{ "cells": [ { "cell_type": "markdown", "id": "00f3548a", "metadata": {}, "source": [ "***\n", "# Building and Explaining an Anomaly Detector using AutoMLx - Experimental\n", "

by the Oracle AutoMLx Team

\n", "\n", "***" ] }, { "cell_type": "markdown", "id": "b1ba63d9", "metadata": {}, "source": [ "Anomaly Detection Demo Notebook.\n", "\n", "Copyright © 2025, Oracle and/or its affiliates.\n", "\n", "Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/" ] }, { "cell_type": "markdown", "id": "1b54cad5", "metadata": {}, "source": [ "## Overview of this Notebook\n", "\n", "In this notebook we will build an anomaly detection model using the experimental, fully unsupervised anomaly detection pipeline in Oracle AutoMLx for the public Credit Card Fraud dataset. The dataset is a binary anomaly detection dataset, and more details about the dataset can be found at https://www.openml.org/d/1597.\n", "We explore the various options provided by the Oracle AutoMLx tool, allowing the user to control the AutoML training process. We then evaluate the different models trained by AutoML. Finally we provide an overview of the possibilities that Oracle AutoMLx provides for explaining the predictions of the tuned model.\n", "\n", "---\n", "## Prerequisites\n", "\n", " - Experience level: novice (Python and Machine Learning)\n", " - Professional experience: some industry experience\n", "---\n", "\n", "## Business Use\n", "\n", "Data analytics and modeling problems using Machine Learning (ML) are becoming popular and often rely on data science expertise to build accurate ML models. Such modeling tasks primarily involve the following steps:\n", "- Preprocess dataset (clean, impute, engineer features, normalize).\n", "- Pick an appropriate model for the given dataset and prediction task at hand.\n", "\n", "- Tune the chosen model’s hyperparameters for the given dataset.\n", "\n", "All of these steps are significantly time consuming and heavily rely on data scientist expertise. Unfortunately, to make this problem harder, the best feature subset, model, and hyperparameter choice widely varies with the dataset and the prediction task. Hence, there is no one-size-fits-all solution to achieve reasonably good model performance. Using a simple Python API, AutoML can quickly jump-start the datascience process with an accurately-tuned model and appropriate features for a given prediction task.\n", "\n", "## Table of Contents\n", "\n", "- Setup\n", "- Load the Credit Card dataset\n", "- AutoML\n", " - Setting the execution engine\n", " - Create an Instance of AutoMLx\n", " - Train a Model using AutoMLx\n", " - Analyze the AutoMLx optimization process \n", " - Algorithm Selection\n", " - Hyperparameter Tuning\n", " - Specify a Time Budget to AutoML\n", "- Machine Learning Explainability (MLX)\n", " - Initialize an MLExplainer\n", " - Model Explanations (Global Feature Importance)\n", " - Feature Dependence Explanations\n", " - Prediction Explanations (Local Feature Importance)\n", " - Interactive What-If Explanations\n", " - Counterfactual Explanations\n", " - Aggregate Local Feature Importance & Local Feature Importance Built-in Sampling\n", " - Advanced Feature Importance Options\n", " - Change the number of iterations\n", " - Include the effects of feature interactions (with Shapley feature importance)\n", " - Advanced Feature Dependence Options (ALE)\n", "- References" ] }, { "cell_type": "markdown", "id": "ed5d41ec", "metadata": {}, "source": [ "\n", "## Setup\n", "\n", "Basic setup for the Notebook." ] }, { "cell_type": "code", "execution_count": 1, "id": "124c551f", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T09:59:34.026432Z", "iopub.status.busy": "2025-04-25T09:59:34.026094Z", "iopub.status.idle": "2025-04-25T09:59:44.508269Z", "shell.execute_reply": "2025-04-25T09:59:44.507603Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting rdata==0.9\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Using cached rdata-0.9-py3-none-any.whl.metadata (1.1 kB)\r\n", "Requirement already satisfied: numpy in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev252/lib/python3.9/site-packages (from rdata==0.9) (1.26.4)\r\n", "Requirement already satisfied: xarray in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev252/lib/python3.9/site-packages (from rdata==0.9) (2024.7.0)\r\n", "Requirement already satisfied: pandas in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev252/lib/python3.9/site-packages (from rdata==0.9) (2.2.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: python-dateutil>=2.8.2 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev252/lib/python3.9/site-packages (from pandas->rdata==0.9) (2.9.0.post0)\r\n", "Requirement already satisfied: pytz>=2020.1 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev252/lib/python3.9/site-packages (from pandas->rdata==0.9) (2025.2)\r\n", "Requirement already satisfied: tzdata>=2022.7 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev252/lib/python3.9/site-packages (from pandas->rdata==0.9) (2025.2)\r\n", "Requirement already satisfied: packaging>=23.1 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev252/lib/python3.9/site-packages (from xarray->rdata==0.9) (25.0)\r\n", "Requirement already satisfied: six>=1.5 in /scratch_user/olautoml/.conda/envs/pipeline-run-3.9.19-releasev252/lib/python3.9/site-packages (from python-dateutil>=2.8.2->pandas->rdata==0.9) (1.17.0)\r\n", "Using cached rdata-0.9-py3-none-any.whl (19 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: rdata\r\n", " Attempting uninstall: rdata\r\n", " Found existing installation: rdata 0.11.2\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling rdata-0.11.2:\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Successfully uninstalled rdata-0.11.2\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed rdata-0.9\r\n" ] } ], "source": [ "! pip install rdata==0.9\n", "\n", "%matplotlib inline\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "markdown", "id": "67e80ff5", "metadata": {}, "source": [ "Load the required modules." ] }, { "cell_type": "code", "execution_count": 2, "id": "09821a36", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T09:59:44.510808Z", "iopub.status.busy": "2025-04-25T09:59:44.510323Z", "iopub.status.idle": "2025-04-25T10:00:26.554123Z", "shell.execute_reply": "2025-04-25T10:00:26.553486Z" } }, "outputs": [], "source": [ "import urllib\n", "import rdata\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "import plotly.figure_factory as ff\n", "import plotly.express as px\n", "from sklearn.metrics import f1_score, confusion_matrix\n", "from sklearn.model_selection import train_test_split\n", "from pyod.models.iforest import IForest\n", "import time\n", "import datetime\n", "\n", "# Settings for plots\n", "plt.rcParams['figure.figsize'] = [10, 7]\n", "plt.rcParams['font.size'] = 15\n", "import automlx\n", "from automlx import init" ] }, { "cell_type": "markdown", "id": "cfe2a223", "metadata": {}, "source": [ "\n", "## Load the Credit Card Fraud Dataset\n", "We start by retrieving and reading in the dataset from provided URL." ] }, { "cell_type": "code", "execution_count": 3, "id": "0f03efa0", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:00:26.557270Z", "iopub.status.busy": "2025-04-25T10:00:26.556221Z", "iopub.status.idle": "2025-04-25T10:00:49.388257Z", "shell.execute_reply": "2025-04-25T10:00:49.387666Z" } }, "outputs": [], "source": [ "url = \"http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata\"\n", "dst_path = \"./creditcard.Rdata\"\n", "\n", "with open(dst_path, 'wb') as fout:\n", " fout.write(urllib.request.urlopen(url).read())\n", "parsed_res = rdata.parser.parse_file(dst_path)\n", "res = rdata.conversion.convert(parsed_res)\n", "dataset = res['creditcard'].reset_index(drop=True).drop(['Time'], axis=1)" ] }, { "cell_type": "markdown", "id": "52d15861", "metadata": {}, "source": [ "In this case, the target is identified by the `Class` column." ] }, { "cell_type": "code", "execution_count": 4, "id": "3f3dc853", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:00:49.390778Z", "iopub.status.busy": "2025-04-25T10:00:49.390321Z", "iopub.status.idle": "2025-04-25T10:00:49.978757Z", "shell.execute_reply": "2025-04-25T10:00:49.978272Z" } }, "outputs": [], "source": [ "y = dataset.loc[:, 'Class']" ] }, { "cell_type": "markdown", "id": "34f93770", "metadata": {}, "source": [ "We reduce the total number of features to 20 to have a reasonable training time for this demonstration." ] }, { "cell_type": "code", "execution_count": 5, "id": "a461a8de", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:00:49.980843Z", "iopub.status.busy": "2025-04-25T10:00:49.980499Z", "iopub.status.idle": "2025-04-25T10:00:50.026498Z", "shell.execute_reply": "2025-04-25T10:00:50.025899Z" } }, "outputs": [], "source": [ "df = dataset.iloc[:, :20]" ] }, { "cell_type": "markdown", "id": "cc0825a0", "metadata": {}, "source": [ "Since the dataset is not split into training and validation sets by default, we now split it into training (60%) and test (40%) datasets. The training set will be used to create a Machine Learning model using AutoML, and the test set will be used to evaluate the model's performance on unseen data." ] }, { "cell_type": "code", "execution_count": 6, "id": "a5e4d1ce", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:00:50.028702Z", "iopub.status.busy": "2025-04-25T10:00:50.028386Z", "iopub.status.idle": "2025-04-25T10:00:50.356653Z", "shell.execute_reply": "2025-04-25T10:00:50.356037Z" } }, "outputs": [ { "data": { "text/plain": [ "((170884, 20), (56962, 20))" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train, X_test, y_train, y_test = train_test_split(df, y, train_size=0.6, random_state=0, stratify=y)\n", "X_valid, X_test, y_valid, y_test = train_test_split(X_test, y_test, train_size=0.5, random_state=0, stratify=y_test)\n", "\n", "X_train.shape, X_test.shape" ] }, { "cell_type": "markdown", "id": "0a1599c9", "metadata": {}, "source": [ "Again to keep the training time reasonable, we also downsample to use 5% of the total training set." ] }, { "cell_type": "code", "execution_count": 7, "id": "039a183b", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:00:50.358715Z", "iopub.status.busy": "2025-04-25T10:00:50.358271Z", "iopub.status.idle": "2025-04-25T10:00:50.713308Z", "shell.execute_reply": "2025-04-25T10:00:50.712736Z" } }, "outputs": [ { "data": { "text/plain": [ "(8544, 20)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train, _, y_train, _ = train_test_split(X_train, y_train, train_size=0.05, random_state=0, stratify=y_train)\n", "\n", "X_train.shape" ] }, { "cell_type": "markdown", "id": "85655da0", "metadata": {}, "source": [ "We also need to reset the indexes after our downsampling." ] }, { "cell_type": "code", "execution_count": 8, "id": "0503cae9", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:00:50.715240Z", "iopub.status.busy": "2025-04-25T10:00:50.714914Z", "iopub.status.idle": "2025-04-25T10:00:50.805439Z", "shell.execute_reply": "2025-04-25T10:00:50.804947Z" } }, "outputs": [], "source": [ "X_train.reset_index(drop=True, inplace=True)\n", "y_train.reset_index(drop=True, inplace=True)" ] }, { "cell_type": "markdown", "id": "98732c51", "metadata": {}, "source": [ "Lets look at a few of the samples in the training dataset." ] }, { "cell_type": "code", "execution_count": 9, "id": "7ae1ab1b", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:00:50.807262Z", "iopub.status.busy": "2025-04-25T10:00:50.806947Z", "iopub.status.idle": "2025-04-25T10:00:50.973830Z", "shell.execute_reply": "2025-04-25T10:00:50.973303Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
0-0.7160730.2253223.7611833.207240-0.4958041.865745-0.6780000.458706-0.0096560.4840590.0260321.0703900.905135-1.490118-1.857273-0.4783330.2246690.7639871.7150660.421615
1-0.2876691.3553480.6078570.5640080.823146-0.6233910.846476-0.026066-0.968745-0.9533801.4698070.4704260.426923-1.3882170.1385320.7718830.5039811.289862-0.0738980.021523
2-1.3607010.0689361.5476220.968746-2.5399011.5058302.200844-0.0877981.034511-0.918203-0.8666300.289333-1.194264-0.939673-2.124787-0.9236530.630370-1.355050-0.591845-0.520554
3-1.167623-0.2065861.155390-1.460830-1.248562-0.6370280.0158020.154537-3.1906640.8222850.061631-0.5133461.1037380.0297120.751646-1.2068431.420112-0.8986570.463735-0.318270
4-0.771096-0.882119-0.583668-0.087184-1.9841180.7500641.2435100.4794660.410805-1.674414-0.841014-0.2671140.487951-1.2635361.1607061.723230-0.0836391.335979-1.3302480.989092
\n", "
" ], "text/plain": [ " V1 V2 V3 V4 V5 V6 V7 \\\n", "0 -0.716073 0.225322 3.761183 3.207240 -0.495804 1.865745 -0.678000 \n", "1 -0.287669 1.355348 0.607857 0.564008 0.823146 -0.623391 0.846476 \n", "2 -1.360701 0.068936 1.547622 0.968746 -2.539901 1.505830 2.200844 \n", "3 -1.167623 -0.206586 1.155390 -1.460830 -1.248562 -0.637028 0.015802 \n", "4 -0.771096 -0.882119 -0.583668 -0.087184 -1.984118 0.750064 1.243510 \n", "\n", " V8 V9 V10 V11 V12 V13 V14 \\\n", "0 0.458706 -0.009656 0.484059 0.026032 1.070390 0.905135 -1.490118 \n", "1 -0.026066 -0.968745 -0.953380 1.469807 0.470426 0.426923 -1.388217 \n", "2 -0.087798 1.034511 -0.918203 -0.866630 0.289333 -1.194264 -0.939673 \n", "3 0.154537 -3.190664 0.822285 0.061631 -0.513346 1.103738 0.029712 \n", "4 0.479466 0.410805 -1.674414 -0.841014 -0.267114 0.487951 -1.263536 \n", "\n", " V15 V16 V17 V18 V19 V20 \n", "0 -1.857273 -0.478333 0.224669 0.763987 1.715066 0.421615 \n", "1 0.138532 0.771883 0.503981 1.289862 -0.073898 0.021523 \n", "2 -2.124787 -0.923653 0.630370 -1.355050 -0.591845 -0.520554 \n", "3 0.751646 -1.206843 1.420112 -0.898657 0.463735 -0.318270 \n", "4 1.160706 1.723230 -0.083639 1.335979 -1.330248 0.989092 " ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train.head()" ] }, { "cell_type": "markdown", "id": "4881ab23", "metadata": {}, "source": [ "The Credit card fraud dataset contains numerical data." ] }, { "cell_type": "code", "execution_count": 10, "id": "d902ba26", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:00:50.975651Z", "iopub.status.busy": "2025-04-25T10:00:50.975228Z", "iopub.status.idle": "2025-04-25T10:00:51.008740Z", "shell.execute_reply": "2025-04-25T10:00:51.008219Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
Data typefloat64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64float64
\n", "
" ], "text/plain": [ " V1 V2 V3 V4 V5 V6 V7 \\\n", "Data type float64 float64 float64 float64 float64 float64 float64 \n", "\n", " V8 V9 V10 V11 V12 V13 V14 \\\n", "Data type float64 float64 float64 float64 float64 float64 float64 \n", "\n", " V15 V16 V17 V18 V19 V20 \n", "Data type float64 float64 float64 float64 float64 float64 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame({'Data type': X_train.dtypes}).T" ] }, { "cell_type": "markdown", "id": "b7f4cf7c", "metadata": {}, "source": [ "The Oracle AutoMLx solution automatically handles missing values by dropping features with too many missing values, and filling in the remaining missing values based on the feature type.\n", "\n", "In this case, there are no such missing values in our training dataset." ] }, { "cell_type": "code", "execution_count": 11, "id": "26fc0d22", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:00:51.010442Z", "iopub.status.busy": "2025-04-25T10:00:51.010121Z", "iopub.status.idle": "2025-04-25T10:00:51.044585Z", "shell.execute_reply": "2025-04-25T10:00:51.044102Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
% missing values0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
\n", "
" ], "text/plain": [ " V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 \\\n", "% missing values 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n", "\n", " V13 V14 V15 V16 V17 V18 V19 V20 \n", "% missing values 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame({'% missing values': X_train.isnull().sum() * 100 / len(df)}).T" ] }, { "cell_type": "markdown", "id": "53565863", "metadata": {}, "source": [ "We visualize the distribution of the target variable in the data. The dataset is heavily unbalanced, as is often the case in the anomaly detection use-case." ] }, { "cell_type": "code", "execution_count": 12, "id": "747e19d4", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:00:51.046308Z", "iopub.status.busy": "2025-04-25T10:00:51.045978Z", "iopub.status.idle": "2025-04-25T10:01:10.363843Z", "shell.execute_reply": "2025-04-25T10:01:10.363186Z" } }, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "bingroup": "x", "hovertemplate": "income=%{x}
count=%{y}", "legendgroup": "", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "", "offsetgroup": "", "orientation": "v", "showlegend": false, "type": "histogram", "x": [ "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "True", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False", "False" ], "xaxis": "x", "yaxis": "y" } ], "layout": { "barmode": "relative", "legend": { "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "anchor": "y", "domain": [ 0.0, 1.0 ], "title": { "text": "Anomaly" } }, "yaxis": { "anchor": "x", "domain": [ 0.0, 1.0 ], "title": { "text": "count" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "y_df = pd.DataFrame(y_train)\n", "y_df.columns = ['income']\n", "\n", "fig = px.histogram(y_df[\"income\"].apply(lambda x: \"False\" if x == \"0\" else \"True\"), x=\"income\")\n", "fig.update_layout(xaxis_title=\"Anomaly\")\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "a1deb8bf", "metadata": {}, "source": [ "\n", "## AutoML" ] }, { "cell_type": "markdown", "id": "7d8fbc64", "metadata": {}, "source": [ "\n", "### Setting the execution engine\n", "The AutoMLx package offers the function `init`, which allows to initialize the parallelization engine." ] }, { "cell_type": "code", "execution_count": 13, "id": "4cce0222", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:01:10.366463Z", "iopub.status.busy": "2025-04-25T10:01:10.365818Z", "iopub.status.idle": "2025-04-25T10:01:53.296227Z", "shell.execute_reply": "2025-04-25T10:01:53.295467Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:01:14,603] [automlx.backend] Overwriting ray session directory to /tmp/1odefte7/ray, which will be deleted at engine shutdown. If you wish to retain ray logs, provide _temp_dir in ray_setup dict of engine_opts when initializing the AutoMLx engine.\n" ] } ], "source": [ "init(engine='ray')" ] }, { "cell_type": "markdown", "id": "b783a49c", "metadata": {}, "source": [ "\n", "### Create an instance of AutoML for Unsupervised Anomaly Detection - Experimental Feature\n", "\n", "The Oracle AutoMLx solution provides a pipeline that automatically finds a tuned model given a prediction task and a training dataset. In particular it allows to find a tuned model for the task of Unsupervised Anomaly Detection (UAD), where the training labels (whether a training point is an anomaly or not) are unknown.\n", "\n", "The AutoML UAD Pipeline consists of three main modules:\n", "- **Preprocessing** : Clean, impute, engineer, and normalize features.\n", "- **Algorithm Selection** : Identify the right algorithm for a given dataset, choosing from amongst the following Outlier Detectors (OD):\n", " - IsolationForestOD\n", " - SubspaceOD\n", " - HistogramOD\n", " - ClusteringLocalFactorOD\n", " - PrincipalCompOD\n", " - MinCovOD\n", " - AutoEncoder\n", " - KNearestNeighborsOD\n", " - OneClassSVMOD\n", "- **Hyperparameter Tuning** : Find the best model hyperparameters that maximize score for the given dataset.\n", "\n", "All these pieces are readily combined into a simple AutoML pipeline which automates the entire Machine Learning process with minimal user input/interaction." ] }, { "cell_type": "markdown", "id": "59b2b333", "metadata": {}, "source": [ "\n", "### Train a model using Oracle AutoMLx\n", "\n", "The AutoMLx API is quite simple to work with. We create an instance of the pipeline. Next, the training data is passed to the `fit()` function which successively executes the three previously mentioned modules.\n", "\n", "A model is then generated and can be used for prediction tasks. We then evaluate the performance of the model on unseen data (`X_test`) using the F1-score." ] }, { "cell_type": "code", "execution_count": 14, "id": "2291de89", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:01:53.299137Z", "iopub.status.busy": "2025-04-25T10:01:53.298755Z", "iopub.status.idle": "2025-04-25T10:04:00.683938Z", "shell.execute_reply": "2025-04-25T10:04:00.683146Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:01:54,867] [automlx.interface] Dataset shape: (65505,19)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:02:52,433] [sanerec.autotuning.parameter] Hyperparameter epsilon autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:01,882] [sanerec.autotuning.parameter] Hyperparameter repeat_quality_threshold autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:02,032] [sanerec.autotuning.parameter] Hyperparameter scope autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:02,367] [automlx.data_transform] Running preprocessing. Number of features: 20\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:02,684] [automlx.data_transform] Preprocessing completed. Took 0.317 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:02,728] [automlx.process] Running Model Generation\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:02,773] [automlx.process] Model Generation completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:02,835] [automlx.model_selection] Running Model Selection\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:49,626] [automlx.model_selection] Model Selection completed - Took 46.791 sec - Selected models: [['IsolationForestOD']]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:49,674] [automlx.trials] Running Model Tuning for ['IsolationForestOD']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:56,558] [automlx.trials] Best parameters for IsolationForestOD: {'contamination': 0.1, 'n_estimators': 5, 'max_samples': 6, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:56,559] [automlx.trials] Model Tuning completed. Took: 6.885 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:57,138] [automlx.interface] Re-fitting pipeline\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:03:57,153] [automlx.final_fit] Skipping updating parameter seed, already fixed by FinalFit_85a27f35-1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "F1-Score on test data : 0.026709401709401708\n" ] } ], "source": [ "est = automlx.Pipeline(task='anomaly_detection', score_metric='f1')\n", "est.fit(X_train, X_valid=X_valid, y_valid=y_valid)\n", "\n", "y_pred = est.predict(X_test)\n", "\n", "score_default = f1_score(y_test.astype(int), y_pred)\n", "\n", "print(f'F1-Score on test data : {score_default}')" ] }, { "cell_type": "markdown", "id": "22fbb022", "metadata": {}, "source": [ "\n", "### Analyze the AutoML optimization process\n", "\n", "During AutoML training, a summary of the optimization process is logged, containing:\n", "- Information about the training data.\n", "- Information about the AutoML pipeline, such as:\n", " - Selected algorithm that was the best choice for this data;\n", " - Selected hyperparameters for the selected algorithm." ] }, { "cell_type": "markdown", "id": "214edb28", "metadata": {}, "source": [ "AutoML provides a `print_summary()` API to output all the different trials performed." ] }, { "cell_type": "code", "execution_count": 15, "id": "b0986699", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:00.687290Z", "iopub.status.busy": "2025-04-25T10:04:00.685975Z", "iopub.status.idle": "2025-04-25T10:04:01.444137Z", "shell.execute_reply": "2025-04-25T10:04:01.443546Z" } }, "outputs": [ { "data": { "text/html": [ "
General Summary
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
(8544, 20)
(56961, 20)
ManualSplit(Shuffle=True, Seed=7)
f1
IsolationForestOD
{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 6, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}
25.2.1
3.9.21 (main, Dec 11 2024, 16:24:11) \\n[GCC 11.2.0]
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trials Summary
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Step# Samples# FeaturesAlgorithmHyperparametersScore (f1)All MetricsRuntime (Seconds)Memory Usage (GB)Finished
Model Selection854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 100, 'max_samples': 5, 'max_features': 1.0, 'bootstrap': False, 'behaviour': 'old'}0.031{'f1': 0.031007751937984496}1.64630.3198Fri Apr 25 03:03:13 2025
Model Selection854420HistogramOD{'contamination': 0.1, 'n_bins': 10, 'alpha': 0.1, 'tol': 0.5}0.0299{'f1': 0.029925187032418952}6.56250.3786Fri Apr 25 03:03:18 2025
Model Selection854420PrincipalCompOD{'contamination': 0.1, 'whiten': False, 'n_components': 0.9999, 'weighted': True, 'svd_solver': 'full', 'n_selected_components': None, 'copy': True, 'tol': 0.0, 'iterated_power': 'auto', 'standardization': True}0.0293{'f1': 0.029301644147810516}1.33470.3462Fri Apr 25 03:03:13 2025
Model Selection854420AutoEncoder{'contamination': 0.1, 'middle_layer_size': 2, 'encoder_length': 2, 'layer_size_growth': 'exponential', 'hidden_activation': 'relu', 'batch_norm': True, 'learning_rate': 0.001, 'epochs': 100, 'batch_size': 256, 'dropout_rate': 0.05, 'weight_decay': 1e-05, 'preprocessing': False, 'input_dim': 20}0.029{'f1': 0.029035821366577244}37.30680.6494Fri Apr 25 03:03:49 2025
Model Selection854420ClusteringLocalFactorOD{'contamination': 0.1, 'n_clusters': 9, 'alpha': 0.8, 'beta': 5, 'use_weights': False, 'clustering_estimator': None, 'check_estimator': False}0.0284{'f1': 0.02841530054644809}6.75110.4133Fri Apr 25 03:03:18 2025
Model Selection854420MinCovOD{'contamination': 0.1, 'assume_centered': False, 'support_fraction': 0.5012289325842697, 'store_precision': True}0.0283{'f1': 0.0282780676653762}4.08950.3637Fri Apr 25 03:03:16 2025
Model Selection854420KNearestNeighborsOD{'contamination': 0.1, 'n_neighbors': 5, 'method': 'largest', 'radius': 1.0, 'algorithm': 'ball_tree', 'leaf_size': 30, 'metric': 'minkowski', 'p': 2, 'metric_params': None}0.0262{'f1': 0.026224783861671472}20.98620.3448Fri Apr 25 03:03:33 2025
Model Selection854420OneClassSVMOD{'contamination': 0.1, 'gamma': 0.5, 'kernel': 'rbf', 'nu': 0.5, 'coef0': 0, 'degree': 3, 'tol': 0.001, 'shrinking': True, 'cache_size': 200, 'max_iter': -1}0.0136{'f1': 0.013550135501355014}23.18800.5145Fri Apr 25 03:03:35 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 6, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}0.032{'f1': 0.03197925669835782}0.13620.3567Fri Apr 25 03:03:51 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 101, 'max_samples': 5, 'max_features': 1.0, 'bootstrap': False, 'behaviour': 'old'}0.0315{'f1': 0.03149606299212599}0.42250.6598Fri Apr 25 03:03:50 2025
..............................
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 37, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}0.0237{'f1': 0.02370163820146393}0.15360.3488Fri Apr 25 03:03:51 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 36, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}0.0236{'f1': 0.023570190641247834}0.14060.6632Fri Apr 25 03:03:51 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 1.0, 'bootstrap': False, 'behaviour': 'old'}0.0038{'f1': 0.0037695207323640285}0.12300.3496Fri Apr 25 03:03:51 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.9999905, 'bootstrap': False, 'behaviour': 'old'}0.0012{'f1': 0.0011851851851851852}0.12460.6598Fri Apr 25 03:03:51 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}0.0012{'f1': 0.0011813349084465446}0.09940.3379Fri Apr 25 03:03:55 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.05, 'bootstrap': False, 'behaviour': 'old'}0.0012{'f1': 0.0011813349084465446}0.12920.3519Fri Apr 25 03:03:51 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.050009500000000005, 'bootstrap': False, 'behaviour': 'old'}0.0012{'f1': 0.0011813349084465446}0.12740.3477Fri Apr 25 03:03:50 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.05001900000000001, 'bootstrap': False, 'behaviour': 'old'}0.0012{'f1': 0.0011813349084465446}0.11510.3501Fri Apr 25 03:03:50 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.472893264264607, 'bootstrap': False, 'behaviour': 'old'}0.0005{'f1': 0.00046838407494145194}0.12580.3477Fri Apr 25 03:03:50 2025
Model Tuning854420IsolationForestOD{'contamination': 0.1, 'n_estimators': 5, 'max_samples': 5, 'max_features': 0.472902764264607, 'bootstrap': False, 'behaviour': 'old'}0.0005{'f1': 0.00046838407494145194}0.11660.3585Fri Apr 25 03:03:50 2025
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "est.print_summary()" ] }, { "cell_type": "markdown", "id": "e94cb207", "metadata": {}, "source": [ "We also provide the capability to visualize the results of each stage of the AutoML pipeline." ] }, { "cell_type": "markdown", "id": "399ae6a7", "metadata": {}, "source": [ "\n", "#### Algorithm Selection\n", "\n", "The plot below shows the scores predicted by Algorithm Selection for each algorithm. The horizontal line shows the average score across all algorithms. Algorithms below the line are colored turquoise, whereas those with a score higher than the mean are colored teal. Here we can see that the `MinCovOD` achieved the highest predicted score (orange bar), and is chosen for subsequent stages of the Pipeline." ] }, { "cell_type": "code", "execution_count": 16, "id": "87aa015f", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:01.446371Z", "iopub.status.busy": "2025-04-25T10:04:01.445865Z", "iopub.status.idle": "2025-04-25T10:04:02.034548Z", "shell.execute_reply": "2025-04-25T10:04:02.033899Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4cAAANUCAYAAAAAR1gXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADteUlEQVR4nOzde3zP9f//8fv7vdlmtr1Zm5lsY8J85BCL8PEhKVLEUnL4fi2fPh2QY4oOzKGPysdC8qmvPqiolmNOOVTm4xMj5hBCaEaE1Q7GDra9fn/47f3p3d6z92bb+43b9XJ5X2qv5+H1eL1eG7t7nUyGYRgCAAAAANzSzM4uAAAAAADgfIRDAAAAAADhEAAAAABAOAQAAAAAiHAIAAAAABDhEAAAAAAgwiEAAAAAQIRDAAAAAIAIhwAAAAAAEQ4B4IYSExMjk8mkTp06ObuUMjOZTDKZTIqPjy/T+IULF8pkMqlu3brlWtetolOnTjKZTIqJiXF2KaVSt25dmUwmLVy40NmluITo6GiZTCZFR0eX67z8fAG3NsIhADhJamqqqlatag1LP/74o7NLcqq0tDTFxMQoJiZGaWlpzi6nwl24cEGvv/66/vznPysgIEBVqlRRQECAmjRpoh49eujNN9/Utm3bnF1mhVu4cKFiYmLK/I8FrigpKcn6c12Wz820LwDcWNydXQAA3KoWL16s7Oxs69fz58/XtGnTnFhR5WjUqJEkydvb22Z5WlqaJk2aJOnqWZHq1atXdmmV5uuvv9bjjz+u3377zbqsWrVqunLlig4dOqRDhw5pzZo1kiTDMJxVZqVYuHChtmzZIknXPCNev359eXl5yWKxVFJlZefm5qagoCC7benp6crOzpbZbFZgYKDdPh4eHiWuIzg4WI0aNVJwcPB11QoAv0c4BAAn+de//iVJev755/XOO+/oww8/1NSpU+Xm5ubkyirW4cOHnV2CUyUnJ6tXr17KzMxU3bp1NWHCBPXu3dsahtPT07Vjxw6tWrVKn3zyiXOLdSFff/21s0twWEhIiH755Re7bdHR0frwww8VEhKipKSkMq9j2rRpt8Q/JgGoXFxWCgBOkJiYqL1796p69ep66623VK9ePZ09e1br1q1zdmmoYO+//74yMzPl4eGhLVu26Mknn7Q5S2qxWPTAAw9ozpw5+vnnn51XKADglkM4BAAnKDxr2LdvX3l5eel///d/JV29tPR6ffHFF+rcubOqV68uHx8fNW/eXG+99ZauXLni0ANt4uPj9dhjj+n222+Xp6enAgICdN9992nBggXKz8+3O+aP8y5btkwPPPCAatasKbPZbPPwE3v3VXXq1En16tWzfl2vXj2be7CuVe/u3bv1+OOPKzg4WJ6engoPD9fo0aOVmprqUK2rVq3Sfffdp9tuu01+fn5q166dVq5caTPm448/Vvv27VWjRg35+PjoL3/5S5nPZO3du1eS1KJFC4WGhl6zb9WqVYttKygo0OLFi9W9e3cFBQXJw8NDgYGBeuCBB/Tpp59e1+WoBw4c0NNPP60GDRrI29tbPj4+atasmV555RWlpKRcc+ylS5cUGxurjh07KiAgQB4eHqpTp446duyoGTNm6Ny5c5L+++CTwktKJ02aVOTeu9+fWSvpgTT5+fmaP3++OnfurICAAHl6eur222/XY489ds17+H7/gB7DMDRv3jy1adNGfn5+8vX1Vdu2bbVo0aJS7b+y+v29iklJSTp+/Liefvpp1atXT56enjYPibnWA2lSU1P1r3/9S48//riaNm0qf39/eXl5KSwsTP3791dCQkKZa9yxY4cGDBigevXqycvLS9WqVVNYWJg6duyoKVOm6PTp02WeG4ALMAAAlSorK8uoXr26Icn49ttvDcMwjOPHjxsmk8lwd3c3fvnll2LHTpw40ZBkdOzY0W77mDFjDEnWT/Xq1Q13d3dDkvGXv/zFePnll685ftSoUdaxJpPJqF69uuHm5mZd1rlzZyMjI+OadY0ePdo6vkaNGoabm5sxceJEa9/CuTZv3mxd1rt3byMgIMDaFhAQYAQFBVk/vXv3tvZdsGCBIckICwszFi9ebFSpUsWQZFgsFsNsNlvnaNKkiXHx4sVr1jphwgRDkmE2mw2LxWKz79577z2joKDAGDRokCHJcHd3N3x9fa3tbm5uxpo1a4o9VsXp3r27IcmoU6eOUVBQUOrxhmEYv/76q/GXv/zFpt4/1t+zZ08jJyenyNiOHTsakmyOye+9+eabNvvR29vb8PDwsH4dHBxsJCYm2h27e/duIyQkxNrXbDYb/v7+hqenp3XZ22+/bRiGYXz22WdGUFCQ9fhVq1bN5pgHBQUZycnJ1rnDwsIMScaCBQuKrDctLc3o1KmTzbGpXr26YTKZrMteeOEFuzUX7o9XX33VeOSRR6zH2s/Pz2Z/Tpgw4doHxUGF309hYWFF2n766Sfr+hYvXmz4+PhYj0G1atVsxhTOM2jQoCLzFH6PF+6LGjVq2BwDk8lkzJo1y259v//5+qOFCxfa7FNPT88i+8ne8QFw4yAcAkAlW7RokSHJuOOOO2yWd+jQwZBkvPXWW8WOvVY4/PTTT62/oPXv3984ffq0YRhXw+j//d//GV5eXkaNGjWKHf/OO+9Yxz/99NPG2bNnDcMwjMzMTOPtt9+2hsy+ffsWW1fhL7MvvfSScf78ecMwDCM7O9tISkqy9rUXDg3D9hfjn376qdh9UPjLq7e3t+Hp6Wk89dRT1hBx6dIlY86cOdbA8dprrxVbq8ViMdzc3IzXX3/dSEtLMwzDME6fPm107drVkGT4+voaEyZMMKpWrWq89957xqVLlwzDMIyjR48akZGRhiQjNDTUyM/PL7ZWe2JiYqzbOXr0aCMzM7NU4/Py8qyBpkWLFsbq1auttWVmZhoffvihUbNmTUOSMXLkyCLjrxUOP/jgA+txfP31163fA3l5ecauXbuMzp07W4PtH4N3cnKyNeCHhIQYn332mbWugoIC4+DBg0ZMTIyxaNEih+v5vWuFw0cffdSQZHh4eBizZ8+2rvfs2bPG4MGDrfv7n//8Z7H7o0aNGobFYjEWLlxoXL582TAMwzh16pTRo0cPa9A9evToNWt0hKPh0MfHx2jTpo3x3XffWduPHDlSZB574fD99983Jk6caOzatcv6DwQFBQXGiRMnjBEjRhgmk8lwc3OzG/KLC4eXLl2y/uPIwIEDjWPHjlnbMjMzjV27dhljx4411q5dW8o9AsCVEA4BoJLde++9hiRj8uTJNsvnzZtnSDIiIiKKHVtcOCwoKDDuuOMOQ5Jx//332z0jVfhLn73xly9fNvz9/Q1JRr9+/eyue/bs2dbxu3btsltXYeC5lvIKh8X9YmwYhvXs5R8D+B9rnTp1apH29PR0o1q1atY+fwwzhmEYx44ds7Zv3br1mtv7RxcuXDBq165tHV+tWjWjW7duxmuvvWasXLnSOHfu3DXHf/TRR9bvk8JQ+0e7du0yTCaT4eHhUWS+4sJYRkaG9Yz2+vXr7c575coVo1WrVjZnAAsNHDjQkGTcdtttNmf8SnK94TAhIcG6L99//327YwvDY0BAgJGVlWV3/ZKMb775psjY7Oxs6/Gy9/1SWo6Gw7CwMLtnvv84T3E/A9cydOhQQ5Lx17/+tUhbceFwx44d1u/XK1eulHqdAG4M3HMIAJXoxIkTio+Pl8lk0v/8z//YtD3++OOqWrWqDh8+XOr32+3du1fHjh2TJL388ssymUxF+gwaNKjYe9w2bdpkfa1CcS9HHzJkiPWx+cU9RdNsNuull14qVe3X49VXX7W7/JFHHpEkHTt2TJcvX7bbx8vLSyNHjiyy3M/PT23btpUkhYaGqn///kX61K9fX3fccYckaf/+/aWqOSAgQP/5z390//33S7p6j9769es1ZcoU9erVS0FBQYqMjNTChQtVUFBQZHzh/arPPfdcsa91aNWqlZo0aaLc3Fxt3rzZobqWLVumtLQ03XXXXeratavdPu7u7urXr58kacOGDdblly5dUlxcnCRp3LhxCgkJcWid5aFwvXXq1NFTTz1lt8+UKVMkSSkpKdq0aZPdPu3bt9e9995bZLmnp6d1f5T2WF+PYcOGycfHp0LmfuihhyRJ//nPfxweU/jQpNzcXP36668VURYAF0A4BIBKtGDBAhmGoQ4dOtg8XEK6Gkp69eol6b8BwFGJiYmSpCpVqqhdu3Z2+5hMJnXs2NFu265duyRdfQR/w4YN7fZxc3NT586dbfr/0R133KGaNWuWqvay8vf3twa0P6pdu7b1/4t7MM2f/vQnVatWzW5b4TvqIiMj7Qbt3/cpbv5rqVevnjZu3KhDhw7pjTfe0COPPGIT3Hfv3q0nn3xSDz74oM27MPPz860PE4mJiVGtWrWK/Rw5ckSSdPLkSYdq+vbbbyVJP/zwwzXnnTx5cpF5d+3apStXrkiSevToUer9cT0Kvxfvvfdemc32f61p3Lixbr/9dpv+f9SmTZti11H4/fT791JWtPbt21/X+BMnTuiFF15Qq1atVL16dbm5uVkfdtO9e3dJKtXDY+rXr6+IiAhduXJFbdq00Ztvvqm9e/cW+5AqADcm3nMIAJWkoKDA+qTFwqeT/tGgQYP06aef6vPPP9esWbMcPnNw4cIFSdJtt912zRdoF/6C/Efnz5+/ZnuhOnXq2PT/o8oKhpLk6+tbbJu7+3//eisMLWUZ70if4uZ3ROPGjdW4cWPr17/88ou++OILTZs2TSdPntTGjRv16quv6h//+Iekq+EkJydHkuOhtLgzp3905swZSVJ2drZNIHVk3t+/0y8sLMyh9ZWX0nzv/vzzz8V+71b0sS6t6/lZWrFihfr162f9XpGu/uOTl5eXTCaTcnNzlZqaqkuXLjk8p5ubmz777DP17t1bP/30k8aNG6dx48bJ29tb7dq1U1RUlAYNGiRvb+8y1w3A+ThzCACVZMOGDdZ/qX/qqaeKPLbfZDKpW7dukqTMzEx9/vnnpV5HcWe5Koubm5tT13+jq1Wrlp555hnt2LHDGg7mz59vvbz092dpvvzySxlXnx1wzU9xlwn/UeHcffv2dWje379mwtnfdzejsv4s/frrr4qOjlZOTo46d+6s+Ph4Xb58Wenp6Tp37px++eUXLVmypExzN2/eXIcPH9ayZcv09NNP684771RWVpa++uorDRkyRBEREfr+++/LNDcA10A4BIBKUtpLRUvTPzAwUNLVe6pyc3OL7VfcS9ULg0hJl5kVtlfmGcJbUVBQkPW+ydTUVJszw4VnsRy9XNRRtWrVKvO8hWPLOv568L1ra926dcrIyFCNGjW0evVqdezYscj7Mn9/pre0PDw8FBUVpffff1/ff/+9Lly4oPfee0/+/v46deqUBg0adL2bAMCJCIcAUAkuXLigVatWSZKWLl2qixcvFvvZuXOnJGnbtm3W+8ZK0rJlS0lXL3sr7mE2hmHo3//+t922yMhISVd/gT569KjdPvn5+daHm9x9990O1VUav79fzLiOF7jfLH5/SbGnp6ekq/eUtm7dWpK0evXqcl1f4T1uu3fv1tmzZ0s1NjIy0no5c2nrKjzuZT3mhd+7mzdvtvsAH0k6fPiw9R9GKuJ715WcOnVKktSoUaNiL/H86quvym19t912m5555hm9+eabkqQ9e/bwwBrgBkY4BIBK8PHHH+vKlSuyWCzq0aOHfHx8iv3cfffdioiIkOT42cMWLVpYH87yxhtv2P1Fe9GiRcWe1bn//vt12223SSr+aaXvv/++9b60widWlic/Pz/r/6elpZX7/K5i69atJd4HmJmZqeXLl0u6+vCawidFStLTTz8t6eoZonXr1l1zntI8QOWxxx5T9erVdeXKFY0ePfqaYa2goMDmGHl7e+uJJ56QdPX7rzCgOKLwuJf1mBeu9+eff9YHH3xgt8+ECRMkXX1SbJcuXcq0nhtF4RNsjx49avfe0b179xb7tOFr+f39i/b8/uxkcQ8GAuD6+OkFgEpQGPIeeeSRaz4wptBjjz0mSfroo4+Ul5dXYn+TyaRJkyZJunpv46BBg2weMPKvf/1LzzzzjGrUqGF3fNWqVa2h8NNPP9Wzzz6rc+fOSbr64JHZs2dbX/vQt29ftWrVqsSaSqt69erWh4osWLDAoe2+Ec2aNUuhoaF6/vnn9dVXXykjI8PalpGRoc8//1zt2rWzBvkxY8bYjB84cKC6dOkiwzDUu3dvTZ061Xqspauvldi8ebOGDh2q8PBwh+uqXr26Zs6cKUn67LPP9NBDD2nHjh3Ws3EFBQX64YcfNGPGDDVp0kRr1qyxGf/6668rICBAv/76q9q3b6/PP/9cWVlZkq6eFTxw4IDGjh2rjz/+2GbcnXfeKelq2C3usudrad26tR599FFJ0vPPP685c+ZYw/cvv/yiv/3tb9Z77KZMmSIvL69Sr+NG8sADD8hsNuu3337TgAEDrPs0NzdXn3/+uR544IFrPnynOJ999pnat2+v999/XydOnLAuz8/P14YNGzRu3DhJUtu2bYv9cwaA6yMcAkAFS0hI0KFDhyT9N/SVpLDfuXPntHbtWofG9O/f3xrgPv74Y9WpU0f+/v7y8/PTU089pbZt2+rZZ5+VJLu/IA8bNkyjRo2SdPUsYXBwsPz9/WWxWDRixAhduXJF9957r+bNm+dQPWVRWN8777wjHx8fhYaGqm7dutazQzeDKlWq6Ndff9WcOXN0//33y2KxyM/PT76+vrJYLOrbt6++//576zsjhw4dajPezc1Ny5Yt08MPP6zc3Fy99tpruv3222WxWFSjRg35+vqqc+fOmjt3bqmeRildfVruP//5T3l4eOjLL7/UPffcI29vbwUEBMjLy0t/+tOf9MILL+jw4cNFHkJTp04dbdiwQbfffrtOnTqlvn37ytfXVwEBAfL29lbTpk31j3/8o8glh4MGDZKXl5eOHTum0NBQ1apVS3Xr1lXdunUdftXCv/71L3Xs2FG5ubl6/vnnZbFY5O/vr9q1a1vPJr7wwgvW76+bWYMGDTR27FhJ0vLly1WnTh1Vr15dPj4+6tu3r3x8fDR79uxSz2sYhrZt26Znn31W9evXl5eXlwICAuTh4aFu3brp9OnTql27tubPn1/emwSgEhEOAaCCFZ41tFgseuCBBxwa07RpU+srDkrzYJq3335by5cvV6dOneTr66ucnBw1btxY06dP14YNG6xh4feXKf5ebGysvvnmGz366KMKCgpSZmamfH19de+992r+/PnatGlTmc46OOrll1/WrFmzFBkZqSpVquj06dM6efLkdT1Aw9V8/PHH+uabbzR+/Hjdd999qlOnjnJzc5Wdna0aNWro7rvv1qhRo7Rnzx698cYbdufw8/PT6tWrtW7dOvXt21ehoaHKycnR5cuXdfvtt+uBBx7QtGnTHL5n9feeffZZHTlyRC+88IKaN28uT09PpaWlycfHR5GRkXr++ee1adMmu5cWt2zZUj/88IPeeOMN3XPPPfL19dXFixcVGBioTp06KTY2Vv3797cZ06BBA23evFk9e/ZUYGCgfv31V508eVInT550+OyxxWLR119/rX/961/W7/3MzEzVqlVLjz76qDZv3qzp06eXel/cqN544w199NFHat26tapWraorV67ojjvu0Msvv6w9e/bYvAfUUT179tRHH32kJ598Us2bN5fFYlF6erp8fX3VunVrTZkyRQcPHrReEg/gxmQyuOsfAG4Z7du317Zt2zR58mS99tprzi4HAAC4EM4cAsAtYsuWLdYnmRa+TxEAAKAQ4RAAbiJDhw7VwoUL9csvv1ifNpmWlqb333/f+t68zp073/SP8wcAAKXHZaUAcBNp0aKF9u3bJ+nqu/G8vb2VlpZmDYp/+tOftHHjRutTQQEAAAoRDgHgJrJq1SqtXLlSO3bs0Llz55Seni4/Pz81adJEUVFRevrpp4t9MTYAALi1EQ4BAAAAANxzCAAAAACQ3J1dwLVkZWVp2rRp+uyzz5ScnCx/f39169ZNU6ZMKfX9MqmpqYqJidHKlSv1yy+/qFatWurdu7diYmLsvu9r4cKFWr9+vfbt26dz584pMzNTAQEBateunUaNGqX27dsXGbN7926tXr1aGzdu1KFDh3T58mUFBQWpY8eOevHFF9WsWbMiY5KSklSvXr1i6w4KCir1+70KCgp05swZ+fr6FnlJMQAAAIBbh2EYunjxomrXri2z+drnBl32stLs7Gzde++9SkhIUHBwsDp06KCkpCTt3LlTgYGBSkhIUHh4uENzpaSkqG3btjp27JjCw8MVGRmpgwcP6uDBg2rYsKG2b98uf39/mzGRkZHat2+fmjZtqjp16sjLy0tHjhzR/v37ZTKZNHfuXD377LPW/nl5eapSpYokyd/fX23atFG1atW0Z88eHT9+XB4eHlq8eLH69Oljs57CcBgUFGT30fIWi0WzZs0q1b47ffq0QkJCSjUGAAAAwM3r1KlTqlOnzjX7uGw4fPXVV/X666+rbdu22rhxo3x8fCRJsbGxGjNmjDp27Kj4+HiH5ho4cKAWL16sqKgoxcXFyd396gnT4cOH65133tGgQYO0cOFCmzE7duzQn/70J/n6+tosX7VqlaKiolSlShWdOnVKAQEBkq6Gw3bt2umVV17Rww8/LDc3N0lXz+JNmDBBr7/+unx9fXXixAnrGOm/4bA021OS9PR0Va9eXadOnZKfn1+5zAkAAADgxpORkaGQkBClpaXJYrFcs69LhsPc3FzVrFlT6enpSkxM1F133WXT3rx5c+3fv1+7du1Sq1atrjnX2bNnVadOHbm7uys5OVlBQUHWtpycHIWEhOi3337TmTNnVLNmTYfq69Kli77++mt98cUX6tmzZ4n9DcNQ48aNdeTIES1cuFCDBg2ytlVEOMzIyJDFYrE+pRAAAADArak02cAlH0jz7bffKj09XfXr1y8SDCVZL81cvXp1iXOtX79eBQUF6tChg00wlK6+A6xHjx7Kz8/XunXrHK6v8PJRDw8Ph/qbTCbr/YZnzpxxeD0AAAAAUFlc8oE0hS9wbtmypd32wuX79+8vl7nmz5/v0FyS9PXXX+ubb75RjRo1dM899zg0RpJOnDghSapVq5bd9nPnzmnixIk6e/asLBaL2rRpo549ezocQAEAAADgerhkOExOTpakYm+YLFx+8uTJCp9rwYIF2rJli7Kzs3X8+HHt2rVLFotFn376qd2nnNrzn//8R7t375aHh4fdh85I0uHDhzV58mSbZaGhoVqyZIlat259zflzcnKUk5Nj/TojI8OhugAAAACgkEteVpqZmSlJ8vb2ttterVo1SdLFixcrfK5vv/1WH374oeLi4rRr1y75+/tr/vz56tq1a4nrlq4GtcGDB0uSRo0apeDgYJt2T09PPffcc4qPj9e5c+eUkZGh7du3q3v37kpOTlbXrl1LDMHTpk2TxWKxfnhSKQAAAIDScslw6Eo++OAD67tBdu3apS5duujRRx/V008/XeLY/Px8DRgwQD/++KNat25d5MygJAUHB2vu3Lnq2LGjatasKV9fX91zzz1au3at+vfvr7S0NP3973+/5nrGjx+v9PR06+fUqVNl3l4AAAAAtyaXDIeFr624fPmy3fZLly5JUpHXTFTkXD4+PmrVqpXi4uLUs2dPzZs3T8uWLbvmmOeee05r1qxRo0aNtHbt2lLfP/jyyy9LkjZs2HDNfp6envLz87P5AAAAAEBpuGQ4DA0NlXT1Ze72FC4PCwur1LkKDRw4UJL0xRdfFNtn3LhxmjdvnkJCQrRp0yabdxs6qkGDBpKuvo4DAAAAACqSS4bD5s2bS5ISExPtthcuL3w9RGXNVagw6F24cMFu+1tvvaU333xTNWvW1KZNm8p8D2Bqaqqk/94XCQAAAAAVxSXDYfv27WWxWHT8+HHt3bu3SPvSpUslST169Chxrm7duslsNmvr1q06f/68TVtOTo5Wr14tNzc3de/e3eH6tmzZIkmqX79+kbZ58+bppZdeUvXq1bVhwwY1atTI4Xn/qPCy1eJewwEAAAAA5cUlw6GHh4eGDRsmSRo6dKj1vkBJio2N1f79+9WxY0e1atXKunzOnDmKiIjQ+PHjbeYKDg5Wv379lJubqyFDhigvL8/a9uKLL+rChQsaOHCgatasaV3+ww8/6PPPP1dubq7NXIZh6LPPPtNbb70lk8mkQYMG2bQvXbpUzz77rHx8fLRu3Tq1aNGixG2dN2+eDh8+XGT58uXLNW7cOOs+AAAAAICKZDIMw3B2EfZkZ2erU6dO2rFjh4KDg9WhQwedPHlSO3bsUGBgoBISEhQeHm7tHxMTo0mTJmnQoEFauHChzVwpKSm65557dPz4cdWvX1+RkZE6ePCgDhw4oAYNGighIUH+/v7W/vHx8br33ntlsVjUqlUr1apVS2lpaTp06JCSkpJkNps1Y8YMjRw50jrm/PnzCgkJUW5urpo2bVrs2b5evXqpV69e1q87deqkLVu2qFmzZmrYsKEKCgp06NAha2AcO3as3nrrrVLtu4yMDFksFqWnp/NwGgAAAOAWVpps4F5JNZWal5eXNm/erGnTpumTTz7RypUr5e/vr+joaE2ZMqXYl9rbExAQoJ07dyomJkYrV67UihUrFBQUpOHDh2vSpElFXmbfpEkTTZ48WfHx8Tp69Ki+/fZbmc1m1alTR4MHD9bQoUOLhL/Lly9bzzR+//33+v777+3WUrduXZtw+Le//U2BgYHau3evNm7cqKysLAUGBioqKkrPPfecunTp4vB2AgAAAEBZueyZQ5QdZw4BAAAASKXLBi55zyEAAAAAoHIRDgEAAAAAhEMAAAAAAOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDJ3dkF4MaUnJyslJQUZ5dxXQICAhQaGursMgAAAACXQDhEqSUnJ6txRCNdzsp2dinXxbuql344fISACAAAAIhwiDJISUnR5axsLRoiNa7t7GrK5ocz0sC52UpJSSEcAgAAACIc4jo0ri21rOfsKgAAAACUBx5IAwAAAAAgHAIAAAAACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAACQi4fDrKwsTZgwQQ0bNpSXl5dq166twYMH6+effy71XKmpqRoxYoTCwsLk6empsLAwjRw5UmlpaXb7L1y4UE888YQaN24sf39/eXh4qHbt2urTp4++/fbba65r9erV6tixo/z8/OTn56dOnTpp7dq11xxz8OBBPfbYYwoMDFTVqlXVtGlTzZw5UwUFBaXeVgAAAAAoLZcNh9nZ2ercubOmTJmizMxMPfLIIwoJCdGCBQt011136cSJEw7PlZKSotatW2v27Nlyd3dXr1695Ovrq1mzZqlNmzb67bffioyZM2eOli1bpqpVq+rPf/6zevXqpcDAQC1btkwdOnTQe++9Z3ddM2fOVM+ePbVt2za1b99enTt31s6dO/Xwww9rzpw5dsds375dd999t5YuXarw8HD17NlTKSkpGjVqlJ544gkZhuHwtgIAAABAWbhsOJw6daoSEhLUtm1bHT16VHFxcdqxY4dmzJihCxcuaPDgwQ7PNXLkSB07dkxRUVE6cuSI4uLidODAAT3//PM6evSoRo8eXWTMu+++q99++02JiYlatWqVPv/8c+3bt09ffPGFzGazRo0apZSUFJsxR44c0QsvvCBPT0/9+9//1pdffqmVK1dq7969uu222zRq1CgdO3bMZsyVK1c0YMAAZWVlKTY2Vjt27FBcXJx+/PFHtW3bVkuWLNGHH35Ytp0IAAAAAA5yyXCYm5trPcv27rvvysfHx9o2evRoNWvWTFu2bNHu3btLnOvs2bP69NNP5eHhoblz58rd3d3aNn36dAUGBmrRokU6f/68zbg2bdrI19e3yHw9e/ZUp06dlJ2drW3bttm0zZo1S/n5+Xr22WfVtm1b6/KGDRvqlVdeUV5enmbNmmUzZsWKFfrpp5/UvHlzjRo1yrrcx8fHug9mzJhR4nYCAAAAwPVwyXD47bffKj09XfXr19ddd91VpL1Pnz6Srt7bV5L169eroKBAHTp0UFBQkE2bp6enevToofz8fK1bt87h+qpUqSJJ8vDwsFleeF9hYX2O1HytMS1btlR4eLgOHDigpKQkh+sDAAAAgNJyyXC4b98+SVfDkT2Fy/fv31+pc0nS119/rW+++UY1atTQPffcY12elpam5ORkSbIbaENCQhQQEKCTJ08qIyOjwuoDAAAAgLJwL7lL5SsMWXXq1LHbXrj85MmTFT7XggULtGXLFmVnZ+v48ePatWuXLBaLPv30U1WvXr3IemrUqKFq1aoVu66UlBSdPHlSTZs2LZf6JCknJ0c5OTnWr38fPgEAAADAES4ZDjMzMyVJ3t7edtsLw9fFixcrfK5vv/3W5oEw/v7+mjdvnrp27Vqq9RS3rvLY1mnTpmnSpEnFtgMAAABASVwyHLqSDz74QB988IEyMzN15MgRvfXWW3r00Uf1t7/9Tf/3f//n7PIkSePHj7d54mpGRoZCQkKcWBEqQ3JycpEn5t5oAgICFBoa6uwyAAAAIBcNh4VPJ718+bLd9kuXLkmS3aeJVtRcPj4+atWqleLi4pSdnW09e/joo486tJ7i1uXj46PU1NTrqs/T01Oenp7XrB83l+TkZDWKiFB2VpazS7kuXlWr6sjhwwREAAAAF+CS4bDwF8XTp0/bbS9cHhYWVqlzFRo4cKBWrVqlL774whoOC9eTmpqqS5cu2b3v0N66QkNDlZqaqtOnT6tZs2blUh9ufikpKVeDYVSUFBDg7HLKJiVF2cuXKyUlhXAIAADgAlwyHDZv3lySlJiYaLe9cLm9MFWRcxUK+P+/jF+4cMG6rHr16goNDVVycrL27NmjP//5zzZjTp06pZSUFIWFhcnPz8+mvn379ikxMVHdu3cvl/pwCwkIkGrXdnYVAAAAuAm45Kss2rdvL4vFouPHj2vv3r1F2pcuXSpJ6tGjR4lzdevWTWazWVu3bi3yovucnBytXr1abm5udoNZcbZs2SJJql+/vs3yhx56yKY+R2q+1pg9e/boxIkTuvPOO1W3bl2H6wMAAACA0nLJcOjh4aFhw4ZJkoYOHWq9706SYmNjtX//fnXs2FGtWrWyLp8zZ44iIiI0fvx4m7mCg4PVr18/5ebmasiQIcrLy7O2vfjii7pw4YIGDhyomjVrWpf/8MMP+vzzz5Wbm2szl2EY+uyzz/TWW2/JZDJp0KBBNu0jRoyQm5ub3nvvPSUkJFiX//jjj3r99dfl7u6uESNG2Izp3bu36tWrp3379untt9+2Lr906ZKGDh0qSRozZoxjOw4AAAAAysglLyuVpFdffVVfffWVtm3bpgYNGqhDhw46efKkduzYocDAQM2fP9+mf0pKio4cOaKzZ88WmWvmzJlKSEjQsmXLFBERocjISB08eFAHDhxQgwYNFBsba9P/3Llz6tu3rywWi1q1aqVatWopLS1Nhw4dUlJSksxms2JjY3X33XfbjGvUqJGmT5+u0aNHq0OHDrr//vvl4eGhjRs3KisrS7Nnz9Ydd9xhM6ZKlSpatGiRunTpotGjRysuLk5hYWHaunWrzp49qz59+hQJoQAAAABQ3lzyzKEkeXl5afPmzXrttdfk7e2tlStX6uTJk4qOjlZiYqLCw8MdnisgIEA7d+7U888/r9zcXK1YsULp6ekaPny4du7cKX9/f5v+TZo00eTJk9WqVSsdPXpUy5Yt0+bNm1WlShUNHjxY3333nUaOHGl3XaNGjdKqVavUtm1bbd26VV9//bUiIyO1evVqPf/883bHtGvXTt99950effRRHTt2TKtWrZK/v79iY2MVFxcnk8nk8LYCAAAAQFmYDMMwnF0EyldGRoYsFovS09NtHn5TXhITE9WqVSvtniq1rFfu01eKxJ+kVq9Ku3fvVsuWLZ1dTqkVHgM9/fSN+0CaM2ek//u/G/YYAAAA3AhKkw1c9swhAAAAAKDyEA4BAAAAAIRDAAAAAADhEAAAAAAgwiEAAAAAQIRDAAAAAIAIhwAAAAAASe7OLgAAblTJyclKSUlxdhnXJSAgQKGhoc4uAwAAuADCIQCUQXJyshpFRCg7K8vZpVwXr6pVdeTwYQIiAAAgHAJAWaSkpFwNhlFRUkCAs8spm5QUZS9frpSUFMIhAAAgHALAdQkIkGrXdnYVAAAA140H0gAAAAAACIcAAAAAAMIhAAAAAEDccwgAuIHd6K8T4VUiAABXQjgEANyQbobXifAqEQCAKyEcAgBuSDf860R4lQgAwMUQDgEANzZeJwIAQLnggTQAAAAAAMIhAAAAAIBwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMnd2QUAAIAbV3JyslJSUpxdRpkFBAQoNDTU2WUAgEsgHAIAgDJJTk5Wo4gIZWdlObuUMvOqWlVHDh8mIAKACIcAAKCMUlJSrgbDqCgpIMDZ5ZReSoqyly9XSkoK4RAARDgEAADXKyBAql3b2VUAAK4T4RAAAOAGxn2fAMoL4RAAAOAGxX2fAMoT4RAAAOAGxX2fAMoT4RAAAOBGx32fAMqB2dkFAAAAAACcj3AIAAAAACAcAgAAAAAIhwAAAAAAEQ4BAAAAACIcAgAAAABEOAQAAAAAiHAIAAAAABDhEAAAAAAgwiEAAAAAQC4eDrOysjRhwgQ1bNhQXl5eql27tgYPHqyff/651HOlpqZqxIgRCgsLk6enp8LCwjRy5EilpaUV6XvlyhVt3LhRw4YN05133ilvb29VrVpVjRs31gsvvKALFy7YXUfdunVlMpmu+QkPD7cZk5SUdM3+tWrVKvW2AgAAAEBpuTu7gOJkZ2erc+fOSkhIUHBwsB555BElJSVpwYIFWrNmjRISEooEreKkpKSobdu2OnbsmMLDw9WrVy8dPHhQs2bN0pdffqnt27fL39/f2n/Lli3q2rWrpKuB78EHH9SVK1e0fft2zZgxQ4sXL1Z8fLwaNWpks54+ffooJSXFbg1btmxRUlKSOnToYLc9KChI3bp1K7LcYrE4tI0AAAAAcD1cNhxOnTpVCQkJatu2rTZu3CgfHx9JUmxsrMaMGaPBgwcrPj7eoblGjhypY8eOKSoqSnFxcXJ3v7rZw4cP1zvvvKPRo0dr4cKF1v5ms1mPP/64xowZo9atW1uXp6enq2/fvtqwYYOefPJJbdu2zWY9//jHP+yuv6CgQHXq1JEk/c///I/dPhERETY1AAAAAEBlcsnLSnNzczVnzhxJ0rvvvmsNhpI0evRoNWvWTFu2bNHu3btLnOvs2bP69NNP5eHhoblz51qDoSRNnz5dgYGBWrRokc6fP29d3rlzZ8XFxdkEQ+nqWbz58+dLkrZv366TJ086tD1ff/21zp49q9tvv12dO3d2aAwAAAAAVCaXDIfffvut0tPTVb9+fd11111F2vv06SNJWr16dYlzrV+/XgUFBerQoYOCgoJs2jw9PdWjRw/l5+dr3bp1DtVWu3ZtBQYGSpLOnDnj0JhFixZJkvr37y+z2SV3OQAAAIBbnEteVrpv3z5JUsuWLe22Fy7fv39/ucw1f/58h+aSpLS0NKWmpkqSQw+LycrK0ooVKyRJAwcOLLbfuXPnNHHiRJ09e1YWi0Vt2rRRz5495eHh4VBdAAAAAHA9XDIcJicnS5L1Pr0/KlzuyGWd5TmXdPUy17y8PDVt2lT16tUrsf/KlSt18eJFNWvWTM2aNSu23+HDhzV58mSbZaGhoVqyZEmRy1v/KCcnRzk5OdavMzIySqwLAAAAAH7PJa9xzMzMlCR5e3vbba9WrZok6eLFi5U61549ezR16lRJ0ptvvllif0n6+OOPJRX/IBpPT08999xzio+P17lz55SRkaHt27ere/fuSk5OVteuXUsMrtOmTZPFYrF+QkJCHKoNAAAAAAq5ZDh0RefOnVNUVJSys7M1cuRIPfjggyWOOX/+vDZt2iSz2az+/fvb7RMcHKy5c+eqY8eOqlmzpnx9fXXPPfdo7dq16t+/v9LS0vT3v//9musZP3680tPTrZ9Tp06VaRsBAAAA3LpcMhwWPp308uXLdtsvXbokSfL19a2UuS5evKju3bsrKSlJjz32mGbMmFHieiXps88+U15enu677z7Vrl3boTG/9/LLL0uSNmzYcM1+np6e8vPzs/kAAAAAQGm4ZDgMDQ2VJJ0+fdpue+HysLCwCp8rOztbPXv2VGJioh544AEtWrTI4SeOFj6l9FoPormWBg0aSLr6Og4AAAAAqEguGQ6bN28uSUpMTLTbXrj8Wg94KY+58vLy1LdvX8XHx6tdu3Zavny5w08PPXr0qL777jt5e3srKirKoTF/VPhU1ML7IgEAAACgorhkOGzfvr0sFouOHz+uvXv3FmlfunSpJKlHjx4lztWtWzeZzWZt3brV5kX30tWnfK5evVpubm7q3r27TZthGHryySe1atUqtWjRQmvXri1VSCs8a9i7d2/rpa2ltWzZMknFv4YDAAAAAMqLS4ZDDw8PDRs2TJI0dOhQ632BkhQbG6v9+/erY8eOatWqlXX5nDlzFBERofHjx9vMFRwcrH79+ik3N1dDhgxRXl6ete3FF1/UhQsXNHDgQNWsWdNm3MiRI7Vo0SJFRERo48aNql69eqm2YfHixZKKf0ppoXnz5unw4cNFli9fvlzjxo2TdHUfAAAAAEBFcsn3HErSq6++qq+++krbtm1TgwYN1KFDB508eVI7duxQYGCg5s+fb9M/JSVFR44csXt/3syZM5WQkKBly5YpIiJCkZGROnjwoA4cOKAGDRooNjbWpv8XX3yh2bNnS5JCQkI0duxYuzWOGzdOERERRZZv27ZNJ06cUK1atdSlS5drbufixYv19NNPq1mzZmrYsKEKCgp06NAha2AcO3asevfufc05AAAAAOB6uWw49PLy0ubNmzVt2jR98sknWrlypfz9/RUdHa0pU6YU+1J7ewICArRz507FxMRo5cqVWrFihYKCgjR8+HBNmjSpyFnBwnv9JGnTpk3FzhsdHW03HBZeUtqvXz+5ublds7a//e1vCgwM1N69e7Vx40ZlZWUpMDBQUVFReu6550oMlwAAAABQHlw2HEpS1apVNXnyZE2ePLnEvjExMYqJiSm23d/fX7Nnz7aeEbyW6OhoRUdHl6JSW3PnztXcuXMd6jtgwAANGDCgzOsCAAAAgPLgkvccAgAAAAAqF+EQAAAAAEA4BAAAAAAQDgEAAAAAcvEH0uD69O3bV1WqVCn3edPT0yVJoxZJFu9yn75SpF+++t9Ro0bJYrE4t5gyKDwGWr9e8vJybjFllZ0tiWPgVBwD57rB97/EMXAFHAMAJbly5YrDfU2GYRgVWAucICMjQxaLRenp6fLz8yv3+RMTE9WqVSvtniq1rFfu01eKxJ+kVq9Ku3fvVsuWLZ1dTqkVHgM9/bRUu7azyymbM2ek//s/joEzcQyc6wbf/xLHwBVwDACUpDTZgMtKAQAAAACEQwAAAAAA4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAAJLk7uwAAAADgRpacnKyUlBRnl1FmAQEBCg0NdXYZcAGEQwAAAKCMkpOT1ahxY2VfvuzsUsrMy9tbR374gYAIwiEAAABQVikpKcq+fFmNZ74u7zvCnV1OqV0+dkI/jHxFKSkphEMQDgEAAIDr5X1HuHzvbOzsMoDrwgNpAAAAAACEQwAAAAAA4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACAXDwcZmVlacKECWrYsKG8vLxUu3ZtDR48WD///HOp50pNTdWIESMUFhYmT09PhYWFaeTIkUpLSyvS98qVK9q4caOGDRumO++8U97e3qpataoaN26sF154QRcuXLC7joULF8pkMhX7eeKJJ4qt7+DBg3rssccUGBioqlWrqmnTppo5c6YKCgpKva0AAAAAUFruzi6gONnZ2ercubMSEhIUHBysRx55RElJSVqwYIHWrFmjhIQEhYeHOzRXSkqK2rZtq2PHjik8PFy9evXSwYMHNWvWLH355Zfavn27/P39rf23bNmirl27SpLq1q2rBx98UFeuXNH27ds1Y8YMLV68WPHx8WrUqJHd9TVv3lwtWrQosrxNmzZ2+2/fvl333XefsrKy1Lp1a9WtW1f//ve/NWrUKG3btk1xcXEymUwObSsAAAAAlIXLhsOpU6cqISFBbdu21caNG+Xj4yNJio2N1ZgxYzR48GDFx8c7NNfIkSN17NgxRUVFKS4uTu7uVzd7+PDheueddzR69GgtXLjQ2t9sNuvxxx/XmDFj1Lp1a+vy9PR09e3bVxs2bNCTTz6pbdu22V1fr169FBMT41BtV65c0YABA5SVlaXY2FiNGjVKkpSZmakHHnhAS5YsUffu3RUdHe3QfAAAAABQFi55WWlubq7mzJkjSXr33XetwVCSRo8erWbNmmnLli3avXt3iXOdPXtWn376qTw8PDR37lxrMJSk6dOnKzAwUIsWLdL58+etyzt37qy4uDibYChJFotF8+fPl3T1bN/JkyevazslacWKFfrpp5/UvHlzazCUJB8fH+s+mDFjxnWvBwAAAACuxSXD4bfffqv09HTVr19fd911V5H2Pn36SJJWr15d4lzr169XQUGBOnTooKCgIJs2T09P9ejRQ/n5+Vq3bp1DtdWuXVuBgYGSpDNnzjg05lrWrl0r6b/b9HstW7ZUeHi4Dhw4oKSkpOteFwAAAAAUxyXD4b59+yRdDUf2FC7fv39/pc4lSWlpaUpNTZUk1apVy26f3bt3a+zYsXrmmWc0ceJEbdmypdLqAwAAAICycMl7DpOTkyVJderUsdteuNyRyzrLcy7p6mWueXl5atq0qerVq2e3z5o1a7RmzRrr15MnT1bHjh0VFxdX5OxledSXk5OjnJwc69cZGRkObQsAAAAAFHLJM4eZmZmSJG9vb7vt1apVkyRdvHixUufas2ePpk6dKkl68803i7QHBwcrJiZGe/bsUXp6un755RetWrVKERER2rJlix5++GHl5+eXe33Tpk2TxWKxfkJCQkrcFgAAAAD4PZcMh67o3LlzioqKUnZ2tkaOHKkHH3ywSJ+uXbtq4sSJatGihfz8/BQUFKQePXrou+++U8OGDbVr1y59/vnn5V7b+PHjlZ6ebv2cOnWq3NcBAAAA4ObmkuGw8Omkly9fttt+6dIlSZKvr2+lzHXx4kV1795dSUlJeuyxx0r99FAfHx8NHz5ckrRhw4Zyr8/T01N+fn42HwAAAAAoDZcMh6GhoZKk06dP220vXB4WFlbhc2VnZ6tnz55KTEzUAw88oEWLFslsLv1ua9CggaSrr9Yoz/oAAAAAoDy4ZDhs3ry5JCkxMdFue+HyZs2aVehceXl56tu3r+Lj49WuXTstX75cHh4eJW+AHYVPOC28h7A86gMAAACA8uKS4bB9+/ayWCw6fvy49u7dW6R96dKlkqQePXqUOFe3bt1kNpu1detWmxfdS1ef8rl69Wq5ubmpe/fuNm2GYejJJ5/UqlWr1KJFC61du7ZIsCuNZcuWSSr6yoqHHnrIZpt+b8+ePTpx4oTuvPNO1a1bt8zrBgAAAICSuGQ49PDw0LBhwyRJQ4cOtd53J0mxsbHav3+/OnbsqFatWlmXz5kzRxERERo/frzNXMHBwerXr59yc3M1ZMgQ5eXlWdtefPFFXbhwQQMHDlTNmjVtxo0cOVKLFi1SRESENm7cqOrVq5dY97Rp05SSkmKz7MqVK5o0aZKWLFmiqlWr6sknn7Rp7927t+rVq6d9+/bp7bffti6/dOmShg4dKkkaM2ZMiesGAAAAgOvhku85lKRXX31VX331lbZt26YGDRqoQ4cOOnnypHbs2KHAwEDNnz/fpn9KSoqOHDlS5J4+SZo5c6YSEhK0bNkyRUREKDIyUgcPHtSBAwfUoEEDxcbG2vT/4osvNHv2bElSSEiIxo4da7fGcePGKSIiwvr1yy+/rEmTJikyMlIhISHKyMjQ3r17debMGXl5eWnRokW6/fbbbeaoUqWKFi1apC5dumj06NGKi4tTWFiYtm7dqrNnz6pPnz4aNGhQmfYhAAAAADjKZcOhl5eXNm/erGnTpumTTz7RypUr5e/vr+joaE2ZMqXYl8bbExAQoJ07dyomJkYrV67UihUrFBQUpOHDh2vSpElFzgoW3h8oSZs2bSp23ujoaJtwOGHCBG3fvl1HjhxRYmKiDMNQnTp19Mwzz2jUqFFq1KiR3XnatWun7777ThMnTlR8fLz27dun+vXra+zYsRoxYoRMJpPD2woAAAAAZeGy4VCSqlatqsmTJ2vy5Mkl9o2JiVFMTEyx7f7+/po9e7b1jOC1REdHKzo6uhSVXjVp0qRSjynUpEkTu/cdAgAAAEBlcMl7DgEAAAAAlYtwCAAAAAAgHAIAAAAACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAMjFw2FWVpYmTJighg0bysvLS7Vr19bgwYP1888/l3qu1NRUjRgxQmFhYfL09FRYWJhGjhyptLS0In2vXLmijRs3atiwYbrzzjvl7e2tqlWrqnHjxnrhhRd04cIFu+vYvXu3YmJi1K5dO1WvXl0eHh4KCQnRwIEDtX//frtjkpKSZDKZiv3UqlWr1NsKAAAAAKXl7uwCipOdna3OnTsrISFBwcHBeuSRR5SUlKQFCxZozZo1SkhIUHh4uENzpaSkqG3btjp27JjCw8PVq1cvHTx4ULNmzdKXX36p7du3y9/f39p/y5Yt6tq1qySpbt26evDBB3XlyhVt375dM2bM0OLFixUfH69GjRpZx+Tl5SkyMlKS5O/vr3bt2qlatWras2ePFi9erCVLlmjx4sXq06eP3RqDgoLUrVu3IsstFovD+wwAAAAAysplw+HUqVOVkJCgtm3bauPGjfLx8ZEkxcbGasyYMRo8eLDi4+MdmmvkyJE6duyYoqKiFBcXJ3f3q5s9fPhwvfPOOxo9erQWLlxo7W82m/X4449rzJgxat26tXV5enq6+vbtqw0bNujJJ5/Utm3bbNZz991365VXXtHDDz8sNzc3SVJBQYEmTJig119/XYMHD1anTp0UEBBQpMaIiAibGgAAAACgMrnkZaW5ubmaM2eOJOndd9+1BkNJGj16tJo1a6YtW7Zo9+7dJc519uxZffrpp/Lw8NDcuXOtwVCSpk+frsDAQC1atEjnz5+3Lu/cubPi4uJsgqF09Sze/PnzJUnbt2/XyZMnrW3u7u7auXOnHnnkEWswlK4GzSlTpqhRo0a6ePGi1q5dW8q9AQAAAAAVzyXD4bfffqv09HTVr19fd911V5H2wkszV69eXeJc69evV0FBgTp06KCgoCCbNk9PT/Xo0UP5+flat26dQ7XVrl1bgYGBkqQzZ844NMZkMqlZs2alGgMAAAAAlcklLyvdt2+fJKlly5Z22wuXF/eQl9LONX/+fIfmkqS0tDSlpqZKUqkeFnPixIlrjjl37pwmTpyos2fPymKxqE2bNurZs6c8PDwcXgcAAAAAlJVLhsPk5GRJUp06dey2Fy7//WWdlTGXdPUy17y8PDVt2lT16tVzaMx//vMf7d69Wx4eHnYfOiNJhw8f1uTJk22WhYaGasmSJUUub/2jnJwc5eTkWL/OyMhwqC4AAAAAKFShl5UOHTpU9913X6nHZWZmSpK8vb3ttlerVk2SdPHixUqda8+ePZo6daok6c033yyxv3Q1qA0ePFiSNGrUKAUHB9u0e3p66rnnnlN8fLzOnTunjIwMbd++Xd27d1dycrK6du1aYnCdNm2aLBaL9RMSEuJQbQAAAABQqELDYWJiosNPFHV1586dU1RUlLKzszVy5Eg9+OCDJY7Jz8/XgAED9OOPP6p169ZFzgxKUnBwsObOnauOHTuqZs2a8vX11T333KO1a9eqf//+SktL09///vdrrmf8+PFKT0+3fk6dOlXm7QQAAABwa3LJB9IUPp308uXLdtsvXbokSfL19a2UuS5evKju3bsrKSlJjz32mGbMmFHieiXpueee05o1a9SoUSOtXbu21PcPvvzyy5KkDRs2XLOfp6en/Pz8bD4AAAAAUBoO3XP40UcflWnyCxculGlcaGioJOn06dN22wuXh4WFVfhc2dnZ6tmzpxITE/XAAw9o0aJFMptLztTjxo3TvHnzFBISok2bNtl9t2FJGjRoIOnq6zgAAAAAoCI5FA6jo6NlMplKPblhGGUa17x5c0lXL0u1p3B54eshKmquvLw89e3bV/Hx8WrXrp2WL1/u0Nm/t956S2+++aZq1qypTZs2lfkewMKnohbeFwkAAAAAFcWhcOjm5qaCggI99dRTDp01K7RixYoynT1s3769LBaLjh8/rr1796pFixY27UuXLpUk9ejRo8S5unXrJrPZrK1bt+r8+fOqWbOmtS0nJ0erV6+Wm5ubunfvbjPOMAw9+eSTWrVqlVq0aKG1a9c6FNLmzZunl156SdWrV9eGDRvUqFEjB7bYvmXLlkkq/jUcAAAAAFBeHAqHd955p/bv368RI0boT3/6k8OT7927t0zh0MPDQ8OGDdPrr7+uoUOHauPGjdZgFhsbq/3796tjx45q1aqVdcycOXM0Z84c9e7dW9OmTbMuDw4OVr9+/bR48WINGTJEn332mdzdr272iy++qAsXLmjQoEE2oVGSRo4cqUWLFikiIkIbN25U9erVS6x76dKlevbZZ+Xj46N169YVCbX2zJs3Tx06dFBERITN8uXLl2vcuHGSrj71FQAAAAAqkkPhsHXr1tq/f7927dpVqnB4PV599VV99dVX2rZtmxo0aKAOHTro5MmT2rFjhwIDAzV//nyb/ikpKTpy5Ijd+/NmzpyphIQELVu2TBEREYqMjNTBgwd14MABNWjQQLGxsTb9v/jiC82ePVuSFBISorFjx9qtcdy4cdZQd/78eQ0YMEAFBQWqV6+e3n//fb3//vtFxvTq1Uu9evWyfr148WI9/fTTatasmRo2bKiCggIdOnRIhw8fliSNHTtWvXv3dnzHAQAAAEAZOBwO582bp++++07/+7//6/DkhmHIMIwyFebl5aXNmzdr2rRp+uSTT7Ry5Ur5+/srOjpaU6ZMKfal9vYEBARo586diomJ0cqVK7VixQoFBQVp+PDhmjRpUpGzgoX3+knSpk2bip03OjraGg4vX76s3NxcSdL333+v77//3u6YunXr2oTDv/3tbwoMDNTevXu1ceNGZWVlKTAwUFFRUXruuefUpUsXh7cTAAAAAMrKoXDYu3dvBQQEKCgoqFSTJyQklKmoQlWrVtXkyZPtvh/wj2JiYhQTE1Nsu7+/v2bPnm09I3gt0dHRio6OLkWlV0NfWYLwgAEDNGDAgFKPAwAAAIDy5NDTZfr06aMjR47onnvukST9+9//1tGjRyu0MAAAAABA5XEoHMbHx1vvgZOkTp066c0336ywogAAAAAAlcuhcOjh4aFLly7ZLCvrvYQAAAAAANfj0D2Hd9xxh77++mtt2bJF9erVkyRlZmYqOTnZoZWEhoaWvUIAAAAAQIVzKBw+/fTTGjlypDp37mxdtmzZMutL2q/FZDIpLy+v7BUCAAAAACqcQ+Fw+PDhqlOnjr744gudPn1amzdvVs2aNYu8uB0AAAAAcGNyKBxKUlRUlKKioiRJZrNZDz74YJEX0QMAAAAAbkwOh8Pfmzhxou66667yrgUAAAAA4CRlDocAAAAAgJuHQ6+yAAAAAADc3AiHAAAAAADCIQAAAACAcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABAhEMAAAAAgAiHAAAAAAARDgEAAAAAIhwCAAAAAEQ4BAAAAACIcAgAAAAAEOEQAAAAACDCIQAAAABALh4Os7KyNGHCBDVs2FBeXl6qXbu2Bg8erJ9//rnUc6WmpmrEiBEKCwuTp6enwsLCNHLkSKWlpRXpe+XKFW3cuFHDhg3TnXfeKW9vb1WtWlWNGzfWCy+8oAsXLlxzXatXr1bHjh3l5+cnPz8/derUSWvXrr3mmIMHD+qxxx5TYGCgqlatqqZNm2rmzJkqKCgo9bYCAAAAQGm5bDjMzs5W586dNWXKFGVmZuqRRx5RSEiIFixYoLvuuksnTpxweK6UlBS1bt1as2fPlru7u3r16iVfX1/NmjVLbdq00W+//WbTf8uWLerataveffddXbp0SQ8++KDuv/9+paSkaMaMGWrWrJmOHDlid10zZ85Uz549tW3bNrVv316dO3fWzp079fDDD2vOnDl2x2zfvl133323li5dqvDwcPXs2VMpKSkaNWqUnnjiCRmG4fiOAwAAAIAycNlwOHXqVCUkJKht27Y6evSo4uLitGPHDs2YMUMXLlzQ4MGDHZ5r5MiROnbsmKKionTkyBHFxcXpwIEDev7553X06FGNHj3apr/ZbNbjjz+uHTt26KefftKyZcu0atUqHTt2TF27dtUvv/yiJ598ssh6jhw5ohdeeEGenp7697//rS+//FIrV67U3r17ddttt2nUqFE6duyYzZgrV65owIABysrKUmxsrHbs2KG4uDj9+OOPatu2rZYsWaIPP/ywbDsRAAAAABzkkuEwNzfXepbt3XfflY+Pj7Vt9OjRatasmbZs2aLdu3eXONfZs2f16aefysPDQ3PnzpW7u7u1bfr06QoMDNSiRYt0/vx56/LOnTsrLi5OrVu3tpnLYrFo/vz5kq6e7Tt58qRN+6xZs5Sfn69nn31Wbdu2tS5v2LChXnnlFeXl5WnWrFk2Y1asWKGffvpJzZs316hRo6zLfXx8rPtgxowZJW4nAAAAAFwPlwyH3377rdLT01W/fn3dddddRdr79Okj6eq9fSVZv369CgoK1KFDBwUFBdm0eXp6qkePHsrPz9e6descqq127doKDAyUJJ05c8amrfC+wsL6HKn5WmNatmyp8PBwHThwQElJSQ7VBwAAAABl4ZLhcN++fZKuhiN7Cpfv37+/UueSpLS0NKWmpkqSatWqZbM8OTlZkuwG2pCQEAUEBOjkyZPKyMiosPoAAAAAoCxcMhwWhqw6derYbS9c/sfLOit6LunqZa55eXlq2rSp6tWrV2Q9NWrUULVq1RxeV3nXBwAAAABl4V5yl8qXmZkpSfL29rbbXhi+Ll68WKlz7dmzR1OnTpUkvfnmm6VaT3HrKo/6cnJylJOTY/3692cmAQAAAMARLnnm0BWdO3dOUVFRys7O1siRI/Xggw86uySradOmyWKxWD8hISHOLgkAAADADcYlw2Hh00kvX75st/3SpUuSJF9f30qZ6+LFi+revbuSkpL02GOP2X16aEnrKW5d5VHf+PHjlZ6ebv2cOnWq2L4AAAAAYI9LhsPQ0FBJ0unTp+22Fy4PCwur8Lmys7PVs2dPJSYm6oEHHtCiRYtkNhfdbYXrSU1NtQY6R9ZVHtvq6ekpPz8/mw8AAAAAlIZLhsPmzZtLkhITE+22Fy5v1qxZhc6Vl5envn37Kj4+Xu3atdPy5cvl4eFhd57q1atbg96ePXuKtJ86dUopKSkKCwuzCW/lua0AAAAAUFYuGQ7bt28vi8Wi48ePa+/evUXaly5dKknq0aNHiXN169ZNZrNZW7dutXnRvXT1QS6rV6+Wm5ubunfvbtNmGIaefPJJrVq1Si1atNDatWuLfQppoYceesimPkdqvtaYPXv26MSJE7rzzjtVt27da28oAAAAAFwHlwyHHh4eGjZsmCRp6NChNpdpxsbGav/+/erYsaNatWplXT5nzhxFRERo/PjxNnMFBwerX79+ys3N1ZAhQ5SXl2dte/HFF3XhwgUNHDhQNWvWtBk3cuRILVq0SBEREdq4caOqV69eYt0jRoyQm5ub3nvvPSUkJFiX//jjj3r99dfl7u6uESNG2Izp3bu36tWrp3379untt9+2Lr906ZKGDh0qSRozZkyJ6wYAAACA6+GSr7KQpFdffVVfffWVtm3bpgYNGqhDhw46efKkduzYocDAQM2fP9+mf0pKio4cOaKzZ88WmWvmzJlKSEjQsmXLFBERocjISB08eFAHDhxQgwYNFBsba9P/iy++0OzZsyVdfXn92LFj7dY4btw4RUREWL9u1KiRpk+frtGjR6tDhw66//775eHhoY0bNyorK0uzZ8/WHXfcYTNHlSpVtGjRInXp0kWjR49WXFycwsLCtHXrVp09e1Z9+vTRoEGDyrQPAQAAAMBRLhsOvby8tHnzZk2bNk2ffPKJVq5cKX9/f0VHR2vKlCnFvjTenoCAAO3cuVMxMTFauXKlVqxYoaCgIA0fPlyTJk0qclYwNTXV+v+bNm0qdt7o6GibcChJo0aN0h133KHp06dr69atkqTIyEi9+OKLevjhh+3O065dO3333XeaOHGi4uPjtW/fPtWvX19jx47ViBEjZDKZHN5WAAAAACgLlw2HklS1alVNnjxZkydPLrFvTEyMYmJiim339/fX7NmzrWcEryU6OlrR0dGlqNRWjx49HLof8veaNGli975DAAAAAKgMLnnPIQAAAACgchEOAQAAAACEQwAAAAAA4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAABy8XCYlZWlCRMmqGHDhvLy8lLt2rU1ePBg/fzzz6WeKzU1VSNGjFBYWJg8PT0VFhamkSNHKi0tzW7/I0eO6O2331a/fv1Uv359mUwmmUwmJSUlFbuOunXrWvsV9wkPD7cZk5SUdM3+tWrVKvW2AgAAAEBpuTu7gOJkZ2erc+fOSkhIUHBwsB555BElJSVpwYIFWrNmjRISEooEreKkpKSobdu2OnbsmMLDw9WrVy8dPHhQs2bN0pdffqnt27fL39/fZsw///lPzZo1q1Q19+nTRykpKXbbtmzZoqSkJHXo0MFue1BQkLp161ZkucViKVUNAAAAAFAWLhsOp06dqoSEBLVt21YbN26Uj4+PJCk2NlZjxozR4MGDFR8f79BcI0eO1LFjxxQVFaW4uDi5u1/d7OHDh+udd97R6NGjtXDhQpsxTZs21UsvvaS7775bkZGR6tq1q44cOXLN9fzjH/+wu7ygoEB16tSRJP3P//yP3T4RERFFagAAAACAyuKSl5Xm5uZqzpw5kqR3333XGgwlafTo0WrWrJm2bNmi3bt3lzjX2bNn9emnn8rDw0Nz5861BkNJmj59ugIDA7Vo0SKdP3/eZtxf//pXvfHGG3r00UcVFhZ2Xdvz9ddf6+zZs7r99tvVuXPn65oLAAAAACqCS4bDb7/9Vunp6apfv77uuuuuIu19+vSRJK1evbrEudavX6+CggJ16NBBQUFBNm2enp7q0aOH8vPztW7duvIp3o5FixZJkvr37y+z2SV3OQAAAIBbnEteVrpv3z5JUsuWLe22Fy7fv39/ucw1f/58h+Yqi6ysLK1YsUKSNHDgwGL7nTt3ThMnTtTZs2dlsVjUpk0b9ezZUx4eHhVSFwAAAAD8nkuGw+TkZEmy3qf3R4XLT548WalzlcXKlSt18eJFNWvWTM2aNSu23+HDhzV58mSbZaGhoVqyZIlat259zXXk5OQoJyfH+nVGRsb1FQ0AAADgluOS1zhmZmZKkry9ve22V6tWTZJ08eLFSp2rLD7++GNJxT+IxtPTU88995zi4+N17tw5ZWRkaPv27erevbuSk5PVtWvXEoPrtGnTZLFYrJ+QkJBy3w4AAAAANzeXDIc3i/Pnz2vTpk0ym83q37+/3T7BwcGaO3euOnbsqJo1a8rX11f33HOP1q5dq/79+ystLU1///vfr7me8ePHKz093fo5depURWwOAAAAgJuYS4bDwqeTXr582W77pUuXJEm+vr6VOldpffbZZ8rLy9N9992n2rVrl3r8yy+/LEnasGHDNft5enrKz8/P5gMAAAAApeGS4TA0NFSSdPr0abvthcsdecVEec5VWoVPKb3Wg2iupUGDBpKuvo4DAAAAACqSS4bD5s2bS5ISExPtthcuv9YDXipirtI4evSovvvuO3l7eysqKqpMc6Smpkr6732RAAAAAFBRXDIctm/fXhaLRcePH9fevXuLtC9dulSS1KNHjxLn6tatm8xms7Zu3VrkRfc5OTlavXq13Nzc1L1793KpvVDhWcPevXtbL20trWXLlkkq/jUcAAAAAFBeXDIcenh4aNiwYZKkoUOHWu8LlKTY2Fjt379fHTt2VKtWrazL58yZo4iICI0fP95mruDgYPXr10+5ubkaMmSI8vLyrG0vvviiLly4oIEDB6pmzZrlug2LFy+WVPxTSgvNmzdPhw8fLrJ8+fLlGjdunKSr+wAAAAAAKpJLvudQkl599VV99dVX2rZtmxo0aKAOHTro5MmT2rFjhwIDAzV//nyb/ikpKTpy5Ijd+/NmzpyphIQELVu2TBEREYqMjNTBgwd14MABNWjQQLGxsUXGJCYmasiQIdavC18n0bt3b3l6ekqSnnrqKT311FNFxm7btk0nTpxQrVq11KVLl2tu5+LFi/X000+rWbNmatiwoQoKCnTo0CFrYBw7dqx69+5dwt4CAAAAgOvjkmcOJcnLy0ubN2/Wa6+9Jm9vb61cuVInT55UdHS0EhMTFR4e7vBcAQEB2rlzp55//nnl5uZqxYoVSk9P1/Dhw7Vz5075+/sXGZORkaEdO3ZYP9nZ2ZKkvXv3WpcV95CbwktK+/XrJzc3t2vW9re//U19+vTR5cuXtXHjRq1evVoZGRmKiorSpk2b9NZbbzm8nQAAAABQVi575lCSqlatqsmTJ2vy5Mkl9o2JiVFMTEyx7f7+/po9e7Zmz57t0Lo7deokwzAcLdXG3LlzNXfuXIf6DhgwQAMGDCjTegAAAACgvLjsmUMAAAAAQOUhHAIAAAAACIcAAAAAAMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAABy8XCYlZWlCRMmqGHDhvLy8lLt2rU1ePBg/fzzz6WeKzU1VSNGjFBYWJg8PT0VFhamkSNHKi0tzW7/I0eO6O2331a/fv1Uv359mUwmmUwmJSUlFbuOhQsXWvvZ+zzxxBPFjj148KAee+wxBQYGqmrVqmratKlmzpypgoKCUm8rAAAAAJSWu7MLKE52drY6d+6shIQEBQcH65FHHlFSUpIWLFigNWvWKCEhQeHh4Q7NlZKSorZt2+rYsWMKDw9Xr169dPDgQc2aNUtffvmltm/fLn9/f5sx//znPzVr1qwy1d68eXO1aNGiyPI2bdrY7b99+3bdd999ysrKUuvWrVW3bl39+9//1qhRo7Rt2zbFxcXJZDKVqRYAAAAAcITLhsOpU6cqISFBbdu21caNG+Xj4yNJio2N1ZgxYzR48GDFx8c7NNfIkSN17NgxRUVFKS4uTu7uVzd7+PDheueddzR69GgtXLjQZkzTpk310ksv6e6771ZkZKS6du2qI0eOOLS+Xr16KSYmxqG+V65c0YABA5SVlaXY2FiNGjVKkpSZmakHHnhAS5YsUffu3RUdHe3QfAAAAABQFi55WWlubq7mzJkjSXr33XetwVCSRo8erWbNmmnLli3avXt3iXOdPXtWn376qTw8PDR37lxrMJSk6dOnKzAwUIsWLdL58+dtxv31r3/VG2+8oUcffVRhYWHltGVFrVixQj/99JOaN29uDYaS5OPjY90HM2bMqLD1AwAAAIDkouHw22+/VXp6uurXr6+77rqrSHufPn0kSatXry5xrvXr16ugoEAdOnRQUFCQTZunp6d69Oih/Px8rVu3rnyKL6W1a9dK+u82/V7Lli0VHh6uAwcOXPNeRwAAAAC4Xi4ZDvft2yfpajiyp3D5/v37K3UuR+3evVtjx47VM888o4kTJ2rLli0uVR8AAAAA/JFL3nOYnJwsSapTp47d9sLlJ0+erNS5HLVmzRqtWbPG+vXkyZPVsWNHxcXFFTl7WR715eTkKCcnx/p1RkZGmWsHAAAAcGtyyTOHmZmZkiRvb2+77dWqVZMkXbx4sVLnKklwcLBiYmK0Z88epaen65dfftGqVasUERGhLVu26OGHH1Z+fn651zdt2jRZLBbrJyQk5Lq3BQAAAMCtxSXD4Y2qa9eumjhxolq0aCE/Pz8FBQWpR48e+u6779SwYUPt2rVLn3/+ebmvd/z48UpPT7d+Tp06Ve7rAAAAAHBzc8lwWPh00suXL9ttv3TpkiTJ19e3UucqKx8fHw0fPlyStGHDhnKvz9PTU35+fjYfAAAAACgNlwyHoaGhkqTTp0/bbS9c7sgrJspzruvRoEEDSVdfrfF7rlIfAAAAgFubS4bD5s2bS5ISExPtthcub9asWaXOdT1SU1Ml/fcewkKuUh8AAACAW5tLhsP27dvLYrHo+PHj2rt3b5H2pUuXSpJ69OhR4lzdunWT2WzW1q1bi7zoPicnR6tXr5abm5u6d+9eLrUXZ9myZZKKvrLioYcekvTfbfq9PXv26MSJE7rzzjtVt27dCq0PAAAAwK3NJcOhh4eHhg0bJkkaOnSo9b47SYqNjdX+/fvVsWNHtWrVyrp8zpw5ioiI0Pjx423mCg4OVr9+/ZSbm6shQ4YoLy/P2vbiiy/qwoULGjhwoGrWrHnddU+bNk0pKSk2y65cuaJJkyZpyZIlqlq1qp588kmb9t69e6tevXrat2+f3n77bevyS5cuaejQoZKkMWPGXHdtAAAAAHAtLvmeQ0l69dVX9dVXX2nbtm1q0KCBOnTooJMnT2rHjh0KDAzU/PnzbfqnpKToyJEjRe7pk6SZM2cqISFBy5YtU0REhCIjI3Xw4EEdOHBADRo0UGxsbJExiYmJGjJkiPXrwvcM9u7dW56enpKkp556Sk899ZS1z8svv6xJkyYpMjJSISEhysjI0N69e3XmzBl5eXlp0aJFuv32223WU6VKFS1atEhdunTR6NGjFRcXp7CwMG3dulVnz55Vnz59NGjQoLLvSAAAAABwgEueOZQkLy8vbd68Wa+99pq8vb21cuVKnTx5UtHR0UpMTFR4eLjDcwUEBGjnzp16/vnnlZubqxUrVig9PV3Dhw/Xzp075e/vX2RMRkaGduzYYf1kZ2dLkvbu3Wtd9seHyEyYMEF/+ctfdOrUKX3xxRf65ptv5O3trWeeeUZ79+5VVFSU3fratWun7777To8++qiOHTumVatWyd/fX7GxsYqLi5PJZCrFngMAAACA0nPZM4eSVLVqVU2ePFmTJ08usW9MTIxiYmKKbff399fs2bM1e/Zsh9bdqVMnGYbhaKmSpEmTJpWq/+81adLE7n2HAAAAAFAZXPbMIQAAAACg8hAOAQAAAACEQwAAAAAA4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAACQ5O7sAgAAAACgrJKTk5WSkuLsMq5LQECAQkNDnV0G4RAAAADAjSk5OVmNGjdW9uXLzi7lunh5e+vIDz84PSASDgEAAADckFJSUpR9+bIaz3xd3neEO7ucMrl87IR+GPmKUlJSCIcAAAAAcD287wiX752NnV3GDY8H0gAAAAAACIcAAAAAAMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAIhwCAAAAAAQ4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQAAAAAiHAIAAAAARDgEAAAAAMjFw2FWVpYmTJighg0bysvLS7Vr19bgwYP1888/l3qu1NRUjRgxQmFhYfL09FRYWJhGjhyptLQ0u/2PHDmit99+W/369VP9+vVlMplkMpmUlJRU7Dp2796tmJgYtWvXTtWrV5eHh4dCQkI0cOBA7d+/3+6YpKQk69z2PrVq1Sr1tgIAAABAabk7u4DiZGdnq3PnzkpISFBwcLAeeeQRJSUlacGCBVqzZo0SEhIUHh7u0FwpKSlq27atjh07pvDwcPXq1UsHDx7UrFmz9OWXX2r79u3y9/e3GfPPf/5Ts2bNcrjevLw8RUZGSpL8/f3Vrl07VatWTXv27NHixYu1ZMkSLV68WH369LE7PigoSN26dSuy3GKxOFwDAAAAAJSVy4bDqVOnKiEhQW3bttXGjRvl4+MjSYqNjdWYMWM0ePBgxcfHOzTXyJEjdezYMUVFRSkuLk7u7lc3e/jw4XrnnXc0evRoLVy40GZM06ZN9dJLL+nuu+9WZGSkunbtqiNHjlxzPXfffbdeeeUVPfzww3Jzc5MkFRQUaMKECXr99dc1ePBgderUSQEBAUXGRkREFKkBAAAAACqLS15Wmpubqzlz5kiS3n33XWswlKTRo0erWbNm2rJli3bv3l3iXGfPntWnn34qDw8PzZ071xoMJWn69OkKDAzUokWLdP78eZtxf/3rX/XGG2/o0UcfVVhYWInrcXd3186dO/XII49Yg6Ekmc1mTZkyRY0aNdLFixe1du3aEucCAAAAgMrmkuHw22+/VXp6uurXr6+77rqrSHvhpZmrV68uca7169eroKBAHTp0UFBQkE2bp6enevToofz8fK1bt658irfDZDKpWbNmkqQzZ85U2HoAAAAAoKxc8rLSffv2SZJatmxpt71weXEPeSntXPPnz3dorutx4sQJSSr2ATPnzp3TxIkTdfbsWVksFrVp00Y9e/aUh4dHhdYFAAAAAJKLhsPk5GRJUp06dey2Fy4/efJkpc5VVv/5z3+0e/dueXh42H3ojCQdPnxYkydPtlkWGhqqJUuWqHXr1hVWGwAAAABILnpZaWZmpiTJ29vbbnu1atUkSRcvXqzUucoiIyNDgwcPliSNGjVKwcHBNu2enp567rnnFB8fr3PnzikjI0Pbt29X9+7dlZycrK5du5YYXHNycpSRkWHzAQAAAIDScMlweLPIz8/XgAED9OOPP6p169ZFzgxKUnBwsObOnauOHTuqZs2a8vX11T333KO1a9eqf//+SktL09///vdrrmfatGmyWCzWT0hISEVtEgAAAICblEuGw8Knk16+fNlu+6VLlyRJvr6+lTpXaT333HNas2aNGjVqpLVr15b6/sGXX35ZkrRhw4Zr9hs/frzS09Otn1OnTpW5ZgAAAAC3Jpe85zA0NFSSdPr0abvthcsdecVEec5VGuPGjdO8efMUEhKiTZs22X23YUkaNGgg6errOK7F09NTnp6eZaoTAAAAACQXPXPYvHlzSVJiYqLd9sLlha+HqKy5HPXWW2/pzTffVM2aNbVp06YyX+aZmpoq6b/3RQIAAABARXHJcNi+fXtZLBYdP35ce/fuLdK+dOlSSVKPHj1KnKtbt24ym83aunVrkRfd5+TkaPXq1XJzc1P37t3LpfZ58+bppZdeUvXq1bVhwwY1atSozHMtW7ZMUvGv4QAAAACA8uKS4dDDw0PDhg2TJA0dOtR6X6AkxcbGav/+/erYsaNatWplXT5nzhxFRERo/PjxNnMFBwerX79+ys3N1ZAhQ5SXl2dte/HFF3XhwgUNHDhQNWvWvO66ly5dqmeffVY+Pj5at26dWrRoUeKYefPm6fDhw0WWL1++XOPGjZN0dR8AAAAAQEVyyXsOJenVV1/VV199pW3btqlBgwbq0KGDTp48qR07digwMFDz58+36Z+SkqIjR47YvT9v5syZSkhI0LJlyxQREaHIyEgdPHhQBw4cUIMGDRQbG1tkTGJiooYMGWL9uvB1Er1797be3/fUU0/pqaeekiSdP39eAwYMUEFBgerVq6f3339f77//fpF5e/XqpV69elm/Xrx4sZ5++mk1a9ZMDRs2VEFBgQ4dOmQNjGPHjlXv3r1LufcAAAAAoHRcNhx6eXlp8+bNmjZtmj755BOtXLlS/v7+io6O1pQpU4p9qb09AQEB2rlzp2JiYrRy5UqtWLFCQUFBGj58uCZNmqTq1asXGZORkaEdO3YUWf77y1x//0L7y5cvKzc3V5L0/fff6/vvv7dbS926dW3C4d/+9jcFBgZq79692rhxo7KyshQYGKioqCg999xz6tKli8PbCQAAAABl5bLhUJKqVq2qyZMn230/4B/FxMQoJiam2HZ/f3/Nnj1bs2fPdmjdnTp1kmEYjpaqunXrlqp/oQEDBmjAgAGlHgcAAAAA5ckl7zkEAAAAAFQuwiEAAAAAgHAIAAAAACAcAgAAAABEOAQAAAAAiHAIAAAAABDhEAAAAAAgwiEAAAAAQJK7swtA+TMMQ5KUkZFRIfNnZmZe/W+2lHG5QlZR4TKz//9/MzMrbD9VpMJjoNxcKTvbucWUVW6uJI6BU3EMnOsG3/8Sx8AVcAycr/AY5F++rLyLmU6upvTyL1/9Ze5GPQY3+v6XKv4YFM5ZmBGuxWQ40gs3lNOnTyskJMTZZQAAAABwEadOnVKdOnWu2YdweBMqKCjQmTNn5OvrK5PJ5OxyyiQjI0MhISE6deqU/Pz8nF3OLYf973wcA+fjGDgfx8D5OAbOxzFwvhv9GBiGoYsXL6p27doym699VyGXld6EzGZzif8qcKPw8/O7IX8Ibxbsf+fjGDgfx8D5OAbOxzFwPo6B893Ix8BisTjUjwfSAAAAAAAIhwAAAAAAwiFclKenpyZOnChPT09nl3JLYv87H8fA+TgGzscxcD6OgfNxDJzvVjoGPJAGAAAAAMCZQwAAAAAA4RAAAAAAIMIhAAAAAECEQwAAAACACIcAAAAAABEOAQC3uNmzZ+uDDz5wdhkAADgdr7IAANzSqlSpou7du+uLL75wdikAADiVu7MLAArl5eUpKSlJqampMplM8vf3V926dWU2c4K7MrD/nefKlStasmSJNm/erB9++MHmGPzpT3/Svffeq0cffVTu7vyRXRFq1aolLy8vZ5cBSWfOnNGhQ4eK/AzUqlXL2aXdMk6fPq0tW7bY/bPoL3/5i2rXru3sEm9qFy5c0Lx584r9+6Bz587661//qttuu83Zpd60tm3bds2/j9u0aePsEiuWATjZ6tWrjfvvv9+oVq2aYTabbT4+Pj7Ggw8+aKxfv97ZZd602P/OtWHDBqN27dqG2Ww2TCaT3Y/ZbDZCQ0ONr7/+2tnl3pT++te/GrVr1zZycnKcXcotKS8vz3jnnXeMBg0aFPkzqPDTuHFj47333jPy8/OdXe5N6/Tp08ajjz5quLm5Wff77/8MMpvNhru7u/HEE08YZ8+edXa5N6UPPvjA8Pb2LvHvAx8fH+PDDz90drk3nX379hmtWrUq8v3/x5+De+65xzh48KCzy60wXFYKp7ly5YoGDx6sTz75RIXfhp6enqpRo4YMw1Bqaqpyc3MlSSaTSYMGDdK8efPk5ubmzLJvGux/51u/fr169Oih/Px8hYWF6bHHHlOLFi0UEBAgwzCUkpKiPXv2aOnSpUpOTpa7u7vWrVunLl26OLv0m8q5c+d09913q02bNpo9e7aCg4OdXdIt4+LFi3rkkUe0ZcsWGYYhs9ms8PBwm5+BEydOyDAMmUwm3XfffVqxYoWqVavm7NJvKj/++KM6duyoc+fOSZJatWpl98+iPXv2yDAM3X777dqyZYvCw8OdXPnN48MPP9TgwYNlGIb+/Oc/64knnrB7DD777DNt27ZNJpNJH3/8sfr37+/s0m8K3333nTp37qxLly6pWrVqevDBB+3u/w0bNujSpUvy9fVVfHy87rrrLmeXXv6cEEgBwzAMY/To0YbJZDJ8fX2N1157zTh48KBRUFBgbS8oKDC+//5745VXXjF8fHwMs9lsvPjii06s+ObC/neu7Oxso1atWobJZDJef/31a54Ryc/PNyZPnmyYTCbj9ttv5wxXOXvyySeNhx9+2DCbzUbVqlWN9u3bG/369TOefPLJIp/Bgwc7u9ybysCBA63f1//617+MixcvFumTkZFhzJs3zwgODjbMZrMRHR3thEpvbpGRkYbJZDK6du1q/Pjjj8X2O3r0qPHAAw8YJpPJuOeeeyqxwptbenq64efnZ1SpUsVYvHhxif0/+ugjw93d3ahRo4bdnxmUTl5entGgQQPDZDIZTz31lJGenl5s3/T0dOOvf/2rYTKZjIiICJvfm24WhEM4RVJSkuHm5mYEBgYahw8fLrH/Dz/8YAQEBBju7u5GcnJyJVR4c2P/O9+HH35omEwm4/nnn3d4zLBhwwyz2WwsWrSoAiu79RR3+VZxl3ShfBw8eNAwmUxGeHi4cf78+RL7nzt3zqhbt65hNpuNQ4cOVUKFt4ZNmzYZJpPJ6NKli0O/6Obn5xudO3c2zGaz8dVXX1VChTe/d9991zCZTMakSZMcHhMTE2OYzWbjvffeq8DKbg3Lli0zTCaT8cQTTzg85vHHHzfMZrPxxRdfVGBlzsGTJuAUCxculGEYmjlzpho1alRi/4iICM2cOVP5+fn68MMPK6HCmxv73/k2bNggd3d3vfrqqw6PefXVV2U2m7Vu3boKrOzWs3nzZoc/33zzjbPLvWl89NFHMplMeueddxQYGFhi/5o1a+rdd9+VYRj6+OOPK6HCW8PSpUtlMpkUGxsrk8lUYn+z2ay3335bhmFo2bJllVDhze+bb76Rh4eHRo0a5fCYUaNGqUqVKvrqq68qsLJbw+rVq2U2m/X3v//d4THTpk2TJK1cubKCqnIe7jmEU3Tt2lU7d+7Ur7/+6vDTMPPz83Xbbbfpnnvu0fr16yu4wpsb+9/5GjdurKpVqyoxMbFU41q2bKns7GwdOnSogioDKse9996rQ4cOWe9zc1TNmjXVpEkTbd68uYIqu7VERkYqNTVVx48fL9W4O+64QzVq1NB3331XQZXdOho0aKDbbrtNCQkJpRrXtm1bpaSk6Mcff6ygym4NzZo1U35+vg4ePFiqcU2aNJG7u7v27dtXQZU5B2cO4RQ//PCDWrZsWarXJLi5uSkyMpJfissB+9/5zp8/r3r16pV6XL169Ur9yzTgio4ePVqmhzm0bNmSX4bL0alTp3TnnXeWelyTJk2UnJxcARXden799VeFhISUelydOnX066+/VkBFt5azZ8+qYcOGpR7XsGFDnTlzpgIqci7CIZwiLS1NQUFBpR4XGBiotLS08i/oFsP+d76MjAz5+fmVepyvr68yMjIqoCL8+uuvmjVrlgYMGKCuXbvqrbfesrYdPHhQq1at0uXLl51Y4c0lPT1dAQEBpR5322238edQOUpPT1f16tVLPc5isSg9Pb38C7oFZWRkyNfXt9TjfHx8dPHixQqo6NaSnp4ui8VS6nF+fn435d/HvFEZTpGZmVmml057eXnp0qVLFVDRrYX973z5+fkO3d/zRyaTSQUFBRVQ0a1tyZIleuqpp5SZmWl9bcLtt99ubf/555/Vu3dvffjhhxo4cKATK715XL58WR4eHqUe5+HhoaysrAqo6NaUm5tbplcUubm56cqVKxVQ0a3nev5M5++D65eXl1eqK6kKmc1m5eXlVUBFzkU4BAAnyczMLPVlWZmZmRVUza1r+/bt6t+/v/z8/DRjxgz9+c9/VuvWrW363HfffbJYLFq+fDnhEEC5++WXX/Tvf/+71GOA8sYDaeAUZrNZLVq0UK9evUo1bsWKFdq/f7/y8/MrprBbBPvf+cxmc5nOHBbiGJSfHj16aOPGjdq+fbtatmwp6erxiY6O1vz58639unTpouTkZB09etRZpd5UzGaz7rjjDv35z38u1bitW7fqxIkT/AyUE7PZLB8fn1Jf4puSkqJLly5xHMpBWf8+KLzKgWNwffj72BZnDuE0e/fu1d69ex3ubzKZrH8Q4vqx/50rNDSUfekitm3bprZt21qDYXFq1aqlHTt2VFJVt4Zjx47p2LFjpR7Hz075yszMLNNVCRyH8vGXv/yFfelkZT1XdjMeN8IhnGLixInOLuGWxv53vqSkJGeXgP/v8uXLDr1nLzU1tRKquXUsWLDA2SVA0k8//eTsEm558fHxzi7hlsZ9m7a4rBQAcEu744475OHhYfOalj9eVmoYhurWrSuLxaL9+/c7q1QAACoUr7IAANzSunXrpiNHjuizzz4rts8HH3ygU6dO6aGHHqrEygDcyvLz83XhwgVduHDhpruvDa6LM4dwGb/99pv27dunlJQUSVJAQICaN28uf39/J1d2a2D/O09WVpY+/PBDffnll9q7d6/NMWjRooW6d++u//mf/5G3t7eTK705nT59Ws2aNVNmZqZGjRql3r17q127dnrsscc0btw4rVixQm+99ZYsFou+//571axZ09kl35QMw7DeC/3Hn4EWLVrclPf2uKLDhw8X+2fRgw8+qIiICCdXeHM7deqU3n33XX355Zc6ePCg9V44k8mkJk2aqHv37hoyZIhCQkKcXOnNa/369df8GejWrZuTK6xgBuBkn3/+udGmTRvDzc3NMJvNRT733HOPsWTJEmeXedNi/zvXqlWrjJo1axpms9kwmUx2P2az2QgKCjJWr17t7HJvWtu2bTOCg4Ot+/v3H5PJZAQFBRkJCQnOLvOmlJ+fb7z11lvG7bffbvfPILPZbNx+++3G9OnTjby8PGeXe9M6deqU0b17d5vv+z/+OWQ2m42HHnrISE5Odna5N6U5c+YYVatWLfHvg6pVqxpz5sxxdrk3nd27dxt33nlnsT8Dhfu/adOmxu7du51dboXhzCGcJjc3VwMGDNDy5cutT8GsW7eu9V/lz58/r6SkJGtbVFSUFi9eXKaXJqMo9r/zffLJJ/rf//1fFRQUKDIyUv3791erVq1sjkFiYqIWL16sXbt2yWw26+OPP1a/fv2cXPnN6eLFi/rXv/6lTZs2KSkpSQUFBapTp47uv/9+PfPMM7JYLM4u8aaTlpam7t27a8eOHTIMQzVq1FCLFi1sfgb27dun3377TSaTSW3atNGXX37JsShn+/fvV+fOnfXbb7/J09NTXbt2tftn0YYNG5Sdna3bbrtNmzdv1p133unkym8e06dP17hx4yRJUVFRGjBgQLF/HyxbtkyS9Oabb+qFF15wWs03k2+++UYPPfSQcnJyFBwcrMcee8zu/l+yZInOnDkjT09PrVu3Tvfee6+TK68ATgymuMU9/vjj1n+RnzNnjvHbb78V6fPbb78Z7777rhEUFGSYzWajb9++Tqj05sT+d65Tp04Z3t7ehqenp7Fw4cIS+3/00UeGp6en4e3tbZw6daoSKgQqXqdOnQyTyWQ0adLEWLNmjZGfn1+kT0FBgbF27VqjSZMmhslkMu69914nVHrzunz5shESEmKYTCYjOjraSElJKbbvr7/+agwePNgwmUxGWFiYcfny5Uqs9OZ16NAhw93d3ahRo4axefPmEvvHx8cb1atXN6pUqWIcOnSo4gu8yf3666+Gv7+/YTabjZiYGCM3N7fYvleuXDEmT55s/L/27jwup/T/H/jr3E17VKipVBTKLikqSaIi+xKJSBjrjH0bxjbG+rEby4xdDdmyRqF9YSoyllTSJltoQWk93z/8un/TqJTpPueec7+fj0ePz9z3uc7j8fqEut/nuq73JRKJ2MaNG1f52em/jopDwosrV66wDMOwHTt2ZF+9evXF8a9evWI7duzIikQiNiAggIOEwkbff/7NmzePFYlE7IEDB2p9z8GDB1mGYdj58+dLMBkh3Dhx4gTLMAxrb29fqyKjsLCQtbe3Z0UiEevr68tBQtmwadMmlmEY9vvvv6/1Pd9//z0rEonY//3vfxJMJjumTZvGikSiOm0duHjxIsswDDt9+nQJJpMNK1asYBmGYX/55Zda37N27VqWYRh25cqVEkzGD1pWSngxcuRInD17Fn/99Rfatm1bq3sePnyIDh06YMSIEfD19ZVwQmGj7z//OnTogPz8fKSnp9fpvmbNmqFBgwa4f/++hJIJX0ZGxr+639DQsJ6SyLaBAwciMDAQKSkp0NfXr9U9mZmZaNGiBfr27YsLFy5IOKFs6N69Ox48eIAXL15ASUmpVvcUFhZCV1cX7dq1Q2RkpIQTCp+pqSkYhsGjR4/qdF/r1q1RXl6OpKQkCSWTDV26dMHTp0/x/PlziES1O8ihrKwMenp60NfXR1xcnIQTcusbvgMQ2RQdHQ1LS8taFyYA0LZtW3Tt2hVRUVESTCYb6PvPv4yMDPTp06fO91laWiIwMFACiWRH8+bNv7rzJcMwKC0tredEsikuLg7W1ta1LgwBwMDAAN27d0dsbKwEk8mWxMRE2Nra1rowBABlZWXY2tri5s2bEkwmO7Kysr7qmJxOnTrh8uXLEkgkW548eYKePXvWujAEADk5OVhbWyM0NFSCyfhBxSHhRXZ2Nuzs7Op8n7GxMeLj4+s/kIyh7z//ysrK8M03df8RLCcnB1rw8e/Y2dl9VhwWFRWJP+hqamqiWbNmAD4V8X9vhqKoqMh5XqF6+/ZtnQrDCnp6eoiOjpZAItn04cOHr2rw07BhQ3z48EECiWSPnJzcVz10Kisrq1NBQ6pWVFQEZWXlOt+nrKyMoqIiCSTiFxWHhBcNGjRAbm5une/Lzc2Fqqpq/QeSMfT955++vv5XFdrx8fHQ09Or/0AyJCQkpNLrd+/ewcHBAe3bt8emTZvg7Oxc6XpgYCAWLlyIkpISBAQEcJhU2DQ0NPDq1as635ednU3dSuuRlpYWUlJS6nzfkydPoKWlJYFEsqdZs2aIiYmp831//vmn+EEW+Xo6Ojp4+PBhne9LSEiAjo6OBBLxix43EF6YmpoiMjIShYWFtb6nsLAQERERdABvPaDvP/8cHBzw+PFjXLx4sdb3XLx4EcnJyV+1HJVU76effkJKSgqCgoI+KwwBwMnJCdevX0dKSgqWLl3KQ0Jhat++PSIiIvD27dta3/P27VtERESgY8eOEkwmW6ytrREbG1unD8cPHz5ETEwMbGxsJJhMdjg5OSErKwsHDhyo9T0HDx7E06dP0a9fPwkmkw12dna4f/9+nfbPRkVF4a+//kLPnj0lmIwfVBwSXgwdOhT5+flYuHBhre9ZtGgR3r9/j2HDhkkwmWyg7z//fvjhB8jJyWHcuHEICwv74viIiAiMHz8e33zzDb7//nsOEsqOs2fPwsHBAU2aNKl2TJMmTeDg4AA/Pz8OkwnbyJEj8fHjR0ydOrXWS6WnTp2KoqIijBo1SsLpZIeXlxfKy8sxevRovHnz5ovj37x5Iz5r1cvLS9LxZMKcOXOgpKSEmTNnwtvb+4vjfXx8MH36dKioqGDWrFkcJBS2adOmgWVZuLu7Izk5+YvjHz9+jNGjR4NhGEybNo2DhBzjtVcqkVkV5yqJRCJ24sSJNZ4Tk5OTw06aNIkViUSsoaEhW1hYyGFSYaLvv3TYsGEDyzAMKycnx44aNYo9f/48m5WVxRYXF7PFxcVsVlYWe/78edbNzY2Vk5NjGYZhN27cyHdswVFSUmIHDx78xXGDBw9mlZSUJB9IRpSWlrLt27dnRSIR6+TkxCYkJFQ7NiEhgXV2dmZFIhHboUMHtrS0lMOkwldx7q2Ojg67Z88eNicn57Mxubm57N69e1k9PT0691YCvL29WZFIxIpEItbKyordvn07GxkZySYlJbFJSUlsZGQku337dtbKyko8zsfHh+/YgjFr1iyWYRhWRUWFXbRoEXv37l22vLxcfL28vJy9e/cuu3jxYlZVVZVlGIadPXs2j4klh46yILy5e/cuevXqhby8PCgpKcHZ2RkWFhbiPQzZ2dmIjY1FQEAACgsLoaGhgZCQEFpOVE/o+y8dduzYgUWLFqGoqKjaDposy0JRUREbNmzADz/8wHFC4WvTpg2ePn2Khw8fwsDAoMoxmZmZaNu2LfT19ZGQkMBxQuHKyMhAz549kZ6eDoZh0KlTpyp/Dt29excsy6J58+YICwv7qkY2pHpFRUUYPXo0zp07B4ZhwDAMjI2NK/05PHnyBOyn87ExZMgQnDhxAgoKCjwnF5Zz585h8uTJePPmTY2/Dxo3boz9+/dj8ODBHCcULpZlMW/ePGzfvl38noKCAho1agQAyMnJETefYVkWs2fPxubNm7+687VU460sJYRl2fT0dNbZ2ZllGIZlGEb8NKziq+J9Z2dnNi0tje+4gkPff+mQnp7OLliwgG3Xrl2l77tIJGLbtWvHLliwgL7/ElRxCLiRkRF75MiRSrPjHz9+ZI8ePcoaGRmxIpGI3bRpE49JhSkvL4+dMmUKq6ys/NnPoorXSkpK7JQpU9jc3Fy+4wra8ePHWUtLS/H3/Z9flpaW7PHjx/mOKWjv379nf/31V7Z///6svr4+q6yszCorK7P6+vps//792V9//ZV9//493zEFKzo6mnV1dWXV1dU/+/vfsGFD1tXVlY2KiuI7pkTRzCGRCg8fPoS/vz/u3r0r3vPQuHFjdOrUCS4uLnU6j4/UHX3/pUdJSQlycnIAfDpSQV5enudEwldeXo4xY8bA19dX/BT47zMmwKcnxa6urjh+/Di1jpeQt2/fIigoqMqfQw4ODuIn+ETyXr9+XeWfQ037cgkRkvLycqSmplb6N2BkZCQTP/+pOCSEEEIA+Pr6Yvfu3bh16xaKi4sBfFpW1K1bN0ybNg1ubm48JxS2v/76CyKRCO3bt+c7CiGEyCwqDolU8PLygq2t7Rc7nx0+fBhhYWE4ePAgR8kI4V5UVBTCw8Px7NkzAJ8O/ba1tUX37t15TiYbSktLKz0t/uYbOhKYCyKRCPb29ggKCuI7ikwbMWIEPDw84OLiQisXePLy5UskJibC1NQU3377rfj9iuN07t+/D0NDQyxfvhxWVlY8JiVCRMUhkQoikQienp5fLPomT56MgwcPoqysjKNksqWgoACxsbF4/vy5eON1VcaNG8dhKtlx7949eHp6Ij4+HgDE7f0rljp26tQJhw8fpqZARJCaNGkCZ2dn+Pj48B1FpolEIjAMA3V1dbi6umLMmDGws7PjO5ZMmTNnDnbs2IGEhASYmJgAAPLz82FqaopXr16JfzcoKysjPj4erVq14jPuf96/OZKFYZg6nU/5X0DFIZEKtS0Ox48fj+PHj4uXfJH6wbIsli9fjm3btqGgoKDGcQzDUHEuAYmJibC2tkZubi709fUxYsQING/eHACQnp6OM2fOICMjAxoaGoiKikLr1q35DSxQ0dHRCA8PR1ZWFgCgadOm6NGjB6ytrXlOJnwDBgxARkYG/vrrL76jyLSLFy/Cx8cHFy9eRGFhIRiGgb6+Ptzd3TFmzBha9suBzp07o7S0FPfu3RO/t2PHDsyePRvu7u5YsWIFLl++jLlz5+K7777D3r17eUz731fxQORrSiIhfiai4pBIhdoUhyzLomPHjnj79q34gxupH6tWrcKqVaugoKCA/v37w9jYGGpqatWOX7FiBYfpZMPw4cPh5+eHxYsXY/Xq1Z8tZSwrK8Py5cuxbt06DB06FGfOnOEpqTAlJSXBw8MDsbGxAD6ftbWwsIC3tzc9oZegmJgY2NraYu3atZg3bx7fcWTe+/fvcfbsWfj4+CAoKAhlZWVgGAYdOnTAmDFjMHr0aDpSREK0tbVhbW2N8+fPi99zdnZGcHAwnj17Jm4M1LlzZ3z8+JGO1/mXKopDc3NzuLu7Q09Pr073jxo1SkLJ+EHFIeGNg4OD+L9DQkKgo6NT7WxIaWkpUlJS8OLFC3h4eODw4cMcpZQNhoaGyM/PR3R0NNq0acN3HJnUqFEjNG3atNKT4qp06NABWVlZePv2LUfJhO/58+cwNzfHy5cvoaenB1dXVzRv3hwMwyAtLQ2nTp1CVlYWdHV1ERsbC11dXb4jC9LRo0cRGhoqXjrdv39/GBoaQklJqcrxtLydO69evcLx48fh4+MjfoAiEolgZ2dHe0QlQFlZGUOGDMHx48cBfHo4qKmpiXbt2iE6Olo8bvTo0bh06RLevXvHV1RBmD59Ok6dOoU3b95ATk4O9vb2GDNmDEaMGFHjg3LB4vLcDEL+7u9nx/z9PKvqvhQUFNhBgwax2dnZfEcXHGVlZXbQoEF8x5BpampqrLu7+xfHubu7s2pqahwkkh3Tp09nGYZh586dyxYVFX12vbi4mJ03bx7LMAw7c+ZMHhLKhqp+F/zz7NWK6yKRiO+4Mis5OZmdMmUK/TlIkLGxMWtmZiZ+HRISwjIMwy5evLjSuBEjRrCNGjXiOp4glZSUsOfPn2ddXV1ZZWVlViQSsSoqKqybmxt76dIltrS0lO+InKGZQ8Kb9PR0AJ+WbxkbG2PEiBHYtGlTlWMVFBTQpEkT6pwmIZ06dYKhoSEuXrzIdxSZZWtri9LSUty8ebPGcVZWVvjmm28QERHBUTLhMzIygpKSUo1Ls1iWRdu2bfHx40ekpqZymE52rFy5UryMtzZoeTu33r17hzNnzuCPP/5AcHCweJmp0PZbSYOxY8fi+PHj2Lx5M3r37o3p06eLu1jb2NiIx7Vv3x4ikYj26dazd+/e4fTp0/D29kZoaChYlkXjxo0xatQojBkzRvgdYnktTQn5f1auXMmeO3eO7xgya8+ePayqqiqbmprKdxSZ5e/vz4pEIvbAgQPVjjl48CArEonYy5cvc5hM+BQVFWs9a6uoqMhBIkKkQ3FxMevn58eOGDFCPJvCMAzbsmVLdsWKFWxSUhLfEQXp/v374u93xffcwcGh0pjU1FSWYRh20qRJPKWUDVlZWezGjRvZTp06iWfLu3TpwncsiaLDm4hUoCfA/Jo6dSoSEhLQo0cP/Pzzz3B0dETTpk35jiVTVFVVMW3aNEyePBmHDx/GqFGj0KxZMwCfZtlPnjyJiIgITJs2DWpqaggLC6t0P7Wa/3oNGzZEZmbmF8dlZmaiYcOGHCQihF/BwcH4448/cObMGeTl5YFlWWhpaWHSpEkYM2YMunXrxndEQWvXrh3Cw8OxY8cOvH79Gl26dMGCBQsqjQkICECnTp0wZMgQfkLKCD09PSxYsABOTk5YsmQJrl69ioyMDL5jSRQtKyVSITk5GdHR0ejRoweMjIzE79+8eROzZ88WH/i6Zs0aDBs2jMekwvXw4UOMHDnyi13PGIZBaWkpR6lkxz9baf9zeV1171egpV1fb/Dgwbh06RIuXLiA/v37VznG398fAwcOxMCBA3Hu3DluA8qgrKwsREZGVjpSpHv37vTQigP6+vp4/vw5WJaFqqoqBg8ejDFjxsDJyQlycnJ8xyOEM5mZmfjjjz/g4+ODBw8egGVZtGrVCl5eXli0aBHf8SSGikMiFaZOnYr9+/cjLS1N3Br75cuXMDExwbt378QfmuXk5HDr1i2Ym5vznFhYoqOj4eTkhA8fPoBhGDRq1KjGDl2056r+eXp61mm/1T8dOnSoHtPIlujoaNjZ2YFhGIwaNQru7u6Vzpg8fvw4Tpw4gfLycoSHhwt/vwmPsrOzMWPGDPj5+aG8vLzSNYZhMHz4cOzatQtaWlo8JRS+b775Bk5OThgzZgyGDh0KFRUVviPJnEaNGqFDhw4IDQ3lO4rMycvLw8mTJ+Hj44OIiAiUl5dDW1sbbm5uGDNmDCwtLfmOKHFUHBKp0L59eygpKYlbZAPAunXrsHTpUsydOxdr166Fv78/hg8fjtGjR8Pb25vHtMLTo0cPREZGYsWKFZgzZw4tnSMyx9vbG1OmTBEf+v13LMtCWVkZ+/btw9ixY3lKKHx5eXmwsrJCYmIilJWV4eTkVOlIkYCAABQWFsLU1BQ3b96Euro635EFKTs7m4pvnjVs2BADBw6Ej48P31FkQnFxMS5dugRvb29cuXIFRUVFUFVVxZAhQzBmzBg4OjrK1Kw5FYdEKjRu3Bj29vaVDvbu2bMn/vzzT2RnZ4tnsWxsbJCdnY3k5GS+ogqSmpoaOnbsiKioKL6jEMKbp0+f4vfff0dERASePXsG4NN+kx49emDixIkwMDDgOaGwLVmyBBs2bICrq2uVs4OvX7/GzJkzcfLkSSxevBhr167lKSkhkmVtbQ1FRUWEhITwHUUmaGpqIj8/H3JycnB0dMTYsWMxePBgmZ01p+KQSAVVVVX0798fJ0+eBAAUFRVBU1MTXbt2rfTDccyYMTh37hw+fPjAU1Jh0tXVRa9evfDHH3/wHYUQIqNat26NwsJCPH78uNpji0pKStCyZUsoKSkhMTGR44Sy5a+//sKvv/6K8PDwSns/7ezsMH36dHTs2JHnhML1xx9/YNy4cQgJCYGtrS3fcQSvYs9/hw4doK2tXad7GYZBQECAhJLxg7qVEqmgr69f6Zye69ev4+PHj3BwcKg0rrCwEKqqqlzHEzwXFxfxuVWytHRC2hQVFeHEiRMIDQ3F8+fPUVRUVOU4hmFw48YNjtMRIlnp6ekYOnRojefZysvLo3v37vDz8+MwmezZvn07FixYgLKyMvx9DuHRo0d49OgRDh48iE2bNmHWrFk8phQuW1tbTJo0Cc7Ozpg0aRIGDhwIQ0NDKCkpVTne0NCQ44TCw7LsV50X+W96BUgrmjkkUmHatGn47bff8P3336N3795YsmQJEhIScPv2bXTq1Ek8rlWrVmjYsCHi4uJ4TCs82dnZsLa2hq2tLbZv3057eXiQkZGBPn36ICUlBV/6sUwHT9evoKAg7Nq1C3PmzEGPHj2qHBMWFoZt27Zh9uzZdGyIhDRq1AgWFhYIDAyscZyTkxNiY2Px9u1bjpLJlmvXrsHZ2RkqKiqYOnUqPDw8Ku39PHbsGPbu3YuCggIEBgaid+/efEcWnL93r/5S8UEdxP+9f9v4p2fPnvWURDpQcUikQkZGBjp37ozc3FwAn57gjBo1CsePHxePefDgATp06ICZM2dix44dPCUVJi8vL+Tk5ODChQto2LAhLCws0LRpU4hEos/GMgyDAwcO8JBS2IYMGYILFy7AwcEBs2bNgrGxcY0dYyvOQCT/3qhRo+Dv749nz56hQYMGVY7Jz8+Hnp4eBg0aRMuvJcTR0RFhYWGIjIyEhYVFlWPi4uJgbW0Ne3v7LxaR5Ov069cPN27cQEhICGxsbKocU9Hh19HREf7+/hwnFD57e/s6zUgFBwdLMA2RNVQcEqnx9OlT7N+/H9nZ2ejSpQs8PT0rFSfe3t44c+YM5s2bR2vw61lVRWB1aNZKMho0aAA9PT08ePAA33xDK/65ZGRkBAMDA4SFhdU4zs7ODllZWUhJSeEomWzx9/fHgAED0KBBA/zwww9VHimyY8cO5Ofn49KlS+jXrx+/gQWqcePGMDc3x7Vr12oc5+joiNu3b+PNmzccJSNEMn799Ve4ubmhcePGfEeRClQcEkLqvKRCaEsopEHjxo3h5ORUabaccENZWRnDhg37Ytv4MWPGwM/PDwUFBRwlkz3r1q3DTz/9VO3SaoZh8PPPP2PJkiUcJ5MdysrKGDp06BdnyN3d3eHn54fCwkKOkhEiGSKRCPLy8ujXrx/Gjh2LgQMHQlFRke9YvKHikBBCpMDAgQPx4sULxMTE8B1F5jRp0gRmZma4fv16jeMcHR0RFxdHe90kLDY2Fjt37qzySJEZM2bIxCHUfDIxMUFJSQmSk5OrXcVQWlqKVq1aQV5eHklJSRwnlD2vXr2q1DG2rh01Sc1cXFxw/fp1lJaWgmEYNGzYEK6urhg7dqxM7jGv/VoyQjgQGBiIoUOHomnTplBUVMTEiRPF1wICAjB37lzxhwVChGTVqlVISEjA77//zncUmdO5c2dERkYiIyOj2jEZGRkIDw+v1CCLSIaFhQWOHDmClJQUFBYWorCwECkpKTh8+DAVhhwYPHgw0tPT4eXlJe4D8Hf5+fmYPHkyMjIyMGTIEM7zyZLdu3fD1NQUurq6sLCwgIWFBXR1ddG6dWvs2bOH73iC4e/vj6ysLGzbtg1dunRBXl4e9u/fj169eqF58+ZYtmwZHj16xHdMztDMIZEas2bNwq5du8CyLNTU1PD+/Xt4enri4MGDAD6duWRmZobNmzdjzpw5PKclpP5FRUVh7NixMDAwgJOTU7VNgQBg3LhxHKcTruPHj2PMmDFo3749Dh48+FkzlNjYWEycOBH379/H4cOH4eHhwVNSYTt69ChatmxZbROUCjdv3kRSUhL9G5CQt2/fwtLSEmlpaVBTU0Pfvn0r7f28evUq8vPzYWxsjJiYGGhqavIbWIDKy8sxcuRI+Pn5gWVZaGhooFmzZmAYBunp6cjJyQHDMBg6dChOnTolyOMU+PT48WMcO3YMf/zxB1JSUsTf3y5dumDs2LFwc3MT9uwtS4gUOHLkCMswDGtpacneuXOHZVmWZRiGnTBhQqVxhoaGbK9evXhIKHwfPnxgf/75Z9bCwoJVV1dnRSJRlV9ycnJ8RxWslStXsqqqqizDMNV+/yuukfrl6uoq/t527tyZHTFiBDtixAi2c+fO4u/7sGHD+I4paFX9zK/KpEmT6N+AhGVlZbEDBgxgGYap8mvAgAFsVlYW3zEFa8+ePSzDMGzr1q3Zixcvfnb90qVLbJs2bViRSMTu3buXh4SyIzo6mp0xYwarpaUl/h0hLy/Puri4sMePH2cLCwv5jljvaOaQSAVra2skJiYiMTERWlpaAD5tEP77zCHwaV/WvXv3kJaWxlNSYcrLy0OPHj3w4MEDyMnJQUFBAQUFBdDV1cWLFy/EzSEqjk9ITU3lM64gbdq0CYsWLYKioiJcXFy+eJTFihUrOEwnfOXl5Vi7di22bNny2VI6DQ0NzJkzBz/++CPk5OT4CSgDqvqZX5WJEyfiyJEjdLYbB1JTUz/b+2lrawsjIyOekwlbt27dxJ+Jvv322yrHvHjxAqampmjdujVu3brFcULZU1ZWhitXrsDb2xsXL17Ex48fAXzqNF7V8uv/MuqXTqTC/fv30bNnT3FhWB11dXW8fPmSo1SyY/369bh//z6mTJmCrVu3YurUqTh27BiysrLw8eNHnDx5EosXL0a3bt2om6aE7NmzBw0bNsStW7dgamrKdxyZIxKJsGzZMixatAixsbHIzMwEABgYGKBLly5QUFDgOSGp8OTJEzRs2JDvGDLByMiICkEePHz4EI6OjtUWhgCgo6OD3r17f/HIEVI/5OTkMGDAALi4uOD06dOYOXMmXr9+jXfv3vEdrd5RcUikRm3WzD979gzKysocpJEt586dg56eHnbs2AF5eflKfxZKSkoYN24cLCws0LlzZ2zevBnz58/nMa0wvXjxAo6OjlQY8kxeXh7W1tawtrbmO4pMWL16daXX8fHxn71XobS0FImJiQgLC4OjoyMX8WRGQkICsrOz0bx5cxgaGtY4Nj09Henp6dDW1kbr1q05Sih7avOZiPYacicmJgbe3t7w9fVFdnY2WJaFnJwcnJ2d+Y5W76g4JFKhVatWuH37NkpKSiAvL1/lmHfv3iE+Ph7t2rXjOJ3wpaeno0+fPuLvfUUTlL//ebRt2xY9e/bE4cOHqTiUgBYtWqC8vJzvGIRwauXKlWAYBizLgmEYxMfHIz4+vsZ7tLW1sXbtWm4CyoDXr1/D2toaKioqiIuL++J4BQUFuLm5obi4GI8fP4aGhobkQ8oYU1NTBAUF4fXr12jSpEmVY16/fo2goCB6oChBT548gbe3N3x8fPD48WPxFhtzc3N4eHhg9OjRgmxMQ8UhkQqurq5YunQpFi9ejM2bN1c5ZsmSJcjLy4ObmxvH6YRPSUkJSkpK4tcVS7ZevHgBAwMD8fuNGjVCZGQk5/lkwdSpU7Fo0SKkpaWJOwMS7hQVFeH48eMICwvD8+fPUVRUVOU4hmFw48YNjtMJ16FDhwAALMvCy8sLtra2lY4w+jsFBQXo6enByspKpg+orm+HDh1Cfn4+tm3bBl1d3S+O19XVxfr16+Hp6YlDhw5R93AJGD9+PGbNmoXevXtjy5Yt6N27d6XrwcHBmDt3LvLz8+Hp6clPSIF68+YNfH194e3tLd7LybIsDA0NMWbMGHh4eAh+xpwa0hCpUFhYCCsrK9y/fx9du3bF4MGD8eOPP6JHjx4YMmQI/Pz8EBERAXNzc0RFRdH+n3rWqVMnqKioIDo6GgCwb98+TJ8+HUeOHMHYsWMBfFrSZWpqipKSkhrPgyNfb+7cuTh16hR+/vlnODo6omnTpnxHkglZWVno3bs3kpOT8aVfiQzDoKysjKNksqVXr17o168fFi5cyHcUmWJvb4+7d+8iOzu72kPv/6msrAxaWlro1KkTgoODJZxQ9pSVlWHQoEG4cuUKGIaBlpaWuCFcenq6eFmji4sLLly4UO2RR6R2Pn78iPPnz8Pb2xuBgYEoLS0Fy7JQV1fHiBEjMHbsWPTs2ZPvmJyh4pBIjezsbHh6eop/GP7zr6ajoyO8vb2/2LSG1N3MmTNx6NAhvHjxAg0aNMCzZ89gZGQEVVVVrF27Fk2bNsWBAwdw8eJFuLu749ixY3xHFpyKLpgVy+tqwjAMdWqsR+7u7jhx4gRsbGwwd+5cmJiYoEGDBtWOr/iQRogQaGlpwcLCAleuXKnTff369UNcXBxevXoloWSyrby8HFu3bsWOHTvEDbIqGBoa4vvvv8ecOXOoMKwH6urqeP/+PViWhby8PJydneHh4YFBgwbJ5CoFKg6J1Ll79y4CAwORlpaG8vJy6Ovrw9HREV27duU7mmBFRERgwYIFWLlypXhz9ZYtWzB//nxxocKyLHR0dBAbGws9PT0+4wpS8+bN69RcgI4TqT+NGzdGgwYN8OjRo0rLqwm3Hj9+DH9/fzg4OKB9+/ZVjrl//z6CgoIwYMAAGBsbc5xQmBQUFDBy5Eh4e3vX6b6xY8fi1KlT1S7BJvUnMzOz0nEif9/uQf49kUiErl27wsPDA25ubmjcuDHfkXhFxSGRCsOGDYOuri5+/fVXvqOQv7l16xb8/PyQk5MDExMTTJgwAY0aNeI7FiH1Sk1NDf3794evry/fUWTazJkzsW/fPqSkpFTbMTM9PR0tWrTAzJkzsW3bNm4DCpS2tjYsLCzg7+9fp/tcXFwQExOD7OxsCSUjhBvJyclo1aoV3zGkBhWHRCooKSlhyJAhOHHiBN9RZFJ+fj4YhqlxKR0hQlXRqZEazfCrTZs2UFNTQ0xMTI3jLCwsUFhYiAcPHnCUTNhsbGyQmJiIV69eiZe3f0lpaan4KIuoqCgJJ5RtWVlZiIiIqDRz2L17d+jr6/OcTLYUFBQgKioKr1+/RtOmTWFtbV3rPbr/NbRQmUgFIyMjfPjwge8YMktDQwNOTk58xyD/kJOTg5ycHL5jCN6iRYsQFhaGP//8k+8oMi0zM7NWS0VbtGiBp0+fcpBINvTt2xe5ubnYtWtXre/ZtWsX8vLy0K9fPwkmk23Pnj3DsGHD0KxZM7i7u2P+/PmYP38+3N3d0bx5cwwdOpT+HdSTlJQUbNy4ERcvXqzy+unTp2FgYABnZ2eMGTMG9vb2MDY2RmhoKMdJuUHFIZEKo0ePRmhoKF68eMF3FJmkrq5O+3ekhL+/P5ydnaGmpoYmTZqgSZMmUFNTQ9++feu87IvUjrm5OebOnYvevXtjxYoViIiIQFpaGjIyMqr8IpIhJydXq/1rRUVF1DG2Hs2cORNqampYuHBhrfYdHjt2DAsXLkSDBg0wY8YMDhLKnmfPnsHa2hrnzp2DkpISBg8ejFmzZmHWrFkYMmQIlJWVcf78edjY2IhnFMnXO3HiBJYsWVLlJEVcXBzc3d2Rk5MDZWVlmJubQ1NTE0+fPsXAgQM/axYkCCwhUqC4uJh1cXFhTUxM2LNnz7LFxcV8R5IpvXr1Yrt168Z3DJk3e/ZsViQSsQzDsAzDsBoaGqympqb4tUgkYufMmcN3TMGp+N5W/G9NX3JycnzHFSwLCwu2cePG7IcPH6od8+HDB7Zx48asmZkZh8mEz8/Pj5WTk2NFIhFrY2PD7ty5k42MjGSTkpLYpKQkNjIykt25cydrY2Mj/ndw7tw5vmML1vjx41mGYdixY8eyb968+ez627dv2XHjxrEMw7Cenp48JBQWJycnVlVVlS0oKPjs2qBBg1iGYdj27duzL168YFmWZcvKytjJkyezDMOwCxYs4DquxNGeQyIVjI2NUV5eLn4CwzAMtLW1q+wcyDAMUlJSuI4oaAEBAXBxcYGvry9GjBjBdxyZ5Ovri9GjR0NbWxvLli2Dh4cH1NXVAXzaE3rs2DGsWbMGr169wvHjxzFy5EieEwuHvb19nTrF0rlukrFhwwYsWbIEbm5u+P3336GqqlrpekFBASZPnowTJ05g9erVWLp0KU9JhenKlSsYP348Xr9+Xe2/B5ZloaWlhcOHD9OSUgn69ttvoaamhqSkpGr3gZaVlcHExATv3r2j40T+pRYtWsDAwAAhISGV3i8sLISGhgZKS0tx6dKlSn/nCwoKYGBgAENDQ9y5c4fjxJJFxSGRCnU9p6e8vFxCSWRTWFgYfHx8sH//fgwYMAADBw6EoaFhtW397ezsOE4ofD179kRMTAzi4+NhYmJS5ZikpCSYmZmha9eun/0SI+S/rqCgAF27dkVCQgK0tbUxevRotGjRAsCnPUHHjx/Hq1evYGpqipiYmM+KR/LvFRQU4MiRI/D390d8fDzevHkD4NNxL2ZmZujfvz/GjRsHFRUVnpMKm6qqKoYMGQIfH58ax7m7u+P8+fPUs+FfatCgAQYPHvzZsurw8HD07NkTDRo0wJs3bz5rQOPs7Ixbt24hNzeXw7SSJ8w2O+Q/h4o9flXMnLAsi4sXL+LSpUs1jqf9PvXv7t27cHBwqLYwBAATExM4ODggIiKCw2SEcENFRQXXr1/H2LFjERQUhG3btlU6ZxUAevXqhWPHjlFhKCEqKiqYNm0apk2bxncUmdamTZta7SV8/vw5WrduzUEiYSstLa2ywIuLiwMAdOnSpcrOpFpaWigsLJR0PM5RcUgIwbhx4+q0rI7Uv+Li4lp94FVVVUVxcTEHicg/ffz4EcXFxWjYsCHfUQRLR0cH169fR0xMDK5fvy7eamBgYIA+ffrA0tKS54SESN7s2bMxfvx4BAQEwNnZucoxgYGBCAsLw6FDhzhOJzwGBgaIj49HWVlZpWW8N27cAMMwsLKyqvK+nJwcaGlpcRWTM7SslBBCpECHDh2QnZ2NlJSUaovEgoICGBsbQ0tLC/fu3eM4oXAYGxvD1dUVGzZs+Oza3Llz0bVrV7i5uX12bcKECTh27BhKS0u5iEkI70pLS/HmzZsau8gaGhpymEiYquqCvGnTJvz2228YNWoURo0ahWbNmgEA0tPTcfLkSfj6+uK7777D/Pnz6c/gX5o6dSp+//13LF26FKtXrwYAREZGwt7eHuXl5YiMjKyyQNTT04OhoSFu3rzJdWTJ4q0VDiFVuHv3Lvvdd9+xbdq0YRs2bMg2bNiQbdOmDTtlyhT27t27fMcjRGJWr17NMgzD9unTh01KSvrs+uPHj1lnZ2dWJBKxP//8Mw8JhYNhGHbChAl1vubp6cmKRCJJRiNEKly7do3t2bMnq6ioSN17OVBdp+SaOihXXKM/g38vOTmZVVFRYUUiEWtgYMCam5uz8vLyLMMwrK2tbZX3REVFsQzDsLNnz+Y4reTRslIiNbZv344FCxagrKxMvL8EAB49eoRHjx7h4MGD2LRpE2bNmsVjSkIkY/78+Th//jxu3LiBtm3bwtzcHM2bNwfw6UlxXFwcysrKYGFhgXnz5vEblhAJe/DgAZKTk/Hu3btKvw/+bty4cRynkg2XLl3C0KFDUVZWBk1NTRgZGaFBgwZ8xxI0Ozs72trBo5YtW8LPzw8eHh54+vQpnj59CgBo27ZttU2Btm3bBgDVLvv9L6NlpUQqXLt2Dc7OzlBRUcHUqVPh4eGB5s2bg2EYpKWl4dixY9i7dy8KCgoQGBiI3r178x1ZULy8vGo1TkFBQdy1bsCAAVBWVpZwMtny/v17LFmyBAcPHvxsk7uysjK8vLywbt06qKmp8ZRQGEQiETw9PXHw4ME6XZswYQKOHj1KDZkk6Pr165g+fXqNxxWxLAuGYejPQUIsLS1x+/ZtbNmyBTNnzqz2KAVChObjx4+IiIhAdnY2DAwMYGNjU203/YsXL6K8vBz9+vWDgoICx0kli4pDIhX69euHGzduICQkBDY2NlWOiY6Ohp2dHRwdHeHv789xQmGr+OH3z86AFf75PsMw0NTUxL59+zB8+HAOk8qGgoICxMXFibvV6enpoUuXLtQ+vp5QcSidYmNj0b17dzAMA1dXV9y7dw/37t3D4sWLkZKSguvXryMnJweenp4wNDTEihUr+I4sSCoqKjA3N6euyITIKFpWSqTCn3/+iZ49e1ZbGAKAtbU17O3tcevWLQ6TyYbg4GCcPXsWO3fuRPfu3TFq1CjxBvfMzEz4+voiIiICM2fOhJWVFcLCwnDgwAGMHj0a4eHh6NatG8//D4RFRUUFPXr04DsGIZxat24dSktLcfXqVTg6OmLChAm4d+8efvnlFwBAbm4upkyZgkuXLiE2NpbntMKlpqZGDU4IqUZeXh6Sk5Ohr68PHR0dvuNIBBWHRCoUFBTUqh2wlpYWCgoKOEgkW0pKSrB7924cOHAAEyZM+Oz6jBkzcPjwYUyaNAkDBw7E3r170atXL4wePRqbN2/GyZMneUj93xcUFISnT5/CwsICbdu2rXHsw4cPERsbCwMDA/Tq1YujhIRwJyoqCp07d4ajo2OV1zU0NHD06FE0b94cy5Ytw5EjRzhOKBv69OlDxbeUCAkJQVhYGJ4/f15tx1iGYXDgwAGOkwlbYGAgTpw4ge+//x6dO3cWv79z504sXLgQxcXFYBgG33//PbZu3cpjUsmgZaVEKpiYmKCkpATJyclVHjQKfGqp3apVK8jLyyMpKYnjhMLWs2dPFBUVfbEds5WVFRQUFBAWFgbg00G9+fn5yMrK4iKmoGRmZsLExAQGBgaIi4v7YsOHd+/ewcLCAk+fPkVycjL09PQ4Sio8IpEIffv2xeLFiz+7Zm9vX+21devWITAwkJaVSoiioiKGDRuG48ePAwCmTJmC/fv3Iz8/v9LxLiNHjkREREStDgkndZeZmQlLS0uMHz8ev/zyS7W/k4nk5OXlYfDgwQgPD6+2IVMF2n9b/0aOHIkrV67g+fPn4j3+9+7dg5mZGeTk5GBpaYmEhATk5eXh7NmzGDx4MM+J6xf9iydSYfDgwdi8eTO8vLywY8cOaGhoVLqen5+PWbNmISMjgzo1SsCdO3cwcODAL45r0aIFLl68KH7dpk0bXL58WZLRBGv//v0oLi7Gxo0ba9UJsEGDBti0aROGDBmCAwcO4KeffuIgpXAFBAQgICCgTtcqGqEQydDS0kJ+fn6l1wDw5MkTdOjQQfx+YWEh8vLyOM8nKw4dOoR+/frhf//7H86cOQN7e3vo6+tX2ZiDYRj6WSQBixYtQlhYGFq2bImpU6fCxMSEOsZy6Pbt2zAzM6vU/O3w4cPi/3V3d0dqairatm2L3bt3C644pJlDIhXevn0LS0tLpKWlQU1NDX379q3Uxv/q1avIz8+HsbExYmJioKmpyW9ggdHU1ETz5s1x586dGsd17twZaWlpyMnJAQAMGzYMISEhePv2LRcxBcXGxgZPnjzBixcv6nSfrq4ujIyMEBUVJaFkwmdvb/+virzg4OB6TEMq2Nvb49WrV3j48CEA4MKFCxgyZAimT5+OXbt2AQAeP36MTp06wdjYGPfu3eMzrmCJRCIwDPPFGSuAZq0kRVdXF8CnI10aNWrEcxrZ06BBAwwYMEC8igEAzMzMkJmZiezsbPGDkr59++Lhw4fIyMjgK6pE0MwhkQqNGjVCeHg4pkyZgsuXL+PUqVOfjenfvz/27dtHhaEE2Nrawt/fHxs2bMCiRYuqHLNx40bcvXu30gzjkydPaHnjV3r06BG6d+9e5/ssLCyoMPyXQkJC+I5AquDi4oIlS5YgISEBbdq0Qd++fdGsWTPs2bMHMTEx0NfXR1BQED5+/IiJEyfyHVewDh06xHcEmZeXlwcXFxcqDHkiJyeHjx8/il+/ffsW9+/fx4ABAyrNoGtpaSE7O5uPiBJFxSGRGnp6erh48SJSU1Mr7SfR09ODra0tjIyMeE4oXGvXrkVwcDB+/PFHHDp0CMOHD4eBgQGAT/tP/Pz8kJiYCFVVVaxZswbApxndv/76CzNnzuQz+n/Whw8foK6uXuf71NXV8f79ewkkIoRf48aNg7q6OsrLywF8Olf1woULGDlyJGJiYhATEwORSIRJkyZh1qxZPKcVrvHjx/MdQea1atUKHz584DuGzGrevDmioqJQUlICeXl5nD17FizLftYs682bN2jcuDFPKSWHlpUSQgB8OkfS09MTycnJAD4/27BVq1Y4cuQIrKysAAA5OTlISkqCsbFxrTrNksp0dHTQoUMHXLt2rU73OTo64t69e3VejkrqpmLpNK1UkJyMjAyoqanVanbk0aNHyMnJQcuWLennDRG8/fv34/vvv8e9e/fQsmVLvuPInHXr1mHp0qXo1q0bbGxscOjQIRQUFCAlJQVNmzYF8OmzkY6ODkxNTcVN+oSCikPCC2NjY7i6umLDhg2fXQsLC4OOjg5MTEx4SCbbWJZFUFAQIiMj8fz5cwCf9j50794dDg4O1IyjHjk4OCAmJgavXr2CsrJyre4pKCiAtrY2unbtiqCgIAknlD3+/v7Yvn07IiMjUVhYCABQVlaGra0tfvjhB7i4uPCcUFjk5OTg6elZZRv+1atXw8zMDIMGDeIhGSH8W7RoEby9vbFmzRo4OjpCX1+f70gy48OHD+jduzf+/PNPAJ/24W7atAlz5swRj7lx4wYcHR3x008/YdWqVXxFlQhaVkp4kZaWVu06bXt7e0yYMIHO7eEBwzDo3bs3evfuzXcUwRswYABCQkKwZs0a8SHfX7JmzRoUFhbWqrMsqZs5c+Zgx44d4plydXV1MAyD3NxcBAYG4tq1a5g1axa2bNnCc1LhYFm22qYnK1euhKenJxWHHKh48HfkyBHo6+vDwcGh1vcyDIMbN25IMJ1skJOTq/J9lmUxadKkGu9lGAalpaWSiCWzVFVVERUVhbCwMGRnZ8PMzAytWrWqNEZOTg5bt24V5O9jKg6JVKIJbf7RsjrJmjp1KjZt2oT169dDWVkZP/74Y5Wt4gGgvLwcv/zyC9avXw8dHR1MmTKF47TC5uvri+3bt0NbWxvLli2Dh4eHeD9ofn4+jh07hjVr1mD79u2wsrLCyJEjeU5MSP0JCQkBwzAoKCgQv64tWk1SPwwMDOh7KWVEIhHs7e2rvW5vb1/j9f8yKg4JIWK0rI47KioqOHPmDPr06YMVK1bg999/h6urK8zNzcV7qrKzs3H79m2cOnUKT58+hZKSEs6cOQMVFRWe0wvL7t27oaSkhLCwsM+Wszds2BAzZsyAo6MjzMzMsHv3bioOiaCkpqYCgHgvVcVrwp20tDS+I5BaSkhIwIMHD2BgYIBu3brxHUciqDgkhACgZXV8sLGxQVRUFDw8PPDgwQNs3br1szEVfx7t2rWDt7c3OnXqxHVMwbt79y4cHBxq3OdsYmICBwcHREREcJiMEMlr1qxZja8JkTW+vr7Yt28f1q1bV6kAXLBgQaXPQIMGDcLp06erXRb8X1X1GiZCiEypWFanpaWFHTt2ICcnBzk5OXj79i1yc3Oxc+dOaGtrY/v27Th58iTfcQXFzMwM9+7dg7+/P6ZPnw4bGxuYmprC1NQUNjY2mDFjBvz9/XHv3j0qDCWkuLgYqqqqXxynqqqK4uJiDhIRQgjhi7e3N+Lj49G5c2fxe1FRUdi8eTMaNGgANzc3NG/eHBcuXICPjw+PSSWDZg4Jb96/f4+MjIw6XwMAQ0NDScWSSbSsjn99+/ZF3759+Y4hk1q0aIHQ0FB8+PCh2iKxoKAAoaGhaNGiBcfphO3x48c4evRona8Bn85FJESIavp7/3cKCgpo3LgxOnXqBG1tbQmnkh33799Hx44doaCgIH7v2LFjYBgGJ0+ehJOTE96+fQsjIyPs379fcD+L6CgLwguRSPTVm6+pM1f909DQgK2tLS5dulTjuAEDBiAiIgK5ubncBCOEAz///DNWrFiB3r17Y/fu3Z91pUtJScGMGTNw7do1rFq1CsuWLeMpqbDU9Hug4qNJTb8nysrKJJJL1hgbG3/1vQzDICUlpR7TEKDun5EYhkGfPn2wc+fOz35+kbpTVVXFkCFDKs0Ktm7dGnl5eeJjvgBg4MCBiIuLw7Nnz/iIKTE0c0h4YWhoSJ25pAgtqyOybP78+Th//jxu3LiBtm3bwtzcHM2bNwcApKenIy4uDmVlZbCwsMC8efP4DSsg48eP5zsCwadmKAzDfFWXcPo9LhnLly9HWloajh49CjU1NTg5OYlXTGVmZiIwMBDv3r2Dh4cHFBUVERUVhcDAQPTo0QNxcXHi5kLk6ygrKyM/P1/8+vnz50hKSvps1ZSGhoa4s7uQUHFIeEGduaQLLavj3r/ZwE6z5/VLWVkZISEhWLJkCQ4ePIiYmBjExMRUuu7l5YV169ZBWVmZx6TCcujQIb4jkL/p0qULxo4di8GDB9Pfc555eHiga9eu8PLywubNm8VH61TIz8/H3Llz4efnh1u3bsHY2BgLFizA1q1bsX79euzcuZOn5MJgbGyM8PBw5ObmQkNDAz4+PmAYBk5OTpXGvXjxQpDLeWlZKSGEltXxoHnz5v/qqTu1m5eMgoKCSsuE9PT00KVLFzo+hAjWyZMn4ePjg6tXr6K0tBRqamoYNmwYxo4dCwcHB5od5MHIkSNx+/ZtJCUl1Xj+rYmJCczNzXHy5EkUFxfDyMgIKioqSE5O5jixsOzevRszZ86EkZERzMzMcPnyZSgqKuLJkydo3LgxAKCkpATa2tqwsLDAtWvXeE5cv6g4JISgsLAQPXr0wO3btyEnJ1fjsrrQ0FB6qkwIIQLz9u1bnDhxAt7e3rh58yYYhoGuri5Gjx6NMWPGwMzMjO+IMkNLSwtOTk5f7ITp7u6OwMBAvH79GgDg4uKCkJAQFBQUcBFTsEpKSuDu7o4zZ84A+LSl5vfff4ebm5t4jJ+fH4YPH45ffvkFS5Ys4SuqRFBxSKRKQUEBYmNj8fz5cxQVFVU7TmidoaTB+/fvxcvqCgsLK137+7I6NTU1nhISIhlycnLw9PTEgQMHahw3efJkHDp0iJb01pPadmSsDv0ekJzU1FR4e3vjjz/+QGJiIhiGQZs2beDh4QF3d3cYGBjwHVHQVFVVYWVlhRs3btQ4rnfv3rh16xbev38PAHBzc4O/v3+l/XLk66WlpSE7OxutW7dGgwYNKl2Lj49Heno6rKys8O233/KUUDKoOCRSY/ny5di6dWuNT7xYlgXDMNSlToJoWR2RNSKRCJ6enjh48GCN4yZPnoyDBw/Sz5968rVdq+n3ALdiYmLg4+MDX19fvHr1ClpaWnjx4gXfsQTNysoKcXFxuHHjBuzs7KocEx4ejl69esHS0hLR0dEAgO7du+PFixfUQZb8K9SQhkiFjRs3Ys2aNZCTk0P//v1hYmLy2VMawg0VFRX06NGD7xgy7d27d0hJScG7d++q7SBY3QcGIjl5eXlQVFTkO4ZgLF++nPaz/Qc0a9YMxsbG0NPTw8uXL1FeXs53JMFbuHAhRowYAWdnZ4wbNw4jRowQz9ZmZmbizJkzOHr0KFiWxcKFCwF8+vkUFxeH4cOH8xmdCADNHBKp0KpVKzx79gzh4eEwNzfnO47MoWV10uH+/fuYPXs2QkJCvthWnmZN/p2MjAzxfzdv3hwjRozA//73vyrHlpaWIjExEaNHj4aBgQHu3bvHVUxCeFFQUICzZ8/Cx8cHN27cQFlZGdTV1eHq6goPDw/Y2tryHVHwtm/fjkWLFqG4uPizhygsy0JBQQEbN27EDz/8AAB48uQJTp06hd69e8PCwoKPyIKTkZGBixcvIjk5udqHtQzDfPGz038NzRwSqZCZmQkHBwcqDHnCsmytz7ii50mSkZycDFtbW+Tn56N79+54/vw5UlNT4ebmhidPnuD27dsoLS3FoEGDoKGhwXfc/7x/dos9c+aMuPlAdViWxeTJkyUdjRBelJeXIyAgAN7e3rhw4QIKCgqgoKCAQYMGYezYsXBxcYGCggLfMWXGrFmzMGjQIBw4cABRUVHiw9d1dXXRvXt3TJgwAcbGxuLxxsbGWLRoEV9xBWf16tX4+eefK82UV3z+qfjdUbHEnYpDQiRAR0enVoewE37RsjrJWbNmDd69e4dDhw5h/PjxmDBhAlJTU8Xd6h4/foyJEyfi4cOHuHnzJs9p//vs7OzEv+BDQ0Ohra2N1q1bVzlWQUEBenp6GDRoEIYOHcplTEIk7tatW+I9hdnZ2WAYBnZ2dhg7dixGjBjx2Rl7hDtGRkZYs2YN3zFkjq+vL1auXInmzZtj6dKlOHXqFK5du4aAgAA8efIEvr6+CAkJwdy5czFw4EC+49Y7Kg6JVHBzc8OBAwdqPISd1K+/L6sDPnUr/ed7FSqW1QUGBqJFixZcxJM5QUFBaNOmDcaPH1/l9ZYtW+L8+fMwNjbGTz/9hF27dnGcUFhCQkLE/y0SidCvX78vNqQh3JDVpVx8sba2BsMw6NChA+bPnw93d3c0bdqU71iE8Gb37t1QUFBAcHAwmjVrhoiICACAo6MjAGDKlCnYunUrFi5ciCFDhvCYVDJozyGRCh8/foSTkxPk5eWxb98+tGzZku9Igvf3ToEVSyO+hGVZbNu2TbzHgdQfRUVFDB48GCdPngQAfPfdd+IHJkpKSuJxw4YNw+3bt5GWlsZTUuFJT0+Hmpqa+HBjwp+6LOWifbf1o+J3gZycXJ3vZRimxmOnCPkv0tTUROfOnREUFAQA8PLywpEjR1BaWlrps1L79u2hr6+Pq1ev8hVVImjmkEgFFxcXlJeXIyQkBG3atEGzZs2gr68PkUj02ViGYb549g/5MlpWJ10aNWpU6UNWo0aNAHwqXExNTSuNffXqFafZhK5Zs2Z8RyCgpVx8YlmWGo3xSCQSQSQS4eHDhzAxMalToc4wDP3Z1bOioiLo6OiIX1c8oM3NzYWmpqb4/U6dOgmuMASoOCRS4u9LvMrKyvDkyRM8efKkyrHU+rx+0LI66WJkZIT09HTxazMzM7AsC19fXyxfvhwA8Pr1a4SEhMDQ0JCvmIK0evXqWo9lGAY//fSTBNPILllfysUXOpqCf4aGhmAYBvLy8gAAAwMD+qzDI11d3UoPYSuWWT948KBSp96nT58KcgUDLSslUuHvH4prg5701y9aVse/lStXYs2aNUhJSUGzZs3w4cMHGBkZ4e3btxgxYgSaNm2Ks2fPIiMjA0uXLq1TQUNqVrGsrrpfh7SckRuyvpSLECIdhgwZgri4OGRmZgIAIiMj0aNHD/Tq1QsXLlyAqqoqTp48CTc3N1hbWyMyMpLnxPWLZg6JVKBij181ff8TEhLw4MEDGBgYoFu3bhymki0eHh4oKirCy5cv0axZM6iqquLEiRMYOXKkeB8i8GkWZenSpTwmFZ5Dhw5V+X55eTkyMzNx7do1REZGYsaMGXR+mATJ+lIuQoh0GDhwIC5cuICgoCA4ODige/fu6NWrF4KDg6GpqYmGDRsiJydHsCtJaOaQEAJfX1/s27cP69atq1QALliwAFu2bBG/HjRoEE6fPv1VjQvI1/nw4QPCw8ORk5MDExMTdOnShe9IMmnjxo1YvXo1oqOj0aFDB77jCFKLFi1gZGSE69evAwB++eUXLF++HKGhoZWWcvXs2RN3795Fbm4uT0kJIUJWVFSEtLQ0aGlpiff/5+fnY+HChTh37pz49/GSJUvg7u7Oc9r6R8UhkSovX77EwYMHER4ejqysLACf1nrb2dlhwoQJ+Pbbb3lOKEwDBw5EZGQkXrx4IT7kOCoqCra2tmjYsCH69++PmzdvIi0tDYcOHcK4ceN4TkwI91q3bo1WrVrh4sWLfEcRJFlfykXIPwUGBmLPnj34888/8fr1a4wdO1Z8hEtAQAACAgIwf/586Onp8ZyUCAktKyVS48yZM/Dy8sL79+8r7f25d+8eAgICsH79ehw4cADDhw/nMaUw3b9/Hx07dhQXhgBw7NgxMAyDkydPwsnJCW/fvoWRkRH2799PxSEHXr58iWfPngEA9PT06MGIFOjQoYN4VovUP1lfykXI382aNQu7du0Cy7JQU1NDSUlJpc9Gurq62LZtGwwMDDBnzhwekxKh+fycAEJ4EBsbi9GjR+PDhw8YOnQo/Pz8cOfOHcTHx+PcuXMYNmwY3r9/D3d3d8TGxvIdV3BevXr12aHHwcHB0NbWhpOTE4BPRyvY2dnh8ePHfESUCSzLYseOHTAxMYGenh4sLCxgYWEBPT09tGrVCtu3b6fOgjxKSUmhlvESNHbsWCQkJMDMzEz8np+fH7777js0atQI7969Q9u2bXHs2DH07duXv6CESNjRo0exc+dOdOnSBbdv30Z+fv5nYzp27AgDAwNayUDqHc0cEqmwbt06lJWV4fTp05+do9exY0cMGjQIfn5+GD58ONavX4/Tp0/zlFSYlJWVK/3yef78OZKSkjBy5MhK4zQ0NJCTk8N1PJlQVFSEgQMH4saNG2BZFpqamuJGQRkZGUhJScHcuXNx6dIlXLp0CYqKijwnlh05OTlYs2YN4uPj0atXL77jCJaiouJnZ3o2bNgQe/fuxd69e3lKRQj39uzZAw0NDVy+fBlaWlrVjuvYsSPu3bvHYTJhcnBw+Op7hXj2NhWHRCpERETAxsamxgPWhw4diu7duyM8PJzDZLLB2NgY4eHhyM3NhYaGBnx8fMAwjHjWsMKLFy+gra3NU0phW7t2La5fv4727dtj06ZNcHZ2rnQ9MDAQCxYsQFBQENauXYtVq1bxlFR4jI2Nq732/v17vHnzBizLQllZGevWreMwGSFEFt2/fx89e/assTAEAHV1dbx8+ZKjVML193Of60qI51FScUikQl5eXq0O9jY0NERMTAwHiWSLp6cnZs6ciS5dusDMzAyXL1+GmpoaBg8eLB5TUlKC2NhYauUvId7e3tDQ0EBwcHCV5006OTnB3NwcJiYmOHbsGBWH9SgtLa3aa/Ly8jAwMEDPnj2xaNEitG3blrtgMubx48fw9/eHg4MD2rdvX+WY+/fvIygoCAMGDKixqCfkv642RcezZ8+grKzMQRphS01N5TuCVKHikEgFHR0d3Llz54vj4uPjK52DRerH5MmTERwcjDNnziA1NRWqqqrYt29fpSLl0qVLyMvL+1fLL0j1nj17hgEDBlRZGFZo0qQJHBwccPnyZQ6TCV9d9nGWl5dDJKLt+pKwbds27Nu3DykpKdWOadCgAebOnYsnT55g27Zt3IUjhEOtWrXC7du3UVJSAnl5+SrHvHv3DvHx8WjXrh3H6YSHztqujH7DEang7OyMxMRE/PjjjygrK/vsOsuyWLZsGR49ekSNCCRAXl4ep06dwpMnT3Dr1i08e/YMbm5ulcYYGRnBz88PXl5ePKUUtqZNm6K4uPiL40pKSqhtOQ/u3LmDuXPnQl9fn+8ognXjxg2YmZnVuIqkWbNmMDMzw7Vr1zhMRgi3XF1d8fz5cyxevLjaMUuWLEFeXt5nv6sJ+bfonEMiFZ4+fYrOnTvj7du3MDQ0xMiRI9G8eXMAQHp6Ok6dOoW0tDQ0btwYt2/fpg9oRHBWrFiBzZs348GDB9U+xUxPT0e7du0wZ84c/PzzzxwnlD2ZmZnw8fGBt7c3EhISwLIsGIap8gEW+ffU1NTQv39/+Pr61jhu1KhRuHr1KvLy8jhKRgi3CgsLYWVlhfv376Nr164YPHgwfvzxR/To0QNDhgyBn58fIiIiYG5ujqioqErHUJGvM3nyZKSkpGDNmjWwsbGpcWx0dDSWLl0KU1NT7Nmzh6OEHGIJkRJ//fUX26FDB5ZhGJZhGFYkErEikUj8umPHjuy9e/f4jkmIRBQXF7MDBw5kDQ0N2QMHDrDv378XX3v//j178OBBtlmzZuygQYPY4uJiHpMKW35+PnvgwAG2V69erJycnPhnkL6+Pjtv3jw2NjaW74iC1bBhQ3bw4MFfHDd48GBWVVVV8oEI4dGrV69YFxcX8eehis9CFV9OTk7sq1ev+I4pCNevX2cZhmFHjhxZ63tGjRrFikQiNjQ0VILJ+EEzh0TqhISEIDw8vNIB4D169IC9vT2/wQRk9erVYBgGM2bMQKNGjbB69epa30sHUEuGsbExWJZFRkaG+D1NTU0AqHR8iKGh4WeNChiGqXGfFqlZWVkZrl69imPHjuHixYv4+PGj+LBphmEQHByMHj16CLIrnTSxtLREamoqMjIyoKKiUuWYgoICGBoawsDAoFb71An5r7t79y4CAwORlpaG8vJy6Ovrw9HREV27duU7mmB4enri2LFjSExMRMuWLWt1z5MnT9CyZUtMmDABBw4ckHBCblFxSIgMEolEYBgGCQkJMDExEb+uzY8DWlYnGf+2yUldmqqQT2JiYnDs2DH4+vri9evXYFkW8vLycHFxwdixY7Fx40bExsbS33eObNiwAUuWLIGbmxt+//13qKqqVrpeUFCAyZMn48SJE1i9ejWWLl3KU1JCiJCYmppCWVkZ8fHxdbqvc+fOKCwsxKNHjyQTjCfUrZQQGXTo0CEAgK6ubqXXhD9U3HFnzZo18PHxQVJSkviBiI2NDcaOHYuRI0eiUaNGAEDdMDn2/fffi4v14OBgjB49Gi1atAAApKSk4Pjx43j16hVMTU0xe/ZsfsMSQgTj6dOn6N+/f53va9WqFfz9/SWQiF9UHBJehIWFAQC6du0KJSUl8evasrOzk0QsmTF+/PgaXxMiZMuXLwfDMNDR0cH06dMxZswYcQMswh8VFRVcv34dY8eORVBQELZt2yZeyltRxPfq1QvHjh37bFaRkP+yun4G+if6TMSP2q64+q+hZaWEF9Uta6wtWuZFCPlaFUt4GYZB9+7d4eHhAVdXV2hoaFQa16NHD0RFRdHPGx7ExMTg+vXryMzMBAAYGBigT58+sLS05DkZIfWvrp+B/o5hGJSWltZzItlibGwMDQ0N3L59u073mZubIzc3F0+ePJFQMn7QzCHhxbhx48AwDNTV1Su9JkRWVDSeadq0KeTk5Co1oqmNms6CIzW7desWjh49Cl9fX0RERCAyMhI//PADXFxcMGbMGAwcOLDag6cJNywtLakQJDLDycmpTp+BWJZFeHg4CgsLJZhKdlhbW8PX1xePHj1C69ata3VPQkIC7t69i9GjR0s4Hfdo5pAQGfRvDrJnGEZwnbn4IBKJIBKJ8PDhwzrPntOT4vpRWlqKK1euwNvbW9yllGEYaGpqYvjw4QgODkZKSgrNHPKoolNvRedeQmSdn58fVq5ciXv37gEAevbsieDgYJ5T/bddvXoVLi4usLa2xo0bN6CkpFTj+I8fP8LBwQG3bt2Cv78/nJ2dOUrKDSoOCZFBNXXG/Ocen6qu04flf8/e3h4Mw+DYsWPQ19cXv64t+jBQv/Lz83Hq1CkcO3YM4eHh4gPvAWDBggVwc3ODmZkZvyFlhL+/P7Zv347IyEjxzIiysjJsbW3FM7yEyJqLFy9i5cqViI+PB8uysLW1xapVq9CrVy++ownCgAED4O/vjw4dOuB///sfHB0dqxwXGBiI+fPn48GDB3BxccHFixc5Tip5VBwSqWBsbAxXV1ds2LChxnFLlizByZMn6Uy3f+nIkSNVvs+yLLy8vGBra4uJEydWez81sCFClpmZCW9vb3h7eyMhIUFcJJqYmMDd3Z3O+ZSgOXPmYMeOHeKHU+rq6mAYBrm5uQA+PZyaNWsWtmzZwmNKQrjj7++PlStXIi4uDizLwtraGqtWrUKfPn34jiYo79+/R79+/RAZGQmGYdC4cWOYmZlBS0sLAJCdnY34+Hi8efNGXJz7+/tDTU2N5+QSwBIiBRiGYSdMmPDFcZMmTWJFIhEHiWRXbf8sCJEFcXFx7OzZs1kdHR2WYRj6+SNBJ06cYBmGYb/99lt2586dbG5urvhaXl4eu2vXLlZHR4cViUSsr68vj0kJkbyAgADWysqKFYlELMMwbLdu3dirV6/yHUvQSktL2Y0bN7J6enoswzBVfunp6bGbNm1iS0tL+Y4rMTRzSKSCSCSCp6cnDh48WOM4d3d3nD17Fh8/fuQomeyp7Z8FIbKkvLwcAQEB8Pb2ho+PD99xBKlnz56IiYlBfHw8TExMqhyTlJQEMzMzdO3aFSEhIdwGJIQDN27cwIoVKxAdHQ2WZWFhYYFVq1ahX79+fEeTGeXl5bhz5454phCAeCaxc+fONW7NEQLqVkr+E8rLy5GYmIjg4GDq0kgEaf/+/Vi4cCH++OMP9O3bt8oxV65cwZgxY7BlyxZ4enpyG1DGiUQi9OvXjz6gSdDdu3fh4OBQbWEIfFra6+DggIiICA6TESJ5ISEhWLFiBSIiIsCyLMzNzbFy5UoMGDCA72gyRyQSoUuXLujSpQvfUXgh7NKXSDU5OTnxF/BpH9zf3/v7l7y8PNq3b4+XL18Ksm0wISdOnICioiKcnJyqHePk5AQFBQX88ccfHCYjhBvFxcW1OtxeVVUVxcXFHCQihBsODg7o3bs3IiIi0KlTJ5w7dw6xsbFUGEqJ5ORkREdHIykpie8onKCZQ8IbAwMDcaOHjIwMqKiooEmTJlWOVVBQgJ6eHgYNGoQffviBy5iEcOLhw4fo2LFjjctV5OTk0KlTJzx48IDDZIRwo0WLFggNDcWHDx+qLRILCgoQGhqKFi1acJyOEMkJCQkBwzBQVlZG48aNsWvXLuzatatW9zIMg4CAAAknlD1FRUVYtWoVfvvtN/GROuPHjxdvufH29saWLVtw8OBBwXWypuKQ8CYtLU383yKRCK6urrTPjcist2/fVvtw5O+aNGmC169fc5CIEG6NHDkSK1aswJAhQ7B79260atWq0vWUlBTMmDED2dnZmDlzJk8pCZEMlmVRUFCAGzdu1Om+uhyBRGqnsLAQDg4O+PPPP/Htt9/CxcUFly9frjTGwcEB48ePx8mTJ6k4JEQSgoODoaOjw3cMQnjTpEkTJCcnf3FccnIyHQhOBGn+/Pk4f/48bty4gbZt28Lc3BzNmzcHAKSnpyMuLg5lZWWwsLDAvHnz+A1LSD2ic2uly8aNG3Hr1i1MnDgRO3fuhJKS0merevT09NC2bVtcv34da9eu5SmpZFC3UkJkUMU+z6/BMAxKS0vrMQ0BADc3N5w6dQo3btyAvb19lWNCQkLg4OCAYcOG4fTp09wGJIQD79+/x5IlS3Dw4EEUFhZWuqasrAwvLy+sW7dOmGeLEUKkQtu2bVFQUIDHjx/jm28+zaNV1cl9xIgRiIyMxPPnz/mKKhE0c0ikzoMHD5CcnIx3796humcX48aN4ziVsPybZ0L0PEky5s6di9OnT2PIkCFYtmwZJk+eDHV1dQBAfn4+fvvtN/zyyy8QiUSYM2cOz2kJkQw1NTXs3LkTGzZsQFxcHJ49ewbg01P6Ll26QEVFheeEhEheWFgYdHR0auzcC3xaSfL8+XPY2dlxlEw2pKamon///uLCsDoKCgri/YhCQjOHRGpcv34d06dPR0pKSrVjWJYFwzAoKyvjMBkh3Ni+fTvmzp0rft2oUSMAn/YjVti0aVOlMYTImhkzZuDRo0d13ptFyH+FSCTChAkTcODAgRrHTZ48GQcPHqTPRPWsUaNG6Ny5c6WfMVXNHFpbWyMtLU1wM4d0lAWRCrGxsejfvz8yMjLg7u6ODh06AAAWL14MV1dX8R6rCRMmYPny5XxGJURiZs2aheDgYDg7O0NJSQlv3rzBmzdvoKSkhL59+yI4OJgKQyLzbt++jZCQEL5jECJRtZm7ofkdyTAzM0NsbCyys7OrHZOamoo7d+7A0tKSw2TcoGWlRCqsW7cOpaWluHr1KhwdHTFhwgTcu3cPv/zyCwAgNzcXU6ZMwaVLlxAbG8tzWkIkx87ODnZ2digrK8ObN28AfGpWU9MRF4QQQmTPs2fPaP+tBEyePBkhISEYPXo0Tpw48Vkn8dzcXHh5eaGkpATfffcdTyklh4pDIhWioqLQuXNnODo6VnldQ0MDR48eRfPmzbFs2TIcOXKE44SEcEtOTg7a2tp8xyCEEMKBo0ePVnr9+PHjz96rUFpaisTERFy/fh1WVlZcxJMpo0ePxsWLF3HixAkYGxvDxsYGABAZGYnBgwcjNDQU+fn5GDduHAYMGMBz2vpHxSGRCm/fvq3UoVFBQQEAKh2GrKioiB49euDatWt8RCSEEEIIkQhPT0/xmYUMwyAyMhKRkZHVjmdZFkpKSrTVRkJ8fHzQuXNnbNq0CYGBgQA+NQBKTk6Guro6fvnlFyxevJjnlJJBxSGRClpaWsjPz6/0GgCePHki3n8IfDqYNC8vj/N8hHDh4cOH2LhxI8LCwvD8+XMUFxdXOY6OEyGEEGFZvnw5GIYBy7JYvXo1zMzMMHjw4CrHKigoQE9PD05OTtDV1eU4qWxgGAYLFizA3Llzcfv2baSlpaG8vBz6+vqwtLQUT2IIERWHRCq0bNkSqamp4tddu3YFy7LYt28fdu3aBeDTEougoCAYGxvzFZMQiYmOjkafPn3EZ7s1atQIOjo6PKcihBDChZUrV4r/+/Dhw+jTpw9WrFjBXyAC4NMWD0tLS0E2nqkOFYdEKri4uGDJkiVISEhAmzZt0LdvXzRr1gx79uxBTEwM9PX1ERQUhI8fP2LixIl8xyWk3i1ZsgSFhYWYPXs2li1bJj7GghChCgsL+6r7/r7KhBAhSktL4zsCkWF0ziGRCi9evMD58+dha2uLdu3aAQDu3buHkSNHIjExEcCnM2YmTpyIvXv3itflEyIUampqMDExwe3bt/mOQggnRCLRV/0sp/NuiawqLS3F/v37cf/+fRgYGOC7774TH/VF6ldRURGOHz8u3uZRVFRU5TiGYQR35ioVh0TqPXr0CDk5OWjZsqV4LyIhQtOoUSP07dsXf/zxB99RCOGEvb39v3rQFxwcXI9pCJEeq1evxqpVqxAcHAw7OzsAQHl5Oezs7BAdHS1+QGJkZITY2FhoaGjwG1hgsrKy0Lt3byQnJ3/xLEkhPqiiZaVE6rVu3ZrvCIRInK2tLR4+fMh3DEI4QwfZE1K1a9euQV9fX1wYAsDp06cRFRWFjh07YsaMGbhy5QrOnTuHX3/9FUuXLuUxrfAsWLAASUlJsLGxwdy5c2FiYoIGDRrwHYszNHNICCFS4P79+7CyssKGDRswY8YMvuMQQgjhSdOmTdGhQwdcvXpV/J6bmxtOnTqF+/fvo02bNmBZFs2bN0ejRo1w584dHtMKT+PGjdGgQQM8evQISkpKfMfhHM0cEl6sXr36q+9lGAY//fRTPaYhhH+3b9/GhAkT8MMPP+DkyZNwdHSEvr4+RCJRlePHjRvHcUJCCCFcePPmDZo0aVLpvdDQULRq1Qpt2rQB8OmzkKWlJS2vloCioiL06dNHJgtDgGYOCU8qGhF8zV8/Ia7vJqSqfxNV7ceiZhxEqI4ePVqrcQoKCmjcuDE6deoEbW1tCacihHv6+vpo1aqVuPB7+PAh2rdvj++++w579+4Vj3N3d8fFixfx7t07vqIKkrW1NVRUVATXaKa2aOaQ8OLQoUN8RyBEqlQcgEyIrPL09KzTvwGGYdCnTx/s3LkTrVq1kmAyQrjVpk0bhIaG4s6dO+jcuTO2bNkChmHg4uJSaVxaWhp0dXV5SilcixYtgqurK/7880907dqV7zico5lDQgghhPBu5cqVSEtLw9GjR6GmpgYnJycYGhoCADIzMxEYGIh3797Bw8MDioqKiIqKwsOHD6GtrY24uDg0bdqU5/8HhNQPf39/DBgwACKRCBoaGsjJyYGRkREePnwIBQUFAEBeXh60tbUxaNAgnDp1iufEwpKRkYFff/0Vu3fvxty5c7+4zaPi55RQUHFICCGEEN6lpKSga9euGDp0KDZv3gx1dfVK1/Pz8zF37lz4+fnh1q1bMDY2xoIFC7B161bMmDEDO3fu5Ck5IfXv119/xcaNG/H69Wt06dIFv/76Kzp06CC+vnPnTsyaNQu7d+/G1KlTeUwqPH/f5vGl1QwMw6C0tJSjZNyg4pBInaysLERGRiIrKwvAp65d3bt3p6fChBAiYCNHjsTt27eRlJRU7RP68vJymJiYwNzcHCdPnkRxcTGMjIygoqKC5ORkjhMTwp/CwkIUFxdDTU0NcnJyfMcRlLqewSq0pkC055BIjezsbMyYMQN+fn4oLy+vdI1hGAwfPhy7du2ClpYWTwkJqT9eXl5gGAZr167Ft99+Cy8vr1rfyzAMDhw4IMF0hHAvODgYTk5O1RaGwKcn+l27dkVgYCCAT81pOnXqRGcmEpmjrKwMZWVlvmMIkqz/PKGZQyIV8vLyYGVlhcTERCgrK8PJyQnNmzcHwzBIS0tDQEAACgsLYWpqips3b3623IiQ/5qKZSsJCQkwMTGp8QPxP1G3UiJEqqqqsLKy+mKHwN69e+PWrVt4//49gE/nv/n7+yM/P5+LmIRwprS0FJcvX8aff/6J169fo1u3buIHic+ePcPr16/Rtm1bfPMNzfVIQmpqKl6/fg0AaNKkCYyMjHhOxA3620Skwvr165GYmAhXV9cqZwdfv36NmTNn4uTJk9iwYQPWrl3LU1JC6kfFMpSKjexCW5ZCSF116NABYWFhCAsLg52dXZVjwsPDERoaCktLS/F7mZmZtKKECE5ERATGjh2LzMxM8d63kpIScXEYHR2NkSNH4tSpUxg2bBjPaYXjzz//xJYtWxAYGIi8vLxK19TV1eHs7Iw5c+YIuospzRwSqdC6dWsUFhbi8ePHkJeXr3JMSUkJWrZsCSUlJSQmJnKckBBCiCSdPXsWI0aMgKKiIsaNG4cRI0bAwMAAwKcC8MyZMzh69CiKiopw+vRpDB06FHl5efj2228xfPhw+Pj48Pz/gJD68fDhQ3Tt2hUlJSWYNm0abG1tMXLkSHh6euLgwYMAgOLiYjRu3BiDBg2iv/v1pKLBVcXWJgUFBWhqagIAcnJyUFxcDODTyp85c+Zg06ZNvGWVJJo5JFIhPT0dQ4cOrbYwBAB5eXl0794dfn5+HCYjhBvDhg2Drq4ufv31V76jEMKLYcOGYevWrVi0aBF+//137N+/v9J1lmWhoKCArVu3YujQoQCAN2/eYNWqVejduzcfkQmRiJ9//hkfP36Ev78/nJycqhyjoKAAc3Nz3Llzh+N0wjR37lxs27YNSkpKmDFjBsaMGYMOHTqIm/2UlZXh/v378PHxwa+//ootW7agtLQUW7du5Tl5/aOZQyIVGjVqBAsLC3GTgeo4OTkhNjYWb9++5SgZIdxQUlLCkCFDcOLECb6jEMKr1NRUHDhwAFFRUXj+/DkAQFdXF927d8eECRNgbGzMc0JCJEtHRwfGxsaIiooSvycSiSrNHAKAu7s7/P39kZuby0NK4bh58yZsbGxgYGCAgIAAtG7dusbxiYmJcHR0RFZWFqKiotCtWzeOknKDZg6JVOjSpQtCQ0MRGxsLCwuLKsfExcUhJCQE9vb23IYjhANGRkb48OED3zEI4Z2RkRHWrFnDdwxCeJObmyteUl2TDx8+oKSkhINEwrZ3714wDIPjx49/sTAEAFNTU5w4cQK2trbYu3ev4IrD2rfHI0SC5syZg5KSEvTu3Rs//fQTEhISUFhYiMLCQjx69AgrVqxAnz59UFZWhjlz5vAdl5B6N3r0aISGhuLFixd8RyGEEMIjbW1tPH78+IvjEhISalVEkpqFhYWhY8eOsLGxqfU9NjY2gj1Gh2YOiVRwcXHBL7/8gp9++glr166tshspwzBYs2YN+vXrx0NCQiRryZIluHXrFnr27In169djwIABNe7BJUTIMjIy8Pz5cxQVFVU7prqOpoT81zk4OODYsWMIDg5Gr169qhzj5+eHx48fY8aMGRynE54XL17Aysqqzve1bt0a58+fl0AiflFxSKTGkiVL4OjoiJ07dyIiIgLPnj0DAOjp6aFHjx6YMWNGpfblhAiJqakpysvLkZmZiREjRoBhGGhra0NJSemzsQzDICUlhYeUhEjWwYMH8fPPPyMjI+OLY+msTyJUixcvhq+vL4YMGYL169eLGzABn7pm+vn5Yf78+VBVVcXcuXN5TCoMSkpKKCgoqPN9hYWFUFRUlEAiflFDGkIIkQIiUd1W+Ve02iZEKA4dOoSJEycCANq3bw8TExM0aNCgxvGECNW5c+fg4eFRbdGipKSE48ePY9CgQRwnEx5LS0ukp6fj+fPn4u6kX1JWVgZdXV0YGhoiNjZWwgm5RTOHhBAiBajYI7Juy5Yt+Oabb3D69Gn6wEtk3pAhQ3D//n1s3boV165dQ1paGsrLy6Gvrw9HR0fMmzcPLVq04DumIPTv3x8///wzNmzYgB9//LFW92zcuBFv3rwR5LJemjkkUuHly5dITEyEqakpvv32W/H7KSkpWLp0Ke7fvw9DQ0MsX778q9aFE0IIkW5KSkqwtbXF9evX+Y5CCK8uXLgAeXl56rHAkZycHLRo0QL5+flYuXIllixZUu0MYllZGdavX4/ly5dDU1MTycnJ0NTU5DixZFFxSKTCnDlzsGPHDiQkJMDExAQAkJ+fD1NTU7x69QoVf02VlZURHx+PVq1a8RmXkHrj7++Pc+fOITMzE4qKiujYsSMmTJgAIyMjvqMRwik9PT3Y2dnRWZ9E5snJycHJyQlXrlzhO4rMuHHjBvr374+SkhLo6enB1dUVFhYW0NLSAgBkZ2cjNjYWp0+fRlZWFuTl5eHv7w8HBweek9c/Kg6JVOjcuTNKS0tx79498Xs7duzA7Nmz4e7ujhUrVuDy5cuYO3cuvvvuO+zdu5fHtITUjzFjxog/CFf8KGYYBoqKijhx4gQtrSMyZdq0abh06RKePHlCnXqJTNPR0YGDgwP++OMPvqPIlJiYGIwfPx6PHj0CwzCfXa/4Pd26dWscPXq02nO5/+uoOCRSQVtbG9bW1pVaAjs7OyM4OBjPnj1DkyZNAHwqIj9+/IiEhAS+ohJSLw4cOIDJkyfjm2++gYeHBzp37ox3797h0qVLiI6ORsOGDZGeng51dXW+oxLCiZycHFhbW8PCwgI7d+4U3FItQmrLzc0NsbGxSE5OrrJIIZJ15coVXL58GXfv3sWbN28AAI0bN0anTp3g4uKCfv36CfrPhYpDIhWUlZUxZMgQHD9+HMCnNd2amppo164doqOjxeNGjx6NS5cu4d27d3xFJaRe2NnZISoqCgEBAejdu3elaxMmTMDRo0exf/9+TJgwgaeEhHDLy8sLubm5OH/+PBo2bIguXbpAX1+/yk6+DMPgwIEDPKQkRPKSk5NhaWkJT09PrF+/vsojjQiRFOpWSqSCnp4eHj16JH4dERGB9+/fw97evtK40tJSKCgocJyOkPp37949WFlZfVYYAsCPP/6II0eOVFpmTYjQHT58WPzfeXl5CAoKqnYsFYdEyI4fPw4XFxfs3LkTJ06cQJ8+fWBoaFjtubc//fQTDymJUFFxSKSCtbU1jh8/jm3btqF3795YtmwZGIbBwIEDK41LSEhA06ZNeUpJSP3Jz8+vtg15xfv5+flcRiKEV8HBwXxHIEQqrFy5EgzDgGVZvHr1qsa9h1QckvpGxSGRCkuWLMHZs2cxb948AJ82/fbq1Qs2NjbiMWlpaXj48KH4kGRC/stYlq22VXbFMjo6+5DIkp49e/IdgRCpcOjQIb4jEBlGxSGRCu3atUNERAS2b9+O169fo0uXLliwYEGlMQEBAejUqROGDBnCT0hCCCGEEAkbP3483xGIDKOGNIQQwgORSPTV3c4YhkFpaWk9JyKEEEKIrKOZQ0II4cnXPpujZ3pECIyNjcEwDK5fvw4jIyMYGxvX+l6GYZCSkiLBdIQQIpuoOCSEEB7QfkIi69LS0gAAJSUllV4TQj49BPTx8cH58+eRnJyMd+/eVflgkB6UkPpGy0oJL6prxFEbtKSOEEIIIUJVXFyM/v37IygoqNqVIhXdTAF62Ejq1+cnyxLCAZZlv/qLfggSQgghRKg2b96MGzduYMCAAUhOToaHhwcYhkFRURESEhKwcuVKqKqqYsGCBfSZiNQ7mjkkhBBCCO8aNWqEDh06IDQ0lO8ohPDKzMwMT58+RXp6OlRVVTFhwgQcPXoUZWVl4jHh4eHo1asXfvvtN3h5efGYlggNzRwSQgghhHelpaXQ19fnOwYhvHv8+DG6du0KVVVVAP//7Nu/F4c9evRA9+7dsXv3bl4yEuGi4pAQQgghvGvXrh2ysrL4jkEI7+Tk5KCuri5+XVEkZmdnVxrXtGlTJCYmcpqNCB8Vh4QQQgjh3ffff4+IiAhERETwHYUQXjVt2hRPnz4Vv27ZsiUA4ObNm5XG/fXXX1BTU+M0GxE+OsqCEEIIIbyztbXFpEmT4OzsjEmTJmHgwIEwNDSEkpJSleMNDQ05TkgIN6ysrODn54eioiIoKirCxcUFc+bMwezZs6GkpISmTZvit99+Q0JCAgYOHMh3XCIw1JCGEEIIIbwTiUTi9vwMw9Q4lo40IkJ2+fJlTJo0Cb/99pu4+Js3bx62bt0q/rfBsixUVVURFxcHExMTPuMSgaHikBBCCCG8s7e3/2JR+HfBwcESTEOI9Dlx4gTOnTuHnJwcmJiY4IcffkCrVq34jkUEhopDQgghhBBCCCHUkIYQQgghhBBCCBWHhBBCCJFCycnJiI6ORlJSEt9RCOHFw4cPMWfOHHTv3h2mpqZYuHCh+FpUVBR27NiBt2/f8piQCBEVh4QQQgiRCkVFRfjxxx/RpEkTtG7dGra2tli/fr34ure3N8zNzREfH89fSEI4sGXLFpiZmWH79u2Ijo7G48eP8fr160pj5syZg1OnTvGUkAgVFYeEEEII4V1hYSHs7e2xYcMGKCgowMXFBf9si+Dg4IC7d+/i5MmTPKUkRPIuX76M+fPnw8DAAGfPnsWrV68++7dgY2MDLS0tnD9/nqeURKioOCSEEEII7zZu3Ihbt27By8sLT548wcWLFz8bo6enh7Zt2+L69es8JCSEG1u2bIGqqiquXbuGIUOGoEmTJlWOMzMzQ2JiIsfpiNBRcUgIIYQQ3vn6+sLQ0BB79uyp9uB7ADA1NUVmZiaHyQjhVlxcHKysrGBsbFzjuCZNmuDFixccpSKygopDQgghhPAuNTUVFhYW+Oabb2ocp6CggJycHI5SEcK94uJiNGjQ4IvjXr169cV/L4TUFRWHhBBCCOGdsrJyrYq+1NRUaGpqcpCIEH4YGRnh7t27NY4pLi7GX3/9BRMTE45SEVlBxSEhhBBCeGdmZobY2FhkZ2dXOyY1NRV37tyBpaUlh8kI4dagQYOQlpaGLVu2VDtm48aNyM7OxrBhwzhMRmQBFYeEEEII4d3kyZPx7t07jB49+rOW/QCQm5sLLy8vlJSU4LvvvuMhISHcWLhwIZo2bYoFCxZg1KhROHHiBADg5cuX8PPzw7hx47BixQoYGRlh5syZPKclQsOw/+yNSwghhBDCA3d3d5w4cQJqamqwsbFBYGAgWrVqhdatWyM0NBT5+fkYN24cDh8+zHdUQiQqKSkJI0aMwP3798EwDFiWBcMwAACWZdG2bVucO3cOLVu25DkpERoqDgkhhBAiFViWxf/+9z9s2rTps9lDdXV1LFy4EIsXLxZ/SCZEyMrLy3Hx4kUEBgYiLS0N5eXl0NfXh6OjI4YPHw45OTm+IxIBouKQEEIIIVKlrKwMt2/frvSB2NLSEgoKCnxHI4QQQaPikBBCCCGEEEII6HAUQgghhPBOTk4Onp6eOHDgQI3jJk+ejEOHDqG0tJSjZIRIVkZGxr+639DQsJ6SEELFISGEEEKkAMuyqO1iJlr0RISkefPmX72PlmEYelBC6hUVh4QQQgj5z8jLy4OioiLfMQipNyYmJnUuDjMyMlBYWCihRESWUXFICCGEEF78cznd+/fvq11iV1paisTERAQGBqJFixZcxCOEE48ePar12Nu3b2PFihVITEwEAPq3QOodNaQhhBBCCC9EIlGls9tqM3vCsiy2bduGH374QdLxCJEaf/31F1asWIELFy6AZVkYGRlh2bJlGDduHB1pQeoVzRwSQgghhBd2dnbigjA0NBTa2tpo3bp1lWMVFBSgp6eHQYMGYejQoVzGJIQ3Dx48wMqVK+Hn54fy8nI0a9YMS5cuhaenJ775hj7Gk/pHM4eEEEII4Z1IJIKnpycOHjzIdxRCePfo0SOsXLkSp0+fRnl5OQwMDPDjjz9i4sSJVBQSiaK/XYQQQgjhXWpqKtTU1PiOQQivkpOTsXLlSpw8eRJlZWVo2rQpfvzxR0yaNAny8vJ8xyMygGYOCSGEECLVEhIS8ODBAxgYGKBbt258xyGk3qWkpGD16tU4fvw4SktLoauriyVLluC7776DgoIC3/GIDBHxHYAQQgghxNfXFw4ODrh161al9xcsWID27dtj1KhRsLGxwdChQ1FWVsZTSkLqn5eXF9q0aQNvb280adIE27Ztw5MnTzBz5kwqDAnnaOaQEEIIIbwbOHAgIiMj8eLFC/EH4qioKNja2qJhw4bo378/bt68ibS0NBw6dAjjxo3jOTEh9aOia6+ysjKGDh0KZWXlWt/LMAz27dsnwXRE1lBxSAghhBDeGRkZoVmzZggJCRG/N23aNPz222+4cuUKnJyc8PbtWxgZGaFTp04ICwvjLywh9Ugk+vqFfAzD0Ew6qVfUkIYQQgghvHv16hVsbGwqvRccHAxtbW04OTkBABo1agQ7OzvExcXxEZEQiTh06BDfEQgRo+KQEEIIIbxTVlZGfn6++PXz58+RlJSEkSNHVhqnoaGBnJwcruMRIjHjx4/nOwIhYtSQhhBCCCG8MzY2Rnh4OHJzcwEAPj4+YBhGPGtY4cWLF9DW1uYhISGSkZWV9dX3Ll68uB6TEELFISGEEEKkgKenJ/Lz89GlSxcMHz4cy5Ytg5qaGgYPHiweU1JSgtjYWJiYmPCYlJD61atXL7x48aLO982YMQObNm2SQCIiy6g4JIQQQgjvJk+ejOHDhyM1NRV+fn6Ql5fHvn370LhxY/GYS5cuIS8vDw4ODjwmJaR+PX78GL169cLLly9rNZ5lWYwfPx579uyBmpqahNMRWUPdSgkhhBAiNdLS0pCdnY3WrVujQYMGla7Fx8cjPT0dVlZW+Pbbb3lKSEj9GjVqFE6dOoU2bdqImzBVp7S0FG5ubjh79iw0NTVx5coVdO3alcO0ROioOCSEEEIIIYQnZWVlcHNzw5kzZ9CuXTsEBwejSZMmn437+PEjhg4dioCAAGhrayMwMBAdO3bkITERMioOCSGEEEII4VFZWRlGjhwJPz8/dOjQAUFBQZWWVL9//x79+/dHeHg49PX1cf36ddp7SySCikNCCCGE8M7Ly6vWYxmGwYEDBySYhhDulZaWwtXVFefPn4eZmRlu3LgBTU1NvH37Fn379kVsbCxatGiB69evo1mzZnzHJQJFxSEhhBBCeCcSfblHHsMwYFkWDMOgrKyMg1SEcKu0tBQjRozAhQsXYG5ujqNHj2LUqFF48OAB2rVrh2vXrkFHR4fvmETAqDgkhBBCCO9CQ0OrfL+8vByZmZkIDAzEiRMnMHv2bAwcOBA9e/bkOCEh3CgpKcHw4cNx6dIliEQilJeXw9zcHAEBAZWWmhIiCVQcEkIIIeQ/4fjx4xg/fjyuX78OOzs7vuMQIjElJSUYNmwYLl++DFtbW1y+fPmz7r2ESAIVh4QQQgj5z+jcuTM0NTURFBTEdxRC6oWcnNxX38swDEpLS+sxDZF1X17gTwghhBAiJVq1aoXY2Fi+YxBSb1iW/eqv8vJyvuMTgfmG7wCEEEIIIbVRXl6Ov/76q1bNawj5r6ACj0gT+ulKCCGEEKlWUFCA+Ph4jB49GsnJydSMhhBCJIT2HBJCCCGEd7XZd8WyLLS0tBAeHk4HgBNCiATQslJCCCGE8M7AwAAMw1R5TUFBAbq6uujZsydmzJgBbW1tjtMRQohsoJlDQgghhBBCCCG055AQQgghhBBCCBWHhBBCCCGEEEJAew4JIYQQwoOjR4/+q/vHjRtXT0kIIYRUoD2HhBBCCOGcSCSqtgFNTViWBcMwKCsrk0AqQgiRbTRzSAghhBDOLV++/KuKQ0IIIZJDM4eEEEIIIYQQQmjmkBBCCCH8CAoKwtOnT2FhYYG2bdvWOPbhw4eIjY2FgYEBevXqxVFCQgiRLTRzSAghhBDOZWZmwsTEBAYGBoiLi0ODBg1qHP/u3TtYWFjg6dOnSE5Ohp6eHkdJCSFEdtBRFoQQQgjh3P79+1FcXIyNGzd+sTAEgAYNGmDTpk0oLCzEgQMHOEhICCGyh2YOCSGEEMI5GxsbPHnyBC9evKjTfbq6ujAyMkJUVJSEkhFCiOyimUNCCCGEcO7Ro0ewtLSs830WFhZITEyUQCJCCCFUHBJCCCGEcx8+fIC6unqd71NXV8f79+8lkIgQQggVh4QQQgjhnKamJl6+fFnn+16+fAlNTU0JJCKEEELFISGEEEI417ZtW9y8eROFhYW1vqegoADR0dFfPPaCEELI16HikBBCCCGcGzBgAD58+IA1a9bU+p41a9agsLAQAwcOlGAyQgiRXdStlBBCCCGcKygoQIsWLfDq1SusWrUKP/74I0Siqp9Zl5eX45dffsGKFSugo6ODx48fQ0VFhePEhBAifFQcEkIIIYQXUVFR6NOnD4qKiqCvrw9XV1eYm5tDS0sLAJCdnY3bt2/j1KlTePr0KRQVFXHjxg1YW1vznJwQQoSJikNCCCGE8CY+Ph4eHh548OABGIb57HrFx5R27drB29sbnTp14joiIYTIDCoOCSGEEMK7q1ev4vLly4iPj8ebN28AAI0bN4aZmRn69++Pvn378pyQEEKEj4pDQgghhBBCCCHUrZQQQgghhBBCCBWHhBBCCCGEEEJAxSEhhBBCCCGEEFBxSAghhBBCCCEEVBwSQgghhBBCCAEVh4QQQgghhBBCQMUhIYQQQgghhBAA/wfmGGf0od7NlgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est.completed_trials_summary_[est.completed_trials_summary_[\"Step\"].str.contains('Model Selection')]\n", "name_of_score_column = f\"Score ({est._inferred_score_metric[0].name})\"\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "models = trials['Algorithm'].tolist()\n", "colors = []\n", "\n", "y_margin = 0.10 * (max(scores) - min(scores))\n", "s = pd.Series(scores, index=models).sort_values(ascending=False)\n", "s = s.dropna()\n", "for f in s.keys():\n", " if f.strip() == est.selected_model_.strip():\n", " colors.append('orange')\n", " elif s[f] >= s.mean():\n", " colors.append('teal')\n", " else:\n", " colors.append('turquoise')\n", "\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Algorithm Selection Trials\")\n", "ax.set_ylim(min(scores) - y_margin, max(scores) + y_margin)\n", "ax.set_ylabel(est._inferred_score_metric[0].name)\n", "s.plot.bar(ax=ax, color=colors, edgecolor='black')\n", "ax.axhline(y=s.mean(), color='black', linewidth=0.5)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "39201562", "metadata": {}, "source": [ "\n", "#### Hyperparameter Tuning\n", "\n", "Hyperparameter Tuning is the last stage of the AutoML pipeline, and focuses on improving the chosen algorithm's score on the dataset. We use a novel algorithm to search across many hyperparameters dimensions, and converge automatically when optimal hyperparameters are identified. Each trial in the graph below represents a particular hyperparameters configuration for the selected model." ] }, { "cell_type": "code", "execution_count": 17, "id": "d400ee3a", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:02.036740Z", "iopub.status.busy": "2025-04-25T10:04:02.036261Z", "iopub.status.idle": "2025-04-25T10:04:02.283905Z", "shell.execute_reply": "2025-04-25T10:04:02.283305Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAKBCAYAAADqRmIVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPvUlEQVR4nOzdeXxU1f3/8Xf2hZCBkEAChLAFwr6KItIILiCCLFKVlipiq6hsotLi1yIolCoVQXD5qUVbaRUF2REQBEQgRAi7GBYh7EsIZN9zf3/ATDNkApNlmGHyej4eebRzzj3nfubmTJwP595zPAzDMAQAAAAAcAuezg4AAAAAAFB5SPIAAAAAwI2Q5AEAAACAGyHJAwAAAAA3QpIHAAAAAG6EJA8AAAAA3AhJHgAAAAC4EZI8AAAAAHAjJHkAAAAA4EZI8gAAgNvx8PCQh4eHNmzY4OxQXMKxY8cs1+TYsWOV2nfDhg3l4eGhzz77rFL7BVB+JHkA3MqkSZMsX2RupPiXHr6cwBkmTZqkSZMmVfqX7sp09913Wz4nZf0ZNmyYs8O/ZQwbNqzc1/nuu+92dvgAXIy3swMAAKCqmjx5sqQriVTDhg2dG0wpQkJCVKdOnRLleXl5unTpkiSpZs2a8vX1LXGMyWRyeHylad68uSQpMDDQaTGUhclksnmdCwsLlZycLEkKDg5WQEBAiWNCQkJu2L+Pj4/lmvj4+FQwWgCujiQPAACU6ptvvrFZvmHDBvXo0cNyjKvNJv3yyy/ODqFMZs2apVmzZpUoP3bsmBo1amQ5pryzo/Xq1bvlrgmA8uN2TQAAAABwIyR5AHCNX375xfKsS3x8/HWP/cMf/lDimZhrFzg4dOiQhg0bpvr168vPz08NGjTQiBEjdPr06ev2XVRUpP/85z/q06eP6tSpI19fX4WFhen+++/XF198IcMwbLYrvghCRkaGJk6cqDZt2qh69epWiy6Yn180x/7VV18pNjZWISEhqlatmjp16qQ5c+aosLDQ5nmysrL0xRdf6PHHH1f79u0VFhYmPz8/1a1bVwMGDNC3335b6nv77LPP5OHhYblFcf369RowYIAiIiLk5eVlNVtx9OhRvfnmm+rdu7eaNWumatWqKSgoSC1bttTYsWN1/PjxUs9jfp5s0qRJKigo0DvvvKMOHTooKChItWvX1oABA7R7926r9zRlyhS1bt1a1apVU61atfToo4/qyJEjpZ5DunLr4vvvv68ePXooNDRUvr6+Cg8PV//+/W1eB/PzV2Y9evSwesbK1q2bjh4Plc2ehU+K/36u1z49PV2vvvqqYmJiFBAQoFq1aqlv377atm1bmc9/7efz3LlzGjNmjBo1aiR/f3/VqVNHjz322A1nvZKSkvTUU09ZPtf169fXk08+qcOHDzt0kZNrmcfSsGHDZBiGPvnkE911112qVauW1fPGN4opLi5Of/7zn9W9e3dFRUXJ399fNWrU0B133KE333xTGRkZ5YovOztb//jHP9S1a1fVrFlTPj4+CgsLU8uWLfXEE09o4cKFFXj3AEplAIAbee211wxJhj1/3o4ePWo59tNPP7Wqi42NNSQZTz31VKntU1JSDH9/f0OS8Z///Mdmv19++aVRvXp1Q5IRFBRkBAQEWOpCQkKMHTt22Oz74sWLxm9+8xvLsZIMk8lk9fqhhx4ycnNzS7SNiooyJBn/+Mc/jGbNmhmSDF9fX6NGjRqGJOPo0aNW1yo2NtYYP368Icnw8PAwatasaXh6elrO06tXLyMnJ6fEeT799FPLMR4eHobJZDICAwOtYnzxxRdtvj9z26ioKGPmzJmGh4eH5T36+PgYTzzxRInfhfl91KpVyyo+k8lkbNq0yeZ5zG1feeUV45577rH0Ua1aNUv7oKAg46effjKSk5ONDh06GJIMf39/q99V7dq1jaSkJJvnOHbsmNGqVasS16L4dRgxYoRVm9GjRxt16tSx1NesWdOoU6eO5adz5843fTyU1fr16y3nXr9+fYn669WZmX8/r732Wqnt//vf/xpNmza1/F6KjzFfX19j9erVNvsu7fzFP5/Lly83ateubUgyAgMDDT8/P0tdcHCwsWvXLpt9b9myxfK5lmQEBAQYQUFBlnZfffWVpa6819dWvNf+nTIMw3jiiScMScbjjz9uPPzww4Ykw9PT0/I5Nrcp3o+tmIqPpcDAQKNmzZpWZS1btjTOnTtnM0bzGLs2vrS0NKNdu3ZWn40aNWoY3t7elrKoqKgKXR8AtpHkAXArlZXkffnll4Yko1q1akZaWprN9u+++64hyahVq5ZVElS8X5PJZLRt29bYtm2bYRiGUVRUZKxevdpo0KCBIclo0KBBif4LCgosX37bt29vLFu2zMjMzDQMwzAyMjKMf/3rX5YvpmPHji0Rl/kLV1BQkBEeHm4sWrTIyMvLMwzDME6cOGHpy3ytzMnCyJEjjfPnzxuGYRipqanGG2+8YUm+XnjhhRLnWbx4sfHSSy8ZP/74o6VPwzCM06dPG5MnTzZ8fHwMScaSJUtKtDUnef7+/oaXl5cxbNgw4/jx45b3f/jwYcuxY8aMMd577z3j4MGDRmFhoWEYhpGfn29s27bN6N27tyHJqFu3rpGVlVXiPObrWKNGDaNWrVrG119/beTl5RlFRUVGfHy80bhxY0OSceeddxoDBw40GjZsaKxevdooLCw0CgsLjbVr1xphYWGGJOP3v/99if4zMjKMmJgYQ5Jx9913Gxs2bLCMhcuXLxszZsywfPmfOXNmifb2JEI3azyU1c1K8mrWrGm0bNnS+P77743CwkLL76558+aWJME8Luw5f/HPZ82aNY1u3boZP/30k2EYV8bVd999Z0RERBiSjO7du5fo99KlS5b6xo0bG99//71RVFRkGIZhxMfHG+3atbNKkG5WkhcUFGR4e3sb//jHP4zU1FTDMAwjPT3dOH36dIl+bMXUr18/Y/78+caZM2csZVlZWcY333xjudYDBw60GWNpSd4bb7xhSFf+QWvhwoWWz0ZhYaFx6tQp49///rfxpz/9qRxXBcCNkOQBcCvFk7ziMyO2fkJDQ0v98pSXl2f54vzhhx/aPFebNm0MSca4ceOsyot/mapVq5bNf/3++eefDV9fX0OS8dZbb1nV/fvf/zYkGTExMcbly5dtnnv79u2Gh4eH4evrW6J/8xcuLy8vIyEhwa5r9Yc//MHmMa+++qohyfD29jZOnTpVal+2TJ8+3ZBk3HPPPSXqis8CDho0qEz9FldQUGC0bdvWkGR8/vnnJeqLzwLamu1bt26d1WzMoUOHShzzz3/+01JvTo7MXn/9dUO6Mht6bZ3ZN998Y0gyQkNDjfz8fKs6exKhmzUeyupmJXlhYWE2P0N79uyxHPPjjz/aff7in8+YmBib/ziwdOlSyzEnTpywqjMnLv7+/jbHy4ULF6z+ttysJE+S8e6779rVT1ljOnnypOHn52d4eHjYnNEuLcl74IEHDEnG3/72tzKdD0DF8UweALd17ty56/6YlyW3xcfHR0899ZQk6aOPPipRHxcXp71790qSnn766VL7GTFihGrXrl2ivEWLFho8eLAk6csvv7Sq++c//ylJevbZZ0tdgr5Tp05q1aqV8vLytH79epvH9O7dWx06dCg1tuImTpxos/zll19WQECACgoKyvzszIMPPihJ2rp1a6nP9UnShAkTytRvcV5eXurdu7ck6ccffyz1uLvuukt33XVXifLY2Fj5+flJkgYPHqymTZuWOKZXr16SrjxbdOjQIas68+9q3LhxpS5LP2DAAAUHBys5OVk7duyw411Zc8Z4cCVPP/20zc9QmzZtLKtO7tmzp1x9v/jiiza3JHjggQcsW0KYP+dmX3/9tSTp0UcftTleQkND9eyzz5YrnoqoWbOmnnnmGYf0Xa9ePbVr106GYWjLli12t6tRo4Yk6cyZMw6JC0DpSPIAuC3jyt0Kpf4cPXr0uu2ffvppeXp6KiEhQQkJCVZ1H3/8saQrSYJ57ylbevbsecO6PXv2KD8/X9KVPbHi4uIkXVkYJTw8vNSfxMRESVcWgLClW7du131/ZpGRkTa/rEpX9uXq1KmTJGn79u0l6s+dO6fXXntNXbt2Va1ateTt7W1Z3KFly5aSrixmYt5P7VoBAQHq2LHjDWPctGmThg0bppiYGAUFBVktUvLWW29Jkk6ePFlq+y5dutgs9/LyUmhoqCTptttus3lM8b3Lir+PU6dOWa79U089VervKSIiwrJoRWm/q9I4Yzy4mttvv73Uurp160qSUlJSKrVvb29vhYWFleg7Ly9P+/fvl3Tls18aZ2wncdttt9ncq9BeRUVF+u9//6uHHnpIDRo0UEBAgNXnzLwI1fU+Z9fq27evJGnOnDkaMmSIFi9efN1/XANQedgnDwBK0bBhQ/Xq1UvffvutPvroI3344YeSpLS0NM2fP1+Sbvgv5/Xq1bthXUFBgVJSUlSnTh2lpKQoNzdXkkpNjK6VlZVls9zW7EdZYyxef/78eavyrVu3qk+fPrp8+bKlLCgoSIGBgfLw8LDaxDkzM9OSTBVXq1YteXpe/98b//znP1sSOelKYlZ88+2MjAxlZmYqMzOz1D6qV69eap23t/d1jzHXS7Ik45KsVke194trab+r0jhjPLgae353xX8vjuw7JSXFMittTjBtudFnyhEq8vvNyspS3759rWaBfX19FRISYpmhTklJUX5+/nU/Z9f63e9+p/j4eM2ePVtffvml5a6Fpk2b6v7779fw4cMt/4gEoHIxkwcA12G+7eq///2v5cuN+f/XqlVLgwYNqtTzFb+t8dtvv73hbKRhGDaXn5euJEOOUlBQoCFDhujy5ctq3769Vq5cqbS0NKWnp+vcuXM6e/asZQZKUqnL+98oxu+++86S4D333HPau3evcnNzlZKSorNnz+rs2bN64YUXrnsORyn+uzpw4IBdv6uybmR9q4yHqqj4FhiuoCK/36lTp2r9+vUKCAjQO++8o6SkJOXk5OjixYuWz5l51rOsn7OZM2cqMTFRf/vb3/TAAw+oRo0aOnz4sN5//3117txZY8eOLXfcAEpHkgcA19GnTx9FRkYqPT3d8q/Q5ls1hw0bZnmeqzSnTp26YZ23t7dCQkIkyXLLo1T2W/vK63oxFq8vPlOwdetWJSUlycvLS8uXL9cDDzxQYlbk7NmzFY7NfM179eql9957T61bty7xZbYyzlMe4eHhlv/vqN+VM8ZDZTH/nnJycko9JjU19WaFUylCQkIs7+t6+1ze6DPlasyfs4kTJ2rs2LFq0KBBiSS2Ip+zpk2basKECVq5cqUuXryorVu3asCAAZKkWbNmaenSpeXuG4BtJHkAcB1eXl6WhVU++ugjq+fzrrfgillpi2AUr2vbtq3lligfHx/L82PLli2rUOz2OnHiRKmbfaenp1sWC+ncubNVG0kKCwsr9da0tWvXVkpskkpdMMQwDH3//fcVPk95NGzY0PLey/u7Mn+RLm12xBnjobLUrFlT0v9+h9dKT0/XgQMHbmZIFebr66tWrVpJ0nU3eb9enSu60efs2LFjOnz4cKWcy9PTU3fccYcWLFigBg0aSLoyYw+gcpHkAcANPPXUU/L29lZ8fLzl1sDY2Fg1a9bshm0//PBDm89rJSYmasGCBZKurNJXnDl5XLlypVauXHnd/su74MS13njjDZvlb7/9trKzs+Xt7a2HH37YUm5e5dG8Uum1Tp48qXfffbfCcZnPs3v3bpv1H374oX799dcKn6e8/vSnP0m6sgLmzp07r3usrd9VcHCwJFk913gtZ4yHytCuXTtJKnVV1n/84x+W5w1vJeZVcefPn2/zH0cuXrxoeX73VnGjz9lf/vKXcvV7vd+vl5eX5bnaGz2XC6Ds+FQBwA1ERESof//+kqQffvhB0o0XXDHLz8/Xfffdp59++knSlRmbtWvXqlevXsrNzVVkZKRGjBhh1Wbo0KG69957ZRiGBg4cqClTpljdGpaZman169fr+eefV+PGjSv8/kwmk/71r39pzJgxloQ0PT1df/vb3/T6669Lkp5//nmrhSbuuusuVatWTYZh6JFHHtHBgwclXXmGbPXq1br77rsr5Zkl8/YI3377rd544w3Lc5GXL1/W3/72N40aNUq1atWq8HnK68UXX1SbNm2Uk5OjHj16aM6cObp48aKl/vLly/r222/1+OOPq3v37iXat27dWpL0n//8p9QFU272eKgsQ4YMkSStXr1ar732mtLS0iRdWaTmlVde0ZQpUyxL7N9KRo4cqTp16ignJ0e9e/fWxo0bLTOx27dv13333aeCggInR1k25s/ZlClT9M0331jiP3r0qH73u9/pq6++sszMlsXtt9+u0aNHa8OGDVYLtpw+fVqjRo2yzA726dOnEt4FACuO2HwPAJyl+AbfN3KjTYaLW7t2rdUG5zk5OXb1++WXXxrVq1c3JBlBQUFGYGCgpa5GjRrGTz/9ZLOP1NRUo2/fvpZjJRnBwcFGjRo1DA8PD0uZt7d3ibalbUx8LfO1io2NNcaPH29IMjw8PIyaNWsaXl5elnPce++9RnZ2don2H3zwgVV8QUFBhr+/v2Xj7+IbSl+7+bJ5M/SoqKjrxpiXl2d0797d0o85Pk9PT0OS8eCDD1o2bI+NjS3R/nqbbZflepnPb2tj71OnThl33HGHVYw1atQwgoODra5P06ZNS7T9/PPPLfU+Pj5GvXr1jKioKKNbt25Wx92M8VBWN9oMvaCgwOjRo0eJ352Hh4fh4eFhTJ8+3a7N0Cu6mfr1NkO/3qbg17tumzZtMoKCgiz9BAYGWl7XqFHD+Prrry11Z86cKfUc9rB3M/QnnnjC7n6ufd/Hjh0z6tSpYzWOTCaT5fXf/va3617r0q6Vubz456JatWpW4/iFF14o2wUBYBdm8gDADj179rQsjmLPgitmt99+u7Zv367HH39cJpNJBQUFqlevnv70pz9p7969Vs+5FRccHKxly5Zp5cqVevTRR9WgQQPl5uYqKytL9erV0/33369p06ZZ9karqDfffFNffvml7rrrLhmGIV9fX7Vv316zZs3SqlWr5O/vX6LNiBEjtGLFCt19990KCgqyvLdRo0Zp9+7datOmTYXj8vHx0Zo1a/Taa6+pWbNm8vHxkWEY6tKliz744AMtXbrU6atG1q1bVz/++KO++OILPfTQQ4qIiFBWVpby8vLUsGFD9evXTzNnzrTMAhc3dOhQff7557rrrrsUGBioM2fOKCkpqcReZDd7PFQGLy8vrVixQpMnT1ZMTIx8fX3l4eGh+++/X999951eeuklZ4dYbnfddZf27NmjJ598UnXr1lVBQYFq1Kih4cOHKyEhQU2aNLEceyvMVkZFRWn79u166qmnLDP2/v7+6tu3r1avXq0JEyaUq98vv/xSkydP1j333KNGjRopLy9P+fn5ioqK0qOPPqp169ZpxowZlflWAFzlYRg3ec1pALgF7dixw5KQJSYmXvd5vGPHjqlRo0aSrtzu1LBhw5sRYplNmjRJkydPVmxs7C23UATgyj7++GM9/fTTaty4camLGgGAIzGTBwB2mD17tqQrM3r2LLgCoGrKycnRzJkzJf3vWTcAuNlcOsnLzs7WxIkT1axZM/n7+6tu3boaPnx4ufafuXTpksaMGaOoqCj5+fkpKipKY8eOLXVFs88++0yPPfaYWrRooZCQEPn6+qpu3boaPHiwNm/eXGobDw+PUn8ee+yxMscNwPlWrlypefPmSdItfYsZgMrx5Zdf6tVXX9W+ffuUl5cnSSooKNAPP/ygnj176ueff5a/v7/GjBnj5EgBVFXezg6gNDk5OerZs6fi4uIsK9sdO3ZMn376qZYvX664uDi7VxFLTk5W165ddfjwYTVu3FgDBgzQ/v37NWvWLH377bfaunWr5Vkbszlz5lieKbnrrrvk7++vxMRELVy4UN98843ef//9EivimbVr107t27cvUX777beX+ToAcI6TJ0/qrrvuUlZWli5cuCBJ6tu3rx544AEnRwbA2c6ePaupU6dq6tSp8vDwUM2aNZWRkWFJ+Hx9ffXpp58y6w/AaVw2yZsyZYri4uLUtWtXrVmzRkFBQZKkGTNm6MUXX9Tw4cPtfoZk7NixOnz4sAYNGqT58+fL2/vK2x49erRmz56tcePG6bPPPrNq895776lly5aqXr26VfnSpUs1aNAgvfDCCxo8eLBCQ0NLnG/AgAGaNGlSmd8zANdRUFCgpKQkeXh4qH79+ho8eHCpe8kBqFr69u2rCxcuaMOGDUpKSlJycrJ8fHzUuHFj9ejRQ2PHjiXBA+BULrnwSl5enmrXrq3U1FQlJCSoQ4cOVvXt2rXTnj17tH37dnXq1Om6fZ05c0b169eXt7e3jh8/rjp16ljqzHtUpaSk6PTp06pdu7Zd8d17771at26dlixZooceeshS/tlnn+nJJ5/Ua6+9RpIHAAAAwClc8pm8zZs3KzU1VU2aNCmR4EnS4MGDJUnLli27YV+rVq1SUVGRunfvbpXgSZKfn5/69eunwsJCrVy50u74fHx8JF25HQMAAAAAXIlL3q65e/duSVLHjh1t1pvL9+zZUyl9zZ07166+JGndunX6/vvvVbNmTd1xxx02j9mxY4defvllpaWlKTw8XD179lRsbKxd/V+rqKhIp0+fVvXq1eXh4VGuPgAAAADc+gzDUHp6uurWrStPz9Ln61wyyTt+/LgkqX79+jbrzeVJSUkO7+vTTz/Vxo0blZOToyNHjmj79u0ymUz64osvSt3gdPny5Vq+fLnl9euvv67Y2FjNnz+/xGzijZw+fVqRkZFlagMAAADAfZ04caLU/EZy0SQvIyNDkhQYGGizvlq1apKk9PR0h/e1efNm/etf/7K8DgkJ0ccff6xevXqVODYiIkKTJk1S//791bhxY2VnZys+Pl7jx4/Xxo0b1bdvX8XFxcnLy6vUeHNzc5Wbm2t5bX5kcs+hPSUWgSmPy9mXJUk1AmpUuC/AFsYYHI0xBkdjjMHRGGMor/T0dLWNbnvDvMAlkzxX8sknn+iTTz5RRkaGEhMT9dZbb+nhhx/Wn/70J3300UdWx/bq1csq+QsODla/fv3Uo0cPderUSdu3b9dXX32lIUOGlHq+adOmafLkySXKq1evruDg4Aq/n0KfwiuxBVS8L8AWxhgcjTEGR2OMwdEYY6ioGz3G5ZJJnnm7hKysLJv1mZmZkmTXzFZl9RUUFKROnTpp/vz5ysnJsczmPfzww3bFMHr0aI0cOVKrV6++bpI3YcIEjRs3zvI6LS1NkZGRCgkIqdQ/BCEBITc+CKgAxhgcjTEGR2OMwdEYYygr73z70jeXXF2zQYMGkq5sRmyLuTwqKuqm9mU2dOhQSdKSJUvsbhMdHS3pypYO1+Pn56fg4GCrHwAAAACwl0smee3atZMkJSQk2Kw3l7dt2/am9mVm3gD9woULdre5dOmSpP89AwgAAAAAjuCSSV63bt1kMpl05MgR7dq1q0T9ggULJEn9+vW7YV+9e/eWp6enNm3apPPnz1vV5ebmatmyZfLy8lKfPn3sjm/jxo2SpCZNmtjdZuHChZJK38oBAAAAACqDSyZ5vr6+GjlypCTp+eeftzw3J0kzZszQnj17FBsbq06dOlnK58yZo5iYGE2YMMGqr4iICA0ZMkR5eXl67rnnVFBQYKkbP368Lly4oKFDh6p27dqW8gMHDuirr75SXl6eVV+GYejLL7/UW2+9JQ8PDz3xxBNW9dOmTVNycrJVWX5+viZPnqyvv/5aAQEBevLJJ8t5VQAAAADgxlxy4RVJevXVV7V27Vpt2bJF0dHR6t69u5KSkrRt2zaFhYVp7ty5VscnJycrMTHR5jNvM2fOVFxcnBYuXKiYmBh17txZ+/fv1759+xQdHa0ZM2ZYHX/u3Dk9+uijMplM6tSpk8LDw3X58mX9/PPPOnbsmDw9PTVjxgzddtttVu1eeeUVTZ48WZ07d1ZkZKTS0tK0a9cunT59Wv7+/po3b57q1atX+RcLAAAAAK5yyZk8SfL399f69ev117/+VYGBgVq8eLGSkpI0bNgwJSQkqHHjxnb3FRoaqvj4eI0aNUp5eXlatGiRUlNTNXr0aMXHxyskxHplo1atWun1119Xp06ddPDgQS1cuFDr16+Xj4+Phg8frp9++kljx44tcZ6JEyfqN7/5jU6cOKElS5bo+++/V2BgoJ555hnt2rVLgwYNquhlAQAAAIDr8jDMu23DJaWlpclkMik1NbVSVtpMyU6RxJK9cBzGGByNMQZHY4zB0RhjKC97cwOXnckDAAAAAJQdSR4AAAAAuBGSPAAAAABwIyR5AAAAAOBGSPIAAAAAwI2Q5AEAAACAGyHJAwAAAAA3QpIHAAAAAG6EJA8AAAAA3AhJHgAAAAC4EZI8AAAAAHAjJHkAAAAA4EZI8gAAAADAjZDkAQAAAIAbIckDAAAAADdCkgcAAAAAboQkDwAAAADcCEkeAAAAALgRkjwAAAAAcCMkeQAAAADgRkjyAAAAAMCNkOQBAAAAgBshyQMAAAAAN0KSBwAAAABuhCQPAAAAANwISR4AAAAAuBGSPAAAAABwIyR5AAAAAOBGSPIAAAAAwI2Q5AEAAACAGyHJAwAAAAA34u3sAAAAQOmOp6YqOSvL8jo0MFANTKab0t5ZbZ157uOpqTqScl6SZPLPvaXivlWvd1WLmzF2c8/tzLidiSQPAAAXdTw1Vc3nzFFOQYGlzNfLS5NiY3VbvXq6t3FjS/m/d+9Wdn6+BrdsqVqBgZKk748eVa9581RQVGQ5zt/bW2/de698vbw0ICZGdYKCJEmHU1K07tdfVbd6dfVr3tzmuf29vZU4cqQMw9Cqw4dVu1o1DWzRwlK/6MABnc/MVOvatXXv559btfXx9NTh0aMtX46WJSbqdHq67mncWE1DQiRJ5zIytPiXX5RbWKg/r11r1d7b01Orhw5Vz0aNJEkXs7K04OefFeDjo8fbtbMc99+9e/XE4sVW79nPy0uvxcaqTlCQhnfoYCnfcOyYEpOT1aVePXWIiNDx1FQ1mz1buYWFJd7zidRU7Tt/Xh0jInRbvXqSpLzCQn26c6ck6amOHXU6Pb3UaxYZHKyPduyQJD3Rvr38va98Bdtx+rS2nz6tkIAAPb54cYn3vPuZZ9Sydm1J0p5z57T1xAlF16pluQ6S9PaWLfrLunVW79k8TjpGRKhX06aW8v/s2aOMvDwNatFCYdWqWa7DfZ9/XmKc/OO+++Tt6amHmjdXRPXqkqSjly5pzZEjCg8KUv+YmOuOEw9JKw8dUmhgoB5u2dJSv+SXX3Q2I0OtatfWfTcYJysOHtTJtDT1aNRIzWrVkiRdyMzUNwcOKLugQBPWrStxzb79/e8tn41L2dn6av9++Xl7a1j79pbjvti7V4+XMk7CqlXTHzt2tJT/kJSkAxcuqHPduupUt+51x8mptDTtOXdO7cPDdXv9+pKkgqIi/TMhQZJ0T+PGavPBByU+04dGjbK854927JBhGPpDu3YK9PGRJO08c0bxp06phr+/hi1ZUuI973zmGbW+Ok72nT+vzcePq0lIiNXfiHe2btX4tWttjpP24eF6IDra6vqk5eZa/kZc7z1vO3lSKdnZ6tusmeoFB0uSki5ftvobcb1x4uXhoeUHDyokIEC/bdXKUm/+G9EiLEy95s277jhZdfiwki5fVmzDhooJDZV05W/ERzt26LUNG5Rf7D37eHpq8t13q2+zZmpTp44kKS03V1/s3SsfLy+rvxHz9+3T0EWLSnw2EkeOdPlEj9s1AQBwUT8kJVl9sZGuJBavfP+9Prn6pdFs/HffacSKFTqVnm4p23jsmNWXE0nKKSjQm5s3a8SKFTp6+bKlfPvp0xqxYoXeiYuTJCVnZZU4d05BgZKzsrTn3DmNWLFCb27ebFVv7jf+1KkSbfOLiqz+NXzmtm0asWKFtp8+bSk7evnylX5//LFE+4KiIm04etTy+nR6ukasWKHx331nddxnu3aVeM+5V6/ZmFWrrMo/371bI1as0OojRyzvufiX2OLvef7+/RqxYoWWJib+r9+CAo1YsUIjVqxQwdX3V9o1MyTLsZl5eZb6lYcOacSKFfpy/36b7/loaqrl9dpff9WIFSv06a5dVse9/sMPJd6zeZz8v6uJpdmEdes0YsUKHS/W76akJJvjZPqWLRqxYoUOpaRYyneePasRK1boH1u3Wq5Zae95/4ULGrFihaZu2mRV//bWrRqxYoW2njhxw3EyOz5eI1asUNzJk5ayE2lpGrFihaaVMk6+LzZOzmVmasSKFRq3erXVcfP27Cl1nIxcudKq/L9792rEihVaceiQ5T2XNk4W/PyzRqxYoUW//GIVk/l3fzo93eZnuvh7fvbqsWm5uZay1UeOaMSKFfrP3r023/ORYr+j9UePasSKFSX+Rky5zjh5f/t2q/JX16+3+htxvff8xg8/aMSKFfolOdlSd+3fiOuNk8SLFzVixQq9/sMPVvXmvxGbjx+/4Th5/6efLMeanU5P1yvff2+V4JnbvvL991p/7JilLDkrSyNWrCjxN+K/e/fa/GwUP7erYiYPAAAXVFhUVCKBMevRsKFuq1vXqqxPdLQu5+Qo2M/PUhZxdZbuWnfUr68iw1BNf39LWf3gYA2MibHMBlxPeFCQBsbEWGZWzO5u2FB1q1e3zCRez12RkTL5+an+1X/5l6Sa/v4aGBMjTw8PLTxwoEQb82ySJAX7+WlgTIxqFHsPktQqLEzf/fpribY9GjZU+DXXo2NEhC7l5JR4H7a0rVNHA2Ni1CIszFLm7empgTExkiRPD48b9mE+1tfLy1IWExqqgTExal5KDP7Fjm0aEqKBMTHqHBFhdcxdkZFaefhwibY9GjbU7VdnHc16N22q5Kwsq+tWp5Rxcnu9euoYEaFaAQGWsrrVq1+5DldnS66nTrVqGhgTo0Y1aliV/yYqSqGBgQqzY5zcGRmpQB8fq1mTGlfHiWEYWlws6S4eo1mQr68GxsQoyNfX6pgWYWGlXjPzDKdZ+/BwDYyJscwQXU+bq+OkVbFx4unhYfnde3neeH5lYEyMigxDfsV+981q1dLAmBhFh4Ro2cGDJdoEXJ3xk6TGNWtqYExMib8R3Ro0sNm2R8OG6np11tHs/saNdS4z0+pvRGnuadRITUNCrK5baX8jbAkLDNTAmJgSM2PmvxG1r/l92NK1fn15e3oqqthYC/bzU4+GDa2SObMeDRuqSc2alteBPj4aGBNjmWE3axEaqqU2rtmtwMMwDMPZQaB0aWlpMplMSk1NVXCx/xCWV0r2lX/pCQkIqXBfgC2MMTiau46x7Px8LU1M1COtWsnjasLwl7VrS8yWSdKOp59Wx2u+6NuScOaMOn30UbnaO6utM89N3Df33FUx7qr4np15bmfG7Sj25gbcrgkAgJPlFxYq5r339NjChfohKclS/txtt5X4l2V/b2+F2jEDIl1ZIKC87Z3V1pnnJu6be+6qGHdVfM/OPLcz43Y2ZvJcHDN5uNUwxuBo7jLGzmZkWN0++Ozy5Vp15Ije7d1b/Zo3t5Szot3NPfeVlQ/PSJJM/qZbKu5b9XpXtbgZYzf33O62uqa9uQFJnosjycOt5lYcY7fqfzyqatzl/XLkKu85t6BA//f99/rx+HEdGT1akVf7SM3JUTVfX3nb8cwOHOtW/DuGWwtjDOVlb27AwisAqjRbyzp7eXjo1zFjLF/glx88qLiTJ3V3w4aW5ahzCwr00po1+mD7dhUW+7cyH09PPdOpk/pER1uWoy4yDE1cv16S9Er37pYlsb/cu1dDFy2yau/v7a0RnTqpmq+vXr7zTpmuPvT+4/HjWnX4sNrVqaPftmp13eWoz2ZkaGliolqGhel3bdpY6t/avFlpubl6qFkzxf7rX9ddjnpmXJySs7L0x44d1fDqg+z7z5/XF/v2KcjXV5M3bixxzdY+/rjubthQknTw4kX9e/du1a1eXc/ddpvluL//+KNe/f57q/fs5+WlP3XsqCYhIRp7xx2W8n/t2qVDKSka3LKl2oeHX3cJ7x+PH9fPFy7ooebN1eXqQhMXMjM1a9s2BXh76w/t2tncisC8bHlqTo6mb9kib09PTbr7bssxS375RT+dPq3WYWF6cunSEu/58OjRluvz7aFD2nzihLo3aGBZsj6/sFDjVq8uMU48JRXpymqJT15drttkxwIHAADYg38uBFBlnc3I0O6zZ0sszVxoGFYzNqsPH9bUTZu0sdgKXXmFhZrz009WX9ylK0szz/npJ60ttrqfYRiaummTpm7apOz8fEv5xqSkEu1zCgr03k8/aeqmTVbLZ287eVJTN22yrPJ1veWoE86c0dRNm0qsTjg7Pl5TN23SoZSUGy5H/eH27Zq6aZNOFFtm/ZfkZE3dtEnzbSz1XmgY2nf+vOX1r5cuaeqmTfrn1T3EzObv31/iPedevZYfXrOE9xf79mnqpk3ae+6c5T2XtoT3wgMHNHXTJiWcOWOpu5idrambNmnG1YT1esuWp+XmauqmTfr7jz9aHfOt+XdvYyuDQsPQhcxMy+u1v/6qqZs2Wa3kVmgYNsdJkaRFjzxiSfAAAKhMzOQBqJI+27VLzyxfru4NGtzw2NiGDeXp4aE7ii0x7ePlpcdatdKX+/eXOP6xVq3UPSrK8trDw0Oju3SRJKsHuFuVslT9I61aqVZAgNWS3x0iIjS6Sxd1vmZJbFva1K6t0V26qF14uFX58PbtdTknRzWLLYdemj+0bavzmZlWS5E3CQnR6C5d5OPlpV1nz5ZoU3y5/iiTSaO7dLFaHl+6stS2rbaPtWpVYun+/s2bq3mtWnYtW/5gdLTqV6+uNsX6qOnvr9FdulhmTq8nyNdXo7t0KXGrZI+GDeXn5aXoUpYB9yi2bH73qCgVFBXpzshIS5mXh0ep46TBNcvKAwBQWUjyAFQJhmGooKhIPlf3Hepct67yCguVkp19w7aDW7bU4JYtrcr8vb31crduNr+8v9ytm9XSyp4eHpr1wAMljiueDBQ3rmvXEksz92zUSD0bNbphrNKVvZC62UheJ/foIUlWs12l+b/f/KZEWfvwcM164AElnDmjt69uhFxco2J7DrUIC7P5nn/Xpo3NttdeM0l6tthtnjcy3MaMWJ2gIEsMN3rPNQMCbMb7aOvWerR161LbF98bbUBMjAZc3QvLzMfLq9RxAgCAo3C7JgC39/3Ro+ryySd6feNGS1nr2rW179lntfixx27JpZlv1SWlb8W2zj43AABlxeqaLo7VNXErcdWVDxf+/LMGf/216lWvrqSxY+V1zS15VXWVyls1blccY44+N24u/lsJR2OMobzYQsFNkOThVnG91R5v9GW2Im1La198tcjCoiLNjIvT4+3aKaxatXK8O7gS/o7B0RhjcDTGGMqLLRQA3FTXW+1xaWKifr10SY+3a6f2VxcDOXrpkmbHxyssMFC9mjYttW0Dk0kn09I0Y+tWBfv5WS1v/69du7T73Dm1DguzuVrkhcxMNTCZ5OXpqRfvvNMxbxwAAMDF8EweAIf7+uef9U5cnA5dvGgpO52ernfi4vTprl03bH8hM1PvxMXp44QEq/Llhw7pnbg4HUxJsdmO2xQAAEBVxEwegHIpMgytOXJEwX5+pa4Safb7Nm10Z/36Vkvh1wsO1l+6dbNr8Yk6QUH6S7duCvbzsyof0Ly5mtasWeoS+8VXPgQAAKgqSPIAlMv0zZv1l3Xr1KNhQ33/xBOWFQSvfa4uNDBQT3fqVKJ9wxo1NO3eeyVdeaautLaSVLd6dcuxxf2+bVu72gMAAFQlJHkA7HLs8mV5e3paNrce0qaN3tqyRe3Dw1VYVKQGJpMSR44s18qH5rblXX2wou0BAADcCUkeACu2lnqfv2+f/rJunZ7u2FEf9O0r6UpidXrcOPkV2/+rgcmkIN9CSWVfMayByVShpKyi7QEAANwFSR4Ai9K2Mvisf38VGYbOZmbKMAx5XH3Wzc+bPyEAAACuhm9oACxK2wahaUiIEkeOVLNatZwUGQAAAOzl0lsoZGdna+LEiWrWrJn8/f1Vt25dDR8+XKdOnSpzX5cuXdKYMWMUFRUlPz8/RUVFaezYsbp8+bLN4z/77DM99thjatGihUJCQuTr66u6detq8ODB2rx583XPtWzZMsXGxio4OFjBwcG6++67tWLFijLHDLgKDw8PEjwAAIBbhMsmeTk5OerZs6feeOMNZWRkqH///oqMjNSnn36qDh066Ndff7W7r+TkZHXp0kXvvvuuvL29NWDAAFWvXl2zZs3S7bffrhQbe2zNmTNHCxcuVEBAgO666y4NGDBAYWFhWrhwobp3764PP/zQ5rlmzpyphx56SFu2bFG3bt3Us2dPxcfHq2/fvpozZ065rwfgKBl5eTqemursMAAAAFBJXDbJmzJliuLi4tS1a1cdPHhQ8+fP17Zt2/T222/rwoULGj58uN19jR07VocPH9agQYOUmJio+fPna9++fRo1apQOHjyocePGlWjz3nvvKSUlRQkJCVq6dKm++uor7d69W0uWLJGnp6deeOEFJScnW7VJTEzUSy+9JD8/P/3www/69ttvtXjxYu3atUu1atXSCy+8oMOHD1f42gCVZeuJE2rx3nv63cKFKjIMyzYIxbEVAQAAwK3FwzAMw9lBXCsvL0+1a9dWamqqEhIS1KFDB6v6du3aac+ePdq+fbs62dh/q7gzZ86ofv368vb21vHjx1WnTh1LXW5uriIjI5WSkqLTp0+rdu3adsV37733at26dVqyZIkeeughS/lzzz2nDz74QGPGjNHMmTOt2rzzzjsaN26cRo4cqdmzZ9t1HklKS0uTyWRSamqqgq8uXV8RKdlXZi3LuvIh3NOJ1FS1eO89hVWrph+GDVOkyWRzdc2yrFrJGIOjMcbgaIwxOBpjDOVlb27gkjN5mzdvVmpqqpo0aVIiwZOkwYMHS7ry7NuNrFq1SkVFRerevbtVgidJfn5+6tevnwoLC7Vy5Uq74/Px8ZEk+fr6WpWbn7szx1femAFHySss1MZjxyyvI00mrRo6VPufe06RVxO5BiaTOkZEWH7YlgAAAODW4pJJ3u7duyVJHTt2tFlvLt+zZ89N7UuS1q1bp++//141a9bUHXfcYSm/fPmyjh8/Lkk2E9PIyEiFhoYqKSlJaWlpdp0LqEwp2dnq8P/+n+77/HMduHDBUn5XgwYKvPoPFwAAALj1ueQWCuZkqX79+jbrzeVJSUkO7+vTTz/Vxo0blZOToyNHjmj79u0ymUz64osvVKNGjRLnqVmzpqpVq1bquZKTk5WUlKQ2bdrcMHagMtX091fjmjV1ITNTJ9LS1CIszNkhAQAAwAFcMsnLyMiQJAWWstiDOYlKT093eF+bN2/Wv/71L8vrkJAQffzxx+rVq1eZzmNv3Lm5ucrNzbW8Ns/6pWSnqMCnoLRmdruUfanCfcA+J9PSdTEr2/K6VmCA6gdXv2lti2To+1+Pa0BMUzUJqSlJevPeu+Tn5aWaAf6W5wEqG2MMjsYYg6MxxuBojDGUV1q2fXcEumSS50o++eQTffLJJ8rIyFBiYqLeeustPfzww/rTn/6kjz76qNLPN23aNE2ePLnS+8XNdSI1TV0++Vx5hUWWMj8vL/2xY1sF+fromU7tZfL3kyT9dOqM1h87rhZhtdSvWVOdTEtXl48/V25hoVXb+D/9QclZ2Vpz5KiiQ2pqYItmlvoPt+9SWm6u7mkUpX5ffGPV9s3N25TwzBOqH1xd4UG2Z5kBAADgPlwyyQsKCpIkZRVb4a+4zMxMSVL16jee2aisvoKCgtSpUyfNnz9fOTk5ltm8hx9+2K7z2HuuCRMmWG3pkJaWpsjISIUEhCg4oOKra5qxmpNjvbBqo1WCJ0m5hYX6JGGPcgsL9WznrgoJqCFJ+vlCot7cHK/ftWmjJ9p10bHLuVZJmrltQZGvDqck683N8RoQE6OnOv7vmdD/t2OPjqemqlVY3RJtCw1DBUW+N/13zhiDozHG4GiMMTgaYwxl5Z1vX/rmkguvNGjQQJJ08uRJm/Xm8qioqJval9nQoUMlSUuWLClxnkuXLlmSufKcy8/PT8HBwVY/cG2f796tQfPnK+nyZUtZh4gIm8cOjInRs507K6jYyqxt69TRs507695GjW54rpZhYXq2c2f1btLEqvwPbdvq2c6dVTMgoHxvAgAAAG7DJWfy2rVrJ0lKSEiwWW8ub9u27U3tyyw0NFSSdKHYCoU1atRQgwYNdPz4ce3cuVN33XWXVZsTJ04oOTlZUVFRJG5lVJF92yq7bWRwsE6lp6t+sd/hxwkJ2nT8uO5p1EjPd+kiSbqzlIV+Xu7WTR2vSQDvadxY9zRubFdMdzVooLuu/oNCcVN69pQkJZw5Y1c/AAAAcF8umeR169ZNJpNJR44c0a5du9S+fXur+gULFkiS+vXrd8O+evfuLU9PT23atEnnz5+32vA8NzdXy5Ytk5eXl/r06WN3fBs3bpQkNblmNuXBBx/UBx98oAULFpRI8soSM/7neGqqms+Zo5yC/y064+/trcSRI2+YrFV2Wz8vL4UGBiojL08XXn5ZPl5ekqRnOnVSz0aNrBK18OrV5e/tXeLcoddZmMcsNDDQKW0BAADgHlwyyfP19dXIkSM1depUPf/881qzZo1lZcoZM2Zoz549io2NVadOnSxt5syZozlz5mjgwIGaNm2apTwiIkJDhgzRf/7zHz333HP68ssv5e195W2PHz9eFy5c0BNPPGGV/B04cEB79+7VgAEDrDY8NwxD8+fP11tvvSUPDw898cQTVnGPGTNGH330kT788EM99thjln30Dh06pKlTp8rb21tjxoyp/AvmxpKzsqwSFknKKShQclaWGphM+nD7dr3xww8a3KKFZj3wgOWYVu+/r/OZmTbbjl21St88+qilrPNHH+lMRoZW/f73alOnjiTpi717S7TNLSxUZn6+cgsLdSA5WW2vHvt7G7PADUwmJY4cWa5ZRGe1BQAAgHtwySRPkl599VWtXbtWW7ZsUXR0tLp3766kpCRt27ZNYWFhmjt3rtXxycnJSkxM1Bkbt6vNnDlTcXFxWrhwoWJiYtS5c2ft379f+/btU3R0tGbMmGF1/Llz5/Too4/KZDKpU6dOCg8P1+XLl/Xzzz/r2LFj8vT01IwZM3TbbbdZtWvevLmmT5+ucePGqXv37rrvvvvk6+urNWvWKDs7W++++66aNm1a+RerCsvIy9Pp9HRdysmxKj9jo8ws9ZrysxkZOp2ervyi/y2Ucu3iJWbv9+mj/jExdm0e3sBkKndy5ay2AAAAuPW55MIrkuTv76/169frr3/9qwIDA7V48WIlJSVp2LBhSkhIUGM7n2GSrjxDFx8fr1GjRikvL0+LFi1SamqqRo8erfj4eIWEWK9s1KpVK73++uvq1KmTDh48qIULF2r9+vXy8fHR8OHD9dNPP2ns2LE2z/XCCy9o6dKl6tq1qzZt2qR169apc+fOWrZsmUaNGlWRSwIbHm/XTjufeUZv9OhhVb5x2DD9d9Agm23G3nGH1evVQ4dq5zPPKObqs5aS1N3Gc2+S1Dw01K4EDwAAAHAWD8MwDGcHgdKlpaXJZDIpNTW1UhZsMW+AfSss2ZuZl6fJGzfq3W3brGbWnPVMnr1tq7pbaYzh1sQYg6MxxuBojDGUl725gcverglM2rBB/9i6VXdGRmp2sefteLYNAAAAKB1JHlxW96gozd+/X//XvXuJbQfsxbNtAAAAqGpI8uCyHmreXPc3aSJ/b4YpAAAAYC+XXXgFVVfxx0RJ8AAAAICyIcmDSzmXkaHbP/lE3x054uxQAAAAgFsSSR5cypQfftBPp0/rL+vWqYiFXwEAAIAy4144uJSp99wjL09PDW3bVp4eHs4OBwAAALjlkOTBpQT7+Wlm797ODgMAAAC4ZXG7JlzCidRUZ4cAAAAAuAWSPDjdwYsXFT17th5ftEg5BQXODgcAAAC4pZHkwenW/fqr8goLdT4zU35eXs4OBwAAALil8UwenO7Z225Tp7p1FRYYKA8WWwEAAAAqhCQPLqFLvXrODgEAAABwC9yuCaf5fPduJWdlOTsMAAAAwK2Q5MEptpw4occXL1aL997TRRI9AAAAoNJwuyacwtfLS21q11anunVVKzDQ2eEAAAAAboMkD07RuW5d7Xj6abZMAAAAACoZSR6cxsfLSz5smQAAAABUKp7Jw031x6VL9fnu3TIMw9mhAAAAAG6JmTw43PHUVCVnZWnLiRP6586d+mzXLt0ZGakmISHODg0AAABwOyR5cKjjqalqPmeO1bN3Hh4e3KYJAAAAOAi3a8KhkrOySiyuUlBUxP54AAAAgIOQ5AEAAACAGyHJAwAAAAA3QpIHhwoNDJS/t/Wjn/7e3gplA3QAAADAIVh4BQ7VwGRS4siRmrF1qw4kJ+u3LVvq/iZN1MBkcnZoAAAAgFsiyYPDNTCZNLN3b2eHAQAAAFQJ3K4JAAAAAG6EJA8AAAAA3AhJHm6KZrNnq84//qH95887OxQAAADArfFMHm6K85mZSs3NlY+Xl7NDAQAAANwaSR5uih1PP62s/HxFsaomAAAA4FAkebgpmoSEODsEAAAAoErgmTwAAAAAcCMkeXC4jLw8zd62TZ/u3OnsUAAAAAC3x+2acLjzmZkavWqVqvn46MkOHZwdDgAAAODWSPLgcH5eXnqkVSt5ezJxDAAAADgaSR4crl5wsOYPHuzsMAAAAIAqgakVAAAAAHAjJHkAAAAA4EZI8uBwS375RXXffltDFi50digAAACA2yPJg8NdzsnRmYwMXc7JcXYoAAAAgNtj4RU4XP+YGO0MD5e/N8MNAAAAcDS+dcPhavj7q314uLPDAAAAAKoEbtcEAAAAADfCTB4cLu7kSSUmJ6tdeDgzegAAAICDMZMHh/ti714NW7JEX+/f7+xQAAAAALdHkgeHiwkNVe+mTRUTGursUAAAAAC3x+2acLhnb7tNz952m7PDAAAAAKoEZvIAAAAAwI2Q5AEAAACAGyHJg8M9/NVXaj5njtb9+quzQwEAAADcHkkeHO7Y5cs6ePGi8ouKnB0KAAAA4PZYeAUO9+8BA5SSna1WtWs7OxQAAADA7ZHkweFI7gAAAICbx6Vv18zOztbEiRPVrFkz+fv7q27duho+fLhOnTpV5r4uXbqkMWPGKCoqSn5+foqKitLYsWN1+fLlEsfm5+drzZo1GjlypFq3bq3AwEAFBASoRYsWeumll3ThwgWb5/jss8/k4eFR6s9jjz1W5rgBAAAAoCxcdiYvJydHPXv2VFxcnCIiItS/f38dO3ZMn376qZYvX664uDg1btzYrr6Sk5PVtWtXHT58WI0bN9aAAQO0f/9+zZo1S99++622bt2qkJAQy/EbN25Ur169JEkNGzbUAw88oPz8fG3dulVvv/22/vOf/2jDhg1q3ry5zfO1a9dO7du3L1F+++23l/1CuIH/7t0rPy8v9YmOVoCPj7PDAQAAANyayyZ5U6ZMUVxcnLp27ao1a9YoKChIkjRjxgy9+OKLGj58uDZs2GBXX2PHjtXhw4c1aNAgzZ8/X97eV9726NGjNXv2bI0bN06fffaZ5XhPT0898sgjevHFF9WlSxdLeWpqqh599FGtXr1aTz75pLZs2WLzfAMGDNCkSZPK9b7djWEY+v0330iSzr74IkkeAAAA4GAuebtmXl6e5syZI0l67733LAmeJI0bN05t27bVxo0btWPHjhv2debMGX3xxRfy9fXV+++/b0nwJGn69OkKCwvTvHnzdP78eUt5z549NX/+fKsET5JMJpPmzp0rSdq6dauSkpIq9D6rgvyiIt3fpInuatBAQb6+zg4HAAAAcHsumeRt3rxZqampatKkiTp06FCifvDgwZKkZcuW3bCvVatWqaioSN27d1edOnWs6vz8/NSvXz8VFhZq5cqVdsVWt25dhYWFSZJOnz5tV5uqzNfLS6uHDtWmJ59UNZI8AAAAwOFc8nbN3bt3S5I6duxos95cvmfPnkrpa+7cuXb1JUmXL1/WpUuXJEnh4eE2j9mxY4defvllpaWlKTw8XD179lRsbKxd/QMAAABARbhkknf8+HFJUv369W3Wm8vtuV2yMvuSrtw+WlBQoDZt2qhRo0Y2j1m+fLmWL19uef36668rNjZW8+fPLzGbeK3c3Fzl5uZaXqelpUmSUrJTVOBTYFeM13Mp+1KF+wCuhzEGR2OMwdEYY3A0xhjKKy07za7jXPJ2zYyMDElSYGCgzfpq1apJktLT029qXzt37tSUKVMkSW+++WaJ+oiICE2aNEk7d+5Uamqqzp49q6VLlyomJkYbN25U3759VVhYeN1zTJs2TSaTyfITGRl5w7hc2S/JF3XHJ/P06IKlzg4FAAAAqBJccibPFZ07d06DBg1STk6Oxo4dqwceeKDEMb169bJsvSBJwcHB6tevn3r06KFOnTpp+/bt+uqrrzRkyJBSzzNhwgSNGzfO8jotLU2RkZEKCQhRcEBwpb2fkICQGx9UCQwjQ4dSLknyuGnnhGvg9w1HY4zB0RhjcDTGGMrKO9++9M0lZ/LMq2lmZWXZrM/MzJQkVa9e/ab0lZ6erj59+ujYsWP67W9/q7fffvuG5702htGjR0uSVq9efd1j/fz8FBwcbPVzK2tdu7Y2PPGE5vbv7+xQAAAAgCrBJWfyGjRoIEk6efKkzXpzeVRUlMP7ysnJ0UMPPaSEhATdf//9mjdvnjw9y54bR0dHS7qypUNVYvL3V2zDhs4OAwAAAKgyXHImr127dpKkhIQEm/Xm8rZt2zq0r4KCAj366KPasGGD7rzzTn3zzTfyLec2AOYVOc3PAAIAAACAI7hkktetWzeZTCYdOXJEu3btKlG/YMECSVK/fv1u2Ffv3r3l6empTZs2WW14Ll1ZyXLZsmXy8vJSnz59rOoMw9CTTz6ppUuXqn379lqxYkWFErSFCxdKKn0rB3d1JCVFi3/5RTur2AwmAAAA4CwumeT5+vpq5MiRkqTnn3/e8tycJM2YMUN79uxRbGysOnXqZCmfM2eOYmJiNGHCBKu+IiIiNGTIEOXl5em5555TQcH/tiEYP368Lly4oKFDh6p27dpW7caOHat58+YpJiZGa9asUY0aNW4Y97Rp05ScnGxVlp+fr8mTJ+vrr79WQECAnnzySbuvgztYceiQBs6frzc3b3Z2KAAAAECV4JLP5EnSq6++qrVr12rLli2Kjo5W9+7dlZSUpG3btiksLExz5861Oj45OVmJiYk2n3mbOXOm4uLitHDhQsXExKhz587av3+/9u3bp+joaM2YMcPq+CVLlujdd9+VJEVGRurll1+2GeNf/vIXxcTEWF6/8sormjx5sjp37qzIyEilpaVp165dOn36tPz9/TVv3jzVq1evopfmlhIWGKiu9eurea1azg4FAAAAqBJcNsnz9/fX+vXrNW3aNP33v//V4sWLFRISomHDhumNN94odXNzW0JDQxUfH69JkyZp8eLFWrRokerUqaPRo0dr8uTJJWbpzM/PSdJ3331Xar/Dhg2zSvImTpyorVu3KjExUQkJCTIMQ/Xr19czzzyjF154Qc2bN7f/AriJIW3aaEibNs4OAwAAAKgyPAzDMJwdBEqXlpYmk8mk1NTUStlOISU7RRL7ssBxGGNwNMYYHI0xBkdjjKG87M0NXPKZPAAAAABA+ZDkwaFe/f573f7JJ/py3z5nhwIAAABUCSR5cKiDFy8q/tQpJWdlOTsUAAAAoEpw2YVX4B7+r3t3/aFtW7W6ZosKAAAAAI5BkgeHahcernbh4c4OAwAAAKgyuF0TAAAAANwIM3lwqA3HjqmwqEid6tZVDX9/Z4cDAAAAuD1m8uBQTy1dqns//1wHLlxwdigAAABAlcBMHhwqJjRUgT4+zOIBAAAANwlJHhxqxe9+5+wQAAAAgCqF2zUBAAAAwI2Q5AEAAACAGyHJg8Ok5+aq6z//qXv+/W/lFxY6OxwAAACgSuCZPDhMRl6e4k6elKeHh7w9+fcEAAAA4GYgyYPD1PD31+JHH1VuYaE8PDycHQ4AAABQJZDkwWECfHzUPybG2WEAAAAAVQr30AEAAACAG2EmDw5zMStLe8+fV62AALWpU8fZ4QAAAABVAjN5cJi4kyfV41//0vClS50dCgAAAFBlkOTBYXy9vNQiNFSNa9Z0digAAABAlcHtmnCY+5o00c/PP+/sMAAAAIAqhZk8AAAAAHAjJHkAAAAA4EZI8uAwn+3apfs//1zv//STs0MBAAAAqgySPDhMYnKyvvv1Vx26eNHZoQAAAABVBguvwGEea91arWrXVrNatZwdCgAAAFBlkOTBYdqFh6tdeLizwwAAAACqFG7XBAAAAAA3wkweHObnCxeUnZ+vxjVrqmZAgLPDAQAAAKoEZvLgMGNXrVLnjz/WikOHnB0KAAAAUGWQ5MFhQgMDFRkcrBr+/s4OBQAAAKgyuF0TDvPfhx92dggAAABAlcNMHgAAAAC4EZI8AAAAAHAjJHlwmEe+/loPf/WVTqWlOTsUAAAAoMogyYPDLD94UN8cOKD8oiJnhwIAAABUGSy8Aof5sG9fZeblKSww0NmhAAAAAFUGSR4c5vF27ZwdAgAAAFDlcLsmAAAAALgRkjw4RE5BgXadPatDFy86OxQAAACgSiHJg0McvXRJHf7f/9Md//yns0MBAAAAqhSeyYNDFBqGIoKCVDMgwNmhAAAAAFUKSR4conXt2jr94ovODgMAAACocrhdEwAAAADcCEkeAAAAALgRkjw4xIZjx/TI119r+ubNzg4FAAAAqFJI8uAQhy5e1Nc//6wfT5xwdigAAABAlcLCK3CIOyMjNfuBB9TAZHJ2KAAAAECVQpIHh2hVu7Za1a7t7DAAAACAKofbNQEAAADAjTCTB4c4k56uzPx8hQUGyuTv7+xwAAAAgCqDmTw4xOsbNyp69mzNjItzdigAAABAlUKSB4fw9vRUdV9fVffzc3YoAAAAQJXC7ZpwiNl9+mh2nz7ODgMAAACoclx6Ji87O1sTJ05Us2bN5O/vr7p162r48OE6depUmfu6dOmSxowZo6ioKPn5+SkqKkpjx47V5cuXSxybn5+vNWvWaOTIkWrdurUCAwMVEBCgFi1a6KWXXtKFCxeue65ly5YpNjZWwcHBCg4O1t13360VK1aUOWYAAAAAKCsPwzAMZwdhS05Ojnr06KG4uDhFRESoe/fuOnbsmOLj4xUWFqa4uDg1btzYrr6Sk5PVtWtXHT58WI0bN1bnzp21f/9+7d+/X82aNdPWrVsVEhJiOX7t2rW67777JEkNGzZUx44dlZ+fr61btyo5OVnh4eHasGGDmjdvXuJcM2fO1AsvvCBvb2/de++98vPz05o1a5Sdna3Zs2dr5MiRZboOaWlpMplMSk1NVXBwcJna2pKSnSJJCgkIucGRQPkwxuBojDE4GmMMjsYYQ3nZmxu47EzelClTFBcXp65du+rgwYOaP3++tm3bprffflsXLlzQ8OHD7e5r7NixOnz4sAYNGqTExETNnz9f+/bt06hRo3Tw4EGNGzfO6nhPT0898sgj2rZtm44ePaqFCxdq6dKlOnz4sHr16qWzZ8/qySefLHGexMREvfTSS/Lz89MPP/ygb7/9VosXL9auXbtUq1YtvfDCCzp8+HCFr82t4NXvv9fwJUu099w5Z4cCAAAAVCkuOZOXl5en2rVrKzU1VQkJCerQoYNVfbt27bRnzx5t375dnTp1um5fZ86cUf369eXt7a3jx4+rTp06lrrc3FxFRkYqJSVFp0+fVm07Nu8+ffq06tWrJ0k6duyYoqKiLHXPPfecPvjgA40ZM0YzZ860avfOO+9o3LhxGjlypGbPnn3D85jdqjN5bT74QPvOn9faP/xB99g54wr3wL9OwtEYY3A0xhgcjTGG8rqlZ/I2b96s1NRUNWnSpESCJ0mDBw+WdOXZtxtZtWqVioqK1L17d6sET5L8/PzUr18/FRYWauXKlXbFVrduXYWFhUm6kvAVZ37uzhxfeWN2By917app99yj6Fq1nB0KAAAAUKW4ZJK3e/duSVLHjh1t1pvL9+zZc1P7kqTLly/r0qVLkqTw8HCr8uPHj0uSzcQ0MjJSoaGhSkpKUlpaml3nupU90b69/nLXXWpgMjk7FAAAAKBKccktFMzJUv369W3Wm8uTkpJual+S9N5776mgoEBt2rRRo0aNSpynZs2aqlatWqnnSk5OVlJSktq0aWPzmNzcXOXm5lpemxPClOwUFfgU2BXj9VzKvlThPoDrYYzB0RhjcDTGGByNMYbySsu2b7LIJWfyMjIyJEmBgYE2681JVHp6+k3ta+fOnZoyZYok6c033yzTeew917Rp02QymSw/kZGRN4zL1RiGoeOpabqQmaUi13vkEwAAAHBrLjmT54rOnTunQYMGKScnR2PHjtUDDzzgkPNMmDDBarXPtLQ0RUZGKiQgRMEBFV94xcyRD/rmFRaqw/+bI0m69Oc/q4a/v8POBdfFw+RwNMYYHI0xBkdjjKGsvPPtS99cMskLCgqSJGVlZdmsz8zMlCRVr179pvSVnp6uPn366NixY/rtb3+rt99+u8znsfdcfn5+8vPzK7X+VpCdn69AHx9lXf1fAAAAADePSyZ5DRo0kCSdPHnSZr25vPj2BY7qKycnRw899JASEhJ0//33a968efL0LHmXq/k8ly5dUmZmps3n8soS963M5O+vzFdekQvuzgEAAAC4PZd8Jq9du3aSpISEBJv15vK2bds6tK+CggI9+uij2rBhg+68805988038vX1tdlPjRo1LInezp07S9SfOHFCycnJioqKqpT97m4FHh4e8vDwcHYYAAAAQJXikklet27dZDKZdOTIEe3atatE/YIFCyRJ/fr1u2FfvXv3lqenpzZt2qTz589b1eXm5mrZsmXy8vJSnz59rOoMw9CTTz6ppUuXqn379lqxYkWpq2aaPfjgg1bxlTdmAAAAACgvl0zyfH19NXLkSEnS888/b3mWTZJmzJihPXv2KDY2Vp06dbKUz5kzRzExMZowYYJVXxERERoyZIjy8vL03HPPqaDgf9sQjB8/XhcuXNDQoUNVu3Ztq3Zjx47VvHnzFBMTozVr1qhGjRo3jHvMmDHy8vLShx9+qLi4OEv5oUOHNHXqVHl7e2vMmDFluha3osMpKXp62TK9sXGjs0MBAAAAqhyXfCZPkl599VWtXbtWW7ZsUXR0tLp3766kpCRt27ZNYWFhmjt3rtXxycnJSkxM1JkzZ0r0NXPmTMXFxWnhwoWKiYlR586dtX//fu3bt0/R0dGaMWOG1fFLlizRu+++K+nKJuYvv/yyzRj/8pe/KCYmxvK6efPmmj59usaNG6fu3bvrvvvuk6+vr9asWaPs7Gy9++67atq0aUUvjcs7npqqjxMS1CosTH+NjXV2OAAAAECV4rJJnr+/v9avX69p06bpv//9rxYvXqyQkBANGzZMb7zxRqmbm9sSGhqq+Ph4TZo0SYsXL9aiRYtUp04djR49WpMnTy4xS3fp0v82qPzuu+9K7XfYsGFWSZ4kvfDCC2ratKmmT5+uTZs2SZI6d+6s8ePHq2/fvnbHfCtrWKOG3ujRQzXZOgEAAAC46TwMlkB0aWlpaTKZTEpNTa2UBVtSslMksS8LHIcxBkdjjMHRGGNwNMYYysve3MAln8kDAAAAAJQPSR4qXUZenpKzspRTbJEbAAAAADcHSR4q3Qc//aSw6dP1zPLlzg4FAAAAqHJI8lDpcgsLJUmB3i67rg8AAADgtvgWjkr36m9+owl33aVC1vQBAAAAbjqSPDiEl6envJwdBAAAAFAFcbsmAAAAALgRZvJQ6f6ZkKD9Fy5ocMuWujMy0tnhAAAAAFUKM3modEsPHtQ7cXHaf/68s0MBAAAAqhxm8lDpftuypVqEhqp9eLizQwEAAACqHJI8VLqhbds6OwQAAACgyuJ2TQAAAABwIyR5qHRpubnKLSiQwT55AAAAwE1HkodK1+r99+U/daoSzpxxdigAAABAlUOSh0qXlZ8vSarm6+vkSAAAAICqh4VXUOnOvPiisvPzFUSSBwAAANx0JHmodL5eXvL18nJ2GAAAAECVxO2aAAAAAOBGSPJQqdJzc/XymjV6bf16VtcEAAAAnIAkD5UqJTtb/9i6VW9t2SIPDw9nhwMAAABUOTyTh0oV6OOjl7p2FXN4AAAAgHOQ5KFShVWrpun33+/sMAAAAIAqi9s1AQAAAMCNkOShUhUUFSm/sNDZYQAAAABVFkkeKtWyxET5Tpmi2M8+c3YoAAAAQJVEkodKlZWfL0lshg4AAAA4CQuvoFI92rq1+kRHq4g98gAAAACnIMlDpfL29FTNgABnhwEAAABUWdyuCQAAAABuhJk8VKo1R44o7uRJdYuM1D2NGzs7HAAAAKDKYSYPlWrV4cN6bcMGfffrr84OBQAAAKiSmMlDpbozMlJZ+fm6o359Z4cCAAAAVEkkeahUg1u21OCWLZ0dBgAAAFBlcbsmAAAAALgRkjxUKoP98QAAAACnIslDperxr38pYOpULTpwwNmhAAAAAFUSSR4qVVZ+vnIKCuTj5eXsUAAAAIAqiYVXUKlWDx2q9Lw81QoIcHYoAAAAQJXk0Jm8559/Xvfcc48jTwEXUzMgQA1MJlXz9XV2KAAAAECV5NCZvISEBMXHxzvyFAAAAACAYrhdE5Xqrc2b5ePpqac6dlSwn5+zwwEAAACqHLuSvH//+9/l6vzChQvlaodbk2EYmrBunYoMQ4+1bk2SBwAAADiBXUnesGHD5OHhUebODcMoVzvcmooMQ8Pbt1dWQYGqk+ABAAAATmFXkufl5aWioiL98Y9/lKen/Wu1LFq0iNm8KsTL01MfP/SQs8MAAAAAqjS7krzWrVtrz549GjNmjFq2bGl357t27SLJAwAAAICbyK5puS5dukiStm/f7tBgAAAAAAAVY3eSZxiGfvrppzJ1bhiGDMMoV2C49ew5d07V/vY3tXr/fWeHAgAAAFRZdt2uOXDgQIWGhqpOnTpl6jwuLq5cQeHWlJWfr6z8fOUUFDg7FAAAAKDKsivJGzx4sHr37q3+/ftLkn744QeFh4erWbNmDg0Ot5YO4eH6dfRoFTJ7CwAAADiNXbdrbtiwQb/88ovl9d13360333zTYUHh1uTn7a1GNWuqaUiIs0MBAAAAqiy7kjxfX19lZmZalfGsHQAAAAC4Hrtu12zatKnWrVunjRs3qlGjRpKkjIwMHT9+3K6TNGjQoPwR4pax59w5rT96VDGhoerVtKmzwwEAAACqJLuSvKefflpjx45Vz549LWULFy7UwoULb9jWw8NDBSzEUSVsSkrS2NWrNbhlS5I8AAAAwEnsSvJGjx6t+vXra8mSJTp58qTWr1+v2rVrKyYmxtHx4RbSJCREj7Vurdvr1XN2KAAAAECVZVeSJ0mDBg3SoEGDJEmenp564IEHNHfuXIcFJknZ2dmaNm2avvzySx0/flwhISHq3bu33njjDdUrYyJx6dIlTZo0SYsXL9bZs2cVHh6ugQMHatKkSapRo0aJ4xMTE7Vy5UrFx8crPj5ev/76qyTp6NGjatiwoc1zfPbZZ3ryySdLjeHRRx/Vl19+Waa4byW9mzZVb2bwAAAAAKeyO8kr7rXXXlOHDh0qOxYrOTk56tmzp+Li4hQREaH+/fvr2LFj+vTTT7V8+XLFxcWpcePGdvWVnJysrl276vDhw2rcuLEGDBig/fv3a9asWfr222+1detWhVyzIuQHH3ygWbNmlSv2du3aqX379iXKb7/99nL1BwAAAAD2KneS52hTpkxRXFycunbtqjVr1igoKEiSNGPGDL344osaPny4NmzYYFdfY8eO1eHDhzVo0CDNnz9f3t5X3vbo0aM1e/ZsjRs3Tp999plVmzZt2ujPf/6zbrvtNnXu3Fm9evVSYmKiXecbMGCAJk2aZO9bBQAAAIBKY9cWCjdbXl6e5syZI0l67733LAmeJI0bN05t27bVxo0btWPHjhv2debMGX3xxRfy9fXV+++/b0nwJGn69OkKCwvTvHnzdP78eat2Tz31lP7+97/r4YcfVlRUVCW9M/c2auVKhf/jH3r/p5+cHQoAAABQZblkkrd582alpqaqSZMmNm8LHTx4sCRp2bJlN+xr1apVKioqUvfu3VWnTh2rOj8/P/Xr10+FhYVauXJl5QRfhSVnZ+tcZqbyCwudHQoAAABQZZXrdk1H2717tySpY8eONuvN5Xv27KmUvubOnWtXX/basWOHXn75ZaWlpSk8PFw9e/ZUbGxspfXvqmbcf79euesu1Sk28woAAADg5nLJJM+8yXr9+vVt1pvLk5KSbmpf9lq+fLmWL19uef36668rNjZW8+fPLzGb6E4iqldXRPXqzg4DAAAAqNJcMsnLyMiQJAUGBtqsr1atmiQpPT39pvZ1IxEREZo0aZL69++vxo0bKzs7W/Hx8Ro/frw2btyovn37Ki4uTl5eXqX2kZubq9zcXMvrtLQ0SVJKdooKfCq+qfyl7EsV7gO4HsYYHI0xBkdjjMHRGGMor7TsNLuOc8ln8m5VvXr10muvvab27dsrODhYderUUb9+/fTTTz+pWbNm2r59u7766qvr9jFt2jSZTCbLT2Rk5E2KvuK+OXBQ/9n7s85lZDo7FAAAAKDKcsmZPPNqmllZWTbrMzOvJBHV7bg1sDL7Kq+goCCNHj1aI0eO1OrVqzVkyJBSj50wYYLGjRtneZ2WlqbIyEiFBIQoOCC40mIKCQi58UFl9Nbmn3QoJUWbnnxSLcIqv3/cWhwxxoDiGGNwNMYYHI0xhrLyzrcvfXPJJK9BgwaSpJMnT9qsN5fbs7VBZfZVEdHR0ZKubOlwPX5+fvLz83NoLI7Ss1EjRdeqpdpXb4EFAAAAcPO5ZJLXrl07SVJCQoLNenN527Ztb2pfFXHp0pV7r6u5cQL0Yd++zg4BAAAAqPJc8pm8bt26yWQy6ciRI9q1a1eJ+gULFkiS+vXrd8O+evfuLU9PT23atKnEhue5ublatmyZvLy81KdPn0qJvTQLFy6UVPpWDgAAAABQGVwyyfP19dXIkSMlSc8//7zluTlJmjFjhvbs2aPY2Fh16tTJUj5nzhzFxMRowoQJVn1FRERoyJAhysvL03PPPaeCgv+tUDl+/HhduHBBQ4cOVe3atSsc97Rp05ScnGxVlp+fr8mTJ+vrr79WQECAnnzyyQqfBwAAAABK45K3a0rSq6++qrVr12rLli2Kjo5W9+7dlZSUpG3btiksLExz5861Oj45OVmJiYk2n3mbOXOm4uLitHDhQsXExKhz587av3+/9u3bp+joaM2YMaNEm4SEBD333HOW1+Z99AYOHGh5Zu6Pf/yj/vjHP1qOeeWVVzR58mR17txZkZGRSktL065du3T69Gn5+/tr3rx5qlevXqVcH1eTmZenZnPmKNDHR3uffVb+3i47tAAAAAC35pIzeZLk7++v9evX669//asCAwO1ePFiJSUladiwYUpISFDjxo3t7is0NFTx8fEaNWqU8vLytGjRIqWmpmr06NGKj49XSEjJlY3S0tK0bds2y09OTo4kadeuXZayaxdzmThxon7zm9/oxIkTWrJkib7//nsFBgbqmWee0a5duzRo0KCKXRQXlpmfr9Pp6TqckiLf6+wDCAAAAMCxPAzDMJwdBEqXlpYmk8mk1NRUBQdXfAuFlOwUSZW/ZG9+YaH2nT+v7IIC3XkL7e2HyueoMQaYMcbgaIwxOBpjDOVlb27APXWoFD5eXuoQEeHsMAAAAIAqz2Vv1wQAAAAAlB0zeagUp9PT9d2RIwoPClKvpk2dHQ4AAABQZZHkoVLsPntWw5YsUceICJI8AAAAwIlI8lApagYEqHfTpmpSs6azQwEAAACqNJI8VIo76tfXt7//vbPDAAAAAKo8Fl4BAAAAADdCkgcAAAAAboQkD5Xivfh4xcyZo9c3bnR2KAAAAECVRpKHSnEmI0OJFy/qYlaWs0MBAAAAqjQWXkGleKZTJ/Vq0kR1goKcHQoAAABQpZHkoVJEmkyKNJmcHQYAAABQ5XG7JgAAAAC4EWbyUCl+SEpSclaWOtetqwbM6AEAAABOw0weKsW0H3/Uw199pfVHjzo7FAAAAKBKYyYPlaJlaKjSc3NVt3p1Z4cCAAAAVGkkeagUb/fq5ewQAAAAAIjbNQEAAADArZDkAQAAAIAbIclDpfjNp5/qto8/1q+XLjk7FAAAAKBK45k8VIqdZ88qIy9PhmE4OxQAAACgSiPJQ6VYPmSIMvPzWV0TAAAAcDKSPFSK2IYNnR0CAAAAAPFMHgAAAAC4FZI8VFhmXp6W/PKL1v36q7NDAQAAAKo8kjxU2Kn0dA2YP18Pf/WVs0MBAAAAqjyeyUOFeXl46I769RXo4+PsUAAAAIAqjyQPFdYkJERbn3rK2WEAAAAAELdrAgAAAIBbIckDAAAAADdCkocKW3X4sG7/5BONW73a2aEAAAAAVR7P5KHCTqenK/7UKYUFBjo7FAAAAKDKI8lDhd3XuLGWPvaYapHkAQAAAE5HkocKizSZFGkyOTsMAAAAAOKZPAAAAABwK8zkocIOXLigMxkZalKzpqJq1HB2OAAAAECVxkweKuy9n37SPf/+t+bu3OnsUAAAAIAqjyQPFVanWjW1CgtT3erVnR0KAAAAUOVxuyYq7K+xsfprbKyzwwAAAAAgZvIAAAAAwK2Q5AEAAACAGyHJQ4U9s2yZ7v33vxV38qSzQwEAAACqPJI8VNi2U6e07uhRpefmOjsUAAAAoMpj4RVU2D/uv1/nMzPVpk4dZ4cCAAAAVHkkeaiwexs3dnYIAAAAAK7idk0AAAAAcCMkeaiwjceOKf7UKeUXFjo7FAAAAKDKI8lDhRQWFenuf/1Lt3/yidJYeAUAAABwOp7JQ4XkFRaqRWiosvLzFejj4+xwAAAAgCqPJA8VEuDjo5+ff97ZYQAAAAC4its1AQAAAMCNkOQBAAAAgBshyUOFHLhwQfd//rmeXrbM2aEAAAAAEM/koYLOZ2bqu19/VUxoqLNDAQAAACCSPFRQ89BQfT5woAK8GUoAAACAK3Dp2zWzs7M1ceJENWvWTP7+/qpbt66GDx+uU6dOlbmvS5cuacyYMYqKipKfn5+ioqI0duxYXb582ebxiYmJeueddzRkyBA1adJEHh4e8vDw0LFjx254rmXLlik2NlbBwcEKDg7W3XffrRUrVpQ55ltBeFCQhrZtq4dbtnR2KAAAAADkwkleTk6OevbsqTfeeEMZGRnq37+/IiMj9emnn6pDhw769ddf7e4rOTlZXbp00bvvvitvb28NGDBA1atX16xZs3T77bcrJSWlRJsPPvhA48aN05dfflmmc82cOVMPPfSQtmzZom7duqlnz56Kj49X3759NWfOHLv7AQAAAIDycNkkb8qUKYqLi1PXrl118OBBzZ8/X9u2bdPbb7+tCxcuaPjw4Xb3NXbsWB0+fFiDBg1SYmKi5s+fr3379mnUqFE6ePCgxo0bV6JNmzZt9Oc//1kLFizQsWPH1Lx58xueJzExUS+99JL8/Pz0ww8/6Ntvv9XixYu1a9cu1apVSy+88IIOHz5cpuvg6s5mZCjhzBmdTEtzdigAAAAA5KJJXl5enmXW67333lNQUJClbty4cWrbtq02btyoHTt23LCvM2fO6IsvvpCvr6/ef/99eRd7dmz69OkKCwvTvHnzdP78eat2Tz31lP7+97/r4YcfVlRUlF1xz5o1S4WFhRoxYoS6du1qKW/WrJn+7//+TwUFBZo1a5Zdfd0qvti7V50++kh/WbvW2aEAAAAAkIsmeZs3b1ZqaqqaNGmiDh06lKgfPHiwpCvPvt3IqlWrVFRUpO7du6tOnTpWdX5+furXr58KCwu1cuXKCsdtfu7OHF95Y76V+Ht7q1716goLDHR2KAAAAADkokne7t27JUkdO3a0WW8u37Nnz03t63ouX76s48ePS5LNxDQyMlKhoaFKSkpSmhvd2vjsbbfp5Lhxeqd3b2eHAgAAAEAuuoWCOVmqX7++zXpzeVJS0k3ty57z1KxZU9WqVSv1XMnJyUpKSlKbNm1sHpObm6vc3FzLa3NCmJKdogKfggrFKEmXsi9VuA/gehhjcDTGGByNMQZHY4yhvNKy7ZsscsmZvIyMDElSYCm3AJqTqPT09JvaV0XOY++5pk2bJpPJZPmJjIysUFwAAAAAqhaXnMmryiZMmGC12mdaWpoiIyMVEhCi4IDgSjtPSEBIpfQzffNmbTt1Sk916KAHoqMrpU+4h8oaY0BpGGNwNMYYHI0xhrLyzrcvfXPJJM+8mmZWVpbN+szMTElS9erVb2pfFTmPvefy8/OTn59fhWK5mbaePKlFv/yiexs3dnYoAAAAAOSiSV6DBg0kSSdPnrRZby63Z2uDyuzLnvNcunRJmZmZNp/Lq6xzuZJnO3fWvY0bq/vV9w8AAADAuVzymbx27dpJkhISEmzWm8vbtm17U/u6nho1algSvZ07d5aoP3HihJKTkxUVFaXg4Mq77dLZ7mvSRM/ddpta1a7t7FAAAAAAyEWTvG7duslkMunIkSPatWtXifoFCxZIkvr163fDvnr37i1PT09t2rSpxIbnubm5WrZsmby8vNSnT58Kx/3ggw9axVfemAEAAACgvFwyyfP19dXIkSMlSc8//7zlWTZJmjFjhvbs2aPY2Fh16tTJUj5nzhzFxMRowoQJVn1FRERoyJAhysvL03PPPaeCgv9tQzB+/HhduHBBQ4cOVe1KmIkaM2aMvLy89OGHHyouLs5SfujQIU2dOlXe3t4aM2ZMhc/jSn5JTtbBixeVU1Dx7R0AAAAAVJxLPpMnSa+++qrWrl2rLVu2KDo6Wt27d1dSUpK2bdumsLAwzZ071+r45ORkJSYm6syZMyX6mjlzpuLi4rRw4ULFxMSoc+fO2r9/v/bt26fo6GjNmDGjRJuEhAQ999xzltfmffQGDhxoWRjlj3/8o/74xz9ajmnevLmmT5+ucePGqXv37rrvvvvk6+urNWvWKDs7W++++66aNm1aKdfHVfSeN09Jqana9sc/qku9es4OBwAAAKjyXHImT5L8/f21fv16/fWvf1VgYKAWL16spKQkDRs2TAkJCWpchtUcQ0NDFR8fr1GjRikvL0+LFi1SamqqRo8erfj4eIWElFy+Ni0tTdu2bbP85OTkSJJ27dplKbO1mMsLL7ygpUuXqmvXrtq0aZPWrVunzp07a9myZRo1alT5L4iLCvbzk8nPT9V8fJwdCgAAAABJHoZhGM4OAqVLS0uTyWRSampqpSzYkpKdIol9WeA4jDE4GmMMjsYYg6MxxlBe9uYGLjuTBwAAAAAoO5I8AAAAAHAjJHkot7TcXD3y9dcatnixirjrFwAAAHAJJHkot7TcXH3988/6Yt8+eXp4ODscAAAAAHLhLRTg+qr7+mr2Aw+ooKjI2aEAAAAAuIokD+Vm8vfXyC5dnB0GAAAAgGK4XRMAAAAA3AhJHsotIy9PR1JSdCEz09mhAAAAALiKJA/l9v3Ro2o6e7b6ffGFs0MBAAAAcBVJHsqtsKhIQb6+CvL1dXYoAAAAAK5i4RWU28AWLZTeooWzwwAAAABQDDN5AAAAAOBGSPIAAAAAwI2Q5KHcFvz8s/64dKm+2r/f2aEAAAAAuIokD+W27eRJ/XPnTv106pSzQwEAAABwFQuvoNz6REcrJCBAXerVc3YoAAAAAK4iyUO59WjUSD0aNXJ2GAAAAACK4XZNAAAAAHAjzOSh3M5nZkqSavj7y9fLy8nRAAAAAJCYyUMFDFm4UHX+8Q8t/PlnZ4cCAAAA4CqSPJRbYVGRJCnQx8fJkQAAAAAw43ZNlNuGYcNUZBjODgMAAABAMSR5qBBPDw9nhwAAAACgGG7XBAAAAAA3wkweym3Mt9/Kw8NDr/7mNwoNDHR2OAAAAADETB4q4IPt2zVr2zblFBQ4OxQAAAAAVzGTh3IxDEMTY2OVlZ+vGv7+zg4HAAAAwFUkeSgX822aAAAAAFwLt2sCAAAAgBshyUO5FBQV6WJWlrLz850dCgAAAIBiSPJQLr8kJyt0+nRFzZzp7FAAAAAAFEOSh3Ixz+AF+vg4ORIAAAAAxbHwCsrltnr1lP/XvyqX7RMAAAAAl0KSh3Lz9vSUt6+vs8MAAAAAUAy3awIAAACAGyHJQ7nEnTypF1ev1r9373Z2KAAAAACKIclDuew6e1Yz4uK0JDHR2aEAAAAAKIZn8lAu7erU0fg771TLsDBnhwIAAACgGJI8lEvXyEh1jYx0dhgAAAAArsHtmgAAAADgRkjyUC7Z+fnKLSiQYRjODgUAAABAMSR5KJcxq1bJf+pUTd20ydmhAAAAACiGJA/lkpWfL0kK9PFxciQAAAAAimPhFZTLp/37670+feTj5eXsUAAAAAAUQ5KHcvHx8pKJBA8AAABwOdyuCQAAAABuhJk8lMusuDhdysnR4+3aqXHNms4OBwAAAMBVJHkolw937NAvycnq0bAhSR4AAADgQkjyUC5/aNtWp9LSFGkyOTsUAAAAAMWQ5KFcXune3dkhAAAAALCBhVcAAAAAwI2Q5KHMDMNQQVGRs8MAAAAAYANJHsosp6BAPm+8Ib8pU5Sem+vscAAAAAAUQ5KHMsvKz5ck5RUWKsDHx8nRAAAAACjOpZO87OxsTZw4Uc2aNZO/v7/q1q2r4cOH69SpU2Xu69KlSxozZoyioqLk5+enqKgojR07VpcvXy61TWFhod555x21adNGAQEBCgsL0yOPPKIDBw7YPP6zzz6Th4dHqT+PPfZYmeN2RTUDApT88ss6PnasvD1deggBAAAAVY7Lrq6Zk5Ojnj17Ki4uThEREerfv7+OHTumTz/9VMuXL1dcXJwaN25sV1/Jycnq2rWrDh8+rMaNG2vAgAHav3+/Zs2apW+//VZbt25VSEiIVZuioiL99re/1aJFi1SjRg09+OCDSk5O1oIFC7RixQqtX79eXbp0sXm+du3aqX379iXKb7/99jJfB1fk6eGhWoGBquXsQAAAAACU4LJJ3pQpUxQXF6euXbtqzZo1CgoKkiTNmDFDL774ooYPH64NGzbY1dfYsWN1+PBhDRo0SPPnz5e395W3PXr0aM2ePVvjxo3TZ599ZtVm7ty5WrRokaKjo7Vp0ybVqVNHkrRw4UINHjxYv//973XgwAFLX8UNGDBAkyZNKvd7BwAAAIDycsl77fLy8jRnzhxJ0nvvvWdJ8CRp3Lhxatu2rTZu3KgdO3bcsK8zZ87oiy++kK+vr95//32rpGz69OkKCwvTvHnzdP78eat2M2bMkCS99dZblgRPkh5++GE99NBDOnz4sJYsWVKh93mrOnb5st7YuFFzd+50digAAAAAruGSSd7mzZuVmpqqJk2aqEOHDiXqBw8eLElatmzZDftatWqVioqK1L17d6tkTZL8/PzUr18/FRYWauXKlZbyo0eP6sCBAwoICNCDDz5YofO7o4MXL2rihg16d9s2Z4cCAAAA4Bouebvm7t27JUkdO3a0WW8u37NnT6X0NXfuXKu+zG1at24tHxurR97o/Dt27NDLL7+stLQ0hYeHq2fPnoqNjb1hrLeKiKAgPd2xo+pWr+7sUAAAAABcwyWTvOPHj0uS6tevb7PeXJ6UlOSQvip6/uXLl2v58uWW16+//rpiY2M1f/78ErOJ18rNzVVusb3n0tLSJEkp2Skq8Cm4blt7XMq+VOE+6gX7aNq93SRdiQsorjLGGHA9jDE4GmMMjsYYQ3mlZafZdZxL3q6ZkZEhSQoMDLRZX61aNUlSenq6Q/oq7/kjIiI0adIk7dy5U6mpqTp79qyWLl2qmJgYbdy4UX379lVhYeF14502bZpMJpPlJzIy8obvEQAAAADMXHIm71bVq1cv9erVy/I6ODhY/fr1U48ePdSpUydt375dX331lYYMGVJqHxMmTNC4ceMsr9PS0hQZGamQgBAFBwRXWqwhASE3PgioAMYYHI0xBkdjjMHRGGMoK+98+9I3l5zJM6+mmZWVZbM+MzNTklTdjmfCytNXZZ7f3N/o0aMlSatXr77usX5+fgoODrb6cTVv/vijAqZO1chii9UAAAAAcA0umeQ1aNBAknTy5Emb9ebyqKgoh/RVmec3i46OlnRlS4dbXWZ+vnIKKv58IAAAAIDK55K3a7Zr106SlJCQYLPeXN62bVuH9GVus2/fPuXn55dYYbMs5ze7dOnKA7bm5/luZS/feaee6tBBATZWHgUAAADgXC45k9etWzeZTCYdOXJEu3btKlG/YMECSVK/fv1u2Ffv3r3l6empTZs2ldjwPDc3V8uWLZOXl5f69OljKW/UqJFatGih7OxsrVixokLnN1u4cKGk0rdyuJVU9/NTVI0aqu0GCSsAAADgblwyyfP19dXIkSMlSc8//7zlGThJmjFjhvbs2aPY2Fh16tTJUj5nzhzFxMRowoQJVn1FRERoyJAhysvL03PPPaeCYrcZjh8/XhcuXNDQoUNVu3Ztq3bmxU/Gjx9vlRx+8803Wrp0qZo2bar+/ftbtZk2bZqSk5OtyvLz8zV58mR9/fXXCggI0JNPPlmeSwIAAAAAdnHJ2zUl6dVXX9XatWu1ZcsWRUdHq3v37kpKStK2bdsUFhamuXPnWh2fnJysxMREm8+8zZw5U3FxcVq4cKFiYmLUuXNn7d+/X/v27VN0dLRmzJhRos3w4cO1cuVKLVq0SDExMbrnnnuUnJysjRs3KiAgQPPmzZO3t/Xle+WVVzR58mR17txZkZGRSktL065du3T69Gn5+/tr3rx5qlevXuVeKCf45sABJV2+rPuaNFHra5JjAAAAAM7lkjN5kuTv76/169frr3/9qwIDA7V48WIlJSVp2LBhSkhIUOPGje3uKzQ0VPHx8Ro1apTy8vK0aNEipaamavTo0YqPj1dISMnlaz09PfX111/r7bffVt26dbV8+XLt3btXDz/8sLZv367bb7+9RJuJEyfqN7/5jU6cOKElS5bo+++/V2BgoJ555hnt2rVLgwYNqtA1cRVzd+7UuDVr9NOpU84OBQAAAMA1PAzDMJwdBEqXlpYmk8mk1NTUStlOISU7RVLF9mV5e8sWJZw9q2c7d9ZdV1ciBcwqY4wB18MYg6MxxuBojDGUl725gcvergnX9eKddzo7BAAAAAClcNnbNQEAAAAAZUeSBwAAAABuhCQPZRY9e7ZqT5+u/dfsOwgAAADA+XgmD2V2ITNTqbm58vHycnYoAAAAAK5BkocyS3jmGWXl5yvKZHJ2KAAAAACuQZKHMmtcs6azQwAAAABQCp7JAwAAAAA3QpKHMsnIy9O727bp0507nR0KAAAAABu4XRNlcj4zU2NWrVKQr6+e7NDB2eEAAAAAuAZJHsrEz8tLj7ZqJW9PJoEBAAAAV0SShzKpFxysLwcPdnYYAAAAAErBdAwAAAAAuBGSPAAAAABwIyR5KJMlv/yiiLff1mMLFjg7FAAAAAA2kOShTC7n5OhsRoZSc3OdHQoAAAAAG1h4BWXSPyZGu8LD5e/N0AEAAABcEd/UUSY1/P1VIzzc2WEAAAAAKAW3awIAAACAG2EmD2Wy9cQJ/ZKcrPbh4eoQEeHscAAAAABcg5k8lMmX+/Zp+NKlWvDzz84OBQAAAIANJHkokxZhYeoTHa0WYWHODgUAAACADdyuiTIZ0bmzRnTu7OwwAAAAAJSCmTwAAAAAcCMkeQAAAADgRkjyUCaD5s9Xs9mztfbXX50dCgAAAAAbSPJQJscuX9ahlBQVFBU5OxQAAAAANrDwCspk3qBBupSdrZasrgkAAAC4JJI8lAnJHQAAAODauF0TAAAAANwIM3kok//s2SM/b289GB2tAB8fZ4cDAAAA4BokebCbYRgaumiRJOncSy+R5AEAAAAuiCQPdssvKlKvJk2UlZ+vaiR4AAAAgEsiyYPdfL28tGroUGeHAQAAAOA6WHgFAAAAANwISR4AAAAAuBGSPNht3/nzipkzRw/85z/ODgUAAABAKXgmD3a7nJOjxIsXVWQYzg4FAAAAQClI8mC3NrVra+OwYfLy8HB2KAAAAABKQZIHu5n8/fWbqChnhwEAAADgOngmDwAAAADcCDN5sNvhlBTtOXdODWvUUMeICGeHAwAAAMAGZvJgt5WHDunhr77SW5s3OzsUAAAAAKUgyYPdalerpm6RkYoJDXV2KAAAAABKwe2asNtjrVvrsdatnR0GAAAAgOtgJg8AAAAA3AhJHgAAAAC4EZI82O3/1q1Tl48/1hd79zo7FAAAAAClIMmD3Q6mpOin06eVkp3t7FAAAAAAlIKFV2C3V7t317B27dQyLMzZoQAAAAAoBUke7NYuPFztwsOdHQYAAACA6+B2TQAAAABwI8zkwS7HU1P17aFDKjIMtQwLU6OaNdXAZHJ2WAAAAACuQZKHGzqemqrmc+Yop6DAUubv7a3EkSNJ9AAAAAAX49K3a2ZnZ2vixIlq1qyZ/P39VbduXQ0fPlynTp0qc1+XLl3SmDFjFBUVJT8/P0VFRWns2LG6fPlyqW0KCwv1zjvvqE2bNgoICFBYWJgeeeQRHThw4LrnWrZsmWJjYxUcHKzg4GDdfffdWrFiRZljdhXJWVlWCZ4k5RQUKDkry0kRAQAAACiNyyZ5OTk56tmzp9544w1lZGSof//+ioyM1KeffqoOHTro119/tbuv5ORkdenSRe+++668vb01YMAAVa9eXbNmzdLtt9+ulJSUEm2Kior029/+VuPGjdPJkyf14IMPqlWrVlqwYIE6d+6s+Ph4m+eaOXOmHnroIW3ZskXdunVTz549FR8fr759+2rOnDnlvh4AAAAAYA+XTfKmTJmiuLg4de3aVQcPHtT8+fO1bds2vf3227pw4YKGDx9ud19jx47V4cOHNWjQICUmJmr+/Pnat2+fRo0apYMHD2rcuHEl2sydO1eLFi1SdHS0fvnlFy1YsEAbNmzQ119/raysLP3+979XwTWzW4mJiXrppZfk5+enH374Qd9++60WL16sXbt2qVatWnrhhRd0+PDhCl8bAAAAACiNSyZ5eXl5llmv9957T0FBQZa6cePGqW3bttq4caN27Nhxw77OnDmjL774Qr6+vnr//ffl7f2/xxCnT5+usLAwzZs3T+fPn7dqN2PGDEnSW2+9pTp16ljKH374YT300EM6fPiwlixZYtVm1qxZKiws1IgRI9S1a1dLebNmzfR///d/Kigo0KxZs8pwJVxDaGCg/L2tH9/09/ZWaGCgkyICAAAAUBqXTPI2b96s1NRUNWnSRB06dChRP3jwYElXnn27kVWrVqmoqEjdu3e3StYkyc/PT/369VNhYaFWrlxpKT969KgOHDiggIAAPfjgg3af3/zcnbm+vDG7mgYmkxJHjtSOp5+2/LDoCgAAAOCaXDLJ2717tySpY8eONuvN5Xv27HFIX+Y2rVu3lo+Pj11tLl++rOPHj0uSzcQ0MjJSoaGhSkpKUlpa2g3jdjUNTCZ1jIiw/JDgAQAAAK7JJbdQMCdL9evXt1lvLk9KSnJIXxVpU7NmTVWrVq3UdsnJyUpKSlKbNm1sHpObm6vc3FzLa3NCmJKdogKfApttyuJS9qUK9wFcD2MMjsYYg6MxxuBojDGUV1q2fZNFLjmTl5GRIUkKLOWZL3MSlZ6e7pC+HNHG3rinTZsmk8lk+YmMjCz1WAAAAAC4lkvO5FVlEyZMsFrtMy0tTZGRkQoJCFFwQHClnSckIKTS+gJsYYzB0RhjcDTGGByNMYay8s63L31zySTPvJpmVimbbWdmZkqSqlev7pC+HNHG3rj9/Pzk5+dXaj0AAAAAXI9L3q7ZoEEDSdLJkydt1pvLo6KiHNJXRdpcunTJksxVJG4AAAAAKA+XTPLatWsnSUpISLBZby5v27atQ/oyt9m3b5/y8/PtalOjRg1Lordz584SbU6cOKHk5GRFRUUpOLjybrsEAAAAgOJcMsnr1q2bTCaTjhw5ol27dpWoX7BggSSpX79+N+yrd+/e8vT01KZNm0pseJ6bm6tly5bJy8tLffr0sZQ3atRILVq0UHZ2tmXvO3vOb95Tz1xf3pgBAAAAoLxcMsnz9fXVyJEjJUnPP/+81e2PM2bM0J49exQbG6tOnTpZyufMmaOYmBhNmDDBqq+IiAgNGTJEeXl5eu6551RQ8L9tCMaPH68LFy5o6NChql27tlU78+In48ePt0oOv/nmGy1dulRNmzZV//79rdqMGTNGXl5e+vDDDxUXF2cpP3TokKZOnSpvb2+NGTOmvJcFAAAAAG7IJRdekaRXX31Va9eu1ZYtWxQdHa3u3bsrKSlJ27ZtU1hYmObOnWt1fHJyshITE3XmzJkSfc2cOVNxcXFauHChYmJi1LlzZ+3fv1/79u1TdHS0ZsyYUaLN8OHDtXLlSi1atEgxMTG65557lJycrI0bNyogIEDz5s2Tt7f15WvevLmmT5+ucePGqXv37rrvvvvk6+urNWvWKDs7W++++66aNm1auRcKAAAAAIpxyZk8SfL399f69ev117/+VYGBgVq8eLGSkpI0bNgwJSQkqHHjxnb3FRoaqvj4eI0aNUp5eXlatGiRUlNTNXr0aMXHxyskpOTytZ6envr666/19ttvq27dulq+fLn27t2rhx9+WNu3b9ftt99u81wvvPCCli5dqq5du2rTpk1at26dOnfurGXLlmnUqFHlvh4AAAAAYA8PwzAMZweB0qWlpclkMik1NbVSFmxJyU6RxL4scBzGGByNMQZHY4zB0RhjKC97cwOXnckDAAAAAJQdSR4AAAAAuBGSPAAAAABwIyR5AAAAAOBGSPIAAAAAwI2Q5AEAAACAGyHJAwAAAAA3QpIHAAAAAG6EJA8AAAAA3AhJHgAAAAC4EZI8AAAAAHAjJHkAAAAA4EZI8gAAAADAjZDkAQAAAIAbIckDAAAAADdCkgcAAAAAboQkDwAAAADcCEkeAAAAALgRkjwAAAAAcCMkeQAAAADgRkjyAAAAAMCNkOQBAAAAgBshyQMAAAAAN0KSBwAAAABuhCQPAAAAANwISR4AAAAAuBGSPAAAAABwIyR5AAAAAOBGvJ0dAK7PMAxJUlpaWqX0l5Z9pR/vfH71cAzGGByNMQZHY4zB0RhjKC9zTmDOEUrDyHJx6enpkqTIyEgnRwIAAADAFaSnp8tkMpVa72HcKA2EUxUVFen06dOqXr26PDw8KtxfWlqaIiMjdeLECQUHB1dChIA1xhgcjTEGR2OMwdEYYygvwzCUnp6uunXrytOz9CfvmMlzcZ6enqpfv36l9xscHMwfFTgUYwyOxhiDozHG4GiMMZTH9WbwzFh4BQAAAADcCEkeAAAAALgRkrwqxs/PT6+99pr8/PycHQrcFGMMjsYYg6MxxuBojDE4GguvAAAAAIAbYSYPAAAAANwISR4AAAAAuBGSPAAAAABwIyR5VUR2drYmTpyoZs2ayd/fX3Xr1tXw4cN16tQpZ4eGW8SOHTv097//XYMGDVL9+vXl4eEhDw+PG7b77LPP1KVLFwUFBSkkJER9+vTRli1bbkLEuJVkZWVp8eLFeuqpp9S8eXP5+/urWrVqateunV5//XVlZGSU2pYxhrKYMWOGBg0apOjoaJlMJvn5+SkqKkqPP/649u7dW2o7xhnK4+LFi6pdu7Y8PDzUtGnT6x7LGEOlMuD2srOzjTvuuMOQZERERBiPPPKI0aVLF0OSERYWZhw5csTZIeIW0L9/f0NSiZ/rGTNmjCHJCAgIMPr372/06tXL8Pb2Nry8vIxFixbdnMBxS/j4448tY6pFixbGb3/7W6NXr15G9erVDUlGTEyMce7cuRLtGGMoq1q1ahn+/v5Gly5djIEDBxoDBw40mjVrZkgyfHx8jGXL/n97dx4UZf3HAfy90LIcgitHCh5Am5rHQAodRLRMpUFo5JGOmYXHqF3GOE05EpVT/sZUYrApxTS0LC2pPILyaiIUE9E8EkWRy5BG1AVhWRaB7+8PZze23YUFWZCH92uGGfl8nufZzzKfET483+fLbrNz2GfUUS+99JKQyWQCgFCpVFaPY49RZ+OQ1wskJCQIACIsLEzU1NQY40lJSQKAUKvV3Vcc9RgrVqwQiYmJYteuXaKiokIoFIpWh7x9+/YJAMLLy0ucP3/eGM/JyRFOTk5CqVQKjUbTBZVTT7Bp0yYxf/58kZ+fbxK/fPmyGDNmjAAgZsyYYZJjj1FHHDx4UOh0OrP4p59+KgCI/v37i5s3bxrj7DPqqP379wsAYv78+a0OeewxsgcOeRKn1+tF3759BQBx/Phxs3xQUJAAIPLy8rqhOurJ2hryoqOjBQCRnJxsllu0aJEAIFavXm3HCkkqcnJyBAChUCiEXq83xtlj1NlUKpUAIE6ePGmMsc+oI+rq6oRKpRIjR44U58+fb3XIY4+RPfCZPIk7dOgQqquroVKpMGbMGLP81KlTAQC7d+/u6tJIwnQ6HX799VcA//ZYS+w7ao/g4GAAgF6vx7Vr1wCwx8g+5HI5AMDJyQkA+4w6btmyZSgqKsK6deuMfWUJe4zshUOexJ08eRIAMHbsWIt5Q/zUqVNdVhNJX0FBAfR6PXx8fDBo0CCzPPuO2qOoqAjArR/APT09AbDHqPN99dVXKCgowNChQzF06FAA7DPqmFOnTiEpKQmzZ89GREREq8eyx8he7uruAsi+ysrKAMDifxwt46WlpV1WE0lfW33n5uYGpVIJjUaDmpoauLu7d2V51MOkpKQAAKKioqBQKACwx+j2rVq1CmfOnIFWq8XZs2dx5swZ+Pn5YevWrXB0dATAPqP2a25uxrx586BUKrFy5co2j2ePkb1wyJM4w7bjrq6uFvNubm4AgJqami6riaSvrb4DbvVeVVUVv2lRqzIzM7Fx40bI5XJ88MEHxjh7jG7Xnj17cODAAePn/v7++PLLLxESEmKMsc+ovT755BMcPXoUaWlp8PLyavN49hjZC5drEhHRHencuXN44YUXIITAqlWrjM/mEXWG/fv3QwgBjUaD33//HUOHDoVarcby5cu7uzTqocrKyvDOO+9ArVYjLi6uu8uhXo5DnsT16dMHwK0/NGyJVqsFAP5miDpVW30HsPeodeXl5YiKioJGo8HixYvxxhtvmOTZY9RZlEolIiIikJmZiZCQECQmJuLo0aMA2GfUPq+++ioaGhqwbt06m89hj5G9cLmmxA0ZMgQA8Pfff1vMG+L+/v5dVhNJX1t9p9VqUVVVhX79+vGbFpm5fv06xo8fj9LSUsyePRurV682O4Y9Rp1NLpdj+vTpOHbsGHbv3o0HHniAfUbt8tNPP0GpVGLhwoUm8fr6egC3fnkVGRkJANi2bRsGDBjAHiO74ZAncYblTcePH7eYN8SDgoK6rCaSvuHDh0OhUKCyshLl5eUYOHCgSZ59R9bU1tYiOjoa+fn5mDx5Mj7//HPIZDKz49hjZA/e3t4AgMrKSgDsM2q/qqoqZGVlWczV19cbc4bBjz1G9sLlmhIXHh6Ovn374uLFizhx4oRZPj09HQAwceLELq6MpMzFxQWPP/44AGD79u1mefYdWaLX6xEbG4vc3Fw89dRTJrsc/hd7jOzB8AO4SqUCwD6j9hFCWPwoLi4GcKuvDLGAgAAA7DGyo+76K+zUdRISEgQA8cgjj4ja2lpjPCkpSQAQarW6+4qjHkuhUIjW/gvZt2+fACC8vLzE+fPnjfGcnByhUCiEUqkUGo2mCyqlnqCxsVFMmjRJABARERFCq9W2eQ57jNrr4MGD4ueffxZNTU0m8YaGBrFmzRrh4OAgXFxcRFlZmTHHPqPbVVxcLAAIlUplMc8eI3uQCSFEt02Y1CXq6+sRGRmJI0eOwNfXFxERESgtLcWRI0fg4+ODP/74A/fcc093l0l3uIyMDJMt7HNzcyGEwEMPPWSMJSYmIiYmxvh5fHw8UlJS4OrqinHjxqGhoQH79u2DEALp6el49tlnu/It0B0sJSUF8fHxAIBJkybBw8PD4nGrV682LqkD2GPUPps2bcLs2bPh7e2NkJAQeHl54erVqzh9+jQqKirg7OyMzZs3Y9q0aSbnsc/odpSUlCAwMBAqlQqFhYUWj2GPUafrxgGTulBdXZ1ITEwUKpVKODk5iQEDBoi4uDhx6dKl7i6Neoi0tDQBoNWPtLQ0i+eFhIQIV1dXoVQqRVRUlDh06FDXvwG6o7333ntt9hcAUVxcbHYue4xsVVRUJJYuXSrCw8OFr6+vkMvlws3NTYwaNUq8/vrr4sKFC1bPZZ9RR7V1J8+APUadiXfyiIiIiIiIJIQbrxAREREREUkIhzwiIiIiIiIJ4ZBHREREREQkIRzyiIiIiIiIJIRDHhERERERkYRwyCMiIiIiIpIQDnlEREREREQSwiGPiIiIiIhIQjjkERERERERSQiHPCIikiyZTAaZTNbdZdiNTCZDQEBAd5dBRER3GA55RETUq5SUlEAmkyEyMrK7S2lVT6mTiIjuPHd1dwFERETUMWfPnoVcLu/uMoiI6A7DIY+IiKiHuu+++7q7BCIiugNxuSYREfUa77//PgIDAwEAWVlZxmf2ZDIZ4uLiTI69dOkSXnvtNahUKjg7O8PT0xMTJkxATk6O2XVbLq28ceMGFi9ejMDAQMjlcsTHxwMAMjIyMGfOHIwYMQIeHh5wc3NDcHAw/ve//0Gv13eoztaeyTt8+DBiY2Ph4+MDhUKBgIAAvPLKK7h8+XKr9et0OixZsgT+/v5QKBS499578dFHH0EIYeNX+ZbCwkLIZDKMGzcOWq0Wy5Ytw4gRI+Dq6gqVSoWVK1e2+5pERGQb3skjIqJe4/7778eUKVPw/fffo3///oiKijLmHn30UeO/Dx8+jJiYGGg0GgwfPhwxMTGorKzEnj178Msvv+Drr7/G9OnTza6v0+mgVqtRWloKtVqNsWPHol+/fgCAuXPnQqfTYfTo0QgKCkJ1dTVyc3ORkJCAAwcOYO/evXB0dGxXndZs2bIFcXFxaGpqQnh4OAYPHozjx49j7dq1+OGHH/Dbb79ZvAvY0NCA8ePHIz8/H5GRkdBqtcjKysKSJUtQU1ODDz/80Oav9cmTJwEAnp6eCA4Ohl6vR1hYGAYPHowDBw7g7bffhre3N+bMmWPzNYmIyEaCiIhIogCI/36rKy4uFgCEWq22eE51dbXw9fUVjo6OYsuWLSa5o0ePin79+ok+ffqIK1eumF0TgAgLCxMajcbsujt27BB1dXUmsRs3bogJEyYIAGLz5s3tqtPw/vz9/U1iZWVlwsXFRTg6OoqdO3ca401NTSI+Pl4AEKGhoRZfy/B61dXVJu/Z0dFRuLq6ipqaGqu1/FdiYqLxmkuXLhU3b9405tLS0gQAERMTY/P1iIjIdlyuSURE1MIXX3yBiooKxMfHY+bMmSa50NBQJCYmora2Flu2bLF4/po1a6BUKs3isbGxcHFxMYm5u7sjOTkZALBz585OqX/Dhg3Q6XSYNm0annnmGWPcwcEBK1asgJ+fH/Ly8nDo0CGzcx0cHJCamgoPDw9jLDQ0FNHR0airq0NeXp7NdZw4cQIAMGXKFCxfvhx33fXv4iHDnckrV6609+0REZENuFyTiIiohb179wIAJk+ebDEfEREBAMjNzTXL+fr6IjQ01Oq1L1y4gMzMTBQWFkKr1aK5udn4XNqFCxdut3QAQHZ2NgCYDagAoFAo8NxzzyElJQXZ2dkIDw83yfv7+2P48OFm5w0bNgwAUFFRYXMdhuWa7777rlnu6tWrAAA/Pz+br0dERLbjkEdERNRCSUkJAJgNQP9lGFRaGjJkiMVjhRB48803kZycbHWzkZqamvYVaoVhYxVrG7IY4uXl5Wa5QYMGWTzH3d0dAMw2iLGmqqoKZWVlCAwMRFBQkFn+1KlTAIDRo0fbdD0iImofDnlEREQtNDc3AwCmTp0KNzc3q8dZ2rjE2dnZ4rHffvstPv74YwwePBjJyckICwuDj48P5HI5GhoaoFAoumynSZlMZjXn4NA5T3EYlmo++OCDFvN//vkngFsbzBARUefjkEdERNTCoEGDUFBQgCVLliAkJKRTrvnjjz8CANauXYuYmBiTXFFRUae8hoGfnx8KCgpQWlqKUaNGmeUNdyoHDhzYqa/bkmGp5pgxYyzmOeQREdkXN14hIqJexcnJCQDQ2NhoMT9u3DgA/w5mnUGj0QCwvBzyu+++s3hOW3VaY3hmcOvWrWa5hoYGbN++3eQ4e7BlyHN3d4dKpbJbDUREvRmHPCIi6lW8vb0hl8tx8eJFNDU1meUXLFiAu+++GytXrsT69euNyzcNGhsbsWfPHvz11182v6Zh45L169ebLMvMzs7GqlWrOlSnNXPnzoWLiwu2bduGjIwMY7y5uRlLly5FeXk5QkJC2nzm8HYYlmtaGvLKyspw/fp1BAUFtbp0lIiIOo5DHhER9SpOTk6IiorCP//8g+DgYLz44ouYN28e0tLSAABKpRI7d+5E3759sWDBAgQEBODpp5/GzJkz8cQTT8DHxwdRUVEoLCy0+TUXLVoENzc3fPbZZxg9ejRmzJiBxx57DGq1GgsXLuxQndYMGTIEqampaG5uxsSJExEREYHnn38eI0eORFJSEvr372/1zz90hsbGRuTn52PgwIHw8fExy3OpJhGR/XHIIyKiXmfDhg2YNWsWrl27hm+++QYbN25EVlaWMf/www/j9OnTeOutt+Dh4YGsrCzs2LEDpaWlUKvV2LRpE5588kmbX2/YsGHIy8vDxIkTcfXqVezatQu1tbVITU21eifPljqtmTVrFrKzszFhwgScPXsW6enp0Ol0ePnll3Hs2DGLm8Z0lnPnzkGv11sd4jjkERHZn0x01XZeREREREREZHe8k0dERERERCQhHPKIiIiIiIgkhEMeERERERGRhHDIIyIiIiIikhAOeURERERERBLCIY+IiIiIiEhCOOQRERERERFJCIc8IiIiIiIiCeGQR0REREREJCEc8oiIiIiIiCSEQx4REREREZGEcMgjIiIiIiKSkP8DyYQAOyDF/rYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est.completed_trials_summary_[est.completed_trials_summary_[\"Step\"].str.contains('Model Tuning')]\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "trials.drop(trials[trials['Finished'] == -1].index, inplace = True)\n", "trials['Finished']= trials['Finished'].apply(lambda x: time.mktime(datetime.datetime.strptime(x,\n", " \"%a %b %d %H:%M:%S %Y\").timetuple()))\n", "trials.sort_values(by=['Finished'],ascending=True, inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "score = []\n", "score.append(scores[0])\n", "for i in range(1,len(scores)):\n", " if scores[i]>= score[i-1]:\n", " score.append(scores[i])\n", " else:\n", " score.append(score[i-1])\n", "y_margin = 0.10 * (max(score) - min(score))\n", "\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Hyperparameter Tuning Trials\")\n", "ax.set_xlabel(\"Iteration $n$\")\n", "ax.set_ylabel(est._inferred_score_metric[0].name)\n", "ax.grid(color='g', linestyle='-', linewidth=0.1)\n", "ax.set_ylim(min(score) - y_margin, max(score) + y_margin)\n", "ax.plot(range(1, len(trials) + 1), score, 'k:', marker=\"s\", color='teal', markersize=3)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "b8eabd7c", "metadata": {}, "source": [ "#### Confusion Matrix\n", "Evaluating an anomaly detection model is slightly more involved. Essentially, we would like to know when the model was wrong and when the model was right. We use a **Confusion Matrix** to help us visualize the model's behavior." ] }, { "cell_type": "code", "execution_count": 18, "id": "0b47cd30", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:02.285941Z", "iopub.status.busy": "2025-04-25T10:04:02.285479Z", "iopub.status.idle": "2025-04-25T10:04:02.713134Z", "shell.execute_reply": "2025-04-25T10:04:02.712574Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "colorscale": [ [ 0.0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1.0, "#fde725" ] ], "reversescale": false, "showscale": false, "type": "heatmap", "x": [ "Normal", "Fraud" ], "y": [ "Normal", "Fraud" ], "z": [ [ 0.9367778696164466, 0.06322213038355345 ], [ 0.494949494949495, 0.5050505050505051 ] ] } ], "layout": { "annotations": [ { "font": { "color": "#000000" }, "showarrow": false, "text": "93.68", "x": "Normal", "xref": "x", "y": "Normal", "yref": "y" }, { "font": { "color": "#FFFFFF" }, "showarrow": false, "text": "6.32", "x": "Fraud", "xref": "x", "y": "Normal", "yref": "y" }, { "font": { "color": "#FFFFFF" }, "showarrow": false, "text": "49.49", "x": "Normal", "xref": "x", "y": "Fraud", "yref": "y" }, { "font": { "color": "#000000" }, "showarrow": false, "text": "50.51", "x": "Fraud", "xref": "x", "y": "Fraud", "yref": "y" }, { "font": { "color": "black", "size": 14 }, "showarrow": false, "text": "Predicted value", "x": 0.5, "xref": "paper", "y": -0.15, "yref": "paper" }, { "font": { "color": "black", "size": 14 }, "showarrow": false, "text": "Actual", "textangle": -90, "x": -0.15, "xref": "paper", "y": 0.5, "yref": "paper" } ], "margin": { "l": 150, "t": 50 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "dtick": 1, "gridcolor": "rgb(0, 0, 0)", "side": "top", "ticks": "" }, "yaxis": { "dtick": 1, "ticks": "", "ticksuffix": " " } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cm = confusion_matrix(y_test.astype(int), y_pred, labels=[False, True])\n", "cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n", "\n", "text = [[f\"{y*100:.2f}\" for y in x] for x in cm]\n", "fig = ff.create_annotated_heatmap(cm, x=['Normal', 'Fraud'], y=['Normal', 'Fraud'], annotation_text=text, colorscale='Viridis')\n", "fig.add_annotation(dict(font=dict(color=\"black\",size=14),\n", " x=0.5,\n", " y=-0.15,\n", " showarrow=False,\n", " text=\"Predicted value\",\n", " xref=\"paper\",\n", " yref=\"paper\"))\n", "\n", "fig.add_annotation(dict(font=dict(color=\"black\",size=14),\n", " x=-0.15,\n", " y=0.5,\n", " showarrow=False,\n", " text=\"Actual\",\n", " textangle=-90,\n", " xref=\"paper\",\n", " yref=\"paper\"))\n", "fig.update_layout(margin=dict(t=50, l=150))\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "d6b59afa", "metadata": {}, "source": [ "\n", "### Specify a time budget to Oracle AutoMLx\n", "The Oracle AutoMLx tool also allows a user to specify a time budget in seconds. Given the small size of this dataset, we give a small time budget of 10 seconds using the `time_budget` argument to `fit()`." ] }, { "cell_type": "code", "execution_count": 19, "id": "34681372", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:02.715088Z", "iopub.status.busy": "2025-04-25T10:04:02.714896Z", "iopub.status.idle": "2025-04-25T10:04:19.625334Z", "shell.execute_reply": "2025-04-25T10:04:19.624707Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:04:02,809] [automlx.interface] Dataset shape: (17088,19)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:04:02,906] [automlx.data_transform] Running preprocessing. Number of features: 20\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:04:03,080] [automlx.data_transform] Preprocessing completed. Took 0.174 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:04:03,122] [automlx.process] Running Model Generation\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:04:03,169] [automlx.process] Model Generation completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:04:03,235] [automlx.model_selection] Running Model Selection\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:04:13,204] [automlx.model_selection] Model Selection completed - Took 9.969 sec - Selected models: [['MinCovOD']]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:04:13,215] [automlx.process] Timebudget exceeded for steps ['HyperparameterOptimization'], skipping processing of [MinCovOD (InputTargetDataTransformer_MinCovOD)]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:04:13,296] [automlx.interface] Re-fitting pipeline\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:04:13,307] [automlx.final_fit] Skipping updating parameter seed, already fixed by FinalFit_c8b84ec6-f\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "F1-Score on test data : 0.3114754098360656\n" ] } ], "source": [ "est_timebudget = automlx.Pipeline(task='anomaly_detection', score_metric='unsupervised_unify95')\n", "est_timebudget.fit(X_train, time_budget=10)\n", "y_pred = est_timebudget.predict(X_test)\n", "score_timebudget = f1_score(y_test.astype(int), y_pred)\n", "\n", "print(f'F1-Score on test data : {score_timebudget}')" ] }, { "cell_type": "markdown", "id": "16dc3cc3", "metadata": {}, "source": [ "\n", "## Machine Learning Explainability" ] }, { "cell_type": "markdown", "id": "722d3c7a", "metadata": {}, "source": [ "For a variety of decision-making tasks, getting only a prediction as model output is not sufficient. A user may wish to know why the model outputs that prediction, or which data features are relevant for that prediction. For that purpose the Oracle AutoMLx solution defines the `MLExplainer` object, which allows to compute a variety of model explanations.