npmamtLxJRVKeHg4Gz16NDM0NGQ8zzN1dXXWpUsXtnPnTqGjlRsaTkmIkty9excjR45EeHg41NXV4efnh9DQUDx58gQ1atRAUFAQAgIChI4pWhYWFrC3t8f+/fuFjqJyDh06BF9fX7lPMLW1tbFr1y706dNHycnEo7ghqERxCmeh3bdvn3Qoqp+fn/T4b9y4EdOmTcORI0fg4uIiZNQK7969e2jZsiVev34tncbdzMwMHMchKSkJwcHBuHr1KvT19REdHQ1ra2uhI5NKKj4+HiEhIdi5cyceP34MxhgcHBzg4+ODr776CrVr1xY6YvkSuIgkFUxQUBD75ptv2I0bN2S2+/v7M57ni/3z9fUVKK04zZkzR/r0kud51r9/f5aamip0LNGbNGkSMzQ0ZFlZWUJHUUlJSUlswoQJrHHjxqxKlSpMW1ubWVlZsW+//ZY9ePBA6HgVHvXEKc+LFy+YlZUV4ziO2dvbs3HjxhU5/i9evGDq6upswoQJwgUViWHDhjGO49iyZcvktlm+fDnjOI75+fkpLxghjLFnz56xJUuWMHt7e2lPsYWFBZsxY4bKj2yinjgiFR8fj6ZNm8LFxaXIJCfDhw/Htm3boKWlJbO9oKAAEokEt27doncNymDLli2YOnUqMjMzpZMamJiYYNWqVejXr5/Q8UQtOzsb7du3h66uLlasWAF7e3uhI6mEI0eOQENDg9Z/+kI8z8PFxQVff/31Z32fZqcsuylTpuD333/HrFmzMHv2bADF94Q6OjpCIpHQ+oalqFevHmrVqiUzuVFxHB0dkZqaiidPnigpGSGAuro6GGMwNDTEwIED4ePjA2dnZ6FjKQVNbEKkdu7cCQDSi97HOI7DmzdvZLZdvnwZbdq0wfbt24tdAJR8kJCQgJEjRyIsLAw8z+P777/HpEmTMGvWLGzevBleXl7o27cvVq1aBRMTE6HjilLfvn2hpaWFixcvomXLlqhTp47cKds5jsPff/8tQErx8fT0RJcuXaiIKwcXL17ExYsXP+u7VMSV3aFDh2BjYyP3WlbI0tISYWFhSskkZunp6WWa+KxRo0a4ffu2EhIR8j8SiQQcx0FXVxenT5/G6dOny/xdjuOky46IERVxRCosLAw1a9aUOwNdcVq1agVLS0tcuHBBgcnEq6CgAEFBQZg7dy7evHkDe3t7bNiwAQ4ODgCADRs2wNfXFyNHjsShQ4dw9uxZzJ8/H2PGjBE4ufj892aMMYZnz55JF6T9GM0KWHY1a9ZEjRo1hI6hEmrVqoWGDRsKHUPlPX36tEyz03Ich6ysLCUkEjdDQ8My3ejeu3cPBgYGSkhEiCzGGB49evTJ3xP7vQAVcUTqzp07aNWqVbH7Shp1a2lpiWvXrikqlqg5ODjg1q1b0NbWRlBQECZNmlRknTI3NzfExsZizpw5CAoKwvjx47Fjxw5s2LABjRs3Fii5+CQmJgodQSW5u7vj8uXLMgunk8/TrVs3mthECfT19fH8+fNS2yUkJNBacWXQoUMH7N69G+vWrcPo0aOLbbNhwwZcvXoVQ4YMUXI6UtlV5ms/FXFE6tWrV3Kfoo0ePRqdO3cudp+RkRFevXqlyGiidfPmTXTq1Anr16+Hubm53HaampqYM2cOBg0ahG+++QZRUVFwcHDA27dvlZhW3Bo0aCB0BJU0Z84cODk5YdKkSViwYEGxw1MJqUicnJxw9uxZJCYmyv3djYmJwY0bNzBgwAAlpxOfGTNm4NChQxg7dix27NiBIUOGSNc8fPToEXbt2oWIiAhUqVIF06dPFzYsqXQq87WfijgipaenJ7cYa9OmDdq0aVPsvqysLOjq6ioymmht27YNvr6+ZW7ftGlTREZGYvXq1XQxJBXCrl270KNHD6xcuRK7d+9Gp06dSnzXcObMmQKkJOR/xo8fjxMnTsDT0xO7du2Cra2tzP4HDx7A19cXjDGMGzdOoJTiYWtriyNHjmDo0KG4ePEiIiMjZfYzxlCrVi3s2LGjyLEmhCgOzU5JpOzs7JCRkfHJM0uZmJjA2NgYN27cUEywSurp06eoW7eu0DFEJzU1FZs3b0Z4eDiePn0KAKhbty7c3NwwfPhw1KpVS+CEFZuFhQUGDhyIhQsXAvgwq1/hTKql4ThOuiYXkUXrxClXYGAggoKCwHEcrK2tcf/+fdSuXRtGRkaIi4tDQUEBpk+fjjlz5ggdVTRyc3Px559/Ijw8XPq+sYmJCVxdXeHt7Y0qVaoInJAQWfn5+Xjx4gXevXsnt42pqakSE5Uv6okjUh06dMCKFStw7Ngx9OzZs0zfOXLkCFJSUvDVV18pOF3lQwXcp9u/fz9GjBiB169fyxQdN2/eRGhoKBYsWIBNmzbBy8tLwJQVW1JSEtLT06Wft2zZImAaQj7PggUL4OjoiHnz5iE2NhYA8Pz5czx//hyNGjXCzJkzMXjwYIFTikuVKlXg7+8Pf39/oaMQUqIzZ85g7ty5uHTpEvLy8uS24zgO+fn5SkxWvqgnjkjdu3cPTZo0gbGxMc6fPw8rK6sS29+/fx9ubm7IyMjA7du3YWNjo6SkhBR15coVtG3bFhKJBP369YOvry/MzMzAcRySkpIQHByMgwcPQk1NTboMASmKeowU49GjR9DT04OhoaHQUSqd9PR0JCUlQSKRoF69evSAjBAV9tdff8HT0xMFBQWoUaMGzM3NUbVqVbntz507p8R05YuKOCJj5syZmDdvHvT09DBx4kR89dVXRWZIjIuLw+7du7Fs2TLk5ORg+vTp+PXXXwVKTMgHXl5eOHToEPbt2wdPT89i2xw8eBBeXl7o378/9u3bp+SE4kBFnPKp+pAfIl5ZWVnIz88vMunZv//+i+3bt+P+/fvQ09NDjx494OrqKlBKQv7HyckJ165dw9KlSzFu3LgiM4KrEiriSBHTpk3DkiVLpJ+1tLSk60S9fPlSeqPBGMPUqVOl784QIqRatWrBxsYG4eHhJbZzdXXFvXv3kJqaqqRk4kJFnPJUliE/RHzCw8Mxfvx43Lx5E8CH9SJ/+uknfPfdd7h69Sq6dOmCf//9V2bpkbFjx2LFihVCxiYEVapUgYODAyIiIoSOonD0ThwpIigoCP3798fixYtx5swZZGVlyay5U7VqVXTp0gVTpkyRO2MlIcr26tWrMvVWmJqaIjo6WgmJxOvGjRuf3bs+a9asck6jmj51yA/5NGlpaVizZg0uXLiA58+fy+3l5DgOCQkJSk5XscXFxaFLly4yxywtLQ2TJk1C7dq1ERgYiOzsbHh5ecHc3BwPHz7EoUOHsHr1anTs2LFMC60Toih6enqVZuQC9cSREkkkEiQmJuLFixcAAENDQ5ibm4PneYGTESLLzMwMVapUQVxcXIntmjRpgpycHCQlJSknmMgUzkb5qQqfyNPslGVTmYb8KFt8fDzat2+PFy9elGlWVYlEooRU4uHn54fg4GAMHToUv/76K4yNjREdHY2RI0fi9evXSE1NxcmTJ2XWjg0NDUX37t3Rs2dPHD16VMD0pLIbMmQIrly5gnv37gkdReGoiCNfbPPmzXjy5Ak9gSeCGjVqFDZu3IgffvgBc+bMKXJTzBjDzJkz8dtvv+Gbb77BunXrBEpasfE8DysrK7Rr1+6zvk+zWZZNZRryo2y9evXC8ePH4eXlhR9//BE2NjbQ09MTOpZomJmZQSKR4OHDh1BX/9+ArZMnT6JHjx5wdHQsdjRDy5Yt8fTpU5mRO4QoW3JyMpycnODn54d58+bJnMOqhoo48sWcnZ1x+fJlegJPBPXkyRPY29sjMzMTpqam8Pb2hpmZGYAPMwPu3bsXSUlJMDQ0xLVr11CvXj1hA1dQ9E6cchgbG6NTp07YuXOn0FFUTrVq1WBiYoK4uLjP6lWu7LS0tNC9e3ccOnRIZvurV69Qo0YNDBo0CLt27Sryva+++goHDhzA+/fvlZSUEBQ79D8xMRHbt2+Hubk53N3dUa9evWJHkHEch5kzZyojpkKobnlKCKlU6tWrh7Nnz2Lo0KG4desWFi1aJL2BK3xW1axZM+zYsYMKOCK4Tp064cqVK0LHUEmMMdjZ2VEB95ny8vKKzEYJfCiOAUBHR6fY7+no6NDDXKJ0s2fPBsdxxQ6dfvjwIR4+fCj3u1TEEUJIBdGsWTPExsYiLCwM4eHhePbsGQDAxMQErq6ucHd3FzYgIf9v4cKFcHJywg8//KDyQ36UrWXLlnj06JHQMQghSlCZh/DTVYMQonLc3d2pYCMV2pYtW9C9e3csXrwY+/fvV+khP8o2e/ZsdOzYEUePHkXv3r2FjkMIUSA/Pz+hIwiG3okjX4zeiSNC8PDwQLdu3TBt2rQi+x4/fgw9Pb1ihwSRktE7ccpROAtoWS7BNOvnp7lw4QKOHDmC5cuXY8iQIejcubPcAhkA3NzclJywYuN5Hnp6ejAyMiqy79GjR9DV1S12X0ZGBnJycuhcJURJqIgjX4yKOCKEkooNNTU1+Pv7Y9OmTQIkI6R027Zt+6T2lflp86f6uEAu7d04unbJ+pIlhOiBAxHagwcPcPz4cXh4eKBp06bFtrl16xbOnj2LXr16wcLCQskJyw8NpySEqBzGWJl6OMin+/fff5GdnS33+FaWRVa/FBVlijNs2DCa1OQLJCYmCh2BkM+2bNkyrF+/HgkJCXLbVK1aFZMnT8bDhw+xbNky5YUrZ1TEESlabJYQUpyUlBTMmDEDR44cwYsXL+S24zgO+fn5SkxGSFFbt24VOoKoNWjQQOgIhHy2v//+G3Z2diU+UGzQoAHs7Oxw+vRpJSYrf1TEEakv6bmgp56EqKbnz5/DyckJz549Q926dVGzZk2kpaXB2dkZDx8+RGpqKjiOg7OzMzQ0NISOK0pRUVEIDw/H06dPAQB169aFq6srnJ2dBU5GCCHikpycjJ49e5baztLSEidPnlRCIsWhIo5ISSQSoSMQQiqYuXPn4tmzZ/j1118xY8YMDB8+HNu3b8fFixcBfJhE4ttvvwXHcThx4oTAacXl3r178PX1la4X9/E7XC1btkRISAisra0Fy0gIIWKipqaGd+/eldru3bt3on9/k4o4Qgghcp08eRLm5uaYMWNGsfvd3Nxw6tQpNGzYEHPmzMG8efOUnFCcnj9/jvbt2yM1NRUmJiYYOHAgzMzMwHEckpKSsHfvXkRHR8Pd3R1XrlxBnTp1hI5cYf3666/gOA5jx46FgYEBfv311zJ/l5ZvKJvc3FwsXboUhw8fxv3795GdnV1sOxpSTYRmY2ODiIgI5ObmokqVKsW2yc3NRUREhPgfkDFCCBEhjuMYz/Of9aempiZ0fNHQ0tJi/fv3l34OCAhgPM+zt2/fyrTr1asXs7KyUnY80RozZgzjOI5NnjyZvXv3rsj+9+/fsylTpjCO49i4ceMESCgehb8Fd+/elfnMcVypfzzPC5y+4vv3339Zs2bNGM/zTENDg+nq6jKO45iJiYnMcTYzM2NmZmZCxyWV3IIFCxjHcWzw4MHs9evXRfbn5OSwIUOGMJ7n2dy5cwVIWH6oJ44QIlrsM9/j/NzvVUb6+voyn6tXrw4AePr0qczUzNra2tJ3ukjpjh8/joYNG2LJkiXF7tfQ0MCiRYtw7Ngx/PXXX1i5cqWSE4rHli1bAEDaW1n4mZSPBQsW4NatWxg1ahR+//13jB49GsHBwXj69Cnevn2LP//8E4GBgWjdujV27doldFxSyY0fPx7BwcHYs2cPzp07h8GDB8PS0hIAkJCQgF27diEtLQ0NGzbExIkThQ37hWidOEIIIXK1bNkSHMchOjoawIeZ/wICArB8+XKMGzcOwIehKVZWVtDR0SlxWmfyP9ra2vDy8sKOHTtKbDd06FDs378fb9++VVIyQmTZ2toiOzsbiYmJ0NDQkL4X+9/3ieLi4mBvb4958+bh+++/FzAtIR9mVPbx8cHZs2cB/O8948KSp0OHDggODoaJiYlgGcsD9cQRQgiRy8PDA8uXL0d6ejpq1qyJPn36QFdXF1OnTsWTJ09Qt25dhISEIDU1Fd9++63QcUVDX18fycnJpbZLTk4u0htKysfmzZvx5MkTzJo1S+goFdqjR4/QqVMn6eyzhYuB5+XlSbc1btwY7du3x9atW6mII4KrXbs2zpw5g+joaJw5c0b6W1u/fn106tQJTk5OAicsH1TEEUIIkWvo0KFITk5GXFwc2rdvDwMDA6xfvx7Dhw9HUFAQOI4DYwxNmjShSU0+gbOzM/766y8cO3ZM7nTYx48fx8WLF9G7d28lp6scNmzYgMuXL1MRVwptbW1oa2tLPxc+VEhJSUH9+vWl2w0MDKSz1hIilP79+6NOnTpYvXo1nJycVKZgKw4NpySEqJzHjx/j+fPnJU4z7ObmpsREqufx48c4fvw4Xr58CRsbG/Tp04fWifsEUVFRcHNzA8dxGDRoEIYMGQIzMzMAH3o+du3ahd27d0MikSA8PBxt2rQRNrAKcnZ2xuXLl0U/zbiitWjRAlWqVEFUVBQAYP369RgzZgy2bdsGHx8fAEB+fj4aNmyIvLw8PH78WMi4pJLT1tZGv379sHv3bqGjKBwVcYQQlbFp0ybMmzcPjx49KrUt3biVTWxsLHieR9OmTYWOonJCQkIwatQovHnzRvrORiHGGHR0dLB+/XrpjTIpX1TElc24ceOwZcsWpKSkoGrVqnj27BnMzc2hq6uL+fPno27duti0aROOHj2KIUOGIDg4WOjIpBKztbWFlZUVjh49KnQUhaPhlIQQlbBmzRqMHz8ejDHY29vDwsICenp6QscSPTs7O7Rv3x7nzp0TOorK8fHxgbu7OzZs2ICIiAg8e/YMAGBiYgJXV1cEBATIDFcjRAhfffUVrl69isjISHTt2hUmJib47bff8P3332Ps2LEAPjx0qF27NhYuXChwWlLZDR48GIsXL0ZKSgpq164tdByFop44QohKsLa2xpMnT3Ds2DF4eHgIHUdlGBkZoWvXrqXOokiI2FBP3Jf5559/cPDgQemQ6uHDh8PAwEDoWKSSy8vLQ79+/fDgwQMsWLAAvXr1Utmh/lTEEUJUgo6ODjp06IDjx48LHUWl9OrVC48fP0ZsbKzQUQgpV1TEEaJ6LCwsIJFIpDNSchwHY2Njmcl5CnEcJ+plcWg4JSFEJZiamkJHR0foGCrn559/houLC5YsWYIpU6YIHYcQQgiRKykpSeYzYwwpKSnChFEwKuIIISrBz88PixcvRmZmJg3pKUfx8fHw8fHBtGnTEBISgp49e8LU1LTYp5oAMGzYMCUnFAee58HzPOLi4mBjYwM1NbUyf5fjOOTn5yswnbh9yrEkpbtw4cIXfZ9m/iVCkkgkQkdQGhpOSQhRCQUFBfDy8kJiYiKWL1+O9u3bF5nxj3w6nuela8EVKu64MsbAcRwNTZPDzMwMHMfh7NmzMDc3l34uq8TERAWmE7fCxac/B52zRRX+m/9cdDwJUQ7qiSOEqAQ1NTWsX78eHTt2RMeOHaGhoYHatWsXe4Mn9nHwyjRr1iwqhsvBx0N8Pv5MPl9levKuDMOGDSvybz4zMxNHjx4Fx3Fo0aKFzJqGN27cAPDh/VkaBUGI8lBPHCFEJcTHx6NDhw5IT09HWX7W6MaPEEJKl5qaitatW8PKygorV66Era2tzP47d+5g/PjxePDgAaKiolR+WnciDrGxsVi9ejXCw8Px9OlTAEDdunXh5uaGMWPGoHnz5gIn/HJUxBFCVEKPHj1w8uRJ+Pv7Y9KkSbCwsICurq7QsUTv8ePH0NPTK/UJ+8uXL5GdnQ1TU1MlJVNtGRkZqF69OtTVacAMEdbw4cNx8uRJJCQkoEqVKsW2ycnJgZWVFbp27YqtW7cqNyAhH1m+fDmmTp2KgoKCYh/qqqurY9GiRZgwYYIA6crP5w8kJ4SQCuTixYto3rw5Nm/ejGbNmlEBV07Mzc0xderUUttNmzYNFhYWSkikGq5cuYJff/0VcXFxMtsPHjyI2rVro1atWjA0NMTy5csFSkjIBydPnkT79u3lFnAAoKuri/bt2yM0NFSJyQgp6vTp05g0aRI0NTUxadIkXL9+HS9fvsS///6LGzduYMqUKdDS0sLkyZPx999/Cx33i1ARRwhRCZqammjcuLHQMVQOY6xMw1ML25KyWblyJebPn49atWpJtyUmJuKrr75CWloaateujZycHEyePBlhYWHCBSWV3qtXr/Dq1atya0eIIi1duhTq6uo4deoUFi9ejBYtWqBatWrQ19dH8+bNsWjRIpw6dQo8z2PJkiVCx/0iVMQRQlRChw4daEFqAWVkZNA6fZ/g0qVLsLe3h6GhoXTb5s2bkZeXh8WLF+Pp06f4559/wPM89cYRQdnY2ODcuXMl/r7Gxsbi7NmzaNiwoRKTEVLU5cuX0b59e7Rt21ZuG2dnZ7i7u+Off/5RYrLyR4PtCSEqYcGCBWjVqhVmzJiBX375hdaO+gIfrxOVkpIid+2o/Px83L17F6GhoWjSpIky4qmE1NRU2NnZyWw7ffo0dHV1MW7cOACAo6MjXF1dERMTI0BCQj747rvv8PXXX8Pd3R0TJ07EoEGD0KBBAwAfZqf8888/sWzZMuTn52P8+PECpyWVXW5uLmrWrFlqu5o1ayI3N1cJiRSHJjYhhKiEX3/9FQ8fPkRwcDAsLCzg7u6OunXryl1iYObMmQKkFIf/rhNVuP5bSQrb7NixA1999ZUyIope1apV0aVLF+zfvx8A8Pr1axgYGMDDwwMnT56UtvPx8cGBAwdEf7NBxC0wMBCLFi2Su58xhu+//x5BQUFKTEVIUTY2NsjLy8P9+/flTgyVn58Pa2traGho4N69e0pOWH6oJ44QohJmz54tXZQ6ISGhxHXgqIgr2X/Xidq2bRssLS3Rrl27YttqamrCxMQEvXv3hoODgzJjipqpqSmuXr0q/Xzs2DHk5+ejU6dOMu2ysrJQrVo1ZccjRMaCBQvg6emJNWvWICIiAs+ePQMA1KlTB66urhg9ejScnZ0hkUi+aPF1Qr5U3759sWTJEowYMQIrVqxA9erVZfZnZWVhwoQJePz4MaZMmSJMyHJCPXGEEJWwbdu2T2rv5+enoCSqhed5+Pv7Y/PmzUJHUSmBgYEICgpCv3790KFDBwQFBeH58+eIj4+HtbW1tF39+vVRt25dXLp0ScC0hJTs+vXrCA4Oxu7du6UFHiHKYGFhgYEDB2LhwoUAPixM7+TkhKSkJOjp6aFbt24yi9OfPHkSWVlZsLCwQHR0NGrUqCFg+i9DRRwhhBCiZBkZGWjVqhWSkpKk2yZPnozFixdLP//zzz9wdnamYWqkQkpOTsaOHTsQEhKC+Ph46bDqgoICoaORSqS4B43Pnj3DqFGjcOzYsWK/07NnT6xfvx4mJibKiqkQNJySEEKIXJGRkSXO8vVfy5cvF/3iqcpiZGSE2NhY7Nu3D+np6XB0dISHh4dMm5SUFEyYMAE+Pj4CpSREVnZ2Nvbu3YuQkBBcuHBBugRJ3bp1MWjQIAwePFjoiITAxMQER48eRWJioszwXxMTE7i4uMDc3FzghOWDeuIIISonKioK4eHhePr0KQCgbt26cHV1hbOzs8DJxEdDQwM//fQTfv75Z7nvuqSkpMDPzw9nzpyhp/CEqJiCggKcPHkSwcHBOHr0KN6+fStdE5LjOJw7dw6urq6lToBEiCJU5iH/1BNHCFEZ9+7dg6+vL65cuQIAMjcaANCyZUuEhITIvHNESlazZk3MnTsXp06dQkhICCwtLWX2Hzx4ECNHjsSLFy/g4uIiUEpCSHmLjo5GcHAw9uzZg4yMDDDGoKGhgT59+sDHxwdBQUG4cuUK3NzchI5KSKVEPXGEEJXw/PlzODg4IDU1FSYmJhg4cCDMzMzAcRySkpKwd+9ePH36FHXq1MGVK1dQp04doSOLwosXL/D111/j8OHD0NXVxbJlyxAQEIDc3Fx899132LJlC9TV1TF79mwEBgbS03g5CtfZa9WqFbS1teWuuycP3SgTZZk7dy527NiBe/fuSR+EtW3bFj4+PvD29oaBgQEAwNXVFZGRkdT7TgTF8zzs7OzQr1+/z/r+rFmzyjeQElERRwhRCWPHjsXatWsxadIk/Pbbb9DU1JTZn5eXhx9//BFLly7F2LFjsXLlSoGSitOGDRswadIkvHnzBt27d8fdu3eRkJCARo0aISQkhJYXKEXh2nvx8fGwsbGRWYuvLOhGmShL4blZu3ZtjBkzBkOHDpXO7vdfVMSRiuBTf0sLqcJEPFTEEUJUgrm5ObS1tREfHy+3DWMMjRs3xtu3b5GYmKjEdKrhzp07aNOmDbKzswEA/fv3R0hICLS0tAROVvH5+/uD4zgsWLAAtWrVkn4uqy1btigwHSH/U/juK8dxaNeuHXx9fTFw4MAi621REUcqAp7nYWVlJXct09KI+beVijhCiErQ1taGl5cXduzYUWK7oUOHYv/+/Xj79q2SkqmGR48eYejQoYiMjIS2tjbevn0LXV1d/P777/j666+FjkcIKSfR0dHYvn279F04juOgqamJHj16YOjQoejduzc0NDSoiCMVQmWe2KT4qcYIIURk9PX1kZycXGq75ORk6OvrKyGR6ggODkaLFi0QGRmJnj17IikpCevXrwcAjBo1Cp6ennjx4oXAKQkh5cHJyQkrV67Es2fPcPjwYQwYMAAcx+HgwYMYOHAg6tSpg1GjRiE1NVXoqIRUalTEEUJUgrOzMy5evCh3cU8AOH78OC5evFjmdc8I8NVXX8Hf3x95eXlYvXo1jh49CmNjY3zzzTe4du0aWrZsicOHD6N58+YIDQ0VOq5oSCQSZGVlIS8vT26bvLw8ZGVlQSKRKDEZIR+oq6ujd+/e2LNnD1JSUrBhwwa4urri5cuX2LBhAxISEgAAgYGBuHHjhrBhCamEqIgjhKiEwMBA8DwPT09P+Pr64sSJE4iPj0d8fDxOnjwJPz8/eHp6gud5BAYGCh1XNP7880/Y2dnh6tWr+Pbbb2X2WVtbIzIyEjNmzEBaWhp69uwpUErx+f3331GjRg2cP39ebpvz58+jRo0aNAkPEZy+vj4CAgIQFhaGpKQkzJs3D40aNQJjDIsWLYKjoyNsbW0xZ84coaMSUmnQO3GEEJUREhKCUaNG4c2bN0UmjWCMQUdHB+vXr4ePj49ACcUnMDAQc+bMgYaGRontoqKi4OvriwcPHigpmbi5uLjgyZMnSEpKKrFdgwYN0KBBg09ekoAQZbh27RqCg4Oxe/dupKamin62PyI+lfmdOCriCCEq5cmTJ9iwYQMiIiLw7NkzAICJiQlcXV0REBCA+vXrC5xQdeXk5EBXV1foGKJQq1YttGzZssThvwDQs2dPXLt2Dc+fP1dSMkI+nUQiQWhoKEJCQkqdXIoQUj6oiCOEEEKUTFtbG/3798fOnTtLbDdkyBAcOHCAZlMlhBAig96JI4QQIjVixAi5w1KOHDkidwKDn3/+GY6OjgpMplrq1KmD2NjYUtvFxsbC2NhYCYkIIYSIibrQAQgh5HM8fvz4i75vampaTklUy9atWwF8KOY+1q9fP7nvHjx+/JhmqPsEHh4e2Lp1K/bs2YNBgwYV2+bPP/9EXFwcfH19lZyOEEJIRUdFHCFElMzMzIpMXlJWHMchPz+/nBMRUnZTp07Fzp07MWzYMISHh2PkyJGwtLQEACQkJOCPP/7Ahg0boKmpialTpwqclhBCSEVDRRwhRJTc3NyKFHHv3r3DpUuXAAA1atRAgwYNAHzoJcrMzATHcWjdujW0tLSUnpeQ/2rUqBG2b98OPz8/rF27FmvXrpXZzxiDtrY2tmzZgqZNmwqUkhBCSEVFRRwhRJTCwsJkPmdnZ8PDwwNNmzbFokWL0LVrV5n9p06dwrRp05CXl0eLUpMKYeDAgbC3t8fSpUvx999/Izk5GQBQv359dOrUCRMnToS1tbXAKQkhhFREVMQRQlTCzJkzkZCQgHv37sHIyKjI/i5dusDBwQE2NjaYPn06VqxYIUBKQmRZWVlhzZo1QscghBAiMjQ7JSFEJRw4cAAeHh7FFnCFjIyM4OHhgYMHDyoxGSGEEEJI+aKeOEKISkhPTy/TZCX5+fnIyMhQQiJCSvfixQuEhITg8uXLyMjIQMeOHTFt2jQAwO3bt5GQkIBOnTqhSpUqAiclhBBSkdBi34QQlWBra4snT54gLi4O9evXL7ZNcnIyGjdujHr16iE+Pl7JCcWB5/nPnvUTAAoKCsoxjWrbu3cvvv76a7x+/RqMMXAcBz8/P+kSDqdOnUL37t2xbds2+Pj4CJyWEEJIRULDKQkhKiEgIAA5OTlo3749tm/fjrdv30r3vXv3DsHBwWjfvj1yc3MREBAgYNKKjzH2WX+k7KKiojBkyBCoq6tjyZIluHz5cpFj2LFjR1SrVg0HDhwQKCUhhJCKinriCCEqQSKRYOjQodizZ4+0J6lmzZoAPgy1BD4UJwMHDsSuXbvA8/QMiwind+/eOHXqFKKiouDg4ADgQy/ox4upd+rUCY8fP8a9e/eEikoIIaQCorsYQohK4Hkeu3btwq5du+Di4gINDQ2kpaUhLS0NGhoacHFxwc6dO7Fnzx4q4IjgIiMj4ezsLC3g5KlduzaeP3+upFSEEELEgiY2IYSolEGDBmHQoEHIz8/HixcvAACGhoZQV6efO1Jx5ObmSnuKS/Ly5UslpCGEECI2dFdDCFFJ6urqqFWrltAxCClW3bp1cfv27RLbMMZw69YtmJubKykVIYQQsaAxRYQQQoiSdevWDXfv3sXu3bvlttm4cSOSk5PRs2dPJSYjhBAiBlTEEUJURlxcHPz9/WFhYQEdHR2oqakV+0dDK4nQAgMDUa1aNQwbNgw//PADLl26BADIycnB9evXMWvWLIwfPx41a9bEpEmTBE5LCCGkoqHZKQkhKiEqKgqdOnXCmzdvAAAGBgaoWrWq3PaJiYnKikZIsaKiouDl5YWUlJQia/MxxmBsbIzDhw+jdevWAiUkhBBSUVERRwhRCe7u7rhw4QImTpyIGTNmwMDAQOhIhJQqOzsbmzZtwunTp5GUlASJRIJ69eqhc+fOGDVqFKpVqyZ0REIIIRUQFXGEEJWgp6cHGxsbXLt2TegohBBCCCEKRe/EEUJUgqamJho1aiR0DEIIIYQQhaO3+wkhKsHFxQVxcXFCxyCkTCIjI3Hu3DnEx8fj5cuX4DgOBgYGaNy4MTp06EDvwRFCCCkRDackhKiEW7duoU2bNli4cCHGjh0rdBxCihUbG4sRI0bg+vXrAD5MYPJfhROctGrVCps2bULjxo2VnpEQQkjFR0UcIUQlbN++HdHR0VizZg1cXFzQuXNn1KtXDzxf/KjxYcOGKTkhqeyio6Ph4eGBnJwc6Orqonv37rCzs4ORkREYY8jIyMD169cRGhqKnJwcVK1aFWFhYbC3txc6OiGEkAqGijhCiErgeR4cx8n0bHw8bTvwoeeD4zgUFBQoMx6p5AoKCmBra4sHDx4gICAAS5Ysgb6+frFts7KyMHnyZGzevBkNGzZEXFxcsecyIYSQyoveiSOEqIRZs2bRjS6psA4fPowHDx5g0KBB2LBhQ4lt9fX1sXHjRmRnZ2Pfvn04evQo+vTpo6SkhBBCxIB64gghhBAFGz58OIKDg3H//n2Ym5uX6TsPHz6EtbU1/Pz8sHnzZgUnJIQQIiZUxBFCCCEK1rx5cxQUFOD27duf9L0mTZpAXV0dMTExCkpGCCFEjGidOEIIIUTBnj9/Dhsbm0/+no2NDZ49e6aARIQQQsSM3okjhKiUiIgIHD58GPfv30d2dnaRKdyBDxOe/P333wKkI5XVq1evUK1atU/+nr6+PrKyshSQiBBCiJhREUcIUQmMMQQEBGDbtm3Swq242SoLZ6ckRJny8/PlLndREp7nkZ+fr4BEhBBCxIyGUxJCVMK6deuwdetWODo64vTp0+jfvz8A4O7duzhx4gT8/f3B8zymTp2Khw8fCpyWEEIIIeTz0cQmhBCV0Lp1a8TFxSEpKQmGhoYYPnw4tm/fLrMe3L59+zBo0CAcOHAAffv2FTAtqWwK1zH8XLSuISGEkP+injhCiEqIj49H27ZtYWhoCOB/C33/9+Z3wIABcHR0xOLFiwXJSCo3xthn/RFCCCEfoyKOEKISJBKJtIADgCpVqgAAXr58KdPO2toaN2/eVGo2QiQSyWf/US8cIYSQj1ERRwhRCXXr1pWZir1BgwYAgOvXr8u0u3fvHtTVaU4nQgghhIgXFXGEEJXg4OCAuLg4aa9Fly5dwBjDtGnTcOfOHWRnZ2PRokW4evUq7O3tBU5LCCGEEPL5aGITQohK2LVrF4YOHYpDhw6hT58+AIAhQ4Zg9+7dMhNKqKmpISIiAq1atRIqKiGEEELIF6EijhCiMt69ewd1dXWoqakBAPLy8rBkyRIcOnQIL1++hI2NDaZNmwZXV1eBkxJCCCGEfD4q4gghhBBCCCFEROidOEJIpZKWlobAwEChYxBCCCGEfDbqiSOEVArJyckICgrC5s2b8fbtW5q2nRBCCCGiRfNsE0JESyKRYPfu3QgNDUVaWhqMjY3RvXt3eHt7g+c/DDRITk7GL7/8guDgYOTn5wMAPD09hYxNCCGEEPJFqCeOECJK+fn56NGjB/7++2/892eM4zj069cP+/fvx7Zt2zBu3Djk5uaCMYZ+/fph9uzZaN68uYDJCSGEEEK+DPXEEUJEafXq1Thz5gy0tbXh7++PJk2aIDs7GydOnMChQ4cwevRobNiwAYwxdOnSBQsWLICdnZ3QsQkhhBBCvhj1xBFCRMnZ2RlXrlxBZGQknJycZPZ9++23WL9+PTiOQ1BQEKZMmSJQSkIIIYSQ8kdFHCFElKpXr44WLVrg/PnzRfY9fPgQVlZWsLW1xe3btwVIRwghhBCiOLTEACFElLKzs2FmZlbsPnNzcwBAixYtlJiIEEIIIUQ5qIgjhIgSYwxqamrF7uM4DgCgra2tzEiEEEIIIUpBRRwhhBBCCCGEiAi9E0cIESWe56U9bp+K4zjpmnGEEEIIIWJDSwwQQkTrc59B0bMrQgghhIgZ9cQRQgghhBBCiIjQO3GEEEIIIYQQIiJUxBFCCCGEEEKIiFARRwghhBBCCCEiQkUcIYQQQgghhIgIFXGEEEIIIYQQIiJUxBFCCCGEEEKIiFARRwghhBBCCCEi8n/N2Y/8xkxTtAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est1.completed_trials_summary_[est1.completed_trials_summary_[\"Step\"].str.contains('Model Selection')]\n", "name_of_score_column = f\"Score ({est1._inferred_score_metric[0].name})\"\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "models = trials['Algorithm'].tolist()\n", "\n", "y_margin = 0.10 * (max(scores) - min(scores))\n", "s = pd.Series(scores, index=models).sort_values(ascending=False)\n", "\n", "colors = []\n", "for f in s.keys():\n", " if f.strip() == est1.selected_model_.strip():\n", " colors.append('orange')\n", " elif s[f] >= s.mean():\n", " colors.append('teal')\n", " else:\n", " colors.append('turquoise')\n", "\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Algorithm Selection Trials\")\n", "ax.set_ylim(min(scores) - y_margin, max(scores) + y_margin)\n", "ax.set_ylabel(est1._inferred_score_metric[0].name)\n", "s.plot.bar(ax=ax, color=colors, edgecolor='black')\n", "ax.axhline(y=s.mean(), color='black', linewidth=0.5)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "1ffb4306", "metadata": {}, "source": [ "\n", "#### Adaptive Sampling\n", "\n", "Following Algorithm Selection, Adaptive Sampling aims to find the smallest dataset sample that can be created without compromising validation set score for the chosen model. This is used to speed up feature selection and tuning; however, the full dataset is still used to train the final model." ] }, { "cell_type": "code", "execution_count": 12, "id": "1edf4244", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:36.725748Z", "iopub.status.busy": "2025-05-22T12:37:36.725220Z", "iopub.status.idle": "2025-05-22T12:37:36.915612Z", "shell.execute_reply": "2025-05-22T12:37:36.915047Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5oAAAKBCAYAAAA2k9RnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9/ElEQVR4nOzdd1hT1/8H8HcChDDDBpXpAnEvHNS999Y66qq12tqhto7WWrXW1lXbar+ts9Zqa93WVeuedeBGARfglilBNsn9/YG5PwIBgQTCeL+eh+eRe8+553PhBPPJuecciSAIAoiIiIiIiIgMRGrsAIiIiIiIiKh8YaJJREREREREBsVEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SQiIiIiIiKDYqJJRKWWRCKBRCLB8ePHjR1KoR0/flyMn8qHtm3bQiKRYM6cOYU6V1akp6ejWrVqMDc3x8OHD40dDlGpNmHCBEgkEqxdu9bYoRCVWkw0iUhv8fHxsLCwEBOrO3fuGDukYvPixQvMmTMHc+bMwYsXL4wdTrGIjIzEzJkz0bRpU9jb28PMzAyurq6oV68eBgwYgO+//x7Xrl0zdphkYMuXL8f9+/cxbtw4eHh4aJ2LiIgQX9/r168vchshISH47LPPEBgYiMqVK8Pc3BxWVlbw9PRE9+7dsWDBAty+fTvP+t7e3mIc2b9MTExgb2+PgIAAfPnll4iJicnzGqNHj9aqe+7cudfGXadOHa06uuiKSyqVwtbWFvXq1cP777+PW7duvf6HRGXCZ599BplMhtmzZyM5OdnY4RCVTgIRkZ6WL18uABC/ZsyYYZDraq537Ngxg1zPEMLDw8W4wsPD8yx3/vx5wdfXV/D19S254Axg48aNgqWlpdbv09bWVrC2ttY65uXlZexQS1ybNm0EAMKXX36Z69xbb70l+Pr6CsuXLy/5wAwgNjZWsLOzE8zNzYWHDx/mOp+93//666+Fvr5SqRSGDx8uSCQSrX5kY2Mj2Nraah0DIPTq1UuIj4/PdR0vLy8BgCCXywVXV1fxS6FQaNV3dHQUgoKCdMYyatQorbLjx4/PN/Zz587lik8XzTkrKysxLicnJ617NjMzE9auXVvonx+VTu+++64AQJg7d66xQyEqlTiiSUR60zw69MEHHwAAfvvtN6hUKmOGZHQBAQEIDQ1FaGiosUMpsIsXL2LkyJFITk5GvXr1sG3bNrx8+RIJCQlITExEVFQUdu3ahdGjR8PKysrY4ZYqGzZsQGhoKCZNmmTsUIpk1apVePHiBXr16gV3d3eDXjs2NhbNmjXDpk2bAACDBw/G4cOHkZSUBKVSiYSEBKSmpuLUqVOYMWMGHB0dsWfPHjx79izPaw4ZMgTPnj0Tv168eAGlUomVK1dCLpcjNjYWw4cPzzcuT09PSCQS/PXXX0hJScmz3K+//gogazS1ID755BMxrujoaKSkpGDXrl3w8PBARkYG3n33XYSFhRXoWlS6TZgwAQDw448/Ii0tzcjREJU+TDSJSC+XL1/G1atXYWdnh0WLFsHHxwdPnz7F/v37jR0aFdL3338PtVoNFxcXnDx5EgMGDNBKKJ2dndGnTx/8+uuvCAoKMmKkZEiCIGDVqlUAgBEjRhj8+kOGDEFISAjMzMywfft2/PXXX+jQoQMsLS3FMubm5njjjTfwzTff4MGDB5g6dSpMTU0L1Y6NjQ3Gjx+Pzz//HAAQFhaGkJCQPMv7+PigdevWSEhIwPbt23WWSUlJwebNmyGRSDBy5MhCxaNhbm6OPn36iIl2ZmYmfvvttyJdi0qXBg0aoHbt2oiNjcW2bduMHQ5RqcNEk4j0ohnNHDJkCORyufhmbN26da+tGx8fj08//RTVqlWDXC5HpUqVMGjQIFy6dOm1dc+dO4fp06ejVatW8PLyglwuh52dHZo3b46FCxfi5cuXedbNvsjQs2fPMGnSJPj4+EAul8PNzQ3Dhw/XORLZtm1b+Pj4iN/7+Phozcdq27ateC6vxYD69OkDiUSC/v3753t/9+7dE+ufOnUq1/no6GjMmjULDRs2hEKhgFwuR9WqVfH222/j5s2b+V47L1evXhXvU6FQ5FvWwsIi1zG1Wo0jR47gww8/RPPmzeHu7g6ZTAZHR0e0adMGv/zyCzIyMnReL/scwIiICERGRuKdd96Bp6cn5HI5qlWrhlmzZiEpKUmsExwcjBEjRsDDwwNyuRw1atTA/Pnz82wj+4I96enp+Pbbb1GvXj1YWVnB3t4enTp1woEDBwr408r72jlp5hWuX78e6enpWLx4MerXrw8rKysoFAq0b98e//zzT77XT0pKwpdffolatWrBwsICLi4u6N69O44cOZKrjcI6fPgwwsPDYWdnh+7duxe6fn727t0rxjh//nz069fvtXUsLS2xZMkSVK9evUhtNmjQQPx3fn8HAGDMmDEA/n/UMqft27cjISEh12u/KN544w3xg5v8XqNnzpzBiBEjxL9rCoUCAQEBr/27BgC7d+9G+/btYWdnB2tra9SvXx+LFi1CRkYG5syZk+vvlEb2/puRkYGlS5eiSZMmsLOz07kgW3BwMMaPH48aNWrA0tIS1tbWqFevHj7//PN858eeP38ew4cPF//eWllZwcvLC23atMFXX32FR48e5aoTGhqK8ePHo2bNmrC0tIRcLoeHhweaN2+Ozz77LM+nRhISEjBv3jw0atQItra2sLCwQI0aNTBx4kTcv38/zxiz//8QFRWFKVOmiG3rmp87bNgwABA/rCGibIz97C4RlV0pKSmCnZ2dAEA4c+aMIAiCcO/ePUEikQimpqbCs2fP8qwbHh4uzrcCIMhkMnGulkwmE3bv3p3vHE1kmy9laWkp2Nvbax3z9/cXnj9/rrNtTZl169YJbm5uAgDBwsJCax6iXC4XDhw4oFWvX79+gpOTk1jGyclJa55Yv379xLLHjh3TOZ9r69at4j3Gxsbm+fOZM2eOAEDw8fER1Gq11rlDhw6JP3e8mvdlZWWl9bP87bff8rx2Xvz9/QUAQsuWLQtdVxC05/EBEKytrXPNnWvVqpWQnJycb93t27eL92drayuYmJho1U9PTxf27t0rziVVKBRa8+CGDBmiMz7NHMuZM2cKrVq1EgAIpqamWj9L5DEHM3t9XefzO6fp58uXLxeaNWsm/s6y9zeJRJLn3L3nz5+LvxtNXU3MEolE+Pnnn8U2ijJ/csqUKQIAoUuXLnmWKeocza5duwoABAcHB52/98LS3OeoUaPyLDN//nwBgGBiYqLzNaaZo9mmTRvh5cuXgo2NjSCRSHTOuW7fvr0AQNiwYYPw66+/FmiOZl79R61Wi6/THj165DqvUqmEDz/8MNdrKHv/9/X1FSIiInRef+rUqVp17ezsBFNTUwGA0Lp1a+Gzzz4T7zsnTf+dPn260LJlS/G1YW9vL0gkEq2/wQsXLhSkUqnW31+ZTCZ+X6lSJeHy5cu52li/fr3W69Tc3DzX/Nycfevff/8VzM3Ndfb9/H7ewcHBgru7u9bfcxsbG622t23bpvPnqCmzevVqwdXVNVf9nE6dOiX2N6VSqfOaRBUVE00iKrKNGzcKAITq1atrHde8iV+0aJHOepmZmUKTJk0EAIK9vb2wZcsWISMjQxAEQbh586bQqlUrrTcTuhLNXr16CX/99Zfw9OlT8VhycrKwY8cOwdfXVwCglfhlp7muQqEQPD09hX///VdM5s6fPy/UrVtXTHJyLoxS0MWA8ko0U1NTxaT4559/zrN+9erVBQDC7NmztY5fv35dsLCwEAAI77zzjnDr1i0hMzNTEARBiIyMFN577z3xTeLFixfzvL4uo0ePFmNesmSJkJaWVqj6Dx8+FIYPHy78/fffWm/wExMThV9//VWoXLmyAECYPHlyrrrZf652dnZChw4dhJs3bwqCkPV7/fHHH8U33LNmzRIUCoUwZMgQ8U13YmKi8Pnnn4vXOHToUK42NG+mFQqFYG5uLvzyyy9CSkqKIAiC8ODBA2HgwIFi/d27d+dZv6iJpr29vVClShVh165dQnp6uiAIghAaGio0b95cTCpevHiRq74mWbOwsBDWrl0rpKamijEPGTJEkMlkYtJdlERT81r84osv8ixTlEQzPT1dTKwGDx5c6Lh0yS/RTExMFNasWSO+PvJa5Cd7oikIgvD222/r/N2Fh4cLEolEsLW1FZKSkvRONE+cOCGW+eCDD3KdnzVrlgBAcHFxEX766SfxNZSeni4cO3ZMaNiwoQBAaNSokaBSqbTq/vnnn+K1hw0bJjx69EgQhKwPA1etWiXI5XLx705+iaa1tbVgbW0t/Prrr+IHAzExMWIsa9asEct9/fXX4t/fzMxMISgoSEzM3d3dhcTERPH6SUlJYqI2YsQI4e7du+K5ly9fCkFBQcKnn34q7Nu3TyuuatWqCQCEzp07Czdu3BCPp6SkCMHBwcLcuXNz9UelUin4+PgIAIQqVaoI+/btE39eV69eFV9v5ubmwtWrV3P9LLIn+b6+vsKRI0fE+mFhYbnKJycniwl9zg8niSo6JppEVGTt2rUTAAjz5s3TOr569WoBgODn56ez3l9//SX+Z3748OFc55OSksQ3GHklmvl59OiRYG5uLkgkEiEyMjLXec11ZTKZcOvWrVznnz9/Ljg4OAgAhPfee0/rnL6JpiD8/0qFLVq00Fn37NmzYt07d+5ondO8kZs5c2aebWtGRfr06ZNnGV1CQ0O1PvW3t7cX+vbtK8yfP184cOCAzlVAC+PixYsCkLUqpybB08j+c61du7aYTGX31ltviWU6deqUa6RXEP7/Q46333471znNm2kAOkcPVSqV0Lp1azGGvOoXNdE0NzcXQkJCcp2PiooS5HK5AEDYuHGj1jnNaAkA4ffff9cZs+Z1WJREMy0tTUzg8xrhEYSiJZp37twR6yxYsKBQceUlr1Vns38w5evrKyxYsED8ACannInm6dOnBQCCt7e3Vp+aPXu2+IGOIAhFTjRTU1OFXbt2CR4eHmKZS5cuaZUJDw8XTExMBAsLC53JjyBkJVCaUbqdO3eKx9VqtfjBVF6vi+yx55doAhD+/vvvPNvX/Jz/+ecfnWUyMjKExo0bCwCEZcuWicfPnz8vvvY1Hyq+zvPnz8WYnjx5UqA6giAI3377rQBkjX5mT06z34e3t7cA6B5Z1rSp64PGvNSuXVvnB4NEFR3naBJRkdy/f1+ch/jWW29pnRs8eDAsLCwQGhqKs2fP5qq7efNmAEBgYCA6dOiQ67ylpSWmTZtW5NiqVKmC+vXrQxAEne1rDBo0CLVq1cp13MXFRVxN8K+//ipyHHnR/Lz+++8/3L17N9f533//HQDQokULrXlqEREROHr0KExNTfHJJ5/keX3NPNnDhw8XavVfX19fnDhxAk2bNgWQNYd2165dmDVrFrp16wZHR0e0bdsWu3btKvA1s2vSpAlcXFyQlJQkzgfVZfLkyTA3N891vEuXLuK/Z8yYoXO+lKbM9evX87y+h4eHODcvO6lUilmzZgHImkN348aNPK9RFAMHDoSfn1+u487OzmjRogWA3HFv3boVQNYcTF2rqGaPuSiioqLEPuLs7Fzk6+gSGxsr/tvBwSHPcj169ICbm1uur48++ijPOqmpqXj+/Ln4lX1P27i4OERHRxd4b8PAwEDUrFkTEREROHbsGABAEARxwZ6xY8cW6DoaS5YsEe/B2dkZFhYW6Nu3Lx4+fCieb9SokVad9evXQ6VSoWvXrqhfv77O69rY2KBv374AgIMHD4rHr169Kv4d+eyzz3S+LkaNGgVPT8/Xxl67dm306tVL57nt27fjxYsXaNiwodZrMTtTU1MMHTo0V4x2dnYAgPT0dK1+kR8bGxtIpVlvU58+fVqgOsD//80eOHAg6tSpo/O6mv9fDhw4gISEBJ3Xeeuttwq8ArOTkxMA4MmTJwWOk6giYKJJREXy66+/QhAEtGrVKtey/7a2tuIbIs1iQdlpVixt3759ntfP7xyQtfDMH3/8gd69e8PT0xMWFhZaC/NcuHABAHQuLlGQNjTnYmNjER4enm8shRUYGIhq1aoBADZu3Kh1Lj09XXyjlHOVyzNnzgDIund/f3+db87d3NzQtWtXAFkLyBT0TZ1Gw4YNceHCBVy8eBFz585F165d4ebmJrZ74sQJ9OvXD2PGjIEgCLnqp6en45dffkHnzp1RuXJlmJuba/1eoqKiAOT/ewkICNB53NXVVfy3JhnOq0x8fHye19csfKJLq1atxNVODb2ybrNmzfI8V7lyZQBZSVJ2ly9fBgC0bt06z5gDAwMLvUKrRnR0tPjv/JLB4hQbG6uVNGq+8koAgKzESch6KguCIECtViM2NhZ///03XFxcsGzZMgQGBmrdX340HzxoFjE7cuQIIiMjUatWLTRv3rxQ95OUlCTeQ0xMjPg6sbe3x5kzZzB16tRcdTSv7X///TfP17Wbm5u4aFFkZKRYV9NHzMzM0LJlS50xSSQStGnT5rWxBwYG5nlOE2NISEi+Mc6bNy9XjNWqVYOfnx8yMjLQrFkzLFy4EFevXs33gzALCwvxg8iuXbti9uzZOH/+PNLT0/Osk56eLn5Y07FjxzzLderUCUDW3zTNzy+n/H4WOWleOwXtb0QVBRNNIio0tVotrm6Z15L/o0aNAgBs2bIl10qJmmSjSpUqebaR3yfJycnJ6NixI4YPH449e/bg4cOHUKvVcHBwgKurK1xdXWFmZgYAWquU5pRf+9nPaeI1JM2oZs5Ec//+/YiLi4NMJsOQIUO0zmk+LVer1TrfmGd/c6tR0FGdnJo0aYLZs2fjwIEDePr0KcLDw7FkyRLxk/v169fjp59+0qoTFRWFJk2aYOLEiTh06BCePn0KqVQKJycn8feiGaHI7/diY2Oj83j2ZOp1ZfJaeRbI//cul8vh6Ogo3o8h5RUzkHfcmjeumkRUF3Nzc/H3Ulipqala1zEkzc8RyJ1AZ3fu3DmtpLEgCVFOEokEDg4O6NWrF/755x/Y2trixo0bmD59eoHqjxw5EiYmJtixYweUSqWY0Oka+X6dL7/8UryXpKQkXLhwAb169UJ8fDxGjx6tc9RLcyx7kqrrS/O6yf661vQRR0dHyGSyPOPKr99ruLi45HlOE2PO0eScX0qlMleMJiYm2Lx5M3x8fBAZGYkZM2agYcOGsLW1RadOnfDzzz/r/Fu1Zs0a1K9fH9HR0fjqq6/QvHlz2NjY4I033sDixYtz9au4uDgxeS3o/y95vc7z+1nkpFmFO/vriYiYaBJRERw8eFAckRo3bpzWiJXmSzOq9vLlS2zZssWg7X/99dc4duwYLCwssGzZMkRGRiI1NRWxsbHiRuma0SNdo26lgSbRvHfvnjhSAPz/Y7M9e/aEvb29Vh3NGyhXV1etN+b5fRV0k/nX8fb2xtSpU3HixAnxTdWaNWu0ykyePBk3btyAo6Mj1q1bh6dPnyIlJQXR0dHi70WTMJXW30tplddopr6yJ4P5jQIXhZeXl7idR36PShuau7u7+Pdny5YtyMzMfG2dypUro0uXLkhJScEvv/yCnTt3wsTEJNe0gMKytLRE06ZNsWvXLnTo0AF37tzB8OHDc/V/zWt7+vTpBXpd59xuBDBMHzExMcnznCbGIUOGFCjGiIgIrfr169dHaGgotm/fjvHjx6NOnTpISUnB4cOH8d5778HPzy/X4+qenp64fPky/vnnH3z44Ydo3Lgx1Go1zpw5g2nTpqF69eo4evSo3vetS34/i5w0CW/21xMRMdEkoiLQ9ThsYcprPil+/PhxnnXyO6eZ4zl79mx8/PHH8PT0zPUm69mzZ6+Nq6DtF+aT7YKqWrWq+GiWJrmMj4/Hvn37AOgeKdY8whoTE5PviGBx8vf3xxtvvAEACAsLE49nZGRgx44dAIAVK1ZgzJgxYrwaKpUq3z32Skp+v/e0tDTxcePi+L0XlmbeZH5zv9LS0or8c80+LzO/UceiMDMzQ6tWrQBkzRdOSUkx6PXz4+XlBSBrhLCwj89+8cUXSElJQbdu3XL14aKSSqX4+eefYWpqiuPHj4t/wzQ07WR/3LSgNL/DmJiYfB8rza/fF4Q+MWrIZDL0798fK1euxI0bNxAdHY1ffvkFDg4OePjwofgkTHZSqRRdunTBDz/8gKCgIMTFxWHTpk3w9PREfHw8hg0bJt63g4ODmCDm93h+9nOGeJ1rXjuGnudMVNYx0SSiQomOjsbff/8NANi2bRsSExPz/NLMkzx79qxWUtKkSRMAEBfe0CW/T6k1i2o0bNhQ5/mIiAidi+zklF/7mnMODg5aG7VrHv0E9B+V0ySTW7ZsQXp6OrZs2YK0tDQ4OTmhe/fuucprElOVSoUDBw7o1bY+rK2tAWg/ahkdHS0+NpbX7+X06dOl4tGyEydO5Pm7O3XqlDgCpumnxqRZNObEiRN5ljlz5kyBRu10sbe3FxOI/DaxL6r3338fQNYb8eXLlxv8+nnJnkhoRlVfp3fv3nB0dBSTlsIuAvQ6NWrUEBd0mjVrltbvTPPaPnz4cKFfI5o+kpGRkefiZ4Ig4OTJk0UJO1eMly5dKtTiPPlxdHTEu+++i4ULFwIArly58tp55TY2Nhg2bJj4Aebz58/FkVCZTIZ69eoByJpnm5fDhw8DyPp7nnNhpqLQzOPXtbgcUUXGRJOICuX3339HRkYGFAoFevXqBWtr6zy/mjZtKq6ymX1UUzP38PTp0zofAUtJScHixYvzjEGhUAAArl27pvP8jBkzCnQvW7du1UqANWJiYrBy5UqtWDVsbW3Ff2df6bIoBg8eDHNzc8THx2PPnj3iyOabb74pzjHNrkaNGmjbti0A4PPPP893sRSg8CNUR48ezXduI5A1KqJ5k5b9DZqtra04qqzr95KZmYnPP/+8UPEUlwcPHogrimanVquxYMECAFkjt3Xr1i3p0HIZOHAggKwPT/74449c5wVBEGMuqtatWwOA+MGQIfXs2VNc0GXWrFnYuXOnwdvIKSYmBocOHQKQ9ZrJ/prNj0wmww8//ICpU6di2rRp6Nmzp8FjmzFjBqRSKe7fvy/OAwWyklpTU1PExMTgyy+/zPca6enpWvPeGzRoIK5O/e233+r8EGXjxo16jUQCWat029nZISMjA1OmTMn3gza1Wq319zEtLS3fa2sexwf+/8O8/EZn86oDZP39BLI+CA0ODs5V7+XLl1i0aBEAoHv37uL/J0UVHh4ujpoXZX4xUXnGRJOICkWTMPbp0yffhSc0Bg0aBADYsGGD+An+gAEDxCRlwIAB2L59uzj/JyQkBN26dcv3cTfN/Kv58+djx44d4nXDw8MxbNgwbNmyJdf8Rl3kcjm6du2Kw4cPi2+aLl68iI4dOyImJgY2Nja5klY7OztxkYlff/21yCNJmmtpthL45ptvxLma+c0LW758OaytrXH79m00b94cu3fv1hoBefz4MX7//Xd06NChwAuhaEybNg1Vq1bFjBkzcPr0aa1HHePi4rBmzRq88cYbSExMBACt1TOtra3FEY8pU6bg6NGjUKvVAIDg4GB0794dQUFBBR5dKk4KhQITJ07E6tWrxZ/dw4cPMXToUHEke/78+cYMUdSqVStxhcx33nkH69evF9+0P3r0CMOHD8epU6dgaWlZ5DY0H16cP3++QOVfvnyJmJiYfL+yryb6119/oVatWsjIyMCAAQMwZMgQHD58WGvxl8zMTFy/fh1ffPFFkVf7VavVuHjxIvr27Ss+SjxlypRCXWP48OFYsmQJFi5cqPPDHn35+fmhf//+ALL6mCaZqlatGr744gsAwKJFizBy5EitJCkzMxNXr17FvHnzUL16da05rxKJBHPnzgWQNX9+1KhRWgv3rF27Fu+++26B/ibmx87ODt9//z2ArOkLPXr0wPnz58XXuVqtRkhICJYuXYratWtj7969Yt3NmzcjMDAQK1eu1Bo5V6lUOHjwoPh3tkWLFmKcZ8+eRb169bBs2TKEhISI7Wi2rZo4cSKArDm5mlFMAJg4cSJ8fHyQkZGBbt264cCBA2LdGzduoEuXLggPD4e5ublBXuea142rq6vO7YuIKjTDbstJROXZf//9J25mvWfPngLVuX79ulhn165d4vF79+5pbWBubm4uKBQKAYAgk8mE3bt3i+eOHTumdc2IiAjB1dVVPG9qairWxavN4TUbkOfcPF0Q/n9D7nXr1glubm4CAMHS0lKwtrbWimfv3r067+mrr77SKufh4SF4eXkJQ4YMEcscO3Ys383dNf7++2+xHADBz8/vtT/T06dPi3EDEExMTARHR0fBwsJC61rjxo177bWya968uVZ9iUQiKBQKwdLSUuu4TCYTfvjhh1z1g4KCBCsrK62fjY2Njfg72rBhg+Dl5SUAEH799VetuuHh4WK98PBwnfEV5Geq2Zjey8sr1zlNn5g5c6bwxhtviJu629vba93frFmzdF47vz6V37m87jm7UaNGCQCEUaNG5Tr39OlTwc/PT4zPzMxMsLOzEwAIUqlUWLVqleDp6SkAEP78888828jL8+fPBTMzMwGAcPv2bZ1lsv9+CvJ15coVrfpKpVIYPny4IJFItMrZ2NgIDg4Ogqmpqdbx3r17C2FhYbni0Pws5XK54OrqKn65uLgIcrlc6xpTpkzJ92fdpk2bQv2cNH0rr/6nOaerD2R3+fJlseyKFSvE42q1Wvjiiy+0fkYWFhaCo6OjYGJionVvp0+fznXdjz/+WOu1a29vL/5e27dvL8ycOVMAIHTp0iVX3fz6b04///yzIJPJtF7njo6OYluar40bN+r82WWvI5VKxWOVK1cWQkJCxDrZX++afu/o6KjVV2xtbYWTJ0/mivHGjRtClSpVxHJyuVywtbXVan/r1q067y+v/3fyMnToUAGA8PHHHxeoPFFFwhFNIiowzWimQqFA586dC1Snbt264ryV7I/PVq1aFVevXsWUKVPg4+MDQRAgl8sxcOBAnD17Fr17987zml5eXggKCsLbb78trmIql8vRs2dPHDx4EDNnzixQbD4+Prhy5Qref/99ODs7Iz09HS4uLhg6dCiuXLmCHj166Kz32Wef4YcffkCTJk1gZmaGR48eITIyskALEOXUrVs3rQUkCrLKZWBgIG7fvo0lS5agdevWsLOzw4sXL2BiYoJatWphxIgR2LRpkzj6UFDHjh3D3r17MWXKFLRq1Qqurq5ISUlBRkYGnJyc0LJlS3z++ecICQnBhx9+mKt+48aNceHCBQwePBhOTk5Qq9WwsbHB4MGDcfbsWb1X8DQUmUyGI0eOYMGCBfD19UVaWhoUCgU6dOiAffv24auvvjJ2iFrc3Nxw8eJFfPHFF/D19YVUKoWpqSm6d++Oo0eP4p133hEfo7azsyv09V1cXNCvXz8AwKZNmwwZusjGxgYbN25EcHAwZs6ciZYtW8LNzQ1paWlITU2Fm5sbunTpgnnz5uHu3bvYvXs3atasmef1cm6xERUVBalUipo1a2Ls2LE4e/Ysli5dWiz3oq+GDRuKc7AXLFggjqpLJBLMmzcP169fx3vvvYdatWrBxMQECQkJsLe3R8uWLfHpp5/i7NmzOvd4XLZsGXbs2IG2bdvCxsYGaWlpqFWrFhYvXoyDBw+KC4gVpY9kN2HCBISFheGTTz5B/fr1YW5ujhcvXsDa2hpNmjTBBx98gEOHDmHo0KFind69e2PDhg0YM2YM6tevD4VCgYSEBNjY2CAgIABfffUVbt68qTUi2LRpU2zZsgUTJ05E48aN4eTkBKVSCblcjgYNGmDatGkICQkRF5zKrk6dOrh58ybmzJmDBg0awNTUFGlpaahWrRomTJiAmzdvio+l6+Ply5fYvXs3AODdd9/V+3pE5Y1EELjGPBFVLJq5hMeOHRMfG6Tyr23btjhx4gS+/PJLzJkzx9jhGMydO3fEpOzBgwfw8PAo9DVOnjyJNm3aoFq1arhz506xbadCxhMYGIizZ89i3rx54mO6pJ8NGzZg1KhRaNeuXbFts0JUlnFEk4iIqAz75ptvAGQtYFSUJBPIWhCoc+fOuHfvHrZu3WrI8KgUOHHihLgirWaOO+lHrVaLiwrpuyAXUXnFRJOIiKgUCw0Nxbhx43Dy5ElxISbN8TFjxoirlxZ0teW8LFmyBFKpFPPmzRMXT6Gy4/3338f69evx7NkzcXGzFy9eYOXKlejTpw8AoH379mjatKkxwyw3tm7dips3b2LQoEFo3ry5scMhKpVMjR0AERER5U2zcmj2OdIZGRlaq7Z++OGHes+BrVu3LtauXYuIiAg8ffpUXF2ZyoYzZ87gf//7H4CsPW4tLS3x4sULMen09/fHhg0bjBliuZKRkYEvv/wSY8aMMXYoRKUWE00iIqJSrFq1aliyZAkOHz6MsLAwREVFQaVSwcPDAy1atMD48ePFvSr1NXr0aINch0revHnzsGvXLpw/fx7Pnz8XFxGqXbs2+vfvj/Hjx+u1DQ5pGzFihLFDICr1uBgQERERERERGRTnaBIREREREZFB8dHZMkitVuPJkyewsbHhEvRERERERBWYIAhITExE5cqVIZWWnnFEJppl0JMnT4q8hD0REREREZU/Dx8+hLu7u7HDEDHRLINsbGwAZHUmW1tbI0dDGnEpcQAABwsHI0dCpQn7BeXEPkG6sF9QTuwTlFNefUKpVMLDw0PMEUoLJpplkOZxWVtbWyaapUimWSYAwNaCvxP6f+wXlBP7BOnCfkE5sU9QTq/rE6VtSl3peYiXiIiIiIiIygUmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SQiIiIiIiKDYqJJREREREREBsVEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SQiIiIiIiKDYqJJREREREREBsVEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SQiIiIiIiKDYqJJREREREREBsVEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SQiIiIiIiKDYqJJREREREREBsVEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SQiIiIiIiKDYqJJREREREREBsVEk4iIiIiIiAzK1NgBEBERERERlRUPEhIQk5wsfu9kaQlPhcKIEZVOTDSJiIiIiIgKIPLFC/iuWIE0lUo8Jjc1RdikSUw2c+Cjs0RERERERDmkZWbi8tOnCI2JEY+FxsRoJZkAkJqZqTXCSVkqRKJ55swZdO/eHQ4ODrC2tkZAQAA2bNhQ6OtcunQJc+bMQcuWLWFnZweZTAYPDw+MGDEC169f11knMjISy5cvR9euXeHm5gYzMzM4OTmha9eu+Pvvv/W9NSIiIiIi0lNcSgqOhYcjU60Wj805fhyNV63C9+fOicecLC2NEV6ZVO4fnd2+fTuGDBkCtVqN1q1bw8nJCUeOHMGoUaNw/fp1LFmypEDXyczMRJMmTQAADg4OaNmyJaysrHDlyhVs2rQJW7duxaZNmzBw4ECtesOHD8eZM2dgbm6O5s2bw83NDffv38fBgwdx8OBBTJ48Gd99953B75uIiIiIiLQJgoCIFy+QlJGBOi4uAAC1IMDr++/xMj0dN997D/7OzgCABm5usJfLYSb9/7E5iURilLjLonI9ohkXF4exY8dCpVJh27ZtOH78OLZt24bQ0FBUr14dS5cuxfHjxwt8vaZNm2LXrl2IiorC/v37sXXrVty+fRuff/450tPTMXbsWMRkG1oHAHd3dyxfvhzR0dE4fvw4Nm/ejAsXLmDv3r0wNTXFsmXL8O+//xr4zomIiIiIKrZ0lQpXnz2DMi1NPLb+6lVU/fFHfPzPP+IxqUSC+q6u8LGz03oEdqC/P2KnTcPy7t3FY06WlpCbao/VyU1NOdKpQ7ke0VyzZg2USiX69OmD/v37i8ddXV2xaNEi9O/fH0uXLkXbtm1fey1TU1NcuHAh13GpVIqvvvoK27ZtQ1hYGPbt24dRo0aJ5zdv3qzzej169MDYsWOxatUq/Pnnn+jcuXPhb5CIiIiIiBCfkoLHiYniKCUAtFi7FpefPsXuN99Eb19fAEA9V1etEUqNo6NGQWZionXMREc5T4UCYZMmcdXZAijXiea+ffsAINfjrEBWoieXy3H48GGkpqZCLpcXuR2JRIJ69eohLCwMT548KXC9+vXrA0Ch6hARERERVVSCICAyIQFWZmZwtrICAJx9+BCB69bBS6FAxMcfi2XruLggPD4ecSkp4rEGbm54+dlnuZLKnN/nx1OhYGJZAOX60dlr164BABo1apTrnEwmQ506dZCamorbt2/r3db9+/cBAG5ubsVah4iIiIioIkhXqRASHa117K2dO+Hzww/4PdtCnJo5lRKJBCkZGeLxn3v0QOy0aRjdoIF4zEQqLVRSSUVXbkc0lUolEhISAGTNk9TF3d0dQUFBiIyMRL169Yrc1unTp3Hp0iXIZDJ07dq1QHVevHghrnzbp0+ffMumpaUhLduz5UqlEgAQlxKHTLPMIkZNhhafEm/sEKgUYr+gnNgnSBf2C8qpovWJhNQ0pGZmwtU6a5QyOikZdX/+FWpBQOTHE2BhlpW2eCosYSaV4qEyFnEpcWL98I/eha25DCmZiUjJ9vY4tRy9Vc6rTyhTlCUcScGU2xHNly9fiv+2zGNyrtWr4fbExMQit6NUKjF27FgAwOTJk1GpUqUC1ZswYQKio6PRvHlz9OvXL9+y33zzDRQKhfjl4eFR5HiJiIiIiIxFEAQ8TFBClW0bke/+u4iqP67C4rMXxWNOlhawNZfBWibDQ+X/J1LvNm6AB5Mn4IvWLbWua2suK/7gqVBK9Yhmv379EBISUqg6GzZsQEBAQDFFpE2lUmH48OG4c+cOAgICMG/evALVW7hwIf766y84ODhg06ZNr10meebMmZgyZYr4vVKphIeHBxwsHGBrYavXPZDhOVg4GDsEKoXYLygn9gnShf2CcirLfSJDpUJcSgpcra0BZCWZnt9/j0dKJULefx9+Tln3VselCgAgPjVD635vvT8JzpaWWu+VHSxK8AZKqZx9wjSjdKZ0pTOqV8LDwxEWFlaoOsmvVoCyftWhNcdsbXMnZElJSQAAGxubIsU3ceJE7N27F76+vti3bx9kstd/krJx40bMnDkTVlZW2LdvH6pWrfraOubm5jA3Ny9SjERERERExS0hNRXmpqbi1h/bb93CsB070MbLC/++9RaArDmU7ra2ePbyJe7FxcHPyQkA0KtmTcRNmwZ7C+0s0uXV04dUNpXqRPPq1atFrmtrawuFQoGEhAQ8evQI/v7+uco8evQIAODl5VXo68+YMQOrV6+Gh4cHDh06BKdXL5T87N27F2PGjIGZmRl27NiB5s2bF7pdIiIiIiJjEQQBcSkpcMw2Na37pk04cPcu9gwdip41awLIWpk1XaVC+IsXWvW3DRoEJ0tLmGfbi9JKJgNTyvKn3M7RBP5/+5DLly/nOpeRkYHg4GDI5XLUfPWCKKhFixZh4cKFcHFxwaFDhwo0Z/LEiRMYNGgQBEHAH3/8wX0ziYiIiKhUy1CpkJxtFderz57BafFiNF29WqucJum8HRsrHqvv5obwjz7C7UmTtMpWsbXVSjKp/CrXiWaPHj0AANu2bct1bu/evUhNTUXHjh0LtYfm6tWrMX36dNjZ2eHgwYPwfbX5a34uX76M3r17Iy0tDWvWrMGAAQMKfhNERERERMUsKT1d6/tP/v0X1t98g1WXLonHvBQKxKWk4JFSiZfZyn/ToQNip03DlBYtxGMyExN429m9di0SKr/KdaI5btw42NraYvfu3dixY4d4PCoqCtOmTQMATJ06NVc9Pz8/+Pn54fHjx1rHt23bhgkTJsDa2hr79+9Hg2x78uQlLCwMXbt2hVKpxA8//IDRo0frdU9EREREREUlCAJSM/9/z4/4lBRU+/FH2C9cqHXcRiZDukqFm1FR4jF7CwtcmzABypkzYZ1tbRJ3W1s4WHCVHtImEQRBMHYQxWn79u0YPHgwBEFA27Zt4ejoiMOHD+PFixeYMmUKli5dmquO5pOX8PBweHt7A8hKTj08PJCeno66deuiUaNGOtvr27cv+vbtK37fsGFDXL16Fc7OzujevbvOOn5+fpgxY0aB70mpVIrzT3UtckTGodnLqSyvDkeGx35BObFPkC7sF5STIfpEploNE4lEfG+7MigInx89ijfr1MGKV+9LBUGA8+LFiE1JwdV330V9NzcAwJPERKRmZsKHo5KlRl59orTmBuX+AekBAwbg5MmTmD9/Ps6dO4f09HT4+/tj0qRJGDVqVIGvk5ycjPRXjwjcuHEDN27c0FnO29tbK9GMj8/aWDU6Ohq//fabzjpt2rQpVKJJRERERJRdploNU2nWw4qCIKDN+vW48Pgxrk+ciJqOjgAAG3NzxKak4Nrz52I9iUSCf996C14KhdYCP5WLuCsDkUa5TzQBIDAwEAcOHChweV2DvN7e3jqPv05ERESh6xARERER6SIIAgQA0lejjIfu3cPEfftQw9ERB4YPB5CVPKarVEhTqXD12TMx0exSrRoujR8Pf2dnrWs2qlSpRO+BKoYKkWgSEREREZU1OQc53t2zBztCQ7G+Tx/0eLVrgkIux734eCTmWMzn5x49YGtuDh97e/GYo6Wl1qglUXFioklEREREZGSCIIhzIUNjYjB0+1akZGQidNIHYpmkjAzEJCfj6rNnYqJZz9UVh996S5xbqdGQo5RkZEw0iYiIiIiMZPGZM1h9+TI+CAjAB82aAQCcLS1x9VnWaq8JqalQvNqKb1pgID5u3hx1XFzE+nJTU3SoWrXkAyd6DSaaRERERETFLDEtDQO2bMHN6Gjc//BDmJtmvQ1PysjAnbg4XH72TCzraGmJjf16wNfJATbm5uLxeq6uJR43UVEx0SQiIiIiMqBtt25h8dmzaOvlhYWdOgEArGUyBD15gvjUVNyKjhYfbR1Wty4CPTxyPerarUbWKKWUW4tQGcVEk4iIiIioiEbv2oWzDx9i37BhqPFqddfUzExcePwYMhMTsZxEIsFvffvCzdpaa9XXmo6O4qqwROUJE00iIiIiqrAeJCQgJjlZ/N7J0hKeCkWucucePcKXx4/DxcoKv/frJx6/FR2NO3FxuPrsmZhotvfxwZaBA3ONUvby9S2muyAqfZhoEhEREVGF9CAhAb4rViA1M1M8Jjc1xXtNmuDMw4eY3749OmZbaOffe/fgZm2tdY157dpBKpEgoEoV8VhlGxsMql27+G+AqBRjoklEREREFdKN58+1kkwg67HXm9HROP/4MS4+fiwmmvVcXbGyZ080cHPT2oqka/XqJR43UVnARJOIiIiIyp3sySAA/HDuHNZdvYoJjRtjYtOmALJGL3UZUKsWxjRogJYeHuIxSzMzjG/cuHiDJipHmGgSERERUZmWoVLB7NXCOwmpqei6aRNux8biyZQp4jYisSkpuP78OS4/fSrWs7ew0Hm9xpUro1GO+ZVEVDhMNImIiIioTEhMS4OVTCZu+bEyKAizjx/HYH9/LO/eHQBga26OkOhoJKSl4XZsLOq+2ntyaJ06aFq5stYCPU6WlpCbmuaao+lkaVmCd0VUPjHRJCIiIqJSJS0zE/GpqeLCO4IgoPb//oeQmBjcnjRJXN3VwswMUUlJuBEVJdaVSCTYNngwKllbw9fJSTxey9kZtbJtKwIAngoFwiZNKtCqs0RUOEw0iYiIiMgoVGo17sXHo7KNDaxlMgDA5uBgjNixA52qVcOB4cMBZCWPlmZmAICw2Fgx0exWvTouvvOO1r6UALRWin0dT4WCiSVRMWCiSURERETFShAEPE5MRFRSktbcx6arV+PKs2fYP2wYutWoASAr8VMJAh4mJGhd448BA+BkaQmHbPMqna2s4GxlVTI3QUSFwkSTiIiIiAwmLiUFwVFRqGpvD3dbWwDA8YgItN+wAdUdHHDngw/EsjUcHRESE4PnSUniscaVKuHR5MmobGOjdd2ar0YxiahskBo7ACIiIiIqe9JVKlx8/Bg7QkK0jo/ZvRtt1q/HzmzHa7u4wEQigbmJCTLVavH4qp498XLmTIxu0EA8Zm5qiiq2tlpbkxBR2cMRTSIiIiLK1/34eFx4/BjVHRzQpHJlAMDTxEQErFkDU6kUSZ99Btmr7UXqubjg+vPnWomii5UVkj77TNxqREMhl5fcTRBRiWKiSUREREQAsvajPHD3Lm5GRWH6G2+I24j8dOECvjt3Dh8GBIiJpqdCgeoODvBSKBCfkgLXVyvEzmvXDl+1b5/r2jmTTCIq3/iKJyIiIqqAQqKj8c/du/BQKDDQ3x9A1uqug7duRZpKhSF16qCqvT0AoGmVKmjh7g5vOzuxvkQi0Zpvmf04ERETTSIiIqJybu3ly7j67BlmtW4tjjwej4jAlH//RfcaNcRE01QqRb9atWAikUAtCGL9N+vUwZt16hgldiIqm5hoEhEREZUTt6Kjsf7qVdjJ5fisVSvx+JL//kNoTAx61qyJLtWrAwACqlTBgFq10NrLS+safw4YUKIxE1H5xESTiIiIqAxafv48jkdGYkZgIJpWqQIAeKxUYvHZs/B1dNRKNEfWq4f41FRxuxEAaFy5MrYNHlzicRNRxcBEk4iIiKgUuxcXhzknTiBDpcLmgQPF4//ev4+9t2+jvbe3mGg2cHPD+02booGbm9Y1ZmZLOomISgITTSIiIqJS4odz5/DXzZv4ICAAQ+vWBQBIJRJsvH4dMhMTZKhUMHu1jcjo+vXR3tsb7Xx8xPrOVlZY0b27UWInIsqOiSYRERFRCRAEQVyRNTopCW9u346IFy+0Vm6NePEC/z16hObu7mKi6WVnh286dIC/s7PW9Qa8WsCHiKg0YqJJREREZEBpmZmQmZiISeX/Ll7E4rNnMaxOHXzdoQMAwE4ux+kHD5CuUiHyxQso5Fl1h9erh2bu7gh49SgskDWiOeONN0r8PoiI9MFEk4iIiKgIVGo1XqanQyGXi983WLkSIdHReDRlCtxebSMiCAIiXrzAjagosa6ZiQn+HDAAHra2qGJri5fpCQCAJpUro0nlyiV/M0REBsZEk4iIiCgfgiDgSWIinCwtYW6a9dZpw7VrmLB3L3rWrIktgwYBAEykUqSrVFAJAoKjosREs4+fH+q4uKCOi4vWdfvXqlWyN0JEVIKYaBIRERG9EpeSguikJPg6OYnHGqxcievPn+PUmDF4w9MTAOBqZYWUzEzcjo3Vqr95wAA4W1mhio2NeMzd1lZrWxEiooqAiSYRERGVGw8SEhCTnCx+72RpCU+FIle55IwM3IqOhpdCAWcrKwDA/jt30OOPP9DQzQ2X331XLOtua4ubUVF4kJAgHnvD0xO3J01CVXt7res2rFTJ0LdERFQmMdEkIiKicuFBQgJ8V6xAamameExuYoI9w4YBADpWrSoe7/XnnzgaHo5f+/TB6AYNAAC+jo4AspLQ7CvEruvdG3ZyufjYLABYyWSo8ao8ERHlxkSTiIiIyoV7cXFaSSYApKpU6PT777CRyZAwY4aYPNZxdsb158+RnJEhlvWxt0fCjBmwNTfXuobrq7mWRERUcEw0iYiIqMx59vIlbjx/jk7VqonHfjh/XmdZhbk5/J2dkZCWBrtXK8Qu7twZP3TrplVOKpHkSjKJiKhomGgSERFRqSUIAh4qlUhXqVDdwQEA8DI9HZWXLoUA4Pknn8Dl1RzLWk5O2B0WlusaR0aOROMcW4bITEyKPXYioopMauwAiIiIiABALQi4GxeHtGyPv37333/w+v57fHHsmHjMWiZDLWdn+Ds749nLl+LxCU2aQG6q/Rm63NRUXOyHiIhKDkc0iYiIqMSp1GrEJCdrzX+s/b//ITQmBmfHjkULDw8AQF1XV5hKpbnmXl6bMAGmUu3Py73s7BA2aVKBVp0lIqLixUSTiIiIilWGSgWVIIijjUfu30fvzZvh7+yMi++8I5arZm+P8Ph4PEhIEBPNtt7eSJw5M9dIZc4kU8NToWBiSURUCjDRJCIiIoPJVKu1ksDxe/bgt2vXsKZXL7xVvz6ArNVdkzMycD8+Hiq1Giavyq/r0wf2cjnMss2f5FxKIqKyiYkmERERFUn2vSYfJiSg559/4mliIp5/8ol43NLMDOkqFa4/fy7W87Gzw6333kNNR0cxyQQgLupDRERlHxNNIiIiKpRVly7h+3PnMKR2bXzZti2ArL0mQ2NikK5SIeLFC/jY2wMAJjdvjg+bNYOPnZ1YXyKRoJazsxEiJyKiksJEk4iIiHRSqdUYtmMHLj15gnPjxsHJ0hIAkJaZiZCYGAQ9fSqWlZmY4J/hw1HdwQHutrbica9sCSYREVUcTDSJiIgIpyIjsfS//+BjZ4dlXbsCAEykUlx++hT34uNx5elTdKpWDQDQx88P1R0c0KhSJa1rtPPxKfG4iYiodGKiSUREVMEsOXsWR8PDMb99ezFZfJmejt1hYfBzcsKybGWXdu4MKzMzBFSpIh7jyq5ERPQ6TDSJiIjKqQcJCVhx4QKSMzKwont38fiR8HD8c/cuetWsKSaaAVWqYFmXLmhSubLWNXr7+pZozEREVD4w0SQiIioHDt69iwN376JHjRriI65pmZlYfPYszE1MsKxLF3HbkPGNGqFXzZpiOQBwtLTEx82bGyV2IiIqf5hoEhERlSEpGRn448YN3IyOxtLOncVtRPbevo0VFy/CRCIRE8hqDg74ICAA9VxdoRIEmL26Rr9atYwUPRERVRRMNImIiEqpO7GxOHz/PtxtbdHr1SOsUokEE/btQ6ZajY+aNRNXde1eowZMpFJ0qV5drC+VSPBjt27GCJ2IiCo4JppERESlwOkHD3DpyROMatAAdnI5AGD/nTv4+OBB9Pb1FRNNc1NTjG3QAAq5HCZSqVi/W40a6FajhlFiJyIiyomJJhERUQlKTEvH5WfPIZPGoEfNmuLxUbt24X58POq6uqL9q21CWnh4oFv16mjj5aV1jZW9epVozERERIXFRJOIiKiYRCUl4fLTp6jj4gJ3W1sAwH+PHmPo9r2o7eyslWh2q14dD5VKyE3//7/mgCpVsH/48BKPm4iISF9MNImIiPQkCAIeJybiXlwc2nh7i8dH7tyJg/fu4ZcePfBukyYAgHquLvC2s0UdFxcIgiAu5pN9+xEiIqKyjokmERFRIQiCgPAXL2AmlcJDoQAA3ImLg++KFbAwNUXizJni3MnGlSohMiEBptnmUrpZW+HS+FFwsHAwSvxEREQlQfr6IkRERBWTWhAQFhMDQRDEY1MOHkS1H3/Ej+fPi8eqOzjATi5HdQcHRCUlicfnt2+PkPffx9uNGpVo3ERERMbGEU0iIiIAmWo1XqSmwsnSEgCQoVLBZckSvEhNxYOPPxZHL+u4uEBmYoKX6eliXalEgqhPPoGZiYnWNTWPxRIREVU0TDSJiKjCScvMhFQiERPDTdevY9yePehavTp2DhkCADAzMYGnQoG0zEzcj48XE81hdevirfr1IcuRVOZMMomIiCoyJppERFSuZarVWnMke//5Jw7cvYt/R4xAu1fbiLjb2iI1MxN3YmO16v4zfDhcrKy09qu0MDMrmcCJiIjKMCaaRERUbmRfxfXK06cYsXMnzKRSXJ0wQSxjZmKCTLUa158/FxPNZu7uuD1pEqo5aC/QU8nGpuSCJyIiKkeYaBIRUan1ICEBMcnJ4vdOlpbwfPUIa3YLTp3Cr1evYkZgoLjwjouVFW5FR0MqkSAlI0MciVzQvj2+69xZ6zpyU1PUcHQs5rshIiKqOJhoEhFRqfQgIQG+K1YgNTNTPGZuYoK23t54kJCAGxMnio+0JqSm4m5cHIKePBETzco2Ntg/bBgauLlpPe7q6+RUsjdCRERUATHRJCKiUumRUqmVZAJAmkqFE5GRSM3MxO3YWNRydgYAjGrQAB2rVkWjSpXEshKJBN1q1CjRmImIiCgLE00iIiqVtt68qfP4F61aIdDTE952duIxf2dn+L9KOomIiMj4pK8vQkREVLwyVCrsCAnB1WfPxGM9a9bUWbZrjRpo4+3N1V+JiIhKMSaaRERkdNMOHcKALVuw+OxZ8VgNR0fITbUfvJGbmsLJ0rKkwyMiIqJC4qOzRERUotSCgCP376OOi4u4fciIevXwR3AwambbXsRToUDYpEkFWnWWiIiIShcmmkREVKJG7tyJTTdu4Ms2bTCnbVsAQOPKlfFo8mSYmZholfVUKJhYEhERlUF8dJaIiIqNIAg4/+gR0rKtHtujRg3YmptDKpFolc2ZZBIREVHZxRFNIiIqNn02b8ae27exqX9/DKtbFwAwwN8fvXx9YS2TGTk6IiIiKi4c0SQiIoO5Exur9X2TypUhNzXFw4QE8ZjMxIRJJhERUTnHEU0iItKbWhDQdeNGHLp/HxfGjUPTKlUAAB8EBOD9pk3hyJViiYiIKhSOaBIRUZHEpaSI/5ZKJHCxsoKJRILzjx+Lx+0tLJhkEhERVUAc0SQiokJJzsjA4K1bcSQ8HJEffwwXKysAwFft2mFhx46oYmtr5AiJiIjI2DiiSUREr5WuUon/tjQzQ3RyMlIzM3H4/n3xuI+9PZNMIiIiAsARTSIiykdUUhI+PHAA5x49wp0PPhC3IFnRrRvs5HLUcHQ0coRERERUGnFEk4iItAiCIP7bTi7HsYgIRCYk4ERkpHi8aZUqTDKJiIgoTxUi0Txz5gy6d+8OBwcHWFtbIyAgABs2bCj0dS5duoQ5c+agZcuWsLOzg0wmg4eHB0aMGIHr168X+Dq///47JBIJJBIJ5s+fX+g4iIiKwyOlEuP37EG3TZvEYzITE6zs2ROXx49Hx6pVjRgdERERlSXl/tHZ7du3Y8iQIVCr1WjdujWcnJxw5MgRjBo1CtevX8eSJUsKdJ3MzEw0adIEAODg4ICWLVvCysoKV65cwaZNm7B161Zs2rQJAwcOzPc6MTExmDJlCiQSidaoARGRsUklEqy7cgUqQcCt6Gj4OzsDAPr6+Rk5MiIiIipryvWIZlxcHMaOHQuVSoVt27bh+PHj2LZtG0JDQ1G9enUsXboUx48fL/D1mjZtil27diEqKgr79+/H1q1bcfv2bXz++edIT0/H2LFjERMTk+81Jk+ejKSkJIwYMULPuyMiKroHCQmYevAgph48KB6rbGODpZ0748To0ajl5GTE6IiIiKis0yvRnDJlCr766itDxWJwa9asgVKpRJ8+fdC/f3/xuKurKxYtWgQAWLp0aYGuZWpqigsXLqBPnz4webUYBgBIpVJ89dVX8PX1RWJiIvbt25fnNQ4dOoSNGzfi888/R1U+gkZERvRIqcR3587hf0FBiM+2H+ZHzZujtZcXJBKJEaMjIiKisk6vRHPFihWFmptY0jRJn67HWXv06AG5XI7Dhw8jNTVVr3YkEgnq1asHAHjy5InOMsnJyZgwYQJq1aqFTz/9VK/2iIgK40liIuYcP46VQUHisRbu7pjUtCm2DRoEW3NzI0ZHRERE5ZFeiaa7uzvUarWhYjG4a9euAQAaNWqU65xMJkOdOnWQmpqK27dv693W/Vd7ybm5uek8P2fOHNy/fx+//PILZDKZ3u0RERXUv/fuYe6JE/jm9GmoXv3NlkgkWN69O3rUrAkTabmeRUFERERGoNdiQH379sWGDRuQmJgIGxsbQ8VkEEqlEgkJCQCyEmJd3N3dERQUhMjISHFEsihOnz6NS5cuQSaToWvXrrnOX716FcuWLcOYMWPQunXrQl8/LS0NaWlp4vdKpRIAEJcSh0yzzCLHTYYVnxJv7BCoFCrpfhGXkoI/b4TA39kJ7Xw8AQCdqlZGl2reGOjvi9iUOJgysTQq/q0gXdgvKCf2Ccoprz6hTFGWcCQFo9e7jblz58LT0xPdu3fHlStXDBWTQbx8+VL8t6Wlpc4yVlZWAIDExMQit6NUKjF27FgAWQv9VKpUSeu8SqXCO++8A4VCgcWLFxepjW+++QYKhUL88vDwKHK8RFQ+PFIm4tqzKPHrkTLr79jPQVcx+/gZ/HjhkljWwswUfwzohf61ajLJJCIiohKh14hmnz59YG5ujjNnzqBJkyaoVKkSPD09IZfLc5WVSCQ4cuRIoa7fr18/hISEFKrOhg0bEBAQUKg6RaVSqTB8+HDcuXMHAQEBmDdvXq4yP/zwA4KCgrBu3To4FnFz85kzZ2LKlCni90qlEh4eHnCwcICthW2R46fi4WDhYOwQqBQyZL94kJCAZms2IjXz/59okJuaImzSJHwYEIgTEY/xVr2GsJfbc1GfUox/K0gX9gvKiX2CcsrZJ0wzSueOlXpFlX1rEEEQ8OTJkzwXwynKm53w8HCEhYUVqk5ycjIAwNraWuuYrW3uhCwpKQkAivzY78SJE7F37174+vpi3759ueZeRkZGYvbs2WjdujVGjx5dpDYAwNzcHOZcrIOIXolJTtZKMgEgNTMTMcnJaFSpEoLGjzdSZERERERZ9Eo0w8PDDRWHTlevXi1yXVtbWygUCiQkJODRo0fw9/fPVebRo0cAAC8vr0Jff8aMGVi9ejU8PDxw6NAhOOnYc+7YsWNISkpCVFQU2rVrp3UuIiICALB27VocPnwYDRo0wPfff1/oOIiIiIiIiEobvRLNoiRoJal+/fo4efIkLl++nCvRzMjIQHBwMORyOWrWrFmo6y5atAgLFy6Ei4sLDh069No5k6GhoQgNDdV5LiIiQkw6iYjykpiWhtnHjqG2iwsa5ZgLTkRERFTalOtVIXr06AEA2LZtW65ze/fuRWpqKjp27KhzTmleVq9ejenTp8POzg4HDx6Er69vnmVHjx4NQRB0fn355ZcAgK+++gqCIGg9hkxElNOmGzfw/fnz+OTffyEzMYHcVPtzQrmpKZzyWPiMiIiIqKQZZObo8+fPsW7dOpw6dQqPHz8GAFSpUgWtW7fGmDFj4OrqaohmCm3cuHH4+uuvsXv3buzYsQP9+/cHAERFRWHatGkAgKlTp+aq5+fnBwA4cuQIqlSpIh7ftm0bJkyYAGtra+zfvx8NGjQo/psgogpLEARxfvs7jRrhaHg43m7YEHVcXBA2aRJiXs1JBwAnS0t4KhTGCpWIiIhIi96J5vbt2zF27Fi8fPkSgiCIx2/cuIGDBw/i22+/xdq1azFgwAB9myo0BwcHrFu3DoMHD8bAgQPRtm1bODo64vDhw3jx4gWmTJmCtm3b5qqnWYAoIyNDPBYVFYXhw4dDrVbDx8cHK1euxMqVK3PV7du3L/r27Vtct0REFYBaEPBLUBAO3L2L3W++CalEAhOpFFsGDRLLeCoUTCyJiIio1NIr0QwKCsLQoUOhVqvRr18/vPXWW/D29oZEIkFERAR+//137Ny5E8OGDRO3QClpAwYMwMmTJzF//nycO3cO6enp8Pf3x6RJkzBq1KgCXyc5ORnp6ekAspLoGzdu6Czn7e3NRJOI9PI0MRHTDh1CUkYGtt+6hUG1axs7JCIiIqJCkQjZhyELacCAAdi1axe2bduGfv366Syzc+dODBgwAP3799c5V5IKT6lUiivq6tq2hYwjLiUOAPe7Im0F7RdqQYA02zZQvwQFIVOtxsQmTWAiLdfT6Ssc/q0gXdgvKCf2Ccoprz5RWnMDvd69nD59Gi1btswzyQSAfv36ITAwEKdOndKnKSKicuvw/fuo+/PPCImOFo9NaNIEkwICmGQSERFRmaTXO5iEhAR4enq+tpynpycSEhL0aYqIqNz6/tw53IqOxpwTJ4wdChEREZFB6DVH083NDVeuXHltuatXr8LNzU2fpoiIyg1BEKASBJi+Gq38qXt31Dx/HnN0LE5GREREVBbpNaLZpUsXhIWF4bPPPoNKpcp1XhAEzJo1C6Ghoejatas+TRERlQu3Y2PRYcMGLMg2ncDLzg7fdekCW3NzI0ZGREREZDh6jWh+8cUX2LFjBxYuXIg///wTgwcPhre3NwAgMjISW7duRUREBBwdHTFr1ixDxEtEVKZdefoUxyIicOXZM0xu3hw2TC6JiIioHNIr0XR3d8fRo0cxfPhwBAcHY/HixeLm4prFbOvWrYtNmzbB3d1d/2iJiMqg5IwMOFhk/Xtw7doIjYnByPr1mWQSERFRuaVXoglkJZLXr1/H8ePHcerUKTx58gQAULlyZbRq1QptOeeIiCqohNRUTDl4FOcePcW1CRNhbmoKiUSCL/l3kYiIiMo5vRLN/v37o1KlSvjpp5/Qtm1bJpVERNmoBQH779xHdHIK/r13D718fY0dEhEREVGJ0CvR3L9/P/r27WugUIiIyr74lBTYW2Q9J2tvYYEfu3WAtUyGnjWZZBIREVHFodeqsz4+PkhKSjJULEREZZYgCPjuv//gsWwZzjx4IB7vXM0HLT2qGDEyIiIiopKnV6I5dOhQnDhxAs+ePTNUPEREZZJEIsHNqCgkZWTgt2vXjB0OERERkVHplWjOnDkTrVq1Qps2bbBz505kZGQYKi4iolIvMS0NyrQ08fvFnTtjfZ8+WNmzpxGjIiIiIjI+veZo+vr6Qq1W4+HDhxg4cCAkEglcXFwgl8tzlZVIJLh3754+zRERlRpH7t/H6N270bNGDfz8KrF0sLDAqAYNjBsYERERUSmgV6IZERGh9b0gCHyMlogqBBOpFI+UShy6fx9J6emwksmMHRIRERFRqaFXoqlWqw0VBxFRqaZSqxHx4gWqOTgAANp6e2ProEHoXqMGLM3MjBwdERERUemi1xzNH3/8EWvWrDFULEREpdIjpRKB69ah1a+/IiE1VTw+0N+fSSYRERGRDnolmlOnTsWePXsMFQsRUankZGmJ+NRUvExPxxVODyAiIiJ6Lb0enXVzc9O58A8RUVl3+elTNHRzg0QigdzUFJsHDICLlRWq2NoaOzQiIiKiUk+vEc0uXbrg9OnTSE9PN1Q8RERGJQgCxu7ejcarVmFnaKh4vGGlSkwyiYiIiApIr0Tz66+/homJCYYPH46nT58aKiYiIqORSCSobGMDCYBb0dHGDoeIiIioTNLr0dmZM2eifv362LFjB/bt24dGjRrB09Mzz300165dq09zRETFIiwmBtYymThiOat1a/T180OTypWNHBkRERFR2SQRBEEoamWptOADohKJBCqVqqhNUTZKpRIKhQIJCQmw5aN8pUZcShwAwMHCwciRUGH8fu0axu3Zg+41amDnkCEGvz77BeXEPkG6sF9QTuwTlFNefaK05gZ6jWgeO3bMUHEQERlFw0qVoBYEpGZmIjkjg9uVEBERERmAXolmmzZtDBUHEVGJiE9JwdVnz9DOxwcAUMfFBZfHj0cdFxdIJBIjR0dERERUPui1GBARUVlyNy4OtX76CX02b8ZjpVI8XtfVlUkmERERkQHpNaKpERsbi40bN+LChQuIiYlBhw4dMG3aNADAzZs3ce/ePXTs2BGWlpaGaI6IqEiq2tvDx94eL1JTEZOczO1KiIiIiIqJ3onm1q1bMW7cOLx8+RKCIEAikaBKlSri+cePH6Nfv3747bffMGLECH2bIyIqsEy1GpuuX8db9etDKpFAKpFg26BBcLK0hLmpQT5nIyIiIiId9Hp09r///sOwYcNgamqKpUuX4sKFC8i5iG2HDh2gUCiwY8cOvQIlIioMQRDQYcMGjN69G78EBYnHq9jaMskkIiIiKmZ6vdtasGABpFIpDh06hEaNGuksY2JigkaNGiE4OFifpoiICkUikWCQvz+Co6Jgp2NvXyIiIiIqPnolmmfPnkWLFi3yTDI13NzccP78eX2aIiJ6rd2hoajm4IA6Li4AgIlNmmBI7dpwtrIycmREREREFYtej84mJyfD2dn5teXi4+P1aYaI6LUWnzmDvn/9hfF79kD96hF+E6mUSSYRERGREeiVaFapUgU3b97Mt4wgCAgODobPqz3riIiKw9C6dWEvl6ONlxcy1Wpjh0NERERUoemVaHbt2hVhYWHYvHlznmXWrFmDhw8fokePHvo0RUSk5frz51h7+bL4vbutLcI/+gjfdOwImYmJESMjIiIiIr3maM6YMQN//PEHRo4ciStXrqBfv34AgKSkJFy5cgU7d+7EokWL4OzsjMmTJxskYCKiW9HRaLxqFQCgubs7ar+ak6ngoj9EREREpYJeiaa7uzv27duHAQMGYPHixViyZAkkEgm2bduGbdu2QRAEuLi4YPfu3XB59UaQiEhftZyc0KNGDZhIpbC3sDB2OERERESUg96bybVo0QJhYWFYu3YtDh06hIiICKjVari7u6NTp0549913oVAoDBErEVVQUUlJWHTmDOa3bw+5qSkkEgk2DxwIOffDJCIiIiqVDPIuzcbGBh9//DE+/vjjAteJi4vDy5cv4enpaYgQiKicEgQBHTZsQHBUFCxMTfFV+/YAwCSTiIiIqBTTazEgfUydOhVVq1Y1VvNEVEZIJBJ82aYNGri5oY+fn7HDISIiIqICMOqQgPBqrzsiIo20zEwsPHMGrb280NbbGwAwoFYt9PPzg4nUaJ+NEREREVEh8F0bEZUqC06dwpfHj+PdvXuRlpkJIGtUk0kmERERUdnBd25EVKpMbtECDd3cMK9tW+6HSURERFRGcTUNIjIaQRCwOTgY154/x7cdOwIA7ORyXBo/HhKJxMjREREREVFRMdEkohLzICEBMcnJ4vcxSUkYtmMHAKBXzZoIfLUKNZNMIiIiorKNiSYRlYgHCQnwXbECqa/mXQJZW5SMqV8fPvb2aFK5shGjIyIiIiJDYqJJRCUiJjlZK8kEgNTMTExq1gyNKlUyUlREREREVBy4GBAREREREREZFBNNIiIiIiIiMiijJZp+fn5o3bq1sZonohLmZGkJuan20/pyU1M4WVoaKSIiIiIiKi4SQRAEYwdBhaNUKqFQKJCQkABbW1tjh0OvxKXEAQAcLByMHEnpkpSejpfp6XC1ts616qyTpSU8FQojRlf82C8oJ/YJ0oX9gnJin6Cc8uoTpTU3KNRiQGPHji1yQxKJBGvXri1yfSIqewRBwJjdu3H24UPsHDIETatUKfeJJREREREVMtFcv369zuOaPe9yDo5mP85Ek6jiiU1JwY2oKEQlJSFdpTJ2OERERERUQgqVaB47dizXsa1bt+J///sfmjVrhqFDh8Lb2xsAEBkZiT///BPnzp3D+++/j4EDBxokYCIqO5wsLXF+3DicffgQgZ6exg6HiIiIiEpIoRLNNm3aaH1/8OBB/PLLL/jf//6HCRMm5Cr/wQcfYOXKlXj//ffRo0cP/SIlojJD8xQDANiam6Nr9epGjoiIiIiISpJeq85+/fXXaNSokc4kU+Pdd99F48aNMX/+fH2aIqIyIjEtDS3XrcPOkBBjh0JERERERqJXonn16lXUqFHjteWqV6+O69ev69MUEZURy86dw7lHj/DBgQNIzsgwdjhEREREZASFenQ2V2VTUwQHB7+2XHBwMExN9WqKiMqIz1q1QkJqKgbVrg1LMzNjh0NERERERqDXiGbr1q0RHByMefPm5VpxVuOrr77CjRs30Lp1a32aIqIywlQqxdIuXdDc3d3YoRARERGRkeg1zLhgwQIcPXoUc+fOxe+//46BAwfCy8sLQNaqs9u3b8e9e/dgbW2Nr7/+2iABE1HpExYTg3/v3cOkgABxESAiIiIiqrj0SjT9/f1x9OhRjBo1CiEhIVi4cGGuPTX9/Pywfv161K5dW/9oiajUSc7IQN+//kJoTAySMjIw4403jB0SERERERmZ3hMnmzRpgps3b+L48eM4deoUnjx5AgCoVKkSWrVqhbZt23KEg6gcszA1xcQmTbDs3DmMadDA2OEQERERUSlgsBV62rZti7Zt2xrqckRURkgkEnzYrBneadQIFlz8h4iIiIig52JAOaWlpeHp06eIi4sz5GWJqBS69uwZMlQq8XsmmURERESkYZBEc9WqVWjYsCGsrKzg7u6OTz75RDy3Y8cO9O/fH3fv3jVEU0RUCoTGxKDVr7+i0++/Iz4lxdjhEBEREVEpo1eiqVKp0K9fP0ycOBEhISGoVatWrm1O6tevj127duGvv/7SK1AiKj0eJCQAAAQA1jKZcYMhIiIiolJHr0RzxYoV2L17N7p164bIyEjcuHEjV5lq1aqhevXqOHDggD5NEVEp0rlaNVx45x1sHTQIZiYmxg6HiIiIiEoZvRYDWr9+PVxdXfHXX3/Bysoqz3L+/v64dOmSPk0RUSmQoVKJiaWfk5ORoyEiIiKi0kqvEc2wsDA0a9Ys3yQTAKysrBAdHa1PU0RkZDtCQlDvl18QGhNj7FCIiIiIqJTTK9E0MzNDamrqa8s9ePAANjY2+jRFREakUqsx6+hRhMbEYP3Vq8YOh4iIiIhKOb0Szdq1a+PSpUtITEzMs0xUVBSuXr2KBtzInajMMpFKcWzUKHzSogXmt29v7HCIiIiIqJTTK9F86623EBsbiwkTJiA9PT3XeZVKhffffx/JyckYNWqUPk0RkZG5WltjcefOMJUadPtdIiIiIiqH9HrHOH78eLRt2xZ//vknfH19MWHCBADAtWvX8NFHH6FmzZrYvn07OnXqhOHDhxskYCIqOd+ePo0TERHGDoOIiIiIyhi9Ek0TExPs378fEydOxJMnT7Bq1SoAwJUrV7B8+XI8ePAA77zzDnbt2gWJRGKQgImoZOy/cwczjxxBx99/x924OGOHQ0RERERliF7bmwCAXC7HTz/9hDlz5uD48eOIiIiAWq2Gu7s72rVrh8qVKxsiTiIqYW29vTGsbl1UsrZGdQcHY4dDRERERGWIXolmo0aNUK1aNWzduhXOzs4YNGiQoeIiIiOzNDPDxn79oBYEY4dCRERERGWM3vtompmZGSqWYnPmzBl0794dDg4OsLa2RkBAADZs2FDo61y6dAlz5sxBy5YtYWdnB5lMBg8PD4wYMQLXr19/bf0TJ05gwIABcHNzg7m5OSpXroxu3brh77//LsptERmcSq3Gwbt3xe8lEglMuPgPERERERWSXiOaNWrUQGxsrKFiKRbbt2/HkCFDoFar0bp1azg5OeHIkSMYNWoUrl+/jiVLlhToOpmZmWjSpAkAwMHBAS1btoSVlRWuXLmCTZs2YevWrdi0aRMGDhyos/6cOXMwd+5cmJubIzAwEC4uLnj8+DFOnTqFKlWqoHfv3ga7Z6Ki+uzIESw6exYz33gDCzp0MHY4RERERFRG6ZVovv322/j0008RGhoKPz8/Q8VkMHFxcRg7dixUKhW2b9+O/v37AwCeP3+ON954A0uXLkXPnj3Rtm3bAl2vadOm+Pzzz9GzZ0+YmJgAANRqNWbPno2vv/4aY8eORdu2beHk5KRVb/369Zg7dy6aNWuGbdu2wd3dXTyXnJyM+/fvG+aGifQgCALMTbP+JNR3dTVyNERERERUlkkEQb8JWBMmTMDOnTsxY8YM9OrVC56enpDJZIaKTy+LFi3C9OnT0adPH+zatUvr3M6dO9G/f3/07NkTe/bs0asdQRBQq1YthIWFYf369Vp7hqakpMDDwwPp6em4ffs23Nzc9GoLAJRKJRQKBRISEmBra6v39cgw4lKyVmZ1sCjbC+fcjIpCbRcXY4dRbpSXfkGGwz5BurBfUE7sE5RTXn2itOYGeo1oakb1BEHAJ598gk8++STPshKJBJmZmfo0V2j79u0DAJ2Ps/bo0QNyuRyHDx9Gamoq5HJ5kduRSCSoV68ewsLC8OTJE61zO3bsQGxsLMaOHWuQJJPI0F6mp8PSzAzSV1sQMckkIiIiIn3plWh6eHiU6v0xr127BiBrddycZDIZ6tSpg6CgINy+fRv16tXTqy3N4685k8mjR48CAFq2bIkXL15g06ZNCA4OhoWFBVq2bIm+ffvC1FTvXWaICuVBQgJikpORqVZj0v79sLewwNZBg2Brbm7s0IiIiIioHNArw4mIiDBQGIanVCqRkJAAAFpzIrNzd3dHUFAQIiMj9Uo0T58+jUuXLkEmk6Fr165a527dugUAiI6Ohr+/P54+fSqeW7ZsGerWrYt9+/bBw8OjyO0TFcaDhAT4rliB1BxPGFx49Agdq1UzUlREREREVJ6U26G0ly9fiv+2tLTUWcbKygoAkJiYWOR2lEolxo4dCwCYPHkyKlWqpHU+Pj4eAPDFF1/A19cXW7ZsQf369RESEoKJEyfi8uXLGDBgAM6fP5/n6HBaWhrS0tK02gSyntPONCvZx5Epb/Ep8cYOoUDuxUXlSjIBwESaIT77T4ZTVvoFlRz2CdKF/YJyYp+gnPLqE8oUZQlHUjClOtHs168fQkJCClVnw4YNCAgIKKaItKlUKgwfPhx37txBQEAA5s2bl6uMWq0GkDWf9cCBA+LIZUBAAA4cOICqVavi4sWLOHz4MDp16qSznW+++QZz584tvhshIiIiIiIyIIMlmjdv3sSdO3eQmJiIvBayHTlyZKGuGR4ejrCwsELVSU5OBgBYW1trHdO1AlNSUhIAwMbGplBtaEycOBF79+6Fr68v9u3bp3O1XU0cHTp0yPV4rIuLC3r06IEtW7bgxIkTeSaaM2fOxJQpU8TvlUolPDw84GDhAFuL0rOyFGUp7avD2Zin6jyukCtKfexlGX+2lBP7BOnCfkE5sU9QTjn7hGlG6Rw71Duqw4cP47333sO9e/fyLCMIAiQSSaETzatXrxY5LltbW3GZ30ePHsHf3z9XmUePHgEAvLy8Cn39GTNmYPXq1fDw8MChQ4dy7Z2p4eXlhStXrsDb21vnec3xqKioPNsyNzeHORdpIQP55+7dXMfkpqZwyuMRcyIiIiKiwtIr0QwKCkKPHj0gkUgwbNgw3LhxAzdu3MCMGTNw7949HD58GPHx8RgzZgw8PT0NFXOB1a9fHydPnsTly5dzJZoZGRkIDg6GXC5HzZo1C3XdRYsWYeHChXBxccGhQ4fyXcinYcOG2LVrlzhXM6e4uKw5cdlHYImK0yB/f2y7dQudq1bFm3XrAgCcLC3hqVAYOTIiIiIiKi+k+lT+5ptvkJmZiT179uD3339Hw4YNAQBff/01Nm/ejLt372LgwIHYu3evuGBOSerRowcAYNu2bbnO7d27F6mpqejYsWOh9tBcvXo1pk+fDjs7Oxw8eBC+vr75lu/duzcA4OzZs8jIyNA6p1arcfr0aQAQf3ZExc3XyQlB48fj206d0KhSJTSqVIlJJhEREREZlF6J5tmzZ9GwYcM85xba2dlhw4YNkEqlmDVrlj5NFcm4ceNga2uL3bt3Y8eOHeLxqKgoTJs2DQAwderUXPX8/Pzg5+eHx48fax3ftm0bJkyYAGtra+zfvx8NGjR4bQwNGjRAp06dEBkZiVmzZmnNX50/fz5CQ0Ph4uKC/v37F/EuiQrmZXq6+G9TqRTSUrwHLhERERGVbXo9OhsXF4e2bduK32sWw0lKShK3DjE3N0erVq1w6NAhfZoqEgcHB6xbtw6DBw/GwIED0bZtWzg6OuLw4cN48eIFpkyZohW/hmYBouwjkFFRURg+fDjUajV8fHywcuVKrFy5Mlfdvn37om/fvlrH1q5dixYtWmDRokXYtWsX6tati5CQENy6dQsWFhbYtGmT+PMiKg7Xnj1Du99+w9ft22NCkyZ5bqVDRERERGQIeiWazs7O4p6Omu8B4P79+6j7au4XAKSkpCAhIUGfpopswIABOHnyJObPn49z584hPT0d/v7+mDRpEkaNGlXg6yQnJyP91YiQZi6qLt7e3rkSTQ8PD1y5cgVz587Fnj178Pfff8Pe3h5vvvkmPv/8c9SpU6fI90dUEKsuXUJ8aioO3ruHCU2aGDscIiIiIirn9Eo0q1evjvDwcPH7gIAACIKAlStXYsWKFQCAu3fv4ujRo6hatap+keohMDAQBw4cKHB5XduzeHt757ltS0E4OztjxYoV4s+FqCQt794d/s7OGOjvz9FMIiIiIip2es3R7N69O8LCwhASEgIA6Nq1K7y8vPDzzz+jWbNmGDBgAJo2bYrU1FS8/fbbBgmYiApPKpHg/YAAuHJ1YyIiIiIqAXqNaI4cORIKhQJqtRpA1hzNv//+G4MHD8bFixdx8eJFSKVSjBs3Dh999JFBAiaigklKT8eGa9cwvnFjmEj1+kyJiIiIiKhQ9Eo03dzc8O6772od0yx0Exoaivj4eFSvXl2cu0lEJWf64cP46eJFnIiMxOaBA40dDhERERFVIHolmvnx8/MrrksTUQE0rlQJtubmeJt7tBIRERFRCSu2RJOIjGtMw4bo6+cHewsLY4dCRERERBWMXonm2LFjC1xWIpFg7dq1+jRHRAWgUqvFOZlMMomIiIjIGPRKNNevX//aMhKJBIIgMNEkKgE7Q0Lw1cmT+L1fP9R2cTF2OERERERUQemVaB47dkzncbVajYcPH+Lff//F5s2bMXnyZPTq1UufpojoNdSCgM+PHkVITAw23biBBR06GDskIiIiIqqg9Eo027Rpk+/5kSNHokePHhg1ahR69+6tT1NE9BpSiQRHRo7Et6dP48vXvDaJiIiIiIpTsW+uN3ToUNSuXRtz5swp7qaIKrxKNjb4oVs3mJtynS8iIiIiMp4S2cW9Ro0aCAoKKommiCqchwkJCHryxNhhEBERERGJij3RVKvVuH79OqTSEslpiSoUtSBgzO7daL5mDX69csXY4RARERERASjGRDM5ORlXr17F0KFDcefOndfO5ySiwkvNzISjpSVkJiYI9PQ0djhERERERAD0XAzIxMTktWUEQYCzszMWL16sT1NEpIOlmRn+GjgQ9+LiUM3BwdjhEBEREREB0DPR9PDwgEQi0XlOJpOhUqVKaNOmDd5//324cE8/omLDJJOIiIiIShO9Es2IiAgDhUFEhbHw9GlEJSXh6w4dIOcKs0RERERUyvAdKlEZ80ipxBfHjiFDrUYLDw8M9Pc3dkhERERERFqYaBKVMe62ttgxZAj23r6NAbVqGTscIiIiIqJc9Eo0582bV+S6EokEX3zxhT7NE1VYPWvWRM+aNY0dBhERERGRTnolmnPmzMm1GJAgCACgdVxzLDsmmkSFExYTgyq2trCWyYwdChERERFRvvRKNH/99Vf8999/WLVqFdzd3TFw4EB4e3sDACIjI7F9+3Y8ePAA48ePR4sWLQwRL1GFlJSejp5//gm1IODvN99Eba7iTERERESlmF6JZq1atTBhwgTMmDED8+bNg2mO1S8XLVqE2bNnY+nSpRgzZgyaNWumV7BEFVVkQgLSVSqoBQFVbG2NHQ4RERERUb4kgq7nWguoa9euePToEYKDg/MtV6dOHVSpUgUHDx4salOUjVKphEKhQEJCAmyZdJQacSlxAAAHi+LZ0zIhNRURL16gvptbsVyfikdx9wsqe9gnSBf2C8qJfYJyyqtPlNbcQKpP5fPnz6N+/fqvLVe/fn1cuHBBn6aIKjyFXM4kk4iIiIjKBL0STZVKhfv377+23P3796FSqfRpiqhC+vTff3Hw7l1jh0FEREREVCh6JZoBAQG4cOECNmzYkGeZDRs24Pz58wgICNCnKaIKZ9/t21jy33/o8ccfCI+PN3Y4REREREQFptdiQHPnzsXJkycxZswYrF+/HkOGDIGXlxeArFVnt2zZguPHj8PU1BRz5841SMBEFUU7Hx98GBAAa5kMPvb2xg6HiIiIiKjA9Eo0AwMDsWPHDowdOxbHjx/HiRMntM4LggBHR0esXbsWgYGBegVKVNFYmpnhh27ddO5DS0RERERUmumVaAJAz549cf/+fWzbtg2nTp3CkydPAACVKlVCq1atMGjQIFhbW+sdKFFF8UiphHu2FcMkEokRoyEiIiIiKjy9E00AsLa2xujRozF69GhDXI6ownqQkIC6P/+MXjVrYmXPnrCSyYwdEhERERFRoem1GNDrxMTEIDMzszibICpXjoWH42V6Ou7Fx8Pc1CCfAxERERERlTi9Es2goCDMmzcPt27d0jq+c+dOuLm5wdXVFY6Ojvjhhx/0CpKoohjVoAHOjB2LDX37wlRarJ8DEREREREVG73eyS5fvhwLFiyAq6ureCw8PBxvvvkmoqKi4ObmhqSkJEyZMgXHjx/XN1aiCqG5uztqODoaOwwiIiIioiLTK9E8d+4cGjZsCMdsb4rXrVuHjIwMLFmyBI8fP8b58+chlUo5qkmUh0y1GjMPH0ZUUpKxQyEiIiIiMgi9Es3nz5/D09NT69ihQ4dgZWWFSZMmAQAaN26MVq1a4dq1a/o0RVRuLTpzBt+eOYPAdeuQqVYbOxwiIiIiIr3plWiqVCqtxX5evnyJy5cvIzAwELJsq2VWrlwZz54906cponKrR40aqOvigi9at+a8TCIiIiIqF/Ra1tLT0xOXLl0Sv9+3bx8yMzPRsWNHrXJKpRIKhUKfpojKrfpubggaPx5mTDKJiIiIqJzQ651tr1698ODBA/Tv3x/Lly/HJ598AqlUij59+miVu3LlCry8vPQKlKi8eZmeLv5bZmICiURixGiIiIiIiAxHr0Tzk08+gbe3N3bt2oWPPvoIjx8/xscff4waNWqIZc6fP4/Hjx+jdevWegdLVF6cffgQXt9/j985d5mIiIiIyiG9Hp11cnLC9evXsW3bNkRHR6Nx48Zo3769Vplnz57ho48+wogRI/QKlKg8+eniRcSlpOBweDjeql/f2OEQERERERmURBAEwRgNnz17Fnfv3sXIkSON0XyZppnzmpCQAFtbW2OHQ6/EpcQBABwsHF5bNlOtxvLz5zGmYUPYyeXFHRoZUWH6BVUM7BOkC/sF5cQ+QTnl1SdKa25gtNVHVq9ejTFjxhireSKjMpVKMblFCyaZRERERFQucZlLohISn5KCNZcvw0gPERARERERlRgmmkQl5MN//sE7e/Zg4r59xg6FiIiIiKhYMdEkKgGCIKBp5cqwlskwukEDY4dDRERERFSs9Fp1logKRiKR4MNmzfBWvXqwt7AwdjhERERERMWKI5pExUgQBKjUavF7JplEREREVBEw0SQqRr9du4Y269fjXlycsUMhIiIiIioxTDSJikm6SoUvjh3DmYcPsT0kxNjhEBERERGVGCaaRMVEZmKCU2PG4KNmzTC1RQtjh0NEREREVGK4GBBRMfK2s8P3XbsaOwwiIiIiohJltESzb9++8Pb2NlbzRMXmTmws0lUq1HZxMXYoRERERERGYbREs0+fPujTp4+xmicqFplqNUbs3IVrz55hU//+GODvb+yQiIiIiIhKnN5zNG/duoXRo0ejatWqsLCwgImJic4vU1M+pUvlX1J6BpwtLSE3NUUzd3djh0NEREREZBR6ZX///fcfOnbsiJSUFACAg4MD3NzcDBIYUVmkkJtjz9ChuBcfD3dbW2OHQ0RERERkFHolmjNnzkRKSgo+/vhjzJo1Cw4ODoaKi6jMkkgkqM7XAhERERFVYHolmkFBQWjQoAG+++47Q8VDVCbNOnoUGao0TGnRxNihEBEREREZnV6Jpkwmg5+fn6FiISqTQmNisODUKQgAAtwrYUAtZ2OHRERERERkVHolmm+88QZu3bplqFiIyiQ/Jyf8OWAAjkfcQztvT2OHQ0RERERkdHqtOrtgwQLcvXsXP/30k6HiISqThtSpg687tDJ2GEREREREpYJeI5qXL1/GmDFj8OGHH2LLli3o1KkT3N3dIZXqzl9HjhypT3NEpcqt6GhUtbeHnFv3EBERERFpkQiCIBS1slQqhUQiQfZLSCSSXOUEQYBEIoFKpSpqU5SNUqmEQqFAQkICbLmFhlHEp6Sgzs8/w04ux56hQ1HV3h5xKXEAAAcLrjhL/4/9gnJinyBd2C8oJ/YJyimvPlFacwO9hmJmz56tM7EkKu/uxcdDpVYjU62Gm7W1scMhIiIiIipV9Eo058yZY6AwiMqWJpUrI/i99xCVlARLMzNjh0NEREREVKpwchlRETlZWsLJ0tLYYRARERERlTp6rTpLVJEIgoAP9u/HqchIY4dCRERERFSqGWRE8/Tp09i9ezfu3LmDxMRE6FpfSCKR4MiRI4Zojsgo/gwOxoqLF7HmyhVEfvwxXKysjB0SEREREVGppFeiKQgC3n77bfz2229icqlrFVrNqrNEZVnPmjUxtkED1HR0ZJJJRERERJQPvR6d/eWXX7B+/Xo0btwYhw4dQv/+/QEAYWFhOHDgAEaPHg2pVIpPP/0U9+/fN0jARMZia26OtX36YFpgoLFDISIiIiIq1fQa0Vy/fj2srKxw4MABODo6YuPGjQCAGjVqoEaNGujSpQu6d++OIUOGoGXLlvDy8jJI0EQl6bFSiSrZ9iTi6DwRERERUf70GtEMCQlBy5Yt4ejoCOD/34CrVCqxzMCBA9G4cWMsWbJEn6aIjCI0JgY1li/HhL17kZaZaexwiIiIiIjKBL0STbVaLSaZAGD5aquH+Ph4rXI1atTAjRs39GmKyCj+vXcPKZmZuB8fD5mJibHDISIiIiIqE/R6dLZKlSp48uSJ+L3m0dgrV66gU6dO4vHbt2/D1JRbdlLZ82GzZqjt7AxfJyc+MktEREREVEB6jWg2atQIt27dEh+V7dy5MwRBwLRp0xAaGorExEQsXrwYly5dQsOGDQ0SMFFJ61C1KtyzzdEkIiIiIqL86ZVo9u7dGzExMdi3bx8AoH79+njzzTdx7do11K5dG3Z2dpgxYwZMTU3x9ddfGyRgouKWmpmJz44cwYvUVGOHQkRERERUJumVaA4dOhQpKSno0aOHeOy3337DggUL0LRpU1SvXh3du3fHkSNHEBAQoHewRXXmzBl0794dDg4OsLa2RkBAADZs2FDo61y6dAlz5sxBy5YtYWdnB5lMBg8PD4wYMQLXr1/Ps55arcbKlSvRokUL2NraQiaTwd3dHcOGDcPVq1f1uDMqDl8eO4ZvTp9Gxw0btPaEJSIiIiKigpEI5fyd9Pbt2zFkyBCo1Wq0bt0aTk5OOHLkCF68eIGpU6cWeDXczMxMmJmZAQAcHBzQrFkzWFlZ4cqVK7h37x5kMhk2bdqEgQMHatUTBAEDBgzAzp07YWFhgVatWkGhUCA4OBghISEwMzPDrl270L179wLfk1KphEKhQEJCAmz5SKfB/ffwIUbt2oUlnTujt69vgevFpcQBABwsHIorNCqD2C8oJ/YJ0oX9gnJin6Cc8uoTpTU3KNeJZlxcHHx8fKBUKrF9+3b0798fAPD8+XO88cYbuHv3Lo4dO4a2bdu+9lqZmZlo2bIlPv/8c/Ts2RMmr1YgVavVmD17Nr7++mvY2Njg/v37cHJyEuv9/fff6NOnD7y9vXHmzBlUrlxZPLdo0SJMnz4d3t7eCA8PL/B9ldbOVJ6kq1SFXmWW/yGQLuwXlBP7BOnCfkE5sU9QTmUt0dTr0VmN2NhY/PDDDxg+fDi6dOmCRYsWiedu3ryJv//+G8nJyYZoqlDWrFkDpVKJPn36iEkmALi6uooxLl26tEDXMjU1xYULF9CnTx8xyQQAqVSKr776Cr6+vkhMTBTnq2qcPHkSAPDuu+9qJZkA8Omnn0KhUCAiIgJRUVFFukcynKT0dPHf3MqEiIiIiKjo9E40t27diqpVq2LKlCn4888/cfjwYYSGhornHz9+jH79+mHHjh36NlVomqQv5+OsANCjRw/I5XIcPnwYqXou+iKRSFCvXj0A0NruBQDMzc3zrSeRSGBiYgKFQqFXDKSfg3fvouqPP2JnSIixQyEiIiIiKvP0SjT/++8/DBs2DKampli6dCkuXLiQa/GUDh06QKFQGCXRvHbtGoCsbVhykslkqFOnDlJTU3H79m2927p//z4AwM3NTet4586dAQArV67MlYQuWrQIL168wIgRI/JNSKn4/XD+PKKSknA8IsLYoRARERERlXmm+lResGABpFIpDh06pDOZAwATExM0atQIwcHB+jRVaEqlEgkJCQAAd3d3nWXc3d0RFBSEyMhIcUSyKE6fPo1Lly5BJpOha9euWufatGmDTz/9FIsXL0b16tXRunVr2NraIjg4GHfv3sXo0aPxv//9L9/rp6WlIS0tTevegKzntDPNMoscN/2/tb07Y9UlV7zdqK74/HthxafEGzgqKg/YLygn9gnShf2CcmKfoJzy6hPKFGUJR1IweiWaZ8+eRYsWLfJMMjXc3Nxw/vx5fZoqtJcvX4r/trS01FnGysoKAJCYmFjkdpRKJcaOHQsAmDx5MipVqpSrzKJFi1ClShV88sknOHjwoHi8evXq6NSpEywsLPJt45tvvsHcuXOLHCO9nrmpCT5oln8/JiIiIiKigtEr0UxOToazs/Nry8XHF+0TmX79+iGkkHPmNmzYUGJ7dqpUKgwfPhx37txBQEAA5s2bl6tMWloaRo4cie3bt+Pzzz/HmDFj4OjoiKCgIHz44YcYPnw4Hj9+jE8//TTPdmbOnIkpU6aI3yuVSnh4eMDBwgG2FqVnZamy5tnLlzh8/z6G160LiURisOtydTjShf2CcmKfIF3YLygn9gnKKWefMM3QK6UrNnpFVaVKFdy8eTPfMoIgIDg4GD4+PoW+fnh4OMLCwgpVR7O6rbW1tdYxXUv9JiUlAQBsbGwKHRsATJw4EXv37oWvry/27dsHmUyWq8w333yDLVu24KOPPtIalWzXrh327dsHf39/zJkzB2PGjNHaFiU7c3NzzuE0MEEQMH7PHuy5fRs3o6LwTceOxg6JiIiIiKjc0GsxoK5duyIsLAybN2/Os8yaNWvw8OFD9OjRo9DXv3r1KgRBKNSXZk9MW1tbcSXXR48e6by+5riXl1ehY5sxYwZWr14NDw8PHDp0KM8k8ffffwege+VbT09PNGvWDMnJybh06VKhY6CiEwA0d3eHtUyGYXXrGjscIiIiIqJyRa9Ec8aMGVAoFBg5ciSmT5+Oc+fOAcgaKbxy5Qpmz56NDz74AM7Ozpg8ebJBAi6M+vXrAwAuX76c61xGRgaCg4Mhl8tRs2bNQl130aJFWLhwIVxcXHDo0CF4eHjkWVaTzOa1fYnmeFEfL6aikUok+KxVK0R+/DHquroaOxwiIiIionJFr0TT3d0d+/btg5OTExYvXozAwEBIJBJs27YNTZo0wfz582FnZ4e///4bLi4uhoq5wDSjqNu2bct1bu/evUhNTUXHjh0hl8sLfM3Vq1dj+vTpsLOzw8GDB+Hr65tvec12J0FBQbnOqVQqXLlyBQDg7e1d4Bio6NSvRr41HF6zEBMRERERERWeXokmALRo0QJhYWH47rvv0LVrV/j5+aFmzZpo3749vv32W4SFhaFZs2aGiLXQxo0bB1tbW+zevVtrH8+oqChMmzYNADB16tRc9fz8/ODn54fHjx9rHd+2bRsmTJgAa2tr7N+/Hw0aNHhtDH379gUAzJ49W2u/TpVKhc8++wwRERHw8vJCkyZNinCHVFjLz59H102b8EhZOpeBJiIiIiIqDyRC9uGdcmj79u0YPHiwOH/T0dERhw8fxosXLzBlyhQsXbo0Vx3NCqTh4eHiSGNUVBQ8PDyQnp6OunXr5rmlS9++fcXkEgBiY2MRGBiIsLAwmJubo2XLlnBwcMCVK1dw//59WFhYYO/evWjfvn2B70mpVEKhUCAhIUHnIkeU24OEBDxISECPP/6AMi0NC9q3x8xWrQzahmb/Ta4OR9mxX1BO7BOkC/sF5cQ+QTnl1SdKa25QOtfCNaABAwbg5MmTmD9/Ps6dO4f09HT4+/tj0qRJGDVqVIGvk5ycjPT0dADAjRs3cOPGDZ3lvL29tRJNR0dHXLx4EUuXLsXOnTtx4cIFpKeno1KlShg1ahSmT5+OWrVq6XWPlL8HCQnwXbECqZmZ4rF5J09ieL168Mxj7iwRERERERWdwRLNBw8e4OnTp0hLS8uzTOvWrQ3VXKEEBgbiwIEDBS6va5DX29tb5/GCsLGxwZw5czBnzpwi1Sf9xCQnayWZAJCamYmY5GQmmkRERERExUDvRHPt2rX4+uuvERkZ+dqyKpVK3+aIiIiIiIiolNMr0fzf//6HDz74AIIgoGHDhqhatSqsra0NFRuRQajUamOHQERERERUoeiVaC5btgwymQz79u0r1GI2RCXp6cuXuY7JTU3hZGlphGiIiIiIiMo/vRLNR48eoV27dkwyqVTrUq0aNg8YgDtxceheowYAwMnSkvMziYiIiIiKiV6JpqenJyy44T2VcuamphhSp46xwyAiIiIiqjCk+lQeNWoUjh07hri4OEPFQ0RERERERGWcXonm9OnT0bp1a7Rr1w7Hjx8v8vYfRMXlwuPHWHTmDIKjoowdChERERFRhaHXo7MmJiZYuXIlOnTogA4dOsDMzAxubm6QSnPnrxKJBPfu3dOnOaJC+ys4GN+dO4c7sbFY3bu3scMhIiIiIqoQ9Eo0Q0JC0K5dO0RHR0MQBKSnp+PBgweGio1Ib02rVEGvmjXRs2ZNY4dCRERERFRh6PXo7NSpUxEVFYVRo0bh2rVrSExMhFqtzvOLqKS9WacO/h46FH38/IwdChERERFRhaHXiOaZM2dQr149rFu3zlDxEBERERERURmn14imTCaDv7+/oWIhMqgbz58jKT3d2GEQEREREVU4eiWa7dq1w/Xr1w0VC5HBCIKAbps2wWHRIlx8/NjY4RARERERVSh6JZrffvstnj17hlmzZkGlUhkqJiK9RScnw0QqhQRAHRcXY4dDRERERFSh6DVHc+PGjejZsye++eYb/PXXX2jbti2qVKmS5/YmX3zxhT7NERWYi5UVIj76CE9fvoSFmZmxwyEiIiIiqlAkgiAIRa0slUohkUhQkEtIJBKOehqIUqmEQqFAQkICbG1tjR0OvRKXEgcAcLBwMHIkVJqwX1BO7BOkC/sF5cQ+QTnl1SdKa26g14jmr7/+aqg4iIiIiIiIqJzQK9EcNWqUoeIgMpgzDx7gnT17MLh2bcxp29bY4RARERERVTh6LQakj08//RTVqlUzVvNUjh26fx8hMTEIjYkxdihERERERBWSXiOa+oiJiUFERISxmqdy7KNmzVDXxQWu1tbGDoWIiIiIqEIyWqJJVFzsLSwwwN/f2GEQEREREVVYRnt0loiIiIiIiMonjmhSufLb1avIVKvRs2ZNPjpLRERERGQkHNGkcuXbM2cwbs8enH340NihEBERERFVWEw0qdxQqdUY7O+PQA8PtPX2NnY4REREREQVFh+dpXLDRCrF3HbtMLddO2OHQkRERERUoXFEk4iIiIiIiAyKiSaVC2pBwMXHj6FSq40dChERERFRhWe0RFMQBAiCYKzmqZy58fw5Atasgc8PP0DNfkVEREREZFRGSzTXr18PNUefyEDCX7yAwtwcdV1dIZVIjB0OEREREVGFptdiQBs2bChQOZlMBkdHR9SvXx8uLi76NEmkU18/P8RMm4a4lBRjh0JEREREVOHplWiOHj0akkKMHkkkEnTs2BHLly9HjRo19GmaKBdTqRQuVlbGDoOIiIiIqMLTK9GcPXs2IiIisGHDBlhbW6Nz587w9PQEADx8+BD//vsvEhMT8dZbb8Hc3Bxnz57Fv//+i1atWuHSpUuoUqWKQW6CiIiIiIiISg+9Es233noLAQEBGDt2LJYuXQqFQqF1XqlUYsqUKdi5cyfOnz+PqlWr4tNPP8WyZcvw7bffYvny5XoFTwQAc44fx5HwcExt0QJ9/fyMHQ4RERERUYWn12JAM2fOhL29PVatWpUryQQAW1tbrFq1Cvb29vjss88glUrxzTffoFKlSvjnn3/0aZpItP/OHZx+8ADKtDRjh0JERERERNAz0Tx27BiaNWsGqTTvy0ilUgQEBODo0aMAshYGql+/Ph4/fqxP00SivwYOxMqePdGlWjVjh0JERERERNDz0dnk5GQ8e/bsteWeP3+O1NRU8XtbW1uYmurVNJHIx94e4xs3NnYYRERERET0il4jmnXr1sXJkydx8uTJPMucOnUKJ06cQN26dcVjDx8+hLOzsz5NExERERERUSmlV6I5bdo0qFQqdOnSBe+++y4OHTqE0NBQhIaG4tChQ5gwYQK6dOkCQRAwbdo0AEBCQgIuXbqE5s2bG+QGqGKbdfQodoWGIjUz09ihEBERERHRK3o9v9q/f38sW7YM06dPx+rVq7FmzRqt84IgQCaTYdmyZejXrx8AIDY2FnPnzkWHDh30aZoI9+Pj8fWpUzCVShE3bRrkfBybiIiIiKhU0Pud+UcffYTevXtj7dq1OHv2LJ4+fQoAqFSpEgIDAzFmzBhUrVpVLF+1alVMnz5d32aJIAHwftOmUKalwcbc3NjhEBERERHRKwYZAvLx8cH8+fMNcSmiAvOxt8eK7t2NHQYREREREeWg1xxNIiIiIiIiopwMkmjeunULkydPRmBgIHx9fcWFfwDg7Nmz+PHHHxEXF2eIpogAAM9fvsT9+Hhjh0FERERERDro/ejsd999hxkzZiDz1aqfEokEMTExWmUmT54Mc3NzvPvuu/o2RwQAWHflCj47ehTjGjbE6t69jR0OERERERFlo9eI5r59+/DJJ5/Aw8MDO3bsQFRUFARB0CrTsmVLODs7Y/fu3XoFSpRdVFISTKVS1HdzM3YoRERERESUg14jmt999x2srKxw6NAhrZVlc2rQoAHCwsL0aYpIy7KuXTGvXTtjh0FERERERDroNaJ56dIlNG/ePN8kEwCcnJzw7NkzfZoiysXG3JzbmhARERERlUJ6JZrp6emwsbF5bbmoqCiYmhpkJxUiIiIiIiIq5fRKNH18fHDt2rV8y6Snp+P69euoWbOmPk0RidquX49+f/2FO7Gxxg6FiIiIiIh00CvR7N27NyIiIvDdd9/lWWbRokWIjo5G//799WmKCEDWIkAnIiOxKzQUCrnc2OEQEREREZEOej3POm3aNGzatAmffvopzp8/j379+gEAnj9/jp07d2Lnzp3YtGkTfHx8MGnSJIMETBWbo4UFLowbhyvPnsHFysrY4RARERERkQ4SIed+JIV0+/ZtDBw4EMHBwZBIJBAEARKJBAAgCAL8/f2xa9cuVK9e/f/au/PwqMrz/+Ofyb6RjQQCAoEkhkUWAxpZDVCQEJSdgGKbgMvXhYoC5ae1FaVctYKALdXaql8VBYplkU1QQAIILiBbKbImLLILCQGyJ8/vD7+ZMskkJGSSCeH9uq65LvOc5znnnnNunLnnnPMchwQMKTMzUwEBAbp06ZL8/f2dHQ7+z8Xsi5KkYO9gJ0eC2oS8QEnkBOwhL1ASOYGSysqJ2lobVHmGnujoaO3atUvLly/X2rVrdfToURUVFalJkybq27evhg0bJldXV0fECgAAAAC4CThkKlgXFxcNHjxYgwcPdsTqALvS0tP1wa5d6hcVpa5Nmzo7HAAAAABlcEihmZWVpe3bt+v06dPKzc0ts9+vfvUrR2wOt6hVhw5p6qZN2nz8uL5MSnJ2OAAAAADKUOVC86WXXtLs2bOVlZVVZp/i+zYpNFEVrUJCNKptW3XnbCYAAABQq1Wp0Jw+fbqmTZsmV1dXDRgwQNHR0apXr56jYgNs9ImIUJ+ICGeHAQAAAOA6qlRovvPOO/L29tbmzZvVsWNHR8UEAAAAALiJuVRl8IkTJxQXF0eRiWq3/6efdDE729lhAAAAAKiAKhWaYWFh8vX1dVQsQJkeX7FCIdOna9G+fc4OBQAAAMB1VKnQHDVqlFJSUnT16lVHxQOUUlhUpMzcXBlJHRs1cnY4AAAAAK6jSoXmyy+/rNatW2vgwIE6fPiwo2ICbLi6uGjXE0/o1IQJiggKcnY4AAAAAK6jSpMBJSQkqKioSCkpKWrdurXCw8PVpEkTubiUrl8tFovWr19flc3hFteIGY0BAACAm0KVCs2UlBTrfxcWFio1NVWpqal2+1oslqpsCgAAAABwk6hSoZmWluaoOAC7Tl2+rC7vvad+kZF6+/775cIPFgAAAECtV6VCMzw83FFxAHatPXJExy9d0s4zZygyAQAAgJtElQpNoLoNb9NGYX5+KjTG2aEAAAAAqCAKTdRqvh4e6hcV5ewwAAAAAFRClR5vAgAAAABASZzRRK21/MABpaWn64GWLXl+JgAAAHATodBErfX377/XZ4cOKb+oSJO6dnV2OAAAAAAqiEITtVb/qCjlFxaqX2Sks0MBAAAAUAkUmqi1xsXGalxsrLPDAAAAAFBJTAYEAAAAAHCoW6LQ3LJlixISEhQcHCw/Pz/FxsZq7ty5lV7Ppk2b9Nhjj6ljx45q2LChPDw8FBwcrF69eumjjz6SKedZj//5z380YsQIhYaGytvbW+3atdMbb7yhoqKiqry1Omv7qVPKLShwdhgAAAAAbkCdv3R28eLFGjlypIqKinTvvfcqJCRE69evV1JSkvbs2aPXX3+9wutavny53n33XUVHRysmJkZBQUE6efKkNm/erJSUFK1evVrz588vNe7rr7/WL37xC2VnZys2NlbNmzfXpk2b9Nxzz2nr1q1auHChLBaLI9/2TS0jJ0f3vPuuvNzcdPzZZ1Xfx8fZIQEAAACohDp9RvPixYsaO3asCgsLtWjRIqWkpGjRokXav3+/oqKiNHPmTKWkpFR4fWPHjtXJkyd14MABrVmzRgsWLNCmTZu0f/9+NWrUSAsWLNDKlSttxuTn52v06NHKzs7WrFmz9O2332rhwoU6dOiQunTpon/961/68MMPHfzOb25HLl5UqI+Pmvr7U2QCAAAAN6E6XWi+++67yszM1KBBgzR06FBre8OGDTV9+nRJ0syZMyu8vjZt2qhx48al2qOiovTUU09Jkr788kubZUuXLlVaWpo6dOig5557ztru5+env/71r5WO4VbQqXFjnZ44USnJyc4OBQAAAMANqNOF5qpVqyRJw4cPL7VswIAB8vLy0rp165STk1Plbbm7u0uSPDw8KhxDx44dFRERob179+ro0aNVjqEusVgsCvPzc3YYAAAAAG5AnS40d+/eLenngq4kDw8PtW3bVjk5OTp48GCVtnPixAm9/fbbkqSEhIQKx3Bt+549e6oUQ11R3oRKAAAAAG4OdXYyoMzMTF26dEmS1KRJE7t9mjRpou3bt+vYsWNq3759hdf99ddf6+9//7sKCwt16tQpffXVVyooKNC0adN077332vQ9fvz4dWOQpGPHjpW5vdzcXOXm5tq8N0m6mH1RBe51a2bWeXv26d0de5R0Z1sl39nW2eFUSnp2urNDQC1EXqAkcgL2kBcoiZxASWXlRGZ2Zg1HUjF1ttC8cuWK9b99yphQxtfXV5J0+fLlSq37yJEjNhP4uLq6aurUqZo0aVKZcVQlhldffVWvvPJKpWK8WW04elx7zp3XmWuOHwAAAICbS60uNIcMGaIffvihUmPmzp2r2NjYaoroZw8//LAefvhh5eXl6ejRo5o7d66mTp2qFStWaPXq1QoKCnLo9l544QVNmDDB+ndmZqaaNm2qYO9g+Xv7O3RbzvbWgIEa1jpVnRo3VrB3sLPDuSE3a9yoXuQFSiInYA95gZLICZRUMifc8mtnSVc7o/o/aWlpOnDgQKXGZGVlSfp5Vtdr2/z9SxdkV69elSTVq1fvhuLz8PBQdHS0pk2bpuDgYE2cOFEvvfSS5syZY+3j5+en9PR0a1w3EoOnp6c8PT1vKMabTZifn0ZX4jJmAAAAALVPrZ4MaNeuXTLGVOrVs2dPSZK/v78CAgIkST/++KPd9Re3h4eHVznWX/7yl5KkZcuW2bQ3a9asxmIAAAAAgNqgVheaVdWhQwdJ0o4dO0oty8/P1969e+Xl5aXo6Ogqbys4OFguLi46f/58hWO4tr0ykxHVVa9v3ap5e/bokgMeNwMAAADAeep0oTlgwABJ0qJFi0otW7lypXJyctSnTx95eXlVeVubN29WUVGRIiMjKxzDzp07lZqaqrZt26p58+ZVjuFmllNQoN9v2KCHly7VyUpOzgQAAACgdqnTheajjz4qf39/LVu2TEuWLLG2nzt3TpMnT5YkTZw4sdS4Vq1aqVWrVjp58qRN+4wZM5SeXnpa4W3btumxxx6TJI0ZM8Zm2ZAhQ9SiRQvt3r1bs2fPtrZfvXpVTz/9dJkx3Gqy8/P1TGys+kVGqnVIiLPDAQAAAFAFFmOMcXYQ1Wnx4sVKTEy03r9Zv359rVu3ThkZGZowYYJmzpxZaozFYpH082RE155ptFgs8vDwUExMjJo3b668vDylpqZq9+7dkqTExETNmzdPbm62cyxt3bpVffr0UXZ2tu655x6Fh4dr8+bNOn36tIYPH65PPvnEus2KyMzMVEBAgC5dumR3kiM4x8Xsi5KYHQ62yAuURE7AHvICJZETKKmsnKittUGtnnXWEYYNG6ZNmzZp2rRp+uabb5SXl6c2bdpo3LhxSkpKqtS65syZow0bNmjXrl3au3ev8vPzFRoaqkGDBik5OVmDBw+2O65r167atm2bpkyZopSUFO3evVuRkZH6zW9+o/Hjx1eqyAQAAACA2q7On9Gsi2rrrxY3KjM3V8cyMtS2QYObuujml0fYQ16gJHIC9pAXKImcQEk32xnNOn2PJm4Oaw4fVvu339Yv5s51digAAAAAHIBCE053+vJlebu56c6wMGeHAgAAAMAB6vw9mqj9xnfurCfuuktZ+fnODgUAAACAA1BoolbwdHOTpxvpCAAAANQFXDoLp2IuKgAAAKDuodCEU/1y6VLd99FH+vrECWeHAgAAAMBBKDThNIVFRVp16JDWpqbK5SZ+rAkAAAAAW9wUB6dxsVi0dexYrU9L012NGzs7HAAAAAAOQqEJp7FYLGodGqrWoaHODgUAAACAA3HpLAAAAADAoSg04RRX8/I06YsvtObwYWaeBQAAAOoYCk04xaZjxzTz66/15KpVzg4FAAAAgINxjyacIszPT4/ExKiRn58szDgLAAAA1CkUmnCKmEaN9O7Agc4OAwAAAEA14NJZAAAAAIBDUWiixqWmp+tkZqazwwAAAABQTSg0UeOmbtyoJrNna8aWLc4OBQAAAEA1oNBEjcvIyZFFP9+nCQAAAKDuYTIg1LhPR43Sxexs+Xl4ODsUAAAAANWAQhNOEezt7ewQAAAAAFQTLp1FjTLGODsEAAAAANWMQhM1Jr+wUJF/+YtGLVqkjJwcZ4cDAAAAoJpw6SxqzLcnTyotI0OX8/Lk7+np7HAAAAAAVBMKTdSYe267TZuSk3X6yhW5WCzODgcAAABANaHQRI1xd3VVj/BwZ4cBAAAAoJpxjyYAAAAAwKEoNFEjthw/rj9u3qx/nz3r7FAAAAAAVDMKTdSIf+7dqxe//FJvb9/u7FAAAAAAVDPu0USN6N6smU5kZmpAdLSzQwEAAABQzSg0USNGtm2rkW3bOjsMAAAAADWAS2cBAAAAAA5FoYlqt+vMGV3Jy3N2GAAAAABqCIUmqlWRMbrvo48U9Npr2nn6tLPDAQAAAFADKDRRrc5cuSI/Dw95urrqjgYNnB0OAAAAgBrAZECoVo3r1VPq+PE6e+WKPFxdnR0OAAAAgBrAGU3UiIZ+fs4OAQAAAEANodBEtTHGODsEAAAAAE5AoYlqs+HoUbX661/1ckqKs0MBAAAAUIMoNFFt1qWm6sCFC0pNT3d2KAAAAABqEJMBodpM7tZNsbfdpjDuzwQAAABuKRSaqDaBXl4a3KqVs8MAAAAAUMO4dBYAAAAA4FCc0US1eOf772UkDWzZkktnAQAAgFsMhSaqxZ+2bFFqerpuq1dPA6KjnR0OAAAAgBrEpbNwuIKiIiV16KC48HDdGx7u7HAAAAAA1DDOaMLh3Fxc9FJcnF6Ki3N2KAAAAACcgDOaAAAAAACHotCEQxUWFembH39UQVGRs0MBAAAA4CQUmnCoHadPq8t77ynqL3+RMcbZ4QAAAABwAgpNONTxS5cU5OWlmEaNZLFYnB0OAAAAACdgMiA41LA2bTS4VSul5+Q4OxQAAAAATsIZTTicq4uLQnx8nB0GAAAAACeh0ITDcE8mAAAAAIlCEw70wvr16vree1q2f7+zQwEAAADgRNyjCYdZc/iwdp89q+yCAmeHAgAAAMCJKDThMMtGjdK61FT1jYhwdigAAAAAnIhCEw4THhioRzp2dHYYAAAAAJyMezQBAAAAAA5FoYkqM8Zo8tq1Wrxvn3K5PxMAAAC45VFoosoOXLigGVu3avSSJSriEScAAADALY97NFFlnq6ueiY2VtkFBfJ2d3d2OAAAAACcjEITVdYiKEh/7t/f2WEAAAAAqCUoNFElxy9d0k9ZWda/Q3x81CwgwIkRAQAAAHA2Ck3csOOXLil6zhzlFhZa27zc3HRg3DiKTQAAAOAWxmRAuGE/ZWXZFJmSlFNQYHOGEwAAAMCth0ITAAAAAOBQFJoAAAAAAIei0MQNC/HxkZeb7W2+Xm5uCvHxcVJEAAAAAGoDJgPCDWsWEKAD48Yx6ywAAAAAGxSaqJJmAQEUlgAAAABscOksAAAAAMChKDQBAAAAAA5FoQkAAAAAcCgKTQAAAACAQ90SheaWLVuUkJCg4OBg+fn5KTY2VnPnzq30ejZt2qTHHntMHTt2VMOGDeXh4aHg4GD16tVLH330kYwxpcYcO3ZMc+bMUXx8vMLCwuTu7q6QkBDFx8dr+fLljnh7AAAAAFCr1PlZZxcvXqyRI0eqqKhI9957r0JCQrR+/XolJSVpz549ev311yu8ruXLl+vdd99VdHS0YmJiFBQUpJMnT2rz5s1KSUnR6tWrNX/+fJsxo0eP1pYtW+Tp6anOnTsrLCxMqamp+vzzz/X555/rueee06xZsxz9tgEAAADAaSzG3mm4OuLixYtq0aKFMjMztXjxYg0dOlSSdPbsWXXv3l2HDx/Whg0b1LNnzwqtb9++fQoMDFTjxo1t2g8fPqx7771Xp0+f1ooVK3T//fdbl40aNUrdu3dXUlKS6tWrZ21ftWqVBg8erIKCAn3++ee67777Kvy+MjMzFRAQoEuXLsnf37/C41C9LmZflCQFewc7ORLUJuQFSiInYA95gZLICZRUVk7U1tqgTl86++677yozM1ODBg2yFpmS1LBhQ02fPl2SNHPmzAqvr02bNqWKTEmKiorSU089JUn68ssvbZb985//1Lhx42yKTEkaMGCAxo4dK0lasGBBhWMAAAAAgNquTheaq1atkiQNHz681LIBAwbIy8tL69atU05OTpW35e7uLkny8PCo8JgOHTpIkk6dOlXl7QMAAABAbVGnC83du3dLkjp27FhqmYeHh9q2baucnBwdPHiwSts5ceKE3n77bUlSQkJChcelpqZKksLCwqq0fQAAAACoTersZECZmZm6dOmSJKlJkyZ2+zRp0kTbt2/XsWPH1L59+wqv++uvv9bf//53FRYW6tSpU/rqq69UUFCgadOm6d57763QOjIyMqwz3w4aNKjC2wYAAACA2q7OFppXrlyx/rePj4/dPr6+vpKky5cvV2rdR44c0Ycffmj929XVVVOnTtWkSZMqvI4nnnhC58+fV+fOnTVkyJBy++bm5io3N9f6d2ZmpqSfbwgucC+oVOyoPunZ6c4OAbUQeYGSyAnYQ16gJHICJZWVE5nZmTUcScXU6kJzyJAh+uGHHyo1Zu7cuYqNja2miH728MMP6+GHH1ZeXp6OHj2quXPnaurUqVqxYoVWr16toKCgcse/9tprWrhwoYKDgzVv3jxZLJZy+7/66qt65ZVXHPkWAAAAAKDa1OpCMy0tTQcOHKjUmKysLEmSn5+fTZu9qX6vXr0qSaVmhK0oDw8PRUdHa9q0aQoODtbEiRP10ksvac6cOWWO+fjjj/XCCy/I19dXq1atUkRExHW388ILL2jChAnWvzMzM9W0aVMFewfL37v2TGGMnzENOewhL1ASOQF7yAuURE6gpJI54ZZfO0u6Wj0Z0K5du2SMqdSr+JmY/v7+CggIkCT9+OOPdtdf3B4eHl7lWH/5y19KkpYtW1Zmn5UrV2rMmDFyd3fXkiVL1Llz5wqt29PTU/7+/jYvAAAAAKitanWhWVXFjw/ZsWNHqWX5+fnau3evvLy8FB0dXeVtBQcHy8XFRefPn7e7fOPGjRoxYoSMMZo/f77uu+++Km8TAAAAAGqjOl1oDhgwQJK0aNGiUstWrlypnJwc9enTR15eXlXe1ubNm1VUVKTIyMhSy3bs2KGBAwcqNzdX7777roYNG1bl7QEAAABAbVWnC81HH31U/v7+WrZsmZYsWWJtP3funCZPnixJmjhxYqlxrVq1UqtWrXTy5Emb9hkzZig9vfRsT9u2bdNjjz0mSRozZozNsgMHDig+Pl6ZmZn685//rOTk5Kq+LQAAAACo1SzGGOPsIKrT4sWLlZiYaL1/s379+lq3bp0yMjI0YcIEzZw5s9SY4llg09LS1Lx5c5t2Dw8PxcTEqHnz5srLy1Nqaqp2794tSUpMTNS8efPk5vbfG3JjYmK0a9cuhYaGKiEhwW6MrVq10vPPP1/h95SZmamAgABdunSJ+zVrkYvZFyVx0z5skRcoiZyAPeQFSiInUFJZOVFba4PaOUWRAw0bNkybNm3StGnT9M033ygvL09t2rTRuHHjlJSUVKl1zZkzRxs2bNCuXbu0d+9e5efnKzQ0VIMGDVJycrIGDx5cakzxGdDz58/bPHvzWnFxcZUqNAEAAACgNqvzZzTrotr6q8Wtjl8eYQ95gZLICdhDXqAkcgIl3WxnNOv0PZoAAAAAgJpHoQkAAAAAcCgKTQAAAACAQ1FoAgAAAAAcikITAAAAAOBQFJoAAAAAAIei0AQAAAAAOBSFJgAAAADAoSg0AQAAAAAORaEJAAAAAHAoCk0AAAAAgENRaAIAAAAAHIpCEwAAAADgUBSaAAAAAACHotAEAAAAADgUhSYAAAAAwKEoNAEAAAAADkWhCQAAAABwKDdnB4DKM8ZIkjIzM50cCa6Vmf3z8XDL558V/ou8QEnkBOwhL1ASOYGSysqJ4pqguEaoLcjcm9Dly5clSU2bNnVyJAAAAABqg8uXLysgIMDZYVhZTG0rfXFdRUVFOnXqlOrVqyeLxeLscPB/MjMz1bRpU504cUL+/v7ODge1BHmBksgJ2ENeoCRyAiWVlRPGGF2+fFmNGzeWi0vtuTOSM5o3IRcXFzVp0sTZYaAM/v7+fCCgFPICJZETsIe8QEnkBEqylxO16UxmsdpT8gIAAAAA6gQKTQAAAACAQ1FoAg7i6empKVOmyNPT09mhoBYhL1ASOQF7yAuURE6gpJstJ5gMCAAAAADgUJzRBAAAAAA4FIUmAAAAAMChKDQBAAAAAA5FoYlbRlZWlj799FM98sgjatmypby8vOTr66sOHTpo6tSpunLlSpljP/jgA8XGxsrPz0/BwcFKSEjQ1q1by93eli1blJCQoODgYPn5+Sk2NlZz584td8yPP/6oMWPGqHHjxvLy8lJ0dLSmTJminJycG3rPqLwLFy6oQYMGslgsioqKKrcveVH3nT9/XpMmTVLLli3l7e2t4OBgdezYUb/5zW/s9l+xYoXi4uKszzjr2bOnVq1aVe42/vOf/2jEiBEKDQ2Vt7e32rVrpzfeeENFRUVljklPT9f48eMVHh4uT09PhYeH69lnn1VGRkZV3i4qYNu2bUpMTFTjxo3l7u6uwMBA9ejRQ++//77sTXtRWFio2bNnq127dvL29lZoaKgSExP1ww8/lLudmsolXN/333+vP/3pTxo6dKiaNGkii8Uii8Vy3XG1+TMiOztbL730kqKjo+Xl5aXGjRtr7NixOnny5HXfF35WmbwoKirS5s2bNXnyZHXq1En16tWTp6enIiMj9cQTTygtLa3cbd20eWGAW8Q777xjJBlJpnXr1mbEiBGmX79+pl69ekaSadWqlTl79mypcePHjzeSjLe3txk0aJDp16+fcXNzM66urmbp0qV2t7Vo0SLj6upqLBaLiYuLM8OGDTOBgYFGkpk4caLdMYcOHTIhISFGkmnbtq1JTEw0ERERRpLp1q2bycnJceTuQBmSkpKMxWIxkkxkZGSZ/ciLum/79u2mfv36RpK54447zMiRI03//v1NeHi4cXV1LdV/9uzZRpJxc3Mz8fHxZtCgQcbb29tIMnPmzLG7ja1bt1r7xMbGmsTERBMWFmYkmREjRpiioqJSY86fP2+ioqKMJBMREWESExPNHXfcYSSZ6Ohoc+HCBYfvC/ys+N+wJNOxY0eTmJhoevXqZdzc3Iwk89BDD9n0LywsNEOGDDGSTGBgoBk2bJiJi4szFovF+Pj4mG+//dbudmoql1AxgwYNsn5/uPZVntr8GZGdnW06d+5sJJlGjRqZxMREExsbaySZ0NBQc+TIkUrvo1tRZfLi0KFD1uVhYWFm4MCBZsiQIea2224zkky9evXM5s2b7Y69mfOCQhO3jA8++MA8/vjjZt++fTbtp06dMjExMUaSefDBB22WrV271kgy9evXNwcPHrS2b9261Xh4eJjAwECTnp5uM+bChQvG39/fSDKLFy+2tp85c8b65XDDhg2l4uvWrZuRZJ555hlrW35+vvVLypQpU278zaNC1q1bZySZxx9/vNxCk7yo+86dO2dCQkKMj4+PWbZsWanlJQuE/fv3G1dXV+Pp6Wm2bt1qbT9w4ICpX7++cXNzM4cOHbIZk5eXZ1q0aGEkmVmzZlnbL1++bLp06WIkmffff7/UtkePHm0kmaFDh5r8/Hxr+69//WsjySQlJd3gu0Z58vPzTYMGDYwkM2/ePJtl+/btM8HBwUaS+fLLL63txT9w3n777ebMmTPW9kWLFhlJJioqyuYYGlOzuYSK+dOf/mR+//vfm+XLl5vTp08bT0/PcgvN2v4Z8eKLLxpJpkuXLuby5cvW9pkzZxpJJi4u7vo7BZXKi8OHD5u+ffua9evX2/zok5OTY5KTk40k06xZM5OXl2cz7mbPCwpNwPz8P39JxtPT0+Tm5lrb+/fvbySZ2bNnlxrzzDPPGEnm9ddft2l/7bXXjCQzaNCgUmOWLFliJJn777/fpv3bb781kkyDBg1K/cp05swZ4+7uboKCgkp9IYHjZGVlmcjISNOmTRtz8ODBcgtN8qLue/LJJ40k8+abb1aq//jx40stmzVrlpFkxo0bZ9O+cOFCI8l06NCh1Jjvv//e+kv0tU6dOmVcXFyMh4eHTeFizM9fWEJDQ42rq6vdqzNQNf/+97+NJNOyZUu7y4v/7b/22mvWttatWxtJds9gDRw40EgyixYtsmmvqVzCjbteoVmbPyNyc3NNQECAkWR27NhRalvt27c3ksz27dvLfH+w73p5UZasrCzrMUlJSbFZdrPnBfdoApI6dOggScrNzdWFCxck/Xyd+pdffilJGj58eKkxxW0rVqywaS++h8bemAEDBsjLy0vr1q2zuUa+eMwDDzxQ6iG8DRs2VI8ePZSenq6vvvrqht4fru+VV15Ramqq3n77bbm7u5fZj7yo+7Kzs/Xxxx/L19dXY8aMqdCY8o7vjeREx44dFRERob179+ro0aPW9jVr1qioqEg9evRQw4YNbcZ4enrqgQceUGFhoT777LMKxY2Kq+gD0uvXry9JSktL0w8//CBvb28NGDCgVL8byQtH5hKqR23/jNiyZYsuXbqkyMhIxcTEVDg+VB9vb29FR0dLkk6dOmWz7GbPCwpNQFJqaqokyd3dXcHBwZKkAwcOKDc3V6GhoWrSpEmpMR07dpQk7dmzx6Z99+7dNsuv5eHhobZt2yonJ0cHDx6s0JjytgXH2LNnj2bOnKkxY8aoR48e5fYlL+q+7du36/Lly4qJiZG3t7dWr16tCRMm6KmnntIbb7xR6otARkaGjh8/Lkl2P6CbNm2qkJAQHTt2TJmZmdb2Gzm+5ITzREREKDIyUgcOHND8+fNtlv3www/6+OOPFRQUpCFDhkj677Fq27at3R+v7B2rmswlVI/a/hlBrtQ+RUVFOnbsmCQpLCzMZtnNnhcUmoCkP//5z5Kk+Ph4668/xR/29j4oJMnX11eBgYFKT0/X5cuXJUmZmZm6dOlSueOK24v/p1KRbdkbA8coKirSo48+qsDAQE2fPv26/cmLum/fvn2SpAYNGmjw4MFKSEjQ7Nmz9be//U3PPfecoqKitGDBAmv/4uMUFBQkX19fu+t01PElJ5zH1dVVH374oQIDAzV69Gh16tRJo0aNUu/evdW+fXs1adJE69evt/5YWZXjWxO5hOpR2z8jyJXaZ8GCBTp37pxCQ0PVtWtXa3tdyAsKTdzyPvvsM7333ntyd3fXH/7wB2t78eNOfHx8yhxb/EWg+MPi2keklDWu5JiKbMveGDjGnDlztG3bNs2YMcN6yVt5yIu6Lz09XZK0fPlyrVmzRm+++abOnTuno0ePatKkScrOzlZSUpJ27dol6cZyoiLjyInap1u3btq4caMiIiK0Y8cOLVy4UBs2bJCLi4v69u2riIgIa9/qOL43Oo68qDm1/TOCXKldTpw4oWeffVaSNHXqVJtLXetCXlBo4pa2f/9+PfzwwzLGaMaMGdZ7NXFrOH78uH73u98pLi5OycnJzg4HtUTxMwcLCgo0depUPfXUUwoNDVV4eLhmzJihESNGKD8/XzNmzHBypKhpCxYsUGxsrJo2bapvv/1WV65c0cGDB5WcnKyZM2eqd+/eys3NdXaYAG4CV69e1dChQ/XTTz9p8ODBeuKJJ5wdksNRaOKWdfLkScXHxys9PV0TJkzQ+PHjbZb7+flJkrKysspcx9WrVyVJ9erVsxlT3riSYyqyLXtjUHVPP/208vLy9Pbbb1d4DHlR9117vOxNBlTctnHjRpv+lcmJiowjJ2qXQ4cOKSkpSSEhIVq5cqViY2Pl6+ur22+/XX//+991//33a8eOHfrf//1fSdVzfG90HHlRc2r7ZwS5Ujvk5+drxIgR2r59u7p3717qvm+pbuQFhSZuSRcvXtR9992nY8eOacyYMXr99ddL9WnWrJkk6ccff7S7jqtXryojI0NBQUHWf3j+/v4KCAgod1xxe3h4eIW3ZW8Mqm7lypXy8fHRE088oZ49e1pfo0aNkvTzjxHFbWfOnJFEXtwKivenj4+PQkNDSy1v3ry5JOncuXOS/nuc0tPTrR/GJTnq+JITzvPPf/5T+fn5io+Pt/kCWCwxMVGStGnTJklVO741kUuoHrX9M4Jccb6ioiIlJSVp9erVuvPOO7VixQp5e3uX6lcX8oJCE7ecK1euqH///tq3b5+GDh2qd955RxaLpVS/li1bytPTU+fPn9fJkydLLd+xY4ckqX379jbtxZffFi+/Vn5+vvbu3SsvLy/rVNbXG1PetlB1GRkZ2rhxo83r22+/lSTl5ORY24qnDicv6r7i2T6zs7PtXgZ58eJFSf/9BTgwMND6Ib1z585S/U+cOKGffvpJ4eHh8vf3t7bfyPElJ5yn+ItW8Re/korbi+/xLT5We/fuVX5+fqn+9o5VTeYSqkdt/4wgV5zv17/+tRYsWKDo6Gh9/vnnCgwMLLPvzZ4XFJq4peTm5mrQoEH67rvv1K9fPy1YsECurq52+3p7e6t3796SpH/961+lli9atEjSz88pulbx89KKl19r5cqVysnJUZ8+feTl5VVqzIoVK0p9sT179qw2b96soKAgdevWraJvFRVgjLH7SktLkyRFRkZa24rPYpEXdV+zZs3UoUMHGWOsl8deq7jt2sdPlHd8byQndu7cqdTUVLVt29aae9LPM2O7uLho8+bN1jOqxXJzc7VixQq5uroqISGhIm8VlVD82IHt27fbXb5t2zZJ/z3j3aJFC7Vu3VrZ2dnW59pd60bywpG5hOpR2z8junXrpoCAAB05csQ6oVlF4oNj/O53v9Nbb72lZs2aae3atWrQoEG5/W/6vDDALaKgoMAMGTLESDI9evQwV69eve6YtWvXGkmmfv365uDBg9b2rVu3Gk9PTxMYGGjS09Ntxly4cMH4+/sbSWbx4sXW9rNnz5qoqCgjyWzYsKHUtrp162YkmfHjx1vb8vPzzdChQ40kM2XKlMq+ZdygtLQ0I8lERkbaXU5e1H3z5s0zkky7du3MqVOnrO07d+40wcHBRpL55JNPrO379+83rq6uxtPT03z99dfW9oMHD5r69esbNzc3c+jQIZtt5OXlmRYtWhhJZtasWdb2K1eumC5duhhJ5v333y8V2+jRo40kM2zYMJOfn29tf+aZZ4wkk5SU5IA9gJK+//57I8lIMm+99ZbNsq+//tr4+voaSWbt2rXW9nfeecdIMrfffrs5e/astX3x4sVGkomKirI5hsbUbC7hxnh6epryvkLX9s+IF1980UgyXbt2NVeuXLG2z5w500gycXFx190HKO16eTFr1iwjyYSFhdnkRXlu9ryg0MQt44033rB+SRgyZIhJSkqy+zp//rzNuPHjxxtJxsfHxwwaNMj079/fuLm5GVdXV7N06VK721q0aJFxcXExFovF9OrVywwfPtwEBgYaSWbChAl2xxR/iSj+cjty5EgTERFh/Uefk5Pj6F2CMlyv0DSGvLgVJCUlGUkmMDDQJCQkmF69elm/SDz22GOl+hd/iXBzczP9+/c3gwYNMt7e3kaS+ctf/mJ3G1u2bLH2ueeee0xiYqJp1KiRkWSGDx9uioqKSo05f/68iYyMtOboyJEjTdu2ba0FzYULFxy+L/CzSZMmWT9H7rjjDjNixAjTrVs34+LiYiSZxx9/3KZ/YWGh9QfOoKAgM3z4cNOzZ09jsViMt7e3+eabb+xup6ZyCRWzcuVKc88991hfFovFup+LXytXrrQZU5s/I7Kzs80999xjJJlGjRqZxMRE69+hoaHmyJEjVd5nt4LK5MXOnTuty7t06VLmd9DNmzeX2s7NnBcUmrhlTJkyxfoFobxXWlpaqbHvv/++6dSpk/Hx8TGBgYEmPj7ebNmypdztffXVVyY+Pt4EBgYaHx8fc9ddd5kPPvig3DHHjx83ycnJJiwszHh4eJioqCjz+9//3mRnZ1flraOSKlJoGkNe1HVFRUXmH//4h/UY+/r6mi5dupR7vJYvX2569Ohh/Pz8jJ+fn+nRo4dZsWJFudvZu3evGTZsmKlfv77x8vIyd9xxh5k1a5YpLCwsc8yFCxfMr3/9a9O0aVPj4eFhmjZtap555plSZ0ngeEuWLDH33Xef9exiUFCQ6dWrl5k/f77d/gUFBWbmzJnmjjvuMF5eXqZ+/fpm+PDh5j//+U+526mpXML1vf/++9f97mDvjHFt/ozIysoyv//9701kZKTx8PAwYWFhJjk52Zw4caJC+wSVy4sNGzZU6DtoWVce3Kx5YTHGGAEAAAAA4CBMBgQAAAAAcCgKTQAAAACAQ1FoAgAAAAAcikITAAAAAOBQFJoAAAAAAIei0AQAAAAAOBSFJgAAAADAoSg0AQAAAAAORaEJAAAAAHAoCk0AQLksFovNy93dXSEhIWrXrp2Sk5O1ePFiFRQUODtM1GI9e/aUxWLR0aNHnR2KJOnll1+WxWLRBx984OxQAKDOotAEAFRIUlKSkpKS9OCDD6pbt24qKCjQ3LlzNXz4cLVu3VrfffedQ7bzwQcfyGKx6OWXX3bI+mpCbSukAABwNjdnBwAAuDnYO/tz5MgR/fa3v9Unn3yiXr16acuWLbrzzjtrPDagMsaNG6dRo0apUaNGzg4FAOoszmgCAG5YZGSkFi5cqEceeURZWVkaO3ass0MCriskJEStWrVSQECAs0MBgDqLQhMAUGUzZ86Ur6+vdu7cqa+++spm2apVqzR27Fi1bt1a/v7+8vX1VYcOHfTHP/5Rubm5Nn179uypMWPGSJJeeeUVm3tDi8+oGmO0YMECjRo1StHR0fL19VW9evUUGxurt956S0VFRaXiM8Zo3rx56t69uxo2bCgvLy81bdpUffr00Ztvvmm3/4IFC9S7d28FBQXJy8tLrVu31ssvv6ysrCxrv6NHj8pisWjjxo2SpBYtWtjEXBHHjh3Tk08+qejoaPn4+Cg4OFh33HGH/ud//kcHDhy44X0p2V6GfOTIESUmJiokJET+/v7q37+/9u3bJ0kqKCjQH//4R0VHR8vLy0tRUVF290vx++3Zs6cyMzM1fvx4NW3a1Lp/Zs+ebXf/l+fixYt64YUX1KZNG3l7eysgIEC9e/fWypUrK7Weyhxje/doFreV9yp5Vj8rK0uvvvqqYmJi5OfnJz8/P3Xu3FkffvhhpWIHgLqIS2cBAFUWEBCg/v37a9GiRdqwYYO6d+9uXfbII48oOztbbdu2Vfv27XXp0iV99913evHFF7V+/Xp98cUXcnV1lSTFx8eroKBAW7ZsUYcOHWwuw42KipIk5ebm6qGHHlL9+vXVpk0bdezYURcuXNDWrVv19NNP67vvvitVEEyePFmvv/66PD09de+99yokJERnzpzRnj17dPjwYT399NPWvkVFRXr44Ye1YMEC+fn56a677lJQUJC2b9+uV155RatXr1ZKSoq8vb3l5+enpKQkrVmzRmfPntWwYcPk5+dX4f124sQJdezYURcvXtTtt9+uhIQEFRYW6tixY3rnnXfUpUsXtWzZ8ob25bXS0tIUGxurhg0bqk+fPtq3b5/WrFmj77//Xnv27NETTzyhlJQU9erVSxEREdqwYYPGjRsnDw8PPfbYY6XWl5ubq969e+vIkSPq3bu38vLytH79ek2YMEG7d++u8CQ7Bw8eVJ8+fXTixAk1b95c/fr10+XLl/XNN9/ogQce0IwZMzRp0qQKrasyx9ieO++8U0lJSXaXLV68WFeuXLHZt+fOnVPfvn21Z88ehYWFKS4uTsYYbd26VcnJydq+fbvmzJlTodgBoE4yAACUQ5KpyMfFtGnTjCTz4IMP2rR/+umnJisry6YtMzPT3H///UaS+fDDD22Wvf/++0aSmTJlit3t5Ofnm6VLl5q8vDyb9nPnzpm77rrLSDIbN260tmdnZxtPT09Tr149k5qaWmpdmzZtsmmbPn26kWR69uxpTp8+bW3Pzc01jzzyiJFk/t//+382Y+Li4owkk5aWZjfmsrz00ktGkhk3blypZceOHTOHDx+2abvRfSnJPP/886aoqMgYY0xRUZFJTk42kkybNm1M27Ztzblz56zj1q1bZySZ8PBwm/WlpaVZ19e+fXtz/vx567LDhw+bxo0bG0lm6dKlNuPs7Z+CggLTrl07I8lMnz7dFBYWWpcdOnTItGjRwri6upp///vfZe/A/1PZYzxlyhQjybz//vvXXfesWbOMJNOpUyebfZ+QkGAkmfHjx5ucnBxr+5kzZ6x5uHr16uuuHwDqKgpNAEC5Klpovv3220aSiY+Pr9B6Dx06ZCSZoUOH2rRfr9Asz9q1a40kM2HCBGvb2bNnjSRz5513Xnd8fn6+CQkJMb6+vubMmTOllmdlZZmwsDATFBRkUxjdaKH55JNPGknm008/rdS4kq63LyMiIkoV5rt377Ye23Xr1pVaZ0xMTKn3dG2h+cUXX5Qa87e//c1IMr/4xS9s2u3tn6VLlxpJZtiwYXbf05IlS4wk88wzz1zv7VfqGBtT8UJzzZo1xtXV1YSFhZkff/zR2r5z504jydx99902eVBsx44dRpIZOHBgheIBgLqIS2cBAA5hjJEku/cmHjp0SJ999pkOHz6sq1evqqioyNr/0KFDN7S9Xbt26YsvvtCxY8eUlZUlY4wuX75cap0NGjRQkyZNtGvXLj3//PN6/PHHFRERYXedO3bs0E8//aS+ffuqYcOGpZZ7e3urU6dOWrVqlQ4dOmRzWeuN6NSpkyTpt7/9rVxdXdWnTx95eXmVO+ZG9mXPnj3l7u5u01a8D9zd3dWzZ89SYyIiIrRz506dPn1azZs3t1kWHBysvn37lhrz4IMP6sknn9TWrVtVVFQkF5eyp4L44osvJElDhw61u7xHjx6SVKHH5lTmGFfUgQMHNGrUKLm5uenTTz/VbbfdVir2wYMH232PxfdsOuqRPwBwM6LQBAA4xE8//STp5yKkmDFGkyZN0uzZs63FUEnFxWFF5eXlKTk5WQsWLCizT8l1fvjhhxo1apRee+01vfbaawoPD1dcXJxGjRql/v37W/sVPwdz7dq1153M56effqpyoZmcnKwvvvhCn3zyiR544AF5eXnp7rvvVnx8vMaOHauwsDBr36rsy2uLpGLF95KGhYXZva+zeLm9SYbCw8PtbicgIECBgYHKyMhQenq66tevb7ef9N99PXr0aI0ePbrMfsV5dT0VPcYVkZGRoYEDByojI0Nz587VPffcYzf2F198US+++GKZ68nJyanUdgGgLqHQBAA4xM6dOyVJbdq0sbYtXLhQs2bNUtOmTTV79mx16dJFoaGhcnd3V15enjw9Pcssmsoya9YsLViwQO3atdP06dPVsWNHBQUFyd3dXQcPHlTLli1LrbN37946fPiwVq5cqTVr1iglJUVz587V3LlzNWzYMC1atEiSrDOmRkVFqVu3buXGUV4RVVGurq5auHChnn/+eS1btkxffvmlvv32W23evFl/+tOftGbNGnXt2lVS1fZleWcWy1tWnYr3dXx8vN2zx8VCQkIqtL6KHuPrKSws1MiRI3Xw4EFNnjxZv/zlL8uMvXv37oqMjKzQegHgVkOhCQCoskuXLunzzz+XJPXq1cvavnTpUknS3/72Nw0YMMBmTGpq6g1tq3idCxYs0B133FHhdfr7++uhhx7SQw89JEn65ptvNGLECC1evFifffaZEhIS1KRJE0lSq1atKjxzqiPExMQoJiZGL7/8sjIzM/Xyyy9r9uzZevbZZ62XX1bHvrxRx48ft9uemZmpjIwMeXt7KzAwsNx1FO/rRx99VMOGDXNIXBU5xtczceJEffHFFxowYIBeffXVcmMfPHiwJk6c6JDYAaCu4TmaAIAqmzhxoq5evaq7775bXbp0sbanp6dL+u8X82t98skndtfl4eEh6ednO9pzI+u0p3PnztazVXv37pUk3X333QoICNDGjRt18eLFCq/rejFXhr+/v1599VVZLBZrXJLj3rcjXLhwQevXry/V/s9//lOS1KVLF7uX416r+B7P4gK6Otg7xuV577339Oc//1lt2rTR/PnzyzzbWxOxA8DNjkITAHDDUlNTNXLkSL333nvy9fXVe++9Z7M8OjpakvSPf/zD5rLOzZs3a8aMGXbX2bhxY0k/T8ZiT/E63377bZv2RYsWae7cuaX6Hz9+XB988IGysrJs2nNycrRhwwZJUtOmTSVJnp6emjx5si5fvqyhQ4faPVN48uRJffTRR5WKuSwfffSR3QJo9erVMsZY45JubF9Wp0mTJunChQvWv9PS0jR16lRJuu4zKyVp2LBhatOmjebNm6c//OEPpe4FNcZoy5Yt2rJly3XXVZljXJavvvpKTz31lIKDg7V8+XL5+/uX2feee+5R3759tWXLFj399NPKzMws1Wf37t1as2bNdWMHgLqKS2cBABWSnJws6ef70zIzM3Xw4EHt379fxhjdfvvtmj9/vtq1a2cz5plnntEHH3ygt956SykpKWrfvr1Onjypr776ShMnTtTrr79eajudO3dWgwYNtGjRIvXs2VMRERFycXHR2LFj1bVrV02ePFlr1qzR888/r3/961+Kjo7WoUOHtH37dk2aNKnUOi9evKgxY8bo6aef1l133aUmTZro6tWr2rp1q86fP6+77rrLZubT559/Xvv379dHH32k1q1bKyYmRi1atFBeXp4OHDigffv2qX379jb37g0cOFAffvihHnroId13330KCAiQJL377rvl7tPFixfrV7/6lSIjI9WuXTt5e3srLS1N3377rVxcXDRt2rQq7cvq0rlzZ+Xl5SkqKkq9e/dWfn6+1q9fr6ysLD388MNlziR7reLZXPv166eXXnpJf/3rX9W+fXs1aNBAP/30k3bt2qVz585p9uzZ171ftrLH2J4pU6YoLy9PzZo10x/+8Ae7fR599FF1795dkvTxxx8rPj5eb731lubPn68777xTjRs31qVLl7Rnzx6dOHFC48ePV3x8/HX3BQDUSTX/RBUAwM1E//fcxOKXm5ubCQ4ONm3btjVJSUlmyZIlpqCgoMzxP/zwg3nggQdMgwYNjI+Pj4mJiTH/+Mc/rOsODw8vNWbbtm2mb9++JiAgwFgsllLPPPz6669N7969TVBQkKlXr57p2rWrWbx4sfU5j3Fxcda+mZmZZubMmSYhIcE0b97ceHl5mfr165u77rrLzJ4921y9etVu3MuWLTMDBgwwDRo0MO7u7qZBgwamU6dOZvLkyeb7778v1X/27NmmTZs2xtPTs8LPHt24caN5+umnzZ133mnq169vvLy8TEREhBk1apTZtm1blffl9Z5JWtb+N8aYpKQkI8ls2LDB2nbt/s3IyDBPPfWUady4sfHw8DAtW7Y0r7/+ut1cKO85oxkZGWbatGmmY8eOxs/Pz3h5eZnmzZubfv36mTfffNOcP3/ebnzXquwxtvcczeIYy3uVfO5mdna2+ctf/mK6du1qAgICjIeHh2natKmJi4szM2bMMCdOnLhu7ABQV1mMqeR0fwAA4JZ09OhRtWjRQnFxcUpJSXF2OACAWox7NAEAAAAADkWhCQAAAABwKApNAAAAAIBDcY8mAAAAAMChOKMJAAAAAHAoCk0AAAAAgENRaAIAAAAAHIpCEwAAAADgUBSaAAAAAACHotAEAAAAADgUhSYAAAAAwKEoNAEAAAAADvX/Abm/r0qMd9RGAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est1.completed_trials_summary_[est1.completed_trials_summary_[\"Step\"].str.contains('Adaptive Sampling')]\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "n_samples = trials['# Samples'].tolist()\n", "\n", "y_margin = 0.10 * (max(scores) - min(scores))\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Adaptive Sampling ({})\".format(est1.selected_model_))\n", "ax.set_xlabel('Dataset sample size')\n", "ax.set_ylabel(est1._inferred_score_metric[0].name)\n", "ax.grid(color='g', linestyle='-', linewidth=0.1)\n", "ax.set_ylim(min(scores) - y_margin, max(scores) + y_margin)\n", "ax.plot(n_samples, scores, 'k:', marker=\"s\", color='teal', markersize=3)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "573f6c95", "metadata": {}, "source": [ "\n", "#### Feature Selection\n", "\n", "The next step of the pipeline is to find a relevant feature subset to maximize score for the chosen algorithm. AutoMLx Feature Selection follows an intelligent search strategy, looking at various possible feature rankings and subsets, and identifying that smallest feature subset that does not compromise on score for the chosen algorithm. The orange line shows the optimal number of features chosen by Feature Selection." ] }, { "cell_type": "code", "execution_count": 13, "id": "da8f3d1a", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:36.917700Z", "iopub.status.busy": "2025-05-22T12:37:36.917145Z", "iopub.status.idle": "2025-05-22T12:37:37.118684Z", "shell.execute_reply": "2025-05-22T12:37:37.118129Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Features selected: ['AveOccup', 'AveRooms', 'HouseAge', 'Latitude', 'Longitude', 'MedInc']\n", "Features dropped: ['AveBedrms', 'Population', 'Median Price']\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3IAAAKBCAYAAAASppniAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7mklEQVR4nOzdd1hTZ/8G8DsBQsIKBJQ9HChOFBUHiritWhW17rpbW2uXba1dvnaoXb5929phqxZX67ZurVr3RnHgACfKkCFC2Cvn9weSHwgokMAJ4f5cF1fl5Jzz3OEQmm+e5zyPRBAEAURERERERFRrSMUOQERERERERJXDQo6IiIiIiKiWYSFHRERERERUy7CQIyIiIiIiqmVYyBEREREREdUyLOSIiIiIiIhqGRZyREREREREtQwLOSIiIiIiolqGhRwREREREVEtw0KOiIiomgUFBUEikWDevHliR6kULy8vSCQShISEiB3FIEyaNAkSiQSTJk3S63lDQkIgkUjg5eWl1/MSkXFjIUdEpEfz5s2DRCKp0JchmDdvHubNm4e7d++KHaVGJCYmYv78+ejatSscHBxgZmYGBwcHtGjRAs8//zy++uornDhxQuyY1S4kJATz5s3DoUOHxI6iN3fv3q3wa6+sL2P6WRBR3WAqdgAiImPl6OgodoRn+vTTTwEU9hgZe2/AgQMHMHLkSCQnJ2u3WVpaIi8vD1evXsXVq1exY8cOAIAgCGLFrBEhISE4fPgwgMJrX55GjRpBLpdDqVTWULKqMzExKfc1l5qaiuzsbEilUtSrV6/MfWQy2TPbcHZ2RtOmTeHs7KxTViIifWAhR0RUTR48eCB2BHrs3r17GDp0KNLT0+Hl5YW5c+ciODgYtra2AArf6J8+fRrbtm3Dn3/+KW5YA3LgwAGxI1SYu7t7ua+5SZMmYcWKFXB3d9ep93nhwoVYuHBhlY8nItInFnJERGT0lixZgvT0dMhkMhw+fBgeHh4lHlcqlejbty/69u2Lb775RqSUREREFcd75IiIDERiYiI+/vhjtG3bFkqlEnK5HA0bNsTUqVNx5cqVco87deoU3n//fXTr1g2enp6Qy+WwtbVFp06d8NVXXyE9Pb3UMUWTNhTp0aNHifuFig+zrMhEDMXvT3qyx+PJ4w8ePIihQ4fC2dkZJiYmpSaOSEtLw5dffonOnTtDpVLB3Nwc7u7uGD16NE6ePFluhqe5cOECAKBNmzalirgnKRSKch/TaDRYs2YNBgwYAEdHR8hkMtSrVw99+/bFX3/9pdOQzPDwcLz88svw9vaGhYUFrKys0Lp1a3z00UdISkp66rEZGRn473//i+7du8PBwQEymQxubm7o3r07Fi1ahPj4eAD/fy2KhlV++umnpe4VK379njXZSUFBAZYvX46ePXvCwcEB5ubmcHV1xQsvvPDUe86KT/4iCAJ+//13dOzYETY2NrC2tkbnzp2xevXqSv38qurJ391bt27h5ZdfRoMGDWBubl7i9/5pk508evQIy5Ytw8iRI9GqVSuoVCrI5XJ4enpi7NixOHXqVJUznj59GuPGjUODBg0gl8thaWkJT09PdO/eHZ9//jmio6OrfG4iqsUEIiLSm//85z8CAKGyf1737dsn2Nraao81MzMTLC0ttd/LZDJhxYoVZR5btA8AwcLCQrCzsyuxrXnz5kJ8fHyJY9544w3B0dFRu4+dnZ3g6Oio/Wrfvr123z/++EMAIHh6epab/86dO9pz3blzp8RjxY//3//+J0gkEgGAoFQqBTMzM2HixInafcPCwgQ3NzftuUxMTARra2vt9xKJRFiwYEGlfraCIAgDBgwQAAhubm6CRqOp9PGCIAgPHz4UAgMDS/xslUplie8HDx4s5OTklDq2e/fuAgDhP//5T5nn/uqrrwSpVFriOspkMu33zs7Owvnz58s89ty5c4K7u7t2X6lUKqhUKsHc3Fy77bvvvhMEQRDWrl0rODo6CmZmZgIAwdLSssR1d3R0FO7du6c9t6enpwBA+OOPP0q1m5KSIgQFBZW4Vra2ttrrC0B49913y8xc9PP4+OOPhSFDhggABFNTU8HGxqbEz3Pu3LlPvygVNHHixHJ/h4v/7q5Zs0awsrLSXgNLS8sSxxSdp/jvbJHir30TExPBzs6uxDWQSCTC999/X2a+p73GQkJCSvxMzc3NS/2cyro+RGT8WMgREelRVQq5S5cuCQqFQgAgvPTSS8LVq1eF/Px8QRAEISoqSpgxY4b2je7Zs2dLHf/8888L69atE+Li4rTbMjMzhc2bNwtNmzYVAAjBwcFltl2U9eDBg+Xm01chJ5fLBRMTE2HSpEnaYiE/P1+4efOmIAiCEBsbK9SvX18AIAwbNkwIDQ0VcnNzBUEQhPj4eOGTTz4RTE1NBQDCli1bys1Slnnz5mnzzZo1S0hPT6/U8fn5+drio02bNsL27duFjIwMQRAEIT09XVixYoU2+1tvvVXq+KcVckuXLhUACFZWVsL8+fO11zE/P18IDQ0VevbsqS1C09LSShx77949wcHBQQAguLu7C2vXrtXm0mg0wpUrV4R58+YJq1evrnCe4p5WyA0fPlz7IcMPP/ygbTcuLk6YMmWK9uf9yy+/lPvzsLOzE5RKpRASEiJkZmYKgiAI9+/fF55//nltURoZGfnUjBVR0ULOyspK6NixY4nXWURERKnzlFXILVmyRPjPf/4jhIaGaot5jUYj3L59W3jzzTcFiUQimJiYlFmQl/cay8jI0H6QMX78eO1rRRAKf+9CQ0OF9957T9i5c2clfyJEZAxYyBER6VHxQu7Jno7iX+Hh4dpjit6of/DBB+We94033hAACEOGDKlUnujoaMHc3FyQSCRCVFRUqcdrspArKtDKU/Tmf+zYseXu89///lcAIPj6+pa7T1kSExMFFxcXbQ5LS0uhf//+wieffCL8/fffpXosn7Ry5UoBgODj4yOkpKSUuU9oaKggkUgEmUxW6nzlFU5qtVrbE7tnz54yz5uXlye0a9euRM9akfHjxwsABHt7+xI9ac+iayF36tQp7c9yyZIlZR5bVOg5ODgIWVlZZbYPQPj3339LHZudna29Xl988UWFn1d5KlrIeXp6liqWyzpPWYXcs7z22msCAGHq1KmlHivvNXb69Gnt72teXl6l2yQi48Z75IiIqkl8fHy5X3l5eQAK78/5999/YWpqinfffbfcc02YMAEAsH//fhQUFFQ4g6urK3x9fSEIgkGsj/bBBx+UuT07O1s7W+T7779f7vFFP4eLFy9q7/uqCAcHBxw7dgx9+vQBUHhP2Z49e/D5559j6NChcHR0RPv27RESEgKNRlPq+GXLlgEAXn311XKn4m/Xrh1atGiB3NxcHDx4sEK5Nm3ahJSUFLRt2xb9+vUrcx9TU1OMGTMGALB3717t9oyMDKxbtw4AMGfOHLi7u1eoTX0oatfNzQ3Tpk0rc5/PP/8cAJCUlIR9+/aVuU9AQAB69OhRaru5ubn253Hp0iV9RK6QmTNnwsrKqlrOPXDgQADAsWPHKnxM0ayqubm5ePjwYXXEIqJajLNWEhFVE6ECE18cP34cQOEkGs2bNy93v6LiLSMjAw8fPkT9+vW1j2k0GqxduxZr167FhQsXkJiYiOzs7FLnEHtCBIVCAT8/vzIfO3funDZz3759K3S+qKioSq3V16BBA/zzzz+4du0atm3bhpMnTyIsLAz37t3TZpg8eTL++usvbN26FXK5HEDhz75ooop58+ZhwYIF5bZRtEZdVFRUhTIVXf9r167Bycmp3P2ysrJKnTc0NFT7gcDzzz9fofb0JTQ0FEDhJDlSadmfCTdr1gyurq6IiYlBaGhomRk7duxYbhsuLi4AUGLdv+oWEBCg0/G3b9/Gzz//jIMHD+LWrVtIS0sr9cFAZV6HjRo1go+PD65fv46OHTvi1VdfRb9+/dCqVSuYmJjolJWIaj8WckREIoqNjQVQWIxVtIcpMzOzxL8HDRpUogdIJpNBpVLBzMwMQOEb4by8PGRkZOgxeeXZ29uX+6a/6OcAoEo/h8po1qwZmjVrpv3+wYMH2Lp1KxYuXIioqCj8888/+Pjjj/Htt98CKPz55eTkACicmVCf2Yqed3Z2dpnF99POW3zNNE9Pzwq1py8JCQkACnt8n8bNzQ0xMTHa/Z9kbW1d7rGmpoVvUYqK1ZpQ/AOSytqyZQvGjBmj/V0BABsbG8jlckgkEuTm5uLRo0eVeh2amJhg7dq1CA4Oxp07dzBnzhzMmTMHFhYW6NKlC4YNG4aJEyfCwsKiyrmJqPbi0EoiIhEV9bQ5OjpCKLxv+ZlfxadDnz9/Pg4ePAiFQoHvvvsOUVFRyM7OxsOHD/HgwQM8ePBA2+tRkR7C6vS0HoTiw0WzsrIq9HMICgrSSy4nJydMnz4dp0+f1r6RX758ubYnpXi23bt3VyjbvHnzKtR20blHjRpVofMWXxqg+PIRpB9V7eV6+PAhJk2ahJycHPTs2ROHDh1CZmYmUlNTER8fjwcPHmDDhg1VOrevry+uX7+OTZs24eWXX0bLli2RlZWF/fv3Y8aMGfDx8cHly5erdG4iqt1YyBERiahoOF1SUlKVeszWrl0LAJg7dy7eeusteHh4lHqDX7znpiqKekae1mOUmpqqUxvFhxVWdFiivjk6OmLIkCEACnveEhMTART2JBb9DPSdreh5V+W8Yv7MigreZw0TLHpcl56u2mDXrl1Qq9Wws7PD9u3b0b1791LrEeryOpTJZBg2bBiWLFmCy5cvIzExEb/++itUKhXu37+PiRMn6voUiKgWYiFHRCSiontyCgoKsHv37koff//+fQBA27Zty3z87t27uHnzZrnHFxV9T+uts7OzA1A4nK74sLHiTp8+XaG85enQoQNkMhkAYPv27TqdSxfFJ7owNzcHAJiZmcHf3x+A/rMVXf9z584hLi6uUse2b9++yj+zoiGuVe2lbd++PYDCxd3LmhwGAK5fv46YmBgAhdfXmBW9Dps2bVruMMf9+/frrT17e3tMnz4dX331FQAgLCyMk6EQ1UEs5IiIROTt7a0dIvjRRx89s2fryYkfimZQvHjxYpn7z5kz56nns7GxAQCkpKSUu4+vry+Awjf9W7ZsKfV4VlYWvvvuu6e28yyWlpYYO3YsAOCrr77STkBSnspOgHH06NFn3reWnp6OzZs3AyicGKVoxkAAePnllwEU9rzs2rVLb9leeOEF2NraIi8vD7NmzXpqYaXRaEpcJwsLC4wePRoA8OWXX2qLiYqoyHV/mqJ2Y2JisHTp0jL3mTt3LoDCGUN79+5dpXZqi6LXYWRkZJk91xcuXNDOyloZ5X1wUqR4r195958SkfHiq56ISGQ//vgjrKysEBkZiU6dOmHr1q0l3gzGxMRg1apV6NWrV6mp+fv37w8A+OKLL7B582bk5+cDAO7cuYOxY8di/fr12h61srRs2RIAsGbNmnILHTc3N3Tt2hUAMGvWrBJLIJw7dw69e/cudzKLyliwYAFcXFyQlJSEzp07Y9WqVUhLS9M+npiYiE2bNiE4OFg7HX9Fff/99/Dw8MDrr7+O/fv3Q61Wax9Tq9VYv349unTpoh2i+M4775Q4fvz48ejduzcEQUBwcDC++OKLEhO0ZGRk4ODBg3jttdfQsGHDCueytbXF//73PwCFw2QHDhyI06dPa3u5NBoNrl27hkWLFqFFixbYsWNHiePnz58PBwcHPHz4EAEBAVi/fr12hktBEBAeHo733nsPq1atKnFc0XXftWuXttesMvz9/TF8+HAAwOuvv47Fixdrf38ePHiAl156SXtP2Oeff66dAdRY9e3bF1KpFMnJyRg3bpz2Z5qbm4v169ejb9++T53YpTxr165FQEAAlixZgtu3b2u3FxQUYO/evdoPajp37vzU1zkRGanqWJyOiKiuKr4geGUcO3ZMcHJy0h5rYmIi2NvbCwqFQrsNgDBt2rQSx929e1dwdHTUPm5qaioolUrt9wsWLHjq4s+rVq3S7mtmZia4uroKnp6eQkBAQIn9wsLCBBsbG+2+crlcsLS01C58vnPnzmcuCP60BcWLXL16VWjSpIn2XFKpVFCpVNq2ir569+5dqZ/v6NGjSxwPQLC2thasrKxKbJNKpcL7779f5jlSU1OFQYMGldjfxsZGsLW1FSQSSYlr8KRnLcD9yy+/CDKZTHsOc3Nzwd7eXjAzMyvR3urVq0sde+7cOcHV1bXU745cLtdue3Ih8cjISO3jUqlUcHR0FDw9PQVPT0/h/v372v3KWxBcEAQhJSWlxMLepqamgp2dXYmfxbvvvlvm863IguRFr6Xu3buXu09FVXRB8Cd/d8s7T1kLgr///vslrpVSqdRevwYNGghr1qwp929Dea+Rou1P/l5IpVLtNhcXF+HatWuV+GkQkbFgjxwRkQEICAhAZGQkvv32WwQGBsLW1hYpKSkwMTFBs2bNMH78eKxZs0bbe1PE09MToaGhmDp1qnbdLblcjkGDBmHv3r3lLsBdZPz48Vi1ahW6du0KCwsLxMXFISoqqtQkFm3atMHp06cxevRo1K9fHxqNBg4ODnjttddw4cKFp66BVxnNmjXDpUuXsGTJEvTt2xcODg5Qq9UQBAGNGzfGCy+8gN9++w3r16+v1HlXrVqFf//9Fx988AF69eoFNzc35ObmIjs7G3Z2dujQoQPefvtthIWF4csvvyzzHDY2Nti+fTt27dqFUaNGwcPDAzk5OcjMzISrqyv69u2LhQsXIiIiotLP+5VXXkFERATeffdd+Pr6wtzcHCkpKbCyskL79u3x+uuvY9++fWX2RPr5+eHatWv48ssv0alTJ1hbWyMtLQ316tVDUFAQ/vvf/2qHrRbx9vbGwYMHMXjwYNSrVw8PHz5EVFQUoqKitL26z6JUKnHgwAEsW7YMQUFBsLa2Rnp6OpycnDB8+HAcPHgQ33zzTaV/FrXVl19+iZUrV8Lf3x8KhQJ5eXlo3LgxPvzwQ4SFhWlfn5UxePBgrFy5EpMnT4avry+USiVSU1NhbW0Nf39/fP7557hy5Qp8fHyq4RkRkaGTCILI81ETERERERFRpbBHjoiIiIiIqJZhIUdERERERFTLsJAjIiIiIiKqZVjIERERERER1TIs5IiIiIiIiGoZFnJERERERES1jKnYAeo6jUaD2NhYWFtbQyKRiB2HiIiIiIhEIggC0tLS4OLiAqn06X1uLOREFhsbC3d3d7FjEBERERGRgbh//z7c3Nyeug8LOZFZW1sDKLxYNjY2omZJzkoGAKgUKlFz0P/jNTE8vCaGhdfD8PCaGB7NtiaQZscDCmfg+etix6nz+BoxPIZ0TdRqNdzd3bU1wtOwkBNZ0XBKGxsb0Qu5fLP8wiwKcXPQ/+M1MTy8JoaF18Pw8JoYHo2FFFIpAIUUEPm9BvE1YogM8ZpU5JYrTnZCRERERERUy7CQIyIiIiIiqmVYyBEREREREdUyLOSIiIiIiIhqGRZyREREREREtQwLOSIiIiIiolqGhRwREREREVEtw0KOiIiIiIiolmEhR0REREREVMuwkCMiIiIiIqplWMgRERERERHVMizkiIiIiIiIahkWckRERERERLUMCzkiIiIiIqJahoUcERERERFRLcNCjoiIiIiIqJZhIUdERERERFTLsJAjIiIiIiKqZVjIERERERER1TIs5IiIiIiIiGoZFnJERERERES1DAs5IiIiIiKiWoaFHBERERERUS3DQo6IiIiIiKiWqROF3PHjxzFgwACoVCpYWVnB398fK1eurPR5zp07h3nz5qFLly6wtbWFTCaDu7s7xo8fj0uXLlVDciIiIiIiotJMxQ5Q3TZt2oRRo0ZBo9EgMDAQDg4OOHDgACZOnIhLly7h22+/rdB58vPz0b59ewCASqVCly5dYGlpibCwMKxZswYbNmzAmjVrMGLEiOp8OkRERERERMbdI5ecnIwpU6agoKAAGzduxKFDh7Bx40Zcv34djRs3xqJFi3Do0KEKn69Dhw74+++/kZCQgF27dmHDhg2IjIzERx99hNzcXEyZMgVJSUnV94SIiIiIiIhg5IXc0qVLoVarMWTIEAwbNky73dHREV9//TUAYNGiRRU6l6mpKc6cOYMhQ4bAxMREu10qleLzzz9H06ZNkZaWhp07d+r3SRARERERET3BqAu5oqKqrOGOAwcOhFwux/79+5Gdna1TOxKJBK1btwYAxMbG6nQuIiIiIiKiZzHqQu7ixYsAAD8/v1KPyWQytGzZEtnZ2YiMjNS5rdu3bwMAnJycdD4XERERERHR0xjtZCdqtRqpqakAADc3tzL3cXNzQ2hoKKKiorQ9alVx7NgxnDt3DjKZDP3793/qvjk5OcjJySmREwCSs5KRb5Zf5Qz68CjrkajtU2m8JoaH18Sw8HoYHl4Tw2MjaCAFoBE0SMlKFjtOncfXiOExpGuizlJXeF+j7ZFLT0/X/tvCwqLMfSwtLQEAaWlpVW5HrVZjypQpAIC3334bzs7OT91/4cKFUCqV2i93d/cqt01ERERERHWTQffIBQcH49q1a5U6ZuXKlfD396+mRCUVFBRg3LhxuHHjBvz9/fHZZ58985gPPvgAs2bN0n6vVqvh7u4OlUIFG4VNdcatMJVCJXYEegKvieHhNTEsvB6Gh9fEcGgkhZ/bSyVSXhcDwmtheAzhmpjmVbw8M+hC7s6dO4iIiKjUMZmZmQAAKyurEttsbEoXSRkZGQAAa2vrKuV79dVXsWPHDjRt2hQ7d+6ETCZ75jHm5uYwNzevUntERERERESAgRdyFy5cqPKxNjY2UCqVSE1NRXR0NJo3b15qn+joaACAp6dnpc8/Z84c/P7773B3d8e+ffvg4OBQ5axERERERESVYbT3yAGAr68vAOD8+fOlHsvLy0N4eDjkcjmaNGlSqfN+/fXX+Oqrr1C/fn3s27eP97kREREREVGNMupCbuDAgQCAjRs3lnpsx44dyM7ORu/evSGXyyt8zt9//x3vv/8+bG1tsXfvXjRt2lRveYmIiIiIiCrCqAu5adOmwcbGBlu3bsXmzZu12xMSEjB79mwAwDvvvFPqOB8fH/j4+CAmJqbE9o0bN+KVV16BlZUVdu3ahTZt2lRrfiIiIiIiorIY9D1yulKpVFi+fDlGjhyJESNGICgoCPb29ti/fz9SUlIwa9YsBAUFlTquaIKVvLw87baEhASMGzcOGo0GDRo0wJIlS7BkyZJSxw4dOhRDhw6trqdERERERERk3IUcAAwfPhxHjhzBF198gVOnTiE3NxfNmzfHzJkzMXHixAqfJzMzE7m5uQCAy5cv4/Lly2Xu5+XlxUKOiIiIDMK91FTU12ggB5Cr0eBBaio8lEqxYxGRHhh9IQcAAQEB2L17d4X3FwSh1DYvL68ytxMREREZmsy8PMSlpaHlL7/ghlsm3MyAhPR0NF28GBEzZ7KYI3rsXmoqbiUnAACU8hw4WFjUmtdHnSjkiIiIiIxNclYWQmNjIZVI0LthQ+12/99/x9nYWCx7/nlk5+eXOCY7Px9JmZm15o0qkT5pBAEJGRlIzc5GUwcH3EtNRdPFi0u8TuSmprXmww6jnuyEiIiIqDbSPDEK6LuTJzF+82Zcjo/XbjsaFYV+q1fjwwMHSuxrKZMBAB6kp1d/UCIRFH99pOfmYsu1a1h96VKJff536hR6rliBNcW2R6vVcF60CK1//RWCICApM7PcDztqAxZyREREpBf3UlNx8UECLj5IwPm4ONxLTRU7kkGLUatx+O5dJGRkaLcdjYqC5//+h4Dly0vsuy0yEmsuX8blhATttkYqFVrUq4emDg4l9l0xdCiSZ89Gv8aNq/cJEOnBg/R0nI+LQ1xamnZbQkYG3v3nH7z5xK1RM3buhGL+fHx/6pR226OsLAxbvx5Ttm4tcRvUzeRkHLx7F9eTkrTb7BUKSABYyWTIeqKAq404tJKIiIh0VtuHKFWn+6mpWHHxIgDg48BA7fZxmzfjcFQU1gwbhrGtWgEArM3NcS81FVnFZs4GgMlt2qB/o0Zo4+Sk3dayfn2Ez5hRqr2in3e93FyYSCQlHjM3MYGDhYV+nhgRgAKNBum5uVAWW5f54J07uJKYiG4eHvB9/Dt7NyUFYzdtglQiwbEpU7T7ztq7F3+Fh+O/ffvi7c6dAQA5+flYdPIkzKRS/K9/f0ge/x5LJRJk5+cjOStLe7xKoUAXd3fYyeXILSiAuWlhefNi69YIcHfXtg8AFmZmyJ87F9InXhe1FQs5IiIi0tnThigZYyEnPL7XJjEzEy3r19duf/eff7AtIgLze/bECy1aAAAeZmXhk4MHUc/CokQh19TeHjFpaSV6EXwcHHBiyhR42dqWaG+Cr2+VcppKOfiKKicjNxcX4+ORk5+PHg0aaLf/cvYsjt67h8lt2qBPo0YAgPCEBLT+5RfUs7RE/LvvavddGhaGPy9fxqK+fbWFlKlUipPR0TCVSiEIgrY4c7aygou1NUyK/a46WFjg3c6doVIoUCAIMH2870fduuG9Ll1Qz9JSu6+lTIbjxQrDIh3d3NDRza3ENolEguIlnIOFBeSmpqU+gKotH3awkCMiIiJ6isN37+JMTAx6NGiA9i4uAICwBw/Q7rffUP+JN7CJmZm4kZyMG8nJ2m0NbG0xuU0beNnalngDu+T550u1JTc1RWd3d73kTsrMRE5BQYltOQUFRltcU6GiHitrmQzW5uYACocvrr50CVKJBLMe93oBwOu7dmF7ZCQW9Oql7RW+9egRApYvL/W7fez+ffwVHo72Li7aQs5WLoeAwol3iv9ud3ZzQ25BARra2WmPr29pic0jR0KlUEAAtAXVon79sKhfvxLPQWFmhm/69i313JytrXX98ZTgoVQiYuZM3EqOAwAo5UrOWklERERk6FKysyEBtEPCotVqvLpzJ9JycnBo0iTtfsvCwrDq0iUs7NVLW8g1sLWFBIVDFXPy87XDud7u1AmT27RB83r1tMcr5XIsHzKkpp4WGaHQ2FjcTUlBexcXbW9t5MOHmLN/P6xkMqwMDtbuO2zdOuy+eRPLBw/G5LZtARTec/bevn2ob2lZopBLzs5GVGpqiYlxHCws0NDODo7Fer0AYEzLlmjv7IzuXl7abc5WVnjwzjuwUyi0RRwAzPT3x0x//xLHy0xMENysmc4/C33zUCphJSv8wEOlUImcpnJYyBERUa1Um9f+MTZ3U1Kw/soVyExMkFusB8gQhihl5eVh/+3beJCejpfatdNuf3n7dvx+/jy+7NUL73ftCqDw/pkdkZHa4xRmZgCA7p6eKBAE+BSbVMRWLkf2xx9DZmJSor3i97ARAYX3e0Wr1cgtKECzYgV+yIULuBQfj/GtW8PP2RkAcDYmBs//9RfqW1ri0quvavede/BgqeIsJz8fW65fR70nXmMqhQJSiQQZxe6zdLaywvjWrVH/iX0/6tYNb/j7l+g5c7G2xq033ij1PAY1aVJqm4lUCkcrq8r8OEiPWMgREVGtw4k1DEe+RoNRGzfiTEwMXvLzw5iW3gBqZohS8WILANaGh2PTtWsY3KQJXnx8T1lmXh4Gr10LABjfurV2f6fHbz6LzxhpJ5djyaBB8FQqS9yvM9XPD1P9/Eq0LZFIShVxhsbBwqLUZCeGUFzXRvkaDYD/v+cwPj0d+27fhplUilEtW2r3e2fvXhy/fx/ze/ZEr8dr+52OiUH3kBA0tbfH9ZkztftuuHoVu27cQKv69bWFnNzUFPEZGaWWn2jt6Ii03FzYFptQxEOpxM8DBpS6nssGD8bK4OASE3rUs7TEqmK9dkWK9xxT7cNCjoiIap26NrGGITOVSvFahw6ITUvDR926wdq88A2vvoYoxaalITwhAY6WltpJE9Q5OfD+8UckZmQg48MPtcXZlYQEbLx6FQ4KhbaQUykU6OrhAUdLS2QUK/ze6dwZ7wcEaNdcAwqLs5eL9drVdh5KJf4aPhyWl34ABKC+lRU/7HjsZnIyHqSnw8fBQVsIXUtMxI9nzkClUOCLnj21+/ZeuRIH7tzBllGjMNTHBwAQ8fAhXtyyBU3s7UsUctcfPsTpmJgSS2+oFApYmpmV+NABAIb5+KBV/fpoUWyyHG97e1yYPh0qhaLEvl/27l3qOSjlcrzaoUOp7UXDfMn48UoTERGRTib4+mJUixaIz8jAxQcVH+5afHKEvIICfHb4MO6mpuL355+H/PGb0V/OnsUXR4/ilXbt8MugQQAAa5kMmXl5EPC4d/bxkMdBTZrAwcIC/q6u2jYkEgmOTp5cqu3iU6UbsxdatIAmQgZkAzKp1CiKOEEQkJmXh+z8fNgX643aePUqbj96hOHNmqGRqvCDhOP37uG1XbvgZWuLv0eP1u47YcsWnIyOxuaRI7X3bSVmZuKX0FA0sbcvUcgVFUbFp7x3sbZG74YN0eCJ2UXfDwjAy35+aPf4XkqgcJmI9A8/LPU8nuzlBQp75Hw5PJcqiIUcERERVVp8ejqUcrm24IrPyID3jz+WukfuwIsvIk+jQRd3d5g9Hor4+7lz+PzIEQz18cEPzz0HoLBn77tTp5CRl4ePu3XTFmdNHRzQol491C828YJEIsGZadPgZGUFu2I9F2VNN061Q1JmJsLi4mBuaopAT0/t9o8OHEB4YiI+DQrS3n+4PTISQ9auRUdXV5yaNk27739PnsTJ6Gh4q1TaQk4jCLgYH19q8WcvW1skZmaWGELbWKXC3MBAuD9R7C4bPBgmEkmJ37XGKhX2vfhiqedRPDtRdWMhR0RUQZxcw3CsuXSpzO05T7xZo+qRV1CA4HXrkJmXh40jR6KxSoWkzMwSRRxQONy116pVyM7PR+TMmfC2twdQWIjdV6txs9gU/RKJBLMDAiA3NS3RWza+dWuMb926VIZmvLenQh5lZcFSECB79q46t5OUmQlXGxtYPB5CeC0xERuuXkV9S0u80r69dt8Ba9bgbGwsNo8ciW6PC5/j9+5h6Lp1pYqzg3fv4mR0NCb5+moLObvHvx/qnJwSGfo3bowm9vZwKTZFfStHR+wdP77EBwEA8Ofw4aWeg4u1NT7t0aPUdidO5kEGioUcEVEFcHINwxGjVuPn0NAyH+O9ITXj5uN10vIKCkpNpvEkT6USBYJQ4k33QG9vnJgyRdtrUmRu9+7Vkrcu++DAAXycngE3MyBXo8GD1NRy/2ZpBKHEBBn7bt1CXHo6+jdurC2EDt+9iwXHjsHH3h7fP+5NBYAuy5fjelISDk6ciKDH09PfSE7Gfw4dgr+ra4lCLiU7G0mZmUjKzNRuc7G2Rqv69dH4id+Jtzt1wqTs7BKzgXZyc0PaBx/A8ol7zsr6/bGVy9H38ZpnRMaG/8cjIqoATq5hOJytrfFe5874/OhRsaPUWc3q1cPFV15BRFISGhSbtrwsa4YNK3G/EFB4DfW9sC+Vdi81FUvPn8fHj0f7JaSno9EPP2Bk8+aY36uXdj2yDVeuYMq2bejq4YHd48Zpj39jzx5tcVZUyKXm5OCfW7eQkp1doi2VQgFrmQxZxaa891apML1dOzR53BNb5LfHC6F7Fbu/rIOra4np9ou80KJFqW1mJibaYbpEdRkLOSKiCohMShI7Aj0mlUgwtFkzFnIic7G2LjGEzcHCAnJT01K91vWeGNJGNScpMxMFT0xjn6/R4M/wcEzz89MWUnJTU6Tn5uJhsR4yAAhwd4enUqkdKgkA7ZydsWLoULjb2JTY98ikSSXuNwMKC/5fH09QU1zLYrM0ElHVsZAjIqoA1yfetFDNy8nPh6lUChOptNyigetjVZ98jQaT/v4bb3TsWGJWyCIeSiUiZs7EreQ4ADWzjhxVzfR27UpclyAvL9x4/XXYPzHl/dLBg0sd62pjgwmPl3Yo7skijoiqH191REQV4Glrq52drwgLh5r1n0OH0HHpUpyPi9MWDe42hT1Cvw0axPsVq9l/T57EmsuXMWDNGmTk5pa5j4dSCV+n+vB1KlzgmNfDML3crl2J+xOtzc3RWKUqMSsjERk+9sgRET1FZl4eLMzM4KFUYn6PHlhxMQxd3F3xUruO7G2oQem5uVgeFobEzEzEpqVpi4Qfn+uNjLw89GvUrMR6UqR/09u1w9nYWLzQvHmJRbTJcBX1XBfHD6CIjAcLOSKicuRrNAgKCUGzevXwv379kJGXh0sJSfBzdoKfs7PY8eoUK5kMl199FWvDwzGoSRPt9m6ehWuGqRR8Y1rdlHI51o8YoV3AmwxfUc+1w74fgdw01LeyYs81kRFhIUdEVI4jUVEIjY3FjeRkLOzVC8ObN4e7UgFPJe+XE4OjlRXe7NRJ7Bh1Sr5Gg1PR0ejq4QEALOJqIQ+lEprH96/JpFIWcURGhIUcEVE5ejZogGNTpiA+PV07Q5+TFae8rkkPMzNxX60usYZUcWdj4pCZn48gTwXv76kGnx0+jM+PHMF/unfHvKAgseMQEVExnOyEiOgpuri7I7hZM7Fj1Fnv79+Pdr/9hv+dOlXm46/vPoBh6/7Gpfj4Gk5m/ARBQNrjRbyfXAeMiIjExx45IqIn7L5xAx1cXUtNCHAvNRXhCbGob2kBlUJVztGkLwUaDdJzc6ERhDKnuweARipbmJlIOflGNZBIJPiuf3+86OvLe0KJiAwQCzkiomJuJidj+Pr1sJLJcGraNDS0s9M+tuLCBcw9dAiTfFvij6ENRUxZN5hIpVg7YgQ+CQxEi3IWEF4zrHCxYRbW+iM8XkC66H44FnFERIaJQyuJiIrJystDI5UKrR0d0cDWtsRjKoUCjexs4WDBe7FqUnlFHFWPz48cwYS//0Z6OWvFERGRYWCPHBFRMa0cHRH60ktQ5+SUmqHvNX9/jGnVWKRkdUdUSgp+DQ3Fx4GBHDJZw2LUasw/ehS5BQUY3KQJXmjRQuxIRERUDhZyRERPMDc1RT1T/nkUyxt79mBbRATupqbir+HDn7rva7v2IVqdjsXPDYRvOTNbUsW52tjgwIQJ2BEZySKOiMjA8Z0KEdV5giBg1MaNGNK0Kca2asW1skT2kp8friUm4pPAwGfuey42HjeSHyElO7sGktUNXT08tOvGERGR4WIhR0R13rorV7Dh6lXsiIxEkJcXXG3KXvD7r8uXsfzCOfRq4Ik5XXvUcMq6Y1CTJniucWOYSJ99G/fnPboiPTcXzerVq4FkxmtdeDiCvLzgaGUldhQiIqogFnJEVOcNb9YMX/ToAVu5vNwiDiic0XL/7Si4WVvXYLq6QyMIkD7uDa1IEQcAfRp5AQBUCsvqimX0jkZFYezmzahvaYmw6dPhxGKOiKhWYCFHRHWemYkJPqrAML7BTZtCZWGKxna21R+qjrkcH48RGzbgu379MMDbW+w4dYq9hQV8HBzQztkZjpYsiImIagsWckRUZ91MTkYjO7sK3xPn6+QEdyVnUawOnx85gsiHD7H0/PlKFXKX4xORnZ+PTm4WUMrl1ZjQeDWvVw9npk0DAN4fSkRUi3AdOSKqk2LUarT/7Tc8t2YNHmVliR2nzls2eDBmd+mC7/v3r9RxL23fi/5rNuLCgwfVlMx4FV8nzlIm41IPRES1DAs5IqqTzsbGIjs/H8lZWbA2N6/QMQ/S03EpPhHR6rRqTlf3WJub46s+feCuVFbqOFcbK3jZ2kDO5SIq5cT9+/D83/+wLjxc7ChERFRF/D8fEdVJQ318cPGVVwAAphWcWOP3c+cw99AhTPJtiT+GelZnvDrjamIimusw4+SmkUMBACqFSk+J6obFZ84gOSsLWyMiMKplS7HjEBFRFbCQI6I6q6mDQ6X2tzY3h7OVJWzkHIKmD0ejohAYEoJxrVphZXCwdsZKqn4rg4PR1skJr7RvL3YUIiKqIhZyRFRnCIKAL44cwbjWrdHQzq7Sx7/VqRMm+DaphmR105mYGEglEliambGIq2GmUineCwgQOwYREemA98gRUZ2x4epVzD10CO1++w2p2dlix6nz3unSBWemTcPC3r2rfo5/DmLspu24HB+vx2TG6XR0NL4/dQqCIIgdhYiI9IA9ckRUZ7RzdkZ3T0909/TkVPUGop2Li07HH78XgxvJj/BBV848+jRpOTkYtXEjolJTUSAImNW5s9iRiIhIRyzkiKjOaKRS4d+JE6GpYo/ExqtXsfLieQR5eWBW52cvIE6lCYKA70+fxthWrVBfD4tPf9itE9JyctHE3l4P6YyXlUyGd7t0wS+hoZjatq3YcYiISA9YyBGR0cstKIDMxAQAIJVIqnw/1rXERGyPvAV7hUKf8eqUrREReHvvXnx57BhuvfGGzmuXDW7aGACgUljrI57RkkgkmOnvj+nt2sHs8WuBiIhqNxZyRGTUHmZmosPvv+O1Dh3wVqdOMKngUgNlec7bG3IzAT7s/akyNxsbtHFywoDGjbkAdQ2ISkmBq42NdokNFnFERMaDhRwRGbVlYWG4k5KCZWFhmOnvr1Mh197FBQ3teG+dLtq7uODsSy+hQKPRy/luPHyE3IICtHW2ghULwxJSs7PRc+VKOFtZYf0LL8DFmr2WRETGhIUcERm197p0gb1CgZb168PclH/yDIGpVFrhRdif5cUtO3Ej+REOTZyI7l5eejmnsQhPSEBSZiY0ggAFf/eJiIwO/7ITkVGTSCSY6uenl3M9zMzErUePYGNuDpVCpZdz1gUaQUDwunUI9vHBRF9fSPS4Zpy9hRzqHAvtPZD0/wI8PBA2fTpSs7Nhx/s6iYiMTp1YR+748eMYMGAAVCoVrKys4O/vj5UrV1b6PEeOHMFLL70EPz8/ODo6QiaTQaVSoUePHli1ahXX5iEyIDsiI5FXUKDXc/589iw6Ll2Nr46d1ut5jd268HBsi4jA67t3Iz4jQ6/n3jl2BK6+NhWd3d31el5j0dDODm2dncWOQURE1cDoe+Q2bdqEUaNGQaPRIDAwEA4ODjhw4AAmTpyIS5cu4dtvv63wubZt24alS5eiSZMmaNu2Lezs7BATE4OjR4/i0KFD2L17N/78889qfDZEVBF7bt7E83/9hfYuLjg2ebLehlTKTU2hNDeHwszo/3Tq1YjmzRGtVsNKJoOTlZXYcYyaOicH4zdvxoJevdCyfn2x4xARUTUy6ncjycnJmDJlCgoKCrBp0yYMGzYMABAfH4+uXbti0aJFGDRoEIKCgip0vilTpmDWrFlweWIB25s3byIwMBB//fUXxo4di0GDBun7qRBRJWTm5cFOLkeAu7te74t7LyAAU/2a6e18dYWZiQneCwgQO0ad8OGBA9geGYkbyckIf/VVnSb3ISIiw2bUf+GXLl0KtVqNIUOGaIs4AHB0dMTXX38NAFi0aFGFz9e8efNSRRwANG7cGDNmzAAA/PvvvzqmJiJdDWvWDFdmzMD8nj3FjlKnJWRkVPuQ84//PYqpW3fjamJitbZTW/yne3cMatIEywcPZhFHRGTkjPqv/M6dOwEAI0aMKPXYwIEDIZfLsX//fmRnZ+vclpmZGQBAxumviQyCs7U11ykTUW5BAYJCQtB71SrcT02ttnb2347C3xE3kajne+9qq3qWltg+ZgzvGSQiqgOMupC7ePEiAMCvjBnrZDIZWrZsiezsbERGRurUzv379/Hrr78CAAYMGKDTuYioatJzczH4r79wLja22trYev06Zuzchz8vX6u2NoxFaGws7qSk4HJ8fLWu7zarc3ss7BWIxqq6O4toem4ujt+7J3YMIiKqYUZ7j5xarUbq40+B3dzcytzHzc0NoaGhiIqKQuvWrSt87pMnT2LJkiUoKChAbGwsjh07hvz8fHzxxRcIDAx86rE5OTnIyckpkRMAkrOSkW+WX+EM1eFR1iNR26fSeE0qbt6h49geGYnwhHicmjZeb+uUFXc65i7WXbkOqaQAY1vxXrmn8XGwxPEpY3EvVQ0BWUjOyqqWdvo0dAQAKMzykZyVXC1tGDJBEPDqzn3YdC0SC3sFYppfxf9fVl34d8vw2AgaSAFoBA1S6uDrxNDwNWJ4DOmaqLPUFd7XaAu59PR07b8tLCzK3MfS0hIAkJaWVqlz37p1CytWrNB+b2Jigs8++wzvvvvuM49duHAhPv3000q1R0TPNtPfD9HqNIxr3bxaijgA6O7pDkHIg4+DXbWc39h42SrhZasUO4ZRy9doIJVIIAHQsr6D2HGIiKgGSQQDXvwsODgY165VbgjTypUr4e/vj9jYWLi6ugIA8vLyYFrGzHXjx4/HmjVrsGbNGowdO7bS+XJzc3H37l2sXLkS33zzDdq2bYvdu3fDzq78N3ll9ci5u7sjNTUVNjY2lc6gT0WfZnOhY8PBa2J4eE2e7mhUFFysrdGohoY6XoqPQl6BBs3ruUHx+F7luig8IcFglhvga8TwaDa7QJodByhcgeBosePUeXyNGB5DuiZqtRpKpbJCtYFB98jduXMHERERlTomMzMTAGBVbK2izMzMMn8QGY9vjre2tq5SPplMhiZNmuCLL76ASqXCO++8g7lz5+LHH38s9xhzc3OYm5tXqT0iKu1+airclez1MQRpOTkYu3kzEjMysGf8eAR5eVV7myPWb8WN5Ec4NHEiutdAe4ZCIwiQSiTa7w2liCMioppj0JOdXLhwAYIgVOqraE04GxsbKB+/uYuOLvvTp6Ltnp6eOmd98cUXAQBbt27V+VxEVDEn7t9Hwx9+wLv//ANNDQwuUOfkICYtHSl6mOnWGKXl5sLHwQGuNjbo+HhERHWzMDODlcyszk21P2XrVszctQvZ+eLeW01EROIx6B45Xfn6+uLIkSM4f/48mjdvXuKxvLw8hIeHQy6Xo0mTJjq3pVKpIJVKkci1jIhqzO4bN5Cv0SApM7NE70R1+f7UKcw9dAiTfFvij6HDq7292sbF2hr/jB+P+IyMGhvm+O/EUQAMYzhMTQmLi8OKixchlUgwrlUrLjVARFRHGfVHmAMHDgQAbNy4sdRjO3bsQHZ2Nnr37g25XK5zW0ePHoVGo0GjRo10PhcRVcznPXti59ix+K5fvxppTyqRwEwqhVRa/UVjbSWRSOBUbGg76V9bZ2fsHjcOi/r2ZRFHRFSHGXUhN23aNNjY2GDr1q3YvHmzdntCQgJmz54NAHjnnXdKHefj4wMfHx/ExMSU2P7NN9/g0aPS05OePXsWL730EgBg8uTJ+nwKRPQMA7y9YadQ1EhbHwUG4sG7r+GbPkE10l5tEXLhAr48dgy5BQViR6kz+jdujLc6dRI7BhERicioh1aqVCosX74cI0eOxIgRIxAUFAR7e3vs378fKSkpmDVrlvaeuuKKJljJy8srsX327Nn4+OOP0bZtW3h5eSE3Nxe3b9/WLjw+cuRIvPnmm9X+vIjqspz8fHxz4gTe6tSpWheapop5mJmJt/fuRUp2NupbWmJK27Y12v4XR04iPiMDcwN7oqmDcU+//9u5cxjZogVs9TCKhIiIaj+j7pEDgOHDh+PIkSPo168fwsLCsGvXLjRu3BghISFYtGhRpc71448/YtCgQUhMTMSOHTuwc+dOJCUlYciQIdiyZQvWrVtX5jIHRKQ/Xxw5gk8OHkSfVatgwKun1BkqhQI/9O+Pfo0aYYKvb423vyPyFv68fA0Piq0daozWXLqE6Tt2oP1vvyHziQ8ZiYiobqoTVUdAQAB2795d4f3Le3M4c+ZMzJw5U1+xiKgKunl6wuPSJbzbuTMkNTDBSXG7btzAxquX0cnNGS+361yjbRsqiUSCF3198aIIRRwAvNahLZKzs9HgKet3GoMm9vZoYGuLca1awaIOr5dHRET/r04UckRkPPo2aoTrr70myuLP52Jj8ceFyxAEAS+3q/HmDUre4/vhzExMRM3xom8LAIBKYdxrCXZwdUXY9OkcTkxERFpGP7SSiIxDgUaj/bcYRRwABHp64v0Af/Rt5CVK+4bkmxMn0P7333G6nHU6ST+Kr1molMvr3Hp5RERUPv4fgYgM3qX4eDRdvBh7b94UNUd3Ly/MDuiIfo0biJpDbDn5+fglNBSX4uNxMzlZ1CxJmVl4kJ6BHCNcGHtdeDi8f/wRu2/cEDsKEREZIBZyRGTwPj9yBLcePcIvoaFiRyEA5qamCJs+HV/37o2xrVqJmmXQn5vQ4uflOGVkPYOCIODXc+eQlJmJY/fuiR2HiIgMEO+RIyKDFzJkCBra2oq+blZWXh5SsrNhJjWBqmaWrjNYDhYWeC8gQOwYkEokkNbwpDc1QSKRYPe4cfjl7Fm83rGj2HGIiMgAsZAjIoNnKZPhqz59xI6Bb0+cwNxDhzDJtyX+GDpc7Dg1Li0nBxEPH6K9i4vYUbROTB0HAFApVCIn0T+5qSne7szZUYmIqGwcWklEBqlAo8HBO3fEjkHFzD14EP6//44FR4+KHcVobbl2DSEXLogdg4iIagH2yBGRQfru1Cm8t28fXm3fHj8PHCh2HADAR4GBmN6+BYxvIN+zCYKAR9nZEAC0c3YWO45RilarMWnrVqhzcmBhZoaRLVqIHYmIiAwYCzkiMkjqnBxIJRKDKhqkEglM6+j07xKJBCFDh+Kdzp3RytFR7Dha3544i8TMTMzuEghve3ux4+jExdoas7t0wT+3byPYx0fsOEREZOBYyBGRQfqsRw+MatECzevVEzsKFWNIRRwAbLwagRvJjzC+VdtaX8hJJRJ8FBiIOV27cr04IiJ6Jv6fgogMVov69SExoBkJ9926hbkHj2FbhLjr2dWk+PR0vL9vH9JycsSOUqbJbVvh3c4d4GlrK3aUKotISoJGELTfs4gjIqKK4P8tiMhg3H70COM3b0Z8errYUcp0KjoaP50Nw+G798WOUmPe3bcPX584gbGbN4sdpUzT2/nig26d4FVLC7m7KSnotGwZBqxZg5TsbLHjEBFRLcKhlURkMF7ZsQP7bt9GVn4+No0cKXacUjq7u+N1fz+0czGs4YXV6cXWrXEmJgZzAwPFjmKULsfHIyc/HynZ2bAwMxM7DhER1SIs5IjIYHzVuzcydu/GNwawZlxZejdsCD9nW7Fj1Ki+jRrh6owZBjvcLz03FxoBsDHX1MqJaJ5v2hRnX3oJVjIZZCYmYschIqJahIUcERmMts7OOD5litgxCIBGECB9fH+ioRZxANB75XrcSH6EQxMnoruXl9hxqqRF/fpiRyAiolrIcP/vTER1giAISMzIEDtGhRRoNMgtKEC+RiN2lGp1KzkZzX/6CdsiIsSOYpTup6ai3+rVuJWcLHYUIiKqxVjIEZGoloWFocnixVhz6ZLYUZ5pwdGjcF70M97fd1jsKNVq/tGjiHj4ED+eOQOh2GyKhujI5DGInTUD3Tw9xY5SYa/t2oV/bt3C9B07xI5CRES1GIdWEpFoBEHA2vBwpGRn44GBzlRZF/343HNwsrLCpDZtDGr5h7IU3VcmNfCcxf00YAAKBAE/Pvec2FGIiKgWYyFHRKKRSCTYM348Vl28iAm+vmLHeab3AgLwom8TmEmNe1IKS5kMC3r1EjuG0XJXKrFz7FixYxARUS3HoZVEJCpTqRST27Y16Ak1ishNTWFjbg6FmXF+BnY9KUnsCJW2+Mx5zDt0HLcfPRI7ylPFqNU4FxsrdgwiIjIihv/OiYiMTlxaGpadP2/w91/VJefj4tDi55/xwoYNyCsoEDtOha2+dBU/njmP+6mpYkcpV75GgzGbNqHzsmVYFx4udhwiIjISxvmxMhEZLEEQ8MrOndgWEYHLCQn4X//+YkeqsMN372Lnjato4+SIsa1UYsfRq1PR0ZCgsIfUrBatZzamVTMkZWTCzcZG7Cjlys7Ph72FBcxNTeHn7Cx2HCIiMhIs5IioRgkAgjw9cfjuXUxt21bsOJVyJCoK35w4i0m+LTG2VTux4+jVjA4d0NXDA/UsLMSOUilvdiy8DiqF4RbWVjIZNo8ciRvJyfC2txc7DhERGQkWckRUo6QSCd7u3BlT/fxgY24udpxKae/igqltW6GTm4vYUapFa0dHsSMYlXyNBqaP7/2USCRowiKOiIj0iIUcEdUYQRC009nXtiIOAJ7z9kZHN+N6M/7z2bMI9vGBs7W12FGqpODx4uzFf7cMQYFGg/6rV8Pf1RWf9eihLeiIiIj0hf9nIaIasfHqVQStWIGbycliR6HHDty+jdd27UKLn3/Go6wsseNUScDyP1H/259wJCpK7Cgl7Ll5Ewfu3MEPp0/jngFPxEJERLUXe+SIqNoVaDR4f/9+3H70CKsuXsSnPXqIHYkA2FtYoL2LCzq7ucFOoRA7jlEZ2KQJ1o0YAUEQ0NDOTuw4RERkhFjIEVG1M5FKcWDCBHx17Bg+7NZN7DhV9sWRI5h36BAm+LbE8iHDxI6jszZOTjg1dSpya9FyA0/aO/4FaAQBHkrDu79vZIsWYkcgIiIjxqGVRFQjvGxt8cugQTA3rb2fHwmCgAJBMKr170ykUijMzMSOUWVKuTnsFHKDWDKhQKPBohMnkJGbK3YUIiKqA1jIEVG1Sc7KwrXERLFj6M1bnToh/NXJmNu9i9hRqkwQBIzZtAm/nTsHjREVpIZg4bFjeHffPvRYsYI/WyIiqnYs5Iio2szauxdtlyzBH2FhYkfRC2tzczhbW0Epr30zbhbZdeMG1oaH443du41iEo5lYZfwzfEzuJuSInYUdPXwgLOVFV7r0AFSA5pBk4iIjFPtHeNERAYtt6AAiZmZyC0ogI+Dg9hx6LF+jRvjf/36IU+jgZetrdhxdPb7uUu4kfwI/Rv7iP58gry8cH3mzFq5tAYREdU+LOSIqFrITEywY8wYnIuLQ3sX41hA+8T9+/jn1nW0rO+AEc1VYsepElOpFG926iR2DL0Z1swb8RmZoq2DpxEEpGRnQ/V41k8WcUREVFN0KuRmzZoFOzs7fPLJJ/rKQ0RGRCKRGE0RBwCbrl7Ff0+dwvPejdDQzgkOFhbwUCrFjlUhSZmZsFcoDGrRbH2YHdARAKBSiFNYf3XsGBafPYu/hg9HoKenKBmIiKhu0ukeucWLF+PSpUv6ykJERmD/7dv47PBh5NXiKe3Lci81FT+eOQMA2H7jFtr99huaLl5cK+4zK9Bo8NyaNegeEoLbjx6JHcdo5BYUYM3ly4hNS8ONhw/FjkNERHWMTj1ybm5u0Gg0+spCRLVcZl4epm7bhnupqTCTSvFBLV4z7klJmZnIe+LvXXZ+PpIyMw2+V+5yQgKuJibCTCqFRS1easDQyExMcGraNPx5+TKmtG0rdhwiIqpjdOqRGzp0KA4fPoy0tDR95SGiWkxhaoove/VCBxcXvN6xo9hx6LE2Tk649tpr+Gv4cDhZWYkdR6+6/fEnnBf9hCNRUaK0byWT4eV27YxuyCoRERk+nQq5Tz/9FB4eHhgwYADCjGR6cSKqOolEgjGtWuH0tGmwksnEjkPFeCiVeM7bW+wYepdXoEFugaZGF2n/6cwZbL52rcbaIyIiKotOQyuHDBkCc3NzHD9+HO3bt4ezszM8PDwgl8tL7SuRSHDgwAFdmiMiA5WVlwepRAJz08I/KcbYO+FgYQFTqRT5xYZXyk1N4WBhIWKqpzsTEwOluTmaGvHyD3+PDkaBRgNve9caaS8sLg5v7d2LfI0GRydPRlcPjxppl4iI6Ek6FXKHDh3S/lsQBMTGxiI2NrbMfY3xjR0RFfrgwAHsu30bK4YONapZKovzUCrxhr+/dtbKeT16GfSsldn5+Ri3eTPupaZiy6hRGGCEvXEA4GRlCaCwqK4JLevXx6xOnXBfrUaAu3uNtElERFQWnf7Pd+fOHX3lIKJaSp2Tg/VXriAuPR0PMzPFjlOtPgoMxJhW3rCWydDUwVnsOE+VlpMDb5UKGbm57DXSIzMTE3zVpw80gsAPKImISFQ6FXKeXDOHqM6zMTfH5VdfxZbr19GvcWOx41SrwkWfbcWOUSH1LC2xc+xYxKWnG/Ui1WsuX0VKVjYmtekA92rsHb0UH49W9etrizcpizgiIhKZTpOdEBEBgL2FBab5+Ykdg54gkUjgYm0tdoxq9ePp85h76Hi1ro93JiYG7X/7DSM3bkR2fn61tUNERFQZermpID4+HsuXL8fRo0cRExMDAHB1dUVgYCAmT54MR0dHfTRDRAYkNDYW2fn5dWrY3tmYGPx7NxI+9vYY4qMSO06ZNly5gutJSZgdEKCdfMaY9W/cAG0z6sOxGpdVuJqYqP23uYlJtbVDRERUGTr/X37Tpk2YMmUK0tPTS0z/fPnyZezduxdffvklli1bhuHDh+vaFBEZiOz8fLy4ZQsikpKwetgwjG3VSuxINWLPzZuYe+gIJvm2xBCf1mLHKSUtJwdv7NmDB4+HU77ZqZPYkardvKAAAIBKUX2F9aQ2bdCyfn14q1S8L46IiAyGTkMrQ0NDMWbMGGRkZCA4OBhbtmxBWFgYLly4gL///hvDhg1Deno6xo4di9DQUH1lJiKR5RUUoIubGxytrNDfyO+LK65ZvXoY0rQxfJ3qiR2lTFYyGb7r1w/dPT3xSvv2YscxKu1dXKAsY2kdIiIisehUyC1cuBAFBQXYsGEDNm7ciCFDhsDX1xetW7fG4MGDsWHDBmzYsAF5eXn48ssv9ZW50o4fP44BAwZApVLBysoK/v7+WLlypV7OPXXqVEgkEkgkEhw7dkwv5yQydNbm5lg2ZAjCX3318QQgdcOI5s2xfMhzmODbUuwoZZJIJBjdsiUOTZpUJ4ZVVqdzsbHou2oVYtPSxI5CRERUJp0KuWPHjqFLly4IDg4ud5/g4GAEBATg6NGjujRVZZs2bUL37t2xZ88etG7dGv3798eNGzcwceJEvPvuuzqd++DBg1i+fDmH2lCdUXz4NFA4yQmJr0CjQW5BgdgxRNF31Xo0+uE3HL93T2/nFAQB07Zvx77bt/Hxv//q7bxERET6pFMhl5qaCo8KTHTg4eGB1NRUXZqqkuTkZEyZMgUFBQXYuHEjDh06hI0bN+L69eto3LgxFi1aVGJR88rIzs7G9OnT0aJFC3Tu3Fm/wYkM1KeHD+PVHTuQlpMjdhQq5pfQULRdsgTH9FjM1BbqnFykZOcgX6PR2zklEgnWjxiBIU2bYlHfvno7LxERkT7pVMg5OTkhLCzsmftduHABTk5OujRVJUuXLoVarcaQIUMwbNgw7XZHR0d8/fXXAIBFixZV6dyff/45bt68iV9//RVmZmZ6yUtkyGLUaiw4ehS/njuHfbdvix1HFN+dPInmPy3HvEPHxY6ila/R4PvTp3E1MRGX4+PFjlPj1o14HqemjkcHV1e9ntfb3h5/jx4Nuzo0dJiIiGoXnQq5fv36ISIiAh9++CEKyhjWIwgCPv74Y1y/fh39+/fXpakq2blzJwBgxIgRpR4bOHAg5HI59u/fj+zs7Eqd9/Lly/jmm28wZcoUdO3aVS9ZiQydq40N9owfjzc7dkSwj4/YcUSRnpuL+IwMpOXkih1Fy1Qqxelp07CgZ0+83K6d2HFqnKetEt72drDQwwdql+PjSyw1QEREZMh0uhv+k08+webNm/HVV1/hr7/+wsiRI+Hl5QUAiIqKwoYNG3D37l3Y29vj448/1kfeSrl48SIAwK+MhYplMhlatmyJ0NBQREZGonXrik0lrtFo8PLLL8PW1lbbq0dUV/Rs0AA9GzQQO4ZoXm7XDt29nAyul0alUOCDbt3EjlGrpeXkYPj69YhJS8PW0aPRu2FDsSMRERE9lU6FnJubG/7991+MGzcO4eHh+Oabb7QTfxRNitCqVSusWbMGbm5uuqetBLVarb0vr7y23dzcEBoaiqioqAoXcj/99BNOnTqFFStWQKWq/LpFOTk5yCl2f5FarQYAJGclI98sv9Ln06dHWY9EbZ9KM4Rrci9VDaW5OZRyc7GjiM7MBHC1NgWQh+SsZFGzZOfn40piEto51/ywdUOy8uJ5qHPyMLxZCzhbV31R8IeZWXCxtkRmXi4a2MpFv761mSH83aKSbAQNpAA0ggYp/N0WHV8jhseQrok6S13hfXWen7pVq1a4dOkSDh06hKNHjyI2NhYA4OLigm7duiEoKEjXJqokPT1d+2+LcmbWs7S0BACkVXB66ejoaHz00UcICgrChAkTqpRr4cKF+PTTT6t0LFFNy9doMGXrbsSlZyBk6AB0cKnbRYMh+d+pUHxz4ize6dwBH3Yz/oW/y7P4zGXceqRGWyc3nQo5ewsFNrwwGLFp6bBTcL04IiIyfDoVcsOGDYOzszN++uknBAUF6b1oCw4OxrVr1yp1zMqVK+Hv76/XHEVee+015OTk4JdffqnyOT744APMmjVL+71arYa7uztUChVsFDb6iKkzlaLyPY1UvcS6JvdSU5Gem4+svHy0rOcGlYH8jorlwoMHOHovDt4qO/RvLO7rJC2ncJbGTm5edfo127OBF5rVy0BDO8cq/RxyCwogMzHRfl/P0kGf8eq0uvx7aWg0ksIpEaQSKa+LAeG1MDyGcE1M8ypenulUyO3atQtDhw7V5RRPdefOHURERFTqmMzMTACAlZVViW02NqXfgGZkZAAArK2tn3neTZs2Ydu2bfjkk0/go8NED+bm5jA35xA1qh08lEpceOUVhCckwLWM11Bdsz0iAnMPHcIk35bo37iFqFl+GTQIr7Rvj9aOjqLmENuXvbsDqNr/fNNzc9F52TKMa9UKswMCIOWaoEREVIvoVMg1aNBAWwxVhwsXLlT5WBsbGyiVSqSmpiI6OhrNmzcvtU90dDQAwNPT85nn2759OwBg3759OHLkSJk5X3/9dSiVSkyaNAmTJk2qcnYiQ2JhZgZ/PU/tXlt529ujb0MvNKtnL3YUAICvCMu6GJM1ly4hPCEBP545g5fbtYPKwCaxISIiehqdCrkxY8bg22+/xYMHD0RZJ+5ZfH19ceTIEZw/f75UIZeXl4fw8HDI5XI0adKkwuc8depUuY8VFXRi3RdIpC9Lz5+HSqHAsGbNxI5iUEa3bIm+jVxEaz8lOxsLjh7Fh926wVbO+7h09XK7djCRStHE3p5FHBER1To6rSP3wQcfoFu3bujevTu2bNmCvLw8feXSi4EDBwIANm7cWOqxHTt2IDs7G71794a8Am+IQkJCIAhCmV/duxcO7Tl69CgEQcC8efP0+jyIatKt5GS8sXs3hq9fj323bokdh4r56MABfHPiBILXrRM7isEY8tdmtPrlD5x6PMKiMiQSCab5+SGwAqMyiIiIDI1OhVzTpk1x5coV3Lx5EyNGjIBCoYCLiwsaNmxY6qtRo0b6ylxh06ZNg42NDbZu3YrNmzdrtyckJGD27NkAgHfeeafUcT4+PvDx8UFMTEyNZSUyFK42Nni7Uyf0b9yYa2kZmOHNm6OpvT3mBgaKHcVgxGdkIjYtHTn5FVu+JSM3FwuPHkVuQUE1JyMiIqpeOg2tvHv3bonvBUHAgwcPdDmlXqlUKixfvhwjR47EiBEjEBQUBHt7e+zfvx8pKSmYNWtWmcMgiyZYMbQeRqKaIDc1xfxevaARBO26kFRo8Zkz+O/JExjWrAm+7Tugxtvv2aABrsyYAROpTp/BGZWQoQOQk58PP2fnCu3/xu7dWH7hAk7FxGDr6NHVnI6IiKj66FTIaTQafeWoNsOHD8eRI0fwxRdf4NSpU8jNzUXz5s0xc+ZMTJw4Uex4RAYjIzcXFmZm2uKNM/iV9igrC3dSUvEwM6tG29UIgvZ6sIgrycehcLZK6wrOBhzcrBm2R0bi7U51d+09IiIyDjoVcj/88AMsLCwwbdo0feWpFgEBAdi9e3eF9xcEoVLnP3ToUCUTERkWQRAweO1a2Jib45eBA+FkVfWFlY3ZpDZt0MHVAfUsLGqszdi0NPReuRKf9eiB4c2asZdUR4OaNMGdN9+EpUwmdhQiIiKd6PTR7jvvvKOdlp+Iaq+wBw9wJCoKe2/eRHpurthxDJa7Ugl/V2c0sFPWWJtfHTuGa0lJ+PbECVTuI6a6YdeN21gbfg0P0tPL3ScrLw/qnBzt9yziiIjIGOjUI+fk5FShGR+JyLD5OTvj3Msv42piIhqrKr+wMlWfL3v3hlIux7BmzTjctQyfHT6BG8mP0KKea7k9yW/u2YN/79zBhhdeQNsK3ktHRERk6HQq5Pr164fdu3cjNzcXMn7CSVSrtXZ0RGtHR7FjGLSriYk4FX0bnkob9GpYMwWvwswMn/XoUSNt1Uad3VzgobSGXTnrwCVnZWHvrVu4n5qK5KyavbeRiIioOuk0tHL+/PkwMTHBuHHjEBcXp69MRFRD9t26hWi1WuwYtcamq1cxddserL50tdrbinz4sNrbMAbf9e+J9S8MKfdDCJVCgbDp0/Hn8OHoxeU0iIjIiOjUI/fBBx/A19cXmzdvxs6dO+Hn5wcPD48yh1tKJBIsW7ZMl+aISI9i1Gq8sGEDBABHJk2Cr5OT2JEMnqetLbq6u6KRyrZa27melITWv/yC57y98dfw4bAwM6vW9oydSqHA6JYtxY5BRESkVzoVciEhIdp/Z2dn48SJEzhx4kSZ+7KQIzIs2fn58HFwgEYQ0KJ+fbHj1AoTfH0xqIl7tbdzKjoaAoB8jQYKU53+TNdZH//7LwI9PdG3USOxoxAREVULnd4hHDx4UF85iKiGNVKpcHzKFCRlZsKUa5MZlElt2sDf1RWWxdb1o7KN3LAVd1PU+HP4CPi7ugIAdkZGYv7Ro/jy2DFEzJyJRpzAh4iIjJBOhVz37t31lYOIRGAilcKRa8YZpOb16okdoVa4l5qGW49SkJWXp93Ws0EDTG/XDiqFgkUcEREZLY7ZIapDBEHAxL//Ric3N7zSvj2ns6+kJaGh+PHMKQxu2hgLevXX+/mXnT+Pfo0bw83GRu/nNla/DOyD7Pz8Evd4KszM8OugQRAErrxHRETGSy/jqR4+fIjvv/8e48aNQ79+/fD1119rH7ty5Qq2bduGzMxMfTRFRDr459YtrLp0CW/u2YMbnBWx0hIyMnAl8SHi0jL0fu7T0dF4aft2NP/pp6cubk0ltXV2RGd3V9jK5TgbE1PiMQ5LJSIiY6Zzj9yGDRswbdo0pKenQxAESCQSuD6+TwEAYmJiEBwcjBUrVmD8+PG6NkdEOujTqBF+fO45ZOTmoqmDg9hxap1xrVujRX0lnK31PxzVSiZDJzc3eNvbl7uwNZVv09WrGLFhA6a2bYvfn3+eRRwRERk9nQq5kydPYuzYsbCxscGiRYvQtWtX+Pv7l9inV69eUCqV2Lx5Mws5IpFJJRLMfOI1ShXX0M4OtvLqGa7Xon59HJsypcS9XvR091JTsS78EjLy8nDnUWEvpkqhYBFHRER1gk6F3IIFCyCVSrFv3z74+fmVuY+JiQn8/PwQHh6uS1NEpIMbDx+ioZ0dTDg7pUGTSiSwlMnEjlEr3EtNRdPFi5Gdn6/dJjMxwfR27URMRUREVHN0eld34sQJdO7cudwiroiTkxPi4uJ0aYqIquhhZia6/fEHAkNCEJeWJnacWi3y4UPsvXkHVxKS9HbOadu24aczZ1Cg0ejtnHVBUmZmiSIOAHILCpCakyNSIiIiopqlUyGXmZmJehWYIvvRo0e6NENEOrgYH4/MvDw8ysqCnUIhdpxabV14OMZu3oHlYZf1cr7Dd+9iWVgY3tyzBxGcfIaIiIgqQaehla6urrhy5cpT9xEEAeHh4WjQoIEuTRFRFfVs0ADhM2YgNTsbclOuOKILF2trtHWqD3eltV7O19XDAz8NGIDEjAyuG0dERESVotO7uv79++OXX37B2rVrMXr06DL3Wbp0Ke7fv4+xY8fq0hQR6cBDqQSUSrFj1HpT/fwQ3MxLb+czkUoxo0MHvZ2vLnGwsIDc1LTE8Eq5qSkcLCxETEVERFRzdCrk5syZgz///BMTJkxAWFgYgoODAQAZGRkICwvDli1b8PXXX6NevXp4++239RKYiCrmq2PHMLBJE7SsX1/sKPSE5Kws2MrlXJBdBx5KJSJmzsSt5ML7r5VyJRwsLAo/tCAiIqoDJIIg6DSX9smTJzF8+HA8ePCg1JTPgiCgfv362Lp1Kzp27KhTUGOlVquhVCqRmpoKGxsbUbMkZyUDAFQKlag56P9V9ZrsvXkT/desgdzUFLfeeAMu1voZCki6v04EQUDPlSuRnZ+PkCFDuJ6fjvh3y/DwmhgezWYXSLPjAIUrEBwtdpw6j68Rw2NI16QytYHON8x07twZERERWLZsGfbt24e7d+9Co9HAzc0Nffr0wfTp06HkJ6RENaqVoyOeb9IEDWxtWcTp0R9hYfgl9AwGeDfEvKA+VTpH5MOHCI2NRYFGA3Pes0hERERVpJd3EdbW1njrrbfw1ltvVfiY5ORkpKenw8PDQx8RiKgYF2trbB09Gvmc0l6votVqnI19gBb1qt6L1tTBAddfew2hsbHwsrXVXzgiIiKqU0T7OPidd97BqlWrkP/EOkBEVHU5+fnaXh6JRAIzExORExmXkS1aoIGdJTx0nLXS1cYGriIPpSYiIqLaTdRxPTrenkdExaTn5qLdb79hVIsW+KhbNw7bqwZNHRxQz7Jqy29eePAAZlIpWnDyGSIiItIDnRYEJyLDsS48HJEPH2LlxYvI45BKg5Kv0WDi33+jzZIl2HT1qthxiIiIyAjwI3siIzHVzw9KuRz2CgWsZDKx4xiluykpuPggGk5WlujoVvGZrdJyctDA1hbRajUCPT2rMSERERHVFSzkiIzIiObNxY5g1FZdvIi5hw5hkm9LdHRrVOHj7BQK/D16NKLVatSztKzGhERERFRXcGglUS23IzIS2Zw0qEbUs7SEj4MKTlZVK8bcOMEJERER6Ql75IhqsRP372PwX3+hqYMDTk+bBhtzc7EjGbVX2rfHyBYNK7z/7hs3cOL+fXzYrRsUZmbVmIyIiIjqGhZyRLVYZl4enKys0NHVlUWcgcnOz8eMXbtwNyUF5qam+DgwUOxIREREZERYyBHVYr0bNsSVGTMgkUjEjkJPMDcxwaK+ffHtiRN4q1MnseMQERGRkWEhR1TL2SkUYkeoM1ZfuoTfz59Fv0YN8GG3nk/dVyKRYFizZgj28WGhTURERHon2mQnPj4+CORQI6JKy8nPx5C1a3H47l2xo9Q5dx49wpGoaNx4+KjcfQRBQE6xyWdYxBEREVF1EK2Qe//993Hw4EGxmieqtb47dQrbIiIwetMmZOXliR2nTglu1gxLBvXF2NbNyt1n1aVLaP3rr/j3zp0aTEZERER1TaWGVk6ZMqXKDUkkEixbtqzKxxNRoRkdOuDOo0fo26gRZ0KsYS3r14eLdfl/NgVBwKKTJxH58CHOxsSgZ4MGNZiOiIiI6pJKFXIhISFlbi8aOiQIQrnbWcgR6YeNuTmWPP+82DGoDBKJBEcmTcIPp0/j7c6dxY5DRERERqxShVxZQyE3bNiAn3/+GR07dsSYMWPg5eUFAIiKisJff/2FU6dO4bXXXsOIESP0EpioropKSYGnra3YMeq0GLUaV5MewEGhgEqhKnMfpVyOT7p3r+FkREREVNdUqpDr/sSbk7179+LXX3/Fzz//jFdeeaXU/q+//jqWLFmC1157DQMHDtQtKVEddjk+Hu1//x0TWrfGTwMHQmZiInakOml5WBjmHjqESb4t8cfQ/x82mVdQgHNxcejk5iZiOiIiIqpLdJrsZP78+fDz8yuziCsyffp0tGvXDl988YUuTRHVaftv30ZuQQESMzNhJhVtjqI6z1Yuh4fSBnYKeYntP5w+jc7LlmHW3r0iJSMiIqK6Rqd15C5cuIDnK3CvTuPGjbF9+3ZdmiKqc+6lpuJWcgIAoLuXF9YNH45unp6czl5Er3fsiHGtvUttj01LA1A4GQoRERFRTdCpkDM1NUV4ePgz9wsPD4epKdceJ6qoe6mpaLp4MbKLrUcmNzVFxMyZIqai8izq1w8v+vqitaOj2FGIiIiojtBpjFZgYCDCw8Px2WeflZqxssjnn3+Oy5cvc/FvokpIyswsUcQBQHZ+PpIyM0VKRM/SxskJUvaWEhERUQ3RqZtswYIF+Pfff/Hpp59i1apVGDFiBDw9PQEUzlq5adMm3Lp1C1ZWVpg/f75eAhMRiWVdeDhCLp5HzwYeeK1DAD47fBizAwKgUijEjkZERER1jE6FXPPmzfHvv/9i4sSJuHbtGr766qtSa8r5+PggJCQELVq00D0tEZGIIh8+xJ6bd+BkaYnPDx/GV8ePY//t2zj70ku8d5GIiIhqlM43rrVv3x5XrlzBoUOHcPToUcTGxgIAnJ2d0a1bNwQFBfENDlElOVhYQG5qWuoeOQcLCxFT0aAmTWBjLoW3vR1szG2wPTISc7t35984IiIiqnF6m4EkKCgIQUFB+jodUZ3moVQiYuZM3EqOAwAo5Uo4WFjAQ6kUOVnd1tbZGZ625gAAlUKFC6+8AlMuB0FEREQi0OtUkjk5OUhOToa5uTlUKpU+T01U53golbCSFQAoLBpIfPdSU3EzOR4SSKCU57C4JiIiItHo5aPk3377DW3btoWlpSXc3Nzw7rvvah/bvHkzhg0bhps3b+qjqSo5fvw4BgwYAJVKBSsrK/j7+2PlypWVPk9ISAgkEkm5X6NHj66G9FRXxaalYcT6rXhxy06xoxAKizjvH39Er5Xr0XPlOrT77Tc0XbwY91JTxY5GREREdZBOPXIFBQUYMWIEtm3bBjMzMzRr1gxXrlwpsY+vry9GjBiBdu3a4aOPPtIpbFVs2rQJo0aNgkajQWBgIBwcHHDgwAFMnDgRly5dwrffflvpc/r6+qJNmzaltnfs2FEPiYkKZeXl4eDde7CSmYkdhVC4JERuQUGJbUVLQrBXjoiIiGqaToXc4sWLsXXrVgwYMADLli2Do6MjpE/cL9KoUSM0btwYu3fvrvFCLjk5GVOmTEFBQQE2bdqEYcOGAQDi4+PRtWtXLFq0CIMGDar0vX1Dhw7FvHnz9B+YqJj6lpb4ZWAfmPEeLCIiIiJ6gk7vEENCQuDo6Ih169bB0dGx3P2aN2+OqKgoXZqqkqVLl0KtVmPIkCHaIg4AHB0d8fXXXwMAFi1aVOO5iCrC2twcI1v4ILhZE7GjEBEREZGB0amQi4iIQMeOHWFpafnU/SwtLZGYmKhLU1Wyc2fhvUUjRowo9djAgQMhl8uxf/9+ZGdn13Q0IqplipaEKI5LQhAREZFYdBpaaWZmVqEi6N69e7C2ttalqSq5ePEiAMDPz6/UYzKZDC1btkRoaCgiIyPRunXrCp/33LlzeO+996BWq+Hk5ISePXuie/fuestNBBTefxUWFw+pRIIeDThrpdi4JAQREREZEp0KuRYtWuDcuXNIS0srt1BLSEjAhQsX0KlTJ12aqjS1Wo3Ux7PJubm5lbmPm5sbQkNDERUVValCbseOHdixY4f2+88++wzdu3d/5hBToHCJhpycnBI5ASA5Kxn5ZvnlHVYjHmU9ErV9KunOo1T0XrUelmZmuPf2K2LHIQBWMsBDWTj5jJ3CHEABkrOSxQ1Vx/HvluHhNTE8NoIGUgAaQYMU/s0SHV8jhseQrok6S13hfXUaWvniiy/i4cOHeOWVV5Cbm1vq8YKCArz22mvIzMzExIkTdWmq0tLT07X/tihn6FPRkNC0tLQKndPZ2Rnz5s1DWFgYUlNT8eDBA2zbtg0+Pj44fPgwBg0ahIInZrV70sKFC6FUKrVf7u7uFXxGVNeYSiVwsbaEszWH7hERERFRSRJBEISqHlxQUIA+ffrg0KFD8PT0RL9+/bRrynXt2hU7duzAnTt30LdvX+zevRsSiaRS5w8ODsa1a9cqdczKlSvh7++P2NhYuLq6AgDy8vJgalq683H8+PFYs2YN1qxZg7Fjx1aqneLS09PRrl07REZG4s8//8SYMWPK3besHjl3d3ekpqbCxsamyhn0oahngYtPGw5eE8PDa2JYeD0MD6+J4dFsdoE0Ow5QuALB0WLHqfP4GjE8hnRN1Go1lEplhWoDnYZWmpiYYNeuXXjnnXewdOlS/PbbbwCAsLAwhIWFwcTEBC+99BK+//77ShdxAHDnzh1ERERU6pjMzEwAgJWVVYltZf0gMjIyAEDn+/esrKzwxhtvYObMmdi7d+9TCzlzc3OYm5vr1B4REREREdVtOhVyACCXy/HTTz9h3rx5OHToEO7evQuNRgM3Nzf06NEDLi4uVT73hQsXqnysjY2NtpqNjo5G8+bNS+0THV34qZSnp2eV2yni7e0NAIiLi9P5XERERERERE+jUyHn5+eHRo0aYcOGDahXrx5eeOEFfeXSC19fXxw5cgTnz58vVcjl5eUhPDwccrkcTZrovk7Xo0eFN0k+aykGoop6kJ6Oqdt2QmFqio0jy+/lJSIiIqK6R+d15MzMzPSVRe8GDhwIANi4cWOpx3bs2IHs7Gz07t0bcrlc57Y2bdoEoOylDoiqIiM3F7tu3MbeW3fEjkJEREREBkanQs7b2xsPHz7UVxa9mzZtGmxsbLB161Zs3rxZuz0hIQGzZ88GALzzzjuljvPx8YGPjw9iYmJKbF+4cCGSkpJKbMvLy8Onn36KDRs2QKFQYPLkydXwTKgucrCwwKK+PbCgZ6DYUYiIiIjIwOg0tHLq1Kl47733cP36dfj4+Ogrk96oVCosX74cI0eOxIgRIxAUFAR7e3vs378fKSkpmDVrFoKCgkodVzTBSl5eXontH374IT799FO0b98e7u7uUKvVuHDhAmJjYyGXy7F69WrtTJlEulLK5ZjUpqXYMYiIiIjIAOlUyL3++uu4cuUKunfvjjlz5uD555+Hh4cHZDKZvvLpbPjw4Thy5Ai++OILnDp1Crm5uWjevDlmzpxZ6bXt5s6di5MnTyIiIgLnz5+HIAhwc3PD9OnT8fbbb6Np06bV9CyIiIiIiIj+n07ryJmYmAAABEF45vICEokE+fn5VW3KaFVmrYjqZkhraBCQW1CAc3F3IIUEHd0aiR2HHuPrxLDwehgeXhPDw3XkDAtfI4bHkK5Jja0j5+7uXqX14Yjo2e6npqLLsjWwkpkh7YMPxY5DRERERAZEp0Lu7t27eopBRE+SSiRQKeSwNOCZYYmIiIhIHDovCE5E1aOBnR1uvP6S2DGIiIiIyADptPwAERERERER1Ty99chduXIFN27cQFpaGsqbP2XChAn6ao6IiIiIiKjO0rmQ279/P2bMmIFbt26Vu0/RrJYs5IgqLj49HTN3/wO5iQlWDXtB7DhEREREZEB0KuRCQ0MxcOBASCQSjB07FpcvX8bly5cxZ84c3Lp1C/v378ejR48wefJkeHh46CszUZ2QnpuLjVcjYCXjZCdEREREVJJOhdzChQuRn5+PPXv2oE+fPpg8eTIuX76M+fPnAwBSUlIwffp07NixA6GhoXoJTFRXZObnY0b7NjCVSnE+Lg4OFhbwUCrFjkVEREREBkCnQu7EiRNo27Yt+vTpU+bjtra2WLlyJby8vPDxxx9jxYoVujRHVGfcS02F/++/Izs/HwDww5nzkJuaImLmTBZzRERERKTbrJXJycnw9vbWfi+TyQAAGRkZ2m3m5ubo1q0b9u3bp0tTRHVKUmamtogrkp2fj6TMTJESEREREZEh0amQq1evHtRqdYnvAeD27dsl9svKykJqaqouTREREREREdFjOhVyjRs3xp07d7Tf+/v7QxAELFmyRLvt5s2b+Pfff9GwYUNdmiIiIiIiIqLHdCrkBgwYgIiICFy7dg0A0L9/f3h6euKXX35Bx44dMXz4cHTo0AHZ2dmYOnWqXgIT1QUOFhaQmZiU2GZuYgIHCwuREhERERGRIdFpspMJEyZAqVRCo9EAKLxHbtu2bRg5ciTOnj2Ls2fPQiqVYtq0aXjzzTf1EpiorpCIHYCIiIiIDJZOhZyTkxOmT59eYlurVq1w7do1XL9+HY8ePULjxo21984RUcUkZWYip6CgxLacggIkZWZy1koiIiIi0q2QexofH5/qOjWR0VNnZ4sdgYiIiIgMmE73yBGR/uVrNJi+c6fYMYiIiIjIgOnUIzdlypQK7yuRSLBs2TJdmiOqE0ylUkxt0wbvHzhQYrvc1JSTnRARERERAB0LuZCQkGfuI5FIIAgCCzmiZyh6nQDA7K5dMahJE8RnJAMAlHIlHCwseH8cEREREQHQsZA7ePBgmds1Gg3u37+Pf/75B2vXrsXbb7+N559/XpemiIza9ogILD57Fn+PGgWFmRkAoHn9+nDKKnyJqhQqMeMRERERkYHRqZDr3r37Ux+fMGECBg4ciIkTJ2Lw4MG6NEVktNJycjB561Y8zMrC/06dwgfduokdiYiIiIgMXLVPdjJmzBi0aNEC8+bNq+6miGola3NzbB41Ci/7+eHdLl3EjkNEREREtUC1LT9QnLe3N/bs2VMTTRHVCgUaDeIzMuBibQ0ACPT0RKCnp8ipiIiIiKi2qPYeOY1Gg0uXLkEq5UoHRACQnZ+P0Zs2IWD5csSlpYkdh4iIiIhqoWqrrjIzM3HhwgWMGTMGN27ceOb9dER1RXpuLi48eIAYtRrn4+LEjkNEREREtZBOQytNTEyeuY8gCKhXrx6++eYbXZoiMhoOFhbYO348olJS0KNBA7HjEBEREVEtpFMh5+7url336kkymQzOzs7o3r07XnvtNdSvX1+XpohqtYikJMSlpyPIywsA0NDODg3t7MQNRURERES1lk6F3N27d/UUg8h4XU9KQtfly5FTUIAjkyahrbOz2JGIiIiIqJarkVkrieqyBra2aO3oCHVODlxtbMSOQ0RERERGgIUcUTUzNzXF36NHQyqRwEomEzsOERERERkBnQq5zz77rMrHSiQSfPLJJ7o0T2SQBEHAtydOwFImw4wOHQAANubmIqciIiIiImOiUyE3b968UpOdCIIAACW2F20rjoUcGat9t29j9v79kADo6uGB1o6OYkciIiIiIiOjUyH3xx9/4OTJk/jtt9/g5uaGESNGwOvxrHxRUVHYtGkT7t27h5dffhmdO3fWR14ig9enYUPMaN8eDe3sWMQRERERUbXQqZBr1qwZXnnlFcyZMwefffYZTE1Lnu7rr7/G3LlzsWjRIkyePBkdO3bUKSyRoUrPzYXC1BQmUikkEgkWDxhQ7tIcRERERES6kupy8Ny5c9GoUSMsWLCgVBEHFC4YPn/+fDRu3Bhz587VpSkigxWfno7uISF4Y/fuMocWExERERHpm06F3OnTp+Hr6/vM/Xx9fXHmzBldmiIyWKdjYhAWF4cNV68iLj1d7DhEREREVAfoNLSyoKAAt2/ffuZ+t2/fRkFBgS5NERmswU2bImToUHR2c4OLtbXYcYiIiIioDtCpR87f3x9nzpzBypUry91n5cqVOH36NPz9/XVpisigHI2KgjonR/v9BF9feNvbi5iIiIiIiOoSnXrkPv30Uxw5cgSTJ09GSEgIRo0aBU9PTwCFs1auX78ehw4dgqmpKT799FO9BCYS28arVzF20yZ08/TErrFjYV7G/aFERERERNVJp3egAQEB2Lx5M6ZMmYJDhw7h8OHDJR4XBAH29vZYtmwZAgICdApKZCga2tnB3NQU9SwsxI5CRERERHWUzl0JgwYNwu3bt7Fx40YcPXoUsbGxAABnZ2d069YNL7zwAqysrHQOSmQo/JydcWbaNDR1cICUs1MSERERkQj0MibMysoKkyZNwqRJk/RxOiKDkldQgNn79uGNjh3RwM4OANCsXj2RUxERERFRXabTZCfPkpSUhPz8/OpsgqjavbdvH/53+jQG/fUX8jUaseMQEREREelWyIWGhuKzzz7D1atXS2zfsmULnJyc4OjoCHt7e3z//fc6hSQS0+yAADSvVw/f9ukDU2m1fvZBRERERFQhOr0r/fHHH7FgwQI4Ojpqt925cwejR49GQkICnJyckJGRgVmzZuHQoUO6ZiWqMbnF1j10sbbGpVdewXPe3iImIiIiIiL6fzoVcqdOnULbtm1hX2z9rOXLlyMvLw/ffvstYmJicPr0aUilUvbKUa1x8cED+CxejCNRUdptJuyJIyIiIiIDotO70/j4eHh4eJTYtm/fPlhaWmLmzJkAgHbt2qFbt264ePGiLk3p5Pjx4xgwYABUKhWsrKzg7+//1EXMn0UQBISEhCAwMBAqlQoKhQINGzbE2LFjceXKFT0mJzF8e/Ik7qSk4JODByEIgthxiIiIiIhK0WnWyoKCghKTmaSnp+P8+fPo2bMnZDKZdruLiwtOnTqlS1NVtmnTJowaNQoajQaBgYFwcHDAgQMHMHHiRFy6dAnffvttpc6XnZ2N4OBg7NmzByqVCgEBAVAoFLh9+zbWr1+PAQMGoEWLFtX0bKgm/DZoEOpZWGBu9+6QcHkBIiIiIjJAOhVyHh4eOHfunPb7nTt3Ij8/H7179y6xn1qthlKp1KWpKklOTsaUKVNQUFCATZs2YdiwYQAKexK7du2KRYsWYdCgQQgKCqrwOV955RXs2bMHL730Er7//nsoFArtY3FxccjLy9P306AacC42Fu1cXAAACjMz/LdfP5ETERERERGVT6ehlc8//zzu3buHYcOG4ccff8S7774LqVSKIUOGlNgvLCwMnp6eOgWtiqVLl0KtVmPIkCHaIg4AHB0d8fXXXwMAFi1aVOHznTlzBitWrIC/vz+WLFlSoogDChdBf3KoKRk2QRDw0YEDaP/77/gjLEzsOEREREREFaJTIffuu+/Cy8sLf//9N958803ExMTgrbfegnex2f1Onz6NmJgYBAYG6hy2snbu3AkAGDFiRKnHBg4cCLlcjv379yM7O7tC5/v9998BADNnzuSQOyMhkUhQ8Pg+uAfp6SKnISIiIiKqGJ2GVjo4OODSpUvYuHEjEhMT0a5dO/Ts2bPEPg8ePMCbb76J8ePH6xS0KoomWPHz8yv1mEwmQ8uWLREaGorIyEi0bt36mef7999/AQBdunTBrVu38Ndff+H+/fuoV68e+vfvj65du+r3CVCNWNirF/o3bowgLy+xoxARERERVYhOhRwAWFlZYdKkSeU+PmTIkFJDLQHgxIkTuHnzJiZMmKBrhDKp1WqkpqYCANzc3Mrcx83NDaGhoYiKinpmIZednY3bt28DKCzoXn/9deTk5Ggfnz9/PkaNGoWVK1eWmOjlSTk5OSWOU6vVAIDkrGTkm+WXd1iNeJT1SNT2a0pyVhaWh4VjVuf2kD7uWW3taIPkrGSRk5VWV65JbcJrYlh4PQwPr4nhsRE0kALQCBqkGOD/6+oavkYMjyFdE3WWusL7irY41u+//47JkydX2/nTiw2Ts7CwKHMfS0tLAEBaWtozz5eSkqL994wZMzBw4EBcu3YNKSkp2Lx5MxwcHLBu3Tp89NFHTz3PwoULoVQqtV/u7u4VeDakL/kaDYau3YKFx05h4TFxZlIlIiIiItKVzj1y1Sk4OBjXrl2r1DErV66Ev7+/3rNoNBrtv318fLBhwwZIHy8SHRwcDHNzcwwcOBCLFy/GJ598AhsbmzLP88EHH2DWrFna79VqNdzd3aFSqGCjKPuYmqZSqMSOUK3mdA3EhwcOYGpb/1rzXGtLzrqE18Sw8HoYHl4Tw6GRFL5fkUqkvC4GhNfC8BjCNTHNq3h5ZtCF3J07dxAREVGpYzIzMwEUDvksvq2swiojIwMAYG1t/czzFj/fhAkTtEVckQEDBqB+/fpISEjAmTNnSi3BUMTc3Bzm5ubPfiKkV4IgaCeoGd+6NYJ9fGD5lCGwRERERESGTLShlRVx4cIFCIJQqa+iNeFsbGy0a9dFR0eXef6i7RVZGsHGxgZ2dnYAAK9yJsUo2p6QkFCJZ0nVbcu1a+i5ciUycnO121jEEREREVFtZtCFnK58fX0BAOfPny/1WF5eHsLDwyGXy9GkSZMKna9NmzYAgEePyr4hMjm58Abi4r13JK60nBxM37EDh+7exQ+nT4sdh4iIiIhIL4y6kBs4cCAAYOPGjaUe27FjB7Kzs9G7d2/I5fIKnW/w4MEAgEOHDpV67N69e7h79y4AoG3btlULTHpnbW6OraNH43V/f7wXECB2HCIiIiIivTDqQm7atGmwsbHB1q1bsXnzZu32hIQEzJ49GwDwzjvvlDrOx8cHPj4+iImJKbF9ypQp2tkpt23bpt2emZmJGTNmID8/HwMGDOBMlCIr0Ghw//HSEwDQ2d0dPzz3HEylRv3rTkRERER1iFG/s1WpVFi+fDmkUilGjBiBnj174oUXXkDTpk1x8+ZNzJo1S3tPXXERERGIiIhAXl5eie02NjZYvXo1TExMMHToUHTu3BnDhg2Dt7c3du7cCS8vL/z222819OyoLFl5eRixYQO6LF9eopgjIiIiIjImRl3IAcDw4cNx5MgR9OvXD2FhYdi1axcaN26MkJAQLFq0qNLn69evH86ePYvg4GDcvHkTO3bsgFwux9tvv42zZ8/C1dW1Gp4FVVRWfj6uJyUhMSMDVxITxY5DRERERFQtDHr5AX0JCAjA7t27K7y/IAhPfdzX1xebNm3SNRZVA5VCgb3jxyMqJQXdKjAbKRERERFRbSRaITd06NByp/EnqoyriYmIUavRp1EjAICHUgmPx0tPEBEREREZI9EKuSFDhmDIkCFiNU9G4lpiIrouX46cggIcnjQJ7V1cxI5ERERERFTtdL5H7urVq5g0aRIaNmwIhUIBExOTMr9MTevEKE6qYY1VKvi7uqK1oyMa2NqKHYeIiIiIqEboVF2dPHkSvXv3RlZWFoDCWSKdnJz0EoyoIsxMTLBx5EhIAFjKZGLHISIiIiKqEToVch988AGysrLw1ltv4eOPP4ZKpdJXLqIyCYKABUePwlImw1udOgEArFjAEREREVEdo1MhFxoaijZt2uC///2vvvIQPdW+27fx8cGDAIAeXl7wZQ8wEREREdVBOhVyMpkMPj4++spC9Ex9GjbE2506oYGtLYs4IiIiIqqzdCrkunbtiqtXr+orC1GZ1Dk5sDAzg6lUColEgv/26yd2JCIiIiIiUek0a+WCBQtw8+ZN/PTTT/rKQ1RCbFoauv3xB6Zv3/7MhdqJiIiIiOoKnXrkzp8/j8mTJ+ONN97A+vXr0adPH7i5uUEqLbs+nDBhgi7NUR104cEDhCckICEjA7FpaXC1sRE7EhERERGR6HQq5CZNmgSJRAJBEHD06FEcPXoUEomk1H6CIEAikbCQo0ob4O2N1cHB6OjmxiKOiIiIiOgxnQq5uXPnllm4Eeni4J07aOvsDFu5HAAwplUrkRMRERERERkWnQq5efPm6SkGUaG14eEYv3kzuri7Y+/48VCYmYkdiYiIiIjI4Og02QmRvjVzcIClTAZPW1uYlHOvJRERERFRXadTjxyRvvk6OSH0pZfQSKWClMN2iYiIiIjKpJdC7tixY9i6dStu3LiBtLS0MqeJl0gkOHDggD6aIyOSk5+Pt/fuxdudOsHb3h4AtP8lIiIiIqKy6VTICYKAqVOnYsWKFdrirWgWyyJF33NSFCrL+/v345fQUPx75w7CZ8yAKYdTEhERERE9k07vmn/99VeEhISgXbt22LdvH4YNGwYAiIiIwO7duzFp0iRIpVK89957uH37tl4Ck3H5oGtX+Do64ofnnmMRR0RERERUQTr1yIWEhMDS0hK7d++Gvb09Vq9eDQDw9vaGt7c3+vXrhwEDBmDUqFHo0qULPD099RKaarec/HyYmxb+6jlaWeH89Om8H46IiIiIqBJ06gK5du0aunTpAvvH9zQVDZ8sKCjQ7jNixAi0a9cO3377rS5NkZEIjY1F4x9/xL937mi3sYgjIiIiIqocnQo5jUajLeIAwMLCAgDw6NGjEvt5e3vj8uXLujRFRmLxmTOIVqvx2eHDZU6KQ0REREREz6ZTIefq6orY2Fjt90VDJ8PCwkrsFxkZCVNTrnRAwK+DBuH9gABsGzOGE+AQEREREVWRToWcn58frl69qh1K2bdvXwiCgNmzZ+P69etIS0vDN998g3PnzqFt27Z6CUy1z6noaO2/5aam+LJ3b9iYm4uYiIiIiIiodtOpkBs8eDCSkpKwc+dOAICvry9Gjx6NixcvokWLFrC1tcWcOXNgamqK+fPn6yUw1R6CIGD2vn3ovGwZfg0NFTsOEREREZHR0Gm845gxYzBs2LASwyZXrFiB1q1b4++//8ajR4/QpEkTzJ49G/7+/jqHpdpFIpFA8fh3Q52TI3IaIiIiIiLjofONa+ZPDJEzMzPDnDlzMGfOHF1PTUZgXlAQ+jVujC7u7mJHISIiIiIyGlyBmfQqISMDcw8eRIFGA6CwV45FHBERERGRfullKsmHDx9i9erVOHPmDJKSktCrVy/Mnj0bAHDlyhXcunULvXv31i5PQMYpX6NBzxUrcCUxEfkaDRb06iV2JCIiIiIio6RzIbdhwwZMmzYN6enpEAQBEokErq6u2sdjYmIQHByMFStWYPz48bo2RwbMVCrFJ4GB+PDffzGpTRux4xARERERGS2dhlaePHkSY8eOhampKRYtWoQzZ86UWuS5V69eUCqV2Lx5s05ByXBpil3zUS1b4sqMGWhSbKF4IiIiIiLSL5165BYsWACpVIp9+/bBz8+vzH1MTEzg5+eH8PBwXZoiA7XhyhX87/Rp7Bk3DtaPJ76Rc/F3IiIiIqJqpVOP3IkTJ9C5c+dyi7giTk5OiIuL06UpMkDpubl4ffdunLh/H4vPnBE7DhERERFRnaFT10lmZibq1av3zP0ePXqkSzNkoKxkMmwfMwZrw8MxOyBA7DhERERERHWGToWcq6srrly58tR9BEFAeHg4GjRooEtTZCDyCgoQrVajgZ0dAKCDqys6FJvchoiIiIiIqp9OQyv79++PiIgIrF27ttx9li5divv372PgwIG6NEUGICM3F0PXrUPA8uW4m5IidhwiIiIiojpLp0Juzpw5UCqVmDBhAt5//32cOnUKAJCRkYGwsDDMnTsXr7/+OurVq4e3335bL4FJPHkaDe6lpiIlOxs3Hj4UOw4RERERUZ0lEZ5cL6CSTp48ieHDh+PBgweQSCQlHhMEAfXr18fWrVvRsWNHnYIaK7VaDaVSidTUVNjY2IiaJTkrGQCgUqjK3SdGrcZ9tRqd3NxqKladVpFrQjWL18Sw8HoYHl4Tw6PZ7AJpdhygcAWCo8WOU+fxNWJ4DOmaVKY20Hme+M6dOyMiIgLLli3Dvn37cPfuXWg0Gri5uaFPnz6YPn06lEqlrs2QSC7Hx+O+Wo0B3t4AAFcbG7iKXHASEREREdV1elnwy9raGm+99RbeeustfZyODMS1xER0++MP5BQU4NDEiejIXjgiIiIiIoPAlZupXN729ujm6YmU7Gw0sbcXOw4RERERET2mt0Lu3r17iIuLQ05OTrn7BAYG6qs50rN7qam4lZwAAFDKc+BgYQEPpRLrRoyABIDCzEzcgEREREREpKVzIbds2TLMnz8fUVFRz9y3oKBA1+aoGtxLTUXTxYuRnZ+v3SY3NUXEzJnw4P2NREREREQGR6dC7ueff8brr78OQRDQtm1bNGzYEFZWVvrKRjUkKTOzRBEHANn5+UjKzGQhR0RERERkgHQq5L777jvIZDLs3LkTPXv21FcmIiIiIiIiegqdFgSPjo5Gjx49WMQRERERERHVIJ0KOQ8PDygUCn1lIZE4WFhAblqyc1ZuagoHCwuREhERERER0dPoVMhNnDgRBw8eRHJysr7yVIvjx49jwIABUKlUsLKygr+/P1auXFnp83h5eUEikTz1q2HDhtXwDKqXh1KJiJkz8XWf7vikW2fsGTeOE50QERERERkwne6Re//993HmzBn06NED33//Pbp37w6JRKKvbHqxadMmjBo1ChqNBoGBgXBwcMCBAwcwceJEXLp0Cd9++22FzzVixAgkJSWV+djhw4dx9+5ddOvWTV/Ra5SHUom14ddxPi4e28d4sYgjIiIiIjJgOhVyJiYmWLJkCXr16oVevXrBzMwMTk5OkEpLd/RJJBLcunVLl+YqLTk5GVOmTEFBQQE2bdqEYcOGAQDi4+PRtWtXLFq0CIMGDUJQUFCFzlde0afRaODm5gYAePHFF/WSXQy+jvVhYWYGew6XJSIiIiIyaDoVcteuXUOPHj2QmJgIQRCQm5uLe/fu6SubzpYuXQq1Wo0hQ4ZoizgAcHR0xNdff41hw4Zh0aJFFS7kynPgwAHExcXB1dW1Vk/88m3fIACASqESNwgRERERET2VTvfIvfPOO0hISMDEiRNx8eJFpKWlQaPRlPtV03bu3AmgcEjkkwYOHAi5XI79+/cjOztbp3ZWr14NABg7dmyZvZFERERERET6pFPVcfz4cbRu3RrLly9Hq1atYGlpqa9cenHx4kUAgJ+fX6nHZDIZWrZsiezsbERGRla5jaysLGzZsgUAMH78+Cqfh4iIiIiIqKJ0Glopk8nQvHlzfWXRK7VajdTUVADQ3r/2JDc3N4SGhiIqKgqtW7euUjt///030tLS0Lp16wqdIycnBzk5OSVyAkByVjLyzfKrlEFfJv+9HREPU/BNn54I8HAVNQsVepT1SOwI9AReE8PC62F4eE0Mj42ggRSARtAgJcuwZxqvC/gaMTyGdE3UWeoK76tTj1yPHj1w6dIlXU5RbdLT07X/tihnPbSiHsS0tLQqt7Nq1SoAFZ/kZOHChVAqldovd3f3Kretb1GpaYh4mIL03FyxoxARERER0VPo1CP35Zdfwt/fHx9//DE+/fRTmJiY6CsXACA4OBjXrl2r1DErV66Ev7+/XnOUJyEhAfv27YNUKsXYsWMrdMwHH3yAWbNmab9Xq9Vwd3eHSqGCjcKmuqJWyDd9eyItJxfdPLyhUhjWMNm6jhPQGB5eE8PC62F4eE0Mh0ZS+Lm9VCLldTEgvBaGxxCuiWlexcsznQq51atXY9CgQVi4cCHWrVuHoKAguLq6lrv8wCeffFKp89+5cwcRERGVOiYzMxMAYGVlVWKbjU3pIikjIwMAYG1tXak2iqxduxb5+fno06cPXFxcKnSMubk5zM3Nq9RedWvn7AQALOKIiIiIiAycToXcvHnzIJFIIAgCbt269dR14qpSyF24cKHK2WxsbKBUKpGamoro6Ogy7+WLjo4GAHh6elapjaLZKjnJCRERERER1SSdCrk//vhDXzmqha+vL44cOYLz58+XKuTy8vIQHh4OuVyOJk2aVPrckZGROHv2LCwsLEqsUVebnYqORWp2Dno2kMGxWI8mEREREREZFp0KuYkTJ+orR7UYOHAgjhw5go0bN5bqNduxYweys7MxaNAgyOXySp+7qDcuODi4xDDO2uyTg8dwPi4e28dYY1AVilsiIiIiIqoZoq1e/d5776FRo0bV2sa0adNgY2ODrVu3YvPmzdrtCQkJmD17NoDCRc2f5OPjAx8fH8TExJR77jVr1gCo+GyVtYGPgwp+zo6wrUJhS0RERERENUenHjldJCUl4e7du9XahkqlwvLlyzFy5EiMGDECQUFBsLe3x/79+5GSkoJZs2YhKCio1HFFE6zk5eWVed4TJ07g9u3bcHJyQu/evavzKdSoH58rfC6GMGMPERERERGVT7RCrqYMHz4cR44cwRdffIFTp04hNzcXzZs3x8yZM6s8NLRoWOWYMWP0vuQCERERERHRsxh9IQcAAQEB2L17d4X3FwThqY///PPP+Pnnn3WNRUREREREVCWi3SNHhueN3QfQb/UGHLt3T+woRERERET0FHWiR44q5lrSQ5yPi0dKdrbYUYiIiIiI6ClYyJHWp0EBSM3OQXsXF7GjEBERERHRU7CQI60u7q4AAJXCONbFIyIiIiIyVrxHjoiIiIiIqJZhIUdaYXHxOBJ1H0mZmWJHISIiIiKipxCtkBME4ZnT/FPNmr3/MILX/Y1T0dFiRyEiIiIioqcQrZALCQmBRqMRq3kqg5fSBj4OKljLZGJHISIiIiKip9BpspOVK1dWaD+ZTAZ7e3v4+vqifv36ujRJ1ej3wf0BACqFSuQkRERERET0NDoVcpMmTYJEIqnw/hKJBL1798aPP/4Ib29vXZomIiIiIiKqs3Qq5ObOnYu7d+9i5cqVsLKyQt++feHh4QEAuH//Pv755x+kpaXhxRdfhLm5Of6vvTsPq6rc////2gwCgszOIM4aDimW5gh6ND1ZDmCWdk5oWQ4NfjSzrJ+NdjSLTM1Tp9TUhnMqcsgcUlPU45RhlqWiJpIahgqKMsmwvn942L8I2GIMa295Pq6L64r7XsNr7RvTN+te99q5c6c2bNignj17Kj4+Xg0bNqyQiwAAAACA6qRchdzf//53de7cWQ888IBiYmLk4+NTpD89PV2TJ0/WihUrtGfPHjVt2lRPPvmk5syZo1mzZmn+/PnlCo+KNXVjnI6mpunVvv11W1CQ2XEAAAAAlKJci51MmzZNfn5+evfdd4sVcZLk7e2td999V35+fnrmmWfk5OSkmTNnqn79+lq/fn15To1K8N2ZFG1LOsXrBwAAAAA7V647clu2bNHtt98uJ6fS60EnJyd17txZGzZskHR14ZObb75ZcXFx5Tk1KsEzPW5Tala2OtarZ3YUAAAAADaUq5DLzMzUmTNnrrndb7/9puzsbOv33t7ecnEp16lRCXo3ufp8o7+Ht8lJAAAAANhSrqmV7dq107Zt27Rt27ZSt9m+fbu2bt2qdu3aWdtOnjyp2rVrl+fUAAAAAFBtlauQmzp1qvLz89W/f3+NHTtWGzdu1OHDh3X48GFt3LhR48aNU//+/WUYhqZOnSpJunjxouLj43XbbbdVyAWg4hw6e17f/npGaVlZZkcBAAAAYEO55jdGRkZqzpw5euqpp/Tee+9p4cKFRfoNw1CNGjU0Z84cDR06VJJ0/vx5vfjii/rLX/5SnlOjEjy+/mvtS/5Nq0eM0J0tW5odBwAAAEApyv2g2sSJEzVo0CAtWrRIO3fuVHJysiSpfv366t69u0aPHq2mTZtat2/atKmeeuqp8p4WlaCel6dCfLxV09XV7CgAAAAAbKiQFUeaNGmiGTNmVMShYKIPhg6UJPl7+JucBAAAAIAt5XpGDgAAAABQ9SqkkDt48KAmTZqk7t27q1WrVtaFTSRp586dmjdvnlJTUyviVAAAAABQ7ZV7auUbb7yhp59+Wnl5eZIki8Wic+fOFdlm0qRJcnNz09ixY8t7OlSi57b8Vz+nXtBLvf+iWxs2NDsOAAAAgFKU647cmjVrNGXKFAUHB2v58uVKSUmRYRhFtunWrZtq166tVatWlSsoKt+uU79q/c+J+i0jw+woAAAAAGwo1x25N954Q56entq4cWORlSn/qEOHDkpISCjPqVAFJt12i85nZql93bpmRwEAAABgQ7kKucIXe9sq4iQpMDBQ27dvL8+pUAXuaHF1HP09fExOAgAAAMCWck2tvHLlimrVqnXN7VJSUuTiUiFvOgAAAACAaq9chVyTJk30/fff29zmypUr+uGHH9SyZcvynApVIDHtog6dPa/0nByzowAAAACwoVyF3KBBg3TixAm98cYbpW4ze/ZsnT17VpGRkeU5FarAw19+pR7vf6xtSUlmRwEAAABgQ7nmO06dOlUfffSRnnzySe3Zs0dDhw6VJP32229asWKFVqxYoY8++khNmjTRo48+WiGBUXn83N1Uu6aHajg7mx0FAAAAgA3lKuT8/Py0adMmDRs2TJ999pliY2MlSevXr9f69etlGIZCQ0O1cuXKMj1LB3N9evdgSZK/h7/JSQAAAADYUu4VSFq2bKn9+/friy++0MaNG3XixAkVFBQoKChI/fr1U1RUlJy5wwMAAAAAFaZClpJ0cnLSkCFDNGTIkIo4HAAAAADAhgop5DIzM/Xtt98qOTlZOTZWPLz//vsr4nSoJK9s36UTaRf1bK/eCqtf3+w4AAAAAEpR7kLuueee05w5c5SZmVnqNoZhyGKxUMjZubgTJ7Uv+TeN7ngLhRwAAABgx8pVyM2ePVszZsyQs7OzBg4cqJYtW7KoiQObcEsHpWRmqU3t2mZHAQAAAGBDuQq59957Tx4eHtq+fbvCwsIqKhNMMvSmqy9t9/fwMzkJAAAAAFvK9ULwkydPKjw8nCIOAAAAAKpQue7I1atXT56enhWVBSb79dJlXcnPl5uzlzxr1DA7DgAAAIBSlOuO3L333qu4uDhlZGRUVB6YKHrlWnV6d5m2nDhhdhQAAAAANpSrkHvhhRd00003adCgQTp27FhFZYJJPFxc5OnqKmeLxewoAAAAAGwo19TKO+64QwUFBYqLi9NNN92kkJAQBQUFycmpeH1osVj09ddfl+d0qGRfjIiUJPl7+JucBAAAAIAt5Srk4uLirP+dn5+v48eP6/jx4yVua+EuDwAAAABUiHIVcomJiRWVAwAAAABQRuUq5EJCQioqB+xAzK69+uVCuqZ066mb69UzOw4AAACAUpRrsRPcWNYfS9SHBw7qZHq62VEAAAAA2FAtCrkdO3bojjvukL+/v7y8vNS5c2ctW7bsTx3r4sWLeuaZZ9SmTRvVrFlT7u7uatWqlSZNmqSUlJQKTl61Rndop/+vV1e1Dgw0OwoAAAAAG8o1tdIRfP7557rnnntUUFCgXr16KTAwUF9//bWio6P1ww8/6PXXXy/zsc6dO6du3brp6NGjqlevnvr16ydJ+uabb/Tmm2/qk08+0a5duxx2yunIdjdJYtVKAAAAwN7d0HfkUlNT9cADDyg/P1+xsbGKi4tTbGysDh8+rObNmysmJqbIypvX8o9//ENHjx7VoEGDlJiYqFWrVmnVqlVKTEzU0KFDlZycrOeee67yLggAAAAAdIMXcgsXLlR6eroGDx6syMhIa3vdunU1e/ZsSVJMTEyZj7dt2zZJ0rRp0+Tu7m5td3d31/Tp0yVJe/furYjopkjNylJKRqZy8vLMjgIAAADAhhu6kFuzZo0kadiwYcX6Bg4cKHd3d23atEnZ2dllOp6bm9s1twkICLi+kHbkntjVumnBIm0s5V2AAAAAAOzDDV3Iff/995KksLCwYn01atRQ27ZtlZ2drSNHjpTpeLfffrskadasWUWKv+zsbL388suSpAcffLC8sU1j+d8XAAAAAPt2wy52kp6erosXL0qSgoKCStwmKChI3377rZKSktS+fftrHnPKlCnaunWrVq1apSZNmqhLly6SpD179ig7O1uvv/66Ro0aZfMYOTk5ysnJKZJTklKzUpXnau6Uxk+GXV28xc/DT6lZqaZmwVVpWWlmR8AfMCb2hfGwP4yJ/fE2CuQkqcAo0AX+fjcdf0bsjz2NSXpW2V8DdsPekbt8+bL1v2vWrFniNp6enpKkS5culemYnp6eWrNmjf72t7/pzJkz1sVOzpw5o44dO6pHjx7XPMbMmTPl4+Nj/QoODi7TuQEAAACgkF3fkRs6dKgOHTp0XfssW7ZMnTt3rpQ8v/zyiwYOHKjk5GQtW7ZMAwYMkCStW7dOkyZNUkREhDZs2KCePXuWeoxp06Zp8uTJ1u/T09MVHBwsfw9/eXt4V0ru68XrB+wPY2J/GBP7wnjYH8bEfhRYrv7e3snixLjYEcbC/tjDmLjklr08s+tCLjExUQkJCde1T2ZmpiTJy8urSJu3d/EiKSMjQ5JUq1atMh07OjpaP/74o1asWKEhQ4ZY2++//355eXkpKipKU6ZM0Z49e0o9hpubW5kWTTHDgm/26WT6JT3epbva1qljdhwAAAAApbDrqZX79++XYRjX9RURESFJ8vb2lo+PjyTp1KlTJR6/sL0sL/A+efKk4uLi5ObmprvuuqtY/+DBg1WjRg3t3bu3zKtg2puVCcf03r4fdOLCBbOjAAAAALDBrgu58rr55pslSfv27SvWl5ubqx9//FHu7u5q2bLlNY9VWPR5enrK2dm5WL+zs7M8PT1lGIYuOGghNLLtTZrc9RY19zf/tjIAAACA0t3QhdzAgQMlSbGxscX6vvzyS2VnZ6tv375FXu5dmnr16kmSUlNTlZiYWKz/559/Vlpamjw9PRUYGFjO5OYY3bGdnu3ZVa0dND8AAABQXdzQhdyYMWPk7e2tVatWafny5db2lJQUTZ06VZL0xBNPFNuvdevWat26tU6fPm1ta9KkifUVBWPHjrW+2kCSLly4oLFjx0qShgwZIhcXu370EAAAAICDu6ErDn9/fy1evFjDhw/XsGHDFBERoYCAAG3atEkXLlzQ5MmTrc/U/V7hAiu5ublF2t9991317dtXGzduVPPmza3vkdu9e7fOnz+vxo0ba/bs2ZV+XZUlMzdXBYYhb7cCuTjd0DU+AAAA4NBu+H+tR0VFadu2berfv7++++47rV27Vs2bN9eSJUsUExNzXcfq0qWL9u/fr4ceekje3t7atGmTNm/erLp16+rpp59WfHy8GjRoUElXUvkG/2eFQt78l9YfO2Z2FAAAAAA23NB35Ap1795d69atK/P2hmGU2tesWTO9++67FRELAAAAAP6UalHIoWxWj4iUYUj1vFjsBAAAALBnFHKwcv/fIi3OPB8HAAAA2DX+xQ4AAAAADoZCDlaLvvtBL23dqUNnz5odBQAAAIANFHKw+s+PhzV3T7x+TkszOwoAAAAAG3hGDlZRN7VUl4b11cTX1+woAAAAAGygkIPVuFs6SJL8PfzNDQIAAADAJqZWAgAAAICD4Y4crAr+9yJ0wzBksVhMTgMAAACgNNyRg1X/Dz9T7dfe0pqjR82OAgAAAMAGCjkAAAAAcDBMrYRV7N2DlVdQoBDfemZHAQAAAGADhRysfNzdJEk1nJ1NTgIAAADAFqZWAgAAAICDoZCD1Uc/HNTrO/fq6PnzZkcBAAAAYANTK2G15PsftS/5N3ULbqIWAQFmxwEAAABQCgo5WN3Roqna1QlUIx8fs6MAAAAAsIFCDlaTbrtFkuTv4W9yEgAAAAC28IwcAAAAADgYCjkAAAAAcDAUcrC68+PP1fCNf2rt0aNmRwEAAABgA4UcrHLy85Wdl68CwzA7CgAAAAAbWOwEVh8OHajcggK18G9gdhQAAAAANlDIwaqul6ckycPV1eQkAAAAAGxhaiUAAAAAOBgKOVjFHkzQP/d+p+NpaWZHAQAAAGADUyth9a/477Uv+Td1qBespn5+ZscBAAAAUAoKOVj9pUkjNfXzVcNatcyOAgAAAMAGCjlYPd3jNkmSv4e/yUkAAAAA2MIzcgAAAADgYCjkAAAAAMDBUMjBKurTlWox/z19deyY2VEAAAAA2EAhB6v0nCtKzcpWbkGB2VEAAAAA2MBiJ7BaeFd/Zefnq23tYLOjAAAAALCBQg5WIb4+kqRabm4mJwEAAABgC1MrAQAAAMDBUMjB6ssjP2vJ/h+VdOGC2VEAAAAA2MDUSljN3ROvfcm/qWVAPYX4+podBwAAAEApKORg1T24oep7eaqel5fZUQAAAADYQCEHqxciukuS/D38TU4CAAAAwBaekQMAAAAAB0MhBwAAAAAOhkIOVvd9/qXav/2+Nh0/bnYUAAAAADZQyMEqJTNTpy9dVnZentlRAAAAANjAYieweuuOvsq8kqtODRqZHQUAAACADRRysGoVcHW1Sl93d5OTAAAAALClWkyt3LFjh+644w75+/vLy8tLnTt31rJly/7UsTIzMzVjxgy1adNGHh4eCggI0F//+lfFxcVVbGgAAAAAKMUNX8h9/vnnCg8P1/r169W+fXsNGDBAR48eVXR0tKZMmXJdx7p8+bLCw8M1ffp0nTlzRn379lWbNm309ddfq0+fPlq8eHElXUXV2HT8hD796bBOpaebHQUAAACADTd0IZeamqoHHnhA+fn5io2NVVxcnGJjY3X48GE1b95cMTEx13Unbdq0afr222/VqVMnHT58WKtXr9a2bdsUFxcnT09PjR8/XklJSZV3QZXs1R3faPyajdp/5ozZUQAAAADYcEMXcgsXLlR6eroGDx6syMhIa3vdunU1e/ZsSVJMTEyZjnXlyhXrHbd58+apdu3a1r5u3brp8ccf15UrV/Tmm29W3AVUsU7166p340aqXbOm2VEAAAAA2HBDF3Jr1qyRJA0bNqxY38CBA+Xu7q5NmzYpOzv7msc6dOiQMjMz5ebmpq5duxbr7927tyRp1apV5Uxtnll9wxU7fLC6BAWZHQUAAACADTd0Iff9999LksLCwor11ahRQ23btlV2draOHDlyzWNlZGRIknx8fGSxWIr1BwQESJISExOVzjNmAAAAACrRDfv6gfT0dF28eFGSFFTKHaagoCB9++23SkpKUvv27W0er3Aq5dmzZ5WVlSUPD48i/YmJidb//uWXX9S2bdsSj5OTk6OcnJwiOSUpNStVea7mvog7LSvN1POjOMbE/jAm9oXxsD+Mif3xNgrkJKnAKNCFrFSz41R7/BmxP/Y0JulZZb8hdMPekbt8+bL1v2uW8syXp6enJOnSpUvXPF7z5s1Vv359GYahpUuXFuv//YqVto43c+ZM+fj4WL+Cg4Ovee6q8vi67er/4Rf67y+nzI4CAAAAwAa7viM3dOhQHTp06Lr2WbZsmTp37lzhWSwWi55++mlNnDhRTz75pNzc3DR48GClp6drzpw5WrNmjVxcXJSXlycnp9Lr42nTpmny5MnW79PT0xUcHCx/D395e3hXeO7rcSYjWz+npcvJ4i5/D39Ts6AoxsP+MCb2hfGwP4yJ/SiwXP13iZPFiXGxI4yF/bGHMXHJLXt5ZteFXGJiohISEq5rn8zMTEmSl5dXkTZv7+JFUuFzb7Vq1SrTsR977DEdO3ZM8+fP1wMPPGBtt1gsmjFjhubOnauzZ8/Kz8+v1GO4ubnJzc2tTOerajG399blK1fUlcVOAAAAALtm14Xc/v37//S+3t7e8vHx0cWLF3Xq1CmFhoYW2+bUqatTCENCQsp0TIvFonnz5umBBx7QqlWrdPr0adWpU0dRUVEKDQ3V888/Lw8PDzVt2vRP5zZT+7pXnwP09+D1AwAAAIA9s+tCrrxuvvlmbdu2Tfv27StWyOXm5urHH3+Uu7u7WrZseV3H7dChgzp06FCkbdu2bcrPz1f37t3l4nJDf6wAAAAATHbDLnYiXX1XnCTFxsYW6/vyyy+VnZ2tvn37yt3dvdznmj9/viTp4YcfLvexzLI96ZRWHzmm5DIs/gIAAADAPDd0ITdmzBh5e3tr1apVWr58ubU9JSVFU6dOlSQ98cQTxfZr3bq1WrdurdOnTxdpT0lJ0S+//FKkLS8vT88//7xiY2PVu3dv3X333ZVwJVXjpW07NWrlOsUnJ5sdBQAAAIANN/QcQH9/fy1evFjDhw/XsGHDFBERoYCAAG3atEkXLlzQ5MmTFRERUWy/wgVWcnNzi7QfPHhQffr0UceOHdWkSRMZhqFdu3YpOTlZHTt2LPHOnyNpWztQrk5O8quAO5QAAAAAKs8NXchJUlRUlLZt26YZM2Zo9+7dunLlikJDQ/Xoo48qOjr6uo7VrFkzRUdHa8eOHVq3bp2cnJzUqlUrTZkyRY8++qhq1KhRSVdRNeYM6CPJPpZeBQAAAFC6G76Qk6Tu3btr3bp1Zd7eMIwS24ODg/X+++9XVCwAAAAA+FNu6GfkAAAAAOBGRCEHqwlrNqrP0k+0PSnJ7CgAAAAAbKCQg9XR1DR9/1uKLubkmB0FAAAAgA3V4hk5lM0rfXoqPSdHnRs2NDsKAAAAABso5GDVuWF9SZK/h6fJSQAAAADYwtRKAAAAAHAw3JGDJOmXixf1RcIhZeZeUVj9ELUMCFAjHx+zYwEAAAAoAYUc9MvFi2r11lvKzsuztrm7uCjh0Ucp5gAAAAA7xNRK6FxmZpEiTpKy8/J0LjPTpEQAAAAAbKGQAwAAAAAHQyEHAAAAAA6GQg4KrFlT7i5FH5d0d3FRYM2aJiUCAAAAYAuLnUCNfHyU8Oij+jk1WZLk4+6jwJo1WegEAAAAsFMUcpB0tZjzqpEvSfL38Dc5DQAAAABbmFoJAAAAAA6GQg4AAAAAHAyFHAAAAAA4GAo5AAAAAHAwFHIAAAAA4GAo5AAAAADAwVDIAQAAAICDoZADAAAAAAdDIQcAAAAADoZCDgAAAAAcDIUcAAAAADgYCjkAAAAAcDAUcgAAAADgYCjkAAAAAMDBUMgBAAAAgIOhkAMAAAAAB0MhBwAAAAAOhkIOAAAAABwMhRwAAAAAOBgKOQAAAABwMBRyAAAAAOBgKOQAAAAAwMFQyAEAAACAg6GQAwAAAAAHQyEHAAAAAA6GQg4AAAAAHAyFHAAAAAA4GAo5AAAAAHAwFHIAAAAA4GAo5AAAAADAwVDIAQAAAICDoZADAAAAAAdzQxdyGRkZ+uCDD/TYY4+pS5cucnNzk8Vi0QsvvFCu465evVrh4eHy9vaWt7e3IiIitGbNmooJDQAAAADX4GJ2gMp09OhR3X///RV6zDfffFOTJk2Si4uL+vbtKzc3N23YsEF33nmn5s+fr0cffbRCzwcAAAAAf3RD35GrVauWHnzwQb3zzjuKj4/XSy+9VK7jJSQkaMqUKXJzc9O2bdu0bt06rVy5Uvv371dAQIAmTZqkY8eOVVB6AAAAACjZDV3INWvWTAsXLtTYsWMVFhYmV1fXch1v7ty5ys/P17hx49S1a1dre8uWLfXss88qLy9Pc+fOLW9sAAAAALDphi7kKlrhc3DDhg0r1lfYtnr16irNBAAAAKD6oZArowsXLuiXX36RJHXs2LFYf3BwsAIDA5WUlKT09PSqjgcAAACgGrmhFzupSIVFnJ+fnzw9PUvcJigoSOfOnVNSUpLatWtX4jY5OTnKycmxfl9Y9KVmpSrPNa+CU1+ftKw0U8+P4hgT+8OY2BfGw/4wJvbH2yiQk6QCo0AXslLNjlPt8WfE/tjTmKRnlf2GEIVcGV2+fFmSVLNmzVK3KSzwLl26VOo2M2fO1Isvvlis3dY+VeVS1tUMzrnOJidBIcbE/jAm9oXxsD+MiR3KLJBLjlRQUMCsITvAnxH7Y09jUlgTGIZxzW3tupAbOnSoDh06dF37LFu2TJ07d66kROU3bdo0TZ482fr96dOnFRoaqvYt2puYCgAA3Ph+k9TE7BAAyuDSpUvy8fGxuY1dF3KJiYlKSEi4rn0yMzMrJYuXl9c1j5+RkSHp6msPSuPm5iY3N7cixz158qRq1aoli8VSQWn/nPT0dAUHB+vkyZPy9vY2NQuuYkzsD2NiXxgP+8OY2B/GxL4wHvbHnsbEMAxdunRJDRo0uOa2dl3I7d+/3+wIVo0aNZIkpaWlKSMjo8Tn5E6dOiVJCgkJKfNxnZycFBQUVDEhK4i3t7fpP8QoijGxP4yJfWE87A9jYn8YE/vCeNgfexmTa92JK8SqlWXk6+trLea+++67Yv0nT57UuXPnFBISYhc/AAAAAABuXBRy12HgwIGSpNjY2GJ9hW133XVXlWYCAAAAUP1QyJWgdevWat26tU6fPl2kfeLEiXJ2dtY777yj3bt3W9uPHj2qV155RS4uLpo4cWJVx60wbm5uev7554s8wwdzMSb2hzGxL4yH/WFM7A9jYl8YD/vjqGNiMcqytqUDGzp0qJKTkyVJv/76q06ePKmGDRtan0urX7++VqxYUWSfwkVHEhMT1bhx4yJ9c+bM0eTJk+Xi4qJ+/fqpRo0a2rBhg7KysjRv3jw99thjlX9RAAAAAKq1G76Qa9y4sZKSkkrtDwkJ0YkTJ4q02SrkJGn16tV67bXXrM/KdezYUVOnTtWdd95ZYbkBAAAAoDQ3fCEHAAAAADcanpEDAAAAAAdDIVfNxcfHa9asWYqMjFRQUJAsFovpLyavzjIzM7Vy5Uo9+OCDatWqldzd3eXp6ambb75ZL730ki5fvmx2xGrpjTfeUGRkpFq0aCEfHx+5ubkpJCRE999/vw4cOGB2vGrv/PnzqlOnjiwWi5o3b252nGopIiLC+vdHSV/r1683O2K1dPbsWU2ZMkWtWrWSh4eH/P39FRYWpieffNLsaNVKXFyczT8fhV8vvfSS2VGrnb1792r48OFq0KCBXF1d5evrq549e+r999+XI0xaZGplNTdkyBCtWrWqWDs/FuZYuHChHnroIUnSTTfdpLZt2yo9PV07d+7UpUuX1Lp1a23dulV16tQxOWn1EhgYqIyMDLVv314NGzaUJP300086cuSIXF1dtXz5cp6RNdGoUaO0bNkyGYahZs2a6dixY2ZHqnYiIiK0detWRUVFycvLq1j/E088oXbt2pmQrPqKj49X//79df78ebVp08b698nBgwd16tQp5eXlmR2x2jh8+LBmzZpVYl9+fr4+/PBDSdLmzZvVu3fvqoxWrX3++ee65557lJ+fr7CwMDVv3lxnz57V9u3blZeXp5EjR+qjjz4yO6ZtBqq1WbNmGdOnTze++OILIzk52XBzczP4sTDPkiVLjIcfftg4ePBgkfZff/3V6NixoyHJGDFihEnpqq///ve/RlZWVrH2BQsWGJKMunXrGrm5uSYkw6ZNmwxJxsMPP2xIMpo1a2Z2pGopPDzckGQkJiaaHQWGYaSkpBiBgYFGzZo1jVWrVhXr37NnjwmpUJK1a9cakozg4GCjoKDA7DjVRm5urlGnTh1DkvHRRx8V6Tt48KDh7+9vSDI2b95sUsKy4Y4cinB3d1dOTg535OzQrl271K1bN7m5uSk9PV01atQwOxIkNW/eXD///LO+//57tW/f3uw41UpWVpbatWsnNzc3rVy5Ui1btuSOnEkK78iVttozqtaECRP09ttva8GCBZowYYLZcWDDfffdp48//lhPP/20Zs6caXacauPHH39Uu3bt1KpVKx0+fLhY/8SJEzVv3jy9+uqrmjp1qgkJy8bF7AAAyubmm2+WJOXk5Oj8+fOqX7++yYkgSa6urpJEYW2CF198UcePH9fWrVut4wBUd1lZWfrwww/l6emp0aNHmx0HNmRkZFgfb/n73/9ucprqpawv/g4ICKjkJOVDIQc4iOPHj0u6Wjj4+/ubnAaS9MEHHyghIUEtWrRQixYtzI5Trfzwww+KiYnR6NGj1bNnz2LvA4U5Fi1apPPnz8vJyUktW7bUkCFD1KhRI7NjVSvffvutLl26pB49esjDw0Pr1q3Txo0blZ2drZYtW1oXdoD5li9froyMDHXs2FGhoaFmx6lWmjZtqmbNmikhIUEff/yxRo4cae07dOiQPvzwQ/n5+Wno0KEmprw2CjnAQcydO1eSNGDAgDL/JgkV67XXXtNPP/2kjIwMHTp0SD/99JMaNGigf//733J2djY7XrVRUFCgMWPGyNfXV7NnzzY7Dn5nxowZRb6fMmWKpk+frunTp5uUqPo5ePCgJKlOnTolLmj2zDPPaNGiRRoxYoQZ8fA7hYuccDeu6jk7O2vp0qW68847dd999ykmJkYtWrRQSkqKtm/frtDQUC1ZssTuf3HO6wcAB7B27VotWrRIrq6uevnll82OU2199dVXWrp0qWJjY/XTTz8pJCRE//73v9WpUyezo1Ur8+fP1969e/Xaa6/Z/bSX6qJXr1764IMP9PPPPyszM1MJCQl65ZVX5OLioueee876iyhUvrS0NEnSF198ofXr12vBggVKSUnRiRMnNGXKFGVlZSk6Olr79+83N2g1l5ycrK+//lrOzs4U1Sbp3r27tm7dqqZNm2rfvn365JNPtGXLFjk5Oalfv35q2rSp2RGvzeTFVmBnWLXS/hw6dMjw8/MzJBlvvvmm2XFgGEZaWpqxbds2o2/fvoYkY8aMGWZHqjaSkpIMLy8vIzw8vEh7YmIiq1baoa+++sqQZPj6+hqZmZlmx6kWXnnlFUOSIcl49dVXi/XffffdhiRj5MiRJqRDoZiYGEOSMWDAALOjVFsff/yx4ebmZoSHhxt79uwxLl++bBw5csS6CnJYWJiRnZ1tdkybuCMH2LHTp09rwIABSktL0+TJkzVx4kSzI0GyvjB07dq16tSpk6ZPn669e/eaHataeOSRR3TlyhW98847ZkdBGdx+++265ZZbdOHCBe3Zs8fsONXC79/jV9JiJ4VtW7durbJMKI5pleY6evSooqOjFRgYqC+//FKdO3eWp6enWrRooX/961+68847tW/fPi1evNjsqDZRyAF2KjU1VbfffruSkpI0evRovf7662ZHwh+4urrqnnvukWEYWr16tdlxqoUvv/xSNWvW1Lhx4xQREWH9uvfeeyVd/eVHYduZM2dMTgtJ1oWAkpOTTU5SPYSEhEiSatasqdq1axfrL3w9REpKSlXGwu8cOnRI3333nby8vDRkyBCz41RL//nPf5Sbm6sBAwYU+eVHoeHDh0uStm3bVtXRrguLnQB26PLly/rrX/+qgwcPKjIyUu+9954sFovZsVCCwMBASdLZs2dNTlJ9XLhwodS7CdnZ2da+7OzsqoyFUhQ+s+Xp6WlykuqhY8eOkq6+hiAnJ6fY4lipqamSVOI/XlE1PvjgA0lSZGSkatasaXKa6unUqVOSJB8fnxL7C9sL//9lr7gjB9iZnJwcDR48WN9884369+/Pioh2rrBoaNasmclJqgfDMEr8SkxMlHR1HArbeDG1+c6ePavt27dLksLCwkxOUz00atRIN998swzDKPEXHoVthQUfqpZhGPr4448lMa3STPXq1ZN09XUdJSl8XMLe/x6hkAPsSH5+vkaMGKHNmzerZ8+eWr58OS+aNtmOHTu0fv16FRQUFGnPzc3V/Pnz9cEHH8jDw0P33HOPSQkBc+3cuVMrV65Ufn5+kfYTJ05o6NChysjI0KBBgxQUFGRSwupn6tSpkq6+/uH3U1r379+vmJgYSdK4ceNMyVbdbd++XUlJSWrYsKH69Oljdpxqa/DgwZKuTp18++23i/Tt3r1bc+bMkSQNGzasyrNdD6ZWVnNr1qwpspz9lStXJEm33XabtW369OkaOHBglWerjt566y2tWLFC0tUpexMmTChxu9dff906pQ+V6+jRoxo9erQCAwPVqVMnBQQE6Ny5czpw4ICSk5Pl7u6uJUuWKDg42OyogCmOHDmi0aNHq169egoLC5Ovr6+SkpIUHx+v7OxstWnTRu+9957ZMauVkSNHasOGDVq6dKlCQ0PVrVs3ZWVlaefOncrJydFDDz2ku+++2+yY1VLhIicjR46UkxP3U8wSFhamKVOm6PXXX9eECRO0YMEChYaG6tdff9WuXbtUUFCghx9+WH379jU7qk0UctXc2bNnS1xJ7PdtPPtTdX4/F7uwoCvJCy+8QCFXRcLDw/XMM89o69at+uGHH3Tu3DnVqFFDjRs31rBhw/T444+refPmZscETNOlSxeNHz9ee/bs0d69e5WWliZPT0916NBBd999t8aPHy8PDw+zY1Y777//vrp3765//etfiouLk8ViUVhYmMaOHavo6Giz41VLOTk5io2NlST97W9/MzkNXnvtNXXr1k3vvPOO4uPjlZCQoFq1aik8PFwPPfSQQ7zfz2IYhmF2CAAAAABA2XFPFwAAAAAcDIUcAAAAADgYCjkAAAAAcDAUcgAAAADgYCjkAAAAAMDBUMgBAAAAgIOhkAMAAAAAB0MhBwAAAAAOhkIOAAAAABwMhRwAVEMWi0UWi0W+vr66cOFCidvMmjVLFotFL7zwQpVmK4u4uDhZLBaNGjXK7CiVYt68eWrTpo3c3NxksVgUERFxzX0Kx7S0r7IcAwDgOFzMDgAAMM/Fixf1xhtv6KWXXjI7Cv5n+fLlmjhxovz8/DRo0CB5enqqdevWZd4/Ojq6xPbrOUZFGDVqlJYuXaotW7ZQRAJAJaCQA4BqymKxyM3NTXPnztWkSZPk5+dndiRIWrlypSQpNjZWffr0ue79lyxZUrGBAAB2iamVAFBNOTk56eGHH1Z6erpef/11s+Pgf06dOiVJatq0qclJAAD2jEIOAKqxp59+Wh4eHpo/f77Onz9fpn0iIiJksVh04sSJYn0nTpwo8XmsF154QRaLRUuWLFF8fLz++te/ytfXV/7+/ho+fLi1eMnIyNDUqVPVuHFjubu7q23btoqNjbWZJzk5WaNGjVLdunXl4eGhsLAwLVu2rNTtU1NTNW3aNIWGhsrDw0M+Pj7q06ePvvzyS5vXk56ersmTJ6tJkyZydXXV//3f/13zs5KkkydPauzYsQoJCZGbm5vq1KmjyMhI7d27t8TPaMuWLZKkJk2aWJ9vi4uLK9O5rsehQ4c0atQoBQcHy83NTXXr1tW9996rn376qdi22dnZWrRokQYPHqymTZvKw8NDvr6+6tWrl/7zn/8U295isWjp0qWSpN69exd5Vq/w52bUqFE2r81isahx48ZF2pYsWWJ9bvPIkSO69957VbduXTk5OVnvZF7vtUnS2rVr1a9fPzVs2FBubm5q0KCBevTooRdffPHaHyQAmIRCDgCqsfr162vcuHG6dOmSXnvttUo/3549e9S9e3edPXtW/fv3V0BAgD777DP95S9/0cWLF9W7d28tXbpUt956q7p27aqDBw9q+PDh+uqrr0o8Xmpqqm677TatX79eERER6tmzpw4cOKDo6OgSF2k5cuSIOnTooFmzZikrK0v9+/fXLbfcoj179uiuu+4q9c5kVlaWwsPDtWTJEnXo0EGDBg0q01TUAwcOKCwsTO+++648PDwUGRmpFi1aaMWKFerWrZs+++wz67YdOnRQdHS06tatK0mKiopSdHS0oqOjVa9evTJ8umW3cuVKdezYUUuXLlVgYKAGDRqkJk2a6NNPP1Xnzp21bdu2ItufOHFCY8aM0bfffqvGjRtr8ODB6tChg3bv3q0RI0YU+6yjo6PVrFkzSVL//v2t1xEdHS0vL69y509ISNCtt96qb775Rr1791a/fv3k6ur6p65twYIFGjhwoLZs2aLmzZsrKipKbdu2VVJSkl0u9AMAVgYAoNqRZDg7OxuGYRhnzpwxatasaXh6ehopKSnWbWbOnGlIMp5//vki+4aHhxuSjMTExGLHTUxMNCQZ4eHhRdqff/55Q5IhyXj77bet7VeuXDH69u1rSDJCQ0ONPn36GJcvX7b2L1y40JBk9OrVq8jxtmzZYj1ev379iuzzzTffGF5eXoaTk5MRHx9vbc/LyzPatWtnSDJmz55t5OfnW/uOHj1qNGnSxHB2djYOHDhQ7HokGV27djXS0tJK/1D/oKCgwHq+qVOnGgUFBda+2NhYw8nJyfDy8jJ+/fXXIvvZ+nxtKcx5LYmJiYanp6fh5eVlbNy4sUjfunXrDFdXVyM4ONjIycmxtp87d87YuHFjkWswDMM4fvy40bhxY8PJyalY3ujoaEOSsWXLlhJzXKtfkhESElKk7f3337de56OPPmrk5eWV+9oaNWpkWCwWY+/evUW2LygoKDUbANgD7sgBQDVXt25djR8/XhkZGXr11Vcr9Vw9evTQuHHjrN+7urrqsccekyQdPnxYb7/9tjw9Pa39o0aNUmBgoHbt2qXc3Nxix3NyctL8+fOL7HPrrbfqkUceUUFBgf75z39a21evXq0DBw4oKipKTz75pJyc/v+/Aps3b66YmBjl5+frvffeKzH7vHnz5OvrW+ZrjYuL04EDB9SoUSPNmDFDFovF2hcVFaUhQ4bo8uXLWrx4cZmPWRalvX6gcErjm2++qYyMDM2cOVN9+/Ytsu+AAQM0fvx4nTx5UmvWrLG2BwQEqG/fvkWuQbo6/fPZZ59VQUGBVq9eXaHXYUvt2rX16quvytnZuUj7n7m2s2fPytfXV7fcckuR7XllAwB7RyEHANBTTz0lT09Pvf322/rtt98q7Ty33357sbbCRT0aN26sli1bFulzdnZWSEiIcnNzde7cuWL7dujQQa1atSrWPmLECEnS9u3brW0bNmyQJEVGRpaYrWfPnpKkb775plhf/fr1i/1D/1oKzz18+HDrtL/f+/vf/14sY0X4/TTGkqY0ludz+O9//6sZM2Zo/PjxGj16tEaNGmWdHnr06NEKvQ5b+vbtq5o1axZr/zPX1qlTJ6WlpenBBx8s9Rk6ALBHvH4AAKDatWvrkUce0ezZszVr1izNmTOnUs7TsGHDYm2FBUZJfb/vz8nJKdYXEhJS4j6Fi2T8+uuv1rbCO1L33Xef7rvvvlIzllQwNmrUqNTtS1N47j8u2PHHjKdPn77uY9tyrdcPFH4OpX3ehX7/OVy8eFGRkZHavHlzqdtfunSpzBnLq7Tx+DPXtmDBAg0ZMkSLFy/W4sWLVbduXYWHhysyMlLDhg0rdtcPAOwFhRwAQJL05JNP6p///KfeeecdTZ069U8do6CgwGb/76czXk9fRSjMNmDAAOuCIiUJDAws1ubu7l7hef44TbGqFH4Opb04vFCXLl2s//3UU09p8+bNCg8P14svvqi2bdvK19dXzs7O2rBhg/r37y/DMCo8Y2lKG48/c23t27fXwYMHtX79eq1du1ZxcXH69NNP9emnn6pr166Ki4tTjRo1rvMKAKDyUcgBACRdLWAee+wxzZw5UzNnzlSDBg1K3K7wH7WXL18u1nfy5MlKzfhHSUlJNtt/fw1BQUGSpDFjxigqKqrSsxWeu7SMZb17VNGCgoL0888/KyYmRgEBAWXaZ8WKFXJ2dtYXX3whb2/vIn3Hjx//Uzkq4+foz1ybdLUwHDJkiIYMGSJJ+umnnzRy5Ejt2rVLCxcu1IQJE/5UHgCoTDwjBwCweuKJJ1SrVi29++67pU75q1+/vqSrS/n/0caNGys13x/t37+/xGezCt9t1qNHD2tbv379JF0tSqpC4fNYn332mfLz84v1f/jhh0W2qyp/5nNIS0uTt7d3sSJOkj799NMS9yks1PLy8krsr4yfo4oa4zZt2uiRRx6RJP3444/lOhYAVBYKOQCAVUBAgB5//HHl5ORo0aJFJW4THh4uSYqJiVFmZqa1ffPmzXrzzTerIqZVQUGBHnvssSI54uPj9dZbb8lisWj8+PHW9qioKIWGhuqjjz7Syy+/XOyZO8MwtGPHDu3YsaNCskVERKhdu3Y6ceKEnnvuuSJTD1esWKHly5fLy8tLDzzwQIWcr6yeeOIJeXh4aMqUKVq+fHmx/pycHMXGxlpf0i5JLVu2VFpamj755JMi286ZM8f6AvM/KrwjmZCQUGJ/4c/R22+/XeRl9Pv379dzzz13fRf1P9d7bZmZmZo3b54uXLhQZLuCggKtX79ekhQcHPynsgBAZaOQAwAU8cQTT8jb21tZWVkl9o8YMUKtWrXSzp07ddNNN2nYsGG67bbb1K9fvyKFU1W48847dfDgQTVr1kz33HOPBgwYoK5du+rSpUt69tlni6w06eLiopUrV6pJkyZ67rnn1KhRI/Xr10/33Xef+vfvr3r16qlHjx7au3dvhWSzWCz66KOPFBAQoH/84x9q06aNRo4cqR49eigyMlJOTk5atGiR9c5UVWnevLn+/e9/Kzc3V1FRUWrRooUGDRqkESNGqFevXgoICNDdd99dZEGQadOmSZLuvfde9erVSyNHjlSbNm00ZcoUTZo0qcTz3HXXXbJYLJoyZYqGDBmiMWPGaMyYMdairXfv3goPD9exY8cUGhqqyMhI9erVS126dLG5GE1FXtuVK1c0ceJE1alTR127dtWIESMUFRWlxo0ba8WKFWrcuLEefvjhP5UFACobhRwAoAg/Pz/93//9X6n9Hh4e+vrrrzVixAhdunRJa9euVX5+vj755BPrdLSqEhAQoN27d6tv377asmWL4uLiFBoaqvfff18vv/xyse1btGih7777TjNmzFBQUJB2796t5cuX68iRI+rYsaMWLFigv/3tbxWWr127dtq3b58eeughXb58WbGxsUpISNCQIUO0Y8cODR8+vMLOdT0GDx6sH374QRMmTJDFYtHGjRu1Zs0apaSk6K677tKnn36q0NBQ6/b33Xef1qxZo9tuu0379+/XunXr1KBBA23evFmDBg0q8RydOnXShx9+qNDQUG3YsEGLFi3SokWLrKtbWiwWrVq1SuPGjZPFYtHatWuVmpqquXPn6rXXXquSa/Py8tKCBQt011136ezZs/riiy+0efNm+fn56cUXX1R8fPx1PWsHAFXJYlTkMlMAAAAAgErHHTkAAAAAcDAUcgAAAADgYCjkAAAAAMDBUMgBAAAAgIOhkAMAAAAAB0MhBwAAAAAOhkIOAAAAABwMhRwAAAAAOBgKOQAAAABwMBRyAAAAAOBgKOQAAAAAwMFQyAEAAACAg/l/mbxm74kXICoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print(f\"Features