\n", "\n", "\n", "### Initialize an MLExplainer\n", "\n", "The `MLExplainer` object takes as argument the trained model, the training data and the task. If you know the labels for your dataset, you may provide them; however, since we are dealing with anomaly detection they are optional. When the labels are not provided, we will use the model's predictions instead." ] }, { "cell_type": "code", "execution_count": 20, "id": "3fb287bc", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:19.627597Z", "iopub.status.busy": "2025-04-25T10:04:19.627122Z", "iopub.status.idle": "2025-04-25T10:04:25.314927Z", "shell.execute_reply": "2025-04-25T10:04:25.314270Z" } }, "outputs": [], "source": [ "explainer = automlx.MLExplainer(est,\n", " X_train,\n", " target_names=['Normal', 'Anomaly'],\n", " task='anomaly_detection')" ] }, { "cell_type": "markdown", "id": "d947d61e", "metadata": {}, "source": [ "\n", "### Model Explanations (Global Feature Importance)" ] }, { "cell_type": "markdown", "id": "d24b65ec", "metadata": {}, "source": [ "The notion of Global Feature Importance intuitively measures how much the model's performance (relative to the model's original predictions or the provided train labels, if available) would change if a given feature were dropped from the dataset, ***and the model was retrained***. (Note that this is unlike the default explainers for classification and regression tasks, which explain the model as if it were not retrained. Also unlike these supervised explainers, the anomaly detection explainer does not support interventional explanations.) Note that this notion of feature importance still considers each feature independently from all other features." ] }, { "cell_type": "markdown", "id": "47267091", "metadata": {}, "source": [ "#### Compute the importance" ] }, { "cell_type": "markdown", "id": "f474f126", "metadata": {}, "source": [ "By default we use a permutation method to successively measure the importance of each feature. Such a method therefore runs in linear time with respect to the\n", "number of features in the dataset.\n", "\n", "The method `explain_model()` allows to compute such feature importances. It also provides 95% confidence intervals for each feature importance." ] }, { "cell_type": "code", "execution_count": 21, "id": "643fc84a", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:25.318061Z", "iopub.status.busy": "2025-04-25T10:04:25.316997Z", "iopub.status.idle": "2025-04-25T10:04:32.918643Z", "shell.execute_reply": "2025-04-25T10:04:32.917937Z" } }, "outputs": [], "source": [ "result_explain_model_default = explainer.explain_model()" ] }, { "cell_type": "markdown", "id": "d8d09f86", "metadata": {}, "source": [ "#### Visualization" ] }, { "cell_type": "markdown", "id": "27f1897b", "metadata": {}, "source": [ "There are two options to show the explanation's results:\n", "- `to_dataframe()` will return a dataframe of the results.\n", "- `show_in_notebook()` will show the results as a bar plot.\n", "\n", "The features are returned in decreasing order of importance." ] }, { "cell_type": "code", "execution_count": 22, "id": "cd98fb4d", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:32.921426Z", "iopub.status.busy": "2025-04-25T10:04:32.920832Z", "iopub.status.idle": "2025-04-25T10:04:33.025837Z", "shell.execute_reply": "2025-04-25T10:04:33.025232Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FeatureAttributionLower BoundUpper Bound
0V190.0625940.0584480.066740
1V80.0474950.0420240.052967
2V40.0354410.0302220.040659
3V30.0309640.0281170.033810
4V140.0137330.0118460.015620
12V110.0000000.0000000.000000
18V180.0000000.0000000.000000
17V170.0000000.0000000.000000
16V160.0000000.0000000.000000
15V150.0000000.0000000.000000
14V130.0000000.0000000.000000
13V120.0000000.0000000.000000
10V90.0000000.0000000.000000
11V100.0000000.0000000.000000
9V70.0000000.0000000.000000
8V60.0000000.0000000.000000
7V50.0000000.0000000.000000
6V20.0000000.0000000.000000
5V10.0000000.0000000.000000
19V200.0000000.0000000.000000
\n", "
" ], "text/plain": [ " Feature Attribution Lower Bound Upper Bound\n", "0 V19 0.062594 0.058448 0.066740\n", "1 V8 0.047495 0.042024 0.052967\n", "2 V4 0.035441 0.030222 0.040659\n", "3 V3 0.030964 0.028117 0.033810\n", "4 V14 0.013733 0.011846 0.015620\n", "12 V11 0.000000 0.000000 0.000000\n", "18 V18 0.000000 0.000000 0.000000\n", "17 V17 0.000000 0.000000 0.000000\n", "16 V16 0.000000 0.000000 0.000000\n", "15 V15 0.000000 0.000000 0.000000\n", "14 V13 0.000000 0.000000 0.000000\n", "13 V12 0.000000 0.000000 0.000000\n", "10 V9 0.000000 0.000000 0.000000\n", "11 V10 0.000000 0.000000 0.000000\n", "9 V7 0.000000 0.000000 0.000000\n", "8 V6 0.000000 0.000000 0.000000\n", "7 V5 0.000000 0.000000 0.000000\n", "6 V2 0.000000 0.000000 0.000000\n", "5 V1 0.000000 0.000000 0.000000\n", "19 V20 0.000000 0.000000 0.000000" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result_explain_model_default.to_dataframe()" ] }, { "cell_type": "code", "execution_count": 23, "id": "592321d8", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:33.027991Z", "iopub.status.busy": "2025-04-25T10:04:33.027518Z", "iopub.status.idle": "2025-04-25T10:04:34.180109Z", "shell.execute_reply": "2025-04-25T10:04:34.179503Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ 0.004145785678493802, 0.0054717055620282715, 0.0052184995978624416, 0.0028467243166271222, 0.0018872636173571551, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], "arrayminus": [ 0.004145785678493802, 0.0054717055620282715, 0.0052184995978624416, 0.0028467243166271222, 0.0018872636173571551, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], "type": "data" }, "legendgroup": "None", "marker": { "color": "rgb(248,0,0)" }, "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.06259392734278103, 0.04749523313061003, 0.03544065790030486, 0.030963755476664488, 0.013733169957271207, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], "y": [ "V19", "V8", "V4", "V3", "V14", "V11", "V18", "V17", "V16", "V15", "V13", "V12", "V9", "V10", "V7", "V6", "V5", "V2", "V1", "V20" ] } ], "layout": { "height": 900, "margin": { "b": 20, "t": 80 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "The Features' Impact on the Model's f1_weighted Score", "x": 0.5 }, "xaxis": { "categoryorder": "total ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "total ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_model_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "1c543b61", "metadata": {}, "source": [ "### Feature Dependence Explanations (Partial Dependence Plots)\n", "\n", "Another way to measure dependency on a feature is through a partial dependence plot (PDP). Given a dataset, a PDP displays the average output of the model as a function of the value of the selected set of features.\n", "\n", "The X-axis is the value of the feature `V17` and the y-axis is the corresponding outputted price. Since we are considering the whole dataset, while the shaded interval corresponds to a 95% confidence interval for the average.\n", "\n", "The histogram on top shows the distribution of the value of the feature `V17` in the dataset." ] }, { "cell_type": "code", "execution_count": 24, "id": "6295770d", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:34.182241Z", "iopub.status.busy": "2025-04-25T10:04:34.181798Z", "iopub.status.idle": "2025-04-25T10:04:35.722846Z", "shell.execute_reply": "2025-04-25T10:04:35.722195Z" }, "lines_to_next_cell": 0 }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "toself", "fillcolor": "rgb(248,0,0)", "legendgroup": "None", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": false, "type": "scatter", "x": [ -0.9681906615873594, -0.8017234237392098, -0.6787820074723984, -0.5896843618672288, -0.5109317592570508, -0.43888694964219055, -0.3670797584787029, -0.302867960118549, -0.23518605154435954, -0.15454016905499768, -0.07470404565405854, 0.004879234685813854, 0.08496403402246253, 0.1658227814655644, 0.24561722980815148, 0.339656108508978, 0.44665516823345264, 0.5519310539344573, 0.7201165656244733, 0.9333951382939861, 1.2848218824098692, 1.2848218824098692, 0.9333951382939861, 0.7201165656244733, 0.5519310539344573, 0.44665516823345264, 0.339656108508978, 0.24561722980815148, 0.1658227814655644, 0.08496403402246253, 0.004879234685813854, -0.07470404565405854, -0.15454016905499768, -0.23518605154435954, -0.302867960118549, -0.3670797584787029, -0.43888694964219055, -0.5109317592570508, -0.5896843618672288, -0.6787820074723984, -0.8017234237392098, -0.9681906615873594 ], "xaxis": "x2", "y": [ 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7819717807473731, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904, 0.7538092757022904 ], "yaxis": "y2" }, { "legendgroup": "None", "line": { "color": "rgb(248,0,0)" }, "mode": "lines+markers", "opacity": 1, "showlegend": false, "type": "scatter", "x": [ -0.9681906615873594, -0.8017234237392098, -0.6787820074723984, -0.5896843618672288, -0.5109317592570508, -0.43888694964219055, -0.3670797584787029, -0.302867960118549, -0.23518605154435954, -0.15454016905499768, -0.07470404565405854, 0.004879234685813854, 0.08496403402246253, 0.1658227814655644, 0.24561722980815148, 0.339656108508978, 0.44665516823345264, 0.5519310539344573, 0.7201165656244733, 0.9333951382939861, 1.2848218824098692 ], "xaxis": "x2", "y": [ 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317, 0.7678905282248317 ], "yaxis": "y2" }, { "legendgroup": "None", "marker": { "color": "Black" }, "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.15158992591571793, "x": [ -6.029783577722469, -5.8645505584743365, -5.704982215405159, -5.545413872335981, -5.385845529266804, -5.226277186197628, -5.06670884312845, -4.907140500059273, -4.7475721569900955, -4.588003813920919, -4.428435470851741, -4.268867127782564, -4.1092987847133875, -3.9497304416442103, -3.790162098575033, -3.6305937555058554, -3.4710254124366786, -3.311457069367501, -3.151888726298324, -2.9923203832291465, -2.8327520401599697, -2.673183697090793, -2.5136153540216153, -2.3540470109524385, -2.194478667883261, -2.034910324814084, -1.8753419817449068, -1.7157736386757296, -1.5562052956065524, -1.3966369525373752, -1.237068609468198, -1.0775002663990207, -0.917931923329844, -0.7583635802606667, -0.5987952371914895, -0.4392268941223123, -0.2796585510531351, -0.12009020798395786, 0.03947813508521936, 0.19904647815439658, 0.3586148212235738, 0.5181831642927506, 0.6777515073619278, 0.837319850431105, 0.9968881935002822, 1.1564565365694595, 1.3160248796386367, 1.475593222707814, 1.6351615657769907, 1.794729908846168, 1.9542982519153451, 2.113866594984522, 2.2734349380536996, 2.4330032811228772, 2.592571624192054, 2.752139967261231, 2.9117083103304076, 3.071276653399585, 3.230844996468763, 3.3904133395379397, 3.5499816826071164, 3.709550025676294, 3.8691183687454718, 4.0286867118146485, 4.188255054883825, 4.347823397953002, 4.50739174102218, 4.666960084091357, 4.826528427160534, 4.986096770229711, 5.145665113298889 ], "xaxis": "x", "y": [ 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0002, 0.0002, 0.001, 0.0024, 0.0042, 0.0112, 0.0242, 0.04, 0.056, 0.085, 0.0994, 0.1076, 0.0858, 0.0926, 0.0884, 0.0678, 0.063, 0.0414, 0.0308, 0.0244, 0.0188, 0.0154, 0.0078, 0.0088, 0.0068, 0.004, 0.0034, 0.0014, 0.001, 0.001, 0.0012, 0.0006, 0.0002, 0.0002, 0.0012, 0.0002, 0.0002, 0.0002, 0.0004, 0.0002, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0004 ], "yaxis": "y" } ], "layout": { "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Partial Dependence Plot (PDP)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ -1.080841288787221, 1.3974725096097307 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "V17" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.11298000000000001 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ 0.7524011504500363, 0.7833799059996271 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "P(Normal)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_feature_dependence_default = explainer.explain_feature_dependence('V17')\n", "result_explain_feature_dependence_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "080a2610", "metadata": {}, "source": [ "\n", "### Prediction Explanations" ] }, { "cell_type": "markdown", "id": "de878fb4", "metadata": {}, "source": [ "In addition to the Model's behavior, a user might be curious about decision-logic behind the specific predictions made by the model or the impact of specific feature values on the prediction. The Oracle AutoMLx offers prediction explanations to address such concerns." ] }, { "cell_type": "markdown", "id": "9525cc44", "metadata": {}, "source": [ "\n", "### Local Feature Importance" ] }, { "cell_type": "markdown", "id": "53362cd2", "metadata": {}, "source": [ "Given a data sample, one can also obtain the local importance, which is the importance of the features for the model's prediction on that sample.\n", "In the following cell, we consider sample $1$. The function `explain_prediction()` computes the local importance for a given sample.\n", "\n", "In the plot, `V8=0.8878` means that the value of feature `V8` for that sample is `0.8878`. Removing that feature and retraining the model would change the model's prediction by the magnitude of the bar. That is, in this case, the model's prediction for the probability that the point is anomalous is approximately 0.4% larger because the model was able to observe the value for `V8`." ] }, { "cell_type": "code", "execution_count": 25, "id": "ded8f307", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:35.725041Z", "iopub.status.busy": "2025-04-25T10:04:35.724832Z", "iopub.status.idle": "2025-04-25T10:04:35.782231Z", "shell.execute_reply": "2025-04-25T10:04:35.781712Z" } }, "outputs": [], "source": [ "anomaly_indices = np.where(y_pred == 1)[0]" ] }, { "cell_type": "code", "execution_count": 26, "id": "34f9a8a3", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:35.784201Z", "iopub.status.busy": "2025-04-25T10:04:35.783777Z", "iopub.status.idle": "2025-04-25T10:04:36.200218Z", "shell.execute_reply": "2025-04-25T10:04:36.199643Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ 0.005382542896500111, 0.004105319788107381 ], "arrayminus": [ 0.005382542896500111, 0.004105319788107381 ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "negative", "marker": { "color": "#626567" }, "name": "36737=negative", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ -0.024053776334732723, -0.04653394113354835 ], "y": [ "V3", "V19" ] }, { "error_x": { "array": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05281468841204537, 0.02916953661548438, 0.05026616375490922 ], "arrayminus": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05281468841204537, 0.029169536615484368, 0.05026616375490922 ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "positive", "marker": { "color": "#F80000" }, "name": "36737=positive", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.13664114897249124, 0.15312663305239846, 0.3153644800294522 ], "y": [ "V16", "V6", "V7", "V9", "V10", "V2", "V12", "V11", "V15", "V20", "V17", "V18", "V13", "V1", "V5", "V8", "V14", "V4" ] }, { "marker": { "line": { "color": "rgba(0,0,0,0)", "width": 1 } }, "name": "", "orientation": "h", "showlegend": false, "type": "bar", "width": 0, "x": [ -0.3153644800294522 ], "y": [ " " ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "V16 = 0.3018", "x": 0, "xanchor": "right", "xref": "x", "y": 1, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V6 = -0.1358", "x": 0, "xanchor": "right", "xref": "x", "y": 2, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V7 = 1.7098", "x": 0, "xanchor": "right", "xref": "x", "y": 3, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V9 = -0.4301", "x": 0, "xanchor": "right", "xref": "x", "y": 4, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V10 = -1.9344", "x": 0, "xanchor": "right", "xref": "x", "y": 5, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V2 = -0.0110", "x": 0, "xanchor": "right", "xref": "x", "y": 6, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V12 = 0.2940", "x": 0, "xanchor": "right", "xref": "x", "y": 7, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V11 = 0.5189", "x": 0, "xanchor": "right", "xref": "x", "y": 8, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V15 = -0.9451", "x": 0, "xanchor": "right", "xref": "x", "y": 9, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V20 = 0.7061", "x": 0, "xanchor": "right", "xref": "x", "y": 10, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V17 = 0.9598", "x": 0, "xanchor": "right", "xref": "x", "y": 11, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V18 = 1.0687", "x": 0, "xanchor": "right", "xref": "x", "y": 12, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V13 = -0.5863", "x": 0, "xanchor": "right", "xref": "x", "y": 13, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V1 = -1.4029", "x": 0, "xanchor": "right", "xref": "x", "y": 14, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V5 = -0.4015", "x": 0, "xanchor": "right", "xref": "x", "y": 15, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V3 = -0.6727", "x": 0, "xanchor": "right", "xref": "x", "y": 16, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V19 = 0.7451", "x": 0, "xanchor": "right", "xref": "x", "y": 17, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V8 = 0.3195", "x": 0, "xanchor": "left", "xref": "x", "y": 18, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V14 = -0.8725", "x": 0, "xanchor": "left", "xref": "x", "y": 19, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V4 = -0.2399", "x": 0, "xanchor": "left", "xref": "x", "y": 20, "yref": "y", "yshift": 12.0 }, { "font": { "color": "#626567", "size": 14 }, "showarrow": false, "text": "⇩ P(Normal)", "x": 0.15, "xref": "paper", "y": 1.015, "yref": "paper", "yshift": 40 }, { "font": { "color": "#F80000", "size": 14 }, "showarrow": false, "text": "⇧ P(Normal)", "x": 0.85, "xref": "paper", "y": 1.015, "yref": "paper", "yshift": 40 } ], "barmode": "overlay", "height": 890, "margin": { "b": 20, "t": 70 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryarray": [ " ", "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V3", "V19", "V8", "V14", "V4" ], "categoryorder": "array", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "title": { "text": " " }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryarray": [ " ", "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V3", "V19", "V8", "V14", "V4" ], "categoryorder": "array", "gridcolor": "white", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": false, "side": "top", "type": "category", "visible": false, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "index = anomaly_indices[0]\n", "result_explain_prediction_default = explainer.explain_prediction(X_train.iloc[index:index+1,:])\n", "result_explain_prediction_default[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "8228ec75", "metadata": {}, "source": [ "\n", "## Interactive What-If Explanations" ] }, { "cell_type": "markdown", "id": "b1fc5fad", "metadata": {}, "source": [ "The Oracle AutoMLx solution offers also What-IF tool to explain a trained ML model's predictions through a simple interactive interface.\n", "\n", "You can use What-IF explainer to explore and visualize immediately how changing a sample value will affect the model's prediction. Furthermore, What-IF can be used to visualize how model's predictions are related to any feature of the dataset." ] }, { "cell_type": "code", "execution_count": 27, "id": "96bb1acf", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:36.202488Z", "iopub.status.busy": "2025-04-25T10:04:36.201998Z", "iopub.status.idle": "2025-04-25T10:04:37.139460Z", "shell.execute_reply": "2025-04-25T10:04:37.138851Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2fa2c0191a17401c95b71cdca6ff69ae", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value=\"

Select and Explore Predictions

\"), HTML(value='
proba_Anomaly: %{y}
predictions: Anomaly", "marker": { "color": "#F58518", "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "predictions = Anomaly", "showlegend": true, "type": "scatter", "uid": "b81fd374-cc2f-4339-bfa6-87a93ca81b41", "x": [ -34.614374490517406, -31.74666256245891, -29.516123082690036, -28.709229254179274, -27.007997352118657, -21.532477522082235, -21.412614707327794, -21.20911959279125, -21.085739773303786, -17.203342205371268, -15.644050631936185, -14.76796725159468, -14.168840338203823, -12.925066991063156, -11.404624498836816, -11.089606491564515, -10.482762244777943, -9.838592194562224, -9.796731219741224, -9.470644851913965, -9.361795763091157, -9.070816528619131, -9.053350126793918, -8.929352495086533, -8.66491901250327, -8.432294076325308, -8.080593699400069, -8.054026006230158, -7.759387253811376, -7.377021178693565, -7.267946290970095, -7.106233416686333, -7.040659519799522, -6.939152598647854, -6.890727208327279, -6.876007407472386, -6.8036400117271265, -6.49350395422021, -6.477101659610618, -6.423306456452213, -6.379097753976874, -6.358625818717078, -6.272390906787591, -6.1875719163200715, -6.16873427128838, -6.034474342949988, -6.010376488652133, -5.873491657620275, -5.870261139473384, -5.809289826568091, -5.698888574988202, -5.692901344725295, -5.624904246451247, -5.622469419062995, -5.597923416704058, -5.532113419106975, -5.524174417341266, -5.522380462022802, -5.393729317189519, -5.308335753160266, -5.2279660485506625, -5.224437592781593, -5.208062487583526, -5.138294031460804, -5.043769518635902, -4.98069329832247, -4.943201297887558, -4.90183730233133, -4.876815184269861, -4.828940551777643, -4.77860980603229, -4.652382011469939, -4.651013519379497, -4.599711208554026, -4.557703507537022, -4.431863575434174, -4.352707514707418, -4.333491342520463, -4.329223443755625, -4.241456475831742, -4.178685803966154, -4.17291220230527, -4.146339718278432, -4.137863748771809, -4.096227988221722, -4.039113344982986, -3.9613047920175615, -3.905105895236842, -3.8601541832223187, -3.752122456877792, -3.7520139242809183, -3.7426472902486876, -3.716464050579256, -3.699504918296894, -3.6490781454550842, -3.6469224637493105, -3.635232826935097, -3.4808020768324965, -3.4282783654338633, -3.4236976402242743, -3.4034716395677163, -3.3346726093468715, -3.299774265071045, -3.297295904823093, -3.283908488448366, -3.247278061720884, -3.2302104966508844, -3.214430611408289, -3.2044396506352517, -3.1823234202190327, -3.174304629903732, -3.152086995994725, -3.149708392190431, -3.129444211543719, -3.112243566220023, -3.10984458152971, -3.102040170920318, -3.0871061503747805, -3.0271957100384763, -3.022457112547882, -2.983266645602371, -2.948246651461569, -2.9471824374791913, -2.928247785484371, -2.889763119593701, -2.887778748250254, -2.884404290540321, -2.8541511584785693, -2.8156088413561986, -2.794458640597089, -2.779551203517243, -2.7732969549061277, -2.7555586365319176, -2.7544162353407833, -2.744685048176127, -2.739001121523623, -2.707507684958857, -2.677940502294182, -2.6569065076761635, -2.6224270892664707, -2.610907804392714, -2.6060366870865517, -2.591170127513333, -2.580444685315168, -2.563185280035651, -2.547111265862587, -2.5376754941539135, -2.4975928159665806, -2.4788569504964677, -2.4631521499719726, -2.4359178956801015, -2.3726267257824785, -2.3557949338361497, -2.284996057870793, -2.2811548977232583, -2.2622962807978597, -2.257550443903513, -2.238468232598654, -2.2363204837494846, -2.235880488499784, -2.232292187395824, -2.215143609669235, -2.200412479532018, -2.1514347238108877, -2.1395269912780703, -2.1342937470792323, -2.1160874526910924, -2.108448940697483, -2.1036326790717013, -2.1011851831362907, -2.0970495735084316, -2.09536365876054, -2.069834813977845, -2.06121946698936, -2.056959553995673, -2.0535207202278607, -2.0438270592903693, -2.0236912335785813, -2.0223169044887253, -2.0188979182998965, -1.980323662710259, -1.9782058129649012, -1.9596687732057458, -1.9561460029801347, -1.9457509343653898, -1.9214424486728618, -1.918808533633411, -1.9075940158849982, -1.9049475153315476, -1.903950349370295, -1.8780781353260299, -1.8741235365504032, -1.8195198761276608, -1.8155500891842768, -1.7974257547102008, -1.789477298371617, -1.7408588759558525, -1.7361966074046222, -1.7353881663710689, -1.7332961448545545, -1.7215577400944457, -1.7096245669024253, -1.706047411124843, -1.692029411053754, -1.689434662365145, -1.6726963346568577, -1.6629371101859642, -1.6354713378926862, -1.6289617061054273, -1.6150431648961348, -1.602876613086388, -1.6018901777605308, -1.6015631695415342, -1.5979828078824125, -1.5783644355878308, -1.5769612908950252, -1.5737363814013392, -1.5672164596060427, -1.5672117485996944, -1.5616586516221662, -1.5580677882525644, -1.5537585768217341, -1.5442893197792644, -1.5417015708162465, -1.5416784923309996, -1.5298304541023864, -1.5156160841694442, -1.508891027714696, -1.5085863502126848, -1.497437816336996, -1.497181398361009, -1.4963102846609266, -1.4924772790127898, -1.491774693294114, -1.4844426636680663, -1.4555444865861653, -1.4396163643036428, -1.4392949785069733, -1.4354444348677844, -1.425762255642535, -1.4239506549443979, -1.4179170997228354, -1.4171157203403213, -1.4151165392666298, -1.4096659085826637, -1.4063794662834233, -1.3973872314695652, -1.3944986342211312, -1.3935668987918368, -1.392710432447772, -1.3920828701676546, -1.3846692967325127, -1.3742684349651726, -1.3650434403100649, -1.3603092565179888, -1.3573610252697859, -1.3545073697268664, -1.3539416794290071, -1.3464931603143713, -1.3428562964242485, -1.3386008561788891, -1.3351240272345999, -1.3332652643881735, -1.3210876294475833, -1.3050452668217174, -1.3044601846688926, -1.2975885654184602, -1.2811920487287736, -1.2714849283333134, -1.2705239132388146, -1.2424991675333228, -1.2322803807192755, -1.2265113755183954, -1.2264636642545583, -1.2231708394458887, -1.2152898159090375, -1.2013610548688423, -1.2006486932597649, -1.1916355962779064, -1.1905268719830349, -1.181558890029435, -1.1698267693152284, -1.1676555039628433, -1.1658350168375824, -1.1653880640213017, -1.158187309698837, -1.1449739348742818, -1.1430950739427972, -1.1348712602319302, -1.1326858509794928, -1.1208145296119385, -1.1149697564391403, -1.103961518530137, -1.1005964224909737, -1.097198589001901, -1.0957119001824038, -1.084487857199688, -1.0744154612395844, -1.063582380857826, -1.0582601342055487, -1.0556406121911224, -1.0544414834264035, -1.0542938804956157, -1.0534297758324498, -1.043444710604641, -1.0428143720912633, -1.018871665362966, -1.0147417611642393, -1.0056316454646377, -1.0008526619450109, -1.0002974260800186, -0.9761256982505055, -0.9685877953125632, -0.9657118273213195, -0.9652641595454372, -0.9586389434347744, -0.9530717198082014, -0.9396623438558778, -0.9300414576029521, -0.9181499048477612, -0.9077457821429847, -0.9031226189263677, -0.9021680251670966, -0.888635955402085, -0.8814734785348883, -0.8717240325737262, -0.8542816234301025, -0.8494359043028341, -0.842795649169891, -0.8406974994441332, -0.8399791687637514, -0.8374678147328485, -0.8359694088083357, -0.8310781219717747, -0.8285305095797144, -0.827229048127327, -0.8271467943838509, -0.8159675779505199, -0.8096760557591249, -0.8094100774347921, -0.8075477119160099, -0.793916036266881, -0.7861714530777373, -0.7845913797234699, -0.7823158634755467, -0.7781426608090237, -0.7771905043947585, -0.776179806061543, -0.7722245882066803, -0.764685686463101, -0.761500190350445, -0.7465644563469793, -0.7250701086342909, -0.7146326361003148, -0.7126070853781731, -0.7125464434168434, -0.7048846195323462, -0.6990990544258525, -0.6967981424280306, -0.6940440202279354, -0.6930535039373799, -0.6910461355565773, -0.689177213987854, -0.6804133412849244, -0.6791361623846577, -0.677824933181457, -0.6766493943389345, -0.6745240045490194, -0.66679223165542, -0.6631049765403392, -0.6598396313540723, -0.6595272859436959, -0.6529833896918191, -0.6514600690657081, -0.6489188648894453, -0.6389602433022736, -0.6292770712278773, -0.6280471797461928, -0.6219873382984367, -0.6203585546576778, -0.6159954929257591, -0.6090916145326153, -0.6071128674393078, -0.5996004095970795, -0.5935151676556913, -0.5872658983685697, -0.5825449742550779, -0.5778590883039592, -0.574982155016942, -0.5616067013134577, -0.5480293257298866, -0.5454526452255362, -0.5379937104752324, -0.5254877094597685, -0.5184800628373034, -0.5137349711850262, -0.5026535497231525, -0.5006347807284586, -0.49497567786390106, -0.4926763512810295, -0.4804897171813354, -0.4514921035994441, -0.4513421734041581, -0.4507245087464743, -0.4426458446127017, -0.4372766130440032, -0.4183945197740075, -0.4104320664039034, -0.40843001827636066, -0.3853259006067612, -0.3841542977573957, -0.37208005159236174, -0.36335018367524274, -0.36093020392851477, -0.3593395955956527, -0.3593185484109422, -0.35720662845169204, -0.350502882432597, -0.3471493339656661, -0.3468306166037473, -0.34113174005058955, -0.29562006640218347, -0.27453834796190857, -0.2596929687265642, -0.2588912929238979, -0.23978762197382436, -0.23042208856691504, -0.22763656602571294, -0.22611929284151222, -0.20643179549328017, -0.19400008215199255, -0.19132309628105848, -0.18109168877893944, -0.1731744952089076, -0.15227103986466267, -0.12185928091614096, -0.08890094945416438, -0.08865771952888267, -0.08740702447492549, -0.08032219690944253, -0.040295144180026166, -0.024040966780851353, -0.020475920911376122, -0.019715789127441707, -0.008589120527788971, -0.007362419663991086, -0.0020759945137309166, -0.00018766811649528758, 0.019700778805667285, 0.04291419335277047, 0.12509515753185171, 0.1424570920333481, 0.1426680629677856, 0.1491954233252027, 0.16949126099235762, 0.18668006296745465, 0.2079830630387858, 0.22631544086543423, 0.23704824787648926, 0.2459129403212334, 0.29301754659021095, 0.3364032123729952, 0.3497193712248977, 0.4523493853934646, 0.4553277333489142, 0.7527944743036157, 0.7868547019409258, 0.7978297053963097, 0.8081615880397914, 0.8086745597338949, 0.8351058251154255, 0.867177610385478, 0.8893220296834361, 0.9153872480169043, 1.0115332505166037, 1.0317469189200736, 1.0341363375186279, 1.0353541877299686, 1.087995818319665, 1.1028043254207514, 1.1189469445158777, 1.1494314001067316, 1.1587348365138095, 1.1740436503978247, 1.1845724387876564, 1.1900261360782207, 1.200126717401904, 1.2061659627314474, 1.217989252555449, 1.219881153277918, 1.2243091797450651, 1.2264404212824795, 1.2394276879817054, 1.2614852636700205, 1.2630845258166816, 1.2660157533075032, 1.2667287966292546, 1.2779604816854622, 1.2783034046452175, 1.2909571353409426, 1.2915418913378347, 1.2942439337725937, 1.3023779650863732, 1.3153621427886133, 1.3179097827735893, 1.318392336245094, 1.3275106976736601, 1.3294997797913775, 1.349394064862444, 1.3562259687383884, 1.3589356744036118, 1.3800254813797248, 1.385525855001867, 1.396342142779253, 1.4185169286547183, 1.4198320011885688, 1.4207481303886127, 1.4293787253416035, 1.429595682834524, 1.4474011532353943, 1.4705281908393313, 1.4727560947213636, 1.5058615946042262, 1.5327223035446655, 1.5623010611740864, 1.646362189900929, 1.6866082186419928, 1.7078569374647223, 1.7190878238766656, 1.7281429602664176, 1.745139973137239, 1.7488871138516593, 1.7508488934495683, 1.7882458820555072, 1.8036410547876478, 1.8124756609179873, 1.8224379824730426, 1.8332711304547742, 1.8651742949829764, 1.8656289781400348, 1.8772856589051354, 1.8818105122684343, 1.8836357824132202, 1.9058447055962768, 1.9128109408683447, 1.9146969819541007, 1.924040087409552, 1.9549987635435213, 1.9598143169360929, 1.9630763539469995, 1.9635466024108368, 1.9667021410319316, 1.9692088591861918, 1.974116999799973, 1.975829988072802, 1.979636111200052, 1.986309379332812, 1.988975087536118, 1.9951704278220437, 2.001072644819983, 2.008197194210655, 2.0106861011418387, 2.012196259533984, 2.0127599850223965, 2.0277653944456895, 2.0443544766221904, 2.048020599694243, 2.0557258134131278, 2.0569392952774685, 2.06187752970339, 2.068206125212451, 2.072744119277553, 2.076684906559011, 2.0767602418199202, 2.0791522372791267, 2.0806576045956326, 2.0864728161870625, 2.0904413311383725, 2.096558350378661, 2.1106259611183082, 2.114637495696687, 2.1247752487065465, 2.126441182654674, 2.1271985970687584, 2.1315608190263284, 2.1326980142366945, 2.143922242623459, 2.147534205860913, 2.150673180180205, 2.1529614269207835, 2.1545509207723748, 2.158484524823183, 2.1647466834327855, 2.1663179445762433, 2.1741766998453245, 2.1786339347946573, 2.1796925697412353, 2.1803134757306792, 2.180512622525074, 2.1824127567103466, 2.1869914790205596, 2.1894472535657097, 2.1960478921389983, 2.1989391032799848, 2.201129093367449, 2.205275922055188, 2.2114563293644243, 2.218358104109661, 2.2224193188310086, 2.222765066714563, 2.22342184959293, 2.22342184959293, 2.225456800729702, 2.228896186850421, 2.2340125316844808, 2.237473869085486, 2.2403405238053873, 2.2406686759394012, 2.243022387913166, 2.248787106637794, 2.2489174723517404, 2.250215669684869, 2.2586177419652373, 2.2614163613095744, 2.2616786663603983, 2.270986283225011, 2.274293264340098, 2.2769688220720488, 2.278879696773144, 2.2794845845096314, 2.2841185154363823, 2.2876526966549, 2.2899163762936823, 2.291496971519233, 2.3054103845464997, 2.311973206997978, 2.31393185680445, 2.320143751126769, 2.3219719677813475, 2.3315814384757596, 2.3361911861999474, 2.3477798714528464 ], "y": [ 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9959703121006424, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9959703121006424, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9959703121006424, 0.9959703121006424, 0.9959703121006424, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9959703121006424, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9959703121006424, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9389204021853998, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9389204021853998, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988, 0.9818005244925988 ] }, { "hovertemplate": "V1: %{x}
proba_Anomaly: %{y}
predictions: Normal", "marker": { "color": "#4C78A8", "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "predictions = Normal", "showlegend": true, "type": "scatter", "uid": "89deb4f9-36c8-48a8-a3f5-b9318f8cdea6", "x": [ -37.054294919092264, -24.743105349012062, -24.46554866735916, -23.383128541750246, -22.341888886803787, -16.74075528381396, -16.54919718573076, -16.292994628345923, -15.271361863758454, -15.26046248440387, -14.608397243097915, -14.145076930479245, -14.026513679057143, -13.856151468149148, -13.63121537965107, -13.318571418823453, -12.44489718753615, -11.697019097369747, -11.616779194415669, -11.11745470976301, -11.025028488061317, -10.937873147858458, -10.801369437100178, -10.555595101140248, -9.997106889883387, -9.898740577384352, -9.883634003277347, -9.646027570417722, -9.380881543559228, -9.353045073484287, -9.311528205051253, -9.251872533550623, -9.224642171411292, -9.132644214355595, -9.02946709686418, -8.977432703670553, -8.82769804558761, -8.761645062237669, -8.666683045182802, -8.311541156101626, -7.846836859123822, -7.688513403364575, -7.670638819215279, -7.6578091792857546, -7.37974730082325, -7.379524949563318, -7.28449579355567, -7.28246160969946, -7.18965474889905, -7.179612083588145, -7.145922837853632, -7.115106463097622, -6.88971210148366, -6.830213627311663, -6.807328783799099, -6.804905636425004, -6.749424063817806, -6.7364307648990485, -6.73437354315492, -6.733704336893441, -6.694778925654867, -6.675297814881489, -6.614602057503809, -6.564966578880713, -6.500181385141005, -6.482797689929875, -6.39695004576556, -6.37045880918332, -6.361627115992109, -6.356880553350123, -6.3546948717896665, -6.349004715944822, -6.3196757419467176, -6.29222388796329, -6.257267760258885, -6.256135372296753, -6.253183473218708, -6.213862102698597, -6.207976851536535, -6.191697767501621, -6.187212695137166, -6.142371090052237, -6.109354843175746, -6.0954696990334485, -6.046362187300886, -5.981156981442916, -5.942311247357577, -5.9261349010273, -5.864296296218793, -5.809344342485832, -5.791455156883635, -5.7833914362638605, -5.756542945630789, -5.71899792979419, -5.713409213549719, -5.711802155260264, -5.691729932055257, -5.650111163187792, -5.611686017255003, -5.608859420446857, -5.587268146066143, -5.529094610082949, -5.519577430613247, -5.51652479848178, -5.500369323054595, -5.476536205784705, -5.466250865794988, -5.4495609760418136, -5.443710078139405, -5.437219289271391, -5.413834608755646, -5.3926368581730575, -5.368671026037725, -5.343777193389989, -5.340836540335769, -5.331953531398245, -5.327081184488088, -5.323923258973274, -5.32288215944762, -5.31765296337978, -5.314165355178107, -5.297258428576258, -5.281908885741823, -5.234478412013965, -5.224060736118339, -5.218663918897816, -5.217740111547583, -5.20643904746739, -5.204116361512089, -5.200438756419155, -5.191785486659214, -5.176480631761885, -5.169985778074111, -5.152271922059775, -5.149023231885853, -5.116298373972134, -5.097173343239849, -5.071344428722767, -5.053883622966742, -5.015087406094655, -5.008925299040957, -4.961733822575765, -4.896050723373924, -4.881143275793933, -4.871894532039277, -4.839786474788407, -4.831608223493689, -4.791509056931515, -4.787496357213759, -4.757912573438404, -4.728782257436745, -4.673455571755431, -4.67205347653818, -4.668495033597784, -4.661996718924935, -4.652680245655429, -4.617217204155813, -4.604460151113837, -4.575092608162389, -4.565520298761309, -4.560566214522115, -4.553689352799543, -4.516625760913551, -4.473727653655264, -4.4667389665446775, -4.466537914732592, -4.458524624379502, -4.435241742913196, -4.4228309344003005, -4.4158033682699065, -4.4152154327828415, -4.410448163066047, -4.406780393028909, -4.398912384018347, -4.379448159101559, -4.374231686467894, -4.372067515660258, -4.3587553817905516, -4.3453436095610956, -4.339130146658962, -4.325016745539716, -4.318328932412781, -4.314755597910144, -4.290644585121404, -4.288650036985795, -4.280683427768788, -4.280108348041402, -4.273675785882022, -4.26143211990072, -4.231892273015328, -4.22890009633732, -4.201077335457666, -4.198361175786749, -4.168858366230936, -4.155169195135518, -4.147424530144735, -4.121625850149664, -4.116639058789283, -4.111754294901938, -4.108705661284607, -4.108490832055504, -4.106622168824923, -4.105300056702611, -4.093839972631224, -4.091221502265404, -4.085467174591349, -4.083831867767059, -4.073069929022147, -4.052606274586141, -4.035401253771241, -4.033544478857957, -4.027803699252209, -4.012259542060671, -4.0092304420895095, -4.008312157209274, -4.0010755809396095, -3.9959156591874225, -3.9833648310231937, -3.9805190157496555, -3.9768027155456047, -3.962772247829158, -3.9597934651958897, -3.945269922009266, -3.942214755799468, -3.9319049020695256, -3.93169054035583, -3.9316468311099166, -3.9239119979087467, -3.9163458748276287, -3.9144230598190095, -3.893661629227456, -3.892807243253318, -3.8747996684056347, -3.862645026924437, -3.8421280565363207, -3.839404305529314, -3.830173156797149, -3.8007150631209075, -3.7710708931614816, -3.767572148962944, -3.752419897562859, -3.744111436988531, -3.7408701496487216, -3.7327271291147293, -3.7276268993062374, -3.7253852601440505, -3.723716380470712, -3.7233346254421047, -3.7231173453410302, -3.7198109703700224, -3.71681303127688, -3.715780908863868, -3.705855945641297, -3.7055556576865096, -3.695269354533862, -3.68938464526368, -3.680644786481255, -3.668774851279003, -3.663677121289797, -3.657435099915601, -3.651448261549953, -3.646381268906982, -3.6427867364341275, -3.635812768092578, -3.627442038503545, -3.6268109955530736, -3.621515761472733, -3.6141415162580786, -3.61123373105845, -3.6082445086260133, -3.5973354300821034, -3.5923463350523703, -3.5805991313400103, -3.5787117446333974, -3.564327868143499, -3.5590778385776036, -3.5584696915922294, -3.5507839476904888, -3.546434214033243, -3.539749322791357, -3.529555126520683, -3.5282566931168082, -3.5188817726565214, -3.5173708631128733, -3.5006421952285782, -3.4932456832096457, -3.491329842963876, -3.4882355060097634, -3.486905351906875, -3.4833437439120667, -3.464285766278736, -3.4608740566709173, -3.4557041944788307, -3.4520714003147352, -3.451787027006379, -3.451390159389204, -3.442066604965186, -3.440390406759775, -3.4398738818163137, -3.4390888194296996, -3.4382245290975644, -3.4379691130109022, -3.4323503778938322, -3.4253783986986943, -3.4248478179170085, -3.422050882269648, -3.4189611578718346, -3.409518362438068, -3.4040051063657435, -3.3971489778534036, -3.3969832711753867, -3.3754489768148432, -3.370379472656701, -3.359049882087852, -3.355626467640768, -3.353707989663724, -3.3447474089015645, -3.3374883222553544, -3.336326315838027, -3.3181976810288587, -3.317938162094346, -3.305395251185059, -3.3043560984937383, -3.295680810047708, -3.291239654844258, -3.2902545120537954, -3.2888586176884207, -3.282972026229063, -3.2799197324199847, -3.269966286526633, -3.263409031099567, -3.26273145846065, -3.251150926495522, -3.244546765299451, -3.2330081243702016, -3.2291264934983337, -3.2287101016860786, -3.217700347437462, -3.2110845039901617, -3.2077569546619378, -3.2054014177981345, -3.20401620014992, -3.203250381976881, -3.201008874241524, -3.1928494045168727, -3.186275476174835, -3.181481043073948, -3.180495809476702, -3.165863782892538, -3.1644223539613145, -3.1614068655795795, -3.1609553838484663, -3.1534398235472167, -3.152546069098939, -3.15102041084826, -3.133858842081863, -3.1332655405749428, -3.1205896447127492, -3.119434043536261, -3.1156071243961687, -3.1119810388704914, -3.100020435465549, -3.097615894744142, -3.0972844270551096, -3.096160244090478, -3.085516022151893, -3.0845183535160903, -3.0840597040118523, -3.0838262181160014, -3.082945949733271, -3.081775666144553, -3.07243213767424, -3.067642662949135, -3.064549845698304, -3.0645214851346547, -3.0602633478401944, -3.057758359112589, -3.0542656750295336, -3.0534026493155215, -3.0500094810648015, -3.0331342134284744, -3.03016736084044, -3.0269799342887898, -3.022566333401716, -3.01425683446511, -3.010475840902303, -3.006723307950821, -3.006428777421673, -2.995315519853737, -2.993299902198058, -2.99149870807132, -2.9819759933118717, -2.9803264761810575, -2.9769678930538026, -2.9734477668711183, -2.966939844968084, -2.9654067056379687, -2.964996214434453, -2.9601298511706737, -2.956221687108544, -2.956159476033478, -2.953627285425179, -2.9519766516605492, -2.950422945193489, -2.950409261801106, -2.944998536821501, -2.944587048069728, -2.9417372655282756, -2.9389594336300564, -2.9380105559561045, -2.935527465000775, -2.9342971610096726, -2.934003031011813, -2.925418463260239, -2.905597690049402, -2.9051830899101314, -2.901310170769805, -2.89966731868903, -2.8990452383253413, -2.896398487108033, -2.896100621664405, -2.892851443340784, -2.8926368017709225, -2.8790311825568384, -2.874455346942026, -2.8739908329976096, -2.8681248306939207, -2.8678896575687345, -2.867579122221367, -2.8635124765208757, -2.849972108080698, -2.849060945420701, -2.8477407002360775, -2.8417210821067096, -2.841237917582565, -2.8364489819117225, -2.8333549169113916, -2.8286999472481322, -2.8237324314029424, -2.821078179555863, -2.8191624535993953, -2.810614296595713, -2.8053880361676677, -2.8040738120777253, -2.8018846893606124, -2.801434682010326, -2.79882274792936, -2.7829927490114166, -2.77909186607018, -2.7769810023461936, -2.7765090385358917, -2.7687718649064803, -2.7684633415956346, -2.762378375509809, -2.761311970575513, -2.7559973050444846, -2.754325402165623, -2.752787318870121, -2.7526160914251565, -2.74763506557632, -2.745710052196853, -2.736979871418386, -2.7351285068605637, -2.7307156765034573, -2.726261154057235, -2.7194390437963936, -2.7164669615908705, -2.710952170130845, -2.7079251405228177, -2.7007052051155593, -2.6979496954839504, -2.697670040865832, -2.696982984601919, -2.6948874862736245, -2.6946651796958023, -2.693968428832131, -2.6934203049871086, -2.6927590596909234, -2.688923216986181, -2.688341176594103, -2.6793756770805506, -2.678567845826399, -2.6636833039201804, -2.6613944644705154, -2.6494138158450933, -2.648623915015731, -2.6464201516920247, -2.6427038732449395, -2.6375706613204923, -2.6369147365782606, -2.6345964563246054, -2.6337983656949175, -2.6260502306579925, -2.6173613986686957, -2.611659592090739, -2.609530590485498, -2.6092611215614876, -2.6079521384340985, -2.607710719877331, -2.606534754087795, -2.6058201848113414, -2.6025514553555835, -2.599058930092062, -2.5977316699752047, -2.5966022457184907, -2.596449263820798, -2.5943898469224274, -2.5914499334489265, -2.5903218312503267, -2.589027792727026, -2.583182540436347, -2.582919134651203, -2.5693410591410055, -2.5639012061369835, -2.5618116777768623, -2.56088240165169, -2.555934474583895, -2.553401690509819, -2.5506348582602216, -2.545425539059375, -2.544327950330973, -2.5430458481241613, -2.538199407759215, -2.527938426988566, -2.5241643701989944, -2.5237391163700784, -2.5219625011981948, -2.520886901336159, -2.518093727624422, -2.510518744999266, -2.5095722767906317, -2.50801469259195, -2.5060950327894056, -2.5001355240035217, -2.4972490666639753, -2.4964818366785715, -2.495877635248015, -2.4948823169733063, -2.488458062603579, -2.487390340521403, -2.485649783563974, -2.479121113880248, -2.4778207643381776, -2.4774021525400665, -2.4771221001239163, -2.474851658228798, -2.4738506297813334, -2.4733488714926253, -2.4719389000615255, -2.4695494074752973, -2.466852613240717, -2.463963883513588, -2.4625719312397307, -2.4624128113608075, -2.4541185141989277, -2.4537469317515916, -2.452194561366782, -2.4457233873406885, -2.4452038789320762, -2.443017162140691, -2.4404385330717355, -2.436496459356077, -2.4363984082399006, -2.436394297908944, -2.4334773815468558, -2.4305139137435043, -2.430281254196203, -2.430240979685255, -2.425205420236901, -2.4251215929480963, -2.4245761672003323, -2.4221245685112396, -2.418271309983918, -2.4162581588042307, -2.4105061168110438, -2.405475550645855, -2.401862787867627, -2.400045997055253, -2.398890528304815, -2.3943650566824433, -2.392513088300355, -2.3872766825476845, -2.3839685122999024, -2.3817012749722517, -2.3812841055837897, -2.3810821266077604, -2.3772802472415564, -2.375706293828076, -2.367054160091305, -2.3666637677901323, -2.365736241625306, -2.360212373199716, -2.358455847145122, -2.3514811817835204, -2.350347186859365, -2.3436011041351748, -2.3435081220396743, -2.338266910802479, -2.3356323115035806, -2.3285758232599134, -2.3275193672459102, -2.321250176967531, -2.31997039862966, -2.311452803474616, -2.309211584521677, -2.308262690671698, -2.306958514933685, -2.3021755439777616, -2.2956488408263427, -2.2951870672966206, -2.2950931731425417, -2.2925394522770084, -2.2908240554152415, -2.290764812373379, -2.2896341325266127, -2.28963336669158, -2.28602586841346, -2.285160704602779, -2.2792601133793293, -2.274260483631488, -2.270617122073059, -2.265763213948206, -2.2652062595617157, -2.2619382758955586, -2.261127442828477, -2.256834363240492, -2.2516017369162213, -2.251001542863825, -2.249290417376155, -2.249182237870813, -2.2477683250287535, -2.247198478699224, -2.24645529038068, -2.2439330617426863, -2.2431736482784794, -2.2425479024461556, -2.2395478310815773, -2.2354318947143477, -2.233903520106049, -2.2332409370777957, -2.233079167300531, -2.2277474317774595, -2.227513919673626, -2.222281302868898, -2.220504513132273, -2.2179779200737624, -2.2162652601442856, -2.2152251815758524, -2.2148930175670705, -2.213518798540339, -2.2111330360565455, -2.209282374483521, -2.206494061613003, -2.20513621756121, -2.2028070147247973, -2.2022834473714075, -2.200916937963519, -2.200438579975502, -2.194022468689144, -2.1937918894550212, -2.1929238027804945, -2.1914305699986527, -2.1895348424367076, -2.1882446949343697, -2.179732526284527, -2.1777703421701444, -2.1766728969468017, -2.171205778008627, -2.1678743596811985, -2.1668439221997327, -2.165693954210586, -2.1654215019655476, -2.164338842635401, -2.1612800026559777, -2.1604850394767574, -2.160463959642649, -2.160443753469886, -2.1553411003624015, -2.1535866132446904, -2.151936424330306, -2.1516925396486077, -2.151284062451576, -2.1512403813913834, -2.1497890040501497, -2.149152718977162, -2.147738195642366, -2.1451344680472473, -2.1443743962394617, -2.1393096312779596, -2.1390505573599157, -2.1378220603559837, -2.1358687274282224, -2.135728789286107, -2.134859302165031, -2.130684604069023, -2.1304026933852125, -2.1303356091807486, -2.12894353528284, -2.126774601265467, -2.1265656105767774, -2.1261923985297537, -2.1248422272103147, -2.123640296234835, -2.122991639829696, -2.1222057816075317, -2.121817086827006, -2.1180806602049693, -2.113625436465666, -2.113508007978139, -2.1134761772830015, -2.111525964792515, -2.111478472959149, -2.1076477342956506, -2.1060582639311547, -2.1060555103411653, -2.105059320806292, -2.098205520280306, -2.0970936279270673, -2.0970253507249983, -2.096024122980817, -2.0922395926252246, -2.090258848963185, -2.089353668432362, -2.088964659257086, -2.086353137816416, -2.08601622472341, -2.0846672832174122, -2.082477896100677, -2.0818086285473734, -2.07740024343624, -2.0761747823832764, -2.075454025204499, -2.0751471623233635, -2.074697105982261, -2.0733564192518013, -2.073341401439114, -2.0722215710752145, -2.0701509755485716, -2.0667030222369607, -2.0638694389929166, -2.061871437586578, -2.061755833046466, -2.0614839323525964, -2.059440157403975, -2.0561399052485254, -2.0520594137011634, -2.0520203914055943, -2.0399536572716315, -2.037444544655747, -2.0333744108626473, -2.032270929007657, -2.0301808876724046, -2.027273202353827, -2.027230455812394, -2.0271742056992967, -2.0260058676401163, -2.02430945137604, -2.0242187089060164, -2.0236776825033083, -2.022980606503798, -2.0190524678140025, -2.0183707205234125, -2.0172053488935657, -2.0168091652688425, -2.016732617011224, -2.015545235577768, -2.0153908157735234, -2.015302074752779, -2.0149338284482714, -2.0135371274784255, -2.012939201659208, -2.0120676511111006, -2.0084575575999857, -2.0074649757399565, -2.0073589026589356, -2.0069916627814193, -2.0060985979805515, -2.003388249944677, -2.001098621638587, -1.999526480884926, -1.9983321368566733, -1.9966079102728056, -1.9938003839589697, -1.9934179198575757, -1.9910792270056148, -1.9910205883806178, -1.9909302256518369, -1.9887172203100962, -1.9868072253244278, -1.9866351023386422, -1.9856093494718854, -1.9855433897842472, -1.9832845983157115, -1.982802307426307, -1.9814686078388903, -1.9798914524133047, -1.9776665375596947, -1.9776333266872097, -1.9771531652996697, -1.9770784698954684, -1.9769774300245966, -1.975010756889708, -1.9749061630629567, -1.974207246234067, -1.9684364767092695, -1.968301763220686, -1.9654607905927712, -1.962718741605877, -1.9607515343818853, -1.9578941103626064, -1.9576963961083067, -1.9535542166058941, -1.9530928312251292, -1.952728109577651, -1.9525978293505477, -1.9511336831373471, -1.9507625694782325, -1.9489099086342414, -1.9478574452539084, -1.947719072817943, -1.9474715321226923, -1.9467336202002614, -1.9392488812026165, -1.938059366008097, -1.9375453640679086, -1.9367525071985585, -1.9353309631678544, -1.9330463713611052, -1.9317949017444473, -1.9267753488153214, -1.9256048696226955, -1.9251444676697065, -1.9243344308270136, -1.9225971800427244, -1.9207067504018294, -1.9181311922268756, -1.9178624890291451, -1.9176179227546921, -1.9166356262702657, -1.9155073423388806, -1.9154471116654415, -1.9136507209618734, -1.9124184804099884, -1.9122862235488098, -1.9105818793108837, -1.9081858442104165, -1.9081472934971218, -1.9073711371301456, -1.9068175914725634, -1.9058319500656935, -1.9026880324995494, -1.9000468897753486, -1.899339246487672, -1.8987924540463814, -1.8983451895679022, -1.8956239786315456, -1.8954345456859845, -1.8942657905656177, -1.8939511150657122, -1.8924674152762448, -1.8902422936009737, -1.889696944588098, -1.8892161150264122, -1.888442680927545, -1.887444134998987, -1.8871606139556834, -1.8863386824980246, -1.8857226689969109, -1.8852775651854534, -1.884614478422371, -1.8837695045719036, -1.8835207130260772, -1.8830383575827876, -1.8826456825836004, -1.8814510212562838, -1.8789507924605569, -1.8745027543408836, -1.8738344684908266, -1.872022957979147, -1.8720037672600194, -1.8675534697133207, -1.8649896824328667, -1.863959079183326, -1.8601954882830232, -1.8594497581950415, -1.85879818047409, -1.8562600123602926, -1.856073906508684, -1.8554713416057431, -1.8511946885803692, -1.850646690772314, -1.847907987586653, -1.8445587197763498, -1.8443477844597354, -1.844258757781508, -1.8436836045812168, -1.84273178709196, -1.8413106573476115, -1.8404584934276007, -1.838059654095358, -1.837204617341469, -1.8371632899177257, -1.8361649764724097, -1.8359172948976092, -1.8342107382537693, -1.8333286884430922, -1.831827833591643, -1.8315671686984003, -1.831261811397623, -1.831107130370044, -1.8309534592850518, -1.829960098237449, -1.8250141071506305, -1.8250118286962116, -1.8240422413989532, -1.8213954415597615, -1.8198442876140162, -1.8183263681463293, -1.816604792624222, -1.8132231423033305, -1.8128992695441744, -1.8113377102451709, -1.810611490219439, -1.8104453951456376, -1.8100529424604863, -1.8099167391263342, -1.8094689765932108, -1.808424436460195, -1.8083229836980501, -1.8074085275198724, -1.80682394690574, -1.806209569012106, -1.8061193474698598, -1.804838411481428, -1.8021345977921017, -1.8016877512403935, -1.8015226833043085, -1.8013289864943651, -1.8009178094971547, -1.8004960495464175, -1.7998675095532428, -1.7994876935021802, -1.7982611202702221, -1.7976731042215386, -1.7959419106157468, -1.7938504884751407, -1.7923154366341256, -1.7918669073072198, -1.7915323337882856, -1.7911327618755692, -1.7900636647486068, -1.7886346261428656, -1.7865193713152703, -1.785675854222931, -1.7852527013659372, -1.784731182280612, -1.7846536576729175, -1.784093839819986, -1.783097156251384, -1.7815094972497643, -1.7808163588097514, -1.777028506195195, -1.7763983043727247, -1.775077102140032, -1.7730149064570488, -1.7726862418201097, -1.768625431835678, -1.7684874362644762, -1.768157910114131, -1.768052600762302, -1.767801513507394, -1.767694500524351, -1.7666546528126483, -1.7577892483000088, -1.757294123626456, -1.7566470502861724, -1.7553786003244047, -1.7553568496068506, -1.7550159984293907, -1.7544310460739942, -1.7541624198765977, -1.7500144192837221, -1.7498790878296444, -1.7479674184966016, -1.7475346185991354, -1.7464361419043475, -1.742345862437991, -1.741506247315981, -1.7405338666407688, -1.7403650377901596, -1.7398164895359183, -1.7375487043061257, -1.7364506928646422, -1.7338502753761147, -1.73295148541213, -1.7324085924972747, -1.731428755078226, -1.7313466448495376, -1.7310539832415182, -1.7301546345150645, -1.7300225645931384, -1.7240678641047151, -1.7218354281950996, -1.721793292287007, -1.7211406775926898, -1.7210328318691506, -1.7190213725900674, -1.715320809470049, -1.7150401982872663, -1.7145242608162024, -1.7142963415352972, -1.7094782532620865, -1.7084201055976749, -1.705862405692858, -1.704668467622659, -1.7031548938462213, -1.7029350607115212, -1.702335848559073, -1.702175683287242, -1.6983452531808716, -1.6970575358050901, -1.6968996228864468, -1.6966806194766682, -1.6935229490718582, -1.6928653786219332, -1.692337850441679, -1.6881718316887304, -1.6860632969431184, -1.6850425347304632, -1.6840214004839982, -1.683828178289689, -1.6800023609681243, -1.6781353440402802, -1.6764785588117799, -1.674389675258163, -1.6738707823675392, -1.671857331635756, -1.6718288949419058, -1.6707318357176462, -1.6697275441982433, -1.669585497841277, -1.6687692447681015, -1.6678119675227934, -1.6675535009017615, -1.6674515492155306, -1.6654989781140421, -1.6642730505077443, -1.6641806782056978, -1.6626809314734061, -1.6612639604072754, -1.660808039263102, -1.6602892886075244, -1.659396032594158, -1.6591258501042283, -1.6558494712658312, -1.6549223040058014, -1.6547769098584826, -1.6537716442673274, -1.653450608914078, -1.6531672150840033, -1.6523188780794582, -1.6521024296963562, -1.651829564400808, -1.6514222560310827, -1.6502144402551866, -1.6500456342644032, -1.6493225144267853, -1.6469135376580764, -1.646242246983169, -1.6459203226501413, -1.6458393882228557, -1.6434606066890145, -1.6415656908000096, -1.6372766129929017, -1.6369742437166646, -1.6367166448642536, -1.6339649006869428, -1.6333375494489553, -1.6317905009117686, -1.6315654436946985, -1.6312975944743426, -1.6308508640838801, -1.6271931276118257, -1.6271472197964774, -1.6266060423176616, -1.6243382301113614, -1.6232116500907885, -1.6205302871161917, -1.6201480205944836, -1.6189497286257373, -1.6188591767539005, -1.6185633467684286, -1.6185289742177873, -1.6184614169471385, -1.6179219026066791, -1.6161091941335521, -1.6159554993993122, -1.6123169198254814, -1.6101015234537495, -1.6093544408691083, -1.6089690680035926, -1.6081193785723347, -1.6064251567366694, -1.6058236180488126, -1.604257113552361, -1.6041178342225662, -1.6033070971876313, -1.6024675249727456, -1.6017967394743509, -1.6003786311902881, -1.6001535048416602, -1.5998953292087315, -1.5986970583427076, -1.59825126255831, -1.5979579950973868, -1.5976312220652578, -1.596426132307563, -1.5962622466787324, -1.5953999331084312, -1.5952043181410436, -1.5934163664818062, -1.5926226954861837, -1.591289907405356, -1.5889706105387846, -1.5878172457519097, -1.585531545776831, -1.5848947480324274, -1.5844385531132334, -1.5839854866244982, -1.583103744553977, -1.5819855039261692, -1.580798604949434, -1.5798211419747688, -1.5761112809597313, -1.5758034582525264, -1.5745829543880825, -1.574201211751939, -1.5735636270599613, -1.5727610902769855, -1.572660700269323, -1.5722331414144728, -1.571442811075016, -1.5710512156316119, -1.5685465935694967, -1.565202946035051, -1.5650522012777204, -1.563578150504581, -1.563474078230581, -1.561471680305102, -1.560744640793041, -1.5584559110270035, -1.5561984442696122, -1.5561403684161084, -1.5561079292774305, -1.5556171416516105, -1.5537338639878282, -1.5534159363968498, -1.5533425664066562, -1.5530497465617146, -1.5496340001366078, -1.5494947143734652, -1.5479624445441635, -1.5472588458864787, -1.5457712648023132, -1.5448353437523727, -1.5446154479689889, -1.5431977897891904, -1.542873339822136, -1.5412915308060442, -1.5411208980615267, -1.5399032096132719, -1.5382750272918964, -1.5379993430598795, -1.5373849355946958, -1.5370794781239971, -1.5337666113097481, -1.5335143468830958, -1.5325134670839173, -1.5309664809967543, -1.530429452681393, -1.5303240363964572, -1.5302192105152521, -1.5301599865650997, -1.5301349444828072, -1.5283530778858703, -1.5266796525007673, -1.5266279776960228, -1.5259780699380703, -1.5259641069159584, -1.524085549872226, -1.5224352930909526, -1.5210834913330573, -1.5207462299659724, -1.5194671987832145, -1.5190429160885035, -1.5181635847239245, -1.5177509953621644, -1.5170406482780794, -1.5165809296304182, -1.5164511290766804, -1.5152379906486904, -1.5131420770120874, -1.5128213209001098, -1.5100891593581198, -1.5094561898179713, -1.509192471956639, -1.5074808218834121, -1.506981830042632, -1.506607156113874, -1.506477934917748, -1.5043898678355125, -1.5019982542031403, -1.5017674494116084, -1.50127886643534, -1.5012684699264, -1.5000993156275564, -1.4989728039033192, -1.4968549157687274, -1.4964421160048929, -1.496218128407606, -1.4960219993690294, -1.4955399178999391, -1.4952551932327505, -1.4943308751976354, -1.4929660416690944, -1.4912753310143287, -1.4912232433627746, -1.4909477189702909, -1.4909028129882307, -1.4901972000584685, -1.4901683850195986, -1.4895352623449198, -1.4894369975028314, -1.4890478390171134, -1.4890195987564758, -1.4889901304175748, -1.488531949949262, -1.488517437148382, -1.487499765416698, -1.4873013521087741, -1.487074599450192, -1.4849174399671492, -1.484160949368946, -1.4823501557408287, -1.4819728128502434, -1.4814612906336637, -1.4814299428404385, -1.4804605737237357, -1.4794846988465644, -1.4794520373430609, -1.4773967166402007, -1.476673162539584, -1.474218443951897, -1.4740188277418023, -1.4706272458891045, -1.4696488411291826, -1.4691609862894235, -1.4686244469842231, -1.4685602746612987, -1.467075239634953, -1.466332809329752, -1.4658953871717684, -1.465312774670526, -1.4648751472820916, -1.4640259042939066, -1.4632170631182329, -1.461315125255862, -1.4596285395555744, -1.4596118434742444, -1.4562183697851827, -1.4550859168826806, -1.4547583674906384, -1.4545739620465628, -1.454182987648894, -1.4538965678901, -1.453357513204672, -1.4524906527854546, -1.4503379758466501, -1.4499457242471678, -1.4481926778183762, -1.4478241473589195, -1.4467866850274118, -1.4456322589787969, -1.4449510638767893, -1.444535835215533, -1.4445147511242156, -1.4444380525353702, -1.4418697234751623, -1.4402514108963984, -1.4395597392155048, -1.4394177205294072, -1.4389865980036836, -1.437857776406163, -1.437671476863613, -1.4373102147385524, -1.4372422220162226, -1.4366390646554783, -1.4366323925672826, -1.435919393094452, -1.43533211221522, -1.434896388833275, -1.4347214492933897, -1.4346180873886454, -1.4344427515738774, -1.434396447298909, -1.4343068271370198, -1.434282360088404, -1.4332553928356304, -1.4328127623646352, -1.432105492780741, -1.4319664198682738, -1.4316800156684444, -1.4316316037534462, -1.4311007002240568, -1.4308637277889134, -1.4307977627450827, -1.4299534360231818, -1.4287018575123471, -1.4286006820269663, -1.4271924508117042, -1.4244550034652255, -1.4224834671617894, -1.421164094062528, -1.4193617277013113, -1.4182921454831305, -1.4153467945056926, -1.4147415029003612, -1.4143824206709392, -1.414265424196913, -1.410278845621915, -1.4096551912250983, -1.4090509800783808, -1.4084592777572191, -1.4076495961218183, -1.407516069200291, -1.4049736011399554, -1.404865327380045, -1.4042650284920042, -1.4030221070830367, -1.4029472466734627, -1.4028984088118983, -1.4017982474987778, -1.3986079653771277, -1.3969264057857138, -1.3964763225725656, -1.3963788743511238, -1.3953487491278214, -1.394891872740908, -1.3919714372158742, -1.3907245963019756, -1.3888808063259828, -1.386541895445666, -1.3852407834183704, -1.3851289125840822, -1.3850407697614546, -1.3841859540337977, -1.384033201232046, -1.3838475471429263, -1.383735934432396, -1.3835305612387294, -1.383063101086043, -1.3826364730799923, -1.382323083114249, -1.3822661915643608, -1.38214645393739, -1.3801791529980736, -1.3800924631511466, -1.377080109221577, -1.3764077785156212, -1.3754261354182313, -1.3750010776198325, -1.374871004022537, -1.3743033539819822, -1.3737492585356381, -1.3734898929200778, -1.372525289846516, -1.372271381514079, -1.3713636807845984, -1.3710286055175593, -1.3709174849595525, -1.37030406850873, -1.3700469722419075, -1.3683815579861038, -1.3676035451031918, -1.3658576660686614, -1.3655107454671631, -1.3648994996219557, -1.3641182162854135, -1.3619714033079553, -1.3609557809982973, -1.3607146385835742, -1.3605783952219257, -1.3602926335103473, -1.358703484248685, -1.3574683434182397, -1.3572500609851026, -1.3571295217936368, -1.356624491208052, -1.3560719934115342, -1.354764425833954, -1.3534494603264637, -1.353088909119002, -1.351748008538155, -1.3516425631018203, -1.3504732912850788, -1.3476094753593983, -1.347583539204554, -1.3468977867373804, -1.3459893812731907, -1.3433926187376024, -1.3429739319605747, -1.3420841816756222, -1.3418090711340616, -1.3417590267860682, -1.341558043388062, -1.3411764325409294, -1.3409354769218205, -1.3404258147994979, -1.3397242966555614, -1.3396984661813907, -1.3395905861520707, -1.337404962019285, -1.3366805518739733, -1.3364964824120988, -1.3364782680895848, -1.3361014867308532, -1.3340863976184294, -1.332581314511329, -1.3311654536716024, -1.3289146661179287, -1.3285392807484229, -1.328270899242158, -1.3275634190052945, -1.3273678093891892, -1.3272893308351823, -1.326942974532695, -1.3257813498976962, -1.3257163158247636, -1.3248793703625679, -1.3246852052289075, -1.324537106230404, -1.3243454419883565, -1.3238333049848108, -1.3229675361734226, -1.3220682799163297, -1.321816641938845, -1.3211955122036863, -1.32090413355465, -1.3206237515166868, -1.3185483632845922, -1.3178466352371965, -1.3169954260342025, -1.3158643889972712, -1.315339566462082, -1.3145856263095888, -1.3138659500279215, -1.313466231290574, -1.313181769454864, -1.3130080220356506, -1.310327251712575, -1.3101623115354746, -1.3096150524061738, -1.3094390440849772, -1.3085009406906518, -1.3082195331598276, -1.3080230201436651, -1.3078896133031344, -1.3078829596582109, -1.3077661561859995, -1.3076636362574832, -1.3075401730592717, -1.3072776546291869, -1.3070551166831244, -1.306162011153666, -1.3024139188935369, -1.3016178566601468, -1.301258416761776, -1.2994025358123653, -1.2980899887070811, -1.2958400048809084, -1.2950266798974404, -1.294472705906434, -1.2933156258879794, -1.2901919308060779, -1.289762665000836, -1.2880860550753312, -1.2879928214247103, -1.2867787419908119, -1.2867380262998243, -1.2861606800847876, -1.2857644797113028, -1.28373918089585, -1.2819200509251338, -1.2818206955427047, -1.2815528069120237, -1.2814401676978588, -1.2810574093435734, -1.2808077437878707, -1.280577370329086, -1.2803183138554486, -1.278680025725703, -1.2773836817061501, -1.276021394420877, -1.2760019066426986, -1.275624679742024, -1.275604991892049, -1.2750958644675694, -1.2739362194607566, -1.2737380656665125, -1.272029945529324, -1.2718474856008715, -1.2713855234469957, -1.271277546961918, -1.2696636991882055, -1.269005172262062, -1.2679182417081252, -1.2677990565547863, -1.2671079620999552, -1.2670274880794474, -1.26647370769477, -1.2656889122604758, -1.2655707622901806, -1.264403484795378, -1.2639912065207255, -1.2638520945793108, -1.2629038635262353, -1.262715236829527, -1.2618223884587332, -1.2597276677678928, -1.258604466784619, -1.2581991461201536, -1.257641756947562, -1.2576256059454147, -1.256972160321777, -1.2568979607721578, -1.2557058373444219, -1.255703956438579, -1.2556929142352602, -1.2554797813899903, -1.255051321716096, -1.2548030079560153, -1.2541871020437076, -1.2531317846056733, -1.2531199962678634, -1.2530879933696397, -1.2529391627972881, -1.2519603348169537, -1.250908260160558, -1.2505020500771336, -1.2503996306304797, -1.2501987424868786, -1.2501490775028268, -1.248819775541822, -1.248374625372617, -1.2482411893688803, -1.2474562553049253, -1.2474157591529933, -1.2469801638534457, -1.2465368238641996, -1.2463337321599581, -1.2453526361177603, -1.2450525707812283, -1.2445569769935143, -1.2441524969003535, -1.24092357051569, -1.2408379241429697, -1.2407394842519053, -1.2403622021563772, -1.239671077030976, -1.2379342690023496, -1.2374790280617898, -1.237327774668037, -1.2371072614204872, -1.236179894984951, -1.2360572603060704, -1.2358814765455133, -1.235370722325985, -1.2348529043545573, -1.2348403338118057, -1.233495361151754, -1.2330399581666702, -1.2326885155721934, -1.2324016329672265, -1.2310177565913616, -1.2307502885121602, -1.2294649636002066, -1.2294284369443134, -1.2284220