selected: {est1.selected_features_names_}\")\n", "dropped_features = df.drop(est1.selected_features_names_raw_, axis=1).columns\n", "print(f\"Features dropped: {dropped_features.to_list()}\")\n", "\n", "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est1.completed_trials_summary_[est1.completed_trials_summary_[\"Step\"].str.contains('Feature Selection')]\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "trials.sort_values(by=['# Features'],ascending=True, inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "n_features = trials['# Features'].tolist()\n", "\n", "y_margin = 0.10 * (max(scores) - min(scores))\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Feature Selection Trials\")\n", "ax.set_xlabel(\"Number of Features\")\n", "ax.set_ylabel(est1._inferred_score_metric[0].name)\n", "ax.grid(color='g', linestyle='-', linewidth=0.1)\n", "ax.set_ylim(min(scores) - y_margin, max(scores) + y_margin)\n", "ax.plot(n_features, scores, 'k:', marker=\"s\", color='teal', markersize=3)\n", "ax.axvline(x=len(est1.selected_features_names_), color='orange', linewidth=2.0)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "34d924c6", "metadata": {}, "source": [ "\n", "#### Hyperparameter Tuning\n", "\n", "Hyperparameter Tuning is the last stage of the AutoMLx pipeline, and focuses on improving the chosen algorithm's score on the reduced dataset (after Adaptive Sampling and Feature Selection). We use a novel iterative algorithm to search across many hyperparameter dimensions, and converge automatically when optimal hyperparameters are identified. Each trial represents a particular hyperparameter configuration for the selected model." ] }, { "cell_type": "code", "execution_count": 14, "id": "0b5710df", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:37.120765Z", "iopub.status.busy": "2025-05-22T12:37:37.120225Z", "iopub.status.idle": "2025-05-22T12:37:37.368289Z", "shell.execute_reply": "2025-05-22T12:37:37.367740Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAKBCAYAAAAcIyXIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgrklEQVR4nOzdd3xUVf7/8fekN5KQEEJJSOgsVdBFQKoNBKQrKihFVKw0Rdh1FRB0pdhw/aqgqygi0kQpslTp0qsQpITeAxkgpN/fH5j5JWQCE+6QySSv5+ORx4Pce8pn5kw0n5xzz7EYhmEIAAAAAIDreLg6AAAAAABA4UTCCAAAAACwi4QRAAAAAGAXCSMAAAAAwC4SRgAAAACAXSSMAAAAAAC7SBgBAAAAAHaRMAIAAAAA7CJhBAAAAADYRcIIAABwAxaLRRaLRStWrHB1KIVCfHy87T2Jj493atuxsbGyWCz6+uuvndougFtHwggAeRgxYoTtl6Kbyf4LFL/owBVGjBihESNGOP0XeGdq2bKl7eckv1+9e/d2dfhuo3fv3rf8Prds2dLV4QMoZLxcHQAAADBv5MiRkq4lZbGxsa4NJg9hYWGKjIzMdT01NVUXLlyQJJUsWVI+Pj65yoSEhNz2+PJSvXp1SVJAQIDLYsiPkJAQu+9zRkaGzp07J0kKDg6Wv79/rjJhYWE3bd/b29v2nnh7e5uMFkBhR8IIAAAKxOzZs+1eX7FihVq1amUrU9hmufbu3evqEPLlo48+0kcffZTrenx8vCpWrGgrc6uztuXLl3e79wTArWNJKgAAAADALhJGALiN9u7da3s2aMOGDTcs++STT+Z6huj6zSX+/PNP9e7dW1FRUfL19VWFChXUv39/nThx4oZtZ2ZmaurUqWrbtq0iIyPl4+OjiIgIPfjgg5o2bZoMw7BbL/sGFJcvX9abb76pOnXqqESJEjk2vMh63jMr9h9//FEtWrRQWFiYAgMDdeedd+qTTz5RRkaG3X6SkpI0bdo0PfXUU7rjjjsUEREhX19flStXTp06ddLChQvzfG1ff/21LBaLbRnm8uXL1alTJ5UtW1aenp45ZlEOHTqk9957T23atFG1atUUGBiooKAg1axZUwMHDtSRI0fy7Cfr+bsRI0YoPT1dH3zwgerXr6+goCCVLl1anTp10vbt23O8ptGjR6t27doKDAxUeHi4unfvrgMHDuTZh3Rteeann36qVq1aqVSpUvLx8VGZMmXUsWNHu+9D1vNqWVq1apXjmTR7y1Nv9+fB2RzZdCb7+Nyo/qVLl/TGG2+oRo0a8vf3V3h4uNq3b6/ff/893/1f//N5+vRpDRgwQBUrVpSfn58iIyP12GOP3XQ27vDhw3r66adtP9dRUVHq06eP9u/ff1s3mLle1mepd+/eMgxDkydPVtOmTRUeHp7j+eybxbR+/Xq9/vrratasmWJiYuTn56fQ0FA1atRI7733ni5fvnxL8V29elXjx49X48aNVbJkSXl7eysiIkI1a9ZUr169NGvWLBOvHkCeDACAXW+99ZYhyXDkP5WHDh2ylf3vf/+b416LFi0MScbTTz+dZ/2EhATDz8/PkGRMnTrVbrs//PCDUaJECUOSERQUZPj7+9vuhYWFGZs3b7bb9vnz543mzZvbykoyQkJCcnzfoUMHIyUlJVfdmJgYQ5Ixfvx4o1q1aoYkw8fHxwgNDTUkGYcOHcrxXrVo0cIYOnSoIcmwWCxGyZIlDQ8PD1s/rVu3NpKTk3P189///tdWxmKxGCEhIUZAQECOGIcMGWL39WXVjYmJMT788EPDYrHYXqO3t7fRq1evXGOR9TrCw8NzxBcSEmKsWrXKbj9Zdf/xj38Y9913n62NwMBAW/2goCBj48aNxrlz54z69esbkgw/P78cY1W6dGnj8OHDdvuIj483atWqleu9yP4+9O/fP0edV155xYiMjLTdL1mypBEZGWn7uuuuuwr885Bfy5cvt/W9fPnyXPdvdC9L1vi89dZbedb//vvvjSpVqtjGJftnzMfHx1i0aJHdtvPqP/vP57x584zSpUsbkoyAgADD19fXdi84ONjYtm2b3bbXrl1r+7mWZPj7+xtBQUG2ej/++KPt3q2+v/bivf6/U4ZhGL169TIkGU899ZTRtWtXQ5Lh4eFh+znOqpO9HXsxZf8sBQQEGCVLlsxxrWbNmsbp06ftxpj1Gbs+PqvVatSrVy/Hz0ZoaKjh5eVluxYTE2Pq/QFgHwkjAOTBWQnjDz/8YEgyAgMDDavVarf+xx9/bEgywsPDcyRU2dsNCQkx6tata/z++++GYRhGZmamsWjRIqNChQqGJKNChQq52k9PT7f9In3HHXcYv/zyi3HlyhXDMAzj8uXLxjfffGP7JXfgwIG54sr65S0oKMgoU6aMMWfOHCM1NdUwDMM4evSora2s9yor8XjppZeMM2fOGIZhGImJicbbb79tS+QGDRqUq5+ffvrJePXVV43Vq1fb2jQMwzhx4oQxcuRIw9vb25BkzJ07N1fdrITRz8/P8PT0NHr37m0cOXLE9vr3799vKztgwADjP//5j7Fv3z4jIyPDMAzDSEtLM37//XejTZs2hiSjXLlyRlJSUq5+st7H0NBQIzw83JgxY4aRmppqZGZmGhs2bDAqVapkSDKaNGlidO7c2YiNjTUWLVpkZGRkGBkZGcaSJUuMiIgIQ5LRo0ePXO1fvnzZqFGjhiHJaNmypbFixQrbZ+HixYvG+++/b0skPvzww1z1HUmqCurzkF8FlTCWLFnSqFmzprFs2TIjIyPDNnbVq1e3JRxZnwtH+s/+81myZEnjnnvuMTZu3GgYxrXP1eLFi42yZcsakoxmzZrlavfChQu2+5UqVTKWLVtmZGZmGoZhGBs2bDDq1auXI9kqqIQxKCjI8PLyMsaPH28kJiYahmEYly5dMk6cOJGrHXsxPfzww8b06dONkydP2q4lJSUZs2fPtr3XnTt3thtjXgnj22+/bUjX/jg2a9Ys289GRkaGcfz4cWPKlCnGM888cwvvCoCbIWEEgDxkTxizz9jY+ypVqlSev4ilpqbafgn/7LPP7PZVp04dQ5IxePDgHNez/2IWHh5u96/yf/zxh+Hj42NIMsaOHZvj3pQpUwxJRo0aNYyLFy/a7XvTpk2GxWIxfHx8crWf9cubp6ensWXLFofeqyeffNJumTfeeMOQZHh5eRnHjx/Psy17xo0bZ0gy7rvvvlz3ss9OdunSJV/tZpeenm7UrVvXkGR8++23ue5nn520Nwu5dOnSHLNEf/75Z64yX375pe1+VqKVZdSoUYZ0bZb2+ntZZs+ebUgySpUqZaSlpeW450hSVVCfh/wqqIQxIiLC7s/Qjh07bGVWr17tcP/Zfz5r1Khh9w8NP//8s63M0aNHc9zLSoL8/Pzsfl7Onj2b478tBZUwSjI+/vhjh9rJb0zHjh0zfH19DYvFYnemPa+E8aGHHjIkGe+8806++gNgHs8wAoADTp8+fcOvrK3q7fH29tbTTz8tSfriiy9y3V+/fr127twpSXr22WfzbKd///4qXbp0rut/+9vf1K1bN0nSDz/8kOPel19+KUl6/vnn8zyW4M4771StWrWUmpqq5cuX2y3Tpk0b1a9fP8/YsnvzzTftXn/ttdfk7++v9PT0fD9r1K5dO0nSunXr8nwOUpKGDx+er3az8/T0VJs2bSRJq1evzrNc06ZN1bRp01zXW7RoIV9fX0lSt27dVKVKlVxlWrduLenas1h//vlnjntZYzV48OA8jyro1KmTgoODde7cOW3evNmBV5WTKz4Phcmzzz5r92eoTp06tt1Dd+zYcUttDxkyxO4xFQ899JDtmJCsn/MsM2bMkCR1797d7uelVKlSev75528pHjNKliyp55577ra0Xb58edWrV0+GYWjt2rUO1wsNDZUknTx58rbEBSBvJIwA4ADj2oqMPL8OHTp0w/rPPvusPDw8tGXLFm3ZsiXHvUmTJkm6lnBknW1mz7333nvTezt27FBaWpqka2eurV+/XtK1TWnKlCmT51dcXJyka5tv2HPPPffc8PVliY6OtvuLr3Tt3Lc777xTkrRp06Zc90+fPq233npLjRs3Vnh4uLy8vGwba9SsWVPStY1kss7ru56/v78aNGhw0xhXrVql3r17q0aNGgoKCsqxQczYsWMlSceOHcuzfsOGDe1e9/T0VKlSpSRJf//73+2WyX42XvbXcfz4cdt7//TTT+c5TmXLlrVtGJLXWOXFFZ+Hwubuu+/O8165cuUkSQkJCU5t28vLSxEREbnaTk1N1e7duyVd+9nPiyuOGPn73/9u9yxMR2VmZur7779Xhw4dVKFCBfn7++f4OcvaAOxGP2fXa9++vSTpk08+0eOPP66ffvrphn+oA+A8nMMIAAUgNjZWrVu31sKFC/XFF1/os88+kyRZrVZNnz5dkm76F/3y5cvf9F56eroSEhIUGRmphIQEpaSkSFKeSdb1kpKS7F63NyuT3xiz3z9z5kyO6+vWrVPbtm118eJF27WgoCAFBATIYrHkOHD8ypUrtsQsu/DwcHl43PjvoK+//rotKZSuJXnZD4q/fPmyrly5oitXruTZRokSJfK85+XldcMyWfcl2RJ7STl2uXX0l+C8xiovrvg8FDaOjF32cbmdbSckJNhmy7OSVXtu9jN1O5gZ36SkJLVv3z7H7LSPj4/CwsJsM+cJCQlKS0u74c/Z9Z544glt2LBBEydO1A8//GBbTVGlShU9+OCD6tu3r+0PUgCcixlGACggWUvLvv/+e9svSln/Dg8PV5cuXZzaX/almwsXLrzpLKlhGHaPJJCuJVa3S3p6uh5//HFdvHhRd9xxhxYsWCCr1apLly7p9OnTOnXqlG1mTFKeRz7cLMbFixfbksUXXnhBO3fuVEpKihISEnTq1CmdOnVKgwYNumEft0v2sdqzZ49DY5XfQ9fd5fNQHGU/FqUwMDO+Y8aM0fLly+Xv768PPvhAhw8fVnJyss6fP2/7Ocuajc3vz9mHH36ouLg4vfPOO3rooYcUGhqq/fv369NPP9Vdd92lgQMH3nLcAPJGwggABaRt27aKjo7WpUuXbH8dz1qO2rt3b9vzb3k5fvz4Te95eXkpLCxMkmzLOqX8L1+8VTeKMfv97DMY69at0+HDh+Xp6al58+bpoYceyjVbc+rUKdOxZb3nrVu31n/+8x/Vrl071y/GzujnVpQpU8b279s1Vq74PDhL1jglJyfnWSYxMbGgwnGKsLAw2+u60TmqN/uZKmyyfs7efPNNDRw4UBUqVMiVEJv5OatSpYqGDx+uBQsW6Pz581q3bp06deokSfroo4/0888/33LbAOwjYQSAAuLp6Wnb1OaLL77I8TzjjTa7yZLXBiTZ79WtW9e27Mvb29v2vN0vv/xiKnZHHT16NM+D6S9dumTbqOWuu+7KUUeSIiIi8lx+t2TJEqfEJinPzVoMw9CyZctM93MrYmNjba/9Vscq65fyvGZtXPF5cJaSJUtK+v9jeL1Lly5pz549BRmSaT4+PqpVq5YkacWKFXmWu9G9wuhmP2fx8fHav3+/U/ry8PBQo0aNNHPmTFWoUEHStZUEAJyLhBEACtDTTz8tLy8vbdiwwbb8sUWLFqpWrdpN63722Wd2n2+Li4vTzJkzJV3bbTG7rER0wYIFWrBgwQ3bv9XNPq739ttv270+YcIEXb16VV5eXuratavtetZunVk7zl7v2LFj+vjjj03HldXP9u3b7d7/7LPPdPDgQdP93KpnnnlG0rWdTLdu3XrDsvbGKjg4WJJyPAd6PVd8HpyhXr16kpTn7rrjx4+3PZ/pTrJ2N54+fbrdP7ScP3/e9ryzu7jZz9mwYcNuqd0bja+np6ftOeSbPccMIP/4qQKAAlS2bFl17NhRkrRy5UpJN9/sJktaWpoeeOABbdy4UdK1maQlS5aodevWSklJUXR0tPr375+jTs+ePXX//ffLMAx17txZo0ePzrH87cqVK1q+fLlefPFFVapUyfTrCwkJ0TfffKMBAwbYkttLly7pnXfe0ahRoyRJL774Yo5NPpo2barAwEAZhqFHH31U+/btk3TtmbtFixapZcuWTnnGK+vIjIULF+rtt9+2PUd68eJFvfPOO3r55ZcVHh5uup9bNWTIENWpU0fJyclq1aqVPvnkE50/f952/+LFi1q4cKGeeuopNWvWLFf92rVrS5KmTp2a52Y1Bf15cJbHH39ckrRo0SK99dZbslqtkq5tEPSPf/xDo0ePth274E5eeuklRUZGKjk5WW3atNFvv/1mmyHetGmTHnjgAaWnp7s4yvzJ+jkbPXq0Zs+ebYv/0KFDeuKJJ/Tjjz/aZozz4+6779Yrr7yiFStW5Ngs58SJE3r55Zdts5Zt27Z1wqsAkMPtONwRAIqC7IfR38zNDsTObsmSJbay4eHhRnJyskPt/vDDD0aJEiUMSUZQUJAREBBguxcaGmps3LjRbhuJiYlG+/btbWUlGcHBwUZoaKhhsVhs17y8vHLVzesQ7etlvVctWrQwhg4dakgyLBaLUbJkScPT09PWx/33329cvXo1V/3/+7//yxFfUFCQ4efnZzukPvvh59cfFP7f//7XkGTExMTcMMbU1FSjWbNmtnay4vPw8DAkGe3atTPeeOMN2+u43o0Ohs/P+5XVv71D6I8fP240atQoR4yhoaFGcHBwjvenSpUquep+++23tvve3t5G+fLljZiYGOOee+7JUa4gPg/5tXz58hu+L+np6UarVq1yjZ3FYjEsFosxbty4G47PjdrOciv1HT3A/kbv26pVq4ygoCBbOwEBAbbvQ0NDjRkzZtjunTx5Ms8+HHGz/0716tXLkGT06tXL4Xauf93x8fFGZGRkjs9RSEiI7ft33nnnhu91Xu9V1vXsPxeBgYE5PseDBg3K3xsCwCHMMAJAAbv33nttG9M4stlNlrvvvlubNm3SU089pZCQEKWnp6t8+fJ65plntHPnzhzPBWYXHBysX375RQsWLFD37t1VoUIFpaSkKCkpSeXLl9eDDz6od99913b2nlnvvfeefvjhBzVt2lSGYcjHx0d33HGHPvroI/3666/y8/PLVad///6aP3++WrZsqaCgINtre/nll7V9+3bVqVPHdFze3t763//+p7feekvVqlWTt7e3DMNQw4YN9X//93/6+eefXb77Z7ly5bR69WpNmzZNHTp0UNmyZZWUlKTU1FTFxsbq4Ycf1ocffmibnc6uZ8+e+vbbb9W0aVMFBATo5MmTOnz4cK6z7gr68+AMnp6emj9/vkaOHKkaNWrIx8dHFotFDz74oBYvXqxXX33V1SHesqZNm2rHjh3q06ePypUrp/T0dIWGhqpv377asmWLKleubCvrDrOoMTEx2rRpk55++mnbSgI/Pz+1b99eixYt0vDhw2+p3R9++EEjR47Ufffdp4oVKyo1NVVpaWmKiYlR9+7dtXTpUr3//vvOfCkA/mIxjALeOxwAirnNmzfbkru4uLgbPr8YHx+vihUrSrq2pCs2NrYgQsy3ESNGaOTIkWrRooXbbdIBFGaTJk3Ss88+q0qVKuW5oRQA3E7MMAJAAZs4caKkazONjmx2A6B4Sk5O1ocffijp/z8bCAAFjYQRAArQggUL9N1330mSWy+jA+AcP/zwg9544w3t2rVLqampkqT09HStXLlS9957r/744w/5+flpwIABLo4UQHHl5eoAAKCoO3bsmJo2baqkpCSdPXtWktS+fXs99NBDLo4MgKudOnVKY8aM0ZgxY2SxWFSyZEldvnzZljz6+Pjov//9L6sRALgMCSMA3Gbp6ek6fPiwLBaLoqKi1K1btzzPKgRQvLRv315nz57VihUrdPjwYZ07d07e3t6qVKmSWrVqpYEDB5IsAnApNr0BAAAAANjFM4wAAAAAALtYklpMZGZm6sSJEypRooQsFourwwEAAADgIoZh6NKlSypXrpw8PG48h0jCWEycOHFC0dHRrg4DAAAAQCFx9OhRRUVF3bAMCWMxUaJECUnXPhTBwcEF1m/C1QRJUph/WIH1CfMYN/fEuLknxs09MW7ui7FzT4ybc1mtVkVHR9tyhBshYSwmspahBgcHF2jCmO6dfq1f/4LrE+Yxbu6JcXNPjJt7YtzcF2Pnnhi328ORR9XY9AYAAAAAYBcJIwAAAADALhJGAAAAAIBdJIwAAAAAALtIGAEAAAAAdpEwAgAAAADsImEEAAAAANhFwggAAAAAsIuEEQAAAABgFwkjAAAAAMAuEkYAAAAAgF0kjAAAAAAAu0gYAQAAAAB2kTACAAAAAOwiYQQAAAAA2EXCCAAAAACwi4QRAAAAAGAXCSMAAAAAwC4SRgAAAACAXSSMAAAAAAC7SBgBAAAAAHaRMAIAAAAA7CJhBAAAAADYRcIIAAAAALCLhBEAAAAAYBcJIwAAAADALhJGAAAAAIBdJIwAAAAAALtIGAEAAAAAdpEwAgAAAADsKhYJ45o1a9S2bVuFhYUpKChIDRs21JQpU/LdzubNmzVixAg1adJEoaGh8vHxUXR0tHr27KkdO3bcsO7u3bv1yCOPKCIiQv7+/qpTp44+/PBDZWZm5lnnwoULGjBggGJiYuTr66uYmBgNHDhQFy9ezHfsAAAAAJBfFsMwDFcHcTvNmjVL3bt3V2Zmppo3b65SpUpp6dKlunjxooYMGaLx48c71E56erq8vb0lSWFhYbr77rsVGBiorVu36sCBA/Lx8dHUqVPVrVu3XHXXrVun++67T1evXlXDhg0VGxurlStX6tSpU3rkkUc0ffp0WSyWHHXOnTunxo0ba//+/apUqZLuuusu7d69W7t371a1atW0bt06hYWFOfw+WK1WhYSEKDExUcHBwQ7XMyvhaoIkKczf8Vjheoybe2Lc3BPj5p4YN/fF2Lknxs258pMbFOkZxoSEBPXt21cZGRmaOXOmVqxYoZkzZ2rv3r2qUqWKJkyYoBUrVjjc3t///nf99NNPOnPmjBYsWKAZM2Zo3759+uc//6nU1FT17dtX586dy1EnLS1NPXr00NWrV/X+++/r999/1/Tp0/Xnn3+qcePGmjFjhr755ptcfQ0cOFD79+9Xly5dFBcXp+nTp2vXrl16+eWXtW/fPg0ePNjs2wMAAAAAN1SkE8bJkyfLarWqY8eO6tKli+16ZGSkxo4dK0maMGGCQ215eXlpw4YN6tixozw9PW3XPTw89Pbbb6t69eq6dOmS5s+fn6PenDlzdOjQIdWrV0+DBg2yXQ8KCtInn3xiN4aTJ09q2rRp8vHx0aeffiovLy/bvXHjxikiIkLfffedzpw54+A7AQAAAAD5V6QTxqzkzd4y0Xbt2snPz09LlixRcnKyqX4sFovq1q0rSTpx4oTDMTRo0ECVKlXSrl27FB8fb7v+66+/KjMzU82aNVNkZGSOOr6+vnr44YeVkZGhBQsWmIobAAAAAG6kSCeM27dvl3QtMbuej4+PateureTkZO3bt890XwcPHpQklSlTxuEYsl/PvmnOrdQBAAAAAGcrsgmj1WpVYmKiJCkqKspumazrhw8fNtXX6tWrtXnzZvn4+KhNmzY57h05ciTfMdxKHQAAAABwNq+bF3FPly9ftv07ICDAbpnAwEBJ0qVLl265H6vVqr59+0qSBg0apLJly9qNIz8x3Eqd66WkpCglJSVHnNK1HabSvdPzfkFOduHqhQLrC87DuLknxs09MW7uiXFzX4yde2LcnMt61epw2UKdMHbu3Fl79uzJV50pU6aoYcOGtyminDIyMtSjRw/9+eefatiwoUaNGlUg/Tri3Xff1ciRI10dBgAAAAA3VqgTxkOHDikuLi5fdZKSkiRd24U0+zV754tcuXJFklSiRIlbiu/555/XvHnzVL16dc2fP18+Pj65ygQFBenChQu2uByJISv2/NS53vDhw3McvWG1WhUdHa0w/zAF+xfcOYxZODPHPTFu7olxc0+Mm3ti3NwXY+daRxITdS7b77ql/lpZd/21CiEhOpKYqCOJaZKkxJSUm5bNT7uuLusqXmmOp4GFOmHctm3bLdcNDg62HUZ57Ngx1axZM1eZY8eOSZJiYmLy3f6wYcM0adIkRUdHa/HixSpVqpTdchUqVNCFCxd07Ngx206qN4uhQoUKOe7dSty+vr7y9fV17MUA2RxJTNSBhGtHtoT4pRSq/6hS9sZlGTf3LMu4uWdZdxq3whybK8peP3aFPd6iWFaSqn/yiZLT//9jUp4WiywWi9IzM23XvD08NKhRI334++9KzchwWlkfDw8NdLSsp6cG3n2308v6eXkp7qWXXJo0OqpQJ4xm1atXTytXrtSWLVtyJYxpaWnatWuX/Pz8VK1atXy1O3bsWL333nsqXbq0Fi9erOjo6BvGsH37dm3ZskVt27bNdX/Lli2SlCOZrFevXo57jtQBnOFIYmKu/4D7eXlp2VNP6d4pU3Jc9/3rPNKUbP9BpCxlKUtZyhausoU5NsoWz7JeHh4qHRCQo5wkZRiGZBg5rqVlZmrs2rW6ntmyqfkpm5FxW8omp6frXFKSWySMFsO4LvoiZOzYsXr99dfVsWNH/fTTTznuzZkzR126dFH79u31yy+/ONzmpEmT9Oyzzyo0NFTLly/XHXfcccPyP/74o7p376569erlmjHdunWrGjRooNq1a2vnzp226ydPnlRUVJS8vLx09OhRlS5d2nYvJSVF0dHRSkhI0IkTJ3LcuxGr1WqbcbW3PPd2SbiaIIllH+5iy8mTuvOLL3Jd/6ZTJ/W67mcoL5MefljPOPgz9Z+HHtKLCxc6VPbD1q01cNEih8qOvf9+DV2yxKGyb7dqpX8tX+5Q2beaN9fIlSsdKjvsnnv07zVrHCo7uFEjvb9+vUNlX/r73/XJxo0OlX22QQN9kccfnq7X54479F8HV3X0qFNHU7P9N+tGHqlZUzP++MOhsh2qV9fPDj6G8FCVKlq4f79DZe+LjdXSbGfd3kizChW06q+dqm+mUVSU1uexEuR69cuU0dZTpxwqWzsiQrvOnnWobLXwcO07f96hsrGhoYq/eNGhsuWCgnQi2+ZxNxIZGKjTfz0qQdnCWbZyaKgOODj20cHBOmp1bDOMwvyaKVu4y+bHXWXLatPJk0Wy7OZnn1WD6zbMLCj5yQ2K7LEaktSvXz8FBwdr7ty5mj17tu36mTNnNHToUEnSkCFDctWrUaOGatSooePHj+e4PnPmTPXv319BQUFasGDBTZNF6drGPRUrVtT27dv1wQcf2K5fuXJFL774ot0YypYtq8cff1ypqal64YUXlJ7tLzBDhw7V2bNn1bNnT4eTRaAg5edvUJk3L2KTkel46fRsf8l0ZtmU/JS97i+nN3L9X1lv5Go+yialpTlc9nJqqsNlL+WnbLbdmp1ZNjE52eGyF/PR7oWrVx0uez6P58ztls1Hu2fz0e6ZfPxydtrBBDDfZfMTA2VdUvZ0Pj5Thfl1ULbolB1w990Olx3YuHGRLesuinTCGBYWpq+++koeHh7q1q2b7r33Xj3yyCOqXr269u/fr8GDB6tly5a56sXFxSkuLk5p2X7ZOnPmjHr06KHMzExVrFhRn3/+uXr37p3r6/qZTG9vb3333Xfy9/fX4MGD1ahRI3Xv3l1Vq1bVunXr1K1bN/Xq1StXDB9++KEqV66sWbNmqUaNGnrsscdUp04dffzxx6pataref/99Z79dgP7IY1bD02JxuA1fL8dXupews1FUXkr6+ztcNjLbplc3E5WPpSCVSpZ0uGy1PJ5rtqdOPv74U79MGYfL3p3HWa72NP3r2WlH3Bsb63DZ1pUrO1y2fdWqDpft/Le/OVy2e61aDpftmY+l/n0d+KNhlucaNHC47Ev52Ol7cKNGDpd9/Z57HC77RvPmDpd9s1kzyhbysq81aeJwG8Pz8TkpzK+ZsoW77AOVK8vvut8XfD09bUtYs/h5ealSaGiRLZv1PGdhV6SfYZSkrl27auXKlRo9erTWr1+v1NRU1axZUy+99JLdRC0vSUlJSv3rr+o7d+7MsYQ0u9jYWHXq1CnHtSZNmmjjxo166623tGLFCm3fvl2VK1fWa6+9pgEDBshi55fxUqVKacOGDRoxYoR++uknzZkzR5GRkXrllVc0cuRIhYaGOhw74IhVhw+r79y58rBYlJltltDPy0uVSpaUn5eXQ88wVA0Lc7hstfBwh8vWKFXK4bJ/i4hwuGytfJStXbq0w2XrRUY6XrZMGYfLNihb1uGyd+aj7N/LlXO4bMPy5R0ue3dUlMNlG0dHO1z2nnyUbVqhgsNlm8fEOFy2RWysw2VbVawov1WrHCp7X8WKGuNg2fsrVdI7q1c7VPbBypX17zVrHCrbukoVvbd2rUNl21StqrHr1lG2kJb18/LSA5Uq6V0HPyeMPWULomyd0qUV99JLDm+mE/fSSzqQcG2ZZ4hfyE3L5qddV5d1B0X6GUb8fzzDWHzc6m5myw4d0j+XLlWrihX1WpM75WGx2P6jXBh2VKOsI7s25vyfaWGPl7KMmzuXdadxK8yxuaKso4lHYYm3qJbNL36ndK785AYkjMUECWPxYG+X0/zsZubj6akd/fsrIvDaanXGzb3w8+aeGDf3xLi5L8bOPTFuzsWmN0AxdS4pKdcGKikZGbk2a0lOT9fqo0dzlU3NyNCVfGyUAgAAgKKNhBEophLysWseAAAAiicSRqCYinCTnbkAAADgOiSMQBFSKiBAPtdt25zXVs5ZO1Jef91dtngGAADA7Vfkj9UAipMKISH68+WXTW37XCEkxPZgOQAAAIo3EkagiKkQEmJ3u+q8rrnLGUAAAAAoeCxJBYqQs1euaP2xY0pMTnZ1KAAAACgCSBiBIuR/Bw6o8Zdfqv20aa4OBQAAAEUACSNQhKRkZKhciRKqFRHh6lAAAABQBPAMI1CE9K1fX33r11dGZqarQwEAAEARwAwjUAR5evCjDQAAAPP4rRIAAAAAYBcJI1BE/HH2rBpOmqRXFi50dSgAAAAoIniGESgidp4+rY0nTsiL5agAAABwEhJGoIhoGRurmY88Ih9PT1eHAgAAgCKChBEoIiKDgtS1Zk1XhwEAAIAihLVrAAAAAAC7SBiBIiAtI0NTd+zQlpMnlWkYrg4HAAAARQQJI1AE7E9IUM85c9Ti669lcXUwAAAAKDJ4hhEoApLT09U8JkYB3t6yWEgZAQAA4BwkjEARUL9sWf3Wu7erwwAAAEARw5JUAAAAAIBdJIwAAAAAALtIGAE3l56ZqXITJqjZf/+rhKtXXR0OAAAAihCeYQTc3MELF3Ty8mVdTE5WqJ+fq8MBAABAEULCCLi5iqGh2vbcczp+6ZI82CEVAAAATkTCCLg5b09P1StTRvXKlHF1KAAAAChieIYRAAAAAGAXCSPg5j7btEkzdu9WYnKyq0MBAABAEUPCCLixjMxMDVq0SI/OnKkzV664OhwAAAAUMTzDCLixpLQ0PVG7tvYlJKhSyZKuDgcAAABFDAkj4MZK+Prqy44dXR0GAAAAiigSRhQZRxITdS4pyfZ9qYAAScp1rUJISJEuCwAAADgLCSOKhCOJiar+ySdKTk+3XfP19JQkpWRk2K75eXlp2VNPqdU33+S4XlTKxr30EkkjAAAAnIaEEUXCuaSkHMmilDOZypKcnq6DFy/muldUyp5LSiJhBAAAgNOwSyqKBMMwXB0CAAAAUOSQMKJIsFgsrg4BAAAAKHJIGFEklAoIkJ9XzhXWvp6etmf9svh5ealSaGiRLZu1GQ4AAADgDBaDtXzFgtVqVUhIiBITExUcHFxg/SZcTZAkhfmH3Zb2R/32m8oEBenZO+8sFDuUFoayznC7xw23B+Pmnhg398S4uS/Gzj0xbs6Vn9yATW/gdrKSpx2nTumtFSskSXUjI9UoKspuwpTXtaJaFgAAAHAWEka4FXvHZ3haLCpXooQLowIAAACKJp5hhFuxd3xGhmHkWJoJAAAAwDlIGAEAAAAAdpEwAgAAAADsImGEW7F3fAbHSQAAAAC3B5vewK1UCAnRHy+8oE83blRKeroer1NH5YOD2S0UAAAAuA1IGOF2KpYsqXEPPujqMAAAAIAijyWpAAAAAAC7SBjhdlLS03UgIUGnLl92dSgAAABAkUbCCLez7/x5VZk4UXX/7/9cHQoAAABQpJEwwu2kZWYq0NtbQT4+rg4FAAAAKNLY9AZup0HZsrr8j3+4OgwAAACgyGOGEQAAAABgFwkjAAAAAMAuEka4nbVHj6rfzz/rkw0bXB0KAAAAUKQVi4RxzZo1atu2rcLCwhQUFKSGDRtqypQp+W5n8+bNGjFihJo0aaLQ0FD5+PgoOjpaPXv21I4dO+zWOXz4sCZOnKg2bdqoTJky8vb2VqlSpdSmTRv9/PPPefYVGxsri8WS59fevXvzHX9RsefsWX25dasWHTjg6lAAAACAIq3Ib3oza9Ysde/eXZmZmWrevLlKlSqlpUuXqlevXtqxY4fGjx/vUDvp6em66667JElhYWFq0qSJAgMDtXXrVk2dOlUzZszQ1KlT1a1btxz1evTooTVr1sjX11eNGjVSmTJldPDgQS1atEiLFi3SoEGD9P777+fZb69evexeDwkJcfAdKHruLFdOY+69V5VKlnR1KAAAAECRZjEMw3B1ELdLQkKCKlasKKvVqlmzZqlLly6SpNOnT6tp06bav3+/li9frpYtW960rfT0dDVp0kT//Oc/1b59e3l6ekqSMjMz9eabb2rMmDEqUaKEDh48qFKlStnqPfbYY2ratKl69eqlEiVK2K7Pnz9fnTp1Unp6uhYtWqQHH3wwR3+xsbE6fPiwnDU8VqtVISEhSkxMVHBwsFPadETC1QRJUph/WIH1CfMYN/fEuLknxs09MW7ui7FzT4ybc+UnNyjSS1InT54sq9Wqjh072pJFSYqMjNTYsWMlSRMmTHCoLS8vL23YsEEdO3a0JYuS5OHhobffflvVq1fXpUuXNH/+/Bz1fvjhB7300ks5kkVJateunfr27StJmjZt2i29PgAAAAC4nYp0wpiVvF2/TFS6lrD5+flpyZIlSk5ONtWPxWJR3bp1JUknTpxwuF69evXyXQfSxeRknblyRcnp6a4OBQAAACjSinTCuH37dklSgwYNct3z8fFR7dq1lZycrH379pnu6+DBg5KkMmXKOLXOuHHj1L9/fw0YMEBffPGFzp49ay7QIuCt5csVOX68Rv32m6tDAQAAAIq0IrvpjdVqVWJioiQpKirKbpmoqCht2rRJhw8fts0Q3orVq1dr8+bN8vHxUZs2bRyqc/HiRdtOrR07dsyz3NChQ3N8P2jQIE2cONG2nLU4Ss/MlCT5exXZjy8AAABQKBTZ37gvX75s+3dAQIDdMoGBgZKkS5cu3XI/VqvVlrwNGjRIZcuWdahe//79dfbsWTVq1EidO3fOdb9Dhw5q1aqV7rzzTkVEROjgwYP66quv9NFHH6lfv34KDw+/YaKZkpKilJSUHHFK1x4YTvcuuKWcF65ecHqbb9/bWCNbNVKmYdgegIZz3Y5xw+3HuLknxs09MW7ui7FzT4ybc1mvWh0uW6gTxs6dO2vPnj35qjNlyhQ1bNjwNkWUU0ZGhnr06KE///xTDRs21KhRoxyq995772n69OkKCwvT1KlTZbFYcpX5+OOPc3xfq1YtTZgwQTVq1NCzzz6r119//YYJ47vvvquRI0fm7wW5EQ+LRR523jcAAAAAzlOoE8ZDhw4pLi4uX3WSkpIkSUFBQTmu2dsu9sqVK5KUawdTRz3//POaN2+eqlevrvnz58vHx+emdb777jsNHz5cgYGBmj9/vipVqpSvPp9++mm98cYbiouLU3x8vGJjY+2WGz58uAYPHmz73mq1Kjo6WmH+YQr2L7hjNbKwBbJ7YtzcE+Pmnhg398S4uS/Gzj0xbs7hleZ4GlioE8Zt27bdct3g4GDb2SLHjh1TzZo1c5U5duyYJCkmJibf7Q8bNkyTJk1SdHS0Fi9enOPsxbzMmzdPffr0kbe3t2bPnq1GjRrlu18PDw9VrlxZZ86c0cmTJ/NMGH19feXr65vv9t3BhLVrdSQxUX3r11e9fGwyBAAAACB/ivQuqVnHVmzZsiXXvbS0NO3atUt+fn6qVq1avtodO3as3nvvPZUuXVqLFy9WdHT0Tev89ttveuSRR2QYhr7//ns9+OCD+eozuwsXrq3hznoGs7iZ8ccf+njDBsVfvOjqUAAAAIAirUgnjO3atZMkzZw5M9e9efPmKTk5Wffff7/8/PwcbnPSpEl6/fXXFRoaqkWLFql69eo3rbNlyxZ16NBBKSkpmjx5srp27er4i7jO7t27FRcXp4CAANWoUeOW23FnfevX1/CmTVXDgVldAAAAALeuSCeM/fr1U3BwsObOnavZs2fbrp85c8Z2XMWQIUNy1atRo4Zq1Kih48eP57g+c+ZM9e/fX0FBQVqwYIHuuOOOm8YQFxenNm3ayGq16qOPPlLv3r1vWmfBggVatmxZrus7duywzVL269fPoWcmi6Jn77xT79x3n6qTMAIAAAC3VaF+htGssLAwffXVV3r00UfVrVs3tWzZUuHh4VqyZIkuXryowYMHq2XLlrnqZW20k5aWZrt25swZ9ejRQ5mZmapYsaI+//xzff7557nqdurUSZ06dbJ9/9hjj+ns2bOKiIjQ5s2b7SaMNWrU0LBhw2zfb9iwQSNHjlRMTIzq1aungIAAHTx4UFu2bFF6erpatmypf//737f+xgAAAACAA4p0wihJXbt21cqVKzV69GitX79eqampqlmzpl566SX16tXL4XaSkpKUmpoqSdq5c6d27txpt1xsbGyOhDHrecOzZ8/qm2++sVunRYsWORLG1q1b6+jRo9q4caPWrFmjxMREBQcHq2nTpurRo4f69OkjT09Ph2Mvai5cvSpfLy/5e3nZPZIEAAAAgHMU+YRRku655x4tXLjQ4fKGYeS6Fhsba/f6zcTHx+e7TuPGjdW4ceN81ysuoj74QElpaTr4yiuqWLKkq8MBAAAAiqwi/Qwjih7DMHT1r6XC/t7eLo4GAAAAKNqKxQwjig6LxaLUf/1LV9PSFFhMN/0BAAAACgoJI9yOl4eHSvj6ujoMAAAAoMhjSSoAAAAAwC4SRriVs1euaMiiRXr7t99cHQoAAABQ5JEwwq2cvnJF769fr483bHB1KAAAAECRxzOMcCth/v4a2qSJfL346AIAAAC3G791w62UK1FC7z3wgKvDAAAAAIoFlqQCAAAAAOwiYYRbSc/MVGpGhgzDcHUoAAAAQJFHwgi38uPu3fIdPVoPfvedq0MBAAAAijwSRriVq2lpkiQ/Nr0BAAAAbjt+64Zb6XXHHepas6arwwAAAACKBRJGuBUvDw+F+vm5OgwAAACgWGBJKgAAAADALmYY4VYW/vmn1h87puYxMbqvUiVXhwMAAAAUacwwwq0sOnBAo1au1NJDh1wdCgAAAFDkmZphHDx4sEqWLKl//etfzooHuKF7oqOVmpGhRlFRrg4FAAAAKPJMJYyffPKJOnbs6KxYgJt6pFYtPVKrlqvDAAAAAIoFU0tSo6KilJmZ6axYAAAAAACFiKmEsVOnTvrtt9906dIlZ8UD3JBhGK4OAQAAACg2TCWMI0eOVIUKFdS2bVtt3brVWTEBebpvyhT5vP22Zuze7epQAAAAgCLP1DOMHTt2lK+vr9asWaO77rpLZcuWVYUKFeRn52B1i8WipUuXmukO0NX0dKVlZsrb09PVoQAAAABFnqmEccWKFbZ/G4ahEydO6MSJE3bLWiwWM10BkqQFTzyhy6mpCvP3d3UoAAAAQJFnKmE8xFl4KGAl/f1VkmQRAAAAKBCmEsaYmBhnxQEAAAAAKGRMJYxAQRu/dq0kqW/9+ixLBQAAAG4zpySMp0+f1ldffaVVq1bp+PHjkqTy5curefPm6tOnjyIjI53RDaC3VqxQUlqauv7tbySMAAAAwG1mOmGcNWuW+vbtq8uXL+c4I2/nzp1atGiR/v3vf+vLL79U165dzXYF6Km6dXU5LU2hdnbiBQAAAOBcphLGTZs26fHHH1dmZqY6d+6sJ598UrGxsbJYLIqPj9e3336rOXPm6IknnrAdvQGY8X/t27s6BAAAAKDYMJUwvvvuu8rIyNDMmTPVuXPnHPfq1q2rDh06aM6cOeratav+/e9/a+bMmaaCBQAAAAAUHA8zlVevXq0mTZrkShaz69y5s+655x6tWrXKTFcAAAAAgAJmKmFMTExUhQoVblquQoUKSkxMNNMVoEMXLihgzBhV+OADV4cCAAAAFAumEsYyZcpo69atNy23bds2lSlTxkxXgJLS0nQ1PV1X09NdHQoAAABQLJhKGFu3bq24uDj94x//UEZGRq77hmHojTfe0N69e9WmTRszXQGqFh6uQwMGaG3fvq4OBQAAACgWLEb2szDy6dixY6pfv74SEhJUoUIFPfroo4qNjZUkHT58WDNmzFB8fLzCw8O1ZcsWRUVFOStu5JPValVISIgSExMVHBxcYP0mXE2QJIX5hxVYnzCPcXNPjJt7YtzcE+Pmvhg798S4OVd+cgNTu6RGRUVp2bJl6tGjh3bt2qVx48bJYrFIku1Mxjp16mjq1KkkiwAAAADgZkwljNK1hHDHjh1asWKFVq1apRMnTkiSypUrp2bNmqlly5ZmuwAkSfvOn9f8fftUsWRJdapRw9XhAAAAAEWeqYSxS5cuKlu2rP7zn/+oZcuWJIe4rTafOKHB//ufWsXGkjACAAAABcDUpjcLFizQ+fPnnRULcEPRISF6vHZt3VuxoqtDAQAAAIoFUzOMFStW1JUrV5wVC3BDTStUUFMHzv0EAAAA4BymZhgff/xx/fbbbzp16pSz4gEAAAAAFBKmEsbhw4erWbNmatGihebMmaO0tDRnxQUAAAAAcDFTS1KrV6+uzMxMHT16VN26dZPFYlHp0qXl5+eXq6zFYtGBAwfMdIdibuSKFfpk40a99Pe/6y02WAIAAABuO1MJY3x8fI7vDcNgeSpum4vJyTqXlKTk9HRXhwIAAAAUC6YSxszMTGfFAdzU8GbN9HSDBgrz93d1KAAAAECxYCph/PjjjxUQEKB+/fo5Kx4gT6UDA1U6MNDVYQAAAADFhqlNb4YMGaJffvnFWbEAAAAAAAoRUzOMZcqUsbvBDXA7/BIXp9NXrqhVbKwqh4W5OhwAAACgyDM1w9i6dWutXr1aqampzooHyNOHv/+uZ375RRuOH3d1KAAAAECxYCphHDNmjDw9PdWjRw+dPHnSWTEBdjWJilL7atVUISTE1aEAAAAAxYKpJanDhw9XvXr1NHv2bM2fP18NGjRQhQoV8jyH8csvvzTTHYq5t++919UhAAAAAMWKqYTx66+/tv07OTlZa9eu1dq1a+2WJWEEAAAAAPdiKmFcvny5s+IAAAAAABQyphLGFi1aOCsO4Kbq/N//6Upqqhb17Kmq4eGuDgcAAAAo8kwljEBBOnThgq6kpcnDYnF1KAAAAECxYGqX1Cznz5/XRx99pB49eqh169YaO3as7d7u3bv1888/KykpyRld3ZI1a9aobdu2CgsLU1BQkBo2bKgpU6bku53NmzdrxIgRatKkiUJDQ+Xj46Po6Gj17NlTO3bssFsnPj5eFoslz68yZcrk2d+FCxc0YMAAxcTEyNfXVzExMRo4cKAuXryY79iLgrVPP611Tz+tqOBgV4cCAAAAFAumZxhnzJihfv366fLlyzIMQxaLReXLl7fdP378uDp37qxvvvlGPXv2NNtdvs2aNUvdu3dXZmammjdvrlKlSmnp0qXq1auXduzYofHjxzvUTnp6uu666y5JUlhYmJo0aaLAwEBt3bpVU6dO1YwZMzR16lR169bNbv3IyEi1adMm1/WQPI6IOHfunBo3bqz9+/erUqVK6tSpk3bv3q2PPvpICxcu1Lp16xRWzA6vrxsZ6eoQAAAAgGLFVMK4bt06PfHEEwoODtaECRPUtGlTNWzYMEeZ++67TyEhIZo9e3aBJ4wJCQnq27evMjIyNGvWLHXp0kWSdPr0aTVt2lQTJkxQ+/bt1bJlS4fa+/vf/65//vOfat++vTw9PSVJmZmZevPNNzVmzBj17dtXLVu2VKlSpXLVrVGjRo5dZW9m4MCB2r9/v7p06aLp06fLy+vaUL3yyiuaOHGiBg8enK/2AAAAACC/TC1Jfeedd+Th4aHFixdr4MCBthm47Dw9PdWgQQPt2rXLTFe3ZPLkybJarerYsaMtWZSuzfZlLZudMGGCQ215eXlpw4YN6tixoy1ZlCQPDw+9/fbbql69ui5duqT58+ebjvvkyZOaNm2afHx89Omnn9qSRUkaN26cIiIi9N133+nMmTOm+3IXV1JT9d+tW/Xj7t2uDgUAAAAoNkwljGvXrlXjxo3VoEGDG5YrU6aMTp48aaarW5KVvNlbJtquXTv5+flpyZIlSk5ONtWPxWJR3bp1JUknTpww1ZYk/frrr8rMzFSzZs0Ued0yTF9fXz388MPKyMjQggULTPflLs5cuaK+P/+sPnPnujoUAAAAoNgwlTAmJSUpIiLipuUuXLhgpptbtn37dkmym9D6+Piodu3aSk5O1r59+0z3dfDgQUnKcxOb06dP66233tKzzz6r1157TTNnzlRqamq+485+Pa+Ndooib09PPVSliu6vVMnVoQAAAADFhqlnGMuXL6/dN1kiaBiGdu3apYoVK5rpKt+sVqsSExMlSVFRUXbLREVFadOmTTp8+LBthvBWrF69Wps3b5aPj4/djW0kae/evRo1alSOaxUqVNCMGTNyPfd55MiRm8YtSYcPH84zppSUFKWkpNi+t1qtkqSEqwlK906/yStyngtXnfPHggBv6bsuD0m69hpwezlr3FCwGDf3xLi5J8bNfTF27olxcy7rVavDZU3NMLZp00ZxcXH64Ycf8iwzefJkHT16VO3atTPTVb5dvnzZ9u+AgAC7ZQIDAyVJly5duuV+rFar+vbtK0kaNGiQypYtm+O+r6+vnn/+ea1YsUKnT5+W1WrVunXr1LZtWx05ckStW7fOlfhlxW4m7nfffVchISG2r+jo6Ft+jQAAAACKJ1MzjMOGDdP333+vp556Slu3blXnzp0lSVeuXNHWrVs1Z84cjR07VhERERo0aFC+2+/cubP27NmTrzpTpkzJNWN3u2RkZKhHjx76888/1bBhw1wziJJUtmxZffrppzmuNWrUSPPnz1ePHj30/fff65133tHnn3/u1NiGDx+uwYMH2763Wq2Kjo5WmH+Ygv0L/hzDMP/idQRIUcG4uSfGzT0xbu6JcXNfjJ17YtycwyvN8TTQVMIYFRWl+fPnq2vXrho3bpzGjx8vi8WimTNnaubMmTIMQ6VLl9bcuXNVunTpfLd/6NAhxcXF5atOUlKSJCkoKCjHtWA7h71fuXJFklSiRIl8xyZJzz//vObNm6fq1atr/vz58vHxyVf9f/zjH/r++++1aNGiHNezYs96LddzJG5fX1/5+vrmK57C7H8HDujFBQvUKCpK3/71hwkAAAAAt5ephFGSGjdurLi4OH355ZdavHix4uPjlZmZqaioKD3wwAN67rnn8jyc/ma2bdt2y3EFBwcrJCREiYmJOnbsmGrWrJmrzLFjxyRJMTEx+W5/2LBhmjRpkqKjo7V48WK7Zy/eTNWqVSUp1w6yFSpUyBHf9czE7a7OJyVpf0KCou0k/gAAAABuD9MJo3RtpmvgwIEaOHCgw3USEhJ0+fJlW3J0O9SrV08rV67Uli1bciWMaWlp2rVrl/z8/FStWrV8tTt27Fi99957Kl26tBYvXnzLzwdm7R6b9Uxi9rglacuWLXbrZV03s1GPu3mgcmWt6tNHgd7erg4FAAAAKDZMbXpjxpAhQ1TpNh+RkLXRzsyZM3PdmzdvnpKTk3X//ffLz8/P4TYnTZqk119/XaGhoVq0aJGqV69+y/HNmjVLUu7jM9q0aSMPDw+tWrVKZ86cyXEvJSVFv/zyizw9PdW2bdtb7tvdlAoIUNMKFVT/uk2FAAAAANw+LksYpWtHbtxO/fr1U3BwsObOnavZs2fbrp85c0ZDhw6VdC1xvV6NGjVUo0YNHT9+PMf1mTNnqn///goKCtKCBQt0xx133DSGSZMmae/evbmuz549W8OGDZMkvfjiiznulS1bVo8//rhSU1P1wgsvKD39/x+DMXToUJ09e1Y9e/a8pedCAQAAAMBRTlmSWliFhYXpq6++0qOPPqpu3bqpZcuWCg8P15IlS3Tx4kUNHjxYLVu2zFUva6OdtLQ027UzZ86oR48eyszMVMWKFfX555/b3dm0U6dO6tSpk+37qVOn6tlnn1XdunVVrVo1ZWZm6o8//rAlka+99pptd9nsPvzwQ61fv16zZs1SjRo1dNddd2n37t3atWuXqlatqvfff9/ku+Nedp4+rbjz51U9PFx1IiNdHQ4AAABQLBTphFGSunbtqpUrV2r06NFav369UlNTVbNmTb300kvq1auXw+0kJSUpNTVVkrRz507t3LnTbrnY2NgcCeMzzzyjiIgIbdu2Tf/73/909epVRUREqEuXLnr++ed1//33222nVKlS2rBhg0aMGKGffvpJc+bMUWRkpF555RWNHDlSoaGhDsdeFEzbtUvvrl6tVxo21EcPPeTqcAAAAIBiocgnjJJ0zz33aOHChQ6Xt7dUNjY29paW0Pbo0UM9evTIdz3p2gzpxx9/rI8//viW6hclFUJC1LRCBVUND3d1KAAAAECxUSwSRri//nfdpf533eXqMAAAAIBixaWb3gAAAAAACi8SRgAAAACAXSSMcAsvzp+vBp9/rl/+2sEWAAAAwO1Hwgi3EHf+vLaeOqVLf+1UCwAAAOD2c9mmNzVq1FDz5s1d1T3czLgHHtDpK1dUlzMYAQAAgALjsoTx9ddf1+uvv+6q7uFm6pct6+oQAAAAgGInXwlj3759b7kji8WiL7/88pbrAwAAAAAKVr4Sxq+//trudYvFIin3gffZr5Mwwoxf9++XJN0THa0Svr4ujgYAAAAoHvKVMC5fvjzXtRkzZujTTz/V3Xffrccff1yxsbGSpMOHD2vatGlav369XnzxRXXr1s0pAaN4emrOHJ1NStLO559X7dKlXR0OAAAAUCzkK2Fs0aJFju8XLVqkzz77TJ9++qn69++fq/zLL7+szz//XC+++KLatWtnLlIUa/XKlNH5pCQFM7sIAAAAFBiLcf060nxo3ry5kpOTtWHDhhuWu/vuu+Xt7a3Vq1ffalcwyWq1KiQkRImJiQoODi6wfhOuJkiSwvzDCqxPmMe4uSfGzT0xbu6JcXNfjJ17YtycKz+5galzGLdt26aqVavetFyVKlW0Y8cOM10BAAAAAAqYqYTRy8tLu3btumm5Xbt2ycvLZSd4AAAAAABugamEsXnz5tq1a5dGjRqVa4fULG+//bZ27typ5s2bm+kKxdi5pCT9fdIktfz66zw/ZwAAAACcz9S03zvvvKNly5Zp5MiR+vbbb9WtWzfFxMRIurZL6qxZs3TgwAEFBQVpzJgxTgkYxc+llBRtOnFC/l5etqNaAAAAANx+phLGmjVratmyZerVq5f27Nmj9957L9eZjDVq1NDXX3+tWrVqmY8WxVLpwED98vjjSs/MdHUoAAAAQLFi+sHCu+66S7t379aKFSu0atUqnThxQpJUtmxZNWvWTC1btmRWCKYE+viofbVqrg4DAAAAKHacthNNy5Yt1bJlS2c1BwAAAABwMaduXZqSkqKEhAT5+voqLIwzUuAcZ69c0bZTp1QqIED1y5Z1dTgAAABAsWFql9QsX3zxherXr6/AwEBFRUXp1Vdftd2bPXu2unTpov379zujKxRD644d04Pffafn5893dSgAAABAsWIqYczIyFDnzp31/PPPa8+ePfrb3/6W69iDevXq6aefftL06dNNBYriK8DbW3VKl1bV8HBXhwIAAAAUK6YSxk8++URz587VQw89pMOHD2vnzp25ylSuXFlVqlTRwoULzXSFYuz+SpW04/nn9W3nzq4OBQAAAChWTCWMX3/9tSIjIzV9+nRFRkbmWa5mzZo6fPiwma4AAAAAAAXMVMIYFxenu+++W4GBgTcsFxgYqLNnz5rpCgAAAABQwEwljN7e3kpOTr5puSNHjqhEiRJmukIx9vW2bbr3m2808fffXR0KAAAAUKyYShhr1aqlzZs369KlS3mWOXPmjLZt26Y77rjDTFcoxvadP6/l8fHan5Dg6lAAAACAYsVUwvjkk0/q/Pnz6t+/v1JTU3Pdz8jI0IsvvqikpCT16tXLTFcoxp6oU0fTunbVk/XquToUAAAAoFjxMlP52Wef1YwZMzRt2jStXbtWrVu3liRt375dAwYM0Lx583To0CE9+OCD6tGjh1MCRvFTu3Rp1S5d2tVhAAAAAMWOqRlGT09PLViwQM8//7xOnDihL774QpK0detWTZw4UUeOHNEzzzyjn376SRaLxSkBAwAAAAAKhqkZRkny8/PTf/7zH40YMUIrVqxQfHy8MjMzFRUVpVatWqlcuXLOiBPF2O4zZ3QpNVWVS5ZUxE125AUAAADgPKYSxgYNGqhy5cqaMWOGIiIi9MgjjzgrLsBm2NKlmrdvnyY9/LD6NWjg6nAAAACAYsP0OYze3t7OigWwKzIwUBVDQxXm7+/qUAAAAIBixdQMY9WqVXX+/HlnxQLYNblDB1eHAAAAABRLpmYYn376af3222/au3evs+IBAAAAABQSphLGl19+Wb1791aLFi30wQcfaP/+/XbPYwQAAAAAuB9TS1I9PT0lSYZh6NVXX9Wrr76aZ1mLxaL09HQz3aGYenLOHFlTUjThwQdVJSzM1eEAAAAAxYaphDE6OprzFXHb/e/AAZ25ckWjW7VydSgAAABAsWIqYYyPj3dSGEDeJj70kBKTkxUdEuLqUAAAAIBixVTCCBSER2vVcnUIAAAAQLFkatMbAAAAAEDR5bQZxt27d+vPP//UpUuXZBiG3TJPPfWUs7pDMZGemamtJ0/K39tbtSIieGYWAAAAKECmE8YlS5bohRde0IEDB/IsYxiGLBYLCSPy7XxSkhpOnixJynzzTRdHAwAAABQvphLGTZs2qV27drJYLHriiSe0c+dO7dy5U8OGDdOBAwe0ZMkSXbhwQX369FGFChWcFTOKkfTMTEUHB8uQmF0EAAAACpiphPHdd99Venq6fv31Vz3wwAPq06ePdu7cqTFjxkiSLl68qOeee07z5s3Tpk2bnBIwipfywcE6MmiQq8MAAAAAiiVTm96sXbtW9evX1wMPPGD3fmhoqKZMmSIPDw+98cYbZroCAAAAABQwUwljQkKCqlatavvex8dHknTlyhXbNV9fXzVr1kyLFy820xUAAAAAoICZShgjIiJktVpzfC9JBw8ezFHu6tWrSkxMNNMViqmtJ0+qy/TpGr5kiatDAQAAAIodUwljlSpVdOjQIdv3DRs2lGEY+vzzz23X9u/fr2XLlqlSpUpmukIRdyQxUVtOnrR9HfnrDwxbTp7UnL179cu+fTmuAwAAALj9TG1607ZtWw0fPlx79uzR3/72N7Vp00YxMTH6v//7P23cuFFRUVFatmyZkpOT9fTTTzsrZhQxRxITVf2TT5Scnm675uflpWVPPaUXFyyQJO0+e1Z3fvGF/Ly8FPfSS6oQEuKqcAEAAIBiw1TC+NRTTykkJESZmZmSrj3D+PPPP+vRRx/Vxo0btXHjRnl4eKhfv34aMGCAUwJG0XMuKSlHsihJyenpen3JEqVkZOS6fi4piYQRAAAAKACmEsYyZcroueeey3GtTp062rNnj/bu3asLFy6oSpUqtmcbgfxYdeSIq0MAAAAAijVTCeON1KhR43Y1jWLisVq19MPu3a4OAwAAACi2TG16AzhDqYAA+Xnl/NuFn5eXXrn7brvXSwUEFGR4AAAAQLFlaoaxb9++Dpe1WCz68ssvzXSHIqpCSIjiXnpJ9T77TMnp6Zrz6KOqWbq07fq5pCRb2VIBATy/CAAAABQQi2EYxq1W9vC4+QSlxWKRYRiyWCzKuG4DExQcq9WqkJAQJSYmKjg4uMD6TbiaIEkK8w8rsD5hHuPmnhg398S4uSfGzX0xdu6JcXOu/OQGppakLl++3O7X0qVL9fXXX+uJJ56QxWLR4MGDtWzZMjNdmbJmzRq1bdtWYWFhCgoKUsOGDTVlypR8t7N582aNGDFCTZo0UWhoqHx8fBQdHa2ePXtqx44dduv07t1bFovlpl9HrtvgJTY29obl9+7de0vvBQAAAAA4ytSS1BYtWtzw/lNPPaV27dqpV69e6tChg5mubtmsWbPUvXt3ZWZmqnnz5ipVqpSWLl2qXr16aceOHRo/frxD7aSnp+uuu+6SJIWFhalJkyYKDAzU1q1bNXXqVM2YMUNTp05Vt27dctRr2rRpnm3GxcVp/fr1iomJUXR0tN0yvXr1sns9hGWZAAAAAG4zU0tSHVW/fn2VLFmywGcZExISVLFiRVmtVs2aNUtdunSRJJ0+fVpNmzbV/v37tXz5crVs2fKmbaWnp6tJkyb65z//qfbt28vT01OSlJmZqTfffFNjxoxRiRIldPDgQZUqVcqh+Lp3764ff/xR//znPzV69Ogc92JjY3X48GE5a3gK+5LUy6mpemnBAnl7eOjzhx+Wh8VSEOEhDyz7cE+Mm3ti3NwT4+a+GDv3xLg5V4EtSXVU1apVtWnTpoLoKofJkyfLarWqY8eOtmRRkiIjIzV27FhJ0oQJExxqy8vLSxs2bFDHjh1tyaJ07TnOt99+W9WrV9elS5c0f/58h9qzWq365ZdfJElPPvmkoy+pyLqSmqpvtm/Xl1u3ilQRAAAAKBxu2zmMWTIzM7Vjxw6HNshxtqzk7fplopLUrl07+fn5acmSJUpOTpafn98t92OxWFS3bl3FxcXpxIkTDtWZNWuWrl69qr///e+qXr36LfddVAR4e2vs/fcrPTNTFmYXAQAAgELhtiWMSUlJ2rdvn9599139+eefat++/e3qKk/bt2+XJDVo0CDXPR8fH9WuXVubNm3Svn37VLduXVN9HTx4UJJUpkwZh8p/9913kqSePXvesNy4ceN04MAB+fr6qlatWurcubMiIiJMxVoYlfD11Wv33OPqMAAAAABkYyphzL40My+GYSgiIkLjxo0z01W+Wa1WJSYmSpKioqLslomKitKmTZt0+PBhUwnj6tWrtXnzZvn4+KhNmzY3LX/8+HGtWLFCXl5eeuyxx25YdujQoTm+HzRokCZOnHjTMzBTUlKUkpJi+95qtUq6tv473Tv9pjE6y4WrFwqsLzgP4+aeGDf3xLi5J8bNfTF27olxcy7rVavDZU0ljNHR0XkuH/Tx8VHZsmXVokULvfjiiypdurSZrvLt8uXLtn8HBATYLRMYGChJunTp0i33Y7VabcnboEGDVLZs2ZvWmTp1qjIzM/XQQw/l+b506NBBrVq10p133qmIiAgdPHhQX331lT766CP169dP4eHh6tixY559vPvuuxo5cuStvSgXSM3I0Lmkq/Lz8lSYv7+rwwEAAAAgkwljfHy8k8Kwr3PnztqzZ0++6kyZMkUNGza8TRHllJGRoR49eujPP/9Uw4YNNWrUKIfqZS1HvdFmNx9//HGO72vVqqUJEyaoRo0aevbZZ/X666/fMGEcPny4Bg8ebPvearUqOjpaYf5hCvYvuF1Ss9xsR6tNJ07o75P+q+jgYB0ZNKiAosLNsBOZe2Lc3BPj5p4YN/fF2Lknxs05vNIcTwNv+6Y3Zhw6dEhxcXH5qpOUlCRJCgoKynHN3naxV65ckSSVKFHiluJ7/vnnNW/ePFWvXl3z58+Xj4/PTevs2LFDO3fuVHBw8C2dTfn000/rjTfeUFxcnOLj4xUbG2u3nK+vr3x9ffPdvqukZ2bKy8ND3g4scwYAAABQMAp1wrht27ZbrhscHGw7W+TYsWOqWbNmrjLHjh2TJMXExOS7/WHDhmnSpEmKjo7W4sWLHT57MWt2sWvXrvK/haWXHh4eqly5ss6cOaOTJ0/mmTC6m0ZRUUr717+cdu4kAAAAAPNMJYyOLsG0x2Kx6F//+peZ7m+qXr16WrlypbZs2ZIrYUxLS9OuXbvk5+enatWq5avdsWPH6r333lPp0qW1ePFiRUdHO1QvMzNT06ZNk2Tu7MULF6499Jv1DGZRwpEaAAAAQOFhKmEcMWJErl/ws2aIsl+3N2tUEAlju3bttHLlSs2cOTPX8RXz5s1TcnKy2rdvn68zGCdNmqTXX39doaGhWrRoUb7OUFyxYoWOHTum6OhotWzZ0uF62e3evVtxcXEKCAhQjRo1bqkNAAAAAHCEqYTxv//9r9atW6cvvvhCUVFR6tatm22J5OHDhzVr1iwdOXJEzz77rBo3buyMePOlX79+GjNmjObOnavZs2erS5cukqQzZ87YjqsYMmRIrnpZidjSpUtVvnx52/WZM2eqf//+CgoK0oIFC3THHXfkK56s5ag9evS44UzaggUL5Ofnp3vvvTfH9R07duixxx6TYRjq16+fQ89MuoutJ09q8pYtql6qlF65+25XhwMAAABAksUw8dDYhg0b1KJFCw0aNEijRo2Sl1fO/DMjI0NvvvmmJkyYoN9++013uyARmDVrlh599FEZhqGWLVsqPDxcS5Ys0cWLFzV48GBNmDAhV52sZO7QoUO2BPjMmTOKjo5Wamqq6tSpowYNGtjtr1OnTurUqVOu68nJyYqMjJTVatXu3bvtPlOZZcSIERo5cqRiYmJUr149BQQE6ODBg9qyZYvS09PVsmVLLViwIF/PQFqtVtsznfY2ALpdEq4mSLr5jlY/7t6t7jNnqkVMjFb07l0AkeFGHB03FC6Mm3ti3NwT4+a+GDv3xLg5V35yA1MzjG+++aYqV66sd955x+59T09P2wzfm2++qUWLFpnp7pZ07dpVK1eu1OjRo7V+/XqlpqaqZs2aeumll9SrVy+H20lKSlJqaqokaefOndq5c6fdcrGxsXYTxp9//llWq1X169e/YbIoSa1bt9bRo0e1ceNGrVmzxjaQTZs2VY8ePdSnTx95FrHdRGtGROjN5s0VExrq6lAAAAAA/MXUDGPJkiXVtm1bTZ069YblevTooQULFtg2a0HBK+wzjChcGDf3xLi5J8bNPTFu7ouxc0+Mm3PlJzfwMNNRRkaGDh48eNNyBw8eVEZGhpmuAAAAAAAFzFTC2LBhQ23YsEFTpkzJs8yUKVP0+++/q2HDhma6QhF3NS1NicnJSklPd3UoAAAAAP5i6hnGkSNHauXKlerTp4++/vprde/eXTExMZKu7ZL6448/asWKFfLy8tLIkSOdEjCKpk83btSrixerZ926+rZzZ1eHAwAAAEAmE8Z77rlHs2fPVt++fbVixQr99ttvOe4bhqHw8HB9+eWXuueee0wFiqIt9a8ly94epia9AQAAADiRqYRRktq3b6+DBw9q5syZWrVqlU6cOCFJKlu2rJo1a6ZHHnlEQUFBpgNF0TasaVMNadJEJvZgAgAAAOBkphNGSQoKClLv3r3Vm/PzcIssFot8ithRIQAAAIC7u63r/86dO6d0NjEBAAAAALdkKmHctGmTRo0apT/++CPH9Tlz5qhMmTKKjIxUeHi4PvroI1NBouj7ae9eDV28WP87cMDVoQAAAAD4i6mEceLEiXrnnXcUGRlpu3bo0CE99thjOnPmjMqUKaMrV65o8ODBWrFihdlYUYQtPnBA49au1ZojR1wdCgAAAIC/mEoY169fr/r16ys8PNx27auvvlJaWprGjx+v48eP6/fff5eHhwezjLih+ytV0pDGjdUkOtrVoQAAAAD4i6lNb06fPq077rgjx7XFixcrMDBQL730kiTpzjvvVLNmzbR9+3YzXaGI6/y3v6nz3/7m6jAAAAAAZGNqhjEjIyPHpjaXL1/Wli1bdM8998jHx8d2vVy5cjp16pSZrgAAAAAABcxUwlihQgVt3rzZ9v38+fOVnp6u+++/P0c5q9WqkJAQM12hiEvNyFB6ZibnMAIAAACFiKmE8eGHH9aRI0fUpUsXTZw4Ua+++qo8PDzUsWPHHOW2bt2qmJgYU4GiaOv244/yfvttfbl1q6tDAQAAAPAXUwnjq6++qtjYWP30008aMGCAjh8/roEDB6pq1aq2Mr///ruOHz+u5s2bmw4WRVdaZqYkycfT08WRAAAAAMhiatObUqVKaceOHZo5c6bOnj2rO++8U/fee2+OMqdOndKAAQPUs2dPU4GiaJv16KNKTk9XgLe3q0MBAAAA8BdTCaMkBQUFqXfv3nne79ixY64lqpK0du1a7d+/X0899ZTZEFAEBHh7kywCAAAAhYypJalmTJo0SX369HFV9wAAAACAmzA9wwg4w6cbN+pcUpJ61q2rSiVLujocAAAAACJhRCHxf5s2adeZM2paoQIJIwAAAFBIkDCiUHisVi0di45WVHCwq0MBAAAA8BcSRhQK/+TYFQAAAKDQcdmmNwAAAACAwo2EEQAAAABgFwkjCoWw996T3+jR2p+Q4OpQAAAAAPyFhBGFQnJ6ulIyMuTtwUcSAAAAKCzY9AaFwqEBA5SakaGyJUq4OhQAAAAAf3FZwtipUyfFxsa6qnsUMpFBQa4OAQAAAMB1XJYwduzYUR07dnRV9wAAAACAmzD9wNgff/yh3r17q1KlSvL395enp6fdLy8vVr/CvpT0dP179WpNWLtW6ZmZrg4HAAAAwF9MZXHr1q3T/fffr6tXr0qSwsLCVKZMGacEhuLjcmqqhi9dKkka2KiRi6MBAAAAkMVUwjh8+HBdvXpVAwcO1BtvvKGwsDBnxYVixNvTU33vuEOpmZnyZJdUAAAAoNAwlTBu2rRJd9xxh95//31nxYNiKNjXV1/yPCsAAABQ6JiazvHx8VGNGjWcFQsAAAAAoBAxlTA2bdpUf/zxh7NiAQAAAAAUIqYSxnfeeUf79+/Xf/7zH2fFg2Jox+nTKvHuu6r16aeuDgUAAABANqaeYdyyZYv69OmjV155RT/++KMeeOABRUVFySOPjUueeuopM92hiEpJT9fl1FRdSU11dSgAAAAAsrEYhmHcamUPDw9ZLBZlb8JiseQqZxiGLBaLMjIybrUrmGS1WhUSEqLExEQFBwcXWL8JVxMkSWH+ee+gm5KermNWqySpMjvtFgqOjBsKH8bNPTFu7olxc1+MnXti3JwrP7mBqRnGN998026CCOSHr5cXiSIAAABQCJlKGEeMGOGkMAAAAAAAhY2phBFwhgMJCVrw55+KCg5W57/9zdXhAAAAAPiLqV1SAWfYfvq0Xvn1V01Yt87VoQAAAADIxikzjKtXr9bcuXP1559/6tKlS7K3j47FYtHSpUud0R2KmHIlSqh7rVqqFh7u6lAAAAAAZGMqYTQMQ08//bS++eYbW5Job9fUrF1SAXsaRUXph27dXB0GAAAAgOuYWpL62Wef6euvv9add96pxYsXq0uXLpKkuLg4LVy4UL1795aHh4dee+01HTx40CkBAwAAAAAKhqkZxq+//lqBgYFauHChwsPD9d1330mSqlatqqpVq6p169Zq27atunfvriZNmigmJsYpQQMAAAAAbj9TM4x79uxRkyZNFP7Xs2dZy04zMjJsZbp166Y777xT48ePN9MVirBJmzer7IQJemnBAleHAgAAACAbUwljZmamLVmUpICAAEnShQsXcpSrWrWqdu7caaYrFGGJKSk6dfmyrCkprg4FAAAAQDamlqSWL19eJ06csH2fteR069ateuCBB2zX9+3bJy8vjnyEfb3vuEMPVq6sYF9fV4cCAAAAIBtTM4wNGjTQH3/8YVuC+uCDD8owDA0dOlR79+7VpUuXNG7cOG3evFn169d3SsAoekoFBKhuZKRiQ0NdHQoAAACAbEwljB06dNC5c+c0f/58SVK9evX02GOPafv27apVq5ZCQ0M1bNgweXl5acyYMU4JGAAAAABQMEytE3388cfVpUuXHMtNv/nmG9WtW1c//fSTLly4oGrVqmno0KFq2LCh6WBRNK0/dkx/nD2rO8qUUYOyZV0dDgAAAIC/mH6w0Pe65868vb01bNgwDRs2zGzTKCam7dypjzds0D+aNiVhBAAAAAoRU0tSAWeoGRGhdlWrqkapUq4OBQAAAEA2Ttm69Pz58/ruu++0YcMGnTt3Tvfdd5+GDh0qSdq9e7cOHDig+++/33bsBpDdc3fdpefuusvVYQAAAAC4jumEccaMGerXr58uX74swzBksVhUvnx52/3jx4+rc+fO+uabb9SzZ0+z3QEAAAAACoipJanr1q3TE088IS8vL02YMEEbNmyQYRg5ytx3330KCQnR7NmzTQVqxpo1a9S2bVuFhYUpKChIDRs21JQpU/LdzsqVK/XMM8+oQYMGioyMlI+Pj8LCwtSqVSt9++23uV57drt379YjjzyiiIgI+fv7q06dOvrwww+VmZmZZ50LFy5owIABiomJka+vr2JiYjRw4EBdvHgx37EDAAAAQH6ZmmF855135OHhocWLF6tBgwZ2y3h6eqpBgwbatWuXma5u2axZs9S9e3dlZmaqefPmKlWqlJYuXapevXppx44dGj9+vMNt/fzzz5o8ebKqVaum+vXrq2TJkjp+/LhWrVqlFStWaOHChfr+++9z1Vu3bp3uu+8+Xb16VQ0bNlRsbKxWrlypQYMGae3atZo+fbosFkuOOufOnVPjxo21f/9+VapUSZ06ddLu3bv10UcfaeHChVq3bp3CwsJMvz+FQf9587Tk4EGNvvdePVa7tqvDAQAAAPAXUzOMa9euVePGjfNMFrOUKVNGJ0+eNNPVLUlISFDfvn2VkZGhmTNnasWKFZo5c6b27t2rKlWqaMKECVqxYoXD7fXt21fHjx9XXFycfv31V02bNk0rV67U3r17VbZsWU2bNk3z5s3LUSctLU09evTQ1atX9f777+v333/X9OnT9eeff6px48aaMWOGvvnmm1x9DRw4UPv371eXLl0UFxen6dOna9euXXr55Ze1b98+DR482OzbU2gcv3RJBy5c0JXUVFeHAgAAACAbUwljUlKSIiIiblruwoULZrq5ZZMnT5bValXHjh3VpUsX2/XIyEiNHTtWkjRhwgSH26tZs6bKlSuX63qVKlX0wgsvSJKWLVuW496cOXN06NAh1atXT4MGDbJdDwoK0ieffGI3hpMnT2ratGny8fHRp59+muOcy3HjxikiIkLfffedzpw543DshdmEBx/Umr591b5aNVeHAgAAACAbUwlj+fLltXv37huWMQxDu3btUsWKFc10dUvmz58vSerWrVuue+3atZOfn5+WLFmi5ORk0315e3tLknx8fByOoUGDBqpUqZJ27dql+Ph42/Vff/1VmZmZatasmSIjI3PU8fX11cMPP6yMjAwtWLDAdNyFQbXwcDWJjlZkUJCrQwEAAACQjamEsU2bNoqLi9MPP/yQZ5nJkyfr6NGjateunZmubsn27dslye6SWR8fH9WuXVvJycnat2+fqX6OHj2qzz77TJLUtm1bh2PIfn3Hjh2m6gAAAACAs5na9GbYsGH6/vvv9dRTT2nr1q3q3LmzJOnKlSvaunWr5syZo7FjxyoiIiLHcsyCYLValZiYKEmKioqyWyYqKkqbNm3S4cOHVbduXYfbXrdunT7//HNlZGToxIkTWr16tdLT0zV69Gg1b948R9kjR47cNAZJOnz4sKk610tJSVFKSorte6vVKklKuJqgdO/0G74+Z7pw9ebLkZccjNfl1DQ1jiqnyKDAAogKN+PIuKHwYdzcE+Pmnhg398XYuSfGzbmsV60OlzWVMEZFRWn+/Pnq2rWrxo0bp/Hjx8tisWjmzJmaOXOmDMNQ6dKlNXfuXJUuXdpMV/l2+fJl278DAgLslgkMvJacXLp0KV9tHzhwIMdGNZ6enho1apReffXVPOPITwy3Uud67777rkaOHHmjl1FovL1ynXadOaeZj3QkYQQAAAAKEVMJoyQ1btxYcXFx+vLLL7V48WLFx8crMzNTUVFReuCBB/Tcc88pJCTkltru3Lmz9uzZk686U6ZMUcOGDW+pP0f17NlTPXv2VGpqquLj4zVlyhSNGjVKv/zyixYuXKiSJUve1v4dMXz48Bw7qVqtVkVHRyvMP0zB/sEFHk+Yf95HgDQqH61SAUGqWDLyhuVQ8BgP98S4uSfGzT0xbu6LsXNPjJtzeKU5ngaaThglqUSJEho4cKAGDhzojOZsDh06pLi4uHzVSUpKknRtF9Ls14KDcydJV65ckXQt/lvh4+OjatWqafTo0QoLC9OQIUP05ptvauLEibYyQUFBunDhgi0uR2LIij0/da7n6+srX1/f/L0gF5nUoYOrQwAAAABgh6lNb263bdu2yTCMfH21bNlSkhQcHGyb2Tx27Jjd9rOux8TEmI71ySeflCTNnTs3x/UKFSrkO4ZbqQMAAAAAzuaUGUbp2kYtJ0+ezLHRyvWu3xDmdqtXr55WrlypLVu2qGbNmjnupaWladeuXfLz81M1J5z/FxYWJg8PD509ezZXDNu3b9eWLVty7aAqSVu2bJGkHJvu1KtXL8c9R+oAAAAAgLOZThi//PJLjRkz5oY7dmbJyMgw212+tGvXTitXrtTMmTPVs2fPHPfmzZun5ORktW/fXn5+fqb7WrVqlTIzM1W5cuVcMUyZMkUzZ87UG2+8kePe1q1bdfDgQdWuXVuxsbG2623atJGHh4dWrVqlM2fO5NgwKCUlRb/88os8PT3tJqDuqMmXXyopLU2zu3dXpULw/CcAAACAa0wljJ9++qlefvllGYah+vXrq1KlSjmeHXS1fv36acyYMZo7d65mz56tLl26SJLOnDmjoUOHSpKGDBmSq16NGjUkSUuXLlX58uVt18eNG6d+/frl2tRm48aNeuaZZyRJffr0yXGvc+fOqlixorZv364PPvjAdrzIlStX9OKLL9qNoWzZsnr88cc1depUvfDCC/rhhx/k5XVtqIYOHaqzZ8+qV69eBb7z7O2y68wZXUpNVaZhuDoUAAAAANlYDOPWf0uvWrWqjh07pvnz5+vee+91ZlxOM2vWLD366KO25xvDw8O1ZMkSXbx4UYMHD9aECRNy1bFYLJKubbqTfebPYrHIx8dH9evXV2xsrFJTU3Xw4EFt375dkvToo49q6tSptuQuy9q1a3X//ffr6tWruvvuuxUTE6NVq1bp5MmT6tatm3788Udbn1nOnTunRo0a6cCBA6pcubLuuusu7d69W7t27VLVqlW1fv16hYU5vkuU1WpVSEiIEhMT7W4AdLskXE2QdOMdrVYdPqzk9HTdU6GCAry9Cyo03IAj44bCh3FzT4ybe2Lc3Bdj554YN+fKT25gatObY8eOqVWrVoU2WZSkrl27auXKlWrdurW2bt2qBQsWqEqVKvr666/tJos3MnHiRLVv315nz57VvHnzNH/+fJ07d04dO3bUnDlzNH369FzJoiQ1adJEGzduVNeuXbV//379/PPPCgsL0/vvv6/p06fnShYlqVSpUtqwYYNefvllpaamas6cOUpMTNQrr7yiDRs25CtZLOyaxcTogcqVSRYBAACAQsbUDGP16tVVu3ZtzZo1y5kx4TYozDOMKHwYN/fEuLknxs09MW7ui7FzT4ybcxXYDGOvXr20fPlyJSQkmGkGxVh6Zqbm7Nmjefv2KT0z09XhAAAAAMjGVML4+uuvq3nz5mrVqpVWrFghE5OVKKaS0tLU5ccf9fC0acogYQQAAAAKFVO7pHp6eurzzz/Xfffdp/vuu0/e3t4qU6aMPDxy56EWi0UHDhww0x2KIMMw1CQ6WqkZGfL29HR1OAAAAACyMZUw7tmzR61atdLZs2dlGIZSU1N15MgRZ8WGYiDEz09r+vZ1dRgAAAAA7DC1JHXIkCE6c+aMevXqpe3bt+vSpUvKzMzM8wsAAAAA4D5MzTCuWbNGdevW1VdffeWseAAAAAAAhYSpGUYfHx/VrFnTWbGgGNqfkKC/T5qkdt9/7+pQAAAAAFzH1Axjq1attGPHDmfFgmLoUkqKNp04oXIlSrg6FAAAAADXMTXD+O9//1unTp3SG2+8oYyMDGfFhGKkUsmSmvf44/qqQwdXhwIAAADgOqZmGL/77ju1b99e7777rqZPn66WLVuqfPnyeR6r8a9//ctMdyiCQvz81K5aNVeHAQAAAMAOUwnjiBEjZLFYZBiGDhw4cMNzFkkYAQAAAMC9mEoY//vf/zorDhRTZ69c0dZTpxTm76+7ypVzdTgAAAAAsjGVMPbq1ctZcaCYWn/smDr88IPuLl9e6/v1c3U4AAAAALIxtemNGa+99poqV67squ5RSAT6+KheZKSqhoe7OhQAAAAA1zE1w2jGuXPnFB8f76ruUUjcW7GitvXv7+owAAAAANjhshlGAAAAAEDhRsIIAAAAALCLhBEuNXvPHrX8+mu9/dtvrg4FAAAAwHVc9gwjIElHEhP12+HDKleihKtDAQAAAHAdEka4VLuqVVWuRAlFBQe7OhQAAAAA1yFhhEtVDQ/nSA0AAACgkOIZRgAAAACAXcwwwqUOXbigk5cvKyo4WBVCQlwdDgAAAIBsXDbDaBiGDMNwVfcoJP6zcaPu+eorfbJhg6tDAQAAAHAdlyWMX3/9tTIzM13VPQqJkn5+qlyypCICAlwdCgAAAIDrmFqSOmXKFIfK+fj4KDw8XPXq1VPp0qXNdIki5p/Nm+ufzZu7OgwAAAAAdphKGHv37i2LxeJweYvFovvvv18TJ05U1apVzXQNAAAAALjNTCWMb775puLj4zVlyhQFBQXpwQcfVIUKFSRJR48e1f/+9z9dunRJTz75pHx9fbV27Vr973//U7NmzbR582aVL1/eKS8CAAAAAOB8phLGJ598Ug0bNlTfvn01YcIEhVy3y6XVatXgwYM1Z84c/f7776pUqZJee+01ffDBB/r3v/+tiRMnmgoe7m/MypVae+yYXrjrLrWrVs3V4QAAAADIxtSmN8OHD1fJkiX1xRdf5EoWJSk4OFhffPGFSpYsqX/84x/y8PDQu+++q7Jly+rXX3810zWKiE0nT2rBn3/qmNXq6lAAAAAAXMdUwrh8+XLdfffd8vDIuxkPDw81bNhQy5Ytk3RtA5x69erp+PHjZrpGEfFKw4b6skMHtYiNdXUoAAAAAK5jaklqUlKSTp06ddNyp0+fVnJysu374OBgeXmZ6hpFRKuKFdXK1UEAAAAAsMvUDGOdOnW0cuVKrVy5Ms8yq1at0m+//aY6derYrh09elQRERFmugYAAAAA3GamEsahQ4cqIyNDrVu31nPPPafFixdr79692rt3rxYvXqz+/furdevWMgxDQ4cOlSQlJiZq8+bNatSokVNeANzbnrNntf3UKVlTUlwdCgAAAIDrmFoX2qVLF33wwQd6/fXXNWnSJE2ePDnHfcMw5OPjow8++ECdO3eWJJ0/f14jR47UfffdZ6ZrFBFPzpmjzSdPat7jj7NLKgAAAFDImH6QcMCAAerQoYO+/PJLrV27VidPnpQklS1bVvfcc4/69OmjSpUq2cpXqlRJr7/+utluUUSUCghQmaAgBfr4uDoUAAAAANdxys4zFStW1OjRo53RFIqZX3v2dHUIAAAAAPJg6hlGAAAAAEDR5ZSE8Y8//tCgQYN0zz33qHr16rYNbiRp7dq1+vjjj5WQkOCMrgAAAAAABcT0ktT3339fw4YNU3p6uiTJYrHo3LlzOcoMGjRIvr6+eu6558x2hyKmz9y5upKaqvEPPqgKISGuDgcAAABANqZmGOfPn69XX31V0dHRmj17ts6cOSPDMHKUadKkiSIiIjR37lxTgaJo+jkuTjP++ENJaWmuDgUAAADAdUzNML7//vsKDAzU4sWLc+yEer077rhDcXFxZrpCETXugQd0JTVVZYKCXB0KAAAAgOuYShg3b96sRo0a3TBZlKRSpUpp1apVZrpCEdW3fn1XhwAAAAAgD6aWpKampqpEiRI3LXfmzBl5eTnlBA8AAAAAQAExlTBWrFhR27dvv2GZ1NRU7dixQ9WqVTPTFYqgTMPQH2fPan9CgjKve/YVAAAAgOuZShg7dOig+Ph4vf/++3mWGTt2rM6ePasuXbqY6QpFUHJ6ump9+qmqTpzIpjcAAABAIWRqnejQoUM1depUvfbaa/r999/VuXNnSdLp06c1Z84czZkzR1OnTlXFihX10ksvOSVgFB1pGRkK8/dXakaGvD2cciQoAAAAACeyGNefg5FP+/btU7du3bRr1y5ZLBYZhiGLxSJJMgxDNWvW1E8//aQqVao4JWDcGqvVqpCQECUmJio4OLjA+k24miBJCvMPK7A+YR7j5p4YN/fEuLknxs19MXbuiXFzrvzkBqZ3oqlWrZq2bdumn3/+WYsXL1Z8fLwyMzMVFRWlBx54QF27dpWnp6fZbgAAAAAABcwpW5d6eHioU6dO6tSpkzOaAwAAAAAUAk5JGJOSkrRp0yadPHlSKSkpeZZ76qmnnNEdiogTly5p6OLFKunnp4lt27o6HAAAAADXMZ0wvvnmm/rggw+UlJSUZ5ms5xpJGJFdwtWrmrpzp0oHBpIwAgAAAIWQqYRx7NixGj16tDw9PdWuXTtVq1ZNJUqUcFZsKOIiAwM1/oEH5OvllIluAAAAAE5m6jf1SZMmyd/fX6tWrVKDBg2cFROKiYjAQA1p0sTVYQAAAADIg6nD744ePaoWLVqQLAIAAABAEWQqYSxTpowCAwOdFQuKmaS0NB1JTNS5Gzz/CgAAAMB1TCWMjz32mFasWKErV644K57bYs2aNWrbtq3CwsIUFBSkhg0basqUKfluZ+XKlXrmmWfUoEEDRUZGysfHR2FhYWrVqpW+/fZbGYaRq87hw4c1ceJEtWnTRmXKlJG3t7dKlSqlNm3a6Oeff86zr9jYWFksljy/9u7dm+/4C5vf4uMV8+GHav3dd64OBQAAAIAdpp5hHDFihNauXasOHTro888/V5UqVZwVl9PMmjVL3bt3V2Zmppo3b65SpUpp6dKl6tWrl3bs2KHx48c73NbPP/+syZMnq1q1aqpfv75Kliyp48ePa9WqVVqxYoUWLlyo77//PkedHj16aM2aNfL19VWjRo1UpkwZHTx4UIsWLdKiRYs0aNAgvf/++3n22atXL7vXQ0JCHI67sMo0DPl6esrX09PVoQAAAACww2LYmxZz0L333qvU1FStW7dOHh4eiomJUVRUlDw8ck9cWiwWLV261FSw+ZWQkKCKFSvKarVq1qxZ6tKliyTp9OnTatq0qfbv36/ly5erZcuWDrX3xx9/KDQ0VOXKlctxff/+/WrevLlOnjypX375Re3bt7fde+yxx9S0aVP16tUrxw6y8+fPV6dOnZSenq5FixbpwQcfzNFmbGysDh8+bHfW8lZYrVaFhIQoMTFRwcHBTmnTEQlXEyRJYf5hBdYnzGPc3BPj5p4YN/fEuLkvxs49MW7OlZ/cwNQM44oVK2z/zsjI0MGDB3Xw4EG7ZS0Wi5mubsnkyZNltVrVsWNHW7IoSZGRkRo7dqy6dOmiCRMmOJww1qxZ0+71KlWq6IUXXtC//vUvLVu2LEfC+MMPP9it065dO/Xt21dffPGFpk2blithBAAAAABXM5UwHjp0yFlx3Bbz58+XJHXr1i3XvXbt2snPz09LlixRcnKy/Pz8TPXl7e0tSfLx8XG4Tr169SRJJ06cMNU3AAAAANwOphLGmJgYZ8VxW2zfvl2S7B774ePjo9q1a2vTpk3at2+f6tate8v9HD16VJ999pkkqW3btg7Xy5qNLVOmTJ5lxo0bpwMHDsjX11e1atVS586dFRERccuxFia/xcdr2q5durNsWT1z552uDgcAAADAdUwljIWZ1WpVYmKiJCkqKspumaioKG3atEmHDx/OV8K4bt06ff7558rIyNCJEye0evVqpaena/To0WrevLlDbVy8eNG2U2vHjh3zLDd06NAc3w8aNEgTJ05U3759b9h+SkqKUlJSbN9brVZJ19Z/p3unOxSjM1y4eiHPe78fj9fnmzerY/Uq6lqzYoHFhJu70bih8GLc3BPj5p4YN/fF2Lknxs25rFetDpctsgnj5cuXbf8OCAiwWybrDMlLly7lq+0DBw7om2++sX3v6empUaNG6dVXX3W4jf79++vs2bNq1KiROnfunOt+hw4d1KpVK915552KiIjQwYMH9dVXX+mjjz5Sv379FB4efsNE891339XIkSPz9boKWoOykRp2z92qFl7S1aEAAAAAsMPULqm3W+fOnbVnz5581ZkyZYoaNmyoEydOqHz58pKktLQ0eXnlzo179uypqVOnaurUqXriiSfyHV9qaqri4+M1ZcoUjRs3TvXr19fChQtVsuSNE6D33ntPw4YNU1hYmDZu3KhKlSo53OekSZP07LPPqnr16jc8i9HeDGN0dDS7pMIhjJt7YtzcE+Pmnhg398XYuSfGzbkKbJfU2+3QoUOKi4vLV52kpCRJUlBQUI5r9t6IK1euSFKO4y7yw8fHR9WqVdPo0aMVFhamIUOG6M0339TEiRPzrPPdd99p+PDhCgwM1Pz58/OVLErS008/rTfeeENxcXGKj49XbGys3XK+vr7y9fXNV9sAAAAAkF3uAxMLkW3btskwjHx9ZR2RERwcbDvc/tixY3bbz7rujM17nnzySUnS3Llz8ywzb9489enTR97e3po9e7YaNWqU7348PDxUuXJlSdLJkydvLdhC4nJqqs4nJSk5veCeqQQAAADguEKdMJqVdWzFli1bct1LS0vTrl275Ofnp2rVqpnuKywsTB4eHjp79qzd+7/99pseeeQRGYah77//3tS5ixcuXHvoN+sZTHc1euVKlRo3Tv9cutTVoQAAAACwo0gnjO3atZMkzZw5M9e9efPmKTk5Wffff7/pMxgladWqVcrMzLTN/mW3ZcsWdejQQSkpKZo8ebK6du16y/3s3r1bcXFxCggIUI0aNcyE7HKpGRmSJG9PTxdHAgAAAMCeIp0w9uvXT8HBwZo7d65mz55tu37mzBnbcRVDhgzJVa9GjRqqUaOGjh8/nuP6uHHjbLN72W3cuFHPPPOMJKlPnz457sXFxalNmzayWq366KOP1Lt375vGvWDBAi1btizX9R07dthmKfv16ycfH5+btlWYvd+6tdL/9S+NvvdeV4cCAAAAwI5CvUuqM8yaNUuPPvqo7fnG8PBwLVmyRBcvXtTgwYM1YcKEXHUsFouka5vuZN9UxmKxyMfHR/Xr11dsbKxSU1N18OBBbd++XZL06KOPaurUqTl2ZK1fv762bdumiIgItW3b1m6MNWrU0LBhw2zfjxgxQiNHjlRMTIzq1aungIAAHTx4UFu2bFF6erpatmypBQsWyN/f3+H3IT87ITkTO1q5J8bNPTFu7olxc0+Mm/ti7NwT4+ZcRWaXVGfo2rWrVq5cqdGjR2v9+vVKTU1VzZo19dJLL6lXr175amvixIlavny5tm3bpl27diktLU0RERHq2LGjevfurU6dOuWqkzUjefbs2RxnN2bXokWLHAlj69atdfToUW3cuFFr1qyxDWTTpk3Vo0cP9enTR54s4wQAAABwmxX5GUZcUxhnGKds367tp06p89/+pqYVKhRYTLg5/ornnhg398S4uSfGzX0xdu6JcXOu/OQGRfoZRhRu8/bt0/vr12vbqVOuDgUAAACAHUV+SSoKr47Vq6tiaKjuLFvW1aEAAAAAsIOEES7To25d9XB1EAAAAADyxJJUAAAAAIBdJIxwmaS0NKWkp4t9lwAAAIDCiYQRLnPflCnyGzNGP8fFuToUAAAAAHaQMMJlUjMyJEk+nCkJAAAAFEpsegOXWd2nj1IzMhTg7e3qUAAAAADYQcIIl/H39pY/ySIAAABQaLEkFQAAAABgFzOMcJl3V63S1fR0PX/XXSpbooSrwwEAAABwHRJGuMwH69frbFKSHqlZk4QRAAAAKIRIGOEyzzRooMSUFEUEBro6FAAAAAB2kDDCZcbcd5+rQwAAAABwA2x6AwAAAACwi4QRLmEYhjINw9VhAAAAALgBEka4RFpmpjxHjZLXqFG6mJzs6nAAAAAA2EHCCJdIy8iQJGUYhnw8PV0cDQAAAAB72PQGLhHg7a2zr72m1IwM+XvxMQQAAAAKI35Th0tYLBaVCghwdRgAAAAAboAlqQAAAAAAu5hhhEskXL2qTzduVJCPjwY2auTqcAAAAADYwQwjXOLMlSv61/LlGvXbb64OBQAAAEAemGGES5Tw8dEzDRrIjw1vAAAAgEKL39bhEuWDg/XFww+7OgwAAAAAN8CSVAAAAACAXSSMAAAAAAC7SBjhEksPHlTAmDG656uvXB0KAAAAgDyQMMIlUjIydDU9XakZGa4OBQAAAEAe2PQGLtEqNlbxAwbIw2JxdSgAAAAA8kDCCJfw9/ZWTGioq8MAAAAAcAMsSQUAAAAA2MUMI1xi5+nTWnLwoKqFh6tdtWquDgcAAACAHcwwwiXWHj2qwf/7n77cutXVoQAAAADIAzOMcInKYWF6ok4d3VW2rKtDAQAAAJAHEka4xP2VKun+SpVcHQYAAACAG2BJKgAAAADALhJGAAAAAIBdJIxwiTErVypi3Di9sWyZq0MBAAAAkAcSRriENSVF55KSdDUtzdWhAAAAAMgDm97AJYY0aaKn6tVTSX9/V4cCAAAAIA8kjHCJ0oGBKh0Y6OowAAAAANwAS1IBAAAAAHYxwwiXWHrwoA5euKDG0dGqXbq0q8MBAAAAYAczjHCJL7du1bPz5mnJwYOuDgUAAABAHphhhEvcWbasktLSVCUszNWhAAAAAMgDCSNcYkiTJhrSpImrwwAAAABwAyxJBQAAAADYRcIIAAAAALCLhBEu0WX6dFX86CP9un+/q0MBAAAAkAcSRrjEiUuXFH/xolIzMlwdCgAAAIA8sOkNXOKbTp2UmJKiquySCgAAABRaJIxwieqlSrk6BAAAAAA3wZJUAAAAAIBdzDDCJWb98YdSMjLUpkoVhfn7uzocAAAAAHYUixnGNWvWqG3btgoLC1NQUJAaNmyoKVOm5LudlStX6plnnlGDBg0UGRkpHx8fhYWFqVWrVvr2229lGEauOvHx8bJYLHl+lSlTJs/+Lly4oAEDBigmJka+vr6KiYnRwIEDdfHixXzHXti88uuv6jF7tg4XgdcCAAAAFFVFfoZx1qxZ6t69uzIzM9W8eXOVKlVKS5cuVa9evbRjxw6NHz/e4bZ+/vlnTZ48WdWqVVP9+vVVsmRJHT9+XKtWrdKKFSu0cOFCff/993brRkZGqk2bNrmuh4SE2C1/7tw5NW7cWPv371elSpXUqVMn7d69Wx999JEWLlyodevWKcyNN4xpHhOjs1euKNTPz9WhAAAAAMiDxbA3LVZEJCQkqGLFirJarZo1a5a6dOkiSTp9+rSaNm2q/fv3a/ny5WrZsqVD7f3xxx8KDQ1VuXLlclzfv3+/mjdvrpMnT+qXX35R+/btbffi4+NVsWJFtWjRQitWrHA49p49e2rq1Knq0qWLpk+fLi+va7n9K6+8ookTJ6pXr176+uuvHW7ParUqJCREiYmJCg4OdrieWQlXEyRJYf7um9wWR4ybe2Lc3BPj5p4YN/fF2Lknxs258pMbFOklqZMnT5bValXHjh1tyaJ0bbZv7NixkqQJEyY43F7NmjVzJYuSVKVKFb3wwguSpGXLlpmMWjp58qSmTZsmHx8fffrpp7ZkUZLGjRuniIgIfffddzpz5ozpvgAAAAAgL0U6YZw/f74kqVu3brnutWvXTn5+flqyZImSk5NN9+Xt7S1J8vHxMd3Wr7/+qszMTDVr1kyRkZE57vn6+urhhx9WRkaGFixYYLovAAAAAMhLkU4Yt2/fLklq0KBBrns+Pj6qXbu2kpOTtW/fPlP9HD16VJ999pkkqW3btnbLnD59Wm+99ZaeffZZvfbaa5o5c6ZSU1PzHXf26zt27DAVt6tkGoaqTZyo2p9+qgtXr7o6HAAAAAB5KLKb3litViUmJkqSoqKi7JaJiorSpk2bdPjwYdWtW9fhttetW6fPP/9cGRkZOnHihFavXq309HSNHj1azZs3t1tn7969GjVqVI5rFSpU0IwZM9SwYcMc148cOXLTuCXp8OHDDsdcmKRlZOjPhGvr0D0sFhdHAwAAACAvRTZhvHz5su3fAQEBdssEBgZKki5dupSvtg8cOKBvvvnG9r2np6dGjRqlV199NVdZX19fPf/88+revbv+9re/yd/fX7t379bbb7+tBQsWqHXr1tq2bZtiYmJyxW4m7pSUFKWkpNi+t1qtkq49MJzunZ6PV2vOhasXcl3LyMzU/Ce6KjUjQykZl5VwNanA4oFj7I0bCj/GzT0xbu6JcXNfjJ17Ytycy3rV6nDZQp0wdu7cWXv27MlXnSlTpuSasXO2nj17qmfPnkpNTVV8fLymTJmiUaNG6ZdfftHChQtVsmRJW9myZcvq008/zVG/UaNGmj9/vnr06KHvv/9e77zzjj7//HOnxvjuu+9q5MiRTm3TWTw9PNQoKvfmQQAAAAAKl0KdMB46dEhxcXH5qpOUdG22KigoKMc1e9vFXrlyRZJUokSJW4rPx8dH1apV0+jRoxUWFqYhQ4bozTff1MSJEx2q/49//EPff/+9Fi1alON6VuxZr+VW4h4+fLgGDx5s+95qtSo6Olph/mEK9i+4YzWysAWye2Lc3BPj5p4YN/fEuLkvxs49MW7O4ZXmeBpYqDe92bZtmwzDyNdX1pmKwcHBCgkJkSQdO3bMbvtZ17MvB71VTz75pCRp7ty5DtepWrWqpGvHaGRXoUKFHPFdz5G4fX19FRwcnOOrsLiSmqqZf/yh+SY3GwIAAABwexXqhNGs/9fefUdHVad/HP9MCmkkGVIQkCRgQhMEKQdFzAZckFA00mJBl2BFZIVFZDkqtnX3KIhYjgVRwT0gFjpYETFmAYUIqEgvAgYxgIEEElKY7+8PfjMS5yYkMZlJyPt1zpyj3zL3uXmYO/eZ2zp16iRJ2rhxo1tfcXGxtmzZosDAQLVu3fpPLysiIkI+Pj46cuRIhefk5Jw9F9t5TaJTeXGf216ZG/XUJodPntTwDz7QzQsXejsUAAAAAOW4oAvGgQMHSpIWLFjg1rdixQqdPn1affr0UWBg4J9eVkZGhhwOh+Lj4ys8Z+H/F0x/fHxGcnKyfHx8lJGRoezs7FJ9hYWFWr58uXx9fct8hEdt5+/rq7/ExalHTIy3QwEAAABQjgu6YLzzzjsVFhampUuXatGiRa727OxsTZo0SZL0wAMPuM1r27at2rZtq6ysrFLt06ZNcx0VPNeGDRt01113SZJGjRpVqm/WrFnavn2725xFixZp8uTJkqT77ruvVF/Tpk118803q6ioSGPGjFFJye93NZ00aZKOHDmiW2+9VY0bNy53/Wur2PBwpael6dNbb/V2KAAAAADKYTPGGG8HUZMWLlyo1NRU1/WNkZGR+vzzz3X8+HFNmDBB06dPd5tj+/9nA+7bt08tWrQo1d6gQQN17txZLVq0UFFRkfbu3avvvvtOkpSamqp58+bJz+/3i0h79eql9PR0dezYUa1bt5bD4dDWrVtdReSDDz6oqVOnusVw9OhRXXnlldqzZ4/i4+PVrVs3/fjjj9qyZYtatWqlr7/+WhERFb/oNzc3V+Hh4Tpx4oRHr2f8reDs8xa5QLluIW91E3mrm8hb3UTe6i5yVzeRt+pVmdqgVt8ltToMHTpUX331lZ566il9/fXXKioq0qWXXqqxY8dq5MiRlXqvl156SatXr9bmzZu1ZcsWFRcXKzo6WikpKUpLS9MNN9zgNueuu+5SdHS0Nm/erM8++0wFBQWKjo7WkCFDdO+996pPnz6Wy4qKitL69ev1+OOPa8mSJVq8eLEuuugi3X///XriiSdkt9ur8NcAAAAAgIq74I8w4qzadIRxQ1aW7lmxQm2iojR/6FCPxYKK41e8uom81U3krW4ib3UXuaubyFv14ggjarWc06e16fBh8UsFAAAAULtRMMLjujRtqk9GjFCwv7+3QwEAAABQDgpGeFxUcLD6JSR4OwwAAAAA53FBP1YDAAAAAFB1HGGEx33z889an5WlyOBgtY2KUlRwsGLDw70dFgAAAIA/oGCERx04cUKJs2er2OFwtQX6+WnH2LEUjQAAAEAtwymp8Kij+fmlikVJOl1SoqP5+V6KCAAAAEBZKBgBAAAAAJYoGAEAAAAAligY4VFRwcEK9Ct96Wygn5+igoO9FBEAAACAsnDTG3hUbHi4dowdW+qaRe6SCgAAANROFIzwuNjwcApEAAAAoA7glFQAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlCkYAAAAAgCUKRgAAAACAJQpGAAAAAIAlP28HAM8wxkiScnNzPbrc3IKzy/Mr5p9aXULe6ibyVjeRt7qJvNVd5K5uIm/Vy1kTOGuE8vAXryfy8vIkSTExMV6OBAAAAEBtkJeXp/Dw8HLH2ExFykrUeQ6HQ4cOHVJoaKhsNpvHlpubm6uYmBgdPHhQYWFhHlsu/hzyVjeRt7qJvNVN5K3uInd1E3mrXsYY5eXlqVmzZvLxKf8qRY4w1hM+Pj5q3ry515YfFhbGh7sOIm91E3mrm8hb3UTe6i5yVzeRt+pzviOLTtz0BgAAAABgiYIRAAAAAGCJghE1KiAgQI899pgCAgK8HQoqgbzVTeStbiJvdRN5q7vIXd1E3ryHm94AAAAAACxxhBEAAAAAYImCEQAAAABgiYIRAAAAAGCJghE1oqCgQI8++qhat26twMBANWvWTLfffruysrK8HVq9lZ+fryVLluiOO+5QmzZtFBgYqJCQEHXq1ElPPvmkTp48WebcOXPmqHv37mrYsKEiIiI0YMAArV271oPR41zHjh1T48aNZbPZlJCQUO5Yclc7HDlyRBMnTlSbNm0UFBSkiIgIdenSRQ8++KDl+OXLlyspKcn1vLFevXrpww8/9HDU9duGDRuUmpqqZs2ayd/fX3a7XYmJiZo9e7asbv9w5swZzZgxQ5dddpmCgoIUHR2t1NRUbdu2zQvRX7i+/fZbPf300xoyZIiaN28um80mm8123nlV2RauWbNGAwYMUEREhBo2bKju3bvrv//9b3WtSr1Smbw5HA5lZGRo0qRJ6tq1q0JDQxUQEKD4+HiNHj1a+/btK3dZ5K0GGKCaFRQUmCuvvNJIMk2bNjWpqamme/fuRpKJjo42e/bs8XaI9dKsWbOMJCPJtGvXzgwfPtz069fPhIaGGkmmbdu25tdff3WbN27cOCPJBAUFmZSUFNOvXz/j5+dnfH19zeLFiz2/IjAjR440NpvNSDLx8fFljiN3tUNmZqaJjIw0kkz79u3NjTfeaPr372/i4uKMr6+v2/gZM2YYScbPz88kJyeblJQUExQUZCSZl156yQtrUP8sWLDA+Pr6GkmmS5cuJjU11fTu3dv4+fkZSeaWW24pNf7MmTNm8ODBRpKx2+1m6NChJikpydhsNhMcHGy++eYbL63JhSclJcX1XXbuqzxV2RY6/w3YbDaTlJRkhg4daux2u5FkHnjggRpYswtbZfK2a9cuV3+TJk3M9ddfbwYPHmwuvvhiI8mEhoaajIwMy7nkrWZQMKLaPfzww0aS6dGjh8nLy3O1T58+3UgySUlJ3guuHpszZ465++67zdatW0u1Hzp0yHTu3NlIMjfffHOpvpUrVxpJJjIy0uzcudPVvnbtWtOgQQNjt9tNTk6OJ8LH//v888+NJHP33XeXWzCSu9ohOzvbREVFmeDgYLN06VK3/j8WEtu3bze+vr4mICDArF271tW+Y8cOExkZafz8/MyuXbtqPO76rLi42DRu3NhIMvPmzSvVt3XrVhMREWEkmS+++MLV7vxBrlWrVubw4cOu9gULFhhJJiEhwRQXF3tsHS5kTz/9tJkyZYpZtmyZ+eWXX0xAQEC5BWNVtoXHjh0zYWFhRpJZuHChq/3w4cMmISHBSDKrV6+u7lW7oFUmb7t37zZ9+/Y1q1atMg6Hw9V++vRpk5aWZiSZ2NhYU1RUVGoeeas5FIyoVoWFhSY8PNxIMhs3bnTr79ixo5FkMjMzvRAdyrJ27VojyQQEBJjCwkJXe//+/Y0kM2PGDLc5999/v5Fknn32WQ9GWr/l5+eb+Ph4c+mll5qdO3eWWzCSu9rh3nvvNZLMyy+/XKnx48aNc+t77rnnjCQzduzYao4S5/rhhx+MJNOmTRvLfufn55lnnnG1tWvXzkiyPFp1/fXXG0lmwYIFNRVyvXa+grEq28JnnnnGSDIpKSlucxYtWmQkmUGDBv3Z0Ou18+WtLPn5+a79zC+//LJUH3mrOVzDiGq1Zs0anThxQvHx8ercubNb/7BhwySdvT4HtUenTp0kSYWFhTp27Jiks9ehfvHFF5J+z9u5yKXnPfHEE9q7d69ee+01+fv7lzmO3NUOBQUFmjt3rkJCQjRq1KgKzXFep0jevKeiDwWPjIyUJO3bt0/btm1TUFCQBg4c6DaOvHlPVbeF5X0OBw4cqMDAQH3++ec6ffp0dYeM8wgKClLr1q0lSYcOHSrVR95qDgUjqtV3330nSerSpYtlv7P9+++/91hMOL+9e/dKkvz9/RURESFJ2rFjhwoLCxUdHa3mzZu7zSGXnvX9999r+vTpGjVqlBITE8sdS+5qh8zMTOXl5alz584KCgrSxx9/rAkTJmjMmDF6/vnn3XZ2jh8/rgMHDkiS5Q9uMTExioqK0v79+5Wbm+uRdaiPLrnkEsXHx2vHjh165513SvVt27ZNc+fOVaNGjTR48GBJv3/vdejQwfKHHD5v3lPVbWF5+zINGjRQhw4ddPr0ae3cubMGokZ5HA6H9u/fL0lq0qRJqT7yVnMoGFGtnDs7Vhvmc9udH3bUDi+88IIkKTk52fXr+vlyGRISIrvdrpycHOXl5Xkm0HrK4XDozjvvlN1u19SpU887ntzVDlu3bpUkNW7cWDfccIMGDBigGTNm6NVXX9U//vEPJSQkaP78+a7xzrw1atRIISEhlu/JNrTm+fr66u2335bdbteIESPUtWtX3XTTTbrmmmvUsWNHNW/eXKtWrXL9uMb3Xu1VlW1hbm6uTpw4Ue48cuo98+fPV3Z2tqKjo3XVVVe52slbzaJgRLVyPpohODjYst+5E8ROau3x0Ucf6c0335S/v7/+9a9/udrPl0uJfHrKSy+9pA0bNmjatGmu0+DKQ+5qh5ycHEnSsmXL9Mknn+jll19Wdna2fvrpJ02cOFEFBQUaOXKkNm/eLIm81SY9e/ZUenq6LrnkEm3cuFHvvfeeVq9eLR8fH/Xt21eXXHKJayzfe7VXVT5T5z5iipzWLgcPHtT48eMlSU8++WSp08fJW82iYATqse3bt+vWW2+VMUbTpk1zXcuI2uPAgQN65JFHlJSUpLS0NG+Hg0pwOBySpJKSEj355JMaM2aMoqOjFRcXp2nTpmn48OEqLi7WtGnTvBwp/mj+/Pnq3r27YmJi9M033+jkyZPauXOn0tLSNH36dF1zzTUqLCz0dphAvXHq1CkNGTJER48e1Q033KDRo0d7O6R6hYIR1aphw4aSzj4k3sqpU6ckSaGhoR6LCdaysrKUnJysnJwcTZgwQePGjSvVf75cSuTTE+677z4VFRXptddeq/Acclc7OPMgyfKmN8629PT0UuPJm3ft2rVLI0eOVFRUlFasWKHu3bsrJCRErVq10syZMzVo0CBt3LhRb731liS+92qzqnymzv3cktPaobi4WMOHD1dmZqauvvpqt2uLJfJW0ygYUa1iY2MlST///LNlv7M9Li7OYzHB3W+//aZrr71W+/fv16hRo/Tss8+6jTlfLk+dOqXjx4+rUaNGbHxr0IoVKxQcHKzRo0erV69ertdNN90k6Wzh72w7fPiwJHJXWzi3c8HBwYqOjnbrb9GihSQpOztb0u95y8nJce3Y/BHb0Jr37rvvqri4WMnJyaV2Qp1SU1MlSV999ZUkvvdqs6psC8PCwhQeHl7uPHLqOQ6HQyNHjtTHH3+syy+/XMuXL1dQUJDbOPJWsygYUa2cpzRu3LjRst/Z3rFjR4/FhNJOnjyp/v37a+vWrRoyZIhmzZolm83mNq5NmzYKCAjQkSNHlJWV5dZPLj3n+PHjSk9PL/X65ptvJEmnT592tTlvFU7uagfnnU4LCgosT1/87bffJP3+y7jdbnft4G7atMlt/MGDB3X06FHFxcUpLCyspsKu95w7lc6dzz9ytjuvUXV+723ZskXFxcVu4/m8eU9Vt4Xl7csUFxdry5YtCgwMdD3eATXn73//u+bPn6/WrVvr008/ld1uL3Mseas5FIyoVj179lR4eLj27NnjupHDuRYsWCBJuu666zwcGaSzz1lMSUnR+vXr1a9fP82fP1++vr6WY4OCgnTNNddIkj744AO3fnLpGcYYy9e+ffskSfHx8a425xErclc7xMbGqlOnTjLGuE47PZez7dxHaDif4+fM0bnIm2c4b9WfmZlp2b9hwwZJvx8hbtmypdq1a6eCggLXc+DORd68p6rbwvI+hytWrNDp06fVp08fBQYGVnfIOMcjjzyiV155RbGxsVq5cqUaN25c7njyVoMMUM0efvhhI8lcddVV5uTJk6726dOnG0kmKSnJe8HVYyUlJWbw4MFGkklMTDSnTp0675yVK1caSSYyMtLs3LnT1b527VoTEBBg7Ha7ycnJqcGoUZZ9+/YZSSY+Pt6yn9zVDvPmzTOSzGWXXWYOHTrkat+0aZOJiIgwksz777/vat++fbvx9fU1AQEBZt26da72nTt3msjISOPn52d27drl0XWob7799lsjyUgyr7zySqm+devWmZCQECPJrFy50tU+a9YsI8m0atXK/Prrr672hQsXGkkmISHBFBcXe2wd6pOAgABT3u5sVbaFx44dM2FhYUaSWbhwoav9119/NQkJCUaSWb16dXWvSr1yvrw999xzRpJp0qRJqbyVh7zVHApGVLuCggJzxRVXGEmmadOmJjU11fX/0dHRZs+ePd4OsV56/vnnXTtBgwcPNiNHjrR8HTlypNS8cePGGUkmODjYpKSkmP79+xs/Pz/j6+trFi9e7J2VwXkLRmPIXW0xcuRII8nY7XYzYMAA07t3b9fO0l133eU23rmj5OfnZ/r3729SUlJMUFCQkWRefPFFL6xB/TNx4kTX9rJ9+/Zm+PDhpmfPnsbHx8dIMnfffXep8WfOnHH9INeoUSMzbNgw06tXL2Oz2UxQUJD5+uuvvbQmF54VK1aYK664wvWy2WxGUqm2FStWlJpTlW3hggULjI+Pj7HZbKZ3795m2LBhxm63G0lmwoQJHljTC0tl8rZp0yZXf48ePcrcX8nIyHBbDnmrGRSMqBH5+flmypQpJj4+3jRo0MA0adLEpKWlmYMHD3o7tHrrsccec+0Alffat2+f29zZs2ebrl27muDgYGO3201ycrJZs2aN51cCLhUpGI0hd7WBw+Ewr7/+uisPISEhpkePHmbOnDllzlm2bJlJTEw0DRs2NA0bNjSJiYlm+fLlHowaixYtMtdee63ryG6jRo1M7969zTvvvGM5vqSkxEyfPt20b9/eBAYGmsjISDNs2DDz448/ejjyC9vs2bPP+z02e/Zsy3mV3Rb+73//M8nJycZut5vg4GDTrVu3cj+3KFtl8rZ69eoK7a9Y5dkY8lYTbMYYU6VzWQEAAAAAFzRuegMAAAAAsETBCAAAAACwRMEIAAAAALBEwQgAAAAAsETBCAAAAACwRMEIAAAAALBEwQgAAAAAsETBCAAAAACwRMEIAAAAALBEwQgAwHnYbDbZbDZvh1FjbDabWrRo4e0wAAC1EAUjAABV8NNPP8lms6lXr17eDqVcdSVOAEDt5OftAAAAgHdt27ZN/v7+3g4DAFALUTACAFDPtW3b1tshAABqKU5JBQCgkh5//HG1bNlSkpSenu66xtFmsyktLa3U2IMHD2rs2LGKj49XYGCgIiIiNGjQIK1du9btfc89fTQ3N1cTJkxQy5Yt5e/vr/Hjx0uSPvzwQ91+++1q166dwsLCFBISok6dOuk///mPCgsLqxRnedcwrlu3TikpKYqOjlZAQIBatGihMWPG6NChQ+XGX1BQoMmTJysuLk4BAQFKSEjQM888I2NMBf/KZ+3evVs2m019+/bVqVOn9MQTT6hdu3YKDg5WfHy8pk6dWun3BABUHEcYAQCopMsvv1xDhw7VwoULddFFFyk5OdnVd/XVV7v+e926dRo4cKBycnLUpk0bDRw4UEeOHNGnn36qTz75RPPmzdONN97o9v4FBQVKSkrS/v37lZSUpC5duqhRo0aSpDvuuEMFBQXq0KGDOnbsqBMnTmj9+vV6+OGHtWrVKn322Wfy9fWtVJxlmTt3rtLS0nTmzBn17NlTMTEx2rhxo1599VUtWrRIX375peXRyaKiIl177bXaunWrevXqpVOnTik9PV2TJ09WXl6ennrqqQr/rb/77jtJUkREhDp16qTCwkL16NFDMTExWrVqlf75z38qKipKt99+e4XfEwBQCQYAAJRLkvnjV+a+ffuMJJOUlGQ558SJE6Zp06bG19fXzJ07t1Tfhg0bTKNGjUzDhg1Ndna223tKMj169DA5OTlu77tkyRKTn59fqi03N9cMGjTISDJvv/12peJ0rl9cXFyptgMHDpigoCDj6+trli5d6mo/c+aMGT9+vJFkunXrZrks5/JOnDhRap19fX1NcHCwycvLKzOWP5oyZYrrPR966CFTXFzs6ps9e7aRZAYOHFjh9wMAVA6npAIAUAPeeust/fLLLxo/frxGjBhRqq9bt26aMmWKTp48qblz51rOf/HFF2W3293aU1JSFBQUVKotNDRUM2bMkCQtXbq0WuJ/4403VFBQoNTUVF1//fWudh8fHz399NNq1qyZMjMztWbNGre5Pj4+mjlzpsLCwlxt3bp1U//+/ZWfn6/MzMwKx7F582ZJ0tChQ/Xvf/9bfn6/nxzlPGKanZ1d2dUDAFQQp6QCAFADPvvsM0nSkCFDLPsTExMlSevXr3fra9q0qbp161bme+/atUsfffSRdu/erVOnTsnhcLiu49u1a9efDV2SlJGRIUluxa4kBQQEaPjw4XrhhReUkZGhnj17luqPi4tTmzZt3Oa1bt1akvTLL79UOA7nKamPPvqoW9/Ro0clSc2aNavw+wEAKoeCEQCAGvDTTz9Jklsx9UfOoudcsbGxlmONMZo4caJmzJhR5o1e8vLyKhdoGZw3tSnrZjjO9qysLLe+5s2bW84JDQ2VJLeb85Tl+PHjOnDggFq2bKmOHTu69X///feSpA4dOlTo/QAAlUfBCABADXA4HJKkYcOGKSQkpMxxVjeNCQwMtBz73nvv6bnnnlNMTIxmzJihHj16KDo6Wv7+/ioqKlJAQIDH7hhqs9nK7PPxqZ4rXpyno3bv3t2yf9OmTZLO3twHAFAzKBgBAKgBzZs3144dOzR58mR17dq1Wt5z8eLFkqRXX31VAwcOLNW3d+/ealmGU7NmzbRjxw7t379f7du3d+t3HkG9+OKLq3W553Kejtq5c2fLfgpGAKh53PQGAIAqaNCggSSppKTEsr9v376Sfi/yqkNOTo4k61M+33//fcs554uzLM5rLOfPn+/WV1RUpA8++KDUuJpQkYIxNDRU8fHxNRYDANR3FIwAAFRBVFSU/P39tWfPHp05c8at/5577lHjxo01depUvf76665TVJ1KSkr06aefasuWLRVepvOmMa+//nqpU08zMjI0bdq0KsVZljvuuENBQUF699139eGHH7raHQ6HHnroIWVlZalr167nvUbzz3CekmpVMB44cEC//fabOnbsWO7psQCAP4eCEQCAKmjQoIGSk5N1+PBhderUSX/729905513avbs2ZIku92upUuXKjw8XPfcc49atGihAQMGaMSIEfrrX/+q6OhoJScna/fu3RVe5v3336+QkBC98sor6tChg26++Wb95S9/UVJSkkaPHl2lOMsSGxurmTNnyuFw6LrrrlNiYqJuueUWXXrppZo+fbouuuiiMh8JUh1KSkq0detWXXzxxYqOjnbr53RUAPAMCkYAAKrojTfe0G233aZjx47pnXfe0Ztvvqn09HRX/5VXXqkffvhBkyZNUlhYmNLT07VkyRLt379fSUlJmjNnjvr06VPh5bVu3VqZmZm67rrrdPToUS1btkwnT57UzJkzyzzCWJE4y3LbbbcpIyNDgwYN0rZt27RgwQIVFBTo3nvv1bfffmt5w57qsn37dhUWFpZZEFIwAoBn2IynbqcGAAAAAKhTOMIIAAAAALBEwQgAAAAAsETBCAAAAACwRMEIAAAAALBEwQgAAAAAsETBCAAAAACwRMEIAAAAALBEwQgAAAAAsETBCAAAAACwRMEIAAAAALBEwQgAAAAAsETBCAAAAACw9H+0ADc2DQs1YQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est1.completed_trials_summary_[est1.completed_trials_summary_[\"Step\"].str.contains('Model Tuning')]\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "trials.drop(trials[trials['Finished'] == -1].index, inplace = True)\n", "trials['Finished']= trials['Finished'].apply(lambda x: time.mktime(datetime.datetime.strptime(x,\n", " \"%a %b %d %H:%M:%S %Y\").timetuple()))\n", "trials.sort_values(by=['Finished'],ascending=True, inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "score = []\n", "score.append(scores[0])\n", "for i in range(1,len(scores)):\n", " if scores[i]>= score[i-1]:\n", " score.append(scores[i])\n", " else:\n", " score.append(score[i-1])\n", "y_margin = 0.10 * (max(score) - min(score))\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Hyperparameter Tuning Trials\")\n", "ax.set_xlabel(\"Iteration $n$\")\n", "ax.set_ylabel(est1._inferred_score_metric[0].name)\n", "ax.grid(color='g', linestyle='-', linewidth=0.1)\n", "ax.set_ylim(min(score) - y_margin, max(score) + y_margin)\n", "ax.plot(range(1, len(trials) + 1), score, 'k:', marker=\"s\", color='teal', markersize=3)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "6bdd0465", "metadata": {}, "source": [ "\n", "### Advanced AutoMLx Configuration\n", "\n", "You can also configure the pipeline with suitable parameters according to your needs." ] }, { "cell_type": "code", "execution_count": 15, "id": "6deb1835", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:37.370321Z", "iopub.status.busy": "2025-05-22T12:37:37.369796Z", "iopub.status.idle": "2025-05-22T12:37:37.421928Z", "shell.execute_reply": "2025-05-22T12:37:37.421413Z" } }, "outputs": [], "source": [ "custom_pipeline = automlx.Pipeline(\n", " task='regression', \n", " model_list=[ # Specify the models you want the AutoMLx to consider\n", " 'LinearRegression',\n", " 'AdaBoostRegressor',\n", " 'XGBRegressor'\n", " ],\n", " n_algos_tuned=2, # Choose how many models to tune\n", " min_features=1.0, # Specify minimum features to force the model to use. It can take 3 possible types of values:\n", " # If int, 0 < min_features <= n_features,\n", " # If float, 0 < min_features <= 1.0, 1.0 means disabling feature selection\n", " # If list, names of features to keep, for example ['a', 'b'] means keep features 'a' and 'b'\n", "\n", " adaptive_sampling=False, # Disable or enable Adaptive Sampling step. Default to `True`\n", " preprocessing=True, # Disable or enable Preprocessing step. Default to `True`\n", " search_space={ # You can specify the hyper-parameters and ranges we search\n", " 'AdaBoostRegressor': {\n", " \"n_estimators\": {\"range\": [10, 20], \"type\": \"discrete\"}\n", " },\n", " },\n", " max_tuning_trials=2, # The maximum number of tuning trials. Can be integer or Dict (max number for each model)\n", " score_metric='r2', # Any scikit-learn metric or a custom function\n", ")" ] }, { "cell_type": "markdown", "id": "e7a57e33", "metadata": {}, "source": [ "\n", "### Use a custom validation set\n", "You can specify a custom validation set that you want AutoMLx to use to evaluate the quality of models and configurations.\n" ] }, { "cell_type": "code", "execution_count": 16, "id": "e3847081", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:37.424066Z", "iopub.status.busy": "2025-05-22T12:37:37.423577Z", "iopub.status.idle": "2025-05-22T12:37:37.474395Z", "shell.execute_reply": "2025-05-22T12:37:37.473874Z" } }, "outputs": [], "source": [ "X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, train_size=0.7, random_state=0)" ] }, { "cell_type": "markdown", "id": "91d9f729", "metadata": {}, "source": [ "A few of the advanced settings can be passed directly to the pipeline's fit method, instead of its constructor." ] }, { "cell_type": "code", "execution_count": 17, "id": "ed89365f", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:37.476552Z", "iopub.status.busy": "2025-05-22T12:37:37.476032Z", "iopub.status.idle": "2025-05-22T12:37:43.765821Z", "shell.execute_reply": "2025-05-22T12:37:43.765252Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:37,569] [automlx.interface] Dataset shape: (14448,8)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:37,621] [automlx.interface] Adaptive Sampling disabled.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:37,661] [automlx.data_transform] Running preprocessing. Number of features: 9\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:37,814] [automlx.data_transform] Preprocessing completed. Took 0.153 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:37,840] [automlx.process] Running Model Generation\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:37,891] [automlx.process] Model Generation completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:37,922] [automlx.model_selection] Running Model Selection\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:39,276] [automlx.model_selection] Model Selection completed - Took 1.355 sec - Selected models: [['XGBRegressor', 'LinearRegression']]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:39,351] [automlx.trials] Running Model Tuning for ['XGBRegressor']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:41,796] [automlx.trials] Best parameters for XGBRegressor: {'n_estimators': 100, 'min_child_weight': 1, 'reg_alpha': 0, 'booster': 'dart', 'max_depth': 6, 'learning_rate': 0.1, 'reg_lambda': 1}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:41,797] [automlx.trials] Model Tuning completed. Took: 2.446 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:41,851] [automlx.trials] skipping model tuning for: []\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:41,948] [automlx.interface] Re-fitting pipeline\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:41,964] [automlx.final_fit] Skipping updating parameter seed, already fixed by FinalFit_20acbc6f-2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:37:43,400] [automlx.interface] AutoMLx completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Prediction error (MSE) on test data : 0.23716484748805952\n" ] } ], "source": [ "custom_pipeline.fit(\n", " X_train,\n", " y_train,\n", " X_val,\n", " y_val,\n", " time_budget= 20, # Specify time budget in seconds\n", " cv='auto' # Automatically pick a good cross-validation (cv) strategy for the user's dataset.\n", " # Ignored if X_valid and y_valid are provided.\n", " # Can also be:\n", " # - An integer (For example, to use 5-fold cross validation)\n", " # - A list of data indices to use as splits (for advanced, such as time-based splitting)\n", ")\n", "y_pred = custom_pipeline.predict(X_test)\n", "score_modellist = mean_squared_error(y_test, y_pred)\n", "\n", "print(f'Prediction error (MSE) on test data : {score_modellist}')" ] }, { "cell_type": "markdown", "id": "a9ae8778", "metadata": {}, "source": [ "\n", "## Machine Learning Explainability" ] }, { "cell_type": "markdown", "id": "a14ae214", "metadata": {}, "source": [ "For a variety of decision-making tasks, getting only a prediction as model output is not sufficient. A user may wish to know why the model outputs that prediction, or which data features are relevant for that prediction. For that purpose the Oracle AutoMLx solution defines the `MLExplainer` object, which allows to compute multiple types of model explanations.\n", "\n", "\n", "### Initialize an MLExplainer\n", "\n", "The `MLExplainer` object takes as argument the trained model, the training data and labels, as well as the task." ] }, { "cell_type": "code", "execution_count": 18, "id": "116ba67e", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:43.768150Z", "iopub.status.busy": "2025-05-22T12:37:43.767613Z", "iopub.status.idle": "2025-05-22T12:37:44.024725Z", "shell.execute_reply": "2025-05-22T12:37:44.023900Z" } }, "outputs": [], "source": [ "explainer = automlx.MLExplainer(est1,\n", " X_train,\n", " y_train,\n", " task=\"regression\")" ] }, { "cell_type": "markdown", "id": "3882c40a", "metadata": {}, "source": [ "\n", "### Model Explanations (Global Feature importance)" ] }, { "cell_type": "markdown", "id": "eb568c08", "metadata": {}, "source": [ "The notion of Global Feature Importance intuitively measures how much the model's performance (relative to the provided train labels) would change if a given feature were dropped from the dataset, without allowing the model to be retrained. This notion of feature importance considers each feature independently from all other features." ] }, { "cell_type": "markdown", "id": "1919adc0", "metadata": {}, "source": [ "#### Compute the importance" ] }, { "cell_type": "markdown", "id": "9b033740", "metadata": {}, "source": [ "By default we use a permutation method to successively measure the importance of each feature. Such a method therefore runs in linear time with respect to the\n", "number of features in the dataset.\n", "\n", "The method `explain_model()` allows to compute such feature importances. It also provides 95% confidence intervals for each feature importance." ] }, { "cell_type": "code", "execution_count": 19, "id": "ce26725f", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:44.028703Z", "iopub.status.busy": "2025-05-22T12:37:44.027245Z", "iopub.status.idle": "2025-05-22T12:37:45.044907Z", "shell.execute_reply": "2025-05-22T12:37:45.044161Z" } }, "outputs": [], "source": [ "result_explain_model_default = explainer.explain_model(\n", " n_iter=5, # Can also be 'auto' to pick a good value for the explainer and task\n", "\n", " scoring_metric='r2', # Global feature importance measures how much each feature improved the\n", " # model's score. Users can chose the scoring metric used here.\n", ")" ] }, { "cell_type": "markdown", "id": "1356af0b", "metadata": {}, "source": [ "#### Visualization" ] }, { "cell_type": "markdown", "id": "705e5298", "metadata": {}, "source": [ "There are two options to show the explanation's results:\n", "- `to_dataframe()` will return a dataframe of the results.\n", "- `show_in_notebook()` will show the results as a bar plot.\n", "\n", "The features are returned in decreasing order of importance. We see that `Latitude` and `Longitude` are considered to be the most important features." ] }, { "cell_type": "code", "execution_count": 20, "id": "b4637d4d", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:45.047431Z", "iopub.status.busy": "2025-05-22T12:37:45.047220Z", "iopub.status.idle": "2025-05-22T12:37:45.108041Z", "shell.execute_reply": "2025-05-22T12:37:45.107386Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
featureattributionupper_boundlower_bound
0Latitude1.2622881.3222571.202320
1Longitude1.0732911.1264961.020086
2MedInc0.3695540.3774680.361640
3AveOccup0.1543840.1642880.144480
4AveRooms0.1160880.1224270.109748
5HouseAge0.0633710.0658390.060902
\n", "
" ], "text/plain": [ " feature attribution upper_bound lower_bound\n", "0 Latitude 1.262288 1.322257 1.202320\n", "1 Longitude 1.073291 1.126496 1.020086\n", "2 MedInc 0.369554 0.377468 0.361640\n", "3 AveOccup 0.154384 0.164288 0.144480\n", "4 AveRooms 0.116088 0.122427 0.109748\n", "5 HouseAge 0.063371 0.065839 0.060902" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result_explain_model_default.to_dataframe()" ] }, { "cell_type": "code", "execution_count": 21, "id": "3946adca", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:45.110123Z", "iopub.status.busy": "2025-05-22T12:37:45.109538Z", "iopub.status.idle": "2025-05-22T12:37:45.244875Z", "shell.execute_reply": "2025-05-22T12:37:45.244224Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ 0.059968757311622545, 0.053204926454515133, 0.007914229379611115, 0.009904055539070034, 0.006339523386199558, 0.0024688052829454216 ], "arrayminus": [ 0.059968757311622545, 0.053204926454515133, 0.007914229379611115, 0.009904055539070034, 0.006339523386199558, 0.0024688052829454146 ], "type": "data" }, "legendgroup": "None", "marker": { "color": "rgb(248,0,0)" }, "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 1.2622884451491387, 1.0732906436686167, 0.3695541838218084, 0.15438415797326643, 0.11608754367455161, 0.0633705490689858 ], "y": [ "Latitude", "Longitude", "MedInc", "AveOccup", "AveRooms", "HouseAge" ] } ], "layout": { "height": 340, "margin": { "b": 20, "t": 80 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "The Features' Impact on the Model's r2 Score", "x": 0.5 }, "xaxis": { "categoryorder": "total ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "total ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_model_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "a526d4da", "metadata": {}, "source": [ "\n", "### Feature Dependence Explanations (PDP + ICE)\n", "\n", "Another way to measure dependency on a feature is through a partial dependence plot (PDP) or an individual conditional expectation (ICE) plot. For accumulated local effects (ALE) explanations, see Advanced Feature Dependence Options (ALE)\n", "\n", "Given a dataset, a PDP displays the average output of the model as a function of the value of the selected set of features (Up to 4 features).\n", "\n", "It can be computed for a single feature, as in the cell below. The X-axis is the value of the `Latitude` feature and the y-axis is the corresponding outputted price. Since we are considering the whole dataset, the average over outputs is given by the red line, while the shaded interval corresponds to a 95% confidence interval for the average.\n", "\n", "The histogram on top shows the distribution of the value of the `Latitude` feature in the dataset." ] }, { "cell_type": "code", "execution_count": 22, "id": "08c74f97", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:45.247111Z", "iopub.status.busy": "2025-05-22T12:37:45.246654Z", "iopub.status.idle": "2025-05-22T12:37:48.948692Z", "shell.execute_reply": "2025-05-22T12:37:48.948009Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "toself", "fillcolor": "rgb(248,0,0)", "legendgroup": "None", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94, 38.94, 38.51, 38.03, 37.87, 37.75, 37.61, 37.35, 36.98, 36.33, 34.71, 34.21, 34.15, 34.09, 34.05, 34.01, 33.96, 33.9, 33.83, 33.74, 33.49, 32.8 ], "xaxis": "x2", "y": [ 3.6075436732625903, 3.554256218333853, 3.164754204014793, 3.0081058576407793, 2.8431693062705246, 2.7930161221934697, 2.87048387182167, 3.0229620054595667, 2.9518989040178516, 2.8045666503394138, 2.587327029223481, 1.9615388582348727, 1.7149481866024887, 1.6577997056008265, 1.775690065150511, 1.6371727092358606, 1.542358739272171, 1.8764526913597022, 1.3750390420563101, 1.369610940504656, 1.3721806255062172, 1.3171436028840042, 1.3097808492360554, 1.3154457414843703, 1.8047687564458734, 1.470700618338422, 1.5635833418363048, 1.688626658644692, 1.5768559056507048, 1.6227325330849314, 1.875380677846772, 2.5000632380750862, 2.7107587398641098, 2.8525184168217432, 2.921556326546521, 2.769456720076425, 2.6946648746014596, 2.744004487287565, 2.910991376440667, 3.065477496620356, 3.4569842672390614, 3.511850488025754 ], "yaxis": "y2" }, { "legendgroup": "None", "line": { "color": "rgb(248,0,0)" }, "mode": "lines+markers", "opacity": 1, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.559697080644172, 3.505620242786457, 3.1151158503175744, 2.9595486170407233, 2.7935868967790447, 2.7438404983974647, 2.8199702959490476, 2.972259166003044, 2.9022086604197974, 2.7576626951017618, 2.5436951336492837, 1.9184597680408224, 1.66884035984371, 1.6173278056257656, 1.7321583618976015, 1.6003780255360827, 1.5065296788052964, 1.8406107239027878, 1.3452423917703402, 1.3396958948703557, 1.3446621141951107 ], "yaxis": "y2" }, { "legendgroup": "None", "marker": { "color": "Black" }, "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.12403521126760139, "x": [ 32.60064669014085, 32.735845070422535, 32.86640845070423, 32.99697183098591, 33.127535211267606, 33.2580985915493, 33.388661971830984, 33.51922535211267, 33.64978873239437, 33.780352112676056, 33.91091549295774, 34.04147887323944, 34.17204225352113, 34.30260563380281, 34.433169014084505, 34.5637323943662, 34.694295774647884, 34.82485915492958, 34.95542253521127, 35.085985915492955, 35.21654929577465, 35.34711267605634, 35.47767605633803, 35.60823943661972, 35.73880281690141, 35.8693661971831, 35.99992957746478, 36.13049295774648, 36.26105633802817, 36.391619718309855, 36.522183098591555, 36.65274647887324, 36.783309859154926, 36.91387323943662, 37.04443661971831, 37.175, 37.30556338028169, 37.43612676056338, 37.56669014084507, 37.69725352112676, 37.827816901408454, 37.95838028169014, 38.08894366197183, 38.219507042253525, 38.35007042253521, 38.480633802816904, 38.6111971830986, 38.74176056338028, 38.87232394366197, 39.00288732394367, 39.13345070422535, 39.26401408450704, 39.39457746478873, 39.525140845070425, 39.65570422535211, 39.7862676056338, 39.916830985915496, 40.04739436619718, 40.177957746478874, 40.30852112676057, 40.43908450704225, 40.569647887323946, 40.70021126760564, 40.830774647887324, 40.96133802816902, 41.09190140845071, 41.222464788732395, 41.35302816901409, 41.48359154929578, 41.61415492957747, 41.74471830985915 ], "xaxis": "x", "y": [ 0.0084, 0.0422, 0.019, 0.0094, 0.0076, 0.005, 0.002, 0.01, 0.0258, 0.061, 0.0952, 0.1366, 0.085, 0.0212, 0.0098, 0.0032, 0.0042, 0.003, 0.0054, 0.005, 0.0026, 0.0112, 0.0008, 0.0024, 0.0014, 0.0006, 0.0014, 0.0036, 0.0066, 0.0048, 0.0042, 0.0116, 0.0184, 0.0056, 0.0062, 0.0058, 0.0392, 0.0208, 0.0224, 0.051, 0.0448, 0.0344, 0.0138, 0.0072, 0.0118, 0.0178, 0.0234, 0.012, 0.0046, 0.008, 0.0078, 0.005, 0.0036, 0.0032, 0.0016, 0.005, 0.0014, 0.0012, 0.001, 0.0012, 0.0018, 0.0026, 0.0008, 0.003, 0.0014, 0.0, 0.0002, 0.0, 0.0008, 0.0004, 0.0006 ], "yaxis": "y" } ], "layout": { "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Partial Dependence Plot (PDP)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ 32.492999999999995, 39.247 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Latitude" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.14343 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ 1.1948927080347287, 3.722431814463917 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Target" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_feature_dependence_default = explainer.explain_feature_dependence('Latitude')\n", "result_explain_feature_dependence_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "bd98ef78", "metadata": {}, "source": [ "The ICE plot is automatically computed at the same time as any one-feature PDP. It can be accessed by passing `ice=True` to `show_in_notebook`.\n", "\n", "Similar to PDPs, ICE plots show the median prediction as a model red line. However, the variance in the model's predictions are shown by plotting the predictions of a sample of individual data instances as light grey lines. (For categorical features, the distribution in the predictions is instead shown as a violin plot.)" ] }, { "cell_type": "code", "execution_count": 23, "id": "55ecdcf2", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:48.950706Z", "iopub.status.busy": "2025-05-22T12:37:48.950481Z", "iopub.status.idle": "2025-05-22T12:37:49.152263Z", "shell.execute_reply": "2025-05-22T12:37:49.151642Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.598578524071246, 4.641922535430561, 4.37204601267475, 4.209353948171385, 4.143271556129807, 4.12356376296856, 4.058797101142945, 4.078637032267049, 4.039762758527588, 3.7037419333435455, 3.372477344638988, 3.087404366005156, 3.0929770079821908, 2.6744777892258913, 3.114040807399498, 2.43427487860774, 2.163981137099351, 2.3995308604117667, 1.5012033203445343, 1.5206838236852973, 1.3243659089412174 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.0221399669546822, 2.082217474146628, 1.6825058810327895, 1.5561422854139293, 1.2650933062250056, 1.3248406934161345, 1.3990401270214738, 1.7219981880924482, 1.746993846076423, 1.8470098882688877, 1.7367726708781357, 1.0074937692108004, 0.7820005949657141, 0.8756521810485124, 0.9559735827887554, 0.933671912876566, 0.8464756322298325, 1.4947185993117624, 0.8207986760257651, 0.8043839638236278, 0.9587845189686502 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.238892872038157, 3.1447143503182944, 2.812274852354475, 2.4790920262299023, 1.8693638092194416, 1.7090299459612956, 1.7983862401066704, 2.9297968850084444, 2.7849068269279096, 2.601583011464815, 2.2115248918448573, 0.900864317328224, 0.7310022694669966, 0.8214799869335769, 0.90180138867382, 0.8501857615663971, 0.7455543406726862, 1.1921762850795765, 0.7928136432638051, 0.7887582135192265, 0.9238820801699953 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.520377209518086, 3.4514080482598484, 3.3181245123057006, 2.9788271705515617, 2.9049304577858446, 2.8940785583818576, 2.9222246658000497, 2.963321061150574, 2.909117220033094, 2.775059526494146, 2.8752089929819538, 2.6299131373093325, 2.6501662198218408, 2.3285596558925157, 2.641820383115351, 2.413743618711166, 2.2842802623926772, 2.3899170247354182, 1.6824292989853489, 1.5007800014039525, 0.9494843507058106 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.8866114331986332, 3.8934489422141803, 3.4051508584529864, 3.319729824348197, 3.4142908380107784, 3.3915980294572123, 3.5462823132258614, 3.598542221407598, 3.6176478228184266, 3.7351005578334457, 3.4801243161360085, 2.5175383441784027, 2.0218547168873706, 2.0661861659976473, 2.1532549874409126, 2.3054154023882045, 2.2433720903185375, 2.2912810948746167, 2.1358836044908083, 2.225803831015719, 2.3296934987070035 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 5.010802106355758, 5.156243077978351, 4.326196759749466, 4.103755432874201, 4.00843188125113, 4.000803667239519, 4.061228999506962, 4.11926632683335, 4.147915592172322, 3.97494870629567, 3.7845025619929897, 2.664208026814723, 2.1633749821795685, 2.1269400723980345, 2.2191652887071336, 2.2441786854560135, 2.138133316623562, 2.292547331094088, 1.8059672808830898, 1.8091186793641856, 1.9557206512465344 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.470987664882094, 4.4741235087603695, 4.148648964106932, 4.01505188038294, 3.7505351248389123, 3.6685890719205383, 3.826985111781713, 3.9869500315499637, 3.886206198187375, 3.7104479422136754, 3.610897791623958, 3.0474539917839523, 2.956216756575365, 2.5481669469905532, 3.0632739131881213, 2.7894932013163243, 2.9764256036456604, 4.051734134100882, 2.6179597090314006, 2.2836463508042386, 1.7669525031560374 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 5.066530906685542, 5.11288921252714, 4.747981280526943, 4.488195025028858, 4.412195703284801, 4.3924879101235526, 4.3569804895986435, 4.41253409127087, 4.395571393668214, 4.149838802851848, 3.6691797993271376, 3.419770785028644, 3.4016831095109756, 2.982185260532046, 3.446874085138106, 2.815581573301, 2.5442120371501677, 2.682196886353742, 1.7776748404104288, 1.7638864977915265, 1.5893680145654558 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.709796875599819, 4.638932570458711, 4.060422959525616, 3.8934118456183207, 3.7966539411774405, 3.638510184195817, 3.8871073471980337, 3.969583186381304, 3.834368627075517, 3.5858223369657383, 2.5303300760958494, 1.4660065758115817, 1.1172266343366906, 1.1599988174551497, 1.2295519478895658, 1.215807056495092, 1.1820182352930708, 1.46628896129492, 1.0961803668958279, 1.086313516524447, 1.2958443269121145 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.053522144410197, 2.927909357424705, 2.7794788732624993, 2.761817447039792, 2.599996997205771, 2.608648786916459, 2.6369138288271885, 2.704408076726988, 2.698125852409205, 2.483289601891149, 2.374009732355997, 2.086237023360101, 1.9463491711388812, 1.6532661414686936, 1.644784513698319, 1.5790131816258164, 1.5747091462766383, 2.3334907846573976, 1.4048375060228762, 1.4528268003304952, 1.3480377067340223 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.55505603000474, 3.462142060733843, 2.614785896019317, 2.1722794590501664, 1.9467152836079122, 1.9794234686293228, 2.153950375983438, 2.4074121412366294, 2.4161971527435213, 2.500251597132108, 2.3557468248044904, 1.2359263308354833, 0.9580908741246416, 1.0126044978567574, 1.095909845326946, 1.1738923958389416, 1.1603376394128126, 1.4271241748655161, 1.1471453200786772, 1.1312099201304298, 1.2013744890411164 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.638938850184999, 3.3393444749310444, 2.533295946825728, 2.4983311035180678, 2.3203846736947833, 2.2002725798881664, 2.2556918669231054, 2.2287097180403967, 2.2267506492068105, 2.2731797932778557, 2.139719862271528, 1.6842004220521576, 1.350776911471479, 1.382774018786564, 1.4909153347661086, 1.4440606045268078, 1.3270239293610362, 1.4982274171842256, 1.3798986156789064, 1.3436062025027122, 1.5224341693236358 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.742580917296821, 4.904018721244938, 4.7735954154964535, 4.653740258030875, 4.606092792813873, 4.617849589283217, 4.591506359848325, 4.529293785706852, 4.335127476634258, 4.170009378664547, 4.346381008727547, 4.301806063754661, 4.1808914913208595, 3.9007252041473603, 4.112653006237607, 4.029872671307692, 4.002560578956556, 4.381621552542265, 3.0744177865942457, 2.8000008244991474, 2.279111087959979 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 5.738544386789132, 5.763749384222839, 5.509105113374742, 5.478635418774672, 5.483992521874808, 5.459920460997615, 5.497830246628478, 5.4698856189084575, 5.410291610449337, 5.390447172163313, 5.46229104893569, 5.240347122719256, 5.294482421348983, 4.994358744873497, 4.979195697979129, 4.705761939134358, 4.6056684630852125, 4.755322274178252, 4.14369583052169, 4.3272042276300455, 4.154011118864377 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 1.4450361658712711, 1.4889956283145764, 1.1748656770694377, 1.2281902571528058, 1.123770927436473, 1.0525985127404178, 1.0914346196801774, 1.08562339429342, 1.0637507710305087, 1.05493492043184, 1.05493492043184, 0.9407092009079491, 0.682144603250572, 0.7126497362895071, 0.8176700235095797, 0.8243235875749436, 0.8026894942066966, 0.9906750135914321, 0.7861385137187262, 0.7264305467557534, 0.7791352890391274 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.3782225682158895, 2.214014878173894, 1.528402253583971, 1.5301198167068042, 1.3551968642204477, 1.3801970682567888, 1.4308458959149042, 1.455661205253986, 1.4604214647940492, 1.5096819621395317, 1.3515358005417009, 0.7862369440814372, 0.5638034608561393, 0.621559936073684, 0.7164833240610327, 0.7219067174887939, 0.7032056758836782, 1.248763340696229, 0.641378754802347, 0.6633892112979947, 0.8076791369090971 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.7904445383607515, 2.6965457857741426, 2.0129272271415277, 1.843929790501092, 1.7631289211041887, 1.725431915023673, 1.7713277037486, 1.7689515238575926, 1.7773764761427284, 1.8184362134751813, 1.6314491126339834, 1.201751866918992, 0.951010375144282, 0.9966538751140808, 1.0436133923605677, 0.9678165517816026, 0.8924327646198358, 1.4368072220502275, 0.7020168155518385, 0.6777274904472064, 0.8344326998512255 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 5.2396285222859476, 5.186229096245922, 4.9626951933064705, 4.784673887362167, 4.798697738606024, 4.786013822980013, 4.865033279655448, 4.9205323700574795, 4.736178729069581, 4.55936181163584, 4.48341422782416, 4.10942565193465, 4.136936397347281, 3.763666556100883, 4.284571808958585, 3.9283692589242776, 3.7411790537431107, 4.12318487508651, 3.586166195171539, 3.29449190407875, 3.0226460594312243 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.5870995416711047, 3.525304466986752, 2.8205770678679274, 2.3035025559494504, 2.2635832105042524, 2.3846549883891126, 2.6843849702035327, 2.9857050624963906, 3.047569159048048, 3.044752874422728, 2.538561467231998, 1.378395413423411, 1.0167556283166181, 1.062399128286417, 1.131952258720833, 1.1083689933283956, 1.0745801721263744, 1.4545677965380754, 1.0431280730429133, 1.0564686999639565, 1.2457978230434983 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.7638613492615978, 3.753810494747732, 3.1657630564931054, 2.9466797033067182, 2.685147149953697, 2.74198776946664, 3.242696738590686, 3.5382163117692076, 3.662498824770437, 3.8677472233182213, 3.6228962261863034, 2.436303651800658, 1.9350501596579883, 1.9957099247797114, 2.0550373316925965, 2.0528898915138925, 1.9630658341436487, 2.1135770990069624, 1.8290319191602042, 1.9098177963709084, 2.0668945673039016 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.5934655980632155, 3.548533908780519, 3.349002409814456, 3.060168171858613, 2.9128624453142065, 2.926654511483764, 3.0023447861311587, 3.053442793534023, 3.0084420497144366, 2.585143780489844, 2.1981545495927466, 1.7980461604896, 1.3621126339804668, 1.4556070692476164, 1.4431188774449322, 1.1771508174004295, 0.9787174754961157, 1.1880858596157842, 0.8698621293351335, 0.8518676455249276, 1.00329835626176 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.8323446720996035, 3.8292430084405567, 3.577013559820638, 3.597136566035639, 3.5867990457896184, 3.5676597252268745, 3.579477766358362, 3.557999384264932, 3.4685021792719386, 3.202167677385934, 2.959141323233281, 2.5474166904022413, 2.461555392681127, 2.134036054386566, 2.5727768297942926, 1.822970686592786, 1.5674622859561151, 1.9748481783158731, 1.2552069810680455, 1.3214182708676119, 1.0950576778478405 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.997698982408296, 4.991588850568052, 4.673376614729188, 4.532395900452968, 4.463957613063975, 4.438705043041617, 4.521047744194799, 4.528084329298835, 4.412945966617405, 4.384385396285871, 4.189235815628093, 3.8748976760172327, 3.9024084214298624, 3.5234263304921085, 4.103113751309581, 3.6991677232428546, 3.592013397236208, 4.173551886664502, 3.1431895136102317, 2.6439424917570276, 2.1567547378047283 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.034522209795082, 4.069606959844127, 3.046397932960755, 2.547698938341586, 2.2418864060940678, 2.269594297991462, 2.4975174878831328, 3.006044191823148, 3.0250792042509076, 3.1385358039340576, 2.9314105178730427, 1.3430072376041047, 1.0192912501635463, 1.046925066351142, 1.1302304138213302, 1.2069747067890837, 1.178685677086784, 1.3312898345317736, 1.1227509423591726, 1.083958687403533, 1.2531337630694785 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.682042436638364, 3.724378298274257, 3.4281994753556884, 3.1941395153024774, 2.881660418915127, 2.865505144711358, 2.9207857684420886, 3.0675773176494827, 2.9443643140286477, 2.6731699221999516, 2.486512890535251, 2.014211160126218, 1.9544587399438025, 1.6742944294059305, 2.027498479978178, 1.2436826119299789, 0.9144079358263935, 1.4720652414071644, 0.8599532498430101, 0.9789892446355175, 0.7412542446185061 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.534492939951884, 4.465137948243412, 4.055242015645101, 3.9244833908859427, 3.740138167631671, 3.6112305577323047, 3.8070910867325547, 4.032251536722141, 3.91264202945862, 3.520001019566266, 2.395171880946644, 1.4952231025300438, 1.1393994265723324, 1.1727035322578643, 1.2560088797280524, 1.316369894196721, 1.283704453224626, 1.5366735751600988, 1.3478213540076702, 1.3138748401171048, 1.3357011122254052 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.809033799697225, 3.6490585404110627, 3.4622707151317216, 3.4291181022299972, 3.308186301847736, 3.3012751805662224, 3.341813891481782, 3.405824413993662, 3.2806566748511687, 3.0140880894956394, 2.9167932699473136, 2.2595780380603396, 2.07260462853187, 2.125004504927234, 2.127887636627112, 1.779078868969594, 1.6379698097820565, 1.9293701384360633, 1.5326868347450735, 1.5545005553145033, 1.446296363652846 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 1.0431638878194947, 1.1610286253537954, 1.0277335962934597, 1.0916305632846024, 1.0280136271486728, 0.9528568261233993, 0.9722274041555642, 1.0577969579338526, 0.9765175813042325, 0.9175286574032554, 0.8730986223716483, 0.6717805558927232, 0.47441494136250617, 0.5524619585888816, 0.6327833603291246, 0.6475140585032629, 0.5794816976900306, 0.9500349104806101, 0.5007688916929197, 0.4843541794907821, 0.6135737826902796 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.9282335904376247, 2.8542932402157275, 2.022160122204058, 1.9462473732145857, 1.8890884024922627, 1.8839979110303162, 1.966658337341327, 2.0513076169804996, 2.094396381419815, 2.1348135182545454, 1.9662442258230506, 1.3341468035757165, 1.1079346445493254, 1.1384397775882606, 1.2217451250584488, 1.2332313770520285, 1.1780816546661534, 1.594356922633751, 1.0263101758070003, 1.010374775858753, 1.0684017911477257 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.503287192889348, 3.50360984932159, 3.2860967691052894, 3.0968468559809383, 3.0010676108892462, 2.908634386289373, 2.992913824141598, 3.138549702658607, 2.92348251188376, 2.7561424757859334, 2.3858258821566807, 2.060333217149002, 1.8825413751419104, 2.1216006541348653, 2.0750643754358444, 1.571700178454346, 1.2990382564246068, 1.8858321708456494, 1.005394686950692, 1.0029940912260207, 1.1145045411869634 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.5499506555975473, 2.8058614849862615, 2.4561502378042563, 2.4792250664572557, 2.1593420093874918, 2.0359992697443587, 2.0043373196893, 2.022300262957282, 1.9448865040923333, 1.9345848251222615, 1.8517018330927242, 1.5096799564602164, 1.1616048186082664, 1.2236501231183001, 1.2967649177169267, 1.44416378187741, 1.3544415681535522, 1.5339749119071573, 1.343274919402429, 1.3694499132400244, 1.4111411940708687 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.147639884627804, 4.017915627695722, 3.888180919196137, 3.845363451947475, 3.6424910573151643, 3.5980138395696772, 3.643131439001854, 3.8361652430678603, 3.667025640866659, 3.3988319872148196, 3.2593680751436516, 2.1795439578648845, 1.6713301642621357, 1.6553399405662441, 1.4648980408305647, 1.419775759831978, 1.4726627920521462, 1.691037624339067, 1.4094924882485274, 1.3183515667527912, 1.427628252945071 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.196767589846732, 3.137478414689641, 2.0591523437387127, 1.7567153238311781, 1.575981595223527, 1.617121483492895, 1.656588106515876, 1.831807267285105, 1.9013831998448274, 1.9337401558986358, 1.6558699483956287, 0.9963441077723454, 0.8281622694808721, 0.8736836676717314, 0.95698901514192, 0.976448015337932, 0.8981895403751923, 1.4405764975619377, 0.8719536755480602, 0.8362617589478698, 0.9069021673802282 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 1.5117684926743737, 1.5118177921560678, 1.2321713432483823, 1.2439210563131098, 1.1894253432083266, 1.1488348020676389, 1.1433489298143007, 1.1586248192476245, 1.0959697393767347, 1.043559424601347, 1.043559424601347, 0.8595035127019156, 0.6817999770371269, 0.7512170744356659, 0.8562373616557385, 0.8593853906354243, 0.8066773624639105, 1.033307448835763, 0.7957527810326708, 0.7818587304931336, 0.8535014484994321 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.669820317528965, 2.5660140846024437, 1.8678239545652704, 1.6545176714486742, 1.4242013990651066, 1.4994987341930635, 1.533563885691407, 1.6059627777553769, 1.6193472138225022, 1.6843004702140527, 1.6516175026384075, 0.8356305407285245, 0.6481092135187324, 0.7385869309853129, 0.8436072182053855, 0.815068836246679, 0.7734091934154667, 1.2745799093537664, 0.7548948447524656, 0.7531779423815869, 0.8625945635121675 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.674502047372405, 3.494567611319173, 3.3553356419402482, 3.312518174691586, 3.314078861735159, 3.2898904882482882, 3.3359470101151616, 3.4392650543527776, 3.383631666115157, 2.969815483942163, 2.728091127222243, 1.789446678469369, 1.5319124152843508, 1.682631705175201, 1.657387360867329, 1.378781800852859, 1.2557638293439302, 1.5814419239921915, 1.1728567632708269, 1.1664504006013758, 1.2202126339878543 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.970528921563801, 4.915959872824734, 4.216733879990768, 3.95204663786517, 3.315338266500513, 3.112701409375865, 3.27940451071419, 4.063003334649832, 3.992124057695158, 3.840406230430379, 2.8583354908410943, 1.5531513371046104, 1.1060209411176045, 1.1124452392586148, 1.195750586728803, 1.281874517282809, 1.2485188605618716, 1.597585212516733, 1.1560344759541412, 1.2172812059944336, 1.3366786722065136 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 1.0181106497068406, 1.101285957032064, 1.0388573426567906, 0.957759650366959, 0.898534742489965, 0.8845005537060506, 0.8856284571533622, 0.932414433906995, 0.8854553948822667, 0.8485713937929943, 0.8364092400715781, 0.6603580486348802, 0.46457000827487954, 0.5345606086897862, 0.6243123374782745, 0.6351001934963226, 0.5699425204840622, 1.1028577615134982, 0.6543196494169363, 0.6616322960813255, 0.7867233924578364 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.07386269752432, 1.8521166715269235, 1.6549145477249803, 1.6468485913060338, 1.5342488738497628, 1.5593072165681066, 1.5739736778759823, 1.7053675815408011, 1.7166853449896078, 1.6299573711838704, 1.5624333955090337, 0.9523565390980105, 0.6996666337484686, 0.769657234163375, 0.849978635903618, 0.8607664919216661, 0.7956088189094057, 1.2491083129430145, 0.8113911257376589, 0.7949764135355216, 0.887566189224852 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.270076015560975, 3.2013651473981986, 2.87865442033789, 2.9036474070588625, 2.736750268918236, 2.679457152878724, 2.8018204166836016, 2.8383208724184974, 2.8105466347781154, 2.765340109858371, 2.623567281044939, 1.8842951352020392, 1.8086728965177417, 1.4506647594952162, 1.7487263552840924, 1.285113010492989, 1.0588769848678352, 1.527011073839688, 0.876360762629346, 0.9829278834417163, 0.8013878098139565 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.21666283750263, 4.193161166570045, 4.04487674025524, 3.9340506143205345, 3.9687283151109716, 3.845656426455844, 4.008385038472781, 4.102232935470293, 4.039447515467459, 3.739802365990181, 3.47041356731472, 2.643616172310508, 1.920633624569382, 1.9750929935222719, 2.0658740533708952, 2.1658695606512235, 2.0744436359168614, 2.357956694647527, 2.030478697896332, 2.198483468602021, 2.2487177679890307 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.0917170932391334, 3.0159795693010825, 2.667231824344685, 2.38343963510218, 1.7795182498268685, 1.5498583843950824, 1.677239418514868, 2.237398242936937, 2.348787669682581, 2.205578607586647, 1.8808427236816843, 0.8693641341948568, 0.7255563770908734, 0.7710777752817332, 0.8760980625018058, 0.880406452993358, 0.8387468101621454, 1.3192943398647523, 0.8188363908465901, 0.7791391169452258, 0.8885557380758066 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.8494636853614472, 3.717259655082892, 3.3670258710733925, 3.3306988793314063, 3.082739385893168, 3.0047938971064485, 3.139893163826766, 3.3423942113603347, 3.18509100526201, 2.975327458901289, 2.9899445294549754, 1.8944345136397664, 1.5272599147039805, 1.4086798667517546, 1.2275113741460444, 1.1729496611805896, 1.2154771068848402, 1.5197350708447581, 1.075333983340138, 1.0337759652171579, 1.1608103896708983 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.512355789815549, 4.468527625000592, 3.8746831798837977, 3.690972892329221, 3.6308176225103077, 3.605515221529766, 3.6888528306376216, 3.811938298664387, 3.6658667963942837, 3.4630475967511027, 3.2695124366647925, 2.900604348275215, 2.8734124266886463, 2.3585963719381593, 3.0626048737269786, 2.2430413461961614, 2.0146140245311246, 2.3541064912530705, 1.444973612661742, 1.5070212775913934, 1.3539339872252003 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.89422932334522, 4.9644322561417455, 4.699953275274582, 4.557108251866688, 4.508659404993835, 4.49140666787262, 4.6131363553672555, 4.723167589615291, 4.662702097689469, 4.461569533284655, 4.129176742535412, 3.5684743419778613, 3.397114324250319, 3.351896305875864, 3.142626374589276, 2.8897920779948754, 2.8770713227996807, 3.041042645369411, 2.705066399427397, 2.6762475282399785, 3.01577477779134 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.4148375754577978, 2.3106548645695804, 2.2029385390347853, 1.9520892141614419, 1.8669795000545333, 1.829282130872996, 1.8151072166088213, 1.9637766160971208, 1.7588196490094177, 1.4347850748663622, 1.517787039794716, 0.8107869814634002, 0.6619415627486923, 0.6853509121863723, 0.6968218754797841, 0.7156418374676045, 0.7647269816550906, 1.2182264756887, 0.8964561515494824, 0.9037687982138715, 1.0487873256239855 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.5994184706379966, 2.499321721330694, 1.9784388538848197, 1.8109403010719225, 1.4159925701266964, 1.2195407381124497, 1.3128253801186618, 2.3638447711190387, 2.4478584999234636, 2.2965071068865908, 1.9869950803563505, 0.9545677277466743, 0.7703298315399923, 0.8545708369600563, 0.9595911241801289, 0.9142122091192222, 0.8170515787458162, 1.2241734066772065, 0.8165983585638955, 0.8125429288193169, 0.9476667954700855 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.163418716408288, 3.107746560227431, 2.7101577749853054, 2.4993359663690238, 2.265035315172974, 2.1815590882481137, 2.240753405752242, 2.2065823064893038, 2.1287150226556104, 1.9484331659418566, 1.9134690525711966, 0.7791570914035049, 0.5139890406869093, 0.5684874516901268, 0.7111728231243155, 0.7219606791423636, 0.6756418775428733, 1.2130390856799629, 0.7624518701442105, 0.7553144244338783, 0.9595650981854706 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.049315368451474, 2.285259174090458, 1.7430825435239121, 1.7871095262544516, 1.6952218767671845, 1.5288583652762062, 1.515441698632004, 1.377052084160409, 1.3983510372462298, 1.4042640337937256, 1.4187782669083833, 1.2987824916608484, 1.0685117068953671, 1.0749360050363774, 1.1582413525065656, 1.1991043582987109, 1.097332892738304, 1.3939708712257146, 1.0934564400210562, 1.054045501592165, 1.0834845190928875 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.48801089354348, 4.441300850456811, 4.147500970970042, 4.060236969850626, 3.962838087754315, 3.939990742813806, 4.073230057844055, 4.229332244496688, 4.2274375592466, 4.014851785483764, 3.520690383584971, 3.0492153128683728, 2.5876341939814473, 2.5346602859844, 2.2125406501893727, 2.214366129218869, 2.283810763816285, 2.444984061712888, 1.9505180689631096, 1.9811212488464465, 2.1088715633118134 ], "yaxis": "y2" }, { "legendgroup": "median", "line": { "color": "rgb(248,0,0)", "width": 4 }, "mode": "lines", "name": "Type=median", "opacity": 1.0, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.670661177372195, 3.5885811155677976, 3.229490957614793, 3.0815477996108886, 2.9110755382468048, 2.8652282858783638, 2.933685621381308, 3.091621278414597, 2.9975111929040965, 2.7715108706981684, 2.462807873892932, 1.6472897589100772, 1.2479028770334257, 1.2675487461787376, 1.3297841521958766, 1.2944440001897144, 1.2192921220551418, 1.5203525175318204, 1.113825590523354, 1.1182923687494175, 1.1380822082726696 ], "yaxis": "y2" }, { "legendgroup": "None", "marker": { "color": "Black" }, "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.12403521126760139, "x": [ 32.60064669014085, 32.735845070422535, 32.86640845070423, 32.99697183098591, 33.127535211267606, 33.2580985915493, 33.388661971830984, 33.51922535211267, 33.64978873239437, 33.780352112676056, 33.91091549295774, 34.04147887323944, 34.17204225352113, 34.30260563380281, 34.433169014084505, 34.5637323943662, 34.694295774647884, 34.82485915492958, 34.95542253521127, 35.085985915492955, 35.21654929577465, 35.34711267605634, 35.47767605633803, 35.60823943661972, 35.73880281690141, 35.8693661971831, 35.99992957746478, 36.13049295774648, 36.26105633802817, 36.391619718309855, 36.522183098591555, 36.65274647887324, 36.783309859154926, 36.91387323943662, 37.04443661971831, 37.175, 37.30556338028169, 37.43612676056338, 37.56669014084507, 37.69725352112676, 37.827816901408454, 37.95838028169014, 38.08894366197183, 38.219507042253525, 38.35007042253521, 38.480633802816904, 38.6111971830986, 38.74176056338028, 38.87232394366197, 39.00288732394367, 39.13345070422535, 39.26401408450704, 39.39457746478873, 39.525140845070425, 39.65570422535211, 39.7862676056338, 39.916830985915496, 40.04739436619718, 40.177957746478874, 40.30852112676057, 40.43908450704225, 40.569647887323946, 40.70021126760564, 40.830774647887324, 40.96133802816902, 41.09190140845071, 41.222464788732395, 41.35302816901409, 41.48359154929578, 41.61415492957747, 41.74471830985915 ], "xaxis": "x", "y": [ 0.0084, 0.0422, 0.019, 0.0094, 0.0076, 0.005, 0.002, 0.01, 0.0258, 0.061, 0.0952, 0.1366, 0.085, 0.0212, 0.0098, 0.0032, 0.0042, 0.003, 0.0054, 0.005, 0.0026, 0.0112, 0.0008, 0.0024, 0.0014, 0.0006, 0.0014, 0.0036, 0.0066, 0.0048, 0.0042, 0.0116, 0.0184, 0.0056, 0.0062, 0.0058, 0.0392, 0.0208, 0.0224, 0.051, 0.0448, 0.0344, 0.0138, 0.0072, 0.0118, 0.0178, 0.0234, 0.012, 0.0046, 0.008, 0.0078, 0.005, 0.0036, 0.0032, 0.0016, 0.005, 0.0014, 0.0012, 0.001, 0.0012, 0.0018, 0.0026, 0.0008, 0.003, 0.0014, 0.0, 0.0002, 0.0, 0.0008, 0.0004, 0.0006 ], "yaxis": "y" } ], "layout": { "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Individual Conditional Expectations (ICE)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ 32.492999999999995, 39.247 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Latitude" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.14343 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ 0.19961103947748154, 6.028708353020237 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Target" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_feature_dependence_default.show_in_notebook(ice=True)" ] }, { "cell_type": "markdown", "id": "ab30405b", "metadata": {}, "source": [ "We can also plot the PDP for multiple features. The plot below is the PDP for the `Latitude` and `Longitude` features. The X-axis still shows the values of `Latitude`, while there is a different curve and confidence interval for each value of the feature `Longitude`.\n", "\n", "The histogram displays the joint distribution of the two features." ] }, { "cell_type": "code", "execution_count": 24, "id": "f4d8c254", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:49.154529Z", "iopub.status.busy": "2025-05-22T12:37:49.153910Z", "iopub.status.idle": "2025-05-22T12:37:56.922029Z", "shell.execute_reply": "2025-05-22T12:37:56.921149Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "toself", "fillcolor": "rgb(87.618429682915, 2.1991622871402274, 162.60376970786896)", "legendgroup": "-122.48", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 4.146238052069015, 4.08887786557127, 3.757533375654307, 3.6195179850649244, 3.575183068794449, 3.646839519654666, 3.697262268342822, 3.6070204994485833, 3.400517752569865, 3.4101053050382175, 3.1481243139855395, 2.8388338723229545, 3.208014803347295, 2.848266979490585, 3.4628267525661243, 2.717019646791585, 2.3555635361215086, 1.8212079281121827, 1.7386783777121948, 2.283687912644376, 2.644161829697983, 3.3971598630962077, 2.786173027433368, 3.142259786059876, 2.779143720524754, 3.086235838704234, 3.3452544984847394, 3.334210734038826, 3.5383291942957724, 3.6268171215082035, 3.5756428449109103, 3.506288939086541, 3.5506139147886455, 3.684104268219015, 4.018571041015271, 4.078314291108227 ], "yaxis": "y2" }, { "legendgroup": "-122.48", "line": { "color": "rgb(87.618429682915, 2.1991622871402274, 162.60376970786896)" }, "mode": "lines+markers", "name": "Longitude=-122.48", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 4.112276171588621, 4.05372445329327, 3.720818821936661, 3.585065949926785, 3.540736003940495, 3.611241182282788, 3.6620396949255127, 3.572674846872178, 3.3673642433043454, 3.3776799017614785, 3.1171800763448867, 2.8089887964238542, 3.1751372947035854, 2.8172200034619763, 3.429993307831166, 2.680590738244784, 2.3196257243829423, 1.7799431529121887 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(108.79665243628841, 1.2365157983505268, 166.93567890742264)", "legendgroup": "-121.99199999999999", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 4.247814216654237, 4.190348697774644, 3.852408878814151, 3.718652094989479, 3.658116560722509, 3.7313772683011512, 3.825138328702699, 3.7096153877251057, 3.286760482457237, 3.2465076284177363, 2.9482402528766074, 2.7366482610556027, 2.5982404600646696, 2.0793502741865018, 2.114454966581279, 1.7588013726054585, 1.7171413906234676, 1.4859570523457015, 1.4197598462636436, 1.6548235575837977, 1.6952671699628543, 2.0448303590819026, 2.008739222952018, 2.528873392699426, 2.665645350565293, 2.8748743895806244, 3.175548279364349, 3.214517052380881, 3.634409737279918, 3.750884797535248, 3.6570496628326365, 3.585859508884093, 3.6462240202048797, 3.7763227278617837, 4.115001130577772, 4.17463904828888 ], "yaxis": "y2" }, { "legendgroup": "-121.99199999999999", "line": { "color": "rgb(108.79665243628841, 1.2365157983505268, 166.93567890742264)" }, "mode": "lines+markers", "name": "Longitude=-121.992", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 4.211226632471559, 4.152674914176208, 3.8143658033379673, 3.6824380575971793, 3.621988034803301, 3.694213465566894, 3.7880115631189737, 3.6720125625025117, 3.250638767419059, 3.2110279538910427, 2.911557321228616, 2.7011468058104477, 2.5635569263820477, 2.04404474856926, 2.0796426628315907, 1.7270342712841564, 1.6859824741036327, 1.4528584493046726 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(155.5124234987004, 22.744602785033546, 158.11608964316656)", "legendgroup": "-120.87", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 3.958630908570493, 3.9044761719492653, 3.562123472543959, 3.4246831770118726, 3.332379680314513, 3.4257143505082364, 3.54070148920605, 3.393827502565991, 2.890973731730844, 2.8309423235673683, 1.8524924499149107, 1.7282780574030983, 1.6128735473981186, 1.528331991934288, 1.6137321712004844, 1.412395422209692, 1.394592577231608, 1.5498657089478534, 1.4891232049438257, 1.3374333987808968, 1.3581560590028297, 1.552262679412726, 1.4672907847749894, 1.5475788211574606, 1.6610372872393135, 1.7809298137204712, 2.7621635425591475, 2.82097579750176, 3.3196065934773444, 3.4670398462368333, 3.3539328455924333, 3.262486341594951, 3.3544099161980094, 3.486963365354424, 3.830096118786952, 3.8864761740243186 ], "yaxis": "y2" }, { "legendgroup": "-120.87", "line": { "color": "rgb(155.5124234987004, 22.744602785033546, 158.11608964316656)" }, "mode": "lines+markers", "name": "Longitude=-120.87", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 3.9225535412974057, 3.8672861453681087, 3.5245434189491913, 3.389546546604941, 3.297433010954732, 3.389823598050335, 3.5038706677214417, 3.3567170480216677, 2.855974764616302, 2.796552933063258, 1.816711131817691, 1.694657672321206, 1.5802261842777896, 1.4978113883546387, 1.5829974253066053, 1.3852757406062608, 1.3660129880062524, 1.5194944569458395 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(223.25951838086016, 98.75350594996405, 98.70340756473126)", "legendgroup": "-118.48", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 4.199169908825556, 4.128450653880342, 3.6998904491168467, 3.535946405953445, 3.4261087833567676, 3.5163648468504927, 3.665796515185872, 3.5480428801339454, 2.677639052730138, 2.377561578568544, 1.1760059257568836, 1.2012809556344355, 1.3204366287570573, 1.3560198608154224, 1.3200273932338622, 1.2242018940089665, 1.23055205015752, 1.3624708210663952, 1.3085270609447373, 1.1786837551036655, 1.1749755452040247, 1.2681452881928823, 1.3029907906835638, 1.2685737905031782, 1.1522478431037209, 1.1236790346762455, 2.3102222165648314, 2.6110937939293772, 3.476840290388529, 3.5943745833564362, 3.4484261051220044, 3.361920336496262, 3.4700204143620903, 3.6290751667572634, 4.057743859778019, 4.130589555452416 ], "yaxis": "y2" }, { "legendgroup": "-118.48", "line": { "color": "rgb(223.25951838086016, 98.75350594996405, 98.70340756473126)" }, "mode": "lines+markers", "name": "Longitude=-118.48", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 4.164879732138986, 4.09309725682918, 3.664482807937055, 3.5029834101577677, 3.394014559926515, 3.4823954759862485, 3.630085549271154, 3.512441585261237, 2.6443664233297577, 2.343891897566688, 1.1498424802165645, 1.1767643993690782, 1.2945052096301177, 1.329505325749493, 1.2940863407133723, 1.1995887196064956, 1.2046179026305928, 1.3354989410055662 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(228.4376885305997, 107.13721000192331, 92.78549882217179)", "legendgroup": "-118.23", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 3.3778821328494306, 3.251719882074198, 2.370108056188379, 2.1285077845062297, 2.07109699356144, 2.2158579900065103, 2.509532984330878, 2.499249913377356, 2.518958726140107, 2.3186396503541795, 1.164721267568736, 1.1915194363031896, 1.3075344144332994, 1.3487848123681294, 1.3140125881777107, 1.2065610376523754, 1.2123587222645975, 1.3439826638743095, 1.2896591435898543, 1.160237839958937, 1.1570658239685512, 1.2616938934650535, 1.2953167299965171, 1.255340097445042, 1.1416180950385, 1.1115993026918696, 2.246648528121682, 2.444505674846496, 2.4211976619122826, 2.4319468136854776, 2.1352714550638625, 1.9929163155608265, 2.0520656549829948, 2.2920150415960463, 3.171725727554909, 3.2995322004520693 ], "yaxis": "y2" }, { "legendgroup": "-118.23", "line": { "color": "rgb(228.4376885305997, 107.13721000192331, 92.78549882217179)" }, "mode": "lines+markers", "name": "Longitude=-118.23", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 3.33870716665075, 3.2117228048145536, 2.3310615488922126, 2.090286719744612, 2.0320066545611333, 2.1755647225351864, 2.4707398990081777, 2.460223787644819, 2.4817322004933016, 2.2826440892379307, 1.1381602851303028, 1.1665687656708448, 1.2814372559391707, 1.3220507711823233, 1.287853240821382, 1.1818134308104633, 1.1862982811117673, 1.316820903732082 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(235.4799999342455, 118.53904751258798, 84.73714293229082)", "legendgroup": "-117.89", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 3.137944011933826, 3.000482414181797, 2.2422353815417972, 2.1532102535975697, 2.1067838414718563, 2.1571253522499827, 2.1935304604147046, 2.2005910856107, 2.0906759098576684, 1.9624016918467895, 1.0504233536380156, 1.0768826871711397, 1.1930205999847743, 1.1969023777445091, 1.1705113538463687, 1.0692041083773471, 1.0434049796292122, 1.1723606238442135, 1.1229110265731417, 0.9961649846285985, 1.0250713355419223, 1.12329645388055, 1.1497972574578181, 1.1465805718814488, 1.0325517272306903, 1.002754832956489, 1.8970304088777015, 2.0231250365111073, 2.1303404289439305, 2.124551103340721, 2.088414608825854, 2.0394619196770924, 2.0875987210037734, 2.1747778875571866, 2.9283140790842603, 3.067354285386265 ], "yaxis": "y2" }, { "legendgroup": "-117.89", "line": { "color": "rgb(235.4799999342455, 118.53904751258798, 84.73714293229082)" }, "mode": "lines+markers", "name": "Longitude=-117.89", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 3.1026491486600456, 2.9643982466330288, 2.208506634549492, 2.1204044873006715, 2.0731228805744744, 2.1227699805379183, 2.159040781877713, 2.1654657572773153, 2.056900473184388, 1.9297160503622455, 1.0265890932972523, 1.054717207200915, 1.1698005859331115, 1.1733498176011636, 1.1469039038634594, 1.0471377219596347, 1.0197849821289053, 1.1476358252086776 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(247.44768322092048, 149.35799731392703, 64.34342281978485)", "legendgroup": "-117.06", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 1.779597202867377, 1.8784921885473527, 1.6585057627661812, 1.6251321285604128, 1.4690502886114536, 1.4868232944469046, 1.5064641058798687, 1.4477605522460082, 1.3936630221005648, 1.417325814742214, 0.9643854517882656, 0.9913068334264244, 1.108404145427062, 1.1395775934561385, 1.111063528219306, 1.0247878227250196, 1.031221720510023, 1.127233593277226, 1.0816361013313012, 0.9868601932806016, 0.9832418727185286, 1.0667284265600474, 1.0952077844259982, 1.0664476415985564, 0.951407991901919, 0.9212749544732891, 1.3646761670251233, 1.3420994017370702, 1.3948729499592698, 1.4535877565330524, 1.4341609835445965, 1.4163996161439982, 1.5662106166362597, 1.5962063794415338, 1.810482679516712, 1.7167950254882562 ], "yaxis": "y2" }, { "legendgroup": "-117.06", "line": { "color": "rgb(247.44768322092048, 149.35799731392703, 64.34342281978485)" }, "mode": "lines+markers", "name": "Longitude=-117.06", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 1.7481961141778166, 1.8444874340320323, 1.6273560711038575, 1.5956713725983362, 1.442724952377726, 1.4604921389957506, 1.4800259312064605, 1.421316751102639, 1.3678812119188175, 1.3910009908836687, 0.9428302031307774, 0.9713574126641717, 1.0874258935128092, 1.1173926889410684, 1.0888959773896767, 1.004014847721774, 1.0090409568953123, 1.1044348473042636 ], "yaxis": "y2" }, { "legendgroup": "-123.899845", "marker": { "color": "rgb(13.0, 8.0, 135.0)", "line": { "width": 0 } }, "name": "Longitude=-123.9", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 39.121700000000004, 39.3071, 39.4925, 40.048700000000004, 40.234100000000005, 40.4195, 40.6049, 40.7903, 40.9757, 41.7173 ], "xaxis": "x", "y": [ 0.0004, 0.0004, 0.0008, 0.0002, 0.0002, 0.0004, 0.0004, 0.0026, 0.001, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-123.325", "marker": { "color": "rgb(45.31786238560746, 5.165099790736187, 148.6075210044663)", "line": { "width": 0 } }, "name": "Longitude=-123.325", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925, 39.6779, 40.234100000000005, 40.4195 ], "xaxis": "x", "y": [ 0.0002, 0.0002, 0.0008, 0.0004, 0.0006, 0.0004, 0.001, 0.0006, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-122.755", "marker": { "color": "rgb(75.68398038542044, 2.7416372552081616, 160.16263235156327)", "line": { "width": 0 } }, "name": "Longitude=-122.755", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.6779, 39.8633, 40.9757, 41.5319, 41.7173 ], "xaxis": "x", "y": [ 0.0002, 0.0038, 0.0088, 0.0056, 0.003, 0.0122, 0.0026, 0.0008, 0.0032, 0.0014, 0.0006, 0.0004, 0.0002, 0.0002, 0.0004, 0.0004 ], "yaxis": "y" }, { "legendgroup": "-122.185", "marker": { "color": "rgb(100.42083892931872, 1.6172345941218762, 165.22244432645155)", "line": { "width": 0 } }, "name": "Longitude=-122.185", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 39.121700000000004, 39.3071, 39.4925, 39.6779, 39.8633, 40.048700000000004, 40.234100000000005, 40.4195, 40.6049, 40.9757, 41.161100000000005, 41.3465, 41.7173 ], "xaxis": "x", "y": [ 0.0008, 0.001, 0.0034, 0.0032, 0.0218, 0.0206, 0.0302, 0.0496, 0.0236, 0.0054, 0.0044, 0.0002, 0.0004, 0.0012, 0.0008, 0.0006, 0.0004, 0.0004, 0.0006, 0.0006, 0.0014, 0.002, 0.0004, 0.0002, 0.0002, 0.0004 ], "yaxis": "y" }, { "legendgroup": "-121.61500000000001", "marker": { "color": "rgb(124.65052940625259, 6.578848736608495, 165.46415966517796)", "line": { "width": 0 } }, "name": "Longitude=-121.615", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925, 39.6779, 39.8633, 40.048700000000004, 40.6049, 40.7903, 41.5319 ], "xaxis": "x", "y": [ 0.0012, 0.005, 0.0032, 0.0022, 0.0126, 0.0034, 0.0034, 0.0012, 0.0028, 0.0004, 0.0012, 0.0222, 0.0058, 0.0002, 0.004, 0.0014, 0.0022, 0.0036, 0.0004, 0.0006, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-121.045", "marker": { "color": "rgb(148.26298528906517, 18.947278008557944, 159.84214635974638)", "line": { "width": 0 } }, "name": "Longitude=-121.045", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 35.2283, 35.4137, 35.5991, 36.1553, 36.3407, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.8633, 40.048700000000004, 40.234100000000005, 40.4195, 40.7903 ], "xaxis": "x", "y": [ 0.0006, 0.0008, 0.0002, 0.0004, 0.0006, 0.0002, 0.0004, 0.0044, 0.0092, 0.0062, 0.006, 0.0028, 0.0006, 0.003, 0.0074, 0.0032, 0.002, 0.0016, 0.0006, 0.0004, 0.0006, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-120.475", "marker": { "color": "rgb(168.4735609207611, 35.09557422619257, 148.92831933035558)", "line": { "width": 0 } }, "name": "Longitude=-120.475", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.6721, 34.8575, 35.0429, 35.2283, 35.5991, 35.7845, 36.1553, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.8239, 38.0093, 38.1947, 38.3801, 38.7509, 39.121700000000004, 39.3071, 39.4925, 39.8633, 40.234100000000005, 40.4195, 40.6049 ], "xaxis": "x", "y": [ 0.0022, 0.003, 0.0052, 0.002, 0.0012, 0.0002, 0.0008, 0.0004, 0.0002, 0.001, 0.0042, 0.0006, 0.0006, 0.0022, 0.0004, 0.002, 0.0012, 0.0002, 0.0002, 0.0004, 0.0008, 0.0004, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-119.905", "marker": { "color": "rgb(187.0262048286848, 53.08601680357313, 135.43548739732014)", "line": { "width": 0 } }, "name": "Longitude=-119.905", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.3013, 34.4867, 34.6721, 35.2283, 35.9699, 36.1553, 36.3407, 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.4531, 37.6385, 38.1947, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925 ], "xaxis": "x", "y": [ 0.0004, 0.0058, 0.001, 0.0004, 0.0004, 0.0002, 0.003, 0.0014, 0.0138, 0.0068, 0.0004, 0.0006, 0.0002, 0.0004, 0.0004, 0.003, 0.0006, 0.0004, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-119.33500000000001", "marker": { "color": "rgb(202.56451260267966, 71.07645938095368, 120.43548739732033)", "line": { "width": 0 } }, "name": "Longitude=-119.335", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.115899999999996, 34.3013, 34.4867, 34.6721, 34.8575, 35.0429, 35.2283, 35.4137, 35.5991, 35.7845, 35.9699, 36.1553, 36.3407, 36.5261, 36.7115, 37.082300000000004, 37.4531, 38.5655 ], "xaxis": "x", "y": [ 0.004, 0.0076, 0.0006, 0.0002, 0.0002, 0.0002, 0.001, 0.0018, 0.0002, 0.0012, 0.0006, 0.0032, 0.005, 0.0032, 0.0024, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-118.765", "marker": { "color": "rgb(217.35640441015713, 89.1960833307306, 105.44982353124898)", "line": { "width": 0 } }, "name": "Longitude=-118.765", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.8575, 35.0429, 35.2283, 35.4137, 35.7845, 35.9699, 36.1553, 36.3407, 36.5261, 37.4531, 37.6385 ], "xaxis": "x", "y": [ 0.0018, 0.016, 0.013, 0.0004, 0.0002, 0.0002, 0.0014, 0.007, 0.0002, 0.0006, 0.0006, 0.0004, 0.0002, 0.0004, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-118.195", "marker": { "color": "rgb(229.16263235156345, 108.31092856919794, 91.95699159821322)", "line": { "width": 0 } }, "name": "Longitude=-118.195", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.6721, 34.8575, 35.0429, 35.5991, 37.2677, 37.4531 ], "xaxis": "x", "y": [ 0.0002, 0.0044, 0.0432, 0.1144, 0.1092, 0.0134, 0.0006, 0.0028, 0.0002, 0.0012, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-117.625", "marker": { "color": "rgb(239.64590686197963, 128.18174719680184, 78.27516631789354)", "line": { "width": 0 } }, "name": "Longitude=-117.625", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.0035, 33.1889, 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.4867, 34.6721, 35.0429, 35.5991, 36.1553 ], "xaxis": "x", "y": [ 0.0004, 0.0012, 0.001, 0.016, 0.0178, 0.0232, 0.0212, 0.0002, 0.0002, 0.0006, 0.001, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-117.055", "marker": { "color": "rgb(247.51672548958362, 149.54539775744124, 64.22013305431497)", "line": { "width": 0 } }, "name": "Longitude=-117.055", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.628065, 32.8181, 33.0035, 33.1889, 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.8575 ], "xaxis": "x", "y": [ 0.0198, 0.0434, 0.0114, 0.0096, 0.0006, 0.0012, 0.0032, 0.0056, 0.0108, 0.0016, 0.0016, 0.0008 ], "yaxis": "y" }, { "legendgroup": "-116.485", "marker": { "color": "rgb(251.62679201674112, 172.476028359934, 51.73207983258884)", "line": { "width": 0 } }, "name": "Longitude=-116.485", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.0035, 33.5597, 33.7451, 33.9305, 34.115899999999996 ], "xaxis": "x", "y": [ 0.0004, 0.0002, 0.0006, 0.0036, 0.0022, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-115.91499999999999", "marker": { "color": "rgb(252.75119467782744, 196.65068557328973, 40.4880532217257)", "line": { "width": 0 } }, "name": "Longitude=-115.915", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.3743, 33.5597, 33.7451, 34.4867, 35.5991 ], "xaxis": "x", "y": [ 0.0002, 0.0006, 0.0006, 0.0004, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-115.345", "marker": { "color": "rgb(247.30861729706086, 222.5765374644723, 35.81100665271571)", "line": { "width": 0 } }, "name": "Longitude=-115.345", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.628065, 32.8181, 33.0035, 33.1889 ], "xaxis": "x", "y": [ 0.0002, 0.003, 0.0008, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-114.775", "marker": { "color": "rgb(240, 249, 33)", "line": { "width": 0 } }, "name": "Longitude=-114.775", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.0035, 33.5597, 33.9305, 34.8575 ], "xaxis": "x", "y": [ 0.0004, 0.0002, 0.0004, 0.0004, 0.0004 ], "yaxis": "y" } ], "layout": { "barmode": "stack", "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Partial Dependence Plot (PDP)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ 32.492999999999995, 39.247 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Latitude" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.16947000000000004 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ 0.7549479913642417, 4.414141179763284 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Target" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_feature_dependence_default = explainer.explain_feature_dependence(['Latitude', 'Longitude'])\n", "result_explain_feature_dependence_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "d09c1dc4", "metadata": {}, "source": [ "\n", "### Prediction Explanations (Local Feature Importance)" ] }, { "cell_type": "markdown", "id": "82e50693", "metadata": {}, "source": [ "Given a data sample, one can also obtain the local importance, which is the importance of the features for the model's prediction on that sample.\n", "In the following cell, we consider sample $10$. The function `explain_prediction()` computes the local importance for a given sample.\n", "\n", "`Latitude=33.0` means that the value of feature `Latitude` for that sample is `33.0`. Removing that feature would change the model's prediction by the magnitude of the bar. That is, in this case, the model's prediction for the median house price is approximately 1.15 (i.e., $115 000) less because the model knows the value of `Latitude` is `33.0`." ] }, { "cell_type": "code", "execution_count": 25, "id": "09d28ee1", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:37:56.924379Z", "iopub.status.busy": "2025-05-22T12:37:56.924103Z", "iopub.status.idle": "2025-05-22T12:38:00.080337Z", "shell.execute_reply": "2025-05-22T12:38:00.079554Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ 0.08841317833433007, 0.14974558481791123 ], "arrayminus": [ 0.08841317833433007, 0.14974558481791123 ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "negative", "marker": { "color": "#626567" }, "name": "72507=negative", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ -0.24338242465354074, -1.7332424462564444 ], "y": [ "MedInc", "Longitude" ] }, { "error_x": { "array": [ 0.024905661271388907, 0.017975568928522673, 0.02599379523251169, 0.05199070025908137 ], "arrayminus": [ 0.024905661271388907, 0.017975568928522673, 0.02599379523251169, 0.05199070025908137 ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "positive", "marker": { "color": "#F80000" }, "name": "72507=positive", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.1068831738279108, 0.13481949230239365, 0.19951832154471946, 0.7651047103517964 ], "y": [ "AveOccup", "HouseAge", "AveRooms", "Latitude" ] }, { "marker": { "line": { "color": "rgba(0,0,0,0)", "width": 1 } }, "name": "", "orientation": "h", "showlegend": false, "type": "bar", "width": 0, "x": [ 1.7332424462564444 ], "y": [ " " ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "AveOccup = 2.8620", "x": 0, "xanchor": "left", "xref": "x", "y": 1, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "HouseAge = 11.0", "x": 0, "xanchor": "left", "xref": "x", "y": 2, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveRooms = 5.8777", "x": 0, "xanchor": "left", "xref": "x", "y": 3, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "MedInc = 3.1906", "x": 0, "xanchor": "right", "xref": "x", "y": 4, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Latitude = 33.22", "x": 0, "xanchor": "left", "xref": "x", "y": 5, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Longitude = -116.9", "x": 0, "xanchor": "right", "xref": "x", "y": 6, "yref": "y", "yshift": 12.0 }, { "font": { "color": "#626567", "size": 14 }, "showarrow": false, "text": "⇩ Target", "x": 0.15, "xref": "paper", "y": 1.05, "yref": "paper", "yshift": 40 }, { "font": { "color": "#F80000", "size": 14 }, "showarrow": false, "text": "⇧ Target", "x": 0.85, "xref": "paper", "y": 1.05, "yref": "paper", "yshift": 40 } ], "barmode": "overlay", "height": 316, "margin": { "b": 20, "t": 56 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryarray": [ " ", "AveOccup", "HouseAge", "AveRooms", "MedInc", "Latitude", "Longitude" ], "categoryorder": "array", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "title": { "text": " " }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryarray": [ " ", "AveOccup", "HouseAge", "AveRooms", "MedInc", "Latitude", "Longitude" ], "categoryorder": "array", "gridcolor": "white", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": false, "side": "top", "type": "category", "visible": false, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_prediction_default = explainer.explain_prediction(X_train.sample(n=10))\n", "result_explain_prediction_default[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "7ebfbf5e", "metadata": {}, "source": [ "\n", "### Aggregate Local Feature Importance\n", "We now summarize all of the individual local feature importance explanations into one single aggregate explanation." ] }, { "cell_type": "code", "execution_count": 26, "id": "1d8b29d2", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:00.082947Z", "iopub.status.busy": "2025-05-22T12:38:00.082271Z", "iopub.status.idle": "2025-05-22T12:38:00.724651Z", "shell.execute_reply": "2025-05-22T12:38:00.723989Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 8, 9, 7, 6, 5, 0, 1, 3, 2, 4 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Target", "marker": { "color": "rgb(248,0,0)", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Target", "orientation": "h", "showlegend": false, "type": "box", "uid": "ebb6e8fc-1733-47ba-ba49-07b2e712c328", "x": [ 0.7027342504232792, 0.98182908946004, 1.3175641310153885, 1.440535206672612, 1.69778099542959, 1.8839007628263171, 2.3411713343874143, 2.7252171672228034, 3.6072416871786204, 5.167999766940754 ], "xaxis": "x", "y": [ "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target" ], "yaxis": "y" }, { "boxmean": true, "boxpoints": "all", "customdata": [ 0, 9, 8, 2, 6, 5, 9, 1, 3, 7, 6, 8, 7, 5, 0, 7, 9, 8, 1, 3, 5, 6, 6, 9, 8, 5, 7, 8, 6, 9, 5, 1, 2, 9, 8, 7, 3, 3, 1, 0, 4, 7, 1, 0, 2, 3, 4, 0, 5, 1, 6, 2, 4, 0, 3, 2, 4, 4, 4, 2 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Target", "marker": { "color": "rgb(0, 128, 128)", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Target", "orientation": "h", "showlegend": false, "type": "box", "uid": "01e0d16c-37c3-40c7-b435-bcea4851dbc9", "x": [ -1.7332424462564444, -0.9957186522981435, -0.995046806238704, -0.9927068596089069, -0.7673108432872995, -0.7593404520235592, -0.6241262721108424, -0.5836239596762152, -0.4202345626881463, -0.42016815625915926, -0.3499424777519539, -0.33160251286531794, -0.30852759862771906, -0.2725545856663707, -0.24338242465354074, -0.22117066932569115, -0.20687461107034696, -0.1981411646138443, -0.19049303301073747, -0.17352986019268232, -0.10905265070559164, -0.10596080312402341, -0.10254591784169018, -0.10116200212764499, -0.09913561280237926, -0.0963034994097251, -0.04663295767729867, -0.0414326838831498, -0.04052095568106928, -0.03483002037638348, -0.023486540463186593, -0.02321458557496913, -0.01156467377176755, 0.007627657559850497, 0.011620101237282743, 0.0503360537679812, 0.05517949170981251, 0.07869332446775525, 0.09558068379643876, 0.1068831738279108, 0.10898040284280068, 0.11328349690035076, 0.11700279599340879, 0.13481949230239365, 0.1621191512758195, 0.17018922509848794, 0.190777096053542, 0.19951832154471946, 0.2840652704002901, 0.3283830725437831, 0.46928186867493876, 0.5141282008176882, 0.7422184630641682, 0.7651047103517964, 0.7823277245443239, 0.8966226736663178, 0.9252594853880651, 0.9533733003518736, 1.339792223137213, 1.45306671942739 ], "xaxis": "x2", "y": [ "Longitude", "Latitude", "Longitude", "Latitude", "Latitude", "Longitude", "Longitude", "Longitude", "Latitude", "Longitude", "MedInc", "Latitude", "AveOccup", "AveOccup", "MedInc", "MedInc", "AveOccup", "MedInc", "AveRooms", "AveRooms", "MedInc", "AveRooms", "HouseAge", "MedInc", "AveRooms", "AveRooms", "HouseAge", "AveOccup", "AveOccup", "HouseAge", "HouseAge", "MedInc", "AveOccup", "AveRooms", "HouseAge", "AveRooms", "HouseAge", "AveOccup", "AveOccup", "AveOccup", "AveOccup", "Latitude", "HouseAge", "HouseAge", "HouseAge", "MedInc", "HouseAge", "AveRooms", "Latitude", "Latitude", "Longitude", "AveRooms", "AveRooms", "Latitude", "Longitude", "Longitude", "Longitude", "Latitude", "MedInc", "MedInc" ], "yaxis": "y2" } ], "layout": { "annotations": [ { "font": { "size": 16 }, "showarrow": false, "text": "Model Predictions", "x": 0.225, "xanchor": "center", "xref": "paper", "y": 1.0, "yanchor": "bottom", "yref": "paper" }, { "font": { "size": 16 }, "showarrow": false, "text": "Aggregated Feature Attributions", "x": 0.775, "xanchor": "center", "xref": "paper", "y": 1.0, "yanchor": "bottom", "yref": "paper" } ], "height": 600, "plot_bgcolor": "white", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "10 Sample Predictions to Explain", "x": 0.5 }, "width": 1080, "xaxis": { "anchor": "y", "domain": [ 0.0, 0.45 ] }, "xaxis2": { "anchor": "y2", "domain": [ 0.55, 1.0 ] }, "yaxis": { "anchor": "x", "domain": [ 0.0, 1.0 ] }, "yaxis2": { "anchor": "x2", "domain": [ 0.0, 1.0 ] } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2af7ee35067f49cabd74c78922d9cf28", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value='