436829272, -1.2258919135055641, -1.225591002207067, -1.2254842321923727, -1.2248202329519748, -1.2238081412555732, -1.2233079500673987, -1.223163062065326, -1.2231018177526527, -1.22244060253404, -1.2214472311046785, -1.2212392477405176, -1.2202202053893736, -1.2186806079338466, -1.21834874866952, -1.2165502140697286, -1.2163462776489382, -1.2156578203282051, -1.2136724999289856, -1.2124168171272447, -1.2114159322163367, -1.211049616317204, -1.2093254180754205, -1.2092147574019467, -1.2091782061964087, -1.208808831859447, -1.2087619689188422, -1.2085557941536371, -1.2083272318123692, -1.2073003512542877, -1.2070036430788984, -1.2063459642768095, -1.205281874680837, -1.2049217401830483, -1.2027546315977689, -1.2026054081551045, -1.2022079871198956, -1.201571858693462, -1.2007797498825294, -1.2007737234014297, -1.1991059533798383, -1.1979476103298046, -1.1978028907770555, -1.197711810624821, -1.1976859626757694, -1.1970857783737996, -1.1963068562381969, -1.1960368701912918, -1.1958705053770289, -1.195223142886094, -1.193638742986913, -1.1935166662812164, -1.192059276235412, -1.1920180007057515, -1.1910879014056623, -1.1905906904490056, -1.1902571405516917, -1.1893351002276753, -1.189330212461775, -1.1892394520642742, -1.1890010075913449, -1.1886319888427719, -1.188559887686835, -1.1881449373573438, -1.1879741148567697, -1.1868032253505563, -1.186673929312486, -1.1861114654060543, -1.1858526311415472, -1.1854866271691455, -1.184792271681554, -1.1838393168145434, -1.1811721924947836, -1.1809583738931635, -1.1806775398924625, -1.1806101813561838, -1.1797211534246645, -1.1787991598174035, -1.1783900081796312, -1.1780808627724149, -1.1776973967388304, -1.1776008340775443, -1.176737623667142, -1.176659799725949, -1.1754123781031551, -1.1751058761835225, -1.1749859976178822, -1.1743243588761847, -1.17410335423307, -1.1731819916738475, -1.1726738240497185, -1.1721829194865336, -1.1719207882473652, -1.1713582158956204, -1.171104563408477, -1.1690317209558878, -1.1683171223999111, -1.1680290550919543, -1.1674085609699996, -1.1673062988659435, -1.1672621831382468, -1.167181452892744, -1.1669554294767428, -1.1668266080536969, -1.1657318379275974, -1.1648180581052934, -1.1644087653458106, -1.1638289174594663, -1.1636401654469692, -1.1627131002429205, -1.1605141410076159, -1.1603399652703494, -1.1602076769091818, -1.1598553090568737, -1.1593493820251566, -1.1587624710679978, -1.157420432497359, -1.1573722823172106, -1.15707422672397, -1.1570351584401124, -1.156045356897636, -1.154105267234021, -1.1537953891375927, -1.1529035793990317, -1.152448622764395, -1.1523896043526667, -1.150939147408716, -1.1508257989117814, -1.1501975827977513, -1.1494312445062385, -1.1488666323515564, -1.1488627609717355, -1.1476931431677813, -1.1469245641955708, -1.1464435888603848, -1.145306960367464, -1.1442449738771576, -1.1441931514664716, -1.1431768649129803, -1.1420780088669833, -1.1411610235929315, -1.1390311960984056, -1.1386771120747896, -1.1385785326765472, -1.138111132845024, -1.137490480013217, -1.1373786923807034, -1.1370600761870533, -1.1357725206772702, -1.135496539952926, -1.1351854890139434, -1.135056544987644, -1.132676832841163, -1.1322787644203696, -1.131642167390213, -1.1308275512710972, -1.1303938412303633, -1.1296330359597038, -1.1287905149648068, -1.127399320808168, -1.1247381955890143, -1.123819716962879, -1.1235334429037542, -1.1234533891008895, -1.1234364643544281, -1.1228790691266433, -1.12164676567253, -1.121474107344421, -1.1199326604915623, -1.1196607354811137, -1.1193725387021112, -1.1192243136742819, -1.117129510359552, -1.1166753840557493, -1.1158473088967213, -1.1147726551656558, -1.114394424275728, -1.1140268256303738, -1.1137902010123764, -1.1137073661057577, -1.1132380342334969, -1.1128479370192155, -1.1121478459049625, -1.1118342705122006, -1.1111815476790126, -1.1110198951195014, -1.1102525510733696, -1.1100746817242224, -1.1096616838771676, -1.10876642735571, -1.1083856720884993, -1.107767572640862, -1.1075584277201171, -1.1072388751773559, -1.1071512094205755, -1.1049385918980597, -1.1040881097607238, -1.1035253387433182, -1.103298436069547, -1.1025201249592569, -1.1023607871856853, -1.1022745367866782, -1.10183904461456, -1.1017788034598874, -1.1014184848902226, -1.0998396894106697, -1.0995404941998332, -1.0986498173995098, -1.0965235772185853, -1.0963881077735445, -1.096046943031579, -1.0955725032033787, -1.0950514908205626, -1.094664357440733, -1.0939209778219918, -1.0935179610716934, -1.0932132722853765, -1.0931030474923975, -1.092819177231303, -1.0924202866561705, -1.0918902964191894, -1.0914086037062858, -1.0911519469161377, -1.0902394092670455, -1.0898128062841226, -1.0884551313229325, -1.088417359663091, -1.0882453986511527, -1.0879274670032182, -1.086937831734224, -1.0857763139312062, -1.085461575251496, -1.085083324471706, -1.0847164459053034, -1.0846657124175696, -1.0841275655339746, -1.0837619027845458, -1.0833406440215168, -1.082682830599079, -1.0820056781068959, -1.0807656953641875, -1.080742619252026, -1.0807062537812795, -1.0806529498169621, -1.0797390663408644, -1.0796288076045957, -1.0791855570430497, -1.078655185862337, -1.0781861032464635, -1.0781189283858392, -1.0773018009860067, -1.0763960542132613, -1.076118907995855, -1.0755191746815451, -1.0754588935183085, -1.0742828204769053, -1.0740844733927613, -1.0738988534302014, -1.0737589587070426, -1.073691620665813, -1.0726054791008355, -1.072143146771749, -1.0720488239163728, -1.0719280596353948, -1.0692512605737212, -1.0685762639566836, -1.0679842700177626, -1.0677497216897889, -1.0666454496492888, -1.0666397346300278, -1.0662862537172941, -1.0656795914142276, -1.0646015632361183, -1.064520573968633, -1.0645113710073364, -1.0644994321991332, -1.064181299680887, -1.064039105323364, -1.063151828515677, -1.0631237912270322, -1.0622242402068724, -1.0620722259977475, -1.0616354107920978, -1.0606286520888624, -1.0596055554717387, -1.0574120461128165, -1.0571487997370212, -1.0566209992584086, -1.0566082664457224, -1.0564817518803007, -1.0555094083322563, -1.0554553255998846, -1.0553946271570707, -1.0550816726085719, -1.0550700073423327, -1.0548707532854071, -1.05295654998302, -1.0528335695198006, -1.0524668696770132, -1.0523261278200395, -1.0523224959091029, -1.0514728095491006, -1.0511672263730423, -1.050989887067456, -1.0506217294315374, -1.050179872704767, -1.0499081312512497, -1.0496141901193754, -1.0486114346175426, -1.0485380991641273, -1.0480322506050497, -1.0478957374086124, -1.0474261616215432, -1.0473795937390078, -1.0464954455624111, -1.0461913879539448, -1.0460767284254682, -1.0457997863016582, -1.0453967694691193, -1.0447754058057082, -1.0447606924806327, -1.042701766522693, -1.0421413060758424, -1.0421087472584916, -1.0416434845085552, -1.0414918957189594, -1.0411416774040667, -1.0410054950949075, -1.0407812311980507, -1.0406870960794377, -1.0400821050459537, -1.0390546885821423, -1.0382563160332507, -1.0366053123634846, -1.036269230008709, -1.0354005363682826, -1.0343509304803087, -1.0339989488620258, -1.033893711592072, -1.0336966616024197, -1.033112656409254, -1.0330809193536012, -1.0319018743141333, -1.0317543474995303, -1.0310236525858407, -1.030540296682695, -1.0303996777347444, -1.0301668736981227, -1.0297322830279176, -1.0290771437349888, -1.0275453336602, -1.027048904570151, -1.0268581768088545, -1.0267505581996363, -1.0266458728353842, -1.026418020521923, -1.0262059851327707, -1.0259801144438068, -1.0259722041262949, -1.0254006174138437, -1.024322190970433, -1.0232532928684765, -1.0230671347922304, -1.022173807959251, -1.0214638277712704, -1.0212731419345762, -1.0212496480453348, -1.0212028491097045, -1.0207456852158423, -1.0197473018082763, -1.0195175934830352, -1.0194411091854634, -1.0190731662250738, -1.0186066684926844, -1.0183124981864182, -1.0180282190859633, -1.0172656321607687, -1.0169136013676907, -1.0168063549524098, -1.0167470179143054, -1.016503095491355, -1.015891543681716, -1.0156775195772692, -1.0155161697414767, -1.0150117406401078, -1.0145340900033357, -1.0145096737082113, -1.014492596381534, -1.0138743658963754, -1.0136888302492355, -1.0129938260124545, -1.0129884314440547, -1.0119004155989662, -1.011636176024488, -1.0114823750016098, -1.0107672773263623, -1.0105946570388866, -1.0101928724865528, -1.0092688493060855, -1.0092150918197687, -1.0085122891593157, -1.0081230785641355, -1.007510788944996, -1.0067668163468104, -1.006009273105184, -1.0051980956079443, -1.0042218272592094, -1.0037654522581292, -1.003408898106577, -1.0022598425785492, -1.0020312697987213, -1.001591527717456, -1.0007804017256827, -1.0003283033019164, -1.0001410676285176, -0.9998657522960571, -0.999705470695706, -0.9990752071903981, -0.9986852429043422, -0.9984829687853457, -0.9981505279341845, -0.9978301206202609, -0.9964643017067899, -0.9953583654231899, -0.9945744990725739, -0.994186181979273, -0.9937649187307961, -0.9934664955515339, -0.9929143955317392, -0.9926609727193075, -0.9924586473207063, -0.9920556230561535, -0.9917766086624343, -0.9915607170186299, -0.9914754250175546, -0.9914703518847783, -0.9909837497619224, -0.9904626848412549, -0.9902767340644044, -0.9898059533061897, -0.9895480330310795, -0.9894942225600053, -0.9893305867253718, -0.9892651883367314, -0.9892504228612563, -0.9870228308149829, -0.9866118931743534, -0.9866059826537156, -0.9864064345696579, -0.9861245076878764, -0.9853639870475598, -0.9851494538139914, -0.984679949983149, -0.9839988406792083, -0.9837902866312456, -0.98361369055518, -0.9814863198883375, -0.9810101188331206, -0.9809733308450822, -0.980222951907347, -0.9791890400139865, -0.9790949771687909, -0.9787696887406572, -0.9786897697828613, -0.978645706740632, -0.9784711072648952, -0.9782184993194005, -0.9769426958823552, -0.9751964328117537, -0.9744940308555524, -0.9734947002021367, -0.9733862801885, -0.9726751026148169, -0.9725223533348377, -0.9724212905429419, -0.9723822722785266, -0.9722308477125718, -0.9710345908345269, -0.9710110150912169, -0.9706541801877442, -0.97024984402675, -0.9702152922388958, -0.9696606452987488, -0.9694020826423493, -0.9693919806186633, -0.9691634084499038, -0.9690343508640461, -0.968640224937302, -0.9684475582716929, -0.9682538906863271, -0.9677284224540852, -0.9675663553566339, -0.9674871835641949, -0.9669339138880081, -0.9668016738954754, -0.9664690802410403, -0.9663770995923233, -0.9660924426425774, -0.9651067419557456, -0.9650088911791325, -0.9647823594639615, -0.9644761128330682, -0.9640759573541615, -0.9636236830296299, -0.9636026721616491, -0.963553929452554, -0.9635196789778675, -0.962985299766009, -0.9626128568612884, -0.962299181453683, -0.9612667717979819, -0.9611382142248456, -0.9609033733275759, -0.9608868975393594, -0.9607009791396813, -0.9606417181609891, -0.9598950335660111, -0.9598930557785506, -0.959248618232213, -0.9590258429924884, -0.9587390651632132, -0.9586036474769272, -0.9584675658121694, -0.9582116561150795, -0.9573411282287814, -0.9564705431836025, -0.955481563820942, -0.9553298028617205, -0.9543030379255648, -0.953969573412478, -0.9539458801925638, -0.9533326474233644, -0.9531669973824886, -0.9517334823695371, -0.9515605802610589, -0.9514631174038565, -0.951096998223782, -0.9510391213105251, -0.9508018699897219, -0.9504466194342169, -0.9501364896130442, -0.9501026994001986, -0.9500969472728802, -0.9495424546530462, -0.9485220784933133, -0.948376976919224, -0.9473589079360256, -0.9463257983870856, -0.9462955939447526, -0.9456754554833099, -0.9456104640129438, -0.9455827117233254, -0.9453782990437996, -0.9452897897152176, -0.9452300556315372, -0.9446457198802765, -0.9437721781941273, -0.9434409416821437, -0.9432996828792317, -0.9431505952427285, -0.9426240218647081, -0.9422085846591643, -0.940998897747765, -0.9408364669381349, -0.9402697223110659, -0.940170944806596, -0.9399121237957464, -0.9398724329846784, -0.9394110506888949, -0.9391183712960723, -0.9388845856777888, -0.9388221665125004, -0.9387955158626604, -0.9383722086633415, -0.9382181681192809, -0.9381669262911914, -0.9373508201135479, -0.9371389956610415, -0.9362386757153838, -0.936155340177208, -0.9359915458333015, -0.9356675541310884, -0.9351739439247043, -0.9329977551984618, -0.9326864600508167, -0.9325307117030828, -0.9324691649598496, -0.9316547867678342, -0.9315381647302206, -0.9311162733078485, -0.9310807591942041, -0.9297894704149421, -0.9290412085448294, -0.9280449932149731, -0.9274410964681764, -0.9273583014229725, -0.9271330550516655, -0.9263492074564263, -0.9262647245723858, -0.9260541861977711, -0.9255311764672386, -0.9254496583001816, -0.9253915602508671, -0.9238228789622598, -0.9231048822584536, -0.9229862497055756, -0.9229225583520716, -0.9228832061529789, -0.9227818208027394, -0.922360271808077, -0.9216529284034888, -0.9215264309249301, -0.9215253518633706, -0.9207289294455084, -0.9204351683598784, -0.9203034843759408, -0.9198499408536498, -0.9192539384512883, -0.918626415757388, -0.918464591330998, -0.9180871152398153, -0.9180502441044596, -0.917905459113501, -0.9169458626938076, -0.9155278525025288, -0.9138951496402606, -0.9135159308363233, -0.9130445965839926, -0.913029734561289, -0.9125548492308572, -0.912299210974291, -0.9119977773181627, -0.9114305296935559, -0.9109425848083825, -0.910274875765808, -0.9099953124104805, -0.9099141937849771, -0.9095042753455438, -0.909454709485864, -0.909413314766568, -0.9086151134028374, -0.9085241492128795, -0.9083212831963803, -0.9077080493503592, -0.9061926665825191, -0.905978218420828, -0.9052245300079034, -0.9051615943110795, -0.9051433416716927, -0.9050698713439483, -0.9049638254974176, -0.9049038499868118, -0.9039625184611733, -0.9037406733607433, -0.9036630502441697, -0.9033131060456727, -0.9033130753294707, -0.9031572945023443, -0.9031071012973326, -0.9025584310580987, -0.9024072078169988, -0.9022331491541639, -0.9022116211831649, -0.9021819361927811, -0.9020089657716456, -0.9019014988520404, -0.9018477739171055, -0.9008495355808854, -0.9005780056736613, -0.9004768076861258, -0.8998832345165209, -0.899798093244145, -0.8996908647166083, -0.8996811432933223, -0.8990432500390402, -0.898907185834573, -0.8986548269762291, -0.8980343291997975, -0.8972500844231277, -0.8963019890779643, -0.89627953022054, -0.8962192177186381, -0.8961724436619883, -0.8961631315240722, -0.8959998131541023, -0.895945637862394, -0.8955731772859422, -0.8952241416372936, -0.8939034043948235, -0.893749185065663, -0.8936673350492659, -0.8929206941196951, -0.8925349395882256, -0.8923628326665194, -0.892096515521841, -0.8920286188535966, -0.8913113505136603, -0.8904767869775835, -0.8903332046311067, -0.8902313168778067, -0.8899768109859847, -0.889776217833019, -0.8895594132111062, -0.8889061812535191, -0.8887494274340416, -0.8885683923981978, -0.8881483297658573, -0.8864835823735837, -0.8857748638735989, -0.8852895175450671, -0.8845886363728754, -0.8841257999884506, -0.8837384276285002, -0.8836670271613272, -0.883476912427078, -0.8818935745880331, -0.8817593590393213, -0.8817249962930531, -0.881673304098247, -0.8809630219519772, -0.8805907194263853, -0.880076381485367, -0.8797638878290563, -0.8796609980705304, -0.8792237404101826, -0.8791533656642677, -0.8789346808012621, -0.8782771655754137, -0.8782428332825472, -0.877966020531558, -0.877826605687892, -0.8773918865396801, -0.8769862205586044, -0.8766896048170558, -0.87637424533541, -0.8762915801497564, -0.8761483231531862, -0.8759038120476532, -0.8752167508623869, -0.8749891914448156, -0.8748707653207768, -0.874382909321933, -0.874290788799668, -0.8729511584945528, -0.8729497463283062, -0.8721475118207891, -0.8711926985533038, -0.8711177511878376, -0.8705245505430179, -0.8701754358527327, -0.8694293017309926, -0.8692421415937819, -0.8681101124575463, -0.8676907469918086, -0.865807468689145, -0.865362244619209, -0.8641097884332436, -0.8639770009963919, -0.8635895312124154, -0.8631124138900077, -0.8624318778157124, -0.8611982537251119, -0.8610283324655614, -0.8609415402409591, -0.8608710179070833, -0.8605540360602606, -0.8589694567380193, -0.8584745426622663, -0.8579914891840476, -0.8577985728497638, -0.8576340447790638, -0.8572725366277352, -0.8569303960986399, -0.856867130292926, -0.8566321916474141, -0.856492760625342, -0.8548502671300611, -0.854678503166621, -0.8546446323352405, -0.8544785067581009, -0.8535231457398746, -0.8529475424777291, -0.8523085796071836, -0.8521734555896676, -0.8521086566943754, -0.8517003467490549, -0.8508922775453667, -0.8499505603089368, -0.8495229730637637, -0.848983007168149, -0.8486219157994201, -0.8485560256431798, -0.8482297107521071, -0.8481321128478114, -0.848079565876451, -0.8478202847743919, -0.8474165667532374, -0.8473560484272917, -0.8464049412747889, -0.8457533043194839, -0.8454392904084009, -0.8453619801957072, -0.8446526419778775, -0.8443445030272276, -0.8431092910962794, -0.8401998250748532, -0.8394727824897394, -0.8392129551200591, -0.8390909996744575, -0.8382044835816539, -0.8381650942529146, -0.8367587701603678, -0.8359797756886763, -0.8358064819517812, -0.8357364467969615, -0.8355852323492735, -0.8353679912650414, -0.8350325715108955, -0.8348388282323185, -0.8346278965074387, -0.8344480831621128, -0.833931623306465, -0.8337911047140137, -0.8337851398484879, -0.833526102022851, -0.8330543777656568, -0.8322196930230155, -0.8321165123285983, -0.8319989177792768, -0.8316952362639423, -0.8302592813503544, -0.8295583310635795, -0.8293064719704331, -0.8290726466674713, -0.8288606712940467, -0.8286959596327597, -0.8285928389619581, -0.8284996027721111, -0.8279639282108248, -0.8276090937137472, -0.8274938430093343, -0.827455096154429, -0.827167349741108, -0.8268749782175214, -0.8268337799212664, -0.8265119268829317, -0.8263888665813257, -0.8260018971460541, -0.8258499396287033, -0.8250983310561468, -0.8249823788711061, -0.824368901277645, -0.8229806708140461, -0.8227663725703388, -0.8219547211561362, -0.821199670703469, -0.8209020531635277, -0.8195889562723284, -0.8195323649823276, -0.8192422474086128, -0.8186335917590658, -0.8178103624646516, -0.8174853601072353, -0.8174713590301392, -0.8173613421559741, -0.8171898757249143, -0.8171078766277637, -0.8166986509240104, -0.8165847991978891, -0.8151929945362499, -0.8151480807712476, -0.8144324623278245, -0.8144293814028268, -0.814324914804277, -0.8136861506152907, -0.8135679473137001, -0.8133711460679741, -0.8128606773059154, -0.8124872289152696, -0.8122533037477905, -0.8117502738137873, -0.8113749982529769, -0.8109410178118492, -0.8106781347802048, -0.8098542845286929, -0.8098477711924407, -0.8090313969038901, -0.8078827138769127, -0.806866567486662, -0.8067817706075677, -0.8066035524615933, -0.805679561553599, -0.8055825072746488, -0.8048647552359223, -0.8048611156368397, -0.8044103269298601, -0.8041156389699899, -0.8037275853290298, -0.8035789424733302, -0.8035642751105811, -0.8030256118320829, -0.8021782302078118, -0.8017740083936435, -0.8015740264171058, -0.8015386536763214, -0.8012415731180954, -0.8012061993860811, -0.8010160257081909, -0.8007184731046889, -0.8004662165995724, -0.8001644422109203, -0.7989379678210101, -0.7987190302496242, -0.7983448998699716, -0.7981638672670023, -0.7980961853414481, -0.7978355534866285, -0.797545129634598, -0.7972654405458494, -0.7968993249601234, -0.7960380128661945, -0.7960159018437201, -0.7959906150576521, -0.7959801306885315, -0.7945443408399764, -0.7943551233858492, -0.7941647811979474, -0.7937955478278582, -0.7922223221419457, -0.7914744624061077, -0.7914507226073384, -0.7914440885734328, -0.7910708168301854, -0.7909664015750782, -0.7907185353032687, -0.7898407353050272, -0.789490461759627, -0.7892187564481621, -0.7886871641391378, -0.7885990441248938, -0.7885239177202477, -0.7884032566587866, -0.7883625278325658, -0.7875897725733418, -0.7863691079257278, -0.7863431037102738, -0.7863214055845832, -0.7856057596929532, -0.7853732036623304, -0.7844186695147739, -0.7841946271190705, -0.7841871658447506, -0.7834039325157744, -0.7831137611289892, -0.7829960381278034, -0.7828770209806231, -0.7825433093900929, -0.7824400233035789, -0.7821605485140062, -0.782004051403361, -0.7819537420601521, -0.7819383616602932, -0.781241232524233, -0.7802070311779788, -0.7793973799702226, -0.7793643072978303, -0.779146605486896, -0.7789886064649785, -0.7786430313072152, -0.7785257248368518, -0.7772945454843223, -0.7765599067010126, -0.7762424709917589, -0.7761581404498953, -0.7759789357909781, -0.7757389555636959, -0.7748092865833351, -0.7746414859599726, -0.7742336053066321, -0.774082470059714, -0.7739943038172205, -0.7733312131448872, -0.7731757853771288, -0.7729738804116216, -0.7727476347382308, -0.7725255168336548, -0.7722720556006544, -0.7722234649720182, -0.7719550404320201, -0.7718260274556945, -0.7714181758612502, -0.7713684133037005, -0.7694568348067193, -0.7693756844828971, -0.769169989778851, -0.7684815515709263, -0.7683733358086627, -0.7678032435724328, -0.7672678198240618, -0.7670454791410951, -0.7668581437075203, -0.7659081136630832, -0.765333546225143, -0.7652155775616168, -0.7647560147778812, -0.7641961112032039, -0.7631248150235952, -0.7628258118334476, -0.7626813272905814, -0.7626722949968388, -0.7621364561689373, -0.761925499901321, -0.7615807289338266, -0.7615053217478779, -0.7613444252456996, -0.7613207500598275, -0.7608471220419235, -0.7606684408943388, -0.7602881768853935, -0.7601730803937867, -0.7598003977250785, -0.7597898270097795, -0.7586895483769536, -0.7584133302304614, -0.7574035386298187, -0.7570683815706518, -0.7566441795604915, -0.7563909584698656, -0.7559415152067196, -0.7557229464088707, -0.7556936754463348, -0.7555341146682946, -0.7550001525325615, -0.7546354530672091, -0.7535671375947712, -0.7530539300095026, -0.7526626388000645, -0.7525971106326945, -0.7516547982764035, -0.7515877965141959, -0.7511056085194924, -0.7509821775545387, -0.7508461495884144, -0.7506764407748011, -0.7504129906570987, -0.7502315516203313, -0.7499731708430675, -0.7497869584676072, -0.749612562291417, -0.7494673000568144, -0.749432683574153, -0.749394662174219, -0.749296015179719, -0.7482311790837124, -0.7477571281756812, -0.7475588075613971, -0.7468144986457244, -0.7467626599361539, -0.7466136518282875, -0.7463453636464608, -0.7461778902868699, -0.7457569601176421, -0.7457443892840984, -0.7456162998558871, -0.7453779591681853, -0.7443436691429056, -0.7442161871013683, -0.7440631355568033, -0.7440239452721856, -0.7439681934294872, -0.7422239941412521, -0.7418981229306638, -0.7414653169038216, -0.7412306801950354, -0.7411142779097544, -0.7403478036003724, -0.7401386741421315, -0.740083123538289, -0.7397758603113623, -0.7391977839373979, -0.7386015556200178, -0.7381705986160332, -0.737475036676183, -0.7370924448388716, -0.7368918212751787, -0.736745447693647, -0.7356577241461555, -0.7355929374724006, -0.7354964897778955, -0.7352278836195654, -0.734761155198413, -0.7341310353912607, -0.7339769587904565, -0.7333597272286176, -0.7332102372284582, -0.7330753529156144, -0.7325028670657825, -0.7321513057686123, -0.7320163570464777, -0.7316718056607706, -0.7315050514988586, -0.7314881971419953, -0.7314206301988547, -0.7312448476770028, -0.7311404183949319, -0.7308545867430329, -0.7307884055909364, -0.730269898175795, -0.729973783314153, -0.7297338896192399, -0.7289870715429713, -0.728490501767092, -0.7280792654231198, -0.7278815192744568, -0.7276201787247748, -0.7268796716895991, -0.7267725383680199, -0.7256110222940986, -0.7250875456504224, -0.7249778039965027, -0.7247199874203241, -0.7240616486471834, -0.7235500807218497, -0.7233618533309574, -0.7232294794575359, -0.723218689465339, -0.7225488039578215, -0.7224226602663152, -0.7221449174199852, -0.7221356120084131, -0.7219877613322023, -0.7219333305821197, -0.7212630046325758, -0.7207655688273696, -0.720155251362665, -0.7199822094401922, -0.7195984428166936, -0.7195952985449778, -0.7195938891375472, -0.7195795715213442, -0.7192065291157884, -0.7189161012626577, -0.71851266314313, -0.7180777053104314, -0.7180019155221394, -0.7173763298332155, -0.7171543740681648, -0.7164649333564854, -0.7154971303429988, -0.7153466315930359, -0.714658704669946, -0.7143463978239091, -0.7142719397632749, -0.7141365923731364, -0.7137036702255708, -0.7135995350492654, -0.7130280100468105, -0.7126762510238076, -0.7120035010662203, -0.7115944079257794, -0.7115901079457301, -0.7103028075916292, -0.7085100638692723, -0.7080822314781254, -0.7078384003853548, -0.7077510421378556, -0.7075615659955816, -0.706833650838315, -0.7063414645668036, -0.7045810505116411, -0.704545530065298, -0.7045002648145358, -0.7041243252328842, -0.7036571814204053, -0.703505557142915, -0.7032737653670951, -0.7025580509103008, -0.7023516553647327, -0.7022920927217453, -0.7012952696380238, -0.7010215349884225, -0.7005919788317632, -0.7004345863971331, -0.7002459628058384, -0.6989859097719213, -0.6986095618257476, -0.6983082669491802, -0.69823394985958, -0.6978114390740531, -0.6973823161491459, -0.6973417871297097, -0.6973139634209988, -0.6971119679119581, -0.6965623106856951, -0.696501644338184, -0.6961317352436209, -0.6960751504015863, -0.6958469718350836, -0.6945526723606318, -0.6944901105267067, -0.6934644990304504, -0.6927818651979504, -0.6924440698057561, -0.692433727661039, -0.692020196849422, -0.6917609497346244, -0.6915862259604034, -0.6914357846465161, -0.691359716167691, -0.6906542248925713, -0.6906273575040796, -0.6903421209104901, -0.6899525233069126, -0.6889755752607435, -0.6888114255657876, -0.688781329857091, -0.688483535992155, -0.6882722300055824, -0.6880064447143595, -0.6879288755044275, -0.6872423147283414, -0.6868061905463281, -0.6867871531991578, -0.6867744493242001, -0.686539351545862, -0.68615792390914, -0.6859706851168899, -0.6859268521721114, -0.6849674648772752, -0.6846510810427775, -0.6845431190465554, -0.6844716784297001, -0.6839522142550933, -0.6838536239433995, -0.683790099177331, -0.6832373652566653, -0.6831030812487895, -0.683018166343202, -0.6823158517219001, -0.6821872044108304, -0.6819331866771169, -0.6818544237553144, -0.6817764348304918, -0.681225003957266, -0.6804469737048894, -0.6803485847879044, -0.6800180306286403, -0.6798844477426266, -0.6798225439205002, -0.6795960221881125, -0.6794701315359962, -0.679448881692208, -0.679368018411689, -0.6783801722845442, -0.6783537819858889, -0.6783379565093496, -0.6778049971893441, -0.6772196905240627, -0.6763203721428651, -0.676195323823365, -0.6754136703210978, -0.6753331598533114, -0.6747501755788434, -0.67457154061182, -0.6742306496573378, -0.6719833675552385, -0.6716015254361184, -0.6713701789419741, -0.6709062258781728, -0.6700195680250605, -0.6698370800376525, -0.6698319953339769, -0.669505976583152, -0.669486535894054, -0.6693124102611944, -0.6690653963040448, -0.6687625838286541, -0.6685632573916941, -0.6681265588834691, -0.667956129603583, -0.6662798427441616, -0.6660677541819537, -0.6652542731008989, -0.6646748867402069, -0.6645745314165952, -0.6641245374003535, -0.6638503938040483, -0.6636967430915848, -0.6635765591647538, -0.6631450510255772, -0.6628974635937495, -0.6626755326331835, -0.662345576618525, -0.6611422856058097, -0.6607819388364103, -0.6588761322647432, -0.6585401759608402, -0.6584746147221496, -0.658470925733281, -0.6581194312347759, -0.657382328132553, -0.6567438924387611, -0.6566765669987199, -0.6566332130047198, -0.6559389340909022, -0.6559134585562627, -0.655356907351567, -0.6552727584539917, -0.6548961027957448, -0.6544550819372503, -0.6543908851970012, -0.6543184738119777, -0.6540306808206959, -0.6531554073779255, -0.6530454994871193, -0.6530339435315761, -0.6527786654754458, -0.6524386224294771, -0.6523159498664579, -0.6521034757898583, -0.6510676452145612, -0.6510601352691885, -0.6509170737824854, -0.6508900119842539, -0.6505950031769667, -0.6501632187046786, -0.6496480384805191, -0.6492469249737489, -0.6490336577303513, -0.648960169237691, -0.6486869331905415, -0.648149669162573, -0.6481157390142651, -0.6481044973623387, -0.6479924183981395, -0.6478364916343133, -0.6473460864632492, -0.6471969605250529, -0.6467714550730534, -0.6467380458631399, -0.6459221263377612, -0.6444306150078631, -0.6444038091582406, -0.6440107790109819, -0.6438568974023373, -0.6422077120945211, -0.6420465045021535, -0.6419333388545189, -0.6417654901305255, -0.6414056301094757, -0.6408746706602648, -0.6407672084721939, -0.6406370486041199, -0.6401056438202478, -0.6397253407612191, -0.6395691614236538, -0.6395580804745704, -0.6391912534406907, -0.6380387737762186, -0.6380015891066989, -0.6378860821825946, -0.6374856933329054, -0.6374498075819764, -0.6370802600176094, -0.636947683426761, -0.6368230370979893, -0.6364705623626735, -0.6360183477133652, -0.6359416070118477, -0.6355268621034751, -0.6352538853171377, -0.6350347009091049, -0.634845889180442, -0.6346141450169669, -0.6345031621426314, -0.6342728815322292, -0.6341615842090486, -0.6334813082451664, -0.633265111703569, -0.6322583531570243, -0.632190125500875, -0.6320485456109821, -0.631113819946131, -0.63108740175769, -0.6310531126776717, -0.6308139594960052, -0.6305821841589463, -0.629650328922823, -0.6291041343472431, -0.6287278383464928, -0.6281356569398653, -0.6279686526475807, -0.6274285092041274, -0.6273194502799473, -0.6267320668190095, -0.626713263463184, -0.6265547282819893, -0.626530878509847, -0.6263461940383708, -0.6259624564828093, -0.625466732367775, -0.6252552398564903, -0.6245026608659802, -0.624393786070037, -0.624371210969728, -0.6235248284794098, -0.6221391866890187, -0.6219975587390927, -0.6210136403483492, -0.6207795859065983, -0.620437605083582, -0.6203353637475377, -0.6201212731531751, -0.6200875483568368, -0.6199944732316787, -0.6197709225325316, -0.6193976551027164, -0.6193589943903177, -0.6189020813780521, -0.618852075744681, -0.6187492586965042, -0.618674194392628, -0.6186085360698943, -0.6179527860083004, -0.6177116008808559, -0.6175763978248551, -0.6173032871667479, -0.6169317104583735, -0.6168198577669426, -0.61656907059508, -0.6164688501803495, -0.6161318933401169, -0.6155335016194534, -0.6146676229886687, -0.6146616523981832, -0.613751679709275, -0.6134150427518559, -0.6131453507512612, -0.612773073815887, -0.6126965940761637, -0.6126517946495789, -0.6120878869135323, -0.6118391889024573, -0.6116120070094602, -0.611576006009025, -0.6103437545373711, -0.6101683433767472, -0.6096285458681905, -0.6094556671612859, -0.6093094441157155, -0.6092376400660724, -0.609114287006197, -0.6091003296648684, -0.6088328884884512, -0.6081448594081431, -0.6079051818655938, -0.607480982558483, -0.6068081860426422, -0.6064044887848279, -0.6063622722412223, -0.6057383060453168, -0.6057126656107183, -0.6056916570037718, -0.6053677421378493, -0.6052028186604913, -0.6051609166413312, -0.6047597220675144, -0.604140265629687, -0.6039427077203346, -0.6034022958177028, -0.6031142313842648, -0.6028173977742415, -0.6023840799177929, -0.6023673957799072, -0.6012317310771491, -0.5996144418032734, -0.5994379257023154, -0.5988024972448315, -0.5984103451004138, -0.5980389997634825, -0.5958380412489248, -0.5954170367356246, -0.5952312583180701, -0.5948227877515799, -0.5947458760172463, -0.5945612487187442, -0.5943151779683369, -0.5941476890201862, -0.5939483956842535, -0.5927883675071755, -0.5926059269578275, -0.5925303883797081, -0.592222558468728, -0.592157164152989, -0.5921079058425848, -0.5917930442426023, -0.5917089715858931, -0.5910586397082789, -0.5909383124292857, -0.5892273776595054, -0.5892035997185002, -0.5891449937230342, -0.589139198206451, -0.588843917070641, -0.5885581024118525, -0.5877707273440613, -0.5873000751436765, -0.5868538340210447, -0.5866752005365734, -0.5861712943028319, -0.5857101864431284, -0.5855565184306818, -0.5853598969260614, -0.5851614224405154, -0.5848007258199501, -0.5847035217551986, -0.5846851982445812, -0.5842328949989101, -0.5837471227425266, -0.583376388256645, -0.5830957186470703, -0.5827883423462614, -0.5826795333665988, -0.5824791868533183, -0.5823991167951674, -0.5823056630178711, -0.5822022594085985, -0.5818805519213883, -0.5812392671911661, -0.5806739569215718, -0.5803783765151193, -0.5801797038738631, -0.5799551059097497, -0.5789040983312368, -0.578879881156231, -0.5776260305651658, -0.5775411704076735, -0.5774740441854099, -0.5770640972880301, -0.5770108321198936, -0.5768826387503352, -0.5766749889910628, -0.5765041906776557, -0.5763430839500909, -0.5762203992938194, -0.5757643823022139, -0.5757050313657912, -0.5748707960730753, -0.5743806901045196, -0.5729998454964116, -0.5724282688331824, -0.5721629055947793, -0.571919295656856, -0.5716912903494636, -0.5716611928572007, -0.5714541413083722, -0.5710924789089206, -0.5705597260472117, -0.5695711514482352, -0.5693692689539231, -0.5692233789606655, -0.5690541777970077, -0.56894058472716, -0.5685422332880317, -0.5684340603016301, -0.5676914732907838, -0.5672566631122888, -0.5663653532923693, -0.566108792156149, -0.5651997590278759, -0.5642426610452815, -0.5635469305512315, -0.5631911281263122, -0.5631416244272098, -0.5629796170484225, -0.562712882994901, -0.5625876490702827, -0.5622862804209247, -0.5620403756175414, -0.5619098986636951, -0.5618082351081934, -0.5613910532749475, -0.5611002324458898, -0.5610617977302116, -0.560853517720697, -0.560181889090448, -0.5597208408216633, -0.5591704394717518, -0.5576701322378945, -0.5575059406793175, -0.5569950680696205, -0.5567281952319987, -0.5566185184943135, -0.5566016571185445, -0.5565753908693146, -0.55622309036061, -0.5560498084098056, -0.5560021572154381, -0.5557451095425793, -0.5551879837638646, -0.5547335159344713, -0.5546944223691914, -0.5545358245750197, -0.5543620176628837, -0.5540676019436531, -0.5536524545888476, -0.5536264556739778, -0.5535375138272718, -0.5528145741201909, -0.5525685155468769, -0.551875622301096, -0.5517738872990996, -0.5510258503365472, -0.5509524018444759, -0.5506663575345784, -0.5503613445844457, -0.5499440264385824, -0.5495052023642718, -0.549251044268432, -0.5492355910115558, -0.5491691626345379, -0.5489054340035561, -0.548853922817078, -0.548494327077424, -0.5481933655453534, -0.5479912785058558, -0.5472820846159441, -0.547281019985663, -0.5471590801174303, -0.5469947785172304, -0.5467058440412054, -0.546057746982967, -0.5452610172330941, -0.545117924103321, -0.54453519419985, -0.5433182990093909, -0.5430150849149562, -0.54270584448223, -0.5426418991067278, -0.5417057166232534, -0.5414756030280743, -0.5413056971059804, -0.5408252276151456, -0.5406788632102737, -0.5401923020486558, -0.5399185667772661, -0.539751152004994, -0.5394664505423283, -0.5394245049196766, -0.5392816876068249, -0.5390646946954178, -0.5386858583161435, -0.5386179504286375, -0.5380453929171096, -0.5380275036737776, -0.5378914255336325, -0.5371515213713488, -0.5371465369927265, -0.5369368926257971, -0.5367367754060822, -0.5362694440991213, -0.5361898725528773, -0.5354924838530658, -0.5351211534397124, -0.5349930967173656, -0.5344355713482147, -0.5342901453824329, -0.5342346290113815, -0.5336079967301417, -0.5331751357220151, -0.5331378184398164, -0.5330622841666824, -0.5328389780128999, -0.5326156020857697, -0.532608962820044, -0.531526020405253, -0.5313488007572476, -0.531298047818854, -0.5312101589589454, -0.5311835468781313, -0.5305977839784409, -0.5301839508638995, -0.5301740008647651, -0.5300732838789075, -0.5280659793077025, -0.5278358045514627, -0.5277992735556736, -0.5275601089462841, -0.5275598228553198, -0.5274010143998845, -0.5271364276146803, -0.5267834226900223, -0.5262122684158601, -0.5260868775385896, -0.526024525895257, -0.5259408016598943, -0.525864341820349, -0.5256591369158765, -0.5251648249985945, -0.5250791056296834, -0.5243639391655907, -0.5242823015142387, -0.5241387315111995, -0.5238452902738451, -0.5231738815736238, -0.5228305414830138, -0.5227574039156879, -0.5225869557121137, -0.5225234684479023, -0.5224224181699823, -0.521843028370982, -0.5217139534019775, -0.5204978900573661, -0.5199479292357148, -0.5198994147386218, -0.5196549777236555, -0.5194291584743901, -0.5187527791048059, -0.5184873777239836, -0.5180714901119592, -0.5172951848087417, -0.5171243171441472, -0.5162767657046159, -0.5160351249750943, -0.514930582841425, -0.5147251542897531, -0.5142909427177071, -0.5141450875016409, -0.5138995216752337, -0.5136525912756813, -0.5133569983576779, -0.5133018561567011, -0.513222669767288, -0.5130823681492627, -0.5127313927381957, -0.5122237629704396, -0.5117504487945983, -0.511718971041234, -0.5112021706572034, -0.5110844314662005, -0.5110289870476522, -0.5105585653021345, -0.51011651113068, -0.5099676602483882, -0.509680886397098, -0.509652395028036, -0.5096487335633201, -0.5095407913797156, -0.5091787995861952, -0.5085038881977724, -0.5083253209977335, -0.5082340392870051, -0.5079993745512235, -0.5074723235544271, -0.506954354400848, -0.5069231716889819, -0.5067839536864993, -0.506594653378543, -0.5059780810719486, -0.5046870365480766, -0.5045859932613309, -0.5041597872010948, -0.5037877650176884, -0.5032357139269996, -0.5028740191104788, -0.5028639119992203, -0.5028553125533641, -0.5020035234887505, -0.5011197019456828, -0.5010605475267236, -0.5006494246457076, -0.5004912871434962, -0.5000681846255755, -0.49982308306777734, -0.4996879260800086, -0.4996026547163051, -0.4989382445411892, -0.4988083077580703, -0.49865258820275343, -0.4986012486514858, -0.498080147019183, -0.497831054547112, -0.4977639244945, -0.4964011222466433, -0.49639798251897954, -0.496387937769024, -0.4956298875952331, -0.4955889894802808, -0.4947109266145516, -0.4940987421946331, -0.494033999032765, -0.49401501950293214, -0.4936982166889242, -0.49295073017181984, -0.49287227862809635, -0.4923287619361225, -0.4921238580183221, -0.49174133096074846, -0.49161331204254677, -0.491265716289777, -0.49099940802542924, -0.4909200983820699, -0.49073236116412267, -0.49063268847819186, -0.4903629760422657, -0.48969227528468173, -0.48958136669707797, -0.4890132255865695, -0.4888320334824765, -0.4879469002795403, -0.48742001991372896, -0.48686876588377187, -0.4865458589085582, -0.486413403119509, -0.48637545653183845, -0.4855855081633429, -0.48552715523113343, -0.4851698894860178, -0.4845903608546584, -0.4844574674012153, -0.48439508693220296, -0.48404771252245454, -0.48401146566742104, -0.48343464493718236, -0.48340159842128005, -0.4831458483040737, -0.48249241237170803, -0.48215793114999184, -0.48137488870190526, -0.4811421137243247, -0.4809293287605772, -0.47986312024952094, -0.4798520201092127, -0.4798446091368806, -0.4797797344833493, -0.47939451965353114, -0.47932374919784926, -0.4788048768567961, -0.47872539134977327, -0.47863807198268904, -0.4786048237561133, -0.47822359292889427, -0.47754978344252724, -0.47715465161609766, -0.4768321290626228, -0.47657976374818706, -0.476065407567758, -0.4756622943739407, -0.4754456772971461, -0.47539809584054743, -0.4751937558139702, -0.47509947672063096, -0.4747570894087355, -0.4747302615309971, -0.47464184104897017, -0.4741433649121038, -0.4738692982066046, -0.47368664738408145, -0.4734812049664546, -0.472154699986167, -0.4713209328667336, -0.4710533402883721, -0.4709609013721411, -0.4707283183049473, -0.4705665026528655, -0.4699381054512807, -0.4696325071337812, -0.46915742169098035, -0.46868088401671754, -0.46867616029184084, -0.46861374161327124, -0.4685872267404907, -0.4681107355918006, -0.46790075806866066, -0.4677347322311572, -0.46760640912473755, -0.4674119000799276, -0.46719454143082706, -0.46716441111985957, -0.46714934823675924, -0.4668221759618989, -0.4666319452580159, -0.4663714377687668, -0.4661755209130017, -0.46599887139182433, -0.465891079679886, -0.46589065628560117, -0.4654895618588538, -0.46542613507279984, -0.46517026181174564, -0.46508277039132356, -0.4647110084945202, -0.4641278909395575, -0.4639525142610077, -0.46369957362435427, -0.4633161749918727, -0.46250950884720965, -0.46225485358210194, -0.46217207204544064, -0.46152012516927665, -0.4614279319593581, -0.46131859994773633, -0.46105275898903286, -0.46104306434296627, -0.4609129604933544, -0.46055921062877003, -0.4603529517293561, -0.4598381655351095, -0.4597395771963304, -0.4593110255580378, -0.45912289534631134, -0.45883096966887504, -0.4587147403623787, -0.4585531991599223, -0.45852934891174746, -0.4584897537054438, -0.4584122926251577, -0.4583088996116285, -0.4583005903605505, -0.45797846413051213, -0.45676229958479864, -0.4566586075350983, -0.45662998835355223, -0.45613468216291236, -0.4559807245255115, -0.4557401101120641, -0.45471372525976306, -0.4546435212167499, -0.4545745782557087, -0.45422456837690156, -0.45330541946969394, -0.4528802961034545, -0.4527211693179958, -0.4518719359019999, -0.4516228782730829, -0.4507690998336844, -0.4504559377851007, -0.4504295579808026, -0.4501562892161804, -0.45013118049623596, -0.45011403397796457, -0.4494760978701337, -0.44903421153509104, -0.4489092865428626, -0.44889561670434297, -0.448694585874387, -0.4485789329929512, -0.4484195519632446, -0.44831351121223817, -0.4476096476016627, -0.4473584687419073, -0.44613059065685945, -0.4454959709848218, -0.4453611808506082, -0.4453243976144809, -0.44504664170601604, -0.444601070881841, -0.44456250973857814, -0.4436283210947072, -0.4434263901021863, -0.44302736621409594, -0.44296789781549395, -0.4428477833228104, -0.44267296849166266, -0.4424908216994834, -0.44232080896372283, -0.44218389274079994, -0.44213775445865566, -0.4414298160554344, -0.4413590454406349, -0.4403858688732503, -0.4393993332147358, -0.43913469421596973, -0.4389403960043915, -0.438610154196382, -0.4379462134525056, -0.4378687721729803, -0.43755500677465065, -0.43670652673592747, -0.43669621818718, -0.4358020679001968, -0.4355909284989607, -0.4348483768979685, -0.4341096101838934, -0.4336456912601767, -0.43347803609686186, -0.43255111077482233, -0.4324090163090676, -0.43191099976071307, -0.4317311656997874, -0.4310326165528002, -0.4304619145614496, -0.4299293028591513, -0.4299056750879947, -0.4296320729730587, -0.4292030790080625, -0.42848851098865137, -0.4277774364845682, -0.42770570397954305, -0.4275101325474519, -0.42728431939511824, -0.42676198537712084, -0.4266686758979875, -0.4264106010057218, -0.4260716938651107, -0.4256523549745162, -0.425456408971042, -0.424622747985944, -0.4245002972721066, -0.42363052497709225, -0.4236110149656576, -0.4229401982863361, -0.4228074797699794, -0.4224685669046857, -0.4220967966464083, -0.421894491820036, -0.42112078905207256, -0.4207910788806516, -0.41949038883442846, -0.4190656289519115, -0.418413182203159, -0.41809670945594923, -0.4178423386698454, -0.41779243512065123, -0.41749035317750943, -0.4173444129333001, -0.4172698166703239, -0.4165149344115471, -0.415788598772241, -0.4157189895813328, -0.4155678856866685, -0.41478307764612676, -0.414587503237017, -0.4145556388974528, -0.4139723102216464, -0.4134968985214264, -0.41340245643676743, -0.4132522119722228, -0.4126645610966495, -0.41234028940613343, -0.41231177940068253, -0.4120031106752232, -0.41188434553323416, -0.41178115855441444, -0.4115755655776643, -0.4115666658867741, -0.4107039457685817, -0.4103810534732655, -0.4099725421861503, -0.40997229611578623, -0.40977785719307336, -0.40977624039759547, -0.40961513553868956, -0.4093691489474113, -0.4088876018898905, -0.4084422307127672, -0.40753513168906613, -0.4068004162895193, -0.4065340009546558, -0.4063565867276423, -0.4063055698490306, -0.4056711623834332, -0.40566242881794135, -0.4056286201103117, -0.4056175163629625, -0.40538643810933633, -0.4052252761889894, -0.40521246609425055, -0.40514691471061753, -0.4051302663939599, -0.4046785455934306, -0.4044214844526042, -0.4042539009106117, -0.4041359635552956, -0.4039626699475515, -0.40371508134917805, -0.4026775642458301, -0.4021224664358486, -0.4020838653145638, -0.40189030329327174, -0.40167709222795916, -0.4016651761090918, -0.40049115036274513, -0.39982612192233385, -0.3997469098682417, -0.39904918202259654, -0.398441301654376, -0.39841334265528755, -0.39755500990664444, -0.39738786625501193, -0.3969238950862043, -0.39691154381122074, -0.3965819152767401, -0.39611501763116985, -0.3960559471475413, -0.39542198429937125, -0.3953983361810147, -0.39516493942641795, -0.3944339882744381, -0.3940977207924834, -0.393898623580385, -0.3938604601656376, -0.3935146909426247, -0.3928958157348773, -0.392879420452604, -0.39284980053427065, -0.3928266312293278, -0.3920783717206659, -0.39205435835755514, -0.3919339830168691, -0.3916376937446347, -0.39115214031509526, -0.3907536914347511, -0.39073833664860375, -0.3905544662706308, -0.3895342940261474, -0.38835203060732015, -0.3883310430728369, -0.38823168513309986, -0.387821870246443, -0.3877675165334287, -0.38775769547397765, -0.3876859978133069, -0.3875950142722453, -0.3869058595593493, -0.3863478150008843, -0.38530899463643653, -0.38518918941295727, -0.38498252235724895, -0.38473151578834397, -0.3846543845558353, -0.3843346107449325, -0.38431096214127025, -0.38368675514384054, -0.3831439151105986, -0.3831047900197564, -0.3828091856604845, -0.3818495464041218, -0.38181337488276723, -0.38043637105355027, -0.38038736977233883, -0.38017604827089196, -0.37999181557633044, -0.3796911709417112, -0.3791430134535889, -0.37899156333840855, -0.37899039618574093, -0.37889488608936345, -0.37864805408574764, -0.37829062968110827, -0.37828204493623807, -0.3780883974462386, -0.3780798226318222, -0.37793354300391696, -0.3774949535811256, -0.37704986733048856, -0.3768393951060836, -0.3767613842550971, -0.376751751451251, -0.37651563888084383, -0.3763418655295683, -0.37589039401989827, -0.3753824457079837, -0.3748069169825068, -0.3744808351447501, -0.37273412172472864, -0.37249632164283364, -0.3719174311774399, -0.37129542365612084, -0.3709735953803679, -0.37096929928601524, -0.37082242734829235, -0.3706952877220304, -0.3701095200232399, -0.3700763634240259, -0.3698180818219058, -0.36952791417734404, -0.3691447241103323, -0.3689566142037464, -0.36852932439571967, -0.3678738830400608, -0.367588052429061, -0.3675207081594544, -0.3673974320822603, -0.36715870295115227, -0.36705818602521967, -0.3666045917408973, -0.36649348967318557, -0.3659911762558541, -0.3657739468636846, -0.3655964750478605, -0.3655441336190393, -0.3653163072451907, -0.36512016570456063, -0.36492835502013016, -0.36489787026426357, -0.36481909407054613, -0.3646113486131692, -0.36455427832095316, -0.36443129228538995, -0.36391337817228575, -0.3637378039770086, -0.3634212418927613, -0.3622399856748345, -0.36221445079123366, -0.36161523659122785, -0.36122061561714647, -0.36113571196417693, -0.3609322679565366, -0.3605197778683073, -0.35965278537292567, -0.35944170456292857, -0.35934355105056826, -0.35904795820675184, -0.35897612899483367, -0.35870030396928676, -0.35863988421733817, -0.3583957080295986, -0.3583844792596742, -0.35823777893438047, -0.357451141664812, -0.35720629282966937, -0.35710505231735984, -0.3570677414560965, -0.35606163151590614, -0.3556548111589768, -0.3552999066621356, -0.35529678899373646, -0.35498072446036455, -0.35486352576445673, -0.35457447773716694, -0.3545432246361085, -0.35440401482865513, -0.3542478007004196, -0.35412984060630515, -0.35406909256516206, -0.35354251380640417, -0.35344792680141046, -0.35319139501581215, -0.35315317669125734, -0.35264127281936525, -0.35235352517729424, -0.352233577097832, -0.35163358007442663, -0.35125393256356174, -0.35113987741149577, -0.35086900111461006, -0.3503690634964114, -0.3502812027124902, -0.3501114123493827, -0.3500131161754195, -0.34957370376047586, -0.34751107264580194, -0.34654021868422313, -0.3463999618299962, -0.34619749305707925, -0.34608968210666907, -0.34574951137125876, -0.34556367328109633, -0.34509612622971464, -0.34483762240490046, -0.344600189666903, -0.3437315514100444, -0.34311054103131977, -0.3428611437784802, -0.3428576380428483, -0.34271156822367077, -0.3426489803297766, -0.34234970873270354, -0.34222480836957037, -0.3421940420702036, -0.34210576838635304, -0.34115376432764133, -0.34098749955421614, -0.3404496932896813, -0.3402745266903302, -0.3401000727825411, -0.3400298044566511, -0.3394831795028826, -0.33875843670383654, -0.33797665053284737, -0.33797221933048904, -0.3378725694428604, -0.33746046338614516, -0.3373054304302763, -0.3365499338508304, -0.33644701498871793, -0.3361725188631199, -0.335787475570007, -0.3354052555655359, -0.33526144389109924, -0.3345445630213623, -0.3342296478293103, -0.33413380606758575, -0.3338372197463294, -0.33328527377203254, -0.3318917381710577, -0.33118320820372515, -0.3305451227695622, -0.33050528453006606, -0.3304373305489844, -0.3302964920120943, -0.33028432706635275, -0.3301637301438535, -0.33006313709401985, -0.33006166306479506, -0.32958465108223206, -0.32872658135451016, -0.328371616045231, -0.32789832865717006, -0.32782822072521367, -0.32781744783907213, -0.3278149374906872, -0.3276815974365141, -0.32765881770191985, -0.3274921681506483, -0.3268298224907774, -0.32644839852092367, -0.3256890742847921, -0.32568870765638275, -0.32541204785745104, -0.3251640849635546, -0.3249388929408707, -0.32466080145248866, -0.3241556345549604, -0.3241026765520756, -0.3234397692895562, -0.3234297370721462, -0.32295876074041174, -0.3215362154014326, -0.3210170480292742, -0.32093483944055035, -0.319783546151937, -0.31975988050146936, -0.31929898547236013, -0.3192989648363898, -0.31882190723134973, -0.31881668489408055, -0.3187534060561758, -0.31863895707317147, -0.31857952443056947, -0.31771531140317577, -0.3171809118983482, -0.31709183702925614, -0.31699643051084264, -0.31684911732822474, -0.3162822164246611, -0.3160127480184235, -0.31568402198841794, -0.3149410801072186, -0.31484804608088446, -0.3144941415736664, -0.3143373392723981, -0.31343137034315477, -0.31331559930126585, -0.3131627696281893, -0.31207513370720286, -0.31165711246999933, -0.31076764527778844, -0.3102248043363573, -0.309260539619107, -0.30857287074928474, -0.30844053785300257, -0.30823387142936537, -0.307686439009305, -0.30755204835232647, -0.3074117619548709, -0.3072744255250896, -0.30711780639456815, -0.30701788010226083, -0.3063479571206961, -0.3056362203277336, -0.3055367115345217, -0.3054231534633155, -0.30518985791057945, -0.30514573207652534, -0.30486968479364207, -0.3043481629639741, -0.30402944223481676, -0.3039668253060645, -0.3038507194146948, -0.3035930281473501, -0.3027179671596679, -0.30255710982534884, -0.3025206900136824, -0.3025206900136824, -0.30194101675940305, -0.30129747900829895, -0.300836164425638, -0.3003721573659639, -0.30028774454493223, -0.30022691196692053, -0.3002235079608468, -0.29986747807081776, -0.29979464720983084, -0.29956472464925066, -0.299067565156489, -0.29904096135525265, -0.29826612407149383, -0.29788763055802314, -0.2978190528473062, -0.29746207286226395, -0.2973296849682687, -0.29709573972392883, -0.29709271794484665, -0.2968261052144046, -0.2958288301247697, -0.29574831995193895, -0.29431735951983173, -0.29410174497241803, -0.292953482733135, -0.2927461142593422, -0.2922026262719041, -0.29065161712862814, -0.28940003106120094, -0.28917320712956807, -0.28908446639720564, -0.2884486096697712, -0.28843075894387077, -0.288200969821941, -0.2873330211789359, -0.2871544112411812, -0.28707932660643365, -0.2864152580411371, -0.28574086550987643, -0.28564734065366315, -0.28506593153473464, -0.28463117913244596, -0.28451466925807034, -0.28401820883200246, -0.28286678538093857, -0.28211529044016653, -0.28204196613112337, -0.2817004117122247, -0.2813410372968078, -0.28098846176231584, -0.28080748619043056, -0.2807435197097398, -0.2800225928700214, -0.2794466383103196, -0.2792729621105078, -0.27919229019090575, -0.2791798942462561, -0.278924260013389, -0.2788381434582702, -0.27871440634808853, -0.27868828941762325, -0.2784044893796627, -0.2782320076684618, -0.27799203253328647, -0.2774992468339401, -0.27726331610545496, -0.27701328366582467, -0.27638222995905015, -0.27613249949757684, -0.2754220218262825, -0.2747037437471154, -0.27468338317643104, -0.274313844288734, -0.2740815220972888, -0.27394653647761513, -0.27345233931783086, -0.27338434221756125, -0.27338333298070655, -0.2727163423252221, -0.2720317518698247, -0.2716773883647685, -0.27099522448120666, -0.2708775171242561, -0.2699091437514621, -0.2691189635527589, -0.26891404617300707, -0.2687672435259199, -0.26706984174286397, -0.26607967351040945, -0.2656043429790273, -0.2640732758354477, -0.26383271113160767, -0.26349159308991865, -0.2627380437923792, -0.2624479628240607, -0.26213971002470904, -0.26172305789275757, -0.2612839926001854, -0.25961589949672126, -0.2593136989473487, -0.2592503020537215, -0.25854913839860294, -0.25851287888339314, -0.25843318311470376, -0.2583776722502733, -0.25797636614232067, -0.2578672979799105, -0.25785325992107244, -0.25770612220466593, -0.2573897350054498, -0.256375794728401, -0.2562196576701705, -0.2554051337944818, -0.25477183466894426, -0.2532498176042359, -0.25300051647358834, -0.2528504295577747, -0.2519925101686478, -0.2517649209401712, -0.25150456451303776, -0.251061993453035, -0.2491196485003657, -0.24885826444240608, -0.24864755344625122, -0.2482417426923589, -0.24785199614724296, -0.2472804604503657, -0.2470803740672338, -0.24694079361614696, -0.24628251554657346, -0.24610928991369213, -0.24610067941375835, -0.24601587663981925, -0.2457810186922177, -0.2444907417651886, -0.24278422874058236, -0.24123836113436103, -0.2410979797434453, -0.2396873770960416, -0.2391983477571215, -0.23904799080491954, -0.23874907791047073, -0.23862747741908952, -0.23782910897789328, -0.23726886942069297, -0.23638452995346987, -0.23583234337604697, -0.2350199118226037, -0.23441117203588352, -0.23416773245386652, -0.23389676703292156, -0.23387311684979858, -0.23375679405745825, -0.23298016600735308, -0.23285691686088072, -0.23224098230585077, -0.23159901796464105, -0.23152777014843245, -0.23102489064615683, -0.23057550469350946, -0.23019003303999633, -0.22985299081637733, -0.22962669007056374, -0.2277262381255573, -0.2276263659498064, -0.2274321687560512, -0.22723330026154703, -0.22711664196852374, -0.22696222661618415, -0.22694304712546723, -0.22686108017710976, -0.22660905531117578, -0.22658584034096263, -0.22526680846829966, -0.22521298765637227, -0.2241537580203668, -0.22366284578359144, -0.22282714326658243, -0.22172959058199898, -0.22154679242559544, -0.22109886628723893, -0.22080556132474538, -0.22019843576268838, -0.2195070346381317, -0.21832366350954036, -0.21826399770762178, -0.2179747195391687, -0.21704722745756738, -0.2156778773798181, -0.21504303643468312, -0.2149283771010027, -0.21438751443846063, -0.2143788792866123, -0.212898479901949, -0.2123159148659486, -0.21201291584614315, -0.2118531325447791, -0.21175680539348232, -0.2107190074549498, -0.21050015180611914, -0.21043270497532382, -0.21015128329783223, -0.20881977240998567, -0.20858025790340853, -0.2079730517142713, -0.2079677317013698, -0.20618408563775537, -0.2057699552530028, -0.2057415479877977, -0.20478143116403075, -0.20313239753019363, -0.203078206943292, -0.20211122323594669, -0.20192686482362712, -0.20053492643250653, -0.19982323070834035, -0.19887774073943426, -0.19745175468637322, -0.19695682353783875, -0.1959929057495547, -0.1954497862745058, -0.19520362633686456, -0.19497561203323052, -0.19479300339613906, -0.1946644024575891, -0.19444792004257144, -0.19421351905907364, -0.1939557205274942, -0.19221825829594483, -0.1921672893720814, -0.19205153865177538, -0.1913895407506445, -0.19123005086024641, -0.19100229109499922, -0.18984996611379776, -0.18890229522101523, -0.18802888716154567, -0.1876919078161162, -0.18751443847991, -0.18747850898336083, -0.18723207995866453, -0.18688025795974494, -0.18615066277816547, -0.18612467939992844, -0.18584766925248855, -0.1837514840618264, -0.18306059326001628, -0.18288730335412912, -0.181839743354781, -0.1805464594234852, -0.18035353907654722, -0.1800333758839963, -0.1789077389005156, -0.17867050968761783, -0.17866986972811005, -0.17754592090653776, -0.17673888005806532, -0.17630285569818582, -0.17457407249082216, -0.17364587888774044, -0.17350161860267554, -0.17311730518665258, -0.17286238515100588, -0.17270752281858576, -0.171299547505175, -0.17128219611643852, -0.17020438991515713, -0.169758339377402, -0.16930172610130148, -0.16848933183700565, -0.16769069123860053, -0.16768488378930174, -0.16758416038644675, -0.16748523338579469, -0.1662982937854014, -0.1656072284002108, -0.1649617712432329, -0.1646432430995064, -0.16454822036650774, -0.16437880353286827, -0.1637263550290474, -0.1611384460408644, -0.16103891083621785, -0.16076311477587218, -0.16015669355211076, -0.15955980856475543, -0.15928245191744392, -0.15857603081201188, -0.15592886630911773, -0.15439090258599703, -0.15424845842252, -0.15355532680666176, -0.1522631483534807, -0.15218365930739602, -0.15196213100948913, -0.1517215134783313, -0.1512302051881917, -0.1500154779599778, -0.14989565559189977, -0.14957548061960402, -0.14868877898865884, -0.14841162678905567, -0.14794333979067292, -0.14649557688901396, -0.1462883128022615, -0.14605696226956572, -0.14508638760798245, -0.14507921603117585, -0.14464011566778656, -0.144498729111464, -0.14352741268916033, -0.14325600255723786, -0.14317300660704255, -0.1431431591168231, -0.14306258975556052, -0.14274514771339072, -0.14263344712796983, -0.142630331776186, -0.13918118508446103, -0.13766816307894703, -0.13652617938932204, -0.13593698925481645, -0.13439156111215786, -0.13412621443243716, -0.13321995530032563, -0.1320731586973707, -0.13196091177454966, -0.13177261915315197, -0.13168634953717062, -0.1306954419561396, -0.1287798697987594, -0.12865944551835704, -0.12864628317803872, -0.12849492173552024, -0.1282900679704586, -0.12801877408824466, -0.12782636495297076, -0.12753268674234322, -0.12699394050074783, -0.12674655759590708, -0.12594242370695063, -0.1252307398844459, -0.125012350864147, -0.1234987116055003, -0.12297573212847368, -0.12256378481909017, -0.1206351496267993, -0.12061522945590125, -0.11876051305657978, -0.11779291352728907, -0.11735850977546244, -0.11702132548089178, -0.11619767277318016, -0.11560727649856012, -0.1146341218560652, -0.1142945502029918, -0.11282338229324054, -0.11185180618180297, -0.11165120603659306, -0.11153561330828898, -0.10957853720576421, -0.10942626595668434, -0.10894837583141186, -0.10858774315582631, -0.10830906909996987, -0.10816327372475606, -0.10774641314773373, -0.10753925239855383, -0.10734848674190361, -0.10697341986551248, -0.1066808484216269, -0.10650170436141793, -0.10642855354509383, -0.10642157787440737, -0.1058069815560399, -0.10521022649944432, -0.10501930030858714, -0.10430319338016844, -0.10429669218018718, -0.10371603079054696, -0.10330821848809775, -0.10263058164017579, -0.10202804676479144, -0.10055450042166951, -0.10016651965972163, -0.09875617060261915, -0.09735892880384275, -0.096977392852088, -0.09626124912085282, -0.09568133169111673, -0.09547746265894658, -0.09513698741818594, -0.0946798724260224, -0.09446127047639911, -0.09419525253240078, -0.09410343275272892, -0.09382805510513748, -0.09335702606509277, -0.09203037866619301, -0.09152643257664572, -0.09029982549866211, -0.09012822047991662, -0.08932308853997345, -0.08851072288116466, -0.08740314950007402, -0.08730039214032198, -0.08652893582816001, -0.08560577221243702, -0.08521571989322152, -0.0849851186780134, -0.08462432638743794, -0.08372981530439377, -0.08346417224795924, -0.0832083137191959, -0.08314188743035354, -0.08128368281776929, -0.08033688073459258, -0.07865827682749167, -0.07855619538241752, -0.07811616970227808, -0.07767462263580455, -0.07714623802150683, -0.077060736821357, -0.07315109513493934, -0.072746352411971, -0.0723767288270788, -0.07199928305221923, -0.06927666758380906, -0.06643612330906776, -0.06556904628148336, -0.06552985535941558, -0.06518555254253475, -0.06417274178909724, -0.06397974978056059, -0.06340312520380291, -0.0629590033958161, -0.06272473862135589, -0.06252322104634209, -0.06097874790937857, -0.06049880472844654, -0.05904914078079454, -0.058035610474165, -0.05760400832288662, -0.05681478217117897, -0.056101612758044477, -0.054484763607205555, -0.05363115258596904, -0.05224566599687952, -0.05200718313174097, -0.05163526389680406, -0.05057944236403811, -0.050163150131385836, -0.04908294632623206, -0.049001663346743544, -0.04827572391934837, -0.04664152302454536, -0.046148911180100505, -0.04555408341002165, -0.0453797250905416, -0.045221368466411165, -0.04507227099621414, -0.044750077352873174, -0.042197834320536254, -0.04202033291150967, -0.04139239353423249, -0.04129192489534109, -0.04012654919229711, -0.03893805803076256, -0.03889213211818281, -0.03850532711489097, -0.03657046977175499, -0.03619841833124434, -0.03510146263569025, -0.03481558228355722, -0.03469905311050393, -0.03468074904341581, -0.03452546287443825, -0.033965835696062714, -0.033878714496419576, -0.0337964974721949, -0.030664353049995707, -0.030458852427090233, -0.029196699268669163, -0.029191505335971896, -0.028363734017359865, -0.027801204427204948, -0.027716701064191374, -0.02558212626591177, -0.02314407549191211, -0.023077183517310564, -0.022966379672243464, -0.022176501302370203, -0.022091591912617614, -0.022036608158439254, -0.021728131219488606, -0.02169829523090605, -0.020975514371874608, -0.020174391047239688, -0.019609425296829547, -0.019489497127291144, -0.01928356337345874, -0.018469506503266432, -0.017987298327009786, -0.017622567475139017, -0.016577668807825168, -0.016169815083362626, -0.015332700386647052, -0.01501265279492999, -0.013942427178243205, -0.012503596046483045, -0.012102460033888074, -0.01051626088700161, -0.010402067995107095, -0.009495035701176449, -0.008136352296648275, -0.008101585086211676, -0.007791824565609562, -0.0069267386075298944, -0.0065078294879563625, -0.00625796918508483, -0.00591223289349227, -0.004932196264255673, -0.00445893231987613, 0.0008456339825394388, 0.0010856767943664431, 0.003230496260524811, 0.0035121702536147718, 0.003807908707446803, 0.005090702661902516, 0.005471508883878373, 0.005915218488121515, 0.006831993438826234, 0.00746861380480443, 0.007492328084349298, 0.008415095568292674, 0.008639060960433398, 0.008789806124655991, 0.009198798597330466, 0.010017527403616801, 0.011715089410006535, 0.01223715151156235, 0.013051789519435962, 0.013671656453974378, 0.014031254715636321, 0.014056624995592015, 0.014791583546134657, 0.014857498656499568, 0.015112723178069942, 0.015464337403613748, 0.015632225714270226, 0.015835604123912723, 0.01609789695579044, 0.016238437993254175, 0.016598964949320588, 0.01685691779301851, 0.017286639893192894, 0.017786849839162344, 0.018480384897720616, 0.018853594205842983, 0.018894811500439333, 0.020464230278204536, 0.02069031002125419, 0.022777735094171685, 0.022948536029562698, 0.02395438272326888, 0.025406475436444573, 0.02565693753131892, 0.025931977009164088, 0.026473005918159306, 0.02711143801995592, 0.027405115590997238, 0.027727441798902484, 0.028046137213471684, 0.028762081150365125, 0.029723351152829716, 0.02993737526896916, 0.030048589861932977, 0.030114880412581382, 0.030229181768284118, 0.03052019032128999, 0.031406009539884434, 0.031557153920859844, 0.031645908663604144, 0.0343073700093692, 0.034748757633864036, 0.034852458499382545, 0.03492843767070293, 0.03518922195198266, 0.035428742550359084, 0.03546431676387061, 0.036233876659046774, 0.036561376889695296, 0.03673040677059226, 0.03679704866100033, 0.03715346342926467, 0.0377011203619899, 0.038023292664459196, 0.03813573162609312, 0.040128142598632614, 0.04015166288659051, 0.04060623350023406, 0.042436117067766684, 0.04309958010758141, 0.04335218890695323, 0.043772250127857466, 0.04401140427074866, 0.0441017715549687, 0.044636062020810045, 0.045617424351199566, 0.04574952407875426, 0.04579251174121939, 0.04652213114883116, 0.0465314244274357, 0.04700957694288271, 0.04737040083878464, 0.04741737715809381, 0.047618670411716635, 0.04766295359214535, 0.04942570036758404, 0.05248361697866105, 0.05416037875234877, 0.0542570012075586, 0.05628528921208669, 0.05635214075950385, 0.056598635486538214, 0.057291095485347894, 0.05939799063668975, 0.05953515122403212, 0.0599989307147353, 0.06005203407651599, 0.06049752590360768, 0.06181719690000616, 0.06189233721115255, 0.06228897746008726, 0.0631789686843722, 0.06483338211991226, 0.06487895862482254, 0.06518836773137854, 0.0653217938472267, 0.06532812702632773, 0.0666374341243873, 0.0668281483105841, 0.06830986396439427, 0.06851982308662824, 0.07043578348919212, 0.07204365693960518, 0.0721915638618071, 0.07222743705118595, 0.07259986735630025, 0.07263059485589733, 0.07280975808399438, 0.07292941404474448, 0.07352361860348262, 0.0749552649495818, 0.07540600334593386, 0.07734199631848673, 0.07948654807109068, 0.08022080574652472, 0.08126678383279004, 0.08163911887905284, 0.08204956799755572, 0.08270095265174351, 0.08310406107841398, 0.08377419905144992, 0.0843806791260255, 0.08470672438488595, 0.08496150159777886, 0.08548654171139008, 0.08634381183298252, 0.08642510661928204, 0.08669272940617076, 0.08703243166008445, 0.08886289256398158, 0.08887319006596793, 0.08889485017123543, 0.08985712137640478, 0.09039029811214293, 0.09089991990936303, 0.09098747373659039, 0.09114092056603215, 0.09230420931421543, 0.09251078302559575, 0.09286391512273767, 0.09372046686934687, 0.09421122918921043, 0.0949461579390428, 0.09550845459004509, 0.095543336282365, 0.09583923985134009, 0.09597257637966683, 0.09642170024579211, 0.09675936298299542, 0.09789205640022254, 0.09808180997741012, 0.09841530438832467, 0.09862716085640971, 0.09879788155407537, 0.09908315695169892, 0.09940390758153225, 0.09966796391743224, 0.1004825548387806, 0.10068813345895376, 0.10079514195111616, 0.10096254745204158, 0.10112291249366268, 0.10185318222940502, 0.10211411655067232, 0.10215690038127546, 0.10216725473374114, 0.10270611896724872, 0.10303918443280519, 0.10379132068303602, 0.10430383199610395, 0.10599031538218573, 0.1087646843822449, 0.10954492550819676, 0.11000886681162125, 0.11060237170154064, 0.11061390654139233, 0.11130710655277731, 0.1114109748162932, 0.11176245778521353, 0.11263916506007689, 0.11264861545616572, 0.11305382861534748, 0.1131071734606719, 0.1131677622282082, 0.11363800963151777, 0.11395625048563725, 0.1139953635465514, 0.11414254376519961, 0.11504168268109637, 0.11727357941162847, 0.11768402760163087, 0.11826571254309386, 0.11834998946867292, 0.11843280574334132, 0.11885857428077418, 0.11900944975990867, 0.12249397975405685, 0.12310641130881839, 0.12340916788451861, 0.12475992800585245, 0.12524294532799024, 0.12611883498686147, 0.1267947000026613, 0.12817103891385567, 0.12860503864687609, 0.12921983694812275, 0.12951980419869838, 0.13035378704289963, 0.13068072376216866, 0.1309657902846184, 0.13138672541988747, 0.13189796932015907, 0.1323814781927023, 0.13441346223545836, 0.13446602177740608, 0.1344838049310505, 0.13512780795769797, 0.13655727933914413, 0.13675710771289534, 0.13720502213983785, 0.13805394433102763, 0.1389492693300776, 0.13959215062056843, 0.14075356173558728, 0.14372872434907125, 0.1445496763013538, 0.14474508308908687, 0.14497611960711276, 0.14515296532923577, 0.14550661764835632, 0.14552821135639726, 0.14555713940823067, 0.14603398177149263, 0.14603655429923043, 0.14785105547675276, 0.14918658549485406, 0.1493613112740874, 0.14953617859666707, 0.1497649404459511, 0.1500758273464236, 0.15049902318703878, 0.15117372219158484, 0.15120056729694312, 0.15165371017762855, 0.15167333286421353, 0.15180994750343452, 0.15212416974090956, 0.15222309533566503, 0.15256884400559834, 0.15328834141692546, 0.1538024995307962, 0.15410939579091976, 0.15438246229864003, 0.15641632645353637, 0.15671738248845288, 0.1567920512372291, 0.1579734642559103, 0.16204007112438334, 0.16206260954732388, 0.1654501038390125, 0.16581203644760192, 0.16598061206908912, 0.1662310802754992, 0.16630574125201036, 0.16711761434322628, 0.16835140966157205, 0.17001897108677028, 0.1704406031068968, 0.17424275500719758, 0.17596956147592333, 0.17634287982428884, 0.17824858074730943, 0.17839984053088026, 0.1784309722393602, 0.17939964362354432, 0.18275396865577742, 0.18288039054422225, 0.18292656198210508, 0.18304836993656362, 0.1856831104692277, 0.18645531803575652, 0.19113818496956597, 0.1946873428608833, 0.195047518743714, 0.19574496503384264, 0.1985259195756124, 0.19968871637871632, 0.2004526039405251, 0.20362982733847856, 0.2072938545690104, 0.20739700206057254, 0.20871946548814524, 0.2091554915159119, 0.2094848559109549, 0.20981454465401544, 0.21062875917045853, 0.2114001136580383, 0.2128430400503831, 0.21369362707449174, 0.2166713273722397, 0.21881787640102357, 0.22123399608078528, 0.22471529473574853, 0.22599353756097607, 0.2264837296194101, 0.22806301757318442, 0.23186349458128253, 0.233622784622464, 0.23370341773912448, 0.2351828161866782, 0.23572984137684624, 0.23810331138873164, 0.23976928822191274, 0.24195298115225713, 0.24349287761459548, 0.2443573540767835, 0.24531053113738435, 0.2529232771387254, 0.2533571451807626, 0.2557999115590444, 0.25780999147523265, 0.2580469904192547, 0.25953682158016267, 0.26053785838690746, 0.26366121182225344, 0.26856927259533325, 0.2712749716886589, 0.2727927391948666, 0.2744968566744622, 0.2755125498922789, 0.2759021445644218, 0.27613114073184486, 0.28305746953374955, 0.28471523134652915, 0.2900666383553566, 0.29159623183565314, 0.29199146923457997, 0.2926891444077886, 0.29642814516681654, 0.2978749443697623, 0.297877236370666, 0.3027475916077593, 0.30291839127316034, 0.3033255631969848, 0.30354838229968806, 0.3072951052526934, 0.3097639598770189, 0.31050606417426546, 0.31181499908361004, 0.3121772601799171, 0.312739915897891, 0.3146348895768316, 0.3156417493323859, 0.31632859828458515, 0.3164241218902174, 0.31887910667593217, 0.32161340910377245, 0.3250322220659816, 0.3265865120159579, 0.3273557011085818, 0.3292841810417642, 0.3318422263262394, 0.33222935006351784, 0.33227377618521925, 0.3328371441365073, 0.3334994906801082, 0.3336913543835083, 0.3347065630926771, 0.3368700423821404, 0.3393550532151789, 0.34116873593216723, 0.3427029579887695, 0.3438992366214577, 0.3446146681193433, 0.3455743605734132, 0.34695219414293654, 0.34788823095203514, 0.34841469453166296, 0.35094542646986987, 0.35193042261185165, 0.3520269610092319, 0.35259462237602857, 0.35414710047712905, 0.35821253594564795, 0.35939405547986647, 0.35991238412779747, 0.3606778968066507, 0.3626266752689415, 0.3638619454170011, 0.36516312289773356, 0.3674782318314217, 0.36846103995179746, 0.36927028582507476, 0.37221434852794877, 0.37796775464902066, 0.37847955953205553, 0.38045399824245024, 0.38385708950626074, 0.3870824245720591, 0.3905935123181814, 0.3990721745903165, 0.4037209273059448, 0.4059665518424367, 0.413760735712, 0.415492675239337, 0.4162249629829422, 0.41681442726116946, 0.41854779870599323, 0.4194025442062358, 0.4230814881842911, 0.424342399628673, 0.4302913047761362, 0.4307317172676804, 0.433129963224773, 0.43582000863478293, 0.4420716996836411, 0.4427060164102631, 0.44416604934340465, 0.44451052734866325, 0.4478142348298564, 0.44809260567329967, 0.44949667858806386, 0.4500764489106939, 0.4545163254342847, 0.4615621106568475, 0.4650947213137566, 0.4715014921266219, 0.47258687461945875, 0.4728408838370254, 0.4739612547659345, 0.4743975577799683, 0.4754062888476965, 0.4755106736691333, 0.4759505414026836, 0.4770658302574756, 0.47751409429487385, 0.4790676517410517, 0.4812468062517628, 0.4848482349332504, 0.48754796219294616, 0.49092904779565294, 0.4934654987850968, 0.4950165095958179, 0.4951310385238735, 0.49878541778124075, 0.5029516429318047, 0.5065193395964389, 0.508657143769835, 0.5115884756794774, 0.5178309524823856, 0.5205220313841962, 0.5234964520603991, 0.5244830556550139, 0.5247736042100508, 0.5272203614211097, 0.5278807684114765, 0.5321169851040054, 0.5421529300288366, 0.5435553895546914, 0.5442073777080639, 0.5442564114996611, 0.5466957392509031, 0.5490815558270372, 0.5495924811400554, 0.5500538531900852, 0.5500694139132033, 0.5502205791582517, 0.5539593588831837, 0.554103890910881, 0.5549476437178474, 0.5576580125713121, 0.5584183483947073, 0.5586574157694604, 0.5607321577390997, 0.5679789636072758, 0.5744836722004472, 0.5792366715819735, 0.5836125818949671, 0.5871941126148974, 0.5950047518677322, 0.5957597170261753, 0.5961014646034267, 0.5964835508437639, 0.5988651021224448, 0.6002684254514186, 0.6018372839110975, 0.6028416273857102, 0.6032854668453758, 0.6080865198582999, 0.6107010353393797, 0.6131755298203168, 0.6155165720387572, 0.6165743645661645, 0.6177487864851126, 0.6189972248791816, 0.6190205183582866, 0.6202123099347789, 0.62675356412942, 0.6301280265930502, 0.6306258808033416, 0.6334627939433659, 0.6347492981163283, 0.6370915618594559, 0.6381223694209562, 0.6396737059095303, 0.6402405689335806, 0.6437649869553106, 0.6444662888255461, 0.645708995317499, 0.6483055082227267, 0.6485993796403791, 0.6491933391955057, 0.6496929714055966, 0.6500068512644934, 0.6513991884648145, 0.6572399009390308, 0.6573833975106342, 0.6638993402983727, 0.6656730551377855, 0.6668654267566245, 0.667110272212537, 0.6701466582628272, 0.672112867640291, 0.6728339483841532, 0.6756619573318045, 0.676191528551068, 0.6777866070313545, 0.6785565465498462, 0.6790629009439013, 0.6820767154531666, 0.6827793518171825, 0.6835059259274894, 0.6847702773506124, 0.6873018375182804, 0.6889741162596392, 0.6896044747772667, 0.6914240177141548, 0.694269903575002, 0.6950525387994373, 0.6959625932375, 0.6964164012318135, 0.6971469462672062, 0.6974104621169168, 0.6974694429000385, 0.6987484718147232, 0.7012924723785292, 0.7014322466496177, 0.702571017364499, 0.7026286720769583, 0.7131110865913142, 0.7133012372136327, 0.7159763265530776, 0.719092640070653, 0.719611037700564, 0.7199757776383781, 0.7205173980799078, 0.7217384585452566, 0.7220496941872219, 0.7235218248335871, 0.724534531318286, 0.7271993993993506, 0.7347301714687035, 0.7364532060429545, 0.7396348096903074, 0.7446090212682228, 0.7461763741362402, 0.7465472953656233, 0.747081741756146, 0.7503851406720932, 0.751185214793388, 0.7519833906467974, 0.7526020420559236, 0.7533453433998929, 0.7546850088856993, 0.7556587125540585, 0.756750419790454, 0.7578869199778018, 0.7587294573442183, 0.7597746589333094, 0.7620705903149996, 0.7626944807813723, 0.7643958084657885, 0.7660727004369026, 0.7672904972175685, 0.7676683379322053, 0.7683068274157636, 0.7706004155675044, 0.7749682725551985, 0.7755702265971389, 0.7761484165775361, 0.7762386642827597, 0.7769893734105113, 0.7778543318289493, 0.7784758779655903, 0.7789067801301721, 0.7839861684398577, 0.7854439165061073, 0.787684748517673, 0.7889526707377505, 0.7928249217744499, 0.7930491650595213, 0.7953561818812134, 0.7954024266331345, 0.7973132376022152, 0.7975429978055246, 0.798876909894604, 0.7994591261530057, 0.8000736752276947, 0.800679936346187, 0.8038459208305697, 0.8056895728975997, 0.8071100369685211, 0.8113166891256862, 0.8113283084211815, 0.8123518461829575, 0.8139990137177506, 0.8146593610370156, 0.8150570162421382, 0.8151247114924649, 0.8167191744568065, 0.8169693805462692, 0.818147538160479, 0.819051512333774, 0.8200440174434839, 0.8201905221764758, 0.8229811520851953, 0.8237945605504577, 0.8244456453527194, 0.8295417329085943, 0.8323210148114304, 0.8326256886801628, 0.8331016356726624, 0.8333215123693289, 0.8338857116644431, 0.8378384205388134, 0.838934547417653, 0.839001660367708, 0.8391386007073753, 0.8393292120144249, 0.8417239372759426, 0.846236869131223, 0.846299984614387, 0.8505516689794479, 0.851220278245516, 0.8523954236733908, 0.8548197605310455, 0.8598987138305167, 0.8646489986438557, 0.8658231533949448, 0.8670117224196909, 0.8682819946713058, 0.8683712068114995, 0.8693228374738997, 0.8698895067930948, 0.8701666374808579, 0.8722273086147367, 0.8734737166802737, 0.8741975801205442, 0.8755163638474122, 0.8766420062770717, 0.8766474798112096, 0.8776140528469378, 0.8776140528469378, 0.8776629843238593, 0.8785386946977181, 0.8785658635163514, 0.8795291887070475, 0.8799339882092334, 0.8804090547137833, 0.8836217121466541, 0.8837950744783538, 0.8846973803262157, 0.8858828026826189, 0.8860014300727996, 0.8865651533701913, 0.8866103676261681, 0.8866169410589828, 0.887711265531844, 0.8878354865873694, 0.8881353768230429, 0.8906283075890455, 0.8915440346072765, 0.8921292717414675, 0.8925620747188014, 0.893806799125781, 0.8940474082089556, 0.8946269208904458, 0.8949268723707038, 0.8950112211612435, 0.895907445282264, 0.8973152662961685, 0.8979752707354263, 0.898009685186741, 0.8985115268197224, 0.8986142745559056, 0.8989152702581733, 0.9001708652061127, 0.9021253480102929, 0.903704545408553, 0.9044481991441329, 0.9050060678914038, 0.9053398278795108, 0.9059680708452813, 0.9061814725772863, 0.9071724390655695, 0.9079650437843216, 0.9098912038718374, 0.9103376397014227, 0.9113127773635898, 0.9114602495014688, 0.9116254331073879, 0.9119633049649873, 0.9127183917095583, 0.9128165476169134, 0.9130631527167563, 0.913159011646451, 0.9141678140101526, 0.9143402139835695, 0.9157502129275721, 0.9188737027815239, 0.9190668761490044, 0.9202023610708618, 0.9212529492804862, 0.9213445671722693, 0.92141318169496, 0.9214658970346066, 0.9216293130807036, 0.9251849983424705, 0.9253722899195307, 0.9263377511748041, 0.9267950485820511, 0.9281594323713749, 0.928383432358983, 0.9290329401689834, 0.9293742431295389, 0.9295643331245276, 0.9300845772262158, 0.9319716825557358, 0.933671804860573, 0.9336929399002751, 0.9341447110595811, 0.9356691265424153, 0.9357574521357461, 0.9358613773817679, 0.9360637312568829, 0.9364401421393516, 0.9373641704581503, 0.938218876384584, 0.9391597858520646, 0.9398706050659389, 0.9401272389386934, 0.9414627939009328, 0.9419756258062935, 0.9421266717139103, 0.9425934709396475, 0.9429389103075452, 0.9436923790252283, 0.9441333016669309, 0.9447440345850695, 0.9448961208840589, 0.9449432840190544, 0.9450622560499602, 0.9452228617139966, 0.9453269814409822, 0.9463487831526505, 0.9465240558400783, 0.9466681181431478, 0.9482590690059316, 0.9491358786695439, 0.9495685771071951, 0.9503671117503896, 0.9506438903117151, 0.9509097119606553, 0.9531472314583116, 0.9545102177878442, 0.9549378894467022, 0.9549477296152054, 0.9550097007896543, 0.9554913503733637, 0.9559542990680243, 0.9560834215641716, 0.9565101251181285, 0.9585041050287604, 0.9588083940214647, 0.9607153553573267, 0.9614045269058435, 0.9617972681922875, 0.9618422498730017, 0.9621574844118407, 