Samples

'), Output()), layout=Layout(align_items…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "alfi = explainer.aggregate(explanations=result_explain_prediction_default)\n", "alfi.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "4cd5ce75", "metadata": {}, "source": [ "\n", "## Interactive What-If Explanations" ] }, { "cell_type": "markdown", "id": "4b30da9c", "metadata": {}, "source": [ "The Oracle AutoMLx solution offers also What-IF tool to explain a trained ML model's predictions through a simple interactive interface.\n", "\n", "You can use What-IF explainer to explore and visualize immediately how changing a sample value will affect the model's prediction. Furthermore, What-IF can be used to visualize how model's predictions are related to any feature of the dataset." ] }, { "cell_type": "code", "execution_count": 27, "id": "171de38a", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:00.729005Z", "iopub.status.busy": "2025-05-22T12:38:00.728602Z", "iopub.status.idle": "2025-05-22T12:38:01.012292Z", "shell.execute_reply": "2025-05-22T12:38:01.011646Z" }, "lines_to_next_cell": 2 }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3e3add44c7a047c2aaebf0fb2cf718d2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value=\"

Select and Explore Predictions

\"), HTML(value=''), H…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "MedInc: %{x}
predictions: %{y}", "marker": { "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "", "showlegend": false, "type": "scatter", "uid": "15c50d3d-fb2f-4b80-81e5-12ded678c482", "x": [ 2.0278, 4.3056, 3.675, 2.6392, 9.1974, 7.866, 4.5094, 2.4896, 2.5804, 5.8151, 3.625, 4.5913, 2.8603, 2.2578, 3.9625, 1.3333, 1.6469, 2.1731, 3.7156, 5.1171, 1.9956, 5.0123, 2.6058, 6.8406, 2.4531, 5.0767, 7.2639, 1.7743, 2.875, 6.1168, 5.3366, 5.0359, 2.9094, 3.725, 3.3456, 4.5399, 2.3929, 4.1154, 2.6949, 5.5461, 4.5428, 2.5921, 3.1635, 1.6178, 5.193, 2.2417, 6.2893, 2.11, 2.1875, 3.9828, 4.7788, 5.7621, 4.4063, 5.6738, 4.9867, 5.5696, 4.0256, 4.9394, 5.6177, 4.976, 3.8668, 1.3532, 1.7463, 5.2099, 3.7562, 2.5893, 2.53, 4.2813, 3.5417, 1.7566, 2.7587, 4.0221, 0.9365, 2.1199, 5.033, 3.4821, 3.2159, 3.4103, 3.8304, 5.1993, 1.5729, 3.0225, 15.0001, 1.867, 2.6051, 5.5, 4.233, 8.1548, 3.4519, 3.6597, 4.4347, 3.2757, 6.3794, 3.4539, 3.4028, 3.0817, 1.5089, 4.636, 3.6791, 3.5568, 2.56, 3.8967, 3.5272, 4.087, 3.2875, 2.3375, 3.8125, 3.94, 5.3081, 15.0001, 5.3339, 1.8828, 3.0788, 1.7552, 2.8906, 3.1215, 2.2188, 6.1426, 1.4886, 5.0447, 4.0061, 4.4042, 2.2361, 1.9805, 2.7813, 3.0491, 2.098, 4.9028, 4.1926, 2.59, 6.1868, 1.2292, 2.3042, 5.1008, 2.9762, 3.1573, 3.8869, 8.8793, 5.0858, 6.1986, 5.5842, 3.6538, 3.8125, 4.517, 4.0977, 2.5969, 2.8, 1.9832, 2.4821, 6.0266, 2.6619, 3.1864, 3.2258, 8.3912, 3.6806, 2.2165, 2.1471, 2.8036, 1.7941, 2.4722, 3.8269, 5.0, 6.1966, 1.9386, 0.9338, 2.9832, 5.9333, 6.348, 2.3482, 1.9429, 2.5147, 2.25, 3.3155, 1.7778, 2.5388, 2.2976, 5.4322, 5.5469, 4.8839, 5.0804, 6.3842, 4.2137, 3.525, 3.1832, 3.3472, 1.8519, 1.9472, 2.9405, 2.9485, 4.3317, 4.3438, 4.9286, 6.9794, 3.6343, 6.3267, 6.4781, 3.115, 4.8536, 5.0232, 3.625, 2.6607, 3.7125, 3.2121, 2.3789, 4.7946, 2.6884, 4.2431, 2.7143, 4.5417, 4.66, 6.4001, 2.4375, 2.5625, 9.8892, 3.475, 6.7274, 2.9, 2.7125, 1.6667, 2.7983, 3.3287, 5.2851, 4.7986, 2.9072, 2.3365, 15.0001, 3.6422, 6.6188, 4.2917, 3.6974, 3.8864, 3.755, 3.0877, 6.5378, 4.2037, 3.8935, 2.1667, 3.963, 3.925, 3.6417, 2.3545, 4.6667, 1.3125, 3.2862, 2.0571, 4.6, 2.9821, 1.7639, 4.7308, 5.9897, 4.0789, 2.355, 2.7048, 6.3054, 4.125, 2.9821, 3.5691, 3.6007, 3.5234, 3.7933, 2.5, 4.5556, 5.6704, 1.75, 4.5655, 7.0735, 3.5313, 3.0469, 2.8024, 3.8487, 3.9803, 3.9417, 4.4777, 2.7083, 2.0938, 2.4861, 0.8658, 2.4866, 1.0298, 9.4664, 3.7917, 3.8259, 3.6563, 3.375, 1.7333, 4.0223, 2.3068, 3.4784, 2.3482, 3.8393, 1.5227, 3.9041, 5.2442, 2.76, 3.1042, 3.6094, 2.5368, 2.3716, 2.4206, 1.7165, 6.1321, 4.1674, 4.8021, 8.9172, 3.1333, 2.75, 3.1645, 2.6852, 10.0595, 2.2308, 3.6016, 2.2478, 3.125, 2.9706, 2.3824, 4.0417, 5.6631, 2.0243, 5.966, 2.4632, 4.3229, 4.6985, 3.6429, 2.6964, 6.6633, 1.6228, 3.3542, 4.6458, 5.7268, 3.4375, 1.5174, 3.8917, 5.103, 2.6364, 3.0042, 1.3071, 4.131, 4.6786, 1.4048, 3.9643, 5.1857, 4.1528, 6.6739, 3.1728, 1.5256, 2.5, 10.2264, 3.5242, 4.8269, 4.7098, 4.4167, 7.218, 3.6298, 3.1042, 4.239, 3.599, 2.1944, 4.25, 2.3889, 2.9063, 2.9219, 7.2494, 2.4375, 2.9386, 5.0761, 4.065, 2.6226, 2.875, 3.7895, 3.2917, 1.5885, 2.3125, 5.1629, 4.2224, 6.8099, 4.5987, 4.4477, 5.8993, 1.1607, 4.8286, 3.2303, 6.1527, 4.2679, 1.775, 3.625, 4.125, 2.0066, 3.6728, 2.6442, 3.5761, 4.1312, 3.5192, 3.0, 3.9107, 4.4261, 3.6023, 3.1417, 3.3926, 4.2578, 4.0568, 2.506, 3.8819, 4.2667, 5.0, 5.1506, 4.9904, 2.0, 3.235, 6.0824, 5.0162, 4.2273, 3.9375, 4.665, 4.6953, 3.3438, 3.7301, 1.7727, 2.6997, 4.7356, 2.4297, 4.1419, 3.712, 2.6923, 2.9479, 4.002, 2.6371, 8.111, 5.4051, 2.25, 1.9375, 3.05, 11.4537, 3.5833, 4.2721, 4.9118, 7.9135, 2.5707, 3.6193, 7.1924, 5.1669, 2.0043, 4.325, 1.4804, 3.1914, 3.7, 2.9107, 4.4732, 6.02, 14.2959, 4.8224, 2.7763, 3.7321, 4.8237, 2.7031, 4.2333, 5.373, 2.625, 2.8167, 4.675, 4.2019, 2.8042, 5.8864, 4.3036, 5.2557, 1.2387, 3.1354, 3.1433, 2.6036, 3.7454, 9.2873, 4.21, 2.8348, 3.1384, 1.7212, 3.4375, 7.2472, 4.075, 3.6641, 3.2277, 4.175, 5.5486, 4.625, 5.3363, 3.7198, 4.7375, 2.375, 3.2216, 4.6833, 5.0056, 3.233, 2.7188, 2.1949, 2.8345, 5.0464, 3.6815, 4.8962, 1.2094, 2.8311, 1.6948, 5.1515, 8.2266, 2.4444, 5.8527, 2.8214, 5.7519, 3.6042, 1.7169, 6.2096, 3.2303, 2.7593, 3.4318, 1.3304, 2.567, 2.4922, 7.9835, 3.6118, 3.901, 9.1415, 6.0804, 3.7847, 3.9038, 1.84, 2.0958, 6.6916, 2.0893, 3.175, 3.4187, 4.2404, 6.992, 4.0227, 2.6818, 3.1513, 9.3125, 6.3178, 6.1008, 2.7308, 3.6563, 3.6719, 4.8214, 3.6296, 3.7431, 4.125, 4.35, 1.0714, 1.4274, 6.8419, 3.0526, 5.5777, 2.3929, 2.3658, 2.4848, 3.5536, 2.6403, 3.25, 4.1865, 1.4329, 1.4079, 6.5704, 4.875, 2.6713, 6.4598, 2.9292, 4.5707, 5.1005, 4.869, 3.3594, 10.3416, 6.148, 4.1875, 2.9083, 3.0313, 3.9099, 1.9964, 5.4171, 3.79, 4.9384, 6.3824, 3.1304, 5.128, 3.0078, 6.057, 4.8059, 4.8611, 5.5111, 3.6287, 2.9375, 2.6506, 2.0804, 3.371, 5.4496, 1.125, 2.8648, 5.2099, 2.4906, 3.6382, 2.5797, 1.2794, 1.6071, 4.1016, 3.7188, 5.5379, 2.5197, 5.1775, 2.5991, 3.625, 3.1591, 4.8274, 6.827, 1.8589, 5.0195, 1.1642, 4.5687, 6.3314, 3.175, 2.7222, 2.809, 5.3559, 2.489, 4.85, 2.8326, 1.5122, 5.8083, 3.875, 3.0827, 3.3929, 4.175, 2.3562, 4.5075, 3.3235, 4.7083, 2.3784, 2.6442, 7.3672, 3.8259, 3.125, 4.575, 3.8803, 3.6412, 2.2321, 2.3284, 2.774, 4.5735, 4.4559, 3.8506, 4.1071, 3.6667, 5.038, 3.18, 13.4883, 3.1667, 4.665, 5.1615, 2.325, 5.0753, 2.1602, 3.23, 1.125, 10.2614, 6.3373, 3.7337, 2.2868, 6.276, 3.0833, 1.74, 1.5615, 2.949, 4.8929, 5.6029, 3.0143, 0.9, 3.2115, 3.0321, 3.6712, 3.6389, 3.5703, 3.1326, 4.4485, 2.5917, 6.2475, 4.5588, 2.2241, 2.4042, 3.6893, 2.7411, 8.5294, 5.1433, 4.75, 2.8649, 3.9375, 1.7991, 1.1875, 7.7876, 2.7466, 4.1563, 2.7045, 6.2976, 5.5797, 4.1563, 4.4732, 5.2548, 4.0966, 4.7325, 1.7266, 6.5412, 1.4583, 5.3028, 2.1793, 3.7433, 3.2619, 2.8679, 5.7415, 4.4375, 1.3134, 7.2217, 3.7619, 4.875, 1.7292, 5.6096, 4.625, 3.3616, 3.8162, 2.8562, 3.4, 4.3218, 1.474, 2.3256, 4.1842, 1.4194, 4.75, 2.5972, 2.1103, 3.6202, 3.4032, 4.0132, 3.8194, 4.0625, 2.9293, 10.3599, 5.1439, 6.759, 3.3375, 1.9766, 2.8357, 2.875, 4.8214, 2.625, 2.825, 2.25, 5.3283, 3.4934, 2.8058, 2.4659, 9.2298, 6.2578, 4.8571, 3.1875, 2.1375, 2.9405, 5.3819, 2.0, 3.654, 3.9479, 2.2125, 7.3522, 2.4271, 5.0912, 3.9536, 5.5, 3.4896, 4.0023, 2.9688, 5.1461, 3.625, 3.8068, 5.0077, 1.4419, 3.7949, 4.4306, 1.8685, 4.15, 2.9519, 3.395, 1.9797, 2.0474, 3.0119, 8.0409, 1.4191, 6.0426, 3.5242, 1.0208, 8.4355, 3.402, 3.6696, 4.0, 5.0679, 3.3917, 3.0149, 3.0403, 5.5198, 3.3281, 3.7015, 2.0976, 4.1947, 3.5, 5.2486, 5.2949, 2.7202, 1.6901, 8.1657, 3.875, 5.9199, 2.6667, 1.3365, 3.337, 2.6406, 2.6726, 2.2449, 2.1736, 5.9277, 3.6466, 2.184, 3.6563, 3.1875, 4.0433, 4.2639, 3.1588, 5.6409, 6.5319, 4.0, 3.125, 3.2262, 4.3631, 4.6458, 4.4861, 2.5819, 1.6944, 2.7298, 4.3222, 3.3047, 2.6385, 4.7437, 5.6629, 1.6036, 3.2011, 6.5501, 3.2308, 2.5208, 4.2672, 2.1667, 5.7797, 2.6979, 6.1253, 6.5858, 2.4732, 6.6959, 7.5426, 4.7909, 6.8162, 3.9464, 2.087, 4.712, 1.6691, 4.7391, 2.025, 3.343, 4.1339, 1.6571, 4.1731, 5.2261, 3.875, 5.9714, 3.225, 5.2855, 1.4464, 2.0938, 3.1406, 1.4481, 4.7475, 6.0609, 4.875, 2.2292, 3.5187, 3.1923, 2.8942, 4.1807, 6.3489, 3.5774, 3.0078, 2.1953, 3.2359, 1.4091, 8.3634, 3.7045, 4.0556, 3.375, 4.125, 2.29, 3.5462, 4.3333, 2.0972, 6.3814, 2.0655, 3.4625, 3.625, 6.0722, 6.8007, 3.5109, 8.9088, 1.2746, 3.7313, 4.0938, 2.4779, 7.9943, 5.7628, 3.168, 10.6605, 2.4286, 2.1944, 5.3988, 3.1667, 1.0472, 3.1842, 2.4659, 2.2607, 1.25, 4.1042, 3.3558, 3.5659, 3.3897, 3.25, 3.071, 8.1871, 5.409, 1.7361, 1.4911, 2.0899, 2.0579, 2.2138, 3.0453, 4.0329, 2.3438, 3.2723, 6.4667, 3.996, 3.5083, 2.6759, 3.1406, 2.4817, 3.6128, 3.9375, 3.4042, 2.7432, 2.7138, 1.8438, 4.2042, 12.8665, 6.2551, 4.125, 2.1792, 5.583, 5.7239, 3.1389, 3.875, 4.119, 4.4063, 4.0079, 3.8462, 13.1499, 2.3276, 7.5488, 4.2312, 3.175, 7.2574, 4.6488, 4.2109, 2.6066, 3.18, 4.3646, 2.0417, 4.9091, 2.1056, 2.25, 3.4375, 5.8371, 6.0, 3.7663, 4.4375, 1.8208, 8.5957, 3.7708, 4.8152, 4.525, 2.3333, 1.9135, 7.1262, 4.9783, 3.475, 1.3587, 4.8906, 3.3892, 2.0133, 5.8411, 5.2416, 6.868, 3.9224, 2.5588, 1.7788, 4.7547, 3.2614, 5.6228, 4.0844, 4.6364, 2.1411, 4.0775, 6.7805, 2.655, 2.6111, 4.3009, 8.051, 4.5417, 4.2304, 4.7986, 4.9984, 3.7328, 6.3566, 3.3882, 1.3007, 4.5368, 3.5707, 3.5694, 2.8155, 4.1, 2.3895, 1.35, 4.0781, 5.3674, 2.5833, 2.1005, 2.3917, 3.4031, 5.6651, 4.2188, 2.8438, 3.9688, 3.125, 1.186, 2.6042, 3.8472, 3.2591, 6.8323, 2.2925, 4.5682, 2.7727, 5.4819, 5.193, 5.9639, 5.6864, 4.0208, 3.1484, 2.8258, 3.25, 3.2699, 3.0, 7.1134, 2.7708, 1.9955, 2.8462, 3.3542, 3.2371, 2.1563, 5.8322, 3.0875, 6.5928, 4.5833, 4.1467, 2.7826, 4.3056, 7.3731, 4.125, 1.7546, 3.4531, 2.1213, 3.7396, 4.2273, 7.75, 4.3456, 2.5625, 4.0208, 3.4261, 4.0429, 2.1591, 3.2019, 4.1339, 3.6629, 3.0431, 2.9219, 5.0822, 4.7279, 4.4423, 5.1995, 4.0391, 6.256, 3.4087, 3.2664, 2.442, 3.0, 5.3668, 1.6767, 3.5078, 4.6354, 2.6862, 2.9821, 0.7714, 2.25, 4.4148, 11.2463, 3.2447, 2.4185, 5.273, 1.4167, 2.288, 1.5347, 4.5, 4.7222, 6.6031, 2.8365, 1.6929, 2.6275, 2.8903, 2.8625, 5.3678, 6.5576, 5.565, 5.3441, 3.9028, 7.2013, 2.7206, 6.0, 7.2623, 3.0992, 2.2278, 0.957, 2.4706, 1.7456, 2.8285, 2.525, 3.6509, 3.8542, 4.0926, 4.5333, 4.0167, 5.0897, 2.7969, 3.0757, 3.0294, 2.6726, 5.7396, 2.5363, 8.5282, 2.0156, 5.1508, 4.2344, 5.1207, 4.5461, 1.1563, 1.0481, 5.316, 2.6914, 5.9339, 3.6373, 4.0125, 8.2737, 6.4339, 6.2892, 1.9206, 2.6111, 3.9323, 4.5625, 5.0393, 4.9464, 2.125, 3.1739, 1.7463, 6.2475, 2.9871, 2.4968, 4.9237, 3.1654, 4.2297, 3.0859, 2.6343, 3.7067, 3.9914, 3.5051, 8.0073, 3.9489, 5.0483, 4.125, 3.4474, 6.0224, 3.3036, 2.4375, 1.9083, 1.4766, 8.0448, 3.212, 4.1071, 2.246, 7.2589, 3.5258, 6.2498, 1.5917, 3.2361, 5.2661, 3.575, 3.5114, 3.3456, 3.1364, 3.55, 3.915, 1.7696, 3.1719, 4.7955, 1.3523, 3.0529, 3.1061, 2.625, 2.6719, 2.2007, 2.5872, 10.1597, 4.87, 10.2264, 4.7685, 5.9856, 2.6341, 2.5742, 3.5288, 3.5156, 1.9375, 8.565, 1.7262, 6.5948, 4.9732, 1.3417, 4.3833, 4.1492, 2.6779, 4.0417, 3.5611, 4.6023, 4.4236, 4.54, 4.174, 2.7917, 2.6941, 3.8687, 5.2079, 3.1786, 2.6389, 2.125, 2.75, 1.965, 7.355, 3.428, 4.0972, 3.75, 6.1724, 3.0212, 2.7201, 4.4, 7.333, 2.2604, 4.9688, 1.5694, 5.8966, 3.8214, 2.0216, 3.29, 2.9491, 2.6567, 2.871, 4.8229, 7.0875, 2.462, 3.9868, 3.7969, 5.4719, 3.2237, 8.944, 8.9571, 3.9167, 4.4063, 4.8906, 2.3036, 10.3661, 3.6528, 8.6454, 3.3438, 2.1864, 4.196, 3.6625, 3.925, 4.3814, 6.4894, 4.8438, 2.3152, 1.5594, 2.5275, 2.0529, 5.6441, 4.8096, 2.6181, 2.5739, 4.1099, 1.3157, 6.4913, 3.1312, 1.9208, 10.3713, 1.4254, 3.1662, 2.0833, 3.8819, 1.625, 2.837, 2.8226, 3.3906, 3.6823, 7.5118, 4.0231, 4.3542, 2.4632, 3.6648, 5.6533, 3.6273, 4.5625, 7.9976, 5.9734, 5.4243, 1.9891, 6.0622, 3.275, 2.8438, 1.8913, 2.319, 5.2289, 4.1528, 2.6316, 4.4615, 4.793, 2.5179, 3.6339, 5.3135, 2.5074, 4.0507, 2.4432, 2.0278, 1.6078, 5.1782, 1.6006, 9.7194, 1.9236, 2.24, 3.455, 5.5218, 2.66, 5.2773, 5.7979, 3.3929, 3.3208, 1.3167, 6.9113, 3.3268, 4.0862, 3.5379, 4.0602, 2.4912, 9.802, 5.2417, 3.1204, 10.6834, 5.6902, 1.5313, 4.6861, 5.3737, 3.494, 3.1607, 3.8571, 2.675, 3.2937, 4.0972, 5.253, 1.55, 3.5179, 4.375, 1.2545, 2.0353, 4.6771, 3.025, 2.7, 5.2853, 1.9718, 3.625, 2.625, 7.3343, 2.5486, 3.6033, 4.8523, 2.7321, 2.8385, 3.1125, 3.5583, 3.5208, 4.4529, 1.625, 1.4617, 10.1357, 5.0796, 2.8466, 2.5234, 5.1814, 3.4013, 5.482, 3.194, 3.875, 2.6983, 2.4012, 3.5812, 6.057, 4.1029, 5.311, 5.6407, 5.0574, 6.3052, 3.0263, 2.0089, 5.9567, 4.0185, 4.2841, 3.0375, 1.9792, 2.6042, 3.2768, 2.3438, 3.2993, 3.183, 1.9495, 8.2064, 4.2885, 3.9583, 2.5612, 3.9, 3.996, 2.6014, 3.8958, 4.5461, 2.575, 4.0735, 6.6842, 2.598, 4.375, 3.1458, 3.8897, 5.3767, 2.125, 1.3438, 4.575, 2.6739, 1.76, 4.2109, 6.0777, 3.7784, 3.1382, 4.1071, 5.9357, 4.0, 4.5455, 3.3304, 9.2327, 6.2048, 4.1302, 6.3942, 2.4211, 2.25, 5.8666, 5.2039, 5.0965, 5.1696, 4.3428, 4.7931, 3.5909, 1.7199, 5.7907, 2.25, 5.5842, 3.1364, 3.6375, 5.7083, 2.5272, 3.1977, 3.0125, 2.625, 4.4595, 1.9038, 2.4659, 5.2837, 3.175, 3.5391, 6.8753, 2.8667, 4.0972, 2.4911, 3.0403, 1.8849, 3.4148, 2.0833, 1.5078, 5.4449, 1.8463, 2.9688, 4.2875, 2.7857, 4.8214, 4.9615, 3.5313, 3.025, 2.5714, 2.6618, 2.6447, 2.8274, 4.1836, 15.0001, 2.765, 2.2574, 2.9453, 0.8941, 2.3958, 2.2961, 3.4047, 2.5395, 3.5056, 2.2583, 2.0917, 3.15, 0.7069, 2.5763, 3.3393, 5.6846, 7.0842, 2.9716, 4.8152, 5.01, 5.1265, 3.4703, 2.2679, 3.2516, 1.735, 0.7054, 9.1232, 5.4035, 4.7422, 4.6923, 3.075, 4.2875, 6.3131, 3.6902, 4.7845, 2.8824, 4.7159, 6.0922, 2.152, 4.3472, 5.25, 2.6544, 2.7361, 8.8742, 3.5302, 5.5061, 2.885, 3.2083, 1.5407, 5.536, 2.3347, 7.7317, 5.5224, 2.8922, 2.2201, 1.5771, 4.7891, 1.4946, 2.1406, 2.2161, 3.5139, 8.6718, 5.4413, 5.6327, 2.0802, 2.8548, 12.3411, 0.536, 3.9, 4.8603, 4.3529, 5.5118, 1.4688, 2.1111, 2.9271, 5.5954, 4.9643, 4.1379, 5.3508, 3.6705, 3.4784, 3.0912, 1.4034, 4.5417, 4.7188, 4.3906, 1.6728, 6.3373, 2.5, 1.2647, 4.282, 2.4526, 7.1937, 4.4831, 3.8864, 5.5238, 3.0466, 1.3844, 4.2042, 3.1087, 4.2333, 1.6559, 3.6923, 3.8026, 3.9712, 3.16, 4.3836, 2.8036, 3.337, 7.5655, 4.2099, 2.0156, 4.2833, 1.0649, 1.9853, 2.2024, 3.4456, 3.7316, 2.788, 5.3168, 5.3106, 5.2155, 2.8529, 2.7368, 4.1146, 1.8167, 2.5547, 2.0926, 9.7821, 1.7596, 2.1856, 6.0097, 5.7519, 7.3151, 7.0329, 3.5046, 3.226, 2.4688, 4.0469, 4.5972, 2.3851, 3.864, 2.375, 4.375, 6.0689, 1.9657, 1.6806, 3.5179, 6.0574, 3.2375, 6.4335, 4.1189, 3.6823, 5.1021, 1.5903, 1.2679, 4.2206, 4.75, 2.964, 4.0388, 1.8929, 4.1667, 4.6563, 2.9334, 2.8031, 2.6734, 4.45, 8.3065, 4.5739, 4.0096, 8.0257, 1.3062, 3.7167, 4.2562, 1.5195, 1.6458, 2.9063, 4.5179, 1.7961, 3.0347, 1.9189, 4.7946, 8.7124, 5.8831, 5.1145, 5.2549, 4.1652, 3.2426, 3.1944, 3.4063, 3.96, 3.2115, 2.8062, 4.6591, 2.9286, 3.1768, 4.8889, 3.4583, 5.5737, 4.5, 2.3269, 4.5179, 13.2949, 2.5902, 3.9758, 2.8352, 5.2, 4.3977, 1.1346, 2.0591, 3.089, 5.9539, 5.1836, 5.3526, 4.1552, 2.0125, 3.5256, 7.4837, 2.75, 2.6951, 2.4662, 8.4952, 1.2904, 1.9766, 5.3096, 4.1164, 3.9833, 2.5469, 4.0, 4.1875, 1.6065, 4.7159, 4.9861, 2.1292, 8.7477, 1.6991, 5.5176, 1.8477, 4.2589, 3.0181, 2.2024, 3.0296, 4.9286, 6.3406, 3.2031, 2.5663, 4.1932, 4.6184, 6.0666, 3.875, 2.5029, 3.5819, 5.4741, 1.7995, 3.5769, 5.0962, 6.2308, 5.2088, 4.4896, 4.0905, 3.5114, 2.4375, 3.3839, 5.2551, 3.0556, 3.875, 1.9013, 4.3651, 8.0103, 6.9615, 4.1779, 4.0208, 1.1793, 5.2769, 3.5, 4.6852, 2.9018, 4.5795, 6.2113, 8.4262, 3.6364, 3.0606, 7.2074, 2.2264, 3.1964, 7.0935, 6.8939, 4.5833, 2.052, 6.626, 3.5551, 2.735, 2.375, 2.5129, 6.1628, 4.6167, 3.9732, 4.6029, 4.3047, 6.8322, 6.5382, 4.5432, 3.0625, 2.3125, 6.822, 10.9529, 3.6953, 2.6465, 7.7364, 2.9808, 12.0088, 5.31, 2.4492, 1.6037, 5.75, 8.735, 3.7802, 2.4464, 4.5357, 8.5491, 2.8281, 2.6528, 3.7813, 3.0184, 5.086, 3.9375, 2.5787, 5.7951, 2.5, 3.0357, 3.358, 2.9569, 2.3496, 3.625, 4.7019, 4.2171, 4.5694, 2.2132, 4.125, 3.2042, 2.0057, 2.1591, 6.0265, 2.8261, 3.4327, 8.6572, 3.4706, 3.5481, 3.9219, 7.2316, 1.7604, 2.8289, 3.3026, 3.7238, 3.1563, 3.2279, 7.8904, 3.3854, 2.5521, 2.875, 4.0781, 2.8841, 3.9792, 3.5385, 2.8056, 2.5504, 4.6648, 7.5813, 2.2254, 5.752, 1.125, 2.1827, 5.4351, 2.5313, 1.9375, 3.2083, 4.4271, 3.6635, 2.4598, 3.8177, 6.5138, 2.1406, 4.4432, 5.2166, 4.6898, 3.5938, 1.8261, 3.1901, 3.4695, 3.0917, 2.2083, 0.8362, 7.9338, 2.6729, 1.5313, 2.6899, 4.0547, 5.1998, 2.6023, 2.625, 2.3661, 5.5121, 3.4063, 6.0102, 1.9362, 0.9708, 3.9028, 2.3814, 2.4643, 1.3286, 2.6607, 1.1912, 3.5387, 5.3701, 2.075, 3.9009, 2.9877, 4.2061, 3.0375, 3.8068, 5.7837, 4.1141, 1.6111, 3.4868, 1.6369, 2.6136, 1.6731, 3.5977, 2.7222, 2.3199, 3.6435, 3.7031, 2.9605, 3.9917, 4.9335, 3.8073, 5.2402, 3.7804, 2.5556, 2.6719, 2.5562, 5.0543, 5.0814, 5.5194, 4.2583, 3.5777, 6.5764, 4.75, 6.994, 1.9267, 2.1333, 4.1958, 2.3075, 1.5987, 4.3438, 4.6875, 4.7472, 3.25, 4.675, 4.6944, 1.8914, 3.152, 5.0866, 4.7245, 4.8693, 2.7451, 3.775, 4.5116, 4.1303, 1.6618, 1.7719, 3.25, 5.3154, 5.3177, 4.6429, 1.7062, 6.0226, 2.3266, 3.8187, 4.2192, 3.274, 1.0486, 1.0972, 2.0446, 8.2335, 2.3056, 3.8906, 4.4531, 3.58, 3.5054, 5.8642, 1.6645, 2.25, 2.6573, 3.8529, 2.4612, 3.0903, 2.5183, 2.9201, 4.2039, 2.8981, 5.1483, 3.4514, 1.9837, 4.5217, 4.6776, 2.1403, 3.8657, 3.6946, 4.5066, 2.4605, 3.6181, 3.5294, 4.3906, 6.005, 2.8835, 2.75, 1.9049, 4.7332, 1.4444, 2.2991, 2.065, 4.0156, 3.4151, 3.099, 9.0064, 4.9957, 2.0658, 5.0376, 1.7308, 3.4048, 2.2467, 4.5375, 4.0679, 3.5164, 5.5196, 5.4346, 3.9356, 7.8336, 6.2631, 2.3508, 3.1297, 3.1591, 2.8102, 4.8977, 5.0527, 8.058, 4.149, 5.2285, 2.6181, 2.1898, 4.2218, 4.0859, 4.125, 2.5057, 5.5693, 2.2167, 6.884, 5.6149, 3.5547, 4.8611, 3.625, 4.224, 3.5595, 2.0096, 4.7965, 3.8083, 2.9083, 3.3987, 5.0043, 3.1642, 3.9032, 7.0895, 6.4599, 2.9222, 3.0208, 3.0588, 3.6719, 4.5523, 3.6292, 3.4792, 2.02, 4.26, 3.3125, 4.1295, 1.4828, 5.0829, 3.9583, 3.0319, 3.0521, 1.6902, 3.274, 2.1009, 4.5234, 6.2464, 3.9954, 2.6406, 2.1875, 0.9687, 1.5727, 5.6779, 5.5422, 4.125, 2.0586, 4.625, 4.1797, 1.2049, 3.8403, 2.2765, 3.3088, 1.6318, 2.2411, 4.0556, 2.0147, 4.5306, 4.504, 3.212, 6.9133, 7.9294, 1.4565, 2.1111, 4.0675, 2.8819, 4.8311, 2.4864, 2.9219, 2.8906, 3.2596, 5.6798, 5.4381, 1.8692, 3.1032, 3.8586, 4.8623, 2.0268, 3.1625, 4.7375, 4.0972, 7.6717, 10.6767, 2.6563, 3.3438, 1.125, 3.4676, 4.9444, 8.5325, 2.6563, 5.844, 4.9063, 3.2708, 7.5839, 5.1033, 1.1806, 3.0897, 2.5386, 4.0437, 6.2558, 5.5882, 1.7692, 4.7007, 5.1416, 4.4063, 5.1182, 2.1583, 3.8, 1.2347, 3.5363, 4.9091, 3.65, 3.3598, 3.0089, 2.3882, 1.775, 2.2981, 4.8906, 5.5456, 3.7589, 5.397, 2.2903, 4.0717, 2.4281, 2.2926, 1.5326, 3.567, 3.2813, 4.0074, 5.3946, 7.5402, 3.2636, 2.3496, 3.625, 2.4828, 2.5401, 3.5, 5.012, 4.475, 1.3333, 3.2311, 4.084, 4.5458, 15.0001, 7.6245, 1.7214, 3.6364, 7.672, 1.7225, 3.2566, 7.143, 3.3625, 3.35, 1.9405, 2.7019, 3.5066, 6.1509, 2.3393, 4.0, 15.0001, 3.1719, 6.8443, 0.9838, 0.536, 1.2292, 1.125, 4.3162, 6.6605, 3.6397, 3.6694, 2.6535, 3.9, 10.7569, 4.0467, 2.2672, 1.2091, 3.016, 5.1584, 7.5057, 5.756, 1.7292, 4.9955, 3.25, 5.1616, 3.4265, 2.662, 1.8618, 1.9612, 3.4472, 3.4327, 4.0313, 4.1818, 4.0491, 3.9531, 3.1941, 5.8491, 3.5547, 2.575, 3.375, 3.9922, 4.3882, 4.0982, 3.4471, 1.8214, 6.5254, 3.2687, 4.6629, 4.0458, 1.4792, 4.5594, 4.0214, 4.7228, 2.5664, 5.687, 5.3377, 1.6286, 2.8631, 1.9875, 2.7014, 6.838, 3.851, 4.75, 3.6484, 3.2484, 2.1006, 3.125, 3.8837, 3.4491, 2.0278, 1.9439, 2.9464, 1.2227, 3.776, 7.5139, 5.6875, 3.3462, 2.1435, 4.744, 2.8833, 1.5491, 4.9292, 4.0882, 1.9767, 7.2554, 6.0247, 2.6598, 4.1908, 2.3125, 7.5752, 3.7083, 4.2143, 5.3428, 2.3611, 3.319, 3.1875, 2.7708, 5.7421, 7.2137, 3.4286, 3.1546, 2.0357, 5.2852, 3.7292, 4.2599, 3.8239, 1.6654, 9.7066, 1.8357, 5.8819, 4.3, 1.7115, 5.5083, 2.1, 1.5517, 2.5741, 4.6923, 4.5122, 5.4851, 3.3621, 3.4038, 4.2289, 7.4559, 1.9954, 1.625, 3.7188, 3.3021, 3.1968, 2.3079, 3.75, 3.6339, 3.2625, 3.725, 2.425, 2.8139, 5.8718, 4.7944, 6.3443, 8.8062, 4.0588, 5.894, 3.7083, 3.4792, 3.6897, 5.3275, 2.2566, 3.5313, 3.0865, 3.875, 10.3329, 5.5875, 4.4491, 2.9917, 2.1429, 8.5153, 3.6875, 2.7171, 3.2232, 4.4453, 4.1591, 2.8152, 3.1845, 5.2363, 5.4791, 3.8, 6.204, 0.813, 1.625, 6.3974, 4.3125, 2.2577, 4.4375, 4.45, 1.6198, 2.5473, 5.2049, 2.825, 3.9375, 3.625, 4.5568, 2.5101, 1.9464, 2.3594, 2.588, 1.608, 5.8623, 2.3715, 4.0703, 1.8856, 2.2109, 5.3032, 4.7569, 2.9899, 4.5547, 6.8004, 2.0557, 4.0345, 7.167, 3.609, 2.8705, 3.8512, 4.8088, 3.9926, 3.4115, 6.9682, 1.7567, 1.7109, 2.1465, 10.2317, 2.8393, 2.0114, 2.875, 2.6319, 3.9531, 4.575, 3.8438, 4.3594, 2.8929, 7.508, 3.3156, 2.7356, 4.5913, 3.1786, 3.767, 4.1687, 1.6236, 5.159, 1.875, 5.9073, 8.1325, 3.4306, 3.3942, 1.681, 1.9132, 6.4114, 1.3448, 2.535, 1.7446, 6.9695, 4.0313, 7.8588, 2.3384, 5.3509, 8.2435, 4.2143, 7.0568, 1.2235, 4.8508, 3.6912, 1.3679, 7.3028, 2.8295, 2.4464, 3.6667, 3.1051, 2.4083, 7.674, 4.2045, 2.2721, 2.6591, 2.462, 4.5337, 4.6477, 3.8899, 2.3762, 2.8, 4.2596, 2.7436, 5.533, 3.6667, 5.0754, 4.3, 2.1162, 3.449, 3.6036, 6.5945, 3.5893, 6.5901, 2.2105, 7.5699, 6.0, 5.3649, 2.3958, 4.2216, 5.8142, 2.7961, 2.3571, 3.2301, 3.6486, 2.0335, 4.0109, 5.3077, 2.5643, 1.8208, 3.1731, 3.3617, 4.1528, 4.55, 3.6429, 2.6129, 2.45, 2.4583, 2.6786, 5.5981, 1.4861, 5.4493, 3.9688, 6.1946, 5.0877, 3.2011, 4.2415, 2.4519, 1.043, 2.6172, 5.0782, 4.7019, 2.9571, 4.0451, 5.0681, 4.1319, 3.725, 2.25, 5.898, 3.0521, 5.8798, 2.5938, 2.1793, 4.5667, 5.1099, 3.9063, 3.0293, 6.6813, 2.6678, 7.629, 3.6923, 4.9432, 3.0469, 10.157, 3.9485, 2.2768, 4.8036, 5.3623, 1.4773, 7.3195, 3.6042, 3.6531, 3.0833, 5.2539, 5.7281, 4.6445, 2.517, 1.9762, 5.5449, 7.3861, 2.0, 3.7768, 3.3261, 3.3438, 2.4375, 4.9671, 8.3637, 2.6842, 6.4891, 3.5861, 4.9562, 6.1043, 3.8846, 2.7051, 3.0263, 2.6765, 2.6875, 2.2917, 2.3167, 2.6914, 2.1062, 5.5184, 3.7625, 1.9962, 3.099, 5.25, 4.3833, 5.1782, 6.3822, 2.5625, 3.053, 5.2614, 3.6719, 5.308, 9.9025, 2.4167, 1.9063, 3.0043, 3.6607, 3.0871, 3.1599, 2.7348, 2.9083, 2.3971, 3.6, 1.6445, 2.8333, 4.3403, 4.0542, 3.0777, 4.2386, 2.7981, 1.9038, 3.3452, 3.25, 5.635, 3.3981, 1.6321, 9.267, 13.3913, 4.2222, 5.8995, 4.7478, 3.7031, 3.0744, 4.4821, 13.466, 3.7105, 1.9091, 3.5, 2.8702, 1.7292, 5.4834, 2.3816, 7.4597, 4.0444, 2.375, 3.1364, 2.5833, 4.174, 3.9306, 4.7841, 2.033, 5.6506, 7.9168, 3.9722, 3.1563, 6.37, 5.1806, 2.4583, 3.6361, 3.6852, 5.6975, 3.1047, 4.2679, 3.4297, 2.3277, 2.3958, 3.2243, 6.083, 2.9375, 5.015, 3.3616, 1.0349, 8.1872, 5.0374, 2.8594, 9.1373, 3.0911, 3.2891, 4.6186, 4.3315, 3.0972, 15.0001, 3.5435, 5.32, 4.3693, 3.0147, 4.65, 4.1731, 4.1287, 2.7917, 5.4925, 3.8796, 4.9861, 4.375, 1.6575, 3.9615, 7.8407, 3.7477, 3.7533, 7.7889, 2.9803, 4.0132, 5.3261, 6.4044, 1.9881, 3.6771, 2.5625, 3.3611, 2.0469, 3.8047, 2.8906, 4.7411, 2.473, 4.1, 7.9813, 2.9449, 3.5437, 4.6477, 2.8889, 2.9205, 4.2463, 4.7984, 3.9469, 4.6667, 5.9617, 4.8787, 2.7778, 5.5563, 3.0278, 1.852, 5.5048, 3.1028, 2.875, 3.5562, 4.5224, 3.0862, 9.5221, 1.8958, 1.8056, 4.3088, 1.3047, 3.1551, 3.7917, 1.1707, 2.1771, 3.755, 5.3074, 2.8966, 5.25, 5.1718, 5.3468, 4.7557, 3.4152, 4.6141, 2.9293, 3.5347, 4.3333, 2.7157, 1.9659, 5.2128, 5.2534, 4.0962, 5.237, 5.5248, 3.5625, 3.5625, 2.625, 4.1518, 1.8625, 5.8783, 2.0425, 5.7128, 2.7, 3.2964, 3.3199, 8.5759, 3.9722, 2.4091, 4.375, 1.8839, 5.8779, 0.8054, 2.2813, 3.3409, 3.7115, 4.8281, 3.2158, 1.8633, 3.0685, 3.8825, 4.4318, 3.8897, 10.7237, 2.125, 3.692, 4.7973, 1.9327, 1.7958, 5.2269, 3.1929, 4.5521, 7.439, 2.0192, 2.6339, 4.8409, 7.2559, 6.2319, 6.8154, 1.6838, 4.6583, 3.4058, 6.1407, 3.375, 5.9572, 7.8061, 8.5938, 2.697, 1.6094, 3.6572, 3.3125, 0.7591, 10.0481, 4.6173, 5.0424, 8.2364, 1.3, 2.3339, 3.875, 4.0781, 6.6054, 3.4912, 3.9227, 2.4833, 3.5313, 1.975, 4.7094, 3.7708, 4.5427, 4.2031, 4.5881, 4.6681, 8.7172, 2.99, 3.725, 2.7083, 4.3661, 6.0701, 3.9128, 4.025, 3.2469, 3.5, 6.1309, 2.5833, 2.2393, 4.375, 3.8438, 6.553, 6.0704, 3.0224, 5.4299, 7.7852, 4.1667, 7.618, 2.1107, 1.5553, 3.2788, 2.6487, 4.325, 3.0989, 5.7796, 1.2157, 3.1125, 2.2222, 5.2563, 3.1167, 2.9107, 1.9444, 3.415, 1.625, 3.4833, 2.0952, 3.0132, 3.0909, 1.3385, 5.0407, 2.8542, 1.625, 3.3988, 3.2984, 4.1488, 2.1731, 1.9688, 3.7167, 2.7219, 2.0677, 1.5071, 1.1667, 1.1859, 2.875, 6.5891, 4.3194, 2.9, 3.9464, 7.457, 3.5076, 1.5972, 2.0286, 9.8074, 7.2731, 4.6904, 2.8125, 3.1691, 1.6307, 3.1563, 2.7079, 6.3002, 4.9821, 3.9375, 2.9952, 8.4888, 3.775, 3.3594, 5.1337, 2.0643, 2.6994, 8.5574, 6.6125, 3.4015, 5.2806, 3.3966, 3.017, 2.2717, 3.7941, 1.5846, 5.057, 3.9688, 4.5317, 6.9014, 1.077, 4.88, 4.675, 6.1359, 4.2716, 3.925, 2.0536, 4.25, 8.0755, 2.2328, 3.1607, 3.371, 4.2019, 1.9093, 6.0791, 4.4444, 4.4653, 3.5988, 5.8972, 3.3516, 2.6159, 4.1607, 4.8693, 3.9485, 6.7501, 1.4821, 2.1179, 3.5109, 4.0703, 5.49, 1.9667, 4.0357, 5.17, 4.9196, 3.4827, 5.1149, 3.3958, 2.8214, 3.7932, 1.4856, 2.3062, 3.35, 2.5096, 3.3977, 4.89, 3.2049, 1.8571, 3.858, 3.0833, 6.3013, 5.0016, 3.821, 2.4408, 1.5, 2.4432, 3.7344, 1.8365, 3.6434, 3.8828, 4.6076, 1.4, 6.1383, 2.9293, 2.2337, 5.2134, 3.1667, 3.1439, 9.459, 3.197, 5.883, 2.8958, 4.7361, 2.7857, 2.0288, 4.8684, 4.5179, 2.148, 2.6667, 3.6875, 1.3092, 4.1696, 2.48, 5.083, 6.0256, 6.9501, 3.4306, 3.5313, 3.725, 2.9, 4.4375, 3.8125, 6.0137, 10.1316, 3.055, 4.2214, 3.2417, 3.9265, 4.625, 4.8494, 2.0865, 1.725, 3.375, 7.3588, 3.9091, 3.1981, 1.7614, 2.0871, 4.4375, 1.577, 3.6455, 5.0849, 3.4906, 10.5424, 2.3844, 4.625, 3.0057, 1.2404, 4.6125, 3.7738, 2.5444, 4.0536, 5.3241, 1.7734, 4.1711, 3.11, 3.9643, 3.9375, 4.008, 2.4322, 5.0782, 3.5, 2.8698, 2.6713, 3.0219, 3.7917, 2.2743, 1.473, 4.625, 3.375, 3.1773, 7.8375, 4.8571, 4.3008, 1.3967, 3.0625, 2.5743, 2.1667, 5.9245, 2.6384, 3.6797, 1.3927, 2.7596, 2.8348, 6.6264, 3.653, 2.8021, 4.5268, 4.6528, 2.9937, 4.8382, 3.5255, 4.5694, 3.0682, 1.5161, 8.3818, 5.1645, 3.0587, 5.5381, 2.0938, 2.7167, 2.5938, 4.1023, 3.8839, 3.5848, 4.9312, 3.0369, 3.0789, 5.9062, 2.1827, 2.9375, 3.0179, 2.5986, 4.425, 4.2415, 3.6875, 4.7917, 2.2543, 6.8219, 6.8279, 7.3841, 5.0605, 1.9355, 5.9632, 3.125, 2.1702, 7.2419, 5.3311, 2.4278, 2.8672, 5.5433, 3.7167, 1.4146, 3.5909, 3.6111, 3.3621, 2.0781, 4.0739, 1.7227, 8.5888, 15.0001, 4.7941, 3.6853, 4.0446, 3.5804, 1.1635, 4.425, 2.8371, 4.3898, 3.875, 1.9949, 2.9896, 5.956, 4.7833, 2.4464, 5.3559, 4.6875, 6.9326, 4.5791, 3.1875, 2.1357, 3.7125, 1.9063, 2.4482, 7.5992, 2.8864, 6.0804, 3.0833, 0.8952, 5.7858, 5.2957, 3.0313, 2.6538, 2.9044, 3.8472, 2.3879, 1.9531, 3.2632, 3.7813, 2.3182, 2.1588, 5.3922, 2.3462, 3.2442, 5.4834, 1.9556, 5.7245, 2.4925, 8.2531, 2.8021, 5.8596, 2.569, 3.75, 2.375, 2.2981, 4.6094, 4.6779, 3.4741, 2.2917, 4.1538, 4.375, 2.8229, 4.0, 2.4207, 3.9699, 1.4044, 1.4107, 3.1814, 3.6411, 2.2375, 2.2788, 2.4375, 2.625, 5.0839, 2.7545, 2.0548, 3.5915, 4.5918, 2.1977, 2.4263, 4.3269, 3.9537, 5.8686, 1.2656, 3.0348, 4.625, 4.8409, 3.0486, 6.287, 2.4798, 5.5, 3.1429, 3.6292, 1.9026, 5.1356, 3.0721, 3.2642, 4.6312, 1.2864, 4.2542, 4.2227, 5.0865, 3.0476, 6.5253, 3.8019, 1.7188, 3.7292, 3.4464, 1.2083, 2.5781, 2.6165, 6.1824, 4.0921, 3.5341, 2.0804, 2.0388, 3.4896, 2.5833, 6.2427, 4.5625, 3.968, 3.6111, 5.5023, 4.5491, 7.2582, 2.375, 3.0278, 5.0267, 6.5778, 1.3222, 1.7692, 4.7083, 6.1953, 3.0721, 4.7321, 6.3997, 2.7026, 3.8618, 2.7857, 2.2328, 4.3646, 1.9722, 6.1632, 2.1734, 2.1293, 5.0176, 2.7273, 5.3041, 3.4659, 5.4324, 3.5673, 2.9559, 3.1406, 1.8158, 2.15, 5.4087, 4.9519, 4.194, 1.5933, 1.5781, 5.0096, 5.422, 8.4882, 5.4216, 4.9688, 3.2969, 4.2222, 6.5799, 3.5125, 4.2454, 4.6389, 5.6013, 4.5662, 7.1472, 4.0153, 2.2321, 3.5, 4.5417, 3.0288, 2.4875, 2.9187, 2.0048, 6.3427, 10.9052, 2.725, 3.9922, 3.4861, 2.0044, 5.0526, 4.7235, 4.0, 2.006, 2.4097, 2.5588, 10.959, 4.1375, 4.125, 3.0161, 7.4947, 2.0043, 1.0531, 6.0116, 4.6696, 5.0362, 5.1788, 2.9875, 4.0221, 11.9993, 2.6667, 6.5615, 2.9803, 4.0673, 1.7694, 6.0878, 7.8164, 2.5509, 6.2473, 2.1289, 4.1518, 3.5893, 2.5181, 3.3793, 1.2639, 3.375, 6.2263, 7.1837, 11.6677, 4.2045, 3.183, 2.9167, 5.0369, 3.8875, 3.1579, 4.5875, 4.3409, 4.1103, 9.5551, 3.2569, 4.875, 5.3693, 4.325, 1.6458, 4.0403, 1.8393, 3.375, 6.4963, 4.605, 7.52, 2.7852, 3.449, 2.1597, 4.5375, 4.0352, 3.6863, 4.7768, 2.625, 1.7375, 3.7019, 2.1641, 4.3889, 3.4083, 7.7743, 4.1458, 6.3501, 3.1146, 3.325, 4.1719, 3.1042, 2.9709, 4.75, 2.5474, 3.8417, 5.5955, 7.2628, 3.9261, 2.8077, 5.2174, 5.0322, 5.4236, 5.163, 3.9076, 1.8672, 5.3259, 4.8717, 2.6719, 2.2132, 4.3173, 10.0549, 5.0778, 3.0184, 5.3131, 13.499, 6.2135, 3.6, 3.37, 3.6625, 2.2639, 3.775, 8.3646, 3.0542, 5.8325, 4.5938, 2.4663, 2.5437, 11.3074, 5.2485, 7.7752, 3.8365, 13.4196, 2.8594, 2.5625, 5.1315, 3.2768, 3.851, 1.4028, 4.4, 2.9243, 3.625, 3.5893, 3.0429, 4.4948, 4.5982, 4.6649, 1.875, 3.8257, 5.3272, 4.4107, 3.7031, 3.6415, 4.2308, 4.0474, 3.6298, 2.2891, 3.0962, 3.4904, 5.1169, 3.7863, 5.5591, 1.6437, 2.2794, 4.1439, 6.7809, 2.4653, 3.8068, 5.0787, 3.3322, 5.1098, 2.4505, 4.6705, 2.2336, 3.5603, 4.6484, 4.2071, 3.6936, 2.5574, 3.2292, 2.0087, 2.478, 2.4931, 4.2262, 4.4107, 11.8603, 1.9625, 3.4886, 3.475, 3.2331, 5.0602, 4.1563, 2.5495, 2.9315, 3.5714, 1.0516, 1.5114, 10.8034, 2.0205, 3.3558, 1.7546, 6.0965, 6.6779, 3.2434, 3.0, 3.0938, 1.2096, 4.1058, 8.4331, 2.0227, 1.9444, 3.5556, 3.8333, 3.7697, 4.375, 4.1167, 5.5261, 7.5845, 6.0115, 3.2404, 4.3826, 2.6147, 4.4097, 3.6458, 1.5223, 1.5521, 3.5972, 1.55, 2.8372, 5.7097, 2.207, 2.5343, 3.443, 5.2019, 3.375, 2.8393, 3.2125, 3.35, 6.0, 3.8018, 3.1528, 2.2024, 6.471, 1.725, 3.5189, 2.73, 5.7654, 4.7361, 2.1719, 3.2552, 3.0432, 2.7153, 2.75, 3.5473, 2.4596, 2.3, 7.1885, 6.6112, 2.8482, 5.0323, 4.4423, 2.1406, 5.6611, 1.5227, 1.871, 3.3015, 2.9886, 0.8639, 4.2292, 4.3056, 4.7083, 3.6875, 5.3363, 3.9808, 1.0217, 1.767, 3.5213, 1.8375, 1.0685, 2.5625, 4.1033, 1.449, 3.5365, 2.8438, 5.9585, 6.2726, 4.5375, 3.6765, 5.0453, 1.5086, 3.7772, 8.1125, 2.8043, 3.9036, 3.3839, 2.3359, 4.0231, 3.4917, 2.3438, 6.9635, 3.8646, 3.9054, 4.8295, 6.2073, 5.2124, 2.92, 1.175, 2.6546, 2.1467, 4.9375, 5.1677, 6.083, 7.4918, 8.4196, 7.1267, 3.2083, 2.0, 4.2656, 4.7361, 7.7068, 5.062, 3.875, 2.6864, 4.375, 2.3654, 3.8029, 2.5875, 4.1387, 2.4942, 3.7344, 4.7583, 2.4297, 3.3447, 2.5893, 2.6182, 1.4913, 4.0536, 4.0167, 2.5, 4.4122, 3.2937, 1.6854, 4.0313, 5.8186, 10.129, 8.0755, 2.6964, 3.9375, 9.1881, 3.05, 4.6989, 4.7344, 5.5395, 5.3416, 6.4247, 6.4419, 1.4861, 3.1645, 7.5, 5.1365, 4.7813, 4.4107, 2.7115, 3.1507, 6.7287, 3.1361, 2.8393, 4.6902, 9.7956, 1.9271, 2.3605, 2.2788, 1.6111, 1.625, 4.0833, 4.0795, 1.9387, 2.3261, 2.6, 3.5978, 8.8619, 2.6981, 2.7989, 1.2012, 2.8173, 4.0057, 3.2, 4.8167, 4.46, 3.3398, 2.2596, 1.5823, 6.019, 3.1696, 5.7704, 2.401, 2.5481, 1.6184, 4.275, 6.0335, 2.5536, 1.901, 2.875, 2.0136, 1.7708, 3.1071, 4.7891, 4.5329, 5.726, 6.7977, 4.8264, 6.9508, 2.1875, 5.6582, 3.1979, 2.0208, 2.3409, 1.0801, 6.1726, 2.085, 4.3214, 3.7411, 5.5785, 5.1061, 3.1979, 3.89, 6.556, 2.894, 11.0567, 4.0156, 7.6877, 4.3523, 2.875, 2.5583, 7.9213, 1.6641, 3.2447, 5.9683, 0.9513, 1.5833, 2.4744, 3.5536, 3.0263, 3.5, 4.4375, 3.5625, 1.0769, 4.3111, 4.0144, 4.175, 3.4044, 3.5684, 7.8774, 2.3487, 4.2654, 3.1776, 4.8088, 4.9167, 7.3463, 6.3088, 2.6346, 1.6571, 2.8015, 2.8247, 2.0734, 2.7379, 0.9809, 1.9732, 1.7038, 6.2187, 4.9464, 3.8056, 5.2571, 3.25, 3.5711, 1.9923, 5.0, 2.1311, 3.8036, 1.191, 4.4583, 3.4222, 2.4459, 5.3345, 3.1103, 4.3281, 3.0833, 2.8788, 3.2955, 3.3368, 3.765, 3.6042, 4.2679, 5.3064, 2.3333, 5.0406, 2.7183, 5.4218, 2.2794, 3.0284, 4.9766, 2.1955, 3.225, 2.0982, 3.6006, 1.4, 4.0417, 5.2131, 3.6548, 1.9535, 1.5676, 15.0001, 2.7778, 4.566, 4.7422, 1.6875, 2.1458, 3.4583, 6.2389, 4.7875, 4.1713, 3.2708, 4.9662, 3.6885, 3.0179, 3.5, 2.3549, 3.0, 1.4911, 4.1953, 5.76, 3.1389, 3.9191, 5.5446, 3.5469, 10.5941, 4.3472, 5.4042, 2.1905, 5.2595, 0.7685, 3.1875, 4.3409, 3.3776, 2.2961, 2.7583, 4.4531, 3.0642, 2.3352, 7.4111, 6.2517, 1.6581, 2.8588, 4.2036, 6.4745, 2.0432, 1.4413, 2.7656, 0.8738, 2.2429, 1.4556, 3.2039, 3.4338, 1.9609, 9.337, 2.1046, 4.615, 5.6754, 4.1797, 3.6133, 0.844, 6.9754, 7.5, 4.1484, 4.18, 3.6204, 2.6641, 5.7528, 5.5291, 6.844, 2.7125, 5.4223, 1.2887, 1.4103, 2.3526, 3.7716, 3.225, 4.0337, 2.5284, 2.3682, 2.9896, 5.285, 4.125, 3.4028, 5.0719, 3.7813, 3.0, 2.5268, 4.4394, 4.4038, 3.1196, 7.1053, 4.875, 2.5119, 2.3438, 4.049, 2.6722, 4.8382, 3.3687, 5.1695, 2.3382, 2.5, 4.2344, 4.2448, 3.9615, 2.483, 2.325, 1.725, 4.8516, 2.1912, 4.621, 12.5902, 1.1786, 4.875, 1.8942, 4.412, 1.6892, 2.9891, 2.892, 2.1442, 3.1375, 4.1544, 6.58, 2.136, 1.4583, 2.5185, 2.3333, 1.725, 1.6125, 2.0833, 3.3173, 3.5625, 1.023, 4.8611, 3.0795, 2.502, 4.7308, 3.5039, 4.775, 6.7093, 4.0714, 3.9265, 1.8224, 3.9352, 5.0599, 2.3684, 4.9517, 5.2769, 3.1375, 2.5577, 4.8831, 1.9018, 4.9962, 2.4273, 6.2924, 4.3427, 2.6538, 3.725, 3.2338, 6.7449, 1.7427, 5.0497, 5.9088, 3.57, 2.3098, 3.0321, 3.5295, 5.828, 3.0687, 4.1708, 2.425, 3.8355, 5.7415, 3.0694, 2.5962, 2.7336, 3.1667, 5.3184, 6.7058, 3.8117, 3.7585, 4.575, 3.1395, 2.4671, 4.1544, 2.4219, 2.1135, 4.6146, 3.5083, 5.9806, 6.4209, 2.933, 3.4914, 3.1429, 2.9145, 10.9704, 3.3565, 7.7848, 4.5556, 5.1345, 3.5556, 3.5696, 2.8214, 2.6014, 2.3667, 2.9312, 6.5958, 8.4045, 3.4706, 4.9236, 1.6477, 3.2314, 2.465, 4.2222, 5.5402, 2.2917, 5.5413, 1.1552, 2.0549, 4.7344, 5.2887, 5.5385, 2.5245, 5.6936, 1.7679, 3.9185, 7.3878, 3.8, 4.5395, 4.9103, 3.4299, 0.7917, 3.2437, 2.5847, 2.6713, 3.8958, 5.6406, 6.1133, 2.6364, 2.3375, 3.0469, 4.3906, 8.1078, 2.1875, 2.8421, 3.9375, 4.3393, 2.1975, 3.4186, 1.9688, 2.1889, 3.0, 6.516, 4.4318, 3.62, 8.155, 7.0548, 2.6447, 2.9899, 9.1808, 4.4688, 2.6042, 3.425, 5.0519, 3.2574, 4.835, 3.0724, 2.0398, 3.0268, 1.7614, 4.3393, 2.0625, 3.6875, 3.875, 5.1874, 4.8194, 1.2634, 3.8068, 2.1719, 2.9861, 3.3438, 5.3749, 4.7953, 3.7252, 2.375, 2.5755, 2.375, 2.6894, 4.0556, 3.9079, 1.6977, 4.125, 4.0521, 3.6729, 4.3512, 6.617, 4.5673, 4.7386, 4.3879, 4.0071, 3.0833, 6.6178, 4.5057, 2.6833, 5.2596, 4.0658, 3.3214, 3.4531, 1.9425, 2.6321, 4.7404, 4.7961, 1.972, 2.5104, 3.4291, 3.3214, 3.1859, 4.0579, 4.8958, 1.7756, 2.5909, 4.2061, 2.5038, 5.4409, 4.4875, 3.4213, 2.5062, 2.8072, 1.6325, 4.0625, 2.8393, 3.6786, 12.5, 3.125, 4.6629, 1.875, 6.0162, 2.4006, 1.1875, 2.3, 3.4632, 5.5551, 4.9231, 1.5817, 5.422, 3.2813, 1.8417, 1.223, 3.1574, 2.0885, 5.5275, 2.3507, 4.8125, 2.3833, 1.6786, 3.1875, 2.5868, 2.6776, 5.0062, 1.6121, 1.4241, 4.0547, 3.2158, 2.1518, 3.0952, 8.3609, 6.4631, 2.1287, 3.4559, 2.8322, 1.6331, 3.4038, 4.1136, 8.1888, 1.3029, 4.2333, 2.2653, 6.2045, 1.746, 3.0417, 2.1094, 8.7974, 4.7609, 1.8269, 4.1875, 2.7321, 2.8351, 1.1157, 3.2321, 4.1448, 2.9375, 4.0042, 3.75, 1.8606, 5.817, 2.2545, 1.9044, 3.3067, 2.2754, 3.0625, 5.2903, 1.6923, 4.375, 2.3099, 4.25, 2.5446, 2.8125, 2.6667, 1.7019, 1.6435, 2.0673, 2.875, 4.2782, 2.1202, 4.1513, 5.2742, 3.5859, 2.3333, 2.7955, 2.9615, 5.3272, 2.9097, 5.234, 4.0174, 3.7031, 1.06, 2.1471, 4.0577, 2.3712, 2.7619, 3.0253, 2.7875, 2.7986, 3.3438, 3.6058, 4.1576, 4.6806, 1.9167, 3.1613, 6.8268, 5.8747, 5.4122, 2.0915, 1.2188, 5.1057, 2.3, 7.8772, 5.3369, 2.7042, 7.9625, 15.0001, 2.6439, 1.9875, 3.5729, 5.4359, 4.8105, 4.0039, 5.7934, 1.4387, 2.9911, 3.0909, 2.6292, 0.9241, 5.753, 2.4605, 5.6765, 4.6442, 3.25, 15.0001, 5.9683, 6.9014, 1.275, 4.3571, 4.2434, 6.6447, 2.0956, 2.5568, 2.2917, 3.5179, 2.3, 3.6398, 4.7794, 1.9487, 3.6797, 3.694, 3.7655, 2.4196, 5.2897, 7.2211, 4.3636, 2.0333, 5.5925, 4.5303, 3.9545, 3.0119, 4.005, 4.4583, 2.6611, 3.6667, 4.3897, 4.0194, 1.75, 5.5057, 5.5221, 2.2222, 2.9943, 1.6424, 4.0441, 1.2273, 0.9304, 2.6312, 1.7038, 3.6979, 4.6908, 4.8264, 1.615, 4.3214, 2.7813, 4.2386, 2.6513, 3.1875, 3.5806, 2.0694, 9.2858, 2.3221, 4.9559, 4.5332, 3.0078, 6.3767, 2.3317, 4.25, 2.2, 3.668, 3.9688, 5.1878, 1.9034, 3.3274, 3.6765, 5.2276, 5.0462, 3.8, 2.5368, 6.2456, 3.9063, 1.5, 3.0417, 5.8602, 3.8065, 5.3727, 4.055, 3.3827, 3.6875, 3.4811, 5.795, 5.7843, 4.7952, 4.0, 3.5129, 2.2643, 2.6316, 4.8125, 4.6905, 3.0461, 4.7604, 4.175, 3.6711, 4.2059, 7.9892, 1.3904, 6.2817, 1.8319, 2.2679, 2.3687, 10.1007, 1.8235, 5.296, 3.1711, 2.7515, 4.2708, 1.7734, 3.2578, 3.8203, 2.7543, 5.6197, 3.0216, 2.3243, 1.4688, 1.3269, 3.1583, 3.7143, 10.1882, 5.2987, 1.5727, 1.9912, 4.6687, 3.8068, 2.7473, 1.2937, 6.2152, 4.3036, 5.1781, 5.8143, 2.6563, 4.9102, 3.8355, 2.4387, 3.4426, 3.9443, 3.3214, 2.444, 4.4472, 4.1359, 1.7994, 1.1957, 4.0833, 2.5737, 3.5481, 1.505, 1.8413, 2.0, 2.5795, 2.5208, 5.6306, 4.3029, 6.2503, 2.2042, 9.9055, 4.8167, 5.1788, 2.5559, 4.4196, 3.6856, 4.9359, 4.0, 5.5792, 2.2254, 5.5073, 2.4398, 1.625, 6.0296, 4.5714, 3.3672, 3.9766, 2.4688, 7.3339, 2.5568, 3.3292, 4.7, 2.227, 2.3818, 7.0173, 4.0651, 3.8162, 4.0911, 2.5463, 1.9707, 2.9844, 5.3738, 3.7891, 4.267, 4.7222, 2.0173, 1.6111, 7.1273, 4.0, 2.4283, 6.4232, 5.6411, 3.2266, 4.2212, 4.3839, 3.665, 3.4432, 4.0313, 4.8311, 5.244, 1.5429, 2.6827, 3.6667, 1.6964, 1.7446, 4.3661, 5.2636, 2.3523, 3.0278, 4.3281, 2.1542, 5.9359, 3.0521, 2.5125, 3.6, 1.6851, 4.0403, 4.9211, 5.1702, 3.6815, 6.4865, 6.4095, 4.1739, 6.1943, 6.187, 1.375, 1.9265, 6.155, 2.8306, 2.1424, 3.9632, 3.4073, 6.1281, 2.3625, 4.4, 2.5074, 2.425, 2.5664, 6.2089, 6.0302, 1.5064, 4.0156, 1.8036, 5.3292, 3.1979, 3.067, 2.0244, 3.0691, 2.9063, 1.9615, 4.6, 1.6785, 1.2813, 1.9286, 4.6667, 2.7312, 2.3261, 2.8208, 4.0686, 3.2929, 2.8917, 0.7684, 4.4118, 4.7381, 2.7958, 8.8693, 2.5263, 3.2321, 3.1002, 4.125, 4.6964, 4.8083, 3.0972, 3.375, 2.6976, 4.0391, 5.7407, 4.75, 2.4461, 2.1771, 6.5843, 3.9156, 4.1333, 2.6434, 4.0931, 1.7179, 5.7914, 3.6, 1.6833, 5.3169, 2.6667, 2.3221, 2.7266, 3.6447, 2.5268, 3.7794, 6.1885, 3.6646, 3.3529, 1.7548, 2.6458, 5.62, 6.8686, 2.7316, 7.7572, 4.6914, 4.0938, 3.6745, 1.7891, 2.92, 8.4016, 15.0001, 3.6125, 2.1682, 2.3566, 4.9079, 3.9464, 3.8287, 10.156, 3.3724, 3.8235, 2.56, 1.6887, 7.2592, 5.1698, 1.0349, 3.0729, 2.1287, 3.0806, 2.976, 1.7238, 2.7344, 3.0875, 7.7751, 4.2841, 3.1982, 2.6146, 5.0391, 6.4967, 3.5426, 1.4712, 1.9704, 6.9238, 3.0147, 2.0411, 1.6993, 3.2599, 1.5491, 3.1324, 1.7, 2.1927, 5.6683, 4.3654, 7.0674, 1.6504, 2.4511, 3.9375, 15.0001, 1.8299, 6.6455, 2.825, 2.4896, 2.2589, 4.7566, 5.6409, 2.8274, 3.63, 6.0957, 1.3365, 6.0889, 4.1833, 3.0135, 2.1759, 4.5, 2.5398, 2.7917, 4.625, 4.0333, 3.2813, 3.7796, 3.9607, 3.5625, 4.0313, 3.8147, 3.6591, 2.4191, 3.9688, 4.0417, 4.0268, 5.5798, 3.7611, 4.9926, 2.6875, 6.7385, 2.881, 3.5867, 2.6, 3.1392, 3.663, 2.8621, 4.4655, 1.625, 2.8281, 2.5172, 6.0961, 2.4599, 5.5, 1.808, 2.1383, 3.3534, 5.112, 3.6522, 2.4167, 1.7656, 2.125, 1.6888, 5.7871, 4.3424, 3.1403, 4.2414, 5.4721, 2.2417, 4.9615, 5.2446, 4.2972, 4.3227, 2.4423, 4.5526, 11.1557, 3.9792, 3.505, 3.3021, 3.4286, 10.0914, 2.5382, 3.7857, 3.9327, 15.0001, 1.4375, 3.756, 4.6133, 8.0599, 2.975, 0.7068, 2.6629, 4.4821, 2.6333, 2.2969, 3.9118, 3.1493, 6.9418, 1.9766, 4.1212, 4.9688, 8.9248, 5.0907, 2.4036, 3.2622, 1.7865, 5.4824, 1.7641, 2.5156, 2.162, 2.8649, 2.1786, 1.9286, 2.7697, 2.6364, 1.9355, 4.4519, 6.2306, 5.3963, 2.5603, 3.1944, 9.4667, 2.5357, 7.8528, 5.0389, 4.0893, 3.8534, 1.4886, 5.0853, 0.9705, 3.135, 7.5385, 1.7802, 1.4896, 6.0097, 4.285, 7.2845, 4.5625, 1.875, 3.5073, 4.6563, 7.7814, 4.2647, 5.7204, 2.25, 3.0977, 2.9241, 1.7926, 1.8295, 6.9473, 2.0817, 7.8543, 4.0865, 3.1771, 3.4598, 2.8958, 3.1875, 2.19, 5.3558, 1.9122, 3.575, 3.5562, 3.3967, 2.25, 3.3438, 3.0739, 10.7751, 3.9022, 4.6852, 3.9688, 1.425, 5.0855, 7.7464, 2.7083, 3.0208, 2.6471, 4.0208, 3.7478, 3.1087, 13.6842, 6.2059, 4.7237, 8.496, 2.7768, 2.7216, 4.9583, 8.7496, 2.1265, 6.7079, 2.6071, 4.3571, 3.575, 2.125, 2.5, 10.2289, 6.4514, 7.585, 3.0, 0.8056, 2.5321, 5.0718, 4.2656, 4.5833, 1.9653, 4.35, 1.7217, 2.1806, 6.5851, 6.3761, 2.5444, 3.225, 3.8333, 4.7933, 3.375, 1.1094, 3.1439, 2.2423, 6.2452, 3.5845, 2.8594, 0.8351, 5.5351, 5.7984, 10.8289, 3.7549, 2.1806, 4.1875, 3.4792, 5.8596, 2.8417, 1.8015, 1.7083, 4.2283, 3.8247, 3.3724, 4.7875, 1.9338, 8.2405, 3.4394, 3.556, 5.0958, 3.5877, 1.1522, 5.0824, 4.7609, 7.745, 1.375, 4.6591, 2.825, 3.2375, 5.2101, 7.3715, 2.517, 3.4583, 4.125, 2.0469, 2.1513, 4.337, 1.6875, 1.6513, 2.3462, 3.4907, 1.4042, 7.375, 4.5833, 1.6667, 3.2632, 8.72, 6.1825, 2.0714, 3.0882, 3.9844, 1.7137, 5.7579, 5.143, 3.0086, 3.5089, 1.9929, 15.0001, 4.125, 1.6471, 3.3889, 2.4412, 3.5671, 3.8194, 2.6477, 3.045, 3.5878, 3.3594, 2.9706, 3.6875, 4.1411, 8.4284, 4.225, 5.753, 3.9205, 3.0197, 4.5648, 2.0074, 2.9125, 3.9659, 4.5066, 4.5659, 1.975, 2.2056, 2.0, 5.5584, 1.8355, 3.0208, 7.0326, 4.9091, 2.0673, 2.9571, 7.2519, 3.6875, 4.7813, 4.7222, 2.4286, 2.4926, 1.3373, 5.1314, 2.0109, 4.2926, 1.2188, 2.6917, 3.575, 6.8677, 4.5795, 2.45, 6.0352, 6.981, 3.7312, 3.9519, 2.9, 3.2794, 10.1154, 5.2527, 2.2409, 7.2096, 4.3958, 2.0162, 3.4612, 2.4342, 4.6477, 4.3145, 4.8333, 11.6833, 3.825, 5.2452, 5.0461, 4.1361, 2.9922, 6.8722, 1.7868, 2.2188, 1.5054, 2.8833, 2.8036, 3.0404, 6.0667, 3.0954, 1.7388, 1.9417, 2.5234, 1.9643, 2.9911, 4.375, 4.4, 1.4867, 3.12, 3.8667, 2.9213, 3.6435, 4.8333, 3.2216, 2.5556, 1.6611, 2.3768, 1.8429, 4.5833, 4.3321, 3.2829, 3.3333, 3.4482, 5.4562, 1.8958, 2.8929, 3.375, 6.7599, 6.8654, 4.4286, 2.4952, 3.9063, 3.765, 3.1902, 1.4327, 2.25, 3.25, 4.3981, 1.2132, 2.0511, 10.9722, 2.9194, 5.1778, 2.6104, 4.2167, 2.75, 2.7121, 1.899, 3.9226, 4.4135, 9.0704, 4.1667, 2.6765, 3.525, 5.2359, 4.625, 1.7727, 3.9417, 4.6154, 1.7472, 2.9726, 3.4899, 1.6903, 5.5875, 8.4614, 1.5536, 1.0521, 3.9741, 2.3693, 1.947, 2.7374, 1.4665, 3.9784, 4.0, 5.9399, 1.8495, 4.0714, 2.5162, 6.5372, 6.8112, 1.6389, 2.52, 3.8203, 8.4352, 3.6471, 4.3714, 3.4609, 2.4028, 1.6699, 6.4524, 3.5268, 2.9936, 3.2708, 2.2725, 3.9777, 2.4545, 4.7647, 8.1189, 3.0491, 3.1083, 2.0775, 5.6152, 1.725, 3.312, 1.2469, 2.9018, 6.3716, 2.4, 2.8676, 2.6734, 8.798, 3.1917, 3.2109, 3.2702, 3.8934, 4.4896, 10.1675, 3.1607, 6.0661, 3.5781, 4.5, 3.9728, 3.4306, 6.6361, 2.2361, 3.2889, 4.9083, 7.0001, 4.7885, 3.1103, 3.008, 3.3661, 3.2024, 2.56, 0.8668, 2.4688, 5.7338, 4.2083, 1.9417, 4.0774, 1.9375, 0.9751, 4.8554, 2.925, 3.2016, 3.4234, 3.7552, 2.6442, 3.5551, 3.0, 2.555, 8.1564, 8.1221, 4.4081, 2.6786, 3.4107, 2.7273, 3.5912, 5.2362, 5.2443, 3.4359, 5.8283, 2.9112, 2.0879, 4.0219, 2.0817, 5.1831, 5.5843, 2.2917, 8.176, 3.0446, 4.5553, 5.0555, 1.5611, 3.3326, 2.3929, 4.2066, 2.7411, 5.1654, 3.175, 3.9934, 5.041, 3.8088, 4.2672, 3.7083, 2.7955, 2.7058, 2.069, 4.7402, 2.1071, 2.5352, 2.125, 1.8047, 10.1241, 4.2396, 4.0815, 3.072, 3.5, 5.815, 2.543, 1.8419, 3.6042, 10.0765, 6.0767, 3.0313, 1.6509, 3.7007, 2.9309, 0.9355, 3.89, 4.9917, 3.0495, 5.8408, 2.4708, 2.6604, 3.4836, 3.6818, 4.0417, 2.9357, 2.83, 2.775, 1.8242, 10.2233, 3.6346, 5.1512, 13.6623, 2.3942, 3.017, 3.1571, 3.1496, 5.6094, 2.5673, 1.5898, 0.8438, 4.425, 3.9243, 2.0674, 2.9054, 1.9483, 5.3276, 2.0972, 1.2891, 2.6458, 2.375, 2.98, 4.9528, 3.3882, 2.7813, 4.526, 6.706, 4.6978, 2.4049, 5.6427, 2.5564, 1.5625, 2.2071, 2.4672, 3.2872, 1.4514, 4.4375, 3.0703, 4.1705, 2.4196, 4.072, 3.9241, 2.7305, 2.6324, 3.875, 4.8438, 3.1848, 2.6485, 2.5013, 3.9934, 3.1406, 4.5556, 5.6163, 3.6486, 4.983, 2.1136, 6.3967, 6.1265, 6.0531, 5.4074, 4.0039, 3.6086, 3.6602, 2.4387, 5.0, 0.9142, 4.925, 4.2381, 8.5184, 15.0001, 3.3348, 1.6792, 2.0332, 4.2802, 1.8594, 6.3047, 5.2923, 3.0568, 4.0556, 5.0953, 1.2024, 1.2679, 2.1055, 1.837, 2.1935, 5.0, 3.3479, 6.0597, 4.3269, 4.9271, 0.6433, 4.3594, 3.2986, 5.5036, 7.9187, 3.069, 7.1148, 3.8906, 7.472, 2.375, 4.1279, 12.8483, 3.4667, 1.8125, 2.1389, 2.0875, 3.15, 3.1711, 3.8512, 3.6336, 2.694, 4.125, 2.2222, 3.6546, 2.6312, 5.7613, 3.1583, 2.2401, 2.875, 1.7426, 6.5861, 3.0625, 3.125, 3.942, 1.4792, 3.8516, 8.19, 1.4455, 5.6817, 1.9342, 2.5872, 2.5428, 3.8788, 3.6227, 3.4821, 3.0625, 5.9849, 2.6637, 7.0913, 1.7464, 1.7393, 3.1115, 2.7652, 4.0179, 4.3333, 1.8214, 3.2857, 2.3438, 2.375, 2.3578, 2.0258, 7.0504, 4.6, 2.1667, 4.6518, 6.5437, 2.7, 2.3095, 4.1172, 1.9906, 2.8657, 2.1513, 2.585, 5.4286, 3.1194, 6.623, 4.8266, 5.7376, 4.5, 4.1375, 3.6034, 1.7451, 4.22, 2.1029, 6.1815, 5.4836, 3.2229, 6.9553, 8.0727, 8.2827, 2.7457, 2.7562, 3.5757, 2.4, 5.4496, 3.2131, 3.3536, 4.6908, 2.4234, 4.95, 4.1042, 2.9779, 2.5556, 2.425, 5.8133, 4.8971, 6.0086, 4.4954, 14.5833, 1.0, 2.375, 5.5336, 3.7585, 3.0179, 3.3472, 7.8496, 1.8906, 3.1281, 4.4375, 1.925, 4.6731, 3.7159, 2.1437, 3.0927, 2.5139, 2.2621, 2.6133, 5.6159, 2.1419, 4.3, 2.3846, 3.5655, 7.2392, 4.4946, 5.7768, 2.6145, 1.6534, 2.6522, 4.9306, 2.1976, 2.2106, 2.1394, 4.0125, 2.9688, 4.425, 4.775, 5.156, 5.0634, 2.7368, 4.4611, 2.3382, 5.3705, 2.1734, 4.3864, 3.3125, 4.0068, 2.6875, 8.6675, 1.375, 2.9583, 5.215, 1.4702, 5.4063, 3.2222, 6.0, 5.4694, 2.4792, 5.6263, 2.625, 2.875, 5.5196, 2.1987, 4.0583, 3.3491, 4.0625, 4.4474, 3.4625, 6.8462, 7.5, 6.7644, 1.9719, 5.0, 3.825, 2.6689, 0.8288, 2.8036, 5.0434, 2.6648, 6.6134, 3.8038, 4.8984, 7.6933, 2.6016, 5.021, 4.7188, 3.0703, 5.4445, 4.6371, 5.0621, 2.2031, 4.1717, 5.4618, 3.8448, 3.1667, 6.9324, 1.3527, 2.2303, 3.13, 1.3993, 2.3844, 5.8518, 2.35, 2.6635, 1.6467, 2.7443, 2.8812, 2.2156, 2.5362, 2.9803, 5.3991, 2.0785, 5.9024, 2.4348, 3.7188, 4.0132, 3.6645, 3.0962, 5.5601, 4.8523, 1.9297, 4.3657, 2.6921, 1.9236, 3.5292, 8.4546, 2.0357, 3.8984, 2.5599, 1.6172, 3.8558, 12.1387, 5.4333, 6.8927, 2.5, 1.6812, 4.7708, 4.875, 2.1927, 3.1672, 2.6774, 1.4115, 2.2969, 4.125, 4.163, 4.4, 5.7409, 3.46, 3.6417, 5.866, 3.65, 4.5461, 4.5859, 4.7727, 2.3056, 3.9187, 8.4721, 0.8229, 1.7276, 8.8342, 3.7821, 2.943, 4.1375, 2.5417, 6.7694, 2.7399, 3.5223, 3.3056, 1.4861, 2.806, 5.7192, 6.3199, 3.6736, 8.2953, 2.1083, 4.3911, 1.0951, 4.2266, 5.4485, 4.4671, 3.3389, 6.3809, 2.5769, 1.9602, 1.9792, 1.5026, 2.4117, 6.227, 2.817, 5.6856, 3.1667, 3.0809, 2.4219, 2.125, 1.9805, 5.2138, 6.4171, 2.619, 3.1964, 1.9908, 5.5608, 2.225, 3.0893, 7.8627, 5.3794, 2.7031, 4.6667, 6.6086, 2.0246, 2.214, 2.9183, 2.025, 1.4812, 3.7414, 3.1576, 2.4618, 4.2685, 4.3429, 3.434, 3.184, 1.6214, 5.7485, 8.0683, 3.9696, 5.5335, 3.662, 2.8565, 5.8733, 1.5954, 5.2894, 5.5148, 5.8625, 2.7011, 3.225, 9.3845, 2.55, 3.2604, 3.2019, 6.4664, 3.0241, 1.9185, 2.8298, 4.1603, 4.3426, 6.7115, 3.3988, 7.0879, 3.5978, 3.5887, 3.125, 3.2073, 2.1563, 3.155, 3.569, 4.0585, 6.7571, 3.5938, 4.6069, 4.0656, 5.0318, 3.305, 2.67, 1.5714, 2.2917, 5.1121, 2.8884, 10.7326, 3.0, 3.4228, 2.675, 5.9114, 9.8098, 2.575, 5.0092, 2.9643, 13.8556, 3.5851, 1.1667, 3.0, 3.3955, 5.485, 4.2941, 1.3807, 3.25, 5.1624, 1.6797, 6.1504, 3.6445, 4.1641, 1.6579, 2.1782, 3.2578, 4.0878, 3.0079, 4.6071, 3.8531, 3.1458, 4.1064, 10.4519, 3.2391, 2.8701, 1.4524, 3.8426, 1.586, 3.3542, 2.3077, 2.5025, 3.3553, 4.0417, 4.7813, 5.3307, 6.3624, 1.6295, 3.2024, 5.2463, 4.6761, 2.182, 3.066, 6.2403, 8.3474, 2.0385, 8.7603, 2.8378, 4.3636, 4.15, 3.0938, 1.1667, 3.8719, 6.221, 2.4539, 1.7885, 4.7679, 1.5152, 5.4788, 2.5156, 2.85, 6.9021, 2.7237, 4.9688, 3.2941, 2.6149, 3.1885, 3.3725, 3.2333, 5.6358, 9.0683, 2.9821, 2.75, 3.055, 2.7846, 2.4353, 4.3611, 1.3386, 3.8571, 9.1228, 5.0196, 2.7625, 4.4167, 4.1806, 3.7361, 6.3586, 4.1645, 3.4455, 3.0919, 5.8407, 5.1805, 5.2528, 6.299, 3.6989, 4.9292, 2.5978, 4.7813, 3.8534, 2.462, 5.7133, 4.4722, 6.5755, 1.9309, 3.2216, 2.2188, 2.7917, 2.9479, 4.8229, 6.8758, 5.6345, 2.5156, 3.0156, 3.0667, 3.5943, 2.1776, 3.0771, 2.0062, 2.2333, 3.2813, 2.875, 6.6437, 2.6583, 3.4943, 3.4543, 3.1702, 4.6366, 3.125, 4.9504, 3.9766, 7.0907, 6.8469, 2.6812, 4.0833, 3.9063, 4.5625, 2.7212, 4.1974, 3.3667, 4.625, 4.3533, 4.825, 3.8292, 3.425, 4.7778, 2.6998, 3.0737, 4.835, 8.1397, 6.1062, 3.495, 5.6447, 2.3611, 3.2077, 2.433, 7.3081, 2.7143, 1.6187, 2.6217, 1.7135, 4.7721, 2.3387, 2.0469, 5.0762, 2.6094, 3.3466, 2.0972, 4.3393, 3.6, 3.8424, 7.7643, 1.8571, 2.639, 2.1705, 1.2069, 10.3653, 3.225, 4.0294, 2.7708, 3.9205, 5.7817, 2.925, 4.8646, 3.3864, 2.9388, 3.1597, 3.2917, 2.1522, 3.3261, 1.5972, 6.6453, 4.875, 1.375, 3.3214, 3.045, 6.5095, 2.4821, 3.4208, 2.8456, 2.4375, 1.6833, 2.3667, 2.2381, 3.2411, 5.3054, 3.0542, 3.0104, 4.3523, 3.1133, 0.8075, 5.1072, 3.7831, 1.9318, 2.4167, 2.9688, 8.9083, 3.6875, 3.2639, 2.4122, 2.2301, 1.8512, 2.2857, 5.7039, 3.6761, 3.4688, 3.5865, 2.1071, 3.2019, 1.9028, 4.4565, 4.25, 3.3295, 0.536, 3.1478, 2.3111, 2.2902, 4.0, 7.8453, 4.3118, 6.2899, 5.2366, 4.05, 5.4607, 6.431, 3.2852, 2.8611, 4.1316, 4.7344, 3.9798, 5.0346, 3.1235, 3.2021, 3.9309, 2.1964, 2.8438, 7.9367, 8.2069, 5.3344, 3.6694, 4.2083, 1.5156, 2.026, 3.6597, 2.5, 2.3333, 1.0513, 2.0577, 3.5192, 2.6397, 1.5774, 3.631, 2.3981, 3.4871, 2.2017, 4.5, 3.4402, 2.8203, 4.0658, 4.2188, 2.3977, 2.5156, 6.2182, 4.5352, 2.6205, 3.7364, 8.7051, 2.0458, 6.8553, 2.7279, 2.0577, 2.913, 2.543, 1.5, 1.5313, 3.4519, 3.9762, 3.4542, 3.9696, 3.4634, 5.1074, 2.5147, 3.5909, 4.2227, 4.8966, 4.3429, 4.1552, 2.7243, 2.0, 4.725, 2.1029, 2.4635, 6.1183, 3.5, 4.2917, 3.6065, 1.3241, 4.5828, 4.175, 10.3224, 4.5938, 3.145, 3.2723, 4.6406, 3.9333, 3.567, 2.9097, 5.7233, 2.375, 3.425, 6.2661, 4.7195, 2.2542, 5.5292, 3.2411, 4.2188, 4.15, 3.0208, 7.8118, 4.0795, 6.777, 4.7821, 2.4866, 3.225, 4.2132, 3.3214, 1.5057, 1.4815, 4.125, 2.6159, 1.4625, 3.3636, 3.2297, 10.0187, 3.1765, 1.6156, 6.6049, 3.4063, 3.9336, 2.1875, 6.101, 1.4524, 1.7227, 2.8942, 2.2596, 5.3886, 6.4246, 2.6818, 5.2655, 5.8151, 3.6667, 2.975, 4.0893, 8.3839, 8.1117, 3.6719, 3.3008, 3.2415, 2.2339, 11.0911, 2.5833, 4.5909, 3.7188, 3.0398, 7.1193, 2.5603, 6.3517, 3.2061, 2.2937, 2.4943, 3.1106, 3.5455, 3.5357, 3.55, 1.4167, 6.1142, 4.6304, 3.4861, 5.5073, 4.0806, 2.1182, 2.3798, 3.6292, 1.9427, 3.6467, 3.1944, 1.654, 2.3598, 2.7863, 1.2969, 2.7644, 4.9777, 2.3421, 5.1999, 1.9208, 4.25, 4.4777, 2.6648, 4.0119, 2.2115, 2.7614, 3.3066, 1.5812, 0.4999, 1.7448, 4.0324, 4.0806, 6.8132, 6.7694, 1.6955, 3.25, 3.3571, 4.1577, 2.4828, 4.7589, 3.6611, 3.6528, 15.0001, 10.0757 ], "y": [ 2.8988173680577294, 2.8021402066852286, 2.9305877119103694, 3.4333856320366634, 4.977397131258723, 4.9259021492044965, 1.7036571264913525, 1.110603032615766, 0.9148479035402752, 4.051591238827308, 2.270225621183445, 2.4339811129674622, 1.395062964648112, 2.342206717868856, 1.8086903891924397, 1.4281288848021292, 0.5191813767051141, 1.4196827801087, 1.4751744257435226, 2.423101466763242, 0.6850923763613407, 2.113020932650202, 0.7775695633209985, 4.8539433854032845, 2.533360873742795, 3.4651375464228167, 3.307268865622679, 1.3697105326761474, 0.8730784372471536, 2.3109246883010934, 1.9168706824389161, 2.0215099794498417, 1.4693796071300138, 3.01290694347969, 1.4576183010296548, 4.906727549813211, 1.4536045518445166, 2.3177936942428587, 1.2837748140747567, 2.569234368240607, 2.5059660928607816, 0.8432131385861638, 3.4044502646397565, 1.2876639669953251, 2.955077553113091, 1.806162614274554, 2.6303504859064106, 1.8859147056504564, 0.9560080343084815, 1.917852347201538, 2.7382232804942626, 2.2879245895885787, 1.542670941815073, 3.2776754207127605, 2.4756811563972363, 1.898644295805276, 1.4357298943943153, 2.0786762742236715, 2.489422020848433, 1.7846250246715196, 2.455935322476341, 0.9698616193420999, 1.382148811224968, 4.128468196909931, 3.2119254209551835, 0.9356024714028814, 1.4034165045801426, 1.7389489980857897, 0.8530519818673269, 0.6113428626475089, 4.054556664973686, 1.366243868754167, 0.8753326306133707, 1.2955208882998226, 2.5839551461899837, 1.547843428226444, 0.8553417697141796, 1.0020010823799002, 3.0756980884739193, 2.040222631901949, 0.9363907565928622, 1.3821609198221336, 4.985760018656286, 0.8270809384873395, 1.5469694729579582, 1.7886097370603116, 1.7469715761185776, 4.281320620146005, 1.4679440538260824, 3.1405811357966478, 1.6143890732928188, 2.0543618329260687, 3.8821723665618353, 1.895762595439709, 1.2999336080503865, 1.0255122170833126, 0.9998310580042409, 2.079797982694899, 1.409691409978455, 2.90974414457686, 2.253983062553397, 1.860003335725315, 1.942586638237758, 1.4127856636097924, 1.470197497056012, 2.5476324090404856, 1.2011391053507379, 2.2689195743862527, 2.689126865870748, 4.896250603521951, 2.4623292237639323, 0.5253988081273508, 1.337647818639061, 1.0196083708909014, 0.7242679476152045, 1.687808110028421, 2.267047732687446, 1.6836424234597065, 1.0866123080552907, 2.470792106298009, 1.8865860844806537, 1.489868521062239, 0.958226220506427, 1.7694373377023553, 1.0476038400729164, 1.9774624607845588, 0.9927570788793393, 3.2377157505891425, 2.054073785905432, 1.1628772362066022, 3.1440813218405257, 0.5881130814302599, 2.1576769818990957, 2.810743868567625, 2.2570197492708575, 1.9374297204069613, 1.8041304227545845, 4.386674235903376, 4.900447433516853, 2.0181077304164265, 1.6297389688694555, 3.675926216466403, 1.4252959234831455, 1.6145597074671776, 3.380236013742888, 1.5272915449693591, 1.4917823207046625, 1.093539515330632, 0.7219838554363506, 2.400663604637285, 1.4940652068861913, 2.5486239014702647, 1.8636239187202632, 4.444982004087378, 2.0169928511983812, 1.8123420143577773, 1.6381290550129968, 2.2691477486736127, 0.969695340419039, 2.629357054719086, 2.5855868101364345, 2.8042982617380314, 2.5631120922001696, 0.4541979751736308, 0.760844346091193, 2.2408365518459243, 2.3681535208846403, 4.821912943865241, 2.055486553479711, 0.7192912390690055, 1.2680646945541252, 1.2344426622654299, 2.04209018123344, 2.2183444712336735, 1.8109389199862098, 1.6303552567376611, 3.4942155694341306, 2.418431015142775, 1.2631957128465312, 4.4190683326996165, 2.860437828447312, 1.874014901296098, 2.3169209564145024, 1.2740027656740467, 0.8247115377922785, 2.214025615889881, 0.6439552005792973, 1.7590838994839026, 1.0432490543607453, 1.9179159105025871, 0.9229614216003373, 3.1951675213127566, 3.4087642523832007, 0.8699584333710733, 4.445634969911331, 3.0115796174907365, 3.652187958319276, 2.582588576650992, 2.4330227364325534, 2.13915262101414, 1.653284259155783, 3.9376450952297577, 3.0248347760310175, 2.5632816773457927, 2.196110583088541, 1.776583672116871, 1.4871649696231197, 1.3975084849010804, 2.539849896854319, 2.4112927443241468, 3.6457197617882424, 1.0900863823546851, 0.8317774989170247, 4.8625373968108745, 2.0612841594785873, 3.175430245216056, 1.8497423797355228, 1.435782625035294, 0.5886860141840197, 1.4356828422488512, 2.640577982043359, 2.2879700788865276, 2.4310079255479713, 0.984271485606559, 0.8289453294039696, 3.807238841418806, 1.9287071707414236, 3.6459826345087634, 1.9934595553120382, 2.132630032536962, 1.924121187696545, 4.225923440503472, 2.13716404702425, 3.4481049653355322, 2.3021887595464277, 4.66623939008479, 1.4147174402802885, 1.643874037790455, 1.0118859515090632, 2.6073308330487937, 2.6813465728521706, 1.936657934323984, 2.751463392446991, 1.6276798767506577, 1.2226288867611017, 2.87035919960418, 0.8116405083944632, 0.64279028543524, 3.1981943562224706, 1.460000320369482, 1.9588401232056707, 0.7014562707627409, 1.2648782721316816, 2.8876634882101264, 1.8932852069634927, 1.0667089394816143, 1.2208762177359014, 1.176628930111904, 3.5302001153860014, 1.701819647876197, 1.8624896763903278, 2.373399075720993, 3.116713811618741, 1.4021336196391216, 1.9076222977512862, 3.651482204138453, 1.5144318347108767, 0.8008960014835836, 1.6507964210542745, 1.8083432389936676, 1.5575478470823314, 1.4901527957480851, 2.58676410324283, 1.9981247165346012, 0.6762031038680163, 0.8663864986788612, 0.6011487468750092, 1.1397233653891208, 2.387267916227989, 5.119722830037881, 2.0073741981763664, 2.21606594576411, 1.472433191907801, 1.1344689468796347, 0.7239666711956076, 2.37859956030289, 1.2083917534462658, 1.3318329356409406, 1.0471954539184216, 1.8963454196984761, 1.2132175641024558, 2.5439569643261617, 1.7839444351800062, 1.1369720472613905, 1.4397210469220985, 2.377521789541519, 1.3612776915405322, 1.3125280027904833, 1.7384320580359278, 0.5014908389097428, 2.7999249099648713, 2.0207144314005085, 2.6710432915088114, 5.092826144117884, 1.312930050668391, 1.9206881908068911, 1.6810224836231418, 0.7781739062705473, 4.64816599061417, 1.4601060325692743, 1.4523711751095254, 0.794729699873124, 1.5721059690852215, 1.4724614526494655, 1.9068497945682334, 1.4135448549438954, 2.332696051290499, 0.697038403230696, 2.714162108213128, 1.096795584334329, 1.8079387007992556, 2.266553201017749, 3.1103855651788077, 1.0938627774249945, 2.764402464012917, 1.9540887731118168, 3.879012239967853, 1.7524844153608916, 2.7033260937046464, 2.4754553543184654, 0.5072165130429998, 1.4754040718192853, 1.9264479287724132, 1.4618659598024968, 1.0469607337715119, 2.005954483930814, 1.3894691517253281, 2.8307985147490924, 0.8190082898398957, 2.323424550917961, 1.937781564822779, 1.107546625789871, 4.873973735522633, 1.4793619670225315, 1.096252589098897, 0.6668161109366626, 3.5257618618325144, 1.3729110640710511, 2.727346404834616, 2.7506516721043117, 4.498624926514191, 4.308048012388681, 2.0233560761171545, 1.8158156404338557, 2.082590711081862, 2.0078286735381847, 1.0533054770752297, 2.1391889162681808, 0.8495190503635041, 0.8110604903299017, 1.569086278919886, 3.3820314715722275, 0.5511141598670685, 2.6012858703858974, 2.128749207533623, 1.5430070514257979, 1.5047685888176459, 1.4452172394716858, 3.2071626423354407, 1.329930028793533, 2.0855056139480377, 1.2563236862134528, 2.5024002230515587, 1.3354237076058046, 2.977001515110578, 1.956831319288411, 2.02080610883372, 3.530914058903429, 0.8680680800790581, 1.8331787489764968, 1.4130877114611582, 5.109069645136709, 1.4282674293777795, 1.5325710818120604, 2.909537329660784, 2.6042388386151063, 1.0474356113886476, 3.9492564197362645, 1.5732572854608358, 2.7441922650401223, 1.857406754580844, 1.3677608136063717, 1.2597922819659801, 1.7567058583442605, 2.104043788847831, 2.0605390562046386, 0.9073189075004899, 1.1779555119526084, 1.2150225566865496, 3.316992969140185, 2.118750914046078, 2.5896711009362363, 3.6356463968839408, 2.448881985562086, 2.9923997790243115, 1.9414381042507838, 1.084807781332718, 1.3118900022844888, 3.153094790140982, 2.3275853164804454, 2.0433520037952153, 1.7783266375451292, 1.1082895102697152, 2.2148163179913882, 2.0578188870870178, 2.2864675764199496, 0.576034769684649, 1.65282901608609, 1.4870441717643876, 1.4009450477910887, 3.036882031096936, 1.405253786711673, 0.826847570790953, 2.6517337969425285, 1.3481597191428552, 1.8082740919224618, 3.713110266676438, 2.9456419311429896, 0.5861635982090857, 0.8504931318662465, 1.1997665808941134, 4.467853391199767, 4.04684645335122, 1.7459100827176082, 2.6148542588211243, 4.490489612358772, 1.6274363276380046, 3.306925825190331, 4.589224965082375, 2.095730528376253, 0.6177511289580077, 2.5563776251324737, 3.259118683193241, 2.469460970119972, 1.5028392904595589, 1.1246009939937547, 2.229360248507655, 3.618161667197708, 5.083399641305751, 1.3353309303133634, 2.119613357198961, 1.6376135874479036, 2.1145552084125194, 1.233136785606009, 1.511127042698477, 2.56449673136222, 0.9472626190444267, 0.9743082570022281, 2.399816541782191, 1.4367955610460341, 2.695612080253044, 3.827408298236768, 2.6580314120692825, 2.1643534781146525, 1.8728668363443013, 1.8809820078452242, 3.9233468372838693, 2.0216857599501084, 2.8281061904161846, 4.702542651803647, 1.6152584150224814, 1.8605415892630335, 1.5028872569717644, 0.9168814029047796, 1.0842645956734946, 3.9962440906648804, 2.151904432903315, 2.2057762253041293, 1.4078419473269164, 1.415951324817735, 1.9826992950288558, 3.3337866711706923, 2.0618849048240255, 1.1641333653170347, 3.183191262808543, 2.044799868072163, 2.0101940652418953, 1.6202167613952507, 1.9631998737768441, 2.0742950917966922, 1.1691212976996104, 0.9371498586970421, 2.3787950876180224, 1.7813168208749184, 2.177732997416336, 2.5198460863588408, 1.4448424987688522, 1.5919432577847128, 0.6603572757890138, 2.357346549067648, 4.67338018051505, 2.22845085521837, 2.626001100601586, 1.4743072657852965, 2.892612977423652, 0.8411944971132165, 0.9327666323681686, 2.167106079894953, 1.3903470670251512, 1.9448253106220061, 2.178204889552924, 0.6088916496043718, 1.0554520718968763, 1.0643925902854028, 4.776432467964453, 1.4080211252870178, 4.305921016650285, 4.677340847335807, 4.113011390164596, 2.9323575470410272, 2.875254360051614, 0.9469644618104187, 1.190215554539051, 3.5609477635409745, 1.321378729581863, 1.2343594711958517, 1.4906716082541245, 3.0875698053560283, 3.7884132881578436, 1.3665934700997906, 1.7818892566460849, 1.413516645418878, 3.908534122407261, 2.786163190823456, 3.7220926584110137, 1.4827164982592935, 2.6157041087699735, 2.787375205285057, 1.3216123009387382, 1.9258594207074378, 1.345148434743366, 2.568227221084871, 1.3558298262500865, 1.4477607827033805, 0.9569009188627473, 3.349738151601586, 2.7949823536567555, 2.475240076660285, 1.4117170186314583, 1.5568648458349772, 0.6431535082564384, 1.8855924415449876, 1.8926998085930535, 1.5093995763043364, 1.6285303005077143, 1.3165103958116235, 0.7188201571839566, 3.638651352658182, 2.4985889582968626, 0.9383310760170199, 2.777695332469981, 1.0148892959271334, 1.5234971987683643, 2.5509813781076063, 2.0901601399629643, 1.9218663938192437, 4.223952480847437, 3.0340099318968274, 2.92476250628105, 1.689435997536951, 1.1770864952865636, 2.455447411801756, 1.2886233657263482, 3.205068424384549, 2.241943654707662, 3.4024787221958674, 4.172769102985334, 3.8442794324991, 0.9826808690126335, 1.8231284744660863, 2.434953716644218, 2.9187047102215846, 1.677684129087291, 2.5752226115114842, 1.8641132198066073, 1.5723469093067282, 2.3825360312514405, 1.0278708228538846, 1.7352674151765162, 1.9171413983669718, 0.8827498618934013, 0.8074922130044078, 2.1557469375921237, 1.2617142541200133, 1.518859417189195, 1.8294187182387889, 0.6662642656481205, 0.6686223607798587, 1.7045461567076232, 2.3732161920142176, 4.012063923770347, 2.1706565361730226, 2.022404373983619, 1.555501581221838, 0.9112555648125008, 1.3969500523490612, 1.6700763023744727, 4.074003173947059, 1.046627292511631, 2.081660437030096, 2.480627616705821, 2.0786712489167987, 3.5698887359767535, 1.9090696436731491, 2.628459231315447, 0.8732110503673106, 2.571199002558473, 1.3378162535412987, 3.672104159995443, 1.2325014851265543, 0.5981914695181024, 3.9596005090907065, 4.277929795182068, 1.8576019091271248, 1.2756400274510369, 1.8713017919872699, 1.483845244536422, 3.4170227356775826, 1.1352801097818814, 2.216989269765867, 2.053161699740902, 1.0358967189326505, 4.574489964587463, 1.7074914563039483, 1.6557689745712292, 3.05721756114057, 1.3074002403439713, 2.2290781992728017, 0.8167964655127454, 2.652523727723335, 0.6724736419264103, 1.9141965727642916, 2.1903862835751093, 1.9521863073112915, 1.6499379999119124, 1.6835433568591203, 2.082374986543621, 2.145388965303906, 4.71578450177571, 1.4568930215387321, 3.2027403224469735, 3.0616387697736407, 1.0989422638815722, 1.7498992045486323, 0.6407840040674628, 2.3429522056860557, 1.2512539869244446, 4.512024929045694, 3.6240878333043165, 2.081776797441911, 2.149738029043632, 2.5976979349021563, 2.6961137611482187, 0.48038266488088277, 1.0811897431038906, 1.478580377368718, 1.6623145401362562, 2.335103829438804, 1.2489122412238494, 3.053215428440851, 1.4716688150772232, 1.5089244554247385, 2.948463168437156, 1.747439190529468, 1.3687177378893935, 1.2213038643264436, 3.366584226013232, 1.3293567932927297, 3.324974957337167, 2.536280444030596, 1.1043409314147512, 1.9836304905899573, 3.9724389508045816, 2.0141767850441283, 5.079345108225189, 1.9825731774105984, 4.397052823215945, 1.8751121171237661, 1.9422246954007907, 1.4732554453552893, 0.7028342280447846, 3.537465707492765, 1.9882437048206807, 2.784318420743982, 1.3774403730239868, 3.810930253523411, 2.3477884082672906, 0.992137589616394, 2.55372048175708, 2.0611083717950147, 1.5286788624399534, 3.051181189276769, 1.2960004603149378, 2.721115361531226, 0.9370727811939588, 2.7427931425052257, 1.1017908110771293, 2.323291123853208, 2.493047081043554, 2.42389963085867, 3.4534454112919395, 2.248173898424831, 1.0855427667633681, 4.483030326419175, 1.6271652691384773, 2.5467848262337514, 0.6760171159022902, 2.5055625719878405, 3.31697042079742, 2.598799527646777, 2.4560653867923876, 1.3869293931975735, 1.4847963911879798, 2.0131831089923176, 0.6226203341231531, 0.8130771833433438, 3.79627710564436, 0.6148821773341696, 3.6624848331281594, 1.3080711457483931, 1.0482214224056356, 4.201542251752138, 1.6799114445439243, 1.1753939006024656, 1.0489571989649602, 1.5649225834050478, 1.3961078205283612, 4.966918007675367, 4.102379433230498, 1.9645941941173564, 1.8117497334408075, 2.0291549037209173, 1.5927616157276974, 2.970846678264059, 2.2921883133871273, 1.279980751219986, 0.7205181920385282, 0.8773202637318258, 2.3756252391361974, 1.3423833218653802, 1.8551220552913361, 1.0909801760824351, 5.08326297350975, 2.4589339485332524, 1.1301657325094858, 1.2600110496895844, 1.5193977509133592, 2.874617064188593, 4.769860463289841, 1.1596806599278398, 3.087746792242041, 1.8411058040491877, 0.7296531918010777, 3.5976121218766566, 1.1536408043737751, 1.8845192033630338, 2.1263182063564368, 2.7637903677559437, 1.851300489370684, 1.9123312917219304, 2.1474576919649206, 2.6076365785469613, 0.9099370812431703, 1.5142729913339037, 2.0248973051864567, 0.45526127398505783, 1.1387764950825847, 2.520464245161203, 1.7616334880371147, 2.1340526544244995, 1.554593370055438, 2.0504406974874896, 1.6485173654461363, 1.417671275154576, 2.0126614044767472, 3.243053871681567, 0.7580307415370148, 2.133538892880437, 2.2424535955170057, 1.4331528974368224, 4.141166432088815, 1.9002186654845634, 2.34036359447491, 1.9786612451364096, 3.237395684649136, 3.3140954046978446, 2.2844698696901697, 1.1973480399990035, 1.9428631854524505, 0.8130298542474542, 2.634642490818467, 0.8351151705912782, 2.007225335524497, 1.6096349866499808, 3.0820149377679873, 1.9110937905882819, 1.8435485347062364, 1.0056565223354579, 4.653862571891308, 1.0229029318075344, 3.091127881372183, 1.6854578291276314, 0.937735106018356, 2.4004813547531993, 1.7903261378989315, 0.9726333090516993, 1.0769024273412653, 0.7020727502415286, 4.112470824562765, 1.132085914954385, 0.6836668853572584, 1.2822428717722676, 1.2511029601005963, 1.5610899358208719, 1.6100943994169048, 1.8068062221587644, 1.9542126081884619, 2.7060681655484187, 1.8453223851796678, 1.4667747860026346, 1.477066708542301, 2.42585660563613, 2.854066611773381, 1.7867324658076376, 1.4181720055478775, 0.7870343832665173, 0.8166985865255258, 1.4587047552926486, 2.6796030090891145, 1.5146973238381976, 2.3638919957703926, 3.5691347292398534, 1.2604524058380275, 1.6748055919074951, 3.1772112335144445, 3.653197185844266, 1.2026630697905725, 2.1366568743149648, 1.705261915463799, 2.6907012675826927, 1.8642685881991365, 2.4312307847522745, 3.4463960790938226, 1.4844793086642387, 3.7301473402410763, 4.08455058341414, 1.9929829990169492, 1.6304352059340639, 2.187304950841815, 1.4282288918067159, 3.3748075082898104, 1.0617040852744921, 2.8982597136348, 0.8080933003209232, 1.823125810956542, 2.551223792894441, 1.223965747557901, 2.0054689102621754, 3.2146179338198766, 1.9165490744449483, 3.0909870222631026, 1.6651828334179217, 2.616496281463338, 0.8859287293085348, 1.012165643495155, 1.2259465802584337, 0.47771063061249586, 4.3369658269104185, 2.963460645466832, 1.8596012370907058, 0.6408073237023325, 1.9300359431867562, 1.2411930594518799, 1.3088723660844201, 1.9912541876082765, 2.757418239441173, 1.549435298480177, 1.6665513440815996, 0.9256320983732612, 2.07611287053192, 0.9503263320529909, 3.693895134108717, 1.623400356643837, 1.304975406700778, 1.5499628014468931, 3.3399712363815595, 1.5252345607864695, 1.5088738341290093, 3.0693401202260993, 1.6471379531239196, 1.9232360746944364, 1.0245197189385282, 1.880695796732373, 2.158864031188793, 2.4134070116438577, 2.990355957227335, 3.271734495395159, 3.928577586239761, 1.4216311575274876, 2.333915867761667, 1.6630769242630068, 1.8077192884225708, 4.0602579941877615, 1.5816409469673103, 2.138171247159788, 4.751789195304605, 1.8183931857069917, 1.5677508691974837, 2.3627168189007928, 0.8652803414135567, 0.6213088259913784, 3.241246454965094, 3.1049939274977185, 1.8239835975837795, 0.9446885105576623, 1.7697124017811343, 1.4604047525278063, 4.06747966817344, 2.260156481037365, 1.044064366485202, 1.3688943972613448, 4.309771119352521, 3.166038719408173, 2.0045907372072387, 0.6955181524955468, 0.715365394359043, 1.4485730674995825, 1.2068763984387154, 1.822388038127967, 1.6448772341903486, 1.95044067777302, 1.920518670749355, 2.3020057111117707, 1.273802409646447, 2.235776647911272, 0.8641934142694824, 0.7332197643709412, 1.8804481309781145, 2.497326230378216, 1.4865445955792846, 2.7127030738553306, 1.4029360304555751, 0.38193369980148595, 2.7752630523049007, 1.6303799122125786, 5.028491419317924, 4.051144391883089, 3.0713981508669184, 0.6970298945576417, 2.508370227257275, 2.72581210370683, 1.2461453995453269, 1.5834355117442713, 3.5717412873280563, 1.544047967477769, 1.5585505766939893, 2.475715303688444, 4.7477546333388725, 1.4675838052287755, 2.9554893697634173, 1.8943859831718257, 1.058680443676376, 4.483771076741758, 1.6129352710899958, 2.5776016293287958, 0.7542813696085444, 3.029475191238281, 2.087017394729158, 1.040925922329872, 2.7896154869295473, 0.5868205544354279, 1.3580699623625763, 4.1688957832423945, 4.568317508592065, 2.625102157068433, 1.641136618279985, 1.4400130662042427, 0.9856962999895554, 4.114062027834349, 1.6399785569831788, 2.350851384295467, 1.4813810142817545, 0.7503476111780106, 0.9973980641824934, 3.9424328804228055, 1.882980848067023, 2.487887088557753, 0.6663921239593792, 1.7400244839135068, 2.442891582167194, 1.58524484076235, 4.071507257309072, 4.516814019039622, 3.320834316999609, 1.557510041788344, 1.9117881339404132, 0.6565642255375308, 1.6976408904670581, 1.6090247101370252, 2.9975457940961685, 1.9019793660662672, 1.8290132801313972, 1.422080838167587, 1.8026530988543155, 3.748608309132227, 0.9528506746874239, 0.8004947998826776, 1.6465607722848985, 3.535773048220043, 1.6332177433835766, 0.9757717891606312, 3.340636270331958, 1.7148595550191323, 1.9999788345905276, 2.7274708382930752, 2.113505133541136, 1.4592230618204092, 1.746928758411016, 2.4844005845814436, 1.7609519259590196, 1.6623686333821177, 1.8654835941396986, 0.9668067747435946, 0.9251054668893772, 2.4297943412931837, 3.14732798770579, 1.778717305428741, 1.2932077970261855, 1.1013744927963212, 2.051826293033257, 2.3679393912426163, 1.5170949635823596, 1.5929809303633153, 1.4627986188659359, 1.299290416773088, 0.8684006705482871, 1.2119095204506252, 1.4023968279385828, 1.895961323001549, 3.118854713052637, 0.8910045168406215, 2.846246787488451, 1.2228359052073174, 2.358434550113825, 1.9163729120256323, 3.386911209777957, 2.764479246833116, 3.0933965804193986, 2.718501316029045, 1.9372100422459626, 1.3088516904765177, 1.3257768563349936, 2.110607126461246, 4.89782349427452, 1.4749569999474916, 0.5808132712288859, 1.1317571758212324, 1.7712368258209483, 1.4794401471452139, 1.3399048274693712, 2.6768211115488634, 2.484980842629809, 4.1060128378895415, 3.0386768398086774, 1.638489748951045, 1.507016901953224, 2.280779244119755, 3.304976875939484, 3.0462201472111583, 1.1255347844468253, 3.721015176996613, 1.0211080344528045, 2.004488869826015, 1.3128482368974856, 4.470824244396818, 1.8369669530996173, 1.8035110950881406, 1.0319576150753504, 2.0513588613239833, 4.3918172712704155, 0.6978087247844686, 0.9400857247961105, 4.3029580303232775, 1.3955150413179649, 2.242914810814442, 2.053247984012996, 3.080408116729109, 2.484719111748743, 2.16902421825379, 4.063130762629639, 3.5030552167075135, 3.8865127244238704, 2.2146888662401314, 1.4080320856840378, 0.9784659342491706, 1.1823548824829913, 2.3029723802666173, 1.0665618994899904, 2.114521578600828, 2.539399231049461, 1.7843704607547777, 1.9510112726247797, 1.2503137105940239, 1.7972997456092865, 2.3789328704189647, 4.9183048031789935, 1.3719233209315846, 2.128114730716918, 2.141662631290982, 1.2956114823215423, 1.7472724227332783, 1.0756118988142314, 2.5722709057649533, 1.7711790654825479, 3.749224506933691, 1.3535988231361098, 0.622880097080903, 1.2075363922240532, 2.19505955322205, 1.8164380822898654, 2.282161184315856, 3.5441677064460593, 2.622626668615528, 2.246505153470356, 3.561087532575084, 3.5479703441235126, 1.421322082403294, 2.7470398586672626, 4.760917875157244, 1.2839342580744866, 0.9011241008613955, 0.34095247000933676, 0.9694647647607334, 0.798485242984213, 1.7026899980094206, 1.4746875025699069, 2.0578877299795364, 1.8021204534661064, 1.6353600391704202, 2.84819340711806, 2.4951439889926896, 1.8772129261493298, 1.269179749371653, 1.581325987777854, 1.2967329480520347, 0.6877910272422821, 3.0025131238618132, 0.998368871581377, 3.507053878262643, 1.5492035357129716, 2.641064652504969, 2.0936958186708763, 3.4837312124682005, 2.0175138196111395, 0.8910262329744869, 0.6116229123953889, 4.1147029409836735, 4.1564965050726475, 2.733223474972967, 3.0554663145800354, 1.0043979912664036, 2.2123386060483323, 2.931419131834546, 2.553855679709828, 0.7898952472223038, 1.573412789843942, 1.4477976997284703, 1.6021124946414829, 3.0116050548940008, 1.7115254947369776, 0.5729104655337804, 2.101444940869606, 0.9351028305930127, 3.222375967611074, 3.2919186610871205, 1.589253169166802, 1.6946306727477756, 1.2092334798429427, 3.6917518310403956, 1.775702690333861, 1.0418577491264691, 1.7933367173584627, 1.5846510793831803, 2.8127659462975005, 5.150808633425321, 3.7208291187200366, 2.1252657056644506, 1.764072918972937, 2.6197685677308917, 2.2689733573612787, 1.8067881588646437, 0.8767485601264282, 1.332205774011247, 0.5385486871724106, 4.450245974120842, 1.2281453647373217, 2.384843443576409, 1.9545045717061373, 3.496491487539125, 0.8757321680999357, 3.222904454069862, 0.6437225168290684, 3.4052671364962004, 3.0811539346427623, 2.526190848466182, 4.53420447461001, 1.626853023800564, 3.2444678270234966, 2.8449866804370694, 2.153657679662794, 1.0879200439450103, 1.3118948870106568, 1.8435848923412577, 1.0555854007808887, 2.0151360238335845, 1.0866424837410749, 2.7090469569812257, 1.3084154205731209, 1.4999934959399988, 1.671019854331958, 4.59007951192279, 1.9928067720050333, 3.174236160900003, 2.8993034279712604, 3.7151543413807526, 0.9659208202226884, 2.539232086957849, 1.8948122138769536, 1.6182308472355684, 0.9960876357261678, 4.639985026228189, 0.7272596093458152, 3.8597354397454406, 2.8697985516317317, 0.5086242024436615, 1.5090350743039904, 2.014127585659891, 1.2251618195934901, 3.784157840194203, 1.0807558988659052, 1.7092450704854079, 2.6817003138021813, 2.083665273666789, 1.301632318405994, 0.7047332315935048, 0.8886452521266689, 1.4488837672448152, 2.983934043093149, 1.262111202960834, 0.8860281149887794, 0.8351369726314627, 1.1661815010768009, 0.7707980583361649, 3.2422527652329522, 1.1364804140524019, 1.1934236610415947, 2.7601368887310334, 3.7096360807170603, 1.8591034387796281, 1.6896064524190926, 2.0029686614755167, 3.6499114226701015, 1.1012124810520796, 2.8551539645640442, 0.7731674930387025, 2.552090732330732, 2.0429061180369765, 0.6973114566474107, 1.7452419076234758, 2.6425349025034155, 1.0564110851977186, 1.6632042848004056, 2.332610306839202, 3.5407410568327613, 1.7240538351445687, 2.769181710943843, 2.4594232386352237, 2.9000741934153518, 1.9688825765920939, 5.125403919309917, 4.454096411785801, 2.1405097335628507, 1.188461252784715, 2.2314621479779975, 1.1274792130187605, 5.059902771928655, 1.6417106118939702, 4.647294295679282, 1.855302366061823, 1.469841970429759, 1.5884502204044537, 2.080693523923415, 2.8529471253070793, 2.1895614005258017, 2.27642140786742, 2.2299192827514993, 0.703913358952327, 1.1578707836233486, 1.693984137879071, 1.496058046895418, 2.9217069444147383, 2.3963182058216193, 1.334836146375499, 2.02792910392958, 1.3302132919048417, 2.1951504682151803, 4.32562860401156, 2.595507097884958, 1.1492660742769272, 4.960179710783057, 1.1600466841164374, 1.5054372474528617, 0.6302854131002105, 1.6680399775521202, 1.7802073180846902, 1.1968190231646252, 1.236082429722746, 1.8649197636442127, 3.32783842225944, 3.33335687650048, 1.7264699474818082, 2.047326478677767, 1.3148343705963494, 1.913797998797361, 3.544432017129574, 2.2493081042160052, 2.4601072020041834, 4.749434008679254, 2.562463237478976, 2.2982875049788487, 2.3361429792820227, 3.3770473360862456, 1.8449566709774075, 1.6933138662060343, 0.9467065720144598, 0.630548282151973, 3.2748988656828817, 2.257075874907793, 1.6872246983151324, 3.461058890571606, 3.85900058134257, 1.0801614189310176, 1.852317422600049, 2.137338046992573, 0.7714393853106765, 1.6151216206480299, 1.3482259220798387, 0.8797843631069844, 0.8825404322308631, 2.0954064388917524, 1.4203636281187164, 4.688387517404926, 1.1546756854656215, 1.5399552572633168, 2.149814948247661, 2.4180846569077876, 1.5438244471280005, 2.6171297511898657, 3.6336540360143497, 1.708612339499428, 2.4106343596609396, 0.9470259545199872, 2.952196205919527, 2.9459095523177865, 3.048110294715224, 1.058004442211341, 3.227223973773773, 2.0312767918717274, 4.9371295873513, 3.0422178555478743, 1.2434611654840513, 4.946461349282558, 2.4531636855186756, 0.923021636652162, 2.303734575710263, 2.4357029779565873, 1.6404988180662128, 1.7120650759325937, 4.6969741127283235, 1.2140249308980138, 1.545395547418653, 1.5638014091088672, 1.6875186790672554, 1.4510080312906846, 1.8696350222003515, 3.1951298352382564, 0.4592793450764514, 1.0309652065815194, 2.1719107658421275, 1.1170079313987789, 1.6597218026808467, 4.461049805938647, 1.129818352962777, 1.7056088033395518, 1.3290541592639031, 3.203955760071235, 1.3016137265514482, 1.5992571880904007, 1.3706871496140858, 0.7256991279486391, 1.8342195831896135, 1.361179543100144, 1.794105420980915, 1.0383120529495442, 1.566547786549805, 0.44313477680029234, 1.0634866710425381, 4.940608453080878, 2.680376668956778, 1.3195527378031655, 0.9159272866191069, 2.9027303993455384, 2.0064345032088196, 3.404805508315158, 3.2248338629834508, 1.506308542030248, 2.6776654659583814, 0.8871292569711281, 2.1891642945322958, 2.538812964975016, 1.3441985077304406, 2.9665525082916533, 3.8300183411744877, 2.3459107263541066, 3.4320049883024892, 1.1103328505295447, 0.7475056842194358, 3.238064827559424, 2.1361726604043043, 2.3299759006769816, 1.814472580476234, 1.1652186340691286, 1.385303042639284, 1.3623653215683191, 0.5631564471228411, 1.1228790039251109, 1.9757384912527192, 1.6731944614773469, 4.990619117328356, 1.4081340320626752, 1.8981448993718404, 1.3033232830358124, 2.8821412298259506, 0.9517749322038381, 3.094907489511211, 2.1736062897804898, 2.746996571492267, 1.7264282066366345, 2.069390862382721, 2.7759648828995602, 1.2129997220956892, 1.7804127541496153, 1.1764329285155743, 1.4894034769183386, 1.4947664210932539, 1.5578309477671073, 0.6597930709123107, 2.153896464703793, 0.8776717246603533, 1.3273217467478613, 1.536386025285858, 3.697038514914804, 1.2285576359184258, 2.2661401146313436, 2.431975301119379, 3.07757971195336, 1.1759145258155572, 1.4062086915349206, 1.6000733442500394, 4.593292017946516, 2.893481767990039, 1.9260713007800088, 2.6034199564940765, 2.025445916819515, 0.9017744285425559, 4.128716836142054, 3.865358729576384, 3.0422076419752497, 2.733966898548372, 1.7853686380347762, 2.5103206829065905, 2.3201745431418486, 2.617772147692923, 2.732190383893537, 1.627142350492715, 1.2778132146049161, 2.0304323675006195, 2.135916066545828, 2.841953088649322, 1.3972916151701578, 2.874954310842228, 1.8370616304455287, 1.2286235283387337, 1.5512907798960665, 0.8645998986128148, 2.1283415791363964, 2.8664319874041255, 0.5469703000640386, 1.4302320765470353, 4.253692336449088, 2.0512894113704383, 2.1138311376175603, 1.372107182681888, 1.415633902902302, 0.8522748369712402, 2.378758684432392, 0.98623158058614, 1.0195058477177064, 1.4934288885421472, 0.8065086608790308, 1.145331158619118, 2.8592814735728056, 0.8920261228238643, 1.3569184019024165, 2.2102047806961953, 1.4644128432080605, 1.7089005022590682, 0.8606956538553165, 1.8617376043764091, 0.9866835439755712, 1.0710607637915628, 1.7954659383906788, 4.99813721987601, 1.7353103891212602, 0.7084112912789721, 0.8181385582248754, 1.261125549832735, 0.829857553051937, 1.5069913756099902, 3.2756474491812937, 1.272163785136896, 2.5244893059771996, 1.582730316653914, 1.1043641648510818, 1.1623316149947014, 1.2173877918961138, 1.4731504682400556, 2.8136151328449577, 2.179559472335287, 5.201566807205073, 1.7887180365921946, 2.1046185329752314, 2.5976285108909334, 2.762064854835417, 1.2359927296928572, 0.7239467499379806, 1.5671040511263181, 0.5765100634582357, 1.264911746570614, 5.024535396304526, 4.281267875441975, 2.309047666844902, 1.5310872242346834, 2.34995133422271, 1.6996815721549592, 3.7804930516819746, 2.4025896962944917, 2.2999949791240053, 1.3986074949955927, 2.7383501787898754, 3.366360161034335, 1.4002235046450673, 2.2740566517452945, 3.0264644953210538, 1.2395762796934537, 1.4976178758702863, 5.070346905335863, 3.5118934382897513, 2.5602022947289838, 1.8191250301333413, 1.271499767995398, 0.5621664068254255, 1.978470339643321, 1.8236599654700703, 3.8837900836995884, 4.566803808269279, 1.5464520213536541, 1.0255033379996041, 0.9004702616446643, 3.455441731030901, 0.7766578745557838, 1.7578739325138204, 1.0389215486123222, 2.152400321166145, 4.638474296603115, 2.0080054608960984, 3.292467055276496, 0.6880536783449079, 1.3295591190905767, 4.6839539441218365, 1.2517880322349728, 1.6695901133921753, 2.2337961833103472, 1.9249723740118523, 2.7974342863673654, 0.5726978199557191, 0.7696774880075159, 1.9909471472412892, 3.009877340557606, 1.9389370725197572, 2.4993326548651473, 3.197933186808739, 2.7522547438574634, 1.531489809463869, 1.3803094772072142, 1.3163632134963248, 2.3276596052840093, 2.3383662308877873, 0.9883602550145506, 0.5478542894723307, 3.2523746906314925, 0.6749610811722353, 0.6358064510726208, 2.560749425622053, 1.6162561714244044, 3.816520588003444, 2.0897700618369117, 1.8192158823423372, 1.9126227871927954, 1.8228461567636178, 2.5505363224978663, 4.9175140008729725, 1.6837615980970582, 2.495504002305643, 1.0646678030733536, 1.7162786311617138, 1.8530066977972495, 2.1278968336683595, 2.4976174296079408, 1.4890724569198832, 0.9817219594558747, 1.7409280001292757, 4.928457360261728, 1.7114470339413381, 0.7629439305278198, 2.0905366171658075, 0.6981131332888911, 1.0577561786554797, 0.6194673561783177, 1.85756038913161, 2.0892001042826243, 1.4460318067904994, 2.5230629741484836, 2.6905259299089357, 3.4409631738889552, 0.9465866013343058, 1.3752683465487725, 1.692397317710053, 0.6284335243366792, 1.4718160808241365, 1.221897256937505, 5.0751986541050425, 0.6699757630868095, 1.0445043292428318, 2.3597770208080933, 2.300740933517889, 4.789232685955169, 3.0838835708698102, 1.131496035639937, 1.5261603531413768, 1.3705386942142441, 1.2354780589755838, 2.7517266386936976, 0.8346292134541647, 1.2163869730774184, 1.0004947913341702, 2.006575102383371, 2.8517837892751405, 0.9979701422697597, 0.8386815560805659, 1.4777307428032767, 3.0686463493609972, 1.6589681256208575, 2.957906408610058, 1.694470963462697, 2.6869242344615163, 1.972402555396139, 1.448741846976497, 0.5799097262140749, 1.2971912675687984, 1.8949640660673444, 1.2095871404420966, 1.8819973674162078, 1.0033704411117483, 2.462580308231632, 2.737987327707567, 1.5576996827625167, 1.090633683942429, 1.83033005245271, 1.8471737841110345, 4.603182932742598, 2.0224750752883915, 1.629040927382947, 5.155197937974052, 2.7353612312969986, 1.3099299336759018, 2.4827245594318454, 2.2055031285559394, 1.0556092892203808, 1.1511236535008864, 1.5344741690268104, 0.8098141846630568, 1.6066870651132428, 1.7267855925519857, 3.90347659170672, 3.8874547203611285, 1.8153331555941143, 2.2479377701984298, 3.051193257148279, 1.647156324377394, 2.4933110940642, 1.6873264973871487, 2.510662745896382, 2.9617126165366385, 1.9013007962839585, 1.8277569429402467, 2.767944178402382, 1.278743630669179, 1.315821376919184, 1.3417158549930628, 1.8758657000603651, 2.5073383129236944, 2.516208792357488, 1.063555139867899, 2.1562765736513314, 4.797417235737056, 1.0946498425677869, 3.1368642683784858, 3.507373822238233, 2.758288243093206, 3.322864232814005, 0.9112735332482653, 0.7661030267777592, 1.3907612046858293, 3.766954313806005, 2.2003185326410692, 1.7995066011825842, 2.5863954348615232, 1.3272619748569885, 1.7789394516809307, 3.1762771521684763, 1.2923841646519751, 1.2336612812186059, 1.227393796537025, 3.879382562403315, 0.5121093673647308, 1.3507580845690608, 2.4007394620522637, 1.892899199602362, 1.7250378793176286, 0.8417320714372656, 1.5389119204113104, 2.562383790969538, 1.1159565856761218, 1.9507158464213383, 1.6454616575607794, 1.2791265781151848, 4.551230604589957, 0.2921062474035016, 1.8372040913363468, 1.1719136677134443, 1.5027940407165683, 0.95561475102608, 1.1956956442579638, 3.549659211789705, 1.911682341310168, 2.789690917628623, 1.7240944709266108, 1.468810869952872, 3.0538714861376985, 2.123829793255491, 3.313979362841958, 3.4625800057996923, 1.4137899967159142, 2.386756498169558, 2.50879483815848, 1.3419043872275231, 1.1256230340123141, 2.2872105861172463, 2.78131859081765, 3.3623477307341925, 4.114022429389851, 1.5530924539447266, 2.136985877689575, 0.8377910315459703, 1.235614452134785, 1.8889183782505736, 0.9600798509638242, 1.3004433305717495, 0.6562479699647932, 1.534350582395035, 3.4080963824174444, 4.072836564715428, 1.5613663169739649, 1.7630915779414114, 0.9151974076011641, 2.4594498319683367, 2.19360445664863, 2.519038657398872, 1.9262681345459414, 1.698552683798758, 4.841222259999082, 4.467103225959227, 2.4361765437762366, 1.1163982730404247, 3.4588854832707763, 0.6183006096538356, 1.2875625980687084, 3.494142812425894, 3.81390603620641, 3.396246423509598, 1.095925087024802, 4.839562692066265, 1.9049749621762997, 1.7053153499814877, 1.6160205449491125, 1.1540535065562976, 2.651281219084955, 1.343080761612604, 2.6180873599089955, 1.625474009358313, 1.5763015253886352, 4.788334202971193, 2.764858805734181, 1.7080297585332644, 1.5730241853820115, 1.1927763389700556, 4.951339131650138, 4.9589999131223195, 1.7039299583209966, 1.8638125293467431, 4.49562247907563, 0.7632734173122959, 4.968971788587562, 1.7646229078851736, 1.0618265117333971, 1.5165070626656112, 3.0482764341990793, 3.6150541545892114, 1.4808491862384192, 1.6377822834670241, 1.9278134841837797, 4.866314151001574, 0.6303145785392169, 3.0252868139847404, 3.919886656113942, 0.9937175717604521, 1.5544463279879202, 2.328424439088502, 2.0832207718936058, 2.3656446707301986, 1.2033101003538322, 1.8008232546565304, 1.4878079713798094, 0.7326950483093138, 0.8327174587103428, 2.054007359628499, 2.1503050848342276, 1.9872327954447282, 2.3301672841452117, 1.5069593933789063, 1.7852176166636748, 0.8972569078297953, 0.8032879247182142, 0.6147284248605056, 2.8452328753800096, 1.86245267819333, 2.6583393976383802, 3.508796436344201, 1.7153250118563337, 2.049113550391997, 1.8632044246451875, 4.476129969549052, 0.6154732501867, 1.3552930134515537, 2.6348930291892714, 1.7708430668361308, 1.6139678437191562, 2.1617757196467235, 4.708292491081177, 1.7657448463344492, 0.7455009818252419, 2.063537292933966, 2.269079152243715, 3.214333802455704, 1.865547060578407, 1.5163193586466712, 1.8072915689986886, 1.7738198700809706, 1.5184185166747552, 3.5771361909951933, 1.3682668701919047, 2.6211470262802132, 0.7177460137513118, 1.7852846711135588, 3.772577526128766, 1.4885985756783855, 0.567380575651607, 2.565318658499476, 2.466048960090409, 2.232226942335597, 1.008962040869548, 1.0447985484595042, 2.7019339655313037, 2.1802572952406423, 1.8986664685856487, 2.3161710020852344, 2.5093306402158753, 2.893896577205593, 0.6104815379620844, 1.4782698920430388, 1.3308912651166211, 1.6106324172083675, 1.2144412401965605, 0.6180895245956401, 3.7081579795462267, 2.128902356701376, 1.305737844502667, 1.0516868195192441, 2.6652684076862867, 2.514404034066167, 1.2448447119574888, 1.8583204517219212, 0.9307268429585827, 2.664473417437179, 2.7803455232418735, 3.1508709363635794, 0.5914062755701887, 0.968488993182973, 1.6164727426176315, 1.1192724980874464, 1.5453120695701454, 0.7181642764789222, 1.6887306994472389, 0.7028791498727237, 1.9728809737668116, 2.9303666278955363, 0.9045254658507472, 1.8239712401443147, 1.188110969309434, 2.030844260059415, 2.682328436892759, 1.7052541362406672, 4.431224967002334, 4.667532940473538, 0.8509980308663692, 2.917357025323641, 0.8417144876457704, 1.7558376431495264, 0.8170733796816192, 1.9996667043132017, 0.7375700581548539, 1.8653474731734248, 3.014514762210008, 1.3242706672947435, 3.3512021556529183, 2.863404896534889, 2.5372203911491824, 1.782869216747816, 3.0792260480208964, 1.2199908522034544, 1.1140612086313015, 1.8437065645464223, 0.7740386359286386, 2.1759151176103746, 3.197612175030788, 3.7539919899352494, 2.337065530914597, 2.6426181914949742, 3.3982721960910953, 2.0683841224763513, 4.295590926543565, 1.3740094597444918, 1.4224204873580584, 1.788566946309894, 1.657658139725959, 0.6247136755930037, 3.122049451619865, 2.3041326904464876, 1.608912384289264, 1.6544282894254552, 3.7027781589623876, 2.23384667245033, 0.737606934507925, 2.0351625015332644, 2.8580004764486207, 2.7889180935885247, 1.6093098781120838, 2.79815157626208, 3.3925541828605685, 2.8152171275696367, 2.2325333135258787, 0.8388848232836441, 0.9551753379617275, 2.223322481026152, 2.7673377529711276, 3.8309718151174623, 2.4125794891582033, 0.4510231132692569, 2.5271938369825118, 1.2433919285964645, 3.115877901317098, 1.956644045610257, 3.3692013909158174, 0.5845171042926044, 1.1748746635363432, 0.7544955238254636, 4.600480444672239, 1.9072230378999568, 2.724163298703295, 3.2175870481596225, 1.5866405103518915, 1.6952061509551426, 3.1246948058726463, 1.0436438161080555, 1.7007540934621292, 1.303927219561234, 1.3400317988066923, 1.5773410949569115, 1.2506949874479834, 1.7056531284793737, 3.3119802068041113, 2.5153687832336336, 3.0810568302677104, 3.302113564291635, 1.2306932894216003, 0.8524100039652618, 2.0087291519317927, 2.4036204061402637, 2.4698342137631015, 2.4818974380461385, 1.6470322595951514, 1.4977303363993355, 0.9678420706416293, 1.2626367297517858, 2.782865424975255, 2.617743978678888, 2.942405535690496, 2.0126061591865554, 2.2318101852964882, 1.4584667067040855, 2.2751716673272746, 1.4476548365505595, 1.3276914258074752, 1.2853199946576161, 1.3811428477283807, 1.8964489781043277, 0.7080175111744126, 4.2648736766141395, 2.597005235651294, 0.7416050864913347, 5.173832588495267, 0.6426748965317657, 4.10797339240093, 0.603219103106854, 1.2866580521970774, 1.7524821851365722, 1.9060815931531643, 2.430364647928131, 4.4660921771051685, 2.0545011162601443, 3.5756333189085607, 2.5053641490766503, 0.7834462700394867, 0.8461344960151056, 1.5011009002504638, 1.2754427136653226, 3.5671806321341926, 2.9482906367135455, 4.308845295978901, 3.708658632593754, 2.713624533544799, 1.1033040804237224, 0.7123738691003777, 2.4896941813202167, 2.5552950846443494, 1.4070003019753181, 1.6323117028091143, 1.9656628040938964, 0.7834183431499511, 4.3987757408747665, 3.074082105881126, 1.5116305108169394, 3.3695022830248, 0.9274164042143594, 3.3415044340115516, 1.281808158728723, 2.006618426274345, 1.9429186283365136, 1.9354428950613072, 2.159064888842248, 1.226649909915454, 1.9516285255026777, 2.8571558395392653, 1.9303227974238153, 3.2669299772440064, 2.871665745273117, 1.942614941895616, 0.8740004932067558, 1.5451844911039885, 1.8126777865218235, 5.0954508583093965, 2.6453029146515465, 1.8643918082754485, 0.788250079407262, 2.071039085958707, 1.9117843839697235, 1.7402755574082174, 0.6143365692341645, 1.8117910177629493, 1.5863776758701704, 1.6661955009446292, 0.8766361989450684, 0.6710216387302979, 1.6087224626127605, 1.111335755618327, 1.9020174541269612, 2.385616271887344, 3.640936440362633, 1.2592543976670498, 1.1149254211683477, 1.7281513203068175, 2.62032472960793, 1.9475599625030555, 2.8586485297649604, 1.5883397136023352, 0.5456671654682069, 2.4879841158101605, 3.0824021684845437, 0.5891197556540372, 2.8398585299872328, 1.1731694250533657, 1.8895210958522934, 1.0032110282224604, 1.248593001195919, 2.7774390004445078, 1.6672860629729451, 1.6515599218879866, 2.423907960509116, 2.3062066930474585, 3.4250110847113446, 3.1890801192031697, 1.679317288681087, 0.8561799940419844, 1.4816300741165422, 1.5419225848503257, 1.6734088620466347, 1.4715163782815248, 1.4666980060483576, 2.8260062899986216, 0.9726498470772884, 3.432322694279567, 2.873466311978493, 1.0252398137963878, 1.9401765352550602, 1.699833649617526, 2.139061271064936, 0.8208639016295929, 0.8329977748028035, 3.9845973187583623, 1.358860094825455, 3.640532439965349, 5.164497902093658, 0.7225667583069066, 1.5011444863766057, 0.8411806343998961, 2.138290101089548, 1.6755559825477595, 2.960780148238942, 1.5039590376413197, 2.470453706276842, 1.68212127484623, 1.8065880205943368, 3.294120912178587, 2.96094525318546, 0.7143640363348244, 2.3752000164893943, 2.7404959519485077, 1.4037944026758271, 1.7417940455896808, 2.085514071120334, 0.635538637176297, 2.062535908334578, 2.0586455000817376, 3.1178720988821502, 2.2666024749273608, 0.6012542352415158, 2.1373196420026, 1.0327482362481228, 0.9894305264545307, 1.269426024266154, 1.4451863129689624, 1.3014537679678244, 1.914285775150303, 1.189661879289797, 0.9486302747885024, 0.5893332825617507, 2.0149350879216117, 3.2135714267171704, 1.313304986249885, 3.999074748959131, 1.3598170206277203, 1.3545545128298748, 0.9241566264132024, 1.1755326247940197, 0.8981601739846551, 1.0454594122243823, 2.415057858204211, 2.0236299598443597, 1.2097530284077442, 3.7330759352080296, 1.936816375488079, 0.7502667773939696, 1.0442756418135157, 1.4909543839379125, 0.9610817365173213, 2.030365720879121, 3.656307978798679, 1.1027937698191475, 3.4035305240548617, 1.0607541639360933, 2.312802200345078, 2.2046339247295137, 5.043752814003535, 4.123085094128927, 1.0033482700736351, 3.216864615447362, 4.099288794680279, 1.4216977731436486, 1.4020034844814357, 3.0088521753257877, 2.094096686654395, 1.947334673119655, 1.1766017791377603, 2.7272357300412002, 4.046500637484622, 3.2027941272190774, 0.7307535849063332, 1.7411979338469417, 4.989798170692566, 2.111714832423954, 4.850035247862099, 0.5826849075641808, 2.1750451979537515, 1.3352967327809837, 0.6368894661155247, 1.0122801494947107, 3.084418626803828, 1.8207611142046745, 1.5636165029373428, 1.857423872092023, 1.515985467877029, 4.762116994350662, 1.2702011224909435, 1.219518197439728, 1.0768464283052304, 1.2911069665379584, 3.847340979771278, 3.5244036157844247, 2.656008779393726, 0.9719840512359058, 2.228721029800437, 1.004204621919455, 2.7735580846258925, 0.9874425521109795, 0.9886957263326066, 1.7090286425323653, 0.5422582601373103, 2.3066863061870624, 0.9445323596100055, 1.8225818725282408, 3.3985488369108916, 1.7929654529214274, 2.227735949972911, 3.766519070997118, 2.9412667821723666, 1.80523088700907, 0.9913492310602179, 1.8211001783103906, 1.6083659333998122, 2.297341632437431, 1.7989438198249916, 1.5171963563254012, 0.6922998164272532, 4.062959682228864, 1.3325829435533796, 3.6661963511313993, 1.5288237639335736, 0.8985005435736786, 1.9774680747022793, 1.838833195976471, 1.9446202611391379, 1.943645887763708, 4.473720870705123, 3.5178704825912246, 0.37484689791019, 1.66210846706697, 0.9491016764987539, 1.4521314177067999, 3.635453437752419, 1.726130324770676, 4.0799581844307715, 2.0571363394559543, 1.654617720420314, 0.7072201611471977, 1.4573709769338639, 1.785272531277197, 1.1783856461719975, 1.6429243665367144, 1.606859260982024, 1.2275055079139008, 0.7786193967284233, 2.005479990449403, 4.001047165023982, 2.3971985693195648, 1.3023453623143915, 2.69063207400095, 2.5167234268545466, 1.332131093525132, 1.900564572610296, 1.9870314021657365, 1.4966911118017703, 1.0744304229738546, 3.153565074831872, 5.299339485926526, 1.454238825157251, 4.864370216865869, 1.5560897963570235, 2.6431771804267195, 3.194513586319022, 2.470221927090906, 2.9113794551784973, 1.8868774739230125, 1.0382837375171405, 1.7279680599434242, 1.4274809318610115, 2.0266446595497802, 3.3347086210550168, 1.9816883828280407, 3.201005135880139, 0.708619090358311, 2.2901769183674645, 1.4360919690140945, 2.523308409952631, 1.9691254040647383, 0.7000458026080437, 4.595060877855636, 1.3346478385194438, 2.7698410051546185, 2.5557271088091884, 1.2416869995635933, 4.180641927877759, 0.6465836020486266, 1.5556737334925914, 0.725851563411477, 2.6102223836395186, 1.1107669044194335, 4.087479084173491, 1.5043413227593336, 1.1162160991451076, 3.2811847043680187, 4.260359828537158, 1.2906565644115722, 1.5252502938440513, 1.895697225093525, 1.0653572227478039, 1.4230004085288563, 1.070194428241988, 1.6632715503025632, 1.053978331027376, 2.1289508931276395, 2.6308622111919777, 2.391206670089091, 0.9559586168869887, 2.2956282213998014, 1.8072444353439499, 3.3952618065830715, 5.129019303878363, 1.9492008826043308, 3.313278028424563, 1.3772410718315287, 1.504487174807865, 0.9791706716816714, 2.091217406911025, 1.0859895247210498, 0.8730411800815122, 2.913900068899865, 1.732372717495615, 5.086050130735631, 1.5614073594447613, 1.6338049002262471, 1.4156729229259855, 1.1162617187777628, 5.051181266538236, 2.7269484668516304, 1.172910031721509, 1.9572285652372987, 2.5450386662228572, 4.686867558693445, 0.7807472892923005, 0.9391674653937268, 3.056189606864931, 2.8633888233152325, 2.2121728664333737, 2.7550916637847043, 1.2953172540583304, 0.8693225194294936, 3.792748601493032, 2.521055484939039, 1.5840000106082888, 3.1366043914028157, 3.422914066539702, 1.0924572392895842, 1.2391897170480037, 2.482324351280994, 1.7100579185428078, 2.2831290016143146, 2.3269835556549334, 2.308380011393252, 1.2680517051813303, 2.2333393939807604, 0.7353604789347844, 1.726617199648051, 0.872092110165817, 3.001760671936459, 2.116390026274001, 1.1817053703520999, 1.2212178364568838, 0.892866492042465, 2.429051949992085, 2.4654100472867944, 2.3179890596269876, 1.4330421636635187, 3.1108263174000417, 2.3806248675792823, 2.2042547022554277, 3.2878832803721822, 1.428433321489728, 1.0457152459752286, 2.050976239960139, 1.8757012941500615, 1.001335504105387, 1.756967831595995, 2.2176133117747443, 0.8094089663804406, 0.6604098958028902, 0.8291969900774967, 5.0252080151579035, 1.4718372112050961, 1.3214613335136272, 1.8533243047663006, 1.2473619044711877, 2.7312437747651055, 1.9319797426506085, 1.7629711875077985, 3.6133612811747504, 1.2603922837701291, 4.226449566798448, 1.7942779447576476, 1.1633442437280392, 1.9075763367611107, 1.2727178781785007, 2.3422433038098505, 2.6089684377365754, 0.8540464427425359, 1.6269091271464813, 0.788824503971902, 4.784850468200747, 4.480696356571129, 1.7127265458204342, 3.313043604977526, 1.50966154477577, 1.2886456530520267, 2.9134410494991783, 0.995008238999008, 0.9563599660858769, 1.0887942522834164, 3.3736697317811877, 2.525243283943648, 4.753859284655871, 1.2972125937263168, 3.5508219460188704, 4.087435470705655, 3.4176817495591227, 3.3522584774081796, 0.6582950887049536, 1.9334732712663278, 2.492664390986664, 0.863217917194475, 4.872409349622368, 1.0057721069961088, 1.5384850144771816, 1.8542097019820667, 2.20492809735348, 1.227650854446466, 3.3285083283242214, 2.1483440783785874, 0.595623126433683, 0.945760673916301, 1.5942582119543909, 2.71846113369639, 2.146180526582727, 4.317719604483633, 1.4783753029728601, 3.140894549677677, 1.7348599149192923, 1.9484644248652503, 3.0311934814062744, 1.9158289419053072, 3.977375373147829, 1.8447009941802397, 2.6849583333626788, 1.41999506693318, 1.572835491524219, 2.922864312698161, 1.2517267057900614, 3.46059974937987, 1.896376735853195, 3.4273104433940156, 3.290821131733032, 2.836454660050097, 0.8941299287148979, 1.7834046247325148, 4.419997982670395, 1.6044324312780396, 2.608370458529534, 2.1930702240036575, 2.1110783259356345, 0.6361540665944071, 1.766707789887563, 3.3864313496596643, 1.3689010005419417, 0.7579588080283342, 1.4740159872413228, 2.226576420663387, 1.0845342900687558, 1.6617725018660812, 1.9663712951025574, 1.636822845032405, 1.8106421022537276, 1.104590488534055, 2.0144989917923986, 2.5702661200665173, 1.3729980509658333, 2.756108976115548, 3.3156516849821287, 2.7128445593800605, 2.882551789549392, 4.110656387001516, 1.7764568734381085, 0.8480295251028318, 0.8173647413325571, 2.133514044675788, 2.4850153837767586, 1.856512523346371, 0.9108631376539721, 3.1445689305379236, 1.799035313934172, 3.2860335016979367, 1.0477354685679447, 0.5673079936492053, 2.5957853758479867, 1.188307935257135, 2.769594992919318, 1.2670607543872598, 1.7854920021692298, 2.4998460441529895, 2.3116046536275943, 1.617458242290089, 2.0645044554088874, 2.919127839578545, 1.4939716772822014, 4.717943794282816, 2.293672549859423, 1.2504851786544096, 2.2242026305484486, 4.83617407276743, 2.4541447373765917, 1.175070440230475, 2.699036389825997, 2.0808674024840936, 0.49294161342237575, 4.111002355206332, 1.5797042946054467, 2.2246954356135684, 1.5844608895867665, 5.07998327158463, 3.201714527730597, 1.398373578264253, 1.2197101302440443, 1.1134360464464215, 2.3846361646525973, 3.026595187887167, 2.2160792123786073, 1.939471650531017, 0.9129530689116064, 1.1270043993449017, 1.6278350208623005, 3.111433871598113, 4.076667658590436, 1.659353818331149, 2.8473791098513708, 2.565241134175755, 1.7711947300077042, 3.762665507427998, 3.2767589793019427, 1.346967924535754, 1.0719861163033957, 1.146035383911727, 1.8277674366005334, 1.008561735863012, 0.8075421188353575, 2.0179359942915536, 1.3065484231417661, 2.921464479462459, 1.5931665136211237, 0.7972158442350227, 3.122407814696881, 1.7585824226086013, 2.0037276912153232, 2.0590335810465343, 3.076728060313555, 0.9071356381589292, 2.677430547541658, 1.631179547362162, 1.2486472756345088, 1.3538653101440379, 5.1014804536032035, 1.7275624575140989, 1.4005063690430277, 1.4933115152608551, 3.610159021344048, 1.4404306723621305, 0.8149794292206113, 2.1323644447106798, 1.1716444399997294, 1.694710529380332, 1.7906431668907163, 1.1465644342215355, 3.289851033829118, 4.417976720807456, 1.9082694689264141, 1.7676103411654265, 4.8466977051751465, 1.0086929962800701, 1.0658031547587192, 2.2730616451297068, 1.5051827241572777, 2.884595995388256, 1.8675252167083023, 1.330029258617795, 5.019646695871154, 5.052189472304553, 1.8617411702196385, 2.1568208549201398, 2.42368829527962, 1.8746077701244481, 3.576976453204933, 1.8050605851262385, 4.553046436485173, 3.1786583072044645, 0.5626921851333716, 2.1906425330794157, 1.2718642377757063, 0.5517106695229136, 2.6687641749941733, 1.2548532040811977, 3.6100088900190332, 1.2899375860556845, 1.7762949497015847, 2.3546511596926165, 1.0402467330852345, 1.901871984261564, 3.1413672188545676, 3.5234764580700224, 0.5461086726524949, 2.02417887406583, 4.033333941094545, 2.6000445644480177, 2.588272759460042, 2.9281857580670687, 1.9918282013224216, 1.07358769176337, 1.4982524772054682, 1.279131762088349, 3.287626354021774, 1.608388594565799, 1.1905241582780737, 0.8773895637974736, 1.8092576274726655, 2.176630325730346, 1.4053534667097602, 3.4080965608061606, 1.1490624109350611, 2.279419626240239, 1.0120275557969802, 1.0693375068351807, 4.532566810409317, 1.8935355090818358, 0.9211030676133041, 4.828608901689424, 1.1497775055983428, 0.9121626285565744, 1.9571887800039955, 1.096642526181641, 1.524346517000119, 4.964488963158913, 4.185736982134435, 3.0535275310051184, 3.5907801379037774, 1.3176255614146202, 2.383678960007192, 3.6877363847956626, 1.922103013389946, 1.276143198157833, 2.7661446728870307, 1.70578311991226, 1.5810233565153438, 1.7843290529839064, 0.5810357675381883, 1.9109644611135514, 4.637516007858591, 1.384859488573939, 0.8991565974159186, 4.048140518507966, 1.8860844309609401, 1.799832466896519, 3.4855036750233865, 3.3258107730236146, 0.818119838301969, 1.5433424010131924, 1.6731268164303221, 2.020144479678548, 2.191434619975858, 1.377435912827222, 1.640400741312691, 3.331792949992122, 2.55875151645128, 1.056459658536833, 4.888206419446311, 1.0691499498675392, 1.221558031396101, 4.077580144587716, 1.5805501186301598, 2.0171579181841826, 2.053835016607194, 1.9220070607489879, 1.6022420675306335, 3.0492321963065523, 2.1436085560529152, 1.5718183072069332, 1.618419418734015, 1.6209737410538967, 2.5855343532710697, 1.086505515306211, 3.539575512118588, 1.1833708401670084, 0.9467469589033939, 2.6064452529448503, 1.5636859871762985, 1.6307362155434126, 5.077176503382509, 1.103489343687498, 1.9910034932920853, 1.8201385045723997, 0.5964512248829985, 2.213047687048379, 0.9136694646389532, 0.7411923086257868, 0.7242401510855859, 0.8624895415236282, 3.674947161113001, 0.9689168315685096, 1.6928468669028838, 3.2889953671951933, 3.612471461140662, 1.595099969491322, 2.0305431657723503, 2.1248079133080053, 1.8237364336497106, 1.4636403237684183, 2.1746034309998556, 1.7547426035562097, 1.1476887985511224, 3.609886225783464, 2.8106742166347907, 2.3880501919120873, 2.2486927496750035, 1.7493271078785262, 1.9904828636217564, 1.2837213781254977, 0.8476164504396615, 2.7013107379410775, 1.2839272529740782, 3.877937018953553, 0.661906907136635, 3.9936169289091277, 0.9556487944985742, 2.627255702689162, 1.8890089392384188, 4.692767441500682, 3.645039431368625, 1.3586991379822375, 1.5826900496243976, 0.5507375651828867, 3.2355869935929933, 1.5101275135249248, 1.820175983138594, 1.829837329460052, 2.1875910588471528, 1.753471547319066, 1.5840551893128412, 1.5542495860784422, 1.2110447795604566, 1.3775558189027293, 3.737626202413189, 1.5125213782838955, 5.232808004590429, 0.7505443995277506, 2.8518525512668313, 1.8477834914759035, 1.523467896955614, 0.9968682436240673, 3.070655268099212, 2.665927751184874, 3.4443510815055247, 4.574363920585073, 1.6727345186950455, 1.2987399896539702, 1.7185885345128398, 4.186291143011848, 3.619432146814634, 2.572762643113253, 0.6132252979083399, 2.2807929401615143, 2.389145456886276, 4.91680560035097, 2.1061368296080363, 3.7015536023559212, 3.604163819000736, 5.074237181658125, 3.0120371251424936, 0.8224989228211657, 2.2372442413352127, 1.7690539450213687, 2.257386673332999, 5.139888552044467, 1.6286754388600115, 2.550557474749, 4.060644018253873, 0.8756639629020945, 1.2898250411047827, 2.838217486462415, 2.0886112630668245, 3.4104890615689074, 1.40577044042209, 2.0429825858563713, 1.7538841978629767, 2.1310469190553754, 1.160880622236642, 2.1964060521467625, 1.6745095156815302, 2.4418331922584744, 4.164627556117341, 1.6288538058006536, 2.438785663902428, 4.888447050825914, 0.6525654544047929, 1.358117714448238, 0.8756815339045765, 2.331840611643514, 1.9712776607758227, 1.2391776611851824, 1.279620119701945, 1.8636277805289023, 1.2683622370529453, 3.478554619518739, 2.639680941631199, 1.1540274375682213, 2.2231431561781383, 1.325905557686321, 3.976689435513045, 2.4113331737871273, 1.1411135214486035, 2.5563190394509636, 3.5638461095171983, 1.5770171306482053, 3.020139801173047, 1.3072301141389813, 2.0295055741599715, 1.1309026469823014, 1.6377754486633322, 1.8489679802834174, 1.9664034559573604, 2.5575178940025847, 0.5603759135970997, 1.1636509559816144, 0.9894419403581928, 2.0012927545295396, 1.4416608310553845, 1.501479618899135, 0.9195096376536503, 3.632386823704416, 0.9941698211599117, 2.0976726422321295, 1.0919970605160674, 2.6047075548077703, 1.8109593194788316, 0.5149978875126244, 2.7861644296491477, 1.515169723418163, 1.3047350550808325, 2.2278601928251263, 1.7254444404781388, 1.7129842771536152, 0.6540361835015214, 0.7370113133515539, 1.6944458657333115, 0.872570102428265, 1.6410422037164196, 1.6606782480758573, 1.0851805461443678, 1.8562772218999382, 1.9466462691799968, 2.763152421825129, 4.12416605269876, 0.7271393244204181, 2.5357974731881523, 4.255832775821019, 0.959460230019374, 2.304178726762217, 1.3720255108167454, 4.625446851540953, 3.583391757186117, 2.5931511020225346, 1.1063305638420553, 2.945189308691887, 1.9272262921730257, 1.376377163523331, 1.1544156270429644, 2.734022218941024, 3.3899907400147704, 1.7606869350527203, 0.8786856882913244, 4.6932005626329385, 2.0597350428989056, 1.7988727030403318, 1.480647177505731, 2.0781990862035897, 1.3179515724830335, 4.5178489319854105, 4.196497251272493, 1.0199839080918354, 4.0142219010814415, 1.1546395614934875, 0.7553309118031581, 0.8608969062789908, 2.6954774801111805, 1.0551376464945812, 1.970891806647946, 4.63585067006349, 2.5178823105154886, 3.2827255300967946, 2.428445352991393, 2.3718813866948785, 2.208412207975583, 2.969027899510056, 1.9463878102255108, 2.03070734128619, 0.5857194848468166, 4.171408114910256, 4.908128277405385, 2.6360079866705717, 3.6434778982717813, 1.4547789607985204, 3.034278820396188, 1.2883283923250606, 3.059548120209386, 1.9392734501679108, 1.8768464196878656, 0.9744700085934475, 3.3539326602391197, 0.9678052441854625, 2.771049584118432, 2.174591184758555, 2.3472411579712373, 2.6966613819092617, 4.239015785455133, 0.6632126334165617, 1.1761427098493948, 1.8433881289934881, 2.309376445526713, 3.1212419891431926, 1.4409669611592397, 2.231955433918747, 3.5970517641367312, 1.3835128171355207, 0.9448640449824923, 3.144140889041053, 3.0121187928781583, 1.9276355000810443, 2.162071264737728, 0.8359443345070624, 1.4278764981609526, 4.4461118136059365, 0.8120889742471527, 1.9084051083463687, 4.3206267826556495, 2.5105440019634564, 0.5551500323858342, 1.9396725452191628, 3.0536381452978523, 4.1589548553888624, 1.767490938612855, 4.465410472748247, 1.2479299081426771, 1.7006940444955054, 2.382534657717689, 1.704039009354116, 2.4754484115243507, 3.046630481840139, 2.143109827135147, 1.98098637984249, 0.7042915294908993, 2.74089071092074, 4.399194262046214, 0.7387020110798037, 1.7070729410049483, 0.9924683777654243, 0.980396639089669, 4.7470969061445425, 2.7192162506625905, 3.082206795900579, 0.9621552094145, 2.298640331522531, 0.9615943308033006, 1.8246723122101602, 3.613488122427398, 4.149881307922277, 1.1139404041577665, 1.397050048714411, 1.6304570478887825, 1.5441448918210496, 2.6803285277316506, 1.4847856012214382, 1.7774342682625275, 2.5709794344748484, 2.763376535850499, 0.8366838012106746, 1.8535548975770593, 0.8280726488537246, 1.1155376279774185, 3.9959828477641386, 4.189581599703207, 3.0352137103194523, 4.590661081761978, 1.7301152481357125, 0.9644829214593184, 2.350246297738506, 2.235860649567938, 2.5511762593820833, 0.8873059139617203, 0.9419321066563358, 0.9535544116784719, 1.51409158836006, 3.167397323236111, 4.159199898512159, 2.125692760553056, 0.8581876273489117, 0.7930540589723332, 1.7423738877545178, 0.750361810738151, 1.3792648855481713, 2.603142909959884, 1.1402229425355142, 4.742651043111095, 1.2859417499902588, 2.0529042446284484, 1.9680286956552087, 0.5516279389756912, 2.4841832367823464, 2.9277455201063503, 1.504584575940909, 1.5107412526717015, 1.416957518308295, 0.594488633050318, 1.7396606192189237, 1.9323306809485834, 2.364014788572804, 1.7403104779622716, 2.02568810318003, 1.0139938459387834, 3.29367771965513, 1.4785445367237278, 1.019019867332514, 2.4226286495852207, 2.1125675692350256, 1.2804403740237251, 1.0531110792355538, 1.5636478756702772, 2.005118634297086, 0.978172346528746, 1.8478519371566973, 4.742971784131748, 2.07364031849726, 1.279587965946293, 0.5085998101667113, 1.9380739205984585, 0.8435942248888985, 1.3777326215766565, 3.6871372739974846, 1.2541654487817082, 2.4903366164985345, 0.5948253861573212, 0.9215367845900245, 1.1578611799379284, 3.34994341593377, 1.5903034368179148, 1.0686228105666307, 1.3516334941597326, 2.872544436454514, 0.8119250165774923, 3.286497599543618, 1.1985195932830506, 2.158438148147235, 1.6474090913727457, 1.0499940408688544, 3.9247829986819367, 2.0367263870407233, 1.393012954529449, 2.6443276937791103, 1.1230602879948737, 1.1613271753801364, 1.1424385228464924, 1.688612131710528, 3.805487011752233, 2.6182286481416006, 2.6199334348766254, 4.16529408531852, 1.0475344021513942, 4.12097351045742, 0.663644439960088, 2.195157093509094, 2.9376037412037457, 1.0497384814535706, 2.124818021823906, 4.1139182301977195, 1.9379112060776997, 3.2361354745669773, 1.5985403540782126, 2.8215612492026985, 4.166480868146541, 2.913373048717926, 2.0958244633864727, 0.7682949271833032, 3.1254340683904123, 1.6442550575949806, 1.3337324578055005, 4.746108703130206, 2.6348945108341653, 1.4900078643319805, 2.0529792651307197, 2.6149277238070097, 3.4999721222188227, 0.5376690621702187, 3.2487449049454797, 1.4654453973657602, 2.493167592055405, 0.7823478911354304, 1.3618653405303494, 0.6977207533235635, 5.035139932528206, 4.98315434777764, 1.7469011636652918, 1.1727319043514868, 2.2129476896848845, 3.0101372497244103, 0.9614130972844792, 3.96441743301337, 1.3984344877072628, 2.572441384685051, 4.205839470608344, 2.9097275943416676, 2.3905794355300705, 3.383261368271596, 2.3069840807451745, 0.9760152638281525, 2.218086251401887, 1.6257100640665665, 3.610475169163309, 1.3576571091086347, 1.1754952379170929, 0.7284046065196629, 1.0005559805745732, 0.9153934553757178, 1.2320629356751978, 2.8206809423278596, 1.477807654537073, 2.073182528954692, 3.494072433543717, 1.0805575445273603, 2.3779515223207817, 2.1190262495685084, 0.7472587104638752, 1.250893370313801, 2.5099823433580806, 2.6220052814186863, 1.1588906076317758, 0.6697908157904527, 1.58552372903254, 2.8613983483271648, 2.3688644944454866, 0.6238978216408076, 2.8839973750252317, 1.7515074004136275, 1.9329535477488617, 2.0089567042268928, 1.0448332160502118, 4.271115433198634, 1.7526457416144179, 3.9424148516234436, 2.094261227056329, 3.1688064985896105, 1.3890378468124802, 1.915921746942545, 1.3285249933675511, 1.5101714848960208, 2.169345925406085, 1.493219752740873, 1.5743695193896365, 0.964280828448018, 2.2791496700646516, 1.6254365467678762, 3.5485658528050235, 3.7572716404607993, 1.9018975287079325, 2.9756743219601636, 0.7091136289056176, 0.4907006375497328, 0.8145462031308205, 1.700254492368476, 0.6957214204621219, 1.2095191925151882, 1.3525638200914094, 1.137023202685183, 1.5147709920069194, 1.988724402040007, 2.7099221107082676, 2.1781199921021983, 3.9808236304796996, 1.9376434741613637, 1.5012621905574233, 2.1295397375402745, 2.4788947520734106, 2.5409407897716734, 1.8310392451825146, 1.3519940725270876, 5.200998910827493, 2.6788418008382453, 1.2514253300501597, 3.395243342256163, 1.072664788988107, 3.1882501671511254, 2.5526132776834443, 1.4346540657418112, 1.242167613658077, 2.392217398093108, 1.348898968610484, 2.1723447819695942, 1.3177285379042538, 1.6628975139378748, 2.6202030411218464, 1.5513163947833173, 2.9036111533123754, 3.4967585346280985, 2.4667954379027277, 2.729946245720215, 0.7826814485914934, 1.3946321162317874, 1.1632463343139945, 0.795500712888961, 0.9413102082741552, 2.017634308672317, 3.4601981357518556, 1.277612106061612, 2.5425346658643604, 1.7032027487614358, 0.8793131082574256, 1.3744537653385007, 2.425329871556404, 2.955177495291152, 3.052617817814088, 1.34072168211005, 2.7614875251095707, 2.6324376771093303, 2.3943720274094424, 2.9421581821324807, 1.3048447071105989, 3.4561591925012585, 2.154661891426826, 4.053661535887713, 0.3956562595131505, 0.6240509616025324, 2.8326277063403666, 2.902582157440374, 0.8397873022450687, 3.699169038250207, 4.162972592227616, 1.328344731501139, 1.2477557700063935, 1.112408950597226, 2.737108379075032, 1.7408700768351855, 1.2536400381198936, 4.365724943443956, 0.9341835952052729, 1.1729204715086148, 1.9154491574115218, 1.864598027121504, 2.492641989627776, 1.5666899142275748, 2.160146825055923, 2.052927718286889, 1.3868100474381178, 2.8670021085974904, 0.565861565040507, 0.9676430970136664, 2.4939380939278153, 3.9216709569945807, 4.151986032522496, 0.8426124964089037, 2.288904282780746, 2.1549952303810973, 2.0986734862239693, 3.5498479352086085, 2.370814089011492, 2.1390739733240367, 1.8286248162912608, 0.9223517451021603, 2.362884679817276, 2.311865690985925, 2.465931834510022, 1.9481753598542473, 3.4163270293019345, 1.3755158511951167, 3.01727475146589, 4.557960056355575, 2.09843034273367, 1.209857297411664, 2.3605250723255766, 1.8277707087450328, 1.5610449538360762, 1.0397525755845984, 0.9843654294251465, 3.579176537061162, 4.733990118883916, 0.8058731982479987, 1.647154093010199, 0.780157884704393, 2.2236955397936784, 2.5222842179786538, 2.8001255987848137, 1.639072229780553, 1.5318700523080055, 0.8479671809370408, 3.065406840498299, 4.680346100145084, 2.6527521698022674, 4.074331616843446, 1.9885195108358127, 3.0922266339013116, 0.8643054789347141, 0.6632627364118148, 2.644561361634041, 1.9200586496023153, 2.173146357360418, 2.379565839276579, 1.4813747004247153, 1.0915565806067198, 5.118305911918837, 2.052536270602779, 3.2861376761430123, 1.5572032471989918, 1.200546530144116, 0.5584126787791619, 2.6929153154202643, 4.958106741429985, 1.5119370253423035, 3.1416866657140683, 1.0770126771324828, 1.1338733337486393, 1.9700953266831502, 1.1121306868941632, 1.073305643544551, 0.606778749615429, 1.534622146415961, 4.424578958898501, 2.0201424622606114, 5.090628515460016, 1.3030597208757204, 1.317614094493929, 4.03724679090038, 1.6733747371792664, 1.5963136358671661, 3.27881009284207, 2.6804010195375207, 1.834335511933535, 2.489239179540788, 4.632560951836708, 2.2416890878643607, 2.340393631963766, 2.123612026637489, 1.8016330351757588, 1.121398273336817, 2.132882878475879, 1.920175213110246, 0.9792435720959046, 3.3580893705921038, 2.7519159260147807, 3.5173761754442476, 1.6782595403006089, 2.411766844352042, 1.2747620770025814, 1.6970991304751541, 1.2741694640219108, 2.7927352332250273, 3.0280031904570652, 1.77434523972559, 1.7558093453496364, 1.516883315351762, 1.3046328848953868, 4.282610487939245, 0.9591197829311966, 4.4846448968329975, 1.4000284426211025, 2.8451620021308655, 2.4617042066396015, 2.0441368963015867, 1.224554654304927, 1.9408949522935073, 2.759257912688761, 1.5461413839176648, 1.6746390673522404, 1.8773227466887654, 2.3921809053968746, 3.2403770040326614, 2.0821131793152157, 1.5587840459703937, 1.8384928689728435, 4.574877995974701, 1.9648858586429272, 2.7690535389720923, 1.439324745874586, 1.2397168431586139, 2.394970824324735, 2.3210643191434115, 1.8954045753120905, 0.8133220693537598, 3.1016638736424094, 4.826288909613855, 2.2162219531176195, 1.6867719432234958, 2.9999607954984753, 4.657450161559848, 2.330822224370207, 1.535670515074793, 2.7744691221700752, 1.7818322472349157, 1.1060592482992413, 2.0866541021800216, 4.374999593479845, 0.944260619891113, 3.0275110566753702, 1.3230137545511667, 2.1989266235880933, 1.3766438117007596, 5.067926911909035, 2.5461913094646915, 3.533700199371315, 2.0380142106208607, 4.921106107478186, 1.692985697917108, 1.4157125137834758, 2.384026203374657, 1.630299043438628, 1.8632419695984144, 0.7757590819461908, 0.9248266648940802, 1.1694356380081763, 3.1597481785111485, 2.2237501237233324, 1.1468806787220747, 2.313272209362097, 3.6379148714093517, 2.531486816229912, 0.7684548730930475, 1.0367012413371204, 1.3929250364563897, 1.6001403472575968, 2.360011983526203, 1.4667906631644436, 2.7632773036585467, 2.9980438366310582, 1.4536323143497833, 1.288796558017805, 1.0449724259702757, 1.9958061431903493, 2.781468391340398, 2.2230302068492502, 1.9954021145885303, 1.075855590705716, 3.100372406448215, 2.3115463081121996, 4.436724613234655, 0.7905641557868661, 2.2883639944185696, 2.2904436079679686, 1.537848851811084, 1.9182590122733194, 1.5452927842146833, 2.716291262923726, 1.0170759624670695, 2.681693632467597, 2.5807947641824627, 1.7495448717095619, 2.2789470516060906, 0.8332366534027682, 2.2442527448686627, 1.4010302493785858, 2.006445755292604, 1.8168982304067278, 1.762388372372848, 2.514932454108082, 4.260558569516372, 0.885132922036407, 1.510961888591453, 1.399509195498252, 2.236265499690567, 3.2550235251497828, 1.1038079441983932, 1.2130914060830718, 0.7155878313602052, 2.4013746683166346, 1.041751261123638, 0.9588295205294219, 4.873473554780165, 2.766091916766902, 1.9522350371688466, 1.6381127696252604, 3.274100238445758, 2.7360754111049275, 1.7712146200769567, 1.8136087272274783, 1.4522807967019553, 0.9918592162138032, 1.4171802226771608, 4.841834700058971, 0.9297206671246426, 0.9852234169203722, 4.540426568751645, 1.5495442823627157, 0.9163183044706006, 1.5086705245140628, 2.0625899631185103, 1.5668043386426722, 3.666619129869478, 2.2915869410136263, 2.075677406097041, 1.6724278489832074, 0.9574892578087508, 2.1193199191578596, 1.4761923138259463, 0.510726950017733, 1.0261002687106155, 2.1471346324788203, 1.2045917960582244, 1.2056513456815139, 3.9501220469640765, 0.7855886860674383, 1.4728126821192142, 1.8144451936276724, 3.1515282942422647, 1.792938497715032, 0.8349346714870962, 1.6778034460624844, 2.168863777401597, 2.257589541528449, 2.4414637793600615, 1.5553346352137172, 0.6854902015155976, 4.749639894037895, 0.7387021384255557, 1.187353536844667, 0.7409624236895177, 3.502889402979345, 4.28961866613047, 2.4511967440461913, 1.553484623843394, 0.9913993144530707, 2.6214025596747286, 1.735229298124398, 2.2242107324260827, 1.484634842770706, 1.1871563685450197, 4.487122549526214, 2.924667003400268, 1.9536288778631594, 2.652113937151346, 3.4891745946460273, 1.2631859463177073, 2.9614311179297825, 0.9695907574179533, 1.2045132054777608, 2.632701224995638, 0.8670720081622207, 0.7098975677753449, 2.1629739762719713, 2.4432717085325573, 3.9439673303869442, 2.5815493551389426, 1.8074715600222262, 1.8330741773297663, 0.8899584939878962, 1.6963066227707124, 3.2961813230392836, 0.7512407448794293, 0.7958132555133429, 0.8383771299936922, 2.536309741106147, 1.1270899644448338, 1.4714363519853575, 1.580021268070245, 2.533270695232786, 2.759472355834525, 2.724687527230725, 1.6955857306232105, 3.69248014313088, 0.6238311135215545, 1.927037238252984, 3.9280958106020543, 1.1933504185943626, 2.55349242887492, 3.625925934848036, 0.6855570843839995, 3.7062294418125092, 1.4617942302171525, 1.4031822795207627, 3.801005554711538, 2.085999966293862, 1.009354587931558, 2.3017023374273067, 2.301311718203302, 2.515733061328348, 1.8021997761721373, 0.531818138633423, 1.3246697340257931, 0.7798477870002233, 1.9166387123394883, 3.950570629672795, 4.547280751723142, 3.6943769536251865, 4.594273071214407, 3.6368664390710266, 0.8111042051844078, 0.9973161677472158, 1.9831988017955875, 1.525661664338231, 4.742178537243483, 2.020166326951726, 3.8631276123767204, 2.889031483630198, 2.861706963482845, 1.5869476273351033, 2.6772842106360306, 0.7890157925238599, 1.635537251360838, 1.8195948384847471, 2.0075254384540124, 2.5572747901843096, 1.4600213658283059, 0.8327524548299654, 0.7960349176107107, 1.8594099182092787, 0.597452357130889, 2.2160175218657017, 1.8167769770469442, 1.4555458650326065, 3.8099470920112095, 1.4188714666920528, 0.6162940586197577, 2.6073762615814915, 2.877104518582876, 4.981272253982546, 4.698216538220445, 1.5035218283081806, 1.092069811019675, 5.071202156250606, 1.3518791866301378, 1.7860183493116037, 2.863352908294478, 2.665951842495195, 2.3649794521875243, 3.8925965255004207, 2.763625848734658, 1.0759316467373472, 1.6430662151407975, 5.042779172485895, 2.0266436882497794, 1.823106325479082, 2.2262369563735502, 2.310057898041523, 1.931966675908338, 3.1161624414173748, 0.9627497791149199, 1.620135138585317, 1.9535081715096172, 4.404328651011538, 1.5822818965755272, 1.4243796645743003, 0.7652993153477112, 0.8082285204173684, 0.7747039785125315, 4.581790603766797, 3.0235277033318386, 1.316584228048253, 0.8165174076956643, 1.6933059443689633, 0.9645401333756013, 5.295170375702254, 0.9153185306149527, 1.4364495389511203, 0.49119155558498756, 1.0029584411352361, 1.7861505289899322, 1.9419317306907693, 1.503368961707722, 1.9204160199720086, 1.6626692510624161, 1.3123337069342798, 0.9887021712366302, 3.486311038297267, 1.236576538663412, 3.3837967549133916, 0.7325993028732959, 1.5115876987360561, 2.0203595863766948, 2.598725250560947, 2.4837856557557663, 1.0571887230744983, 1.0638776434957262, 2.3875121164000244, 0.8784772833070553, 0.5963925991958774, 1.624746083530919, 2.5641985489574264, 3.0569408633137285, 3.0124890167098646, 3.8176444595536676, 2.1959918054203347, 3.6778609392284842, 3.3513990679483214, 3.8868643559333997, 2.5249646361697566, 1.020088482516018, 1.4197283612133877, 0.9976312983669139, 4.57322140770599, 1.0682005174110958, 1.5237164126771816, 2.3345432333269107, 3.1973205876104434, 2.658091314655945, 1.3760972508524596, 1.766160979884756, 2.5311580470107238, 2.4068920047333746, 4.714298318496258, 1.2162353050061867, 3.514108653618782, 2.8302297996320473, 1.1347483404096217, 1.2886619753039121, 4.654403575577023, 0.6723696373553231, 4.825344171944274, 4.024655618838692, 0.5362873629517465, 0.6008667858320981, 1.5181445792032293, 1.0147222313446056, 1.8431431760233294, 2.339213634280012, 2.4103970714419884, 1.2827719262286736, 1.7139597762365515, 1.113565545293373, 1.1733476713767235, 4.885629927081513, 1.2631761981648055, 1.5533467223751587, 3.974346437715528, 0.9813668741130482, 1.2605246388927935, 1.8815398726949817, 2.9805109175870093, 2.0468735685449992, 3.522380983330303, 3.4844656580191087, 1.0609810860369804, 0.8328780509798058, 1.2122736901554565, 1.3094143907482367, 1.0917295705433054, 1.9456160456734266, 1.7124633799744904, 1.042228699146071, 0.7046276081001095, 2.917245804853713, 1.3194509251403626, 1.7195370870190456, 4.694955590029987, 1.9341513308482443, 2.3320301247178254, 1.5570228352554838, 3.1877753538170137, 1.310458619302646, 1.6847104541216744, 1.1051173368065599, 4.338063244971242, 1.7767905902451637, 1.4218266008967784, 1.9743615885572796, 1.382917862844815, 1.9886964277767947, 1.9904592901498228, 0.8337474756662717, 1.096922772331296, 1.0588778527525342, 1.3219619358219719, 1.537498257318043, 1.9675807497559337, 1.9565246450450147, 2.1887211256625, 2.2295158831124433, 1.5785211703439987, 3.034728916112301, 1.3096205971254722, 1.4461171445713716, 2.2271205125474145, 0.7818513355427759, 2.191948150639839, 0.993841102376015, 1.7435929143184585, 0.6126471740125059, 1.9575393164746302, 2.787528071970104, 0.98774967135886, 0.6940977821604619, 0.5285807528139496, 4.837415614571645, 0.7616507451788979, 1.8006357416338694, 1.9602171700226458, 1.0740427168057565, 0.7964475978125156, 4.0395762361422625, 4.191153592602687, 4.173101145154373, 1.63418258376823, 1.4876887654909021, 2.741158736451319, 2.454416352759701, 1.6126858655435357, 2.3207219075369414, 1.2332959037837232, 1.4197930116707487, 0.6871343107437384, 1.4883174648597555, 2.288720960012734, 2.1673189848667245, 1.9780675347486334, 2.298159859791536, 1.5450635742344618, 3.018220045259161, 2.0618000484663224, 2.6735185772528456, 0.5756255646607038, 1.3624548892148747, 1.6420473158380542, 1.567064642660674, 1.8865875872265216, 3.075689893941376, 2.0399297226709465, 0.6604226019152173, 1.9059471493466213, 3.1436024291667293, 1.1120182570149713, 4.353079150252737, 2.7145105616214997, 1.6277444676465624, 1.3187393654047137, 2.236193235332015, 2.866229164467021, 1.195422440030002, 1.5299262311970978, 1.4384450528136403, 0.920156698364195, 1.7107101439993668, 0.6520233550927194, 1.1307304389231603, 1.7898979577067264, 1.5943590113876713, 4.92905861448892, 1.7016866622374829, 1.8654931152234713, 2.3116984107100143, 2.5460119951509204, 1.8767905733249954, 1.6873734574443535, 3.1640288261795178, 4.427439860021288, 1.1211973478371662, 1.922732689142139, 0.9524101885945329, 1.7333113158432125, 3.7107431158012587, 2.9008487984311295, 2.7008111794123866, 2.2404661093199167, 3.737451612909763, 1.7983854881923822, 1.3627996408593812, 1.8840895771334945, 2.322823467240227, 1.7536539050308217, 1.8610746511731524, 2.1835410916772986, 1.0030411657802905, 1.4735548266873815, 2.7637326329773235, 1.4339111900604744, 1.4322147772199327, 2.3301055583722077, 3.1642460240949903, 0.8830983501102753, 1.3429947245302858, 1.6082835104747282, 1.8550603129974053, 1.4908944657645444, 2.758005029712917, 3.688240827351963, 1.571132217988754, 1.604666215971114, 1.01327738015465, 1.077502788174022, 3.1869156144723214, 1.5467198614751865, 2.2895444353521204, 3.046229266840901, 0.6634667413518858, 2.279928676515973, 1.9954938116024326, 2.1937758991077976, 2.19701568518892, 1.4438452421360843, 1.0011490439678212, 3.1321145487151423, 1.2049776922703117, 1.988147527968237, 5.071603723800074, 0.49052326773817223, 2.9018145589551496, 0.84213121057883, 1.5517475842735553, 1.2982383540757367, 1.997846399026853, 1.2768032718466575, 1.482759141722727, 1.0230113893675639, 3.2277696572030887, 2.771989185628577, 1.2751757607799592, 0.5879084027395302, 1.3234350325407866, 1.443814027109603, 0.6858906195474289, 2.9055982260707545, 1.0229720391204558, 1.3729222175866278, 2.432852783131148, 0.7287814562778019, 2.066508432728718, 2.0692735887129365, 0.7712186988584346, 3.675449490877783, 0.8813177863722915, 1.9316024808026933, 3.0173040816919, 1.8053421372535843, 1.7529105828113671, 1.4176706101360856, 2.070341864373204, 1.9022839066099455, 0.8255935651294743, 2.984351931777121, 2.954457776733547, 2.2470702223493357, 1.8244324914465, 1.715285222152324, 1.5453644857122213, 1.547481332800976, 1.294993933287695, 3.00196428830662, 3.808484688640936, 2.1261995401038822, 3.3678616689922958, 1.154039401968772, 4.624691589485199, 0.6310038940649578, 4.902948042372319, 3.2244699544030677, 1.2791740700209215, 3.4564174004542094, 2.156331335941307, 2.0031460313224674, 3.655001810700598, 2.306281780828448, 1.8429511604146702, 0.9709606216711243, 1.5045534486063656, 3.5578065354525332, 1.8951159930313772, 1.4386808813173626, 0.8158583250527829, 1.8959330025051837, 3.7526309778340794, 4.4212800729324595, 0.958948006943772, 1.499208219404833, 2.3134360992386753, 2.5082449863235965, 2.1316431903604753, 1.167855999325011, 0.8094390616260698, 1.8487119097472533, 2.543865110109896, 1.4039861240921008, 4.057356044910344, 4.7079781094795345, 1.282090398875845, 1.5469524155845649, 1.601990752236143, 3.3169872965562455, 4.682903996417751, 2.9598362144016814, 4.651723740771551, 3.361058233837725, 2.1684676609655997, 1.687704763426682, 1.3595108260218367, 1.6627726894587864, 1.5967463932853345, 1.0110827018755741, 1.8316511759625946, 2.6847575727245343, 4.1961707281460665, 1.664664711440173, 2.5793700737957335, 1.3246048056667552, 1.8643114799082825, 2.3894900236811485, 2.2272778524584624, 2.8849046920441945, 3.1120017390148806, 2.3374395293522423, 2.001856773850707, 0.8401213734237722, 2.509874797266283, 2.592899761215059, 3.455934180448416, 1.376641873674617, 3.6568325450681622, 0.8900601882362281, 1.8920430742213943, 3.2786236676402734, 2.213111380345443, 2.345610107008614, 1.546569621638154, 1.1717276098416884, 0.9461796979367517, 2.351417064992822, 1.2771336287030142, 3.5480288690097437, 2.55718446233978, 3.255594632827097, 3.568879630753574, 1.1720145092094068, 2.9437119524842363, 1.032046488313108, 2.4192964248969377, 4.350521604965704, 0.582931070488169, 2.8290457116279013, 3.177111233170588, 2.5011515169857184, 0.7365324222514745, 1.4550553317119943, 1.8994500057761166, 0.8260826376558545, 1.9741206572388172, 3.5511304690436734, 1.9040804161505867, 2.202721860551711, 3.7403463842615476, 3.7374567664668104, 1.4531322186356546, 3.5470187549923455, 4.554998624373046, 3.679808252804606, 3.4936845069616713, 1.7322413344357563, 3.791793406506421, 2.292222177757324, 1.8857013914044531, 1.3030883210608926, 0.747866783856795, 0.8864562556441394, 0.5450953781734739, 2.697815126474956, 1.2315980760637135, 2.562940536858712, 2.8032740219258763, 2.565561270735279, 1.7139501263593813, 0.6546741865117687, 5.114338144756206, 0.9050841008293975, 1.875853439738689, 1.1003328698048116, 2.9378734666303683, 1.9781059048853102, 1.8787583960245864, 0.5900058201875216, 3.3720893748682776, 1.9910097331758678, 2.491191707881614, 1.6640189845100826, 4.021400235611321, 0.9270623200860612, 2.0413435993607063, 1.6473217623804826, 2.069168202955121, 1.8273341190616714, 3.3421024859136623, 2.0220888151535754, 3.8017871641102943, 1.5180116021450947, 2.3171126119920404, 1.9074917974355645, 5.065589380489633, 1.7001358966829514, 1.2635694905240704, 1.7738834819442653, 1.728303770780069, 1.5844887843177238, 1.5908674067184678, 0.8971403294341316, 1.7226737467215907, 4.1210066441619855, 2.412499700859268, 1.0784478884386766, 1.6297829881213624, 1.511478897081294, 1.655154635837753, 1.269765866815327, 1.7369346157890713, 1.7106065468652913, 0.6978374477765913, 1.3802994295616844, 1.9877598615375986, 0.9146575817803618, 1.9425597699813117, 4.114211829441853, 1.0636844820895426, 0.673841155208409, 1.632240790163402, 0.5457385747615198, 3.51697877434153, 1.076516151811556, 1.0227999392136973, 3.6720642029823387, 1.2188697168290727, 1.3614380934121562, 1.274556382432317, 2.8751675887762533, 0.7847646330397436, 1.3288619590270774, 1.159736402949281, 1.4080429899752502, 1.2049427209435641, 1.9222025795833073, 0.9055732341559788, 2.883360604944739, 3.0281105785973583, 0.8455005481233454, 1.0323637434029949, 0.9016377398382454, 0.747557876882126, 2.7641213801131053, 0.6706309642825188, 2.0028386862959793, 1.3517333288908007, 0.9917029490228458, 1.8640487988171897, 1.4473298879301117, 1.0769345835398099, 2.773678796958385, 1.3164039768741111, 1.1170124410946285, 2.367887531404734, 2.041360386400632, 1.058494866615445, 1.3919174200619893, 4.8876043145940535, 3.3541462681834737, 1.2778170254445347, 2.825280514904766, 1.6416321817586499, 0.7556439398206907, 0.7109193084243637, 2.4287334461550834, 5.036231761943823, 0.5603479757019326, 3.97063812763884, 2.547534830641545, 3.7340428396546455, 0.7232300243496309, 1.8693410449885035, 1.3097912538356964, 3.748003127972157, 2.207480959803245, 0.8673979027172848, 2.7656118173121023, 1.0333858480663134, 1.1297868103455333, 1.068581294276172, 3.0724402081452267, 1.5849076136118259, 1.4768052545832027, 2.7875931428658696, 1.4517423396600382, 0.6589882867824205, 2.4929298858688838, 1.8544892703914082, 1.2168044571017496, 1.622534428851769, 0.8120224529788546, 0.9629491252650897, 2.2142866837621664, 2.1522347739916214, 1.8672631156386432, 0.9355757999486436, 2.5701124621798948, 0.8038096937415979, 1.5847649894366413, 1.7931210423874622, 1.4927439706661771, 0.5988842025368222, 0.972395753578219, 2.5351894490335147, 2.284501529409923, 1.5029186036441926, 2.8593956999643138, 3.40468932597222, 2.6700318449689564, 1.5282601676679097, 1.2053068134965423, 2.33134016306321, 3.2587258635011915, 1.5670330568336648, 1.6092736721548664, 2.3965139250664294, 1.219831109742514, 0.617175612110382, 2.470524818897632, 1.0927219294698731, 0.9381330285986706, 1.702767277337257, 1.012097309444009, 2.620642302454003, 1.673991045680428, 1.0021234280920406, 2.3579031245128363, 2.110091298560332, 1.312982628002994, 0.9086273609826473, 1.745497415377231, 2.8119218632026213, 2.457896917709877, 4.185908436565708, 1.1416758886198068, 0.8892194637381915, 1.9328174116884103, 1.0305303813699649, 4.490386603900628, 3.775784422508458, 2.303587983328566, 4.96062996106328, 4.9115913701586855, 0.9589311738175393, 0.778263804352798, 2.887920093581232, 2.110836966529452, 3.2710970958101484, 2.227010917172307, 2.743184305767232, 0.6617868335907843, 1.0556864377961455, 1.9304992274022208, 1.5172625775081963, 1.3748359339687082, 2.866440742972128, 1.7992796844852255, 2.5771700045468853, 3.1488891892494024, 1.9980955907473748, 4.879141966438428, 4.162676807753491, 3.1376636311033876, 0.8225566932305834, 3.305809590061728, 2.8456664809856926, 3.6034979085777925, 1.3942487462245545, 2.0111964408409477, 1.149418529794004, 2.9159819220907224, 2.1401939010273257, 1.078140432084856, 2.315071964236897, 2.0385341543557702, 2.8475860617927786, 1.5140245316268452, 1.9536921317257796, 0.9691285337271801, 2.1533597813248155, 2.3881525178239746, 1.8868455086484195, 0.60895042823424, 2.7818823594680326, 1.6765561305609034, 1.5779909576902795, 2.1217886740410234, 1.8925015262119698, 1.67373390618776, 0.838486841553751, 2.9829183709370324, 1.5416496378128859, 1.9143059953411246, 1.644038804387221, 1.189327775591187, 3.6366648953229737, 2.0080929604530735, 1.7493412205291559, 1.1245200669200552, 1.5509221743498582, 0.8529782876260307, 1.740663804032259, 1.6310241667022958, 1.9511170775539053, 1.1347676823129933, 1.9789368964555645, 2.3115307646154557, 0.9289316216590736, 3.6571071515291473, 1.3542978020685863, 1.6893702553923644, 0.7315537172641129, 2.525231775448844, 3.6583492501407933, 0.9065113714373766, 4.338484297606366, 1.2971532002678028, 2.685834116993742, 1.7208345196190509, 0.9841780401320122, 2.6696275070556608, 1.8898817628532043, 1.6805262731371133, 1.502459402274728, 1.8107586467342165, 1.6686940535249721, 1.694898821238008, 0.6740784956921415, 2.7611987156185918, 2.8101983082242925, 4.80805776571302, 2.512919144977683, 1.5018186828407287, 2.630553309392766, 3.259772133787419, 1.6543383075612113, 1.7143110745648136, 1.6422310812877163, 3.048139581926617, 1.5092324966134176, 3.928553405956607, 2.038773825873679, 2.066862750251625, 1.7217771202348646, 2.2656143861983167, 3.1624597475892724, 1.6163459115818675, 1.5172652662968735, 4.1853449193858046, 1.2283168004587997, 3.847609804146252, 2.216324996394499, 3.0053464497458497, 3.563490383244611, 3.145523098299825, 2.9364324152350054, 2.1064821226471095, 1.1168535839097844, 3.1359089711852763, 4.8440787671570975, 0.5769306701578246, 2.017018485810322, 0.5385882050908168, 1.1511514228018453, 0.650053925044113, 5.106934632164557, 0.8151292112756076, 4.11305300210186, 1.8032904365005897, 3.2355824012157, 2.7771476862593607, 0.9372585076279023, 1.7141594696121627, 1.4487098140477466, 2.2025518923276244, 3.4348932436966932, 0.9282241267610465, 0.7208556134925183, 0.691903729798003, 1.4728343891466558, 1.6792757990257197, 2.15731185053791, 4.9785331668058515, 2.4966942557022267, 0.5988191571655096, 1.3528648387480435, 3.6089973202961234, 1.8217337773978795, 0.9441667761674312, 0.4740720940375107, 2.0467818008423064, 1.8399434834666415, 1.3818531781667207, 3.7243382673483096, 1.4919005329108828, 4.3105850498110305, 1.1637197746151224, 1.5322805575095493, 1.0373042538535047, 1.970411896604384, 0.8439852147399969, 1.121391179933893, 1.3516286560154895, 2.2402343604335577, 0.5609484071615439, 1.0059678887121668, 1.6821172514252196, 0.7512376771406929, 3.9330545659007154, 0.6281971255154802, 0.6587815511509706, 0.8629394894764716, 0.9401665097686764, 1.704956590567469, 2.806996721529657, 1.6315947534638837, 2.3188635151680055, 1.8416543063961757, 4.919210405786983, 2.2794026507308507, 2.6388118317419123, 1.0990312660904205, 1.1078342579977567, 1.1212413666775305, 3.2500425595178486, 2.6004885604693158, 1.966246741692793, 1.72458929734941, 3.250275484023041, 0.8477900748674226, 1.4189345185014002, 1.723805164698465, 2.841249534279113, 1.134735032391389, 2.1102462528579418, 0.7094099085943574, 3.3915247773176858, 2.6192241993272676, 2.442780953218888, 3.6371027964869347, 1.223688330395691, 1.1170394619039445, 3.3061240921267436, 4.472020599873436, 2.0258439134367294, 2.2216816772655275, 2.3275515816023455, 1.030847614518327, 1.5267652856613212, 2.995957296602117, 1.42046701588939, 2.007474356698069, 1.3934906824276747, 2.3253809610848175, 0.8920974247966061, 3.740102749546294, 2.3935096221214605, 1.0301061801550992, 2.6905965957739917, 3.0431351123791837, 1.5258621764238796, 3.382716337417691, 1.8930941048571817, 2.1760916457497608, 1.1332834788287842, 3.797291081662932, 1.9398740429192105, 2.0541047999293527, 2.41884055362213, 0.9800457463619892, 1.3504373811533121, 1.3229353819841723, 0.8699023575542402, 2.045830426080037, 1.8498999005367474, 0.6529839329536655, 1.158367020884041, 3.386161587292765, 1.2897510203219091, 2.5327901977492076, 1.8224348107979857, 2.5569763750583157, 1.5803664506733397, 1.2931724034157486, 2.6317607012377775, 4.975528924947411, 2.3014430389904494, 1.752409237676091, 2.8648983583893184, 3.329515759676276, 1.5258210540637973, 1.8369672367815233, 2.886236366017231, 1.0295715532947542, 1.2041140775913417, 3.447575559441496, 1.4768615824580966, 1.0639160018811804, 1.4125105447589523, 2.5742937451428087, 3.0397932747899943, 2.2785651555748387, 1.8091359794441695, 1.189185765029948, 2.1247225684234903, 0.6944183038380911, 2.98904811092608, 2.5932084967676925, 0.6552284123300266, 1.6901602018434638, 1.6703312608613434, 1.9682145651177838, 1.4606583252250886, 3.675374317155975, 1.0286235983751002, 1.9719370651030494, 1.1862241140698582, 1.3538014554907227, 1.679319866809125, 0.8998584497937638, 0.8760600603610796, 0.6671024622610685, 1.7220356375900059, 0.9193989201001231, 1.3273975087663912, 1.1920629896058856, 2.8422728595842757, 1.9484193303785233, 1.6191098056159672, 2.0805500587173396, 2.0160665715763146, 3.3765188960577937, 0.8585245308234349, 4.181681128948627, 1.0926415348817025, 1.415015535152568, 2.102173718205166, 2.070461728703746, 1.8542585299287582, 2.42781018367671, 1.663283224490876, 2.2962451138560396, 1.2861980892872076, 3.1877221928327724, 2.619274431664729, 1.8717161873618937, 2.333233672263771, 0.800978165711283, 2.7569119370293893, 2.045690542157523, 1.3553060030235862, 1.8360936859042019, 1.4059789297896466, 1.4217333465778088, 3.786655388182902, 1.642533047362737, 0.7195644005013869, 2.5148436381021684, 1.170140878284287, 1.3247126151559858, 2.7521137134944125, 2.1584720254505343, 1.47236418746995, 2.018132586873002, 3.1660287792100026, 1.1580817186668437, 0.8184677715771712, 0.9283192303543857, 2.066017457785872, 3.1279476681246403, 3.695059454162732, 1.2662035016644055, 5.158530546668225, 1.4911851669479916, 1.2890234579353004, 2.2775570698462806, 0.6502084234616776, 3.3181848197092974, 3.4514478534010586, 5.140096135894254, 1.6006804575857527, 1.0377089124432373, 0.8876813886619258, 2.4117677393087296, 2.3516823047431923, 2.919839032955992, 4.520749621470626, 1.9896485537083037, 1.1425473467695173, 1.3769849711394102, 1.392999848563977, 3.018260785883316, 1.9015419957495459, 0.7403553202522175, 1.288417481892359, 1.1378802338544354, 1.5696099747133643, 3.3306218249775865, 1.9804635784333098, 2.223973243740609, 1.6199283055543479, 2.4893024967481594, 2.3525475253158947, 1.8923457517793447, 0.796204558805945, 2.5056368632013566, 3.0032477538128313, 2.5011368589073664, 0.7496437683845728, 1.5004714965700208, 3.9867597552625655, 1.8577288786966804, 1.2186140307753475, 0.6845839904269925, 2.0209074234818734, 0.5822229909861324, 1.4317212549925602, 1.260025261889863, 0.9751817977293193, 3.582412329618131, 2.308837093339469, 5.052553167820801, 1.4110973124305994, 0.6723249212554994, 2.5022710180454544, 5.056099041441098, 0.5611174605007554, 3.073665618382959, 2.0188408996827487, 0.9694411016784695, 1.948488984735125, 2.0956869548524444, 1.8010850030369014, 1.5623668123554102, 2.0570010678647654, 2.9444615627433453, 1.6785496208690882, 2.8105085763628117, 1.7764048988726409, 2.0420101221532887, 0.7096645599909905, 1.4157244980902055, 1.0677497539196266, 2.1409205699928715, 2.2840106686333184, 1.3366496525094451, 0.8480307169433878, 1.4399358055797762, 1.5411763299556878, 2.041886779984406, 3.5421521837475485, 1.6241915751876794, 1.8865659193400828, 1.1777627196236677, 1.390886540692577, 1.979793073313015, 2.902459550641523, 2.9935832845431607, 1.4349161292533903, 2.3725411416166167, 1.11606417974907, 3.1044164025219656, 0.8805286172329724, 1.8740068944039394, 1.7531658436772117, 4.1792225244747145, 1.8990925942696941, 2.301694278460756, 1.7541421511703745, 0.6992685284851862, 1.9102589292872916, 2.273894410130549, 2.68131817199671, 1.8229288952195926, 2.1377054039584937, 0.8557117269947188, 0.6284828180148494, 0.9350349040996949, 2.612480067144677, 0.8113841179935195, 1.0423143178404366, 0.7275188388595276, 1.5997298366510755, 1.4697400321081724, 2.252794418920409, 1.8033310097628539, 1.63455859577831, 1.2863334352754925, 3.5468794605925793, 1.1762229751178144, 3.7171803114232467, 2.5313485936051796, 3.2818266412996344, 2.6722343475433212, 1.1096179764567604, 2.2632391084745236, 5.002268656407318, 2.011114063042251, 2.3660393260484027, 1.5565283502219815, 0.8502588776370532, 4.9086389301211, 1.1237604609585723, 2.2386096947659997, 1.7387205211274395, 5.157136149095047, 1.2398539856548587, 1.8489088427416904, 3.533172954002322, 4.469922078337977, 0.9299785899872013, 2.290241744964734, 1.2104608546785882, 2.3180666002504426, 1.8762637778496425, 2.224774437735745, 1.236616575932961, 2.011347623437322, 2.7923312495461348, 1.4140335991548765, 2.7850856730539846, 1.5485492852339695, 4.796867775627014, 3.3570167721149846, 0.9173781074688422, 2.0490491672532127, 1.0191601980160159, 2.1554464295395492, 2.0216984998712766, 2.0072853646671334, 0.595213062805967, 1.7798543416687644, 1.2517196422039305, 2.127251733256912, 0.8939191041511773, 1.1696881446446852, 1.8699970919266327, 2.4912637429976576, 4.002173700160123, 4.853196461497381, 1.9881279554477949, 1.7644160025268525, 5.061911537050955, 0.8028752652375417, 4.6757640642076375, 1.463447703213747, 2.9142288797751656, 1.1909679062154628, 1.0170247190922688, 2.525185028101598, 0.8453892238167349, 1.7246568681412884, 3.944406054309513, 0.8211252705645224, 0.930691128065125, 2.583359362268264, 1.9021710433130936, 3.390083894763101, 3.2000810234673502, 1.520528241953075, 2.5182513604696846, 1.5741818097702773, 3.1989922279343843, 1.4739956817694388, 2.775635589121731, 1.3631564935778093, 2.578041697436746, 1.3654908258355989, 0.6218524151921115, 2.5375735146660237, 3.535395045320306, 1.1941308228820926, 3.8951277491672514, 1.8914377495512376, 2.365515382819675, 0.8242028655370854, 2.328427911841067, 1.4101882644364283, 0.5495417789569671, 3.3722237575304534, 0.8457144072990178, 1.7231886683905446, 1.0840350210889655, 3.5597615535742086, 1.059101505442052, 1.3395778487723347, 1.2821864007139292, 5.076264642281466, 1.6849836844125852, 3.620033227946921, 2.1651607787570466, 0.5003594610643505, 2.5164014544424904, 3.960538735674352, 1.107957005469464, 2.2675595675566647, 1.0982186127540274, 1.576816519936339, 1.1452334637716088, 2.0828861940860155, 5.067093564223467, 2.9463411143752283, 2.72357803806866, 5.066001100365359, 1.922641126269148, 1.3896299865413158, 1.0819416964250907, 3.9692420001608926, 0.8020160847886594, 2.7270349158260045, 2.2721415856813842, 2.028297097828945, 2.4288347740952667, 0.8686043970335904, 0.7948648183534618, 4.990732210335563, 2.954833132491233, 4.033478066624134, 2.1155765185907836, 0.7853159481978607, 1.8782608100957188, 1.566794642371724, 3.2796170800081583, 1.9646784872775631, 2.355821097058373, 1.837987285416089, 1.4648667483246467, 1.4025599724466997, 3.255702127250032, 2.9178326793461964, 2.6567476205448846, 2.674207728964519, 3.283353137295744, 2.228125387798325, 2.8404088383619706, 0.5707344501523987, 2.02929254759392, 1.7067242035315386, 2.6029612185551554, 1.7999697787370954, 1.6870977695559934, 2.308619941299191, 2.70746735174051, 3.1185559956027844, 4.78686274468856, 3.611548753578119, 1.305437530441298, 1.5727624653140506, 2.04094307723075, 3.69506232724105, 1.1591097606955267, 0.9026666626644831, 1.75744152608534, 3.615818251445055, 2.2029891251862654, 1.602848807012477, 2.0926234979371627, 1.0814302639995514, 2.5006654517172775, 2.1461975005462595, 2.292698219418294, 2.251668029937941, 1.6009856552146435, 0.875020711071519, 2.4924967595391943, 2.6667150225900853, 4.0467174448784355, 0.5865175051061053, 2.6909527398120456, 0.5701483019514646, 1.9553258958872148, 2.7175323214914298, 3.0802746297964236, 1.0164951363982357, 2.2726838251927246, 1.8173302638789928, 0.8916008549361453, 0.9290831344106829, 1.1629051327854105, 1.0324142364332562, 0.967414910381176, 1.3697447212192477, 1.640992348863286, 1.0431421468748092, 3.5863438658468043, 2.439827383725252, 1.2756747326545315, 3.4259371265121334, 4.355789552292393, 2.640428335503991, 2.3885998526760988, 1.5816155175019821, 1.465432090774992, 1.096979586052086, 2.467796863457478, 1.615027509023529, 1.4960893650322225, 2.404180439222532, 1.2596420673456061, 5.084666699798834, 1.8897137598261091, 1.5410538947124255, 2.9324794771028793, 0.7356172506995473, 2.4735542728223714, 2.2385610361200654, 0.7608727928697429, 1.58139757298334, 2.1745709462280693, 2.125876091116103, 1.540368832125013, 1.775456230216028, 4.996800754042619, 3.7320456690047177, 1.4524292980752043, 2.2743834156134706, 2.589199668414238, 1.5836915096339894, 2.0152378406488793, 0.8791679928425732, 3.34769710290731, 2.801924521615697, 1.1193365942959848, 1.374838420513439, 0.6137018882225428, 1.0523670808052095, 0.9136213578617213, 2.5800758324630246, 0.7025960016475338, 1.1153454344649056, 2.6343443057429634, 2.904879406186067, 0.756933253890397, 1.8237397099295187, 2.6282586825912375, 1.6956462967965944, 3.0233466304063383, 2.4298321956914712, 1.8068277433142297, 1.7630983885538125, 0.8297916517163647, 2.0910872148725037, 0.8422083219306447, 1.8538695226732222, 2.0867069872546327, 1.5326553696345426, 1.19388417888651, 3.39421543728566, 3.8486630706826594, 1.368363625089877, 4.4259062060543, 4.085041311096474, 2.1725048402883633, 2.1709232595997365, 1.189061849228584, 1.127490884915103, 4.905948197112714, 1.709153679461287, 1.4360322079656023, 4.608964462892554, 3.1600311099476355, 1.4546947065834452, 2.041591869625547, 1.088111935476283, 1.9012851217057551, 2.1243824169745014, 1.1835857189901136, 5.044720775610653, 2.5531650584477408, 2.6113317393789086, 2.1433182866468607, 1.3934522673060097, 1.6071704232116255, 3.2262698475960527, 0.5726833028263283, 0.9670060238594523, 1.5734850536722165, 1.3832093268939476, 1.7304705264014388, 1.516776257000772, 2.739925805678036, 1.0221044115286053, 0.8588227056851531, 0.7568412360454219, 0.7018194823058082, 0.79717647782351, 2.3642377102536822, 2.8721167783174493, 3.809227744613719, 1.1386337399779851, 1.6747219488680933, 1.4856025199323568, 2.1726874836243755, 1.6457811282858672, 2.367828067397409, 1.217336366768281, 2.489632514149843, 0.9887006319403103, 1.0249888433573708, 0.5585244639812602, 1.9914701192883648, 2.9642973656577944, 1.9917490185910278, 1.5340845352760861, 1.6929140466572206, 2.4080679515844396, 0.5706743257110096, 0.9487009571458599, 1.9371391218618585, 3.611109187032679, 2.7385437138123705, 2.877374645297829, 0.9020228476329463, 1.8142500638856887, 1.6165323897203747, 1.8190519273467332, 1.0002937722710208, 1.524673823775504, 2.9479118387787753, 1.756770458402671, 1.1798229492829293, 2.6021201353525996, 4.70428651426642, 1.7091429246623568, 3.2585915920031656, 2.172002838719629, 2.6985975200132386, 1.3895202102644921, 1.6126055966501944, 0.5463382460066415, 1.5300036037790785, 2.9381795912262074, 4.738686710666039, 2.657339395681812, 0.7832453263785251, 1.8367065648522636, 2.566871335705316, 2.0711726600597715, 0.5760200123009018, 2.517484679558668, 0.9883494395483486, 1.3905503520684477, 1.5658731096096052, 2.2373991911280116, 2.647316067295023, 2.407201209954747, 4.131292602742176, 1.582265528886101, 0.7583835467420282, 1.4927684874443117, 1.2493592208543962, 1.351323088421704, 1.525003009074812, 0.5431476071524179, 1.5958211179103536, 1.793613236977003, 2.598892448652005, 2.651527252111369, 2.3103080155182565, 1.1202575697828525, 4.219985310835861, 3.8527478868751133, 0.9690738106030661, 1.4876552330607904, 1.9304466172732664, 4.536245075820346, 1.716412159755975, 1.5665221918758365, 1.1234264811938663, 1.122778651286395, 1.1371677814082664, 2.9868027110745365, 2.0008135024460754, 0.8770236682630533, 1.98591585819938, 2.3002752688536527, 2.7809905279682803, 1.5569901475623515, 1.9259221708490635, 4.868400809149943, 1.6354513446462442, 2.1307660969843636, 1.4929875510702901, 3.725513583973751, 2.150235130866469, 1.3596600857848096, 0.584298612886937, 2.485301408102049, 3.0537140451842006, 1.5482562349382374, 2.2466683159915597, 1.4762944299005547, 3.7747734314726977, 1.1674015426889082, 3.3780466537104914, 0.9505392393641807, 2.5924498624503793, 2.037181344354811, 5.0985674794072295, 1.5836607580830535, 2.4891429341138105, 2.7406001839948426, 2.708528818265083, 2.4859387430520163, 2.0870504602260342, 2.745893519981899, 1.0396972732556957, 1.13738529550638, 2.862140652326183, 4.238286736197239, 2.7309827428769697, 1.9167195279451994, 2.122946463853099, 1.5939714628203727, 2.9532100880491594, 2.337712258121284, 2.6522126319333648, 1.1233073554596529, 2.3394436515095505, 2.356564095998148, 0.601786183702997, 1.7961251064668917, 1.0389392792320375, 0.8533880786237087, 2.235925291334007, 1.8344814350303669, 0.9453529219519887, 1.9436663400176302, 2.602283005902737, 0.5210882673776532, 2.003871175423421, 1.2432247472244131, 0.7945240062201758, 4.515534196331827, 4.482978799782979, 2.9811487088232056, 1.9365244008968845, 1.6903565612281306, 2.7134666835472427, 3.28992183795804, 2.685318100454247, 2.791782665399906, 1.6254628901550914, 3.3455552376709696, 1.1293875698661442, 1.5922895981395033, 1.6543386779915965, 1.2167165888541165, 4.536275331035428, 3.5740844464473023, 1.1698671139608499, 3.8833832820008625, 1.244915186870805, 2.326585135265992, 2.393212948666219, 0.49436065390275336, 1.6377291680274673, 1.5786625401186605, 0.8682989547855992, 1.9724175608351626, 2.5329931000581185, 2.029538361549799, 1.4245835220642082, 2.372671832672277, 0.9385182894491523, 3.321440038562756, 1.3386610514028454, 1.5476795965675967, 3.4628106082541525, 0.9219754752731821, 2.791763679207883, 1.3010950257497795, 1.3866537840981128, 0.8775534365966703, 0.5453439028861872, 5.186186298521619, 2.876701175338618, 1.4580478162518722, 1.449361686510822, 1.052736592827118, 2.950147841381511, 1.7929684637862993, 0.8063557385225694, 1.309929649689248, 4.603860580182647, 1.829245715196531, 2.0570268975704056, 0.7819538772292403, 1.0024745146248357, 2.394429598340389, 2.989685803611102, 1.522983711607707, 1.962670813019427, 1.3056574968436179, 4.363368536206668, 1.0485808676691117, 1.9891784145593128, 3.557374236333919, 2.7324453092595253, 2.2473050107318304, 1.4981639339005959, 1.1013404934567266, 1.876088175831658, 0.5779058822759472, 4.855433375606741, 3.476454726843387, 2.8712831581758214, 4.80630084060648, 1.640959392386607, 1.2611541506956017, 1.6337162965514314, 1.8478916458389347, 2.4064030861093664, 0.9167150741425387, 1.0600004373773182, 1.9270091284248998, 1.7549915495648925, 3.096008319139339, 0.7946453501731673, 1.4215872465977288, 1.3146054445211461, 4.208160852290032, 1.890997287961716, 1.2811136043592675, 1.1749671850042904, 2.4311982678777566, 2.0333448315231144, 2.3491184691672444, 1.547825396082296, 2.02158876772363, 2.6564778138407834, 4.240397826516362, 2.645820781452126, 1.5345458395158609, 3.2329525841799263, 1.9843294324457978, 1.9121573136369052, 0.7336564009742838, 2.2436826267476278, 1.2461735301537864, 0.639044744184169, 2.0156592588136997, 1.8553873557587963, 1.4864899859038423, 2.947501930604137, 2.789020063246463, 1.3106645934082877, 0.6677601162808623, 1.3546107611614384, 2.6995896442756617, 2.93301055851297, 1.3282683974945368, 1.4541090133025494, 2.5877407757588995, 4.447739778075372, 1.5931499741254367, 3.221050956367054, 2.2387925693972663, 3.17358608992584, 2.5520891809157833, 0.6316398180878507, 4.406307273483372, 2.8537745095094733, 3.0739313477567527, 1.8913377657073789, 1.977440084449587, 1.6771938622456093, 1.2610167022889573, 1.3653068589743405, 2.240080281587241, 1.4440030514254252, 4.38063618983753, 1.6098104619406406, 4.850418811182219, 4.878909032070043, 1.6682208786631734, 1.4030669090312244, 1.943978697903359, 1.8823535361661496, 1.2738255544759112, 2.666796397784859, 2.254810108209373, 1.0318835729545073, 2.6022030423802462, 2.8258436976399395, 0.932870199435308, 0.9641316683154114, 0.5121302723261623, 1.2048374473928745, 1.802213855824798, 4.275992252243542, 1.5700028011326632, 3.95591610872828, 2.570217137301272, 1.8664152647174352, 0.9457771156313033, 2.848730263956094, 1.2815905914544425, 2.019000787950738, 3.293510506555668, 1.2105737869872921, 4.7243255645505995, 1.3894614239162366, 4.448690865067305, 1.0134304667289005, 1.994696492282472, 5.031277531063381, 1.5156657440032406, 0.9102422863841529, 2.220170641533298, 0.7088209066742062, 1.7326377641481792, 1.330568007539618, 1.5262468919430212, 2.1735544559665425, 2.012619665946268, 3.9968063800303795, 2.071700425808784, 2.22491417897376, 2.1267485988372834, 2.6571369125435793, 2.546281171626298, 1.8603945563770685, 1.9723645312111975, 0.7505764571826656, 3.1754863387034735, 1.995024128276569, 1.0762035187077723, 1.73726100696963, 1.0561815414103504, 2.197840111654277, 4.25930303111472, 0.5195687212650851, 2.2556689456082606, 0.6457666827849652, 1.5909101285557155, 0.8753522870043791, 2.6106016225670903, 0.9151393654623562, 1.5076538838327633, 1.6694308322264124, 3.031789563329942, 0.9450302120409487, 3.6511585249480607, 2.4195130140503016, 1.3572188916645207, 2.2142154359088484, 1.35870352819748, 2.0682514612146283, 1.6069276268381767, 1.3595642531367547, 1.48676427858081, 1.8961793003095757, 1.4274781642003926, 1.006494684758933, 0.7658017591740293, 3.5284913504350617, 1.942229263849268, 0.9452558980830368, 3.492881803203879, 2.718175906712746, 1.101651324786473, 0.747288368387979, 1.8089207763149953, 1.033605796061831, 1.0294975429402204, 0.9627066937068642, 2.010136643370353, 2.446922171349825, 1.7322693437946843, 3.4599533299512837, 1.1916575439837123, 2.4205627946266675, 2.489816343035092, 1.2577008767240903, 2.274270318358937, 1.0092047994032458, 2.053200412914879, 1.3617651554005232, 2.8367595025166077, 2.2523953423851317, 1.3896828453988153, 4.800994528357865, 4.569750440313071, 4.09220457216165, 1.1704005440299032, 1.6781767351710823, 1.9107991046613213, 1.0785824223493927, 2.847448743848457, 1.3561134822183885, 1.9906516734750186, 2.3536099156260613, 1.938696940216135, 2.404031678617262, 2.314233475384135, 1.7674789170476275, 1.2477110060116012, 0.646317381104154, 2.5349568861716474, 4.019935700899228, 2.3507018267371054, 1.9295782398011934, 4.452121831289147, 0.5346191329098641, 1.2217832797856252, 2.1804790135028904, 2.1691759463176656, 2.5992127090329085, 1.3980040391878392, 4.906070619109651, 1.8124299103992785, 0.8082617012162158, 3.926820162320588, 0.593677960624976, 2.0824073273869983, 1.6986409565016996, 1.0894758705470597, 1.495341770845077, 1.6416397517368755, 2.43802073850831, 1.2290692788551565, 3.309640914755726, 1.0438711251111241, 2.553972859533987, 2.259919420578649, 3.8323533904993194, 3.4469185651644225, 1.3833568969431125, 2.8729881261999552, 0.815797948998305, 0.666634845782374, 0.6458774214134212, 1.9954157316489654, 1.0553107637040993, 1.064445487460751, 1.2496898454361942, 2.3259557486122513, 1.7647244399699145, 3.308341731626943, 2.072072305332584, 2.663094258988379, 2.9723238887114776, 0.8216938987689816, 1.7166676573529995, 1.0555528206993543, 3.320826621567984, 1.9777887147698445, 3.0174082356034484, 2.2632645235892217, 2.429790284543313, 2.3514712992121694, 4.27745605751166, 0.49871001819561184, 1.4784637310024886, 3.109730424208107, 0.5856462844142708, 3.942754157903184, 1.8703846194953972, 2.4669386021698845, 2.853749581933691, 1.7836233832110464, 3.8279988082939065, 1.016209644246481, 0.7715459140255763, 2.278938406739263, 1.7683524956131664, 1.324255393816662, 1.716412972355721, 1.8936255023760493, 1.9860130588975353, 0.993603905879294, 3.4094522322465366, 2.113770803903879, 3.8074803643185544, 1.3401977689460298, 2.8024723195532277, 2.306947148688667, 1.7015501552313794, 2.529056262693789, 1.7819928279261539, 3.6094574139993165, 1.7954887712316976, 2.860159136473662, 2.984494421463376, 1.5584664627207627, 3.7022174669159797, 1.1198109010391073, 2.4234933669065484, 2.087542328114203, 2.153583285104074, 1.9070209234679636, 2.2890390273416763, 3.6118636353725333, 0.7267803040665982, 4.724232967224157, 2.2195457704441277, 1.9459638702944655, 1.1602320573231932, 3.9920382276279733, 1.207994324776195, 1.3519422023370948, 1.1785788248041817, 1.1385103835643198, 1.7317485252430518, 3.839264023553151, 0.9076906319928891, 1.3567651170433708, 1.011627136248732, 1.2865930423389997, 0.8986999342476035, 1.658124422668801, 2.043074407494021, 1.198019120030808, 3.373934586026336, 1.0533021615583393, 2.7247403045887757, 1.8459935768413038, 4.477601586324967, 1.605855794840308, 1.595850270483061, 1.6336412014260424, 2.019944471590308, 1.7971388142730786, 2.5860061422645093, 2.1638720313568887, 1.059428983077566, 0.7501183891439562, 3.714764272783039, 4.857109291806274, 1.416046410518233, 1.4637379249513613, 1.5493327721224621, 1.0067064942902422, 1.3065773022785314, 5.062298986512654, 2.5267737026086006, 4.470160795059119, 0.9974872827058381, 0.5287170342317616, 3.7882090312315, 2.1876404844963337, 0.9241744060208377, 1.4425795195919322, 1.129139668180445, 1.4413804801950525, 1.0860959760292828, 2.121686522772192, 3.697468359888177, 2.6529648758912354, 2.368493122334521, 1.8833163070040335, 1.933490462905594, 4.731552414676072, 1.4448890409783568, 1.9805775213413952, 2.2737419541051778, 2.6513388326866005, 0.9595654933498633, 3.1961990016413853, 3.843594065839503, 0.7332178100749391, 1.0395650724839476, 4.499811652551552, 0.8630582415365019, 4.4418259994462534, 3.8608505153430555, 0.691885980955267, 4.171571635854369, 2.6486218924739062, 1.2786468716228296, 1.589643312416196, 0.570619666141227, 2.074857619428714, 2.1752470227852396, 2.573854373281598, 1.3753271286498239, 3.483927793868989, 1.4630293731467052, 1.0748915401034573, 0.6248152164310221, 1.506673185992488, 2.1547493789518337, 1.8509421693774002, 1.821790488460986, 2.53986985473695, 0.43546834468832174, 0.49089482243797394, 1.2426912977451416, 1.4454476054545276, 1.53393798850466, 4.105832822016554, 1.193182856040528, 1.8967462525152836, 1.7748080045018597, 1.561098633134793, 0.7119095281440732, 0.788248969861244, 1.013530434117568, 2.473917674673251, 3.4172231878614667, 1.7412506870294777, 1.132490242593698, 1.2835816500004595, 2.837152949663984, 1.9526119124022048, 1.487597677379647, 4.517976431336738, 3.8932635060917744, 2.116708852996771, 1.8616240299604163, 2.939043963700506, 1.270672066647926, 0.7524326593361943, 1.2054657032004752, 1.8435747114408718, 0.5700072477749283, 1.3890491252137043, 3.977181637370971, 1.0410720871987422, 2.1495195947780896, 2.279297974769991, 1.5282299623858502, 1.5301025421075727, 0.8728844213250371, 1.9512669369659181, 3.6448675789585803, 2.249541602068386, 3.6046890745870974, 2.4146033396189717, 1.0958236467297633, 2.885435280180984, 2.2111447339005723, 2.644903831636454, 2.4517287158729806, 1.306912876064889, 1.4078944875365886, 2.1758643207613684, 4.419465186637088, 2.28084036694044, 1.1612218790810673, 2.1243268505940565, 3.0233394272098257, 1.7914967648540376, 1.0091962381894648, 0.7665493408078282, 1.9831886777362724, 1.7030525749694905, 4.697865239335181, 1.5351129314441831, 3.638685069733782, 0.9528437632237973, 1.8501551539056933, 1.167522208153523, 1.2263100705414278, 0.7815340300839255, 1.522801810964971, 0.9128101450122235, 2.4206030949742376, 4.076553705122497, 1.9656040479581685, 2.490317170856538, 1.5820061854122465, 1.4100528388183504, 1.3023385877656677, 2.370697623458394, 0.9417405871848713, 1.0334249256529242, 2.9542311651918127, 2.262423841971789, 5.318434670309835, 1.6774781358554525, 1.1403015492452784, 2.1692712221955746, 3.5316304096539604, 5.2736774845564875, 0.8908971944016976, 2.8813804320227066, 1.587272073865601, 5.074074913495889, 1.2795778827373947, 1.429689811406581, 1.9700602780525394, 3.232500590840556, 3.570258584758379, 1.2203209134674515, 0.5518338374495712, 1.1981717485830865, 1.9970909544706241, 0.7565047649891565, 2.7986967015718585, 1.6302046700465236, 1.6404248322247188, 0.595568166685271, 1.6085319499980568, 1.1070836481748736, 2.0383398931381698, 2.5393426811599094, 2.791831188009911, 1.1893145774824145, 1.5245354988180007, 1.951167801156016, 4.940977487575826, 1.555033236135801, 2.045973673715066, 0.9856609713303439, 1.909193482952459, 0.5706967906273951, 2.1097126653050564, 1.4042610905847188, 0.9232366223388173, 1.1638202353404232, 2.4933382860460545, 1.8406676665893158, 2.3668458234657037, 2.802629627348299, 1.2773088477157528, 2.213790115957123, 2.1779863928500376, 2.7707806039075864, 0.7392463254378819, 1.1014704041366803, 2.6484092470752416, 4.314462270720895, 2.2923469758556947, 3.582174143532306, 1.8121199703795892, 1.2443640295139429, 1.9108866642458529, 1.674032967520084, 2.323753594946063, 1.5676165317784267, 3.767750412522738, 1.5881373299440806, 0.6077397538494776, 2.408756521435869, 1.0022857985914284, 2.9033079645750837, 1.6020876634291803, 1.291026202896512, 4.115997208859355, 1.9055194491755252, 2.3687639447713713, 1.1217294456807512, 0.9053727219718468, 2.7367299556367954, 3.7145352937719225, 1.387323540003625, 2.872338831969212, 4.096912704902732, 1.2499224267044466, 1.588678055792144, 1.065331566269151, 1.5558732396239836, 1.006837154372871, 1.732069957936246, 0.6669638351308551, 4.399314727391165, 4.725883254134612, 3.301735258426336, 1.8852602802813385, 2.04973681284211, 3.107622971683663, 1.5794793440853832, 3.640847251453051, 2.5144913055158917, 2.1247893342661706, 2.1475074383000625, 2.477688266357989, 2.2871189402283174, 2.787382922452506, 2.7981218461117745, 1.1347704237689777, 1.065624438262629, 1.8124237406009402, 2.605468644158202, 1.369933004246969, 2.161995495377555, 1.8386929230128335, 2.1289507321803414, 2.597664510508501, 2.529568774364953, 2.060213056030545, 0.8166140627129309, 2.1655664454741315, 1.138651902064633, 1.5439150810636197, 2.897061488348241, 2.4656623688344546, 1.1287937706875282, 3.4377609021385975, 0.8712976484050284, 2.5308160188383213, 0.8063569840322723, 1.4441889758468232, 1.1284517019081568, 0.7856032244148284, 0.8335535840762588, 2.0689021024128764, 3.3704875106523753, 1.29842367342464, 3.1210386947773725, 1.6712237185391283, 2.62394000044285, 3.771653154502589, 1.0768541120846293, 1.7139611127964056, 1.400522836040893, 3.259098870925923, 3.22343043279361, 0.948072030092228, 1.6281506835206037, 2.802017272217746, 2.7270358393377125, 1.3569566151754833, 1.7281346103072963, 1.1837303809447226, 2.4210767105459596, 1.6051673159561495, 1.9592050446411289, 1.902342481356557, 2.3663842521303144, 2.8707749204832202, 2.0930315953057335, 1.3265100719445273, 3.5391579985669512, 4.01124290126309, 2.8076988261745437, 1.1722006035002552, 2.5792189849101574, 1.647775881021112, 1.06756344884016, 1.2916921895411637, 4.34284771652319, 0.9099509303225268, 1.9140476969142728, 1.7085124292182459, 1.1082645717390756, 2.3508063154265955, 0.6041497238599921, 0.8837035491120269, 1.3326169279656181, 2.1808960610153525, 1.6231151428689174, 1.0169669236970467, 2.178821686543046, 1.6695898171522006, 1.828663544579615, 4.208626863805982, 0.9975777936141684, 2.347059164688786, 0.7051139988357662, 0.6919138857274388, 4.995067494753553, 1.7688591525585906, 1.241791721050398, 1.424046878436759, 2.8374162462138557, 2.6663318717835978, 1.0906604542833624, 1.4073729920857212, 2.0367742034737937, 1.353243088716971, 1.5705485425300796, 1.3235701853268516, 1.3665493444334305, 1.5523934100893189, 0.5924441038736503, 3.293716523468695, 1.5537625462773828, 1.3446005592135828, 1.5237806019242057, 1.5675837803069277, 2.945729379592826, 1.3327541800396479, 2.558272242905731, 1.6279420290546076, 2.1043516559959907, 0.8995103229614998, 0.8532481952568649, 1.7198568178128306, 3.849922851983324, 2.3377429593013463, 1.617314611343314, 1.5262183580996842, 1.074564165320347, 1.817835427602845, 1.749147635208854, 4.19711513739919, 1.4376228523766703, 1.370248784593618, 1.6280890731771585, 1.9955744541582843, 4.608577110949982, 1.637110366436027, 1.1960295795233573, 1.317126821434469, 1.0359966489553427, 1.3833759256256832, 3.910916250904431, 2.7277883790439286, 1.839031373429491, 1.3444425271932268, 1.0081509927573795, 1.2637361801409648, 0.873027261526714, 1.3823479769764615, 2.04641646577166, 2.8883371769872577, 4.145433945978985, 1.706988269194541, 2.5250659021887514, 1.9076666921785457, 1.5420159047792765, 1.9310045893667447, 3.7846908717395875, 1.4221570339926766, 2.703027466089885, 3.5462478135494733, 3.9329822239518215, 1.9347349706777324, 3.9329111797373435, 1.1768956738655212, 0.898482472566409, 3.3163454639227643, 1.2253912875605737, 1.9043410582173415, 1.789864517466699, 3.244095757150082, 2.169277647757744, 1.4741787521982412, 1.3939407588119463, 1.2984412477717946, 4.144904741171423, 4.098046040210135, 2.3314558683724984, 2.9457044644595674, 1.6857021390995928, 0.6827229627015983, 1.753005952414681, 1.0567047243059633, 1.8052939403510342, 0.9687961431456037, 0.7194681582034058, 0.7840592396424338, 2.372325464772116, 2.8280507820256697, 0.7484134046742613, 2.6739764863118904, 1.9895967191834365, 1.275883924288066, 2.3688043660264233, 2.9252889628117806, 1.41822400819903, 2.626270342917071, 1.8724923651177239, 1.1872280734005325, 0.914581061566601, 0.8932168823983246, 3.732001348372186, 3.8420376772605564, 2.0477705998048714, 1.9598445959707236, 5.096376779867002, 1.0018532525031227, 4.3469747407645665, 2.8048984803137293, 0.8199341933390972, 1.6371003309143097, 1.3083980238824722, 0.9292251776916314, 0.5728800014413785, 0.9567424247252301, 1.1862683208913467, 1.3842742993167965, 3.0104240035610736, 1.329092428687155, 1.8819976319986158, 1.499883583381059, 4.337379948212753, 2.1622479700705224, 3.6812081739375193, 2.0396901191955514, 2.199628997490232, 2.295957915968082, 0.610651651840658, 2.121707207721179, 1.1244479051847522, 1.8520062296797872, 2.1885880487165412, 1.9320006139813521, 1.8072630611129281, 4.286862109874461, 2.249401899658286, 2.5284879701152603, 1.6996516843016012, 4.689441428922671, 1.2750172157351327, 1.458211056156878, 1.0582574774394973, 3.8406582459722536, 1.5586638208725572, 2.5379486019772775, 1.5429966948433027, 2.4348220572032817, 2.3127674648896734, 1.6569814218817622, 3.061071077073188, 1.4668482807123715, 1.21360669506428, 2.362713605809876, 1.4957150738479508, 1.4531420323745268, 1.350750391374359, 1.3674454754644032, 2.944805169196232, 4.220367255489932, 4.609805511289736, 2.394656833461317, 0.7398643300904687, 2.2743642215550697, 2.4665032795649124, 2.3274545952876697, 1.4577536314679824, 0.7540534257471051, 2.2340450069761637, 2.0395539999904906, 0.9850619955972503, 2.1902366459463534, 2.024672377914109, 4.823972555111251, 1.7832065249695117, 1.0444378529221043, 2.829560354589214, 1.6534191179310964, 2.378726821053971, 0.6718804755515717, 3.64398839528386, 0.5296657062306693, 1.0813352436007369, 1.8235359533406215, 1.4675868991844019, 3.2128548030371724, 4.645164892755905, 1.5502463891215057, 2.201865735169664, 3.304226979036881, 2.613155768736904, 0.8808423622498951, 4.142405010865021, 5.273795296303632, 3.651527696809914, 2.4736525600507813, 2.1229477627753797, 1.8545959699829664, 1.3662517232025826, 4.709179866230504, 2.187207305655406, 1.9564301134824598, 1.813397970896058, 1.4361046658717125, 3.3150005632598507, 3.1966444078762426, 2.5639680305324264, 1.3995598909591744, 0.7186359791097883, 0.7790456413732431, 1.303291089080029, 1.6548860191212504, 1.8044147728667852, 2.0220282209913796, 2.0813071755706765, 2.7244933613584172, 2.476686157886742, 1.8933099431648446, 2.355644269347495, 0.9627670317470439, 0.5579783150777634, 1.0032209379325998, 1.9307964620593345, 1.0246617805294285, 1.3617562548861373, 0.9393675386611583, 0.7044018515412989, 0.8010237972568094, 0.9928202229368815, 0.9819802346860291, 0.9290504007118617, 2.2017141121513233, 2.2760489691095773, 5.152851184172991, 1.0559018037892842, 1.8535382608254742, 3.162618841893048, 0.7199814095816511, 1.495246309510194, 0.7749333768631286, 2.2531289935837586, 0.961319241106422, 1.2800864472560545, 2.239639227857734, 0.8571149085613488, 2.251260175969322, 1.758044679985917, 3.3467372167763716, 3.110190568500561, 0.8652523021727841, 0.949574495752961, 2.3688154030444535, 1.7129364611125233, 0.7966074533900975, 1.821361935231927, 3.6972370191518475, 1.1452756195583422, 5.181974615233281, 4.203856712738206 ] } ], "layout": { "height": 600, "legend": { "itemsizing": "constant" }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "MedInc" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "predictions" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9ad8ba38dab44f9caa5b6e7fb1fdff29", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(VBox(children=(HTML(value='\\n

Select and Explore Samp…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "explainer.explore_whatif(X_test, y_test)" ] }, { "cell_type": "markdown", "id": "757753fb", "metadata": {}, "source": [ "\n", "### Advanced Feature Importance Options\n", "\n", "We now display more advanced configuration for computing feature importance. Here, we will explain a custom `LinearRegression` estimator from `scikit-learn`. Note that the `MLExplainer` object is capable of explaining any regression model, as long as the model follows a scikit-learn-style interface with the `predict` function." ] }, { "cell_type": "code", "execution_count": 28, "id": "68a5c92a", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:01.018716Z", "iopub.status.busy": "2025-05-22T12:38:01.017819Z", "iopub.status.idle": "2025-05-22T12:38:01.092090Z", "shell.execute_reply": "2025-05-22T12:38:01.091503Z" } }, "outputs": [], "source": [ "scikit_model = LinearRegression()\n", "scikit_model.fit(X_train, y_train)\n", "\n", "explainer_sklearn = automlx.MLExplainer(\n", " scikit_model,\n", " X_train,\n", " y_train,\n", " target_names=[ # Used for plot labels/legends.\n", " 'Median Price'\n", " ],\n", " selected_features='auto', # These features are used by the model; automatically inferred for AutoML Pipelines,\n", " task=\"regression\", \n", " col_types=None # Specify type of features\n", " )" ] }, { "cell_type": "markdown", "id": "8367bb6f", "metadata": {}, "source": [ "\n", "### Configure prediction explanation\n", "\n", "#### Include the effects of feature interactions (with Shapley feature importance)\n", "\n", "The Oracle AutoMLx solution allows one to change the effect of feature interactions. This can be done through the `tabulator_type` argument of both global and local importance methods.\n", "\n", "`tabulator_type` can be set to one of the following options:\n", "\n", "- `permutation`: This value is the default method in the MLExplainer object, with the behaviour described above\n", "\n", "- `shapley`: Feature importance is computed using the popular game-theoretic Shapley value method. Technically, this measures the importance of each feature while including the effect of all feature interactions. As a result, it runs in exponential time with respect to the number of features in the dataset. This method also includes the interaction effects of the other features, which means that if two features contain duplicate information, they will be less important. Note that the interpretation of this method's result is a bit different from the permutation method's result. An interested reader may find this a good source for learning more about it.\n", "\n", "- `kernel_shap`: Feature importance attributions will be calculated using an approximation of the Shapley value method. It typically provides relatively high-quality approximations; however, it currently does not provide confidence intervals.\n", "\n", "- `shap_pi`: Feature importance attributions will be computed using an approximation of the Shapley value method. It runs in linear time, but may miss the effect of interactions between some features, which may therefore produce lower-quality results. Most likely, you will notice that this method yields larger confidence intervals than the other two.\n", "\n", "**Summary: `permutation` can miss important features for AD. Exact SHAP (`shapley`) doesn't, but it is exponential. `kernel_shap` is an approximation of exact SHAP method that does not provide confidence intervals. `shap_pi` is linear, thus faster than exact SHAP and kernel_shap but unstable and very random leads to lower quality approximations.**" ] }, { "cell_type": "markdown", "id": "4a079e5f", "metadata": {}, "source": [ "\n", "##### Local feature importance with kernel_shap" ] }, { "cell_type": "code", "execution_count": 29, "id": "49b91dae", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:01.094772Z", "iopub.status.busy": "2025-05-22T12:38:01.094384Z", "iopub.status.idle": "2025-05-22T12:38:01.173585Z", "shell.execute_reply": "2025-05-22T12:38:01.173011Z" } }, "outputs": [], "source": [ "explainer_sklearn.configure_explain_prediction(tabulator_type=\"kernel_shap\")" ] }, { "cell_type": "markdown", "id": "5a3d79a0", "metadata": {}, "source": [ "\n", "#### Local feature importance using surrogate models (LIME+)\n", "\n", "The Oracle AutoMLx solution allows one to change the type of local explainer effect of feature interactions. This can be done through the `explainer_type` argument of local importance methods.\n", "\n", "`explainer_type` can be set to one of the following options:\n", "\n", "- `perturbation`: This value is the default explainer type in local feature importance. As we showed above, the explanation(s) will be computed by perturbing the features of the indicated data instance(s) and measuring the impact on the model predictions.\n", "\n", "- `surrogate`: The LIME-style explanation(s) will be computed by fitting a surrogate model to the predictions of the original model in a small region around the indicated data instance(s) and measuring the importance of the features to the interpretable surrogate model. The method of surrogate explainer can be set to one of the following options:\n", " - `systematic`: An Oracle-labs-improved version of LIME that uses a systematic sampling and custom sample weighting. (Default)\n", " - `lime`: Local interpretable model-agnostic explanations (LIME) algorithm (https://arxiv.org/pdf/1602.04938)." ] }, { "cell_type": "code", "execution_count": 30, "id": "9b85990c", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:01.175786Z", "iopub.status.busy": "2025-05-22T12:38:01.175407Z", "iopub.status.idle": "2025-05-22T12:38:01.247064Z", "shell.execute_reply": "2025-05-22T12:38:01.246489Z" } }, "outputs": [], "source": [ "explainer_sklearn.configure_explain_prediction(\n", " explainer_type='surrogate',\n", " method='lime'\n", " )" ] }, { "cell_type": "code", "execution_count": 31, "id": "ab2bd15a", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:01.249369Z", "iopub.status.busy": "2025-05-22T12:38:01.248970Z", "iopub.status.idle": "2025-05-22T12:38:01.465037Z", "shell.execute_reply": "2025-05-22T12:38:01.464389Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "negative", "marker": { "color": "#626567" }, "name": "50715=negative", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ -0.006797128048286199, -0.036460920926630905, -0.26588728516479304, -0.870363289968378, -0.8976761267903238 ], "y": [ "Population", "AveOccup", "AveRooms", "Longitude", "Latitude" ] }, { "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "positive", "marker": { "color": "#F80000" }, "name": "50715=positive", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.12075319441496005, 0.3133013693494969, 0.8124265545822025 ], "y": [ "HouseAge", "AveBedrms", "MedInc" ] }, { "marker": { "line": { "color": "rgba(0,0,0,0)", "width": 1 } }, "name": "", "orientation": "h", "showlegend": false, "type": "bar", "width": 0, "x": [ 0.8976761267903238 ], "y": [ " " ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "Population = 2564.0", "x": 0, "xanchor": "right", "xref": "x", "y": 1, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveOccup = 4.9786", "x": 0, "xanchor": "right", "xref": "x", "y": 2, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "HouseAge = 33.0", "x": 0, "xanchor": "left", "xref": "x", "y": 3, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveRooms = 3.2544", "x": 0, "xanchor": "right", "xref": "x", "y": 4, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveBedrms = 1.0194", "x": 0, "xanchor": "left", "xref": "x", "y": 5, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "MedInc = 2.1957", "x": 0, "xanchor": "left", "xref": "x", "y": 6, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Longitude = -118.25", "x": 0, "xanchor": "right", "xref": "x", "y": 7, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Latitude = 34.02", "x": 0, "xanchor": "right", "xref": "x", "y": 8, "yref": "y", "yshift": 12.0 }, { "font": { "color": "#626567", "size": 14 }, "showarrow": false, "text": "⇩ Median Price", "x": 0.15, "xref": "paper", "y": 1.0375, "yref": "paper", "yshift": 40 }, { "font": { "color": "#F80000", "size": 14 }, "showarrow": false, "text": "⇧ Median Price", "x": 0.85, "xref": "paper", "y": 1.0375, "yref": "paper", "yshift": 40 } ], "barmode": "overlay", "height": 398, "margin": { "b": 20, "t": 58 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryarray": [ " ", "Population", "AveOccup", "HouseAge", "AveRooms", "AveBedrms", "MedInc", "Longitude", "Latitude" ], "categoryorder": "array", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "title": { "text": " " }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryarray": [ " ", "Population", "AveOccup", "HouseAge", "AveRooms", "AveBedrms", "MedInc", "Longitude", "Latitude" ], "categoryorder": "array", "gridcolor": "white", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": false, "side": "top", "type": "category", "visible": false, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "index = 0\n", "result_explain_prediction_kernel_shap = explainer_sklearn.explain_prediction(X_train.iloc[index:index+1, :])\n", "result_explain_prediction_kernel_shap[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "740d255c", "metadata": {}, "source": [ "\n", "#### Explain the model or Explain the world\n", "\n", "Oracle AutoMLx solution also provides the `evaluator_type` attribute, which allows one to choose whether to get feature importance attributions that explain exactly which features the model has learned to use (`interventional`), or which features the model or a retrained model could have learned to use (`observational`).\n", "\n", "- `interventional` : The computed feature importances are as faithful to the\n", " model as possible. That is, features that are ignored by\n", " the model will not be considered important. This setting\n", " should be preferred if the primary goal is to learn about\n", " the machine learning model itself. Technically, this\n", " setting is called 'interventional', because the method will\n", " intervene on the data distribution when assessing the\n", " importance of features. The intuition of feature importance attributions computed with this method is that the features are dropped from the dataset and the model is not allowed to retrain.\n", "\n", "- `observational` : The computed feature importances are more faithful to\n", " the relationships that exist in the real world (i.e., relationships\n", " observed in the dataset), even if your specific model did not learn\n", " to use them. For example, when using a permutation tabulator, a feature\n", " that is used by the model will not show a large impact on the model's\n", " performance if there is a second feature that contains near-duplicate\n", " information, because a re-trained model could have learned to use the\n", " other feature instead. (Similarly, for Shapley-based tabulators, a\n", " feature that is ignored by the model may have a non-zero feature\n", " importance if it could have been used by the model to\n", " predict the target.) This setting should be preferred if the\n", " model is merely a means to learn more about the\n", " relationships that exist within the data. Technically, this\n", " setting is called 'observational', because it observes the\n", " relationships in the data without breaking the existing\n", " data distribution." ] }, { "cell_type": "markdown", "id": "e88d6dd6", "metadata": {}, "source": [ "\n", "##### Explain the model with observational evaluator_type" ] }, { "cell_type": "code", "execution_count": 32, "id": "2899e29a", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:01.467572Z", "iopub.status.busy": "2025-05-22T12:38:01.467130Z", "iopub.status.idle": "2025-05-22T12:38:01.535364Z", "shell.execute_reply": "2025-05-22T12:38:01.534825Z" } }, "outputs": [], "source": [ "explainer_sklearn.configure_explain_model(evaluator_type=\"observational\")" ] }, { "cell_type": "code", "execution_count": 33, "id": "2b4541d3", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:01.537375Z", "iopub.status.busy": "2025-05-22T12:38:01.536886Z", "iopub.status.idle": "2025-05-22T12:38:07.412455Z", "shell.execute_reply": "2025-05-22T12:38:07.411882Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ 0.033498822431648145, 0.056101946596850416, 0.14006219311565804, 0.013836244374251433, 0.02266332028218182, 0.0034016922738511375, 0.0001261481945458835, 0.00016155399858291996 ], "arrayminus": [ 0.033498822431648145, 0.05610194659685064, 0.14006219311565837, 0.013836244374251475, 0.02266332028218189, 0.003401692273851148, 0.00012614819454588393, 0.00016155399858292047 ], "type": "data" }, "legendgroup": "None", "marker": { "color": "rgb(248,0,0)" }, "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 1.1430621544132649, 1.061082362474838, 1.000931898474106, 0.08125192241534218, 0.06584921876886078, 0.020538290119533554, 0.0014659586871433872, -9.606520601671554e-05 ], "y": [ "Latitude", "Longitude", "MedInc", "AveRooms", "AveBedrms", "HouseAge", "AveOccup", "Population" ] } ], "layout": { "height": 420, "margin": { "b": 20, "t": 80 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "The Features' Impact on the Model's r2 Score", "x": 0.5 }, "xaxis": { "categoryorder": "total ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "total ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_model_kernel_shap = explainer_sklearn.explain_model()\n", "result_explain_model_kernel_shap.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "4429dc1c", "metadata": {}, "source": [ "\n", "##### Explain predictions with observational evaluator_type" ] }, { "cell_type": "code", "execution_count": 34, "id": "c7fef4a9", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:07.414468Z", "iopub.status.busy": "2025-05-22T12:38:07.414073Z", "iopub.status.idle": "2025-05-22T12:38:07.488822Z", "shell.execute_reply": "2025-05-22T12:38:07.488131Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:38:07,469] [automlx.mlx] AutoMLx got an unexpected keyword argument 'evaluator_type', which is not a configurable attribute of any of ['TabularLocalSurrogateExplainer', 'RandomSampleGeneration', 'DistanceWeighting', 'SurrogateHandler'].\n", "Valid options are:\n", "{'TabularLocalSurrogateExplainer': ['method', 'exp_sorting', 'num_features', 'scale_weight'], 'RandomSampleGeneration': ['discretizer', 'num_samples', 'sample_around_instance'], 'DistanceWeighting': ['kernel_width', 'distance_metric', 'dataset_type'], 'SurrogateHandler': ['model', 'feature_selection', 'force_fit_sample']}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-05-22 05:38:07,469] [automlx.mlx] AutoMLx got an unexpected keyword argument 'tabulator_type', which is not a configurable attribute of any of ['TabularLocalSurrogateExplainer', 'RandomSampleGeneration', 'DistanceWeighting', 'SurrogateHandler'].\n", "Valid options are:\n", "{'TabularLocalSurrogateExplainer': ['method', 'exp_sorting', 'num_features', 'scale_weight'], 'RandomSampleGeneration': ['discretizer', 'num_samples', 'sample_around_instance'], 'DistanceWeighting': ['kernel_width', 'distance_metric', 'dataset_type'], 'SurrogateHandler': ['model', 'feature_selection', 'force_fit_sample']}\n" ] } ], "source": [ "explainer_sklearn.configure_explain_prediction(evaluator_type=\"observational\",\n", " tabulator_type=\"permutation\")" ] }, { "cell_type": "code", "execution_count": 35, "id": "b4e99da1", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:07.491152Z", "iopub.status.busy": "2025-05-22T12:38:07.490593Z", "iopub.status.idle": "2025-05-22T12:38:07.709113Z", "shell.execute_reply": "2025-05-22T12:38:07.708470Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "negative", "marker": { "color": "#626567" }, "name": "84915=negative", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ -0.006797128048286199, -0.036460920926630905, -0.26588728516479304, -0.870363289968378, -0.8976761267903238 ], "y": [ "Population", "AveOccup", "AveRooms", "Longitude", "Latitude" ] }, { "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "positive", "marker": { "color": "#F80000" }, "name": "84915=positive", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.12075319441496005, 0.3133013693494969, 0.8124265545822025 ], "y": [ "HouseAge", "AveBedrms", "MedInc" ] }, { "marker": { "line": { "color": "rgba(0,0,0,0)", "width": 1 } }, "name": "", "orientation": "h", "showlegend": false, "type": "bar", "width": 0, "x": [ 0.8976761267903238 ], "y": [ " " ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "Population = 2564.0", "x": 0, "xanchor": "right", "xref": "x", "y": 1, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveOccup = 4.9786", "x": 0, "xanchor": "right", "xref": "x", "y": 2, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "HouseAge = 33.0", "x": 0, "xanchor": "left", "xref": "x", "y": 3, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveRooms = 3.2544", "x": 0, "xanchor": "right", "xref": "x", "y": 4, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveBedrms = 1.0194", "x": 0, "xanchor": "left", "xref": "x", "y": 5, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "MedInc = 2.1957", "x": 0, "xanchor": "left", "xref": "x", "y": 6, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Longitude = -118.25", "x": 0, "xanchor": "right", "xref": "x", "y": 7, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Latitude = 34.02", "x": 0, "xanchor": "right", "xref": "x", "y": 8, "yref": "y", "yshift": 12.0 }, { "font": { "color": "#626567", "size": 14 }, "showarrow": false, "text": "⇩ Median Price", "x": 0.15, "xref": "paper", "y": 1.0375, "yref": "paper", "yshift": 40 }, { "font": { "color": "#F80000", "size": 14 }, "showarrow": false, "text": "⇧ Median Price", "x": 0.85, "xref": "paper", "y": 1.0375, "yref": "paper", "yshift": 40 } ], "barmode": "overlay", "height": 398, "margin": { "b": 20, "t": 58 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryarray": [ " ", "Population", "AveOccup", "HouseAge", "AveRooms", "AveBedrms", "MedInc", "Longitude", "Latitude" ], "categoryorder": "array", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "title": { "text": " " }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryarray": [ " ", "Population", "AveOccup", "HouseAge", "AveRooms", "AveBedrms", "MedInc", "Longitude", "Latitude" ], "categoryorder": "array", "gridcolor": "white", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": false, "side": "top", "type": "category", "visible": false, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "index = 0\n", "result_explain_prediction_kernel_shap = explainer_sklearn.explain_prediction(X_train.iloc[index:index+1, :])\n", "result_explain_prediction_kernel_shap[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "00536c84", "metadata": {}, "source": [ "\n", "### Advanced Feature Dependence Options (ALE)\n", "\n", "We now show how to use an alternative method for computing feature dependence: accumulated local effects (ALE). ALE explanations are sometimes considered a better alternative to PDPs when features are correlated, because it does not evaluate the model outside of its training distribution in these cases. For more information, see https://christophm.github.io/interpretable-ml-book/ale.html.\n", "\n", "Given a dataset, an ALE displays the average change in the output of the model, accumulated over multiple small changes in one or two features, when all other features are held fixed. By default, the ALE explanations are centered around 0, and thus, unlike PDPs, ALEs show the change in the prediction measured by changing a given feature, rather than the average model's prediction for a particular feature value." ] }, { "cell_type": "markdown", "id": "8f46dbfa", "metadata": {}, "source": [ "We can compute ALEs for two features (At least one is numerical). The plot below is the ALE plot for the `Latitude` and `Longitude` features. The X-axis still shows the values of `Latitude`, while there is multiple lines, one for each value of the feature `Longitude`.\n", "\n", "The histogram displays the joint distribution of the two features." ] }, { "cell_type": "code", "execution_count": 36, "id": "f4ed9b40", "metadata": { "execution": { "iopub.execute_input": "2025-05-22T12:38:07.713589Z", "iopub.status.busy": "2025-05-22T12:38:07.713149Z", "iopub.status.idle": "2025-05-22T12:38:08.361314Z", "shell.execute_reply": "2025-05-22T12:38:08.360532Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "toself", "fillcolor": "rgb(13.0, 8.0, 135.0)", "legendgroup": "-124.18", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -1.92932529323826e-15, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -1.92932529323826e-15 ], "yaxis": "y2" }, { "legendgroup": "-124.18", "line": { "color": "rgb(13.0, 8.0, 135.0)" }, "mode": "lines+markers", "name": "Longitude=-124.18", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -1.92932529323826e-15, -2.154330492895625e-15, -1.4611095154984093e-15, -7.05504586086512e-16, -5.330632125808431e-16, 5.04342301116281e-17, 1.3774064384278486e-16, 1.0400282750371593e-16, -4.307601195217025e-16, -7.779249532875186e-16, -1.5691223005160059e-16, -2.4711517865885998e-17, -6.926397472704855e-17, 1.2473289062850504e-16, 6.51312932296065e-17, 1.4923225545657874e-16, 3.8459140151959375e-16, 6.085481153634215e-16 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(111.82043343653275, 1.0990712074303293, 167.5541795665635)", "legendgroup": "-122.08", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -1.7716288638156129e-15, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -1.7716288638156129e-15 ], "yaxis": "y2" }, { "legendgroup": "-122.08", "line": { "color": "rgb(111.82043343653275, 1.0990712074303293, 167.5541795665635)" }, "mode": "lines+markers", "name": "Longitude=-122.08", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -1.7716288638156129e-15, -1.996634063472978e-15, -1.3034130860757622e-15, -5.478081566638649e-16, -3.7536678315819597e-16, 2.0813065953427503e-16, 2.954370732654318e-16, 2.6169925692636286e-16, -2.7306369009905536e-16, -6.202285238648715e-16, 7.841993710463456e-19, 1.3298491155676093e-16, 8.843245469559839e-17, 1.7023836177324146e-16, 1.1063676437434293e-16, 1.9473772660131516e-16, 1.6364334675429277e-16, 1.5463522920136605e-16 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(151.3188854489168, 20.547987616099274, 159.11455108359124)", "legendgroup": "-121.07", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -1.2821806010529717e-15, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -1.2821806010529717e-15 ], "yaxis": "y2" }, { "legendgroup": "-121.07", "line": { "color": "rgb(151.3188854489168, 20.547987616099274, 159.11455108359124)" }, "mode": "lines+markers", "name": "Longitude=-121.07", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -1.2821806010529717e-15, -1.5071858007103368e-15, -8.13964823313121e-16, -3.167390705412602e-16, -1.442976970355913e-16, 4.391997456568799e-16, 5.265061593880367e-16, 4.927683430489677e-16, -4.1994603976450685e-17, -3.4082319721436895e-16, 2.8018952602154924e-16, 2.286291858555138e-16, 4.1205835544144236e-16, -9.825468394766499e-17, 3.684716710683255e-16, 3.8089370768572496e-17, -6.899888456081347e-17, -2.0719659043375805e-16 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(222.17647058823522, 96.99999999999987, 99.94117647058833)", "legendgroup": "-118.48", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -1.2828207011784504e-15, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -1.2828207011784504e-15 ], "yaxis": "y2" }, { "legendgroup": "-118.48", "line": { "color": "rgb(222.17647058823522, 96.99999999999987, 99.94117647058833)" }, "mode": "lines+markers", "name": "Longitude=-118.48", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -1.2828207011784504e-15, -1.5078259008358155e-15, -8.146049234385997e-16, -5.75758347306775e-16, -4.033169738011065e-16, 1.8018046889136448e-16, 2.6748688262252124e-16, 2.337490662834527e-16, -3.010138807419659e-16, -5.51506233451986e-16, 6.950648978393224e-17, 5.85485916613308e-17, 6.867465496430793e-17, 8.468956799008997e-17, 5.514159230060804e-16, 1.0569662530123275e-15, 1.5958259392830328e-15, 1.5722319004681688e-15 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(227.83281733746134, 106.15789473684217, 93.47678018575846)", "legendgroup": "-118.19", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -5.136686439381257e-16, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -5.136686439381257e-16 ], "yaxis": "y2" }, { "legendgroup": "-118.19", "line": { "color": "rgb(227.83281733746134, 106.15789473684217, 93.47678018575846)" }, "mode": "lines+markers", "name": "Longitude=-118.19", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -5.136686439381257e-16, -7.386738435954909e-16, -4.5452866198275234e-17, -6.498546670648671e-17, -1.6374361066650534e-16, -7.984652905535459e-17, -1.917577047896465e-16, -4.862451489305867e-16, 1.6322979697749456e-16, 5.336000289122226e-16, -9.770154551321597e-16, -3.1196015605350616e-15, -1.7320330212434088e-14, -3.151517001461031e-14, -3.1048443659594314e-14, -2.970696069928207e-14, -2.852215307141128e-14, -2.843114344316806e-14 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(237.2600619195046, 121.70588235294106, 82.53560371517035)", "legendgroup": "-117.7", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ 2.370907643877283e-16, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, 2.370907643877283e-16 ], "yaxis": "y2" }, { "legendgroup": "-117.7", "line": { "color": "rgb(237.2600619195046, 121.70588235294106, 82.53560371517035)" }, "mode": "lines+markers", "name": "Longitude=-117.7", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ 2.370907643877283e-16, 1.2085564730363176e-17, -2.6134509390171343e-17, 2.136522366389037e-17, 1.4290013350336914e-17, -5.739479253521205e-16, -4.884861189308297e-16, -1.2506362255315842e-16, -3.9929423313320667e-16, 1.1553138917350206e-15, -3.1185233424875295e-15, -8.0243311980686e-15, -8.01420513476562e-15, -7.998190221739837e-15, 6.6793908484781545e-15, 8.856806439096404e-15, 1.0687562008567291e-14, 1.0893175303868587e-14 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(240, 249, 33)", "legendgroup": "-114.49", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -9.122727340128286e-17, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -9.122727340128286e-17 ], "yaxis": "y2" }, { "legendgroup": "-114.49", "line": { "color": "rgb(240, 249, 33)" }, "mode": "lines+markers", "name": "Longitude=-114.49", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -9.122727340128286e-17, 1.3377792625608227e-16, -2.855441611949148e-17, -5.900913137169444e-16, -3.1294942972645794e-16, -5.459160005488653e-16, -5.808851662903026e-16, -2.1746266991263178e-16, -3.183901742097294e-16, 2.657303422178699e-15, -7.283553923437254e-16, -4.74598482822467e-15, 9.474995950280312e-15, 2.3701865578508098e-14, 5.25903013639281e-14, 5.5603649584852347e-14, 5.808035309592332e-14, 5.84005700582827e-14 ], "yaxis": "y2" }, { "legendgroup": "-123.899845", "marker": { "color": "rgb(27.831735294118037, 6.69897058823526, 141.24494117647075)", "line": { "width": 0 } }, "name": "Longitude=-123.9", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 39.121700000000004, 39.3071, 39.4925, 40.048700000000004, 40.234100000000005, 40.4195, 40.6049, 40.7903, 40.9757, 41.7173 ], "xaxis": "x", "y": [ 0.0004, 0.0004, 0.0008, 0.0002, 0.0002, 0.0004, 0.0004, 0.0026, 0.001, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-123.325", "marker": { "color": "rgb(58.2647058823531, 4.029411764705869, 154.05882352941182)", "line": { "width": 0 } }, "name": "Longitude=-123.325", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925, 39.6779, 40.234100000000005, 40.4195 ], "xaxis": "x", "y": [ 0.0002, 0.0002, 0.0008, 0.0004, 0.0006, 0.0004, 0.001, 0.0006, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-122.755", "marker": { "color": "rgb(84.23529411764746, 2.35294117647057, 161.91176470588243)", "line": { "width": 0 } }, "name": "Longitude=-122.755", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.6779, 39.8633, 40.9757, 41.5319, 41.7173 ], "xaxis": "x", "y": [ 0.0002, 0.0038, 0.0088, 0.0056, 0.003, 0.0122, 0.0026, 0.0008, 0.0032, 0.0014, 0.0006, 0.0004, 0.0002, 0.0002, 0.0004, 0.0004 ], "yaxis": "y" }, { "legendgroup": "-122.185", "marker": { "color": "rgb(107.52941176470597, 1.2941176470588196, 166.6764705882353)", "line": { "width": 0 } }, "name": "Longitude=-122.185", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 39.121700000000004, 39.3071, 39.4925, 39.6779, 39.8633, 40.048700000000004, 40.234100000000005, 40.4195, 40.6049, 40.9757, 41.161100000000005, 41.3465, 41.7173 ], "xaxis": "x", "y": [ 0.0008, 0.001, 0.0034, 0.0032, 0.0218, 0.0206, 0.0302, 0.0496, 0.0236, 0.0054, 0.0044, 0.0002, 0.0004, 0.0012, 0.0008, 0.0006, 0.0004, 0.0004, 0.0006, 0.0006, 0.0014, 0.002, 0.0004, 0.0002, 0.0002, 0.0004 ], "yaxis": "y" }, { "legendgroup": "-121.61500000000001", "marker": { "color": "rgb(130.05882352941157, 9.411764705882247, 164.17647058823533)", "line": { "width": 0 } }, "name": "Longitude=-121.615", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925, 39.6779, 39.8633, 40.048700000000004, 40.6049, 40.7903, 41.5319 ], "xaxis": "x", "y": [ 0.0012, 0.005, 0.0032, 0.0022, 0.0126, 0.0034, 0.0034, 0.0012, 0.0028, 0.0004, 0.0012, 0.0222, 0.0058, 0.0002, 0.004, 0.0014, 0.0022, 0.0036, 0.0004, 0.0006, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-121.045", "marker": { "color": "rgb(152.29411764705887, 21.058823529411793, 158.88235294117646)", "line": { "width": 0 } }, "name": "Longitude=-121.045", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 35.2283, 35.4137, 35.5991, 36.1553, 36.3407, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.8633, 40.048700000000004, 40.234100000000005, 40.4195, 40.7903 ], "xaxis": "x", "y": [ 0.0006, 0.0008, 0.0002, 0.0004, 0.0006, 0.0002, 0.0004, 0.0044, 0.0092, 0.0062, 0.006, 0.0028, 0.0006, 0.003, 0.0074, 0.0032, 0.002, 0.0016, 0.0006, 0.0004, 0.0006, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-120.475", "marker": { "color": "rgb(170.558823529412, 37.11764705882376, 147.41176470588218)", "line": { "width": 0 } }, "name": "Longitude=-120.475", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.6721, 34.8575, 35.0429, 35.2283, 35.5991, 35.7845, 36.1553, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.8239, 38.0093, 38.1947, 38.3801, 38.7509, 39.121700000000004, 39.3071, 39.4925, 39.8633, 40.234100000000005, 40.4195, 40.6049 ], "xaxis": "x", "y": [ 0.0022, 0.003, 0.0052, 0.002, 0.0012, 0.0002, 0.0008, 0.0004, 0.0002, 0.001, 0.0042, 0.0006, 0.0006, 0.0022, 0.0004, 0.002, 0.0012, 0.0002, 0.0002, 0.0004, 0.0008, 0.0004, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-119.905", "marker": { "color": "rgb(188.0294117647059, 54.05882352941178, 134.70588235294116)", "line": { "width": 0 } }, "name": "Longitude=-119.905", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.3013, 34.4867, 34.6721, 35.2283, 35.9699, 36.1553, 36.3407, 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.4531, 37.6385, 38.1947, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925 ], "xaxis": "x", "y": [ 0.0004, 0.0058, 0.001, 0.0004, 0.0004, 0.0002, 0.003, 0.0014, 0.0138, 0.0068, 0.0004, 0.0006, 0.0002, 0.0004, 0.0004, 0.003, 0.0006, 0.0004, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-119.33500000000001", "marker": { "color": "rgb(202.49999999999983, 70.99999999999979, 120.50000000000017)", "line": { "width": 0 } }, "name": "Longitude=-119.335", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.115899999999996, 34.3013, 34.4867, 34.6721, 34.8575, 35.0429, 35.2283, 35.4137, 35.5991, 35.7845, 35.9699, 36.1553, 36.3407, 36.5261, 36.7115, 37.082300000000004, 37.4531, 38.5655 ], "xaxis": "x", "y": [ 0.004, 0.0076, 0.0006, 0.0002, 0.0002, 0.0002, 0.001, 0.0018, 0.0002, 0.0012, 0.0006, 0.0032, 0.005, 0.0032, 0.0024, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-118.765", "marker": { "color": "rgb(216.6176470588235, 87.99999999999996, 106.29411764705885)", "line": { "width": 0 } }, "name": "Longitude=-118.765", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.8575, 35.0429, 35.2283, 35.4137, 35.7845, 35.9699, 36.1553, 36.3407, 36.5261, 37.4531, 37.6385 ], "xaxis": "x", "y": [ 0.0018, 0.016, 0.013, 0.0004, 0.0002, 0.0002, 0.0014, 0.007, 0.0002, 0.0006, 0.0006, 0.0004, 0.0002, 0.0004, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-118.195", "marker": { "color": "rgb(227.7352941176472, 106.00000000000021, 93.5882352941175)", "line": { "width": 0 } }, "name": "Longitude=-118.195", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.6721, 34.8575, 35.0429, 35.5991, 37.2677, 37.4531 ], "xaxis": "x", "y": [ 0.0002, 0.0044, 0.0432, 0.1144, 0.1092, 0.0134, 0.0006, 0.0028, 0.0002, 0.0012, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-117.625", "marker": { "color": "rgb(238.23529411764704, 124.35294117647054, 80.79411764705885)", "line": { "width": 0 } }, "name": "Longitude=-117.625", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.0035, 33.1889, 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.4867, 34.6721, 35.0429, 35.5991, 36.1553 ], "xaxis": "x", "y": [ 0.0004, 0.0012, 0.001, 0.016, 0.0178, 0.0232, 0.0212, 0.0002, 0.0002, 0.0006, 0.001, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-117.055", "marker": { "color": "rgb(245.6470588235293, 144.4705882352938, 67.55882352941197)", "line": { "width": 0 } }, "name": "Longitude=-117.055", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.628065, 32.8181, 33.0035, 33.1889, 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.8575 ], "xaxis": "x", "y": [ 0.0198, 0.0434, 0.0114, 0.0096, 0.0006, 0.0012, 0.0032, 0.0056, 0.0108, 0.0016, 0.0016, 0.0008 ], "yaxis": "y" }, { "legendgroup": "-116.485", "marker": { "color": "rgb(251.2941176470588, 165.3235294117646, 55.05882352941181)", "line": { "width": 0 } }, "name": "Longitude=-116.485", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.0035, 33.5597, 33.7451, 33.9305, 34.115899999999996 ], "xaxis": "x", "y": [ 0.0004, 0.0002, 0.0006, 0.0036, 0.0022, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-115.91499999999999", "marker": { "color": "rgb(252.3529411764706, 188.08823529411785, 44.47058823529402)", "line": { "width": 0 } }, "name": "Longitude=-115.915", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.3743, 33.5597, 33.7451, 34.4867, 35.5991 ], "xaxis": "x", "y": [ 0.0002, 0.0006, 0.0006, 0.0004, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-115.345", "marker": { "color": "rgb(250.32352941176475, 211.67647058823516, 36.97058823529413)", "line": { "width": 0 } }, "name": "Longitude=-115.345", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.628065, 32.8181, 33.0035, 33.1889 ], "xaxis": "x", "y": [ 0.0002, 0.003, 0.0008, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-114.775", "marker": { "color": "rgb(243.44117647058837, 236.5588235294113, 34.32352941176475)", "line": { "width": 0 } }, "name": "Longitude=-114.775", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.0035, 33.5597, 33.9305, 34.8575 ], "xaxis": "x", "y": [ 0.0004, 0.0002, 0.0004, 0.0004, 0.0004 ], "yaxis": "y" } ], "layout": { "barmode": "stack", "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Accumulated Local Effects (ALE)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ 32.076499999999996, 42.273500000000006 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Latitude" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.16947000000000004 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ -3.601095701825496e-14, 6.289635706192736e-14 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "ALE of Median Price" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "explainer_sklearn.configure_explain_feature_dependence(explanation_type='ale')\n", "result_explain_feature_dependence_default = explainer_sklearn.explain_feature_dependence(['Latitude', 'Longitude'])\n", "result_explain_feature_dependence_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "8ac75e5e", "metadata": {}, "source": [ "\n", "## References\n", "* Oracle AutoML http://www.vldb.org/pvldb/vol13/p3166-yakovlev.pdf\n", "* scikit-learn https://scikit-learn.org/stable/\n", "* Interpretable Machine Learning https://christophm.github.io/interpretable-ml-book/\n", "* LIME https://arxiv.org/pdf/1602.04938" ] } ], "metadata": { "jupytext": { "formats": "ipynb,py:percent" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "003397d4c34145deb350a7721c9b02c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f370d9c04154fb19619d75b8766fe43", "placeholder": "​", "style": "IPY_MODEL_7c0e7cf05be646f9b0ce4f95cb5a51d2", "tabbable": null, "tooltip": null, "value": "

Model Predictions

" } }, "03a86417ffec416590bdfae3dbc89101": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5e7c7131d67246118d56d14f79d64f97", "placeholder": "​", "style": "IPY_MODEL_4633a87d54894a68a2d640d06be1f600", "tabbable": null, "tooltip": null, "value": "\n

Row Selection

\n Select a sample between 0 and 6191\n " } }, "050bbd771a32443687f66c63cd1af11e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "Latitude", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_4b5ae7e394964973a5ef2df0e1168219", "step": null, "style": "IPY_MODEL_ee1dd63efc314d85aa4e80e1e05f1479", "tabbable": null, "tooltip": null, "value": 34.06 } }, "05cd1e2dfc944adcb8af767ed52e2f47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "06a25c0e19a04bd7a3dc6860c3431b53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "HouseAge", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_2f790f2a24bf48c1a09c88e718e4da61", "step": null, "style": "IPY_MODEL_3e67d5f1d74e46d697b3df4d123e7eca", "tabbable": null, "tooltip": null, "value": 31.0 } }, "07d45020aeae4fb5a57e1393d99828f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "08cbce7ab50a4ae883391592bed4585d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "08efed10453a43789d988ee2d030eb54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "0cc0dd2cb7784d059430126f64805b1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1025px" } }, "0ff75f16656a40f58285052a1fc86692": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "11ebc8e9455e424bbb9e46ebdd904bee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "1244e9475e7d4caf83dbb1eae4412314": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "12ef6d7cb0af4083ad8f9dea6842e082": { "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 0, 9, 8, 2, 6, 5, 9, 1, 3, 7, 6, 8, 7, 5, 0, 7, 9, 8, 1, 3, 5, 6, 6, 9, 8, 5, 7, 8, 6, 9, 5, 1, 2, 9, 8, 7, 3, 3, 1, 0, 4, 7, 1, 0, 2, 3, 4, 0, 5, 1, 6, 2, 4, 0, 3, 2, 4, 4, 4, 2 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Target", "marker": { "color": "rgb(0, 128, 128)", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Target", "orientation": "h", "showlegend": false, "type": "box", "uid": "01e0d16c-37c3-40c7-b435-bcea4851dbc9", "x": [ -1.7332424462564444, -0.9957186522981435, -0.995046806238704, -0.9927068596089069, -0.7673108432872995, -0.7593404520235592, -0.6241262721108424, -0.5836239596762152, -0.4202345626881463, -0.42016815625915926, -0.3499424777519539, -0.33160251286531794, -0.30852759862771906, -0.2725545856663707, -0.24338242465354074, -0.22117066932569115, -0.20687461107034696, -0.1981411646138443, -0.19049303301073747, -0.17352986019268232, -0.10905265070559164, -0.10596080312402341, -0.10254591784169018, -0.10116200212764499, -0.09913561280237926, -0.0963034994097251, -0.04663295767729867, -0.0414326838831498, -0.04052095568106928, -0.03483002037638348, -0.023486540463186593, -0.02321458557496913, -0.01156467377176755, 0.007627657559850497, 0.011620101237282743, 0.0503360537679812, 0.05517949170981251, 0.07869332446775525, 0.09558068379643876, 0.1068831738279108, 0.10898040284280068, 0.11328349690035076, 0.11700279599340879, 0.13481949230239365, 0.1621191512758195, 0.17018922509848794, 0.190777096053542, 0.19951832154471946, 0.2840652704002901, 0.3283830725437831, 0.46928186867493876, 0.5141282008176882, 0.7422184630641682, 0.7651047103517964, 0.7823277245443239, 0.8966226736663178, 0.9252594853880651, 0.9533733003518736, 1.339792223137213, 1.45306671942739 ], "xaxis": "x", "y": [ "Longitude", "Latitude", "Longitude", "Latitude", "Latitude", "Longitude", "Longitude", "Longitude", "Latitude", "Longitude", "MedInc", "Latitude", "AveOccup", "AveOccup", "MedInc", "MedInc", "AveOccup", "MedInc", "AveRooms", "AveRooms", "MedInc", "AveRooms", "HouseAge", "MedInc", "AveRooms", "AveRooms", "HouseAge", "AveOccup", "AveOccup", "HouseAge", "HouseAge", "MedInc", "AveOccup", "AveRooms", "HouseAge", "AveRooms", "HouseAge", "AveOccup", "AveOccup", "AveOccup", "AveOccup", "Latitude", "HouseAge", "HouseAge", "HouseAge", "MedInc", "HouseAge", "AveRooms", "Latitude", "Latitude", "Longitude", "AveRooms", "AveRooms", "Latitude", "Longitude", "Longitude", "Longitude", "Latitude", "MedInc", "MedInc" ], "yaxis": "y" } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 1, "_last_trace_edit_id": 1, "_layout": { "annotations": [ { "font": { "size": 16 }, "showarrow": false, "text": "Predicted Target = \"Target\"", "textangle": 90, "x": 0.98, "xanchor": "left", "xref": "paper", "y": 0.55, "yanchor": "middle", "yref": "paper" } ], "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryarray": [ "HouseAge", "AveOccup", "AveRooms", "MedInc", "Latitude", "Longitude" ], "categoryorder": "array", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x", "mirror": true, "scaleanchor": "x", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Attribution" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryarray": [ "HouseAge", "AveOccup", "AveRooms", "MedInc", "Latitude", "Longitude" ], "categoryorder": "array", "domain": [ 0.1, 1.0 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y", "mirror": true, "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Feature" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": null, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "19aded706b1143168d630fd0b38bd14e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_84f472aba4f840d79007f2bb0082c00c", "IPY_MODEL_8c9a166b8ed5414abe08b3218a039e68", "IPY_MODEL_4cde4b206c774f2f83ac22968ef7f576", "IPY_MODEL_576cba6b37ab40c49b73adfc3551a8e6", "IPY_MODEL_d75698169b66465db2c9e87df6c6ee7b" ], "layout": "IPY_MODEL_1d6b08ad792d4da7848bdafd21806148", "tabbable": null, "tooltip": null } }, "1b5b793d32bd4045ae51d3ccdbdf711b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_8543ad37f4cf4254a89fe1de7a6b5890", "IPY_MODEL_cdb53b3bdfa14f58a2b5a81b4cfc9b09" ], "layout": "IPY_MODEL_4f1df61953374b3497e257f1d357f960", "tabbable": null, "tooltip": null } }, "1d6b08ad792d4da7848bdafd21806148": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "15px 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1f370d9c04154fb19619d75b8766fe43": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2af7ee35067f49cabd74c78922d9cf28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_91298673ac6345f0850a4b574c9c90f9", "IPY_MODEL_7371c6191d044dd1a318eb2ddbb925c5" ], "layout": "IPY_MODEL_7242dd7b82c44be8b2b302c5fe2f7d9f", "tabbable": null, "tooltip": null } }, "2e14889ae36148818ece615acd06a750": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "AveBedrms", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_f6b0aff72ab64cda9170ae8634979bd3", "step": null, "style": "IPY_MODEL_d95c699fd2154b6791b7b72acc46b780", "tabbable": null, "tooltip": null, "value": 1.0916414904330312 } }, "2f790f2a24bf48c1a09c88e718e4da61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2f99219766e1464092fcef5eef5c9f27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "30a9f834b167497fb8f6a6deb66ad688": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "33bc315d590440cfbfba4071de5ab002": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "" } }, "39b63a9621dd4517996476e6a6eb35bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5f5bc283beb142dfb23120df11e1f03f", "placeholder": "​", "style": "IPY_MODEL_b7fce010583a48b383966629e7656478", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 Prediction (True value: 3.6)
Original Sample2.8988
Modified Sample2.8988
\n" } }, "3cf2dcedb6f345ff9743d1e3499983b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "3d05e47d85b64618ab8d326a577afc38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1100px" } }, "3e3add44c7a047c2aaebf0fb2cf718d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_f0c3b22f763946ef8dcc372a33880ab9", "IPY_MODEL_f47e2a9b03d54f019b62df72b4abf0a4", "IPY_MODEL_19aded706b1143168d630fd0b38bd14e" ], "layout": "IPY_MODEL_05cd1e2dfc944adcb8af767ed52e2f47", "tabbable": null, "tooltip": null } }, "3e67d5f1d74e46d697b3df4d123e7eca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "44b05de3262c476eabc1df735064ac01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0cc0dd2cb7784d059430126f64805b1c", "placeholder": "​", "style": "IPY_MODEL_e03f80e18dd64113b51ebca78551a235", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 MedIncHouseAgeAveRoomsAveBedrmsPopulationAveOccupLatitudeLongitude
Original Sample2.027831.02.84692849949647541.09164149043303123107.03.128902316213494634.06-118.31
Modified Sample2.027831.02.84692849949647541.09164149043303123107.03.128902316213494634.06-118.31
\n" } }, "4542bbff2bdc44e9b5995acf9e2057a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5b76707227f543388dab6df14f87ad39", "placeholder": "​", "style": "IPY_MODEL_4bedcd344c43482e961a2c423c03aa16", "tabbable": null, "tooltip": null, "value": "" } }, "4633a87d54894a68a2d640d06be1f600": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "470d0c93610f4e5c8bb3c3b0a6302d87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "48ef8c9a964d454ebfaab1586f2faa63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4aca6e4a914b4290966c6791d9f4b054": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4b5ae7e394964973a5ef2df0e1168219": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4bedcd344c43482e961a2c423c03aa16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "4cde4b206c774f2f83ac22968ef7f576": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "scatter", "box" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Plot Type", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_ca390662bfb0403586106743831935ec", "style": "IPY_MODEL_90ac553e8e9043e0b041712d623a43db", "tabbable": null, "tooltip": null } }, "4ee63cbc9bff4d318218821691eba6f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "success", "description": "Run Inference", "disabled": false, "icon": "", "layout": "IPY_MODEL_d4ce7830d3bf47c8b10a46db7cefc0ce", "style": "IPY_MODEL_a4a728ddd83a46d6a048f424dea9ff68", "tabbable": null, "tooltip": "Runs inference on the new sample" } }, "4f1df61953374b3497e257f1d357f960": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4fe32e9de69e4c34a0b9eb6c825d6c3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "518ec7738de24d6db66dce70aa43dffe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "534e653d051d4cadaf9c83110749b002": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "576cba6b37ab40c49b73adfc3551a8e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "None", "quartile", "decile", "percentile" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Binning method", "description_allow_html": false, "disabled": true, "index": 0, "layout": "IPY_MODEL_3cf2dcedb6f345ff9743d1e3499983b7", "style": "IPY_MODEL_470d0c93610f4e5c8bb3c3b0a6302d87", "tabbable": null, "tooltip": null } }, "58fdd4f8b6644b0db8f200f451530149": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5989a98d51954f919bd2229179d1206b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "5b76707227f543388dab6df14f87ad39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5e7c7131d67246118d56d14f79d64f97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5f5bc283beb142dfb23120df11e1f03f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "61f3ad90cb9448ff9a1554451dfb739e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "64066460a56b4b1c91f8eb0ffd4f672a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9b6a69bbb18e4d33a7ba8d5f2c6238d5", "placeholder": "​", "style": "IPY_MODEL_a602ba2f90a444faa3ddd189ec1aba6e", "tabbable": null, "tooltip": null, "value": "

Sample Values

" } }, "64f618eeadce48cb8171f87d851df300": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 18px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "689bae5870334f86bcd43fe43d06d0f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6bf5b3dde9dc47b7ade737286b92e913": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "7242dd7b82c44be8b2b302c5fe2f7d9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": "flex-start", "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7371c6191d044dd1a318eb2ddbb925c5": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bec65571441d4fddb4ecb388c298a7a8", "msg_id": "", "outputs": [ { "data": { "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
MedIncHouseAgeAveRoomsAveBedrmsPopulationAveOccupLatitudeLongitude
03.190611.05.8776671.0995732012.02.86202033.22-116.90
14.072718.03.9578451.0796252276.02.66510533.90-118.36
27.175452.07.4294871.051282779.02.49679537.90-122.28
34.956233.04.6911961.0197111922.02.52562437.34-121.98
47.726132.07.0683111.0796961304.02.47438334.47-119.70
53.392939.04.2740111.0310731227.03.46610233.79-118.27
61.389738.03.5522391.074627191.02.85074636.61-121.85
71.777838.03.3792491.0107332087.03.73345333.95-118.21
83.152823.05.6529851.0867542920.02.72388134.88-116.99
93.636910.05.6465651.0450384611.03.51984735.30-119.02
\n
", "text/plain": " MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \\\n0 3.1906 11.0 5.877667 1.099573 2012.0 2.862020 33.22 \n1 4.0727 18.0 3.957845 1.079625 2276.0 2.665105 33.90 \n2 7.1754 52.0 7.429487 1.051282 779.0 2.496795 37.90 \n3 4.9562 33.0 4.691196 1.019711 1922.0 2.525624 37.34 \n4 7.7261 32.0 7.068311 1.079696 1304.0 2.474383 34.47 \n5 3.3929 39.0 4.274011 1.031073 1227.0 3.466102 33.79 \n6 1.3897 38.0 3.552239 1.074627 191.0 2.850746 36.61 \n7 1.7778 38.0 3.379249 1.010733 2087.0 3.733453 33.95 \n8 3.1528 23.0 5.652985 1.086754 2920.0 2.723881 34.88 \n9 3.6369 10.0 5.646565 1.045038 4611.0 3.519847 35.30 \n\n Longitude \n0 -116.90 \n1 -118.36 \n2 -122.28 \n3 -121.98 \n4 -119.70 \n5 -118.27 \n6 -121.85 \n7 -118.21 \n8 -116.99 \n9 -119.02 " }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "77260fa99ce749ad8c9fa690e7775fee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d94b69746f9a4a9380dae2bd1f5e0aa2", "placeholder": "​", "style": "IPY_MODEL_534e653d051d4cadaf9c83110749b002", "tabbable": null, "tooltip": null, "value": "

Sample (Row: 0)

" } }, "7c0e7cf05be646f9b0ce4f95cb5a51d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "812a32ceb7654114b84e8a4d898356ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "MedInc", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_eb7bec35a1be4b67b73d7bbaa33ee446", "step": null, "style": "IPY_MODEL_d4cab7bfea0541f7b31c93ffe613db0b", "tabbable": null, "tooltip": null, "value": 2.0278 } }, "84f472aba4f840d79007f2bb0082c00c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "MedInc", "HouseAge", "AveRooms", "AveBedrms", "Population", "AveOccup", "Latitude", "Longitude" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "X-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_6bf5b3dde9dc47b7ade737286b92e913", "style": "IPY_MODEL_07d45020aeae4fb5a57e1393d99828f9", "tabbable": null, "tooltip": null } }, "8543ad37f4cf4254a89fe1de7a6b5890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoundedIntTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "BoundedIntTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntTextView", "continuous_update": false, "description": "Row Index:", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_689bae5870334f86bcd43fe43d06d0f9", "max": 6191, "min": 0, "step": 1, "style": "IPY_MODEL_88b9cb1888604595bdd767ece74311cd", "tabbable": null, "tooltip": null, "value": 0 } }, "867acdd05e63490eb265327c17f192e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "Longitude", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_48ef8c9a964d454ebfaab1586f2faa63", "step": null, "style": "IPY_MODEL_11ebc8e9455e424bbb9e46ebdd904bee", "tabbable": null, "tooltip": null, "value": -118.31 } }, "87a712f35dcc4873b434118167c5cc34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "88b9cb1888604595bdd767ece74311cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "8c9a166b8ed5414abe08b3218a039e68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "predictions", "MedInc", "HouseAge", "AveRooms", "AveBedrms", "Population", "AveOccup", "Latitude", "Longitude" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Y-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_0ff75f16656a40f58285052a1fc86692", "style": "IPY_MODEL_ae051fbf62e84e1db78d4fc1bf30fe6d", "tabbable": null, "tooltip": null } }, "90ac553e8e9043e0b041712d623a43db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "91298673ac6345f0850a4b574c9c90f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_87a712f35dcc4873b434118167c5cc34", "placeholder": "​", "style": "IPY_MODEL_ae2ed787589340c198e87ba1f250a4c2", "tabbable": null, "tooltip": null, "value": "

Samples

" } }, "9ac3277a97ca4229a8e68ccc779a7b23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_ac8263b6e1004baa9605fc1db4e3de89", "IPY_MODEL_03a86417ffec416590bdfae3dbc89101", "IPY_MODEL_1b5b793d32bd4045ae51d3ccdbdf711b", "IPY_MODEL_77260fa99ce749ad8c9fa690e7775fee", "IPY_MODEL_e4883d8ba278418a9bd7cd60badf443f", "IPY_MODEL_4ee63cbc9bff4d318218821691eba6f5" ], "layout": "IPY_MODEL_5989a98d51954f919bd2229179d1206b", "tabbable": null, "tooltip": null } }, "9ad8ba38dab44f9caa5b6e7fb1fdff29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_9ac3277a97ca4229a8e68ccc779a7b23", "IPY_MODEL_f5c6092ee37c4263a24e33739ab54ba2" ], "layout": "IPY_MODEL_3d05e47d85b64618ab8d326a577afc38", "tabbable": null, "tooltip": null } }, "9b6a69bbb18e4d33a7ba8d5f2c6238d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a137eaedd7734152ae01978562b6587d": { "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 8, 9, 7, 6, 5, 0, 1, 3, 2, 4 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Target", "marker": { "color": "rgb(248,0,0)", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Target", "orientation": "h", "showlegend": false, "type": "box", "uid": "ebb6e8fc-1733-47ba-ba49-07b2e712c328", "x": [ 0.7027342504232792, 0.98182908946004, 1.3175641310153885, 1.440535206672612, 1.69778099542959, 1.8839007628263171, 2.3411713343874143, 2.7252171672228034, 3.6072416871786204, 5.167999766940754 ], "y": [ "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target" ] } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "boxmode": "group", "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "range": [ 0.5621874003386234, 6.201599720328904 ], "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Predicted Target Value" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": true, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Target" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "a498a93c29ee40179bb167c0a28384d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a4a728ddd83a46d6a048f424dea9ff68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "a602ba2f90a444faa3ddd189ec1aba6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "ac8263b6e1004baa9605fc1db4e3de89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_61f3ad90cb9448ff9a1554451dfb739e", "placeholder": "​", "style": "IPY_MODEL_08efed10453a43789d988ee2d030eb54", "tabbable": null, "tooltip": null, "value": "\n