0.9622400811052718, 0.9635571724646157, 0.9638999107614294, 0.9645520180232108, 0.964766215488192, 0.9660076858091631, 0.9661281338316545, 0.966223423803559, 0.96641764648039, 0.96653440341176, 0.9665697659637575, 0.9667990117904792, 0.9668901750373575, 0.9683231388804019, 0.9690057255524915, 0.9693698109173252, 0.9704703768395024, 0.9709374294885056, 0.9711229085884932, 0.9715481082247535, 0.9721615597244846, 0.9727879441003193, 0.9730316230819773, 0.9730445060133412, 0.9733667216456656, 0.973862076313057, 0.97393529101394, 0.974562576261413, 0.9746129079145767, 0.9751297295535093, 0.9769270931337202, 0.9772624201371043, 0.9777629843922488, 0.9783704240378279, 0.9785737141696114, 0.9787458677998377, 0.9804019143898925, 0.9805449189603481, 0.9807733786417403, 0.9813959911621428, 0.9823750236052056, 0.9825820754850643, 0.9831512105403213, 0.9835781265283094, 0.985270151893024, 0.9857889147432937, 0.9861974710925161, 0.9869718969428916, 0.9872665598615891, 0.9873088936230414, 0.987469738302307, 0.9880469901497773, 0.9883825980479144, 0.9885488035574361, 0.9891016395437173, 0.9893674467469435, 0.9898347648834596, 0.9903746789258248, 0.9903985077011821, 0.9905395056572799, 0.9906517733372702, 0.9908133658518847, 0.9911036583948323, 0.9925462924119022, 0.992559898595264, 0.9927183027592776, 0.9934101299099383, 0.9937247553755981, 0.9938685552395015, 0.9940818106569158, 0.9953852323466101, 0.9954703351986722, 0.9961500764707081, 0.996255168387264, 0.9963310768236078, 0.9963695315660452, 0.9969283745995496, 0.996971118271291, 0.9973764322145415, 0.9975260144129294, 0.9981926738889377, 0.9990733459299692, 0.9990935674541588, 0.9991017327712013, 0.999722976401684, 0.9997802581581907, 0.9998277460624898, 1.0003823841526984, 1.0003886655677972, 1.000760029327065, 1.001366773032805, 1.0018168921494546, 1.001876170995021, 1.0020149430816345, 1.0023670411536054, 1.0042935848268606, 1.004560084539007, 1.004562839425817, 1.0046661317317327, 1.0047143613464562, 1.0047604754428001, 1.0049605000246677, 1.0049693607768817, 1.0050410780016545, 1.0050886688316716, 1.0054272010428298, 1.0062179263962083, 1.0069105007494212, 1.0072657194812575, 1.0073402603014148, 1.0074600080942648, 1.0078003009264132, 1.0082199254687456, 1.0083562922059035, 1.008791261749656, 1.0090974601313631, 1.0093653598925398, 1.0095369128329823, 1.0095369128329823, 1.0095369128329823, 1.009553295840513, 1.0112117068890056, 1.011516920129545, 1.0123173633003828, 1.0125192538835481, 1.0125946836608797, 1.0125946836608797, 1.0126715123297618, 1.0128483990776187, 1.0129426853822754, 1.0131923692352347, 1.0139211915657587, 1.0139817677632699, 1.0141388289325486, 1.0144857579438593, 1.0147031603682042, 1.0150836831768806, 1.015333245231758, 1.0164525566822806, 1.0167229574060526, 1.0173876952779648, 1.0176703896520913, 1.0177025981526162, 1.0184118198155507, 1.0186568934115743, 1.0204894438756462, 1.020628699358549, 1.0206597418229544, 1.0212101653193595, 1.021990641535573, 1.0219984123143082, 1.0230246443872715, 1.02323995917423, 1.0237978909118837, 1.02477219580841, 1.0258438076724974, 1.0259267514259396, 1.0263750114376313, 1.0264734047417974, 1.027918668710914, 1.028135539992881, 1.0281802433155014, 1.0285837529143878, 1.0288037797390737, 1.0299573774658373, 1.0304944866021806, 1.0305350570949494, 1.030626021201467, 1.0308869907737859, 1.0319549616701216, 1.0333646105176382, 1.0335322265733649, 1.0339488227236007, 1.0347972791529116, 1.0349314413064818, 1.0350036327037941, 1.0354139780938887, 1.0354794682939037, 1.0359648274667606, 1.0360089082912365, 1.0361754090452877, 1.036630637047297, 1.036759006559453, 1.0376010270876497, 1.0377709048163353, 1.0383120843913303, 1.0384115690090465, 1.038429139596592, 1.0395057661384228, 1.0396076978482378, 1.0396487496285185, 1.0398993471284816, 1.040070587892651, 1.040278116854193, 1.040405877676661, 1.0409577319795458, 1.041828945138574, 1.041920958354374, 1.0419254859485754, 1.042229029248536, 1.0429404108761873, 1.0429845831996987, 1.043572580264001, 1.0436388021235223, 1.0437335077357823, 1.0442096281532964, 1.0442171638657214, 1.0445985207112285, 1.045277584172236, 1.0453843366671691, 1.0457623491624988, 1.0461301163780377, 1.0462712133925247, 1.0463791799723725, 1.0469715956155865, 1.0470127737922077, 1.047113875241912, 1.047282989805571, 1.0473782305056905, 1.0475240393247636, 1.047549238198979, 1.0476071304876864, 1.0478794759993957, 1.0484459498088161, 1.0490956621354093, 1.0494137241550157, 1.0498739538284383, 1.0499395615913285, 1.0502822461298704, 1.0507729378819157, 1.0508265150452565, 1.0510662484445106, 1.0514199007636311, 1.0515359127235202, 1.0516957783167644, 1.051946255294249, 1.0519480588393946, 1.0523638455366813, 1.0525792030559893, 1.0526547739303092, 1.0531393116186394, 1.0538806324344374, 1.054279885858843, 1.0546984200555767, 1.054992933703383, 1.055197951718214, 1.0559022866194399, 1.0561152513109213, 1.0564023360659378, 1.0564132387802667, 1.0566127672365797, 1.0566759737926754, 1.0569732070698143, 1.0571253803102594, 1.057345387130467, 1.0576180364744854, 1.0577038353228037, 1.0578016105660677, 1.0584390580338254, 1.05860462911839, 1.05860462911839, 1.058896048911485, 1.0590981359509823, 1.0594857769349035, 1.0595238043090103, 1.059657900049451, 1.0596679336140384, 1.0601680549159844, 1.0602630486121922, 1.0604225567750183, 1.0606501872378655, 1.0608293069746788, 1.0610114879792336, 1.061038561728249, 1.0610890855887571, 1.0612888275642238, 1.0620200816505592, 1.0620994814364129, 1.0622001445837437, 1.062347478954535, 1.0630012666206676, 1.0635459272167564, 1.0636570480075316, 1.064722885724349, 1.0655591996121958, 1.0657452534926435, 1.065762810719923, 1.0657645239003375, 1.0661650635649809, 1.0667069724601663, 1.067039741272844, 1.0673392704564468, 1.0676497061463806, 1.0676604174946625, 1.0678142913193567, 1.0686796277103143, 1.0690084728685956, 1.0691042392740353, 1.0691527623852157, 1.0696210885755482, 1.069658930083615, 1.0697986846443777, 1.0699344939392994, 1.0707296967116808, 1.0708714523205998, 1.0709271088517875, 1.0713045319918277, 1.0717680842373978, 1.0723623224484446, 1.072559548841419, 1.072939708562411, 1.0734333806435494, 1.0735061878529424, 1.07362660245216, 1.0738918424446406, 1.074118274286257, 1.074220282111841, 1.0744282836407233, 1.0752982254683834, 1.0754800963212465, 1.0758646003304526, 1.075908025233893, 1.076315521233757, 1.0763746437392354, 1.0769253470298314, 1.0770129521975962, 1.0774121903872578, 1.077765906026684, 1.07784334443282, 1.0778845259994576, 1.0785262424894189, 1.079030564388512, 1.0791499304545464, 1.0793646254759548, 1.0799413821698192, 1.0800457165977173, 1.0802316779437844, 1.0803209526342479, 1.0805535893153695, 1.0813953495118664, 1.0820869865617395, 1.082108852775582, 1.0821330498924515, 1.0822454625477158, 1.082725219465217, 1.0828512569301236, 1.0828737999928362, 1.0835966503561891, 1.084319574786921, 1.0844457650143124, 1.0846346045624857, 1.0846879149397501, 1.084817712120599, 1.0856073876975343, 1.085719594491346, 1.0863750738826943, 1.0865785312527712, 1.086684218680888, 1.087071069722443, 1.0874144912024974, 1.087740489051453, 1.0878263244352557, 1.0878941304361103, 1.088448437654468, 1.0886245796915617, 1.0888472208507882, 1.0893691823779497, 1.0907138763729212, 1.090736280063504, 1.0909537238636744, 1.0910467525056844, 1.09180067267378, 1.091961247768166, 1.0921709034707476, 1.0922930625478744, 1.092362090615471, 1.092373680453023, 1.0924158706275182, 1.0924365740668271, 1.0924400114192026, 1.092574780314258, 1.092871708012602, 1.0931493483698198, 1.093168510041124, 1.093272288484054, 1.0933246751831034, 1.0935258321306476, 1.0935321913680036, 1.0936252581249497, 1.0938322295933394, 1.094042013948823, 1.0942374853012027, 1.0942441009883206, 1.0946161710553528, 1.0947120892986297, 1.0947787867669365, 1.0951653185750632, 1.095194615702266, 1.0958419459887483, 1.0958779448804679, 1.0959121020043328, 1.09600746588697, 1.096417251730236, 1.0976229946342722, 1.097632607720044, 1.097825311615638, 1.0978513312466067, 1.0980175405344246, 1.098019884447941, 1.0987648443868843, 1.098917970760237, 1.0991702870546571, 1.0992663764506574, 1.0993684265234347, 1.0998099211806154, 1.099890541099816, 1.0999614388330066, 1.0999687145265737, 1.1000156865716626, 1.1004562713015438, 1.1005111778432144, 1.1005776675648855, 1.1006153645387968, 1.1008419824981641, 1.1012249846962565, 1.101518162096677, 1.1018725107621063, 1.1024199228253322, 1.1027410441186498, 1.1029037487893636, 1.1030709537073489, 1.1031874565866657, 1.1037228907934573, 1.1042441625416846, 1.104260382411934, 1.10464038282025, 1.1048309040761153, 1.1050442857100706, 1.1054729374408407, 1.105621533740317, 1.1059484132447137, 1.1063008135498986, 1.1067453166624943, 1.1073501956980587, 1.1075459675813235, 1.108032975880459, 1.1082016926243121, 1.1082605689339422, 1.1084167380501346, 1.1087469283818632, 1.1089460120302534, 1.1090540054721794, 1.1091121421374286, 1.1092637074170517, 1.1096814570092464, 1.109698931514016, 1.1104263257864748, 1.1105803340574676, 1.110833091627431, 1.110996166531601, 1.111019691221101, 1.1110292222926919, 1.1117694611152342, 1.1118588965087595, 1.112152463837037, 1.11330231065382, 1.1134499992421203, 1.1136009188085745, 1.1136758749869826, 1.1136902477062978, 1.1140493048644098, 1.1140494146308046, 1.1146913939564171, 1.1153495464936134, 1.1158913140727558, 1.1161067861730576, 1.1162389943983964, 1.1162704888894985, 1.1164276763574752, 1.1165287865698297, 1.1167366986914242, 1.1170128546851483, 1.1170349493688778, 1.1177813643818952, 1.1180010368154798, 1.118050459672582, 1.118185419645572, 1.1183778073374517, 1.118451433274543, 1.118650673547848, 1.1186526657885656, 1.1189309699698125, 1.1189670800476137, 1.1190869339991438, 1.1191967064889914, 1.119786442982959, 1.1200773926046088, 1.1206548788972372, 1.120875695285, 1.1209262170448744, 1.1209418475466921, 1.121302862825437, 1.1213103476201334, 1.121510891959318, 1.1215135020550815, 1.121648490123256, 1.1216534320897467, 1.1219478786117487, 1.1222421819323765, 1.1223808360494232, 1.1225704896415813, 1.122934431910193, 1.1230013894817392, 1.1233659623707573, 1.124048996650198, 1.1242197945115158, 1.124263536337668, 1.1245409242701336, 1.1247383379599512, 1.1248905089297827, 1.125273518662114, 1.1255526832862817, 1.125559788470899, 1.1260718203861289, 1.1262780859201154, 1.1263199549799068, 1.126376301122471, 1.1265345341094117, 1.1265523573785052, 1.1266359661248997, 1.126692374894268, 1.1267587050394245, 1.1269528154884887, 1.1269603562713595, 1.127014166029868, 1.1270412704016215, 1.127669839801415, 1.1277382397978437, 1.1278417683952922, 1.1279148214252797, 1.127970215296116, 1.1279928850883578, 1.1282414060571146, 1.1286208052642857, 1.1286208052642857, 1.128766716652275, 1.1294332922805395, 1.1294492103848204, 1.1295093169582395, 1.1297118185464299, 1.1299237238752966, 1.1299959912047022, 1.1302258149123148, 1.130995361351772, 1.131266323708886, 1.1313374841143984, 1.1313749956172514, 1.1314509935909647, 1.1314890493940215, 1.1318965865525439, 1.1320874085206807, 1.1321179742810148, 1.1321379302805552, 1.1322064806557093, 1.1323114845198607, 1.1323920825852911, 1.1325574402753085, 1.1325659462750624, 1.1325820096252537, 1.1327986290512546, 1.1333517911321795, 1.1335335740236823, 1.1336203032122711, 1.13385208688405, 1.1341747947846386, 1.1342073142926299, 1.1343171001522139, 1.1346352268752995, 1.1346800123833822, 1.1350280152498253, 1.135403106810238, 1.1356564987829267, 1.1358189595778956, 1.1361444454862604, 1.1362702376292249, 1.1364816203339974, 1.1364977355246888, 1.136523325177296, 1.1365333314811012, 1.136690460325587, 1.136796675154233, 1.1371770488083501, 1.13777840262517, 1.1377954136805442, 1.1381001046935892, 1.1381364535483405, 1.1385231500837971, 1.1387546138137585, 1.1389788520486788, 1.1391242763852967, 1.1391756803347572, 1.1397824251318718, 1.1400009542086977, 1.1401912702088965, 1.1402212717805686, 1.1404000347409216, 1.1404140684035853, 1.140513044024208, 1.141029673478183, 1.1410470544355307, 1.1411630526624563, 1.1412558032127103, 1.1414794954992107, 1.141500551539474, 1.1420922924266181, 1.1421831584981743, 1.1423238987970008, 1.1423626460883818, 1.1424148421151918, 1.142450888062612, 1.1425188353672258, 1.143001823700587, 1.1431188590636032, 1.1432132952634022, 1.1434350020354562, 1.143544792505702, 1.1436987567142163, 1.1441213776652985, 1.1442084792727507, 1.1442826754892454, 1.1443839899548194, 1.1449279490255937, 1.1450400998880463, 1.1450820016668417, 1.1451453754707008, 1.1453107022771245, 1.1454009926406914, 1.1454326779451962, 1.1454434308567123, 1.1454510327025353, 1.1459382348733962, 1.1459668680130006, 1.1461355220241118, 1.146172782876014, 1.1463139614490312, 1.1463840866494817, 1.146405799379127, 1.1466594184204664, 1.1466679023817057, 1.1466951884917904, 1.1471721892844247, 1.1476470277695359, 1.1477320809462266, 1.1477911533881127, 1.1480004284942764, 1.148324448015082, 1.1484782231439534, 1.1486929469383746, 1.1487314317106272, 1.1495268287680491, 1.1495284177921428, 1.1499133888246622, 1.1501895934316773, 1.1503274003172768, 1.1508493265893314, 1.150860416964616, 1.150969263878582, 1.1510785269962447, 1.151213587815422, 1.1513308641837843, 1.1513940665055633, 1.1514355177159183, 1.1515498085865497, 1.1517062766254589, 1.1520120717874733, 1.1523910382009874, 1.1525935724447278, 1.15265306613117, 1.1527987984377075, 1.1528194644447816, 1.1528203097512288, 1.152851081525848, 1.152866470917891, 1.1532507833749512, 1.153428891483015, 1.1534474211758972, 1.1540847975465804, 1.1543104947262999, 1.1543118578429665, 1.1544434382542015, 1.1546799604229885, 1.1547862494346575, 1.1551871260000897, 1.155244378559402, 1.1555459023186545, 1.1556781917598413, 1.1557697215133007, 1.1559668605367295, 1.1563032234348083, 1.1564249761791903, 1.156614841528909, 1.1567372787419683, 1.1567383161452531, 1.1567648966630515, 1.1570286436791821, 1.1575177136380963, 1.1576063438423607, 1.1578817021991044, 1.1580405775120721, 1.1581409941016578, 1.1582327948083813, 1.1583194539283619, 1.158563314333702, 1.158703394702807, 1.158714879613325, 1.1587981871711281, 1.1588860816078808, 1.1589129377482346, 1.1590276840565392, 1.1592104585173568, 1.159660416636227, 1.1596780149465467, 1.1597953569117323, 1.1599779236101841, 1.1602523888763572, 1.1606270219993717, 1.1606690720116684, 1.160956779442186, 1.1610689254693596, 1.1611831878721144, 1.1612953460553601, 1.1614645610004262, 1.1615318077138927, 1.161604298422462, 1.1617761052032363, 1.1617783498715473, 1.1618648921228631, 1.1620033769088716, 1.1623488251707317, 1.1624284406225902, 1.162441640912715, 1.1626655854988301, 1.162765106219688, 1.162981649329862, 1.1631313522826978, 1.1632585708413934, 1.1633919047496488, 1.1634234118969455, 1.1635117936032597, 1.1635528055734567, 1.1639424013103075, 1.1640145502700834, 1.1641025655718582, 1.1641101720424667, 1.1645911595521736, 1.1647610456574677, 1.164806899651183, 1.1648366435449502, 1.1648528615838487, 1.1648583744701273, 1.1651717635569308, 1.16527182825873, 1.1652830187039709, 1.1653795259379895, 1.1655898010708465, 1.1656529177396118, 1.1660025924743251, 1.166064313516805, 1.166146041923961, 1.1662997675010804, 1.1664911532273279, 1.1668928515934844, 1.1669057887330254, 1.167154830604743, 1.1671631370062334, 1.1672192719909495, 1.1672979722402015, 1.1676119038391017, 1.1676295546509345, 1.1677278611595143, 1.1678379308219509, 1.1679540409812184, 1.1682799416118974, 1.1684314697417646, 1.1685253581062718, 1.1686333750983615, 1.1687397883595048, 1.169043315066001, 1.1692379727477529, 1.169297502641368, 1.1693746618632166, 1.1694611050188606, 1.1695016856702065, 1.1695811379190946, 1.169666806091799, 1.170049778211841, 1.170111522484068, 1.1701742485866655, 1.1702534433062814, 1.1703126935125803, 1.1707240040830051, 1.1709913005384782, 1.1712027237716647, 1.1715572244481662, 1.1715695293979744, 1.1716350653612149, 1.172362816976432, 1.1725994693809578, 1.1727000026078886, 1.1728887937844357, 1.1729466495282943, 1.173056921816594, 1.1733669840717418, 1.1734137397769997, 1.1734575590489227, 1.1735845760372126, 1.1737408011982888, 1.1740562008920596, 1.1741648636871636, 1.1742077661716828, 1.1742698697983631, 1.1743942065006556, 1.1744675426465823, 1.1748614188361597, 1.1751306020427568, 1.1751752988846509, 1.1751854553765848, 1.175275890804572, 1.1753705184774865, 1.175491678482922, 1.175586341350263, 1.1756295431236925, 1.1756842202364346, 1.1756949935966319, 1.1757339151781627, 1.1760952628680308, 1.1763687129463516, 1.1764126285693408, 1.1764183618756603, 1.1764264394853081, 1.1766906153347951, 1.1768060902936812, 1.1768602816336344, 1.1769960717525103, 1.177324050187983, 1.1773547667387212, 1.17748740500689, 1.1774908653603433, 1.1776950016110914, 1.1777057174904073, 1.1777185408082225, 1.177763295609452, 1.1778009488145178, 1.1779842186030176, 1.1785001161360478, 1.1786821155874765, 1.1790731542575412, 1.1790805658717254, 1.1791588533021091, 1.1792066083828567, 1.1792709781103579, 1.179387669696626, 1.1793946165733669, 1.1793986226589643, 1.1794412613784033, 1.1796612032587364, 1.1798654428779864, 1.1798800183401668, 1.179902202456132, 1.1803685078969774, 1.1804617454417197, 1.1804661613612377, 1.1806121529446527, 1.1807747611285297, 1.1808508970111609, 1.1808823062953127, 1.1811965001000664, 1.1813549251001032, 1.181531249844018, 1.181707411275147, 1.1817806104923352, 1.1818320135350326, 1.1818473310121376, 1.182135384593187, 1.1822660564815528, 1.1823043693663868, 1.1823174635807223, 1.1823881717672042, 1.182449403632058, 1.1827362017853775, 1.1827599775898325, 1.1829530079498918, 1.1829883307145814, 1.1830536922559884, 1.1831911324924826, 1.1833333622668332, 1.183590404345834, 1.1837244150753208, 1.1837605022785744, 1.183793729349082, 1.1839439227111106, 1.184267596318737, 1.1845436979837964, 1.1847190424946827, 1.185097249374528, 1.1851745723134492, 1.1852250940733235, 1.1852756158331978, 1.1852851254042602, 1.1854507037072681, 1.185511152876994, 1.1856894485800251, 1.1861090039225084, 1.1864965653090154, 1.186584793876304, 1.186668118708561, 1.1866880078257445, 1.1872266592137388, 1.1873430194048284, 1.1877867016460297, 1.187850256949887, 1.1881299972672574, 1.1882237938644342, 1.188273680936301, 1.188325754687099, 1.1885468689953687, 1.1886028076330717, 1.1889202373233325, 1.1891307750581082, 1.189147985270482, 1.1891765632700935, 1.1891985070303563, 1.1893333275075086, 1.189369509120032, 1.1894057389132329, 1.1895457155267801, 1.1901478135531207, 1.1902728703464083, 1.1902762116515773, 1.1903271014446144, 1.190776992700299, 1.1907830166790858, 1.1908233430981112, 1.1909121948483326, 1.191102177668825, 1.1911354195950585, 1.1911548998035772, 1.1911602413769453, 1.1913042647083225, 1.1917450098035918, 1.1918141423607205, 1.1918192365132818, 1.1919730913934674, 1.1921172729199667, 1.1922717060099295, 1.1926224905187104, 1.1928592150716781, 1.1930766154491494, 1.1930885787695769, 1.1930911221659968, 1.1930981936366076, 1.1931146978604326, 1.193127708117454, 1.1932426874456201, 1.193285195337855, 1.1933189125803012, 1.193505140868574, 1.1936203367541045, 1.1937534060459989, 1.193939136978419, 1.194541746485506, 1.1946839620115077, 1.1948480221862297, 1.1948909308584388, 1.1949493288027557, 1.1950163307342552, 1.1951829440355457, 1.1952054075167313, 1.1953407448898745, 1.1953912666497488, 1.195396954791574, 1.195805563433787, 1.1959066069535358, 1.195995624028045, 1.1961406323976167, 1.1961582285355825, 1.1963107810325306, 1.1964061824044712, 1.1966326685438364, 1.1966673798699885, 1.1967494503648013, 1.1969675639108974, 1.197068607430646, 1.1971183854229974, 1.1973468243937244, 1.1974726785124858, 1.1977476729458054, 1.1978050459451384, 1.1979641019784675, 1.1980838281764639, 1.1981751801427591, 1.1983197881394516, 1.1985068013792393, 1.1985399080642307, 1.1985978046240988, 1.1986584953762824, 1.1987511867739995, 1.1990048847358126, 1.1990062100731613, 1.1991455392656303, 1.1991582833071373, 1.199338185984894, 1.1997710052141064, 1.1998741430080184, 1.1999646239970099, 1.200125116366638, 1.2001559744631176, 1.200535116486264, 1.2010546639537518, 1.2010816649874674, 1.201110776253361, 1.2011257446935015, 1.2013703260469153, 1.2016747726363122, 1.2017473631999591, 1.2019237719195353, 1.2020232569142628, 1.2020816837840167, 1.2021683921985795, 1.2022454620762513, 1.20229500515505, 1.2025822402719712, 1.2027827595382634, 1.2028969804331935, 1.2030042108743708, 1.2031349668339488, 1.203155776153994, 1.2031788273960666, 1.2033569342678918, 1.203359986577594, 1.2035073003803178, 1.2035226286869876, 1.2035263697147789, 1.2035626238669785, 1.2035830014750617, 1.2036176139603012, 1.2038974463153524, 1.204098065416887, 1.2042005768745985, 1.2042866916812822, 1.2043608650847955, 1.2043619115561632, 1.2043924296869388, 1.2046952540444342, 1.2046981300654556, 1.2051556645910582, 1.2052061274917076, 1.2055732710878888, 1.2056103604299275, 1.2066378336134407, 1.2067782859934157, 1.2070987575907504, 1.2070987575907504, 1.207148755418564, 1.207388768538221, 1.207446480136824, 1.2075385044460571, 1.207595844881794, 1.2076392514132805, 1.2081632243382545, 1.2081984088948434, 1.2084346065079297, 1.2088075807646703, 1.2089025568296285, 1.2091531022353161, 1.2093507742456302, 1.2099020823663889, 1.2099646855451114, 1.2104207120860446, 1.2107194404492796, 1.210891774069989, 1.2110242239744071, 1.2111622073216275, 1.2111889682841417, 1.211376463216894, 1.2117673381578309, 1.2118170066200704, 1.2118321167735087, 1.2118572612498224, 1.2118678943455052, 1.2119477473182507, 1.2119583047695712, 1.212362478848566, 1.2124632567651692, 1.2126657755570915, 1.212766652927561, 1.2128165174182923, 1.2130250943003869, 1.2130697834868072, 1.2131415888430546, 1.2137029320705768, 1.213940307158255, 1.2139645326006385, 1.2140491337344723, 1.2140881996665365, 1.2141145842074117, 1.21413230286171, 1.214190728618164, 1.2142750477487372, 1.214303471950458, 1.2144266130283603, 1.2144478966247332, 1.214569280046281, 1.2145925031573037, 1.2146134386021288, 1.2146287000678577, 1.214769042183809, 1.214876573062394, 1.2150090471720851, 1.215146303001272, 1.2153646179472493, 1.215730951191726, 1.2157728496909095, 1.2157966986200912, 1.2161114191588323, 1.2161622683185778, 1.2164590439131011, 1.216472977485925, 1.2167607645502998, 1.2168907124303086, 1.21698248938322, 1.2169847532516678, 1.2171997014204097, 1.2175170376229083, 1.2175782936129649, 1.2176458467902198, 1.2177423913375347, 1.2179058050271234, 1.2180254189735888, 1.2180639389498904, 1.2183262182170482, 1.2183463449453251, 1.2184284806360404, 1.2186562819877071, 1.2187063521477537, 1.2187260056597151, 1.2188817444021445, 1.2191279222154545, 1.2192939494076158, 1.2193128376427778, 1.2193883940736532, 1.2194236213634357, 1.2196395708002599, 1.219724143933796, 1.219907427845525, 1.2199298621977905, 1.220322552853168, 1.2204233670057174, 1.220487016387964, 1.2206029462515418, 1.2206795742802548, 1.2208030033501354, 1.2209809719465177, 1.2210144417663595, 1.2210332205876973, 1.2210364966910492, 1.2211229442906415, 1.2214469349403374, 1.2218805466756004, 1.2220715586646103, 1.222343321159284, 1.222392974983169, 1.2224410686449803, 1.2225055652505767, 1.222535508723719, 1.2228390558025464, 1.2229644337168772, 1.2229746311318295, 1.223023317295782, 1.2231070413700207, 1.223115489413028, 1.223308916140659, 1.223323380730749, 1.2234138224299367, 1.2238898410592294, 1.2239281511691094, 1.2240485362112667, 1.2242161709601276, 1.2242261670443484, 1.2242536650790286, 1.2246383234663578, 1.2247375361139041, 1.2251004521403155, 1.2252470978233545, 1.225629416865304, 1.2256567781724081, 1.226060952251403, 1.2262630392909004, 1.2263135610507747, 1.2263563524687784, 1.2264651263303978, 1.2265531595931254, 1.2265586671847548, 1.2267493630295323, 1.226864965883831, 1.2268972231025146, 1.226906811912246, 1.2269374329061882, 1.227106053427005, 1.2272112403399449, 1.2272145837806818, 1.2274584853103303, 1.2277489957370524, 1.227842069853178, 1.228059505412601, 1.2281193341492305, 1.2284029466171336, 1.2287890427146488, 1.2288472243916646, 1.2289178217598706, 1.2289376358031372, 1.229009207735626, 1.2291467813325296, 1.2292773952778329, 1.2292902805466983, 1.2299884448510847, 1.2303636736584478, 1.2308343463189932, 1.2312544352991102, 1.2313464875666265, 1.231468750964468, 1.2315063748404498, 1.2317226757561277, 1.23184184615982, 1.2319614771430536, 1.232035127947104, 1.232192950741874, 1.2323982940619234, 1.232399173173365, 1.2325414298458668, 1.2330049040758058, 1.233287221057885, 1.233584118918484, 1.2336455867358853, 1.2339340781651096, 1.2339559404889617, 1.234133515395753, 1.234936813091002, 1.2349831759204024, 1.235373769757527, 1.2353961689835256, 1.235598256023023, 1.2357127059014619, 1.2357422638625466, 1.2357916846994137, 1.2358155670042912, 1.2359894198449966, 1.2360265520730982, 1.2360529518618921, 1.236360845567224, 1.2363694887798287, 1.2365053218071984, 1.2367596855917031, 1.2369726373897185, 1.2369760830220595, 1.23698628143663, 1.2370479943959314, 1.2370584264659328, 1.237127315177944, 1.2372721027573939, 1.2373353133602012, 1.2374186160646494, 1.2374497181164152, 1.237536772459491, 1.237601571834329, 1.2376319618682574, 1.2378940755982424, 1.237925111424631, 1.2379476606381603, 1.2380101453615544, 1.2380297270500236, 1.2382799242196953, 1.2382945988576064, 1.2386325566583987, 1.238656378451494, 1.238663927138602, 1.2391097018656743, 1.2393602074132224, 1.2394047500469896, 1.239426699264931, 1.2394372609290463, 1.2396176466072397, 1.240065967615104, 1.2403070886900172, 1.2403861522212234, 1.2404381226181167, 1.2404659274990504, 1.2405495905337025, 1.2411712021319201, 1.2412513905150073, 1.2412748795652173, 1.2414642086881498, 1.241609863981567, 1.2419078354688164, 1.241943287848108, 1.2420139521313605, 1.242149670795044, 1.2421848259006856, 1.2423269382608764, 1.2427041938017804, 1.2428100636665027, 1.2431004942650172, 1.243145876970416, 1.243264685000065, 1.2435209420976334, 1.2435845963574437, 1.2439141766279673, 1.2443208496688651, 1.2443411231558648, 1.24466541474537, 1.2448255619351398, 1.2448800309507357, 1.2449420706633947, 1.244959267692234, 1.245333234485368, 1.245548331781887, 1.2455762358683986, 1.2455823466898845, 1.2456738194482366, 1.24569989706151, 1.2458009405812587, 1.2459990068657132, 1.2460941119270075, 1.2461545929003792, 1.2462051146602537, 1.2465184769286752, 1.246891635955809, 1.2470541833015212, 1.2471014960809705, 1.2473798168367236, 1.2476208661607382, 1.248039567251727, 1.2482936407200647, 1.248308836498988, 1.2483127960178206, 1.2485527190679937, 1.2486251050357782, 1.2487392779016544, 1.2493454197970786, 1.2501293856079592, 1.2502376933130788, 1.2507571279275294, 1.2514174256939006, 1.2514271810370448, 1.2517263070154125, 1.2517732091915086, 1.25188508199046, 1.251964000328813, 1.2521621647261065, 1.2523447807197439, 1.252573715449773, 1.2526239587860766, 1.2526843004334705, 1.2527836443889957, 1.253156997901614, 1.253236763542836, 1.253332642299101, 1.253368622275921, 1.2537276594801272, 1.2543037824321197, 1.2543230659411524, 1.254804287822942, 1.2548616086267137, 1.2549135072111248, 1.2549874598440978, 1.2550697646192386, 1.255100461966731, 1.2552241905761083, 1.2552317943789655, 1.2552460358515443, 1.2552877225930044, 1.2554392878726275, 1.2554898096325018, 1.2554926774428412, 1.255641374912125, 1.2556692639119602, 1.2558939837114966, 1.255944505471371, 1.2560290283544433, 1.2561465925108686, 1.2561465925108686, 1.256172290185839, 1.2562118289959605, 1.2562165510807952, 1.2563432730962014, 1.2563861910532188, 1.2565704815693115, 1.2565985649686127, 1.256618029104686, 1.256647005800668, 1.2566764045346224, 1.2567611407851333, 1.2568733339591618, 1.2570002215877474, 1.2570054624287326, 1.2571523249506693, 1.2572931711012572, 1.2575806385974029, 1.2578583969774124, 1.257893435566599, 1.2579438131754241, 1.2579764130931954, 1.2581584021557648, 1.2583250357867333, 1.2585049589882065, 1.2585424704910593, 1.2588295003064816, 1.2591422825912817, 1.2591962421701672, 1.2594672356909427, 1.2594975939416866, 1.259507493898012, 1.259519483330918, 1.2596075165936453, 1.260057598514816, 1.2604158647516353, 1.2607789527942357, 1.2610874960702458, 1.261290026719777, 1.2615627298161038, 1.26160178854434, 1.2616832569851588, 1.2617893879917228, 1.2620010208675652, 1.2620362604618738, 1.2621513848585764, 1.2624985462378895, 1.262624528261087, 1.2626861979662458, 1.2627237094690988, 1.2629124312333764, 1.2629162601795572, 1.262955944084904, 1.2630102936884195, 1.2630170130464389, 1.2630490325702162, 1.263059346106498, 1.263271548540035, 1.2635211813980085, 1.2637741180933095, 1.2640424379349104, 1.2640502819595056, 1.2641304184578992, 1.2642525078919555, 1.2642958732826317, 1.2645265903061442, 1.2646288023018712, 1.264844487330021, 1.2649944472588885, 1.2651888928487627, 1.2652654356694821, 1.265298962897414, 1.265737507330222, 1.2657852826594123, 1.2661340934481613, 1.2662753278129097, 1.2663182263049055, 1.2664418689671364, 1.2666013816739194, 1.2668768544501028, 1.2671321360517402, 1.2671605535794637, 1.2677366166051982, 1.268315892359579, 1.2690186697627472, 1.2690810454746715, 1.2698642622073437, 1.2703181878873893, 1.2704863610625914, 1.2715448961194002, 1.2716344692576487, 1.2717590131062058, 1.2720277131158515, 1.2721498804395368, 1.2723926866606023, 1.2724899025761935, 1.272833086263953, 1.2731899681327303, 1.2733261223786134, 1.2734673047997602, 1.2737606664068022, 1.2738780420002438, 1.2739806663107818, 1.2740224860229943, 1.2740387408763936, 1.2743883494563268, 1.2743923844203358, 1.2744793708734485, 1.2745619512125825, 1.2747297847133567, 1.2747369962803345, 1.274796567274509, 1.2751070596666074, 1.2756554371923732, 1.2756968481531414, 1.2757785646484092, 1.2758264392820489, 1.275908045991745, 1.276004729637208, 1.276038868499909, 1.2760790480814206, 1.2762176520194104, 1.2765092670733893, 1.2766103105931381, 1.2768051190875722, 1.2771529320247064, 1.2772434872413048, 1.27726715141042, 1.2775203628461802, 1.2776155090694812, 1.277838720578456, 1.2778771959256983, 1.2779929640930134, 1.2781553269484522, 1.2781651605800917, 1.2782017235964087, 1.2783444882901425, 1.2784921496632693, 1.2785891677860355, 1.278616318291481, 1.278662404413793, 1.2790100717543986, 1.2793730805666423, 1.2793964493099887, 1.279787674003862, 1.280031711941576, 1.2802663323247196, 1.2806657910582937, 1.2809362935466668, 1.2810037745254383, 1.2810093222648862, 1.281059799288728, 1.2811181150522064, 1.2814937659728287, 1.2816646513660923, 1.2820345939203222, 1.2824044900584497, 1.2825560479180713, 1.2831484558511352, 1.2834808122323402, 1.2836411740208038, 1.2837718180851865, 1.2840469722070353, 1.2841431890586052, 1.2844198350983909, 1.2853253285680104, 1.2854003651988413, 1.2854453694747918, 1.2855650620882157, 1.2856301202887641, 1.2857375372495594, 1.2857984865029333, 1.2861960612759895, 1.286611327967754, 1.2868486859520074, 1.2869737670498427, 1.2871268040582324, 1.2886727235862645, 1.288737068754829, 1.289482096555468, 1.2898525614293836, 1.2904871445106731, 1.290807691481882, 1.2908814818616938, 1.291720866849799, 1.29178416761694, 1.2918130041762912, 1.2924352078381922, 1.2925247342250568, 1.29272952373724, 1.2927638444925156, 1.2928017514070413, 1.2930534679474515, 1.293174749263581, 1.29325299527144, 1.2939932144010267, 1.2943611615261483, 1.2944715436029728, 1.2944860338444906, 1.294853799003086, 1.2949397658331256, 1.29494072968336, 1.2952573099234654, 1.2952943820024805, 1.2953028746055832, 1.295895878174935, 1.295908004953825, 1.2959116267252888, 1.2959252452610985, 1.296157264941972, 1.2964999457690904, 1.2967615142795468, 1.2967789498488893, 1.296814759309377, 1.2968389995393603, 1.2973697119637104, 1.2974540406245152, 1.2975122994001038, 1.2975424770370934, 1.2976248447894863, 1.2976594737423555, 1.2977159526561912, 1.297877143075662, 1.2978781855302837, 1.298037561343532, 1.2985725948974207, 1.2987446583452154, 1.2992726377534205, 1.2994116934590125, 1.2994201784923995, 1.2996149111847057, 1.2998171848958666, 1.3000032146694747, 1.3000238462889138, 1.3000798489709262, 1.300178154437707, 1.301016992223532, 1.3010645217738865, 1.3013679037713377, 1.3024028473796452, 1.3030369410597908, 1.3032874713085456, 1.3037910321304145, 1.3048089555722695, 1.3051348125767768, 1.3057390107734541, 1.3060325072096675, 1.3062237982451759, 1.3065199200970135, 1.30652731530317, 1.3066986228531143, 1.3067736656036764, 1.3075795613465393, 1.3077732320078725, 1.3079537697989072, 1.307985731159638, 1.308660323187732, 1.3090011741101009, 1.309246309066758, 1.3096864345643722, 1.3098161720131465, 1.310651727704173, 1.3108887416767134, 1.31115135461187, 1.3111886226215437, 1.3112584859796266, 1.3112941055170326, 1.3116417901575224, 1.3118287157053095, 1.3119816957610086, 1.3122848263202547, 1.3123935440251706, 1.3126801122922167, 1.312899127582642, 1.3132154887916645, 1.3140500993564246, 1.314145370880142, 1.3143615538873366, 1.3144533318408804, 1.314504795195294, 1.3146497596384907, 1.3148967566884502, 1.3150455661137714, 1.3151169183437244, 1.3152626215934093, 1.3156481418334103, 1.3159970173225044, 1.316304118333885, 1.3166311774799295, 1.3166389013715887, 1.316922581694209, 1.3169836554290069, 1.3171281206008616, 1.317316740538103, 1.3174765640524277, 1.3176769291704264, 1.3178081066701046, 1.3179516549236292, 1.3179967128754826, 1.318344169486391, 1.3184922081174695, 1.318623522980553, 1.318845712681204, 1.3190502851178554, 1.3195134098416053, 1.3196800619914377, 1.3202436194084113, 1.3204487492482349, 1.3206919150680418, 1.3210918003472525, 1.3213887735161474, 1.3214143978578088, 1.3217537239051622, 1.3227039624607972, 1.322924478016668, 1.323120938885032, 1.3233596850362632, 1.323891148771369, 1.324355760897842, 1.3243755374680763, 1.324800454104734, 1.3248185153628533, 1.3251740261816578, 1.3252409802487306, 1.3254621357992342, 1.3258099300469843, 1.3286936833598944, 1.3289168610088045, 1.3294241013671222, 1.3301684126338809, 1.330429417956521, 1.3308178460032725, 1.3311186474516077, 1.331989512760083, 1.3322737544093792, 1.3323209440857484, 1.3327173309199352, 1.3328493117945759, 1.3328493117945759, 1.3328493117945759, 1.3332399785502418, 1.3337282117602387, 1.3338196793269625, 1.3339797155176187, 1.3341193504182258, 1.3342759561005488, 1.3345064286651145, 1.3347363227515547, 1.335012964478509, 1.3352184235835287, 1.3352241355695953, 1.335366093151372, 1.335498610503563, 1.3357367433307452, 1.3359653510168648, 1.3359656783104068, 1.336300095967716, 1.3365381823726326, 1.3367122360207238, 1.3370034021972894, 1.3375070885377112, 1.3378181021320197, 1.3378447320681226, 1.3381036469965268, 1.3386370254469901, 1.3386631224987084, 1.3387882148868098, 1.339010681683174, 1.339147072273772, 1.3406548480084766, 1.3408460903704247, 1.3409141470148338, 1.3411330316109602, 1.3412894041939196, 1.3422929524262606, 1.3426894566224084, 1.3437132442971884, 1.345172733963322, 1.346204568442523, 1.3465601649796628, 1.3466671031631798, 1.3471715982127388, 1.3477406312424631, 1.3491080515199037, 1.3497356009697905, 1.349892230860131, 1.349964704622916, 1.3501530166121558, 1.3511248309453645, 1.3513956871561794, 1.3515460139299242, 1.3515763000950274, 1.3522169684395078, 1.3524198588560488, 1.3537966432478952, 1.3549488746328624, 1.3554399203761878, 1.3564705578804561, 1.3573020171284984, 1.3587984320646573, 1.359316623647535, 1.359471904498624, 1.359481015725763, 1.3596936568151081, 1.3600742775292811, 1.360563731235593, 1.3608932285911308, 1.361176952760481, 1.3615591741773874, 1.3631957705714592, 1.3636190627953704, 1.3645102169523255, 1.365877474888621, 1.3663456941336611, 1.3664127639272965, 1.3665102250342103, 1.3674192611883966, 1.3683969506598124, 1.3685862921534189, 1.3686267852997038, 1.3687541138541217, 1.3692538315681446, 1.3698372579712026, 1.3698849670301012, 1.370595183504736, 1.3718872042753436, 1.3719674101314348, 1.3719929093854475, 1.3724281535649219, 1.3727305519730595, 1.372983146556792, 1.3735128044650522, 1.3741932335498515, 1.37430704396502, 1.3743444316092974, 1.3747836034550702, 1.3747926985128078, 1.3764482566958463, 1.3771746869440946, 1.3774971026697527, 1.3781308828980716, 1.3786019499589455, 1.3788770197752287, 1.3799223502054692, 1.3802503787118294, 1.3805070538584645, 1.381951231090027, 1.3840717470080501, 1.3862057306592344, 1.3863444895374444, 1.3867253362505063, 1.3887627741414295, 1.3898972238229164, 1.3899719509312058, 1.3901578279086935, 1.3906054105952341, 1.3910243456950697, 1.3917035311466535, 1.3923169339568466, 1.3939948232952668, 1.3942421996690502, 1.3946235543962315, 1.3947016226159041, 1.3949824055140485, 1.395851315209493, 1.3969888078883836, 1.3976616711356713, 1.3976853690864017, 1.3982768648244401, 1.3991798127225656, 1.3994665964737139, 1.39961184915322, 1.4016801517606199, 1.4023014236924596, 1.4026665758368806, 1.404744730159014, 1.4047914883601047, 1.4050891446485774, 1.405095055961765, 1.4055517991486695, 1.4062023366466319, 1.40650825192354, 1.4069309740783003, 1.407255036095846, 1.4075792126503723, 1.4077889608322667, 1.4083811391807082, 1.4094255641851383, 1.410402643505026, 1.41095087479055, 1.4120740505220624, 1.4123181743208546, 1.413906879113427, 1.413993494637197, 1.415138885962751, 1.4153749907529227, 1.415458732023101, 1.416999035655278, 1.4174817148564505, 1.417690067637157, 1.4177822295885658, 1.4180071836033483, 1.4188465273639594, 1.418873606342334, 1.4194924987195523, 1.4195719350688933, 1.421885278274734, 1.4223746496624141, 1.4225443024854363, 1.4234309662910332, 1.4235036655809337, 1.4236676687830836, 1.4248845485222703, 1.4257295229379494, 1.426279299473443, 1.426700928745885, 1.4285833412283293, 1.430063348019727, 1.430578927064901, 1.4313878734128775, 1.434910726297667, 1.434933631632619, 1.435020364976534, 1.4356177642955503, 1.4361149241536397, 1.4363577446463378, 1.4396451124782619, 1.4398362015347521, 1.44101462788266, 1.4412289590545986, 1.4418882327990366, 1.4424953072889655, 1.4427470201098855, 1.4432685082343304, 1.4433182581004664, 1.4434247090837777, 1.443539605512345, 1.443767840067796, 1.443955331232003, 1.4459495046847648, 1.44615285791934, 1.4464223518798174, 1.4465063643227034, 1.4475914213697485, 1.4478465788716637, 1.447998387745233, 1.4497599840470952, 1.4500175167855158, 1.4500221756072578, 1.4501351393530229, 1.4503417045187739, 1.4504673971118458, 1.452512604527223, 1.455580838149229, 1.4566333609170363, 1.4576651938289067, 1.4579233880784699, 1.4579830691464695, 1.4580825191575795, 1.4585151432733978, 1.4596173584253003, 1.4599077453599114, 1.4603767965681793, 1.4605935612083352, 1.4630680604390152, 1.4633958882835505, 1.4639351583438467, 1.4650356312182669, 1.4680273608780394, 1.4685893003904642, 1.4702473927844895, 1.470418826907801, 1.4712165519083822, 1.4732325437160028, 1.474387388169697, 1.4763752228371594, 1.479011586915909, 1.479129505534458, 1.4792776900222955, 1.4803584428156766, 1.4818487128747404, 1.4831542109803264, 1.4832122321037682, 1.483747763722838, 1.4841630782862865, 1.4854000205821751, 1.4858733694727744, 1.48617399793023, 1.4865016870179906, 1.4865320297506397, 1.4873406556460003, 1.4875314768687928, 1.4878969850079646, 1.4893654907586678, 1.4899459576383158, 1.4903478637875063, 1.4903540436904867, 1.49038490049626, 1.4914749771760742, 1.4923343717895052, 1.492581274652955, 1.4948840603239684, 1.4953576936181516, 1.4959808721871088, 1.4962490069802046, 1.497639940942768, 1.4978206726086332, 1.501353391800719, 1.5024748658066704, 1.5025522493895767, 1.5046188961583025, 1.50474558625322, 1.5052253946442615, 1.5055392261930862, 1.5095481077958666, 1.5108727478270736, 1.5110770767055084, 1.5119590794799587, 1.5160869385473905, 1.5189186072751342, 1.5203480495247677, 1.5223051027944419, 1.5233287126667663, 1.5251931263242615, 1.5252913901701628, 1.5255963838261528, 1.5266226745595446, 1.5271728145797916, 1.529602190162946, 1.5314800442989642, 1.5316316095785871, 1.5316316095785871, 1.5326568906090465, 1.5331264483096683, 1.5352963949734972, 1.5358379892765401, 1.5377979748127526, 1.5417638137627478, 1.5423157459489607, 1.5427845214026847, 1.543344056576995, 1.5434087987262073, 1.5434629843122454, 1.5439093476817836, 1.545172893214491, 1.5480963504671799, 1.5485103732354215, 1.5509169020695737, 1.5509707357300804, 1.5515231631880657, 1.551859378509207, 1.5520194274791503, 1.552583895589235, 1.552762194340777, 1.5530694169352366, 1.5553506734111677, 1.5568447919794417, 1.557286865102614, 1.5579571056617434, 1.558679436314047, 1.5589020506592162, 1.5595377906078, 1.5614291301425265, 1.561589019559428, 1.5626054230440354, 1.5631641952288748, 1.5659457446360538, 1.566866984175807, 1.5669924567428093, 1.5689694494893174, 1.569272841899262, 1.572105084964433, 1.5737155044825573, 1.574105917680369, 1.575637401825834, 1.5757445867927182, 1.57782400838299, 1.578832893439811, 1.5797529037781446, 1.58093228458674, 1.5817605515710642, 1.5821007398712612, 1.5825878495190084, 1.5882671331497207, 1.5895420788882704, 1.5899093845686032, 1.5973664083427552, 1.5979043242877458, 1.5989706764217455, 1.6035592580564035, 1.6036515196335683, 1.6042062715712513, 1.60476911365945, 1.6059773995777584, 1.6060755931322388, 1.6083136809189604, 1.6083157557451992, 1.6085439622758861, 1.6176382053431275, 1.6178483433971964, 1.6217974866397062, 1.622738355126552, 1.6228515376240569, 1.6239395309100315, 1.6267002558434893, 1.627491142367742, 1.6276075940142556, 1.6288444834236775, 1.6311255025708358, 1.6313321652915367, 1.6329649154685713, 1.6332281691308723, 1.6337319744566272, 1.6358832722712848, 1.6368010586757242, 1.637530508598011, 1.6377015456978379, 1.6380378336484678, 1.6386098662733901, 1.6399451504140539, 1.6416229755234448, 1.6420593813815916, 1.644292763934761, 1.6468871416428592, 1.6469659236754595, 1.6473500396560905, 1.6486249962705564, 1.6498625093969101, 1.6531380541707772, 1.6548905183262017, 1.656740113204907, 1.662551654035553, 1.6641953632185822, 1.6659805392421894, 1.6667997552722842, 1.6697387302335365, 1.670801698915005, 1.6710866607576615, 1.674372443812004, 1.6764832402610264, 1.6804525654939617, 1.6832757506491256, 1.6896788761489427, 1.6902331164484106, 1.6907749231692257, 1.6941483395479071, 1.6949090442769197, 1.6976972186189516, 1.7013990845018814, 1.7028420654813183, 1.70284953903077, 1.703314886109747, 1.703588283648369, 1.7050171072277862, 1.7060756463199032, 1.7063296645844135, 1.7107622399385904, 1.7131277575314057, 1.7135222151020877, 1.714172854754022, 1.715541216249237, 1.716371715685937, 1.717226001175355, 1.717364990301322, 1.7175863303927252, 1.7188516632906972, 1.7206789158958946, 1.7222168240730018, 1.7226450817360857, 1.726059647360771, 1.7260856795467743, 1.7261267008779286, 1.7299040791717393, 1.7299088630007906, 1.7302809444063532, 1.7305646169254312, 1.732305590407717, 1.732817453323602, 1.7329163775492322, 1.7331043917928335, 1.7332988490610521, 1.7333490899513186, 1.7347765312901435, 1.735431557319437, 1.7372698525041201, 1.7380227833411315, 1.7410588706224093, 1.74172608532393, 1.7424028220220682, 1.7424074681087331, 1.7433758571464022, 1.7440672402338673, 1.745738337765677, 1.7459177268649697, 1.7475027924972988, 1.7489581817396944, 1.750028590962508, 1.7504979067202582, 1.7506339557126238, 1.7528311548827225, 1.7529926413436476, 1.7530382892214542, 1.7539043093700792, 1.7546336794477846, 1.7549908441040871, 1.7562672471679663, 1.7573883651162736, 1.7581410615514839, 1.7584981702054172, 1.75907727955589, 1.7614966124149913, 1.76332523337025, 1.7635393810449684, 1.7643317676919035, 1.7644436742900016, 1.7654515296857884, 1.7668796801386104, 1.7685382977213626, 1.7689090711243092, 1.7691293616826655, 1.7691520896738202, 1.7692737838201253, 1.7702585126076855, 1.7703823398050311, 1.7706525350477207, 1.7711789645246032, 1.7718769709133484, 1.7724010890272954, 1.773766711638744, 1.7738864581597258, 1.774198678922011, 1.775757068703834, 1.7771165038272023, 1.7790409024290856, 1.7792079515876926, 1.7795498292472114, 1.7800103005824566, 1.7805832659169216, 1.7808969209533603, 1.783041019146021, 1.783103912598083, 1.7835790196550383, 1.7838106019421667, 1.7840091446849655, 1.7841452709044976, 1.78580482435389, 1.7859208266021422, 1.7863066159215135, 1.7865479317578223, 1.7870015601845333, 1.787165936203368, 1.787763324009707, 1.7881765598399535, 1.788388431772319, 1.7884821188052666, 1.788521225778143, 1.7887287455986862, 1.789907017480902, 1.7901115771091793, 1.7902858574539973, 1.790431232544304, 1.7908537370771485, 1.7918027346150422, 1.793371279039956, 1.7936932034374213, 1.7942570781742957, 1.7943950107953588, 1.7949572522691628, 1.7953961592303198, 1.7960859767258703, 1.7964886436257061, 1.796546804192368, 1.7967714856609522, 1.796873076514818, 1.7976005019525125, 1.797815453451173, 1.7988005120492727, 1.7988793422072737, 1.7991368697055548, 1.800407309173415, 1.8007696817282328, 1.8011716310767312, 1.8012141833136313, 1.801503568941115, 1.8016251215579915, 1.8024166350225126, 1.803367104178111, 1.8034759890069816, 1.803848977850853, 1.8038949430120095, 1.8041571944069068, 1.8054598138812545, 1.8058312111076216, 1.8061272516963436, 1.8061990431454766, 1.8063218428213073, 1.806336507608917, 1.8077462705817549, 1.8082829332236747, 1.80868533638938, 1.808885801203647, 1.808885801203647, 1.808885801203647, 1.8088994557351155, 1.8099688031345071, 1.813210151154151, 1.8133055366055364, 1.813315441152797, 1.814242822220307, 1.8147669659141854, 1.8160918262734835, 1.8167521108876634, 1.8173392072984538, 1.8173412559566664, 1.8191086863195844, 1.8198918809961615, 1.8202342596183905, 1.8208397856940912, 1.8208490524357213, 1.8213495401353923, 1.8214169895237782, 1.822468530639934, 1.8230038336954506, 1.8234603274134256, 1.8235145368458066, 1.82376689982599, 1.8237999283087387, 1.8240759352060245, 1.8247412200132331, 1.8256789246383944, 1.8259737199804342, 1.826200137534665, 1.8263761590665277, 1.8265536038153647, 1.8271634558807588, 1.827458651921993, 1.8275221386965264, 1.8289000111053277, 1.8293342926544072, 1.829396404383131, 1.8299708727777355, 1.8302940478823309, 1.8306955987983857, 1.8307081736864583, 1.8308893876972532, 1.831383923624103, 1.8314641323058252, 1.8320304839714132, 1.8323529365395346, 1.8326083151197115, 1.8328884856308842, 1.8329843513684334, 1.8332617621527427, 1.8339631850804818, 1.8340293840097153, 1.8341308947695947, 1.834517413701365, 1.8353710958840845, 1.8368139047334413, 1.837145292392816, 1.837395286174681, 1.8374132906848708, 1.8385267543823178, 1.838644124353768, 1.8397081073545096, 1.839713892041459, 1.8416505735355495, 1.8422572722201673, 1.842562673624088, 1.842966847703083, 1.8435731088215754, 1.8437689164277027, 1.8443411882601424, 1.8446650925165122, 1.844814200016533, 1.8449023115542436, 1.8449517029213807, 1.8454676577722622, 1.8455547640690766, 1.8469384534824225, 1.8471249362674866, 1.8476743987257833, 1.8477831922846517, 1.8479114524064133, 1.848039219448877, 1.8486139744977932, 1.849223125614091, 1.8496607153784688, 1.8499837821598155, 1.8509274317312656, 1.850941746187838, 1.8510338196949656, 1.85103886262369, 1.8510658037082008, 1.8513162221180777, 1.8519185226424437, 1.8519839747908164, 1.8524662871691335, 1.8529371175496443, 1.8534388734271516, 1.8536539410262571, 1.8539831426630893, 1.8541267898612934, 1.8542136303071768, 1.854298699570926, 1.8542989122247913, 1.856277712781977, 1.856868543967969, 1.8572760318380284, 1.8575910925672847, 1.8591709495177076, 1.859490060553788, 1.8596460711581413, 1.860027495252465, 1.8603925493494888, 1.8605310409402245, 1.8609122928852198, 1.861167062319078, 1.8614900469821545, 1.8615971330802563, 1.8623234983331327, 1.8651325072208353, 1.8654982399555753, 1.8656968546272852, 1.8658903524334343, 1.8660309639528334, 1.8663435406505375, 1.866380534106593, 1.8664413610855888, 1.866449634254455, 1.8680002878121933, 1.8680729129279827, 1.8682432659578772, 1.8684696255053572, 1.8685642835398784, 1.8685887136530097, 1.8695391771412257, 1.8699840022188086, 1.8705086609233499, 1.8710509868072456, 1.8715503020890345, 1.8716999057734873, 1.871851274522333, 1.872711943181007, 1.8729207000725814, 1.873394053653537, 1.8734995973593325, 1.8735915550165527, 1.8739494250099413, 1.8741399440743958, 1.8742847090457626, 1.8744260641053234, 1.8751593679824143, 1.8754247941954325, 1.8756977988553427, 1.8761498750864896, 1.8761749484763843, 1.876203103696244, 1.8762653041918123, 1.876302049751299, 1.8768169673127622, 1.876912893400952, 1.8773179378770268, 1.877650910136566, 1.8778277303681388, 1.877993981098629, 1.8784792775077819, 1.8785625824582963, 1.878688338752261, 1.8796881140982638, 1.880096987587304, 1.8801870392989566, 1.8807067926931242, 1.8810809860034763, 1.8815619116397746, 1.8816833329121427, 1.8821281766737468, 1.8827045803359068, 1.882723816602312, 1.8830850641863137, 1.8831690472186775, 1.8832823552543916, 1.8833603265161605, 1.8833683695100694, 1.8835685566419071, 1.8836570687653498, 1.8837637083141299, 1.8837904717550005, 1.8840175140706397, 1.884625611713708, 1.8848387549258596, 1.8849219756432694, 1.8854548011038519, 1.8858784146346728, 1.8861532497670708, 1.8861775307920734, 1.8862204139694323, 1.8875769636727913, 1.8876399331542555, 1.888015191146032, 1.8881771183086336, 1.889037699837914, 1.8896766181827058, 1.8898596558651362, 1.890210087741868, 1.8902242769133033, 1.8903724664706263, 1.890636608327653, 1.8907138068719718, 1.8907532664031892, 1.8921971454846909, 1.8927363267531103, 1.8930844560418727, 1.893440776197927, 1.893526607796677, 1.8935644121548887, 1.8941883997401894, 1.8946348872620622, 1.8954845137433571, 1.8956789495388684, 1.8957730187541182, 1.8963105103110554, 1.8966955489226798, 1.8975475013479437, 1.8978052951580986, 1.8980300652225177, 1.898153844354009, 1.898441976478483, 1.8987541423074117, 1.8989363010340636, 1.8989499969526802, 1.899345044464863, 1.9009259580251154, 1.901222416540991, 1.901371204496918, 1.9016399743472987, 1.9020758104509359, 1.9028068141326104, 1.902846063858732, 1.9031785861333375, 1.9037315701269262, 1.9039730953023979, 1.9043193882915042, 1.9044211259912667, 1.9045598994435453, 1.9046344648147977, 1.904767670681492, 1.9048509481224636, 1.9050813555411257, 1.9051739075199166, 1.9052932784497318, 1.9054916859342088, 1.9055750700150977, 1.9055847556545555, 1.905688377358524, 1.9057902642265405, 1.9060205939331967, 1.9064696227413214, 1.906473660115723, 1.9073259050505704, 1.9073632319837597, 1.9076099956408923, 1.9080984877405327, 1.9082867436607451, 1.908508202882455, 1.9086460165574792, 1.9087051264657204, 1.9089398918096485, 1.9089573154847976, 1.9090717181895096, 1.9091888055646482, 1.909284652862774, 1.9093217210324158, 1.9095533295920455, 1.909637189966462, 1.909698397475495, 1.910036996730239, 1.9102984862923074, 1.910440528591842, 1.9105354089832183, 1.9108489532506199, 1.9108688552519708, 1.9112277133626545, 1.9119916670549326, 1.9121163877813918, 1.9124177997666167, 1.9127812011991343, 1.9127858751097997, 1.9129380449578886, 1.9129395042183457, 1.913167856664802, 1.9131786567816171, 1.913465374166497, 1.9135145678942418, 1.9138129740772956, 1.9139996032148432, 1.9141352255533206, 1.9144161061460794, 1.9148461422671366, 1.9148601572479456, 1.9150772750385396, 1.9152802586087956, 1.9156212292654216, 1.9157435322908705, 1.915785593097779, 1.9158508066948434, 1.916054357487188, 1.9161447705199817, 1.9161903445780666, 1.9162849486996842, 1.916919794811083, 1.9179739970555076, 1.91854399713091, 1.9185526548380463, 1.9190789374300377, 1.9199503062326486, 1.9201151459139194, 1.9201584028142347, 1.9204258913686385, 1.9206929302645155, 1.9214404519783284, 1.9215991538994563, 1.9216183638755715, 1.9223127069210781, 1.9224211655814363, 1.9225573636966105, 1.9228127305720542, 1.9233878263126853, 1.9236162209276764, 1.9238361457432218, 1.9239796304727124, 1.9239959557086743, 1.9241976796784848, 1.9244160773359138, 1.9244350201926554, 1.9244729472367552, 1.9246107179514464, 1.9247128571575731, 1.9249824606484216, 1.9252936451134097, 1.9256645898980616, 1.925823828881937, 1.9260258993040258, 1.9262861419825241, 1.9264882231940306, 1.9269105040545882, 1.9269338547052255, 1.9272909947045782, 1.9275797714111813, 1.9283472116837654, 1.928527598930371, 1.9286297141260507, 1.9288016923822238, 1.9293838325978083, 1.9293913185889202, 1.9296800062779196, 1.9298598246386183, 1.9302446701839704, 1.930318699647747, 1.930351730011019, 1.9311133804191394, 1.9313926658550864, 1.931590113755555, 1.9318405808310142, 1.931845488525468, 1.9319302977257886, 1.9322317056364142, 1.9325356184137603, 1.933215798951257, 1.9338075173578662, 1.9339760745547012, 1.9340697517134784, 1.934211390798067, 1.9347482789270403, 1.9349796693330654, 1.9353270859341605, 1.935452159901881, 1.9357904055750004, 1.9360713803509138, 1.9360780462302711, 1.9361598616035005, 1.9362488633520243, 1.9371558909369877, 1.937165028791592, 1.9375226758645525, 1.937639807374495, 1.937681333455091, 1.9379031428908107, 1.9380420437202956, 1.9381680922740236, 1.9382320182174886, 1.9382764415731453, 1.9383422683970175, 1.9384416364567105, 1.9384593298206743, 1.9387165440991143, 1.939337398530507, 1.9394840538078852, 1.9395323411559695, 1.9395529919972203, 1.9397696193346445, 1.939792094369376, 1.939832349818129, 1.94017080551107, 1.940261254354739, 1.9404425988906937, 1.9406878438715705, 1.9413481755006974, 1.9413704573260266, 1.9413924232672626, 1.9415762196290758, 1.9419544366191897, 1.9421800217569005, 1.9421965611075414, 1.942775498528561, 1.9430323054176295, 1.9432748553089296, 1.9433462660838208, 1.9434390044655987, 1.9434439461568729, 1.9434628314403661, 1.943533366437434, 1.9436657110465434, 1.943719191615031, 1.9440876314355824, 1.9445492487748084, 1.9448149337717686, 1.944850825466624, 1.9451153224385231, 1.9452555598837609, 1.9453173413916058, 1.9458148622389857, 1.9460202373486117, 1.9460509815155995, 1.9473666193328174, 1.9474246411323775, 1.9475380831114004, 1.9479340702879966, 1.9487619557619966, 1.9488411304960571, 1.9490506507981789, 1.949360141359648, 1.9494200741822487, 1.9495194458671121, 1.9498200896499378, 1.9499451390452185, 1.9499559195150569, 1.9502039445715333, 1.9503290748910418, 1.9504453360908969, 1.9504943504087622, 1.9505122876586416, 1.950715342227734, 1.9507979364221457, 1.9508967162810729, 1.9513675017676704, 1.9519809377739705, 1.952101444198861, 1.952146005250722, 1.9522600110342185, 1.9524244985826444, 1.95258703515822, 1.9525889769104092, 1.9526124248355243, 1.9528084258122385, 1.9528893244542684, 1.9533929997406971, 1.954625109361101, 1.954687269672344, 1.9549181689299528, 1.9549522978215674, 1.9549904002315903, 1.9550790733886003, 1.9552047823369938, 1.955326699595428, 1.9553734857178329, 1.9555471336015036, 1.9561156572412215, 1.9563703251309421, 1.956412800036281, 1.956425313521094, 1.9566833276801965, 1.9567732180493087, 1.9567825587551482, 1.9569063189331888, 1.9570989960204055, 1.9571759388686292, 1.9572984191692138, 1.9573211166171294, 1.957467625805803, 1.9576672391785375, 1.9577779007618183, 1.957780979335653, 1.9579821164456814, 1.9579983195276274, 1.9581183645943085, 1.9581381928597206, 1.9585957703984216, 1.9587544626488933, 1.9588536838637094, 1.9590096174743041, 1.9591019676151813, 1.9591186743126303, 1.9591552155517096, 1.959507503546303, 1.9596155013291703, 1.9596887643034222, 1.9602393873374728, 1.960290246772624, 1.96036528221043, 1.960625930521362, 1.9606653509026972, 1.960761718413291, 1.9610920322355376, 1.9612474509863307, 1.9613427969353558, 1.9615878002796707, 1.961753966532195, 1.962176039814225, 1.9622147327389794, 1.9624694425936995, 1.962521402008204, 1.9634878164189202, 1.9641417873344555, 1.9642330138292547, 1.9643093847767938, 1.964430833689374, 1.9647786051412952, 1.9648004604936977, 1.964844418249412, 1.9648875458140838, 1.9651010787840733, 1.9653099385208332, 1.9653303892708165, 1.9656090279240976, 1.9657933745733756, 1.966303988236201, 1.9666235042775666, 1.966705362485592, 1.9669857554828747, 1.9671958904401377, 1.967286507018128, 1.9676585636649082, 1.9676621412630826, 1.9678408177165805, 1.968002682235429, 1.9681541951207968, 1.9681773450354851, 1.968235032658162, 1.9685269339221112, 1.9686334802536967, 1.9689595593500393, 1.9694575271158055, 1.9694919414629672, 1.9697595742406018, 1.9697754647726076, 1.9698481795925478, 1.9701369582692914, 1.9702914300996635, 1.9705475177609268, 1.9705475177609268, 1.9706375351414969, 1.9708841359454594, 1.9712396136012953, 1.9718100258468618, 1.972080496979254, 1.972335479046807, 1.9724811056515554, 1.9725572430801421, 1.9730660577490677, 1.9733793408813676, 1.9733840035238814, 1.9735309061609905, 1.9736930184736399, 1.9737973642922695, 1.9740736056830792, 1.9741987755866524, 1.974438747443122, 1.974672521744478, 1.97476729037109, 1.9748683116655248, 1.9749195256549459, 1.9750444966224323, 1.9752367955783496, 1.9752818607628235, 1.9753907424365764, 1.9759143613634702, 1.9759907462609438, 1.975998214305714, 1.9761652333910316, 1.976257678213416, 1.9763938572774862, 1.9763980452035534, 1.9767319079987657, 1.976791814912568, 1.9767964273349328, 1.9770300219065626, 1.977135410207593, 1.9772946645168514, 1.9774156767063904, 1.9776836733510004, 1.9783306363366058, 1.9784448476294039, 1.9785191528479256, 1.978876761997217, 1.9790830974842988, 1.9794804246119353, 1.9796995640854822, 1.9797812825211187, 1.9797926227288511, 1.979870705335787, 1.9799933655460606, 1.9800701656818758, 1.9801092637438107, 1.980112644888312, 1.9801748578144724, 1.980315770830512, 1.980330539894865, 1.9808182142280377, 1.980897227154334, 1.9809605933913685, 1.9809892670316107, 1.981072467129429, 1.9814222286420962, 1.981518166807051, 1.981780965136579, 1.98232634645345, 1.9823290553646735, 1.9825460332470006, 1.9832084481043606, 1.9832220881341254, 1.9835362761314634, 1.9836642301196739, 1.98392625773355, 1.9839609151307398, 1.9840217506335842, 1.9844520237123568, 1.9844830310354857, 1.9846937363300183, 1.984734156180148, 1.9847368377108825, 1.9848020760525193, 1.9849427860129818, 1.9851511115625315, 1.98515572837164, 1.98515572837164, 1.985175386152749, 1.9851925935753527, 1.9852630801289048, 1.9853578154111373, 1.9855599024506347, 1.9856540035833325, 1.9856887466156454, 1.9856966141037475, 1.9857114677302579, 1.9857114677302579, 1.9858410912622724, 1.986206874860762, 1.9862354688375101, 1.986355302709681, 1.9868908510923156, 1.986989589762956, 1.987005528484419, 1.987124570756852, 1.9875342400944436, 1.987623696919707, 1.987708426755517, 1.9877521193409728, 1.9878339269821461, 1.988036007780195, 1.9880782824374623, 1.988100969102857, 1.988171080633056, 1.9884124059511652, 1.988493212677349, 1.9885446722639812, 1.988613922634891, 1.988655270010186, 1.988798946132564, 1.9889713255976524, 1.9890741330591055, 1.98910483556096, 1.989382464401697, 1.9894354135813372, 1.9900328157392013, 1.9900873641876369, 1.9901137618400204, 1.9902004424218547, 1.9906964484665408, 1.991420366754423, 1.9915777826367265, 1.9918297079068814, 1.9922725988107348, 1.992293972321223, 1.992518174083803, 1.9929033058044376, 1.9931800204853365, 1.9932355370444463, 1.99327857717869, 1.993361772655237, 1.9933619269706682, 1.993415345987948, 1.9935600886828042, 1.993606242657335, 1.9936531445589698, 1.993858001172105, 1.9940154307107456, 1.994141921385835, 1.9941457692046531, 1.994158911970359, 1.9943256396572766, 1.9943995660208131, 1.9947510783489064, 1.995171890545336, 1.9951914041429204, 1.9954517699671663, 1.995632284777422, 1.9960144943530949, 1.9962491588980302, 1.9962552976597678, 1.99627303272582, 1.9962792045050168, 1.9964530549921757, 1.9964992624017113, 1.9965653355815671, 1.9966127486175536, 1.99670644614096, 1.9967607816310944, 1.9967738104858015, 1.9969355645810993, 1.9972849693133745, 1.9974913039397173, 1.9975375781127462, 1.9975922614984747, 1.9976319436566146, 1.9977098704185874, 1.9981267263807472, 1.998267313270511, 1.9984286346340572, 1.9985600355888427, 1.9986248202028944, 1.9988419854431752, 1.9988777195351493, 1.9989642096678375, 1.9991097326692542, 1.9993429627317085, 1.9994574019960596, 1.9997800055122412, 1.9998641193920248, 1.999871340057763, 2.0000199557783565, 2.00024017606194, 2.0002730134571065, 2.000408015985356, 2.0005900672759633, 2.000605402259281, 2.000731275286294, 2.001046302710854, 2.001319251488303, 2.0013193721279348, 2.001354042764367, 2.001874968421005, 2.0021626758865008, 2.002194152512412, 2.002259231386826, 2.002259305264811, 2.0023161315731937, 2.0023412836789922, 2.002713030694937, 2.0028431645498683, 2.002982622833626, 2.0033525481562506, 2.0034385428983223, 2.0036670612587986, 2.003745547048402, 2.0038544073111964, 2.0038870822018984, 2.0041579084392884, 2.004466702740375, 2.004570309686532, 2.0045990288476427, 2.0048881957221725, 2.0049257196879684, 2.00521886539665, 2.005291691776917, 2.005532281618423, 2.005704432593801, 2.0061275549521307, 2.0063178828170942, 2.006369084664347, 2.00656248742734, 2.006929236944238, 2.0070467598515163, 2.0072074379722338, 2.0073019392887725, 2.007383932783107, 2.00749520398359, 2.0077792589158623, 2.007872461295115, 2.0079263394029905, 2.0079364651883846, 2.008108668489875, 2.0083099404010962, 2.0084282015041706, 2.0087536561893637, 2.0088740798550644, 2.0089270789473983, 2.009094131475141, 2.0091150632066808, 2.0093415294241153, 2.0094419921992213, 2.009819840162371, 2.009881910913092, 2.010113719077877, 2.0103513062933263, 2.010516355515273, 2.010595173429543, 2.0108998652605234, 2.010996429224757, 2.011106862051001, 2.0112060460516816, 2.011317659289749, 2.0115693515808273, 2.011825539723631, 2.0119103004580103, 2.0120317438736905, 2.0120618657376337, 2.0121664583841135, 2.0124059595698243, 2.012604725697702, 2.012667262419986, 2.0127186486160005, 2.01279830733261, 2.012900062913049, 2.012919276751751, 2.012993081210884, 2.0131199498687264, 2.0132001937010022, 2.013216518848889, 2.0132279866458944, 2.013286477418816, 2.013340845789351, 2.0137871372882588, 2.0139444562420645, 2.0140450804744914, 2.0143115114040535, 2.0144838120033595, 2.014500594297874, 2.014711674945851, 2.014919931232543, 2.015088468674456, 2.0152063283367316, 2.0152754520713096, 2.015404374356438, 2.0155381318735204, 2.016419231846888, 2.0164266340377255, 2.016504952910888, 2.0169587824356943, 2.017305472836302, 2.0173973112034775, 2.0174725717002744, 2.0179182765231993, 2.017959089719623, 2.018055362713271, 2.018057413902618, 2.0181313106268255, 2.0182084863758587, 2.018223527215417, 2.0183201092399057, 2.0184187694851827, 2.018458268160839, 2.018525931654523, 2.01854271944654, 2.0188702957203555, 2.019120008778874, 2.0191319030598844, 2.0193035554334933, 2.019313199924423, 2.0194765568388475, 2.0194765568388475, 2.019487792375, 2.0195094775800184, 2.019856721200564, 2.020078602984291, 2.0201449230467454, 2.020161069015182, 2.020360496956441, 2.0204480536059917, 2.020538983338932, 2.0206263620073996, 2.0207340978486035, 2.0209176781579257, 2.021252323831518, 2.0216684417538904, 2.021833163545881, 2.02259283106076, 2.0227646596049285, 2.0228166220919372, 2.023116842609694, 2.0232083426545264, 2.0232460971845017, 2.0233778177947004, 2.0233821372103207, 2.023551654378906, 2.0239062351263555, 2.024129888516185, 2.024220318677287, 2.024678680031592, 2.0249086015554933, 2.025361260233844, 2.02548147778036, 2.0255873258059562, 2.0255917159706707, 2.025648710433834, 2.0257352453715365, 2.025751756971341, 2.0257710993621387, 2.025885082652888, 2.026047457686204, 2.026111301529627, 2.0261183100863702, 2.0261196696926063, 2.026139386821014, 2.0263025692502215, 2.0264570679117986, 2.026524222679383, 2.026612865482778, 2.0267192899501447, 2.0267957462500528, 2.0270782235239833, 2.0271648716522876, 2.0273972520021024, 2.0275565052551165, 2.0278240750433354, 2.027837519464821, 2.0280525670794467, 2.028171796377211, 2.0285447404409127, 2.028645565741273, 2.0295416455622433, 2.0300973849208614, 2.030183237061871, 2.030218884261651, 2.0305397016629803, 2.0306623622825914, 2.0308718487490984, 2.0311858270648586, 2.031193566474627, 2.0315694567010447, 2.031736749421384, 2.032326476859185, 2.0323725030062314, 2.0324479051043656, 2.032579085658557, 2.0327899557765554, 2.0328052114879838, 2.0331976528884153, 2.0333301140174957, 2.033336912056672, 2.033367013940951, 2.033430131665709, 2.033430252306815, 2.0334945325204243, 2.0335151460059295, 2.0337143335768606, 2.0337987551368593, 2.0338144203636173, 2.033959684401178, 2.0341800761202147, 2.0341989872349906, 2.034334945026012, 2.0343432791252485, 2.034366803976776, 2.034424162596491, 2.0344989125337825, 2.0345494342936568, 2.034648328758463, 2.0346564907827167, 2.0346767713958624, 2.0348388453791633, 2.034926878927447, 2.03512468442436, 2.03536201944366, 2.035728215585642, 2.035788448678601, 2.0358708826035627, 2.035896388733299, 2.0359143102538155, 2.036457608903334, 2.036579452510957, 2.036619242723517, 2.036733305234418, 2.0372903212553535, 2.0376476698666828, 2.0377765597005006, 2.037831270618658, 2.0381790114937215, 2.0383275434661, 2.038405496264798, 2.0385539222639086, 2.0387034740894383, 2.0387121790580007, 2.0387131558853886, 2.038825897418288, 2.038905830717798, 2.0389196968351624, 2.0389847160909, 2.038993642915311, 2.0389996623374955, 2.0390192161304084, 2.0391686762438668, 2.0391766992187557, 2.039177072444456, 2.0393324696130253, 2.039418632208201, 2.0396117731975045, 2.039765729894956, 2.0398307040617483, 2.0399530588481545, 2.0400162185343573, 2.0400364766562245, 2.0402110577663164, 2.0402110577663164, 2.0402110577663164, 2.0404557646200745, 2.0405729367774192, 2.040578116444127, 2.040578116444127, 2.0406498952786856, 2.0407724032993295, 2.04113133294296, 2.0413721018160684, 2.041518356890355, 2.0416016863931654, 2.0416060321675062, 2.0417812499365082, 2.041812984265816, 2.0418720092094755, 2.042023574489099, 2.0421222356024207, 2.0422079475116575, 2.0423863909295172, 2.042423506943459, 2.0427024960928173, 2.042800837697267, 2.0429038154130357, 2.043435978257564, 2.043735731284428, 2.043757390437394, 2.043819654418652, 2.044121431879383, 2.0441733067377728, 2.0442278245809096, 2.044352457342729, 2.04458147690003, 2.044631797455783, 2.0450617028483036, 2.045158565485295, 2.045337673835965, 2.045426204126322, 2.045430928426428, 2.045542093404162, 2.045601633221888, 2.0456707288260674, 2.0459399077995877, 2.045963152237214, 2.046167569286869, 2.046283060499001, 2.0466161248143417, 2.0466339320876608, 2.0466584579186486, 2.0468132233864913, 2.047091408656991, 2.047203732121857, 2.047222385932834, 2.047315845560923, 2.0476121744981524, 2.0477276035315777, 2.047755057136405, 2.047932708417246, 2.0479341154537645, 2.048032186430633, 2.0484218017553943, 2.0484431518140016, 2.048625203574514, 2.0492967506663713, 2.0499615825590225, 2.0499615825590225, 2.050078386117256, 2.0503148317955366, 2.050364505142942, 2.0504158753152857, 2.0504158753152857, 2.050527843935438, 2.0505411488924077, 2.0507343376702027, 2.050811293894624, 2.0509261001370245, 2.050933225190388, 2.0509374346411877, 2.051135348542559, 2.0512814169387474, 2.0514571377057975, 2.0514571377057975, 2.051672826451789, 2.0517568523048952, 2.051788815325747, 2.051861619718532, 2.051866220133839, 2.051955632439257, 2.05207706166387, 2.0521831435851654, 2.0521839946929816, 2.0523936345382165, 2.052435114328785, 2.0524400668444627, 2.052499680503102, 2.0526718025809334, 2.0527926830367926, 2.0528337695005083, 2.0529202739322105, 2.0531001191545637, 2.053279147168446, 2.0532946223024013, 2.053311213527846, 2.053311213527846, 2.053311213527846, 2.0533935968963988, 2.0535290192459263, 2.053573799375219, 2.0536648658469665, 2.0538061268089254, 2.0540718855105693, 2.054217331820619, 2.054251541418013, 2.054361057985258, 2.054513502349751, 2.0545925531827587, 2.0547089405175614, 2.0549540880550516, 2.055021325927698, 2.0554865517493175, 2.055560349173544, 2.055653492405611, 2.0557119144531675, 2.0557970063003905, 2.05597198451442, 2.0560150450124133, 2.0564211625836433, 2.056426104360478, 2.056450442328046, 2.0569095502996633, 2.056921262142046, 2.057033880732876, 2.057066089775921, 2.0572609325624587, 2.057324849457136, 2.057358150739673, 2.057433296810669, 2.0575203125803565, 2.0576609009609075, 2.0579302724961615, 2.0579302724961615, 2.0579613371230745, 2.0579980058606537, 2.0582843827006405, 2.05833529587851, 2.0584999363606524, 2.0585492519004096, 2.0586505770488555, 2.0587022943977478, 2.0587770503112157, 2.0588021423284784, 2.0588454061132984, 2.0588479060871507, 2.058949684318537, 2.0591277495354254, 2.0593910337890735, 2.059457573648671, 2.059603874376734, 2.0597350884214234, 2.060032371380494, 2.060158971870032, 2.0603028867880804, 2.0603771254379124, 2.0604128655830922, 2.060478168957661, 2.060608685741065, 2.060614968700534, 2.060702605861593, 2.060756334726822, 2.0609108474768396, 2.0610416892278867, 2.0611099870459424, 2.06124134376316, 2.0614383153451197, 2.061479869069761, 2.061524360378273, 2.061588228338264, 2.061675925657896, 2.061681956109258, 2.0617769691776444, 2.0618424625387757, 2.061864606338703, 2.0619159711422217, 2.062016171618326, 2.062016171618326, 2.0620549701943505, 2.0621199960526955, 2.062389260747499, 2.0623982828570964, 2.0626014217221873, 2.062641869546871, 2.062750228815374, 2.062894478346243, 2.062929622430339, 2.063008561702521, 2.0630609723389313, 2.0630965653857403, 2.0631035938111233, 2.063364102898177, 2.063423522919754, 2.0635245664395025, 2.063578848581122, 2.0637682769771724, 2.0638187987370467, 2.0638284486776777, 2.0639639908818816, 2.0640788687983, 2.064086083741376, 2.0640985637721574, 2.064129390558174, 2.0642304340779227, 2.064246989983582, 2.0642726105705824, 2.0642985288467846, 2.064390291369489, 2.0647390456675705, 2.0648524424830432, 2.0650551452850308, 2.065081142525353, 2.0651919079266516, 2.0651919079266516, 2.0653166911596643, 2.065367026305945, 2.0653891062068674, 2.0654607098063344, 2.0655339258280137, 2.065552291846599, 2.0656028136064735, 2.065754378886097, 2.065923556204956, 2.0660695888309526, 2.0661423967283348, 2.0664361211695543, 2.066461581546635, 2.0664736270606885, 2.0665254856971393, 2.0667905557649444, 2.066822047599414, 2.0669042686111556, 2.066930606926807, 2.06698296226647, 2.0670782987070115, 2.0671239451281993, 2.067167358700399, 2.067250580767603, 2.0675610514895224, 2.0676115732493967, 2.0676433065813007, 2.067660732850737, 2.0677112546106113, 2.0683653541628066, 2.0685939515032428, 2.0687663157514526, 2.0698285307565487, 2.070059435908688, 2.0702136160952875, 2.070681245719233, 2.0707399111504685, 2.0712168206025026, 2.071242351068817, 2.0712423955502253, 2.0713655402530837, 2.071561224676685, 2.0726570048267074, 2.0726580704819906, 2.072665593025622, 2.0727293814427936, 2.0732596213520322, 2.0733129946326487, 2.073437215450478, 2.0735292209446885, 2.073637877428748, 2.073726549982984, 2.0737276897950516, 2.0738951793751754, 2.0739260792749294, 2.074005404836862, 2.0740288895929875, 2.074181245821853, 2.0742292098341757, 2.074597209050014, 2.0747023609311905, 2.0747361942312286, 2.074808776167561, 2.0748461360126798, 2.074846721318025, 2.074938281270726, 2.0750524867052302, 2.0751119067268067, 2.075140208450163, 2.075192215105339, 2.0752716783205516, 2.075611477180086, 2.0756844001352053, 2.075859573991129, 2.0758970228649747, 2.0762767224857535, 2.076612235754369, 2.07703837774209, 2.0770975578858417, 2.0773482851458476, 2.078046592308864, 2.0781525651288413, 2.0782390000990882, 2.0782390000990882, 2.0782895218589625, 2.0786843972035944, 2.078909189336145, 2.0789463047373293, 2.0790189977579088, 2.0792858510929975, 2.0794516171118675, 2.0795197399655185, 2.079548041621741, 2.079637453138813, 2.0797237474999872, 2.0798792634056116, 2.0800415275014545, 2.080279307304115, 2.0803803508238636, 2.0805749595753005, 2.0806240604419006, 2.0806328874867472, 2.081001540655421, 2.081003006373721, 2.0812897329473943, 2.08145034830527, 2.081467186882825, 2.081874341477506, 2.0818969958632665, 2.082248421531189, 2.082672229739633, 2.082740641558199, 2.082970485776891, 2.08303672145572, 2.083279664094948, 2.0833881666465963, 2.0835897500900784, 2.083966512319367, 2.0841275662620493, 2.0842014786808623, 2.084724718291935, 2.084960283395074, 2.08500903171277, 2.0851748755254103, 2.0851748755254103, 2.0854461719545014, 2.0857218191061033, 2.085746976015324, 2.086057577017314, 2.086200987148642, 2.0863674646974166, 2.0872637447178484, 2.0876669726343438, 2.087954859349088, 2.088289240894815, 2.088913690650652, 2.0890664860406223, 2.0891457433067644, 2.0894936653350134, 2.0895120514814622, 2.089564387227514, 2.089696859938747, 2.0897356023793905, 2.090726284422685, 2.09077434174834, 2.091063898332496, 2.091160398816712, 2.0917080844774474, 2.0918701208269246, 2.0921014485464924, 2.09257175703704, 2.0926774003171453, 2.0927639916758003, 2.093234963258014, 2.0932635221395763, 2.094023085073806, 2.094181813741115, 2.0943319084620415, 2.0943672322103724, 2.0950145214742437, 2.095138375989804, 2.095277742837687, 2.0952853265089404, 2.0954392054070614, 2.095999269706574, 2.0960167920066177, 2.096048117164034, 2.0964324853397427, 2.0969228579797727, 2.0970902306948824, 2.097248004864008, 2.097339265618065, 2.097786488100097, 2.097929360906789, 2.0982494553809827, 2.0983297768725295, 2.098467157214493, 2.0987636356087105, 2.099112017253458, 2.0992393966774103, 2.099433078639654, 2.100119614561675, 2.1007991154270655, 2.100988835658714, 2.1010934175139315, 2.10166187105155, 2.1024203467421954, 2.102773999061316, 2.102925564340939, 2.1031276513804364, 2.1032473572320844, 2.1032820327059696, 2.1035823472193056, 2.1036614198163237, 2.103819971662515, 2.1040272745055555, 2.1040342909045906, 2.1046702774886343, 2.104773821675497, 2.104982966613241, 2.105095228618343, 2.1054412929428303, 2.1057492039523256, 2.105902227347949, 2.106102856271446, 2.1062684420226367, 2.106470078596349, 2.1068072400112605, 2.1069242532423536, 2.106930101113338, 2.107353338627282, 2.1074665862422814, 2.1081083532377174, 2.1082214485648514, 2.1083932371608345, 2.1084120737070844, 2.108482723266084, 2.108868609612381, 2.1089062200792985, 2.10934680170473, 2.1093863265087283, 2.1107181966451907, 2.11076896378695, 2.111071848964311, 2.111237065984509, 2.111425746665317, 2.1119180765139127, 2.112578886362731, 2.112665755231789, 2.1127738896955153, 2.1130624839647325, 2.1130857067661157, 2.1136362871797685, 2.1140570305057635, 2.114068778905835, 2.1143185762266494, 2.1147766454117134, 2.115119279100546, 2.115162849206705, 2.115372841192933, 2.115389222311861, 2.115404548775371, 2.115556114054994, 2.115624795576037, 2.115676113441185, 2.1157995263499476, 2.1158896077829423, 2.1159776446051555, 2.1161150399887427, 2.116162278378523, 2.1165164090988053, 2.1166646893921515, 2.116781172191032, 2.1170729670856345, 2.117123488845509, 2.1172245323652574, 2.1172754266898943, 2.117723632633894, 2.1177849812952387, 2.118255474364472, 2.118503084370065, 2.1187057109780634, 2.1187745946503553, 2.118832916722359, 2.1189940323873224, 2.1191538210803245, 2.119208776982535, 2.1195514220515816, 2.119945761823939, 2.121067108311994, 2.1218632436856444, 2.1222429044205686, 2.122315600763603, 2.1224749165503582, 2.122708326971248, 2.122916226123939, 2.1232208071273866, 2.1236069919371765, 2.1239344043115485, 2.124338367230628, 2.1243475038159296, 2.1246500498279333, 2.1248008562778304, 2.124883233647912, 2.124901958886889, 2.1252135236574867, 2.125691279321679, 2.1257046856803687, 2.125994409880925, 2.1268461805504644, 2.126849958177471, 2.1269076775760514, 2.1270782681523204, 2.1273423411607757, 2.1278098716150837, 2.128399240447955, 2.1284337007535794, 2.1288500936693247, 2.1292701406369705, 2.1296181366089653, 2.1301227286935567, 2.1305516772682958, 2.1305872703151056, 2.1307714531319526, 2.1310062384643023, 2.131469985406588, 2.1319503139520943, 2.1324713049728223, 2.1331626173488325, 2.133905370313287, 2.1340468748208767, 2.1351913995573533, 2.1357231777778787, 2.1358924570744406, 2.1359935005941897, 2.1368623964722038, 2.1374646962922808, 2.1380050445579992, 2.138382839215621, 2.1394658435116107, 2.1405793984103694, 2.1416112549492383, 2.141770173208251, 2.1428058341358045, 2.1429749526806057, 2.143076652380713, 2.1430958861977207, 2.143345617398452, 2.1443934141559087, 2.1445496208248116, 2.144828772554862, 2.14520247341223, 2.146705230190897, 2.1468058489461086, 2.147555791324137, 2.1477578783636346, 2.1479802535806796, 2.1480208950659314, 2.1488126495376383, 2.1488126495376383, 2.1490808565562247, 2.149487869492891, 2.149492915750475, 2.149927275633303, 2.150169558129646, 2.150990198580354, 2.1509956827267223, 2.151015001604502, 2.151015001604502, 2.151065519700772, 2.1513224620355085, 2.1522801839701176, 2.152362337646363, 2.1527209935915255, 2.1528443677036138, 2.152905584319133, 2.1530885321281072, 2.1534626759683553, 2.1539736318029603, 2.1542191302567706, 2.154301054365092, 2.154480109168462, 2.1548190687811393, 2.155407369305041, 2.1557542221382624, 2.1559365309057, 2.157874010580376, 2.158569500450608, 2.1592969263791906, 2.1600724006020964, 2.1600881799728486, 2.160364950118936, 2.1605885716981756, 2.163711073839594, 2.1640816808539713, 2.1656488466369295, 2.1667391867405184, 2.1670794679150784, 2.1674219218096105, 2.168776527397482, 2.169178084202423, 2.169427137130716, 2.1698005538425686, 2.1724989241983126, 2.1729204493192027, 2.173600833781347, 2.173613752291056, 2.17366228338588, 2.17388295042159, 2.174150104151798, 2.17510633260853, 2.175415982033043, 2.1765053186839567, 2.177347950500228, 2.177753091928274, 2.178272004945684, 2.1798068135141655, 2.1799002333586146, 2.1799495852153057, 2.181113071667794, 2.1818578308142906, 2.183070616345274, 2.1843816914314274, 2.1846732743261823, 2.1858078340889393, 2.1859212349437622, 2.186085999100074, 2.186376763038734, 2.187543762005915, 2.1881299030817396, 2.1881854155663096, 2.1890392947594783, 2.1890898165193526, 2.1891989820632665, 2.1934795470689874, 2.1943575568836655, 2.194668242009558, 2.195061610918264, 2.196933211373447, 2.2006593664044485, 2.202586422486432, 2.202956307916045, 2.2029724185096136, 2.204102075282663, 2.2047626955594906, 2.2048263918801094, 2.2074731337886653, 2.207750758585849, 2.209138601899876, 2.2093350224479518, 2.2095029324545807, 2.211432879838236, 2.211607530144017, 2.2116833492315138, 2.2129228639728287, 2.2132210962697676, 2.21410252757886, 2.214117445261008, 2.2142299664148593, 2.2148536613633105, 2.219855798679947, 2.2204660330309967, 2.220875329982476, 2.2209193188272374, 2.222608448401753, 2.2247485351016354, 2.227499520694242, 2.2287408317770794, 2.228908822211206, 2.2303080642498294, 2.2357100138358357, 2.237255686101182, 2.2380062038132436, 2.239869472725377, 2.2419326679315454, 2.242661825590807, 2.2439618234322163, 2.2477940174342983, 2.2482886776836852, 2.248288841640586, 2.249247340246988, 2.2496240848826297, 2.253943107149088, 2.2574645566152194, 2.2575138380798747, 2.2583215130857015, 2.263084362116333, 2.264356118582474, 2.2665504730771207, 2.2667259920238227, 2.2681623031153912, 2.268584554295499, 2.2687132263691163, 2.268713466918771, 2.2728760410365356, 2.27351133584178, 2.2753577248270784, 2.276246374356655, 2.280672904442913, 2.2860716063693363, 2.2861295753733106, 2.286920056425581, 2.286920056425581, 2.286920056425581, 2.288400455554716, 2.2885830186997738, 2.2886684416309127, 2.2915191399825066, 2.2928137437510454, 2.2957934214157554, 2.2972081954172734, 2.2999451337835217, 2.2999607145973116, 2.3007487239403095, 2.3068256493222083, 2.3081472447622637, 2.310998246509005, 2.3114346379681447, 2.312160246986115, 2.316180494402646, 2.3219661130021607, 2.323610323888926, 2.3268972566219315, 2.3289988741022807, 2.330871356671362, 2.331647626516599, 2.334393791190638, 2.3353809927189157, 2.3377728640692577, 2.338405829263776, 2.345023495137317, 2.3489409798697762, 2.3520890814532542, 2.354292379898306, 2.3606370416257723, 2.3654707881054136, 2.3799695393555114, 2.4007239127457094, 2.4305067805687433 ], "y": [ 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.811612554688695, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.0, 0.0, 0.811612554688695, 0.8410758130408128, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.0, 0.811612554688695, 0.8410758130408128, 0.8410758130408128, 0.6205893103979385, 0.8410758130408128, 0.05620041199703903, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.8410758130408128, 0.811612554688695, 0.811612554688695, 0.8410758130408128, 0.0, 0.811612554688695, 0.6667843600749501, 0.05620041199703903, 0.8410758130408128, 0.416744646232613, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.811612554688695, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.811612554688695, 0.416744646232613, 0.8410758130408128, 0.6667843600749501, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.6205893103979385, 0.416744646232613, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.416744646232613, 0.6205893103979385, 0.8410758130408128, 0.3576307920214454, 0.0, 0.8410758130408128, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.811612554688695, 0.6205893103979385, 0.6205893103979385, 0.1196581275117085, 0.416744646232613, 0.3576307920214454, 0.0, 0.416744646232613, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.811612554688695, 0.811612554688695, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.0, 0.3576307920214454, 0.1196581275117085, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.811612554688695, 0.0, 0.8410758130408128, 0.416744646232613, 0.6205893103979385, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.0, 0.6667843600749501, 0.3576307920214454, 0.6667843600749501, 0.0, 0.6205893103979385, 0.6205893103979385, 0.1196581275117085, 0.0, 0.3576307920214454, 0.6667843600749501, 0.416744646232613, 0.416744646232613, 0.8410758130408128, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.0, 0.6667843600749501, 0.811612554688695, 0.05620041199703903, 0.8410758130408128, 0.0, 0.6667843600749501, 0.6667843600749501, 0.416744646232613, 0.416744646232613, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.811612554688695, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.811612554688695, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.416744646232613, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.0, 0.1196581275117085, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.811612554688695, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.0, 0.6667843600749501, 0.6205893103979385, 0.8410758130408128, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.8410758130408128, 0.6667843600749501, 0.6205893103979385, 0.6667843600749501, 0.416744646232613, 0.8410758130408128, 0.3576307920214454, 0.6205893103979385, 0.6667843600749501, 0.8410758130408128, 0.0, 0.8410758130408128, 0.3576307920214454, 0.6667843600749501, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.0, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.811612554688695, 0.811612554688695, 0.8410758130408128, 0.1196581275117085, 0.6205893103979385, 0.8410758130408128, 0.811612554688695, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6667843600749501, 0.6205893103979385, 0.8410758130408128, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.1196581275117085, 0.05620041199703903, 0.6205893103979385, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.811612554688695, 0.6667843600749501, 0.6667843600749501, 0.811612554688695, 0.416744646232613, 0.416744646232613, 0.6667843600749501, 0.8410758130408128, 0.05620041199703903, 0.0, 0.8410758130408128, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.1196581275117085, 0.6667843600749501, 0.8410758130408128, 0.0, 0.3576307920214454, 0.8410758130408128, 0.416744646232613, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.1196581275117085, 0.6667843600749501, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.811612554688695, 0.811612554688695, 0.416744646232613, 0.6667843600749501, 0.0, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.416744646232613, 0.6667843600749501, 0.0, 0.6667843600749501, 0.0, 0.0, 0.811612554688695, 0.8410758130408128, 0.3576307920214454, 0.811612554688695, 0.0, 0.416744646232613, 0.811612554688695, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.6667843600749501, 0.6667843600749501, 0.8410758130408128, 0.0, 0.1196581275117085, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.6667843600749501, 0.0, 0.6667843600749501, 0.416744646232613, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.6667843600749501, 0.0, 0.6667843600749501, 0.6205893103979385, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.6205893103979385, 0.6667843600749501, 0.8410758130408128, 0.05620041199703903, 0.1196581275117085, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.6667843600749501, 0.0, 0.8410758130408128, 0.05620041199703903, 0.8410758130408128, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.811612554688695, 0.416744646232613, 0.6667843600749501, 0.0, 0.6667843600749501, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.8410758130408128, 0.0, 0.416744646232613, 0.0, 0.1196581275117085, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.1196581275117085, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.0, 0.811612554688695, 0.1196581275117085, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.811612554688695, 0.6667843600749501, 0.0, 0.811612554688695, 0.1196581275117085, 0.0, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.416744646232613, 0.3576307920214454, 0.6667843600749501, 0.0, 0.811612554688695, 0.1196581275117085, 0.8410758130408128, 0.416744646232613, 0.811612554688695, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.1196581275117085, 0.6667843600749501, 0.0, 0.416744646232613, 0.6205893103979385, 0.6667843600749501, 0.811612554688695, 0.6205893103979385, 0.05620041199703903, 0.0, 0.8410758130408128, 0.6205893103979385, 0.8410758130408128, 0.8410758130408128, 0.05620041199703903, 0.416744646232613, 0.6667843600749501, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.8410758130408128, 0.05620041199703903, 0.416744646232613, 0.8410758130408128, 0.1196581275117085, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.416744646232613, 0.8410758130408128, 0.416744646232613, 0.416744646232613, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.811612554688695, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.6667843600749501, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.0, 0.416744646232613, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.0, 0.3576307920214454, 0.8410758130408128, 0.1196581275117085, 0.8410758130408128, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.811612554688695, 0.0, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.0, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.8410758130408128, 0.3576307920214454, 0.6667843600749501, 0.6667843600749501, 0.0, 0.811612554688695, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.3576307920214454, 0.416744646232613, 0.1196581275117085, 0.0, 0.8410758130408128, 0.6667843600749501, 0.3576307920214454, 0.416744646232613, 0.416744646232613, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.811612554688695, 0.0, 0.8410758130408128, 0.0, 0.811612554688695, 0.811612554688695, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.1196581275117085, 0.8410758130408128, 0.05620041199703903, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.416744646232613, 0.05620041199703903, 0.8410758130408128, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.8410758130408128, 0.416744646232613, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.1196581275117085, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.6667843600749501, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.416744646232613, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.6667843600749501, 0.0, 0.416744646232613, 0.8410758130408128, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6205893103979385, 0.1196581275117085, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.6667843600749501, 0.8410758130408128, 0.05620041199703903, 0.6667843600749501, 0.6667843600749501, 0.6205893103979385, 0.6667843600749501, 0.8410758130408128, 0.0, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.0, 0.811612554688695, 0.811612554688695, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.8410758130408128, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.811612554688695, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.416744646232613, 0.6667843600749501, 0.0, 0.0, 0.416744646232613, 0.0, 0.416744646232613, 0.811612554688695, 0.811612554688695, 0.8410758130408128, 0.0, 0.3576307920214454, 0.811612554688695, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.1196581275117085, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.1196581275117085, 0.0, 0.416744646232613, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.6667843600749501, 0.0, 0.6667843600749501, 0.0, 0.1196581275117085, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.0, 0.6205893103979385, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.416744646232613, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.1196581275117085, 0.1196581275117085, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.8410758130408128, 0.0, 0.6667843600749501, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.0, 0.8410758130408128, 0.8410758130408128, 0.6667843600749501, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.3576307920214454, 0.8410758130408128, 0.0, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.6667843600749501, 0.8410758130408128, 0.0, 0.6205893103979385, 0.1196581275117085, 0.416744646232613, 0.6667843600749501, 0.6205893103979385, 0.8410758130408128, 0.05620041199703903, 0.8410758130408128, 0.416744646232613, 0.3576307920214454, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.8410758130408128, 0.6667843600749501, 0.0, 0.6667843600749501, 0.1196581275117085, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.416744646232613, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6667843600749501, 0.8410758130408128, 0.0, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.6667843600749501, 0.8410758130408128, 0.0, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.6667843600749501, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.0, 0.416744646232613, 0.6205893103979385, 0.8410758130408128, 0.6667843600749501, 0.8410758130408128, 0.416744646232613, 0.0, 0.416744646232613, 0.416744646232613, 0.6667843600749501, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6667843600749501, 0.3576307920214454, 0.0, 0.6667843600749501, 0.05620041199703903, 0.1196581275117085, 0.6667843600749501, 0.0, 0.8410758130408128, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.416744646232613, 0.6205893103979385, 0.0, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.0, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.416744646232613, 0.3576307920214454, 0.8410758130408128, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.8410758130408128, 0.8410758130408128, 0.811612554688695, 0.0, 0.1196581275117085, 0.6205893103979385, 0.1196581275117085, 0.0, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.6667843600749501, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.0, 0.6667843600749501, 0.6205893103979385, 0.6205893103979385, 0.6667843600749501, 0.1196581275117085, 0.3576307920214454, 0.1196581275117085, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.6667843600749501, 0.416744646232613, 0.6205893103979385, 0.0, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.1196581275117085, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.8410758130408128, 0.811612554688695, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.05620041199703903, 0.6667843600749501, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.811612554688695, 0.416744646232613, 0.05620041199703903, 0.3576307920214454, 0.416744646232613, 0.6205893103979385, 0.6667843600749501, 0.6667843600749501, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.416744646232613, 0.416744646232613, 0.0, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.6205893103979385, 0.0, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.811612554688695, 0.416744646232613, 0.0, 0.0, 0.1196581275117085, 0.6205893103979385, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.8410758130408128, 0.0, 0.0, 0.416744646232613, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.811612554688695, 0.3576307920214454, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.1196581275117085, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.0, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.6205893103979385, 0.6667843600749501, 0.811612554688695, 0.3576307920214454, 0.416744646232613, 0.3576307920214454, 0.8410758130408128, 0.811612554688695, 0.6667843600749501, 0.8410758130408128, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.1196581275117085, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.1196581275117085, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.811612554688695, 0.0, 0.6205893103979385, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.416744646232613, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.6205893103979385, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.6667843600749501, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.8410758130408128, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.0, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.0, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.811612554688695, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.416744646232613, 0.6667843600749501, 0.8410758130408128, 0.6205893103979385, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.416744646232613, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.0, 0.416744646232613, 0.6205893103979385, 0.3576307920214454, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.811612554688695, 0.8410758130408128, 0.0, 0.416744646232613, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.811612554688695, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.6667843600749501, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.811612554688695, 0.811612554688695, 0.6205893103979385, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.416744646232613, 0.05620041199703903, 0.0, 0.1196581275117085, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.1196581275117085, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.416744646232613, 0.416744646232613, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.811612554688695, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.416744646232613, 0.811612554688695, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.416744646232613, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.6205893103979385, 0.0, 0.8410758130408128, 0.05620041199703903, 0.6205893103979385, 0.0, 0.416744646232613, 0.0, 0.416744646232613, 0.3576307920214454, 0.6667843600749501, 0.0, 0.05620041199703903, 0.811612554688695, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.1196581275117085, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.1196581275117085, 0.0, 0.05620041199703903, 0.3576307920214454, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.1196581275117085, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.3576307920214454, 0.1196581275117085, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.8410758130408128, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.8410758130408128, 0.6205893103979385, 0.416744646232613, 0.416744646232613, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.811612554688695, 0.3576307920214454, 0.1196581275117085, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.0, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.3576307920214454, 0.1196581275117085, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.1196581275117085, 0.6205893103979385, 0.8410758130408128, 0.6205893103979385, 0.6667843600749501, 0.8410758130408128, 0.811612554688695, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.6667843600749501, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.416744646232613, 0.3576307920214454, 0.0, 0.8410758130408128, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.1196581275117085, 0.3576307920214454, 0.8410758130408128, 0.0, 0.6667843600749501, 0.6667843600749501, 0.05620041199703903, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.6205893103979385, 0.416744646232613, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6667843600749501, 0.6205893103979385, 0.6667843600749501, 0.0, 0.416744646232613, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.416744646232613, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.1196581275117085, 0.0, 0.1196581275117085, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.3576307920214454, 0.416744646232613, 0.6205893103979385, 0.6205893103979385, 0.6667843600749501, 0.6667843600749501, 0.0, 0.1196581275117085, 0.6667843600749501, 0.0, 0.0, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.0, 0.8410758130408128, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.416744646232613, 0.6667843600749501, 0.05620041199703903, 0.0, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.6667843600749501, 0.416744646232613, 0.0, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.6667843600749501, 0.1196581275117085, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.8410758130408128, 0.8410758130408128, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.8410758130408128, 0.3576307920214454, 0.0, 0.811612554688695, 0.416744646232613, 0.6667843600749501, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.6205893103979385, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6667843600749501, 0.6205893103979385, 0.6667843600749501, 0.1196581275117085, 0.6205893103979385, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.6205893103979385, 0.811612554688695, 0.8410758130408128, 0.416744646232613, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.8410758130408128, 0.0, 0.0, 0.0, 0.811612554688695, 0.1196581275117085, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.0, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.8410758130408128, 0.1196581275117085, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.1196581275117085, 0.0, 0.8410758130408128, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.6205893103979385, 0.416744646232613, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.8410758130408128, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.1196581275117085, 0.8410758130408128, 0.8410758130408128, 0.0, 0.811612554688695, 0.6205893103979385, 0.3576307920214454, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.8410758130408128, 0.0, 0.3576307920214454, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.1196581275117085, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.8410758130408128, 0.0, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.6667843600749501, 0.6667843600749501, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.6667843600749501, 0.416744646232613, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.1196581275117085, 0.0, 0.1196581275117085, 0.6205893103979385, 0.0, 0.416744646232613, 0.0, 0.6667843600749501, 0.6667843600749501, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.811612554688695, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.6205893103979385, 0.0, 0.6205893103979385, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.811612554688695, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.8410758130408128, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.811612554688695, 0.3576307920214454, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.8410758130408128, 0.416744646232613, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.8410758130408128, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.1196581275117085, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.1196581275117085, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.6205893103979385, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.8410758130408128, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.6667843600749501, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.8410758130408128, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.6205893103979385, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.0, 0.811612554688695, 0.3576307920214454, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.6667843600749501, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.8410758130408128, 0.05620041199703903, 0.0, 0.6667843600749501, 0.811612554688695, 0.05620041199703903, 0.811612554688695, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.6205893103979385, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.0, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.416744646232613, 0.6205893103979385, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.0, 0.05620041199703903, 0.416744646232613, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.1196581275117085, 0.1196581275117085, 0.6205893103979385, 0.0, 0.8410758130408128, 0.05620041199703903, 0.416744646232613, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.416744646232613, 0.05620041199703903, 0.8410758130408128, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6667843600749501, 0.811612554688695, 0.6205893103979385, 0.0, 0.05620041199703903, 0.1196581275117085, 0.416744646232613, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6667843600749501, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.416744646232613, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.6667843600749501, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.416744646232613, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.416744646232613, 0.6205893103979385, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.811612554688695, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.8410758130408128, 0.8410758130408128, 0.416744646232613, 0.6667843600749501, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.3576307920214454, 0.1196581275117085, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.6667843600749501, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.0, 0.6205893103979385, 0.6667843600749501, 0.1196581275117085, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.1196581275117085, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.416744646232613, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.0, 0.811612554688695, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.6667843600749501, 0.0, 0.05620041199703903, 0.8410758130408128, 0.05620041199703903, 0.6667843600749501, 0.0, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.1196581275117085, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.811612554688695, 0.416744646232613, 0.0, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.1196581275117085, 0.0, 0.0, 0.6205893103979385, 0.0, 0.1196581275117085, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.1196581275117085, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.1196581275117085, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.6205893103979385, 0.811612554688695, 0.0, 0.6205893103979385, 0.8410758130408128, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.1196581275117085, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6205893103979385, 0.1196581275117085, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.1196581275117085, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.6667843600749501, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.6205893103979385, 0.416744646232613, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.3576307920214454, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.416744646232613, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6667843600749501, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.8410758130408128, 0.3576307920214454, 0.6205893103979385, 0.8410758130408128, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.416744646232613, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.6667843600749501, 0.1196581275117085, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.416744646232613, 0.6667843600749501, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.0, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.1196581275117085, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.0, 0.3576307920214454, 0.1196581275117085, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.416744646232613, 0.1196581275117085, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.1196581275117085, 0.3576307920214454, 0.6667843600749501, 0.0, 0.3576307920214454, 0.811612554688695, 0.416744646232613, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.0, 0.1196581275117085, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.6205893103979385, 0.0, 0.0, 0.0, 0.811612554688695, 0.3576307920214454, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.811612554688695, 0.811612554688695, 0.0, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.6667843600749501, 0.0, 0.0, 0.0, 0.8410758130408128, 0.811612554688695, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.6205893103979385, 0.05620041199703903, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.416744646232613, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.05620041199703903, 0.1196581275117085, 0.416744646232613, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.6667843600749501, 0.8410758130408128, 0.416744646232613, 0.6205893103979385, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.416744646232613, 0.811612554688695, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.05620041199703903, 0.0, 0.1196581275117085, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.416744646232613, 0.1196581275117085, 0.8410758130408128, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.1196581275117085, 0.05620041199703903, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.1196581275117085, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.416744646232613, 0.0, 0.416744646232613, 0.416744646232613, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.416744646232613, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.6667843600749501, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.811612554688695, 0.0, 0.0, 0.1196581275117085, 0.6205893103979385, 0.416744646232613, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.8410758130408128, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.1196581275117085, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.416744646232613, 0.1196581275117085, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.8410758130408128, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.3576307920214454, 0.416744646232613, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.416744646232613, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.0, 0.3576307920214454, 0.811612554688695, 0.3576307920214454, 0.811612554688695, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.6205893103979385, 0.811612554688695, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.1196581275117085, 0.0, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.6667843600749501, 0.0, 0.0, 0.811612554688695, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.416744646232613, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.416744646232613, 0.0, 0.6205893103979385, 0.6205893103979385, 0.416744646232613, 0.3576307920214454, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.3576307920214454, 0.416744646232613, 0.8410758130408128, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.416744646232613, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.1196581275117085, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.8410758130408128, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6667843600749501, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6667843600749501, 0.8410758130408128, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.1196581275117085, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6205893103979385, 0.416744646232613, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.6205893103979385, 0.8410758130408128, 0.1196581275117085, 0.0, 0.811612554688695, 0.1196581275117085, 0.0, 0.0, 0.8410758130408128, 0.1196581275117085, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.416744646232613, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.0, 0.811612554688695, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.1196581275117085, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.6667843600749501, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.6205893103979385, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.0, 0.416744646232613, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.6667843600749501, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.1196581275117085, 0.8410758130408128, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.1196581275117085, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.0, 0.6205893103979385, 0.8410758130408128, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.416744646232613, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.416744646232613, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.6667843600749501, 0.05620041199703903, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.1196581275117085, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.1196581275117085, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.8410758130408128, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.3576307920214454, 0.1196581275117085, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.0, 0.811612554688695, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.811612554688695, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.416744646232613, 0.0, 0.0, 0.0, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.1196581275117085, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.8410758130408128, 0.8410758130408128, 0.811612554688695, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.416744646232613, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.1196581275117085, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.0, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.811612554688695, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.0, 0.6205893103979385, 0.1196581275117085, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.1196581275117085, 0.1196581275117085, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.416744646232613, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.1196581275117085, 0.0, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.6667843600749501, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.416744646232613, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.416744646232613, 0.811612554688695, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.3576307920214454, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.811612554688695, 0.0, 0.0, 0.1196581275117085, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.0, 0.3576307920214454, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.6667843600749501, 0.3576307920214454, 0.0, 0.811612554688695, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.6667843600749501, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.1196581275117085, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.1196581275117085, 0.0, 0.0, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.6205893103979385, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.0, 0.811612554688695, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.811612554688695, 0.1196581275117085, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.0, 0.05620041199703903, 0.6205893103979385, 0.3576307920214454, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.3576307920214454, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.6205893103979385, 0.05620041199703903, 0.811612554688695, 0.811612554688695, 0.05620041199703903, 0.811612554688695, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.811612554688695, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.811612554688695, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.1196581275117085, 0.05620041199703903, 0.0, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.811612554688695, 0.0, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.811612554688695, 0.416744646232613, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.0, 0.6667843600749501, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.0, 0.0, 0.0, 0.8410758130408128, 0.0, 0.0, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.6667843600749501, 0.0, 0.0, 0.3576307920214454, 0.0, 0.811612554688695, 0.0, 0.0, 0.1196581275117085, 0.0, 0.3576307920214454, 0.8410758130408128, 0.0, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.0, 0.8410758130408128, 0.6667843600749501, 0.05620041199703903, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.8410758130408128, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.811612554688695, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.3576307920214454, 0.8410758130408128, 0.05620041199703903, 0.3576307920214454, 0.416744646232613, 0.3576307920214454, 0.0, 0.0, 0.8410758130408128, 0.3576307920214454, 0.0, 0.0, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.416744646232613, 0.6205893103979385, 0.6205893103979385, 0.8410758130408128, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.8410758130408128, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.0, 0.0, 0.0, 0.0, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.0, 0.0, 0.05620041199703903, 0.0, 0.811612554688695, 0.0, 0.8410758130408128, 0.0, 0.05620041199703903, 0.3576307920214454, 0.0, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.6667843600749501, 0.3576307920214454, 0.3576307920214454, 0.8410758130408128, 0.0, 0.416744646232613, 0.6205893103979385, 0.3576307920214454, 0.6667843600749501, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.05620041199703903, 0.6667843600749501, 0.6667843600749501, 0.6205893103979385, 0.811612554688695, 0.05620041199703903, 0.3576307920214454, 0.05620041199703903, 0.6667843600749501, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.05620041199703903, 0.811612554688695, 0.0, 0.6205893103979385, 0.6667843600749501, 0.8410758130408128, 0.0, 0.0, 0.3576307920214454, 0.0, 0.8410758130408128, 0.6667843600749501, 0.6667843600749501, 0.6205893103979385, 0.05620041199703903, 0.0, 0.6205893103979385, 0.811612554688695, 0.05620041199703903, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6205893103979385, 0.05620041199703903, 0.811612554688695, 0.0, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.811612554688695, 0.0, 0.05620041199703903, 0.8410758130408128, 0.8410758130408128, 0.05620041199703903, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.8410758130408128, 0.0, 0.6205893103979385, 0.05620041199703903, 0.05620041199703903, 0.0, 0.416744646232613, 0.05620041199703903, 0.05620041199703903, 0.6667843600749501, 0.6205893103979385, 0.811612554688695, 0.05620041199703903, 0.05620041199703903, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.0, 0.8410758130408128, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.0, 0.6667843600749501, 0.6667843600749501, 0.8410758130408128, 0.8410758130408128, 0.0, 0.811612554688695, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.3576307920214454, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.6205893103979385, 0.0, 0.6205893103979385, 0.811612554688695, 0.811612554688695, 0.8410758130408128, 0.0, 0.6205893103979385, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.6205893103979385, 0.0, 0.8410758130408128, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.3576307920214454, 0.05620041199703903, 0.05620041199703903, 0.05620041199703903, 0.3576307920214454, 0.811612554688695, 0.811612554688695, 0.05620041199703903, 0.0, 0.05620041199703903, 0.0, 0.05620041199703903, 0.05620041199703903, 0.0, 0.8410758130408128, 0.0, 0.811612554688695, 0.6205893103979385, 0.0, 0.6205893103979385, 0.05620041199703903, 0.6205893103979385, 0.0, 0.811612554688695, 0.6205893103979385, 0.3576307920214454, 0.8410758130408128, 0.8410758130408128, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.811612554688695, 0.3576307920214454, 0.6205893103979385, 0.05620041199703903, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.05620041199703903, 0.0, 0.6205893103979385, 0.811612554688695, 0.6667843600749501, 0.6205893103979385, 0.6205893103979385, 0.6667843600749501, 0.0, 0.0, 0.6205893103979385, 0.416744646232613, 0.811612554688695, 0.6667843600749501, 0.05620041199703903, 0.8410758130408128, 0.811612554688695, 0.1196581275117085, 0.6205893103979385, 0.6205893103979385, 0.811612554688695, 0.6205893103979385, 0.811612554688695, 0.0, 0.05620041199703903, 0.6205893103979385, 0.0, 0.811612554688695, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.3576307920214454, 0.811612554688695, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.0, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.6667843600749501, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.8410758130408128, 0.811612554688695, 0.0, 0.6205893103979385, 0.0, 0.3576307920214454, 0.3576307920214454, 0.6667843600749501, 0.811612554688695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3576307920214454, 0.6205893103979385, 0.0, 0.3576307920214454, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.6205893103979385, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.6205893103979385, 0.3576307920214454, 0.0, 0.6205893103979385, 0.0, 0.0, 0.0, 0.3576307920214454, 0.3576307920214454 ] } ], "layout": { "height": 600, "legend": { "itemsizing": "constant" }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "V1" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Prediction probability (Anomaly)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c4c7a1786a3941e18c81c65edd8a84c1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(VBox(children=(HTML(value='\\n

Select and Explore Samp…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "explainer.explore_whatif(X_test, y_test)" ] }, { "cell_type": "markdown", "id": "c26e086a", "metadata": {}, "source": [ "\n", "### Counterfactual Explainers" ] }, { "cell_type": "markdown", "id": "30b91bda", "metadata": {}, "source": [ "Counterfactual explainers are another set of advanced features that Oracle AutoMLx supports, which help to explain a trained ML model's predictions by identifying the minimal set of changes necessary to flip the model's decision, resulting in a different outcome. To achieve this, the solution frames the explanation process as an optimization problem, similar to adversarial discoveries, while ensuring that the counterfactual perturbations used are feasible and diverse.\n", "\n", "With the Oracle AutoMLx solution, users are guaranteed a close to zero-failure rate in generating a set of counterfactual explanations; the explainers might only fail if the reference training set doesn't contain any example with the desired class.\n", "AutoMLx also provides support for simple constraints on features, using `features_to_fix` and `permitted_range`, to ensure the feasibility of the generated counterfactual examples. Additionally, users can use tunable parameters to control the proximity and diversity of the explanations to the original input.\n", "\n", "The Oracle AutoMLx solution supports the following strategy for creating counterfactual examples. \n", "\n", "- `ace`: The AutoMLx counterfactual explainer introduced by Oracle Labs that uses KDTree structures to find a set of nearest but diverse counterfactuals per sample.\n", "\n", "The final results can be returned either through the interactive interface of `What-IF` tools to show the model's prediction sensitivity or static tables and figures." ] }, { "cell_type": "code", "execution_count": 28, "id": "5c91614c", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:37.149880Z", "iopub.status.busy": "2025-04-25T10:04:37.149487Z", "iopub.status.idle": "2025-04-25T10:04:37.715884Z", "shell.execute_reply": "2025-04-25T10:04:37.715373Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "393c5946208a4d19933311bc2cc95622", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(VBox(children=(HTML(value='\\n

Select and Explore Samp…" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "explainer.configure_explain_counterfactual(strategy='ace')\n", "explanations = explainer.explain_counterfactual(X_test[0:1],\n", " n_counterfactuals=3,\n", " desired_pred='auto')\n", "explanations[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "db227781", "metadata": {}, "source": [ "\n", "### Aggregate Local Feature Importance & Local Feature Importance Built-in Sampling\n", "We now summarize all of the individual local feature importance explanations into one single aggregate explanation.\n", "\n", "To speed up the computation of the local feature importance explanations, we enable the explainer's built-in sampling." ] }, { "cell_type": "code", "execution_count": 29, "id": "edf9a917", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:37.742473Z", "iopub.status.busy": "2025-04-25T10:04:37.742064Z", "iopub.status.idle": "2025-04-25T10:04:37.805120Z", "shell.execute_reply": "2025-04-25T10:04:37.804625Z" } }, "outputs": [], "source": [ "explainer.configure_explain_prediction(sampling={'technique': 'random', 'n_samples': 2000})" ] }, { "cell_type": "code", "execution_count": 30, "id": "b4510e76", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:37.807236Z", "iopub.status.busy": "2025-04-25T10:04:37.806798Z", "iopub.status.idle": "2025-04-25T10:04:38.986960Z", "shell.execute_reply": "2025-04-25T10:04:38.986444Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 1, 2, 3, 4, 0 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Anomaly", "marker": { "color": "#4C78A8", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Anomaly", "orientation": "h", "showlegend": false, "type": "box", "uid": "a1db8540-ebbb-470c-85d9-f9a8986a3483", "x": [ 0.0, 0.0, 0.0, 0.3576307920214454, 0.9959703121006424 ], "xaxis": "x", "y": [ "Anomaly", "Anomaly", "Anomaly", "Anomaly", "Anomaly" ], "yaxis": "y" }, { "boxmean": true, "boxpoints": "all", "customdata": [ 4, 4, 4, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 2, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 3, 4, 4 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Normal", "marker": { "color": "#F58518", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Normal", "orientation": "h", "showlegend": false, "type": "box", "uid": "fd5abe39-e68e-4903-9c03-2fab421c3a1f", "x": [ -0.275375709856513, -0.1812676956909964, -0.04746257348354252, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005620041199703907, 0.008376068925819592, 0.019108140078993287, 0.039443777756473966, 0.25306258944380977 ], "xaxis": "x2", "y": [ "V8", "V3", "V4", "V20", "V7", "V9", "V10", "V2", "V6", "V11", "V14", "V15", "V16", "V17", "V18", "V12", "V1", "V13", "V5", "V3", "V5", "V6", "V7", "V9", "V10", "V2", "V12", "V4", "V11", "V16", "V17", "V18", "V13", "V1", "V20", "V15", "V3", "V20", "V5", "V5", "V6", "V7", "V9", "V10", "V2", "V11", "V4", "V13", "V15", "V16", "V17", "V18", "V19", "V12", "V1", "V14", "V4", "V3", "V1", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V20", "V13", "V15", "V16", "V17", "V18", "V19", "V2", "V14", "V8", "V8", "V19", "V14", "V19" ], "yaxis": "y2" } ], "layout": { "annotations": [ { "font": { "size": 16 }, "showarrow": false, "text": "Model Predictions", "x": 0.225, "xanchor": "center", "xref": "paper", "y": 1.0, "yanchor": "bottom", "yref": "paper" }, { "font": { "size": 16 }, "showarrow": false, "text": "Aggregated Feature Attributions", "x": 0.775, "xanchor": "center", "xref": "paper", "y": 1.0, "yanchor": "bottom", "yref": "paper" } ], "height": 600, "plot_bgcolor": "white", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "5 Sample Predictions to Explain", "x": 0.5 }, "width": 1080, "xaxis": { "anchor": "y", "domain": [ 0.0, 0.45 ] }, "xaxis2": { "anchor": "y2", "domain": [ 0.55, 1.0 ] }, "yaxis": { "anchor": "x", "domain": [ 0.0, 1.0 ] }, "yaxis2": { "anchor": "x2", "domain": [ 0.0, 1.0 ] } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ebaa628bd2bf44d4b857e27eda31dcac", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value='

Samples

'), Output()), layout=Layout(align_items…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# We select 5 random instances here as an example and show the aggregate explanation of those instances.\n", "local_explanations = explainer.explain_prediction(X_train.sample(n=5))\n", "alfi = explainer.aggregate(explanations=local_explanations)\n", "alfi.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "83b70562", "metadata": {}, "source": [ "\n", "### Advanced Feature Importance Configurations\n", "We now display more advanced configuration for computing feature importance. Here, we will explain a custom isolation forest model from the `PyOD` package. Note that the MLExplainer object is capable to explain any anomaly detection model, as long as the model follows a pyod-style interface with the `predict` and `predict_proba` functions." ] }, { "cell_type": "code", "execution_count": 31, "id": "d0053eaf", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:38.990544Z", "iopub.status.busy": "2025-04-25T10:04:38.990203Z", "iopub.status.idle": "2025-04-25T10:04:39.895609Z", "shell.execute_reply": "2025-04-25T10:04:39.895025Z" } }, "outputs": [], "source": [ "pyod_model = IForest()\n", "pyod_model.fit(X_train, y_train)\n", "\n", "y_pred = pd.Series(pyod_model.predict(X_train), index=X_train.index)\n", "explainer_pyod = automlx.MLExplainer(pyod_model,\n", " X_train,\n", " target_names=['Normal', 'Anomaly'],\n", " task=\"anomaly_detection\")" ] }, { "cell_type": "markdown", "id": "fee8aeb9", "metadata": {}, "source": [ "\n", "#### Changing the number of iterations\n", "\n", "One can modify the number of iterations `n_iter` used to evaluate the global importance of the model, or the local importance of a prediction.\n", "\n", "Increasing `n_iter` requires a linear increase in computation time. It however provides more\n", "accurate importance estimates, thereby decreasing the variance in repeated calls to\n", "`explain_model`/`explain_prediction`.\n", "\n", "The default value is auto, which selects a suitable default value based on the choice of\n", "the method of explanation. Decreasing the number of iterations to 1 also means that the confidence intervals are no longer available.\n", "\n", "In this example, because we are explaining a different model, the order of the most important features has changed." ] }, { "cell_type": "code", "execution_count": 32, "id": "cc83425f", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:39.897943Z", "iopub.status.busy": "2025-04-25T10:04:39.897516Z", "iopub.status.idle": "2025-04-25T10:04:41.306545Z", "shell.execute_reply": "2025-04-25T10:04:41.305987Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null ], "arrayminus": [ null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null ], "type": "data" }, "legendgroup": "None", "marker": { "color": "rgb(248,0,0)" }, "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.03527796675544437, 0.023692687498117815, 0.021014981672336397, 0.01969603136526532, 0.01918392989181139, 0.018396165148045984, 0.015552367454617522, 0.013900249116936214, 0.013371683859523364, 0.013294331404788085, 0.01248468640757816, 0.012221473804777672, 0.01214534592245986, 0.011990777842655231, 0.01052596646613202, 0.010318998845029959, 0.009967383533371676, 0.009509665602282835, 0.009468285630376938, 0.008852471428282715 ], "y": [ "V11", "V6", "V18", "V17", "V13", "V4", "V19", "V15", "V16", "V20", "V9", "V2", "V5", "V12", "V8", "V3", "V10", "V14", "V1", "V7" ] } ], "layout": { "height": 900, "margin": { "b": 20, "t": 80 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "The Features' Impact on the Model's f1_weighted Score", "x": 0.5 }, "xaxis": { "categoryorder": "total ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "total ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_model_increase_n_iter = explainer_pyod.explain_model(n_iter=1)\n", "result_explain_model_increase_n_iter.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "c176f00c", "metadata": {}, "source": [ "\n", "#### Including the effects of feature interactions (with Shapley feature importance)\n", "\n", "The Oracle AutoMLx solution allows one to change the effect of feature interactions. This can be done through the `tabulator_type` argument of both global and local importance methods.\n", "\n", "`tabulator_type` can be set to one of those three options: `permutation`, `kernel_shap`, `shapley`, `shap_pi`\n", "\n", "- `permutation`: This value is the default method in the MLExplainer object, and the behaviour was described above\n", "\n", "- `kernel_shap`: Feature importance attributions will be calculated using an approximation of the Shapley value method. It typically provides relatively high-quality approximations; however, it currently does not provide confidence intervals.\n", "\n", "- `shapley`: Feature importance is computed using the popular game-theoretic Shapley value method. Technically, this measures the importance of each feature while including the effect of all feature interactions. As a result, it runs in exponential time with respect to the number of features in the dataset. This method also includes the interaction effects of the other features, which means that if two features contain duplicate information, they will be less important. Note that the interpretation of this method's result is a bit different from the permutation method's result. An interested reader may find this a good source for learning more about it.\n", "\n", "- `shap_pi`: Feature importance attributions will be computed using an approximation of the Shapley value method. It runs in linear time, but may miss the effect of interactions between some features, which may therefore produce lower-quality results. Most likely, you will notice that this method yields larger confidence intervals than the other two.\n", "\n", "**Summary: `permutation` can miss important features for AD. Exact SHAP (`shapley`) doesn't, but it is exponential in running time. `kernel_shap` is an approximation of exact SHAP method that does not provide confidence intervals. `shap_pi` is linear, thus faster than exact SHAP and kernel_shap but unstable and very random leads to lower quality approximations.**" ] }, { "cell_type": "markdown", "id": "101093a3", "metadata": {}, "source": [ "\n", "##### Local feature importance with kernel_shap" ] }, { "cell_type": "code", "execution_count": 33, "id": "78d748a1", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:41.308652Z", "iopub.status.busy": "2025-04-25T10:04:41.308201Z", "iopub.status.idle": "2025-04-25T10:04:41.375107Z", "shell.execute_reply": "2025-04-25T10:04:41.374597Z" } }, "outputs": [], "source": [ "explainer_pyod.configure_explain_prediction(tabulator_type=\"kernel_shap\",\n", " sampling={'technique': 'random', 'n_samples': 2000})" ] }, { "cell_type": "code", "execution_count": 34, "id": "855459eb", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:41.376960Z", "iopub.status.busy": "2025-04-25T10:04:41.376606Z", "iopub.status.idle": "2025-04-25T10:04:49.289892Z", "shell.execute_reply": "2025-04-25T10:04:49.289345Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ null, null, null, null, null, null, null, null, null, null ], "arrayminus": [ null, null, null, null, null, null, null, null, null, null ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "negative", "marker": { "color": "#626567" }, "name": "43095=negative", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ -0.0003812800024108337, -0.004680063024247323, -0.0077820134121116295, -0.009048707490497647, -0.010335691005914407, -0.013317412249322046, -0.01765443120665356, -0.01872677024691694, -0.01941876833638268, -0.021780912962496814 ], "y": [ "V13", "V17", "V11", "V16", "V7", "V1", "V12", "V9", "V5", "V2" ] }, { "error_x": { "array": [ null, null, null, null, null, null, null, null, null, null ], "arrayminus": [ null, null, null, null, null, null, null, null, null, null ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "positive", "marker": { "color": "#F80000" }, "name": "43095=positive", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.0005795858493627603, 0.0014088257710321167, 0.0026343748195100797, 0.006121033905757566, 0.01711217150077096, 0.018566908242686628, 0.02811195243644211, 0.05023071882982524, 0.05731993640635473, 0.06988250362365961 ], "y": [ "V18", "V10", "V8", "V20", "V19", "V14", "V15", "V3", "V4", "V6" ] }, { "marker": { "line": { "color": "rgba(0,0,0,0)", "width": 1 } }, "name": "", "orientation": "h", "showlegend": false, "type": "bar", "width": 0, "x": [ -0.06988250362365961 ], "y": [ " " ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "V13 = 0.9051", "x": 0, "xanchor": "right", "xref": "x", "y": 1, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V18 = 0.7640", "x": 0, "xanchor": "left", "xref": "x", "y": 2, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V10 = 0.4841", "x": 0, "xanchor": "left", "xref": "x", "y": 3, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V8 = 0.4587", "x": 0, "xanchor": "left", "xref": "x", "y": 4, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V17 = 0.2247", "x": 0, "xanchor": "right", "xref": "x", "y": 5, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V20 = 0.4216", "x": 0, "xanchor": "left", "xref": "x", "y": 6, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V11 = 0.0260", "x": 0, "xanchor": "right", "xref": "x", "y": 7, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V16 = -0.4783", "x": 0, "xanchor": "right", "xref": "x", "y": 8, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V7 = -0.6780", "x": 0, "xanchor": "right", "xref": "x", "y": 9, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V1 = -0.7161", "x": 0, "xanchor": "right", "xref": "x", "y": 10, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V19 = 1.7151", "x": 0, "xanchor": "left", "xref": "x", "y": 11, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V12 = 1.0704", "x": 0, "xanchor": "right", "xref": "x", "y": 12, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V14 = -1.4901", "x": 0, "xanchor": "left", "xref": "x", "y": 13, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V9 = -0.0097", "x": 0, "xanchor": "right", "xref": "x", "y": 14, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V5 = -0.4958", "x": 0, "xanchor": "right", "xref": "x", "y": 15, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V2 = 0.2253", "x": 0, "xanchor": "right", "xref": "x", "y": 16, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V15 = -1.8573", "x": 0, "xanchor": "left", "xref": "x", "y": 17, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V3 = 3.7612", "x": 0, "xanchor": "left", "xref": "x", "y": 18, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V4 = 3.2072", "x": 0, "xanchor": "left", "xref": "x", "y": 19, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "V6 = 1.8657", "x": 0, "xanchor": "left", "xref": "x", "y": 20, "yref": "y", "yshift": 12.0 }, { "font": { "color": "#626567", "size": 14 }, "showarrow": false, "text": "⇩ P(Anomaly)", "x": 0.15, "xref": "paper", "y": 1.015, "yref": "paper", "yshift": 40 }, { "font": { "color": "#F80000", "size": 14 }, "showarrow": false, "text": "⇧ P(Anomaly)", "x": 0.85, "xref": "paper", "y": 1.015, "yref": "paper", "yshift": 40 } ], "barmode": "overlay", "height": 890, "margin": { "b": 20, "t": 70 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryarray": [ " ", "V13", "V18", "V10", "V8", "V17", "V20", "V11", "V16", "V7", "V1", "V19", "V12", "V14", "V9", "V5", "V2", "V15", "V3", "V4", "V6" ], "categoryorder": "array", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "title": { "text": " " }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryarray": [ " ", "V13", "V18", "V10", "V8", "V17", "V20", "V11", "V16", "V7", "V1", "V19", "V12", "V14", "V9", "V5", "V2", "V15", "V3", "V4", "V6" ], "categoryorder": "array", "gridcolor": "white", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": false, "side": "top", "type": "category", "visible": false, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "anomaly_indices = np.where(y_pred == 1)[0]\n", "index = anomaly_indices[0]\n", "result_explain_prediction_kernel_shap = explainer_pyod.explain_prediction(X_train.iloc[index:index+1,:])\n", "result_explain_prediction_kernel_shap[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "4463eb81", "metadata": {}, "source": [ "\n", "### Advanced Feature Dependence Options (ALE)\n", "\n", "We now show how to use an alternative method for computing feature dependence: accumulated local effects (ALE). ALE explanations are sometimes considered a better alternative to PDPs when features are correlated, because it does not evaluate the model outside of its training distribution in these cases. For more information, see https://christophm.github.io/interpretable-ml-book/ale.html.\n", "\n", "Given a dataset, an ALE displays the average change in the output of the model, accumulated of multiple small changes in one or two features, when all other features are held fixed. By default, the ALE explanations are centered around 0, and thus, unlike PDPs, ALEs show the change in the prediction measured by changing a given feature, rather than the average model's prediction for a particular feature value." ] }, { "cell_type": "markdown", "id": "5e4ff7ea", "metadata": {}, "source": [ "The X-axis is the value of the `V17` feature and the y-axis is the corresponding computed ALE (price unit).\n", "\n", "The histogram on top shows the distribution of the value of the `V17` feature in the dataset." ] }, { "cell_type": "code", "execution_count": 35, "id": "4fde81dd", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:04:49.292042Z", "iopub.status.busy": "2025-04-25T10:04:49.291584Z", "iopub.status.idle": "2025-04-25T10:04:50.535509Z", "shell.execute_reply": "2025-04-25T10:04:50.534969Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "toself", "fillcolor": "rgb(248,0,0)", "legendgroup": "None", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": false, "type": "scatter", "x": [ -6.103903073078102, -0.9681906615873594, -0.7863334792500472, -0.6580089061566698, -0.5637941363954295, -0.4750380944036825, -0.40042695398493944, -0.3256612776821922, -0.24972460755267928, -0.16512496602480217, -0.07500609244230359, 0.013395881151394007, 0.10260479460903567, 0.18381736267281618, 0.2847323369049084, 0.39617716339815545, 0.5153865383029284, 0.6845262237328771, 0.901243870487793, 1.284719228193855, 5.225449284833478, 5.225449284833478, 1.284719228193855, 0.901243870487793, 0.6845262237328771, 0.5153865383029284, 0.39617716339815545, 0.2847323369049084, 0.18381736267281618, 0.10260479460903567, 0.013395881151394007, -0.07500609244230359, -0.16512496602480217, -0.24972460755267928, -0.3256612776821922, -0.40042695398493944, -0.4750380944036825, -0.5637941363954295, -0.6580089061566698, -0.7863334792500472, -0.9681906615873594, -6.103903073078102 ], "xaxis": "x2", "y": [ -0.053048844143459506, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -0.053048844143459506 ], "yaxis": "y2" }, { "legendgroup": "None", "line": { "color": "rgb(248,0,0)" }, "mode": "lines+markers", "opacity": 1, "showlegend": false, "type": "scatter", "x": [ -6.103903073078102, -0.9681906615873594, -0.7863334792500472, -0.6580089061566698, -0.5637941363954295, -0.4750380944036825, -0.40042695398493944, -0.3256612776821922, -0.24972460755267928, -0.16512496602480217, -0.07500609244230359, 0.013395881151394007, 0.10260479460903567, 0.18381736267281618, 0.2847323369049084, 0.39617716339815545, 0.5153865383029284, 0.6845262237328771, 0.901243870487793, 1.284719228193855, 5.225449284833478 ], "xaxis": "x2", "y": [ -0.053048844143459506, -0.010066730580029201, -0.008121312467835401, 0.0020776254926417395, 0.0043719596366850605, 0.00787884045847629, 0.007976498876160157, 0.008233318449463026, 0.007958088638251003, 0.010023256743249012, 0.011444746460362143, 0.011233723039326987, 0.010423296473589194, 0.010075535040499642, 0.009634555297519165, 0.008593242226482022, 0.007981243406921676, 0.0036420754250467632, -0.004887228462120689, -0.014098527356802164, -0.11543400227616896 ], "yaxis": "y2" }, { "legendgroup": "None", "marker": { "color": "Black" }, "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.15158992591571793, "x": [ -6.029783577722469, -5.8645505584743365, -5.704982215405159, -5.545413872335981, -5.385845529266804, -5.226277186197628, -5.06670884312845, -4.907140500059273, -4.7475721569900955, -4.588003813920919, -4.428435470851741, -4.268867127782564, -4.1092987847133875, -3.9497304416442103, -3.790162098575033, -3.6305937555058554, -3.4710254124366786, -3.311457069367501, -3.151888726298324, -2.9923203832291465, -2.8327520401599697, -2.673183697090793, -2.5136153540216153, -2.3540470109524385, -2.194478667883261, -2.034910324814084, -1.8753419817449068, -1.7157736386757296, -1.5562052956065524, -1.3966369525373752, -1.237068609468198, -1.0775002663990207, -0.917931923329844, -0.7583635802606667, -0.5987952371914895, -0.4392268941223123, -0.2796585510531351, -0.12009020798395786, 0.03947813508521936, 0.19904647815439658, 0.3586148212235738, 0.5181831642927506, 0.6777515073619278, 0.837319850431105, 0.9968881935002822, 1.1564565365694595, 1.3160248796386367, 1.475593222707814, 1.6351615657769907, 1.794729908846168, 1.9542982519153451, 2.113866594984522, 2.2734349380536996, 2.4330032811228772, 2.592571624192054, 2.752139967261231, 2.9117083103304076, 3.071276653399585, 3.230844996468763, 3.3904133395379397, 3.5499816826071164, 3.709550025676294, 3.8691183687454718, 4.0286867118146485, 4.188255054883825, 4.347823397953002, 4.50739174102218, 4.666960084091357, 4.826528427160534, 4.986096770229711, 5.145665113298889 ], "xaxis": "x", "y": [ 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0002, 0.0, 0.0002, 0.0002, 0.001, 0.0024, 0.0042, 0.0112, 0.0242, 0.04, 0.056, 0.085, 0.0994, 0.1076, 0.0858, 0.0926, 0.0884, 0.0678, 0.063, 0.0414, 0.0308, 0.0244, 0.0188, 0.0154, 0.0078, 0.0088, 0.0068, 0.004, 0.0034, 0.0014, 0.001, 0.001, 0.0012, 0.0006, 0.0002, 0.0002, 0.0012, 0.0002, 0.0002, 0.0002, 0.0004, 0.0002, 0.0002, 0.0, 0.0, 0.0, 0.0, 0.0004 ], "yaxis": "y" } ], "layout": { "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Accumulated Local Effects (ALE)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ -6.67037069097368, 5.7919169027290565 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "V17" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.11298000000000001 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ -0.12177793971299551, 0.017788683897188698 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "ALE of P(Normal)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "explainer_pyod.configure_explain_feature_dependence(explanation_type='ale')\n", "result_explain_feature_dependence_default = explainer_pyod.explain_feature_dependence(['V17'])\n", "result_explain_feature_dependence_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "eac5d634", "metadata": { "lines_to_next_cell": 2 }, "source": [ "\n", "## References\n", "* Oracle AutoML http://www.vldb.org/pvldb/vol13/p3166-yakovlev.pdf\n", "* scikit-learn https://scikit-learn.org/stable/\n", "* Interpretable Machine Learning https://christophm.github.io/interpretable-ml-book/\n", "* LIME https://arxiv.org/pdf/1602.04938\n", "* OpenML (Credit Card Fraud Dataset) https://www.openml.org/d/1597\n" ] } ], "metadata": { "jupytext": { "formats": "ipynb,py:percent" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "02c2ea62b0574f09a061578bca3b9644": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "03592a28b8d44904a5c661c8238c8923": { "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 1, 2, 3, 4, 0 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Anomaly", "marker": { "color": "#4C78A8", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Anomaly", "orientation": "h", "showlegend": false, "type": "box", "uid": "a1db8540-ebbb-470c-85d9-f9a8986a3483", "x": [ 0.0, 0.0, 0.0, 0.3576307920214454, 0.9959703121006424 ], "y": [ "Anomaly", "Anomaly", "Anomaly", "Anomaly", "Anomaly" ] }, { "boxmean": true, "boxpoints": "all", "customdata": [ 0, 4, 1, 2, 3 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Normal", "marker": { "color": "#F58518", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Normal", "orientation": "h", "showlegend": false, "type": "box", "uid": "43e12bda-49bd-401f-8a55-ac4e233e519a", "x": [ 0.004029687899357648, 0.6423692079785546, 1.0, 1.0, 1.0 ], "y": [ "Normal", "Normal", "Normal", "Normal", "Normal" ] } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "boxmode": "group", "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "range": [ 0, 1 ], "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "P(Target)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": true, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Target" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "039fb35e19774a11b1615a2641451684": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "", "description": "Select Sample", "disabled": false, "icon": "", "layout": "IPY_MODEL_72ec5b14692140a4a47d3e11c6d995fc", "style": "IPY_MODEL_041e45ac00204e63ad9293afbebd4595", "tabbable": null, "tooltip": "Select the sample at the specified row index" } }, "041e45ac00204e63ad9293afbebd4595": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "04e5868e2c3b448bb2609889f02db2fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "051ad1c01bfc48d088bfa32f0c19986a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0578b020620340eb9e2a85e8820277fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "06d9b6fada3044b28c0fa750433a1063": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V9", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_170df7432302439e98e8b94688278d48", "step": null, "style": "IPY_MODEL_cb6bb72f28f04455ac2defbbddb4e9b6", "tabbable": null, "tooltip": null, "value": 0.5965079515639202 } }, "083b7489b89e4e1db334b21c5f7381be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_403eb906c3964b828aa0ca71d98c5c0f", "placeholder": "​", "style": "IPY_MODEL_7a57f098416449a98ba9578ca7c0db12", "tabbable": null, "tooltip": null, "value": "" } }, "08866ff023dd47018e56d80ec3c82f17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "0a308b54e4ee4bf887338aed38b07354": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V16", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_81f1f27970154ac98d22cd6cb910ece7", "step": null, "style": "IPY_MODEL_c2c96420e9194200b072d429a652e52f", "tabbable": null, "tooltip": null, "value": -0.7801235968866925 } }, "0a3dc9808b3f4f528635ccf438d7fbde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "CheckboxView", "description": "Show all features", "description_allow_html": false, "disabled": true, "indent": false, "layout": "IPY_MODEL_6aefd7a0f4944a0c8084f4e73dfc58c1", "style": "IPY_MODEL_bd0a0d3820de4b88a2fb6d3bdb9b38f2", "tabbable": null, "tooltip": null, "value": true } }, "0b9ef62b5c904877b28e61e841d49744": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0c0011289ce44a8d984d6eb7b3fa56cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "0cb5455cf2774036860b4cff4e70a90d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "0cff4c8ae10f43e39292b6baa72af9df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "", "description": "Select Sample", "disabled": false, "icon": "", "layout": "IPY_MODEL_bf0126a9dfe04164bfc34cb301e2ab5d", "style": "IPY_MODEL_61efdc483a524b418d1231fb6085ceb1", "tabbable": null, "tooltip": "Select the sample at the specified row index" } }, "0d8977332b524da28863a582a01a99bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1025px" } }, "0e3dde60048247f6a9df30933b3bdb00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "0fe4501bb2e74d36a6cb87ed4a5c7447": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "1001a4bb3e8849e3be30c0874acac24d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "11a281d8dfaf4443bb807f80a7210e31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V13", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_58204100440f4e688dac93937ce28c48", "step": null, "style": "IPY_MODEL_2438b91b309b4c9caa6a92355f25b01a", "tabbable": null, "tooltip": null, "value": -0.12699362950573215 } }, "1271e4566d474b4ea2a297582c243581": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_cbf8f474b3584c5a8eb7f0a0d2693f72", "IPY_MODEL_957dea5e898741408a2b2b3e5c983ba1", "IPY_MODEL_f256e1ce34bc407db4eee248da57996a", "IPY_MODEL_22349b65d6e94a7898fc2c53724e6fd7", "IPY_MODEL_b4c8d25fbaf94f4a8934725171b9ba6b", "IPY_MODEL_c7c4f86d44ee4917afb4a94ebbbc9e56", "IPY_MODEL_31d4901f3d1749b992f93bb811f873c1", "IPY_MODEL_c1e036effb6f4484a956a915335d3229", "IPY_MODEL_2f510f3ccfb24fc386097e28d0ed6e8e", "IPY_MODEL_f87e81b476314f73949b937339c60846", "IPY_MODEL_9e9c872854024eba896aa6648ac3e4b8", "IPY_MODEL_6095eb28324844df98f3b549a6ddd821", "IPY_MODEL_11a281d8dfaf4443bb807f80a7210e31", "IPY_MODEL_7894450719c0467f86041023345c874f", "IPY_MODEL_cba4ad80e2314a0083fb61559b33938d", "IPY_MODEL_0a308b54e4ee4bf887338aed38b07354", "IPY_MODEL_bd9f73346ada485ca771ae26788768db", "IPY_MODEL_495e8b04994b44b2a0769f010c375028", "IPY_MODEL_3a5236f2108c4cd29b133832afe3ac1e", "IPY_MODEL_a2c2019b393f4824b2c1656548d1c7ec" ], "layout": "IPY_MODEL_6755b0345a1d47989c958bbed6411998", "tabbable": null, "tooltip": null } }, "1277b4b7661148fc9a9186ec9d2f2280": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "130c7f6d1fa84fe3bbb013637cd62d79": { "buffers": [ { "data": "bCLE0qNOQcCY6BZHJb8/wErdcKQghD3AAxFkDJC1PMDizU0dDAI7wMUyZ3JQiDXATdIRHqFpNcDD/ZPciDU1wGROsgrzFTXAU/cZPA40McCiRCIBwUkvwA7/6wAziS3AeamlPXJWLMBlc3JhotkpwDtUO/EqzybAy47t5uAtJsAvIeqcLPckwLimxPRbrSPAQ/uIJ+2XI8CjAK5c+PAiwKOdVEs9uSLA795kEEIkIsB5ojO1UBsiwJC0GRfU2yHAXWHKQ3BUIcC5JDCmVd0gwLhfzpNDKSDAt8jzS6kbIMD4efDPnAkfwI2NAdcRgh3ASTQzg2ASHcD8o+lzyGwcwHQ9L6aiKRzAc5UEOLHBG8AysRXLGpAbwDCX+BUIgRvAEYBAaO02G8A5Sr8ZWfkZwGiUY1aN6BnAdJdqP3exGcBaRZ0zMoQZwHaQS5s7bxnAn4VRpO0WGcCV+DjaEsAYwImXQ63IrBjAzBX+PU0jGMAGol0ioAoYwE0725h0fhfATxJ0vCV7F8DBYeh4tjwXwE99VHKpyxbAW8wb7ofFFsD7jhbm5n8WwPCKlp9ofRbAqgZBCUZkFsANTxNX4iAWwLqFry3BGBbASNRh5+oWFsC5ODPHLZMVwCILIF68OxXAaH6M7m/pFMCq9eP30uUUwFnILlUO1RTAsmxZ85yNFMBVaazq0SwUwDfOLt067BPAJOOfj9bFE8DATd88e5sTwBNN9NbbgRPAStrAytVQE8CtA5XjSx0TwGAMrwcKnBLAiPS7SaOaEsD/Iu+xGmYSwKrx1qAWOxLAK0vzcTq6EcAf46IoLGkRwIN/JsF+VRHAEgdQ8x9REcBDa8xdQPcQwCgtUWn5thDAAOx35Q+xEMBmckAU2pUQwJMdkScsjRDAGn35loliEMAHKCZUDSgQwMmgGZHAsA/AHKzbKKg9D8DcqDOEmOEOwK8EV8dYBA7ApGJX4B8EDsAppgAQ8fANwBP7D4FRuw3Afc/bCJaYDcAtOfrhTzENwOvORq/lLA3ARUHI8vQUDcBwwV7CrtgLwHT7KDUdbQvAvD6hlrtjC8BpdMZWTzoLwCkYQNVorQrA80zFDPBlCsBsmeOs3GAKwEuKR9BxRQrAMOCg62z6CcDifdKZeNcJwD8UemUntwnAYd9rQbGiCcC7FTn7ZXUJwMTSZ9P5ZAnAx40PY3k3CcA7KENQmjIJwOzk+QsaCQnAsM9w9N/lCMDXgCoy9uAIwB/Z52/60AjAAh+ZtWSyCMBvp2lisjcIwF2ln/79LQjA4uAw57rdB8A1jSRXApYHwK6MwmLUkwfAG+vJLA1tB8AtvF4gPB4HwJ2Mjr4rGgfAiYCCjkITB8A5DNwzTdUGwGmgn+1dhgbA6By7IQ1bBsDfT2VXhTwGwHxYW1C2LwbAZOuQU2ILBsB+4RJhCwkGwKnkPW8d9QXA1DWFa3npBcAjiQTK+agFwArm7xFsbAXAVP33MlhBBcAKWsQNu/oEwCnnhaEj4wTAErQ5wynZBMDYVWBnt7oEwHiG5C7ApATA2bu6SGeBBMBKORHfe2AEwHoDOs8oTQTAeGg68RH7A8DIwe7zstQDwBqdSR2JtAPAVn+NhcJ8A8B5z4a4I/sCwB1FpwOr2ALAElpgA6xHAsAop5Yjzj8CwCod38ouGQLAQxZtm3YPAsBLK2EIYugBwKmhaP774wHA9/c+TxXjAcDX2Z8BvNsBwDPIezaduAHA/Waq23GaAcDy+JFoIzYBwLaWw1PAHQHAzRmemQgTAcAFRiZCv+0AwPumbHoa3gDAUEe7Xj3UAMD3R2MtOs8AwMd5Qu3BxgDA0NOcBU7DAMC3QRGOBY8AwGfIxKFgfQDAa9nsNad0AMDVS3hFnG0AwOqnUgDCWQDAD2CLB4UwAMCPajd8tC0AwPp7qPOzJgDAMl5t3Wev/7++D3cju6b/v/KTvqTNWv+/RANQwF9M/780LFS7yyH/vzoj4286vv6/Btyzk3Cz/r+KV4RNgYX+v5Yg7z6qev6/Eg08pJR2/r9o7aiomwz+v5BdIvZo/P2/kD6m38Ac/b/cvRRAfgz9v7F+F4JBwvy/aAyX8rKh/L9G6DLWjtr7vwCqAxh2x/u/yt3GYSbE+79Z7ga9lLv7v9sZ/iCAi/u/mIs0Sp9a+7+CTsNe+Ev7v0aJhW6NEvu/w2T5o+wH+78r2Fc7XcP6v/7aePFjm/q/FLZc/uMq+r/6i2ImOhD6vzu3bYA31/m/JKuL8mGl+b/gPVSYV6H5vzyLurMAoPm/rM22a1aR+b/GTgAR+0D5v7Q7N8M7O/m/YE4qMwYu+b96LPyQURP5v1dIYqBME/m/+7hDyI38+L/e7jd92O34v/pCFfQx3Pi/dDnAt2i1+L/Mjy1Ez6r4v7YhGBG3qvi/mLaMfy96+L8fyqym9j/4v/4yFOtqJPi/ELDVcCsj+L94YA9bgfX3v8Y9Ynt09Pe/FpiUDePw97/EIPbaL+H3v6wtCyRP3ve/Et1T80bA97/KK/wD6Un3v3KHNyurCPe/Z8DfK1oH97+mt2+VlPf2v66xPRXsz/a/3Klhe4DI9r/g+jvXya/2v4clmIiBrPa/rNyCPVGk9r/wYPrW/Y32v3ZAV8GHgPa//yewtrJb9r8ovsTM3U/2v9aV8c0MTPa/RJQCvIpI9r/8EQuw+EX2vwfdE/6aJ/a/upsB5gD99b9UBFzKN9f1v6sNk6PTw/W/UmHGMcC39b+ar3LrD6z1vyRsHcC+qfW/FGh9aTyL9b/S6kXiVnz1v5D5OrvoavW/BDkRA6tc9b88Cjf1DVX1v2QKOsgsI/W/LMhMJXfh9L9pZIGkEd/0v2osQjrswvS/E/fSO8N/9L+YxoiUAFj0v65YAuIQVPS/OM6dzkbh879GEeuha7fzvzBgYGTKn/O/Wkr7XJif87+RdA2WG5Lzv9zb57vTcfO/iJiVXsY487++knhn2zXzv4Y1rHzwEPO/LtLC52UM8798l29Lqufyv54bQ0act/K/qjyoibeu8r+clV2eQqfyv4bsYfRtpfK/mMecau+H8r9q61Aw0FHyvyfZbA8eSvK/9tw9xG4o8r/llOkyex/yv9QJWTfb7vG/jfb+hurW8b8sEqKN06nxv+IXi/4KnPG/K7CPGyCO8b9s8ZEzCYjxv/dOefAPWvG/zHNFRM4w8b/KLWb1bgTxv6gssS2i7vC/bQsbaefj8L9Iy20I/t7wvymgkUJj3vC/5lM9Ltna8L+osrMU87Hwv1vkfh9er/C/QuEYYExN8L+lX2HbYTzwvxl+UTURF/C/oLGyFH4D8L8mlrTfNwHwv7ys2PVrPO+/rIIF1av+7r8vk3Z9HOfuv1z0p6lx4+6/4C3Xkyut7r/LMmpDkH/uvzSZhMO2Ee6/8IWKTebC7b9TscToe2Htv5ta7OFADO2/wCESaGHm7L/h3XJ6j97sv60N0Ku0b+y/lChT3gc17L8XU2HMKeXrvzCYRmpGVuu/aOygNJQu678pqsyULvjqvwQhPnH+5uq/pCtl/hvh6r+QXXdNiczqv2U56epCwOq/oEZJJTGY6r9CQkxqUoPqvzBCgA2peOq/Btbbjfx36r8fmrwJaBzqv/DeesLd6Om/DFR09q/m6b/OcZRMbtfpv5UocZrCZ+m/1pAACVEo6b+lWJRhXxvpv4ifGEe7COm/e4L5b4vm6L80ZOSevt7ov8oyWwh31ui/6HjwVhC26L+rgeIdTnjov3R+rqU1Xui/sriLJNvj57+7hnw6xjPnv1qQFkNF3ua/txvTX63N5r8YaOsyLs3mv9gIizBqjua/z43t+gRf5r/JijSeK0zmv4agG86bNea/kUG5in4t5r8OxAfJDB3mv0A9Z1+9Dea/N5YSM/LF5b86I9/Ce7vlvxKwDeq9sOW/4mdxoRyn5b+19Xxds5Xlv/b6halcVuW/gseB7Sc45b9rp6gAaB3lv39UfvfYGuW/wNfxaz3l5L8RMGnJwtjkv76kzn7xw+S/0q2NwFxy5L8TfCGrCSPkv5pbK2b2GOS/bJKQ/VHn47/CjQEv+tnjv2MvEy48tuO/+O6Vsq19479YPtT2d23jv7hnvDLtL+O/WltYhRP+4r/0kXHa4criv7j9m1s1pOK/use+V9J94r+SmvL5QGbivzti652u+OG/C0joy3SJ4b/wVBgbWXThv+47/pU+N+G/iozSmcvQ4L+udDCAY5fgv1mjgVKEcOC/ne+o5bwV4L/oAE87MwXgv65qL3eurd+/sO8QZAKI37+E61bxV8Dev6co1yI/5dy/EeSESMri3L/ulyScq9jcvzeZlDxPVNy/1hgVDFf827+3UdDO+cbav0jOm9uERNq/2+fMqLcj2r8qGVr3LanYv1cYX+j7ldi/7VJF2SjQ179iXvggIUHXv8G9gP96Gde/uW/PgGv/1r8rW5E5E//Wv/5SxzB53Na/QulMpKNu1r9nfA3XsTfWv48i5Ap5Mta/UEXJOBrV1b9LR09tcOvSvwyif0oJktG/sqHrQc+e0L9y8hTJrJHQv+Z8Ll1csc6/kOBVk3h+zb+hIjrrMSPNv1Td3xt68cy/+MQ/aVtsyr+6ziGk/tTIv8SQv3RGfci/rARxMAMux79wN7b0lCrGv6ZeLBCefcO/ELg/eisyv78gLn1uNsK2vx8c6rVFsra/ZHuPh05gtr8Qct7Y/o+0v8iy4ayQoaS/KBda+DGemL9Q663Ko/eUv3CbETZgMJS/WGMlPiyXgb94/9F6Dih+v4B7YRGtAWG/ALB/2BiZKL/wS7TicCyUP1D/92HZ+KU/514+PR4DwD846a6zCDzCP+6tUHTyQsI/8oLy69UYwz/KwXW/47HFPwxWod4h5cc/kc7vYjCfyj/5ZYyE5/fMP1AQGtSYV84/DuQrQhN6zz9MlfCqzMDSP6xT2lahh9U/VhKMW81h1j9AXCjWSvPcP1qB7O4WJN0/GMv3b+QW6D+ISHHp6S3pP/qKjinSh+k/YnXQsHXc6T/CQWV4qeDpPzI88tkvueo/2LqNQuu/6z9QSSN5U3XsP7QOrTLaSu0/85BcfT0v8D/tKqgOCYLwP672U4vSi/A/0TqBjc+Q8D8t4p1NbmjxP4sc+SUWpfE/JnpK6TTn8T8wQwcuEmTyP+UAOYotivI/1I+o/uHI8j8JYMU6AvTyP5J1fdhYCvM/j8CkErgz8z/CrTeudEzzP6WuaUzifPM/4l2lGaKE8z+JKfM4xZbzP1Fpvv1/n/M/jDaaILLU8z8slP0rCy/0Pwd2px6YNfQ/EdMKvJlB9D8MySZqhUT0PyO2prCGcvQ/DhFVRe5z9D8wPE2rwqf0Pxpci9QnqvQ/SpiJIDm19D9nO/FGitb0P/jGmiy5C/U/3HSBkSgW9T/zg/ePIhj1P4OTedt7PfU/BOSjj6FF9T/eAiA7Hpf1Pwx6WwAas/U/ROZuVTO+9T/ewmKZlRT2P2TtrygdK/Y/HDfU22pX9j9iT5bOPrL2P8i0rsKht/Y/rfQ9ZGK79j+wC+85vN72P+BuBLmf3/Y/VGuVHI4o9z/+A3iRSIf3P8gB3bFokPc/fgrSUwIY+D+cL3nSB4b4PxL7w2Uv//g/Su0v4X9X+j//tkPmWPz6P/CFysthU/s/jAjoO2KB+z+ggpI7eab7P3MReeQX7Ps/IzjmDXH7+z+xqBkhegP8P0YpyrannPw/A5MAubbb/D8VBYd65v/8P+lb27q0KP0/ORHgGxRV/T/4qmQAwdf9PzRNecWd2f0/OPXjr1wJ/j8TZPdW5Rv+P3ekMEZfI/4/8aacBFd+/j9VXiel35r+P13ic02Zov4/Q985Qt7I/j/fPJLIrEf/P8+R10FmW/8/cw08wMJo/z9gbJjXr2r/PwRJC6qcd/8/rSsTJuGB/z945Qm1+5X/P/uo0+f/nP8/hFs56pas/z9Nj/9X7Mf/P/1rmIrX0v8/dRKX0zfs/z9cYPNfMgIAQAduyLDJEABAVmg3mOIVAEDqpz5a+hgAQPvyMughGgBAldYoEN04AEAjMBSF1loAQMbEyZ9YYgBAFDgRYCByAECVl9iWnHQAQHV3c6W5fgBAFmUpp6+LAEDzL2re+pQAQGQk7vkMnQBAM/9BeTSdAEAUJ3SRGqIAQKhLb9AvpQBAsiHsqBixAEBxkftNObkAQKhBaGLAxQBAzrso3Y/iAEAHTTcQx+oAQOxbZCqK/wBAgfRCmPMCAUAnD7SygAQBQHU5OcJvDQFAPyD7+cMPAUC84Gm0wCYBQC226WkmLgFA/RDqI5Q0AUDiZDHXQzkBQLVFcjGFPAFAJ03YiJNEAUAJv4u1ZlEBQBKLpYCeVAFArXzswLZkAUDYMN+g120BQIH7cqgCcAFAs1QKMUhxAUBFFRKasHEBQJuNw9GUdQFAGTF4Y/V+AUDPDfPr/IMBQG5+qY6BkQFAZN1zYm2XAUBxTPKR6ZsBQPQQ37NnpAFAITgZBBCxAUCPvZ+IMr8BQLEFo8eDxwFAq9chDTnIAUAttQllkckBQC21CWWRyQFA31uOS7zNAUACnSWGx9QBQBeDU/ZB3wFAlAMrs1jmAUBiLg2nN+wBQJum4rLj7AFAU0PCuLXxAUAEaDUYhP0BQMw6mXHI/QFALvKxEnEAAkCdP78tphECQCe2E3ZhFwJAZaEQ/OoXAkCa7UDb+ioCQJfUvqrAMQJAHn0Gbjs3AkC8RUlHJTsCQN+j8WliPAJAD+af7d9FAkB76WXbHE0CQLAMVq2/UQJAF3c8XfxUAkBU4+v/enECQMRGCs/rfgJAbC6RtO6CAkCr3eiGp48CQBfM/glmkwJAUrZRKxSnAkAwdS8BhbACQMfGMNBAyAJA", "encoding": "base64", "path": [ "_data", 0, "x", "buffer" ] }, { "data": "A4b87uhq7z8jS8gh/d7vPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPyNLyCH93u8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPyNLyCH93u8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/I0vIIf3e7z8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPyNLyCH93u8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPyNLyCH93u8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8jS8gh/d7vP+bencyiC+4/I0vIIf3e7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8jS8gh/d7vP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8jS8gh/d7vPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vPyNLyCH93u8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/I0vIIf3e7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/I0vIIf3e7z/m3p3MogvuPyNLyCH93u8/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j8jS8gh/d7vP+bencyiC+4/I0vIIf3e7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/I0vIIf3e7z/m3p3MogvuP+bencyiC+4/I0vIIf3e7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8jS8gh/d7vPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j8jS8gh/d7vP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuPyNLyCH93u8/I0vIIf3e7z8jS8gh/d7vPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8jS8gh/d7vP+bencyiC+4/I0vIIf3e7z8Dhvzu6GrvPyNLyCH93u8/5t6dzKIL7j8Dhvzu6GrvPyNLyCH93u8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8jS8gh/d7vPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8jS8gh/d7vPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z8jS8gh/d7vPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvP+bencyiC+4/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j8Dhvzu6GrvPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuP+bencyiC+4/A4b87uhq7z/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/5t6dzKIL7j/m3p3MogvuPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvP+bencyiC+4/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/A4b87uhq7z8Dhvzu6GrvPwOG/O7oau8/", "encoding": "base64", "path": [ "_data", 0, "y", "buffer" ] }, { "data": "jevKIvOGQsBOffMmPL44wAQBjTIudzjAQvtMthRiN8AosLMHhlc2wPZRZiOivTDA08TPL5iMMMBApiqyAUswwMZyNPHvii7A9rK4VluFLsAKKuzXfzctwPaf/4VHSizA5uRwM5MNLMD3Pjh8WbYrwMqqiKkuQyvA+JICyxujKsCsGW2QyeMowPDH56/fZCfAr7yJe8o7J8D4YhIGIzwmwCRis4jQDCbAgrLD6DDgJcDot0gYTZolwCxuCvZ2HCXAslRVy4T+I8Bs6Ja5J8wjwGZrE61rxCPAVIQuIMRKI8BJedrnAsMiwANC6VLCtCLAFPT4n4CfIsCfuMxv9YAiwCEHd0wEcyLAYVJF8elDIsDvrbJPFg8iwJ2cMA9y9CHAGIbJCcinIcD88HJX9oUhwDW353pXVSHACKGJUoKfIMDL75szKWMfwOk7WagJwR7AqtRP8buuHsDmKcC6mKEewNse93nchB3A3485MKKEHcBHr4TdUiMdwIgjwJ09IR3AxjXA2jTCHMD26OM67LccwJBI4ctslRzABUD6d951HMA46WqwEI8bwA79Z4UjUhvAdiWOZbQ6G8DvPuMuOTgbwEi7kwVp/xrA6QkM6BryGsCUlzue/+8awBKQjzBQ7xrA+YxuIHTHGsCw5zdFgbMawPgh5D1adRrAr4BOmYZCGsCQ/oyMLwAawChVg4Ri7hnAy9WiEnqWGcBx1NeNWXsZwLIh8mBOchnAYN6EGHJtGcAGlekhNWsZwPiHBH5hZRnAWPHjE1lHGcAypie9PCsZwCGCIjNxBxnAD3TdWUgGGcC7ckWHQgMZwO7Gw6r+2hjAp7I+4vfUGMDuimhrTMQYwGQKTK+0vxjAUK4eusmRGMBqZUy3+m8YwDVuDM/CYRjA0Om4kXkvGMBZKG5qtOwXwA03WD3txBfAxGIetVy0F8AsQZkWCnUXwJO3aMPEPBfAV0N8OHMqF8AG4VpdMSIXwNYDpjGzBhfAVm5J/kDgFsDKcePxh9oWwLZCCKri2BbA1F3v2VTEFsDVn6K9tpkWwHgfvtFdchbAGrkK2HhvFsC3WCXSXFkWwD8vO/rKHRbA+eQgGwwUFsB9NXTg6xAWwLvD2dBgABbAKdJsG/nnFcDeSPHdcN0VwDWhZrZZzBXAsg5K71vGFcBpZ9Jptr8VwNw7ekLEpxXA2jqEZQ+SFcBZQr/lhHkVwPfh6iAHYBXAfRgIQQRdFcC0lmSg61MVwJkNul7uThXA2NDuibJLFcBVKO2eoUoVwErGhNFGRRXA0xoYkLRBFcASyHSDZDAVwAraErmsIBXAOt/cGxvwFMCoyHctcOUUwN7sMW/p3xTAPn+IQ/feFMCW9fXBZNMUwHwXJeED0RTASq8+0T/NFMDwMSRqY8QUwMott1a3tBTAJXR2wBCuFMAYYrUr7ZsUwAUtzYuZmBTANifD6xZ3FMBUCK1ogWMUwOB2kIMOSRTAhrq5RC03FMA1CK8Scw8UwKTzrbYjCRTADq5NwNDYE8DnyiFSjpUTwEKAQmxKhhPA/62S69F8E8B7W1P88FsTwND1KxuRUxPA3gioWYEqE8AVz+9xZSYTwKCU0DsaCBPALGJm5UXqEsCG/l9WnrESwA6UW8kusBLAFl1L9omsEsAbXsd34qUSwFxX1zVYnBLA14JpyQd4EsCcExOa92oSwEvqoBPlTBLAq53RwBdDEsDEddoRBT4SwHareVf6NhLAS5TtVwYREsAFpK7cGOURwBtQ1NHw3RHAaXt4HbzdEcCKe6h6h9URwDWq7gKwvRHAFvKrl/qwEcDBJLFbyKkRwB1jAjwuqRHArEn0hUykEcBP2hIKi6ARwBJQ7Xx8mBHAcnnnDo6EEcCwBlqXNn8RwLuoTkT/fBHAuDcgkl1vEcA9ylPBoWERwKPz4+5EWxHAU/uSMNFMEcB+VQgF+EURwCoHnUpPQhHAdmzvu54pEcBrXxPgkycRwDsv+3lrHxHAmLIIudQeEcASSBh3PhgRwOJjlNy0CxHACi8DK3XtEMC4R2/JZOoQwK0HjzfnzRDAZjMrMR/LEMCxeCI16awQwJXQaazknhDAM2a+dPaWEMDK9qJ8i3wQwKm+uzpwdxDAWyrHt29yEMAFbnCJUG8QwHtgfjgYbxDAy4agXC5tEMD5Ny/H02sQwNkI9pUXYBDAB7BjK2ldEMBmAf+0hFcQwD+waQXYVRDAeOLt19JKEMDCpVNr3jUQwFC97DlAJBDACqDee1kiEMD2+6uSeBwQwKvb8MONDBDAt5t7tHMJEMD/fW37gggQwNzWA/UZARDAK0YOoaL3D8DdP2ph7t0PwM0Bjloa2A/AhUwv8X3QD8CRYa/vwbMPwGdyPzKorQ/AzmBHremPD8Advc/jp4kPwC/3qo6KdA/AHpGGKxp0D8AiUPhAA3QPwGEzO/krZA/AZKxhJa1UD8AUDIUJvVAPwKnGeRE4Jg/ART27H3gkD8Ct1PL3lv8OwHmUlW+y5g7At/Buoq28DsDA9cKaGbcOwMqv89IxpA7ApyaMTN1nDsBmNWg3JysOwCfu6N38Iw7AHyMnufQEDsD8j3Oy8PMNwFGXOlRN7Q3AkoSDCqDcDcBwrkENLtINwJ6NismWzQ3AD5xN0CvKDcC8tAKqY8kNwM9HK7/xyA3AhlQIQSzCDcBUcnV4CLwNwCtfVVfruQ3AcbtRzZelDcCvK1pd+qQNwF0SHWHpjw3AMS3OGNyDDcAFCtHk9XENwG4LFaGmWQ3AR1hY8zVPDcA9CmtVbUINwBMlk4EqNg3AqJ5V8ckrDcAVTFpfbSQNwOGxKgElFg3A/xDcVAAFDcCkY7V7tQMNwJnKa0Hd+AzA7Y37BsPpDMBl3aiCzuMMwJwpBEyv3QzAzo5HzFfHDMCjpEcTIL0MwOSHSSgRpQzApReInzOhDMCMLk9UvoMMwJffRM39eAzAEJEp9b53DMB88BNqAWgMwIaBteYYXwzAjGrLF2hRDMAOr+5lhzwMwG6jJqXeOQzA8magfKsmDMDgyMdVkyMMwP4I/LFQAQzAlTryyiryC8AaoThXPu4LwKx2WATo5wvAy38Voi7lC8DSoCZT490LwOJSsXTbtgvAwM/HvN6vC8Apfp89SKULwD54PpzXnQvA6P5NhEKdC8C8gKJxcpwLwHTVVzdaiQvAAAvUZ+uFC8AGIAaZ3IQLwCHru/9AgwvAeTum3HuBC8DTUUjz9YALwO68ax10dQvAma82yixnC8AY2N2cFmYLwMjEhDZcYAvAodS6TghaC8CJQy6QsUYLwB4QegdnOwvAXSl8cVwtC8AgD7aQBS0LwC3kpWTrAAvAsFxRg4n2CsCPmWmLVd8KwHDfgLBS2ArATYS/2mTUCsBX5/TtCsIKwALz1hMtswrAy3f62cuwCsC2dM05q4sKwLfDwikjiwrAW4zBEHNxCsA58wpAUm8KwHStieaNXQrA2NXGdHVUCsDHTCb1cFIKwMQdYRuVTwrAhbFy1oZDCsDC/YGORj0KwFI8nRXkKArAeVmwMXYbCsBBwG3zEhoKwFZEvWpbAgrACm4679T0CcCB+g5dM90JwK7HYUVA1QnAZg049mXUCcDrkgSu2b0JwBmkihJNsAnADlFuenypCcDN9Z9/qaQJwBr82z7ToQnA9Ot7vEGgCcDBlWiKqpsJwNWf66D0ignA8L0x/319CcDJxUZVrHMJwM4jdsmncQnAE+oYZLBTCcAi9seqvFAJwAEdyK6PSgnATvTt+aJJCcCAUICoPjoJwHBOzxJqOAnAXflsMEo1CcAeLaiVJBIJwAigE4btEAnAWzgitPf2CMBkI/jVmfQIwKy6k23D7AjAVcSdUFblCMC5DJqD18wIwIr3m9fqxwjA9OTEDj3HCMASWnyp78QIwEBpMwYjrwjAZBti9RetCMCGI31+J6wIwD/YihStqwjAPoXrkN+pCMCDmB0AeqcIwP7r80xXlAjAdHKJPIiKCMB046G1MoQIwG9XJNcjhAjAB/igWWt7CMBurLsDSnYIwLBgnNcibwjArqNCXl5tCMBYTu1ea2YIwI5u2N7bQwjABruhYsg9CMBBWXtBQTcIwKeb/0E3LgjAVC3urzIdCMCClpBbdBUIwF8oHvPEDQjAGzzmhyoNCMDJyLf7Z/YHwDp8GDhH8gfAYorp35buB8BT2sU6FtsHwPXNVGi11wfAzkPvitTQB8ABm5j7nskHwKayGvVKvAfA826gJie5B8AHFG7vT7gHwPiHNY9YrgfAbdtOjlemB8AimHrwNqYHwJPLm1cHoQfAS4BL76WdB8DTyldYd5oHwJECyitwmgfAYFSTZFuPB8Awen2ng44HwILyJoytiAfAt7HdKf2CB8DwEqmtC4EHwEKB1dL1ewfA7UE6ynB5B8AhfMSU1ngHwNeJlstBZwfAOsNwAKo+B8Avc8Ch0D0HwGIRWBviNQfAKGV4x4QyB8Dd2kGhPjEHwMeAUvjSKwfAhsp/zTYrB8A2ripMjyQHwEd/dsMeJAfAdPcpgEEIB8A7bedx4v4GwAjU5efu/QbATGhlbuvxBsDWWv4hcPEGwLUQpVLN8AbA08KyOnnoBsANwDUtvswGwFskB3fgygbASQS4RizIBsAyBEBD2LsGwMpgAfLaugbAsKrwKQyxBsAFw5D7taoGwG8FHXAtoQbA2j1sBwGXBsCTNsVvkZEGwG2QYguljQbAmWMsWSN8BsA6cF9Ib3EGwBGNM0C+bgbAULwfhUJqBsCE6iiWVmkGwHdCTS79YwbAyBLQs5FDBsDsziqElDsGwIiF1dBBNwbAAHvsXko2BsC53Q7dcSYGwAGgwhvQJQbAGvBv1VkZBsCxZv26KhcGwNg9qFBIDAbASL+mwdsIBsAkIJtbtQUGwEfq2JVbBQbA5PHfFyj7BcAa3/PUNvcFwARr7LNV5QXAZJb6DYvhBcAPDup1gdgFwJM/CAJizwXAdJHkQWnBBcAGlMUHU7sFwJDb/bAHsAXAYH70p9SpBcDM3aBUC5sFwJPaYqZmlQXAhFfHB9SUBcCl3qXQa5MFwBaPnyshjwXAHbUjnqyOBcD1UtJRP40FwHNq4vEfjAXAtQoLQ8WKBcA8SfMs6oIFwNaxzwS5gQXAERLWg1xvBcBNiI/6tG0FwEDoKTE5TwXAGUBVLolKBcB/AOXe/zEFwBsrM7xhMAXA2/AXVN4rBcDey6TtQSQFwLkVmqW+GQXAfI3fwGYYBcDJkpBOpxMFwOZXp+AEEgXAeqKSnyYCBcBJwkgsW/AEwPGDwsit5ATA0F8Ak1HgBMCfpX5LxN8EwJvcwAIW3QTA/mkacJfcBMBMjqXkLtoEwM0ryEC42ATAhkZXfwbSBMAt+oho38oEwKKdsoonyATACqbwZdfFBMA4qw4xh8UEwKXZzHZPwQTAfRNLGkq7BMAMrvqm+rgEwMaUETRUtgTAsC2Wm1uqBMD5UNyB0akEwLY+aq8CjgTAMkS0ot6CBMAHgPQel34EwLL3n+mvfATARXQYxo1yBMCIU5LdXW0EwDofoj+zZwTANU6lEAhdBMAOw8ecyFoEwPZf72soWATAT2u4fTtOBMCYvTHINzkEwG3d3RZ9MQTAO5BDIp4wBMCtEwOt+iwEwIk6ccDGKgTA6UYDUw4lBMBuIg7aihUEwLgcPqGaEwTAMo/UAWoQBMAF/XONewwEwLhNuQ1HAATAb076t136A8BlvRx4y/gDwBKqkbGO9wPAByc23IT1A8CUzGKzXOgDwOVnJ+gs5gPA5ruNWpziA8CTgldzPdUDwCN1YbGT0gPAwphBOLjRA8A12UFkJdEDwDpatAZ/zAPAdMzwMnLKA8BQRhUia8kDwLTL6+aHxgPAXbOnHqPBA8A+Xg85HbwDwGa6UbIytgPAE8el6VizA8BiXvB8BbMDwKfwN+MIogPAd0REEkahA8DC/qMuGJ4DwFiGXWzXkAPAX4YgDcePA8AfsPeUTIsDwNKHO6MEhgPAfQgO2/F9A8CrVdtyvn0DwDlwLUu8fQPAS2VK/cJ3A8CyAmBHsXEDwCHWVkw3cQPAaC3JLiJxA8DT/m8Z0mYDwLNIVCamZgPAqUqGMIhlA8BHwITYgmADwFfj6aCeWAPACw9WKH9UA8BTF1Rut0gDwPTPKvdpPgPAffda1gM3A8D0+9FQSzMDwNkGboTtMAPAGhfp3agnA8ARBOzm3SMDwI1dcIQkGQPAwixYFV4SA8BSx+ZluQ0DwGS8X67eDAPAtfY2yXQMA8BdopqBqwQDwMUkJ01yAQPAjJ9rF7rvAsBHS9pp7e4CwO/wZR8H7QLAAg9UBrfhAsDdYmQZHt4CwHJbp13VzwLA3XNu04LNAsBgConvsb8CwPSQsC+BvwLAi7k5SMW0AsAwHEv+X68CwMZCeVzsoALAuwVZecKeAsAvR9+c65ECwHdr7qNMjwLAMF6p99p9AsABhVjsQ3kCwGMY+G1SdwLAhPN2qqZ0AsCySPgC22oCwHqYsyN9XQLA2e2BCYtcAsBUXD/PWVwCwFiOouweVwLAPTD3j5tTAsAZxX+AfFMCwJsOOLMrUQLAaypuTCtRAsCeKjXux0kCwGz84lUCSALA71Twuew7AsBTQv56rzECwNhUSE85KgLAYxnDdkggAsCxGJx1JB8CwB5WRBhzGALAlkoY/MkWAsDt2rQs/w0CwDBgfcVHAwLA78POGA0CAsC4sW75i/4BwKIx00FT/gHAld2n9W37AcCtEi0yQ/oBwL/jII29+AHArchULZPzAcAy15QGBfIBwNHBZfS88AHAuZWiDZjqAcAV3gEeKuIBwLUyCs8I3wHAQbOmbK3dAcBAekecWN0BwIHb2T5t0gHAYBBj0fLRAcBrrHJrO8cBwCkwxN6XwwHAPLwvNWu+AcAmpdxH6boBwM4m4frHuAHA7raU1Bm4AcDpfgZYSbUBwJK+Z4RmsAHAn0nQPJysAcCGkctb5qYBwE00DXUepAHAoCO9SFmfAcDR27fIRp4BwE8g7lZ6mwHAy8/Oin+aAcAmrO2mW40BwNGDG8PijAHAV398ohuLAcBzyizADIgBwNG+7dcqhAHA4htDb4aBAcAlW1ObF3ABwFaObtsSbAHACc/TetNpAcBgd4sioV4BwG1XJYPOVwHA4hIrRLJVAcDK1RNaV1MBwFL6J4LIUgHA/aYU4pBQAcDvP4crTUoBwEhmYGGsSAHAktAWVKFIAcBTARC8lkgBwNU/jnkjPgHALupHnos6AcAKj6xxKjcBwCG0BpSqNgHAlhUla9Q1AcDTSF+EvTUBwAKRzZPEMgHAXu4Q+3YxAcBqO/VckS4BwENIjkI8KQHAbNNxw60nAcBu2jJeTh0BwLDP4onGHAHAmSvPc0IaAcCr0+ZXQhYBwETguPn4FQHAq+EiHTEUAcCMiaRepAsBwMwyO5EQCwHAA3xXZe0KAcA4kFiMEwgBwGAw82aiAwHA482x1DQDAcBCgwUpcQIBwI45GEit/wDA9l6mHzf9AMDp/3UK4/sAwHwXWwZH+gDAvCCgPHv5AMCl9u5F1PEAwPzo7HO06ADAPc3w4nboAMDZcbIyZugAwHWCm7ln5ADAYIpc007kAMB5TlJqdtwAwFNwOBM12QDAos6joTPZAMAjBlhXKdcAwOgfz/kfyQDAI8YkBtnGAMBx+SE6tcYAwDWjnkuoxADADMaNHOi8AMCZxaOh2bgAwJaOXQ7/tgDAXhJwGjO2AMC+oPbp2bAAwEPmQEYpsADA/a1jCmatAMCQKdMr6qgAwPUhQUiLpwDAthbSBISeAMDA7TiGAZwAwM3W1KOHmgDARYdkweaZAMCzZdrL+pgAwO8a7eM7lgDAjP1EBDSWAMCYqy7n6JMAwOAbjlCrjwDAt2oYmJuIAMDvgf36zYIAwEftx3O2fgDAqSya13l+AMCVeLVJ630AwA304MK7eQDA+VeIevlyAMALXTognmoAwEd/vqqJagDAsLIaOdNRAMAsrrW5r0wAwDxtmc1ZRADAbJjFQhdCAMBIIyx6zz0AwMRVQQPbNwDA8VrpmcQ3AMChLyYcpzcAwLEleJBCNQDAfSZVJ8kxAMAZnxWUmTEAwGj5v+x9MADAKgLLdBAvAMCXWvH6BCcAwOzQXoyfJQDAWYPWjjwjAMBo0vjXbCIAwLW31rVEIgDAL1IzLtYfAMCUP1M4hR8AwDn+tLFWHwDAsVCGoJUeAMC4aX5auRsAwICzP95/GgDAy+S27LYYAMAoXioyUhEAwC9ZFcxJDwDAXwkyLxIPAMBG7RelUQ4AwPsF92t9DADA3581a/AGAMA5EYD+PwIAwAgwrnoP/v+/+YVlHiv5/7/Y59giG/L/v0CyPTub5v+/N8dQMArl/7/Gvjvkddv/v3AejGc42/+/Pq78ptna/78OleMlydH/v0aZg1/2yf+/0BSa40HJ/7880SlPDsX/v9+YPiXJxP+/2tKGoYi7/7/sRI3pjrn/v7p/S20YtP+/3evbqKKt/78sZtOqhaT/v7ie2ddipP+/xVGCW2ui/79mOp0IHaL/vx4s7hWzof+/mm4h4aSZ/79MY3A0N5n/v+WfYVZalv+/NoQ7P7d+/79cElv9KX7/v/2okgOHcv+/pBhnxEtn/79DCDwAPV//v1OdUMaIU/+/DYTMdLlS/78+kPQQwkH/v6efwkTeP/+/ytqJ1F8+/7+u0bQ41z3/v9Qu8/PXN/+/D7jiz1I2/79d8wYovC7/v5wripFsKv+/sMZ4edsp/79GusXo1yj/v3qKDCfSJf+/Ax651SkH/79dYauJSgL/v2ECU5EvAP+/LtJtMvD8/r+035uZHff+v9NbKgjC7f6/pSZZxaHo/r+raV5jEtT+v+DDQA1Hz/6/rncLSWTN/r8ygG/mEsr+vyylukL1wv6/q+piADe7/r+q1EBVqrD+v3avyZOQr/6/GEeHIZCu/r9K3lIeiqr+v3B+6Qbrpf6/tyHd3qul/r8W+Oc3UJ7+v9oH2h5Emf6/WbxrcLmY/r8Gh/9NvpH+v6cuOeHth/6/OlbYdMWH/r/T7vSYl4T+v4/+rClTgv6/00OTpEl+/r/pN6EBaXH+v+o5R5GXZv6/Bsi6jLFj/r8pVUAydGH+v7JomzSfX/6/NsYbz3lU/r/14JYss1P+vxqTRqXpTv6/JeE2r59N/r/GtpXpi0f+v/GDCLRuPv6/S7YF3TI8/r921VGtOjr+vxhFL6wPN/6/ApANn/gy/r+00vNTzzH+v9AjaHhxLv6/Wa6KiOsr/r8cquXOGCr+v2BG5oJhJ/6/SWr1fesj/r/UkXyd5iL+v/HnLtTsIP6/QG9KFFEf/r8HJdVibBr+v/6UxrQuEP6/DH+imfb9/b/+kQTaOfv9vxwbXljO8/2/5O3lOLrz/b9cMz+/f+H9v07T1mv/1v2/aMtiwcbS/b81eiVYXMP9v4QLwGNOwP2/JAIwKaO9/b82XN+yPbP9v8Kedo16sv2/Y8qttwKw/b+YtF9Sfp79v1sVVbQ/nP2/xjpL9weR/b9Y2w8BUIP9vyBGi9Jygv2/1YegeBWC/b9FkB1hun/9v+/AjVPUe/2/GlnxKQJ2/b/vq+6ahHL9v3X8Zj2xaP2/Oqs4qzBl/b8AvHlVBWX9v1wnwIbuYP2/su870Opf/b/uWexb7Vj9vw7oenZQVf2/stvSsypP/b+Gyh9gGU79vzrdZS/ZTP2/hJaG/TZM/b+wCcLalUv9v/yibj2ER/2/pjUP/kEz/b+eA3GaPzP9v/JL1epGL/2/jlLpi28k/b951TELFR79v3xJymPdF/2/Dz/hL9AQ/b/HsAhF9gL9v/wmGqqiAf2/hzs4QD37/L+sEQTBQ/j8v0yCNZeV9/y/fFf+Evr1/L82fTBBa/X8v8mC2b2V8/y/6SM+dk7v/L+KabkU5O78v5JZQzQl6/y/zG8ZOsDo/L9pEUoBPOb8vwDloGbd5fy/hQn+PZ7g/L90HYgWi9X8v3/mEom20/y/7LT8cgnT/L8wSOVXPtL8vxQwaTGP0Py/oBAW8tTO/L9XoKrfQcz8v2RXkpuzyvy/r6nTc63F/L8kfHjfRMP8vybEuZUtvPy/MqHekZyz/L88WofzUq38v+60WqJ8q/y/To71zh2q/L+ty7DTeqj8v5qmHcwZpPy/wG18Vz+e/L9YgxdWlZX8v0RPMtggkvy/zmX3ImWQ/L8Nv8BIQo78v3hFZv7wjfy/tllw+6WL/L90CzvikIf8v943QxoQgfy/oFBUSzl+/L+FsGJxtW78vxg236AgbPy/RB5ZP7dm/L882+jgRF78v/v7qj/sXPy/1rpJLkpM/L/zSGJ7uUv8v5Op4fJfSvy//BsehvFJ/L9CVmU96kj8v2YjUQd6SPy/RIFSqzdE/L/oV2ue5x/8v5bbZnHgHfy/74D57zkb/L983QffBxb8v6zvXRDxFfy/V2DTp4sU/L8Wmd9JJhL8vxXgE50MEfy/3qGlHg8A/L8S7OI2gf/7v8epDq+s9/u/jC043Ob1+79igSAGZ/H7v5bfFw6m4Pu/ewegpzXd+78n1ywKOtn7v5KRhgKJ2Pu/npK50EnW+79UO8Pe/8z7v9qFj4WAyPu/hmpOydm9+79AZTZWK7r7v+xcgRLyt/u/vKNmo+6z+7+AsBqKmLP7vyogWqllsvu/lT1EoLau+78wUAQkLK77vxKhRi/Ilfu/4RJTTqOM+7+QhI0fd4z7v9E2oc7Kifu/OIYDuVmJ+7/SYwaOHIH7v1onrTv0cfu/soGv/c1w+790d8b9sG77v6m+KADCbfu/671v3gVa+78g7xVSsFX7v83TvmA2S/u/WWNvcVJG+79PeJFYH0D7v/B7j9U4P/u//unFg8Q8+78WPryRHDz7v7CoexJsLPu/UGl7zSUn+7+5RQ44gCb7v4mMxpOaJfu/LKAUhasY+7/IY9sB+hX7vxThltrQE/u/rhpyd8AC+7/CtPWBHfr6v56UMCnv9fq/e3yNbMDx+r9IZt3Q9fD6v1752CdK4fq/qaJOcqTZ+r8+q2gu29L6v+Xm/9NMyvq/6vm/uizI+r8eQS957b/6v2uIxKfPv/q/gLEsTlG7+r9W/bg6NLf6v6eqcUiftvq/BpgtYUez+r96NAaaW6/6vwNBa5RMrvq/TLn4rOGt+r/2VqhB4qX6v/y3OMfcoPq/CHU463ug+r8NxwVSV5r6vyCQv4SJlPq/PhpZc6uS+r+pfkeAi5D6vzmqsdrijPq/cFUijMeL+r9e+OIDXH76v6IDUs+Pevq/O0pgWvd5+r+U4nJB2XX6v2FlLaCIdPq/3q45d19z+r+Mon7r5W/6vwECE/UCb/q/qK1a1uRt+r8ApFi+OWz6vw6HxEFHZ/q/yCtBQJZm+r8AUEABoGP6vzJMeQLCWfq/WGFBHAJX+r9/qlmMsFX6v0osrq5bVfq/7+VfWZ1L+r8KjMNi2kP6v2z2NPZIMvq/voSS5wsx+r9NLOjK/S/6v2kyNGG4JPq/imTjjSYi+r+cbjVb0Bv6v0Y9313kGvq/7PikgcsZ+r82TF4T9xf6v2LmNan7CPq/4tnshcsI+r+Cr7MOlAb6v3qIfxVK/fm/owR6x6z4+b/sdpUqse35v3seslQg7Pm/xAyl1Dfn+b++zE/h2Ob5v87+Da6i5fm/Gk0+o37l+b8yA3rMN+X5vzTYshMC4/m/qhh5UJXb+b/eYVsn9Nr5v6ABl9MMzPm//pOn0PnC+b9xSDNx6r/5v9KddVlWvvm/KIOwYtu6+b+ffXrd6rP5v+6fKht0sfm/8FLRgQmr+b8MqU52d6r5v2DZvVclp/m/Yo/K/LSj+b+6Gy6e9aD5v17fop8mm/m/zv69jzqa+b8wmD/YK5n5v36x3F1DlPm/jqh36m+S+b84MxVnPJH5v7VrncHlj/m/H9rLIPaK+b+6MRVISor5v13cixTChvm/AqmN9vSF+b9INe8oon75vzywf+9he/m/iCzsZ+x1+b+UG2lybGz5v8x3aA6zZ/m/fzR+U1Ze+b9IbGaYulv5v05Jgj3cWfm//EBmKgFY+b8wjZCXZFT5v16+IQjQT/m/tx9devNK+b/g+aSI8kb5v2lCaXbAN/m/keThr302+b9X+V7lfTH5vzjFHJztL/m/4FzGDVEt+b9Hk3KIByr5v3rHNUSeKfm/BABB8N0n+b+/n5E3oST5vzypd5kGI/m/jiEaUMQY+b+iLI0+Egv5v3RUUC10Cvm/eITShWoE+b8yTiJl/QP5vzimiLrJ+/i/ZtBZX8/4+L/g5iF3b+/4v8OVA1cw5vi/PFJlcfPl+L9+r5Rt0eX4v8XZx8zO4/i/OD9IChjc+L8Tjj6rytr4v4M4I7x92vi/zbLosErZ+L/Gs3UFTcv4vzvxOPi6yvi/6Q2sRHTE+L9Rd9h9ksH4v4bCVqZ6u/i/FvHxQ6W3+L9qxR6wvrb4vwN3ZirwsPi/fICG9Juv+L+qnuZOIan4v9izBWNuqPi/ArZEjHGj+L8kjmdGxpz4v/1i+zKlm/i/ZuA78iCZ+L82U56m4Jf4v5JatNtOivi/hPT8VkaJ+L9F4VzXLIX4v8ZzcrXWfvi/0qABmKN8+L8esIkONXz4v7D7jSPHe/i/Uh6/CYl7+L+xU5DHbnv4vwwsZFsidPi/3lmvpEdt+L/+zlV1EW34v2LBDPtnavi/pi7hVllq+L9DHpCHp2L4vwqhIRzlW/i/+iycpFtW+L+ggbP/+VT4v/DlYda8T/i/KCHd8f9N+L/L4CXmZUr4v8PUiES1SPi/bukwasxF+L+w/2dd6kP4v6rdVUJiQ/i/1eL3MGo++L+vfm931DX4v+RRHyGENPi/zssXQFMp+L8QNaCIuyb4v0XFZgGnJfi/IGLVNaQe+L96MLv6mBz4v8bb9hoQG/i/pOBpm4ga+L+8mCwc+xH4v645R1IvCPi/HLkWTj0H+L92QBj9PAX4v/qYTRYyBfi/F/XVI2gA+L8YuyXoyvv3vxhW4SMe8/e/oJHJSW3x97+DFpNrgvD3vykvlsO07/e/XOLTQ7vt97++vaG1kOz3v8oH5n3H6Pe/Ch4wXDDj978gnICFQ9z3v15zVOcM3Pe/BV/Q/uva978cyHTovNr3v2N47QTZ1/e/thPzzbrX97/TKWDtItX3vy6im+O71Pe/qiCs0yPT97+WMfw2BtP3vzhdo1Dn0ve/vlTB4AbR97+jPwGp99D3v7Vb1I3MzPe/BqmpgPzL978unTW8Dsv3vwS0Hso4wve/k6M4jR+/97+xCQLMtLf3v/oLzB8ptve/DvwYwRC097+OCT3i77P3v8+SMm33r/e/iqfHJfir979qOUbm1av3v8L/Ur1qo/e/gtC/CXSg97887z4UZpb3v8RtLcSUlfe/PjRbb7CH97/0ENSAroP3vz7BSvOugfe/BHQeWXx/9786AP4OOX/3v0cO8OIjefe/LPhRZBl297/5KLS4TnT3v1Dv2c7rcfe/2Msk7CBw97/HBjdtpmz3v/GrkEtWafe/MvwB+Ith97/iMJt0o1r3v+o3yfKRWve/HP0goqtM97/BGZ4rCEj3vzZGv7WwRve/bqbJWO9F978KoGVhVUT3v4msLQwpQ/e/YMLJzvNA97/2WLfWZj33v/2H5peVNPe/rd2pSfoy97/gldgVzCv3vxRANKdJKve/H7KHywkm979etKVKTyH3v069ugGFHve/g2mim9Ec9796sOp/uxz3vyrMSxNrHPe/tbG2/OUR978TFj0QRQv3vyQaCctvCPe/h04v4NoH978P7pzPFgb3v4Zr3yd3Afe//lZ4zrMA978gJOj+OP/2vzzXP7Px/va/9p5tPnn89r8eNmc/cvz2v4OGEJ2G+fa/vM4Nzh739r+o/3LqVfX2v3hbeXqe9Pa/TVl5GDL09r+n5x8+evP2v8JbarBJ8/a/ebovt+vy9r9E81wP0vL2v/O28DSd7va/Rlw6E83s9r/apP5y5+n2v/3e5J5V6fa/sB/aTSno9r9GqGCK9uf2v57rC9nJ5fa/LS0+XdHk9r+u4eIxjOT2v7pbqNoW4fa/7v+bevbb9r/6lYVjjNv2v4hZVcDH1fa/fBtoVJHK9r8e+CgGfsL2v+r3o48Wvfa/Mb2apLS19r8oYdAaU7H2v/dnLq5Cpfa/2gN0/Mei9r+eGg12T6H2vwKhDMjUoPa/9vwCjYCQ9r++LA+a8o32v5RVXQp5i/a/ynB7mAyJ9r8SIjmVu4X2v6D03JEvhfa/NztKmcV69r8lG8YQVHr2v3miRJved/a/VMkXT8dy9r++nOfPeHL2vxdSF5pFcva/zo7J/8Nt9r+QhPO+smD2v6NLvIDPWfa/d2ZxjvdX9r8qneJfkVf2v8hLwDVZU/a/5w3uI3pR9r/J7nzXg0X2v7HBLW9oQPa/MmWTFNs49r9bkfeNRi/2v4vgXT3yKfa/za5E73wp9r+oCJyCICn2vwaGwiugJfa/zep9//8k9r8aD1pTPST2v4j+ikrII/a/A5cY8fAi9r+agDfGBiH2v2YqImxHH/a/l7Qnz/4d9r+aKnInwx32v2oYn5lFHfa/m/ZLvDYV9r9OC6vV2xT2v7BCESeFCPa/JPSqKcQF9r+k9drVvgH2v5R4RSEBAPa/fe3nvHj/9b/uK4KDJf31v3sJpYDg+vW/Bae3idD59b/nLQ0U3fX1v3JvDdbS9PW/xUX+Chvx9b8jQemwu+/1v1KnNixH7/W/vyF99cPs9b97NLxftuv1v1z/fw/k5PW/OMpBQbTh9b+3F2yRjdr1v4Tjocsh2fW/wD+T26DW9b/mLW2fbdP1v+O3tIaiyvW/hgmrkXnG9b+Een62fMX1vxT18dntxPW/n6peNcLD9b8c81zdP731v91ixbkwuPW/48wG10u39b/6oghyzbb1v0AP6+G7tPW/x5Xri3iy9b9X22t2Ha31v5VBDp+6p/W/YPFTjkCm9b8NrBGFwqD1v4R2xvNToPW/6A3D4Ymb9b9gLAf0zo/1vxQv2MGzj/W/JHiRseSM9b9aTlUpLIn1vx2nMkKJfvW/TmvSO9J89b9ZaUxDLXn1v2/z38kMePW/EIsyUNh39b+AmSCRBXf1vy3ePmt1dfW/Xc42wnh09b+sctRWYnL1vwKtfL6Cb/W/yAGsqGdv9b+C19iJ9m71v2AY1r4CZvW/l/d3JQtj9b8z3bIiSmL1v9wmVAk3YvW//FXa86tg9b8m9Hz6alj1v7tj0chAUvW/QlqRJXRM9b+Ta2IGPEP1v+BApGeyQfW/yJOH/JhA9b8i5r8jsz31v4hvMQfmPPW/8kTEvJM89b/vZXSOKDv1v0JRN4FmNvW/ANvDTyI29b8Go+21tDL1v1VAHx3pMfW/q5EZ0k0x9b+BJZ/YhDD1v+Y+5NRrLvW/gY3YAeAq9b8fHZURMSf1v1/5BjUpJvW/vZbI550j9b+GS2xfbCL1vylc8V5GIfW/wwYoK8YY9b9kzHda5hX1v5rGvMtpEvW/yG1L0ccN9b9ublGAoQv1v2qpDPCKCPW/kiprTZgF9b+3sbwq9QP1v14xGOPKAvW/1HUgsxQC9b/vm1K1Gff0vy/yh8Fs9vS/BfHG6S709L8qNedadvP0v0vTsK6e7/S/vI7umnfu9L9B6t6Lqe30vwqkvqgd7fS/rKSrrhbt9L/lJno0nOz0vy1PfrQw7PS/mu6XPq/r9L92yFb5m+r0v2OTQ6Cy6fS/3OsSIwrm9L8IDDj6r9b0v03r4z5t0/S/YC96WPTR9L8OdTpQWsr0v9YwDAL6xPS/4f2cusK79L8jtlnlbbj0v5bsFgMptvS/qIPJuWux9L/RAEZLoKT0v398HC3eovS/GrePHwCc9L/HB1hcnpv0v/CdYE6llvS/KKPXnHqW9L8x2KU4HZT0v/t+a8Z9kvS/AKpoGDKK9L8w9myZvoL0v/sR62pWgvS/24schD2B9L9fsMBnx4D0v7rd1g02f/S/7ITAQjB+9L9J+liyPn30vwyqZw4vfPS/NKXIL3l19L+q8xXfKXD0vzKL4GiVavS/5J+q+YBq9L9EZpds9Wj0v7CmrMfgaPS/7nLS68pm9L+aYfzxCmL0v9pTeyo7YfS/OEx5Ejxa9L87fcK/fFn0v8UAvViYV/S/3HIFICdX9L9Y6A7iilD0v18gFV7YTfS/JzZio2RJ9L/i1typ50j0vzuHm/8SRvS/t/KGnb5F9L+5rzzveUP0v88YUQRDQPS/PPasIMc/9L81UAIm/zr0v3MC59dOOfS/FTBT+bw49L9JZX2u2jT0v9l/ZeQUNPS/ZKc8rGww9L8K3+4y2Cf0vwQI928+I/S/GA+HbZUh9L+4x4L2TB/0vyRdAgc8H/S/MggJ144c9L/izj4JQRz0vz+mDAFfF/S/usglCF0X9L+aWQd0URf0v3C/nfdxFvS/wifZsbAU9L8If6FRrBP0v9x7pX4mEfS/C1oH6tMM9L8j8p6Nxwz0v6CG6P6lDPS/uHiB7wkM9L8y2V6PBwj0v0T5OmG4A/S/jJgKcA4C9L9y0AcLowH0vxm0h2XQAPS/xPyvUZwA9L+QzehxKvvzvzQb0qtX+fO/csDdwMv487/AmruwlPXzv+E7ITpq9fO/Ki7oeKHz879rGryY0PHzv1N1uKP78PO/is/B4vbs87/K5ZQ+vOvzv94ho5O06fO/uMfWcgzo87//NIOs0trzvxJK/d142vO/Rnw7pRHa87+ETFcJhtjzv31S2lax1fO/dWf/KZTO878YLjDPtszzv1gbajUYzPO/MR/X+zDL87/k7c6RZMfzv4f3T/rjxvO/OOy3pyvG879PNy0XFMTzv88seR71wfO/Cw4Y8OfB87/Dob6hZbzzv/zKbxuIuvO/BJnIlxe587+IGVLG6rfzv9iu1aw/svO/lzzrNiex87/72SN046vzv+0rFye9q/O/xtt0352n878D/87WQJ3zv/wEjE8FnPO/hHqwWpWb878WIMAZ3Zjzv/tWdNi3lPO/1p5nW6uS87/F7lNuE5Lzvw/QLjbTkfO/0/qS4B2P879KJnZADIvzv9QxWioyivO/XQ1BnwWG8785hrU8t3/zv6CH6kFbfvO/x/B1W/12878A0bGDJ3bzvwb7Vp1Vc/O/Lv7z2jNr878u6SotD2bzv3CPK6z1YfO/3qb+j3Vg87/1rw2cZVnzv2gczpLxWPO/b2QqP8tY87+SPP/tR1fzv916UsoWV/O/tn+0mT5W879hAXjvTlXzvzdiUSwaUfO/3tNSDeNP878NsANtMU3zv8Zzo6XVSPO/qjXFBFxH87/6Mv2jez7zv3BNICvfPfO/FLg6cT48878eHs5poznzv8Uct9NkNvO/Enz+gV4287/vSGO5iS/zv3wBCx3LKvO/QhEvXTMq878yqgrc0ynzv50hicG4KfO/bPTJakMn87/JYHioEiTzvzyCpI73IvO/eoZtHEki87/G42FNoh/zv6HgRfAkGfO/U4qO7qQY879BMWW/rBLzv2JklHeBEvO/by3zL7IO87+baObSqAzzv/f/RxJLC/O/amf3PYQH879bsOodfwfzvw6qm/IfB/O/BUGo6yUG878/8vD5ogTzv/08b19XBPO/Y7kNRKQC87+33jwl8QHzv/Sv+mAl/fK/aptWzZ388r8zRhUEUPryv1IOyptA+fK/1pZY08D38r8q0La96PTyv8j/1n4B8fK/+1ob0BTm8r+G75ybNOXyv5hbzyEO5PK/s/1jgMfj8r+7u8VJI+Dyvwh9/4Fc3PK/9wgxe6/a8r9wappRa9nyv+g9uTnZ1/K/nq/h+HPX8r9Y+JnU6tPyvyp05TmZ0/K/JkS0NX3O8r8Au7jRO83yv4VtEB6+zPK/Yk/EVgjK8r8I4UiZIMnyv9Ts53paxfK/Z7OyoEXD8r/N/YHgQsHyv0xmMAMwwPK/9cLSHOK98r+AkoAj2Lzyv8rfF5tatPK/+geBS22x8r8WXQY8P7DyvzH8Zpm0rfK/WLSgXkmt8r84+2YcG63yv+zAinXGrPK/PODXdNmr8r+BF5tgUqvyv0vhfG3WpvK/sKOVQhij8r88YOUVa6HyvzQKKhILn/K/GYJuJkWe8r8ryUINeZryv5rFokZ3kfK/MD+xo8CQ8r8ESs7sNZDyvyTcx3DEjvK/RvkG8LGM8r9uG1GESoryv/jFlEnLhPK/upZdzJiE8r/cLq1DYIPyv80oXUw3g/K/ghaJail/8r9Yla4VN3fyv+PxaSfydfK/5lwPBkty8r87fpH3bXDyvw8f7xQwcPK/qufcKj9q8r+8gRtQyGnyv57foJQ1Z/K/XXpCBBJk8r9Cplb6wWHyvzN0H+u9YfK/Lfw7fPNc8r85L2OSzVnyv9vTjTvVV/K/Ao0qZC1T8r/iolbR007yv9OwXXqdTvK/XoUF03NK8r8oCBmX80XyvwzTvA8yQvK/1tyFxng58r8HCtF9BTjyvwBgnB+eN/K/t4bsBLQ18r+TsLI3KTPyv+4T7/+zMvK/efgM6GUx8r/bEYDOHyzyv4UafWv+KvK/plZjQrgp8r+sUj0NMSnyv5/VH75xH/K/nkByVtAd8r/IcjvRNBvyv4QAYqHeF/K/mPI62hcW8r+U2R4X+hLyvwbxnKSGD/K/iHXG3tMJ8r+x3ml67f7xv+ZJL2Iq+/G/Fr4TNP758b+HTMxCqvnxvwaUmIOY+fG/kDD0ClD38b+gpAPhQ/Lxv2quZdWO8fG/WIlogj7r8b9nGxhgIerxv8pB3C3z6PG/x+cBwVfo8b+XQIYxw9/xv25I7AHn3fG/DagwtYLa8b/SlQbaG9bxv3e+cT+P1PG/uC/vyg3T8b84QX+sFdLxvwPRq9C+0fG/oCNbr9LP8b+Usm6jOc7xv5moJ4pby/G/LsBmuxLK8b9MM3NNZsfxv9LlK8y8xvG/MpLSLZjD8b9m+GGr3cLxvxEHHpwswfG/HFSG3YG98b/ymU+d8rvxvyn9gH1qufG/LHmXL4+48b/z8VscQLfxv/ICwy/ktvG/tqXEFtSt8b8/MjVLWKrxv6Rbgy8KqPG/r1jKQhyn8b8GHH4k7KPxv3OvlRBFo/G/tmXrn+qi8b/sNGH6IaHxv2SUhM/ioPG/lwM9/Wif8b82yY2A8Zjxv5R088W3l/G/2Mu31BGU8b/oJXdOXIvxv2rFqUHOivG/9jjzhGiJ8b9ifHoId4fxv3AqSLZUhfG/eeD0xb6D8b/zdYJIs4Dxv69DhrAMf/G/Jk1AM8198b9bNAKfWX3xv7RmKvYvfPG/nM3KsY168b/qCp/1YXjxv0bdN95odvG/bYtvvlt18b8QzPngnnHxv2EJnI3fb/G/RyCD7U9q8b8kbUJSKGrxv7yq0wF0afG/3S6zoSZo8b+aVoHsGGTxvwOy8ftWX/G/LVHs9Axe8b+qpwBVgFzxv82LyaH/WvG/6NAeb8pa8b97kWollljxvwTEkbgWV/G/+P/H/1xV8b/u0VU7q1LxvwHjmC/lT/G/aqVD+NBK8b8WS9HFuErxvx8sCaSSSvG/8qJcv1pK8b+EXKJ4nEbxvw6zR9soRvG/DAwdE1hE8b9aCK/wK0Lxv7QfRxJAQPG/GNopovk/8b9AgjLQoDzxv/w6phHrOPG/3jDHdcg38b9+pheYUzXxv9ynfWIUNfG/rKXJLkMw8b8L0GUzcy/xvyIda5CwLvG/sfC23x0u8b+D+8tD1y3xv9v541xkKfG/OD6Akn8n8b8z+uaqHCfxv7fHfAmeJvG/PO+1Nacb8b/1nK9s4xjxv0vmhax2FvG/LIhvu4AV8b8MvKrR+hDxv/aZjdP0EPG/AD6+LIIP8b9SOBILBg3xv+bpFaabCPG/stSxuUYI8b9oJUsTPQjxv1l+fo4wCPG/lU5y+OIG8b+SdnDeTQbxv9iE4n2rAvG/07auF44C8b+7T0vY3v7wv2lnSnI//vC/lwqaaXX88L9wwd6/Vfjwv5aTdvQk9PC/QjfH5Cjr8L/ABB7cFOrwv6pOwWvr5/C/BRXREd7n8L/LWNJoWefwv4KEVtVd4/C/1nKdHyXj8L8/OAB65eLwv5xn51Gd4fC/rGmIFpHh8L8i4q0nwODwv7STpPfo2PC/635TA2jY8L8lLhaA59bwvwdq++tT1vC/ImUMHVDW8L+SWBon1dLwv09jvrmU0fC/cxqWxdrQ8L+yAQa7WM/wv2DzAmmJzfC/HnX4d2zM8L8Ur78/OMvwv8ZNnsgcx/C/pFHI4s/G8L8MCBh3vcTwv86aHFIuxPC/uzpS70HC8L95tdkaEcLwv/SnIQJyvvC/mOdJLjO98L/eGpvzurzwv0RFhY6Yu/C/NmyD9vG58L8+nHlqZrfwvy+c5fxWt/C/biQrDOiu8L/mgLZcnKzwv62cxTh6rPC/QuTAW5Kq8L9xl/Jn86nwv7A/7yyEqPC/ADnGYPWn8L9zlGQ4Cqfwv398MIOnpvC/PjwlIi2k8L/HcyPP95/wv+ymo6eynPC/YmC3c++V8L/t0EsLj5Twv/FmHycAkfC/ZACwj7OM8L9YX1d7Qovwv4M/7SHUivC/fxG5ggWK8L9syAUjoYfwv+Dsq9t/h/C/z8MtiquC8L/GQsDYEILwv3AjVKgSf/C/omV30hd98L/q31pfhHzwv8ZLf0KQe/C/XNjzjsh58L8mclaYGXfwv8GlM2DTcPC/wFcI1cpu8L8wY/DWAm7wv/vfSf6RbfC/7msGOSRt8L/fqmJNNWzwv+eskfdWa/C/qx7eH2pq8L9UPXXUYWrwv19zUXoKaPC/rI9sqp9j8L+IT0bYPl/wv4q42KR7XvC/TDRA7NJa8L9+MWV06lfwv1VGjoEiV/C/5H/23glX8L+aIXjM2Fbwv/2PeG35VPC/bjb3i+JQ8L/WTBuu8U/wv3pkAnuhT/C/kq8Sqh9O8L8UnoqBNkzwv4AZzQsCS/C/whE29ddJ8L+ymtdTuEbwv4G1SzJHRfC/SSuOvdZE8L+h9WOFmETwv66w9r+YQ/C/tlXGfRdB8L9L3h0SN0Dwv8yUGeKNP/C/TK9x83w98L/43BMZiDvwv6DW4H5uO/C/lOK3llw78L9WcbxT1Djwv/vaY8cROPC/31+cAzk18L/0dIRbMzXwv+LmfH2+MPC/Xpw3aqkv8L8SzJEkCC/wvzC9/04aLPC/4OiXTWUr8L9ytl8AwCnwv1BCyhf3JfC/v+1fub4l8L+M2jjI3SLwv65pTKpFIfC/tiwOosMe8L98hW6Ftxvwvxpa9y2dGPC/njMqmUoV8L9mHyDoShHwv2Da5FxsD/C/XCEeffYN8L/ugN+dQQnwv4Kt1fBRCPC/VfR31oQG8L+YO35PMgPwv08eP0BYAfC/up2N65MA8L9nEFB25v7vv6imyFOW/e+/5BGkkWz477/ysyjBOvXvvzt5EY6S8++/csw+YNnw779g4+BuOe7vv9nJbhoJ4++/IF1pyfnZ778jeV7mjdPvv/yNN4pf0O+/OYw7FuzM778hGYI/esrvv2wqEWn0xe+/Bwq78eDD77+f/hujOMLvv8TZGm/rvu+/A5NkTKK877+H/HKK3brvv36ep6squu+/PI8JCCC67791CYONI7bvv0Gm6czese+/V3tZ1Viw778NwtqIfazvv1IR9qJgqu+/xTyvye+p77/1X12emKjvvwZI33cPqO+/18i3gPCn77+iLljnsJXvv2vp4BpTku+/DySxtUaS77/2TCE6pJDvv4S2yftUju+/YdBgDhqI778XtbklWIbvv5mLxoZ/gu+/lZwAI+t8779uhGbENXvvv7aiGmvDee+/qIms/1Vo77/Q3S1Vb2Tvv0VKxy4iZO+/X2Enhvxd779Pxu5AhFXvvzbFU/2+VO+/kKFuzxRS77+FtUQ1bVHvv1xMGs0QUe+/hRO5o6JP77+kaN3hkE3vv20vHFQdQ++/ZkZDJs807799fxUbDi/vv+9RhlveJu+/RBz5+/ol77+RpmuJJyDvv3p3xjLnHu+/FB0aQRMe77+hr1RtwR3vv7DP4t2DHO+/u2hdIrcS77/X6zuxhRLvv8Y59FqZD++/YmihZkkM778w2MfwAAzvvyDY+MJ1B++/FvEzhFcF77/eYLhUQgXvvxW2+PpiA++/YSy1U1QC77/1Q/bIGf/uvw5g1buF/e6//x5Xle/77r/wMruYoffuv9vunrdN9u6/vqKWrqf17r9RWjFkH/HuvwYsYxAK8O6//l+HkFDt7r+QRsuqj+zuvwgBwrI66u6/Uyu7iCfi7r/J1X5TWuHuv0r5NEF/3+6//YRMAv3c7r/ARXbStdnuvzRtiFUB1u6/QrhoRdXV7r/Xyt0Mb9Xuv0BlyDgn1e6/r8IgjMbQ7r8mtV16uc3uv9j0Kacny+6/jlJziLLC7r99AqHtpMHuv0fbYW64v+6/NsQC4ZW/7r/He9T6D77uvx+XVbOTve6/a0gYynW37r9+PkekcbfuvyNMgSgqsu6/fX319law7r9xwUiM/a3uv7+rd47hrO6/cRQuLMSr7r/kILV9q6nuv6x3m9yJou6/IPPRHGib7r8aV5ESTpPuv0zthc4Pku6/1KNLhqaJ7r/28OUy64buv4SXsoK5hu6/8Y7cd7OB7r88TCwTWIDuv6AhqcaZdO6//EmMLC9z7r9VMZPHYnLuv7w81vhib+6/WtlnmOlu7r+lmxIL+Gzuv/4JYgcPau6/Avqzo4Rn7r9KfLjGPWfuv2ogkrYxZ+6/qr+c26Zi7r8MNVX5Slruv523hKwaWe6/qhrloMNQ7r884G0KTUjuv3TuirINSO6/dcg9LPlC7r9/HDbgcELuvz940Kw2Qu6/IriX/YlA7r/5OYJf0D/uv2BHBBpTP+6/NiYmqYk67r+i/Qa2YTPuv5huxw6rMO6/HmQJ0YIv7r+LpzgoSi7uvzOnStr5Ke6/zuMjnpIm7r8kwmy4qRzuv21FDBRVG+6/SNdXh7AW7r8CAJNg4RXuv94hGpfCE+6/vphCWm8T7r+ytobDpw/uv+VCefhBDe6/MIzGr1cL7r81y73I1Aruv9ReyOScCu6/HOZ1JyUH7r8eu5Ib4gXuvxqBU6V2Be6/5oaoJcf+7b9ndEXrCv3tv2JVrs+q9e2//C1BC/z07b/u99WKpPPtv5J7HRX98O2/T0sn6PHs7b+sM7obHtvtv3rjakaR2O2/lviopUrX7b/Q/QCTydbtv+qMCrMd0O2/wr8PICnP7b/vLdRatMvtvxCRVeBpy+2/YB3z2NXA7b9yw+qgtLrtvy9l4mmLsu2/p4JJ85it7b8WJQlR66ztv12Zz/ASq+2/iG3WF6ek7b9QQm/r9aPtv+RigWM8ou2/wV3LjvOd7b8FzA+aSJ3tv06z6MLOnO2/KBCO//SP7b/ifgJAE4rtv5SUpHUaie2/DZyb45SI7b+pjI5cQojtv3odtr1th+2/mnNRsPmD7b/9LThILn7tvxUcZ/8kfe2/qgQWvCJ97b+3Yg6EnHbtv7A0RnQ0dO2/sEP5SiBz7b/sNKYkaW/tv2bCSzyHau2/Bm6dOWNl7b/bnsnaD2Ttvwyw2jr4YO2/Wm7Q56pg7b+Wy/ZEe1/tv/wdj9meV+2/RmoiEQFM7b+7sXUKoT7tv+sk6sKFO+2/tMRDTak37b/o60Yiijftv3cWKDqmM+2/TaNpHY4x7b/8ZXP2FS/tv1CDs1twKu2/iCRJEHEm7b+DG7nG+CDtv0QfSn2uHu2/OCAPXwQe7b8gzcW1qBrtv0DrTcNAGu2/BgWv8+kZ7b+37ZYAYBPtv3rbjzyhEu2/ytqyy/cQ7b/r0kjA8QvtvzoaW8OH/+y/hi9gCMb97L8keP1umffsv2sppXIV9+y/ooFVK+/27L/JjEAXVfbsv/lhUrJ29ey/mvg26/j07L+WN7PNQu3sv/nHhI9x6+y/wd/sxc7q7L+CdRDj8OfsvzrbktLw5+y/TgFhIKrm7L/YbxvdQObsv5L0AzjC4ey/O/WnFIXg7L/Dfp8NGN/sv9Gw4efq3uy/s63fpqze7L8bBBboQd3sv3oNOYhg3Oy/Rzje3O/b7L9g+b1nwtPsv1uwO/eI0ey/RDD6vLTQ7L/w8s7s18vsv4yT714ly+y/KfgOf0TK7L8IuugbMMrsv2puk1n2xOy/eJCpANnD7L+WLIjEx8Hsv1MmU32yvOy/QMcdz0W27L9Vv02Cga7svwbjy2hSruy/gL7E7NOt7L87WSPVca3sv9nbuE1erey/4gHXzAes7L9mnLMvlqvsvxnGcxSJqOy/x39dGa2l7L8iFfVP25rsv6ngFeSXmey/REgxPeyY7L9/TWVrzpLsv1IzAm+lj+y/8v7OfzyO7L/yVuH9DYzsv9hPIpp/i+y//E+gYZ+F7L/jTr0syX7svw/fjQ+cfey/qK/7YsZ87L/+QiymsHrsv5M+i/kLeey/nuZyTUV37L+ORjZg63Hsv7dfpaOicOy/eYEz+yZv7L+X7MoLtmvsv+yIV9ESXuy/OJf+hkRY7L81IKuuSlTsv8JP9NOMTuy/6AGQMMJK7L97QJzPlUfsvybExhIAR+y/wqa0X3FF7L95D63feDjsv36BQGdfN+y/zJ7kVhc37L+mdtvuqjbsvz2cCF3ZMOy/NB6jlswt7L8Dxo7xlSnsv/quzZgGJ+y/3/JI0i4m7L+Atl3TmSLsv5NINj0GIuy/ZJKrnzsg7L8RCt+22BrsvzCj3LaQGuy/dNUlMkwY7L8zn1/SJxfsv2DWTiaYE+y/bfAKaEUQ7L9g1q1b1w3sv2i2WABCC+y/lBvQo5QK7L/ta0w1aAnsvwD3ZW5nB+y/zLA7j8YB7L+mfDNV6f/rv27vqPnw/uu/VwL33fH667/01SKtMPrrv06pl0Q37+u/ogJxTjTv67+m2xHmoejrvxidmYLP4Ou/dCOKVTLg67/IUF5NVtvrvxyk2Cd62Ou/oswjZl3S67/QaE7l1NDrvxqgytuOx+u/YeSrYh/E67+k4FTdsbTrvxuleikMseu/JC0vksmm67860ngYs6Xrv581N4OGouu/ALzN7J2e678f4se8Cpnrv7Dk46Pvjuu/3M4bSouN678JSuNF1Yzrv2CGf2BBjOu/XDoqnqiJ679afJ6DrXzrvw/bpZqfeOu/m1ZJkap0678nPx7+FXPrv5ZkyPO8ceu/GGeS0MZu67+8JEZL+WvrvwAEtJ10a+u/Q3L66Ydp67/zsISBY2jrv4CdifLuWuu/Xzx2u4ZZ678fnjKzP1nrv5ImNU/jV+u/Ip6qxQ9Q679CpwSlWEvrvwprcKQcRuu/ntxIRAFF67+2gaRfeUTrv/zt6BUhQeu/5D0PcYI667/gzHeEyzLrv0ROUM1KL+u/rrNUad4q679C4OAl6SfrvxvCXvdeJ+u/eqBlorIk67+mzOv05SPrvykM+8F3I+u/trl/AVgh679yZglZCR7rvy4Egm6KHeu/LFa+0L8V67/jJ9E7aRDrv0bX4bLWDeu/lx1HkTQN67+kzDj6ZAfrv+rlYcPeBOu/3soGVsD66r8ypVm+6uLqvyCeVQb23Oq/btiTINXa6r8gCD9e1dnqvy8AizWS0uq/fuGOmj/S6r/WWw9Uusbqv7NolqhYwOq/HpE4PO2+6r+kLmJcWr7qv/u9vj0dveq/YHlTp1W76r+QfTc6lrjqv2YKFuv/tuq/5IT6j0W16r9ohGx3zLPqv1lyJl+Rr+q/JSjOrmqu6r8GSHEsXq7qv7ydke4+rOq/SWGJp2Go6r9S35Mxi6Hqv5A23c6yoOq/nmvFMbyf6r+Ww/9TP53qvyA1k+l7keq/dlvB6b2L6r8+LO+5rYnqvw097lvDh+q/0MCE0AaG6r+4Zp5jrYTqvzBTISHVg+q/d/dUmRGD6r+l3D01rn7qv4Tt6xDGe+q/87krXtR66r+xiRwcg3rqvy2gbqkneOq/IWaqg8J16r9ErX8dbHXqv5Tq9iPJcuq/gtl3EMdx6r/oo9WHm27qv757Q9pcbeq/wtl7nTRn6r/G4iByQWbqv0Z22uM6Yeq/9l1Mj9tV6r9hBc4kGlTqv6YRxfxzTeq/KgkliERH6r+1z/Fh1ETqvxBHa54SOuq/sJoz8Js56r+Z44OEOzfqv/djABM/Muq/3rIjo4Ar6r/J0dMO1yjqv5hvDrK5KOq/62Iy+dIn6r/Ei9thaybqv6xy7Wq/Jeq/gP2MNWUi6r+x5t5xdiHqv5zEbp4PFuq/2+iJbbEV6r/U9c+q1A/qv1XawDTOD+q/GuCsH/MO6r/JOcOJtwnqv34o2aW/COq/U+f77CIH6r9Tdydl9ALqv956kzfl/+m/V0X1o/r96b+Nk9G12/npvyc8SbPI9um/PpTPkzrz6b8G045FE/Hpv1pwUohT6um/HVKA30Xq6b//deTPlePpv7JcY9ks2um/ZOny1dnR6b9el/gAKNHpv2we1UCyz+m/2rT9gCDI6b90LV/3VMfpv2IfLrtzwem/Am8vGWzB6b8yT9e5ur3pvwaBcrhQu+m/DjO86SK46b/Gq7Uv67bpv0CvOm3Mtum/+mmVxGKy6b9iyAmucavpv0SsGvchqOm/tBqZkn6m6b8koQBkNKbpvymcF17Fo+m/zOb2Lnuj6b9ooj9c7KHpv8s06Vh8n+m/8iK7U2ud6b+7+dZ18prpv7VdalvmkOm/160zNhuP6b9o1nuaCozpv1NXWPOOium/8FLjAgGK6b/D9Dlt3ofpv3OrG119hem/uwMs0DKD6b8HEF0DM4Dpv59C9LUkeem/nngwV/Z46b+sDnNPwXjpv2pWslKreOm/fCXkQOhs6b/GRYtvW2vpv28qXELMaem/mjG068Vm6b+/WJig4lnpv8XodEDCU+m/js8/d5BT6b8sIqGNglPpv4Jh475zUOm/Ef5fxZhP6b9z/i71kE3pv77g5RNgRum/gl44gIFD6b9qtYqxR0HpvyQVGN3sPOm/gosFEDQ86b++HNeCljvpv6oZbXeZOum/K9lNDUQ66b8Iu3t37zPpv7IFJIzvKem/Sd07A7kp6b9bLSSCiynpv2fGrbCuI+m/eE0c/MYh6b9YAn4u9Rnpvz6cpVQfGOm/UODnrg8Y6b8+0bYfpRHpvw8XI5dED+m/7AEVtU0O6b+U2jwcVA3pvwIXMUSYCum/gHPlqL8J6b+62QKPdQfpv/a9Q1wtBum/9EKk2sMF6b9xM1qZowXpv1ZO/5zt/+i/9ZhgvHT36L8X7THG0vDov6txcGqN8Oi/V2Gr3MTu6L+GKJeDee3ovyAhV8qk6ui/bpvox67p6L/y24bPmN/ovxdNVSmU2ei/baBVc/rW6L8LNbiYSdbov6Zt88bR1Oi//SKMgNrS6L+IZlDYPMvov2hVCvHcyei/cDLIjYXG6L8iB6qZSMXov5HtxbOPxOi/j92tGSG/6L/QHwgl273ov9P2ILgzvOi/wWJoP1m66L+PCMRuh7jov5RszeJztui/nUbo+w226L+MaZQO27Povzj2Q3/Msui/RKabK3Wv6L9Z0YnPDK/ov422pfBjn+i/DyJmwbme6L8zRuVhCp3ov2lycp9ml+i/DVWNrYOW6L+VAJ0b2JHov7NcLT51jei/t5Tu9aKL6L9lpPwWGorov1qRfbtRgui/vTLyxpx96L9pigBhpXzov0d9HJvheOi/9iMrZ0t06L9EW2m7hGvov13RS60Raei/E3S/q+Jn6L84dJK6z2fov7G3Sv5rY+i/aBEClrFh6L+oG4GM3l7ovxFjlGhAXui/ooLt++5c6L+jvWhVvVzovwKgTRDcWOi/IbKXV2VX6L9oQ+jeR1Tov5jo8n5WU+i/tPF27EhQ6L9h5VrBMlDov6QSw00vR+i/xhZGCOxE6L+VRYlYpjzov6jPdXjnOei/WHm92m026L8GyLPPWjTov60MsEKsMOi/JzZ14+Eu6L/kwLqApC7ov4pnMOFVLei/j0ZzFPYo6L8Bbeo/+SXov37qadQ4Hei/l3swjgQZ6L+hJ1L1zxXov5ZoJ4lGFei/8FAPXY4N6L/SPMPZAQ3ov2feDaEOCei/MDiPxgsI6L+W6RmB7gbov6ksYJmKBei/krSrGmID6L+CX1SZ5QHov6i/NLzH/+e/670yOEH+57/5y/Z70/znv0JL5dii++e/5SRQQFr7579HurqDCvvnv1gKB6M7+ue/1GKAg4Lx57+csVtboO3nv8EDynIA7Oe/sJX7hOfl57+Ol0nOeuXnvyIwK1BC5Oe/tD8MrA/i57/k+Hh0sODnv14HT7M93ee/f9JkViPd57+q2+e2Ftznv6grueAi2ue/c4J+0KnR579bIhh3ntDnv5wFLH5dz+e/W1EMTgvP5783Z4Fils7nv+CUpIhMwOe/gG7eIaG957/LC+d4FbrnvylYR2cpuOe/2BJHSjW3578FIYTg7bDnv4k//kw3r+e/LmR9zcKu57/HCs1sPqznv3MtaRyCp+e/2jTFup+i579eln3yF5/nv9l/hD9lmee/vMUW5UKW57/6IiIonpTnv2RGajBrk+e/qj1IEYKK57/gmTMz+onnv0xnPe8viee/QhtooPyG578AWX7TKYPnv5x9f14Afue/vLhAP718578G0JTRrnfnv9uiv1B1due/0NZIcVp157+8wkjaqXDnvxH/P5PIbee/kto0ka1s578h/Jb92mnnvw58IUh9aOe/3FCE71lo579/XMo8zGfnv/KERJhbZue/mEc5l4Bl579qLIYoKWPnv8jjyV2eYue/oWI9+l5e57+Vscj68Vvnv/9R1uL6Wee/5XvvsdxT579KKRFQy0/nv4ZqPONsTOe/1LAUL85K57/rCvEcqkjnv+YWQSiZQue/WH19e7hB579W2UubNDjnv2zG6cvqM+e/RLXPpgQz579USpf45zDnv6RHp1WDK+e//f22f1In57+GX+fBxyXnvzm+OCayJOe/7oFjhZsk57+FaFirHh/nv+d1dyAWHue/nlNpqM8b579tTJskvBvnvwoX4ROGGue/D8OX7RMa57+BxRYnlhTnv9NIRvSCEOe/WKaUBoML578Y62chGArnv6XORFDzBue/pmQzuOwG578v6YfD6Qbnv0a50bzLBue/Seczab0D57/Gte9WXAHnv37FvkQO/ua/33CJGH765r8TQTQn3/nmv4fccTS/9Oa/ucvZuu3y5r/O5i/eR+3mv5mP5jxa5ea/AN5/nh7k5r8Ufovue97mvzppFfrs2+a/3Hq301Db5r/60qP7NNrmv4jtVBSp1ua/3kYvsc7V5r9sDgkeINHmv3wP2Ww+zua//fD2kLvI5r+62MGiYcXmv7IWOZ5Yxea/7Z0b9My65r+akiZMHazmv9Z4YhGcqOa/+EGQt5ym5r/tJHaD5aXmvzRxOydYpOa/1QLCmmGe5r/28ENqWZrmv7eFKo/ti+a/0YxFEaOL5r9O26wjRIvmv44vprwviOa/Tnq5EFyE5r9idQ8WHoPmv85dzPs3gea/mXCGBVt75r/ap8Itqnnmv2RWT0Qteea//+n9xgJx5r/RJNK2xG7mv96Dnd4/a+a/4AMyy/Vp5r8IB604amjmvwi62rIXXua//dyWcAJb5r9iVyKUiljmv1RSc7nuV+a/ziCzp3hU5r8GaxW49FDmv8lmO7mfUOa/nP59X2VQ5r8/oPrBvU7mvxiuAAs9Sua//l0B0b1J5r/Yh5IPtkbmvxwP0WQ/Rua/laxh3mBE5r8XbaSGxjnmv7ZxA1NDOea/2LoIdtww5r+9L8nfRCvmv+L+Q3eAKOa/9XLexmoo5r/UeDSKByXmv9ZS+NvnIua/4aXbb3kh5r+J6ErwPSDmv1LJVmmeH+a/FkCY49YZ5r9WfkaLnhnmvyKUC1xIF+a/8qpsUBcU5r8Tm2+BFgzmv3pRPUK+Cua/a5y6JH8K5r+9dt2fDgjmv5LO03tTBua/cohvFyYE5r+Qf8hqgwPmvyfwRZjj/eW/Qsfi+VD65b/WtEkNKfrlv1pt8mgO+uW/DM/JXyH45b+ol2J2AfXlv6rvUst48+W/1OCw3hzz5b8EGo/jQOvlvyj+R2Kp6OW/oDeg+Mbn5b/vmTwmMeflv8ATCMHv4uW/w9DC/iDi5b+NcinGm+Hlv7vXZZsU3eW/DFU4/vrb5b/4kuDpSNvlv6gDlg2I1eW/wDaWQnrU5b+dutqLZdLlvxwvVV7A0eW/WPlY0BzR5b+A2CZhmMzlv4MwV7s4xuW/5WcxZWrF5b/WsEcstcLlv6GigwedweW/NxsnNRvB5b+uRDkoQL/lvx3KMSU4vuW/cH/FlAu+5b9W2aD/Yb3lv1zxxlVKteW/8OmX/RK15b/l+lrN8bTlv5zL/xqUsOW/R0LgoMir5b/lG/+eaqTlv4XxMGBko+W/Np0pIf2c5b+SLW9JVJzlv8CaIq6Nl+W/7K43DheW5b+0pscnTJPlv95hY0PjgOW/jyN2e8J95b8kGEJQ3Xvlv5qLWlUQeOW/NiCL4Mxw5b+CHQ0sTm/lv2zDOIJDb+W/d9Y8zJds5b+U3xgHb2zlv9ceHNwBa+W/W1uA1fto5b8RpErKgGblv+2+ucXeZOW/5sr/8kph5b+O7HmI5V/lvw4/0hoqUuW/jDakUm1Q5b99w09Uw0nlv7WxoEQEReW/qArGzjFE5b92YRMagkDlv0pnWi5DPuW/QkjB8wA95b+KJ4DoBDzlv2QXVfh7OOW/cpHXvXQ25b/cmpBRozTlvytCx1nvMeW/pb/V3RMo5b8X4CIqICXlvzYlBmaDFeW/GlPb2MIS5b9oSu9aORLlv2yFbJ4xEuW/135Ae1AP5b9mhgmqRgnlvzvpe8QLBOW/x+Npk34D5b9XU+qnIwPlvyf+wqVz/eS/PCywOD795L+8C4kMr/jkv5SgcJP+9+S/dSP5q+j05L9A47PIS/Hkv28XVyfF8OS/TR3GSy3w5L98kxbA0e3kv5SZPCum5uS/9BvjrL/l5L9HrNRwp+Xkv0fLdxWQ4+S/sms/9sbg5L9Wveqyxd/kvwYDxBsI3uS/yMR10IvV5L9svJYQfNXkv664CQtQ1OS/T35YShfU5L88wbKcrNHkvxLCLBgjzuS/b+blrurJ5L9gTrl8ocbkv1CQvjvixOS/TgrpHUjE5L9Rq2wZC8Lkv1Tt/l+kveS/PNriN1295L/2+ZGkRb3kvz9uophavOS/LjEXmBO75L8stNEjD7fkv5TScGbWteS/ms3wDFqy5L/P9IH8E7Lkv1hFDOFkq+S/gP//8yyf5L85FLi89J7kv/L0Q368m+S/xLS0x3ma5L8g6xUw94zkv7ghaxyli+S/q/MSybeK5L8N/PnHV4nkv4pLmRllhuS/bELqmAuC5L/bl5c7KoHkv4GKi0QZgOS/9yzG1L575L+UvR9HoXjkvxgI+75Zd+S/cvzwgUJ35L8uWC03QXTkv5VcXkrQauS/M0wAT4Jq5L+th7ESkGnkv/4LkWVIZuS/n/6MI/1l5L9pfTYk9mLkv7uWshvgYeS/uJu1tNpg5L913EaD913kvyy3YiZDWuS/nwKJNqJZ5L9+2A5uPFbkv2ICw/T/U+S/FloHSzRS5L8U9oBTqFDkv/SozVLCTuS/2I5Tk9lN5L+cdV2k9kvkv1XWETwNS+S/A0qxl3pF5L8i3g4ytUPkv+TUrd51O+S/MCw8yeY65L/mRRzfvTnkv8wcF5wVMuS/xvDuNN4x5L/Uqh9MljHkv9iovMGgL+S/wORMsLot5L8QdFRyGCbkv/WXWf6eIeS/BQ7514ke5L8mQwDzrxnkv/oaQbdRGOS/LIPz8+QT5L82G2M9ABPkv8DySmgwDuS/3mZR+QgO5L+LAmSAvAzkv0FJJHyKDOS/zs1rLAcL5L95wuNq4gfkv7ItCM/SA+S/qMLaRhcC5L9P5hUB7fvjv8DiX60I++O/ibl1Vdn647+1BFJX6vPjv8B1jHCQ6OO/YD2fbGfn479pUHX/V9/jv87IbyZt3eO/jlzh9p/a479QInuMydnjv4rld5EI2OO/jS6b18HX47/GYkem/tbjv0Q/adQp1eO/AVT8BxvS47/AeSz0ydHjv/g93rwLzuO/51JM3qLN47/G0tA+y8zjv5t0+dItzOO/0EruIKTL479rFszrRMbjvx6UhB5LxOO/PQ7uky/D47/4BcPS8sDjv/sWCZLnveO/ijyU//y847+fyj0P77rjv9jf0OEcuuO/OWN9O1q347+GiGFQc7LjvzqvVG9bq+O//vnk6U6r47/G7AaQ2qPjvxbMb5UYoeO/yHml/+Ke4798E/1G1pvjv86vPeM1m+O/emG779ea47+lSBJWOZbjvzrpV8cvlOO/LEr+V1OS479KdxrYB5Ljv5zJIaDvh+O/r3H7wn+G478AyGa5E4Ljvwg62iupgOO/ud7zhHZ/47+YbnLv337jv6T5xj7dfeO/95Z8+b99478HMBkcj3vjv4huTDXsdeO/JNBlkfVz47/u+iD1e3Djv4TxPwD5auO/Vk/vYqpn47/QvBnaUWfjvzjFzEw1YuO/ykUyh/9h47/qUUl402HjvzEi0SssX+O/pQAzTdJd478+Vzltel3jvw36hg8xWuO/tnBi9x1V47/3IEqof1Pjv4jJ21QST+O/5IVxN7ZM479czhy2R0rjv1YYXPq6RuO//KQh/ZdG47/+ZslTSj3jv6wjOKAKMOO/5fPbcZgu47/zv83aYynjv1NruXMtJuO/SO82ryIj478AD5zwGhHjv/hXiAeoDeO/qA6BbCIM47/u34nMyQjjvyOZ3YAoCOO/4ujWT6UG479gfpxDoQTjv+C9qgNCA+O/mDffEKAB47/Aj3xPH/jiv2djdrSg9uK/yUP/SQL24r/KcxK5fPPiv1YixJTz8uK/m4BpR4zy4r9WtmD39+/ivy/CNqdH7+K/+hbyzvPp4r9yyrp29+jiv8aSnl/z2uK/8T7vgcHa4r/UjxSaRtriv+vTonI62uK/xIrIMs/X4r+C8zTNd9Xiv+Ckb44Ez+K/HMb1hinL4r8Y4hSxgcfiv+649RELxuK/Fk9cTerB4r8yovZJI77ivx/SEwbhvOK/5P61rUS74r9NaYhypLnivyZcAgOwtuK/Ym35KOS14r/ZTZ27vbXivyuRKC8JsuK/JAYqcg6u4r+4RJr1BKviv2vbQFq4qOK/eMDbvDOm4r9qdXuMT6Xiv3RXRGSro+K/TFj7eAOj4r/M/l18P6Liv9Im+qFmoeK/DsmV9sOe4r8IlncXg5niv/y+04zhlOK/MQROrHWS4r9dHr4G1ZDiv5v6oAL+juK/Bkw742GG4r+uG7wZL4biv9cP05Xpe+K/HdPfnjd74r8TFsLYqnrivwCIMSBPd+K/6ZCsa9924r8MA2KU0nXiv6doRBsfdOK/l/We6rhy4r/w7BoNZ3HivxcpSMNlcOK/nREGbals4r+yejv1LGzivyXmkXBXZeK/hn3unFNh4r/+pKDFA1biv6U4vhZVUeK/+XHwlChP4r+KhdmxKU3ivwWwbohLS+K/Tdn2aQxL4r/AqQIyWkniv+f4/LtjRuK/JjN5eAZC4r8x44ZH7TnivxglsOZFOOK/SCaY8hM34r9ISmkbsTXivwymmOLCNOK/or1Le38x4r8fsl2gnDDivywQAE+HKuK//isQcvcm4r+DTb87qh/ivzQ9iS+QHeK/+GoXzh0W4r/mUQagRg7iv7JRj5KTCOK/OmWWZqkF4r88zH2VQQXiv9gzcdTtA+K/+wewcr4B4r8RfjzQtwDivyW3LMw//uG/euIJGTz84b9V5cF3Kvvhv7A4jUNV+uG/EKfCXur24b9QQoR5iPThv8MoCd839OG/Vp+OE4Py4b8kj66RAu3hv0//Rq476eG/1HnNZ7nk4b86Xn0Ib9jhv2hj0bIW1+G/1o0sUufS4b+MCumlt9Dhv1j+qKPRz+G/WydHR67P4b8TWbExd8/hv7ofzF2UzOG/WCbC9yjL4b8+3TcJxcrhv8+2zPepyOG/O7wslxnE4b904J2AYMDhv14ta4QOwOG/w1Lg6cG+4b+PNgBqVb3hv1ngw/rruuG/LeU5WoW34b9+PirUTrfhv7jp302UtuG//iWTMKiw4b/eVuIqpK7hv3nFpxD3qOG/xpAXtiGo4b8hRs72AKLhv7tjcu5moeG/Z8qTDQ+f4b8GIf9kj5zhv4zlBTckmeG/d10k74uV4b8MqA3tdpPhvyI0poRWk+G/4JUvNcuS4b/vivQgopDhvyf7GBo2kOG/m9ma+UON4b/P2BzQzIrhv8ygdQElieG/BJfjt1WD4b8S61F8U4Phv7UKWsJTguG/fA6aMfuA4b+6DBZBnX7hv/6doBhOeeG/OJiZO8dy4b/ulg8lm3Hhv+p/UxLVbOG/sQmyDt1i4b+GON4rYWDhv5PGrKXYXeG/i0lDi1Jd4b/vfx46p1Xhv3TM0qTEU+G/aK1GU2BS4b+Lri61cE7hv/gMZMI9TeG/oTLbXUFJ4b84+FlNA0fhv27fOjWkReG/xMpLJU9D4b/kT+kt90Lhv8pLc6vLQeG/NKREmgRA4b8HIwkg6jzhv0AlRLZbPOG/ZvXK+Ko34b+eE5R0hTfhv5jnLhRoNuG/uyspY1gw4b+nYzHvTTDhv0j/OkeWLuG/c78dmvIs4b+T/oeJHinhv9jz4al3KOG/IeMsIsEi4b/Oe61lth/hv0eUv9epHuG/HE+YoBga4b+qw5+l5xjhv5LTfzhzGOG/juHaE1ET4b/i7F5NxQ/hv6m2zgp3D+G/QUOnotgO4b/YLhNUBA3hvwKHCeAvC+G/Ucub8yEL4b+IolPbQgLhv6itQDPPAOG/nvB5w2QA4b8hA4FyrP/gv7V5QKN0/+C/K48wNKj64L92YjpVRPfgv6LqXHcv9+C/jshXP1z24L+qN+if6uXgv6uaxukH5OC/DMZYTbvj4L/PJtO8xeHgv94bOyPF4eC/+zCXF3jg4L+RVKQ2Td7gvzbqkOho2+C/9jNzHLvW4L+IQbwltNXgvyqm82Ix1eC/UFzYzYHU4L/mB8h04dPgv3y2PBwz0uC/5ByMdibO4L/nwU+ycs3gv89fPeKWx+C/LwJcrevG4L91Cs2WvsXgvyx5vDJXw+C/6FzvJte94L/fn6AdB7vgv2jpMbxtuuC/+jCDRwi54L8QCgwjg7jgvwuYFzivt+C/i/ePJvCy4L+8Tvd14bHgv1fe7TDrp+C/FBf21mmj4L+oYfAYBKPgv83a0HkDoeC/048H5imf4L8q255tn5ngv2zTVtdyl+C/0qpgqQqU4L/iN6Shro3gv9c2w0tIjOC/8lkM2laF4L+kXisYXIPgv9RzoLNPeuC/IkwD46B44L/+P3NHEnXgv9L+Bmbgc+C/Nc7gaN1x4L9QHCGP12/gv3XO46drbeC/fmmlA/hs4L8D7MbyUWzgv75e67Yra+C/uy1uqkto4L+iJcYWI2Tgv+onKXpCYOC/Bq2rdgBg4L+kvZOnxFvgv/WL1LzNWuC/ga9Vdlla4L+ISpXqflbgv6iWjtzfUuC/WhrZsqdR4L81GU9KTk/gv9AmH4oST+C/20Vj3ApP4L/WhV59KE7gv4JBgVYxS+C/QFg28qlF4L85P612M0Tgvwx0Lgh0Q+C/LsCC54dB4L8bUymZNj3gvwvtllb4OOC/AqR/8bY44L8yE2f7kjfgv4jbkv0FNuC/pUzW8fgw4L97DZZtZSbgv4t3YoaRJeC/rpW/tBMi4L9pB9yEBx/gv5Lcr8iBGuC/gM1CQYsX4L89AgwPdhfgv3orQQZkF+C/6ox7sWkQ4L9+nWcvLAngvyIuHiGwCOC/PKoz8VEF4L8728ZNBgTgv/yUV/6OAOC/uvfj9Bn937+bDy4R4/rfv3kVwGl9+d+/tMvBrJru378k0TKueezfv5dhmYvs6d+/PvwsNhXp378q/o6Ni+Dfv2uijch23N+/iEc1OF3b379bz282CcXfv5kKLgv8xN+/pjK26dHE379SEYlrZrjfv+XUhOG6t9+/fiKyBFip37+yH65UUJ/fv/JMPcdAnt+/ht0fLPGd37/Wb7FnwJjfv3clKDiBjN+/2AJ0KziL378MVdl+UILfv1lI8RD1ft+/6likobB4378UEGCul3bfvy4UR8LlcN+/5cX0x4hs37+FAeAhPGvfvyp7krQoaN+/ZjHXpYZm378tVFFkG2Lfv/zl3EQeV9+/ynmsFU1V37+bK80g/kvfv6zXQicGSd+/Gae4ooU6378WfTy94zHfvyGKupzbKN+/Iw4BPpEj37+u/66uZSHfv3pn2IXGIN+/QEc+PdUT37+WaEJ94BLfvxorFgIGDd+/V/f0SYcD378eo7LkWQHfv4HhLUBUAN+/DTS/QaP63r/0jvs5C/rev2qMcN2X8N6/7GwDQg3w3r/SgWqQ3Ovev7AY7don4d6/gvVy8Kzb3r/axwWf2M7ev4Yny0oIy96/ubCtzovH3r8ozgHOE7bev3h4Uj/ltd6/U+jZKca13r9e7jgPtrTev3PJ8llmrt6/PA7AhD2t3r/N+dA1vaTev0cs59Jvo96/LFBylAGi3r/nYW8gdqHev7CI8yA3m96/Cz6G9yyQ3r+R0/Sps4nev5FiAOhqhN6/uffOaEiA3r/pqhAL23fev4qwkUNAcd6/EQPBtLNt3r8T0I0i7Gzev5sAHxKTad6/HSi3ogdo3r+qfyOPa2Lev0Oe7Aj7Yd6/cZYnLIhg3r+fbHppXVjev7wNmOTfU96/w0HEzOFQ3r+KgKYchE3ev0j4xVjIN96/IE0lRh8q3r+Qcs3ovCXevz6iRTE5JN6/1O4aq2kg3r+KLd/2wh3ev0Ktg0Z3E96/A8zRgHUO3r8HqbXZrAbev88tRxve/t2/ZZI3S8r+3b852qt9xP3dv6Aei0dV/d2/iH0Ru4b13b+jbGsFFvLdv3m2iKhd792/v86lbkPt3b9GsCaaE+rdv+oqFO+D5t2/c1rnjgXm3b/8kkFhxuXdv1Bzsx5q4N2/CLsJPEzd3b+yV0CWB9ndv0UYIdrR1d2/b3Mm7uzS3b+TSa7RKNHdv3WNEAsn0d2/lgo0u5TK3b++2DWzisndv7dnY31Zxd2/S+IwhurD3b8iz+Q9073dv3XML3hFtN2/3Hjp4mWx3b8PsPj5QK3dv+YQ0+L4pt2/Up6le8GZ3b92WqNhlZXdv4LSoys6lN2/TBADtYuJ3b+ffE4FCYjdv2H483I+ht2/bqllbuOB3b96pNnEuoHdv5zG5xKZf92/ymrhVs153b+Q2xI6bHbdv25Cmw79bd2//AsvjF9s3b8Osl0SWmXdv/zcFv9EYt2/lKpHknxd3b/KKwMSlVvdv/yNd4TvWN2/mEF1e4tY3b+N0m1o5Vfdvyw0OoOgVt2/YQ3T2e5U3b/2gdX/y1Tdv3qfbeeET92/OMyw8Jc73b+ZNTMG5Tndv898lvxsOd2/D4KdhU8x3b+aYdzGyS7dv0MIGpHYKt2/3BzCmAca3b/Utb0j4Rjdv3jhzPi/F92/CfyN7AMS3b+QM+679ALdv7YYMaP9+9y/9F4bNmL53L+eeatEeOvcv9y6E6Vj59y/bFB1o2bZ3L973UQkRdTcv195K3/W09y/7WsRU1zP3L+HCckC887cv8D72Rerzty/G+YrZTfE3L/iA1X9+bzcv12gJATuuty/oAZErrS63L+hQQ5/abfcv3dGuGmEtdy/RWyk6+ey3L9KvEAnK7Hcv72vdO+ipdy/xnI1aoWh3L+ucidSZ43cv/NKeIgBg9y/zVKqLsyA3L+7XffmMYDcvyKb1Oike9y/ug/NDFh03L9EthZQtnPcvwiYqwpoZNy/ygXrFBlh3L/710d0j1rcvxrokgaWWdy/bJCeOp5X3L/trJ8AwVTcv0iv/gXFUdy/mrk18PtO3L/48IirvUzcv/aD7ib8S9y/JP7b12JA3L8Fhn0COj/cvwmYGzZIL9y/4qeCYR4f3L9IlIxnyBrcv47bbnWZF9y/9+L9UjAS3L8A4AuOTwfcv0sMG74KBty/bhUTt+YA3L+q9JHu//LbvwOn2bHU8tu/6EVKWy7k279/lhXGuODbv5C1X0mO1Nu/1p+nrHPI27+k4YDb2cDbv0aAJKkavtu/4BWo2uqu278ewOLdlqzbv7dQsAhupNu/Ag1WwXuh278joebTCZbbvxvCTSGwjNu/DNHXMfaD278KibcXk4Pbv6TYroUXf9u/D6jrMBB427+UHFoTW2zbv32/6py0YNu/J+i5vodf27/f/n91U1zbv1pSeVSgWNu/mrqXgBFQ278eaE0iik7bv5gvf7BPStu/8rm5NcJE27/1LQVg4z3bv9jemYStOtu/li/v4wQt278wQ3tLAyvbv4FKlzTDHNu/9S7gX3Ec27+sbfPDcxHbv4dwhxpHD9u/KGScmbkJ27+S7lVIogPbv6yxLsFRANu/TT0pnKTz2r/Oa4+0Pe7av7LuQTfu2Nq/7XjOpPjR2r9pyHEVSMfav85sa7MYwtq/MSfeyu292r9kAFd7HL3av8G+UnUpuNq/w+AtV8W12r/IPg12jLTav6j2ZUEuqNq/NbFxyEec2r/G/STSI5vav+WxkguqmNq/cChbUs6L2r8Y7u4Fmojav+n2218UiNq/mH92t4V+2r+/Zwmyu3bav8bYnpMvddq/H+faZ7ly2r8gNoieGGnavySkdIbIY9q/EAQS8lBj2r+S0oxLQl7av7gscyhQXNq/sGlGXJ9a2r8ISH8KQVfav4XghrYbV9q/hILaM/lI2r94NOTkrkPav8ajPHn9PNq/RlUFcfw82r+2OtHnzDnav1ffyx/GOdq/NnXFZiI32r9qHK6oGjPavzrYduc2K9q/It3N4eoj2r+B1qQ7DhXav2ec/ZwECdq/Y/yzL6cE2r8ymqAOvwHav23KqxPpANq/Z3/XLYT22b+MSz+MX/bZv2GBbL7R9dm/wKzdK6P12b9P+nr12fHZvzyiL/8179m/qppzRADv2b9NeTBT7e3Zv24JMn+n7dm/Qd2t10Dm2b9shGGmCuLZv5FB7MBL39m/VuCmFl3d2b9esQ4+htrZvx/90sd31tm/rjNRHnjF2b+CC5XeX7zZv9me8fa9u9m/CVhOG5K42b81+arVE7XZvwop1drhtNm/YU5JoqWh2b81jG9NwJbZvwLqIxB0ldm/LBaSlAWK2b89zP7xD4DZv+ulP62af9m/Vz16kYpx2b+xHlmEzW7Zvw5bGXszZ9m/eL0Erf9m2b/xHBMdmWHZv6iKi83yWdm/v6MYC/tY2b+62qsCmE7Zv9CTstI0Ttm/si/X4mFK2b+ocwQOaD7Zv7jWjqXlONm/FeaNkqI12b/GVOaAAjXZvxIGBj5YL9m/MkLUfTQl2b8vYoe57yTZv2w6Yn1zJNm/IC6ITxIk2b+XlgDizxfZvwGZ2SlrF9m/+ObPRXIV2b+F5qCLlxDZv6x6mvyiCNm/2zlgxRsC2b+Nv0xe2wHZvx8a/CjY/ti/69BgPyHu2L/ayrJ5wtrYv+E9gXJq2ti/gbq6tcnY2L8mc1jSEtLYv/GUfdgu0di/4FA1pwXR2L8Aa27u2M/Yv6gVmVFbzti/DAtcyxDD2L+v1JMv7LnYv1BctA7nqNi/J0rTjvCm2L8QlcO7jaPYv+BKg+9wn9i/XYp7bC2e2L87tPcx8JjYv/YGeQGNmNi/7BJQ5FKO2L9T7kMOboXYv+zZBPTJhNi/hEpBGfJ/2L+vFHMUOXDYv/j/kl2hb9i/I5L4yhFZ2L8x9D5ERFjYv6PxguvNVNi/4HgpMclR2L/3knEy3EzYvziQ0g7hQ9i/auV/1GVB2L/uaUfvYEHYv48HGFbQP9i/QoI/DMU72L9WRbfm6TXYv7yR6uTFNdi/UdWBrZky2L9Hy162dTLYv8/Y0CsQMNi/YE0CmOAo2L9NUUnElSHYv6XNdPsiHti/fl3xx9sc2L/vZ8xgsxzYv9I/2wzVGNi/BCskMfwV2L+Li0yVlg7Yv/O68xdEBti/+EiwJtb817/jOvt2fvfXv7RNujfg2te/aIXVz/rW1786C+7Efs3Xv/F6cOFNw9e/WKX1CAi+17/hOBAE9r3Xv2Fkhf2Nu9e/HAljuni5179hCRzX36/Xv31xe8VUr9e/GkC5dRmr179Nc5ZoWKbXv1TeYjERoNe/gXjpM/yc17+/YfkE/JXXv+1pLeY+i9e/VlLlCZCG17+PcomTdYXXv0Jf24Rwg9e/kHxnN4d/178WRi2e4X3XvyjMBRtzdte/vfcVHKF017+ILilBZmzXvxaJ4CDXaNe/nkL3we5l178B3Mg4E2XXv7oRFKZXYde/hOqz+CBe179Jc4x1/FrXv2SQyph8Wte/ZlF/LzJZ178r0YLWylXXvxNYwHfbVNe/Gk6AoNdS178S63RWW0rXv2qbGe16R9e/q3gmK0tC178aufGe8C7Xv2NdEoWFLte/jkG5O7Qk179I3a0SPR7Xv7hxE/bYHNe/mXG8p4MZ178rW+CLwRLXv7TjxR2NBNe/NKR6xxcB17/ImvIXfP/Wv4RjjEmk+ta/kPWEA3f51r8OQace8vTWv+hMcLP089a/leNAjfTv1r9YHXR0xe/Wv/i/LSZe7da/F5HXwHrg1r+9PmjId9zWv50fPCbP2ta/U6wAqDLa1r93KK65tsnWv3DxpWUMw9a/uK/Y0Tu91r+1hUa+Lr3WvzohkRIBuNa/7+ZsgRW21r+FJ3gmWbHWv2EmtRDWsNa/rKZQLY6u1r/uC6z3/qvWvwRG/DQQqta/ht9FaRGp1r8Z06LHcKDWvyrenA3knta/9ZO0FLCa1r92hBfID5rWv7unfrOskda/HBPRzPWM1r/UDIyz/orWv3UVpiEqgda/uOs8xvF61r/YcXNkE3nWv4DqPUGjdNa/sNJPXXJs1r+wb4PZAWvWv1jOf7I5aNa/Fj/JaZ1m1r9tV0xial/Wvwy+ABWfPda/1tV/Brct1r+UT9m+aivWvzjKqIcZKNa/QWWIVlUm1r9wpPyOwiDWv1Vj2xi3Hda/ooEIEA4W1r9WNKrR0RHWv8okNPTtDda/+jT6nrL/1b/UHCnqhfXVvyZB5t1v8dW/UPukKWHx1b+I0V6A/O7Vv3mLIf317dW/ZlWzwA7p1b9i8PThAufVv/P25NaB5tW/c4K/lw/l1b/eciyZdtXVv/SHuzu90tW/wTGngu3J1b+M//LODsfVv4v3fRgzxNW/Mp9zXgzD1b9VcmCoF7rVv6jFuN03rtW/r2k20Wih1b+IyD47VqHVv6k+/kS0n9W/me97xfOY1b/0hB2EaZbVv9MO17sIitW/x6eND1mI1b/PL5W92YPVv2yxfsCKfdW/Nt/jmkd31b8Ez0dq7HTVv6POTpktadW/ePOxvwRk1b8jF2PCcmLVvw7gP8mWXdW/3rbFwYtU1b9nd1DYtj3Vv/gJDg4bMtW/3XEJu6Yn1b9Fjg2j/ybVv653BZ7iJdW/6DrL5ZMj1b8VaMjfYCPVvx7E0g1nIdW/U8bbIsEf1b/ltCH0uh/Vvz1aajjqF9W/lJUPN9sJ1b/4VPZhCgTVv/63f0VJ/NS/VB+uNyP71L9humEI9vrUvxVr6oDr+tS/V2ofPLz41L8+ppGwXPjUv37N+bWh9dS/2iS9ocfq1L/8pt7Sh+TUv77urfwW2NS//+EDcxXY1L+6atENjdPUv5MksAV9z9S/e0mYf8zL1L+KBSIZPsfUv1mSTkb3vtS/MJUVJxm+1L9yw9S3PLPUv/zW0aMSs9S/bo3VOFur1L+uPWiiDJTUv+CgrxaLi9S/wtPiRzKK1L/dXyFoVXfUv0/oVCXydtS/KvwPA2Vv1L/ZnOfsZG/Uv8alMwCUZ9S/eILCGH5n1L8X/p+vdGbUv6oX96aUZNS/mrCmX5tj1L/ukPqZclXUvww14SqxTNS/QKF3jztL1L8hin9lq0nUv348LIVBR9S/iWv2w/c91L8K7XaIjTnUvwrXk8EqNNS/DY7Oof4n1L8gH0hreCbUv2DrNQmsINS/9YoFXBoe1L8fhEpzQg/Uv0LWFN9cDdS/xy5429sK1L9ytEr7CfnTv9f2Z6ww8tO/ut9H+p3j07//FkIjudrTv0Pf5rfsytO/zEMTbai/078Ht7Vhfb3Tv/2/U48autO/M+49diKx079pbV/J7q7Tv0EfAGKirNO/s8EhWmKq07+1+J5x0afTv7bklFIuptO/P+hBdjSb079v9rE4i4/Tv3sp8dnpjdO/djvkjQ2M078x/7IKO4jTvwMX8vaBh9O/3MBuI/yC07/jyaG3cHrTv7Lb2uc3ddO/I4twRTF007/TI7BJSnLTvzrvy3MRbtO/KjE3Lrtf079d0fd+GF3TvzY3fr1/XNO/Njd+vX9c078xXhNqAFPTvxROrTh1SNO/YmHqU+ZA07+MAiEkTDnTvw5yjRbqN9O/SLoR8Oo207+zqQup3DbTv6Wu3FwHMdO/ng1S49Uv079619mFESzTv9YN6UjsI9O/e9pLs3wj079XEhnMyhbTvwRMyEeXENO/SbYGpXcP079Nmq9cngnTv4hlRBZzB9O//0p52Z0D07/N+9wskQPTv9Gsn+sy/9K/imOmC9zu0r/ql4Jciu3Sv5oYcnoY1tK/qpgWIJDS0r+vo+X2v7/Sv9mYsTJavNK/LinppHKz0r/HNIY9CZrSv6qhN7WHhdK/OA/gVtCB0r94ST0iXIDSv/3uRijxddK/t8I0SaZ10r/U4gN74nHSv9qPQQqqY9K/Z7ZL5bxg0r8ueMj3gV/Sv2Ysl6mgVNK/yrgfDpRJ0r+q/5LIC0jSvzlPSS2FPtK/8u1ysWU30r/WhewDfTXSv4i5mbVaLdK/dH0VSn0a0r91F4lKLQ7Sv2V+KL/5DNK/KrjkKWEH0r+ymY3WfQHSv7qjdAe3+9G/Uztq9r/40b+n5+2qs/fRv7IkoeHj69G/FEchJ3Ti0b/G/Lqzm9/Rv/qT6lZJ3tG/FkLfWBXe0b9oYrQj5dnRv8r1wfB72NG/IhoM83TW0b+E6zRoB9bRv6l+PBBh0dG/1rton43O0b+v2xEYn8rRv/g/dDOMwtG/jGvDoq6+0b8Wv3nslbrRv7Sotxc/sNG/6xutpSes0b+q5BWwg6DRv1Xj3gK/lNG/iNXfnGmU0b972YOnW47Rv+EgdjmNitG/ZobBDVeI0b82oJg9PoDRv4QGRAohf9G/eRybzhx/0b/Mx9c+L3TRv3dJcN33aNG/RLiFjilj0b+pNqFa/FfRv5RNUacOVtG/+XJTADFG0b8sUsy+PjnRv9zgb0LjNdG/YYNLhnsz0b/OJAIbrBfRv13i9glzB9G/s0+xW6n/0L9Sft2Yk+bQv6A3e5ii4tC/oOXF1wvd0L/QNWA6s9DQv2bLToryy9C/xn9iouXG0L9ni5AREsDQvxrpy37guNC/6Ap3AYyd0L/CjRh8mJjQv3MgM5SOl9C/vC51rxGM0L/uiBmaeYvQv/xxa1UritC/zDcVgUKJ0L9YOO5Nr4LQv8YF4tblgNC/psqh9aqA0L/0RbbRQX7Qvzori8sSedC/Jgx2BXZo0L/gSJIi52XQv/AtOMaOWNC/DBV2hi5O0L+MABW5PjXQv84CCBQpMdC/gLtukbMu0L/5uIAxpSDQv7b0bZ3qHNC/vzTYmaYY0L/5jslSZhHQv5/PjBMn48+/Q0qPbZbaz7+UGiTbrtPPvzHQLqtixs+/aLHZPJ25z799fUnZ4qbPv2cVDWdUoM+/8JdQhMGbz7/FsOx6L4bPv0rmtVuCgM+/IIDNIDqAz79ffjvAcn3Pv6RcoZ7Adc+/vDMH/nhLz78Acza5jRPPv4xtzgvm4M6/PZwQcUzczr9EHfJyE67Ov5bhbywNns6/6z9X4x+Zzr8srslsVI/Ov2iSuF1Yi86/SmaMKi9xzr+eqEKJ017OvyYatyjZQc6/INARFcEvzr/n65fpIRXOv/IG224vAc6/mntVUDX5zb+q9IVKVPDNv8tIJOaN782/VujYHL7rzb89Is9IS9LNv8hNSGVBzs2/nLPljxK6zb8S0PhfCaXNvxKgc7Szos2/bJDxPjmSzb+qavWFf4PNvw3P4vPdds2/ONk4o9Jrzb96JhJKaGTNv0ZemCQiJs2/ghq7Wtwizb/Ay25PfxzNvzq+lxT7Fc2/T+rQeigSzb+INl8mGQ3NvxmvukJ4DM2/HkcMrMgJzb97/MSIhgHNv3AkAMvDAM2/OnGf84rVzL9SLU94x9PMv2KK/AESscy/uUP87/ugzL+m236OmYXMv7p1DZ6iYcy/gjUAMqVbzL+DdPG390zMvwQVVUxbQ8y/zJQdXHYvzL+koIF3zhjMv3yyW6EH8su/wjMGHhPwy7+kQ+N5mObLv54Rzxs0yMu/A5ToKlWby7+XGFy8h4bLv+rJUOfFgsu/kYqX0Qxxy7/em75hxHDLv5QDRuRBQMu/QYFi+yoty7+1w/E9PSPLv5zg6uEAHsu/rWrv1Ngay79GEdUm1/jKv3i450Gr8cq/z1zweHXvyr/mAX28PObKv5oooTabusq/RagkBcKyyr9J88dn3J7Kv4PtI8evnsq/jIlieD1kyr/Yzyd+q1bKv9abBDK9Vcq/LrvWJkc2yr98OxMOPgDKv3MGrXh3/sm/Jfr50sfeyb8d90xQvdjJv3LfXeMgq8m/EstvwM6Tyb8SajBo03TJv4g4dV4ZRsm/+dboleE1yb/anjioSxbJv5uTB6R/BMm/RraWs278yL+7o5n69fTIv327iSX67si/1BcgXcPqyL8m1a1gq+PIv6ZfZhT928i/eNNEgorTyL/3nomem5rIv0Fmmw/wmMi/EPPTEiWVyL9nBSnVc3/Iv7aEOu85esi/bGfbWMNyyL8HgM3xAE3Iv12KDk7zLci/UfOHoFQRyL/zo+XWSQbIvzRGZh55AMi/AKhkuEv/x79knheGOPfHv0xCGjqx68e/p2Zh8MjTx7+WJoD57tLHv/UWvT7byce/iIlRKyuFx7/6ep6Oh27HvxY7YeXZaMe/UzFpU4ZGx79z9FB5JRzHv8KbBiTTFce/URzOalULx79gHcrjcubGv6IZ792s3sa/3KOhf6fexr/Yd+oh07nGv6754y5hn8a/gCK1ixeRxr9F7wl2cVjGvxE6dDUHOsa/nMzZEE01xr9I/BI2tSjGv+pPd8laIMa/QrYjtUcbxr+GWi3BJO3Fv0aEWjOT7MW/Ih4p6EHJxb/vsuwppLrFv9l2YdCtq8W/lH/79A6Rxb9yUVt543bFv2JN9MGydsW/+PwX1GVzxb+sOvr3J3DFv9gtmDJDScW/0OT6Hp4yxb/GOkqidx3FvzhUT6AHE8W/VGmLhOoPxb/MJapYXQrFv9voKzb89MS/ztfvQS+gxL/qZrZL7JzEv5LHLsDik8S/BlqFuAOAxL+iVMWvdGzEv1vz5wxeY8S/qC8iKThMxL/0ZqYievXDv1YRtMIUw8O/tAox2mm+w78lb2Fxs6fDv5I3SN1bfcO/2v3aD8F6w7/ORnW/fnPDv2SZPk2ca8O//q656IJbw79Xr90JtTPDv0AzSuXHL8O/HLjFEkolw79Q7IThOwjDvwLcs/Um/8K/Ku4Hr87vwr+pnN/3XcDCv9zook+TucK/loMmmv6xwr8Jf+/UMJLCv7pzF6z0kcK/aMw9O5GDwr9cdOwx737Cvw8ryjMbX8K/GjL4cjZWwr/zC4Y6flPCv8HEhtmDUsK/RP4j/N9Pwr/nvIsWeUXCv/J8XRPQQcK/jLsy8bVBwr8WARRnsNDBv7TuD0Ecn8G/IjLDmbB5wb8URJUdYmbBv6vk6h++M8G/WgVDPAwrwb/lQJj7WQ3Bv5lupPTF58C/JgU2XBjkwL/MseLY7N3AvzS/SyoZ28C/pQx41KC6wL+Pm5XY23vAv7tSaafpd8C/dDWAPXt3wL+QL0eHhXLAv6jYKhfPa8C/s9P9T+tiwL+hEIVEnVzAvzlcXbf9UsC/N9WeYlZBwL/io+AvOznAv8AKgJ/hHsC/Ufgglo8HwL8RX0ebZwDAvziacY+cnb+/AIaxa1Z7v79C03gXV2C/v9YpZfbx4b6/PKLpwaPgvr9aWqLHFme+vwLeTCetJ76/lpVkETULvr8cAOANHPW9v1CfbnQhv72/lK69P3CYvb90omBsqVi9vwWeO1toQr2/Um8sQf7hvL/No4zpUaK8v7ByfGYslby/YJd/E5mNvL88bKTJVg28v8Z7mxlcA7y/c/Ilbwrku7/oyJkFaMy7v9oCpaUkuru/BrBGm5awu78SF7vYRJW7v0yMFkSxh7u/fOHUvzB7u79aGN0rnGK7v3SWFKNvT7u/SFczGbJDu78XNtbU5j67vxQuj8xxPru/JL94lSoWu7/vFQWyDu+6v/QwRnyL4rq/9qlvNJ2zur+lsP4hMLO6v+P6UEAijbq/rXzQS2hyur+PybZv/0W6v2QpIZSCHrq/E9XGkvC9ub+dtxdWg6S5v8w1BJsVSLm/DqQvx4PsuL+cRcCqgtO4v7Se2MSTpLi/onlzXpJ+uL+ED6ADNnG4v9zfmcnlWri/icKoq/A8uL9rS28jnS64v9+rEBkuHbi/KEMdnikXuL+4tB+MHQW4vxgozf0+5re/iBucik2Pt7/I4KK6Rm63vzjsWa3jHbe/Zm1on6QSt7/kkA7A4N22vyazHoSjqLa/UpOrhA1gtr9EsCuJUVm2vzAliqXCJra/b1EAiELqtb9Q5guKstC1vyhmXrGVwbW/DLNHmvCptb/Et24yUW+1v4JUMXLoXbW/oOMt2iNNtb+/6nBnyUi1v/aXZucBz7S/MvBqM/WQtL+Npojm8iK0v7fPEEJCHLS/YPoo2mv/s78ULvPre+Kzv1zSTxnbv7O/dBF0oEC6s78IakW5B7qyv7ZAg0SBn7K/eMNNA0iHsr9WcwuGi26yv4P4pZ0dvLG/Hq7iMPUBsb90rGgNIsmwvygoromQxrC/NoVXGACwsL8WYUfzn22wv+Ts6RT6YLC/O+s27S87sL9z45LMFB6wvyJkB326DrC/VnailYUBsL+YKgtAmzivvwj0ggez+a6/yFQFYbA7rr+Y2Prx17atv+QJu8dFfq2/MIu1vtMWrb+f6RjAWbmsv5B/pUtt5au/jJrO3Ip1q7/A8KCl8b+qvzlzan2voKq/AKOD8+9vqr8wX5t1jOWpv/CpjgL8rqm/GGWGYmYhqb8XOAz7vhapv0hB2X6Yt6i/3VYN0GXhp7/YcYeA1KCnv0D+42TdUqe/VqhU5gI8p78nhklVQSenv4A3xXO2E6e/ELhybXvppr8gyrxc9Jqlv2RyPmewg6W/zLwQQWIxpb+UXAcWNySlv6Xp9pB3i6S/IK6fa7Dvo7+G4glnq+mjv0FIXGH4tqO/+IxWV125or8rm8xdmYiiv8DFH6TR+KG/ZCCZFlnTob/SoZ8EE8ShvyRv4tWswaG/QJbZS1Ktob9x5v1S+GOhv1TVlQWNWKG/nI+5RsZNob+AywLmeWafvyAyMfyaMJ+/uFIKUr3lnb+4vvTCYOSdv3Du/PdhC52/zI43P+t3nL/trX5SxGGcv05qsm4zMpq/gO5VnRSzl78aavaRi6GXv0AzZqZ/hJe/8WFVz2+1lr9wBSCjLZ+WvyrKa73DkJa/iK72M+Y/lr/gMJXxEziWv77V+fCaepW/1fUOd5iolL/IeV9BfhSUv7DaGwMO9ZO/CEsoCBK/k7/qgJ6Zq+mSv85KOyhDa5K/4Lroe6YLkr87fn6FvPmQv3CU3OvRjpC/kJfCNcBmj7+rUD4m9L6OvzAwD+bYjYy/IPrQQHybib9Tol+wLMmIv7Dfr6SMiYW/cEvM7q1Nhb/ou3weInKDvyDGLrjKqYC/o6btV5CXgL+Ap/f6Uep/v3a0mDw2X3y/AHcZLfSner8WPNTP9KF5v2A7yO5sN3i/AFxwWsgzdL9muNKHh0Nyv5CDUiaxtUs/CGbalKjJUT+k4j1513ZqP3SCEgyOxWw/lByra8Mxbz8q/iQX/dl0PwDddPtKaXY/IGdIX446eD+ADy5G3ft7P2ADnMBol34/AK19gUawfj8AeREC7zuBP21/WCJbsYE/0KW/zmMAgj/drBrZ0daCPy67rsQRhIQ/veYVrxT+hz9Ajk6syg+JP/k8H4nluoo/OdTQquL/iz8gCAEha7yMP4CFL0W4yYw/zY+xvAxLjj+N5qO2m22OP6AubV5r844/QP84O8Srjz+4b9Po5AGQPwJmTGc1N5A/nobWk/d7kD+aAnogz6CQPwhMa65R/5A/UI2HmvBCkT/e9/7DlrORP6Cobkm3NpI/ekcDo4Xskj9AxxpKW06TP5Z51VUpWZM/fnwhP5P0lD8ao4oz1y+VP97FOe0LU5c/PsPzLtJ/lz/+uJFpf4eYP1y0bLQnBJo//zpz7s9Fmj/qLrOE6Y2aP8zLlFq9G5s/8q2SzhnDmz8iY9MsFhCcP5aA6R6VZJw/OKdxaCC4nD8WdJ+XznOdP5QFhFTMb54/Dk3VPuennj+O3v26DsWePyTe+mlv1p4/1odRDGb0nj+OxzBNr0CfPzlLvs9yFKA/OQEXYEIooD8MV4Z95DOgPxtuZ1C8kKE/OGg605bKoT+dTeFyLtihP2r5/eIj4qE/2TDpWlIEoj9NNC9VtyOiP50DWgFhKKI/8guEJj+Noj8AcRM8LLiiP8Fqsu9TzqI/4zctERDXoj/3QLlcxwWjP35h9K2PTaM/OM71/Ml3oz/HREnQhoajP/9/OAiti6Q/WbL0PcKOpD+vY8sZV8qkP5lY880vuqU/DxkR7iURpj89eSETQjKmP2H/iv1QaaY/feD8q6mIpj/5agzlgZSmP88FNLWJ2qY/Baxuwypbpz/nnXNLe2ynP1cUqbgdcqc/qx6mr7/Rpz865E2E99KnP2cPI6ejEag/sU7N5O5AqD+y7U8oF0eoP7DUMXB5Yag/YWzRVUdnqD8pQ1JNU06pPziP//Qh36o/W+v1vui6qz8v74fbkserP0fZ0uhs0aw/6Uk+EzDarD+BaNMQf/qsP4lU7CpCVa0/BSR31mlprj+mc/AuZHuuP8P0bQouuK4/uHXV5CO/rj+PZH0eiPmuP4omCO6Apq8/d8pjOFqwrz9HSS9CV+SvP+5cSzR/LLA/XePkp+uYsD+K/X1N6JuwP3RjfFMvsLA/aDZK2O24sD9gRhYZWLmwP8rrQKAmD7E/7TlyR6YbsT/1pbhXwXyxP/TmSN+DirE/KeGNWhQIsj/cmXD+c3GyP/1j1XUle7I/8DwCUH99sj9UP/2n55WyP8tYmC3rl7I/0ejMCamjsj8+Fj2IgKuyP22yYqFx0rI/lhifq0Qwsz9i+ErOzk2zP7KVy2CvzLM/sPBv/DpZtD8b3SPJWYm0P34c0GLmzbQ/4OeoIU3mtD9iTzNTMwG1P5K+/L7jK7U/gh9/yE5GtT+6sCzVOXK1P12zQuH4mbU/u//7AlevtT8rEch2CcC1PwwI5ixy4rU/Bd4IyKAatj9grnuu9B+2Px65maV+MbY/COKr58FHtj8+6GPxt7+2PwcU07RkwLY/v61EGtDBtj8g1p9V4AC3P69wRI7RI7c/dEA4lzdFtz80WAuA9Eq3P6aPKOkCVbc/TqZJqD+htz8dTp9jya63P+xAbvbtxbc/OHErhBD+tz9Im0gkOh64P1eiOjNkTrg/sKv0+D1zuD8Q+a4wh3W4P+3C1aDriLg/YBDdpKiRuD8wLi6xF6+4P4wAmLs4xbg/3fLGLHQPuT+Aei+24xu5P88TxtG+Mbk/DChgLqE/uT+EVzBm0Uq5P7olsYaDXbk//kMo1IhyuT+++Xv11oO5P/zg2YY5ubk/by5NkLLGuT+wlUbetc25P+hnbXeu2Lk/aFsJ8jDjuT/7N6vWDBO6P7SJC5cmJLo/UcQyYvQmuj9ys80Zoie6PzM8EL7ySro/1GxYp8Zguj/LOfFnEZK6P4lPReuns7o/0FtCai4iuz88qmGaANi7PzsegOAiC7w/wNY5hYopvD94clHhb1C8Pxb9E2cxUbw/gOF0Xp9+vD+cX0D9bYW8P6eqG+V2nLw/4YgumuvVvD/k61Inita8P20rl4AY8bw/wOL0epf0vD/1Tbv9j/i8P8Qs825hF70/bbYCoTwsvT9S/FPWzC69P5jEjRxyOL0/R8jKKF9zvT9k/0EspAW+Pz+Bz1mKIL4/e1icZ6lGvj8Y+T9WL0y+P6XwcMOcUb4/sJZi+YNtvj9HPqI+Z3e+P7gkAPXDW78/GNJ/2uaDvz9QMBdEvpe/P3DuokJE8L8/AoUe+fUHwD/zztZ3qSTAP9ql6AjPOsA/DvU2muhnwD87aYtBIXbAP8/j145GisA/rd6b3RqUwD/+JiHSbq/APwxYY10lusA/0GcVrXzDwD8XSme8R9HAP0zHUVwI4sA/jIa3U+DxwD8kwjjYdTTBP/iE+r4uNsE/7J8C7MM2wT+Er/o13kvBPxJsZXy1esE/8quPxEGBwT/zAXgl74/BPxon/mvAq8E/IbPJ8xbJwT9xydjUJ97BPyiVOXQ2BMI/kJtJ7bNlwj82TC6SmoDCP1ntD8MBh8I/rO401pOOwj+m1IBTX5TCP7ZcE/r1n8I/rOY1Hqugwj+4lLrInaHCP6AX6NM9scI/KyxeaFOxwj9y0vmLyOzCPyvl2ciLGMM/Zd2afUUewz+uHFJiACTDP2/ApmB/K8M/gr8vSa81wz8cilVPjUPDP8PpaRipWcM/hajWSYpawz9J1sOGY2nDPwrfKSIIasM/kgveI4Juwz8z8/sGznjDPyTPFOALfMM/wD+yOWCHwz8XNJ/O857DP8WPw+DMr8M/NNN2T9u5wz+3BVP1zcLDP8LVVj9zBcQ/H1ZAsFAPxD+GFysOwxHEPwC3Tnd5OMQ/bHQPo7q9xD+QgPSzd77EP9XejRB4LcU/ma3pLFQ5xT+lq01K2j7FP6pWrl4PR8U/AD/oq4FJxT8BSBgoHGTFP42wXfuJjMU/LjVCgC7DxT/4lyBo/9DFP70RKSuWTcY/77XQqyuGxj/bJ91KZ5LGPzQeb3jZ0MY/IotYVM7Vxj/PRi5709bGP5B6I0mR9sY/dJ5LZ3tkxz9Ryzvon2jHP7M0pDgjasc/5Vg7BSFuxz8ERHHTdsTHP0N+kJLE3cc/0gS7Tjd3yD9QLUTNg+vIPxLJFS1R98g/hKiWxysOyT+IJ/4dTGnJP/wHHV1mj8k/1EopUW6oyT+UVnTMihDKPyiRBOOaiMo/xL2RJvyLyj8gtCfHUbfKP455622bxco/lImSVmbQyj/yzsH3M9vKP5j5HRji9co/LhdErygPyz9nSxnUcD7LPxYE0xFQWss/DLiF1OK7yz+oFnZjOQLMPzMW90RlUcw/gojmhHjDzD9AQ3cyW+3MP/xO5Tlr/cw/ArPzQCsxzT/oci73s63NP1TnxvVZ580/Y5QTXP7pzT/eLQ10eBrOPzfRsztlLM4/qPC9Vyt6zj+6yL+RwrDOP6/8m7ZQ+M4/cPEUTcYqzz8UACYOGkfPP/W6TOJVZs8/Yk/tHOUv0D9cmDDjADfQP3nPnZcGX9A/YvZ9evV/0D+mpCuG14PQP37aMlRAnNA/vhBJ+6as0D8IBYBG09/QP1B6oCw9MNE/SBLospFc0T/IZ1utb3XRPyJikUNbkdE/qjHbY/+h0T+rOvN3YajRP7pttvIhrNE/WE2iE50d0j9VnNM7xjjSPxJnWalzkNI/4b3XPYOp0j9otMT8/K/SPwgLyD9ru9I/Kb9Gwa340j+zaxcSYhDTP/LUG69rENM/UHo5bzdg0z+MAvjRA2PTP3oyfp+vadM/gMauMVZt0z8d/9EWuarTPx6uSTcs09M/NaS101Tf0z8X2d3lxvTTP6TEwVS2+tM/2dq7R+4D1D+gbzpg+iLUPwOhqHN5M9Q/BP8aTro+1D+uxsv1SkDUP7NAo+mDaNQ/wpGDaFCV1D+82vryU83UP4gWGx3L5tQ/oumaU2Xz1D+Bhyr1/RLVP54xYC3nPNU/RNNS5D5D1T8ULII6+UPVPyl2PSo0TdU/xgltPw5Y1T9QP4L7MlvVP8BVjxPVa9U/qyPCXUeP1T96qNJB/rfVP67Dz2S11dU/dHgzY9ju1T9MJZrxcQLWP6fYUq4qDtY/VO4/7OMd1j+Eo8f5djTWP9qLpv/MQ9Y/imWdJW1M1j93m1fO43XWP5F25S0HhtY/JBM2F5yH1j/MbvYI6ZDWP5BwoZlYqtY/kte5RfTs1j/oa6rsTwDXPx5G0PPNCNc/GS3LvlgV1z/7/LuDRjXXPxjM9JyDSdc/fkOjJdVe1z+eTe1qw4TXPxJcHJ3dlNc/jTVA1h+i1z8Y44EhXNLXPwI/SqqfMNg/K0KZVAI52D9pXAW6W1nYP7wYcVMdkdg/Ji2ZXPXF2D9c7Vvue//YPwz6pgRmitk/UFnfTJDW2T/MuNshW/vZP8YfEE8Oe9o/Ilr4lm6X2j9UmPIGbqPaP8acZWsWrdo/clLQtHzJ2j8GZs7EfdfaP8HZ0mDEE9s/J4YtBm0o2z8uEXGK5InbP03vwMMbkds/EfW9vGa42z9b2AGbeeTbPz83KBnnStw/hl6OnUtV3D+6GftvN23cP5osbEjcctw/hMJRCf2o3D9Mj7ybjK3cPyCRjLeNxNw/FVwxcw3O3D8PQU+kyxbdP1gCls47it0/rG1lphzE3T8dvSyYFC3eP3eawATdPt4/LqwSaQZD3j+tnDKWYVXePyrn/ZKHXN4/MXi6fw5t3j/psxNSxG7ePx+idUL5dd4/Lq2/Hj+I3j/nCJhGl4/eP0woM14Lqd4/IfiJZ7/M3j/V8SPkwAffP9RoNl78M98/fBQ8q2Fr3z/YH79Q8JTfP0Rs7LlZrt8/jnNsGDqw3z9k5UWsGezfP/2ROwsuGOA/kHbLC2g14D9jyKtY60bgPx25gcvuXuA/ipa4NxKS4D8/kLTRHajgP3x8paF7wOA/lwVrsJDI4D/iW3wD8srgP9DYQjz93uA/8XeQNWbk4D/NXhUzGgfhPxbx/BlRWeE/Sna2Rc5k4T8P8C+XJWrhP4rwAGyMauE/2j4eEIh+4T9CpaN7E5LhPxj4k/hCluE/uq/PiQqa4T/jL+krK5rhP5JEIjBom+E/wuw2+gi64T8DjkEVOLvhP1FVmI8hwuE/mRPLnVXY4T9n7vonkN7hPwS6TISF4OE/H8LpkITx4T+QSzA44iziPyD7BZUrYuI/vNQiWBuJ4j92vBhL9KziPxK2wk5LyuI/cpHHZ0cK4z822pyudhDjP6848mBDE+M/uzrvq2QW4z95nIol5ynjPwZUBCFmNeM/FCx9Q0BC4z/YP0mGekrjP2wYyFIdTuM/WsF93HF14z+tT83l3IrjP7ok6Ukin+M/AK5hz0+y4z8Wo2sp+rrjP6IcYxqZxOM/i3elRNPO4z+e2zweBM/jP0Ljd3zH2OM/JMuSfV0O5D9OU1BAAirkPzD4wVMWLuQ/gAbnw1NF5D/YMZLC3U/kPzrO19cNY+Q/CUpwmn9r5D8Cw9/9NHjkP5iMJMrZfOQ/ug2pB7mZ5D+wKjzEd5/kP8TkM+mlqeQ/wEN0Meu+5D+0XHh8U8HkP/8FFBwxxuQ/ZhkU6kjK5D8EbAsr28zkPzwdYxxD2OQ/8hkF+RsI5T+2uifoSAnlPwtcTdSpPuU/baU0lDFN5T/SFtgp9lblP+hPP6T3WOU/p2aYZ9dx5T/kizfY8oHlPwhafg/bh+U/vYY80wWf5T/YsJ5qXKPlPyK624ltsOU/pGL9N7y25T/kY+8e4rrlP5qAR4yS0+U/SAtOFVTZ5T9uYs/RR9/lP6LMT1uj6eU/IuVTbGD+5T9YBSRyEwzmP+r+Smc9EeY//gn4QiUg5j9idE6EdTfmP76mZNLePeY/ojgmWFNF5j9yCXYMC0nmP1oq1xwHT+Y/4MXVvi9R5j9S4eZvq1HmP/ZfUsElXOY/HH856fxw5j+ICfcJInLmP8hV1jZ2e+Y/oK35H+975j8YZGpXztHmP6zswB1d0+Y/ki5oL0fp5j9munyRzgLnPyh3GLoNB+c/3c5bpAoK5z+QeJ6Aeg7nP1z0dkB7GOc/kt7T9Qcb5z+oR/M9FyfnPxS2mgpjL+c/6OnCrDdF5z8z9jrZ6ILnP5KkX1AGkec/OEzTnhar5z8s6lRM1tPnP/7Qfkat4Oc/QWdQJ7fj5z/wAAn4F+jnP3jp0rInA+g/wNdYk7UJ6D9u0r54PxDoP2gOseBQFeg/wOKPsWcb6D/uQf4sYSboP71tKy5bLug/Jn8HqEw36D/S3esRnEDoP5DEuf+CR+g//FYO8hJQ6D/MrtTc4WLoP1R2eUH+Z+g/3OvRMu516D9QhFflqoPoP9iXAs2kjeg/8P2yML2Q6D9CaiEz+JXoP6Sv5DPCqOg/ev1BQ4rM6D98jd+meNHoP9BdQTQ11ug/kIafd/LW6D/cZ4TRGN3oP4w7iMQu5Og/gMmSPkbp6D8IVmnpzezoP6zlPilqFuk/YIzHR1si6T/eH06ltjTpP8Yi3asZP+k/XjPPXtJe6T++n4GkqGDpP1o9u86Oc+k/Gowxyu9z6T+oawUNl4PpPxpQl+R4hek/ENwwT2aQ6T/WGypOK5XpP4rKrxs0muk/kHKlhyuf6T+OsJ8UG7npP0hZyn81yOk/ZrOhbdjT6T9izc9qTvbpP4Cd38hm9uk/zG6GTMn+6T+am9yoRwzqP3wYIYKwEeo/lFSkc/IU6j+4sEBrgBXqP/rbCUCQIuo/hvJo+Jwk6j8sePa+Qy7qPxTQZoSrNeo/LWiG88w96j+KlqcxAD/qPybFrZHcVeo/JvsFaYZc6j9O04PV22HqP3pOsBqbi+o/nm9Mrl+i6j/YGtag3qTqP4Kp7sLEqOo/sL5V4JGq6j8+aoYWMa/qP+p88YSSz+o/lJaUQ43Y6j9KNZICGtnqPx4u2zE52uo/sL2F78jb6j90idsJZ+/qPy7RsldfFOs/ZMWQtOMU6z/2ZToiuDfrP1g1GE8yPes/Lv59xNJG6z+Skm74rlrrP/jIuE5KhOs/ajl2YDSr6z+abf7B0rTrP4hRIV6Pvus/eDRaUvfI6z/iY8FpssnrP+q4kyB+0es/zerZhCLW6z9KnkG0Z9jrP2a1pT5J6es/xtXhJn/z6z/AhRs0bfnrP5LMuuQ6BOw/sFBoiXMN7D9wHv0Dfw3sP4ia7xBqFew/iJrvEGoV7D9kldKu0BXsP0rpPy79HOw/TOllKDYd7D9M+atlGiXsP5Trv1JrKOw/miIjnE8s7D+uknYKoUbsP2QDqJsMSOw/fnRr4XBP7D+aijPkJlnsP6bmy6sfWuw/OPFv4r1e7D8696e0HF/sP0ixvX0qX+w/WAC4dCFo7D8432P3JWnsP/YEvOGaa+w/spO/7waA7D/uoPJah4fsP4Liva9SjOw/LiYSV96P7D9mAWa3EJrsP8SXak8JnOw/hA/rosig7D+CmSSuPaPsPxoZjpLuo+w/El43F0ar7D/EMV6BzrbsP+ScjaI2vOw/Lsmrzn687D+qodg+m8DsP9L2Hblywew/jEj09OnD7D+06VshM87sPzQZU/o13uw/Ttd4yyXr7D8yAYhZPfHsP+jNCEnP9ew/1EcQO4v47D+wBXDAsP3sP/S8nklw/+w/RtCzfo4H7T824B61DA7tPwaGcSjUHe0/8LvaZnwh7T92g+ZpeSntP1TPZq+uKu0/9rysGQks7T8WQT+rzS7tP2o1WzP9NO0/hGRoDMs17T9kPIM30DftP842Yj+ZOO0/YFcH3NxA7T8uRI9oRkLtP9SG+mPTTe0/9jvT0mln7T8Ms/zv/mjtP/AK0DhMcu0/gBoQd+d67T/+RAuap3vtPwp2L383fO0/9JKEDKZ87T8e7tbB/H3tP+Yu1JEdm+0/Soc6Waac7T8uEksRj6TtPwQm+BZOqO0/jknwaHuz7T90KQQsUbXtPxzX3Umjuu0/UI5/DW+97T9ciEmz/b7tPy5rNrtAw+0/1P8rR7bS7T++WWKxo+DtP7wWLATQ4O0/wm73coPk7T/GDExhAPHtP34pvZy58e0/8jYuj5Py7T+cChftO/TtP6zNJFFR9+0/6OoRJeP+7T8U+dGX4wXuP9J+vtKYDe4/qlvnhGsT7j9CQSq4hRXuP8aRxpR2IO4/AvNOEaok7j8Ya3bV5iXuPzZ8Y8i5Ke4/dLK8OI4s7j+2uixcujLuP8QqtwpXNu4/dEl011c77j+2DirKljzuP0T5rbL5PO4/0mRNM/M97j/ax88DRD/uP+YXql4eQO4/PgBIPn1I7j+2uxbR7EnuP+Lm8u8aS+4/HoIwZyNY7j+8Ecs0Ul/uP1CC/6PdYu4/Si4FSmhp7j8u/mC8rGvuP8I7SjTabe4/UF1sny6A7j+UFyMDWYvuP7BQnOfZju4/uMaCiu6O7j9QIwiBcI/uP/rcrphik+4/9PdeeC2X7j9wtXtCPJjuP3ybNR+7m+4/0MQFzRCs7j+oeu7wjq7uP6TKACEuvu4/si4pbdPD7j+Wk4gQC8fuPwSz42Vpx+4/x9Akfv7J7j/E6+e1q8ruP+j58dl11e4/GM4qoETY7j9wapYxnN3uP9LW+WVd3+4/HIVH84jp7j/QrVGMheruP6Kxu2JN6+4/WCM9s+Ts7j+emKOO2e3uPxy8w7cj7u4/TD8uewTw7j9KfhOqw/DuP85xrs6A/O4/fE+cSxgC7z/k03PWEwXvPxBmSOQXDu8/qrFDX+sR7z9UFplZcBPvP4wc6g7sFu8/ij0uj/Ib7z+KU7suFCHvP2yM4zYTI+8/ICdcOy4j7z+qc4/30SXvPxqJEs3gKe8/WGfqV3oq7z9EWB7bnS/vPwYVuGgHMO8/ykQ5Q0M07z/YvXKb/ELvP1gow9a7Re8/uIcmmdVJ7z9It9N9z07vP/CtYtJ5UO8/RHSp2uJR7z8ysefVc1/vP4Iy5ryfYO8/6LdB2n5i7z/q8M6QmGfvP6xU2b6db+8/UAP79k9x7z9GZAmH+XXvP1IA0NV4ee8/LmADRVWH7z/unbIxlYvvPzqwt//tju8/DBtuFkaV7z9IR2EKsJfvPyQmJdIImO8/7on5IlqZ7z9KWLO4FJ7vP0yk0YrUoO8/hu64GTGi7z/wU0h7uKbvPyQqcOvlqO8/Lsnz9Lms7z++uxg9JrHvP1auEjZYse8/cjXG53+y7z/GpwZZa7PvP77AWDu+tO8/bA74BB+37z8EmzVx8MLvPyA1+fkMw+8/NLyPLFnE7z80Tm8KBMrvP5oKstuXzO8/gNiobcXN7z/EPEqohM/vP6AzeyEy2u8/ZiC6muTa7z/YLwsgduDvP3o31oRS4e8/ekTetfHh7z/60hlbQuLvPwyBq1XW5u8/CgSB+S/n7z8oNMX6gervPxoCGq276+8/hrYuwzHx7z9oYmKqaPjvP7KBuxKT+O8/viJ0MqT47z92jxYKu/3vP0w6/yoz/u8/4BjfwZb+7z+14nb1kAHwP79xnouXAfA/8ajR8hwD8D+ZoVcqmQXwP9jLRSZxB/A/jAvRTq8H8D8GOSrSQAjwPwR9xQWyCfA/nZ9mJpYR8D96ZF+YrRLwP8XF4XuwEvA/ZfwyyxwT8D9237xdTxPwP51xZbh/E/A/SQsWdlEU8D+6TKDAWhTwP4V1EvSlFPA/MGUj29cU8D/pzS/VOhbwP5VU6Pd3GfA/5XtrL04c8D/S3Liowh3wP+4EH9IQHvA/KK+sYo4e8D/kC1Y18x/wP2gFcTerIfA/wtcbNToi8D8bSVtOAiTwP5na22BDJfA/eUKnSlwm8D80j4stECfwPzSPiy0QJ/A/NI+LLRAn8D+mQ1NbISfwP9m6plPsLfA/o+m0XSwv8D//xAixczLwP6gAoGNHM/A/w9Sme5Yz8D/D1KZ7ljPwP0jBMAvnM/A/X4LdhaA08D9VB6djAzXwP+HApjMJNvA/yPBnbQU58D9DiTTyRDnwP5Hn/aLpOfA/wAYKa1U78D9V3o5hOTzwP7YqX2PIPfA/vv2sEs4+8D/7LI7BY0PwPx9sskp/RPA/kiXpUThH8D/qnBq/YEjwP1zqAYWCSPA/b3s/MWpL8D9Bw7Ara0zwP/2+Nb3sU/A/66lRwn5U8D8EkzdPn1TwP/46ZnjgVvA/3Wnj2xJa8D8VQ9cBG1rwP2ZT6hZPXvA/sNEJ3TBf8D+T4rLleWHwP0COrYd3ZfA/rh5MMttp8D91dFcrMmrwP2nmODQIbPA/00Z5YG9s8D/R+pDYWnLwP9/+gUA+c/A/Nu92IG1z8D+Hbb88FHXwPyqwv/P6dfA/ztVHlrR68D+DomrJ53zwPzer+VMSffA/cHj3tXF98D+a7HNbg37wP/YWtTTjgvA/xUVwVKmI8D8l6ocWWYnwP3tetesNi/A/gDl/l4eO8D86N2BFFI/wP41DG/hfj/A/kMBbPw6R8D9QB0DrUpHwP5Nq3NpPk/A/v5u3E36T8D+NTWyqLJTwP4dlwgEKlvA/zhmwnJCW8D8PM9qIA5rwP+bSDqq1mvA/pgnYIe2c8D8S6QpzVZ3wPxV+nN9nnfA/UxZZzNCh8D832W6uO6LwP161L7pmovA//MZwf22j8D+kfIgOIaTwP7Ehqqr6pPA/vP8yooCl8D9/7XVLw6fwP3dX9tNUq/A/XWKST7Wr8D/jSfAOuqvwP1UHuVj4rPA/jT3GSOKv8D/HMjGaELDwP47Hcyl5svA/dlC/mb6y8D/KbhfoIbPwPz5jsScVtfA/M5qLDh218D+seT7wrLbwP64v9Px0ufA/QMcb7eS58D80qBBNcbvwPwBF0+7yvPA/K0ZE4oa98D9uJVMY+L3wP3kosEllwPA/kOhed5DA8D8foZV6+sDwP9Xz7c6rwfA/VQfprA/C8D9ixyqRqMLwP7E6cP3CwvA/KwTIsf/C8D+FEvlEHcTwPyLXoEJvxvA/6fNziBjJ8D99gpMLZsrwP4DYiaFIzPA/Ofv8bI3M8D/MJ6vB9M3wPz2Yu0j3z/A/djm+di/Q8D8z+q/XKtHwPzVLgqyd0vA/9Hg7UhfT8D9oY9PzvtPwPyg3upjF1PA/5uTcfMfU8D9cKsF4e9bwPxc0WUpd1/A/qiRAiKzX8D9Ni1ibqNnwP2sZI/Cx3PA/boLplVTe8D9SgVRzC+DwPyZGPEVA4fA/g/lWPxfi8D901czL+eTwP+P+EhvZ5fA/pyPNIgbn8D+E9nmREefwPyET/cni5/A/MYneECXo8D82z9G8XOnwPxpEg0386fA/PNQk/+Lq8D8YFeXjAOzwPxsLWdta7PA/JZmwYcHs8D97BzHLXe/wP7dSV2gL8PA/t1JXaAvw8D/eA7/7PPHwP9+fEuMQ8vA/dDOoW6fz8D+Fc407z/PwPx6Rmtdb9PA/B+D3XGb08D+jDELHcvbwP18l72LW9vA/aaGUpH338D8y7apUbPjwP3GDwSYo+fA/VNGYLuf58D/triaSA/rwP6vwi4w4+vA/9flf/gn78D+CJubECP7wPyLjnQZc/vA/y7IslMX+8D9+kPERYP/wP6Tgu50NAvE/GQrzu0gE8T/RorVAvQTxPznSV90aCfE/wZSkzYcM8T/g4xnlSg3xP5pcFU5dDfE/Ljn2GV8N8T/BYwIZAw/xP/saklQ7EfE/Y8mEQ5gS8T8PjcVX0hPxPzO5t9sXFfE/9vgFFyMV8T9ZsDZwxBXxPxStLs9PGfE/XuHhoKga8T+rJvsLDRvxPwL2Te0/G/E/z7OoACsd8T/sVamuUh3xP2qfvTnlHfE/PU7FoXMe8T8CuWN2tSHxP/P9nhpKIvE/MbHOdoQi8T8/Yo84ECTxP58ja0r2JfE/Dw8GZWUo8T8ilZQzNCnxP2uv7dPCKvE/vccEe8gs8T/BHA7TFC3xP6dcmhaTLfE/y9prNqku8T/jhsGkli/xP4zsRZsBMPE/KyZCttsw8T8vVn3pazTxP88tE54qNfE/ln6VzL028T/fIl5V6zbxP9UEvp+WOPE/n6hRntQ48T8PoJsSFjvxP9Tp8O5xO/E/ZGagkBQ98T//DXJ2hz7xP7nNqKnYPvE/nYNA2AM/8T/I6rW7pEHxP+ftlo21Q/E/+IastzJE8T9lDm7XE0XxPzhDYJ1wR/E/pI1vBN5H8T+58g0DoUjxP2r2i5/+SPE/dvV6j/JJ8T8FM8M1ZU3xP5lbq3E6UPE/miFWX1FQ8T9PV7O+alDxP3cwPp7gUPE/PoUCrtdS8T9yKO/WW1PxP7KhSnpzU/E/E1z1cGlW8T+Q9YF7X1nxP9JacM3jWfE/1Eqr0Kla8T/DhRC34VrxP0zfOtFpW/E/eU8n2qVe8T+od2+CG1/xP4lAWNTKYfE/CUOEK6Bi8T8GBcX9DmPxP4krTqKkZPE/TZTOvAxm8T81LTCSYmfxP0LWcpO8Z/E/OLz7rANo8T9Vu7HoSGrxPyBadpsBa/E/YlA+EOtr8T88VjlhDm7xP5UKxWSQc/E/Zu+24qdz8T8zGlfki3TxP+azhnDtdPE/rCdu+wN48T82nnpbrHjxP03LgDKIefE/IadUSgh68T+TVumrUHrxPwTpCNNcevE/+59fEIl68T8QJOnFnnrxP40ynmCievE/XiVesS978T9gNEoLZ3zxP/1FziuKffE/fkx6Q5598T/rl0oVC37xP9kjvQNCfvE/LFFl8RR/8T/Xx3CcG3/xP5ae2zJ9f/E/YqBWOVaA8T9Cw+UyMoHxP63QVir/gfE/RF85GgaC8T8OsAU/jIPxP9Ys4dLwg/E/+0vYwjaE8T+h5K8RzIXxP/MkE8rqhfE/7rR5kJGI8T90tdpPt4jxPzpj1iDbiPE/gIDiHz+J8T+aOe/Q7IrxPySrFCHdj/E/gOSSNeeP8T9GwyFGsZDxPxUwuY7MkPE/r3kw13qR8T9W/GBMfZHxP90tCnKKlPE/MW6WAiuV8T+rJzqVM5bxPwArB1eYlvE/JcXiWAOX8T/il7RJ0pjxP1lB89ImmfE/w2FqKnGZ8T+ZPHjLeJnxP7CYbgyqmfE/FrH+CHib8T82gdubsZvxP+RiDlT3m/E/QLVC2x6c8T9yS457DJ3xP7Xv7BaenvE/7HsigtGf8T+/WuERRaHxP/nlrxKDo/E/1yQHy9Ok8T9V+rpmfqXxPxJzdbotpvE/uVr246em8T8l33xV2ajxP6ilTu37qvE/s6RL7wyr8T/A3OBkm6zxP1nfiStjrfE/Whq86kKu8T9Svg5kBLDxPziwkjSgsPE/rC+f9vax8T+Ywlt7aLPxP7MQwZM6tfE/t+C71rS38T9gQdkegrjxP/G8JMmAuvE/nRezsjG78T88SDBvb7vxP686hDATvPE/hQxPa2298T9nMWssPr7xP1cDsGmvvvE/aDqhX+y+8T9p7x9Ni7/xP0dR7VdBwfE/OCS0qlPB8T/17B1lTsTxP6S4ZeLvxPE/kqt96/jF8T/owJPqo8bxPzobcJW8xvE/21vqk8bG8T9S50LGzsnxPyxZ5I0syvE/y4jFYWDL8T84HG0VFtDxPzyeR/Kw0PE/CkFxMk/R8T/GnFbLndHxP+5cfN2s0fE/BGMoXSXT8T/beZ96JdPxP7POoqTG1fE/qcYcxHjY8T/EU73ZsNrxP6hPF8qS2/E/a2B3ax3c8T9DU7RxPtzxP8LfZETj3PE/fcL1SU3d8T949vFMJ97xP1hZAd9I3/E/G3QACmDf8T90k0G2buLxP+dDIA5V4/E/5CT54Ijj8T9I3gNlFuTxP3xisSDg5PE/fUGBVC3l8T8Dlag//uXxP1xSclYA5vE/ywcoKSTn8T+NrmEGSufxPweEbrPH5/E//JNCzjro8T8L23EwperxP6mco0XW6/E/rnZvzzPu8T/cFWJaG+/xP9z8NlRQ7/E/zuT+t2Dv8T9c8UtF2/DxPyoeex7j8PE/QSuxZ7Xx8T+FlVUkuPHxP5/+6q9F8vE/jViE3kry8T++Q2eef/PxP7d12Te09PE/oNSHm0X18T/dcUd5DPbxP7W0SRiK9/E/bvwSTtD38T/JJl2WTvnxP2xt+8wa/PE/thUv5c388T9OfQrD+/zxP7cPzJ8e/vE/s4ahoO3+8T+J8rYwjf/xP4dWG84eAfI/6DvKh0MC8j+TzRL7SgLyP/oWmOJjBPI/a6eTKzwF8j/GiLcSaAXyP6b3BCijBfI/RghdE0kG8j8WwsLDWwbyP5kPUG+zBvI/3Sxtle4G8j/PCsoiNAfyP+mH6qz/B/I/GC8hlQcI8j/IoZMBQAjyP0ngWW1cCPI/SB+qh+8K8j/kFaZANwvyPx8hZc+jC/I/xR9rafAL8j8+8Rh/KgzyP/MzeURCDPI/QiJQ3EYN8j/qH4Ow1A7yP+ofg7DUDvI/bFtNsG0P8j+GvNWkKBLyP4KI0VU5EvI/l86NXHgS8j9T/CizTBPyP41NEOYqFPI/Y10trXYU8j8gSwKqZxXyP+DvjpeOGPI/QlV2t6oZ8j8HKnBV9RnyPwYD26ocGvI/lv9nW2wa8j8I3+5ClBryP8UnW5g/HPI/mPS8rwcd8j/7Aqy8Jx3yP5nbkak8HfI/ucTrioQd8j9CXq6l8h3yPyFADylHHvI/yi7tjPQe8j/0CD14/R7yPwQONlAOH/I/D6mLdPEf8j9oadx8NSLyP2qY1Rn0IvI/jQ0GC08j8j+LsfoVQiTyP7PCOHiUJfI/W1WckbYl8j80KAewKSbyP20ahUR3J/I/tsiJOqYn8j8rq9giEynyP6NtuHKcKvI/VzMcJqYr8j9bBVmAUCzyPyVUTsylLfI/GpJgsyku8j8Ib/1ZBy/yP9Hn4D8YL/I/S3EMFTMv8j90ZxiTPS/yP5dgDFbiL/I/z9LftVEw8j9uTKaP4DHyP3LsVSBXNPI/Zr+09mg08j/zupN0qDXyPzwC5pHONfI/uJT1DGQ38j+8/AfCVjjyP7knhuNBOfI/5HiSYNo58j84+zZHEDryP4rzB3+MPPI/LcP7o3E98j/ntYszOT7yP2IECKlYPvI/wxxZGxQ/8j86EXvSIj/yPxXtC5uKP/I/cKu1VKhB8j+69l+OukHyP6BraTA0QvI/arPycZVC8j87lOMAgEPyP+elExWWQ/I/ocZPkQJG8j+SqvzYYUbyP3lbrGz1RvI/KvLRDR5H8j+WmBXJVEfyP8A9GJV6R/I/u3WP1MFH8j+B/8BHvEnyP3bnMQA3SvI/pyM4BppK8j/vgC2AgkvyP2cr1Z/1S/I/xANJEZdM8j95obs3Uk7yP4qE5IytTvI/6LDJWftO8j9GwC6WZU/yP+J1FfifUfI/MQtakRVS8j9aW0aBQVLyPy//DPWDUvI/65+gUDFT8j/OKcP9j1PyP4e1ODexU/I/cCmvfbxT8j9wB0p2xFPyP3dGoFTDVfI/bKXGWuFV8j8HCn4zklbyP91IoEW5VvI/3vL1Tk1X8j+YBw3XllfyPwxzhJutV/I/skLci7dY8j82o0FxwFjyP0DY0A3dWPI/m7e9OdFa8j+78jkhw1zyP76+g1AcXfI/gAqnQVpd8j+Z1IKyNV7yP6LA1nSJX/I/viSJsypg8j9d8APbC2HyP7VZsTU0YfI/Du92PnZk8j+K1gPpd2TyP1XA45QLZvI/RNH/My1n8j/v4kC0vWfyP2MyxfvgafI/svvRnOxp8j+M9DC/XmryP0M6SVHRavI/igxm8F5r8j9it4jp2WvyP48yRy8cbPI/5K5Apkds8j83gvl9v2zyP7ZEi49jbfI/WsrONaRu8j96bdSVMXDyP7mtM/UFcfI/Fa5qV0Rx8j9fhyIn3XHyP524n9LycfI/5ryItfNx8j/q/MT5E3LyP9n00xwkcvI/o+jqF7dz8j+35XLacXTyPz6yeUiFdPI/nl/kniF38j/xdgRIDnjyP/Eg7bUPePI/MCPGrpl48j8e0LWxkXnyP+ATcyUBevI/zuPufqV78j+/zoyH4XvyP1TEN7MdffI/ZvFkaqh98j/btDlkCH7yP6E9VBvXfvI/EpcOzzeA8j+oec95t4DyP0z1ZpB+gfI/Mizk8v6B8j/J+10JAILyPw1ChegbgvI/ezKSdzCD8j9v3ElLMYXyPwIfxzqOhfI/uk+59q6G8j9Sr32OVYfyP0It3dm+h/I/8rRtHB+I8j8XFs/6eYjyP7OJlq95ifI/KjQgkgyK8j+0PhWdGIryP3sGyfdvivI/GrrEIcyK8j+ko+hK6IryPz/n4pxgi/I/HjYIRCCM8j96sb4U+I3yP7BewYgKjvI/DdF/k4WO8j+7zd8CRY/yP/pGFc9kkPI/c3Xlo+2R8j/xTJy7GZLyP/hgfGpHk/I/Jq90Ar2T8j9LNonSNJTyP1vgxG2qlPI/dFsP3VuV8j+iUXZgopXyP0bhiWPulfI/WfSRiqKW8j/iYh7lpJbyP7ycIKT/lvI/hKRa2pCX8j/hb+oU+5jyP/yghpBOmfI/s6jzZ1yZ8j9Hb546R5ryP+JLgpWvmvI/s4RbpZKb8j9jGvCeL5zyP0Pj6AS1nPI/Ukt11ECd8j9L+BfeYZ3yP7KU4Iq+nfI/c7bxi+md8j8940ARgp/yP4eml7jNn/I/GyIFAyqg8j8x0N38MaDyP//L91YqovI/sQ5setyi8j8Cg0KPDKPyP9lTk78ro/I/bXkSwTyj8j97Iu2IQqPyP9ExqyWLpPI/WSSVEvSk8j/yrn7O/6TyP29OdQBlpfI/K2jCfUGm8j+X24Ksg6byP7Onm1Xyp/I/3GW5DTOo8j+qxYbAiKjyPyL+6/EpqfI/hvSioPKp8j+we7jWl6vyP2DxgWelq/I/ew0ti6qs8j/cnehAs6zyP5Zkhx3urPI/K1d3o0Ct8j8+jNbRia7yP9cZ8VOcrvI/J+7kaAOv8j+ViX7Tdq/yPxDtk5Pwr/I/9rvcTkax8j+Mh2Iy5bHyP13PWaVHsvI/Kvzw6Liy8j/Kmwh+KLPyP+sNXcNmtPI/RhZj4DK18j/0OVJMcbXyP8KTlzTCtfI/HQAA2Ry28j9lIElmR7byP3sYFraatvI/yBh2ivS28j9jysEdhrjyP5TeG9zGuPI/UdEEogi58j+JgrCsW7nyP+qui82ZufI/3dviF0m78j+PabtfYbzyP+NdORE/vfI/xlvGybK+8j8REtywv77yP/4rCWkEv/I/BF1fg//B8j9LxUSp98LyPxuF8xNhw/I/d2IyCifE8j8q1Lq0Y8TyP3rHuFXXxPI/Y7VsdRzG8j/sTlB8TcbyP+y+9W57xvI/uLfSngDH8j8xCjJvpMfyP1z1pyfvyPI/72CaGGHJ8j9dqiYVjsnyP/Vk9zPPyfI/1oNYlFHK8j/CFl56nsryP0W8s3w7zPI/wtYEv1XN8j/1bDydhM3yP548mUOPzfI/xoasF+7N8j+jsRhRUc7yP2bevFzQzvI/KZSbnzPP8j/I137sYM/yP4NrxUGaz/I/bRi5jaXP8j/cz6ddzs/yP736L0RJ0fI/a0bi/2fS8j9N6GQMltLyP7m3ag+c0vI/cdO7h6TS8j8P+OWJudPyP0G4eJ8y1PI/tT5ZcmvU8j/3KDvV+dTyP1ugRb5R1vI/luuu83HW8j/STX8I/dbyP437YKkA1/I/H1HJttbX8j+t707z4dfyP2OgimXv1/I//yVRUx7Y8j+vssXORdjyP0uq4foF2fI/Ny8S8CLb8j+7QC3H4dvyPxIL0s973fI/sEpclYPd8j/winus1d3yPwS0o78H3vI/2LHBPkve8j9Kceqaxd7yP1gttOPM3vI/fEgUF9He8j+NxdLM/d7yP1SzBW3k3/I/0XYtlrrg8j8tmb/eyeDyP3hwwCHh4PI/WFWqFsri8j/Gnu3aK+PyP35MUXww4/I/2YSikcnj8j/1028TdOTyP9zXAenD5PI/Lmpf2OTk8j9pRSFNLubyPyVgBGzU5vI/VIPUT43n8j+Z4c0HRujyP67IEcmS6PI/EPt3r8jo8j8G/ji/2OjyP5taBMsG6vI/gyX8z4/q8j9pi4X8t+ryPxsaebfF6vI/j60O3A/r8j/qY9wQUOvyP05qp8t87PI/okHsuZXs8j8EmB0iYO3yPwqA/yuF7fI/n2xatcnt8j8Ejy/TWe7yP3I6s/bu7vI/eWXoffzv8j+NmiMDifDyPwNUOdqu8PI/FzqMsdHw8j+JecUub/HyP5FsPpTC8vI/d1+4F+Tz8j/YaGf0m/TyP1xKiogo9vI/XTHCnHn28j9dGJeWrvbyP13/a5Dj9vI/sr4gie328j8hFjcom/fyPy1m6ora9/I/0tDNf5X48j+3aVVvTfryP8cYjdLj+/I/8xI6VkD88j8j8pC1l/zyP+OrgpCs/PI/kTKkYeH+8j9hpNdkW//yPzIY46AsAfM/w1FiRW8B8z8RjZqZlALzP++g7/P2AvM/bRplQysD8z9+AtbdYQPzP6iSwbhJBPM/M3yrYIQE8z9Ksw060QXzP9Wq2P2tBvM/x3StCcAG8z+4ogYB3gbzP8dbggP1BvM/cAAbYoIH8z9We4hSqAfzP63p5E/OB/M/EY2UFmEI8z9t3Qlv2ArzPw9Dt5BbC/M/OQGkEV8L8z8Y9ENulAvzP9qhBy1sDfM/Zk0UfnIN8z9mtx7HnA3zP6p/FPL5DfM/A4M0KMEO8z/JSYQD5A7zPzsGsnD4DvM/sSaQCv4O8z8EH4gPlQ/zPyhxJDdjEfM/5JfFtKsR8z99FzkMsRHzP47zU2BSEvM/5gHDj+kS8z/wIxR/ixPzP+kHFFL7FPM/AHFXi/MV8z+an0+B1xbzP0W+sAzkFvM/Rp1tt+YW8z/eX6kh7hbzP+r/+m//FvM/7A1lFA0X8z9IUuykhRfzP9VujDeyF/M/2rBzktUX8z/hNrrYmBjzP68wY6MRGfM/fUznK50Z8z/TyavsXxrzP6LKbc7XHPM/dlIe7mwd8z+mrq/1GB7zPxIv5fNFHvM/G1z5L4Me8z9hCKtxyR7zPyjqlSZ4H/M/YZaUtI8f8z96De6dHSDzP3r0wpdSIPM/thWpjlgg8z/hKrUDBSLzP+L4XvduIvM/x8C1Tswi8z9ICBlcZCPzPwpths92I/M/5DAGxhYk8z/2jCLPeiTzPyiJC0xoJfM/rLTLsYwl8z8tKm3A4iXzP+jr1XXHJvM/6Ll/aTEn8z9FUK2bZSfzPxjZyyRVKPM/zQiBHNko8z/wmMJ2+SnzPyEXtZ81KvM/8Xj8Z9wq8z98Jr7yWSvzPxN52by5K/M/ZlbDXlEs8z+DUb93FS3zPzJjwS44LfM/uq8+5HQt8z9Ra8uHtC3zP6zEc7kVLvM/+vP6vh8v8z8wcb8iIS/zP4WkpDuzL/M/q4GYmMAv8z+nYto8fTDzP49W4RRDMvM/RZG4Oq8y8z8XyQYbDjPzP0xy3mS2M/M/i7BGwNYz8z/+IHBPZDXzP/E7ZhiFN/M/dSRvaKE38z8MGu7uvzfzP8t5/aDPN/M/CxpMF9A48z9Na45TDzrzPwz4b3FbOvM/sN7KaxQ78z+Qphe9fDvzP0SR7wC6O/M/33GM7BQ88z9LHNa8ZTzzP7yP9K+ZPPM/Gn8L4MY98z80jYYimT7zP/muducQP/M/yn3qV4E/8z8anXNzCkDzP8syaUUgQPM/5H0ucThA8z/UhmEz80DzP/mmumb2QPM/Zxf63pBB8z8VTqPxoEHzP/zG3N2kQfM/XSXD4cpB8z/ntdU/4EHzP7KVDYsEQvM/AZn69ylD8z9DR0JV/EPzPwID+NJnRPM/Xnc8H8JE8z+F8QHmD0XzP4Po6v4QRfM/2OIQ/zBF8z+vRtyHbkbzP4/v4otxRvM/tB9gTlFI8z9FQGg4hkjzP04RxDIHSvM/tz7cFi5K8z+6xhd5Y07zP6HVfb/2TvM/5E9uyUZQ8z/kT27JRlDzP5vgnjZ7UPM/tt6m4nZR8z9Cun1ms1HzP+UaFOUTUvM/P9hIBVBS8z+z+SKJfVLzPxQ0DPaiVPM/e4XU2sdU8z8k5qSGv1XzP4CoKJ5GV/M/AyUaNapX8z9xUl/ssFjzP6lvjDKAWfM/2AMyScJb8z/nshvuA1zzPzH4zBviXfM/98YVWRtf8z8xBIoN0F/zP0gkyu9aYPM/nY9pn+tg8z/k5gCvB2HzP0GSSknMYfM/Ufv7JWZj8z+Tt8I6mmPzPwWO3BKqY/M/Us+HcMRj8z/NlNSWz2PzP4oVM1IjZPM/U50xZC5k8z9V1dgy1mXzP2KHNt8/ZvM/X/BvOhRn8z9XDYABfmfzP0zD5UqyZ/M/q/VTAI1o8z9Zd33cu2jzP3D5lycHafM/yNYExFNr8z+Hp+irTGzzP/Jg4BJmbPM/6wbSyL5s8z/Kb4C/52zzP5BHDGoDbfM/b+5c/hVt8z/CV+hBU23zP+jfJqyrbfM/viQ3eslt8z/plKWZSm7zP/8v6+pgbvM/k2aIMuBu8z83cHCM+G7zP4BAQYAOb/M/6jD5gB5v8z+Z9sWpsW/zPy+s32oicPM/8CufU61w8z+s7vM/PXHzP5XIbCsicvM/rKdBTKJz8z9KmEw7znPzP2qHMj3nc/M/8kRZPzF18z9k6xCRZnXzP7B7KMKddvM/ElFsXqx28z+6yqwi2nfzP+sbS2ViePM/IEp7ocJ48z8KJS8BxXjzP3TT5GSmefM/cJwuJfN68z/ZMXZgM3vzPwIwITZ6e/M/8vUbct978z9lMyPMinzzPx8DwzgIffM/paDjnDB98z8UoPGhQ37zP2Tcq7xYfvM/V4zN3K5+8z8IPMO6nX/zP9huXjvSf/M/sn0R1+Z/8z/WYN4kioDzP5jkuEeMgfM/h6lOXzqC8z+MTJQtToLzP1yxmmedgvM/Dp3bV8KC8z/a6VfIpIPzP2FlxXb9g/M/d+erpr2E8z9O2tgs1YTzP5w18fBwhvM/KwUJp9qG8z9DQ8lkHYfzP23TePSWh/M/w9wmTueH8z9k9eO6aIjzPwPH+FcjifM/i0h1cEaJ8z82D1whWonzP+EqyJBdifM/APphNriJ8z8a5PXwC4vzP+RxuZ3SjPM/RGEd6JqN8z92z83et47zPxCbpu/rjvM/NOGxXR6P8z8X3t7+YY/zP22swmSBj/M/ZRiPr7+Q8z8qw28nQ5HzPy3IyNhNkfM/OH7g5YCR8z+fEGOw2JHzP+soJIzhkfM/Xau7XqyS8z9Ju4qJu5LzP5H5TF8ak/M/sRiUgw2V8z8VzV6vNZXzP67n++qzlfM/JiEYsmOW8z96zmUtbpbzP21c2AKLlvM/3nXLWh6Y8z92r/xihpjzP5cehO4CmvM/Oblqs5ya8z+FO2eXLZzzP4TwJUhKnPM/hijNFvKd8z+HxCD+xZ7zP4er9ff6nvM/J4ax1ief8z+IYHTlmZ/zP4ggtDT2n/M/IvEi+/uf8z9bnKnww6DzP3JEkSg9ofM/zXSM+16h8z+KcYYJaaHzP9YfSSWJofM/9BQD9Tmi8z/UsuhAqKLzP00yaMKrovM/ZbA5gquj8z8iM4Yh3KTzP+/B6rk9pfM/+Z9UuSGm8z+QGXx1YKbzP259INmJp/M/8UcCsx6p8z9hrgi1W6nzPxvi3rulqfM/i5Gpgrqp8z9yURuPBarzP/novNCVqvM/vuImxh6r8z/b0QNJLKvzPzF+EV0IrvM/jMrI0ZGv8z/ivANbf7HzP0+iytk3s/M/REriX5iz8z+EA7eTGLTzP4AVTAdAtPM/r9Mh1iK18z9tnLHLn7XzPyYu5DwdtvM/U+Vgd2q28z/4xJz0D7fzP0FGCkbnt/M/SloGMui38z8Ac8JcfbjzP+ECrVljuvM/HUuQYYu78z/26nmzwrzzP24qnicDvfM/kDnyqDG+8z8irpGVSL7zPzlb+MgCv/M/GKONGk3C8z90A/u3fcLzP/QdN0kXxPM/+DT2xS7E8z/50EmtAsXzPzuTsa96xfM/ujEZrpnF8z9dPmeAzcXzP/C8QovmxfM/+vqG15zG8z/8QyLHw8bzP/vvxXXfxvM/FUJcTyLI8z8/ToFfK8jzP7be5825yPM/rgoqhsTJ8z/cK/rRo8rzPws56G6nyvM/hu+FILLK8z/oNHjW8srzPzOZzsb9yvM/Q9f6AkbL8z/diRnV3cvzP24WER0gzPM/Fll3dnfM8z8dElwTmMzzP3r51FvzzPM/MBtITjfN8z/0VQssV83zP6W0qQRqzvM/hHTHj4rO8z8UnMk0os7zP/Ya57njzvM/k31SQvjO8z86Eh2c/s/zP36CTv8N0PM/Mb0pX3DR8z885cZZidHzPzu5HESR0fM/ybXasWTT8z9p22xea9TzP41XPxOa1PM/Gx0yF7HU8z8pJVIqvNTzP7CPO1B51fM/qKF8aU/X8z/Cuu4+TNjzPxE5Yyaf2PM/BLQVpdXY8z9YkubM8tjzP/yIBodK2fM/MkyeVdbb8z8RBgZrKtzzP15DUQxD3PM/n4X3kgnd8z/FEQNOot3zP2XBH8Da3vM/nLXM7P/e8z9IR5kFSt/zP4DUTFXY3/M/XEstMv3f8z8MUyw2kuDzP+uw78od4vM/nGUpzozi8z+rJwhYvePzPz7sW+7s4/M/Zo2lgmnk8z8GNSM3duXzPyCiMva45fM/v106jRLn8z948LD6vOjzP4lb0DzS6PM/wLIsSCbq8z+sx1s1zurzP7EHxlIH6/M/7p5uYEjr8z+vcbloWuvzP+7Iq4ri7PM/8XJpFsTt8z9BrNtY4e3zP7ggOMHn7fM/pTfAq0fu8z/yJ+gDY+7zP/L1kffM7vM/MmOVp5zv8z9AbydhAPDzP/RGZMw/8PM/9S05xnTw8z9US8RbvfHzP9Jg4aRE8/M/netZFu/z8z/3XceyIPTzPzIR8IlE9fM/JHsfTEH28z/RXFdW+PfzP8Moq8AC+fM/rCLBrxL58z+fMqHWFvnzP5ype2oS+vM/4X1xUV768z+ZF30J1vrzPzf5dp9R/fM/sEavq4cA9D8yGVA9+QD0P4UA++cZA/Q/PP9PR84F9D/BEv6B2AX0P+vIAioSB/Q/sMg3WEMH9D8m/demuAf0P8bnUmcLCPQ/V5isMdsI9D8YH0iumgn0P8v5eryKCvQ/isGSa78K9D+4MGmx/gr0P7XU2dxmC/Q/BtsrWu4M9D9b+xj+QQ30P0bxWoemDfQ/Xh+oQcwN9D+h7Pi7RA/0P4q4zNegEfQ/CF8tELUR9D8eSDGprRP0P0nsIMTpE/Q/sHyMLyAU9D9sug67bRT0PwvPkwjEFPQ/M3fVOOQU9D9iwvr1ZRX0P+QcHO9tFfQ/C6gG3nwV9D9ltzmUqBX0P2ZsuIFHFvQ/ZlONe3wW9D9uwF99fxb0P2cIDGkbF/Q/GYJxpzgX9D9oizRKJBj0P2hyCURZGPQ/bb755LEY9D9qDl0rLRn0P2oOXSstGfQ/Z9WHHUgZ9D8JLSaTcRn0P/dfuYZ2GfQ/6vZnZ/sZ9D9pgxtoKBr0P7xYN6bpGvQ/ANrLGAcb9D//GKmBGxv0P6p7COQ5G/Q/3Biyt1gb9D+O5OiRsRv0P/oaiTYnHPQ/yousQ6wc9D9uZYDCsRz0P0sOnMFLHfQ/E9O1cd8d9D/+vC3gDB/0P4RFYCAwIPQ/OMn53VQg9D8ltByxiSD0P5z+FeCrIPQ/YSVntGoh9D+iEsduGSL0P6hUixjWIvQ/pi32bf0i9D/a5vBmKiT0P3TYy2ByJfQ/Ft919aol9D9m0bodxyb0P3js9fLmJvQ/+r11VPEm9D86TNnm/Sb0PzkMGTZaJ/Q/rygLKDIp9D8+fGfTqSr0PyzIG40mLPQ/f0IQFWot9D+/hHhzPi70PzeapmZcL/Q/AfhlW4Uv9D+jl2rI2i/0PzHUvRFKMPQ/IFGC+ycx9D9VzBDvTDH0P2AZiabFMfQ/sG31rDEz9D8IJADHtTP0P30CVnH2M/Q/fNvAxh009D9Jv12q4zT0P9rsMK7nNPQ/ryLCShE19D8rcx5ISjX0P4s31VNRNfQ/4yIC53I19D/v84a3fTX0P8slLzpcNvQ/EIZ+/GE39D9C36s1azj0Pxz8OpCEOfQ/IEDYyYw59D/QfFLR4Dn0P8qCdNZgOvQ/dHdDT4469D+zmOQ7gDv0P4B1N2nrO/Q/tbu5ks089D+Nk0nRaj30PyLEYLU2PvQ/mFov+IY+9D/t6RQgqj70P6Dc9Ph1QPQ/E3yMEahA9D8MXrvSFUL0P5ECC+upQvQ/yO6E5tZC9D/G+5eMWEP0P/O5dc//Q/Q/vcIeqiBF9D922MBYLEb0Pxh7BiVKRvQ/IC3EMKZI9D825+qaBUv0P49PSoXmTfQ/Ypgk7SdO9D+nokgwXVH0P1rYByo5U/Q/MHKsgelT9D8bqAN2P1j0P8HYnmKdWPQ/QvOa+h9Z9D8VAze7OVr0P+eRQdW5WvQ/oQcOb7hb9D8w4UBfHlz0P6lT7DmGXfQ/Epurcfxe9D9iI0w2i1/0P2Y+qkAfYPQ/xV9S3VJh9D+rvBfxzWH0P1WoGI05YvQ/5mX9ZmVi9D8Ga15ydmL0P+8XtQnlY/Q/drXVROlj9D/3PxV7RGT0P5/xkhKbZPQ/uksJD0tl9D+sZ+CeUmX0Pwr01xWRZfQ/NqsCqdZm9D8PS/usFWn0PyzZJhlBafQ/0qTByJZp9D+eagH8yGn0PxDOI44eavQ/gFR174Nq9D98HIq7p2r0P5/tKd3RavQ/OgVgM2Nr9D8t8DH7lGz0Py6+2+7+bPQ/TItdNMtt9D8ElrDpN2/0P7Wv692Wb/Q/XgE5rq9v9D/WXyYxuXD0P5INxfUccfQ/tianAwdy9D+F4cxbL3L0P/PCFMCocvQ/iDoHAFNz9D/TP7lPXXP0PziZiKaDc/Q/9aWjWRl09D+U8S8vtHT0P/aSSuoZdfQ/9RlzYjZ19D+9T5m1ZnX0Pz0J10PTdvQ//qlG6E949D+RekZpaHj0P1u62qMCevQ/hBxKiAJ79D+XEriM+Hv0P7E4m2mbffQ/oa0QDrd+9D+jOlrQ/X70PyH7j6EDf/Q/hqVijzh/9D/1ZWe1dX/0P00Zbpv/gPQ/3ucgy7KB9D+gp9O0NoP0P622EJK6hPQ/ooWRfVmF9D9Istysxof0P31NGS0jifQ/jn7jU8uJ9D/GPGNRVIr0PzqDgtZ0i/Q/pzSGutmL9D8DTSHQ+4z0P5C4rkqxkPQ/Sbos+f+Q9D+aBespL5H0PxnJqKuskfQ/3EiW4/CR9D9/nxuGYZL0Px5sDG+hkvQ/Sso2UkKU9D/cjYTC9ZX0P/kH0aXulvQ/u58EznGX9D8Bw5NGEpj0P9fNMEpnnvQ/SR63wqqe9D9ku5f6t6H0PzwEgHA8o/Q/604Z2dWl9D9mcEX3Jaf0P1a6OVdzp/Q/+ePqf+Oq9D9FfBbgJav0P0LB1xxEq/Q/8NJditCt9D+LSGxqLq70P9FmMCcFr/Q/z74YJCmv9D+EE6jjUK/0P94ETdVYsPQ/7pmBAdiw9D9rUYINKrH0P76SkToytPQ/ZHqfDLS19D/bCRbLJ7b0P3fax/w2tvQ/IR39nbi39D/WsIjCErj0P3r5Q8UTuPQ/Zmugul+59D98Shaahrn0P0WIzYGPufQ/T4X8UP279D+paz4ICrz0PxCpdNQNvPQ/rlAnHBy89D+SYHZmD730PxiBJbp2vvQ/Z6xoAIm/9D8R4LtIm7/0Px5DQ9XAv/Q/vi4zQNq/9D/+Rzu+BsL0P7+5CCtfwvQ/n0zBQZzC9D/suIDmu8L0PxSR7UQSw/Q/ehaRlDbD9D9DfoLNccP0PyvGu9IaxPQ/0bWQ6hvE9D92M68Iw8T0P3oPqQ70xvQ/hiiXeqjH9D9K0fsa0sn0P5okd+pjyvQ/ijIm0GzK9D+F6k4BOcv0PyiBvhoNzPQ/RTS7K9DM9D/XS/3N5cz0P8pMGIcgzfQ/lInEm4fN9D/mPpIx99D0P1gTMAgp0fQ/CDGsJmfS9D/bZztepNb0P5FOdUM92fQ/auio9kPa9D9pFz38U9z0P39f+1p/4PQ/qjaOCtXh9D9QIsaWTuT0P42nn1eC5fQ/2ITr7Erm9D8wOoZugef0P7vsqC+J5/Q/Kh6u0Dzo9D9Wq9CAi+j0Py9szovY6/Q/tO3gn6Ps9D+idZ/uYO30P9dxL3KC7fQ/J6CazkXw9D/gpxM3q/H0P2Gb/UGs8vQ/TIBHw3n09D8QGGnNAfX0PxL3LvJt+PQ/ISMjeWb59D8ToMLXefr0P8K/0Oug+vQ/1yieLer69D+0ISqHD/v0P/yxDBp8/PQ/HId+G0D99D8O6MOE4P30Pw9SwV8e//Q/Qx1xX5D/9D+QeYbcvAD1P0yh/oOiAfU/qF+PPu4C9T+NqaBlWQb1P4br4Uu9BvU/uw0R+58H9T9A/4U3AAj1P5DIHC42CPU/G3e1L84I9T9qfnku0Qn1P9RVMzhtCvU/2D2rCbgK9T+UUZbRUAv1P5B74xDlDPU/C4pw41IO9T+uWD3olA/1P2y5gtrrEPU/eoTg8/MQ9T8n2btpHRL1PyXyFnRdEvU/Wvap7/QS9T/9WfG3uhP1P0OgPU5iFPU/6LBXZzQV9T8W1Aj0vRX1P3GyeXlUFvU/OpKguIMW9T+xD00O8Bf1P2JTHkmLGPU/JQGv+hQZ9T8n+Eb2/Rn1P0jFxXjUGvU/QnPeF7oc9T/Q+zbXaB31P+zJAca3H/U/XAsh3o4g9T8M8XTYjSH1P1gV2CcxI/U/vtr4jWgk9T+ENHRsgyT1P0afmDvnJfU/lfBQocsp9T8mjYLbsir1P9ufktyAK/U/tDWBNHss9T+L/TZ8qC71P/M0laqPMPU/1cNQZ6Qw9T9IsQH2YTL1P1DmSeZ0MvU/hlf/rekz9T/my9fiLzT1Px2B1cgXNfU/tjgkeYQ29T+g68ZOVEL1PzUsklM+Q/U/+CzeNFJF9T++9GasXkj1PzYnfFtwSfU/iEZYpwdL9T8TaB4RQ0z1P2a2PjzUT/U/ZB7ISP5Q9T90/CnEL1H1PwbRcWjPUvU/AnbKzFlT9T8CdsrMWVP1PwJ2ysxZU/U/DX2ZcfNU9T9hNLRk81b1PzeH101TV/U/FM86HftX9T/aHDCIjVj1P+SntL4xWfU/3bG2aSNa9T8IBXB5FFv1P0K94o02XPU/Se1k/g1d9T/anrH7E131P+JbJNaoXfU/vnV/yjNe9T/QvMp9LV/1PzZOMzQdYPU/GL8OjB1g9T8EK501fGH1P/RUctx1YvU/4vOdXixj9T/eP/GtXWT1P5kAN9VtZvU/BHZK9LNn9T9KvLXgz2f1P3QiqF7faPU/FidYqA5r9T8g5LcFKmv1P1hY8zCta/U/sC7tdpZs9T8yM/96JW31P2C5dn9Sc/U/V8SxBxt09T9YwoJkYnT1P6ir5ehHdfU/U7/X4Ot19T82J8UsCHr1PzwJjvCne/U/8lV3ddl/9T94fj3Y04X1P577Ms0NivU/u/Hqq4KL9T9q9erN8ov1P77HRs4DjvU/EtTqeliQ9T+2xQBT8pX1PzGYhluEmPU/LrOKmCiZ9T9uwRGXdJn1P4gerww6mvU/+JQbEjWe9T/pqIQVUZ/1Pxbkjbbun/U/J09veA6g9T8FtIhCrqL1P3D2gwGDo/U/2fJCqyap9T9ozQTf3q31P05WG8Xhr/U/v1XBeBq09T+oyeVRgrf1PzUuuWyjvfU/15q3ycK/9T9WcJqcZcD1P0IzYSpvwPU/tJfJIk7B9T/L5+E+3cL1P1x9nHnexPU/IFli+jfG9T+hzQJ8Ycf1PwKSykXyyPU/JGZKXqbP9T9XiO44YtH1P8DjTaoI1fU/xNXPVqLa9T8WWnVNjdz1P655XqHT3PU/mr5i0znd9T8mmOsE8+D1P/Z6cDP05PU/athovbrl9T9iqzQz5eX1P3hNtLZq5vU/QCCotHbo9T8SQv142ur1PzjSyn8M6/U/zlMTN/Xt9T+VnUL/P/P1P8oTWxmU8/U/YHhC1q7z9T9wvDo5d/X1P+4br0+09vU/xLoGLb339T/GCP2P6Pn1P5iyRwuy/PU/COAHYin99T/sOTOWUP31Pzqqfhcd//U/CEbuoCb/9T9mUXKb7gX2P+DcFFPoCPY/TNLkZjoK9j8oevr30gz2P3JoFOvADvY/tD+SWeEP9j9iblJ1KRT2PyW+zWuBFfY/uoKDkI4W9j98LePkeBz2P355i2ooJfY/3lhrD+Yt9j+n2TiPdy72Pz6w++cGMPY/Tm+NUF849j8N7hHfBD32P6S1eTpTPfY/+lZyIhY+9j/cWoJ16z/2P7Qzi76iQfY/oAoA7GpE9j+2LxAf7kb2PySLDYTNTfY/u4Gk6NBO9j85z8XJYFD2P9wDDaayUPY/G9oiEtlR9j8pdE4waFX2P14jrO8QWvY/GmgGfNJc9j85LmVV61z2P0bK0o9XX/Y/g94NXwpj9j86L/sVN2T2P4xQ82TPZPY/FDq0Kkht9j8tSx6e02/2P1mW5oFScfY/Uy40nNV59j8ES8OjBnr2Px6vQ8E+e/Y/ewgS9ER79j8G1yLiI332PwxMdwXOf/Y/Pg35yw6B9j/iVJYNyoL2P3qbUtsdhPY/8c3Nx3GF9j9OHKe3TYb2P5BZUam6iPY/8CQF0gGN9j+OvMBcApH2P9zOdzlBk/Y/M1yo9dqX9j9sEiTx2pj2PwMb1tFcn/Y/gpODpLef9j9QICisaKT2P/7CDT9gpfY/kAcuDril9j+2pUkuB6z2P4LIf04BrvY/ktnFx9uu9j/47E5rPK/2P3Yc8UwosPY/WiSRapiz9j/PXYbPtLP2P06vLsQ9tvY/mgu3D5G29j9WqQ3HCsD2Pzhar+sLwvY/yZOE0L3C9j+yVoWMX8b2P+x/lserxvY/Brzcv1fH9j96qYe9U8z2P+Bcn8LJz/Y/IjQjPgrS9j+0LmJaxNP2PzL6ojR62/Y/dj/vGorh9j/EcqG6puP2P1Iwg/j25vY/pQwi82T19j+Irrz3fPX2P/CwCurX9fY/4UszVUr49j80mYikU/r2PyXMKUJS+/Y/yAs/UMkI9z+cBFOvkQn3P6YEvVplDvc/ggDTGEYP9z/cvkVl+RH3P4IIl/V1FPc/5l885n0V9z8WaSO4oBf3P9YtxOLUF/c/3Az8gUQY9z8OgEL8vBj3P1C5gU6sGfc/umvI53Aa9z+MnaTymyL3P+183C1xI/c/fm+Yw4sk9z/KjIPb4yT3PzYNTJ9VKfc/iBGeLGEq9z+ObIBbACv3PxKCaIY3Mvc/5YhTkUUz9z+6U+tzSjP3P4DTZOfAM/c/sO3OgJk09z9qJyhNHTX3PyaOV9t9Pfc/NpAIIg9K9z92a3bIXk73P9YzAL2YUvc/wO19eadT9z9UsQEO5lP3P+Vq6lVOVPc/rEeR+RNW9z/qxDG7l1r3P3b3VznIW/c/q49RD7Rd9z8kNaJal173PweG9g26aPc/onWUzhFq9z+M0shFR2z3Py7quDPJcPc/f6sJQgp99z/I64Z+V3/3P06eUCEihvc/9t1P5NWG9z94fPxdGor3Pyacqklckvc/5i3dOheX9z9wXSugO5/3P55Xww0Iqvc/OxtNs4Oq9z8qkkUVH6v3P1kDpFWMr/c/0qr2/qa19z/sXPHo/7r3PwSb3r88u/c/XD6LS2699z+AubLIIb/3P/sM3s8yxPc/UiB+JyPG9z8gatRiXsf3P7wOM/61yPc/mMRDz9XI9z8cLCC3Jcz3P7PATs7tzPc/wtGmEW3O9z9sl6nocNT3P9DSjZLR1vc/xBdqAHfY9z+8ylF7fdj3P6JWYdad2Pc/m2Cc3RTd9z+nhZgBmuD3P1waFOec4fc/PnNmjAvr9z9Yl14w/Oz3P1XDl6OJ7/c/dHB6zKLw9z9ehXhMVfb3P2IHQs8S9/c/PF1YIosF+D/pObsVIwr4Py6NOjp0Cvg/shh/Q+sS+D94IJwbcBP4P1ixMTlnFfg/4IK1TLAW+D8GjavqGyf4P+ZbBeeILPg/kvciKF8t+D9kG/QA/DD4P8hCr2DkQfg/Z4X4mH1N+D+08PN5WFP4P6WTcJhcW/g/emKf7Y1f+D/iWFroMGf4P2tr2vGXZ/g/9t32wNdo+D9zC8nlC234Px1e38JMb/g/ujxqJUB5+D/W2Qs48YD4P9aOiiWQgfg/1o6KJZCB+D99elI7w4X4P2r2QZmvh/g/9D7h85KQ+D+uWv7aypL4PxjQmgzSmvg/mkZkiBCr+D9cTo9GU634P1Qxg9I+r/g/MJaXiYmx+D8MNK5szbH4P45SAz4Gsvg/4oLESdqz+D/dWTA2B7n4PxAExa0Axfg/mAEp0LLG+D9APdM9jtD4P1Y4sLDG0Pg/QhHO8wnT+D/CAet/atT4Pzh5vFIS1fg/+KH9NWLX+D+VirIrHdj4P115IlFf2fg/+cxBY7fi+D93/qcV1uj4P4yywaGl6vg/RDUWbmTt+D8tqj7ZWfD4P4z600ZD8fg/55X45d3z+D/4vY8cnfv4P6LOjMRE/Pg/CmxIi24A+T8ulIx1uAL5PwJbCCAdDvk/0XljHeMR+T/+n6yuZhL5Pwatn7V/Gvk/PFXn1r0b+T+6wlypVyf5PyFfD0/wLfk/OgnOr4kv+T9SJHOQzzX5P+r6sfQ/Nvk/wJMtY8Q++T/HxLJH5kL5P4fPF/uqRvk/jdm3pn9L+T87nPEm5E75P26Xi91IUPk/obILo0dS+T8gCSPMimn5PzoOx6zDbvk/0DWl0kRw+T9U+jgU0I75P9w+7x8Ekfk/C+mnRmKV+T/wzajALaj5Pywc8H6OqPk/ZPwGMtSq+T+cxcxgIq35P1fTlFsVsvk/H4I2Unyy+T/dGVQgp7v5PxETSU2pu/k/dnMCmJi8+T+DV0uZ2OH5P7R1zPG04vk//KPd6+Hy+T/nu1N+vPb5P/u8hSwz9/k/7Ap/BKj7+T/F4fPY9gb6P3L87yY0Cvo/FzOwQq4K+j8CMqk7vw/6P7FpEw4XGfo/tXCtwe8Z+j8nP7fRnyD6PzorVdyzIfo/E4iLI8Qj+j96qCfwkyz6P2kgkU5WMPo/XRfKMFMz+j8EGDaJBjT6P/4X0ihnNfo/GsGo+r43+j/RMUQgNz36PzfEA3QWRPo/m/vRDuBF+j9RY+LtBU/6P6rx2FSmWfo/IAC98PhZ+j8FMha3i1v6P0OapZrEYPo/fBkMO9Zl+j8r/GbjQHP6P5G+6npuevo/jfvC6wGC+j/+5F/Dz5n6P8LbMlGLoPo/FhW9Ndun+j8VAV44Nqv6P1B7c/U/t/o/GA/vj5q7+j+rxstdxbz6P0Dwd8I6yvo/WGkTF+DS+j/wabQ6IuP6P2oBs42y7vo/8dOct+wI+z9+MVzhMQv7PzCKfgFqDfs/O+UOSjsb+z/j0i3yWB77Py6oB4/EKfs/KBQWP+44+z/37FdS1z77P1VVgijfPvs/6xkqHMdA+z9x5cHJ5UH7PzOfqgTAR/s/AiMX+hVM+z/0WplVIE37P4dJ/DlIX/s/rHnHpvho+z+9Uy1Flmr7P3HA7YNAbfs/R7CrWNty+z99aCowQnb7P2A5rvjBefs/iTtKtlN6+z+XftHNO3v7P9UjCJpqgPs/nAhrneaH+z+CO4A6M477P22/Ckr0j/s/wsGFuPCd+z8S9XsEDJ77P4deEAg3nvs/YidU5q+t+z8PYnrqtK37P2LgURI7r/s/sfMUhmSw+z91qhcRhrf7P/JnP8ueufs/iG0Ehga6+z/33bSry7r7PyiW7pKXu/s/w0ZeQcy7+z/cJjwJpcH7PyAicuFTxPs/oE8NedvL+z/ocmL68M77Pzu+24tg2/s/9ObwKxze+z+vrxDI4eD7P6xUPafm4Ps/uEYxFd7k+z9eRe0Ms+f7P1Q7wVKL7vs/bUQmbUfv+z/4HPd8xfX7PzxMCpO7+/s/ofvT+h0A/D+MR9EXCgL8P2bYMMCYAvw/aRlarpgL/D+pMQsDQgz8P5F4jeBxDPw/ZO0Q9/0P/D+dA9vD+hL8P8dNg0dxFPw/NPVZr6sZ/D+PuShDQx78P7/kkYVYIfw/0Lox+s4i/D9kRK03LiX8PxJlZRIXL/w/s5YYhZQ2/D9TvewRdTf8P1F9mPKzOvw/qFpLSik7/D81x2oaSj/8P6uYoqAjRfw//Pxm0O5L/D/xOSGZc038P2Ag7ZZaTvw/L8nsa3JO/D+A1/IG8k78P43ZEZf6Uvw/nQ6ubnxT/D9TwKnAl1T8P+jw/8C/Vvw/57upqptZ/D+1RYw+wVv8P8aMEzRZYfw/DtBJxNZh/D8bOWknHmP8P6eUez6Aafw/Q+oRtxFv/D813uKX83b8P/yizcGid/w/q4HjPQl5/D9st7gU7Hr8P1Ww7uBEffw/IasQxY1+/D/qiQoFVof8P5Cn3/eXh/w/iQB0J4qJ/D9KmFn8fIr8P2D9QixNi/w/6JBd6duL/D9FOVoUqJL8PxgGeLchk/w/bC4AP7aU/D87LrpIs5X8P/dLrvKOl/w/jEwITzuY/D9Uwhm3rZr8Pz7IPwZfnPw/AhwwMD2d/D+S/Rttn538Pwy0zm7Infw/8i58CKKe/D/KYW+KdaP8P5//fQlMpPw/ixmEyAKl/D9xPFg4m6X8P9qmij9Wp/w/LOEgWDmr/D8w/xAVprH8P6Ij/aT3svw/eQD26Ea1/D/Pi/eK17X8P9tsgxgluPw/uCG0UvG5/D8jeC2mxLz8P/ofQOBqvvw/JNWb3Ke+/D81yRR1k7/8P9Maq/v9v/w/MIxyvvjC/D8mDw0j2sP8P5J5tAvjx/w/Ca+DtDXI/D9ZnAa+Q8n8Px0RBuV3zvw/3Gqq3vPP/D8TUh9YmdH8PzrGpvbF0fw/gKsDaPXS/D/H5QvddNP8P0sCU9Oy1vw/Dwnydpfa/D/3f36jCdv8P9it7L6Q3Pw/eICa8cDc/D/pIS3v0938P7fLbdQp4/w/WNqcRK/k/D/XM2ew5eX8P2MFxvcw5vw/y3yPu7Hm/D+6BBwcweb8P2vVeVqH7Pw/KcXBFbru/D8cwQgJYPD8Pw7l5Twy8fw/DuXlPDLx/D8O5eU8MvH8P/8mQo5A8fw/NeMD2aH1/D97t7+l6AL9Py8GlqpMA/0/R1RRDVcD/T/8BUd7Iwf9P7NmBxZJCf0/WAqGTbYO/T9DOVOpahH9P+Vd0UbSE/0/UBbAbNQT/T9Ry7m1ERv9P6gm8vJGHv0/iuqB9a0f/T8D/SzmKCL9P8ufsp0yIv0/WXVXaj8k/T9qIiYkhiT9Py5nEcPUKP0/+UVjEQYr/T+ytHy85Cz9P4GIOJQdLf0/nXpkMyYu/T/lh2jVSC79P30Wcj9qL/0/bet52SMy/T/5F6Ua+zX9Pyq+KjgwN/0/6peqoh04/T9EKBY11jj9P2lyjEWQOf0/ZUR3vw88/T9dwYxIRT39P1CuptqHPf0/ap91qCxD/T96bgYJ9ET9P7rtAyo1Rf0/P2iziY9H/T82fVtp4kj9P8FS3HeHSv0/Nw1op5RK/T/5DKyrUkv9P8MrpjpZTf0//86AVa1N/T+W6l4y/0/9P3qrElBRUf0/tRG9GF1S/T9r/m/gglP9P6tQM2bnU/0/90AXSQpV/T+S0d/H6Vf9P5aYAzIvWP0/5eUZo5lY/T9Jo3zuLlr9P36IDRWuXf0/6LAa+pZj/T9zPU128mT9P/cdf5n4Zf0/3aKLegtm/T8OSq4Hm2r9P9VP8RkWa/0/+mC0xHFv/T8ACoXVd2/9P9Hqf5dmd/0/hA/wwuJ5/T+Eu4D/Inv9P4bzJ87KfP0/iscihEZ//T9xA9fVE4D9P7Pj4+drgv0/VuZGi7+D/T9SRwTlW4T9P2ILR0m4hP0/DPOrE+yE/T9GUj8YCYf9P3l1qm5kh/0/vuj2VQ+N/T+sUY7g0o39P3PwwgcTkP0/f2DPG4WQ/T+b1F+ZC5H9P/khlJKRkf0/eVg2P+yT/T+MT/j8apb9P53xk9U1mP0/1hsomIiZ/T+F4SgVZp39P6rYqhd1nf0/0RN2o9Wd/T8lgCnt2p39Pxm7Gi33nf0/mdJIwv2e/T/lsRlRdaH9PxMVx/K5of0/9FeFsLOj/T9DuRZkoaX9P0ATKIWvp/0/1/LsCJGo/T8eLFE66qn9P693UdqAqv0/2Hdf6duq/T9iwvocNav9P744EFY1q/0/jBNLQlCz/T9dBFXKu7X9P0o5hhJnt/0/qK3+b7G4/T8PoZ0JKr/9P50MVaZ4wP0/TCUcPRzB/T92UtwwrML9P5XZUvoqxP0/ZH9gMrzE/T+Lqer3S8b9P2jYEB1Xx/0/vuKZyanI/T9Sg04TGsn9Px+cfrkTzP0/AYUTL5XX/T8VrbWuFNn9P/T87fHk2f0/6vmZ16/a/T8sA7hIQ9v9P1UeYwuL3P0/sA++1bHc/T+zOtyd8dz9P5IQrEr63P0/vSYRRVTj/T80GzlsoOP9P1YuBA1T5P0/idbxZ0Dl/T9ucISpo+X9P7kHbUe95f0/2JiG6aHp/T/nKllYdOv9PwTPWH2a7f0/NsXXKNPv/T9DqcS63vH9PxaTs5l78v0/F8pwUhrz/T8VqGzMoPb9P7YCLbJ79/0/rGcPC2z5/T/Yo7u22vn9P9+5bSM7+v0/R2lsZLL7/T8r1H4qevz9Pyvpi/YR/f0/SKNBL6b9/T8oXAQcpwD+P6PU0m29Af4/xTT0sdsC/j9dQT67tQT+Pyh91AXQBP4/DXewi+0E/j8k+YHELgX+P/CXUUxVBf4/vPpyOnEH/j+vkGnQ1Qf+Pw4Etoh+Cf4/f3VFrtsK/j++PxcXlQv+P4x0rmpDDP4/DcFxSUAO/j/sXHKjlw7+P5sU5YAbD/4/G7YL2DMT/j/u7S+U4BT+P/FuQgE/Ff4/W7Z/AWAX/j+lMkBg6Bj+P+9FvqngGv4/L5OE+18b/j8FGltvMh3+P2wnidaOH/4/0lA7AqMf/j+tQuTNHSH+P5hM6t11If4/NDnPrewh/j9ciA9wPiL+P4/dFd9GIv4/jNBoyBgj/j9WnzOYdSP+PyudCWrlI/4/J0RLegEk/j/VZICM7yT+P9w6eC9tJ/4/Iz2qrkwo/j+PZA7yoyj+P1Q8TafSKv4/dmkx2I4s/j8m5q8Hry3+P1g7k33ILf4/nr3wdPUt/j+bhfrmgzP+P6VWOO7FM/4/oSzFak81/j/DDsM1+TX+P0BwW5h/Of4/BcWxjB08/j95h3963Tz+P9W61u5MPv4/iiq3z1s+/j/OAAwz9z7+P7wzFiwMQP4/wMXpHl1A/j8nHEB/hkD+P5IPl4NwRv4/RbH14qVI/j+wQDTtEkr+P1/tKo6IS/4/EntpjuJL/j8FMnEyCkz+PwmM1X6YTv4/VWvqq2xQ/j+JosmR51P+P93CP3OzVP4/lwLDFhZV/j+IjY2wSVf+P4N3kW7dWP4/v1XOxFpc/j8XE84VaV3+P5FJD8ZUXv4/LW/EkNZe/j9MQqWxBGD+P4WtBQZMYf4/ZQ7iBwti/j+/alpkGWL+P3O9HKG3Y/4/jV1dVjFq/j9Jc1cyaGv+Px/tTTYEbP4/JmipCR5t/j81ZIYL527+P2Hj1I7lcf4/gIfZtg5y/j9GPp5ja3P+PxLtIDyvdf4/YZoMfqx2/j+dnF2bF3j+P5EaX0mCeP4/FCEWzRN5/j+fbBP9YXn+P7fhQKrtef4/lwzf/ER6/j+1S2SWNnv+P2DZn6KXe/4/+64DzhR8/j+BMp7Z5Hz+P6Wa3Eg8ff4/8q3UcEZ9/j9m9JEYs33+Pwc2nu4dfv4/FCFHcw9//j/p3IdK5oD+P4QeTobqgP4/wxcQK2iE/j/laO9Oj4T+PyzODA+Shf4/RkimR5KH/j+dnDauV4j+Py9yuOU/if4/rRTMZ9CJ/j+GC/5iDor+P7CiVY4Ei/4/fXl30xaL/j/EejXJjov+P6ihnI8JjP4/JM5sEG6M/j/OBtbulIz+P0oNycqHjf4/xxniud+N/j8BGCboH47+P/azMfSCj/4/ipRDJZWQ/j8hFHQWKpH+PzDttpONkf4/euocWtaS/j/mCIQ465L+P5ifwYJjlP4/eJsDk4SX/j/vqnpaB5j+PweTJGhDmf4/r9z4dcCa/j+qjp1cxZr+P5jkZexkm/4/C4IddGab/j/NIwLmVZz+Px2EJDlhnP4/Fy1B3o2d/j/LZ5hzwZ3+P+EoZVr6nv4/7dVFDL6f/j8z+B1CTKD+P0dUbchyof4/vItetTWj/j+JsXxnRKP+PzinmREopP4/H2OW6fyk/j8sfjNyYqb+P6pnq7Dipv4/+gtIyw6n/j8pUOwsU6f+P5NALJ0oqP4/Uo48a4eo/j/z+u00t6j+PwS3B2gaqf4/UUw8F7Sr/j+t6H6ABbD+P3zUuTBbsv4/Je/CRGSy/j9lRasdjLT+Pzpu888duP4/pRLEqMq4/j+yoHME+Lj+P4Ue3X8Quv4/4k+Sgii7/j+FVedXOL7+P5xPIMHevv4/VtHD5fK+/j+JlA74ysH+P6/3NLI8wv4/uiycgsvC/j8dOyJI18P+P6aZOFAyxv4/HQhvzSHH/j/5Rg1pCMj+P7TOcN2eyP4/93q2+6/I/j99IZSBg8n+P6XeQINoyv4/qBIwYHzK/j+TsiYlpMr+P+Uesps0y/4/get6tZ/L/j+8vJ1ousz+P/BWj7UAzv4/vdZKrIXP/j+ZfK6lLND+Pw8ojIgA0f4/5tjoahHS/j/N9atQ5dL+P7q70xug1P4//zn4l7jU/j+DGgIVL9b+P15G6uJd1/4/pTsYm4La/j/4bW3BP9v+P1Q+xNSq2/4/hQTUKV/c/j8FBeeUwd7+P2NpaG7J3v4//1ZrJPjf/j+c/gqytOD+P89+OzxI4v4/VoJd3JXi/j8hyuJ+uOL+P5dK3CTX5f4/RE/5/vvm/j9jtv0Iy+f+P94TPKvR6P4/v0Wi0Nbo/j8RJG6+L+n+Pw0LAMtr6v4/ZhP3d6rr/j/Vsomwc+7+P875vCbg8P4/p1d35ZDx/j/5rLwf8/H+Pzd0sKSH8v4/J75/nLr0/j/XXeM9rfX+Pzln0ogZ9/4/rQQcr5z3/j/prj1c//j+P5FC1fsl+v4/XwAx+Sz6/j+Eo1bDgvr+P9M5kBbg+v4/6z/tLJf+/j8q1tnBoP7+P+2LAccXAP8/f55BmZIA/z8KJlQkvgD/P6CB2LmmAf8/ptPAXzgC/z92e6eLvAL/P/bdpJP/Av8/ZJ9yKC4D/z+qg7MucwP/P6iUnGDbA/8/Qksj7u0D/z/b6pGj+wT/P2qS6aaGB/8/c35jbiAI/z+KyWwQUwj/P8zK17doCP8/EhFN3ksJ/z9ssWVvYwn/Py8RY6WNCf8/Mi/livAK/z+GZJJiTwv/Py0D4IkNDP8/OMVSsg4N/z/Vy74aww//P28s+nfaD/8/TClqgPEP/z+a+N85shD/P9ifudA+Ev8/Tz/GWysT/z/WxIWzPBP/P31n2sKbFf8/eHHtCqkW/z9GDutfpxf/P7wjGkHyF/8/bjVff1MY/z+zpeWtWBj/P2pyYHtsGP8/eYl4cbYY/z/n0nQ3QRn/P3+BiUt5Gf8/zy7Zofsa/z/NL0+s3xz/P4knlUP2Hf8/4aQv5hse/z+3Jo0+MR//P7sBQUvEH/8/2OWZEwUg/z/tMdbDDiL/P1xDzB3mIv8/ylSfWgYj/z9btHXmaSj/P9lokb2mKP8/EdlqsR0p/z/zamrqvCr/Pwf9OgQhLv8/o0iJCXQu/z+lzza8Ty//PwBAdEKUMP8/XHWMGtMw/z8GpW5NOzH/P5cV4ox2Mv8/HBiTrPky/z8nV2/6BDP/P11wJw0JNP8/9ISRQow0/z+NVjIrBjX/P0edYJA5Nf8/SApfX0w1/z/sxmpKITb/PzSZoOV3Nv8/5NCked82/z8gHCkhzTj/P015Il1QO/8/he9Uuc47/z8yGhlz/Tv/P5vjSv50PP8/gSWVeCE9/z8Nkinnyz3/P9HDZfDNPf8/zOimhuY9/z8KeEMMtD7/P1/RU+AIP/8/M/KhBBlB/z91V4r6JEb/P21nkihmRv8/zJAeRlhH/z+SI4YPfEf/P2/RjwOkR/8/s8SU/gBI/z9J7FHPhEj/P68gPKYESf8/VPpJtTVJ/z8VronK60n/P6a2cO4/TP8/J9ZU+EpN/z8YGxqCd03/P/07KqGETf8/Az1QLZNO/z8JXhNv8U7/P/PIczr7Tv8/7nUSAH1P/z++Em8JR1D/P3tXn7eXUP8/JIKtJRhR/z+bQHryL1H/P/gIvZLJUf8/EY8L4ppS/z8dqInrDlP/P8Sj7yUSU/8/0pdEDuVT/z/o578L9lP/P60SGuxzVP8/vhi2tohU/z9RH7+EaFb/P2yJX+sOV/8/BYDd9XZX/z8uoPl3Glj/P7j7Bk57WP8/bn2y0oxY/z+bUakjs1j/P7X3P4okWv8/SxivyJVa/z+AWRCb4lr/P9wgz/kjXf8/J+ZITlld/z/263T8p13/Pwp2tEu5Xv8/bnCIoeJe/z9vV/2tR1//P3Bd7gmiYP8/LpjVAUVh/z8DUhH8qGH/P7TwpuOpYv8/at2QIFhj/z9D8/+zEmX/PyV+jUY7Zf8/um21W0Zm/z9zNHXXfGb/P8bRWTNyav8/gu9U8B9t/z8y7MGYf23/P7F5ba3Pbf8/sjKfBk9u/z/UZc+wu2//P1zHj5vSb/8/+79hswBw/z9UbVnsLXD/PwBkK9QNcf8/RTaH1ehx/z+5DDxH/nH/P2mAunMic/8/LMfnwONz/z9rgLcr+3X/P0ysJjVKd/8/JOXLCqB3/z/k8jcOxnj/P39B5GWief8/NhSYagF6/z9uKcqLh3v/PxvWJEyLe/8/zDk9p0Z8/z9fQ2ph8Hz/P+N22ECPff8//3wah6d9/z+Wu4EE5H3/P5XZJxkWf/8/LwH40YV//z894Si924D/P7gsXeXlgv8/lhpl+wmD/z9RioWdIoT/P7WVGkczhP8/SPZWhn+E/z83hcZUroX/P77ffU5Qhv8/XvR/1VyH/z9e9H/VXIf/P5Y+Wzm7h/8/mXTBzb2I/z+y9I+MMor/P7f+bquIjP8/Z695R6SN/z/J8bOlr47/P4kFDFlIj/8/LUYIL5iP/z8LFO62rZH/PwoAOzf2kv8/mlrZGvuS/z8KtbkklZP/P0IBayE/lP8/jA+Ji6yU/z/X44Q0zpX/P6kqj3RRlv8/GZODFU2X/z/1PNM2Qpj/P32rFZalmP8/oinIgw+Z/z+bt243RZn/P8c1EkLImf8/bNbt5ZGa/z/QuwUnwZr/P01huVIzm/8/mAucYFid/z/vOgZ5qJ3/P+tbtk2wnf8/y4GOb1+e/z8GVAZfwJ7/P4BaUCpPn/8/BHGAjlOf/z+zBx2jsaD/P6jMQHTwoP8/Aw1kSvWg/z8XyHQ76qH/P7muab1Yov8/knvquv+i/z+V0+CefqP/P9cCrqKXpP8/dtl7Bj6n/z+9INjItaf/Pwvd/7IDqP8/kHr5rXqp/z/fLrwJU6r/P798bKrzq/8/D3E6c9ms/z8JlFojL63/Pz+4dwc7rf8/S5yb54yt/z+tE/WFDa7/Pyw51g1erv8/tZQkDYeu/z/RD8OYiq7/PzPL6tTLrv8/coX3ll+v/z8/5YETb6//P4LjlnBusf8/09Z1SsGx/z+sfTS8A7L/P2ILOs0hsv8/HjsVC3my/z8iXXnL57P/P8fbrWRMtP8//4wR9V+1/z+KRMDUm7f/P8M666uet/8/L8R5MIK4/z9yJRzIOLv/P7jakxVHu/8/0KDGiJC8/z+Jvim0Fr3/P55CqnUpvv8/zHXwzE2+/z/xYViXjb7/P5015cNQwP8/1jpcR3HA/z/M0CE4TsH/PyrEQJp4wf8/uycSanvB/z8J21rSv8H/P8u15V1Twv8/R3fczy3D/z8LLC2nMsP/PwssLacyw/8/iZoFREfD/z9TrhpPWcP/PwvCMTijw/8/DMiAjgbE/z8NZNR12sT/P3b96CE9xf8/qP0rkGHF/z8NqBXQacX/Pw4ZU2N5xf8/DhlTY3nF/z/9Y+BOAcb/P53gKdyAx/8/Uf/M157H/z/4/HV/HMj/PxCcog9Oyv8/v2OYmLXK/z8J/RxPxsr/P9OoRyJDy/8/biwOtPDM/z9oZXCBTs3/P31g7lmnzf8/l/yRKtXN/z/3R6TyKs7/Pz/7Stj+zv8/205PLCvP/z81FTf2Qs//P1PAonqMz/8/u1XohonQ/z9lRkxC3tD/PzMk4DcU0f8/42Qh1VzR/z+HYzswiNH/P4pW/9ce0v8/nfrBmNPS/z9A7+xlP9P/P+fLkJdf0/8/cnX9tILU/z+TYG06utT/Pw4RWaYs1/8/XuYV2WXX/z88wiaHgdf/P038Smvc1/8/k9XmhOTZ/z/0xjya29z/P8jWPaqA3f8/o5Tq04je/z+bvok7WeD/P4kz8qRv4P8/VAKmvFrh/z9XU6iT7uL/P+9msLsQ5P8/V0tN8krk/z9VzMwTeOT/P81palDP5P8/k+PWec/k/z/fzWV9B+X/P1oOeEOf5f8//QjVqM/l/z9iLPfWAOb/PxZvvqXX5v8/vfNpuXzn/z/L9P5bAej/P08N42QF6P8/vwjfLBPo/z/Bb34Awuj/P61084QP6f8/ZrVSG4Dq/z+/pjxcOez/P9ndYNJN7P8/lxHM1V7t/z9hX18eHO7/P5Nq+eSs7/8/GydC9aLw/z+tpR5lqfD/Py0b1/278P8/CIuQdsLw/z8LDTPCePH/PzkO6DWp8f8/y2ZKfu7x/z/MbKE1IPL/P3c0XnWC8v8/uafwbrvy/z+tu1gYyfL/P5qF4bRy8/8/luR/FeH0/z+dcgdxufX/P5dnqPbp9f8/3Q6eTSP2/z+BM7fpTPb/P/iBBaCe9v8/AhrxulP4/z8kmnIl5/j/P5VK0k2Q+f8/lSV/Fhr6/z/M7PsEXvr/PzKa1btB+/8/VbQhNGf7/z+XXSblwfv/P0Hgrnxa/P8/GrrmC0/9/z9aF3ULx/3/P5rqrVEZ//8/rLjThHH//z+0FxwXef//P8FSa3YKAABAiKbi630AAEAG9T4jjwAAQL2B+urVAABAvDh9XTUBAEB+PLdnPQEAQBWDG2Z/AQBAD2ZfkCQCAEDN+u+qswIAQDkgIbuzAgBAax+L6MUCAEDdZAAG1wMAQIyicd1tBABAFkQqXn4EAEA3Xed8oAQAQNjK0YagBABAfOHqUb4EAEDLp8aBywQAQMXc0GiOBQBAFhIWo9IFAEC8NtzAGwYAQNCDZbPdBgBAf1pqyQoHAECHbqGYggcAQM2g0L6rBwBAw8bK0eQHAEDeeFfz9QcAQM4hBvGDCABA5Iax1iUJAEAJF5UoXAkAQK/zMzdrCQBA/RqG0gIKAECxwOd+FgoAQFGbQTCwCgBAnfrYXtYKAECz/ESCVAsAQP11+8OuCwBAov2AmowMAECSouBj8AwAQOq1EjwLDQBA9AsnonANAEBwfnDqMA4AQBnXGIhuDgBAkAfzxcIOAECPirNR9A4AQPGNrk4fDwBAFeQ/pVkPAEDEC3WS7g8AQJBp3m8fEABATBpErzsQAECMcFP+QBAAQDDTD0ebEABADAlSzQQRAECZmA7OQhEAQBJu2G/tEQBAphPWkiwSAEDpBUFcSBIAQIgrqvGfEgBARf0S66oSAEA2+NqmIRMAQFCjvVJWEwBAbsuibBwUAEC7jKH3PBQAQHxxZYC2FABAdwHQEDMVAED0FliZiRUAQLAAG+yyFQBAGZkmq1IWAEAXJb9LhRYAQHApyjG/FgBAvXkKMvMWAEBKIoS2LRcAQJZnFayxFwBA4PYS/TcYAEAbn3dtZBgAQF2cUxmkGABAnPk25LMYAEB88Wa66hgAQO0FtUtoGQBAZyylgdAZAEDrli5L8RkAQB7XHjwMGgBAcoC7/zUaAECEnyJZaxoAQA0Y+Wt1GgBACgDXHZwaAEAG5Nyh3hoAQC75AbQIGwBAmMghQxEbAEDQSVBGFxsAQF/xz/A1GwBAEO4CclIbAEB6ET5uPBwAQE8pPOmOHABABnbKqsMcAEByfotaTx0AQLkBV7CpHQBAZkHSfLIdAEAxGJYnIR4AQGWeRVeOHgBAMAf8s+YeAEAhMNd+JB8AQIWfeLxIHwBAJZwgVIwfAEDS5sF00h8AQG12/megIQBAms1/SaQhAEBVy0dZzSEAQMGHP0m7IgBAaP0+DXEjAEAXQpUzoSMAQNA84KjIIwBAtVddVrIkAED8Fzi8xyQAQKP3wjX6JABA8UsRSfskAEAbaFEHIiUAQKnzq31KJQBAjENrYFIlAEA5W3ADhSUAQEaSZL24JQBAmrvQcs0lAEBBrHTs8CUAQHnQrLn5JQBA0uA3eKUmAEBpPCNkKCcAQJyej6AuJwBAW0Ran4gnAEC6c9CtjScAQNNKNVPjJwBA00o1U+MnAED6Xzc36ScAQIZYwZX0JwBANkwBpKooAEDPVXn4HikAQGVUzb1BKQBAspTgNEopAEA9d6TDsikAQGYJTKvgKQBA096tVxAqAEDTDnInPioAQOFfgaN2KgBAucU849YqAEAfkJ5WhisAQISBBYFgLABApi6b3bYsAEB6PXQmRS4AQNoP5DyfLgBAP4Ute7ouAECc9hfiVy8AQH6QBduHLwBAKlZZppsvAEBqCpe14C8AQAMIVfniLwBAwJeK2TswAEAzTpDA9TAAQN9D0AJrMQBA8PAkbJoxAEAxJ128ijIAQDyP6EcDMwBAUVG6mvAzAEBfww2iLzQAQLw6vCBnNABA8iP5bWk0AECu+6NPhzQAQGLNKa60NABANQ1QVr00AEDwiWd6xzQAQFiW+zwDNQBA4T+XXlg1AECFAZHXeTUAQJYuPYR9NQBAg+W4On41AEAeRRyRiDUAQATYFR/eNQBADm+LHy82AECdredUUjYAQAY2V86ANgBA0hBkmrg2AEDyhi6w4DYAQBnBo8l0NwBA3cVaN6I3AEBey+oMHDgAQPjmhotvOABAE9Ii1Ps4AEAXoJ3gAjkAQItm0Z9zOQBApuCAIrI5AEANVTWqdToAQANGwIaqOgBAl3qMVIA8AEAZcZ+yoz0AQJOLgLXQPQBA0gD9ZeM9AEAO+l6Ziz4AQFHGmejLPgBAm/RlvTk/AED9vNpa3j8AQD/VnmniPwBA9arAfKdAAEAAxWYy/0AAQKU9R2I0QgBAhZzNg0xCAEDH+RkMdEIAQCZ/29K4QgBAq5RdYSdDAECD1fNgL0MAQHmtiyH9QwBAsWotlEJEAECoQ5gkRkQAQOshzexVRABAPaRRBHdEAECh1oIUd0QAQAYpDsiYRABACiHAlqNEAEDR80AFDEUAQKWqH0g4RQBAbMKsfkBFAECWFa+njEUAQI/jKDQARgBASNhdHgpGAEAz+U9mUUYAQFdx5cRVRgBAti9ZGmJGAEBZWuQsgEYAQCukqF2nRgBAqxeT2sFGAEB8B/ez9UYAQBIMdPv5RgBA2Zt4nQRHAEBxRayWWUcAQDj1Vb6HRwBAXxRXc+9HAECQP+jha0gAQM/g698rSQBAfjFFdEtJAECkSV2sdkkAQHA7vQuESQBAAP0fcY1JAEABcW9JqkoAQNHrASvqSgBA3jaPB/9KAEAaP8XUOksAQBz+Md5eTABAuMi2OBpNAECZwAPMXU0AQAqWMHt6TQBAuRIuzDBOAECJyM2rfk4AQDqNc4qnTgBAUQzaW/VOAEBRpVvEQ08AQIwWuFRITwBAHp/T10hPAED3Mb3zg08AQAd0NNytTwBAOZ5IIbVPAEDtOwU4108AQNaVKObbTwBAUFsSDt9PAEC2kIlO6U8AQM31u6o3UABAPUeP3ztQAEA3N6cRPFAAQFdFtYqNUABAin9Bt7pQAEDbWzP6H1EAQAg067FwUQBALZOawpJRAEAeBsno0lEAQDZR7wX0UQBAnBXvpP5RAEDmWdAsWlIAQOZZ0CxaUgBA5lnQLFpSAEC60s942lIAQFh+ZOcXUwBAh3yYnhpTAECHfJieGlMAQFV2lkBAUwBA4v9Ve4BTAECvpQ6qPFQAQGYiguW6VABAyziIkwdVAEACI9RDM1UAQF3OG4s1VQBApoFwaJFVAEA9wr8LolUAQExh8f3AVQBAzbuwdBBWAEBBxsIuRFYAQAON0R5xVgBAtbMWrc5WAED0Orci4lYAQOVoAWh0VwBAljUx96dXAEC0lKD03VcAQCOwUPb0WABAH0R8HpJZAEBkGId5nVkAQHkzdR6+WQBAEcxXVlxaAED6W96Id1oAQJQvIR6UWgBAKEYOdtVaAEAVWIqITVsAQGp5c+pnWwBAxkhgT0lcAEAgJg8YfFwAQK03k//ZXABA8NToaQhdAEAijP7jCl0AQBgZTixFXQBAVqiaY2RdAEAginWdiF0AQNWkDL4VXgBAcXDd7SFeAECIyEEajV4AQLKdOafJXgBAz1lcRnhfAEBlmmmcgV8AQDa9NniOXwBA+7h7nN9fAEC01eB1cWAAQD6zrVmsYABA0MNZIbZgAEBOIkoh52AAQFnj4n2CYQBA0kaCAr9hAECt9ERnzWEAQHh8OIsqYgBAkuQRSCtiAEDi/+6yXmIAQF2fN/gqYwBA5wzGKTZjAEA66ViclWMAQP9J37H1ZABA4y0ZQlJmAEDjLRlCUmYAQG/hNH+PZgBASoZodgtnAEDLvnOBJWcAQEttPXBAZwBAS209cEBnAEC562kke2cAQOLCLB6CZwBAN5+IZ+dnAEDdW2zAD2gAQIzPdPFLaABAuMfDrU9oAECHaL/iUWgAQGFHTaa5aABA2ydFOwZpAEDDvBxcYmkAQMO8HFxiaQBAWZ5dcdNpAECK8h9//2kAQDn7IEEQagBAlt7EbDZqAECR7znWOGoAQFpb8bZnagBAqr7lYKdqAEBazvj+3moAQOClNHHfagBAueGWWk1rAEAboukZY2sAQLPGoLJlawBAfH3W84RrAEBEDawx32sAQJLj+JEebABAXgiBHDRsAEB0rO52YWwAQN91WcG/bABAkC0Vnh1tAEBdux67JW0AQLrl9G0ubQBAuuX0bS5tAEC65fRtLm0AQADjQ59ZbQBAu2JYn6BtAECJ6aEZuG0AQDsOXtjnbQBAB8AX6DFuAEAmNZ89vW4AQBVeGH8JbwBAAy+hbhtvAED5x7HZVG8AQMRCbsakbwBAYjN0OM5vAEDqkrI9C3AAQNjS18SLcABAQolbBa9wAECODOnuonEAQNo81Z/JcQBAgFJOdfpxAEBbl5QWGXIAQPYyarNFcgBAbdqXcKFyAEBbTBMEuHIAQNnKQPCMcwBAlfOGh49zAEBIJh1KnHMAQN3viv6MdABA7MZ6IpN0AEDlF+QtznQAQK1i6hDfdABAxI1FOEV1AEAKVQ27ZnUAQP6vrDB4dQBAugaclp91AEBMG6s1zXUAQHcUH+sWdgBAGI6OJaR2AEAYjo4lpHYAQB8C+260dgBA4DyTqMd2AEDOiGzNXXcAQGcB4H54dwBAjOWL0M53AECx8JCr6HcAQOmHMssdeABAoRuV6Dh4AEB0vCYaYHgAQGni8UFteABALja28IN4AEC9qEBAhXgAQKYPspy6eABAa1M0+Bd5AEDKZZ4BonkAQH6QcuTEeQBAwU2ZmBF6AECpjNljVnoAQJA+fkDyegBAMvGFoDR7AECi33QUgHsAQGZ1mQCnewBAB3+Pvbl7AEBmXG7623sAQC7kGGggfABAILxhsyN8AEAAqdelUXwAQIhpNdFtfABAzhOP0758AEA0addsA30AQAmSnjsnfQBAxgEFGmx9AEBsBxlf030AQMkiWCjpfQBAI9vdewB+AEBbQBT4IX4AQKM1nfJPfgBAyfABHFN+AECjHHLshH4AQHzd0EKnfgBAgwno3rJ+AEBUP/nMzX4AQANkp1UCfwBAA2SnVQJ/AEDaTxytFn8AQLTKu8Q4fwBAy0HU8MV/AEARlcGryn8AQNXWlyw1gABATINoYUqAAEDeoCQxg4AAQM3E/NHOgABAsE3yPuGAAEDoCv+hCoEAQCDMbhwmgQBAzZKmxTiBAEBFbv10PIEAQCCB7QnFgQBATOYlMeSBAEBMzfoqGYIAQG38mqA1ggBAIh1B8ZiCAECikCtus4IAQBUAXX24ggBAsqyHjf+CAEC10y7IO4MAQChijpA/gwBA1PmYG0aDAEA1RxlFVoMAQDUu7j6LgwBAdMQG7ZODAED+bsNboYMAQHGfdPKugwBAGuWcDt+DAEDsVJ/nlYQAQD4+fFvRhABAY3zLoTuFAECV3BVDSYUAQAwSxFWDhQBADBLEVYOFAEA9T+PBxIUAQDbEwSXfhQBApWJFueqFAEBIVL5DEIYAQLCtoaY2hgBAnUWtR0CGAEAduZfEWoYAQJ4TVzuqhgBAjX3v7QKHAEAYUBp+T4cAQDieNqp1hwBAFZI9qQ+IAEBEd3kCHYgAQGEtMlMjiABAm1uLgz6IAEBsiaV8yYgAQNu6aP/ZiABAhC7tGgWJAEAJ0f7pEokAQOuWAl0uiQBAVL7ZWGCJAEA61WhHeIkAQLnQRwqPiQBAWUUorLqJAEAGDNVyXYoAQIZ/v+93igBA23rskoiKAEDZida1kYoAQFn9wDKsigBAPniCIgOMAEBZR1P8eowAQE7AqVrVjABAt2q/QgKPAEA9CFBSe48AQMDnBijMjwBA6m82VMGQAEBATicW4JAAQINN2x/akQBAHXJ/gueRAEC40HeI55EAQEGWqxgokgBAPy/9sI6SAEC8chwyzZQAQLwVJMHNlABASLfMstGUAEB2ClYk85QAQDaY7iMJlgBAao2SHyWWAEBWWjVAZpYAQPcP+nyWlgBAOG2adM+WAEDLMAjy/ZYAQMXVA4v+lgBAyvwVW1aXAEBndWaOZpcAQDMDTCWQlwBArxZedZyXAEBMQEZW7JcAQGgq5XsFmABABfHpa8aYAEBPESmN/ZgAQLFnMEoPmQBAZ7/4VzWZAEBdQFPuSJkAQKAw4jxJmQBAsjXaPXmZAEA8Dz8etZkAQGd0d0XUmQBAvEMPHOOZAEBvVEZg/pkAQEqdpQkomgBAmIatMNqaAEBHLztsAJsAQAsLq0NcmwBA94z45W+bAEDVLWT4NpwAQMJOOODmnABAbIMHTMadAEDuxA1T5Z0AQCXTGMdongBAHD9M5NafAEB1nbpzDqAAQB+U1cQ7oABAH5TVxDugAECfB8BBVqAAQC6PBUkloQBAwWscJJuhAEAh5aeZrqEAQDYQWbbUoQBA8NbLnmCiAEDX4IiHt6IAQH5O1D7bogBAT89pFeqiAEC7JAb2GKMAQOnQQTRGowBAN6U/vZejAEBqhvfP7KMAQGtVO3pppABAazwQdJ6kAED+BAJ8BKUAQBTzNjoepQBAqeb12iKlAEA/U8Ai5KUAQMIFeufkpQBAuhNEO3umAEBmwLFwz6YAQO/eukTYpgBAKjgYvK2nAECt/LacuacAQB3+RNxxqABAKifYDlCpAEAWV+zsc6kAQFKPF27sqQBAsCcYKA+qAEBmrU2HjqoAQNj2RGrHqgBAc1dXGjGrAECH94Ki9qsAQPRMzhJLrABAVKwp03GsAEA60DEnhK0AQDogNaj/rQBAW5EYNxmuAEB/lEYqcK4AQH+URipwrgBAYOcQZ/6uAEAs6szrjq8AQNS7TRycrwBAIOZ29D6wAECdfaUkirAAQL6C4mzhsABAaISNVbeyAEANO+O9irMAQM1tY60htABA7NpR/dC0AED2FoxhGLYAQIG2ZX1otgBALaQgC5K2AEAhgW50SLcAQJ2vLRhStwBARTqQiG23AEAu7b/8srcAQP0MrEzHtwBAPd3Ds865AEAZAOnl57kAQId5ibV/ugBAYd2cTbK6AEAj4Lxy0bsAQB5z42YmvABADV8rr5+8AEALD+hClr0AQAWGG6bNvQBAq/MzDPu9AECjS/D48b4AQHj+C/IAvwBALbDbLI/AAEAdKw9l4sAAQIeCbhYxwQBAvUKBm0PBAEAHBDP5lsIAQB7Eq+jXwgBATzIs+iDDAEAaKAn0JMMAQCHWT6F1wwBAD6PeQ5vEAEA1SKxzpMQAQMd+EOC0xABAFnMWZX7FAEBWEMp9f8YAQNLDLD7XxgBA8+9D9inHAEDqkRPPWccAQH0LQ0hEyABAf01TMI/IAEBmsK0CN8kAQLofPx9hyQBAD7sfJqnJAECsyceWRMoAQBr0xT37ygBATaJZBj7LAEDrLueRo8sAQBvYMYMLzQBAwMxBxG/OAECGUhM8084AQHSB0BAKzwBAJlVbGTTQAEAmnz3CwdEAQKfHpix70gBAJyJmo8rSAEAo8A+XNNMAQI6utVlz0wBAcOTFh4XTAECp/037ItQAQIq+P3BM1ABAe7K3kJ/UAECiJW9ADNUAQDrIKO4P1QBAWmrVXl3WAEDolUyok9YAQG3tQU8B1wBAKQ3PKjzXAEAFs8aa8dcAQBpt5AmT2ABAlENYROPYAECblU10TNkAQDus2ESj2QBASJcM/AzaAEBYmBbBvdoAQN6ZVhr72gBAB+s5K/7aAEArKjQR3NsAQD+WCnEX3ABAr6SM6WfdAECIfvI0o90AQPS0BUb93QBA/IE4JgfeAEDs3qQwLN4AQPTEboH23gBAkZJsOQrfAEC980k38d8AQGTgN/AF4ABAN07NOMDiAECaA6fW2uIAQLh2NqN54wBAOw1EQtDjAEAc4Y4uM+QAQPiq80015QBAKi9Zwo/mAEAizLBNveYAQPqtQP/15gBAsEO4TY3nAEDkpKF6mecAQJabSCS66ABAgzV/u5bpAEBnKVfknOkAQPy/kdsf6gBAahqTBBDrAEDuAReow+sAQLF0+H/a6wBAeCmemEjsAEBeH0EvUewAQBtmVjhZ7ABAm8AVr6jsAECb2FyxzOwAQCZEIZnn7ABAxIVUTSjtAED2/dqHV+0AQIcr9a+F7QBAYprauM3tAEAcURV95u0AQLw2tCeg7gBAXkyM5e3uAEDPypr3Ku8AQCMHp/PD7wBAo3qRcN7vAECjYWZqE/AAQHIPUhku8ABA+QeBFhnxAEDz+5RAOfEAQDu/F+0v8gBAqMG+vrHyAEBi/tP6G/MAQJPzPBhA8wBAKxYYrF7zAECFLqwks/MAQBDeJesG9ABAB0o0uyP0AED2Nj9g1/QAQPmeoh+m9QBACJI2CPL3AEDutrFvk/kAQDQ85Xxa+gBA6I8ImoD6AEAdUAkh1PoAQJ1O2oBO+wBA7MyagLv7AEALZMYwW/wAQLhqn6kl/QBAUfAqUtH9AEAQJicdpf4AQEjUceep/gBAXaV7hkj/AEACz2GXl/8AQCyx4sfC/wBAEwElmcz/AECyAanybwABQNGh8G1qAQFA8ZtPdXEBAUDSVm9bCQIBQK2xKO7HAwFAO/gu6ckDAUBUZyYs6AMBQOf4bZxBBAFA7nO1D8wEAUC9ipUuwQUBQBBxVC72BgFA6YaDPwgHAUCYK9OO4gcBQLQUk8i+CAFAuaHNO3UJAUAPpAHJfQoBQDVxgq1eCwFA5De6VnELAUD4nVPn0QsBQJE1rv9MDAFArdC9IkANAUAs+Fj3Ow4BQDsilB1NDwFABYH0j7cQAUDiCJL6PBIBQLTk+yqHEgFA+GR+Ot8UAUDl644I9hUBQDBD18hOFgFAMSqswoMWAUDRM+dPSxgBQHlwNxeHGQFAH3qIY6IaAUDbEUZ2aBsBQNVUpkSgHQFApk91F+gfAUAdBeYUBSIBQFHSi2ZYIgFAi1SaYnckAUBlSE8N0CQBQN9eNl8FJQFAcUq7dA8lAUCfAhZjkiUBQJR1/Lu3JwFA8LuwoQkoAUDFJM38mygBQKnUFOpfKQFAkZOuynMsAUAwroCLqCwBQJ+UELsxLgFAoGK6rpsuAUCWqWxFEC8BQGx2O5QlLwFATva3r8QwAUBO9revxDABQADz2k1RMQFAKfc0siYyAUBIDoFXKTIBQMH8TBINMwFAPSzoGIwzAUB0WmdZOjUBQA4weTk9NQFAF8ZoWkc1AUAXxmhaRzUBQDBY1dZhNQFA370Mjeg1AUAa2E+s3jcBQHmqyr4JOAFAFxvHyMU4AUCNUcV3BjkBQCo2IJAmOQFAHBD3eoY5AUCehrOjSjoBQAtSCIdWOwFAkfZGPdc7AUAf5PEwAjwBQKQWRhFgPAFAhbKpxxE9AUDGxwU4Rj4BQM5h0hH8PgFA8+7jpls/AUAKpgJzU0MBQJqgFBbARAFALjeJdz1GAUAvoOwJ1EcBQCety0/cRwFA6HtBa21IAUCscDyp4kgBQKISYcBHTwFAxx9pDgpQAUDmZ9ezP1MBQOkY0Fp7VQFADDqUwi1WAUArcvZN4VYBQH0JDIKnWQFAc8sWCnpaAUArQGid/FoBQKzFjGTAWwFAKjewHUdhAUC2FdUdJGIBQJkxfdWIYwFAtc5hm49jAUA/hx0NqWMBQEoki74cZAFAbWpPz6hkAUBTAh8mnmYBQJ04kH5AZwFAjYranntpAUDySftmNWsBQDDCJNAJbAFAw0V43xltAUBoIf2NPnABQE2LlohvcAFAk217aIlwAUC9h/1o63IBQHfz3uBxdAFA/H0wuu12AUDjbrUbnXkBQNZoTfs1egFATQVW0Yh8AUAfub1FxHwBQMQGA6gafQFAueKvGbN9AUDeEqPxFoABQPUVKUBKgQFAIYjrWmeBAUD4NKUIJ4MBQHioj4VBgwFAji+DwXqDAUB82TgBP4wBQM5dtFULjgFAxQEoOa6OAUDLyjx2fI8BQP7CMrhRkwFA2b5CTPOaAUD9ilmh5Z4BQGwhiI6nnwFAGOnbALCfAUABFNNEAKIBQFbzxp9aowFArNzzBHyjAUAbXqOs56gBQGjDzjp5qQFA1u3721CsAUAvkhrXt6wBQNp3mt8PrQFAc6LBuAOxAUB1cuxJX7EBQPB0MAqHsQFA8asK5xC0AUALXhpDrbQBQIKJz2J7tgFAWzEHNYO2AUCZmVwzvrYBQKjZRzIFuAFAplTJwUPCAUDU+Q2yg8MBQL8k9khaxAFANVcLWXHEAUA2ly3w5scBQPeuwPVIzAFASebJROvRAUBs8L0SdtQBQNdNCSbO1AFAKKofwavXAUDyHYbuu+IBQMfBJE/m5QFA4/vsy2/nAUBnUKWvQOsBQNXMBGV67wFAjTPnrvjwAUBC6ahBovMBQLgyCG57+wFAt/I0xn78AUDedjbcfvwBQG/Ot2N1/gFAKOuG6Tr/AUDp/+FSEwgCQAJV1JNJDwJAY5BGamMPAkBac5TeChECQIUHW/nLGgJASnmevWYdAkDny+Q25SECQEHipTxBIgJAhTQPRzIlAkB8R6eoDyYCQGIQuh5TJgJAhkkDP1MmAkA36UCi2S4CQKs0FLYmMAJAiao2wO4zAkDVALyowDUCQCmli2/RPgJAJ10N6d9JAkCELIVN/kkCQJRQF76cSwJAlFAXvpxLAkCUUBe+nEsCQHIS5uWkTgJAzfgbnQRPAkBUiWFmMU8CQDQQo/wHVQJALNdpu65XAkAo0vrwyF0CQOlcu7CuYAJAe45hoklmAkDwPZrNUWYCQFEZbfLuZwJAhE2LAWF0AkD42RTnFXcCQMj0DqbsfAJAeVGHcdF9AkBLVR/fTX8CQGS9mKOJhwJAvR0u+GKTAkDaAW4CwZYCQBy/Ek98nQJAXIVlKcqhAkB2scDhn6UCQIB67d42pwJApjHpptasAkAMbNs63K4CQM86ZULCswJAnbWLHQ61AkAru5+tm8ICQPYyhpGhygJAmPaQFBTRAkD1FEc+l9UCQDESXKyV4gJA43LU8nvsAkCaEEh4LQoDQGy+H72uNANA9P35ia1xA0A=", "encoding": "base64", "path": [ "_data", 1, "x", "buffer" ] }, { "data": "ugANHd7b4z+6AA0d3tvjP7oADR3e2+M/c5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/c5TxQmzj1j+rFxnnTMasP44mbeS6+Ok/c5TxQmzj1j9zlPFCbOPWP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/2/DO0hfq6j9zlPFCbOPWP9vwztIX6uo/c5TxQmzj1j9zlPFCbOPWP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAAI4mbeS6+Ok/2/DO0hfq6j/b8M7SF+rqP7oADR3e2+M/2/DO0hfq6j+rFxnnTMasP8gygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAANvwztIX6uo/jiZt5Lr46T+OJm3kuvjpP9vwztIX6uo/AAAAAAAAAACOJm3kuvjpP8gygCdMVuU/qxcZ50zGrD/b8M7SF+rqP9SJlrzxq9o/ugANHd7b4z+6AA0d3tvjP6sXGedMxqw/yDKAJ0xW5T/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/jiZt5Lr46T/UiZa88avaP6sXGedMxqw/qxcZ50zGrD/UiZa88avaP44mbeS6+Ok/1ImWvPGr2j/b8M7SF+rqP8gygCdMVuU/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/AAAAAAAAAAC6AA0d3tvjP9SJlrzxq9o/c5TxQmzj1j+6AA0d3tvjP7oADR3e2+M/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAANSJlrzxq9o/ugANHd7b4z/b8M7SF+rqP3OU8UJs49Y/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/jiZt5Lr46T+6AA0d3tvjP7oADR3e2+M/2wZdQOqhvj/UiZa88avaP3OU8UJs49Y/AAAAAAAAAADUiZa88avaP9vwztIX6uo/ugANHd7b4z+rFxnnTMasP3OU8UJs49Y/yDKAJ0xW5T+OJm3kuvjpP44mbeS6+Ok/c5TxQmzj1j9zlPFCbOPWP9vwztIX6uo/AAAAAAAAAABzlPFCbOPWP9sGXUDqob4/ugANHd7b4z+rFxnnTMasP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/jiZt5Lr46T8AAAAAAAAAANvwztIX6uo/1ImWvPGr2j+6AA0d3tvjP6sXGedMxqw/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+OJm3kuvjpPwAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWP8gygCdMVuU/AAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/2wZdQOqhvj8AAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T/UiZa88avaP9SJlrzxq9o/2/DO0hfq6j+rFxnnTMasP9SJlrzxq9o/c5TxQmzj1j/b8M7SF+rqP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWP9vwztIX6uo/yDKAJ0xW5T8AAAAAAAAAAMgygCdMVuU/jiZt5Lr46T+rFxnnTMasP9vwztIX6uo/AAAAAAAAAADIMoAnTFblP8gygCdMVuU/1ImWvPGr2j/UiZa88avaPwAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/qxcZ50zGrD/IMoAnTFblP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD/b8M7SF+rqP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD+OJm3kuvjpP9vwztIX6uo/yDKAJ0xW5T+rFxnnTMasP9SJlrzxq9o/qxcZ50zGrD9zlPFCbOPWP44mbeS6+Ok/c5TxQmzj1j+OJm3kuvjpP9vwztIX6uo/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T/UiZa88avaP3OU8UJs49Y/2/DO0hfq6j/IMoAnTFblPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/2/DO0hfq6j9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAADIMoAnTFblP7oADR3e2+M/2/DO0hfq6j+6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAALoADR3e2+M/yDKAJ0xW5T8AAAAAAAAAANvwztIX6uo/yDKAJ0xW5T+6AA0d3tvjP8gygCdMVuU/1ImWvPGr2j/b8M7SF+rqP3OU8UJs49Y/ugANHd7b4z/IMoAnTFblP9vwztIX6uo/AAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/yDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/1ImWvPGr2j+rFxnnTMasP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T9zlPFCbOPWP44mbeS6+Ok/jiZt5Lr46T/b8M7SF+rqP9sGXUDqob4/ugANHd7b4z/b8M7SF+rqP44mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T+6AA0d3tvjP9vwztIX6uo/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP6sXGedMxqw/qxcZ50zGrD/b8M7SF+rqP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWP8gygCdMVuU/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD/UiZa88avaP9sGXUDqob4/qxcZ50zGrD+6AA0d3tvjP9vwztIX6uo/c5TxQmzj1j+rFxnnTMasP9vwztIX6uo/jiZt5Lr46T/IMoAnTFblP8gygCdMVuU/jiZt5Lr46T/UiZa88avaP9SJlrzxq9o/yDKAJ0xW5T/b8M7SF+rqP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj/IMoAnTFblP9vwztIX6uo/AAAAAAAAAABzlPFCbOPWP9vwztIX6uo/1ImWvPGr2j/b8M7SF+rqPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD/bBl1A6qG+P8gygCdMVuU/c5TxQmzj1j/b8M7SF+rqP8gygCdMVuU/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+OJm3kuvjpP3OU8UJs49Y/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAjiZt5Lr46T+OJm3kuvjpP9SJlrzxq9o/yDKAJ0xW5T8AAAAAAAAAALoADR3e2+M/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD/UiZa88avaP8gygCdMVuU/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP9vwztIX6uo/c5TxQmzj1j+OJm3kuvjpPwAAAAAAAAAA1ImWvPGr2j+OJm3kuvjpP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/yDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2/DO0hfq6j/IMoAnTFblP6sXGedMxqw/yDKAJ0xW5T/IMoAnTFblP9vwztIX6uo/AAAAAAAAAADbBl1A6qG+P6sXGedMxqw/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/c5TxQmzj1j+OJm3kuvjpP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAADIMoAnTFblP9SJlrzxq9o/qxcZ50zGrD/IMoAnTFblP6sXGedMxqw/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAMgygCdMVuU/ugANHd7b4z8AAAAAAAAAALoADR3e2+M/qxcZ50zGrD+6AA0d3tvjP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjP7oADR3e2+M/yDKAJ0xW5T/b8M7SF+rqP6sXGedMxqw/2wZdQOqhvj+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAACrFxnnTMasP44mbeS6+Ok/1ImWvPGr2j/IMoAnTFblPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAABzlPFCbOPWP9vwztIX6uo/c5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAANsGXUDqob4/c5TxQmzj1j/b8M7SF+rqP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAADbBl1A6qG+P3OU8UJs49Y/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/AAAAAAAAAACOJm3kuvjpP9sGXUDqob4/c5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAc5TxQmzj1j+OJm3kuvjpP8gygCdMVuU/AAAAAAAAAACOJm3kuvjpP9sGXUDqob4/AAAAAAAAAABzlPFCbOPWP9vwztIX6uo/yDKAJ0xW5T+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j/UiZa88avaP3OU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAI4mbeS6+Ok/2wZdQOqhvj/b8M7SF+rqP9SJlrzxq9o/jiZt5Lr46T8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP7oADR3e2+M/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/2wZdQOqhvj/IMoAnTFblPwAAAAAAAAAA1ImWvPGr2j+6AA0d3tvjP8gygCdMVuU/jiZt5Lr46T+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqP7oADR3e2+M/2/DO0hfq6j/b8M7SF+rqP6sXGedMxqw/1ImWvPGr2j/IMoAnTFblPwAAAAAAAAAAc5TxQmzj1j/IMoAnTFblPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j+rFxnnTMasP9SJlrzxq9o/2/DO0hfq6j/bBl1A6qG+P9vwztIX6uo/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD/UiZa88avaP9vwztIX6uo/1ImWvPGr2j/UiZa88avaP3OU8UJs49Y/yDKAJ0xW5T+rFxnnTMasP6sXGedMxqw/1ImWvPGr2j+OJm3kuvjpP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP8gygCdMVuU/qxcZ50zGrD9zlPFCbOPWP9vwztIX6uo/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAugANHd7b4z/IMoAnTFblPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/yDKAJ0xW5T+rFxnnTMasP9vwztIX6uo/c5TxQmzj1j/b8M7SF+rqP8gygCdMVuU/AAAAAAAAAADUiZa88avaP9vwztIX6uo/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9vwztIX6uo/yDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j/bBl1A6qG+P9vwztIX6uo/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP9vwztIX6uo/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z/b8M7SF+rqPwAAAAAAAAAAc5TxQmzj1j/UiZa88avaPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/c5TxQmzj1j/IMoAnTFblP8gygCdMVuU/c5TxQmzj1j+rFxnnTMasP8gygCdMVuU/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/2/DO0hfq6j/b8M7SF+rqP3OU8UJs49Y/yDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAAjiZt5Lr46T/IMoAnTFblPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j/IMoAnTFblP6sXGedMxqw/c5TxQmzj1j/IMoAnTFblPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/UiZa88avaPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j/bBl1A6qG+PwAAAAAAAAAA2/DO0hfq6j/IMoAnTFblP3OU8UJs49Y/1ImWvPGr2j/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/yDKAJ0xW5T/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAI4mbeS6+Ok/jiZt5Lr46T/IMoAnTFblP3OU8UJs49Y/qxcZ50zGrD/b8M7SF+rqP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+OJm3kuvjpP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj/b8M7SF+rqP6sXGedMxqw/1ImWvPGr2j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAADUiZa88avaP6sXGedMxqw/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+6AA0d3tvjP3OU8UJs49Y/ugANHd7b4z9zlPFCbOPWP9vwztIX6uo/1ImWvPGr2j9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j/bBl1A6qG+P6sXGedMxqw/jiZt5Lr46T+rFxnnTMasP8gygCdMVuU/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+6AA0d3tvjP7oADR3e2+M/yDKAJ0xW5T8AAAAAAAAAANSJlrzxq9o/2/DO0hfq6j8AAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAugANHd7b4z/bBl1A6qG+P8gygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/IMoAnTFblP3OU8UJs49Y/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAyDKAJ0xW5T/b8M7SF+rqP6sXGedMxqw/yDKAJ0xW5T/IMoAnTFblP7oADR3e2+M/yDKAJ0xW5T/b8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWP6sXGedMxqw/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP44mbeS6+Ok/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP8gygCdMVuU/2/DO0hfq6j+rFxnnTMasP8gygCdMVuU/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP7oADR3e2+M/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAC6AA0d3tvjP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/AAAAAAAAAADIMoAnTFblP6sXGedMxqw/c5TxQmzj1j/UiZa88avaP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAADUiZa88avaP44mbeS6+Ok/jiZt5Lr46T/b8M7SF+rqPwAAAAAAAAAAc5TxQmzj1j+OJm3kuvjpP6sXGedMxqw/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2/DO0hfq6j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+OJm3kuvjpP9sGXUDqob4/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/bBl1A6qG+PwAAAAAAAAAA1ImWvPGr2j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP6sXGedMxqw/yDKAJ0xW5T/IMoAnTFblP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP44mbeS6+Ok/2/DO0hfq6j+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAc5TxQmzj1j/b8M7SF+rqP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP9sGXUDqob4/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAANsGXUDqob4/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAA2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAANvwztIX6uo/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j/b8M7SF+rqP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j/bBl1A6qG+P9sGXUDqob4/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/yDKAJ0xW5T/b8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T+6AA0d3tvjP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAANvwztIX6uo/2/DO0hfq6j/IMoAnTFblPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP9vwztIX6uo/1ImWvPGr2j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWP9vwztIX6uo/AAAAAAAAAADIMoAnTFblP8gygCdMVuU/c5TxQmzj1j/IMoAnTFblP9vwztIX6uo/AAAAAAAAAAC6AA0d3tvjP9sGXUDqob4/1ImWvPGr2j/IMoAnTFblP7oADR3e2+M/2/DO0hfq6j+rFxnnTMasP9vwztIX6uo/1ImWvPGr2j9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP7oADR3e2+M/2/DO0hfq6j/IMoAnTFblPwAAAAAAAAAAyDKAJ0xW5T/bBl1A6qG+P3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j9zlPFCbOPWP3OU8UJs49Y/2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP9SJlrzxq9o/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblP9vwztIX6uo/AAAAAAAAAADUiZa88avaPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP7oADR3e2+M/c5TxQmzj1j/IMoAnTFblP6sXGedMxqw/yDKAJ0xW5T/b8M7SF+rqPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/IMoAnTFblP8gygCdMVuU/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/2/DO0hfq6j/IMoAnTFblP6sXGedMxqw/AAAAAAAAAADUiZa88avaP7oADR3e2+M/2/DO0hfq6j/IMoAnTFblP9vwztIX6uo/1ImWvPGr2j8AAAAAAAAAANSJlrzxq9o/1ImWvPGr2j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP7oADR3e2+M/qxcZ50zGrD+rFxnnTMasP9SJlrzxq9o/c5TxQmzj1j+rFxnnTMasP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAANvwztIX6uo/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/yDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasP9sGXUDqob4/yDKAJ0xW5T8AAAAAAAAAANvwztIX6uo/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/c5TxQmzj1j+OJm3kuvjpP6sXGedMxqw/1ImWvPGr2j9zlPFCbOPWP9SJlrzxq9o/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP6sXGedMxqw/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2/DO0hfq6j/IMoAnTFblPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAA1ImWvPGr2j9zlPFCbOPWP9vwztIX6uo/yDKAJ0xW5T/IMoAnTFblP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/2/DO0hfq6j/b8M7SF+rqP44mbeS6+Ok/AAAAAAAAAADbBl1A6qG+P7oADR3e2+M/2wZdQOqhvj8AAAAAAAAAANsGXUDqob4/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP44mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA1ImWvPGr2j+6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAMgygCdMVuU/yDKAJ0xW5T+6AA0d3tvjP7oADR3e2+M/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAyDKAJ0xW5T+6AA0d3tvjP7oADR3e2+M/yDKAJ0xW5T/bBl1A6qG+P3OU8UJs49Y/2wZdQOqhvj8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/IMoAnTFblP3OU8UJs49Y/yDKAJ0xW5T/UiZa88avaP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAA2wZdQOqhvj+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9SJlrzxq9o/AAAAAAAAAADb8M7SF+rqP44mbeS6+Ok/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD/b8M7SF+rqP6sXGedMxqw/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j+rFxnnTMasP8gygCdMVuU/jiZt5Lr46T+rFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD+OJm3kuvjpP9SJlrzxq9o/qxcZ50zGrD9zlPFCbOPWP9SJlrzxq9o/ugANHd7b4z/IMoAnTFblP8gygCdMVuU/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/jiZt5Lr46T+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP8gygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasP9SJlrzxq9o/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAA1ImWvPGr2j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+rFxnnTMasP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAADUiZa88avaP3OU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAABzlPFCbOPWP9SJlrzxq9o/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAugANHd7b4z+OJm3kuvjpP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z/UiZa88avaPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/yDKAJ0xW5T/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP9vwztIX6uo/ugANHd7b4z/IMoAnTFblP44mbeS6+Ok/c5TxQmzj1j/UiZa88avaP3OU8UJs49Y/2/DO0hfq6j+OJm3kuvjpP8gygCdMVuU/2/DO0hfq6j+6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAugANHd7b4z/bBl1A6qG+P8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP44mbeS6+Ok/AAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/UiZa88avaP9SJlrzxq9o/yDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD9zlPFCbOPWP44mbeS6+Ok/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAugANHd7b4z/IMoAnTFblP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9vwztIX6uo/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j+rFxnnTMasP8gygCdMVuU/AAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP3OU8UJs49Y/qxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAA1ImWvPGr2j/IMoAnTFblP9vwztIX6uo/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAANSJlrzxq9o/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j+6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjP9vwztIX6uo/AAAAAAAAAACOJm3kuvjpP9vwztIX6uo/AAAAAAAAAADUiZa88avaP9vwztIX6uo/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP7oADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAjiZt5Lr46T+rFxnnTMasP9vwztIX6uo/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/yDKAJ0xW5T+6AA0d3tvjP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAAjiZt5Lr46T+OJm3kuvjpP7oADR3e2+M/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAADIMoAnTFblP9SJlrzxq9o/qxcZ50zGrD8AAAAAAAAAANsGXUDqob4/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAugANHd7b4z/UiZa88avaPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+6AA0d3tvjP9sGXUDqob4/yDKAJ0xW5T+rFxnnTMasP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T/UiZa88avaP9SJlrzxq9o/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j8AAAAAAAAAAMgygCdMVuU/c5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T/IMoAnTFblP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWP9SJlrzxq9o/jiZt5Lr46T9zlPFCbOPWP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP9SJlrzxq9o/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/b8M7SF+rqP7oADR3e2+M/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAADUiZa88avaP3OU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/jiZt5Lr46T9zlPFCbOPWP6sXGedMxqw/2/DO0hfq6j/bBl1A6qG+P6sXGedMxqw/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/c5TxQmzj1j/bBl1A6qG+PwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP9sGXUDqob4/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j9zlPFCbOPWP9sGXUDqob4/c5TxQmzj1j/b8M7SF+rqP6sXGedMxqw/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+OJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD/bBl1A6qG+PwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANvwztIX6uo/AAAAAAAAAADb8M7SF+rqP7oADR3e2+M/1ImWvPGr2j/UiZa88avaP7oADR3e2+M/qxcZ50zGrD+rFxnnTMasP7oADR3e2+M/qxcZ50zGrD+OJm3kuvjpP3OU8UJs49Y/2wZdQOqhvj/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+6AA0d3tvjP9vwztIX6uo/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j/IMoAnTFblPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/2wZdQOqhvj9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqP9sGXUDqob4/ugANHd7b4z/b8M7SF+rqP7oADR3e2+M/yDKAJ0xW5T/b8M7SF+rqP44mbeS6+Ok/c5TxQmzj1j+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j/IMoAnTFblP9vwztIX6uo/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T/IMoAnTFblP3OU8UJs49Y/1ImWvPGr2j9zlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2wZdQOqhvj9zlPFCbOPWP9vwztIX6uo/AAAAAAAAAADIMoAnTFblP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjP9vwztIX6uo/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAALoADR3e2+M/1ImWvPGr2j+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAjiZt5Lr46T+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP3OU8UJs49Y/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWP8gygCdMVuU/ugANHd7b4z/IMoAnTFblPwAAAAAAAAAA1ImWvPGr2j9zlPFCbOPWP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+OJm3kuvjpP9SJlrzxq9o/AAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD+rFxnnTMasP9sGXUDqob4/AAAAAAAAAADbBl1A6qG+P7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD/UiZa88avaP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP8gygCdMVuU/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAA2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9SJlrzxq9o/qxcZ50zGrD/UiZa88avaPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAACOJm3kuvjpP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/c5TxQmzj1j/UiZa88avaP7oADR3e2+M/ugANHd7b4z/IMoAnTFblP8gygCdMVuU/AAAAAAAAAADbBl1A6qG+P8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAANvwztIX6uo/2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/2/DO0hfq6j8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADIMoAnTFblP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/yDKAJ0xW5T8AAAAAAAAAANSJlrzxq9o/yDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP8gygCdMVuU/yDKAJ0xW5T/UiZa88avaPwAAAAAAAAAAyDKAJ0xW5T+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP8gygCdMVuU/yDKAJ0xW5T/bBl1A6qG+P44mbeS6+Ok/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/AAAAAAAAAADb8M7SF+rqP9vwztIX6uo/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD/IMoAnTFblP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAC6AA0d3tvjP9vwztIX6uo/c5TxQmzj1j8AAAAAAAAAAI4mbeS6+Ok/1ImWvPGr2j/IMoAnTFblP44mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAADIMoAnTFblP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/c5TxQmzj1j+rFxnnTMasP9vwztIX6uo/yDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9vwztIX6uo/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/qxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/yDKAJ0xW5T+rFxnnTMasP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP7oADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD9zlPFCbOPWP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAA1ImWvPGr2j+rFxnnTMasP6sXGedMxqw/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j/IMoAnTFblP7oADR3e2+M/yDKAJ0xW5T/bBl1A6qG+P7oADR3e2+M/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjP44mbeS6+Ok/2/DO0hfq6j/UiZa88avaPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP6sXGedMxqw/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP9sGXUDqob4/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAMgygCdMVuU/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/UiZa88avaP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP9sGXUDqob4/AAAAAAAAAADb8M7SF+rqP7oADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T/IMoAnTFblP3OU8UJs49Y/qxcZ50zGrD9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j/b8M7SF+rqP7oADR3e2+M/1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAANvwztIX6uo/1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T/bBl1A6qG+P9vwztIX6uo/2/DO0hfq6j8AAAAAAAAAAI4mbeS6+Ok/ugANHd7b4z9zlPFCbOPWP44mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAACOJm3kuvjpP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+6AA0d3tvjP3OU8UJs49Y/ugANHd7b4z/bBl1A6qG+P6sXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP9vwztIX6uo/AAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/c5TxQmzj1j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP8gygCdMVuU/yDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j/IMoAnTFblP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP9vwztIX6uo/2wZdQOqhvj8AAAAAAAAAANsGXUDqob4/ugANHd7b4z8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAADIMoAnTFblP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasP44mbeS6+Ok/jiZt5Lr46T8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j9zlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/b8M7SF+rqP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAADIMoAnTFblP3OU8UJs49Y/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/qxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP8gygCdMVuU/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP8gygCdMVuU/ugANHd7b4z8AAAAAAAAAALoADR3e2+M/c5TxQmzj1j/b8M7SF+rqP3OU8UJs49Y/qxcZ50zGrD/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+OJm3kuvjpP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T+OJm3kuvjpP3OU8UJs49Y/1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADIMoAnTFblP8gygCdMVuU/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/ugANHd7b4z/b8M7SF+rqP9SJlrzxq9o/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/UiZa88avaP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP44mbeS6+Ok/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P9sGXUDqob4/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP9vwztIX6uo/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T+6AA0d3tvjPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWP9vwztIX6uo/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/c5TxQmzj1j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/2/DO0hfq6j+6AA0d3tvjP6sXGedMxqw/c5TxQmzj1j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/2/DO0hfq6j+6AA0d3tvjP6sXGedMxqw/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/ugANHd7b4z/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP3OU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD/IMoAnTFblP6sXGedMxqw/jiZt5Lr46T+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAADb8M7SF+rqP7oADR3e2+M/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T9zlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j/b8M7SF+rqP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAA2/DO0hfq6j/IMoAnTFblPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADb8M7SF+rqP7oADR3e2+M/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAI4mbeS6+Ok/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/yDKAJ0xW5T/UiZa88avaP6sXGedMxqw/qxcZ50zGrD+6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j+6AA0d3tvjP7oADR3e2+M/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP9SJlrzxq9o/2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T+OJm3kuvjpP6sXGedMxqw/jiZt5Lr46T/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/ugANHd7b4z+OJm3kuvjpP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j8AAAAAAAAAALoADR3e2+M/yDKAJ0xW5T+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAA1ImWvPGr2j+rFxnnTMasP6sXGedMxqw/c5TxQmzj1j/UiZa88avaP7oADR3e2+M/qxcZ50zGrD/IMoAnTFblP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP9SJlrzxq9o/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP8gygCdMVuU/qxcZ50zGrD/UiZa88avaPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2wZdQOqhvj/bBl1A6qG+P7oADR3e2+M/AAAAAAAAAADb8M7SF+rqP6sXGedMxqw/1ImWvPGr2j8AAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/c5TxQmzj1j/UiZa88avaP6sXGedMxqw/2/DO0hfq6j+6AA0d3tvjP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAADIMoAnTFblP44mbeS6+Ok/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/2wZdQOqhvj/UiZa88avaP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAjiZt5Lr46T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAANSJlrzxq9o/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANvwztIX6uo/yDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j/IMoAnTFblP3OU8UJs49Y/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/c5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP44mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACOJm3kuvjpP9SJlrzxq9o/ugANHd7b4z8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA1ImWvPGr2j+rFxnnTMasP44mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+6AA0d3tvjP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9SJlrzxq9o/2/DO0hfq6j/b8M7SF+rqP9SJlrzxq9o/yDKAJ0xW5T/IMoAnTFblPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/2wZdQOqhvj+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z+rFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAc5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T/IMoAnTFblP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAMgygCdMVuU/c5TxQmzj1j/b8M7SF+rqP6sXGedMxqw/qxcZ50zGrD/UiZa88avaPwAAAAAAAAAAugANHd7b4z/IMoAnTFblP9sGXUDqob4/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+rFxnnTMasP3OU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P9sGXUDqob4/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP7oADR3e2+M/1ImWvPGr2j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/1ImWvPGr2j9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP8gygCdMVuU/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/jiZt5Lr46T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA1ImWvPGr2j/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/yDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j+rFxnnTMasP8gygCdMVuU/AAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANsGXUDqob4/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP9SJlrzxq9o/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP8gygCdMVuU/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+rFxnnTMasP7oADR3e2+M/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP3OU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAMgygCdMVuU/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAA2wZdQOqhvj+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/ugANHd7b4z+OJm3kuvjpPwAAAAAAAAAAugANHd7b4z/b8M7SF+rqP6sXGedMxqw/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP8gygCdMVuU/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjP9sGXUDqob4/c5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/c5TxQmzj1j+rFxnnTMasP6sXGedMxqw/yDKAJ0xW5T9zlPFCbOPWP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z+6AA0d3tvjP6sXGedMxqw/qxcZ50zGrD+6AA0d3tvjP7oADR3e2+M/yDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAALoADR3e2+M/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqPwAAAAAAAAAAugANHd7b4z/UiZa88avaP6sXGedMxqw/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWP8gygCdMVuU/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAjiZt5Lr46T+rFxnnTMasPwAAAAAAAAAA1ImWvPGr2j/UiZa88avaPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T+6AA0d3tvjPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/ugANHd7b4z/b8M7SF+rqP3OU8UJs49Y/ugANHd7b4z/b8M7SF+rqPwAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/ugANHd7b4z+rFxnnTMasP3OU8UJs49Y/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/UiZa88avaP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP9SJlrzxq9o/qxcZ50zGrD/IMoAnTFblP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/IMoAnTFblP9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2/DO0hfq6j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/1ImWvPGr2j/IMoAnTFblP3OU8UJs49Y/qxcZ50zGrD+rFxnnTMasP9SJlrzxq9o/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/2wZdQOqhvj/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/qxcZ50zGrD+6AA0d3tvjP6sXGedMxqw/1ImWvPGr2j/bBl1A6qG+P7oADR3e2+M/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAugANHd7b4z+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P3OU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/jiZt5Lr46T/UiZa88avaPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAA2wZdQOqhvj+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9sGXUDqob4/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T+OJm3kuvjpPwAAAAAAAAAA1ImWvPGr2j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP8gygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD9zlPFCbOPWP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAugANHd7b4z/b8M7SF+rqP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP3OU8UJs49Y/c5TxQmzj1j/b8M7SF+rqPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP8gygCdMVuU/ugANHd7b4z+rFxnnTMasP8gygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/1ImWvPGr2j+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD/bBl1A6qG+P9SJlrzxq9o/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j/IMoAnTFblP9vwztIX6uo/1ImWvPGr2j+6AA0d3tvjPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j+rFxnnTMasP9SJlrzxq9o/jiZt5Lr46T8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP8gygCdMVuU/AAAAAAAAAABzlPFCbOPWP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAA2wZdQOqhvj+rFxnnTMasPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADb8M7SF+rqP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADIMoAnTFblP8gygCdMVuU/AAAAAAAAAADb8M7SF+rqP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/UiZa88avaP9sGXUDqob4/2/DO0hfq6j8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj+rFxnnTMasP9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9vwztIX6uo/2wZdQOqhvj8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/1ImWvPGr2j8AAAAAAAAAANSJlrzxq9o/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/UiZa88avaPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/ugANHd7b4z/UiZa88avaP9vwztIX6uo/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2wZdQOqhvj8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP8gygCdMVuU/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/2wZdQOqhvj8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAADb8M7SF+rqP9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/qxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj/b8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD/IMoAnTFblP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/1ImWvPGr2j/bBl1A6qG+P6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+OJm3kuvjpP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP9vwztIX6uo/ugANHd7b4z+6AA0d3tvjP7oADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAALoADR3e2+M/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWP9SJlrzxq9o/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j/IMoAnTFblP6sXGedMxqw/qxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAAc5TxQmzj1j+OJm3kuvjpP3OU8UJs49Y/jiZt5Lr46T8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD9zlPFCbOPWP7oADR3e2+M/jiZt5Lr46T+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/AAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP6sXGedMxqw/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP9SJlrzxq9o/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAMgygCdMVuU/yDKAJ0xW5T8AAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAADUiZa88avaPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/1ImWvPGr2j9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAADUiZa88avaPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/1ImWvPGr2j/b8M7SF+rqP3OU8UJs49Y/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/2wZdQOqhvj8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANSJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP3OU8UJs49Y/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/IMoAnTFblPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T/UiZa88avaPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAyDKAJ0xW5T/b8M7SF+rqP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP7oADR3e2+M/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+rFxnnTMasP7oADR3e2+M/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP7oADR3e2+M/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z/UiZa88avaPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/UiZa88avaP7oADR3e2+M/2/DO0hfq6j/bBl1A6qG+PwAAAAAAAAAAjiZt5Lr46T/bBl1A6qG+PwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP9sGXUDqob4/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANSJlrzxq9o/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAyDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADIMoAnTFblPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWP8gygCdMVuU/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP9vwztIX6uo/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAKsXGedMxqw/ugANHd7b4z8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/yDKAJ0xW5T+rFxnnTMasP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/2wZdQOqhvj/b8M7SF+rqPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j/bBl1A6qG+P6sXGedMxqw/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAjiZt5Lr46T+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP7oADR3e2+M/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAugANHd7b4z/b8M7SF+rqP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD/UiZa88avaPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP7oADR3e2+M/ugANHd7b4z8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/1ImWvPGr2j+6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAMgygCdMVuU/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/c5TxQmzj1j+6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/2wZdQOqhvj+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAugANHd7b4z+6AA0d3tvjP7oADR3e2+M/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAA2/DO0hfq6j+6AA0d3tvjP7oADR3e2+M/ugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/2wZdQOqhvj+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z+rFxnnTMasP7oADR3e2+M/c5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAugANHd7b4z+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/c5TxQmzj1j9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP44mbeS6+Ok/ugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP9SJlrzxq9o/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ImWvPGr2j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP9sGXUDqob4/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j/b8M7SF+rqP44mbeS6+Ok/c5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/UiZa88avaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANsGXUDqob4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP9vwztIX6uo/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z+rFxnnTMasP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpP3OU8UJs49Y/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAA1ImWvPGr2j+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAjiZt5Lr46T9zlPFCbOPWPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/yDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjP9sGXUDqob4/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/2wZdQOqhvj/bBl1A6qG+PwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAAC6AA0d3tvjP9SJlrzxq9o/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP7oADR3e2+M/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMgygCdMVuU/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD/IMoAnTFblPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbBl1A6qG+PwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP8gygCdMVuU/yDKAJ0xW5T+6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUiZa88avaP44mbeS6+Ok/qxcZ50zGrD+rFxnnTMasP9vwztIX6uo/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAABzlPFCbOPWP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/ugANHd7b4z9zlPFCbOPWP9SJlrzxq9o/jiZt5Lr46T8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/jiZt5Lr46T+6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/c5TxQmzj1j+OJm3kuvjpPwAAAAAAAAAAAAAAAAAAAADbBl1A6qG+P9vwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/c5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD+6AA0d3tvjP3OU8UJs49Y/yDKAJ0xW5T9zlPFCbOPWPwAAAAAAAAAAjiZt5Lr46T+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/ugANHd7b4z8AAAAAAAAAAMgygCdMVuU/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/2wZdQOqhvj+rFxnnTMasP6sXGedMxqw/c5TxQmzj1j+rFxnnTMasP6sXGedMxqw/ugANHd7b4z+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP9sGXUDqob4/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/yDKAJ0xW5T9zlPFCbOPWP7oADR3e2+M/jiZt5Lr46T+rFxnnTMasP6sXGedMxqw/yDKAJ0xW5T+rFxnnTMasP3OU8UJs49Y/yDKAJ0xW5T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T+OJm3kuvjpP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4mbeS6+Ok/jiZt5Lr46T/bBl1A6qG+P6sXGedMxqw/AAAAAAAAAABzlPFCbOPWP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAqxcZ50zGrD+6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j+rFxnnTMasP8gygCdMVuU/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/AAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP44mbeS6+Ok/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/jiZt5Lr46T+OJm3kuvjpP6sXGedMxqw/jiZt5Lr46T/IMoAnTFblP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/jiZt5Lr46T8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/c5TxQmzj1j9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoADR3e2+M/jiZt5Lr46T+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAANsGXUDqob4/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAAAAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/qxcZ50zGrD8AAAAAAAAAAI4mbeS6+Ok/1ImWvPGr2j+rFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/qxcZ50zGrD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDKAJ0xW5T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/2/DO0hfq6j+rFxnnTMasP3OU8UJs49Y/2/DO0hfq6j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANvwztIX6uo/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/AAAAAAAAAADIMoAnTFblPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAA2wZdQOqhvj8AAAAAAAAAAHOU8UJs49Y/2/DO0hfq6j8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD9zlPFCbOPWPwAAAAAAAAAA2/DO0hfq6j/IMoAnTFblP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/c5TxQmzj1j+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAANvwztIX6uo/ugANHd7b4z+rFxnnTMasP6sXGedMxqw/jiZt5Lr46T+OJm3kuvjpP6sXGedMxqw/jiZt5Lr46T+rFxnnTMasP9vwztIX6uo/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j/b8M7SF+rqP6sXGedMxqw/c5TxQmzj1j/UiZa88avaP3OU8UJs49Y/AAAAAAAAAAAAAAAAAAAAANvwztIX6uo/c5TxQmzj1j8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD+rFxnnTMasP6sXGedMxqw/c5TxQmzj1j+rFxnnTMasP9SJlrzxq9o/ugANHd7b4z+6AA0d3tvjP9vwztIX6uo/c5TxQmzj1j+6AA0d3tvjP7oADR3e2+M/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP6sXGedMxqw/jiZt5Lr46T+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD9zlPFCbOPWP6sXGedMxqw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrFxnnTMasP3OU8UJs49Y/qxcZ50zGrD+rFxnnTMasPwAAAAAAAAAAAAAAAAAAAACrFxnnTMasPwAAAAAAAAAAjiZt5Lr46T8AAAAAAAAAANvwztIX6uo/AAAAAAAAAACrFxnnTMasP3OU8UJs49Y/AAAAAAAAAACrFxnnTMasP44mbeS6+Ok/AAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/c5TxQmzj1j9zlPFCbOPWP9vwztIX6uo/AAAAAAAAAADUiZa88avaP7oADR3e2+M/c5TxQmzj1j/IMoAnTFblP6sXGedMxqw/qxcZ50zGrD/IMoAnTFblP6sXGedMxqw/yDKAJ0xW5T/IMoAnTFblP7oADR3e2+M/jiZt5Lr46T+rFxnnTMasP3OU8UJs49Y/qxcZ50zGrD/IMoAnTFblP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/c5TxQmzj1j+rFxnnTMasP44mbeS6+Ok/AAAAAAAAAAC6AA0d3tvjP8gygCdMVuU/2/DO0hfq6j8AAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAANvwztIX6uo/yDKAJ0xW5T/IMoAnTFblP7oADR3e2+M/qxcZ50zGrD8AAAAAAAAAALoADR3e2+M/jiZt5Lr46T+rFxnnTMasPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAALoADR3e2+M/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAqxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/qxcZ50zGrD+OJm3kuvjpPwAAAAAAAAAAqxcZ50zGrD/b8M7SF+rqP9vwztIX6uo/qxcZ50zGrD+OJm3kuvjpP6sXGedMxqw/qxcZ50zGrD+rFxnnTMasP9vwztIX6uo/AAAAAAAAAAC6AA0d3tvjP6sXGedMxqw/qxcZ50zGrD8AAAAAAAAAANSJlrzxq9o/qxcZ50zGrD+rFxnnTMasP8gygCdMVuU/ugANHd7b4z+OJm3kuvjpP6sXGedMxqw/qxcZ50zGrD+6AA0d3tvjP6sXGedMxqw/ugANHd7b4z8AAAAAAAAAANvwztIX6uo/ugANHd7b4z9zlPFCbOPWP3OU8UJs49Y/ugANHd7b4z8AAAAAAAAAAMgygCdMVuU/yDKAJ0xW5T/b8M7SF+rqP9vwztIX6uo/AAAAAAAAAACOJm3kuvjpPwAAAAAAAAAAugANHd7b4z+6AA0d3tvjP7oADR3e2+M/c5TxQmzj1j9zlPFCbOPWP3OU8UJs49Y/ugANHd7b4z+6AA0d3tvjP7oADR3e2+M/qxcZ50zGrD+6AA0d3tvjP7oADR3e2+M/AAAAAAAAAAC6AA0d3tvjP44mbeS6+Ok/jiZt5Lr46T/b8M7SF+rqPwAAAAAAAAAAugANHd7b4z+6AA0d3tvjP6sXGedMxqw/c5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAA2/DO0hfq6j8AAAAAAAAAALoADR3e2+M/ugANHd7b4z+6AA0d3tvjP3OU8UJs49Y/qxcZ50zGrD+rFxnnTMasP6sXGedMxqw/c5TxQmzj1j+OJm3kuvjpP44mbeS6+Ok/qxcZ50zGrD8AAAAAAAAAAKsXGedMxqw/AAAAAAAAAACrFxnnTMasP6sXGedMxqw/AAAAAAAAAADb8M7SF+rqPwAAAAAAAAAAjiZt5Lr46T+6AA0d3tvjPwAAAAAAAAAAugANHd7b4z+rFxnnTMasP7oADR3e2+M/AAAAAAAAAACOJm3kuvjpP7oADR3e2+M/c5TxQmzj1j/b8M7SF+rqP9vwztIX6uo/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAI4mbeS6+Ok/c5TxQmzj1j+6AA0d3tvjP6sXGedMxqw/c5TxQmzj1j+OJm3kuvjpP7oADR3e2+M/ugANHd7b4z+6AA0d3tvjP7oADR3e2+M/AAAAAAAAAACrFxnnTMasPwAAAAAAAAAAugANHd7b4z+OJm3kuvjpP8gygCdMVuU/ugANHd7b4z+6AA0d3tvjP8gygCdMVuU/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/1ImWvPGr2j+OJm3kuvjpP8gygCdMVuU/qxcZ50zGrD/b8M7SF+rqP44mbeS6+Ok/2wZdQOqhvj+6AA0d3tvjP7oADR3e2+M/jiZt5Lr46T+6AA0d3tvjP44mbeS6+Ok/AAAAAAAAAACrFxnnTMasP7oADR3e2+M/AAAAAAAAAACOJm3kuvjpP7oADR3e2+M/ugANHd7b4z+6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j+6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP44mbeS6+Ok/ugANHd7b4z8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAugANHd7b4z8AAAAAAAAAAHOU8UJs49Y/ugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6AA0d3tvjP7oADR3e2+M/ugANHd7b4z8AAAAAAAAAAMgygCdMVuU/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAugANHd7b4z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADb8M7SF+rqP44mbeS6+Ok/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAc5TxQmzj1j9zlPFCbOPWP8gygCdMVuU/jiZt5Lr46T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzlPFCbOPWP7oADR3e2+M/AAAAAAAAAABzlPFCbOPWP7oADR3e2+M/ugANHd7b4z+6AA0d3tvjP7oADR3e2+M/AAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/AAAAAAAAAAAAAAAAAAAAALoADR3e2+M/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAugANHd7b4z+6AA0d3tvjP7oADR3e2+M/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc5TxQmzj1j8AAAAAAAAAALoADR3e2+M/AAAAAAAAAAC6AA0d3tvjP3OU8UJs49Y/AAAAAAAAAAC6AA0d3tvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOU8UJs49Y/c5TxQmzj1j8=", "encoding": "base64", "path": [ "_data", 1, "y", "buffer" ] } ], "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "hovertemplate": "V1: %{x}
proba_Anomaly: %{y}
predictions: Anomaly", "marker": { "color": "#F58518", "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "predictions = Anomaly", "showlegend": true, "type": "scatter", "uid": "b81fd374-cc2f-4339-bfa6-87a93ca81b41", "x": { "dtype": "float64", "shape": [ 642 ] }, "y": { "dtype": "float64", "shape": [ 642 ] } }, { "hovertemplate": "V1: %{x}
proba_Anomaly: %{y}
predictions: Normal", "marker": { "color": "#4C78A8", "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "predictions = Normal", "showlegend": true, "type": "scatter", "uid": "89deb4f9-36c8-48a8-a3f5-b9318f8cdea6", "x": { "dtype": "float64", "shape": [ 9358 ] }, "y": { "dtype": "float64", "shape": [ 9358 ] } } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "height": 600, "legend": { "itemsizing": "constant" }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "V1" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Prediction probability (Anomaly)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "13e441ea6b3c4525aec167778a91c343": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "14cb9938ebfa47fdb10c7915b96ad8f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "170df7432302439e98e8b94688278d48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "17fd0f9bc32c45428e4d9f7c496de459": { "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 4, 4, 4, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 2, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 3, 4, 4 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Normal", "marker": { "color": "#F58518", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Normal", "orientation": "h", "showlegend": false, "type": "box", "uid": "fd5abe39-e68e-4903-9c03-2fab421c3a1f", "x": [ -0.275375709856513, -0.1812676956909964, -0.04746257348354252, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005620041199703907, 0.008376068925819592, 0.019108140078993287, 0.039443777756473966, 0.25306258944380977 ], "xaxis": "x", "y": [ "V8", "V3", "V4", "V20", "V7", "V9", "V10", "V2", "V6", "V11", "V14", "V15", "V16", "V17", "V18", "V12", "V1", "V13", "V5", "V3", "V5", "V6", "V7", "V9", "V10", "V2", "V12", "V4", "V11", "V16", "V17", "V18", "V13", "V1", "V20", "V15", "V3", "V20", "V5", "V5", "V6", "V7", "V9", "V10", "V2", "V11", "V4", "V13", "V15", "V16", "V17", "V18", "V19", "V12", "V1", "V14", "V4", "V3", "V1", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V20", "V13", "V15", "V16", "V17", "V18", "V19", "V2", "V14", "V8", "V8", "V19", "V14", "V19" ], "yaxis": "y" }, { "boxmean": true, "boxpoints": "all", "customdata": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Anomaly", "marker": { "color": "#4C78A8", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Anomaly", "orientation": "h", "showlegend": false, "type": "box", "uid": "f87b9f10-1bce-4060-ab2d-1103c68275a3", "x": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.007084893804021775, 0.024244357916562723, 0.037358422007407126, 0.10299020601629812, 0.13459669051472734 ], "xaxis": "x2", "y": [ "V16", "V6", "V7", "V9", "V10", "V2", "V12", "V11", "V15", "V20", "V17", "V18", "V13", "V1", "V5", "V14", "V3", "V4", "V19", "V8" ], "yaxis": "y2" } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 1, "_last_trace_edit_id": 1, "_layout": { "annotations": [ { "font": { "size": 16 }, "showarrow": false, "text": "Predicted Target = \"Normal\"", "textangle": 90, "x": 0.98, "xanchor": "left", "xref": "paper", "y": 0.8, "yanchor": "middle", "yref": "paper" }, { "font": { "size": 16 }, "showarrow": false, "text": "Predicted Target = \"Anomaly\"", "textangle": 90, "x": 0.98, "xanchor": "left", "xref": "paper", "y": 0.3, "yanchor": "middle", "yref": "paper" } ], "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryarray": [ "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V14", "V4", "V3", "V19", "V8" ], "categoryorder": "array", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x", "mirror": true, "scaleanchor": "x", "showline": true, "showticklabels": true, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryarray": [ "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V14", "V4", "V3", "V19", "V8" ], "categoryorder": "array", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x", "mirror": true, "scaleanchor": "x", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Attribution" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryarray": [ "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V14", "V4", "V3", "V19", "V8" ], "categoryorder": "array", "domain": [ 0.6, 1.0 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y", "mirror": true, "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Feature" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryarray": [ "V1", "V7", "V6", "V5", "V20", "V2", "V17", "V18", "V15", "V13", "V12", "V11", "V10", "V16", "V9", "V14", "V4", "V3", "V19", "V8" ], "categoryorder": "array", "domain": [ 0.1, 0.5 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y", "mirror": true, "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Feature" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": null, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "19a09ff552524778b546c0065e9d87ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V7", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_9f5825d4013c4551965c1cd33f2f9200", "step": null, "style": "IPY_MODEL_9d81393d019442ad9e7b424f1c9eb05c", "tabbable": null, "tooltip": null, "value": 0.9239569002372758 } }, "19a19b28889d4167b37577bc6cb61885": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "1deff400c3014e2ca192267aa1185837": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_35657a203e3142ab88a0a8f0de3264e9", "IPY_MODEL_bd37a3b47f304eb595372e51dd1f1e18", "IPY_MODEL_4cd6b56717dc4faa92dc92320cb4e5d0", "IPY_MODEL_a6514be3858d4eb299ec7f50f487508f", "IPY_MODEL_1271e4566d474b4ea2a297582c243581", "IPY_MODEL_c12247fc91c24e5d99bdcb9f4edf6328" ], "layout": "IPY_MODEL_d6ac0bf9e52145188260932794fdb2c8", "tabbable": null, "tooltip": null } }, "1e321b43e75f4a50b2d0cdbd040a5cb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "1f9ce6c6097b4a9884cffd92519a22bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "1fe0c246d3494c89ab05a6f76ee00f3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "206cdb089cef481aa49a822cb88558fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2078a61fd9a54b91928e87f344580cd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "20b7f6f02aee4808824cd74ee9839a56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "20c004cd775a4dc2a43b342fe92af495": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "2150500fb1b44a6e9cad3e6fd7c9608f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoundedIntTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "BoundedIntTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntTextView", "continuous_update": false, "description": "Row Index:", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_b5c996ecfa0d49a6af380a0e5d105a42", "max": 56961, "min": 0, "step": 1, "style": "IPY_MODEL_1e321b43e75f4a50b2d0cdbd040a5cb0", "tabbable": null, "tooltip": null, "value": 0 } }, "22349b65d6e94a7898fc2c53724e6fd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V4", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_23a276c7e3fc4227a8be59faea5df0b1", "step": null, "style": "IPY_MODEL_79907f177c9b48a99f003d16126115a4", "tabbable": null, "tooltip": null, "value": -2.2223952125512327 } }, "23a276c7e3fc4227a8be59faea5df0b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2438b91b309b4c9caa6a92355f25b01a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "260b7d3d5e9246de9418b2d3225a7603": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "2795c315afd64546b870dcbaebe28e63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "294d17371a464d62be70271cc1572be0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_73df98df73f04292a1ceab950547f244", "IPY_MODEL_866994b4c4a3451b903814e2bcabe445", "IPY_MODEL_dccb9fbffd73422c8f61b840dffae300", "IPY_MODEL_a8211859e11c4b88a5c28232c11f3fc1", "IPY_MODEL_cb0eaa9fdf9544bf88eb2aa521120246", "IPY_MODEL_fb34ab7b6eb5469a810922c44f912a08", "IPY_MODEL_19a09ff552524778b546c0065e9d87ae", "IPY_MODEL_abaf6c13e83f4217a8c4e7f0abb047bc", "IPY_MODEL_06d9b6fada3044b28c0fa750433a1063", "IPY_MODEL_fe36682652384c3097882c7f6f7b51cf", "IPY_MODEL_87e4d53b127c47e4ae07face04e2c108", "IPY_MODEL_51667ceb52bc4988b812c0ec9e914183", "IPY_MODEL_83b32e9df9ba45d4979900dbb00a2ff9", "IPY_MODEL_59491687e2c0425a854bd1ac96050ab2", "IPY_MODEL_b1e3e61853364ec29f2af31850039f76", "IPY_MODEL_74877824c4704dd6a452d27fe5bdc983", "IPY_MODEL_e28de89ef78a491eb99916048eeab101", "IPY_MODEL_eb2d483e2b00477b94dbdb0bd32c60ac", "IPY_MODEL_4c7f7e72aa414f13855bed1d8d55b4c7", "IPY_MODEL_d2442bd1c5c0487599ec340e8f886183" ], "layout": "IPY_MODEL_f051c372b1b24bfa92aaef66d47d4894", "tabbable": null, "tooltip": null } }, "2a82a5e3ef4945b39b412582e2182e1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "2d4a3358ce434411b5d1b982f428555f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_41bda3fc37914697aaa6d81f7e0df29b", "placeholder": "​", "style": "IPY_MODEL_cc529ec115974db68e0d5240567f4c5f", "tabbable": null, "tooltip": null, "value": "

Model Predictions

" } }, "2f510f3ccfb24fc386097e28d0ed6e8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V9", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_7d4be84aae9a43568cdf4f7ef8c2491f", "step": null, "style": "IPY_MODEL_77acc738b5f34396a74bb3a3b5d819e4", "tabbable": null, "tooltip": null, "value": 0.7806740947971558 } }, "2fa2c0191a17401c95b71cdca6ff69ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_4c942b1fd2314fa78c1db35e877d1288", "IPY_MODEL_8febf59420044f189c7961870241e3ba", "IPY_MODEL_a6a2fa6d19584c25a859b854aeec4452" ], "layout": "IPY_MODEL_dd63f6205052407aba31fa8fee4312c6", "tabbable": null, "tooltip": null } }, "30214d6858a9452a90ae8f03c2aa42f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1100px" } }, "302ade22e4ca4d379615083b2f082cd8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_f052753eba594f06ae85af08cbfd8731", "IPY_MODEL_9951de38297f47f6a7e3200f4372e045", "IPY_MODEL_33c78ee4d70f4120bd4cec4978757c33", "IPY_MODEL_3bd4d7dd3b0346b0b3229afd76f5ddb4", "IPY_MODEL_294d17371a464d62be70271cc1572be0", "IPY_MODEL_ab3b7a63c2384f138b249ad331173212" ], "layout": "IPY_MODEL_0cb5455cf2774036860b4cff4e70a90d", "tabbable": null, "tooltip": null } }, "31d4901f3d1749b992f93bb811f873c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V7", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_d645ea5ad66944109c4f2ee0f36d07bb", "step": null, "style": "IPY_MODEL_6c81939a89c2490fb63737c44e7680bb", "tabbable": null, "tooltip": null, "value": 0.9928911115798961 } }, "323a8a4c14d6469fab4cc851a6e59173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "32eb6172997e422cae3cce06b2f6b9c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "339f93c858