Select and Explore Sample

\n " } }, "ae051fbf62e84e1db78d4fc1bf30fe6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "ae2ed787589340c198e87ba1f250a4c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "b7fce010583a48b383966629e7656478": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "bbb5c4d6bb3248cf88c5a0ba68d4339b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "bc5fa0ca3ca749b7afbd9ed7794aa921": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "Population", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_2f99219766e1464092fcef5eef5c9f27", "step": null, "style": "IPY_MODEL_f277138ae6ab4906b8b2141804ecf4a0", "tabbable": null, "tooltip": null, "value": 3107.0 } }, "bec65571441d4fddb4ecb388c298a7a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c37b7f9682484df094b49a2138e5c694": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "c4aefc44223f469e9f70f04d12a47c37": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c7f64fa3df994b95a32a32d72ecc848b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "AveRooms", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_a498a93c29ee40179bb167c0a28384d5", "step": null, "style": "IPY_MODEL_d2b08f230fe341049a26bb6fa2f3c41a", "tabbable": null, "tooltip": null, "value": 2.8469284994964754 } }, "c807c3c59a7d407cbeecc82e8bf8d57b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58fdd4f8b6644b0db8f200f451530149", "placeholder": "​", "style": "IPY_MODEL_08cbce7ab50a4ae883391592bed4585d", "tabbable": null, "tooltip": null, "value": "" } }, "ca390662bfb0403586106743831935ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "ca9dd00a1e9b4334bb6a679e240ddaf8": { "buffers": [ { "data": "YqHWNO84AEBiodY07zgRQGZmZmZmZg1AW9O84xQdBUD3deCcEWUiQBBYObTIdh9AYVRSJ6AJEkAJ+aBns+oDQIbJVMGopARA3+ALk6lCF0AAAAAAAAANQMx/SL99XRJAi/1l9+ThBkA5RUdy+Q8CQDMzMzMzsw9A2ht8YTJV9T+2hHzQs1n6PzSAt0CCYgFACyQofoy5DUBHcvkP6XcUQJJc/kP67f8/lPYGX5gMFECbVZ+rrdgEQAYSFD/GXBtAcoqO5PKfA0Ctad5xik4UQFioNc07Dh1AT6+UZYhj/D8AAAAAAAAHQPKwUGuadxhAm1Wfq61YFUCitDf4wiQUQPXb14FzRgdAzczMzMzMDUAW+8vuycMKQA1xrIvbKBJAhslUwagkA0Bn1edqK3YQQFfsL7snjwVA5WGh1jQvFkBAE2HD0ysSQFuxv+yevARAAiuHFtlOCUA0gLdAguL5PxKDwMqhxRRArIvbaADvAUBj7lpCPigZQOF6FK5H4QBAAAAAAACAAUAGEhQ/xtwPQMx/SL99HRNAXCBB8WMMF0COdXEbDaARQOAtkKD4sRZAUdobfGHyE0DXNO84RUcWQEMc6+I2GhBAGXPXEvLBE0Dx9EpZhngWQIGVQ4ts5xNA5WGh1jTvDkC7Jw8Ltab1P6kT0ETY8Ps/u7iNBvDWFECx4emVsgwOQC1DHOvitgRAPQrXo3A9BECOdXEbDSARQBPyQc9mVQxAJXUCmggb/D82zTtO0REGQGb35GGhFhBAK4cW2c737T+9UpYhjvUAQG8Sg8DKIRRAejarPlfbC0C1pnnHKboJQPFjzF1LSAtAhslUwaikDkAHX5hMFcwUQO0NvjCZKvk/rkfhehQuCECOdXEbDQAuQKwcWmQ73/0/EHo2qz7XBEAAAAAAAAAWQDvfT42X7hBAc9cS8kFPIEDMf0i/fZ0LQJ5eKcsQRw1A6Ugu/yG9EUC/DpwzojQKQNxoAG+BhBlANjy9UpahC0BiodY07zgLQGWqYFRSpwhATfOOU3Qk+D8lBoGVQ4sSQHS1FfvLbg1Aak3zjlN0DEB7FK5H4XoEQOqVsgxxLA9AD5wzorQ3DEAMAiuHFlkQQM3MzMzMTApAMzMzMzOzAkAAAAAAAIAOQIXrUbgehQ9AJJf/kH47FUCOdXEbDQAuQKCJsOHpVRVAcoqO5PIf/j/+ZffkYaEIQPcGX5hMFfw/coqO5PIfB0BGtvP91PgIQBzr4jYawAFAbqMBvAWSGECoNc07TtH3P1mGONbFLRRAvAUSFD8GEEA9LNSa5p0RQE+vlGWI4wFA46WbxCCw/z8c6+I2GkAGQGrecYqOZAhAYhBYObTIAECxUGuad5wTQKHWNO84xRBAuB6F61G4BEA6kst/SL8YQCbkg57NqvM/rIvbaABvAkBIv30dOGcUQHPXEvJBzwdAUkmdgCZCCUBGlPYGXxgPQOC+DpwzwiFAufyH9NtXFEBB8WPMXcsYQPVKWYY4VhZAl/+Qfvs6DUAAAAAAAIAOQMUgsHJoERJA3EYDeAtkEED129eBc8YEQGZmZmZmZgZA0NVW7C+7/z96Nqs+V9sDQF5LyAc9GxhAescpOpJLBUCSy39Iv30JQJF++zpwzglA8WPMXUvIIEDEQq1p3nENQAisHFpkuwFAzO7Jw0ItAUBZhjjWxW0GQL8OnDOitPw/nl4pyxDHA0DMf0i/fZ0OQAAAAAAAABRADJOpglHJGEDcaABvgQT/P1InoImw4e0/6Gor9pfdB0BdbcX+srsXQDEIrBxaZBlA07zjFB3JAkDZX3ZPHhb/P3UCmggbHgRAAAAAAAAAAkCgGi/dJIYKQMRCrWnecfw/rK3YX3ZPBEAaUdobfGECQCZTBaOSuhVAx7q4jQYwFkDTvOMUHYkTQMNkqmBUUhRAKH6MuWuJGUDtnjws1NoQQDMzMzMzMwxAgQTFjzF3CUCeXinLEMcKQP5l9+Rhof0/1lbsL7sn/z+gGi/dJIYHQEoMAiuHlgdAMlUwKqlTEUCOdXEbDWARQC1DHOvithNAQs9m1efqG0CJ0t7gCxMNQK1p3nGKThlA097gC5PpGUDsUbgehesIQGB2Tx4WahNAnRGlvcEXFEAAAAAAAAANQNO84xQdSQVAMzMzMzOzDUBR2ht8YbIJQJyiI7n8BwNAPZtVn6stE0D9h/Tb14EFQGKh1jTv+BBALUMc6+K2BUAJ+aBnsyoSQKRwPQrXoxJAtoR80LOZGUAAAAAAAIADQAAAAAAAgARA1zTvOEXHI0DNzMzMzMwLQA1xrIvb6BpAMzMzMzMzB0AzMzMzM7MFQCbkg57Nqvo/pSxDHOtiBkDFjzF3LaEKQMBbIEHxIxVAqFfKMsQxE0AZc9cS8kEHQP7UeOkmsQJAjnVxGw0ALkD67evAOSMNQCgPC7WmeRpACfmgZ7MqEUDc14FzRpQNQCxlGeJYFw9ACtejcD0KDkCk374OnLMIQLsnDwu1JhpA48eYu5bQEEDZzvdT4yUPQBPyQc9mVQFATmIQWDm0D0BmZmZmZmYPQOC+DpwzIg1AvHSTGATWAkAJ+aBns6oSQAAAAAAAAPU/7uvAOSNKCkAU0ETY8HQAQGZmZmZmZhJAejarPlfbB0BiodY07zj8P86qz9VW7BJAoWez6nP1F0Abnl4py1AQQNejcD0K1wJAM8SxLm6jBUApyxDHujgZQAAAAAAAgBBAejarPlfbB0CTOgFNhI0MQFioNc07zgxAq8/VVuwvDECbVZ+rrVgOQAAAAAAAAARAYqHWNO84EkAf9GxWfa4WQAAAAAAAAPw/UI2XbhJDEkAlBoGVQ0scQBzr4jYaQAxAjnVxGw1gCECze/KwUGsGQO7rwDkjyg5AgSbChqfXD0BGJXUCmogPQGEyVTAq6RFA7Q2+MJmqBUAc6+I2GsAAQE+vlGWI4wNAvw6cM6K06z9q3nGKjuQDQJm7lpAPevA/dLUV+8vuIkAT8kHPZlUOQJYhjnVxmw5AHOviNhpADUAAAAAAAAALQEGC4seYu/s/n82qz9UWEEBqTfOOU3QCQE9AE2HD0wtA07zjFB3JAkAtQxzr4rYOQD7o2az6XPg/QYLix5g7D0CZu5aQD/oUQBSuR+F6FAZAE/JBz2bVCECOdXEbDeAMQEHxY8xdSwRAfoy5awn5AkCvlGWIY10DQBBYObTIdvs/1zTvOEWHGEDPZtXnaqsQQIV80LNZNRNAS8gHPZvVIUBUdCSX/xAJQAAAAAAAAAZAN4lBYOVQCUDswDkjSnsFQFg5tMh2HiRAm1Wfq63YAUBVMCqpE9AMQCSX/5B++wFAAAAAAAAACUAW+8vuycMHQFfsL7snDwNACfmgZ7MqEEAQ6bevA6cWQKhXyjLEMQBAd76fGi/dF0C/DpwzorQDQHuDL0ymShFAJQaBlUPLEkCGyVTBqCQNQKd5xyk6kgVASL99HTinGkBJLv8h/fb5PxPyQc9m1QpA9wZfmEyVEkBj7lpCPugWQAAAAAAAgAtA1zTvOEVH+D/gvg6cMyIPQLbz/dR4aRRALGUZ4lgXBUBGJXUCmggIQCegibDh6fQ/oBov3SSGEEAtQxzr4rYSQJm7lpAPevY/LUMc6+K2D0ADeAskKL4UQLFQa5p3nBBA/Bhz1xKyGkCL/WX35GEJQA1xrIvbaPg/AAAAAAAABED5oGez6nMkQG+BBMWPMQxA5j+k375OE0CfzarP1dYSQAn5oGezqhFArBxaZDvfHECZKhiV1AkNQBPyQc9m1QhA2/l+arz0EECYbhKDwMoMQDy9UpYhjgFAAAAAAAAAEUCxUGuadxwDQBzr4jYaQAdAjnVxGw1gB0BWfa62Yv8cQAAAAAAAgANAbjSAt0CCB0AE54wo7U0UQMP1KFyPQhBAs+pztRX7BEAAAAAAAAAHQDeJQWDlUA5AE/JBz2ZVCkDRItv5fmr5PwAAAAAAgAJA1xLyQc+mFECIhVrTvOMQQCEf9GxWPRtA93XgnBFlEkBDrWneccoRQNQrZRnimBdAp3nHKTqS8j/G3LWEfFATQIEmwoan1wlAlWWIY12cGEDDZKpgVBIRQGZmZmZmZvw/AAAAAAAADUAAAAAAAIAQQJM6AU2EDQBAi/1l9+RhDUBlqmBUUicFQAfOGVHamwxA2PD0SlmGEEBlqmBUUicMQAAAAAAAAAhA07zjFB1JD0BqTfOOU7QRQOELk6mC0QxA4L4OnDMiCUDcRgN4CyQLQJyiI7n8BxFAtaZ5xyk6EEA/NV66SQwEQDy9UpYhDg9AcF8HzhkREUAAAAAAAAAUQEMc6+I2mhRAZ9Xnaiv2E0AAAAAAAAAAQOF6FK5H4QlA+MJkqmBUGEDjx5i7lhAUQPCFyVTB6BBAAAAAAACAD0ApXI/C9agSQJyiI7n8xxJAHOviNhrACkAQejarPtcNQD7o2az6XPw/8BZIUPyYBUAawFsgQfESQMe6uI0GcANAqDXNO06REEAZBFYOLbINQJkqGJXUiQVA9wZfmEyVB0A1XrpJDAIQQLhAguLHGAVARrbz/dQ4IEA7cM6I0p4VQAAAAAAAAAJAAAAAAAAA/z9mZmZmZmYIQPFjzF1L6CZA7Q2+MJmqDEBm9+RhoRYRQKH4MeaupRNAgZVDi2ynH0Abnl4py5AEQGpN845T9AxAaQBvgQTFHEBCz2bV56oUQH/7OnDOCABAzczMzMxMEUBy+Q/pt6/3P5yiI7n8hwlAmpmZmZmZDUDTvOMUHUkHQGrecYqO5BFAFK5H4XoUGEDWxW00gJcsQO7rwDkjShNAEhQ/xtw1BkB6Nqs+V9sNQF3cRgN4SxNAcoqO5PKfBUCQoPgx5u4QQMuhRbbzfRVAAAAAAAAABUBGJXUCmogGQDMzMzMzsxJA5j+k377OEECsi9toAG8GQJayDHGsixdALUMc6+I2EUBLWYY41gUVQBniWBe30fM/9wZfmEwVCUBoImx4eiUJQMDsnjws1ARA2IFzRpT2DUAXSFD8GJMiQNejcD0K1xBAPZtVn6utBkCWIY51cRsJQNIA3gIJivs/AAAAAACAC0DpSC7/If0cQM3MzMzMTBBAVTAqqRNQDUDDZKpgVNIJQDMzMzMzsxBAqFfKMsQxFkAAAAAAAIASQEaU9gZfWBVAUkmdgCbCDUAzMzMzM/MSQAAAAAAAAANAS1mGONbFCUBdbcX+srsSQC9uowG8BRRAd76fGi/dCUAc6+I2GsAFQFfsL7snjwFAkxgEVg6tBkA6I0p7gy8UQMHKoUW2cw1AaLPqc7WVE0C2hHzQs1nzPxKlvcEXpgZAPSzUmuYd+z9CYOXQIpsUQBWMSuoEdCBAPL1SliGOA0BhMlUwKmkXQKd5xyk6kgZAGXPXEvIBF0AT8kHPZtUMQNUJaCJsePs/ZvfkYaHWGECBJsKGp9cJQInS3uALEwZAak3zjlN0C0AMk6mCUUn1P/Cnxks3iQRAx7q4jQbwA0DJdr6fGu8fQNuK/WX35AxAaJHtfD81D0CcxCCwckgiQMNkqmBUUhhAnl4pyxBHDkCX/5B++zoPQHE9CtejcP0/h6dXyjLEAECHp1fKMsQaQC1DHOvitgBAZmZmZmZmCUB9rrZif1kLQGfV52or9hBAK4cW2c73G0AQejarPhcQQGpN845TdAVAEhQ/xtw1CUAAAAAAAKAiQNqs+lxtRRlASL99HThnGECbVZ+rrdgFQBzr4jYaQA1AjnVxGw1gDUDTvOMUHUkTQCh+jLlrCQ1AxEKtad7xDUAAAAAAAIAQQGZmZmZmZhFATfOOU3Qk8T9m9+Rhodb2P3UCmggbXhtAJCh+jLlrCEDImLuWkE8WQIbJVMGoJANAsAPnjCjtAkBwzojS3uADQFmGONbFbQxAyAc9m1UfBUAAAAAAAAAKQOXQItv5vhBAsAPnjCjt9j9JnYAmwob2P7mNBvAWSBpAAAAAAACAE0A7cM6I0l4FQJ/Nqs/V1hlArIvbaABvB0AOT6+UZUgSQPT91HjpZhRAYOXQItt5E0COdXEbDeAKQJCg+DHmriRAZDvfT42XGEAAAAAAAMAQQIenV8oyRAdAHOviNhpACEAPC7WmeUcPQBrAWyBB8f8/eqUsQxyrFUBSuB6F61EOQP5D+u3rwBNAK/aX3ZOHGUDsL7snDwsJQFCNl24SgxRAOUVHcvkPCEDufD81XjoYQLdif9k9ORNAqFfKMsRxE0BB8WPMXQsWQCv2l92TBw1AAAAAAACAB0CGONbFbTQFQIbJVMGopABAK4cW2c73CkBcIEHxY8wVQAAAAAAAAPI/eqUsQxzrBkC7uI0G8NYUQD9XW7G/7ANAJXUCmggbDUD67evAOaMEQNUJaCJsePQ/9GxWfa62+T8rGJXUCWgQQBzr4jYawA1A1xLyQc8mFkB/2T15WCgEQPYoXI/CtRRA0ETY8PTKBEAAAAAAAAANQEtZhjjWRQlAc9cS8kFPE0ACK4cW2U4bQOeMKO0Nvv0/hxbZzvcTFEAbDeAtkKDyP9jw9EpZRhJA3pOHhVpTGUBmZmZmZmYJQJ5eKcsQxwVARrbz/dR4BkDqlbIMcWwVQLbz/dR46QNAZmZmZmZmE0BhMlUwKqkGQOAtkKD4Mfg/XW3F/rI7F0AAAAAAAAAPQJoIG55eqQhAhslUwagkC0AzMzMzM7MQQH2utmJ/2QJASOF6FK4HEkBKDAIrh5YKQPcGX5hM1RJAgnNGlPYGA0BlqmBUUicFQGRd3EYDeB1AliGOdXGbDkAAAAAAAAAJQM3MzMzMTBJAtFn1udoKD0DFjzF3LSENQHo2qz5X2wFAGw3gLZCgAkD+1HjpJjEGQCUGgZVDSxJAUPwYc9fSEUAg0m9fB84OQD2bVZ+rbRBAE/JBz2ZVDUD0/dR46SYUQHE9CtejcAlAC0YldQL6KkAT8kHPZlUJQClcj8L1qBJATDeJQWClFECamZmZmZkCQCKOdXEbTRRAuY0G8BZIAUDXo3A9CtcJQAAAAAAAAPI/S1mGONaFJEBhw9MrZVkZQAKaCBue3g1AQfFjzF1LAkC0yHa+nxoZQO0NvjCZqghA16NwPQrX+z+WQ4ts5/v4P2Q730+NlwdAw2SqYFSSE0CaCBueXmkWQJOpglFJHQhAzczMzMzM7D/+1HjpJrEJQOCcEaW9QQhAApoIG55eDUCxUGuadxwNQDlFR3L5jwxAyJi7lpAPCUAlBoGVQ8sRQHlYqDXNuwRAPQrXo3D9GEDqBDQRNjwSQNBE2PD0ygFAeVioNc07A0D5D+m3r4MNQFmGONbF7QVAOwFNhA0PIUA0ETY8vZIUQAAAAAAAABNAs3vysFDrBkAAAAAAAIAPQNO84xQdyfw/AAAAAAAA8z+DUUmdgCYfQH6MuWsJ+QVAjnVxGw2gEECJQWDl0KIFQI0o7Q2+MBlA/fZ14JxRFkCOdXEbDaAQQGrecYqO5BFATRWMSuoEFUClLEMc62IQQK5H4XoU7hJAqmBUUieg+z98YTJVMCoaQNobfGEyVfc/S+oENBE2FUDlYaHWNG8BQDXvOEVH8g1ARpT2Bl8YCkBTliGOdfEGQJ7vp8ZL9xZAAAAAAADAEUD5D+m3rwP1P8IXJlMF4xxARpT2Bl8YDkAAAAAAAIATQCbkg57Nqvs/AJF++zpwFkAAAAAAAIASQGrecYqO5ApAK/aX3ZOHDkB9rrZif9kGQDMzMzMzMwtARGlv8IVJEUAv3SQGgZX3P+2ePCzUmgJAW7G/7J68EEASFD/G3LX2PwAAAAAAABNAnl4pyxDHBECL/WX35OEAQGfV52or9gxARPrt68A5C0CTOgFNhA0QQDy9UpYhjg5AAAAAAABAEEDlYaHWNG8HQCqpE9BEuCRA3pOHhVqTFEDwp8ZLNwkbQDMzMzMzswpAqmBUUieg/z86I0p7g68GQAAAAAAAAAdA07zjFB1JE0AAAAAAAAAFQJqZmZmZmQZAAAAAAAAAAkBxGw3gLVAVQG3F/rJ78gtANe84RUdyBkC1pnnHKboDQNk9eViodSJAnKIjufwHGUA9m1Wfq20TQAAAAAAAgAlAmpmZmZkZAUCgGi/dJIYHQJ5eKcsQhxVAAAAAAAAAAEAIrBxaZDsNQPcGX5hMlQ9AMzMzMzOzAUDUmuYdp2gdQAn5oGezagNAr5RliGNdFECMuWsJ+aAPQAAAAAAAABZACfmgZ7PqC0CKH2PuWgIQQBzr4jYawAdAS8gHPZuVFEAAAAAAAAANQGpN845TdA5AgLdAguIHFEBuowG8BRL3PyS5/If0Ww5AYqHWNO+4EUBMN4lBYOX9P5qZmZmZmRBAzH9Iv32dB0ApXI/C9SgLQFtCPujZrP8/qaROQBNhAEBGlPYGXxgIQBTQRNjwFCBAvw6cM6K09j8IPZtVnysYQG+BBMWPMQxA2ht8YTJV8D/l0CLb+d4gQJ7vp8ZLNwtAejarPldbDUAAAAAAAAAQQPaX3ZOHRRRA4L4OnDMiC0DmriXkgx4IQPs6cM6IUghA3NeBc0YUFkByio7k8p8KQOkmMQisnA1AgLdAguLHAEDzH9JvX8cQQAAAAAAAAAxAdCSX/5D+FECSXP5D+i0VQDSitDf4wgVAe4MvTKYK+z/35GGh1lQgQAAAAAAAAA9Aklz+Q/qtF0AT8kHPZlUFQPyp8dJNYvU/GQRWDi2yCkByio7k8h8FQBpR2ht8YQVAvVKWIY71AUBPr5RliGMBQC7/If32tRdAsb/snjwsDUBGtvP91HgBQBzr4jYaQA1AAAAAAACACUDOqs/VViwQQFioNc07DhFAodY07zhFCUCOBvAWSJAWQDj4wmSqIBpAAAAAAAAAEEAAAAAAAAAJQHPXEvJBzwlA3bWEfNBzEUD3Bl+YTJUSQKhXyjLE8RFA1lbsL7unBEB4eqUsQxz7P2b35GGh1gVAtRX7y+5JEUDHuriNBnAKQM/3U+OlGwVACyQofoz5EkDXEvJBz6YWQH/ZPXlYqPk/B84ZUdqbCUBPHhZqTTMaQJtVn6ut2AlA7Q2+MJkqBED99nXgnBERQBPyQc9mVQFAysNCrWkeF0D3Bl+YTJUFQFXBqKROgBhAufyH9NtXGkDTvOMUHckDQEYldQKayBpACD2bVZ8rHkAnoImw4SkTQBb7y+7JQxtAp3nHKTqSD0AZBFYOLbIAQAwCK4cW2RJAvw6cM6K0+j/35GGh1vQSQDMzMzMzMwBAWDm0yHa+CkDTvOMUHYkQQME5I0p7g/o/GsBbIEGxEECdgCbChucUQAAAAAAAAA9AbVZ9rrbiF0DNzMzMzMwJQDEIrBxaJBVATfOOU3Qk9z8c6+I2GsAAQHKKjuTyHwlAz2bV52or9z89CtejcP0SQDxO0ZFcPhhAAAAAAACAE0AT8kHPZtUBQEp7gy9MJgxAmSoYldSJCUBlqmBUUicHQH6MuWsJuRBAMEymCkZlGUDmriXkg54MQDlFR3L5DwhAOUVHcvmPAUDeAgmKH+MJQJayDHGsi/Y/mbuWkA+6IECJQWDl0KINQGKh1jTvOBBAAAAAAAAAC0AAAAAAAIAQQFK4HoXrUQJAApoIG55eDED3Bl+YTFURQJ5eKcsQxwBAEce6uI2GGUCgGi/dJIYAQDMzMzMzswtAAAAAAAAADUC1FfvL7kkYQPmgZ7PqMxtAETY8vVIWDECoNc07TtEhQKK0N/jCZPQ/toR80LPZDUCOdXEbDWAQQDQRNjy90gNAtaZ5xyn6H0AijnVxGw0XQPLSTWIQWAlAGQRWDi1SJUBZhjjWxW0DQDy9UpYhjgFARpT2Bl+YFUAT8kHPZlUJQG/whclUwfA/t2J/2T15CUC1pnnHKboDQKCJsOHpFQJAAAAAAAAA9D8J+aBns2oQQJtVn6ut2ApAgnNGlPaGDEB1ApoIGx4LQAAAAAAAAApAxSCwcmiRCEDHKTqSy18gQIlBYOXQohVAnl4pyxDH+z+zDHGsi9v3P4BIv30duABA2IFzRpR2AEASFD/G3LUBQAYSFD/GXAhAUiegibAhEEAc6+I2GsACQD2bVZ+rLQpAPSzUmubdGUArhxbZzvcPQFR0JJf/EAxAY+5aQj5oBUByio7k8h8JQJjdk4eF2gNAEOm3rwPnDEAAAAAAAIAPQHlYqDXNOwtA/Bhz1xLyBUASFD/G3LUFQDnWxW00gP0/cF8HzhnREEDP91PjpbspQKHWNO84BRlAAAAAAACAEECsi9toAG8BQKJFtvP9VBZAMEymCkblFkCxUGuadxwJQAAAAAAAAA9AYOXQItt5EECOdXEbDaARQLmNBvAWCBBAaQBvgQTFDkA/V1uxv0wqQFdbsb/sngJA4C2QoPgxHkA/V1uxv+wQQGZmZmZmZglAK/aX3ZMHHUBGlPYGX5gSQNXnaiv21xBAXwfOGVHaBEBxPQrXo3AJQIV80LNZdRFAE/JBz2ZVAEClLEMc66ITQCqpE9BE2ABAAAAAAAAAAkAAAAAAAIALQCntDb4wWRdAAAAAAAAAGED+ZffkYSEOQAAAAAAAwBFAp+hILv8h/T9UdCSX/zAhQO0NvjCZKg5A+8vuycNCE0CamZmZmRkSQO0NvjCZqgJABFYOLbKd/j9TBaOSOoEcQAu1pnnH6RNAzczMzMzMC0AFNBE2PL31PzlFR3L5jxNAW9O84xQdC0BeS8gHPRsAQJOpglFJXRdAutqK/WX3FEBGtvP91HgbQKmkTkATYQ9A1QloImx4BEAu/yH99nX8PzAqqRPQBBNALGUZ4lgXCkCSy39Iv30WQC0hH/RsVhBAlrIMcayLEkCMuWsJ+SABQI/C9ShcTxBArBxaZDsfG0A9CtejcD0FQE+vlGWI4wRAMnctIR80EUAnMQisHBogQAn5oGezKhJAXf5D+u3rEECoV8oyxDETQDxO0ZFc/hNABhIUP8bcDUCwA+eMKG0ZQCV1ApoIGwtA5IOezarP9D+h+DHmriUSQBueXinLkAxAPL1SliGODECgGi/dJIYGQGZmZmZmZhBABFYOLbIdA0CamZmZmZn1PzlFR3L5TxBAnDOitDd4FUDtDb4wmaoEQOf7qfHSzQBA4L4OnDMiA0ALJCh+jDkLQEVHcvkPqRZAjnVxGw3gEEAc6+I2GsAGQBzr4jYawA9AAAAAAAAACUBg5dAi2/nyPxPyQc9m1QRAnl4pyxDHDkAYJlMFoxIKQNzXgXNGVBtA16NwPQpXAkBLWYY41kUSQB/0bFZ9LgZABcWPMXftFUASg8DKocUUQCV1ApoI2xdAyeU/pN++FkD3Bl+YTBUQQKvP1VbsLwlAXkvIBz2bBkAAAAAAAAAKQPCFyVTBKApAAAAAAAAACEAydy0hH3QcQO0NvjCZKgZAIbByaJHt/z9pAG+BBMUGQBPyQc9m1QpAhA1Pr5TlCUAc6+I2GkABQMDsnjwsVBdAMzMzMzOzCEB0RpT2Bl8aQPcGX5hMVRJA9UpZhjiWEED7y+7Jw0IGQGKh1jTvOBFA54wo7Q1+HUAAAAAAAIAQQFD8GHPXEvw/coqO5PKfC0DVCWgibPgAQAn5oGez6g1A8IXJVMHoEEAAAAAAAAAfQIv9ZffkYRFAAAAAAACABED3Bl+YTBUQQNSa5h2naAtAXf5D+u0rEEBLWYY41kUBQMx/SL99nQlA07zjFB2JEECvJeSDnk0NQCqpE9BEWAhAjnVxGw1gB0DA7J48LFQUQJoIG55e6RJATRWMSurEEUA/NV66ScwUQCsYldQJKBBAoBov3SQGGUBpAG+BBEULQDY8vVKWIQpA8KfGSzeJA0AAAAAAAAAIQPKwUGuadxVAT0ATYcPT+j85RUdy+Q8MQHuDL0ymihJAIR/0bFZ9BUB6Nqs+V9sHQAFNhA1Pr+g/AAAAAAAAAkDwhclUwagRQHUCmggbfiZATKYKRiX1CUAMAiuHFlkDQGQ730+NFxVAJuSDns2q9j/n+6nx0k0CQDy9UpYhjvg/AAAAAAAAEkBPr5RliOMSQNPe4AuTaRpA/tR46SaxBkDZX3ZPHhb7P4XrUbgeBQVAyAc9m1UfB0BmZmZmZuYGQA3gLZCgeBVAl/+Qfvs6GkDD9Shcj0IWQOM2GsBbYBVAYqHWNO84D0A8vVKWIc4cQBb7y+7JwwVAAAAAAAAAGECU9gZfmAwdQAkbnl4pywhA+zpwzojSAUA5tMh2vp/uPxb7y+7JwwNAklz+Q/rt+z9U46WbxKAGQDMzMzMzMwRAMLsnDws1DUAT8kHPZtUOQDtwzojSXhBAw9MrZRkiEkBwXwfOGREQQAfOGVHaWxRAjnVxGw1gBkAldQKaCJsIQOoENBE2PAhAGlHaG3xhBUCFfNCzWfUWQCfChqdXSgRAkX77OnAOIUByio7k8h8AQHzysFBrmhRAx7q4jQbwEEBBguLHmHsUQOVhodY0LxJAOdbFbTSA8j9pAG+BBMXwP90kBoGVQxVAnKIjufyHBUAH8BZIULwXQCntDb4wGQ1AzczMzMwMEECV1AloIowgQAfwFkhQvBlARwN4CyQoGUBfKcsQx7r+P0+vlGWI4wRAhXzQs1l1D0AAAAAAAEASQGPuWkI+KBRA07zjFB3JE0AAAAAAAAABQPkx5q4lZAlAqRPQRNjw+z89CtejcP0YQIQNT6+U5QdA7zhFR3L5A0DEQq1p3rETQDQRNjy9UglAl5APejbrEECrz9VW7K8IQInS3uALEwVAZapgVFKnDUADCYofY+4PQEOtad5xCgxAiIVa07wDIEAsZRniWJcPQFOWIY51MRRAAAAAAACAEEDc14FzRpQLQLu4jQbwFhhAWYY41sVtCkAAAAAAAIADQA5Pr5RliP4/qmBUUieg9z+7uI0G8BYgQBkEVg4tsglAPZtVn6ttEEArhxbZzvcBQNO84xQdCR1A9+RhodY0DEDHKTqSy/8YQPKwUGuad/k/T6+UZYjjCUDG3LWEfBAVQJqZmZmZmQxALGUZ4lgXDEAW+8vuycMKQCxlGeJYFwlAZmZmZmZmDEBSuB6F61EPQI4G8BZIUPw/jnVxGw1gCUA730+Nly4TQMIXJlMFo/U/zqrP1VZsCEBF2PD0StkIQAAAAAAAAAVAjnVxGw1gBUAldQKaCJsBQIqw4emVsgRAqFfKMsRRJEB7FK5H4XoTQPmgZ7PqcyRAbef7qfESE0AawFsgQfEXQBgmUwWjEgVA1edqK/aXBECX/5B++zoMQHKKjuTyHwxAAAAAAAAA/z/hehSuRyEhQOauJeSDnvs/qaROQBNhGkBq3nGKjuQTQPKwUGuad/U/KjqSy3+IEUC4QILix5gQQM6qz9VWbAVACfmgZ7MqEEDpSC7/IX0MQPCFyVTBaBJAqFfKMsSxEUApXI/C9SgSQBkEVg4tshBAE/JBz2ZVBkCTOgFNhI0FQBdIUPwY8w5AhlrTvOPUFEBZhjjWxW0JQLFQa5p3HAVAAAAAAAAAAUAAAAAAAAAGQHE9CtejcP8/7FG4HoVrHUAGgZVDi2wLQE+vlGWIYxBAAAAAAAAADkBUUiegibAYQM9m1edqKwhA+8vuycPCBUCamZmZmZkRQKJFtvP9VB1A9wZfmEwVAkCOdXEbDeATQHh6pSxDHPk/2V92Tx6WF0CneccpOpIOQLG/7J48LABAUrgehetRCkCdEaW9wZcHQP5D+u3rQAVAK4cW2c73BkB7gy9MpkoTQJqZmZmZWRxAGQRWDi2yA0Dbiv1l9+QPQI51cRsNYA5A+u3rwDnjFUDu68A5I8oJQBfZzvdT4yFA0gDeAgnqIUAT8kHPZlUPQI51cRsNoBFAOUVHcvmPE0BZhjjWxW0CQJYhjnVxuyRAYqHWNO84DUBDrWnecUohQBzr4jYawApAkst/SL99AUBiEFg5tMgQQM3MzMzMTA1AZmZmZmZmD0ARx7q4jYYRQEymCkYl9RlAjnVxGw1gE0D2l92Th4UCQE8eFmpN8/g/uB6F61E4BEDOqs/VVmwAQBZqTfOOkxZAzF1LyAc9E0DEQq1p3vEEQCxlGeJYlwRAVFInoIlwEEAijnVxGw31P2UZ4lgX9xlAseHplbIMCUBBguLHmLv+P3UCmggbviRAkX77OnDO9j/4wmSqYFQJQO0NvjCZqgBAPL1SliEOD0AAAAAAAAD6PxkEVg4tsgZATYQNT6+UBkByio7k8h8LQIV80LNZdQ1AB1+YTBUMHkCBJsKGpxcQQAn5oGezahFAvw6cM6K0A0DhC5OpglENQD7o2az6nBZAFD/G3LUEDUAAAAAAAEASQFr1udqK/R9AorQ3+MLkF0Btxf6ye7IVQN6Th4Va0/8/qz5XW7E/GEAzMzMzMzMKQBzr4jYawAZA+8vuycNC/j9aZDvfT40CQLU3+MJk6hRAsVBrmnecEECTOgFNhA0FQH9qvHST2BFAeekmMQgsE0CGyVTBqCQEQKd5xyk6Eg1AGy/dJAZBFUBX7C+7Jw8EQPmgZ7PqMxBAlrIMcayLA0BiodY07zgAQAskKH6Mufk/vJaQD3q2FEBApN++Dpz5Pxx8YTJVcCNAnl4pyxDH/j/sUbgehesBQKRwPQrXowtAETY8vVIWFkBI4XoUrkcFQCS5/If0GxVA4umVsgwxF0CGyVTBqCQLQFR0JJf/kApAjErqBDQR9T8TYcPTK6UbQJOpglFJnQpAKqkT0ERYEECvJeSDnk0MQHbgnBGlPRBAklz+Q/rtA0C0yHa+n5ojQNbFbTSA9xRA2IFzRpT2CEA9LNSa5l0lQPvL7snDwhZAOdbFbTSA+D90JJf/kL4SQJEPejarfhVAwcqhRbbzC0DTvOMUHUkJQHo2qz5X2w5AZmZmZmZmBUB9rrZif1kKQE+vlGWIYxBAUI2XbhIDFUDNzMzMzMz4P4bJVMGoJAxAAAAAAACAEUDfT42XbhL0P/FjzF1LSABAhXzQs1m1EkAzMzMzMzMIQJqZmZmZmQVA+THmriUkFUB4CyQofoz/PwAAAAAAAA1AAAAAAAAABUARNjy9UlYdQE+vlGWIYwRAFmpN847TDEDwhclUwWgTQHo2qz5X2wVAaJHtfD+1BkBmZmZmZuYIQLraiv1ldwxA7Q2+MJkqDEAAb4EExc8RQAAAAAAAAPo/3gIJih9j9z9oImx4ekUkQOELk6mCURRAS1mGONbFBkCrz9VW7C8EQET67evAuRRAEhQ/xtw1C0AhsHJoke0VQFpkO99PjQlAAAAAAAAAD0DZX3ZPHpYFQNk9eVioNQNASnuDL0ymDEDufD81XjoYQJoIG55eaRBAWDm0yHY+FUBVMCqpE5AWQF8pyxDHOhRA8fRKWYY4GUASFD/G3DUIQKd5xyk6EgBAMlUwKqnTF0Bt5/up8RIQQKUsQxzrIhFAzczMzMxMCEAm5IOezar/PxPyQc9m1QRALUMc6+I2CkAc6+I2GsACQNuK/WX3ZApAEFg5tMh2CUD+1HjpJjH/P+/Jw0KtaSBAgZVDi2wnEUDtDb4wmaoPQCEf9GxWfQRAMzMzMzMzD0ArhxbZzvcPQOSDns2qzwRA7Q2+MJkqD0DlYaHWNC8SQJqZmZmZmQRAJQaBlUNLEEBbsb/snrwaQGIQWDm0yARAAAAAAACAEUDtDb4wmSoJQHUCmggbHg9A4JwRpb2BFUAAAAAAAAABQDnWxW00gPU/zczMzMxMEkD5MeauJWQFQClcj8L1KPw/1edqK/bXEEDImLuWkE8YQLWmeccpOg5AJXUCmggbCUA9m1Wfq20QQAN4CyQovhdAAAAAAAAAEEA730+Nly4SQIbJVMGopApA845TdCR3IkAZ4lgXt9EYQL7BFyZThRBAMlUwKqmTGUDKw0KtaV4DQAAAAAAAAAJAutqK/WV3F0Abnl4py9AUQIlBYOXQYhRAPZtVn6utFEB0RpT2Bl8RQJXUCWgiLBNAtaZ5xym6DEAUP8bctYT7P+/Jw0KtKRdAAAAAAAAAAkD1SlmGOFYWQCxlGeJYFwlAmpmZmZkZDUD3Bl+YTNUWQA+cM6K0NwRAhlrTvOOUCUCamZmZmRkIQAAAAAAAAAVASgwCK4fWEUAu/yH99nX+P7WmeccpugNANIC3QIIiFUBmZmZmZmYJQFUwKqkTUAxAVcGopE6AG0Csi9toAO8GQE+vlGWIYxBAWYY41sXtA0D7OnDOiFIIQLivA+eMKP4/4QuTqYJRC0DtDb4wmaoAQHKKjuTyH/g/K/aX3ZPHFUBDrWnecYr9Pxzr4jYawAdAZmZmZmYmEUDTvOMUHUkGQNO84xQdSRNAf2q8dJPYE0Ac6+I2GkAMQDMzMzMzMwhAp3nHKTqSBEBB8WPMXUsFQH/ZPXlYKAVA5q4l5IOeBkCyLm6jAbwQQI51cRsNAC5AH4XrUbgeBkBX7C+7Jw8CQDlFR3L5jwdAsVBrmnec7D/tDb4wmSoDQMrDQq1pXgJAlIeFWtM8C0A3iUFg5VAEQF3cRgN4CwxAVHQkl/8QAkB5WKg1zbsAQDMzMzMzMwlAV1uxv+ye5j94eqUsQ5wEQC1DHOvitgpAzF1LyAe9FkD1SlmGOFYcQEtZhjjWxQdA+8vuycNCE0AK16NwPQoUQKjGSzeJgRRAbHh6pSzDC0CGyVTBqCQCQIhjXdxGAwpAw/UoXI/C+z8YJlMFo5LmPwK8BRIUPyJAd76fGi+dFUBkXdxGA/gSQE0VjErqxBJAmpmZmZmZCEBmZmZmZiYRQKqCUUmdQBlA9pfdk4eFDUAX2c73UyMTQFfsL7snDwdAW9O84xTdEkDKw0KtaV4YQJ7vp8ZLNwFAT6+UZYhjEUAAAAAAAAAVQOoENBE2PAVAT6+UZYjjBUCPU3Qkl78hQK62Yn/ZPQxAvAUSFD8GFkAUrkfhehQHQO0NvjCZqglAuycPC7Wm+D++nxov3SQWQAXFjzF3rQJAzO7Jw0LtHkC7uI0G8BYWQPrt68A5IwdA+8vuycPCAUB5WKg1zTv5PysYldQJKBNAJ6CJsOHp9z9yio7k8h8BQCZTBaOSugFAsVBrmnccDEDV52or9lchQDLmriXkwxVAgLdAguKHFkAVHcnlP6QAQGb35GGh1gZAylTBqKSuKED0/dR46SbhPzMzMzMzMw9Axf6ye/JwE0CaCBueXmkRQAdfmEwVDBZAOdbFbTSA9z9Pr5RliOMAQAn5oGezagdAUiegibBhFkCWIY51cdsTQD55WKg1jRBASL99HThnFUB3vp8aL10NQE9AE2HD0wtAXynLEMe6CEBqTfOOU3T2Pwn5oGezKhJAjnVxGw3gEkA5RUdy+Y8RQBb7y+7Jw/o/YcPTK2VZGUAAAAAAAAAEQOoENBE2PPQ/VOOlm8QgEUBXW7G/7J4DQNjw9EpZxhxAWMoyxLHuEUAsZRniWBcPQEaU9gZfGBZA5fIf0m9fCECDUUmdgCb2P3BfB84Z0RBAApoIG57eCECQoPgx5u4QQHQkl/+Qfvo/mSoYldSJDUAkKH6MuWsOQGkAb4EExQ9ASOF6FK5HCUB/+zpwzogRQFmGONbFbQZAGQRWDi2yCkBQjZduEkMeQLu4jQbw1hBAcoqO5PIfAEDD0ytlGSIRQJkqGJXUCfE/FvvL7snD/z/mriXkg54BQOPHmLuWkAtAXwfOGVHaDUDn+6nx0k0GQL99HThnRBVA54wo7Q0+FUDpJjEIrNwUQDQRNjy90gZA24r9ZffkBUCFfNCzWXUQQIxK6gQ0Ef0/x7q4jQZwBEB24JwRpb0AQDhnRGlvkCNAZapgVFIn/D/OGVHaG3wBQLUV+8vuCRhAGXPXEvIBF0Df4AuTqUIdQFInoImwIRxAKH6MuWsJDEACK4cW2c4JQBzr4jYawANAx7q4jQYwEEBPr5RliGMSQE2EDU+vFANAtvP91HjpDkAAAAAAAAADQAAAAAAAgBFAEce6uI1GGECI9NvXgXP/P4iFWtO84/o/hslUwagkDEBfKcsQxzoYQGZmZmZm5glAlkOLbOe7GUBE+u3rwHkQQIV80LNZdQ1AuK8D54xoFEDEQq1p3nH5PwyTqYJRSfQ/i/1l9+ThEEAAAAAAAAATQIPAyqFFtgdA1lbsL7snEEAMk6mCUUn+Pwn5oGezqhBAjnVxGw2gEkDysFBrmncHQD9XW7G/bAZA3gIJih9jBUDNzMzMzMwRQLByaJHtnCBAlrIMcaxLEkCZKhiV1AkQQLAD54woDSBALpCg+DHm9D95WKg1zbsNQNjw9EpZBhFAHVpkO99P+D/aG3xhMlX6Pxzr4jYaQAdAw2SqYFQSEkCUh4Va07z8P55eKcsQRwhA3bWEfNCz/j89m1Wfqy0TQD9XW7G/bCFA8WPMXUuIF0Boke18P3UUQGkAb4EEBRVAYTJVMCqpEECpE9BE2PAJQDy9UpYhjglAHOviNhpAC0CuR+F6FK4PQP7UeOkmsQlAF0hQ/BhzBkClLEMc66ISQFmGONbFbQdAYHZPHhZqCUBYqDXNO44TQO0NvjCZqgtAXdxGA3hLFkAAAAAAAAASQMx/SL99nQJAw2SqYFQSEkBJLv8h/ZYqQCnLEMe6uARAkX77OnDOD0Af9GxWfa4GQM3MzMzMzBRAEHo2qz6XEUBlqmBUUifyP36MuWsJeQBAg8DKoUW2CEAbnl4py9AXQLIubqMBvBRARUdy+Q9pFUBXW7G/7J4QQJqZmZmZGQBAhjjWxW00DEABTYQNT+8dQAAAAAAAAAZAyJi7lpCPBUBfKcsQx7oDQFr1udqK/SBAaCJseHql9D+qYFRSJ6D/P8xdS8gHPRVAgQTFjzF3EEAgQfFjzN0PQI51cRsNYARAAAAAAAAAEEAAAAAAAMAQQE5iEFg5tPk/W9O84xTdEkCoV8oyxPETQEYldQKaCAFAO3DOiNJ+IUA6I0p7gy/7P26jAbwFEhZAcRsN4C2Q/T/TvOMUHQkRQPd14JwRJQhA5q4l5IOeAUBbsb/snjwIQC1DHOvithNABhIUP8ZcGUByio7k8p8JQGTMXUvIhwRAS1mGONbFEEC3Yn/ZPXkSQIenV8oyRBhAAAAAAAAAD0BnRGlv8AUEQNZW7C+7pwxAaCJseHrlFUCYbhKDwMr8P8x/SL99nQxANIC3QIJiFEDOqs/VVuwYQISezarP1RRAhXzQs1n1EUDpJjEIrFwQQCxlGeJYFwxAAAAAAACAA0CneccpOhILQKHWNO84BRVAxEKtad5xCEAAAAAAAAAPQCQofoy5a/4/EhQ/xtx1EUAwTKYKRgUgQH9qvHST2BtAZ9Xnaiu2EED3Bl+YTBUQQMrDQq1p3vI/swxxrIsbFUAAAAAAAAAMQHbgnBGlvRJALUMc6+I2B0DFILByaFESQEaU9gZf2BhAQxzr4jbaIEAsZRniWBcNQM4ZUdobfAhA+MJkqmDUHEDkg57Nqs8BQKd5xyk6kglAObTIdr5fHEDek4eFWpMbQPcGX5hMVRJA0SLb+X5qAEAbL90kBoEaQKkT0ETYcAxA4XoUrkfhBUAAAAAAAAADQHzysFBrGgRAuycPC7WmGEDWxW00gHcSQNO84xQdyQ9Amggbnl5pEkBkXdxGAzgRQMDsnjwsVBtALNSa5h0nGkCxv+yePCwSQAAAAAAAgAhAAAAAAACAAkB9PzVeukkbQIC3QILi5yVAOUVHcvmPDUB56SYxCCwFQPwYc9cS8h5Am1Wfq63YB0DcaABvgQQoQD0K16NwPRVA1edqK/aXA0DwhclUwaj5PwAAAAAAABdAuB6F61F4IUCutmJ/2T0OQKd5xyk6kgNAat5xio4kEkCad5yiIxkhQHKKjuTynwZAYqHWNO84BUAc6+I2GkAOQKH4MeauJQhA8tJNYhBYFEAAAAAAAIAPQMWPMXctoQRAyjLEsS4uF0AAAAAAAAAEQNO84xQdSQhAd76fGi/dCkDWVuwvu6cHQOtztRX7ywJAAAAAAAAADUDmP6Tfvs4SQK7YX3ZP3hBAnl4pyxBHEkC/DpwzorQBQAAAAAAAgBBA4L4OnDOiCUCWsgxxrAsAQEtZhjjWRQFAQmDl0CIbGEAHzhlR2psGQGfV52ordgtAxty1hHxQIUAW+8vuycMLQDSAt0CCYgxAjnVxGw1gD0CwA+eMKO0cQO0NvjCZKvw/Njy9UpahBkAkKH6MuWsKQCfChqdXyg1AHOviNhpACUA0ETY8vdIJQABvgQTFjx9A9wZfmEwVC0AJ+aBns2oEQAAAAAAAAAdAOUVHcvlPEEAYJlMFoxIHQBPyQc9m1Q9AAiuHFtlODEDEQq1p3nEGQEi/fR04ZwRA8IXJVMGoEkDBqKROQFMeQK8l5IOezQFANV66SQwCF0AAAAAAAADyP2fV52ordgFAWvW52oq9FUAc6+I2GkAEQAAAAAAAAP8/7Q2+MJmqCUCFfNCzWbURQAIrhxbZTg1APZtVn6utA0B7gy9MpooOQDy9UpYhDhpAcoqO5PIfAUBLWYY41sURQCBB8WPM3RRAih9j7lrCEkAc6+I2GsAMQA+cM6K0N/0/vsEXJlOFCUCoxks3icELQHlYqDXNuwhA7Q2+MJmqAUBSSZ2AJsLqP+oENBE2vB9Aw9MrZRliBUA51sVtNID4P00VjErqhAVAZF3cRgM4EECU9gZfmMwUQOELk6mC0QRAAAAAAAAABUBZhjjWxe0CQFwgQfFjDBZAHOviNhpAC0BDrWnecQoYQEI+6Nms+v4/G55eKcsQ7z9iodY07zgPQCKOdXEbDQNALUMc6+K2A0AZc9cS8kH1P9O84xQdSQVAV+wvuycP8z9z1xLyQU8MQJf/kH77ehVAmpmZmZmZAEAwuycPCzUPQNcS8kHP5gdAidLe4AvTEEDNzMzMzEwIQGpN845TdA5ANIC3QIIiF0D35GGh1nQQQJ5eKcsQx/k/24r9ZffkC0CNKO0NvjD6P9Sa5h2n6ARAaQBvgQTF+j+5jQbwFsgMQJ5eKcsQxwVAV+wvuyePAkDZzvdT4yUNQHKKjuTynw1AyXa+nxqvB0Csi9toAO8PQJZDi2znuxNAhXzQs1l1DkAu/yH99vUUQCBj7lpCPg5AxEKtad5xBECOdXEbDWAFQBdIUPwYcwRA8rBQa5o3FEDek4eFWlMUQGsr9pfdExZAKjqSy38IEUCQMXctIZ8MQFioNc07ThpAAAAAAAAAE0Bg5dAi2/kbQE9AE2HD0/4/VHQkl/8QAUAqOpLLf8gQQPYoXI/CdQJA3NeBc0aU+T+OdXEbDWARQAAAAAAAwBJA6Ugu/yH9EkAAAAAAAAAKQDMzMzMzsxJAnl4pyxDHEkBseHqlLEP+P57vp8ZLNwlAm1Wfq61YFEDZzvdT4+USQLWmeccpehNALv8h/fb1BUAzMzMzMzMOQM6I0t7gCxJA2qz6XG2FEECC4seYu5b6P7aEfNCzWfw/AAAAAAAACkA0orQ3+EIVQL7BFyZTRRVAw2SqYFSSEkCU9gZfmEz7P/OOU3QkFxhAIv32deCcAkCx4emVsowOQP8h/fZ14BBA/tR46SYxCkCeXinLEMfwPzy9UpYhjvE/ejarPldbAEBkO99PjXcgQMRCrWnecQJAcoqO5PIfD0A5RUdy+c8RQKRwPQrXowxA7C+7Jw8LDEAU0ETY8HQXQG8Sg8DKofo/AAAAAAAAAkBSSZ2AJkIFQDQRNjy90g5AVFInoImwA0BiodY077gIQGgibHh6JQRAlWWIY11cB0Abnl4py9AQQAFNhA1PLwdAufyH9NuXFECxUGuad5wLQAU0ETY8vf8/9UpZhjgWEkASFD/G3LUSQMgHPZtVHwFAdy0hH/TsDkCtad5xio4NQEmdgCbCBhJAyXa+nxqvA0DEQq1p3vEMQOoENBE2PAxAOUVHcvmPEUCF61G4HgUYQMUgsHJoEQdAAAAAAAAABkAKaCJseHr+P3S1FfvL7hJAeHqlLEMc9z9q3nGKjmQCQIXrUbgehQBAOUVHcvkPEECKjuTyH1ILQJhuEoPAyghAiGNd3EYDIkBBguLHmPsTQEmdgCbChgBAg1FJnYAmFEA2qz5XW7H7P8xdS8gHPQtAt2J/2T35AUBmZmZmZiYSQPaX3ZOHRRBANjy9UpYhDECjAbwFEhQWQMxdS8gHvRVAzhlR2ht8D0BLyAc9m1UfQHZPHhZqDRlAkX77OnDOAkBhVFInoAkJQEtZhjjWRQlA7MA5I0p7BkAQejarPpcTQC7/If32NRRABFYOLbIdIEB/arx0k5gQQESLbOf76RRAxEKtad7xBEAUP8bctYQBQN4CCYof4xBA1edqK/ZXEEAAAAAAAIAQQJayDHGsCwRAgnNGlPZGFkB5WKg1zbsBQPCnxks3iRtA2T15WKh1FkDHuriNBnAMQKhXyjLEcRNAAAAAAAAADUBMN4lBYOUQQGDl0CLbeQxAMlUwKqkTAEBWDi2ynS8TQLraiv1ldw5Ah6dXyjJEB0BUUiegiTALQL99HThnBBRAjgbwFkhQCUBE+u3rwDkPQM/3U+OlWxxAu7iNBvDWGUA4+MJkqmAHQO0NvjCZKghA1QloImx4CECOdXEbDWANQL1SliGONRJARiV1ApoIDUAT8kHPZtULQClcj8L1KABACtejcD0KEUAAAAAAAIAKQPhT46WbhBBACyQofoy59z+GWtO841QUQO0NvjCZqg9Ab/CFyVRBCEAJ+aBns2oIQOwvuycPC/s//tR46SYxCkDKVMGopM4AQNXnaiv2FxJAB/AWSFD8GEDYgXNGlPYPQHKKjuTyHwVAAAAAAACAAUCPU3Qkl//uPwu1pnnHKfk/Z9Xnaiu2FkCXkA96NisWQAAAAAAAgBBAZF3cRgN4AEAAAAAAAIASQGRd3EYDuBBA1zTvOEVH8z9iodY077gOQIPAyqFFNgJA1QloImx4CkAHzhlR2hv6P1mGONbF7QFAYqHWNO84EEB1ApoIGx4AQMgHPZtVHxJAarx0kxgEEkAZBFYOLbIJQEi/fR04pxtAD5wzorS3H0Dn+6nx0k33P0+vlGWI4wBAhetRuB5FEEA8vVKWIQ4HQInS3uALUxNA+THmriXkA0COdXEbDWAHQHKKjuTyHwdAMlUwKqkTCkCASL99HbgWQKqCUUmdwBVAY+5aQj7o/T/ek4eFWtMIQMrDQq1p3g5A+1xtxf5yE0AtQxzr4jYAQM3MzMzMTAlAMzMzMzPzEkBPr5RliGMQQI/k8h/Srx5ACmgibHhaJUAc6+I2GkAFQBzr4jYawApAAAAAAAAA8j924JwRpb0LQJ5eKcsQxxNAcT0K16MQIUAc6+I2GkAFQMdLN4lBYBdAjnVxGw2gE0DtDb4wmSoKQKCJsOHpVR5AC7WmecdpFECIhVrTvOPyPw+cM6K0twhAOwFNhA1PBEA/V1uxvywQQGdEaW/wBRlAXwfOGVFaFkDKVMGopE78P5M6AU2EzRJAVHQkl/+QFECOdXEbDaARQH6MuWsJeRRAh6dXyjJEAUBmZmZmZmYOQG/whclUwfM/J8KGp1dKDEClLEMc66ITQDMzMzMzMw1AcM6I0t7gCkCneccpOhIIQCV1ApoIGwNAZmZmZmZm/D80gLdAgmICQDlFR3L5jxNAWMoyxLEuFkCneccpOhIOQEoMAiuHlhVA+zpwzohSAkAofoy5a0kQQD9XW7G/bANAEHo2qz5XAkD2l92Th4X4P/Cnxks3iQxAHOviNhpACkAr9pfdkwcQQKMBvAUSlBVAYTJVMCopHkAHzhlR2hsKQOtztRX7ywJAAAAAAAAADUAGEhQ/xtwDQIqO5PIfUgRAAAAAAAAADEA/NV66SQwUQGZmZmZm5hFA2ht8YTJV9T9F2PD0StkJQLx0kxgEVhBAkKD4MeYuEkCOdXEbDQAuQHNoke18fx5AtFn1udqK+z8sZRniWBcNQOOlm8QgsB5Aj8L1KFyP+z+TOgFNhA0KQN9PjZdukhxAZmZmZmbmCkDNzMzMzMwKQD81XrpJDP8/zH9Iv32dBUCTOgFNhA0MQJjdk4eFmhhALUMc6+K2AkAAAAAAAAAQQI51cRsNAC5AjnVxGw1gCUAbDeAtkGAbQOzAOSNKe+8/9P3UeOkm4T8m5IOezarzPwAAAAAAAPI/FvvL7slDEUAxCKwcWqQaQHUCmggbHg1ACYofY+5aDUDufD81XjoFQDMzMzMzMw9AT6+UZYiDJUCP5PIf0i8QQPrt68A5IwJAY3/ZPXlY8z9U46WbxCAIQOC+DpwzohRAS1mGONYFHkCgGi/dJAYXQCbkg57Nqvs/CKwcWmT7E0AAAAAAAAAKQGgibHh6pRRAtvP91HhpC0Cyne+nxksFQLUV+8vuyf0/qaROQBNh/z9rK/aX3ZMLQGfV52ordgtAjnVxGw0gEEC1pnnHKboQQDXvOEVHMhBAcoqO5PKfD0CTOgFNhI0JQGgibHh6ZRdAx7q4jQZwDECamZmZmZkEQAAAAAAAAAtAx7q4jQbwD0CTOgFNhI0RQGrecYqOZBBAMlUwKqmTC0BN845TdCT9PwtGJXUCGhpASnuDL0wmCkDXEvJBz6YSQJCg+DHmLhBAJuSDns2q9z+Uh4Va0zwSQKCJsOHpFRBA+THmriXkEkCcoiO5/IcEQHNoke18vxZA0m9fB85ZFUDmP6Tfvg76P7prCfmg5wZAzczMzMzM/z+xUGuad5wFQCcxCKwcWhtAAiuHFtnODkAAAAAAAAATQKvP1VbsLw1AeJyiI7n8CUAg0m9fB84AQAAAAAAAAAlANs07TtERD0CdEaW9wZcLQGKh1jTvOABAQxzr4jYa/z+neccpOpIHQHEbDeAtkPM/aJHtfD81DkBYqDXNOw4eQAAAAAAAwBZAaQBvgQTFCkDZzvdT4yUBQGDl0CLb+RJAVHQkl/8QB0DTvOMUHcn4P9bFbTSAtxNAXwfOGVFaEEAbDeAtkKD/P/aX3ZOHBR1ARdjw9EoZGEDXNO84RUcFQKVOQBNhwxBAAAAAAACAAkAFo5I6AU0eQO0NvjCZqg1AliGOdXHbEEB0RpT2Bl8VQE+vlGWI4wJAWmQ730+NCkAAAAAAAIAJQO0NvjCZKgZAR3L5D+n3FkDtnjws1NocQFmGONbFbQtAW7G/7J48CUDTvOMUHUkAQNxGA3gLJBVAE/JBz2bVDUDu68A5IwoRQCxlGeJYlw5AaCJseHql+j8LtaZ5x2kjQHRGlPYGX/0/nl4pyxCHF0AzMzMzMzMRQPyp8dJNYvs/KjqSy38IFkDNzMzMzMwAQE9AE2HD0/g/nRGlvcGXBEBNFYxK6sQSQHgLJCh+DBJAjSjtDb7wFUCEDU+vlOUKQJf/kH77OgtAtTf4wmTqEEBQ/Bhz19IdQLAD54wo7f8/AAAAAAAA+j8c6+I2GsANQAn5oGezagpAidLe4AuTCUDYgXNGlHYCQAAAAAAAAA5Ap3nHKToSDUCamZmZmRkKQM3MzMzMzA1AZmZmZmZmA0AXt9EA3oIGQHicoiO5fBdABcWPMXctE0AbDeAtkGAZQAYSFD/GnCFA6gQ0ETY8EED6fmq8dJMXQO0NvjCZqg1AE/JBz2bVC0DcaABvgYQNQI/C9ShcTxVAkzoBTYQNAkAc6+I2GkAMQP7UeOkmsQhAAAAAAAAAD0BDrWnecaokQJqZmZmZWRZAzojS3uDLEUCsi9toAO8HQIbJVMGoJAFA8kHPZtUHIUAAAAAAAIANQFuxv+yevAVA07zjFB3JCUCcoiO5/McRQKUsQxzrohBA9pfdk4eFBkBg5dAi23kJQOAtkKD48RRA7Q2+MJnqFUBmZmZmZmYOQDeJQWDl0BhAarx0kxgE6j8AAAAAAAD6P7u4jQbwlhlAAAAAAABAEUAAb4EExQ8CQAAAAAAAwBFAzczMzMzMEUAJ+aBns+r5P3DOiNLeYARANs07TtHRFECamZmZmZkGQAAAAAAAgA9AAAAAAAAADUC1pnnHKToSQE2EDU+vFARATfOOU3Qk/z+OdXEbDeACQE5iEFg5tARA7nw/NV66+T/7XG3F/nIXQEa28/3U+AJAnKIjufxHEEDPZtXnaiv+P6vP1VbsrwFAvJaQD3o2FUCeXinLEAcTQLN78rBQ6wdAZF3cRgM4EkCk374OnDMbQPwYc9cScgBAF9nO91MjEEBeukkMAqscQKwcWmQ73wxAEFg5tMj2BkBz1xLyQc8OQOoENBE2PBNAqRPQRNjwD0CYbhKDwEoLQOXyH9Jv3xtAliGOdXEb/D9Wn6ut2F/7P3npJjEILAFAZvfkYaF2JEAtQxzr4rYGQCxlGeJYFwBAAAAAAAAAB0A8vVKWIQ4FQHKKjuTynw9AzczMzMxMEkAc6+I2GsAOQMe6uI0GcBFAhslUwagkB0DVeOkmMQgeQNjw9EpZhgpANIC3QILiBUDMf0i/fV0SQFmGONbFbQlAiUFg5dAiDkA/V1uxv6wQQNGRXP5D+vk/iUFg5dCiFEAAAAAAAAD+P6mkTkAToRdApHA9CtdDIEDEQq1p3nELQGWqYFRSJwtATDeJQWDl+j+xUGuad5z+PzBMpgpGpRlAo5I6AU2E9T9I4XoUrkcEQCegibDh6fs/VOOlm8TgG0COdXEbDSAQQB04Z0Rpbx9AMLsnDwu1AkBlqmBUUmcVQOkmMQisfCBAliGOdXHbEEC1pnnHKTocQPp+arx0k/M/SL99HThnE0Ar9pfdk4cNQKUsQxzr4vU/S+oENBE2HUCJQWDl0KIGQKd5xyk6kgNAE/JBz2ZVDUAQejarPtcIQIenV8oyRANAGQRWDi2yHkDFILByaNEQQMzuycNCLQJAS1mGONZFBUAZBFYOLbIDQDSAt0CCIhJAEHo2qz6XEkDmriXkgx4PQKYKRiV1AgNAZmZmZmZmBkCZKhiV1AkRQN5xio7k8gVAbxKDwMohFkAT8kHPZlUNQD55WKg1TRRAMzMzMzMzEUCSXP5D+u0AQGQ730+NlwtAwOyePCzUDEBU46WbxGAaQC1DHOvitgxAeHqlLENcGkDJdr6fGq8BQCv2l92TRx5AAAAAAAAAGEDZPXlYqHUVQO0NvjCZKgNApSxDHOviEEDgnBGlvUEXQMrDQq1pXgZAejarPlfbAkAQejarPtcJQBx8YTJVMA1A+FPjpZtEAEAJG55eKQsQQLPqc7UVOxVA+Q/pt6+DBECn6Egu/yH9PzSAt0CCYglAorQ3+MLkCkCxUGuad5wQQDMzMzMzMxJAhslUwagkDUBIv30dOOcEQJqZmZmZmQNA7Q2+MJmqA0BZhjjWxW0FQE3zjlN0ZBZAnl4pyxDH9z8HX5hMFcwVQBzr4jYawA9A1zTvOEXHGEDSb18HzlkUQAfOGVHamwlAnu+nxkv3EEDMf0i/fZ0DQOOlm8QgsPA/x7q4jQbwBEBVMCqpE1AUQOY/pN++zhJARwN4CySoB0DKMsSxLi4QQC9uowG8RRRAnl4pyxCHEEDNzMzMzMwNQAAAAAAAAAJAZDvfT42XF0AJ+aBns2oIQE0VjErqhBdAHOviNhrABEDlYaHWNG8BQKOSOgFNRBJAVFInoIlwFEAc6+I2GkAPQLIubqMBPAhAKA8Ltaa5GkCBJsKGp1cFQGq8dJMYhB5AmSoYldSJDUBLWYY41sUTQI51cRsNYAhAqvHSTWJQJEBKDAIrh5YPQC1DHOviNgJALUMc6+I2E0D7XG3F/nIVQMIXJlMFo/c/ukkMAitHHUAT8kHPZtUMQAskKH6MOQ1A7Q2+MJmqCEBO0ZFc/gMVQNPe4AuT6RZAhxbZzveTEkCJQWDl0CIEQOauJeSDnv8/klz+Q/otFkBB8WPMXYsdQAAAAAAAAABALUMc6+I2DkAHzhlR2psKQBzr4jYawApAAAAAAACAA0Cu2F92T94TQEMc6+I2uiBAt2J/2T15BUD35GGh1vQZQBx8YTJVsAxApb3BFybTE0Am5IOezWoYQDJVMCqpEw9A3EYDeAukBUASFD/G3DUIQLbz/dR4aQVAAAAAAACABUAT8kHPZlUCQEYldQKaiAJAnKIjufyHBUB9rrZif9kAQFD8GHPXEhZAmpmZmZkZDkA4Z0Rpb/D/P5huEoPAyghAAAAAAAAAFUAqOpLLf4gRQLyWkA96thRA8x/Sb1+HGUAAAAAAAIAEQAaBlUOLbAhAlrIMcawLFUCOdXEbDWANQAisHFpkOxVArkfhehTOI0AT8kHPZlUDQDnWxW00gP4/f/s6cM4ICEDTvOMUHUkNQFHaG3xhsghADwu1pnlHCUBwzojS3uAFQIenV8oyRAdAzO7Jw0ItA0DNzMzMzMwMQB1aZDvfT/o/7Q2+MJmqBkCxUGuad1wRQNbFbTSANxBAkDF3LSGfCEBqTfOOU/QQQDSAt0CCYgZALv8h/fZ1/j80orQ3+MIKQAAAAAAAAApACtejcD2KFkABTYQNTy8LQFvTvOMUHfo/YhBYObSIIkB/2T15WMgqQE+vlGWI4xBADAIrhxaZF0CSy39Iv/0SQHKKjuTynw1ARpT2Bl+YCEA9m1Wfq+0RQDvfT42X7ipAyXa+nxqvDUCWsgxxrIv+PwAAAAAAAAxAZ9Xnaiv2BkAm5IOezar7P6yL22gA7xVAkzoBTYQNA0CC4seYu9YdQAXFjzF3LRBAAAAAAAAAA0AsZRniWBcJQO0NvjCZqgRAGQRWDi2yEEDEQq1p3nEPQKUsQxzrIhNA3SQGgZVDAEBDHOviNpoWQCbkg57Nqh9Anl4pyxDHD0Ac6+I2GkAJQHsUrkfhehlAYqHWNO+4FEDtDb4wmaoDQILix5i7Fg1A7MA5I0p7DUAK16NwPcoWQC0hH/Rs1ghAw2SqYFQSEUDHuriNBnALQJAxdy0hnwJA7Q2+MJkqA0BB8WPMXcsJQKJFtvP9VBhAAAAAAACAB0CPwvUoXA8UQGrecYqO5ApAHhZqTfOO8D9Wn6ut2F8gQEp7gy9MJhRAjnVxGw3gBkBKe4MvTEYiQCZTBaOSughAVTAqqRNQCkDvOEVHcnkSQPp+arx0UxFAnl4pyxDHCECOdXEbDQAuQAwCK4cWWQxASOF6FK5HFUC1pnnHKXoRQHUCmggbHghAmpmZmZmZEkAawFsgQbEQQBb7y+7JgxBAE/JBz2ZVBkC4HoXrUfgVQCh+jLlrCQ9AqFfKMsTxE0AAAAAAAIARQIXrUbgehfo//tR46SaxD0Ai/fZ14FwfQOzAOSNK+w1ASZ2AJsIGDkDyQc9m1ScfQIEmwoan1wdAkzoBTYQNEEAE54wo7U0VQHUCmggbnhlAc9cS8kHP/z8J+aBns2oNQAAAAAAAgARAT6+UZYjjCkCOdXEbDWAAQMe6uI0GcA5AcoqO5PIfB0AtQxzr4vYSQGIQWDm0yANAZmZmZmZmEEBbQj7o2ewfQFfsL7snjwdAfa62Yn9ZDEAQejarPpcSQLFQa5p3HAdAd76fGi9dB0DqBDQRNvwQQG+BBMWPMRNAwaikTkCTD0AJ+aBns6oSQLhAguLH2BdAFvvL7smDE0BiodY07zgGQCgPC7WmORZAYqHWNO84CEBvEoPAyqH9P00VjErqBBZA+zpwzojSCEAAAAAAAAAHQBdIUPwYcwxAu7iNBvAWEkBUUiegibAIQLN78rBQCyNA2ht8YTJV/j+IhVrTvOP8P+oENBE2PBFAjnVxGw3g9D924JwRpT0JQBPyQc9mVQ5A0NVW7C+78j8J+aBns2oBQArXo3A9Cg5AXynLEMc6FUCxv+yePCwHQAAAAAAAABVAq8/VVuyvFEDeAgmKH2MVQEtZhjjWBRNAw2SqYFRSC0D35GGh1nQSQOVhodY0bwdAnl4pyxBHDED3Bl+YTFURQET67evAuQVAak3zjlN0/z/uWkI+6NkUQME5I0p7AxVANIC3QIJiEECmm8QgsPIUQGHD0ytlGRZAAAAAAACADEAAAAAAAIAMQAAAAAAAAAVAliGOdXGbEEDNzMzMzMz9P6VOQBNhgxdA16NwPQpXAEDuWkI+6NkWQJqZmZmZmQVAdEaU9gZfCkBX7C+7J48KQGaIY13cJiFAnl4pyxDHD0BLWYY41kUDQAAAAAAAgBFATfOOU3Qk/j80orQ3+IIXQEtZhjjWxek/HOviNhpAAkC1pnnHKboKQP7UeOkmsQ1AOUVHcvlPE0B90LNZ9bkJQFUwKqkT0P0/PzVeukmMCECPwvUoXA8PQLWmeccpuhFAdQKaCBseD0D7OnDOiHIlQAAAAAAAAAFA8KfGSzeJDUA4Z0RpbzATQM6qz9VW7P4/QYLix5i7/D9/2T15WOgUQOwvuycPiwlAhXzQs1k1EkCoxks3icEdQGWqYFRSJwBAp3nHKToSBUBb07zjFF0TQIMvTKYKBh1ABcWPMXftGEA0orQ3+EIbQKkT0ETY8Po/w9MrZRmiEkACvAUSFD8LQFUwKqkTkBhAAAAAAAAAC0DA7J48LNQXQO84RUdyOR9Ax7q4jQYwIUD6fmq8dJMFQBzr4jYawPk/GXPXEvJBDUAAAAAAAIAKQF+YTBWMSug/DeAtkKAYJECASL99HXgSQM9m1edqKxRAfoy5awl5IEDNzMzMzMz0P0ATYcPTqwJAAAAAAAAAD0A5RUdy+U8QQF3+Q/rtaxpAklz+Q/rtC0BSJ6CJsGEPQCBB8WPM3QNAHOviNhpADECamZmZmZn/Py0hH/Rs1hJA7Q2+MJkqDkAkKH6MuSsSQDlFR3L5zxBAQxzr4jZaEkCV1AloIqwSQOVhodY0byFA7FG4HoXrB0DNzMzMzMwNQO0NvjCZqgVALUMc6+J2EUBkzF1LyEcYQHZPHhZqTQ9AmpmZmZkZEEAoDwu1pvkJQAAAAAAAAAxAgy9MpgqGGEDtDb4wmaoEQGB2Tx4W6gFAAAAAAACAEUAc6+I2GsAOQIPAyqFFNhpAuY0G8BZIGEB2cRsN4C0IQJwzorQ3uBVA3EYDeAskH0AJ+aBns6oQQEa28/3UeB5AbVZ9rrbiAEA0gLdAguL4P5f/kH77OgpAVFInoIkwBUDNzMzMzEwRQF+YTBWMyghArthfdk8eF0CI9NvXgXPzP2ZmZmZm5ghAnl4pyxDHAUD129eBcwYVQKyL22gA7whA07zjFB1JB0B4eqUsQxz/P1K4HoXrUQtAAAAAAAAA+j8gQfFjzN0LQDSitDf4wgBAJXUCmggbCEC1pnnHKboIQNEi2/l+avU/78nDQq0pFEAT8kHPZtUGQAAAAAAAAPo/jSjtDb4wC0DeAgmKH2MKQEaU9gZfmBBANIC3QIJiAUA51sVtNID/P3lYqDXNuw1A9dvXgXPGBUB7gy9MpooAQFvTvOMUHfg/JuSDns2q8j/vOEVHcvnyPwAAAAAAAAdAXkvIBz1bGkCeXinLEEcRQDMzMzMzMwdAp3nHKTqSD0CHFtnO99MdQMiYu5aQDwxAPL1SliGO+T8mUwWjkjoAQK+UZYhjnSNAgSbChqcXHUA0orQ3+MISQAAAAAAAgAZAXwfOGVFaCUAsZRniWBf6Pxzr4jYaQAlAC7WmecepBUBsCfmgZzMZQD2bVZ+r7RNAAAAAAACAD0Bn1edqK/YHQNGRXP5D+iBAMzMzMzMzDkCOdXEbDeAKQJvmHafoiBRA+Q/pt6+DAEBGlPYGX5gFQK+UZYhjHSFAMzMzMzNzGkCDwMqhRTYLQMgHPZtVHxVAsb/snjwsC0CJQWDl0CIIQOqVsgxxLAJAXwfOGVFaDkCY3ZOHhVr5P+58PzVeOhRAHOviNhrAD0D/If32dSASQCV1ApoImxtACKwcWmQ78T+F61G4HoUTQDMzMzMzsxJACRueXimLGEDZX3ZPHhYRQGZmZmZmZg9AWYY41sVtAEAAAAAAAAARQC2yne+nJiBABhIUP8bcAUDTvOMUHUkJQCuHFtnO9wpA5j+k377OEEB4CyQofoz+P1R0JJf/UBhAnl4pyxDHEUCxUGuad9wRQCfChqdXygxAguLHmLuWF0BVMCqpE9AKQOjZrPpc7QRAat5xio6kEEC1pnnHKXoTQEoMAiuHlg9AHOviNhoAG0D0bFZ9rrb3P1OWIY518QBAETY8vVIWDECcoiO5/EcQQPYoXI/C9RVA8rBQa5p3/z9q3nGKjiQQQK5H4XoUrhRAPZtVn6utE0DNO07RkdwLQNk9eViodRRA7Q2+MJkqC0CneccpOpIGQGN/2T15WA5AaQBvgQTF9z8XSFD8GHMCQM3MzMzMzApAMlUwKqkTBEAf9GxWfS4LQI/C9ShcjxNAa5p3nKKjCUD0bFZ9rrb9P3e+nxov3Q5A7Q2+MJmqCECjI7n8hzQZQMSxLm6jARRAxSCwcmiRDkBJnYAmwoYDQAAAAAAAAPg/lrIMcayLA0COdXEbDeANQPyp8dJNYv0/ofgx5q4lDUA5RUdy+Q8PQMoyxLEubhJAZmZmZmZm9j+vJeSDno0YQOVhodY0bwdAApoIG57eAUCY3ZOHhdoUQBPyQc9mVQlAuycPC7UmCUBeukkMAusiQPp+arx0kwlA1XjpJjGIF0DtDb4wmSoHQKhXyjLE8RJA07zjFB1JBkCX/5B++zoAQLdif9k9eRNAw2SqYFQSEkDJdr6fGi8BQBPyQc9mVQVAAAAAAACADUBtxf6ye/L0Pz2bVZ+rrRBA16NwPQrXA0CiRbbz/VQUQEMc6+I2GhhA6bevA+fMG0DEQq1p3nELQBzr4jYaQAxAzczMzMzMDUAzMzMzMzMHQAAAAAAAwBFAAAAAAACADkAg0m9fBw4YQKVOQBNhQyRAcT0K16NwCEBtVn2utuIQQKyL22gA7wlAtvP91HhpD0AAAAAAAIASQL3jFB3JZRNA/tR46SaxAECamZmZmZn7PwAAAAAAAAtAHThnRGlvHUBLWYY41kUPQGiz6nO1lQlAWMoyxLEu/D9R2ht8YbIAQAAAAAAAwBFACKwcWmQ7+T9Ei2zn+ykNQLu4jQbwVhRAP1dbsb/sC0Bos+pztRUlQMGopE5AEwNAAAAAAACAEkCWsgxxrAsIQJtVn6ut2PM/MzMzMzNzEkCNKO0NvjAOQAmKH2PuWgRALUMc6+I2EEDOiNLe4EsVQFafq63YX/w/5WGh1jSvEEDhehSuR+EIQC1DHOvitg9AAAAAAACAD0DVeOkmMQgQQEymCkYldQNAVTAqqRNQFEAAAAAAAAAMQIV80LNZ9QZAO3DOiNJeBUBbQj7o2SwIQBPyQc9mVQ5AqFfKMsQxAkDFILByaJH3PwAAAAAAgBJAAAAAAAAAC0B6pSxDHGsJQJqZmZmZWR9APZtVn6ttE0AVjErqBDQRQNQrZRniWPY/AAAAAACACEAOvjCZKpgEQBPyQc9mVQFAppvEILCyF0CWIY51cRsFQMe6uI0GcA1AKjqSy39I9j8yVTAqqRMGQD2bVZ+rrQZAjNtoAG+BGkDTTWIQWDkNQAn5oGezagZAliGOdXEbEkCxUGuad5wSQBdIUPwY8wdAXwfOGVFaE0BOYhBYOTQMQJ5eKcsQRxJAlrIMcayLCEAZc9cS8kH4P8E5I0p7wyBAnMQgsHKoFECcM6K0N3gIQBDpt68DJxZAHOviNhrAAEB5WKg1zbsFQBzr4jYawARA8IXJVMFoEECneccpOhIPQD2bVZ+rrQxACyQofoy5E0B6xyk6kksIQDY8vVKWoQhAcoqO5PKfF0Bn1edqK3YBQAAAAAAAgAdAhslUwagkCEC1FfvL7skEQDMzMzMzsxFAnu+nxkv3EEAAAAAAAIANQAn5oGezKhNAf/s6cM4IAkBhVFInoEkbQABvgQTFTxtADJOpglGJHUDLoUW28z0UQCuHFtnO9/4/XwfOGVHaF0AAAAAAAAAJQM07TtGRXAFAD5wzorT3HECJ0t7gC1MVQJXUCWgibANAx7q4jQbwBkDOqs/VViwWQHlYqDXNuw1A4L4OnDOi9j+1pnnHKboMQE+vlGWI4wxAhA1Pr5TlCkByio7k8p8AQJayDHGsSxBAcRsN4C2Q+z8FxY8xdy0hQI51cRsNAC5AsAPnjCgtE0Akl/+QfnsNQD2bVZ+rLRBAhslUwaikDEAEVg4tsp3yPzMzMzMzsxFAUdobfGGyBkBX7C+7J48RQAAAAAAAAA9AeqUsQxzr/z8J+aBns+oHQG3n+6nx0hdAw9MrZRkiE0CneccpOpIDQOqVsgxxbBVAAAAAAADAEkCX/5B++7obQFR0JJf/UBJAAAAAAACACUCgibDh6RUBQDMzMzMzsw1AOdbFbTSA/j+gibDh6ZUDQIQNT6+UZR5ALGUZ4lgXB0DDZKpgVFIYQO0NvjCZqghAaCJseHql7D+GyVTBqCQXQHS1FfvLLhVAHOviNhpACECX/5B++zoFQOoENBE2PAdAnl4pyxDHDkB88rBQaxoDQOQUHcnlP/8/JXUCmggbCkAc6+I2GkAOQJayDHGsiwJAodY07zhFAUD99nXgnJEVQGkAb4EExQJAMnctIR/0CUCsi9toAO8VQO7rwDkjSv8/2c73U+PlFkBxPQrXo/ADQDY8vVKWgSBACfmgZ7NqBkAAkX77OnAXQFpkO99PjQRAAAAAAAAADkAAAAAAAAADQDSAt0CCYgJAx7q4jQZwEkBn1edqK7YSQNBE2PD0ygtAE/JBz2ZVAkDMf0i/fZ0QQAAAAAAAgBFA9wZfmEyVBkAAAAAAAAAQQOhqK/aXXQNAih9j7lrCD0DVCWgibHj2P6d5xyk6kvY/iPTb14FzCUCMuWsJ+SANQGZmZmZm5gFAl/+Qfvs6AkAAAAAAAIADQAAAAAAAAAVAoImw4elVFEDwp8ZLNwkGQACRfvs6cABACKwcWmS7DEBZF7fRAF4SQIZa07zjlAFARUdy+Q9pA0DmP6Tfvk4RQMWPMXctoQ9A7zhFR3J5F0DkFB3J5T/0P9c07zhFRwhAAAAAAACAEkBb07zjFF0TQE+vlGWIYwhA2c73U+MlGUBm9+RhodYDQAAAAAAAABZAhslUwagkCUBGJXUCmggNQOLplbIMcf4/tFn1udqKFEAyVTAqqZMIQFvTvOMUHQpA2PD0SlmGEkC+MJkqGJX0P6OSOgFNBBFA3EYDeAvkEEB/arx0k1gUQBpR2ht8YQhA7lpCPugZGkCYTBWMSmoOQDnWxW00gPs/E/JBz2bVDUCneccpOpILQNobfGEyVfM/coqO5PKfBEA730+Nl+4EQF8pyxDHuhhArthfdk9eEEBLWYY41kUMQIbJVMGopABArK3YX3ZPAEAJ+aBns+oLQO0NvjCZqgRA8fRKWYb4GEAAAAAAAEASQFg5tMh2vg9AT6+UZYjjDECKH2PuWgIWQDXvOEVHMhJADk+vlGUIHUAAAAAAAAADQGKh1jTvOAhAejarPlcbFEDkg57Nqk8aQNZW7C+7J/U/ylTBqKRO/D/3Bl+YTNUSQJyiI7n8xxhAMlUwKqmTCEA9m1Wfq+0SQEXY8PRKmRlAV1uxv+yeBUDbiv1l9+QOQNO84xQdSQZABhIUP8bcAUCFfNCzWXURQDy9UpYhjv8/LNSa5h2nGEDeAgmKH2MBQH/7OnDOCAFAbqMBvAUSFEDhC5OpgtEFQLraiv1lNxVAtaZ5xym6C0BfKcsQx7oVQJkqGJXUiQxAofgx5q6lB0Byio7k8h8JQJM6AU2EDf0/MzMzMzMzAUA0gLdAgqIVQOY/pN++zhNALbKd76fGEEADeAskKH75P+QUHcnlP/k/mSoYldQJFEDjpZvEILAVQH3Qs1n1+SBAcvkP6bevFUCOdXEbDeATQI51cRsNYApAT6+UZYjjEEA2zTtO0VEaQJqZmZmZGQxA7MA5I0r7EEBYqDXNO44SQNZW7C+7ZxZAFvvL7slDEkCC4seYu5YcQOSDns2qDxBAejarPlfbAUAAAAAAAAAMQAn5oGezKhJAl/+Qfvs6CEBmZmZmZuYDQH2utmJ/WQdAmSoYldQJAEBXW7G/7F4ZQKyt2F92zyVAzczMzMzMBUDHuriNBvAPQE+vlGWI4wtAt9EA3gIJAEASFD/G3DUUQL6fGi/d5BJAAAAAAAAAEEA/NV66SQwAQJ5eKcsQRwNA1QloImx4BEBeukkMAuslQM3MzMzMjBBAAAAAAACAEECMuWsJ+SAIQCZTBaOS+h1Af/s6cM4IAEB9rrZif9nwP86I0t7gCxhAPZtVn6utEkD3deCcESUUQGUZ4lgXtxRAZmZmZmbmB0Bm9+RhoRYQQB3J5T+k/ydAE/JBz2ZVBUDl0CLb+T4aQIEmwoan1wdATRWMSupEEECsrdhfdk/8P+5aQj7oWRhATtGRXP5DH0Bj7lpCPmgEQAU0ETY8/RhAnKIjufwHAUCWIY51cZsQQC1DHOvitgxA93XgnBElBEB/+zpwzggLQGKh1jTvOPQ/AAAAAAAAC0DWVuwvu+cYQM4ZUdobvBxAEhQ/xtxVJ0DFILByaNEQQBBYObTIdglAE/JBz2ZVB0C94xQdySUUQJqZmZmZGQ9ApU5AE2FDCUCamZmZmVkSQFvTvOMUXRFAxf6ye/JwEEDqBDQRNhwjQDy9UpYhDgpAAAAAAACAE0C1pnnHKXoVQM3MzMzMTBFA2ht8YTJV+j9+HThnRCkQQFmGONbFbf0/AAAAAAAAC0DqBDQRNvwZQOxRuB6FaxJAFK5H4XoUHkC5jQbwFkgGQGQ730+NlwtAnl4pyxBHAUBmZmZmZiYSQNxGA3gLJBBAWvW52op9DUCWIY51cRsTQAAAAAAAAAVAzczMzMzM+z/Mf0i/fZ0NQFUwKqkTUAFAWKg1zTuOEUCHp1fKMkQLQNQrZRniGB9A9wZfmEyVEECDUUmdgGYZQAn5oGez6ghAmpmZmZmZCkDHuriNBrAQQBPyQc9m1QhAv30dOGfEB0AAAAAAAAATQKmkTkATYQRAeVioNc27DkBvEoPAymEWQCKOdXEbDR1A1JrmHadoD0Bn1edqK3YGQAKaCBue3hRAjLlrCfkgFECoV8oyxLEVQPT91HjpphRA+8vuycNCD0COdXEbDeD9P8sQx7q4TRVAW7G/7J58E0COdXEbDWAFQL8OnDOitAFATRWMSupEEUDOGVHaGxwkQOSDns2qTxRAofgx5q4lCECqglFJnUAVQHNoke18/ypAtMh2vp/aGEDNzMzMzMwMQPYoXI/C9QpAzczMzMxMDUCxUGuadxwCQDMzMzMzMw5AQj7o2ay6IECsi9toAG8IQBSuR+F6VBdAjnVxGw1gEkCX/5B++7oDQH2utmJ/WQRAr5RliGOdJkBYObTIdv4UQNJvXwfOGR9A/tR46SaxDkCfzarP1dYqQI51cRsN4AZAAAAAAACABEAtsp3vp4YUQC1DHOviNgpAAiuHFtnODkDEQq1p3nH2P5qZmZmZmRFA24r9ZfdkB0AAAAAAAAANQC1DHOvitgxAufyH9NtXCEBCPujZrPoRQGrecYqOZBJADXGsi9uoEkAAAAAAAAD+PyV1ApoImw5AOwFNhA1PFUBq3nGKjqQRQHKKjuTynw1AbxKDwMohDUDOqs/VVuwQQFRSJ6CJMBBAmSoYldQJDUBVMCqpE1ACQGkAb4EExQhAzqrP1VbsC0APnDOitHcUQCfChqdXSg5AP8bctYQ8FkCU9gZfmEz6P+oENBE2PAJA3pOHhVqTEEAdyeU/pB8bQGKh1jTvuANAak3zjlN0DkDjx5i7llAUQH/ZPXlYqApAOGdEaW9wFEC0yHa+n5oDQDvfT42XrhJAysNCrWneAUAkl/+QfnsMQNXnaiv2lxJAowG8BRLUEEB4CyQofowNQL1SliGOdQRAE/JBz2bVCUA2zTtO0REAQG3n+6nx0gNAxEKtad7xA0C6awn5oOcQQGrecYqOpBFAY3/ZPXm4J0BmZmZmZmb/P9Sa5h2n6AtAzczMzMzMC0CvlGWIY90JQHbgnBGlPRRAjnVxGw2gEEBMN4lBYGUEQMHKoUW2cwdAp3nHKTqSDEDek4eFWtPwP1jKMsSxLvg/ejarPlebJUBEi2zn+ykAQJtVn6ut2ApAUPwYc9cS/D+JQWDl0GIYQGfV52orthpAbcX+snvyCUAAAAAAAAAIQBzr4jYawAhAmN2Th4Va8z/Oqs/VVmwQQJLLf0i/3SBAH/RsVn0uAEB4eqUsQxz/P8RCrWnecQxA7Q2+MJmqDkB/2T15WCgOQAAAAAAAgBFA1sVtNIB3EEDQs1n1uRoWQEoMAiuHVh5Asp3vp8YLGEDOqs/VVuwJQGTMXUvIhxFAQs9m1efqBEBPr5RliKMRQO0NvjCZKg1AejarPldb+D8T8kHPZtX4P55eKcsQxwxAzczMzMzM+D+KsOHplbIGQILix5i71hZADi2yne+nAUC8BRIUP0YEQCUGgZVDiwtA5j+k377OFEAAAAAAAAALQC1DHOvitgZAMzMzMzOzCUDNzMzMzMwKQAAAAAAAABhAYHZPHhZqDkBiodY07zgJQOauJeSDngFA/Knx0k3iGUCamZmZmZn7P7snDwu1JgxA16NwPQrXBUAAb4EExQ8XQKhXyjLE8RJAjnVxGw1gAUB7gy9MpgoKQGN/2T15WAhAYqHWNO+4BUAAAAAAAAAGQHDOiNLeYAxAzO7Jw0KtA0BmZmZmZmYCQBsv3SQGwRxAxEKtad5xGkDTvOMUHckGQKmkTkATIRRATRWMSurEEUByio7k8h8BQNuK/WX3pBZAPujZrPpc+D9WDi2yne/9P7bz/dR4aQpA1JrmHafoB0D3deCcEaXrPwn5oGez6hBAYqHWNO84EUD3Bl+YTNUSQAAAAAAAgA1ARpT2Bl9YFUCbVZ+rrdgPQNQrZRniWPA/EoPAyqFF/D8IPZtVnysMQGZmZmZmZv0/f2q8dJMY8T8AAAAAAIAEQAu1pnnHaRBAyXa+nxov9z+YbhKDwEoMQBzr4jYawAZAL90kBoHVF0DzjlN0JBcZQGZmZmZmJhJAtvP91HhpDUADCYofYy4UQPrt68A5I/g/D5wzorQ3DkCamZmZmTkgQOVhodY0bwZAJlMFo5I6D0CneccpOhILQKvP1VbsrwJAgSbChqcXEECsi9toAO8LQBzr4jYawAJAtMh2vp/aG0AJ+aBns+oOQCBj7lpCPg9AxSCwcmhRE0Dc14FzRtQYQH2utmJ/2RRAXI/C9ShcB0DNzMzMzMzyP1uxv+yePAVA6pWyDHEsAUAAAAAAAMATQCQofoy5qxRAokW28/1UGEDysFBrmvcdQJ/Nqs/V1iBA4JwRpb2BHEDtDb4wmaoJQAAAAAAAAABAOUVHcvkPEUCoV8oyxPESQE9AE2HD0x5Ac2iR7Xw/FEAAAAAAAAAPQJLLf0i/fQVAAAAAAACAEUDOqs/VVuwCQM6qz9VWbA5AMzMzMzOzBEAg0m9fB44QQDJ3LSEf9ANAjnVxGw3gDUAqOpLLfwgTQMe6uI0GcANAGXPXEvLBCkAtQxzr4rYEQPwYc9cS8gRAlWWIY13c9z8tQxzr4jYQQHBfB84ZERBAAAAAAAAABEASpb3BF6YRQH2utmJ/WQpAutqK/WX3+j+OdXEbDSAQQLwFEhQ/RhdANV66SQxCJEAtsp3vpyYgQKd5xyk6kgVAAAAAAACAD0BVwaikTmAiQGZmZmZmZghAlrIMcazLEkDHuriNBvASQJzEILByKBZAIEHxY8xdFUDecYqO5LIZQNxoAG+BxBlAnl4pyxDH9z83iUFg5VAJQAAAAAAAAB5Asp3vp8aLFECOdXEbDSATQGrecYqOpBFA/tR46SaxBUC/DpwzojQJQHxhMlUw6hpAguLHmLsWCUAtQxzr4rYGQPvL7snDwhJALGUZ4liXI0AT8kHPZtX+P/yp8dJN4gJAl/+Qfvs6AkCeXinLEMf5PwAAAAAAAPo/9wZfmExVEEDFILByaFEQQE0VjErqBP8/B84ZUdqbAkDNzMzMzMwEQPFjzF1LyAxARdjw9Eq5IUBos+pztZUFQPkx5q4lZAZAgEi/fR048z+ZKhiV1IkGQEtZhjjWBRBAmpmZmZmZCUCjkjoBTUQTQNejcD0K1xFAR3L5D+m3CkAyVTAqqRMCQHBfB84ZUfk/+n5qvHQTGEB6Nqs+V1sJQIZa07zjFBdAaJHtfD81A0A0gLdAgmIEQNuK/WX35Pk/mpmZmZkZEUD8qfHSTSIYQFmGONbFbQRA0SLb+X5q/j8AAAAAAAAHQAfOGVHaGwBA2ht8YTJV/D96Nqs+V9sIQCsYldQJKBNAUiegibAhEkCBlUOLbOcWQKkT0ETYMBtAWKg1zTtOE0CvJeSDns0bQAAAAAAAgAFAp+hILv+hFkD3Bl+YTJUJQO0NvjCZKgBAtaZ5xym6AkC5jQbwFkjxP40o7Q2+sBhArkfhehSuAEDTvOMUHUkRQFmGONbF7Q1AqvHSTWJQFkAibHh6pWwUQPcGX5hMlQlAH4XrUbgeD0DTTWIQWDkaQPT91HjpJgdAzF1LyAcdJkA5RUdy+Q8QQDnWxW00wB5A8IXJVMFoEUAAAAAAAAAHQLraiv1ldwRAHThnRGmvH0CqYFRSJ6D6P0ymCkYl9QlAAd4CCYrfF0Di6ZWyDHHuP9obfGEyVfk/escpOpLLA0BZhjjWxW0MQBIUP8bcNQhAAAAAAAAADEAAAAAAAMARQAAAAAAAgAxAl/+Qfvs68T90JJf/kD4RQOY/pN++DhBAMzMzMzOzEEDqBDQRNjwLQAdfmEwVjAxApgpGJXWCH0Du68A5I8oCQABvgQTFDxFAJCh+jLlrCUDqBDQRNjwTQAn5oGezqhNAUWuad5xiHUDqBDQRNjwZQDJVMCqpEwVAwTkjSnuD+j+28/3UeGkGQPAWSFD8mAZAETY8vVKWAEBIv30dOOcFQE+vlGWIY+8/p3nHKTqS/z/7y+7Jw0L7P3KKjuTy3xhA07zjFB3JE0DEQq1p3nEOQNc07zhFBxVAAAAAAAAACkD99nXgnJEMQP8h/fZ14P8/AAAAAAAAFEB4CyQofgwBQFmGONbFbQ5AdZMYBFYO8z/3Bl+YTNURQDj4wmSqYAtAjErqBDSRA0BKDAIrh1YVQIv9Zffk4QhAOUVHcvlPEUDtDb4wmaoIQGTMXUvIBwdAd76fGi9dCkCoV8oyxLEKQB+F61G4Hg5AE/JBz2bVDEDDZKpgVBIRQET67evAORVA7Q2+MJmqAkDT3uALkykUQAK8BRIUvwVAq8/VVuyvFUDqBDQRNjwCQLWmeccpOghAKxiV1AnoE0Cq8dJNYpABQM3MzMzMzAlA07zjFB3JAEAg0m9fB84MQGZmZmZmZvY/CfmgZ7MqEEBDHOviNtoUQMxdS8gHPQ1AqMZLN4lB/z+GWtO84xT5P451cRsNAC5AYqHWNO84BkDdJAaBlUMSQGRd3EYD+BJAAAAAAAAA+z/tDb4wmSoBQO0NvjCZqgtAvw6cM6L0GEBmZmZmZiYTQB04Z0RprxBA7Q2+MJkqCkCvlGWIY90TQDVeukkMgg1AhslUwagkCEAAAAAAAAAMQJ/Nqs/V1gJAAAAAAAAACECzDHGsi9v3P5yiI7n8xxBACtejcD0KF0CxUGuadxwJQF8HzhlRWg9APZtVn6stFkCOdXEbDWAMQHEbDeAtMCVAT6+UZYhjEUA9LNSa5p0VQKAaL90khgFAfT81XroJFUBkO99PjZfoPwAAAAAAgAlAW9O84xRdEUC+wRcmUwULQMrDQq1pXgJAVHQkl/8QBkA5RUdy+c8RQME5I0p7gwhAH/RsVn2uAkDbiv1l96QdQOCcEaW9ARlAK/aX3ZOH+j87cM6I0t4GQMbctYR80BBA2c73U+PlGUBjf9k9eVgAQMiYu5aQD/c/coqO5PIfBkBn1edqK/brP1OWIY518QFA7uvAOSNK9z82PL1SlqEJQNUJaCJseAtAVp+rrdhf/z8GgZVDi6wiQPVKWYY41gBA9ihcj8J1EkCk374OnLMWQGRd3EYDuBBAKxiV1AnoDEA1XrpJDALrP9cS8kHP5htAAAAAAAAAHkDV52or9pcQQLgehetRuBBA2IFzRpT2DEBVMCqpE1AFQBe30QDeAhdAIEHxY8wdFkDHSzeJQWAbQDMzMzMzswVAOGdEaW+wFUDmriXkg570P+PHmLuWkPY/io7k8h/SAkCxv+yePCwOQM3MzMzMzAlANIC3QIIiEEC1pnnHKToEQPwYc9cS8gJACfmgZ7PqB0CkcD0K1yMVQAAAAAAAgBBAYqHWNO84C0BhVFInoEkUQBzr4jYaQA5AAAAAAAAACEAtQxzr4jYEQBlz1xLywRFAzH9Iv32dEUAU0ETY8PQIQEATYcPTaxxAAAAAAACAE0BGlPYGXxgEQBzr4jYawAJAGQRWDi0yEEA4+MJkqmAFQF8HzhlRWhNAF0hQ/BjzCkAhsHJoka0UQL8OnDOitAJAAAAAAAAABEDHuriNBvAQQEI+6Nms+hBA/tR46SaxD0B3vp8aL90DQJqZmZmZmQJAmpmZmZmZ+z8rGJXUCWgTQCv2l92ThwFAlkOLbOd7EkDKMsSxLi4pQLMMcayL2/I/AAAAAACAE0DKVMGopE7+P9nO91PjpRFAgnNGlPYG+z/vycNCrekHQIlBYOXQIgdAZapgVFInAUCamZmZmRkJQHUCmggbnhBAUrgehetRGkBKDAIrhxYBQNobfGEyVfc/2c73U+MlBEDtDb4wmaoCQJqZmZmZmfs/zczMzMzM+T/tDb4wmaoAQJkqGJXUiQpAAAAAAACADECR7Xw/NV7wP6hXyjLEcRNAiUFg5dCiCEBqvHSTGAQEQM6qz9VW7BJAnKIjufwHDECamZmZmRkTQBE2PL1S1hpA07zjFB1JEEC28/3UeGkPQLivA+eMKP0/7MA5I0p7D0AhH/RsVj0UQG3F/rJ78gJArWnecYrOE0CzDHGsixsVQJqZmZmZGQlAZ9Xnait2BEDxY8xdS4gTQFmGONbFbf4/zhlR2hv8E0B6pSxDHGsDQM9m1edqKxlAV1uxv+xeEUCX/5B++zoFQM3MzMzMzA1AO3DOiNLeCUBfKcsQx/oaQMPTK2UZ4vs/3nGKjuQyFEBRa5p3nKIXQI/C9ShcjwxACmgibHh6AkDgnBGlvUEIQCPb+X5qPAxAHVpkO99PF0Cx4emVsowIQJCg+DHmrhBAZmZmZmZmA0DJdr6fGq8OQJ7vp8ZL9xZAPL1SliGOCEBpAG+BBMUEQMrDQq1p3gVAE/JBz2ZVCUCDL0ymCkYVQDQRNjy90hpAPE7RkVx+DkDFILByaBEOQM3MzMzMTBJABFYOLbIdCUBbsb/snrwDQHUCmggbnhBAjnVxGw1gA0CcxCCwcugAQIV80LNZdRJAVHQkl/8QDECV1AloIuwXQKyL22gArxlAEFg5tMh2B0ADCYofY+4LQIbJVMGoJAlAN4lBYOVQB0CpE9BE2PAlQCcxCKwc2gpAa5p3nKIjH0BiodY07zgSQH0/NV66iRRAxEKtad5xDECtad5xio4MQKd5xyk6kgZA5IOezarPBECsi9toAO8CQBdIUPwYcwdAw9MrZRliGkDJdr6fGs8gQBb7y+7JwwtAqFfKMsSxE0A+6Nms+lz6P+5aQj7o2QlAuB6F61G4A0BPr5RliOMQQGEyVTAqKRZAE/JBz2ZVAkCYTBWMSioWQF1txf6ye/I/OGdEaW9wAEDHuriNBvASQLprCfmgJxVAgZVDi2wnFkAZBFYOLTIEQLwFEhQ/xhZADJOpglFJ/D8MAiuHFlkPQCKOdXEbjR1AZmZmZmZmDkCcxCCwcigSQPkx5q4lpBNAOGdEaW9wC0BLyAc9m1XpPxdIUPwY8wlABcWPMXetBEA7cM6I0l4FQO0NvjCZKg9AOUVHcvmPFkAVjErqBHQYQCxlGeJYFwVAMzMzMzOzAkCOdXEbDWAIQDlFR3L5jxFAgQTFjzE3IEAAAAAAAIABQFuxv+yevAZAAAAAAACAD0CWIY51cVsRQBSuR+F6lAFARdjw9EpZC0A51sVtNID/Pxe30QDeggFAAAAAAAAACECq8dJNYhAaQLWmeccpuhFA9ihcj8L1DECPwvUoXE8gQIBIv30dOBxAf9k9eVgoBUCze/KwUOsHQM07TtGRXCJAjnVxGw3gEUAT8kHPZtUEQGZmZmZmZgtATKYKRiU1FEBX7C+7Jw8KQNejcD0KVxNA3NeBc0aUCEDhC5OpglEAQC1DHOviNghAWMoyxLEu/D+WIY51cVsRQAAAAAAAgABAAAAAAACADUAAAAAAAAAPQOQUHcnlvxRAnl4pyxBHE0AtQxzr4jb0P2pN845TdA5AjnVxGw1gAUBPr5RliOMHQBzr4jYawApA5BQdyeV/FUADCYofYy4TQD55WKg1zQ1AAAAAAAAAA0C0yHa+n5oEQAAAAAAAAANAMuauJeSDBUBiodY07zgQQKVOQBNhQw9AC7Wmeccp+z8AAAAAAIAQQIV80LNZNRBAw9MrZRliDUC6awn5oGcRQCuHFtnOdxpATRWMSupEEkBqTfOOU/QSQD55WKg1jRFA1zTvOEUHEEDtDb4wmaoIQA3gLZCgeBpAS1mGONYFEkC62or9ZXcFQJkqGJXUCRVApU5AE2FDEECneccpOpIKQHKKjuTynwtAFK5H4XoU/z+tad5xig4FQGfV52or9hJA5WGh1jQvE0BaZDvfT43/P/cGX5hMFQRAdLUV+8tuC0CneccpOpIKQHicoiO5fAlA7MA5I0o7EED3Bl+YTJUTQA1xrIvbaPw/taZ5xym6BECJ0t7gC9MQQGTMXUvIBwRAwTkjSnvDFUAzMzMzM/MRQDtwzojSXgtAseHplbIMBEBMpgpGJXUGQB+F61G4Hvo/AAAAAABAEEAtQxzr4rYGQFmGONbFbQ1AAAAAAAAAKUAAAAAAAAAJQNcS8kHPphJAAAAAAAAA/j/jx5i7lhAYQIY41sVtNANAAAAAAAAA8z9mZmZmZmYCQL8OnDOitAtA1QloImw4FkAawFsgQbETQMpUwaikTvk/46WbxCCwFUAc6+I2GkAKQPKwUGuad/0/xSCwcmiR8z+KH2PuWkIJQGiR7Xw/tQBAXI/C9SgcFkBYqDXNO84CQAAAAAAAQBNAVHQkl/8QA0CzDHGsi9v6PwAAAAAAgAlAqFfKMsSxBEAkKH6MuWsFQNjw9EpZBhRACRueXinL+T/TvOMUHcn2P2Rd3EYDOBBAfdCzWfW5CUAtQxzr4jYBQDSitDf4wghAuECC4se4IEBDHOviNtoZQCv2l92TBwFAofgx5q6lC0B/2T15WKgGQMWPMXctIfo/l/+Qfvs6C0BqTfOOU3QQQDj4wmSqYCBAm1Wfq63Y9D+QoPgx5u4QQMgHPZtVHwJAxSCwcmjRGEBWDi2yne/7PxPyQc9mVQhAjnVxGw3gAEAqqRPQRJghQAkbnl4pCxNAl/+Qfvs6/T8AAAAAAMAQQHo2qz5X2wVA5x2n6EiuBkDuWkI+6NnxP3o2qz5X2wlA3NeBc0aUEEAAAAAAAIAHQKOSOgFNBBBAAAAAAAAADkBpAG+BBMX9P/hT46WbRBdA8KfGSzcJAkDVCWgibHj+PzJ3LSEfdApAFYxK6gQ0AkAAAAAAAIAIQH4dOGdEKRVAMlUwKqkT+z8AAAAAAIARQEI+6NmsegJAAAAAAAAAEUB6Nqs+V1sEQAAAAAAAgAZAE/JBz2ZVBUCX/5B++zr7P7Kd76fGS/o/mSoYldSJAEAAAAAAAAAHQCL99nXgHBFAZ9Xnaiv2AEAJih9j7poQQLhAguLHGBVAq8/VVuyvDEDtDb4wmaoCQHe+nxovXQZA/tR46SaxB0A7AU2EDU8VQJ5eKcsQRwdAVg4tsp3vFEA2zTtO0REQQHKKjuTynw1A9ihcj8L18D/M7snDQi0BQLPqc7UVOxBAnDOitDf4AkBGlPYGXxgGQN21hHzQMwhAzczMzMxMBkBPr5RliGMGQBzr4jYawApAm1Wfq63YDED+ZffkYaEQQGKh1jTvuBJAJuSDns2q/j8nwoanV0oJQMpUwaikThtAqz5XW7F/F0ASpb3BF6YVQAisHFpkuwBAOdbFbTSA8z+xv+yePGwUQGZmZmZmZgJAbjSAt0CCH0DwFkhQ/FgVQOC+DpwzogVAmpmZmZnZH0COdXEbDQAuQLsnDwu1JgVAzczMzMzM/z/3Bl+YTJUMQDxO0ZFcvhVAy6FFtvM9E0BO0ZFc/gMQQOqVsgxxLBdATRWMSuoE9z9ZhjjWxe0HQLWmeccpughARiV1ApoIBUCneccpOpLtP1CNl24SAxdAyXa+nxqvA0Db+X5qvLQWQDJVMCqpkxJAAAAAAAAACkCOdXEbDQAuQAHeAgmK3xdAJXUCmgibG0BmZmZmZmb0Pz2bVZ+rbRFAt2J/2T35EEDA7J48LJQaQBb7y+7JwwBAak3zjlN0BEAT8kHPZlUCQIbJVMGoJAxAZmZmZmZmAkCu2F92Tx4NQHUCmggbHhNAdnEbDeAt/z/HuriNBnANQFpkO99PjQ1AObTIdr4fDkB6Nqs+V1sDQNSa5h2nKBVAGJXUCWjiHEBqTfOOU3QRQIenV8oyRABAH4XrUbheFkB0RpT2Bh8SQIlBYOXQog9ARpT2Bl8YCECF61G4HgUQQPcGX5hM1RFAtRX7y+5JBUAT8kHPZlUNQDsBTYQNjxFAayv2l90TEEAAAAAAAAD8P0tZhjjWBRZAZvfkYaEWFkCeXinLEMcBQGpN845T9AdA1zTvOEVH+j+wA+eMKC0QQMIXJlMFo/M/S1mGONbF7T+x4emVsgwFQPvL7snDQvs/9wZfmEyVDUClTkATYcMSQFioNc07ThNA16NwPQrX+T/TvOMUHUkRQBzr4jYaQAZAak3zjlP0EEASFD/G3DUFQAAAAAAAgAlA93XgnBGlDEA8vVKWIY4AQMNkqmBUkiJAMlUwKqmTAkBQ/Bhz19ITQKfoSC7/IRJAOUVHcvkPCEDgnBGlvYEZQGWqYFRSpwJAAAAAAAAAEUCamZmZmZkBQPLSTWIQWA1AHOviNhrAD0BVwaikTsAUQGpN845TdP4/5q4l5IOeCkC28/3UeGkNQEVHcvkP6RRAAU2EDU8vFEBmZmZmZmYOQEHxY8xdSwRAJJf/kH77GEAc6+I2GkAPQAAAAAAAAPg/E/JBz2ZVCECpE9BE2HAXQMHKoUW2cw5AduCcEaV9FUC4HoXrUTgQQABvgQTFDwtAAAAAAACADUBF2PD0StkLQK5H4XoULhdA3gIJih8jF0DnHafoSC4TQAAAAAAAABBAfPKwUGsaDECTqYJRSR0CQJM6AU2EDQVAAAAAAABAE0BQjZduEsMSQMrDQq1pXghAe4MvTKYKE0AzMzMzM7MQQMrDQq1pXg1AUPwYc9fSEEAU0ETY8PQfQAK8BRIUP/Y//yH99nUgGUCsrdhfdk/9P4bJVMGoJAJAF0hQ/BjzAkAWak3zjjMkQJMYBFYOLf0/yXa+nxovFUDKw0KtaV4JQFCNl24SAwZA9wZfmEwVEUBWn6ut2F/8PzlFR3L5DwpAOUVHcvmPDkB/+zpwzggGQCZTBaOSehZAsb/snjwsCEAOvjCZKpgCQDnWxW00gPc/l/+Qfvs69T+Hp1fKMkQJQC1DHOvitg1A4zYawFtgJEDEQq1p3jEVQAu1pnnHKfk/JLn8h/Tb/z8/V1uxv6wSQGpN845TdA5ACmgibHj6BUD7XG3F/rL0P5VliGNd3BhALUMc6+I2EUCfq63YX7YUQP2H9NvXQRdAHOviNhpABUDcRgN4C6QTQMl2vp8arw5ApgpGJXWCA0BDrWnecYoLQATnjCjtjQ9Ap3nHKTqSCkBaZDvfT40DQLUV+8vuyRFACRueXimLEEAnwoanV8r8PzY8vVKWIfM/9wZfmExVEEC7uI0G8JYEQDSAt0CCYgxAFK5H4XoU+D8u/yH99nX9PwAAAAAAAABAiUFg5dCiBEDtDb4wmSoEQC9uowG8hRZAZ9Xnais2EUBVwaikTgAZQOC+DpwzogFAVg4tsp3PI0CjkjoBTUQTQGUZ4lgXtxRAbcX+sntyBEA9m1Wfq60RQM4ZUdobfA1APE7RkVy+E0AAAAAAAAAQQHBfB84ZURZAryXkg57NAUAPC7WmeQcWQBQ/xty1hANAAAAAAAAA+j+u2F92Tx4YQNO84xQdSRJAx7q4jQbwCkBVMCqpE9APQBzr4jYawANAoImw4elVHUBqTfOOU3QEQOC+DpwzogpAzczMzMzMEkA3iUFg5dABQATnjCjtDQNAGeJYF7cRHEDf4AuTqUIQQCv2l92Thw5Ak6mCUUldEEA7cM6I0l4EQJyiI7n8h/8/jnVxGw3gB0Ct+lxtxX4VQFUwKqkTUA5AxSCwcmgREUBPr5RliOMSQDPEsS5uIwBAnl4pyxDH+T+KH2PuWoIcQAAAAAAAABBAsAPnjChtA0A2qz5XW7EZQMbctYR8kBZAVTAqqRPQCUA0gLdAguIQQNO84xQdiRFAUrgehetRDUCWsgxxrIsLQI51cRsNIBBAidLe4AtTE0Bg5dAi2/kUQHL5D+m3r/g/Z9Xnait2BUAT8kHPZlUNQE3zjlN0JPs/J6CJsOHp+z8tQxzr4nYRQATnjCjtDRVA4QuTqYLRAkBiodY07zgIQDlFR3L5TxFAeVioNc07AUA8TtGRXL4XQAn5oGezaghAmpmZmZkZBEDNzMzMzMwMQGfV52or9vo/fh04Z0QpEEDlYaHWNK8TQOcdp+hIrhRAwcqhRbZzDUAZBFYOLfIZQBfZzvdToxlA/Bhz1xKyEECCc0aU9sYYQHNoke18vxhAAAAAAAAA9j9t5/up8dL+Px+F61G4nhhA93XgnBGlBkBrmnecoiMBQL8OnDOitA9AUkmdgCZCC0BseHqlLIMYQGZmZmZm5gJAmpmZmZmZEUBX7C+7Jw8EQGZmZmZmZgNAnKIjufyHBECgibDh6dUYQFdbsb/sHhhAQxzr4jYa+D85RUdy+Q8QQLMMcayL2/w/cF8HzhlRFUD3Bl+YTJUJQPCnxks3iQhA4C2QoPgxAECTOgFNhI0IQBzr4jYaQAdA/Knx0k1i/z9mZmZmZmYSQEJg5dAi2/o/OdbFbTSA9D+zDHGsi9v+Pwn5oGezqhJAfa62Yn/ZBUAHzhlR2psCQFR0JJf/kAZAvAUSFD9GEEC5/If021cKQOC+DpwzIgdAguLHmLuW6D+h+DHmrqURQN21hHzQ8xJAIEHxY8xdBkBb07zjFL0hQBIUP8bcNQRAejarPlfbCUA+eVioNc0IQAAAAAAAgBBA07zjFB3JEkBdbcX+sjsTQJ5eKcsQxwhAAAAAAAAAC0BNhA1Pr5QFQCsYldQJKBBAvJaQD3r2FkAAAAAAAAATQP32deCckQNACfmgZ7NqAUARNjy9UlYaQKW9wRcmUw9AKjqSy3+IEECh+DHmriUFQMgHPZtVXxBAP8bctYR8+z+1N/jCZCoXQM3MzMzMzAxAdLUV+8vu+j/caABvgUQVQBPyQc9mVQVAMlUwKqmTAkBVMCqpE9AFQH/ZPXlYKA1ALUMc6+I2BEDqBDQRNjwOQBsv3SQGwRhAcF8HzhlRDUA0ETY8vdIKQDJVMCqpE/w/7Q2+MJkqBUB7FK5H4XoWQO84RUdyeRtAXwfOGVHaBUDzH9JvXwcfQE7RkVz+wxJAjnVxGw1gEEBMN4lBYGUNQKpgVFInoPw/XI/C9ShcB0CvJeSDns0gQI51cRsNAC5AZmZmZmbmDEBjf9k9eVgBQF8HzhlR2gJAUiegibChE0CneccpOpIPQMWPMXctoQ5AHVpkO99PJEBCPujZrPoKQEoMAiuHlg5AexSuR+F6BEBNFYxK6gT7Pyh+jLlrCR1AdnEbDeCtFEAeFmpN847wP/cGX5hMlQhAK/aX3ZMHAUD3deCcEaUIQAIrhxbZzgdATYQNT6+U+z+OdXEbDeAFQDMzMzMzswhAtoR80LMZH0ClLEMc6yIRQKCJsOHplQlACfmgZ7PqBEArGJXUCSgUQFuxv+ye/BlAEHo2qz5XDEDSAN4CCYr3P0mdgCbChv8/4C2QoPixG0B1ApoIGx4IQMDsnjwsVABAHHxhMlUw+z/c14FzRhQKQNO84xQdyfg/V+wvuycPCUAzMzMzMzP7P3uDL0ymigFAzqrP1VasFkBn1edqK3YRQGkAb4EERRxAKxiV1Alo+j8HzhlR2psDQAAAAAAAgA9AjnVxGw0ALkDXNO84RUf9P6JFtvP9lBpAmpmZmZmZBkAJ+aBns+oDQKd5xyk6EgJASZ2AJsIGE0COBvAWSJAWQOauJeSDngZACtejcD0KDUCn6Egu/2EYQPyp8dJNYvU/JXUCmghbGEBdbcX+srsQQM/3U+OlGwhAY+5aQj5oAUAAAAAAAAASQOELk6mCUQRAE/JBz2ZVBkAAAAAAAIASQMPTK2UZIhBAHOviNhpACkBbsb/snjwOQDojSnuDrw9AAAAAAACADECOdXEbDSAQQNxoAG+BhA5AS1mGONZFDUBfB84ZUVoDQBzr4jYawA9ACfmgZ7MqEECWIY51cRsQQBniWBe3URZAguLHmLsWDkDVCWgibPgTQAAAAAAAgAVATmIQWDn0GkA/NV66SQwHQG+BBMWPsQxAzczMzMzMBEBb07zjFB0JQOf7qfHSTQ1AhA1Pr5TlBkDpJjEIrNwRQAAAAAAAAPo/coqO5PKfBkD67evAOSMEQBiV1AloYhhAdnEbDeCtA0AAAAAAAAAWQCGwcmiR7fw/XkvIBz0bAUBPQBNhw9MKQKabxCCwchRAD5wzorQ3DUAT8kHPZlUDQOQUHcnlP/w/AAAAAAAAAUC+wRcmUwX7P/W52or9JRdAApoIG55eEUDIBz2bVR8JQIEExY8x9xBAM8SxLm7jFUCsi9toAO8BQH9qvHST2BNACmgibHj6FEAcfGEyVTARQEOtad5xShFAmSoYldSJA0ASFD/G3DUSQHL5D+m3TyZAE/JBz2bVD0AK16NwPQoMQAn5oGezagpAWYY41sVtC0B0tRX7yy4kQFioNc07TgRA07zjFB1JDkBn1edqK3YPQI51cRsNAC5AAAAAAAAA9z8/NV66SQwOQBWMSuoEdBJAkQ96NqseIEDNzMzMzMwHQHUCmggbnuY/ryXkg55NBUA9m1Wfq+0RQFR0JJf/EAVAjnVxGw1gAkBB8WPMXUsPQKhXyjLEMQlAv30dOGfEG0CqYFRSJ6D/P84ZUdobfBBAjnVxGw3gE0B9rrZif9khQCL99nXgXBRAJlMFo5I6A0DwFkhQ/BgKQC/dJAaBlfw/klz+Q/rtFUBE+u3rwDn8P3KKjuTyHwRAsp3vp8ZLAUCze/KwUOsGQFmGONbFbQFAswxxrIvb/j9/2T15WCgGQCxlGeJYFwVAK4cW2c73/j/mP6Tfvs4RQJXUCWgi7BhAhJ7Nqs+VFUAkl/+QfnsEQDy9UpYhjglAHhZqTfPuIkDTvOMUHUkEQH4dOGdEaR9A8kHPZtUnFECWIY51cVsQQE9AE2HD0w5AqDXNO07R9z8sZRniWFcUQHWTGARWDu8/FK5H4XoUCUCBlUOLbCceQF1txf6ye/w/E/JBz2bV9z+1FfvL7gkYQKRwPQrXIxFAF9nO91MjHUAAAAAAAEASQAAAAAAAAP4/HhZqTfMODECOdXEbDaASQKpgVFInIB9AOwFNhA0PEUBSJ6CJsOEWQAAAAAAAAAJAuY0G8BbICEBq3nGKjmQHQB/0bFZ9rvw/EoPAyqFF/T/SAN4CCcobQGWqYFRSpwBAJuSDns1qH0B/arx0k1gQQAn5oGezaglAPZtVn6utC0DtDb4wmSoHQAAAAAAAgAlAhetRuB6FAUDOqs/VVmwVQEaU9gZfmP4/mpmZmZmZDEAXSFD8GHMMQOqVsgxxLAtAAAAAAAAAAkAc6+I2GsAKQCxlGeJYlwhAW0I+6NmMJUAPnDOitDcPQHbgnBGlvRJAHOviNhrAD0DNzMzMzMz2P2Q730+NVxRAB/AWSFD8HkDtDb4wmaoFQO0NvjCZKghAzO7Jw0ItBUD3Bl+YTBUQQCSX/5B++w1AApoIG57eCECu2F92T14rQFD8GHPX0hhA93XgnBHlEkDLoUW28/0gQC1DHOviNgZAS1mGONbFBUD3Bl+YTNUTQMcpOpLLfyFAUI2XbhIDAUCGWtO849QaQHo2qz5X2wRAPZtVn6ttEUCamZmZmZkMQAAAAAAAAAFAAAAAAAAABEDaG3xhMnUkQFioNc07zhlA16NwPQpXHkAAAAAAAAAIQA8LtaZ5x+k/4JwRpb1BBEBEaW/whUkUQDlFR3L5DxFA9wZfmExVEkDEQq1p3nH/P2ZmZmZmZhFAB1+YTBWM+z/EQq1p3nEBQPOOU3QkVxpANxrAWyCBGUAJih9j7loEQM3MzMzMzAlA7Q2+MJmqDkDOqs/VViwTQAAAAAAAAAtAHOviNhrA8T+7Jw8LtSYJQACRfvs68AFAs+pztRX7GECTGARWDq0MQI51cRsN4AZAmnecoiO56j/AWyBB8SMWQG+BBMWPMRdADk+vlGWoJUDSAN4CCQoOQMRCrWnecQFAAAAAAADAEEAT8kHPZtULQACRfvs6cBdAeVioNc27BkBt5/up8dL8P9obfGEyVfs/C7WmecfpEEDwFkhQ/JgOQEI+6Nms+gpAZmZmZmYmE0CpE9BE2PD+P0Jg5dAieyBAMuauJeSDC0Cmm8QgsHIMQMPTK2UZYhRApN++DpyzDEAdOGdEaW/yP/jCZKpgVBRACRueXikLE0B7FK5H4foeQAAAAAAAAPY/pSxDHOuiEkCamZmZmZkGQGZmZmZm5glA845TdCTXFEAj2/l+anwdQIlBYOXQIgRA7Q2+MJmqC0AAAAAAAIAQQI51cRsNYABAEhQ/xtw1AUAMAiuHFlkRQAAAAAAAAPs/JCh+jLlr+j9pAG+BBMUCQHctIR/07AtA8rBQa5p39j8AAAAAAIAdQPcGX5hMVRJAJuSDns2q+j8ldQKaCBsKQHE9CtejcCFAexSuR+G6GECneccpOpIAQL8OnDOitAhAjnVxGw3gD0Cze/KwUGv7P7mNBvAWCBdA30+Nl26SFED99nXgnBEIQKd5xyk6EgxApSxDHOvi/z+OdXEbDQAuQAAAAAAAgBBAmN2Th4Va+j+xUGuadxwLQCv2l92ThwNAKH6MuWuJDEA8vVKWIY4OQB/0bFZ9LgVAXI/C9ShcCEDdtYR80LMMQI51cRsN4ApAFvvL7snDB0AAAAAAAIANQMbctYR8kBBAejarPlfbIEBmZmZmZuYQQFCNl24SAxdAd76fGi9dD0B/2T15WCgIQIofY+5aQhJAV+wvuycPAEDNzMzMzEwHQLWmeccpug9ASZ2AJsIGEkDBOSNKe0MSQJqZmZmZmf8/93XgnBGlAUAAAAAAAAAAQHlYqDXNOxZAke18PzVe/T/tDb4wmSoIQP5l9+RhIRxApSxDHOuiE0CZKhiV1IkAQEcDeAskqAdAGXPXEvIBHUAAAAAAAIANQI51cRsNIBNAT6+UZYjjEkBZhjjWxW0DQKkT0ETY8ANAhA1Pr5Rl9T8Rx7q4jYYUQBE2PL1SFgBACD2bVZ8rEUA51sVtNIDzP0YldQKaiAVAmpmZmZmZDEDx9EpZhngbQMUgsHJoURJAmpmZmZmZA0DcRgN4CyQYQAaBlUOL7BtAfa62Yn/ZDUDMf0i/fZ0PQDMzMzMzMwdA6gQ0ETY8CkCz6nO1FTskQPvL7snDAhVA6Nms+lztAUBm9+RhodYcQPcGX5hMlRFAxY8xdy0hAEBUUiegibALQLdif9k9eQNAEHo2qz6XEkA1XrpJDEIRQPcGX5hMVRNArrZif9ldJ0CamZmZmZkOQLPqc7UV+xRA5WGh1jQvFEBB8WPMXYsQQMe6uI0G8AdA6Ugu/yF9G0CC4seYu5b8Pxzr4jYawAFA2V92Tx4W+D9UdCSX/xAHQFmGONbFbQZANBE2PL1SCECjkjoBTUQYQKVOQBNhwwhAio7k8h/S+z+MSuoENBH/P6vP1VbsLwRAWYY41sVt/z9ZhjjWxe0HQAAAAAAAgBFAmpmZmZmZEUBEaW/whcn3P/YoXI/C9QhArIvbaADvDkA7cM6I0l4HQNnO91PjJQ1A9wZfmExVE0BLWYY41sUJQMRCrWnecQRAayv2l92T+j/5D+m3rwMDQD/G3LWEfP0/9wZfmExVEkCjAbwFElQRQKVOQBNhQwpA7Q2+MJmqCkCgibDh6ZULQKW9wRcm0xVA2ht8YTJV/j+GyVTBqCQHQAAAAAAAAAtA7uvAOSMKG0Bn1edqK3YbQC1DHOvithFAZ9Xnaiv2A0Ac6+I2GkAPQB+F61G4Hg5A9pfdk4eFCUDOqs/VVuz2PwAAAAAAAAJAAAAAAAAACkCBJsKGp5cRQH4dOGdEafM/1JrmHadoAECoV8oyxPElQAmKH2PuWgdAS+oENBG2FEDD0ytlGeIEQD0s1Jrm3RBAAAAAAAAABkBR2ht8YbIFQPyp8dJNYv4/GlHaG3xhD0CBlUOLbKcRQNxGA3gLJCJACfmgZ7OqEEC28/3UeGkFQDMzMzMzMwxAb4EExY/xFEAAAAAAAIASQD7o2az6XPw/RiV1ApqID0Bn1edqK3YSQKMjufyH9Ps/gLdAguLHB0Cze/KwUOsLQF3cRgN4C/s/mpmZmZlZFkCxv+yePOwgQLMMcayL2/g/E/JBz2bV8D/QRNjw9MoPQGpN845T9AJA9P3UeOkm/z8ukKD4MeYFQBBYObTIdvc/T0ATYcPTD0AAAAAAAAAQQKYKRiV1whdAZDvfT42X/T/TvOMUHUkQQMWPMXctIQRAEqW9wRcmGkCRD3o2qz4bQGKh1jTvOPo/KVyPwvUoBEA5RUdy+Y8OQDtwzojS3iBAzO7Jw0ItDUAH8BZIUHwRQKvP1VbsrwtAYqHWNO84A0BHcvkP6bf6P3PXEvJBzxlALUMc6+I2DEDecYqO5PIHQO0NvjCZKgpArkfhehQuAkDDZKpgVNIPQIlBYOXQogNAOwFNhA0PE0Ai/fZ14DwgQGrecYqOZAhAIEHxY8zdCEAfhetRuJ4AQC7/If32dRZAmpmZmZmZ+z/l0CLb+X4KQE8eFmpN8/M/LUMc6+I2B0A/xty1hHwZQDMzMzMzMwNAqRPQRNjwBkDeAgmKH2MFQH9qvHSTmCFARiV1ApqICUCrz9VW7K8JQJoIG55eKQpAofgx5q4lD0CFfNCzWfURQPYoXI/CVSRA07zjFB1JCUD5D+m3r0MYQHKKjuTynwxAAAAAAAAAEkDxY8xdS8gPQMRCrWnecQtAQfFjzF2LGkBPr5RliOMBQOSDns2qTwpAw9MrZRmiE0Ac6+I2GgAcQIGVQ4tsJxNAi/1l9+ThCECq8dJNYhAIQFmGONbF7QpA5q4l5IOeCUB7FK5H4XoEQJSHhVrTvOs/HOviNhrAA0AdOGdEae8WQPcGX5hM1RBAjErqBDQR/z9z1xLyQU8QQAAAAAAAAP8/FYxK6gQ07z9d/kP67WsTQGZmZmZmZgdAIv32deCcCUDeAgmKH2MLQHuDL0ymCg5AZapgVFInBUCpE9BE2HAMQAAAAAAAAAhAcT0K16NwBEBVMCqpE1AgQOauJeSDPiBAi/1l9+ShEUBZhjjWxW0FQNO84xQdSQtA4QuTqYLRBUBfKcsQx7oMQMRCrWne8RRAtaZ5xyn6FEB4nKIjuXwLQHEbDeAtUBdA7uvAOSNKB0AVjErqBLQAQC0hH/RsFhBAZapgVFKnAEAkl/+QfrsUQBE2PL1SVhZAE/JBz2ZVAkAnMQisHFogQHo2qz5XWwhADeAtkKA4EkBGtvP91DgUQNGRXP5D+vg/YTJVMCqpCkCGyVTBqCQDQBZqTfOO0xBAWYY41sXtBUCaCBueXqkUQGZmZmZmZglAbcX+snvyD0BEi2zn+ykUQNUJaCJseA5A/fZ14JwREUDtDb4wmaoNQHe+nxovXQZAaCJseHqlBUBaZDvfT40AQC7/If329RJAejarPlfbAEC5jQbwFkgEQAAAAAAAAAFAjnVxGw3g/D8B3gIJij8kQIV80LNZ9RBA+n5qvHRTEED6fmq8dJMIQAAAAAAAAAxAw/UoXI9CF0Dy0k1iEFgEQNUJaCJseP0/E/JBz2bVDEC6SQwCKyckQK1p3nGKThhAHOviNhpACEBgdk8eFmr6PyV1ApoImw1AbcX+sntyB0BWDi2yne/tPx+F61G4Hg9A1sVtNID3E0BMN4lBYGUIQD7o2az6XBdAh6dXyjLEA0AqOpLLf0gFQMrDQq1p3gtAak3zjlN0DUAJ+aBnsyoQQAfwFkhQfAdApHA9CtejBkAzMzMzMzMGQKvP1VbsL/0/w2SqYFRyJEAyVTAqqRMNQO2ePCzUmhRAF0hQ/BhTK0BlqmBUUicDQIlBYOXQIghA4JwRpb1BCUBR2ht8YTIJQMe6uI0GcBZAmSoYldSJBECP5PIf0m/5P3Gsi9toAOs/MzMzMzOzEUDbiv1l92QPQNIA3gIJigBAIGPuWkI+B0Cxv+yePCz/P6yt2F92TxVAnl4pyxDHAECqYFRSJ6D0P+0NvjCZKgVAAAAAAAAAA0DXo3A9CtcHQOSDns2qzxNAJXUCmggbC0Ac6+I2GkAGQLTIdr6fGhJAbef7qfHSGkBfmEwVjMoSQAU0ETY8PQNAio7k8h+SFkCI9NvXgXMEQAAAAAAAAPk/RwN4CySoAUCUh4Va07wDQCNKe4MvTApAYqHWNO849z8AAAAAAMARQDlFR3L5jwhAO99PjZeuEEB6Nqs+V1sDQH0/NV66SRBAat5xio5kD0Dy0k1iENgFQFfsL7snDwVAAAAAAAAAD0COdXEbDWATQApoImx4eglA46WbxCAwBUDf4AuTqQIEQG3F/rJ78g9AcoqO5PIfCUBiodY07zgSQGUZ4lgXdxZAHHxhMlUwDUA730+Nl+4TQNSa5h2n6ABA9UpZhjiWGUCoxks3iYEYQJ+rrdhfNhhAxY8xdy2hFUBO0ZFc/gMQQMrDQq1p3gxAuY0G8BZIDUCmCkYldYIDQAAAAAAAABRANxrAWyBB7T8zMzMzM7MTQN21hHzQ8xBAKH6MuWsJIUCOdXEbDQAuQD2bVZ+rrQpAWRe30QDe+j9O0ZFc/kMAQFdbsb/sHhFAHOviNhrA/T9kXdxGAzgZQLN78rBQKxVAak3zjlN0CEBiodY07zgQQDY8vVKWYRRAzF1LyAc98z8Mk6mCUUn0P/LSTWIQ2ABAMQisHFpk/T8/NV66SYwBQAAAAAAAABRAKjqSy3/ICkDpSC7/IT0YQOY/pN++ThFAhXzQs1m1E0CgibDh6ZXkP8e6uI0GcBFAT6+UZYhjCkD5D+m3rwMWQD9XW7G/rB9AWmQ730+NCEC9UpYhjnUcQHKKjuTyHw9AF9nO91PjHUAAAAAAAAADQDSitDf4ghBAw2SqYFSyKUB5WKg1zbsLQAAAAAAAAP0/sVBrmnccAUAzMzMzM7MAQDMzMzMzMwlAysNCrWleCUBz1xLyQc8OQP32deCcEQ1AWmQ730+NBUAAAAAAAIAQQJ5eKcsQxwFAW7G/7J48DUCx4emVsgwFQHrHKTqSCxdAh6dXyjJECUAkKH6MuesBQAAAAAAAAAdAUiegibDh+z8OvjCZKlgaQAAAAAAAgAhAAAAAAAAACUDwp8ZLN4kPQCbkg57Nqvc/VTAqqRPQDkDhehSuR2EgQFTjpZvEIPc/mbuWkA+6FkBtxf6ye/L+P4qw4emVsgRAgSbChqdXBEBkzF1LyAcPQOzAOSNK+wxAejarPlfbC0AAAAAAAIAIQFRSJ6CJ8BdAc9cS8kFPBUDMf0i/fV0cQBrAWyBB8fs/wOyePCzU+z8xCKwcWuQIQJAxdy0hHwZAw2SqYFQSEED3Bl+YTFURQE3zjlN0JP0/07zjFB1JCkAc6+I2GsACQAAAAAAAAANABhIUP8bcAkD35GGh1jQAQKTfvg6cMxxAZmZmZmZmEkAT8kHPZlUBQJYhjnVxmxJAP1dbsb8sGkCamZmZmZkFQGDl0CLbeQJAZF3cRgN4EEB9rrZif9n/P3ctIR/07AZAEhQ/xtw1AUCuR+F6FK4EQC1DHOvithVAoyO5/If0CEDLoUW2830aQJF++zpwThNATx4Wak3zFkAAAAAAAAASQM3MzMzMjBBAT0ATYcPTDEBd/kP67ev7P+F6FK5H4RBANBE2PL3SAEBg5dAi27kYQOVhodY07xVAKjqSy3/ICUCneccpOtIbQKHWNO84JSBAjSjtDb6QIECBBMWPMfcFQLHh6ZWyDAZAJXUCmgibDEAzMzMzMzMDQFwgQfFjzBVAhjjWxW20CUDA7J48LNQKQKVOQBNhwxJA3gIJih9jA0DNzMzMzMwTQAn5oGezahBANBE2PL3SB0DEQq1p3nEEQGZmZmZmZgNA4lgXt9FAF0Bm9+RhoZYTQH/7OnDOCBhA7MA5I0r7EUB7gy9MpiotQAAAAAAAAPA/AAAAAAAAA0AYldQJaCIWQMUgsHJoEQ5AhslUwagkCECeXinLEMcKQPW52or9ZR9A5BQdyeU//j/Y8PRKWQYJQAAAAAAAwBFAzczMzMzM/j8awFsgQbESQLWmeccpug1ASnuDL0wmAUCutmJ/2b0IQLFQa5p3HARAuECC4scYAkArGJXUCegEQPRsVn2udhZAUWuad5wiAUAzMzMzMzMRQDJVMCqpEwNAoBov3SSGDEAU0ETY8PQcQApoImx4+hFAliGOdXEbF0DRItv5fuoEQGpN845TdPo/D5wzorQ3BUBiodY077gTQE2EDU+vlAFAAU2EDU+vAUDMf0i/fR0BQM3MzMzMDBBAHOviNhrAB0AzMzMzM7MRQJqZmZmZGRNAObTIdr6fFED+Q/rt60AUQNuK/WX35AVADr4wmSrYEUC/DpwzorQCQAisHFpkexVA3gIJih9jAUCWsgxxrIsRQAAAAAAAgApAgnNGlPYGEEAAAAAAAIAFQPYoXI/CVSFAAAAAAAAA9j/tDb4wmaoHQFyPwvUo3BRAZ0Rpb/CF9z+OdXEbDaAVQJ5eKcsQxwlAAAAAAAAAGEA4+MJkquAVQBPyQc9m1QNAb/CFyVSBFkAAAAAAAAAFQAAAAAAAAAdAowG8BRIUFkC7uI0G8JYBQF1txf6yOxBA0ETY8PTKCkAAAAAAAEAQQO7rwDkjyhFAMzMzMzOzC0A0gLdAgmIbQAAAAAAAAB5A5j+k374OG0Dpt68D54z/PwAAAAAAABRAmpmZmZmZDkDuWkI+6FkFQPaX3ZOHheo/WYY41sVtBkDqlbIMcSwUQOELk6mCUQVAMnctIR90GkDKMsSxLm4OQNXnaiv2lxNAZ0Rpb/DFHkBVMCqpE9AEQC/dJAaBFRRAjnVxGw3gEkA5RUdy+Y8IQLpJDAIrxxVAXCBB8WOMEkCPU3Qklz8UQHKKjuTynwFAj+TyH9KvEEDUK2UZ4tgVQFJJnYAmwg5AE/JBz2ZVCUBfKcsQx7obQIbJVMGopPU/gSbChqfXAUAK16NwPQoJQE+vlGWIY/Y/waikTkATA0Bj7lpCPmgXQM3MzMzMzAJAAiuHFtlOBUDUK2UZ4lj6P2pN845T9AVAseHplbIMB0ALJCh+jLkBQO7rwDkjSgRAgSbChqfXB0CbVZ+rrZgVQFTjpZvEoABAQKTfvg6cF0AKaCJseHoDQBzr4jYawA1AkzoBTYQNEEA3iUFg5VANQGkAb4EExQhAWvW52oo9FkDwhclUwWgTQI51cRsN4P4/vJaQD3p2EUAofoy5a4kFQJ5eKcsQx/4/eVioNc07DEDwhclUweggQNO84xQdSQBAq8/VVuwvD0BCPujZrHoEQI51cRsN4Pk/m1Wfq63YDkAQ6bevA0coQF1txf6yuxVAio7k8h+SG0AAAAAAAAAEQC6QoPgx5vo/9wZfmEwVE0AAAAAAAIATQHuDL0ymigFALSEf9GxWCUCze/KwUGsFQC/dJAaBlfY/jnVxGw1gAkAAAAAAAIAQQPT91HjpphBAmpmZmZmZEUD0bFZ9rvYWQK5H4XoUrgtA4L4OnDMiDUAQWDm0yHYXQDMzMzMzMw1A5WGh1jQvEkDV52or9lcSQBB6Nqs+FxNAxEKtad5xAkB9rrZif1kPQBniWBe38SBA2ht8YTJV6j8VHcnlP6T7P3qlLEMcqyFA4JwRpb1BDkAlBoGVQ4sHQM3MzMzMjBBAE/JBz2ZVBEBrK/aX3RMbQLN78rBQ6wVAPZtVn6stDEDEQq1p3nEKQJ5eKcsQx/c/ppvEILByBkD/If32deAWQCv2l92TRxlAT6+UZYhjDUCBBMWPMZcgQCBB8WPM3QBAxty1hHyQEUD2l92Th4XxPysYldQJ6BBAJQaBlUPLFUCu2F92T94RQEvqBDQRtgpAgy9MpgqGGUDMf0i/fZ0EQD7o2az6XP8/JuSDns2q/z97gy9Mpgr4Pwkbnl4pSwNAnMQgsHLoGEDwp8ZLN4kGQOeMKO0NvhZAE/JBz2ZVCUCh+DHmrqUIQI51cRsNYANAAAAAAAAAAUDjpZvEILD/PwmKH2Pu2hRAeqUsQxyrGUDByqFFtvMEQKd5xyk6kglAXwfOGVHa/z8gY+5aQj4WQM3MzMzMzAFALUMc6+K2CEBsCfmgZ3MfQNxoAG+BhBVAcoqO5PKfBUAJ+aBns6oSQOVhodY0bxpAUdobfGEyAECDwMqhRbYBQJtVn6utWAdAMzMzMzMzAED7XG3F/rL3PwMJih9j7g1A+8vuycNCCUCoV8oyxLEDQG3n+6nxEhFAkDF3LSFfEUBGtvP91HgLQEa28/3UeAlAGsBbIEHx+T9YObTIdv4WQDSitDf4IiBA4JwRpb3BD0D8qfHSTSIWQLKd76fGSw1AJzEIrBzaBkAgY+5aQn4XQEmdgCbChvk/f9k9eVgoFUBX7C+7Jw8WQDMzMzMzcxdAB84ZUdqbBUDNzMzMzMwJQL6fGi/dxCJAZmZmZmZmBED3Bl+YTBUKQMx/SL99nQlA6Gor9pfdGUA2qz5XWzEIQBkEVg4tsv4/M8SxLm6jBkD5MeauJaQQQDtwzojSXhFAf2q8dJPYGkCNKO0NvjALQAtGJXUCWhxA8WPMXUvIDEDZPXlYqLUMQAAAAAAAAAlAuK8D54yoCUAc6+I2GkABQD0K16NwPQlAWmQ730+NDECWQ4ts5zsQQNc07zhFBxtAHOviNhrADEAFxY8xd20SQGx4eqUsQxBAGw3gLZAgFEBxPQrXo3AKQFyPwvUoXAVATfOOU3Qk+T8T8kHPZlUCQMKGp1fKchRAliGOdXEbB0BlGeJYF3clQAAAAAAAAAhAi/1l9+RhC0BmZmZmZmYFQDBMpgpGpRdAApoIG56eI0CamZmZmZkEQCh+jLlrCRRALUMc6+K2B0BL6gQ0EbYrQOcdp+hIrgxAJuSDns2q8j8AAAAAAAAIQESLbOf7KQtAcT0K16PwFUCwA+eMKC0RQCxlGeJYF/Y/AAAAAAAACkBKe4MvTKYUQI51cRsN4Po/C0YldQKaGEAOLbKd7ycNQCsYldQJqBBASZ2AJsKG+j93LSEf9GwBQDlFR3L5DwpA7lpCPuhZEEBxGw3gLRAIQD2bVZ+rbRJApb3BFybTDkDtDb4wmSoJQHctIR/0bBBA8x/Sb1/nJEDvycNCrekJQC7/If329QZAzF1LyAc99z924JwRpb0OQMdLN4lBYPk/E/JBz2bVCkBn1edqK3YCQIXrUbgeBQRAgSbChqfXCkAJ+aBnsyoQQI51cRsNIBNAGCZTBaNSFUAXSFD8GHMZQN9PjZduEvo/5q4l5IOeCUDqBDQRNvwUQGpN845TtBJA2/l+arx0AUC6SQwCK4cIQEvqBDQR9hhAxEKtad6xIEACK4cW2U4AQDBMpgpGhSFA3bWEfNCzBkBqTfOOU3QRQJqZmZmZmRBAHOviNhrACEAm5IOezaryPygPC7Wm+Q5A/Knx0k3iGEA2PL1SlqEDQARWDi2ynfw/w2SqYFQSE0AgY+5aQj74P5hMFYxK6hVAcoqO5PIfBEDNzMzMzMwGQOviNhrAmxtA7uvAOSPKBUCOdXEbDeATQF8HzhlRWgpAs3vysFDrBEA1XrpJDIIJQHsUrkfh+gpAIEHxY8zdCUDsL7snD4sWQDSitDf4IiJAejarPlfbB0AAAAAAAAAGQHE9CtejcAhAZohjXdxGBkAkl/+QfnsDQKhXyjLEcRFAQs9m1edq9T96Nqs+V9sOQMnlP6TfPiJAowG8BRIUFECamZmZmRkGQAn5oGezqhFAYqHWNO+4EEBPr5RliOMNQOVhodY0bxlAnMQgsHKoEECq8dJNYpALQOoENBE2vAhAIv32deBcF0BGtvP91LgUQBe30QDeAhVAGQRWDi0yGUAsZRniWJcNQNbFbTSAtxNA8WPMXUvIBECOdXEbDSATQE9AE2HD0w5AGQRWDi2yA0B88rBQa9oWQE+vlGWI4xFAWmQ7309NGkDbiv1l9+T+P0tZhjjWxQlAHOviNhrAAUAT8kHPZlUGQPcGX5hMlQdAe4MvTKZKE0DiWBe30YAbQH0/NV66iRZAcoqO5PIfBEByio7k8h8IQEYldQKaiAhANxrAWyDBDEAkKH6MuWsBQD0s1JrmnQhAseHplbIMAEAgQfFjzN0BQBzr4jYaQApAAAAAAAAAB0ClvcEXJpMaQIenV8oyRAVAak3zjlP0C0AYldQJaKILQM07TtGRXAlAzojS3uCLEkAAAAAAAAAJQD55WKg1zRNAVTAqqRPQD0Ai/fZ14FwcQPrt68A5YxtAF0hQ/BhzBUD3Bl+YTFUQQBzr4jYaQA9AAAAAAABAEkBpAG+BBMUFQO7rwDkjyhBArIvbaADvCkAAAAAAAIASQAu1pnnHaRFAzczMzMxME0Dgvg6cM6IOQGZmZmZmZgtAsVBrmnccE0Ap7Q2+MJkFQLu4jQbwlghA16NwPQpXE0CdgCbChkcgQD9XW7G/bBhA9ihcj8L1C0DA7J48LJQWQE+vlGWI4wJAmggbnl6pCUAQWDm0yHYDQCSX/5B+Ox1ALUMc6+K2BUAukKD4Meb5P7dif9k9+QRA0SLb+X5q+z9m9+RhoRYTQNk9eViotQJAjnVxGw1gAEAg0m9fB04UQI51cRsN4ARAS1mGONbFCkCeXinLEMcAQJYhjnVxWxFAzczMzMzMDEAFNBE2PL0OQMpUwaikDh9A9GxWfa62/T/pJjEIrBwFQHe+nxovXQFArK3YX3ZP8z8ldQKaCLskQM3MzMzMzAlAdQKaCBseEEDtDb4wmSoGQHe+nxovXQ9A/yH99nUgF0BmZmZmZmYHQIV80LNZdRNALGUZ4lgXC0Df4AuTqYIHQJ5eKcsQRwlAE/JBz2ZVCkAPnDOitDcBQAfOGVHamwpAPL1SliGO+T9pb/CFyZQaQAAAAAAAgBNAAAAAAAAA9j+neccpOpIKQFyPwvUoXAhAfT81XroJGkB6Nqs+V9sDQCBB8WPMXQtAFvvL7snDBkAAAAAAAIADQHS1FfvL7vo/rIvbaADvAkC6awn5oOcBQFmGONbF7QlAKcsQx7o4FUCsi9toAG8IQPcGX5hMFQhA8IXJVMFoEUArGJXUCegIQNejcD0K1+k/WYY41sVtFEAW+8vuyUMOQNSa5h2n6P4/E/JBz2ZVA0Ac6+I2GsAHQOLplbIM0SFAAAAAAACADUCxUGuadxwKQCNKe4MvTANAEHo2qz7XAUDmriXkg579P9O84xQdSQJAG55eKcvQFkDUmuYdp2gNQBzr4jYawAtA/tR46SaxDEB6Nqs+V9sAQMx/SL99nQlAxEKtad5x/j/6fmq8dNMRQAAAAAAAABFAiUFg5dCiCkD0/dR46SbhP1jKMsSxLglA6Ugu/yF9AkDDZKpgVFICQAAAAAAAABBANjy9UpZhH0A6kst/SD8RQA1xrIvbKBlANe84RUfyFEAzMzMzMzMQQJ0Rpb3B1xVA001iEFi5GUC5jQbwFkgKQE+vlGWI4wZASZ2AJsKGEEDHuriNBvASQGb35GGh1g9AM8SxLm4jFECwcmiR7fwIQD0s1JrmnQlAbcX+sntyD0CneccpOpIBQBzr4jYawAZAHqfoSC6/H0C1FfvL7mkgQC0hH/RsVhVACYofY+5aDUD3Bl+YTNUQQOQUHcnlP/g/aJHtfD81AECeXinLEEcNQAAAAAAAAARA7Q2+MJmqAkCKjuTyH9LwP2fV52ordgBAZapgVFInDEB1ApoIGx4FQMxdS8gHPfk/PzVeukkMDUABTYQNTy8DQIQNT6+U5QtAW9O84xSdAUAAAAAAAAASQPaX3ZOHhQtAOUVHcvmPBkClTkATYUMQQI51cRsN4BBAH/RsVn0uA0Byio7k8h8EQOXyH9Jv3xhA3EYDeAskEkAQWDm0yPYEQPkx5q4l5A1At9EA3gJpIUAgQfFjzF0AQEATYcPTaxtANBE2PL3SBUBn1edqK3YAQOf7qfHSTQdA8tJNYhBYBEAAAAAAAAD4PznWxW00gPg/zH9Iv32dC0Bz1xLyQc8PQOC+DpwzogtA4JwRpb3BD0AwuycPC7ULQJJc/kP6bRRAdQKaCBseBEC1pnnHKboMQNxGA3gL5BBA2V92Tx6WE0CQMXctIV8RQFdbsb/snhBAQfFjzF3LBUAAAAAAAAAAQGZmZmZm5hJANBE2PL3SAEBoke18P7UDQJp3nKIjeRhAAAAAAAAADEAJ+aBnsyoRQCcxCKwc2gxAOiNKe4Mv9T9pb/CFyVQSQDMzMzMzsxBA93XgnBGlJECOdXEbDWASQClcj8L1KAlAPZtVn6stCkA5RUdy+Y8SQLraiv1ldw9A8KfGSzeJDECeXinLEEcHQIbJVMGo5BZAAAAAAAAAA0BmZmZmZmYLQMbctYR8EBlAVOOlm8TgEkBGJXUCmggCQD0s1JrmHRZAWYY41sXtCUCOdXEbDeAQQJqZmZmZmRBA7Q2+MJkqCEA6kst/SD8fQMUgsHJoURBAz/dT46UbG0BwzojS3iATQGrecYqO5ANAzczMzMzMCUBfB84ZUdoQQKd5xyk6kgpALGUZ4lgX+D9OYhBYObT3PwAAAAAAgBBA6Nms+lztBEBmZmZmZmb3P9Sa5h2n6ApALSEf9GzWCUDT3uALkwkkQLbz/dR4aQlAfa62Yn/Z+T/PZtXnamsaQBzr4jYaQAtAZF3cRgN4D0AAAAAAAIABQIGVQ4tsZxhAzF1LyAc99z9xGw3gLZD7P2WqYFRSJwdAMlUwKqkTAkAE54wo7Y0VQMKGp1fKshlAak3zjlN0BUAdWmQ73w8VQN/gC5OpQhdAE/JBz2ZVDUDNzMzMzMwHQJYhjnVxWxBAat5xio7EIEAp7Q2+MDkgQI51cRsNYA1AKxiV1AloCkA730+Nl+4JQHRGlPYG3wFAylTBqKQuJkDtDb4wmaoEQFvTvOMUXRJAHOviNhrADUDhC5OpglEIQLWmeccpehxAJJf/kH57BEBHA3gLJGgZQBKlvcEXpglAfa62Yn9ZAkBqTfOOU/QDQDSAt0CC4ghAd76fGi9dDEDTvOMUHUkMQGZmZmZmZgxAJuSDns2q9j8U0ETY8HQYQPaX3ZOHhRJAT6+UZYjjC0APC7WmeQcWQPs6cM6IUhBA/Bhz1xLyAECZKhiV1AkDQEYldQKaCA1A9wZfmEwV/z/qlbIMcSwNQDy9UpYhjglAEFg5tMh2+j9wzojS3uACQCfChqdXSgZAHOviNhrA9D/Mf0i/fR0GQGEyVTAq6RNAW7G/7J68AkCx4emVsswUQEGC4seYu/4/AAAAAAAAEUBhMlUwKukRQOELk6mCUQVAI0p7gy8MEED+1HjpJrEBQCxlGeJYFwZA+aBns+pzCkCU9gZfmEz5PzxO0ZFc/t8/CfmgZ7Pq+z/FjzF3LSEQQPs6cM6IUhBAxm00gLdAG0BrK/aX3RMbQFTjpZvEIPs/AAAAAAAACkB6Nqs+V9sKQBpR2ht8oRBABhIUP8bcA0DTvOMUHQkTQLUV+8vuSQ1AYqHWNO84DUCOdXEbDQAuQEmdgCbCJiRA", "encoding": "base64", "path": [ "_data", 0, "x", "buffer" ] }, { "data": "9BMHKccwB0BsKBR8yGoGQE+3ZfjXcQdA5jrh4pJ3C0B81yfL2ugTQIiEaLEftBNACQue+S1C+z8rxX6vB8XxP+6gUBxvRu0/+hduVdQ0EECGMewMbCkCQCg3+hbLeANAIWQQiy1S9j/yvi3g1rwCQJW8YlVl8Pw/ZytrrJ3Z9j/KgDRDIp3gP/stdEoFt/Y/lmynf1Ca9z8fGpUFg2IDQIu/5thG7OU/4vfLhHfnAECghJqQ2eHoP0HFgyJwahNAw4ettFJEBECwOLAImrgLQGptB2FJdQpA7Uptl1Xq9T/QN9owQvDrP3ItPhXGfAJAE8i7l4Cr/j+XMpJsDSwAQBiG4DCUgvc/vBeh9G4aCEBBk0+RZ1L3P99R0y99oBNArtK32PZB9z9QL51r14oCQK4SnnVXivQ/L9Kav8qNBECRxm3zNwwEQHMfuR6a++o/8eOba1A8C0CBuCeIRZr0P40dPrP/owdAuhL5xArm/D/N4g8y9QoFQN4G/eW0LP4/ey5CKZ6X7j9emVzxha/+PxXzdpvh5wVAM/o/aKtNAkA3Xbm5x674Py/qFuStOApAkGUQ7DHOA0Cfh1PX2GD+P4gC5ei/+PY/KRjGBiGhAEDX46sXVuoDQN5lSfjSjfw/TAQZa8GlA0CWCRc8GwnvPwyqZhJIHfY/izfBKo2DEEBijIH0BbIJQMhtF5h08O0/3mld3WR09j8EDEMvvNL7P5kPfaszTOs/q9k26B6Q4z/9XM+z3TcQQPuN6oci3PU/+WSzk7kC7D+PhWgcdLr0Pyu8+azwqwRARPp4ePfD+D/AZ/qz9V7rP2gNdkkyCPA/7etymQebCECTn0Q+YFIAQC76er/p9u0/HyDHxFQd9j8YVQcTa/ETQO1WvnFyd+o/kTzkD2PA+D/8sl8+JZ78P6qIp3eY8/s/wN48gxIgEUCopnjnsnz3P/hypQDpHwlAm/8Mo4nU+T9ui7RBVW8AQEeLvmKwDg9ATkzGKAtV/j9Zw9guh8z0PypXoH9/aPA/yOf0s53+7z/gsO8fbaMAQBf0dJQYjvY/G3sl8CdHB0D0PJtFKAgCQBhCltuSwv0/RwsOutUU/z8wY9cjxZr2PxxEiM/thfc/+Xe4GY1hBECS2Xaj3TfzPxDySU6/JgJAwa098lSDBUCSlty3wpUTQMRoAKrZsgNAkHVIKRHQ4D+Y7SlmAWf1P6ZE+91QUPA/CoyR+TMt5z8i7qcTQwH7P4Po8uvpIgJAla6uCTPw+j/ydGiWw2LxP4Ye3qYuxANA++3e43Qv/j/U1dRfgNb3P0/V5wjKqe4/+guchp1P/D9fb4Q+/MLwP6MyYq2vo/8/nRhVfqrE7z8YMvSD1+YJQCRHsDy+bgBA1lIsKSWb8j/0J6obFCcJQNH3YobS0eI/dLVEJuxCAUCbcQdIZ3wGQApbzF5gDgJAIyR3Trb//j+KMbfct938P6aktVT0ixFAWeNa5A6aE0D0i2+qFSUAQCj6RCtpE/o/ldsRAUxoDUA1tycZA872P3YsUI881fk/AUzeLbkKC0CDnFFCyW/4PxTXgiNX3vc/+6hzSiN/8T8N2urifRrnP7rqtB6PNANAwq4a67Dn9z8g85TtlGMEQHkmb1Bn0f0/j3TLXKnHEUCATeElzSIAQKxVDVda//w/A4jez8Y1+j/1wlLvNicCQBXexYW+B+8/7jP8WewIBUAiCjQjSK8EQOwnU+0zbwZA3Nqf6UCBBEA27lFilBHdP5vc+T3WWOg/kuDOtjvtAUCx2iB5+vECQL49+IujSRNAQoEk76JxAEDnOIMPbwTnP7gnhTT+SfQ/oXnz8kbA8z/vCn9gM1YAQDaw2WIrvwFAL0/GFpv5/D+MzMhk7xX6Pxwm30on9AtAxlwtXPJYA0De+DG1DDb0P7jvvj8grRFANWFrOi3iBkDYiJQM9/v9Pxe9udoNiQJAWlZZuVBi9D9cdG5zCWTqP8AG5g9TtgFAcXjS70eb5D+XQbMoNSX8P0v/oOslsfA/BWMBmMiv/j+dxydk5ojtP8U8Sv2zjwlA8RM+MSZFC0A0qYYRs9brP3fklohUyBFAG2LzDbcXCEBEnP5RrjcNQOLpHTMkqQRAzDfbn9R2A0BuRKMM/BwBQAMNATLac/o/ByJaEkyAD0CI2jaT3DIIQPIW9dKZgQRAQh7mbKKRAUDAlyUA42z8PzGcxH5ty/c/vIVo2zFc9j/8553SnFEEQGiir9lTSgNAXxdaH28qDUAEdCBr/nDxP6e2bNjrneo/y4TbAD1zE0B8yaWMgn0AQDB17/hHZwlAG9Qvd4uY/T/fEKsz9/j2P/sNUQ2E1uI/vTFuko749j+sT1tZ5x8FQHlauEHDTQJA21yESLRyA0CfGCLqJn/vP63I/lq4huo/O6M/ozl1DkBXUt4M/Nv+PxP+h/H4Kg1AKmy/2DXl/z+XtaFVoA8BQEwoa0wzyf4/6HJxeVjnEEDRP8F26RgBQKJUWg64lQtABsS78OFqAkB44p6oOqoSQNFaMcGuovY/Btvw3E5N+j9ZNtBSrzDwP0RgjkTQ2wRAUCL91GVzBUDpXbcHjfz+P7ubNT3/AgZArQXwDfoK+j+GirxO44/zP96UUOJ+9gZAkTf1g/X46T8DMMTuvJHkP3vRMezmlQlA5C7CSylc9z/rLLS9aFf/P8MA0GtUcuY//p/D//A89D/ouZ1Q7xkHQGqK3m3lSv4/P8qWZD0R8T/qPDqAtYjzP8S6Zdt40/I/r1jfjtk9DECWGDU9pzr7P8y+k/nBzP0/WKCUp7j8AkDoJp+mB+8IQNmNj6kjb/Y/9mRf9Z6F/j/vmkVNPDYNQAGsIeAcO/g/J9C7pvCg6T/jggyCqWn6P2269lH57vw/+seSSrfr+D/zfjx1qtf3P2Qoz2CxsQRAsIZtn1H4/z9mIxKxdKPlP2ixsC1wues/aIH7S5w84z9UVU2RTjzyPwzq1+sfGQNAmmMen5h6FECEAyA0Gg8AQHawVsiAugFAU59MGxaP9z86zxLpyCbyP1q7BSe8Kuc/RT/ONF8HA0DH7FyXklXzPyYEZQ0wT/U/iZcxBVDB8D+8Y3hLblf+P5kLDNJWafM/zLLhGwZaBEBKq+9RCYv8P+xC95kJMfI/70q+7xgJ9z+i3dwkKgUDQC4O3x3Lx/U/8hvxXB0A9T8JUTkintD7P+aMC4Q2DOA/XnD8Bz9mBkAFXetTbCoAQCXY+fFLXgVA5swU0Q1fFEDc5tjwwgH1P5tDVYoju/4/jwjw1Hfl+j/QCsH2zOboP+tEUNO4lxJAzTypJJhc9z/c+auO6Tz3P8etw/psbuk/IBSxllgn+T9wAHy9M4/3P8vgIO50gv4/CZy2NeGd9j+DaB6MXKkCQCDSPXsjTuY/2oqWn5q2BUB6z9GGeYzxP0KwkSFR7fw/bh8IpeYhAkDMJcPTEeIIQB2idUF2gPE/n1b/CX8dBkCw79+W8kP/P6iQu5E3CA9AaZgrGS0K/D9AFFduaaAFQBYMbIm7zQNA0FjwHx474D/Glc1MQZv3PyhkOBC70v4/ScyHj81j9z+66vvlWcDwP6/6Td0xDABA22BXAUQ79j9DTROxeaUGQNt8gN9QNeo/PFRnnF+WAkDkSfs9JwH/P5kAic+CuPE/2YeO+PJ+E0CV7TR0d6v3P4ZcpSdAivE/amedvY5W5T8RcJCiwjQMQBEHiJdx9/U/1wXt/ZrRBUCBAfOpVQEGQDplYYiX/hFAjzor8HA7EUBDsHhP1S8AQMeoc7OUDf0/XWaYUSWpAEBfisZ6CBAAQMvFC9hW2vA/PbMaFA8dAUC9fFSTQi/rP8ptISE19Ok/DQPJNvoa+T9TkCOEZg4LQPu6nym6ouE/qNVm927PBEBQ8R2qrQcBQGfwdSkosPg/WVFQOogT+D81V7IcnB/3P/FELuNEqAlAXC+6tWRH9T/yPzyRHa8AQJKhl93mGfQ/jxN8aOoEBEAchec/5V31P81WnCvm0AdAvB2CWy5P/z+W+6dknCoAQJTQv95PPwxAmIPUtTbH6z9POGk9s1T9P7uuMdwBnPY/22T7869vFECw6bHyLtr2P6nZMkFphfg/6xLrgbtGB0BnmRYse9UEQLVH+ddLwvA/TkjyvxOYD0Dq99PUDyz5P5ZEAhMb9AVAI7UkJfC3/T8WCbMpWeL1P+fArPMbKPQ/u3skmncb/D99oPPoFNUAQK48lOb7ewBAyDlYqcEI7T+Vq//g59jyP8TvDX67cPM/+iYcnDOJCkCHleGtM/MAQPBWb3ultwRAfX4zx80VDUCJBT5wT5cDQIK8m0tv8AdAGHLPZiEQ/z9TU3RnX1vxPw8u/F6A/fQ/fb/mwok5CUByd+cM5Z4CQNQhdO/IWABAp8rdoQZ0/D+HuxHIjbvxP3dcI57xtwFA8wmpv2l2AEBbtECDr0oCQFXxJHjgbuI/ioOf1vxx+j+c91bU7sr3PxkYvFpFavY/nvhqzohLCEDVGwhl63v2P79fagmJdeo/TYd8NcA2BUC7DPjsD5L1P1ktcNCw7vw/gYnOJ3O0DUAm4n+3rJAHQBc9jSnaweI/FNJaXz036z8fYjxxPjLzP08amvUU3xFA7k5EhPgvEEDkdTBpP+/7P12Lq7U46wRAQG+w6EL2EUDucLis+gn6Pxrs64aVdApA6g8Myl1bEkCl1gReDsQAQJUi/gOexOM/aVzBHHZzBEDLx/DQrBIKQElPy8B0wQNAsq46NqEL+D9LCaScXf7xPxS+ctO61QFAOQqCvv7xDEAVoC+3ZlUUQMmHMPeDXfU/p6wK2ff0AEAILxlOqjP6P/K+zeub6gBACcJao+268z/F28eMky34P3Iyv9wWhARAoJwwsvlP7j/Ag4GCiC3vP6rV2gPTMgNA5rCbVx399j9kHfsQnZAFQG7t6j2Ing5AS6AU+aVDBUDp42uOmFABQMPJPTdD9/0/V/QAl4AY/j94/qeqA2MPQG0ybpVpLABADZ9rI/afBkDIKkZXZ88SQAHEMTUZ2Pk/tLjrQcfE/T9RTSSC0wv4Pw4s+aoXV+0/nA0q1SVZ8T9P6WHSTvgPQFB/26sZNwFA9M1vAW6lAUAGTBtHhYb2P+cejZO8p/Y/FDhf5SK5/z+QJqRYmKsKQJ6uUoO9fgBAX4HDTkqg8j+yZxX7LHcJQGThgQjAWwBAK55GoOAUAEBr+ilpaOz5P0AgVkVEaf8/MClsBiiYAECc1KqIuLTyPxDBUbMh/e0/jqMJuMUHA0A3jxcRRoD8P/KVGkf/awFAI+ueEKUoBECLVAErEx73P15eVH6ZePk/HRDmlKUh5T8MrOyB2NsCQMxY9JKKsRJAwT+/Ct7TAUAkwHLdDAIFQDTZLDfDlvc/fijQRRIkB0BTpdW4EOvqP2lImmg52e0/h+RgtjtWAUCVZu+Q3D72P3jfGCUBHv8/0u9kr/ZsAUDvdjtXCnzjPy6uNLYh4/A/qRZWhsAH8T/u1uUcERsTQDD10ihBh/Y/LbDmW0M5EUB5Nc7WmLUSQGpUA0K5cxBAjMKl33d1B0Ah06BbhQAHQFBmPmqITe4/vvgedx8L8z/zYVku0nwMQDLy0gVeJPU/YLSEt++/8z9db+h4ytn3P0b4UMxXswhARvVCoKtODkCSF1Adkd31Pw44Jk+egvw/tM9GocOd9j9hULiJrUQPQPo+T+0PSgZAvnQEhNjGDUCBNlTvNLn3P1xwmUb27ARAewsjX4tMBkD9XqjwUiX1P3gcyvdR0P4/RdB3XbqF9T9HDZq2uosEQL73qp16sfU/MkfiNQcq9z8k5ACt7p7uP6JWGoRDzApArtJOtR9cBkAhCVirSs0DQOeoo5VklvY/9HPSHOvo+D82nIiqtpTkPwZU4PpiK/4/jdcwmH9I/j+SLI0rgCb4P2ic08l1Dvo/1K1tNG0Q9T8J8VkhkwDnP1a0iT31Gw1A/UAwNRz9A0DvCIrkzgbuP+6umVS4OAZAfxTxjvw88D+wH0SZPmD4P91qvexoaARAh1kk4aW4AEABw8v59r/+PyhklMxT5RBAdOPJ/6ZFCEBTWoji6WUHQJOzYQruB/s/0xodpljV8j8f5NWcwaQDQHB/yogznvQ/H2QB6vqjCUCRjaMngO8BQENWqcNGOAtAN1M8YuqwEEAQJzqTFcEOQEcNWiYfcu8/t89jw4gr/T+kFaIDyXoDQLSp6NqBWQdApys3UMvX+j9u5AJQDpoEQCzFMWJo0/0/dAaXO1Uo+T/wIf4Mbw8DQIC4Cq0ocvA/Ivbfw6fD+z+es3x1nKz+P34ubKN8P+w/eB3U6PnW6T9YSBtA+D4BQNd6JUn7L/Q/k8lAiD9N+D/UadiPTEX9P+F37m8JUuU/0o+duFpl5T/HTtkw0kX7P01PWMVY/AJAZjg4fFoMEEC2sY0sgV0BQEBgLFjiLQBA15VDoFXj+D/LXSVuASntP1vBT0zoWfY/E17I7aG4+j98nO98x0sQQAQEh0L8vvA/4l5Tlj2nAECJcrpKU9gDQHHdSWQeoQBADwhb0yGPDEAAzVWcjIv+PwL0KqIVBwVAR6v6TFjx6z/B+FvI0JEEQCJGEASyZ/U/43xVJXhgDUBdPS56U7jzPx9yym9iJOM/AigeCEOtD0BYkNOgmRwRQLkCi8e8uP0/k+51hAVp9D8agdgl2vD9P7G+2YLUvfc/rWMbBBBWC0Dh//R5GyryP43Ryd5kvAFAqkuOCuBsAEBMlx1wCJPwPyci5xhHTBJA32Wwj+JR+z/4PLibB376P1TYDnsudQhAVvWwgxzr9D9303DzJtUBQEWzW1cyI+o/YXwzXF44BUDM3m9x54TlP+g04pWMoP4/In9sPumFAUC1nZm1Jzz/P/7JYGMlZvo/SLqxKMvv+j/TtIk3tKgAQLtvmbDBKQFA+nDInPbcEkC+eJQOb0/3Pwbsc1E2nwlAaL+idzx+CEBSBLl7RJXxPxxT7U6W//s/QKGodE2B5D/1Gdy5Xb4CQBhIjeYiBfQ/sPNTQ1AMEkAC/Q7DIf4MQE+t9Jd6pwBA360N2qkyAUD9VNraFcgEQNBqcxekkQVAVqPO7pa+3j/8bbadjUzxP07l1OVDqPc/2c6YIdeY+j/YoaHqSq4CQIMW+maL+/M/YV7mNfxsCEDCy3SZ9Iv3PxnxQviNJPg/XC+P23OWB0AZKvHLgvX7P20KG5JE5vU//iq863WK8z+Dpu+1w+4KQPeF/qALRfU/zEFueIyZCkAixMRmTUoEQPT3gGVhq/E/tupGU/O8/z9zf5gSjscPQAAE4bcIHQBA9rIT2D9RFEA3fO6mnrj/P+H86QOVlhFADxQ2kHUA/j/orcMzWhP/PzNHR010kvc/tMb+NJ595j8yOSPSukwMQFjsiqHYz/8/V/d1vEhGBkDAP6Xq/gn2P6TCMQDJfA5Avnz7SUXIAkAcHJFUl7/vPxstAgEFbgRAn/jSYiZ9AEDgQYT3d3X4P7Lp8K7RaAhAKXWK+mq89D/RW3Mh2MQFQOZkpg6A/O0/Kwb2hz3xBUDcwMlm76DxP/xKIKgZlgJAOsMDq8LxA0B/mFp9JWQDQEQp4PynoAtA0KTLmEL8AUBCh5oXYl7xP0fJe4Cf7hFAUzACc94I+j/q+xS50F8EQD/FiqXuoeU/xifGY2QLBECF/rjJJ4kKQEPTIGhXygRAHeMInAWmA0C0UBrg3DD2P2vwVdy5wfc/Vdrvvv8aAEDsRZx6gezjP6+r8nC6BOo/Vl76h8ZeDkCbZFFjHa3jPzwNI9nETA1AIUp9Atzt9D9QLoPTg8XwP4kmkBdhzhBAWeCn0urg+j9iFrDVac7yPxJVB1iHyPA/t/FHQ+wJ+T8Tv20ndVb2P0eEE8Ef3hNAMgh2J9ZoEEAOVFpS+m7/P8ij2knt/Pw/tf7vkLU7AEBH/p2a83v5P06YZENLxAdAPCuS02ZWAkBY/Z8YzXr0PxZQ3yp8Duc/yBQb8gET7D8eIy3ORwEDQO+4Ie9mevU/kgjZdpSu/T/tuw2hp3TxP7PEkONCVRRAtcvfj+WrA0CQAsOpKBXyPxA/sFgBKfQ/Dp8cBHRP+D9UtTk7N/8GQMtAIU1WFBNArhnDTg2O8j9aERiXtLMIQGvfDVwrdf0/BaWGplFZ5z8tOjnd6McMQC3dYQ9QdfI/Hw2ym/0m/j+vhakeswIBQL0X1B8+HAZAdacOQ+2e/T+RAlGy6Jj+P4lDZEz+LQFARbMFkXDcBEB1bateNB7tP1/s71B2Ovg/YEa8W/0yAEDvq7kuACPdP9BUvbNtOPI/NqN9KOkpBEBphqqYpi/8P82PtTKKEgFA6nYvTJ3f+D8DxdBzTWcAQPOqt75TYPo/xEc0E8iu9j9FMfE47hkAQN9OcDrG8QlAkXOIr8lB6D/+Us3WfBEBQGBYvIKL8AFAbIqKuzHu9j82deTujZAQQFUU+K9LZ/4/ZCZYjBC5AkCIk5uxmKj/P448brUv5glATwKYc0SDCkAfIpgjmEYCQFKbG2tWKPM/N+4htfcV/z9HQ1UvVwTqPwa9NXG/EwVA8adCc0O56j8kPh4ozA4AQIeLop0Qwfk/0fmbcvenCEA/pSIV15P+P55ukr8sf/0/xQknSysX8D8OaGkmjp0SQLiI8XbPXfA/dfoxQaG6CEDOPu6govf6PykelQ3tAe4/BpWKkS80A0DHMjcFLaX8P+sSrOPPH+8/uZ4mCv468T+PZ7ZFYXfmP0IBRY0rcxBAc9zPHgYd8j+h9j5gmeDlP/un/BkRhPQ/QvmYiYQE9D82csdwOfr4P29+T1jywvk/aRkmpK3o/D/amplwdET/P6Y3/hAHpgVAM8buw3CG/T/QqIfW6Hf3P1gxc7MQovc/JvEPgidoA0CqYDHgINUGQByGNch0lvw/0uT+INWw9j+PoR67Yi/pP0Ih+hJlIuo/lwYozNpW9z9SaNKz028FQJqU00IzPPg/S+HoNEDpAkDq0kiClo0MQFLSUyTQKvQ/6mjG8gDM+j9HbSO57WoJQKZSOHK/OQ1AN7iNoRs+8z+epi+P3xcBQFeA4LfASPs/WJbcYo6GBUD4Z5RMC9T9P8NQLCApcwNALyqGGziSC0BV0yRgbcD3P0PGHH1X1w1AXnyabZRWEEBSMCQkQuP/P8S9+zlDFvo/tPTxvJl/AUDWMdiJBtr2PyszMxSb/wpAYIlEbL388D+fAevJoi8HQKDXH3vm2+k/SNRo+IUr/T/SERoF6GgEQE73khtdlfM/NMS1SDMLAEC3IXebibcJQNK4vlwvqv4/9tdnZ1e6CEDbPzbBlqT6P9nsN5qV7gRAnfHeNIdZ7D/OJA+a1DHwP/ClTSl6nfM/RKnbm8+S3j+kzNmRDVkRQNEa2toqtQdA2H0OOu3A/T9710pcfoHkP1N3gV5t4f4/XOPlQO3b8z8WiG8mJPH0Pz7P3Fkt3P8/klk+SzEPBkCC2OOqfMr4Pwv3/r0xqvo/K4PUNMee7T8L6o0Q4ZsAQFg/lsQSae4/xc1e5BiNDUCrmQGncvn5P4XTXeQt4fQ/9rFjy6XM+D9Dt+7WQrgKQLLo1FpcZ/g/0vy141gk+D/bX2UxAo4IQI6uilOtWvo/38y0MJPF/j9hK+/JbmTwPxULy3lUF/4/lLtTgVpFAUBmlNdVqE4DQHyFfb4/7AdAklaXIoMsCkBPluUVum0PQAjiCFAAv/Y/7jYdFdyrAkD0EYeM9pv6Pyz5gQ9r7Pw/nG+JRbQ9EEA509O8Zk75P/1j3ob5GgFAGkfdBtUBE0CxF/5zIxj9Pwepd++BFfk/vxpXE9jmAkArxgdmYLDrPwgsCwzD4eM/4c4SnxLuCUDlDGcOB9cIQA4BwWwJL/0/ShE4ZuM67j/+m4/zvVD8P3p6sF/RXfc/p8zfYxlFEED0Ls/rzBQCQAGRT9Z8tPA/SKS+z/3m9T8jdeujND0RQJXSrRsMVAlAYltR3mYJAEBRxNdIr0HmP5zKrvdF5OY/CG/s81ot9z+dvFmgXU/zP3kZBlyAKP0/CoVsympR+j/PK71IATX/PyudI8lxuv4/NnFj+IFqAkCz9a+ifmH0P++D/93e4gFAm5d28nin6z/rIJhLiXbnP1YBhsdQFv4/1la3LIb6A0Dr72D84sj3PxG9T6udswVA8/wSDW1y9j98z3gLmnHYP9CSex29MwZATyIwPwkW+j+Zv8jaLB0UQPULCjJfNBBADr+XMTmSCEBnsy6jEU7mPwOk4mgkEQRAwrGDk3bOBUCAupEoNvDzP0dEpHnAVfk/icaWGO2SDEBMWzyka7T4P4IAwbrS7/g/e2M800POA0Dhff5js/0SQJiM+Sc5e/c/6nlWnNekB0CtlDutZ0/+P64TqOda8PA/HW1lr2HvEUDDV/42lc75P/6qYJrtngRA2GzOrhIj6D9KSzN9XTwIQN5bBC02sgBAbXKf8KGn8D9dOKbsIVEGQMp2PeY7x+I/em+gkae69T9k1SUE86wQQKaWZAb1RRJA0CRKjzUABUA4fXx4GEL6P/mOEiRLCvc/fcmH99KK7z9ODh2tzHQQQPgkxidaPfo/YHGqK4vOAkBNFhSUvLP3P12FVP7YAug/lz1YWK/q7z9tugBAGooPQEkTl4awIP4/OviLWDHnA0Db9VaTFVPlP1ldyukj1/s/hKfovQqLA0DhobOxKV35P8hGzjI5SRBA2Y63sTcREkAhlReVEZEKQLDCSqaP6/g/pXqCJ6+W/j9MCI36kgLlP4iIjn6JKfs/E+nHsZC++T8/Pg9K+foHQC2+buqBbv4/GdPhbaND/T87K0PW18D2PyXMmcaq1/w/6eRpWib9DUDwILiywH3uPz2nQ0Wnnek/OXG9G1BY+j9ud0FhQ0kMQCZFse2oIfo/+rxZwoU57z/lQUeCn7kKQAOloJIQcPs/2yJ0zun//z+GGRo73NEFQPnlI2F16ABA/WYBSPpY9z8/E92Ra/P7P1CG52kN4ANAvic97dss/D/KWyTaD5n6P2jfQFMF2f0/N2biwhTw7j+AgLTHdprtP3Xh/gM4cANA2NrHS7otCUC7VPpGoHX8PwWOsqj6sPQ/MVcz3Dqf8T+9NE3nI2oAQKNgIjWK8QJAYzNYXgVG+D9V/nCS2Xz5P1GcSoafZ/c/+L6Av+TJ9D8livoz8MnrP2C+wDz7Y/M/ZyoAqDdw9j9ZXEyK21X+P9ZKjBlq8whAaGaN5xuD7D8a3SQJHcUGQPrW02G8kPM/e/bz7hLeAkAucoGkdqn+P/Gdg+dkGAtAmfOcS6cdBkAprdO0Rr8IQFnSM559vwVA9N0O9c/+/j9Jk154DvH0PzEK/MphNvU/Ptg2/YXiAEBB9cUKX5cTQPR93IJsmfc/01igtgWW4j/zpZJprRvyP/vyBW38Vvw/yQyGbsmr9z9NvFsLQHD1PwXC2i8hagVAnkDSoj3hA0BVxB6hjmwQQCq6kM01TwhAQDfpBkE3+j+LiEbBvRz4P50eNzAJPwJAF5Jht5dwCkB/gSWrqF4IQDZaG8MwAvI/+fXomqPEDUCuhdpgdVbwPzbK6HUxCQBAGWAhJ20B9T+aZC/AH+IRQHhUtnU3ZP0/AQc2cy7b/D9mtfn85YLwP3D4rdUuaQBAJHX4iziREUAcAnr2clTmP6zxbaguFe4/OzJBoTo2EUCFlniUB1T2P+RLAVJ98QFAW09vRw1tAEDNeb0CraQIQPqn5Wm04ANAUw6NXilaAUCedsNZpUAQQEu6PtBBBgxAaRu3+5MXD0CRiNrLrrcBQK+0+6ZMh/Y/cjV7ypdP7z9mfAj07OryP/Gwhsh8bAJAoYHXNaMQ8T/9NhZKiuoAQIbCRouwUARAWT5OCsiM/D/zz6CYVzf/PyzeC/NIAfQ/HgTIYL3B/D+Boe70DQgDQGunJRhYrBNAelVA3mXz9T8khRQEYQYBQDuugwQgIgFAKkoOG9O69D9QeY3t0/T7P4SHidK0NfE/wrPFxAKUBEDatxncv1b8P6siFWtp/g1A/mBUPVeo9T9KVsk9ou7jP29QFa4RUvM/fOMOYnuPAUCITepgIRD9P6WyFrndQQJAHc01mXRaDECpkdqwI/sEQOmao7HX+AFAmtPUdRt9DEC/gZlGPmIMQIQTUDm8vfY/XEaOCPD5BUD89zIOLgsTQJhNCqb+ivQ/hMnaNQLW7D+tjQtPKtLVP6GxaPjaBe8/+5We7DCN6T8J1AreNz77PwC5NexRmPc/dtCY1412AEASb7FBfNX8P3jB1klvKvo//wkCoBnJBkDVRjwNDvYDQJAJ12sQCf4/ZL/EbI9O9D/pIZ16HE35P2x3OAxrv/Q/cZwPVGIC5j/XYMaZJQUIQIAqmUaj8u8/ipWDQ3IODECqwYulicn4PycLKYHmIAVA9rTnl+O/AEDB10x4rt4LQMGpE0neIwBAqBxQckmD7D92Hsc2apLjP50eEbB0dRBAuuasnkCgEEDRWO1EpN0FQAs1uVKYcQhASoTKoAMS8D8cP0WV3rIBQOLIsN+LcwdA43X44ktuBEB6vcJl0kbpPz7Ot+OyLPk/yOy46y0q9z9m+A+2QKL5P3bnGWTEFwhADKaijmhi+z9+HiBUSFXiP3IJe13CzwBAmGh5xVzs7T+FciINbccJQLmwc3PZVQpAHSwqu5Rt+T+3AGQNNR37P511kjQFWfM/CCIaL7WIDUBMc2Y5R2n8P1ZR+Qdzq/A/WVR814Gx/D+JWRgXu1r5P7oztW6LgAZAmBASlG2aFECoQZcOQsQNQAkdaU6LAAFA5vdrhqQ5/D+L8Qs5SfUEQGfl6oDbJgJAqvpRs5ro/D/y2xH/Ug7sPxO7bgC3UPU/FLLWdMo74T/LBNhHDc0RQBx+BMF7pvM/8+yhzCgUA0D7w/WVpkX/P5HIbYfQ+AtAtmvBd/8F7D//5mIhgsgJQF1Zr/ZfmeQ/cihLsvw9C0Dt27kINKYIQBfvLIyjNQRAs05vfwYjEkBB9EkJlwf6P7vrT4yr9AlANUNwYIjCBkCTcqfgsDoBQNqBFtkeaPE/lQE4foX99D8MFkDfUn/9P9LSZ4St4/A/kdq6ov8eAEBHy6E642LxP2CAnM8grAVAJhkPAkXv9D9qZhQu+f/3P7solVB/vPo/+v22zT1cEkClJJBaieL/P9TEpu3VZAlAvYni/sUxB0D/lN7WorgNQN84rMfS6O4/mICT6VhQBEAhm6qcJlH+PwwVZAdG5Pk/b5psLfPf7z+wURY8WI8SQMTxuvG1Rec/zFln+bzgDkCA7mrxWPUGQDNjbkOmRuA/7HBK9gEl+D+dC3Ps7hwAQOljt0dDmvM/7Um0i/RFDkAMaYmyxkrxPzxY6VsRWfs/X6BLSx90BUCRrfGyWKsAQMWG72h80/Q/4ybDtCyN5j+lJvQqyG/sPx5ZwL6gLvc/jgzEzxjfB0CsHEqEmzH0P6TTJqJXWuw/Fz4kLHG56j9mMwXvrajyP9z4i7Bgqug/KlTANyLwCUDIZC4WBi/yP8sjp2hDGPM/8akspsIUBkBe7nWuVa0NQMUIVz/jvv0/YwKExqAI+z8Xmv9uFAYAQMFRjcIEMw1AHQ2B+pCe8T9Mxzb2WtcGQCLPHcHJveg/Dki+i65qBEAVI64p31cAQPGnrR1gUOY/q59Nx4Ls+z9kU8ZW6SMFQKvlYE8P5/A/l46cGHyc+j/EfrGXL6kCQAicFQxwUwxAKtRnebmV+z8me6m9SCcGQH6vRxfmrANARYpFGVozB0BACUIEi4D/P7/nkOJpgBRAY2dXpv7QEUB/YDORwx8BQGtgVPLvA/M/ip6e0wjaAUDGXa2kJwryP0h++SZXPRRAwUq5WHJE+j/KUdtQ1JYSQMrUpohRr/0/UouUA3mE9z/AYD/HSmr5PyAAcqVCpQBA+UlD8dXSBkD7vH7EOIQBQIajVW0cNgJAiBnB69/WAUA8Xv1OdYbmP7F/yoOjhvI/QyKCHI8a+z/VVQWQ2u/3PyMP9uOnXwdAioEm4agrA0AWOaMlfVv1P4Df3+QyOQBABvmWu41I9T8sRHYMq48BQLV8s5VxTRFAN52vOZnDBEBSv7bSZGPyP0ZioFk51xNAP9ChHI2P8j9F2P9dRRb4P/4ojVBMK+Q/YxwAsEqw+j+5YDSrunv8P0+QO7QrJvM/UBytXv7G8z9OQSgbttb9P/HPL8BpnwpA7bqTAreqCkAXYZ/znp/7Py8/cbTsYABAmOPVw48J9T80wn+m6p7+PxK8Yyz/WgxAT+JRP5X+AUClGEqvTK4DQHom96Br/xJAWGXRuex/BEBJhDWP5GICQM9e9rprsAJAV0bMZDEEC0DzKEZJ8YT9P+Z900fQF/s/Yru2lGtL7j/YiEyXcy3kPxeGLi3+MgpAdI7ay30OAkB4RURT3/76P95HxKQ/sAtA/+NgsjvfDkDVWgtXV0jxPzIN/pcXo/0/DKOisEQZAUCuLlimoa/oP9Puu8SJ1/k/1TwvWFWS9T84dGKJMSfsP0+Jum7FPew/dfF2c2TDAEApKjM2z7n2P0fqSKjowBJAyfooNo158j/G/LMfqKP4P7Rn+S3SMgFA0QbDxDxYA0B14XJDgbP4PyP+Fbnh7wRAwkcNNbkRDUDPEnvkeVb7P3Hcyqr6SANAhQzkXwlO7j+vZV4LGZ4HQGBuAQc5kQdA9DhzpodiCEB9IOUQlu3wP9zNgc1a0QlA9LPxCw5AAEC3Jgfmnr8TQD4Vp1B2VghAyJn5iDfl8z/wYvgpLckTQOJMSEgUoANAXHzdq2SJ7T9auKpkDG4CQC+/yNdRfANAX4lLsHs/+j9lEVxZnmT7P5xO8ZSzyRJAI8XrZ6Vs8z8NwXiu8Ln4Pxf7WKBUBfk/S7oflhMA+z+EB4oyVDf3P2zovGkG6v0/05MmO6CPCUDgObUx1WTdP91NWV/VfvA/X/powBJgAUCVr2u1Q9/xP/WO73I4jvo/pVW5cB3YEUDWVMZovBPyPyPP4XQsSvs/emtKS85D9T+4sbqOs6EJQLECOepo0/Q/7NuLtI6W+T9EPQqmVe71P9LNqGDtOOc/2rY3ovZY/T/nllkzZMf1P4wHy+KntPw/5l9nGe2c8D9BpG1plBD5PwL2hPdRXNw/+MB9mQoE8T9JS8HcLsMTQNYLsVJpcQVAxmPjVOMc9T/vYLG9Rk/tP1VaMrfKOAdAechmiC0NAEBTopurCj0LQM1gRLJ1zAlAJElb/NYZ+D/aWy/f22sFQDuBQOVcY+w/bbLUkWiDAUDx0/krfU8EQEWMYEvWgfU/2tWn4X+7B0CSZfOn4KMOQEI2yNdsxAJAk74DCL90C0B+Lgth7MPxP5V9aQqR6+c/mpBFiI7nCUDNXRix4RYBQJkBr2fKowJAfiWKZhQI/T9mRGBLvKTyP9b18oUzKvY/gHJVlD/M9T+vkl2rYAXiPxOTc/lP9/E/nA/W9p+c/z/tSz6OZ8X6P+benttk9hNAOoABjbeH9j+08J0vzV7+PxARzINp2vQ/B3KkD6AOB0Cx+t6z8HTuP9jEnNtewghAluXHsYtjAUBuRKZW2fkFQCVX5i5zn/s/ppnkyxyOAEBFL5cTLTUGQEVUh2VyaPM/HkOHFZJ8/D8il55Vq9LyP3ebfr2Y1Pc/ZBLcMZDq9z/bs9Uk4Oz4P9tDtlsGHeU/g/vWES47AUDHSEED4xXsP5jTWLq1PPU/pCVKgwmV+D9W5MztiJMNQNhUOA0sqPM/ZvaDEQ4hAkBf5nd3r3QDQNthrRzinghAgU70v4vQ8j8d5Vev1H/2P5UVzIHmmfk/hztY8YdfEkBAt+jE2SUHQD7U6SMw0f4/miqX183TBEDScyT9HDQAQCGz3gtW2+w/6LKmWM6DEECctZYyQewOQFlmz/VwVghA++SMCSrfBUBknXq03pD8PxVznAIjFQRApnK+q7ePAkAsxBWGMvEEQL0lyqGG2wVAMNjUasYI+j/0/vFE7HH0P3g9OVNTPgBAt4WmKVsWAUDGHqTmUbwGQPEX4nNOW/Y/In60C+j/BkDv/3e8mmT9P9H5FCVxqPM/y9bjRxbS+D+zVxVozarrP9DcKPPXBgFAPd/Q5HPuBkA5EdXbx4DhP99apwc74vY/vC2B7McDEUCrvENsCmkAQNKrqkwg6QBARJtDqSb09T8IMEG8b6b2P7/Y/+DVRes/crQVorIHA0CnyxyINY/vP/BzIF3lT/A/3AqzsBXl9z9yUU1A687pPw6+1cNGU/I/XW4Y987fBkD/mBZeeovsP/Qu+BHwtfU/kWwU2H+uAUBmvFYpPG73P3khlQ2oV/s/AsajnNGK6z8ke8hercn9P+4LHF7pku8/eTeInBAj8T/HhOd9Orr8P7sm8a4X/hNAIvWa09TD+z9NIQUoTqvmP4+E5ekwLuo/5ecK/JEt9D/+SlZtMY7qP1eVGf2iHPg/A61bpoY0CkC9GMVpyFr0P8MwAnMnMgRAGqlGBt1S+T9Vji7CeavxP0wlGAnpmPI/OeULn2t68z+a2bI5BpL3P17MmKZIggZAxe9q4LxvAUClnnOHZ84UQGXczs2Wnvw/EnnNPULWAEBMeOt08ccEQMSXZ3W1GAZAUv4BUKDG8z+G7uBfkirnPzFEkLLbEvk/t8aLO8Vy4j9sjX0ZFD30P63jks4fGRRANsGZrwQgEUAbCLD77XgCQAeVNlFVf/g/wmz9SLPMAkCFT+BN5TH7P6XVHSRzPg5A0VRa8oA4A0AZaoLEY2YCQBYlr0CyYPY/py93IyToBUAdmXE8Tu4KQDeo+MJQZ/Y/efojnUQxAkDHRW8EMzYIQEjk4u9N1fM/L0lsKT729z9bK+cECUgUQIvuQ5ZbGAxAhgo4V0t7BECaH/zYIhv9P9OWBiQQWPQ/ejOHZ0T94T83/M2D0Kf/P7x+axK2Lf0/kyYQiQASD0AqD683aEQSQKvAiHlEvvg/qVoqMHZo8D/GGZkCp9DsPz4XYKK+pAtAG7xsnWHa6D9ONKpqQCD8P8FkpjNsn/A/yXfaqB04AUDp/Lw0zI0SQLvnxSplEABAT4+s9/hWCkDFSMwliQTmP0Z7acjfRfU/3eQ3bF68EkAOkz/jUgf0P8Hoax+ktvo/AvuJiNDeAUClWQHVr8z+P2ZBJTolYQZA8GjmYIpT4j/4te6uMqHoPw50V2Xr2v8/u1Q1kjoUCEDjljfh4gX/P+vDcx6i/gNAvheh/l2VCUCAB5kingQGQJjfXHX7gPg/5mvvY78V9j+l/Hnf0g/1PxpSx/8LnwJA4969Wvm0AkDVhH6vpaDvPyk5CLgFiOE/k82UBd0ECkBEpDb7R5nlP9kqPsWGWOQ/SWHiMWp8BECknWNuL9z5P0TiL/I7iA5A1/69Xdm3AEDOYvAcghv9PyE9CVoamv4/QgZPu2Aq/T+JG2OWf2cEQHN8TcqIqxNApmZhALDw+j/OhGfNyvYDQBjeNBvhCPE/f5z6lOB1+z8m7uRZ6qX9P8HwbsbuBQFAfa/Q2B77A0A3hv2jPdP3P70YtCtEau8/Te+TUdfa+z/sN7iGvbYTQPfT+UgWYvs/zo7JYwlq6D96ig5Da7kAQLdIjFrxVuY/unknvpHs8D/0Nnc0rdLjPxClGj6RuP0/noxVi662AEB6QXI/8iL3P9e6/aM7LwRArv1vdTKGBUBVv1SzF4cLQBgB8vtvSu4/Ymq6YRkB9j/ecbY1DxT7P8iNV58gHOQ/bd3NBI+M9z8r5lkj5IzzP2ZWQOAATRRAdkHyAnFw5T/XDeorSrbwP9rIUcbS4AJABjnQ3OpnAkBfcvycLCgTQNR1TCbLqwhA7ghKlpsa8j+5GlMeJ2v4P/TXWPu57fU/b5wjpITE8z+CxYVBiQMGQIVMAlNIteo/+13KL1J28z/jk4nTBgLwP6yiTT93DQBA9JjxBHTQBkDV220UX+/vP0H747N61uo/SyTK/cik9z9S9gt1lowIQDheSikii/o/Qt/M1cqpB0CYgMGVjRz7P4S8DiLSfgVAapJf+/WO/z9kxVHuCy73P7QYl9eejuI/HtZtoUvB9D+8qy3XxVH+P4LGnQt4WvM/EF+DRakc/j+gkeUpzg3wPxYH/U1dswNAde5q5mXnBUD6RaeAVuz4PwMuR048c/E/xblCKghJ/T88kQwZBo79PxCKZsmoaRJA0rWKaQcuAEDHSC84jRD6P1AFUDXsnhRA0FW5EQXiBUD6BxMXefX0P+PinbGe3ANA0PwC096kAUCt4uiQxuPwP3QD16IAa/I/S25IyTSN+D8Z395v/+npP+QU+X79tPk/qG/z7emg+z+/p3DvUToPQBMORdyBGQ9AcPBpx5oL/T84kDPMxvsBQBTSqQLYaAhAi5sJl8Ba+j/nEz4WTfIDQIc7vxFK//o/vkiHWdYVBEBTZ2FilrEHQK9fPmK6a/4/3HFvEH4+/T9zItvqvyQGQC4Um+G7dfQ/6u1Tt5oN9T+khFsLq3f1P5sol8CLA/4/4x6wYwcPBEAeqkgTMiEEQPaa82RSBPE/DbWn7g1AAUCOB9MkjjATQDFnpo2vg/E/mmklS0wYCUC54KoBGg8MQIM2KG35EAZAz9/H1zmVCkCWX+AcJyntPxsRrH7qg+g/O70q0o5A9j9TlXrxuCIOQA7PU5pAmgFAuj4Qb8fK/D8SCPoW8LAEQCLDcw13PPU/UoroNol2/D/Vw9z+A2kJQLXGkASbrfQ/Us6SnBO98z9sCXetZ6PzPzGPkbn5CA9ADNEZLzNj4D/rgWCCtJz1P07ZHeS2NANA5KrOq1BJ/j+PfMBRwZn7PxIo2hh47+o/SHUZG2Kf+D8JHrASw38EQJnB80r12vE/nbLC0SE2/z9dumCaz1P6P4wvR25Nd/Q/nBKty3U0EkBviuNm3rHSP0LfBR4wZf0/0wjJiyjA8j+LBZjDcQv4PyZu52JllO4/8+uAwZEh8z/Gp5S6s2UMQD5JBDlAlv4/Kk7JeElRBkDpgX0V5JX7P3BPp9M/gPc/yS95LFRuCEAVbIJ5mv0AQHYzuJwHgwpAnItlJV2zC0Cm6HRC4p72P9o6ecoTGANAQR0yBwMSBECjBBi8cHj1P6FQa0yNAvI/LoJTEDVMAkCFjBr2I0AGQO9DKpEW5gpAo/W0S8J0EEA4thV5d9n4P0+GRQ2MGAFAz+crIy/P6j9JJOaoE8XzP6VkNnoCOf4/kAUuYfm47j8ytnGqnc70P+4VIr77/+Q/f8M/MrOM+D9pykAJyEMLQH2fHauVShBAmKpHP1v7+D9IyLGDnzX8P8394BJMSe0/U6eTCPSsA0BjU01+gIwBQG0aV739JgRAWjoTif7R/j/aLTeURS37P/xzPV5pXRNAZ2fdTlDeEUD1aLYgSn0DQOJPgG/E3PE/nw76JsyrC0A57DFcHsnjP1cgJD3bmfQ/pWGXJQH0C0AtMPwq4YIOQKcLsT6DKwtAHTN6vuiI8T8ed4VStlsTQMzvowbHev4/t5iYv/hI+z9Rh+NbONv5PwzlR88Ad/I/S8CD7dI1BUDdNLBAQn31P3sKJ8nX8QRAPRLrCPEB+j+a3cLyhzj5P2hR0BRBJxNAxnwlS24eBkAg7BcDF1T7P0WGgGgbK/k/nxp1pJwV8z+ZXmfYK84TQKjovhIE1hNA+ZxaD0xD+z92tTYWLdL9P0ori3WE+xFAKmaoX7xs6D+76/ojOuATQFU68jrlO/w/Mbveyz398D9E1OTonEP4P5trUMHeYghANNY5g6HrDEBPPJPqjrH3P1pYFzJbNPo/4La181LY/j9/dIoOG3cTQCGToHqJK+Q/DK24kskzCEAYSgCJ7VsPQFx+BcuIzO8/yYbhHAPf+D/zvAj+nKACQBwM7aZvqgBAcfH1HNfsAkCBdX8XwkDzP2oEigss0Pw/w948uw/O9z+iv83iPHLnP0wDfxWfpeo/HsgaaZtuAEC7SP4m0zMBQIuUn520y/8/EOe8vi6kAkD/Ze9zgRz4P0sE/VhAkPw/W6ZnHlS27D9R973giLTpP6JRFvLaq+M/6BYqdAnDBkDnAfMtm8z9P5MzNHJHRAVAhluz3QMSDEC08L6j+HH7P+jKJaWVZABANtFZca/P/T9Db1+djucRQKSrI/X0seM/7lgUukev9T9AnObLQhQFQGmNJopfVfw/UxwZ8s/S+T85W4kRUUsBQLvIdKBK1RJAX2QBq31A/D/laALgJNvnP3LSGdcfggBAlmB3+BInAkDty/+j9LYJQL5U5d9H2f0/yt16FthC+D9t+XKQqur8P0Hir/GQYfw/eSTsNnFL+D+GTE2U+Z0MQMnKOs1r5PU/ogyf7hv4BEAVrvx8xvfmP8K5x6iGkPw/9cdCID0uDkDUkna9TNH3P9blGU/7J+I/OpfwycWFBECLYo/gd7oDQNimlMyZ2wFAwAqHYbUk8D9iq8iufrfwP7FED46PnQVATWSfvCpxAUAPZUkX8GD+P3Eyj6mEhwJAmJ9U8RsTBEC71ag/syYHQGV8C5QQieM/5cePVP6m9z/HU6OjVEv1Pw2ZXH8mxfk/Me0Y8Flu8z9IbsSuY8fjP3trFLtOqg1AJEdz9f0HAUCmnbRdTeT0P7KC94610/A/xpgwPnhSBUAP9bncfx0EQJdL50ni6vM/OCPaOa67/T+uhgCpg8jtP+ChZ3DXUAVAGDsvyyU+BkCryUzS+zQJQNUjh9rM7OI/ADgIodz97j/BsMaFEt35P5yQaUeK6PE/ha8OJpm5+D84PRSmM/vmP5YIXnsKBfs/08s3avx95j9aqtOj65D/Px3PAA9kcQdAy0zHY9/x7D/1OpR3/C79P/4+06WAAvM/ysuBRis/AEB9roycaHUFQLpbqI+4SPs/jfmpCZO5EUCjWFHBjasSQKwB8ThgO+s/xCq0R79WB0BfQaA4U+/qP2GbZjbpF/w/mEWFEncl6j8Lzp6Dov7/P9YVyYUsmuc/LEyPl3bY/T92AmjquR0IQA1UcXA2MPU/C4NmE0PPCkDClo7TQOgGQC3XVTQ6TARA0KEv36GG/D+57SlEQaIIQMsguiAVhfM/zgSN2DHT8T+9W2J00n/9PzDtZKzsxOg/hBFoL0ZoAUCpYyixtZQJQCy+0fMsCA5AuRi/aU+yAkDeSKIBFSQFQFfwSFWpLwtADdCM+QyMAEDt/kljry4RQJ7031fx+/U/188l/DvC9j+puNFf+J38P5sjoYrEhfo/ISbBiKf94z/PnRkQ9fkIQLLluB7dbgJAqm2K6Rq++T+HjUrMiXj6Pz6xyCdKnw1A6J4TAeveAUCSdaDbeZrnPyAMEUcDSABA2mSSWi/dBkCpexlKtE8GQDfw+ba7v/k/M18qS51iBkBpWopy8yMLQLtnsI6QhQZA45cGbTrcAUDQpSP8JNjqP0e5z97LkO4/UMADTF3JAUAa+s/5gSMGQDqeDo3UpQ5AnXqnefZMA0Dq0U4MkN3cP+/wA2exNwRAOOpW7+7k8z9v46NkUe0IQG3ynPxpTv8/HPjc2x/0CkCdddw2XbTiPwCaDGBJzPI/UuH5y9Mk6D/rBH9Y5GYSQE9U3038g/4/LienIBbLBUCxBz9Hnr0JQKCF5yjhYvk/OUklfJAf+z/3oYn9X/8IQDG1rdvDsvA/21Of7Ek2+z9ME8bJ4tz0P8OY9y7FcPU/1aAXBMo8+T91w0W/2AL0P1Q5Uu9aSvs/p8iJeu9+CkAx8SqreR8EQBvwmB8BpghACnwyhLpqCkAZj1dy67DzP4gMOljxRus/CY3wluARAEAi9+JVnToDQDM8tXA4wgNAjXlDC+3aA0DGsKZ/Plr6P9/+0BW09vc/tigj74/47j9sMlCSwjP0P76Aq/JOQwZAYNBNwSPxBEBd4drpC4oHQLR5C0LRGQBAL9NlTL/aAUD6lHkv4VX3P8im/zONMwJAFBguHpgp9z8MXVBdOT71P5Aw37KrkPQ/MZAhPikZ9j/w2Tfi2lf+P02p71YUqOY/G4SKCzsPEUD9TVWuqsYEQI/hIJc6u+c/yUOKKwGyFEBADdLxypDkP/nMtJOQbhBAEVMFJpJN4z/mJPXAJpb0P0O/f8IqCvw/UJuhaU9//j+jpUEFY3EDQEFahkRH3RFAZ3b/R55vAEAGmjmk5ZoMQDXX5lv8CgRA28R/6f0R6T/Q34ymiBPrP4EmqWCCBPg/KdNxnjZo9D8Yh8//lYkMQDNNvmYZlgdA4wL38EE8EUBiJZg3VasNQNiViceAtQVAcGnvLSKn8T+X9MlIxMvmP55+bsjk6gNAkGqhjD5xBEBKI6e/EoP2P2sXR+DyHfo/RMAo11pz/z8mTF1YwxHpPy779apYmBFActPvW7iXCEAxg3l5oy/4P14c65y99ApApfy7KmWt7T8aJjytZrsKQALGl0VJgvQ/xDEj9o0NAEB+6ffXMRb/P6EFGfiS9/4/lyf8z8NFAUDLpuunW6DzP2KYL9XeOf8/LCxThXTbBkBMiVoomuL+PyWuFC+sIgpAmu7n4yv5BkAOmsJn8xT/Py5Z4OHP9+s/oD95XxO5+D8cwDRsugD9P4ZBq969YRRA9IgTk5QpBUDbkjeBjNT9P3r0AztYOek/a3G38HyRAECcdOI4q5b+Px6L0S4r2Ps/WB8zKqWo4z+epweUGP38P014z47NYfk/1coUnbyo+j+krp5bZw3sP5ooKF8CeeU/vzLUw1O9+T8+GVQACMjxP/pXntqpbv4/IX7k+70VA0CXYNFIoyANQMAvdfDnJfQ/cFrWCbzW8T+uHLT/gab7P2GH1M9s9gRAmjGfojQp/z+6ytAeg94GQLXCTefWafk/p/vF/Bp24T8Y+lI3ZOcDQLQV1nfCqAhAb8V+rBHa4j+Rfry/B7gGQF1XlE1NxfI/WJr8eHo7/j9lO9MBJw3wP1Zqoqc8+vM/TFpM8DE4BkDxuZgmNK36P55KvhjKbPo/qTRX2ylkA0AjpKN+HHMCQIMuKjZsZgtAQmkCcDyDCUDv4SfOe976PyXLPJbTZes/FJyRvMG09z+/VS4Et6v4P9469V5Ixvo/0fUDwlSL9z+xYBFUmHf3P8usji+pmwZA3AB1kvIf7z+p/smZZXULQMfX4Ofb/AZAeQDt3GFn8D91MfaM9gr/Pyj228SEMvs/qenaJ8wcAUD86X5fhETqP+xmDfPqp+o/I18ej3TgD0As1jEV5L31PxJtzXjPHw1A8QJXI3KoFEBYW4NSRB/nP4zuuBSwBPg/s9VYpvPq6j82UizXNxsBQG+OOsoTz/o/h6iagK2vB0DxFhNaNxD4P5/tlTt9wwNAGe11//fp+j/RxBzXyOf8P4UDlxBcWgpAhmydEASwB0Bd5K/3EdzmP7A+wt1oAANAioNDJInsBUD7zpwe8XX2P6vN4m5j3vs/K3pWACKvAEAIiMAfVVbkPzj7iNMSgABA30THIRt4AEBLek7tZvEIQPHDdnoAIgJAnjOehXk94z8s/1sKOxkBQHf/ugMjhvA/JCkZNWqp7z+Foa6pkU/0P5hB7a57H/c/LtiqL8HS9D86f/ce6qD+P66PDeXaCPM/ncnG4C1b7j9ngeF40dviP1p9kUmWHgBA6eGo72S1CUAs39kWTAP1P59P6OYa/g9AUz4Cfs/B9T9wDlRaQaz1P9Jx2uqwku0/EPEtTPvO8j8xrrpnur3sPyLJDKYzuvA/qHq32glSA0AH5oXnZDAAQLb40/0lW/M/9J956lbdDUDDQfEqM/3+P1HWBXkvAug/S5MZYFq18D9mde378tr3Pzv+Y3wuwe4/J8MQYjA+AEB/WshlHkANQFGxeRQLpfE/6AYeNm46C0C0OLNb2fjwP6bKpHCegAJAUOxyHBejAUA7A6WJzSwUQKOi1wQKfhBAV25n6rYN8D9dDPiDI7wJQFMLOParZRBAACsHKka/9j/rnKs0m272P4Yu3BYhEghAnr1+w7XAAED9pvZmSCj/P1j+HGNc0/I/vhNo92DRBUBb9fTcnS8QQH3QAYdSnwlAUXCTV1Vi5z8kxFtd8tv7P5AP06aN9RNAeun9vsrkAEBUD9ijb2YTQNGMu9FapeI/A0TEGH5mAUDn/1sbYF31Py5ChARmYeQ/MYSHq0wy8D+IXUqs46wIQM1m9WfWIf0/36D5vJIE+T9rHhcYArj9P7vjW/p5Qfg//9i5ZWgME0C3DodpvlL0P4oWboMlg/M/fSoGUsM68T9ZsU7HX6j0PwdtJbVaxw5ABpbdhfoxDEBXFOuHgT8FQHVWCUx+Gu8/2jP3sGvUAUB7LZrdOBHwP2YymDg/MAZAltp/HyGZ7z9yZEk4ZaPvPxmp+WouWPs/yNGo/i1a4T/EojnzF3QCQOg8Ue2bOe4/5qgMnEsp/T8CIWNfOjALQFl88or8r/w/og7KOWfSAUAciy3A1CEOQIju8eC2hwdAru1WyDni/D8yMMoFIrnvP4tTyfA5I/0/Sj6/6t27+T/Tdlim9GACQKHVl1B5yPw/h3LAr29G+D+RntLxUSfmP9+OwIB4QBBAj04cfkJS9T9Vl6bAXlQNQMETN+gPdvg/HspCNoTA7D+dr1uQtaP/PyVKeFvca/0/irSLIiod/z9AMy9uLBn/P9FxfBUX5RFAKViSR5kkDEAYAeLXff3XPzhRRwz/l/o/aoKkegpf7j+Wt0gn7jv3PyM4qpxoFQ1A8mHY1Dqe+z/3teyO4FEQQAcDq+UDdQBAqmVJblB5+j+7XuYsjKHmP9UgwTpkUfc/74UE7nmQ/D8lJ0boqtryPy86gQ9rSfo/khRzDrK1+T+zZsLQ3KPzP79anzlz6ug/wxneFzkLAEBGIA6CEgEQQNP2iXF2LQNAI80zF2jW9D/MONsbaoYFQK9WW+Q/IgRAdM2KsWhQ9T9PwrRltmj+P23UhnDhyv8/knAWYXLy9z+gAIj03TDxP3uvcVOAOglA09LZDIYyFUBP+ynuj0T3PyVNVHcddRNAKuIPar7l+D/iutsTOiUFQGfxniNdjglAhL21tgPDA0BP59FPgUoHQFbvIG+mMP4/IK2JaM+c8D9M1R/WwaX7Pzwb4D721vY/7gireZE2AEDl9qi2e60KQMXAseD+tP8/Q3enlKibCUB7IE3xAa3mP+CJs0ZIUgJApmuPkjv69j8av9NRvC8EQLXkwqOJgf8/c+p8dMZm5j93E4ajV2ESQL3jIbG3WvU/IhKiZqIoBkBUsO4NIXIEQGzn7y/z3fM/4RWSMvq4EEAouB0Y0LDkP+eMCSQK5Pg/2EnTDi065z+0JuhFvOEEQLhef4SzxfE/zG/2HZRZEEAOXfQ0yBH4PweNkWkF3PE/JisrxN0/CkB8CVPEmwoRQCk/aH+HpvQ/uWQk2mxn+D9yUA6dxlT+P7Ql5AO0C/E/nTeNE5zE9j92kloxhB/xP+uqDqHCnPo/rEjnYRjd8D+FL+ZnFwgBQHfQqnwBDAVA4RNw9jAhA0ACfXuGNpfuP45+NVRyXQJAT+IaJHnq/D+vDqUFfykLQE3X6qIdhBRAQuvBQ+0v/z9hHDXpl4EKQCeXI+8tCfY/x9HQJGES+D97Z4K7XVXvP/oRHDHQugBAnptHjTZg8T/pXJAO9O/rP4Pl3daqTwdAYQVidMy3+z/jTYWGHVgUQJHIiEiG+/g/qUJomxAk+j8hzJymmKb2P/rVfj813PE/X8yn3Gg0FEBuCphbytAFQKlONk89xPI/9dtn5s5Q/z9u3HM7PVwEQDoWlTVavxJAQ28+veH76D8iqqrtqA3uPzvhXokTcwhAfvc+ZjjoBkB4cBOwh7IBQBGAi39tCgZANwDClZ659D8wCNR1fdHrPwLmKpSMVw5AfbdZIx8rBEDv0SZlEFj5P0eFDAvEFwlAfHMmxSBiC0B0bzBxtHrxP7QrxJi40/M/wIeW3szbA0DbgyaxZVz7P2TcUyPZQwJAH/HujamdAkCcZH3wj3cCQOlAtpXwSfQ/aSBQC+HdAUApd/myEojnPxQxU1s5oPs/xmCIti3o6z+vFmMZmwMIQFlr4+Rd7gBAp7fy40Po8j+x/M22G4rzPz+I4L9ckuw/HQLsybJuA0DenCLnKLkDQG6rHNk9iwJAEJWrnr3t9j+EJ4bo+OIIQPhg8gyFCwNAJO4RSlCiAUAaHNK/lU0KQGMKBebc2vY/dkbm6D+78D/HAxw7ZmgAQL4HN1zfAv4/DU2nYHgF8D/nQg1Nihz8P2f5SQysvQFAVS72oa3m6T+psw3vEyLlPy5iSiDIiOo/E81CIdAZFEB1lvIspYz3P8rppaO0JPU/s6bdYjen/T8xrp/BMfXzP2IoEFaW2QVAc4Azl2Pp/j8yLqJGITX8P8g5mvUp6AxAesZuGZEq9D/tXi5l4ucQQOmwSspctfw/GdSM2g6d8j8CM9DDboX+P5D6/GsNXfQ/PRupDuq8AkCZ/yLYKt8EQL0EmzRZVOs/WIdq3dEH+j+899riDD7pP6OwVNevIxNADx5rqjvsEUAQo1TzU2f7P6fNbAEdgQpAzXMt3ZIn+D8123/nSp70PxNiUy66TgdAlAq4hBvX7z8/XDE3gJruP6wUmoWza/E/1wpsjkb9CkBW2jfAsjMEQByINbDzAxNAyzgg/mHB9D+ejyBWFWgMQL7DHK+IWRBAofBzh2lXC0C0p4HkbNEKQMFdo9zAEOU/2HY8q4Hv/j8miDkH+vADQPt8dS57n+s/Kmll4Fh9E0DSbyx+pBfwP58MaXainfg/qgXfyteq/T9PUaFXsaMBQH8Q7Dh1pPM/5u10+cigCkDFhykFzy8BQCHEGDtYD+M/pQeK46tD7j+kkxvmFIL5P3diBY1ovwVABOEnsmArAUCWOLpJWEURQG24l9xsp/c/9GZYUo0gCUDng1t4/MH7P4FzYwjpLP8/G+gzXuI/CEDRaqM/PKf+P4+v/C2q0Q9A73GOMOWD/T+uUkdvy3oFQHRZT79MuPY/jFphjFUq+T8TeU2vBmIHQLteDpUSB/Q/Bw/h606vC0C/J9Yhj1f+P7Xu3LwhawtAjjuOB5pTCkAGBAwkD7EGQM2RRl62nOw/TS6sSdOI/D9A0n/zE64RQPaxT1fBq/k/HuW5VPHdBEC1as9maIsBQPuAiQh94wBAO7HnxV9b5D8FfTJjb0T8P8t/x1FpFwtADKFMvATn9T9+TIbUMkHoP9+4r8mRlfc/FVpmTAfQAUAuxrOgQFrxP7yCTsOelvo/bSNEv0F2/z9eKMwmbTD6PxMMX9pj+Pw/dJ97E2es8T8rlrylsR0AQLme/a7njwRAgOvlzcz39T/PBuXcggwGQIBn/2N0hgpA41kt2eezBUCXIAlQdw8HQGQPbehPcRBAxrziCl5s/D+IfYvQDiPrP5yoHRraJ+o/d4O7z28RAUBIBtu+T+EDQJAxxnlGtP0/W2Jrc8ol7T+0bGXBEygJQEwk20DZyPw/8dK67stJCkCovEVEhsPwP2Fy7xdjJ+I/DJ6FHyvEBEBdG3guTwPzP9QHbmshKAZAwzZif+FF9D/oYckPYJH8P2JgZUiv/wNAOeWklCp+AkBWgdTkG+H5P3Frc+kahABA9Klesl9aB0C1PHHYTuf3P08+c6gs3xJAgAhr/nBZAkAnQSe//AH0P+MPr78qywFAazIhBD5YE0C5dtWiFqIDQFSUdKkWzfI/7CEIZKCXBUBs2gfPnaUAQBokH/tajN8/iY/1mapxEED25aoCeEb5P38q3B4tzAFARg9pqfNZ+T93u34i51EUQBbZnYEcnQlAdcQj+bxf9j8Z+P/E7oPzP3bM2lCi0PE/j1UgILwTA0CfprGJdzYIQKsX9LyHugFAOczobBMI/z8LQ7ha6TbtP9Em2sM1CPI/ZDEevJwL+j/JcRFxN+QIQC46efeBThBApJnjlraM+j94AOGybscGQEsczSSdhQRAs7ADSdBW/D8jhqFf8BkOQDrPZ2nNNgpA4EUKPS6N9T9OoPTp2ibxP9Fa3zIpVvI/6UlOEYk+/T9BdXihESPwPwJL0ZFi1+k/TDpnoLskAEBPjMBRn+f0P0O83cQoXwdAbVyRK5x9+T9f9VrNyoLpP/cux/Kw+ghAUcqGUicj/D8N4D5iogcAQF+vH5nmeABAntvtmSOdCEDVt11RQQftP7kF+LRgawVAbzGduU8Z+j93b9GQdfrzP+Ie5KtuqfU/0qL1fepnFECKIA2IGKT7P3oSzl15aPY/upGMnZrk9z+lQZANm+EMQNQ1XwgBDPc/6UltvU8U6j8MfAkXFQ8BQNdshT0Ov/I/hwG+yYgd+z+7nwlzeab8P9PPu/JTWPI/FBA4a51RCkDsbekWAqwRQGXoD5FFiP4/0gf2xyFI/D9RTSW5BGMTQGmia0SbI/A/45jam4cN8T8N/pzxOi8CQLgn7Ho6Ffg/x+uyEKcTB0DDeiMfYuH9P+/Ih8LMR/U/2vZwQx4UFEBm+TIocTUUQKNc+xuxyf0/vLPZSitBAUBFZF+wtmMDQB0xmLdk/v0/O56o1KWdDEAxp0Y1h+H8Px1+F85RNhJAr9AUaORtCUB9mpsKkwHiP+hrppdvhgFAky2jUI5Z9D/RkE4inafhP/CwIgihWQVA8/MM9OAT9D9ENUdXTOEMQHrYH5iVo/Q/10rQQLRr/D8z8uJYU9YCQGbzJcLZpPA/DVBZURFu/j+dp+0ihSEJQOIX3WwUMAxAiFcj5bh54T9L74qxhDEAQDZk60oiIhBADJMjKuTMBECFEThZyLQEQJYWnKfsbAdAh+J+P4fe/z9YMJhJai3xP73565bX+Pc/5hvX3VJ39D8O7r8LD00KQFC2zq31u/k/om9OD2MM8z9QlEtHkxPsP9SJQCC48vw/BvMDKb1pAUAXa63qU3z2PycuMiHIQwtAyXZARI9i8j+8f2RbQDwCQBLIbM5DMfA/d+RDpQEc8T97kqYxWSESQJ4j1ePrS/4/Ep/0I6157T/juBfaflATQJuKAxl9ZfI/kRVJrm8w7T/ecaMupVD/P8allQjZi/E/oZdkLLlj+D9fe6j+otsTQFaz39UxvhBAJdKY159tCEB/Ytvv6rkMQBRkaor+FPU/SSdLRsYRA0Cvuwfve4ANQIzY4BbvwP4/opxRIRVr9D9xb1B1ECEGQNh4oT3jSvs/+SCnJd9L+T9/5f2enIz8P7Y/bFLYl+I/w9CEeE+T/j9ttxH/0IwSQIevT2xiKPY/zEl8DuTF7D+zaoK/SzEQQFiNR95mLf4/xJf5IB3M/D+NgTLAT+ILQDaRtq1CmwpAjOe2pwku6j/EGy7Nh7H4P68P6p8gxfo/fVBLgkEpAECv8sDfDogBQHjcXj36CfY/yVoE2RQ/+j+DE+oPg6cKQD79DbdSeARAK1gvPkLn8D8Ges77hY0TQMo3U/o8G/E/xTIwb4CL8z/zSl8rcU8QQI1J0+vuSfk/gb/LsCMjAED+qJ0NQW4AQFyRyXmKwP4/phwFlMii+T8KYIjZ02QIQGpiHT4cJgFAZFML9Com+T9lyKrCC+X5PygFWCmC7/k/u96PoiyvBEDxnnKbU2LxP58sUvcMUQxA4uoYQxbv8j8me0JHwEvuP12zAfj/2QRAvCsCmdsE+T+WlqLbfhf6P6YweFsHTxRA+fQpceSn8T+HlJ56Jtv/P8dCdY1JH/0/CAMR4SAW4z/N44JYUrQBQNxMv77HPO0/Fgaz7ti35z8pm2uu+SznP3SNv6qDmes/KxF8skpmDUCbLgTfXQHvP0O+p5jmFfs/FGSWzdxPCkDqqPpvV+YMQJ8NrYuHhfk/UN5Qao0+AEDjhI9Km/8AQHLJMEEGLv0/SRO7HRJr9z9oT897lmUBQMC/8vpsE/w/nzP87e5c8j+zKpAHDOEMQDhBgcNCfAZAY8AbD7oaA0AF2tSfUv0BQDaD5Ws+/fs/3A8ojwTZ/z/bmYNtH4r0PxQUxoisH+s/DlPezUicBUDzd59N94r0P3HTAtgDBg9AVr/kZFcu5T9SVbNu7fIPQJWp2seslO4/UDxKo54EBUAvF/5vYTn+P4XqA9RkxRJAlN7ybgopDUAry6tOO731P2V2Lc2yUvk/DnTkYqSf4T9KwgZve+IJQNERtnd7Kfg/8rcI2nAf/T+SfvCBA0f9Pw0qtr0vgAFAATtjLjgO/D8chhJBSlj5P4R0YNA03vg/UUKjfXBg8z+moGn4dwr2P3BMAJGo5g1Aza7jnUkz+D8F2rc4Ze4UQF1dRbB1BOg/QqQFEpjQBkCppB9shZD9P1jint8fYPg/nSkZO1jm7z+3NY61s5AIQO+zxu3RUwVAUxGY8AeOC0AyqTsOJkwSQOX3SkWFw/o/jiNZlaPH9D8gNvCwVn/7P9YU+xrDvhBAhkdl15j0DEDlVaSUBJUEQOIT86iKn+M/94d3XhA/AkBRtRVL+BwDQDEwWRbPqhNAh4ogRF7ZAEDOE5QiyJwNQOlGINdT1QxAtnnt1ARMFEBVmZbrphgIQGhj0ELpUeo/spcNT+DlAUD+n2uCC078P7khg74gDwJAj3bQ8T6PFEAzPBv6DQ/6PyPsZK2KZwRAxmQsdxk+EEB5aF5ucAXsP9q1EZUfo/Q/x1SaXqu0BkAib2fSebUAQPpuNn2uSAtAB740JQl+9j+vZwRBB1gAQM+ubODoD/w/2Ky8U2IMAUBqEDGP95LyP4+nFVY9kgFAaRZrfcrK+j+nTDjX34gDQHMtRiCUqBBAJhAeAskP+j8NUeMOooIDQI0ZThDFjRNA91+l8tDh5D9yxvqj2br1P8aZukeVBew/wPLzDJynAkBy4cVxWor/PwaWi/Sr0/M/fcZW8lJ59D+FnhRda9H9PxX7eTM2S/Q/L3bBcRTUC0CicaEKER4FQNKscHnldvI//uNwR//IAUDpjv2+6Db1P5EE/4xC0A9An2cJDGlKA0CFUnpAAELyPxSshGVXcwRAW9PCv8GCDEBS2pVQdjv5P+UWWw4/KQhAHyzJH2rq9D/EiCBrbTwAQCj7u18tGPI/OjZjB1Q0+j/5sepyX5X9P3hAYXhjdv8/PGgN8ct1BECHs8t3me7hPxhn/nZQnvI/kyLkJIKp7z+2aJPGpQIAQLXplPIKEfc/a4Qsfg8G+D8ficJ5n2ztP7LasdIgDw1A5qmROj3Q7z+nziCYCMgAQA7q4+jRePE/F1kc6nDWBECZxLh6sPn8P6AGjNnceuA/APmUkxBKBkCohp+bIj74P11FeN0x4PQ/EPRhXajSAUCwsi6ha5v7P9z9jjNiaPs/IkVRSt3t5D/UD/S/mJXnP/OrokRzHPs/VLKsIhjs6z+tFUV4tUH6P0+hylojkvo/riC/RuZc8T9l64W+T7P9P9Ai8I52Jf8/J9EsqO8aBkBWdb5iJX8QQOqtQLC5ROc//PqEL1BJBECvlfUG+QURQP7dt/Dls+4/QKmcQfVuAkAVxaMF0fP1P6sEsyN1gBJAePYuTMmqDEBnL0YBxr4EQBdFZK2Hs/E/UOKKab+PB0Dl/Y0869X+Pwa0hA+kBfY//EBChXx48j/GHIcKR98FQKjZEHezHgtADLxIEMYr/D9pldVyMR7sPyBPSF7WxRJAXGi9XVZ6AEADm1O+Lsj8P0PURBi7sPc/cJKu1yagAEAlbFhjVBb1P16VjP1GEhJAhOBPkzbJEEAUNnul2lHwP4AgoC+QDhBAV4Q0VWd58j8QR3u7qyvoP1hENqt3jOs/wnRBf1aQBUDqj0cD2OHwP9Ud2NjFiP8/3z8kcByLEkA/uhZ7nyQEQHkUTJoFQwpACcXZwXRtA0Dbw87ynPkCQP28CgXUqgFAR3UKs5HAB0CmBmSLZyT/PwSSlH3jPgBAZIEByja+4j/3O9+bha8QQKQdEGHsoRNAk/X1WosWBUB8NYa91yUNQL6duE3GRvc/bmBk+TNGCEDVtXg7/pz0P2KzZl30eQhAY47nmEMH/z8ByYIckAf+PyzvOrrbLu8/1rSFpdrUCkA6kBW0QvjuP4UQWwscKwZAwaklEJBlAUA6fkpfJscCQNd93TPDkgVAuwfXjcD0EEBxLlqzCTnlPyS2owR70fI/Xcn9jIR+/T8JhZ1bmnkCQA4tUrhN+AhAHLpMXzMO9z/re1ZzC9sBQBTkRxPDxgxALBrzVd4i9j/otouFUzzuP92Uo1YzJwlAJ6HYvNEYCECbTndSmNf+P/Rb7QTsSwFAh38/VQ7A6j+zQOUGldj2P94vB4nRyBFAuq06BKL86T8x333L04j+Py7pJmNSSBFA6ND8F5gVBEBTDi8AysPhP2ulKhTmCP8/nvr+1dltCEAHvsUPxaIQQM4YFZSkR/w/sa0ekJTcEUDyxPJZhffzPzzDWfUKNvs/St+jVG4PA0Dyi4RovkP7Pzh1k+W3zQNAPgBUzX9fCEDcQNrDFiUBQDrrM8Yesv8/ZmzAY46J5j+lhOobWO0FQBb1cGHGmBFAUHhiZnKj5z9uC1i3K1D7PysiGgtNwu8/QPO/xWhf7z+ZVav4Bv0SQNDHGnP0wAVAKTdfCVyoCEDXj8O4+cnuPzg/yYqdYwJAvDZaeWHF7j/bvy2Y2zH9Px978nVs6AxARjtPfHqZEEBhz1gss9LxP1uo4SZRWvY/wHAjIVoW+j+GgipG0bT4P2olSRVQcQVAmxXti67B9z/Nok/qXnD8P3wQbqpdkQRA5BdAKGUbBkC5XmkbHcbqPxLyJi4pqP0/Kz4xNpJ/6j9F7dn7PdnxP/4w9NrF9w9ANJjKrSHCEED9ijEgHkgIQC/ANELWXBJAaNyQU42u+z9j/KZJC93uP9ynUu5NzQJA/HWC6ArjAUBzBUMZz2gEQFJqQF/PZOw/6IUkzU4k7j+lsqOKhIPuP4F78hm4Ofg/dOVlaNRWCUCDi1ZMBaMQQMxavzRrAQFAAnQp5kV26z8W4efnsmDpP+H1FHHD4Ps/1zSpxfYC6D+SNX8OeBH2P128CJc80wRAOGyFaVo+8j9/AtqDefgSQIVODKg3k/Q/e/2DD1lsAEDJ21aoC33/Pzu8rqLvpuE/SAP6dZvfA0Az8N7XBWwHQDq3u0bHEvg/pxYPBf8r+D+ESY+l26v2P39vmQYNBuM/P/OaX6bV+z+JtHuT0+r+P8Nx4ZWA6QJA0L67zE/Y+z+fb9j2mzQAQPlvapxROfA/ctxLtHNZCkCvhu5QHqj3P7KtwsbnTfA/wJEiIYthA0Ago2PTieYAQPuOrguvfPQ/lfPFAIvZ8D9ga4eiswT5P9U/d6N7CgBAUCnGFzBN7z8fA18xzZD9P1nJapjN+BJA7OY8vNCWAEAIgyE7MXn0P+Re7RtzRuA/zjajzFkC/z/TwN9Quf7qP4fdhFwxC/Y/TXS900F/DUBMpiTKDxH0P9cjn5o17ANAXgqMP88I4z8/Afy1On3tPxFD0nGZhvI/qxY3Iq/MCkDslj0E4nH5P+JKcjsUGfE/FYJZcUqg9T/2B9eT+PoGQJQlICxK++k/9mDjQL9KCkA5QYzhIi3zP3PZRTh7RAFAqUOposlb+j8GbSiNxszwP8bi+aD0ZQ9A0es5NDdLAECsu6nzx0n2P86BJUeVJwVAO/2FEA748T99a+PNy5TyP0sP1Z1tR/I/gTWVJ44E+z/9oKYso3EOQGu/idwh8gRAue8jqZ/1BEA+qUraQqkQQGrN6m6zwvA/QmPceuB7EEBEoLlDkzzlP7yhsYWujwFAYp7oYzaAB0DzIfOTusvwPxF7TZeg/wBAOXgE+6Z0EEB9fUourwH/P12G5f6a4wlAi6LhDJ+T+T9Y5Ee0jpIGQHZl8PV5qhBAmVRqh5ZOB0CUNsOdP8QAQG3rPT7fleg/EVSsk+MACUDYcipk3k76P5Q2ftj3VvU/ItJ86wP8EkCQisOSQxQFQChrgXwS1/c/CNKYZIBsAEAWPfk5X+sEQIO7TmLx/wtAUvLCv5U04T+6TP73bf0JQJYnfN92cvc/q5m62QHyA0ADrtBx/gjpP9sjsk8zyvU/bXwoebpT5j8b+PO4+yMUQC6AagPA7hNAnpZ0ok7z+z+gpYKHgsPyP4ekF+sdtAFARE2g1sIUCECODVlm5cPuP6jgs3wgtw9Av9Fk1/xf9j9DyxAmXJQEQIb0CZXH0hBA0LrPQh9HB0D+u3Ac6B8DQK1fFFbrEAtAkYvZEbR0AkBAPdFchDvvP6PTKwGkvgFAfhpfjugC+j+hnDTOQOIMQBjbLKn2uPU/jFI3GNTO8j8VP2gtF0/nP/ko5vxGAvA/4/Q5N+dK7T9sa/Wfh7bzPyz9fSvBkAZAPT6goxml9z/n/cO44JUAQDdnfz/c8wtApg4ztfZJ8T+4up5yCwYDQCUZygjE8wBAw/1iGYvp5z/yfkTEqAP0P0wVcp9xFARAbg+t5935BECBuLbg0IryP59lHybtbuU/qqAzIU5e+T8SJjfRJOQGQDpkYjpv8wJA68V/kPj24z+h3Ts3bRIHQPent58sBvw/7EsEs2Dt/j8n4H3kVxIAQNNcywijt/A/tB28SJ8VEUBLUttC1gr8PynmN8wQig9A8Oa7BwzBAEBwW7Y4t1kJQCp0z79/OfY/wwPNj52n/j9+6mZso0H1P8SuL5OpKfg/0qNaCdJaAUBMNjxlOuT3P0qQ2ReeMPk/PgLLd2Pb7j9Z73zSsjsCQJF1ocDJAfo/2f9rfnZjDEA+vQ9v5A4OQPhMYhosbv4/Ue3CVi7OB0AvhakQD7HmP8bBmaWjZ98/H+TwMsMQ6j9QmPkNPjT7PwlegJFZQ+Y/Acv7yzBa8z8WutD1GaT1P3Y35T0/MfI/T5b5gYA8+D/ETbit0NH/PyuYwaTrrQVA5L2mLMpsAUA0b0APutgPQEdLjXGWAP8/sqWygCsF+D+qJEIhTAkBQPUMk8XG1ANATSLJw9hTBEDXBbzO70v9Py88XonEofU/jySSqNLNFEBnEC6cRG4FQBs5H5HWBfQ/m51nV3UpC0ACZcSNoinxP4ELu02JgQlA1uKXgsBrBEDE81bSV/T2Pyb9zCXr3/M/XdsN4EIjA0B+pLwVF5X1P7WQEU32YAFA6t/0hGoV9T/xZ29sOpv6Pw78EwMt9gRA0XzVIzHS+D9POP57mDoHQH3k4Ylc+QtAtrYdP/+7A0CCpqkO7tYFQCNdHPe5C+k/NKsSxGlQ9j+5IDEwqJzyP1GwOem9dOk/07X9lTYf7j8ISNh0HSQAQAfgNVx8rgtABiJIZBlx9D9zqzZqHFcEQOczhoZRQPs/rRxdPlUj7D//4j87w/31P+nFAlkTZwNAnjRBGTSkB0BQlvXjwmsIQF42G5SYc/U/vEKFxYYXBkDRih98Ow8FQDhygYWsJwNAsFefOoqJB0ApYfbXpOD0P1uAbMo2pgtA/+ysX788AUBww7YM8zYQQFNExKFuUtk/6djjuDn44z+NzQO3OKkGQLdGgf58OAdA66LXnonf6j+GSM3v5ZcNQD4Mh0niphBA28e5Z+ZA9T8EKhnBzvbzP/h76VNtzPE/8ODtE5nlBUBceemUmtr7P+/lStvoDvQ/ZrF9mYB2EUAjubv+1OTtP7ADn0FIxPI/XLsDBK6l/j+HxKq9ZNX9P4yzkEju8ANApEmJcSkR+T8rYwEP+0cBQLLAGF5lbABAvyx4u18w9j8C6i/Nnu8GQAIyfbaJG+I/mfb7p+727j8tWb3QlfMDQM23zwWVXw9AGoj8OaKbEEB83mh7rvbqP7q9cQytTwJAsS6sI249AUCYgyJTFcoAQOvzm6wWZgxAZ5qJYG33AkBNNrnQ0hwBQOT/aRgMQv0/8OmTzueD7T/tRkAVMOcCQF87fHCzfgJALRY7eDq6A0ACJxftuSv/P1VX+kOjVAtAujPA6BwC9j9+veTxYCMIQAcWiuFZOxJALc332JXJAEBVXFNTk1vzPwo2GPha4gJAtViqf4w+/T8K/QRGCvr4P/cUwZjTovA/QDXW7et/7z9ITupOJ6IMQDjGEBub7xJAqlbmlrbJ6T+4OA9Avlr6P3WzEKsN9+g/OmYd4yDKAUBmextZoy0EQBnJ+z+oZgZAQgdrzaM5+j+0JwYsioL4P8aWxhGMIus/wv+GBfSFCEBNVuilrLgSQNuMLSHWOAVACZtdlh1MEEC39qfV+dD/Pw9pQ1HhvAhAIee49mOo6z8xajHGcjnlPxPeg8kPKAVAFRona4+4/j+1RrKOmmIBQD35ktBZCQNAnCI39bWz9z/8B3cIBHfxP551Wi8leRRA8L3gIphrAEBdgMmMAkoKQGIdv/NN6vg/X7lER3A18z905yBEhN7hPz4FVS8XiwVAXhMC7xnVE0C2Ttfg5DD4P28rXJ4sIglALpUapXE78T9CHGRdWCTyP3+0Ya2Chf8/R2oRjEnL8T9iLdqJQizxP3sxsES7auM/mS6p88+N+D+5J5zTxLIRQKdchXNAKQBAdfG3uM1cFEB1Vl4mVdn0P+yZSYTyFPU/PTHTBSQmEEBiM6KWJMb6P1NVwyqAivk/TGk0yQA7CkAyofgWdnEFQNBVmjFwWf0/fmUgO/bpA0APduMOvocSQIVrQbD67gFAhWjoSyC5AkACZ15NKP0AQNORVyl90/w/J1zcUD/x8T+YBArmJBABQJdf7qQJuf4/SwufnfZV7z8P6L31Xd0KQK6ZPH/sAwZAzxnKHpYjDEBiqPysJtr6P5uNUGpMSwNAkYNu62xl9D+JX/dqUSf7P0aTGIX/YvQ/GLXokYVXBkD0kpm8WTkIQH30htW3Y/w/EZtEissX/D++inRwJ0X4P8+WXrvG3/Q/mNLMpGQhEUAAW5T4G7HuP7lIeMBG8BFAbXBoOYRm9j+myrdL5MIGQK6Kn/mRsQNATkzxcWRaAEDMdwafxpfzP0wnkd3nDf8/0tEB0PUSBkBism6//rz4P+kbrlVSy/o/0AqRk4MJ/j+qXBa+LyMDQPU+WMdK7AlA4tVd9CqoAECrgi+Kx/D4P2Suon93av0//po/0axMEkB06HMnLHD/P8oQtooFJwZAf619YnkH9z9tqhpU4dXzP4vKqnbmKANAUxF1K4qRAkCYd3q/k1P+P4OpHwG8Buo/otQjJjXQCEAlWw+uHk4TQBSKSpPSugFA10i/kwT9+j+zlQ9y6/8HQA2Zep06oRJAG65TH4alAkDn1/o+G5L4P8Hb+90cMgZAfFDNh2KC/D8qI64ua7LxP2Nrt7R3sQBAcwm45P9/EUAUqCoMYjfuP8uXhbdXOAhAc0l/eBAr9T+g6nTXZpcBQMDtV6m7BvY/mqvkoY5FFEAGFZyMmV4EQAtZMZwERQxA5jL7ZNpNAEAGD39wNq8TQDtl0it4Fvs/ws4zKsKm9j/aaIJUfBIDQMlNJHO0Ffo/aFu/z9bP/T9+FdG1BNPoP9wKBhcumO0/KVrAJAK28j9aaJINKkcJQPvwPoE9ygFA1Wj4jZ9Z8j+gpS/clIECQIOushxzGg1AebPvKHxABED1XYysLpfoP6I/dApUlvA/v8FVw2tJ9j8RtMfDLJr5PxhOe/ZN4QJAN+mFfPl39z+u8IchMRsGQCdwMmj++wdAZKgo9RNC9z80JL4j6Z70P9E5rAE1uPA//IgibNLu/z9jUf1/ckAGQEyAow/EyAFAhW6IxCrt/z8HzBRatDbxP1/tWAyQzQhAYkCk/Qt+AkDrzay8NL8RQHLSTzNNTOk/NfkqyJFOAkD3bywZ1FICQB+Ey2UHm/g/6YmvXDCx/j9MJi/thLn4P/FX5en2ugVAJ4DFcfFF8D/bt4rKG3QFQE3Qrrl3pQRAiQhuwyL++z/UtX+XSDsCQCQwBurfqeo/ZVp5yDr0AUCgmtyxnmr2PyJwoW4zDQBAXR384AMS/T+lEmMmvjL8P4tYEOiUHgRAuw+b3c8KEUASTBhHAlPsPwELkF/mLPg/NtwRwWNk9j+vwJIq3+MBQOTUIcZJCgpAfVrWhDKp8T+Z98KI0mjzP9Nxo3MY5uY/AOcO7AM2A0AIfNFeA6vwP5CfIz+7ru4/g87+2W9+E0BM84HM9CAGQLzta85aPP8/JjVLvLU1+j9Imj93WzEKQPCuUIF74wVAbdc2JOVW/D9P6rKVigT9P30Z58mKPPc/ufv7iU+97z+C+04rxaz2P6SQZeoJXhNAi+Z2jkXA7T/WpF1C84bvPxS2GpVlKRJA+TkH8u7K+D9Drc3DelLtPxCiM7SDI/g//DalKi+AAEAPOBttoRH5P0lrDWk8VQ1A78C8iCtVAkD83IHB/JoAQA3XRLRDwvo/ruoRg8Cj7j/fWnQAXvQAQPrS59R7nvc/OWJwC+BX4D9mdogd6GrwPxfYFOxULQFAgJkRDAJG8z+zScEQWUrzP7Jad5bZmQ9AYY1Y4ooj6T+KYO0HpJD3P20+8K73B/0/d4Nhd1Q2CUCTzjZH4K/8P7SsiurIt+o/g0UfbUjY+j/fWYtA1VkBQCZABRuLDwJAnMJ1KR6IA0CbQwmSpuL4PzedpyWJ7+U/va2ymaH/EkCivMCqcqPnP7uaGGxm//I/x/Yp1Pa15z/3aBrh6gUMQLVdrcuRKBFArOvdCQ2cA0CY8GOxEtv4P81JGw6Lue8/EqG756H4BEDOFejLf8P7PzZ1Gf8uywFAjjwDdxDB9z9GOSKtl/7yP9pv7UDQ8hFAFFta0LdlB0BdGK9aEEL/P4qlCoOHNwVAWU+wXtTpC0DKOIN3Ajb0P8zrRswCsQdAt6UzMuMG7z+lCJKjr0XzP5b266jFDwVAWq7Kyw2/6z+RXKMae7fmP2F/0UzFTQFAch2bCdKLA0DqCGS+Po0PQDenKlkDpwRA0+1rTGfr/D8OYKyWRVT9P7I2TzyKeuw/XZ3MaRIk+z8tHkFQlF4KQCfB1QcqCug/MeZEXE136T8kMWFG/NPqP/Wd9MJcSgRAuwuPfI8I8j8ywx7YAIv3P9aJlWHER/k/HoUfbSNEBEDwMxQ+ZhMGQFozavkozAVAjXTJgB4h+z8hA38HM4oNQMWs2aps9uM/GIjH/yTV/j81uRB/vWwPQL19yJv2F/M/pM9EcI1tBEDUH9905QENQHANH2kV8OU/3XQgn1umDUAFOsRYgmP3P/7kDUNvc/Y/AjSrmXVoDkCQgxXAILAAQNG8E/9QJvA/LQRD6uJpAkCRrTweFmkCQEH4vqc4IARAHUm4bs/V/D9lNBt5pwThP9BEGuTYMfU/D8SgWIP06D8z7rtajar+P73cN8bEmg9AV4aJXWowEkCNVBeBFY4NQJUJtx6JYBJAHdd9bk0YDUCLSF3OkPTpPwjih5gD6u8/3tqyqi67/z+Ef5E0HGn4P/gDhab99xJApOeV9kwpAEDsdRtzr+cOQM9y2om8HAdAfyfXnsbkBkCw5/0xI2T5Pz479vsTawVAKFwdDJ4/6T+jwN8bKSv6P8EyNHoPHf0/ZWJAf2kPAECi0DV8THUEQOkZG10/XPc/xBHleeil6j/4lTM4HnnpP/gRSZ0kwP0/8HLZZ1Qe4z+QNf5kZ7oBQIqtSLyEEf0/CUoCdupJ9z92bX2KxXoOQP63KpGys/Y//7VPUa644z+9394V6NsEQPHls19PBAdAGE89otLsE0CKu7RG+coSQAF+ludsDvg/WHS0MR558T8PAdI36UgUQCqD6xFMofU/f5YF+oeT/D8LQNCRJegGQIzSQY/eUwVA+9vWWHrrAkBbYaylCSQPQJaQdd7nGwZASX43GgQ38T9bE7PM/0n6P4Ibq03OKxRAxWtN95A2AECkA9GJcSv9P/YqRlJVzwFAhaOfov96AkBvz5/jVen+PwRK95Lm7QhAKfTwn9jO7j+ZMLXSEuz5Pxuk0ciRQf8/rrhzVAieEUAShG3SBlH5P/PxxlRCyvY/QDpi/VR96D/XYtwOAt3pP2tbef9fyug/pzGB6sBTEkDE4eJKLzAIQLBYnp+6EPU/ylxVHekg6j9V/lL5xxf7P83iEEWD3e4/jo6ZJEEuFUB2P00WSkrtP7JjAoOy+/Y/0cTTtK5v3z+HxH4mHgzwP/Hqu5MSlPw/wxqmAScS/z/CssWczA34P33oByYGuv4/1wuWEkua+j/0iQuhUf/0P7BBXrxyo+8/UV2pCvfjC0C49gh7BMnzP8JPdQgEEgtA+TjdF3Rx5z9YtzGVdi/4PxYvbUmyKQBA4pbTdjDKBECe9Y0Dy94DQCnh9Lg+6vA/sidckKQF8T9P79XznxkDQLilQmR8HOw/Zu2j7qUV4z8wHNG/9f75P0zIYYd6gwRAY+hNaZ10CEDhn3LXkxkIQAxPrC2Jig5AwYPUJmSRAUAIxylbQmwNQKB2hVCqzwpAxcblVkwYD0DCPr+oIDMEQMnr9kxIUvA/wtcJFjW39j8Tdv54mOzvP3TbfY36ShJAbp39bFkX8T8gOw12JGH4P77lsQAlrQJANOr00ByUCUDZ1BFhxUMFQN1tCI1+BPY/sTgBBDJC/D+oWEfKzz8EQHaraphQQQNA7B22BHHbEkDg37Mms3XzP+sQb//kHAxAmaxshU+kBkBd/jPg7SfyPwp3+ARcnvQ/gvSN+BueEkC5dmhUDYTlP4nHyQUnTRNAn0ySUj8ZEEC/WKQdRCnhPxHZTPtMOuM/2nBk+FFK+D88Y+JgTTzwPzPa7bKDff0/O7hMo7W2AkB5vYFCfkgDQLQQ9to7hvQ/CIcZFmFs+z+SzO8aKtHxP5tpNjUIxvI/I7JUkuKKE0BaQcM++DX0P5ozvxeC2vg/x7InJXbLD0BxL7aAW2fvP1KMPeIbK/Q/6oS1jcka/j/bQaMbFtgHQKiU3z//XwBA1aW7FNYtDEBK0emHL+ALQBlBo03H+fA/rXbQ3u+m6j+CTdAYeWXzP5zOEoFc8/Q/NvQYbbl38T/m12tKPiH/P69oSQBAZvs/Wo8cAPis8D/ywZQyT4zmP07r8feEVgdAEXrCkngc9T8yGBBSOYP7P5tnLXCixxJAHiF4qkjy/j9Rmfdo/6cCQI7CyMaQ6fg/eRxdXZCACUCrqAp1o/f0PxDp+vKS9Po/ijo9hI+u8T9FhlRALVoRQKMYT/i7bfw/vvP2P82/9j9hUFUt/Jb/PyiQH3tuIPY/4ZJvWLPR/z/kZzPX69j/P4J+oy8Pruo/vGiW5P6M8T9QfkDnKfHwP3SYDo/BJvU/ZWjNxZeZ+D/oDcfzNXv/P+CURMnsTf8/KEe2OICCAUBFC19sDNYBQOi8KmqfQfk/Qmw39B9HCEB7Ji26NPT0PzPnIbtLI/c/niItjyTRAUBEr48X7QTpP9E0rBwciQFAsAQE24vN7z/PjwivweX7P2rbCz/OmuM/oEgOvxRS/z8nWY6E20wGQKjf4zKlm+8/wF5TjQw25j/vMNQuIurgP9b6lnqDWRNAgo4wYnFf6D8DOGVsZ8/8PwTh5K0MXf8/4ABzakcv8T/4ozKsf3zpPxu4P6yGKBBAPvdyxL3DEEBMWjVtQbEQQCOjD6OcJfo/hI8mvJLN9z/yn7Gh5O0FQNH2bgqlogNA7bGzsY/N+T/u2r+l1pACQG+rUHyUu/M/gnGD4Hi39j/OUhMYAf3lP2Q2Wvkl0Pc/NGVH70xPAkAfBQBWq1YBQEVlsCQqpv8/2Eb2oqFiAkABPxmVlLj4P2woFI1QJQhAvG4YBpF+AEA3ZTS1XWMFQDqy3k2Ga+I/REB3f53M9T/4JABo00X6P9sg71+yEvk/3tZCd3Yv/j9n7ZhNA5sIQJ0UqKzGUQBAlHuYlC4i5T8XkiVwwn7+P5YtxwcZJglAlfLmp9PK8T+d8KyUjWkRQMt8NlBRtwVANZdsyD0L+j/RxuVyjhn1P6tMake54wFAbtFhjgnuBkCGVc1HcyDzP42LhO2Tevg/XNeu9d4D9z/9bNV17HHtP4yalpkRX/s/3z5LFWDd5D9mRPzMeBfyP/lweApso/w/FeM/mH6C+T8cMDUkW7cTQBeXJcsbOvs/e8QMTw/Z/T+ut4G8W34CQOEsc4k7XgRAffNdjVUH/j+Iyn1Pe//6P6BWYFjuTwlAaDFvy7K1EUA6KVWhbPDxP8kMLVqDw/4/tICM7iR67j9MVXWlpLv7P9PJMRaarw1AhTj/NvA0B0Cn+kHkQpsFQG2a2n557AFAmqP+B03mDUBIMpbcL8b8P4vdB/8GzvU/gV3IHDsl/j/BbFF4JJUCQNjCqWX3Dvw/tUCjNvbG/T8gz1Fk5HcBQMgWueR0DPA/l8PXOa6T9z9hNMzaHxwGQNHZKtxM8fY/3x7QClrq9j/afQtiDqQCQFrjLzhgUAlAjwGceFdC7D8B7kgJ6Hz1P+P1gn2Hu/k/7uYGuVOu/T8R8MMntNr3P1uQ5vBkEAZAQ/0paISBDUAdQl+JWyP5P914aXu2rPk/CqeYV2I28D9c5kiQcz3xP7UpGp3NfglA08BRU12/+D/xm0Ss/FACQAqZKXOtXghAnOGCmh475T8SyvY+Sz0CQM4+Q+uK7f8/Ll7rYNqMAUDKe6X1fJMBQN1a93f9Gfc/IDck3LQE8D9sdZASkg4JQGBeS7CWR/M//fJDyHPP/z/4+I98UkkUQDozN7S7ZN8/+iYujeo2B0AXEAwnvfLqP3uhYUb10/g/xrCSlJXF9D/2BiTJLff/P3UdgETJbfQ/zrRYpmG59z+uTswwQV7wP8yq5eV40glAkB+JqggtBkDBOtOyHmf0P4fqWUgl0OI/Q0tyNsos9T+fEb+83Bn3Pz/ccuLQ8uU/6FBiSKo+B0Cp6svtF17wPyTIh0l99/U/ND8chXt2A0AInxR9LVLnPxHTu5I1iABAK/2vT9+NAEAKJDXW0q3oPwNcCxBSZw1AdUS7W8Ez7D93uL4A2Of+P9ehh1JwIwhAqYTZb67i/D9Ay5/36wv8P8OOsGDHrvY/Pi44ZQ+QAECijOk/wW/+P8icQDJDa+o/s+XV5/PfB0Ad3kPCuqIHQF9y5vP/+QFAO1zIH+Aw/T8dTcfqznH7P6aKaBzQufg/ms84yXvC+D8s0/+OS7j0P3dLUNoFBAhAizwI0sZ3DkCeIYzndAIBQOwwbnVh8QpAOAUcBfJ28j9ks+smr38SQGgLFRQvMeQ/xOdfaZ6cE0AsxEjntssJQN8Yyjp/d/Q/ljWCKr6mC0DJqbmkKkABQDQjLW1xBgBAIz3elnE9DUCNJsDcQ3MCQDyzIVu6fP0/eQB5AhwS7z/fkg2jphL4Pwwc2kVjdgxAKiTDJWVS/j9rN2o+1gT3P1ysCOuCG+o/a6sS2L1V/j/uB95jYwUOQD7OHgtkrxFAh2kMu7Ov7j93zwPCwfz3P2jtHMnqgQJAMO1Uv+IQBED6turxmg0BQPacuMWJr/I/qD45v+zm6T9IcYHwUpT9PwvcavPVWQRAxDZwJ7p29j+qeASLuzoQQHn+qTb41BJAYv/aOHGD9D9ndhYtUcD4PyqUFQ7Bofk/+Ka/ojCJCkARsGsvS7sSQCz58pu+rQdA+I/id12bEkDCRtJ/cuMKQDc/spIFWQFASInDtdYA+z/TJYVsjsD1P+yEHom3mvo/2Kky8kWM+T/mtSEOZS3wP1AHp3ZxTv0/XVKkLWJ6BUCKR7f64MgQQJkN53Z3ovo/yd75xoyiBEAPaQfPlDH1Pwc3PEY41P0/YaEO8qwdA0BNUPsMd9EBQA9BQ+lIFAdA9E/xKmHlCEBpkPd+E7MCQAa493vNAwBAlNLwN0bi6j+sgdo8ORQEQJLM4TpCvgRAbzzR0cClC0BLyRuhuQb2Py8h4GsxQQ1ATUf+gF977D+Pd2b1zkX+P5xAowufOgpAq+lHvXO0AUAIJ1Y7z8MCQHfEnsm/vvg/3nFBc2W/8j9X4VilGkfuPy00C8CzzwJAiGv+qyNv9D8mSa31XGIMQKi1nCAddQRAPjToMnULCkDHk4vDEI0MQMveN0mSwPI/4Rwm2riMB0BmGrQtQ4PwP7cYghW4WgNA/Xm3Iu9mEUDkNHIPX6fiP6al0rfioQZAd8ZRS7lqCUAIW/65WwIEQJtwQHGskec/1yx5GehH9z99IHOwJWT+P17PENtEb+o/EC7Tiv+V/z9H+WIXt2gMQCkixQYdd/4/7geKoyyfAUDs66C5OuwNQMmCsbtP5g1AbN28kQdA9z8U7XdeS2AMQGUHNI9ROBJAAsYqTz9wDUDBid/cEPMLQEPlgrBCt/s/bxERyJdVDkCgEcWUeFYCQEGp4TjVK/4/6RisI3PZ9D+Sv01Shu7nPy9waoLZXew/GZbO3Gtx4T+O6dYYIJUFQKgpKC+gtPM/8TTb9+aABEAoLy/uGm0GQK2JzfxEhgRAjAS791Zs+z94T5NHF/PkPyOnAQ8VdRRAdiOm7nL27D+3RHzlfgP+P2poqKP2mvE/abXXzcOAB0A9HJhgUqb/Px4twPZkD/4/RPbE4lPh4j+Y/IH+CfoKQO0goAUt2/8/5VcL6/XtA0CPTeZe0p/6Py1PgPHpFRBA2fNDmX6q7T+sOfnzq1QAQLKcdhBuW/o/NewMD6iNAEDxwYOzwjz9Py0JZzqgvApANYmV5jwtAECApoFjD2oOQIKWoojGSfg/Vz1NVnKJAkDu+3UeFoX+P+er0NwpQxRAgCSwssEz+z9jY2CklDf0P/fXXaXTYfw/rtzQ2iGn+z/vX1jpEFr5P+cMwmExdPk/zvPaol+17D9kjb1YEpD7PwYZbSrpexBAGGempMxMA0DKjLSSUkHxPz3vmFOXE/o/1O74fgQv+D9d72ttg3v6P2LIeAP2UPQ/kauh83vK+z85wnH4pF77P3X8AzOvVOY/bnrK2rQV9j8GsNlI3c3/P4kfGfrfRO0/MIWpjbkU/z+MEyHy83QQQINl/QTaBPE/DzWKUxuQ5T8lL8+EqB36PyyGWL6wduE/LS+ExMUiDECsVxoAaTnxP71gFHhjXfA/u/hkMmNgDUCy2T2IfYDzP6m9a09zyPU/Jke3O5Vk9D9ngWLdVwAHQAvSPrjKHOk/dbfuwQRD9T+NXSrCR47yP2DkFBZYh/Y/AxjABHJH8z/ljfl9V8H+P/KmGrh0+uw/239mXR8RB0B0+v0JkjkIQDETXipXDus/Ot832I+E8D9UOq5jN9rsP/xtIn/+6+c/1RSOq+scBkBY6GgRz3XlP01wBkrQBQBAuvyHILOg9T/Ny6zSB7zvPywWUdUk0/0/Se5yYkMo9z8AwgPCHzvxP+5bVIJ+MAZAdvrPnf0P9T/5n/tvSN/xP4LqnwRv8QJAbYYXwbRUAEA1jjFQmO/wPw1iXjNLRfY/POE7JeiME0CoyX6jStUKQILm6EPwcfQ/ClasqyyaBkC2bksbIET6PyhqHjM8Lug/7uF42dm/5j/rfw/NC24DQC6AYvAZJRRAl6DA4F7u4T8KrTPs3cMPQO81+PBZYQRA+W8x2lHfDUBxJMJKsyTnP8a81CfS6P0/efp8rOf09D+mkV8Q6fsNQFguB8frqAFAc0UZP7nB6z/4SqYW+R8GQDGBWZm/iPA/9S2eVZsT8j9DiQCz6BjxP4YxJ4hblAhAoU76Fchb+T/W7u+L/qD3P1hNOaL9TAZAKO/wLFY69z+droWabhblPxM5WDmF8QNA8dLx8Pyr/T+WEE7zB3jzP5PWSKnm9fk/Gy7lghb86T82NhevetDuP3zQ1e/btgFAHd183cY3AUDhHutJT+D9P7qr9qg88O0/ZdZgH5ePBEB6flobz7jpP1qel4gyW/k/Yi2tsJ+w/D+m/3SAR+L3P/qS/zMPKuM/P2gMs90d7z8LG+ZnEUgEQCHS47yoRgJAjDqzYPQL+D+pW03aCuAGQE664MHNPAtAl1zrpzlcBUBCnP7uwHP4P2TRGczvSPM/kKnhq5WmAkCS75Ld3hEKQL6fLUGREvk/7oADwJW/+T8gjSR+DywDQL3ML6BthPM/VOS8Eee/4z8l+SiEosMDQDofa/3Je/E/gB6kji8F7j+5zI3miD77P+HnxvKMMfA/w268TxP3BECS6K/Vqsj6Px5fY5OyCPA/zVk3UPzcAkBbIPeLd+EAQOrSdxL6AfU/73r1r3kT7T+Fw6Syju37P7LmyuPQfgZAZgb028WpA0CdZvzHXr4QQJoPxO9NRPI/Lxx3YHx07D8bdUXz0ez+P2VL2GwNffA/TJno5yf2EUBPXJt2zjQOQJnWXom/bQJAVExpYa/XE0Dslkg1eKUTQL0o1W2Qr+4/y2Jrfonn6D8mJJvZdRoHQGp0033+4gBAgFxE9DQrCkBeuIgZ69ABQKVdAZ0K8gVAGUTmlFst5T+XpFJ2F+TwPzhVaihT4/4/V3rdH7VG+D/yLdz2U//1P9rl93t47gZANYqTftnJ/D+eFq5OC54EQOButNDsMAlAHKsIFTP4/z+jk6nKPYQTQMd5xL+UphBAU4DLY+8ZCUAWABFqYlLqP0HyYExMcgpAckG5yezDBkA+XiS29tMMQB1g+MXXTvY/oPLZKO4WAEA8Gy6vBGTyP+DaeFTuUwdAlBbg+h0fAUDXy4QuEEDxP4pFMnNEhQJAeuWl/upOAEA4kH8z28cGQELdislxOfg/m29DrlJC/z9HUb/XGQPvP45+arEUOgFA7k8Pte8aA0C8/YPqhDD+PxbXxJuFfOM/SuDZiUtBBkCdrWqFLNP6P5OdSnJzP/k/NjwgV2z5AEAyXiuur0f+PzGGVDSdx/o/sjBTW+LU6j9Jf45OBN0HQNW+hM+Yqvg/A27IUv+g/j88KyOi+036P5s3xo98B/M/MmO/w+MXDUBJysMKkxAAQKt6OzhN/fs/vuDxwAj+8T/llBfFk9D4PwepMR+ZS+s/YGT6ScLZ+z9dje/LrBj6P4stbIrGN/8/7nhBKAIo8j9+/TG8uan/PyLFbdcDfgJA9d7nzs657T+CSO5kwUENQD/eDiw0q/U/DO3bGqkH+z/AVF1X42jnP3/7kresMwRATZuVnExEDUAN0rgiJALtPyq3saCbWhFAy9TQtiPB9D/XwPeYlnwFQJR3+caJiPs/Jt758WJ+7z/WcpqqZVsFQHMuzKj0PP4/KBVzhG/j+j8TZ8XeEgr4P0nDCg/e+Pw/+7Uuifiy+j9q8PM5Th77P3LovRANkuU/Y7YqWu8WBkBtyChASXsGQKQQtH5zOxNAF19JWnUaBEDjKfUGcwf4P9/PkYhfCwVAmTuYaQMUCkAg7fdxK3j6P+nSBnPRbfs/9q8pGZRG+j+6JFABl2IIQK89cPnQJfg/YmJ5aK1tD0DHi9CmaE8AQPQ1bVbviABAjo5mKmaM+z8TjXBv+h8CQKx/NrK3TAlAY0fUh43c+T/8oKHxt0b4P5f3/A7LvRBAApFxhC+n8z/wnSSm58cOQNOShpkIuwFADndWFPMKCEA8K/0+B4IMQC4VoAMIKglABMoyR9B9B0AjBpNME9oAQLQBFd2h3vE/R8pTcVcWCUA9wDAvVmATQBtkDE83duI/uNx/ltoiAEB2C9xUHTzhPz/YGsEda/I/x22W4z3N5D+F069FgG0UQCEtDtuJFeo/6/eKKsRzEECDWp8SR9r8P23gpQZ54glADivFNJk3BkCAG8WNBf7tP5/O4Xoybfs/RKuLV+ot9z8LUsqG054BQONtF0+pegtA0n95FQO07T8H1KLKPxHnP53PbkoTJOY/w/HcyrqQ9z/LedxMUN76PyOrKrcsQgFABu41mQTqE0An0YLWOvkDQA/QB8uGKeM/b0zlmVWl9T8aMLD8Od8MQDgUP1HSJf0/23szPp027j8Ql/V6MlfeP1ZTBSPPXwBAA6T/k2hw/T97mAEUEhz2P7MEjNxxyw1AoMvbF9Pe9z93Qt4BCj4RQBfjWqCYnvI/ds0snjiE+D/61mRYzJjwP+gK+Z/Ohv8/1LTzR+0B6z85bL3gN/HxP3PEnl5FoPU/OIAL/v/rAUBlEfASSvPhP8+E7chxGPA/Jopux/Pp+j/789qYIwroP5lq70/ldg9AW/ew2zAa5D+p2SwMvRTlP+dOt0Yznes/ngeIE9gV7j8dZNmPgEf7P8CXd7K6dAZAsz2nGQMb+j8CRoxQCI0CQG4liIFqd/0/7/0bfkWtE0AOcPp0NzwCQPIIrWBJHAVAvjwSz6GV8T8X0jdqsLnxP2DWjMma8PE/+uU9UBYACkDgs0byzM0EQGL+tiS/df8/fFty8uqX+z/N9NZukAAKQCO6raYYIes/eBCCrvSz9j+P5HC5tJT7PzwILAnhugZAu/Hb698n8j9SQJTJyOEAQCvgm2h8s+Y/ozkRvtchC0DqBCjRK/QEQEXvir3QigNA7s/YWckYDUDKvfg2OpTzP4iAU8Vk3/E/z50hMPFyCkCV+j1eWeMRQF0XWKftNABArNIPCwHGAUCW4RVd054CQNZAeBFafvA/51Wpb6Ft+D8G84h1uPcHQJGqJJ87uvY/YZ0st04PAEDe68TivEv2P3/NVFVhmgJAnRwL5g+M7D8d2Yf9uusNQElibV/oJQNANscynlB78D81oAyCV4YFQLLSxzhXWAhAZhofde5p+D/B1EaVzQ8LQLbKSQsdSv4/mMCcvKJoAUD0qmrb7SHyP/wTiSXaYA5ALihLXbkJ/z+KBlJ/zm4AQFpdgBPJWQNATK2m5Yhc7z/9ljU6ZJv1Pxt+hUq+KvU/kBQNeD3W6z9vZ6lX3F0AQB3dWqMwmf0/si6bjz7l5D/3Y3fbq4jyP6gm4+LbFgtAYz5E99Gi9D+gsteBJ0MEQD2Cd2exKP0/KCmcB7B0BEDGZtVULkn5P24qzIvVsPQ/2bb1jdgNBUD/zfMN8eYTQBGR0PdaaQJAAm/QRN4J/D9wK53UT+sGQA+cmijZogpAPwlsVsNp+D9WzdzBN2T9PySPhBcDFwdArq9kBSB58D8/h34fDUTzPy9Ssn6ilAtAdQVWnDmh9z/4VBzJzAXxP+LqL6ikmfY/XHytUSeYBEATl+4if1EIQCD+R16AOgJAl6ybkTjy/D8Ewhqn5wbzP7mdw4tu/wBA/k4XvKw45j/lyFQOkukHQMycqhjkvgRAS8JLk6H35D/qsX5s5Qr7P7UsrkWtufo/YhFLjs59/z/ajJdD2173PyryZaYqZw1AaKOuBD518D+DNEbhDY3/P36B+iLG+vI/9sEJtyup9T8GfjeCft76P1aXnPKjy+w/2aSSG68I7D9xwU9D51jlP+ntnz11jfs/Dtm5SLdr7T+sGI8rBT31P3oRMqSwEvM/bciRjfm8BkBt622/uSz/P1IO/K7f5/k/CQ7fbfekAEA61buC5yAAQGsnx1YcAwtAp2nWbwh56z/yiSyeCroQQCoXqbB1e/E/2P5sVOej9j+CnVF0QNEAQLw3Iz1OkABAB/gF/gqr/T87TN6+J2wDQKLH0t7OnPo/U+QcwrVeAkDwqJpyRJT0P++ZN350gAlA8/05J0b0BEBuz0GsjPL9PxtkYmp2qgJA60dR9pyh6T8n8nvYJw4GQLBswgCTXQBAw/DwWFWv9T88nNXFo2D9P138JMPjfvY//PIyd2u/9j/zvev6EUsOQNRakLvQR/o/IZ7w66sG5z+qnmFXZh4EQIQZP6TluPI/9Rjr2gUy9T8mp9IxVAQGQJ0gNfuMRAFAwsIPwM2O9z8x5JyyIiUAQNE2h+UGVAlAJVA8soCH8j9ZIPhS4zDqP9rW04fKtO0/OD4xKTSHAEDvjlFtCQYJQII8w1R7jw1AOqtbml5C9D+ZbeXUVaIUQJomRfrk2/c/P765D9ef9D9eG07XbzgCQIJAS+WBzuQ/duGVe6SLCkDVpzGxkJwLQODYh1x1jxRAf9WKHGOc+T8GYhupdJrwP0tEssziZ+w/4Qdv4kxLA0CfoevPPtACQMEKIZHUWwdAnnuGYz8VEkCzX8u4mdX/PzsbCLrfR/I/TQmiZCEI9j/MpI41ukn2P0VYMellJQhAHHC7TLds/j9m5Pyj/bDnP10oRaZbnfQ/0LZy58E08j+Z6E1ZHx35Pwb7LA4dpQpApaTEk/qv/z8QXOh7ssoBQKiHY/E56/k/cBNrbRfqA0DXI9xvBNICQH7eyVYMR/4/sOyf+4F66T+Y0PhWiwsEQOVKI8KmBghAUp6eClQCBEABlZvtFP3nPxyTZWbuAfg/uuRuTOLkD0BTZK3qQbn9P5kHCm1xf/M/tfhHrxzo5T9ByeCC0SoAQMN4KBySoeI/4eXyi1To9j93Nr8/ECn0P3rcHHWwNO8/8/mjy8eoDEBOev2Uf3gCQL1dZH/QNRRAhM6FxtqT9j8qgKKNr4PlP+7e4aqmBARATU7xBnI5FEASF8KarPThP/xa7v/dlghAjLe/DpYmAEB9bmNYqQXvP5HbIMkCLf8/6/WthffDAEC6wBWCPtH8P4/Btld0//g/q4fS+bx0AEBnfiLdQY4HQPGI5dhW2/o/q9ik6+t7BkB9yxGLJ2z8P6b+JWcJVgBAQFSJc5K15j9cGDe7zqb2P3lZFsSAFfE/35+79pogAUAp9qtip0UCQCjO+77qYvU/IM9oUBEj6z9z35Qg+gn3P7h26IKoqPg/mFdxvMhVAECkNFXiU1YMQLzqHU6w/Pk/cgXVvl8v/j/stLO4HdjyPwCKyz4SQfY/r6BrgDut/z/evn+2PDgHQJq4B8vb8gdA61Z6nWr19j9TQ53Z9voCQC4mBB1m2/E/hvtPRNjVCEChpcZZSi3sP1oYP6fu+/0/DO2woPcM/D9FTQUchrcQQBdth+quYv4/vAibsN5pAkBT/Txc9xD8P8/onmRoYOY/8eTCqmuQ/j8Zi3CN7zACQMUrF/FWcwVAy2w+fbcq/T+k33NKBRoBQDbfR4/9Yes/Jhiv/4cc5D8DQbdRzuvtP8i0DvNb5gRAwtRo09v26T+DbzTHUa3wP6EEhJbVR+c/8KAtUH6Y+T/qbLgfDoT3P/D+jhS5BQJAsbTsnXHa/D9mNwTqJif6PzYnRF7SlPQ/Q8uwVgJgDEAV9a4uz9HyP/su9wfJvA1AjnoCsTNABEAIMHxTLkEKQFuSz2a8YAVAvvd+x/7A8T8DaQ8bHRsCQBlN9LZSAhRAU1ZK+MIWAEATbLMGpu0CQAEBeEWK5/g/wrYSG1I16z9g+GI+cqITQOOtxT/s+vE/ZDocM6zoAUDbBfKbzNH7P8qHdUzooBRA9j4DInHW8z+0xU1wIZX9P9pphC7wQwxAFYXYQDPhEUAGNb91YsLtP8V1lENqUgJAhux+Mwxe8z9XNHCAZosCQLmJyCotBf4/HWpYilbMAUBWLXV2LsnzP6xnPGw9FwBAGjIjxLFWBkC/C/2x4Z/2P6CZUv/aRwZAaS+FndvG+D+YNy4b/i8TQNfbApwr2wpAQaQ0VSlb7T8Z/cnjc2QAQJrRfex6TvA/+jeZslo+AUAejlpDcCwAQNDgF6HrDgBAeercQ/wL4z93xtGLSHr8P2Bt8CwLB/Q//5SFjpwEAUBjKrM8/JrsPxNJfOoKt/I/NgoXEoLr/T97FW+vG+4DQGpljNI5AhBA1sZMVaxpE0ADlk5CX8//PylFNkYMO/w/CoTrvGU/FEBazd53J7HpP9xVrn77sxJAh1mLI0hq9z9fix07V1AHQAJ//Fw0DvM/HZk7trtF8D+UXEA1lDMEQODglbNtDes/YdHXzDGY+z/mOuvCJI4PQALN34CoRuo/J/K2wjjI7T+WDzZQuKoEQNTYZudKb/4/b6EVTuQeC0BlvWIUxJkJQEhT/WsVVPg/Mpki+GAlBEAyvu5D2S/5P0MXuTyJlwlAxVH6fnyV9z/ZIYdugDQGQJby8y59z/U/obhRU9SfBEAaO3/oDNn1PxkKRgk35uM/pH3FV/NMBECuupAyfUgMQFjJ9usoG/M/0FLDvDgpD0Dj4Ms6VEP+P9QpO1ST7AJAYgoYsN5f6j+OmyPQnqACQMFRz5EhkPY/mfwMpNiV4T+qGQtzUPoKQKleI6kXEOs/7jP5Ry6S+z+BuzQbNVjxP2hG8UNkegxApUmQaxTy8D95xa4u6W71P5ETJ+PVg/Q/mcKBURhOFEC8h61zsfX6PwS5I/vT9QxATL960D9SAUCOfzDY8QLgP6d/8xWXIQRAqhnC7i6vD0DZ2P0fMbrxPysaQ0X2IwJATTEark2S8T+rtI71ozr5PxjxElPgUvI/YR2nPMCpAECNcuAstEQUQH3QSEobkgdAst5MSOPJBUDkRt7KlUMUQF5UdFcjw/4/IcYbp+w79j9BMaUYok/xPyfOJPMBwQ9AbRDhoh2q6T+zLpSu99AFQKUQU5FYLQJA7Pkt1PM5AECFAxHtQG4DQGh5zXKby+s/DzbyV4hv6T+t8CmBgvYTQCR/qY1/owdAyCIFE0giEEB8Q7xhs+wAQHIvUelOIek/ZYMLNVsN/j+ajUhClxH5P/BNMOGnPApArzCgtVJv/z+NvTi7uNgCQPg2FVtlaP0/5dWQHRhw9z9SZcW54nD2P8BzkI6tCwpAje/nqLhXB0CRun/lBEEFQILnlAXHZAVA1ztPpk5ECkBX2T9nM9MBQKlF4EQouQZA71zD5HRD4j+TdS+7/TsAQIxa1wm+Tvs/CZvTVN3SBEBJbVccrcz8P09cFjta/vo/DjBWuw14AkCstJWk5KgFQJPeXnzN8ghAPYPrWL8lE0B+OESsc+QMQEp2w3YS4/Q/JWeO+Qgq+T8goc322VMAQKd0YdZ8jw1AN5YqrbaL8j9fq2oypeLsP62zcgF7Hvw/LuSRHjLtDEAE8zDDuJ8BQLvRaMpEpfk/k9lzY7G9AEAFhgzSiU3xP/bmauNcAQRANNNcmGkrAUD2/f8pclcCQPVBMIdqAwJAQjFoIqOd+T+v/itvKwDsP8LaHCSi8ANA5jWOr25VBUBMn6ey1i8QQKLK3lvAxOI/PJjkOhKHBUASDNimpz7iP0a4fc4DSf8/eQf1lYG9BUCnZG0GZ6QIQMj5dWeQQ/A/ts5623QuAkDdQhbmyBP9Pw8qIYT+h+w/yOOxjQy77T88n5ppQpvyP4h9VsrEhPA/XP83HRD17j+8Fdhweer1PyKqdTGBQfo/KoHe0bWw8D+KLYAN1bAMQLHhJzjEhANAKVuR6Clp9D+0LGS5UWgLQNBqrRhUbBFA8F4j5JgfBUBKy1M92hsDQClGqBJMTvk/LTOG62hy9z+/kmd3Oo3xPxzFLUgMvgNAqlfWFSfX+T8PT+tm++/3P0cmQfTCOwNAsaS+cH4n9D/0yAreslYUQMQR1H5EPP4/25zyICio+D/NyNLMt3UHQHwYRDAtiuc/pTmV0tbJA0Br4kGwkugBQNVVOeYRWeg/2f6eimdN+T/4DMdzhWUBQCyJ9VLLAQFABxPcyVml+D/ZHcTKRGj8P/r2PFa5/BNA/G18wjrbDUCJw++AJj33Pz//pO7vMQJAvznVUK62BEAtS43ozFb5PyD9WQQ1HwBAr1we6iQi7D/tNC9rFcgKQFKZUWdXagZA9Xkbfc3o8T91O1aSVv/1P7sYbSRyo+M/NiA33X7W8D+9Lp7bYjztP4IHTcz+owRAcwwsnKp75j+dUEx0dNjxPw+PfBsjEwVA/CQDajE9B0AS2lYWzDjoP10FqbAJLv0/YEL5fKwGBUC4MuUCXiH7P0OJsFvQLwhAGBq63EtwA0A/pDA1xOj8P7iA56emNfw/EbPTOKeN6j9ksAfvi7oAQJyO491e8+o/A+yuFnOp/T8nv9Ruk7EAQAzoCaPBhfg/UXj4SyYa8z8Sw1VsWicLQFs9L90Pyg5An8CsQdHk9T+oqqjBILQRQI/fxxEVVxBAlIW7N0phAUBK2pADDV4BQJS6tbdlBvM/ufnT4TMK8j+I4FnisJ8TQBz9UYexWPs/XXCT6Pz59j/rMlJhlG8SQJmK/GO+RwlAHQvn9G1G9z/ckT4eLlUAQFkglA/oaPE/w4+h8qlr/j/H0mg1vP4AQPQzMZT37/I/TMxySMstFEB0lVrN4WwEQBkdHeUB5ARAQonQDoQlAUCe3MmalEv2P7etbFX4tvk/tffbkGbPCUDKVhPva1PiP+1c8J228e4/h0Xkqf4s+T/BgWgaoCH2P5pg2dwBsPs/hK4yLrdE+D801IY4XusFQI/NySeKWvA/4Vs/wXl76z+niaIcCzjoPwBfhiFOdeY/6I6sPniC6T9vE+x19ekCQKNUiVwY+gZA2g1RZUx5DkDoPTUD2DfyP3CCBD6py/o/QG/fJQfF9z8Hw7T5qWEBQNrJpZceVfo/mi6A10/xAkAIBbiyNXrzP5inmnPE6gNAN/v2gW+j7z+jwY+zWmbwPxsYWrJu3+E/PeCUxQ/d/z8V9IiJ4bYHQFgECzg03v8/XvbEOZyL+D/5ThUKLRb7P5rOVCG5QwNAeA+zzfZC4j//AhQcwlvuP3Qug5eF/v4/WrmkNo3jDECT7EubiegFQHQmf//cBAdAZYHaBF/d7D+mejITKwf9PzlhLBFR3fk/OuGaMdYa/T99vuQKNAHwP83tImEQZfg/V15YzVKVB0DFsRZXuxv8P+DYYweO4PI/8NGMXCTRBEAHJ+d7MNESQHbVWUCmWPs/tGT1d5gRCkCy9TgGQ2ABQEMw7Eu6lgVA/HhDi3k79j+wWK+GO835P4LhZFiae+E/fuQPD+V6+D/MujBNZIEHQKozAUpq9BJANps2KDtCBUCwTLGAWBDpPz45RmwmY/0/Qie/1vOIBEC9m7r4wpEAQISQVYXBbuI/ixX3Ac8jBECrKfwAj6DvP0002bmxP/Y/Ylg39tAN+T/t7g+MMeYBQOCo2Qu0LQVAmy09tfJBA0D+72uRcYYQQJF2wqj1UPk/o5tikq1E6D/NKaE1YeL3PyhpKBhg/fM/bp1x9QSf9T9QciSOaWb4P2zZMxd3YeE/3Q57uXuI+T+k0ifLo7L8P/dAxh+IygRAKiuC61M2BUBZs9LEgnsCQEgFlTOT7PE/yo9O1EPhEEDN5O57bdIOQJZofhSnAu8/eILbkm/N9z/VzP39G+P+P18o3W0dJRJA/bzJmGx2+z8OCumSeRD5PxwCwwuO+fE/vcA+v+b28T8CavPX1jHyP6ta3dH45AdAeTVzgqoBAEChP6DwkxDsP48v+bRPxv8/PzFcuPZmAkBV4ED2dz8GQJyXP4Bu6fg/QwInxJPQ/j/MecwPPnkTQApHdwfPKvo/iclvGM8LAUCU6RLqRuP3P6HE3xDazQ1ADkHuea4zAUD99CHvKsH1P2ZSLgGTsuI/JgJktOXhA0BQNxuhAW4IQIU0blSoxfg/KCXxPC35AUCdCXvo5p73PyXhr2m8Mg5AhWFyPa2t8j/wY/BSPQYLQK5IVETRau4/3/N9Wla9BECqM5C7JUwAQEgDkt/uZBRA9c2+qaxW+T/WtEjFw+kDQP9aDcq/7AVAx8Y1KBGrBUBeJAraM+MDQDcu/oJHsgBA8vaUBZf3BUA4+qWbmaLwP05rcuy6MvI/MViS/6nlBkCgJixwAfQQQJTG9HoN2QVAKRGCGOKq/j9kQwtby/sAQOsheTjogPk/fBtTnCygB0C8tgB8orMCQPyIoUG7NwVAJuMwIhH58T/2i7A7LrcCQDfr2UY+2gJAdAxGGdVB4z8OzPyt7bz8P3hNLct+n/A//IUPhPRO6z9zoZTMLOMBQHUxiTQJWv0/VMdexVRA7j9HY0vgQRn/P4ZPqsB50QRAIexWTcGs4D+yuV6c7QcAQO6B7qE/5PM/I0jTm71s6T//20Qy6A8SQLrqlv6R7hFAMESHfmTZB0A6IZwCAfz+P4rcUFKzC/s/yfdEBS61BUBvaGOKwlEKQHF2Zg6IewVAXXVrJpJVBkB/PiFg5QH6PwsR5naywwpAFVhRs/gR8j+IUlyoBHr5P2G1Z9UrePo/1BBa0Kt38z+Cy0FcJSUSQEIRFZa5lwxASQsylMa38j/9NhBBKxEPQB123i8s6/M/DJ7aqticAkDDFJfUTCUDQItBPN6ao98/1iEGgCM0+j/QrdOmM0L5P2+QvuMayes/ZX1dtwWP/z868u3ikUMEQKWrxpt+PABA9fpaFxjL9j8VvqteO/sCQBs5/IFXCO4/IQSqJ0+SCkBjRMPZJ2v1P9wbP65Lw/g/MYxVDNazC0BeZUC20oDtPzHeIjKIVQZAWVaJBEnR9D91N9nguy/2P32a1fHqFOw/eQN/DnVz4T9gdPyep74UQJKN4+d7AwdAaeVs8ilU9z/sOjrhlTD3P0brV1MC2PA/58mIHOeZB0BUiyuz/6/8PwGvvIyqzek/7p3Xynj19D+H6YxtWmoSQC3gsSeXRP0/N3WghMp0AEBywjUjxAXpP70xdrciCvA/M5KLtMonA0Dumf5j4OoHQPwhGyskXvg/+Larghln/z9sh4sd+eP0P7ScreEWdBFAK5pdu/zG8D/jD8e+rNP/P0x/pZ+AdQxAsQZLSQzcBUBU16kMe/oBQHBlwr56+Pc/qIOSNRef8T+Rv/kIdQT+P6tREXo0fuI/JY0QuvZrE0Ajie5+x88LQLFd701j+AZAjZF07aY5E0AH1cWiXkH6P3o8h/mvLfQ/FRcKs7Mj+j+f4JbU9pD9P2Wq3kJQQANATCjm2bpV7T8dgMQEw/XwP8PaGoYH1f4/gzPiBHIU/D91x3YCoMQIQOsw3RW8bek/VcTIRNK+9j8zyvW3nwj1P5ySUx4o1RBAm+xJX4ZB/j+W8JL6cH/0Pzt3F2SqzPI/tgPVExhzA0ArD4dLSkQAQPAFvJ/+ygJAo3cBkOTD+D/kq1q7NiwAQEf3p3B3QAVARasL2Sr2EED3T/sVpCoFQJDvLvB/jfg/X5KUPhbdCUDjhA040L//PycLbkQymP4/h/AV/Rx65z8g4IPgD/MBQBBs0qdT8PM/Q3Se9g1z5D8i4CP2ESAAQM1V5qaqr/0/tp00uanI9z+ou2bke5QHQFRAPMDpTwZAc2vLb3v49D+V+592Sl7lP/73X1V8rPU/IEaWdMKYBUBTFl09znYHQDLK+FyWQPU/oUAP0AdE9z/5R5NvsbMEQN7O30t8yhFAON/H04p9+T+mxCJdtsQJQGq2IBQM6QFADS2aGoFjCUDaEYS7rWoEQBk9MbVkNuQ/ufOOAw+gEUBWA+S6h9QGQJsdhlFplwhASnKWY+tC/j/SKsg2mKP/P2FZNjvJ1fo/SKeA2R8t9D/WyUQBTNj1P0On7jWv6wFAfCST8aIa9z/eGkx+xYURQAOzbJ3Iwfk/K7lXMNRmE0BymbO6AIQTQK3NRWAIsfo/ADmGSfZy9j922TloiRr/Pz9/1b0eHv4/mYeU55Zh9D/UnIxZmVUFQIiYy+HZCQJAZ+hxWZiC8D9QmSTUT9EEQCDFx/BTmwZAy5q/mhLa7T/Lew6oKtruP47WXQZfY+A/ucaYoQNH8z8ppjIy3tX8P3JXhbadGhFAEeTXQbse+T8MqUVYt6UPQCSfogDOjwRAD3erQNbc/T8QIp5ezkPuP/SIthczygZAsYfSImWB9D/xxZbi6SYAQAyDVQkcWQpAqxWInoJe8z8zm82ZteUSQJph7OY7O/Y/f+k9nnXLEUAo7nXdAjfwP0DJfN5G6v8/QBGUNwcgFEA0lSK5KkD4PzeZbm60IO0/GmZH0+jCAUCIYJwuqa7mP71LTWDiuPs/38jXrQFK9T9QRWjcgWv4P2mcw4RwYwFAkDTkVtgZAECjZZWfdfkPQP2pP6zXkgBAu8oYzp/MAUBFj/bElAMBQOPzYv/QQQVAsXG0qcheBEApvBQVLcT9P7x6VRzOjv8/MOgX67gE6D90Aq1hZWcJQEHcmmue6/8/RApLLiE48T82z5gy0sv7P/Lwr50e5vA/CiNLMi2VAUDJkNm7hgkRQGV1O5VOoOA/Gez/KJwLAkD1DO3jHqrkP+xZ0C1edPk/IjSlzOIC7D9Ee34ag+IEQCctvlnSSO0/UvzLrVkf+D9Ii7Ua/bX6P4vZ9uIaQQhAi1TO/6897j/kTsmZkjUNQE69nKMpWwNAVWYTKCu39T8RNxyVtrYBQH0WKek/vfU/fpEObMeLAEAY8US++bX5P0eHQHLGwPU/jNkVV8nJ9z+d6CIbwFb+P7jq71fz1vY/+zKqK5oa8D8p5duwcoHoPyGzUqxZOgxAdBEZ/l4T/z+gxBNMiT/uP/BuzANs8QtA49mAAtO+BUD92LgjXaDxP9AK3UvJ6ec/0T516Vbx/D9vqjA7ponwP4LZY2rSePA/iI+jRH7O7j+TIj6FwhQAQD5wbu5LkwNAgmI3D2C3+z/Sne4C/K0LQE8RN4AHEfM/7a/GBlBdA0BqDrPUJOsDQE/jWvSKH/Q/0Ov8orQxAkBuc4busyXwPyfTjFb0bABAEnF0QsrJ9T+SaE/3rrEGQKinadnnBAJAW81MFCQ89j+0Sd7oNzQTQN8a0KhsRxJAYucX4GpeEEDCQ73r9bnyP1J8J9nP2fo/fPH7FKKS/j9kf2Ck30HxP1ns/jSTxwZAuK78DKSy9T+U2LSRtdn/P/U9eW8x1AJASlYxFecE/z9JrPH1dDsDQI+qINeMgwJAx2wR+ZdH/D+K3drQn/bzP/631cmhruQ/jATXeZdHBEBDij0GahQQQNrdY8I8zgJAWE+wbo3f/j8vx3wG+c4RQGM9dZWZG+E/fKnXn2yM8z/C3yT7nnEBQEGiJet4WgFAuCZlCDDLBECBzb97OV72PwvF8/nQnxNAVFB3gbb//D+xp6qkR93pP8+Fc7Agag9AHLAn7Gj/4j+Wn0AsxagAQKUivSOiLfs/9X0cQH5u8T8S9SF+6+z3PwJgWAsoRPo/V+dWBBGBA0AfOFOMRKrzP/IIEwQlegpAv3R5NbKz8D+Ej5RSiW4EQDPYF6JQFAJAPEb35KioDkD92WoKSpMLQD8Rcdc6IvY/3ZneMuH7BkBb7uJMBBvqPy9MoJkSVeU/KUFGIAer5D8Ss9ULOe3/Pz+dE4qN4vA/nEzQ/fcH8T8Bq4THuv7zP8/cAbCOmwJAkvbBsU88/D9Jo6ree3cKQGPOEqWakwBA3SnkXAROBUAtFTm/UccHQOci0QBRS+o/v+lmgXh3+z8gq8Fai+PwP7aQOowNkQpAhFmFxwWl/z9yyNTtpiMIQBEaOG4qGwJAOgSC4zVwA0CLyjwv0M8CQNRb1HAdHBFAK52VbN3q3z8xpc+Vyaf3P9vMOli64AhAo6nSRp294j/H5SKxwooPQELJOmwY7f0/FHpMTkq8A0DwByupetQGQGxbNKy4ifw/kv7V1r2fDkDksT4LZULwP9xFgw6BsOg/DFk0D0Q7AkAnVof8K0v8Pxjof2wmMPU/5yrrcm12+z8sOjlBSkz+PydNFqG1xv8/5L0da5rL7z9AL1bkjkYLQOgN0KoA6QBAaUjnQ7h1DkDOuTw3c3H1Pzdpg5t2awZABr/ptKB0AkBaj9OnjDn7P0gckNmBOwRA42Na6QqD/D9SdGs1K+AMQOdnDG9Suvw/cBQEHZvhBkC0PHqcPuAHQJLGlId67/g/Oqz4MCSeDUAXrdrVvurxPxB+h31QYwNALyFiZEmzAEC635XfiToBQGxSMV8og/4/6JmNsfNPAkApS/zCGOUMQKf5qsTIQec/tKazU53lEkDfQoA2ocEBQAvM4QKrIv8/JZVffU+Q8j8CWgC9se8PQIKtatvxU/M/rOuRJY6h9T9WrER4ddvyP+8K+alWN/I/zgoN8T21+z8V9m4O0LYOQONwaTnNC+0/1ODgVk+19T93857vny/wP+C2AZbilfQ/iVhQXSbC7D9r+4B5rYf6P+fZG2U3WABAhD3IGBYr8z9+nI5q0f0KQNMvC15T2vA/O2oSpUTMBUApjZKPMIn9P0Ii52MQ6RFAO+aO2JWx+T+bmRBLmoj5PzZe2PRkI/o/IruppdgoAEAszRqhFMH8P+E/Av0jsARAYUG7I5xPAUD+CizOa/PwPzwMsEf4AOg/d56/VNa3DUBnn+UOrm0TQDu07EcgqPY/xktZdXhr9z8iMS4pEcr4P8Fb2kR4G/A/Frfvmb3n9D9LlTZOyz8UQC/GiCHVNgRApI/a1HHhEUAquCxzauvvPweiW/w/6+A/umhciUBODkDuiYKnSYABQHQcNTTWku0/h20oQ84U9z+KOLfB9BDyPwl9ePrkD/c/uc6VLKZg8T88XZ3INvkAQEC3nUpqlA1Azx0bpkU5BUBS0qmFrPICQHCxqUcQIv4/OesUspPv/j/OX4ETHO0SQBGdlfhDHvc/IKoVDnKw/z8jZiOfnzACQLYHSCLxNQVAPdmJscK07j/3dTzI0JEJQO4K3z6uvw5ANrtjMoV25z9pHkb8DqLwP3p5N6DO/xFAUyk+USye6z+ik+gIbsQRQDYlUZgF4w5ApXCYEe4j5j+3qZN5sK8QQBMpvaxgMAVAUgsMbFZ19D9tH3LTLW/5Pwb+kCyEQuI/A2ya806ZAED5qzzp52YBQM9JL/ZAlwRAKaTtBFcB9j+HVwKJFd8LQCgK7HyRaPc/3dy3eMEy8T8uqRN7fP7jP9eQuVdVG/g/P2UNPu08AUAtNkSJdZ39PyqpgcgNJv0/IohRSadRBEBSS7iett7bP5VlCR7Sat8/Sm0tRRDi8z+qIxirjSD3PzuDa48Ci/g/Mp51cF9sEECaeA3oRhfzP7jRNZkSWf4/bTsAFJ1l/D/MTnKPQvr4P+Pdon32x+Y/iBxV51U56T/4kUCwazfwP22+jVmVygNAoPtXHHlWC0DA3S6uKdz7PyWqrxauHvI/jPaH6YyJ9D83dOQ+fbIGQIHCGP3lPf8/4jffODPN9z+kwuJpaBISQOn+SlZnJQ9AzDIWDQXvAEAcC2JHNsn9P5DMTHspgwdA4hijO6xU9D8IUgmo7RPoP4Uhu2eWSfM/XPBVMkh//T8ipPXWfz3iP8hIVZOLOfY/lhQ2m0TRD0DAwHQ0O6jwP+x2TVQ3MgFAJc+bkwA8AkC+btNCoXP4P0kOns1Me/g/6OxYT6vu6z8ujgCuYzj/P7wFT1WwKA1AVgDfqg//AUD7zLw5Z9YMQJLOQ44bUQNAZDROYH6I8T+90JgXXxUHQMqadqZssAFAnowPV8MoBUBOterxI50DQFG41nkd6fQ/ZAPDXryG9j9soJGNK2gBQNWqKUiIrRFAIz/7Oyk/AkB62KBkXZTyP3qHahOf/gBArpbklMwvCECdAf+C+Kn8P9RRZPSqJfA/hUexe5KH6D/fywoNJLv/PwHNjQ60P/s/2tZvL53KEkDlgsOT0o/4P8CZ9+oGHA1ABc0nNLJ97j8T0GhKPJr9Pyn4VcQrrvI/tbH7Tvee8z9CfX2nUwLpP2Alhm5lXfg/xBoJn7017T/7FcwnZV0DQBWOLxhkThBAStntOh1z/z/296toK+wDQB2lxrflT/k/WbXFkJOP9j+fW6z8YNb0P3iry1Aw9wJApcvoJ70i7j8EzyiT6IjwPx2V+vJDogdAEa3Xq3EZAkC5kvu8E0YVQEIRVFDz1vo/u2JZ1qw+8j8d39veqloBQMguuHHHQAxAYUkX6T4YFUDTtUHVOoLsP5r5Fi8RDQdAq7XxZndl+T/trEtL2ksUQCuscKgmefQ/maZ2bALg9j8wJhbtXYX/P9qvD0Up3AlAY2eeu+OPDEAWe984b4bzP7+BlW+fqOE/5HyyI7Yr8z+LawmlFfT/P+SwHHtJNeg/xWSlGLtjBkA+Lvp9URX6Pyg53xsuP/o/GHbO+OQO4z8SAX3/i7z5PyqP7VedtvE/20hZJYVOAECiWUflklAEQKakA5erVQZApRbvuG4H8z/ROtBVf2T4P7iSb7r7N/8/RaQ9mo/DE0BKV9aHauH4P1yqCHInXgBAZNaZ4IiK7z86RjB3Doz+P4WodeolQ+I/pomrCLHgAEDitDF62nf2P2pFbYcni+0/vVyT9wGf8j/BdeNXW/IDQFPkbPBfc/0/06zz3EzvAkDIFwIVyWsGQCZK/Wbbb/Q/ffOhl9e1AUAwZEMhhGwBQMpkcQWPKgZAOzTu6Oen5z+PdjRun5/xP63l9C/xLwVA4EnCZQJCEUDjE+MCulYCQG9i2OpKqAxAWFeTgnH+/D9yTLFB6ujzP4nGFOX9kv4/IMv+ytbI+j/SC/IfDJcCQECEihL1FPk/kjQKVFokDkBYqlqwAmn5PzFn6KOacuM/EMCcIyJFA0B5IGPVXAnwP86HsIb5OQdA3Q18rCai+T9mg3sXC6j0P7Dp6fjHdhBA8JxB9gF9/j9b5dWCOvMCQGiLQpOa8vE/GujxNtD47D9tjMus0uQFQI20tEdetw1Ak5UUK3oy9j92tRLIjPoGQB1/iBU9YxBAjLiTqK7/8z+AAFiuOWv5P/9byByZC/E/W4GOVtvk+D/w3aZGARzwPzyG+/yOtvs/aA5wisRX5T8o07v15ZgRQIzjlPBN5xJABu7XLPRpCkApGQSvBir+P1mDBGrcZQBA9W+9bmncCEA33vghjEX5P1zHFYZ0IA1ABSManq0dBEClgOyMkf8AQPVSO2EYLgFAJYbNOU7SA0APvtIDBUwCQDvm6mqPTAZAjC/atI1iBkCk5CgIBSjyP3aAAjbMDPE/GwBGCbD//D+zTcvx/9cEQGo6r94+6/U/pPdVS8RLAUDVoDtFSWv9Px0UTFIXCAFAL+m0VATIBEDOCreNjjwEQBmMk/tQewBAjciZ0LMh6j/KAiWAFFMBQCxVjg7rN/I/z4LPTOCz+D98p9eSLi0HQJj5KDGtuQNA2YCQDooP8j/MOLHJiIALQNdmH5ur4es//dMIeBw/BEDVO2oprc3pP+sXSOZlG/c/KfosXyMO8j+DzY9fqSPpP5lG4pB4rOo/XemjixyNAECSoO4nwvYKQE9g2+ZXxvQ/afScIuP3CEARzfYUVb36P8+LREHU/QRABI0zfVgsDkAzd59gyzrxP6U44XxibPs/hIwhoopo9j98dchtohIKQMk8DuWVyQlAR/NvJ5tW7j+J5Sq75wz6P88EGAiIagZAl82HKvjQBUAcUMQjGLb1P02wJXpwpvs//AaXRI/w8j+dN2d3XV4DQHY8auzDrvk/GEWOY+dY/z+HfHOr/m/+P1ta5d1a7gJALjht11j3BkCkqVpZh74AQMcPDaBiOfU/ZMaZETJQDEDS8lRCgwsQQH9/W80qdgZANCmGa1XB8j+jSiuQPaIEQOP4AT5KXfo/esYyab0U8T81P+ltxar0P8rmx3gTXxFAoGbWaVEe7T/bsVN68J/+P4HUBCERVvs/1/SuoXO78T9g5p+Kc84CQBG3O80xVeM/+nJZqkxH7D9FVbsgZlL1Pw5KUKJ5cgFA2jqElUf4+T/bR+Ybf0XwP8EkfBA6bgFAAXTmz6O2+j/NtXW0NEL9P3h01Eei1RBA9TzZQyjs7z9e7JD0xsYCQNpxnjtLkOY/yx/bligk5j/dHS358voTQMCCN0E/Tfw/I67l/mDe8z9StS1h5cj2P1AF9UkHswZAgL7szaVUBUAvAGNgWHPxP2qC5IqZhPY/GA0KRlBLAEAaPZk54qb1P44nL4L3IPk/Iwg/7lct9T+hY2vYYt31P67A7Xia1vg/Jg1bVk314j8uvnQMiFkKQD4toB023Pg/JBdA4HuD9T/TsrjEZ2H4P2mI4rrSFPk/j72hkNqQB0CVCg4M9lL1P4NbDHBXdwRAvCzp8AwM+j8vSi5SttUAQNoWcd/JyOw/6vm/KM9N6z+X8CSViIT7P6QhK1qkzA5AdDqllLKzAkDv/zBJheD5P8R86fBja/g/IxK4MWox8T/DB/GZ2hX9P3OQETuC/Ps/S7TyjNjJEEBiCu/RgAD3P9VpU/2J7PU/Y1XEIKcM+j9yfJV63+3/P1J/ktYubxJAo5C8o5ox+j+Ln5Hp7yLzP3jt65LzEvU/7HXgOHGT8D82LWrLTiL2P1Y8mHWOSQ9AXziztoLSBUB7KVMprGz9PxBY2irWgvU/gip172Ih8D93o8dtQzj0P/PBGN7W7+s//+OM6Rge9j+o4ZOYD18AQJLZl4VQGwdA9tTmouyUEEAHim3u0k/7P9MpccBVMwRApTRpgs2F/j+ABY/eGKz4P+UYfBFl5f4/5rr8AQxHDkAEZuy7J8H2P89dON3MnwVA5qZ1LLdeDEC4+lxiv3YPQGfQF6is9P4/e1v4Ipp2D0CW5uCOkNTyP1N2dlBewOw/LkpuIeCHCkAUBA7lM5vzP4OTV1QueP4/CqXs+Uij/D9qavB56PMJQK2BSD2uWgFAfmSSdTyW9z8sijrTlE32PxBRb1RqxvQ/aHeR6GGUEEC/0WAuZmQQQDrRlVXSpgJAwUeUgM2QB0AOrmPOovj6P84CodPd2OU/uwc1+E8M/D/Tw4Y2Q+jwPzyYF+Z74vw/RaTpxGAA7z9H5z8W4gXnPxeCDGcDF+k/XFD1xYX6AkDf0aEW2Z8GQM/YHqsA8+c/Sdy3yE1kBUC28pFeY9X/PzzzBEMFavQ/3qQVtE/zAkDIAlXm/WYHQLPeWagLsfY/qUSKBpoCBUCIC+ONuvX9P75fQt3i/vI/QgafgD9E7T8mWUSSO5XsP28X34Uj2w1A0KvuP368DkBS+l6N1WEAQEf8zgGGW/8/gn02mLBiFEA3Rq5GlwfwP9F8sFhNYxFAa2FMnW5wBkAdbyii5jzqP4nD2B2QMfo/s54rxDLv9D9kxZlwNrztPxMk13AIVeI/1n8cSqKd7j+NJah99PryP68kxM78JfY/CBsTLlkVCEAjKSls9kP1PwJWiYypHP4/7tym7YX/9z+MmQ8helkRQLxc6qlITAFA3qJmRR1zDUCYWp8NSVEAQDVufBbXmAFAEZoQLx9eAkCa7TxVdYrjP6/M5qBB+QBAATAtFr398T8/aMdI0aH9P2Q7bXM6ggFA423OeXnp/j9l++urjOr8P059US6/JRFAq71UbMb+AUC2y5/mVzoEQMeq6vbFMfs/6esW7/zBEkC/tbZzeGb0PyXAzR3VVPc/AZqFZJ/u8D8ogswHq7kOQFKygXlJ8Pg/4V4j/7dNBEBdAmNNHbD4P+ojmvyDegNAvqGHOoyAAkDr/JDz/oL6PzIWNtUSfQhAyacd5zV49z+nH5ja7mrzPyckFmTW5gJAkfrk7XLu9z903RfcEUD3P3MxQHGsnPU/rezCgQ7h9T8GUTYD9o4HQA/BLfSn4RBA0KMf23BwEkDM34bXQSgDQHnlpvX3rOc/FCx23uUxAkATqkkSZrsDQNF7zYOgngJAyXvMePVS9z+ZqGCmNCHoP6gJFv1S3wFAxRQDsAFRAEAL7fO7oIXvP/m4ZsqahQFAkwuCbocyAEB8BCR2v0sTQDIgrJADiPw/DhRQdwS28D+UJgiK8KIGQAyG4ZpndPo/2lt07aEHA0DkE6p7C4DlP0r7RWPjJg1A2lnCfgXz4D8PcDQvJk3xP7XZKgk0Lf0/lo+AZjx79z+7ug447bMJQOWnCxumlBJApk1gKM/N+D/F5FXIa50BQLox7I0ObwpAQ6EwNr7nBEAObllS3C/sP6LOgZ7SkRBA4LBNy10YFUDv5DEnVDYNQKKteFoKygNAmuRhCcz7AEB/7OXSbKz9P8kjVMQq3PU/RcQxPzPWEkDh5TqLZn8BQFcRpamJTf8/7Bk6l60D/T8L1djiSPr2P5Bh6wMfhQpAcSimTbqSCUCqArmrAYMEQF5oh+mYZPY/5CyA4RD/5j/1Qvkf8e3oP2tFzMFH2vQ/A7wrw2l6+j8gHV4G4t78P+75xSEdLQBAqwxgYISmAEDLoOksw8sFQLaiFNVA0ANAoVrxXf9K/j/D284FXNgCQFOoYM78zu4/kVvkVvXa4T/QU/FlMQ3wPwNwvNSK5P4/Q1xNwANl8D8awD3twMn1P3koL4NMD+4/QpNzwHWK5j+1JJGo/KHpP2FIiuouxe8/0m8p0GFs7z+dlOznx7rtPyOn1kkcnQFAd1xzKVk1AkAjtlQFhZwUQIf/MEr55PA/AxVCvBeo/T/8Jn0bC00JQJEy/HMWCuc/w/nsZIfs9z9kl8YUQczoP6LkaH5oBgJA9CmykSDD7j8FSDDtO3v0P7rms/jH6gFAtuulPnxt6z+CmvSxlAICQAskV3XzIPw/d+JyKR7GCkDrTMCXq+EIQL3dk5glsOs/NP2LDepi7j8msnJ9VfMCQBCrCRAwaPs/Fu4B6s596T+gAaBpTCT9P6yKlgDxkw1AKIwuhwxT8j85hLSNV7oUQGYfadC/0BBA", "encoding": "base64", "path": [ "_data", 0, "y", "buffer" ] } ], "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "hovertemplate": "MedInc: %{x}
predictions: %{y}", "marker": { "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "", "showlegend": false, "type": "scatter", "uid": "15c50d3d-fb2f-4b80-81e5-12ded678c482", "x": { "dtype": "float64", "shape": [ 6192 ] }, "y": { "dtype": "float64", "shape": [ 6192 ] } } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "height": 600, "legend": { "itemsizing": "constant" }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "MedInc" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "predictions" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "cdb53b3bdfa14f58a2b5a81b4cfc9b09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "", "description": "Select Sample", "disabled": false, "icon": "", "layout": "IPY_MODEL_4fe32e9de69e4c34a0b9eb6c825d6c3d", "style": "IPY_MODEL_bbb5c4d6bb3248cf88c5a0ba68d4339b", "tabbable": null, "tooltip": "Select the sample at the specified row index" } }, "d2b08f230fe341049a26bb6fa2f3c41a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "d4cab7bfea0541f7b31c93ffe613db0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "d4ce7830d3bf47c8b10a46db7cefc0ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "20px 0 0 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d75698169b66465db2c9e87df6c6ee7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "Target" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Labels", "description_allow_html": false, "disabled": true, "index": 0, "layout": "IPY_MODEL_c37b7f9682484df094b49a2138e5c694", "style": "IPY_MODEL_30a9f834b167497fb8f6a6deb66ad688", "tabbable": null, "tooltip": null } }, "d94b69746f9a4a9380dae2bd1f5e0aa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d95c699fd2154b6791b7b72acc46b780": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "db57ef2703904b919a309993e2b831b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dea2f6629c6d45e1b8dfbfaf3d7fe7eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e03f80e18dd64113b51ebca78551a235": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "e4883d8ba278418a9bd7cd60badf443f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_812a32ceb7654114b84e8a4d898356ad", "IPY_MODEL_06a25c0e19a04bd7a3dc6860c3431b53", "IPY_MODEL_c7f64fa3df994b95a32a32d72ecc848b", "IPY_MODEL_2e14889ae36148818ece615acd06a750", "IPY_MODEL_bc5fa0ca3ca749b7afbd9ed7794aa921", "IPY_MODEL_e578b52524cf4933b24c699926fbe441", "IPY_MODEL_050bbd771a32443687f66c63cd1af11e", "IPY_MODEL_867acdd05e63490eb265327c17f192e9" ], "layout": "IPY_MODEL_ff8e8e52bd2847368fb01acbe51e817a", "tabbable": null, "tooltip": null } }, "e52d8bafcd3f4d9086c4be55237fc93d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "CheckboxView", "description": "Show all features", "description_allow_html": false, "disabled": true, "indent": false, "layout": "IPY_MODEL_c4aefc44223f469e9f70f04d12a47c37", "style": "IPY_MODEL_33bc315d590440cfbfba4071de5ab002", "tabbable": null, "tooltip": null, "value": true } }, "e578b52524cf4933b24c699926fbe441": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "AveOccup", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_dea2f6629c6d45e1b8dfbfaf3d7fe7eb", "step": null, "style": "IPY_MODEL_1244e9475e7d4caf83dbb1eae4412314", "tabbable": null, "tooltip": null, "value": 3.1289023162134946 } }, "eb7a01e33b5d404d8118ac6f5f8fd4c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "eb7bec35a1be4b67b73d7bbaa33ee446": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ee1dd63efc314d85aa4e80e1e05f1479": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "f0c3b22f763946ef8dcc372a33880ab9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_db57ef2703904b919a309993e2b831b5", "placeholder": "​", "style": "IPY_MODEL_eb7a01e33b5d404d8118ac6f5f8fd4c7", "tabbable": null, "tooltip": null, "value": "

Select and Explore Predictions

" } }, "f277138ae6ab4906b8b2141804ecf4a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "f47e2a9b03d54f019b62df72b4abf0a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4aca6e4a914b4290966c6791d9f4b054", "placeholder": "​", "style": "IPY_MODEL_518ec7738de24d6db66dce70aa43dffe", "tabbable": null, "tooltip": null, "value": "" } }, "f5c6092ee37c4263a24e33739ab54ba2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_64066460a56b4b1c91f8eb0ffd4f672a", "IPY_MODEL_44b05de3262c476eabc1df735064ac01", "IPY_MODEL_e52d8bafcd3f4d9086c4be55237fc93d", "IPY_MODEL_003397d4c34145deb350a7721c9b02c9", "IPY_MODEL_39b63a9621dd4517996476e6a6eb35bf", "IPY_MODEL_4542bbff2bdc44e9b5995acf9e2057a9", "IPY_MODEL_c807c3c59a7d407cbeecc82e8bf8d57b" ], "layout": "IPY_MODEL_64f618eeadce48cb8171f87d851df300", "tabbable": null, "tooltip": null } }, "f6b0aff72ab64cda9170ae8634979bd3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ff8e8e52bd2847368fb01acbe51e817a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%" } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }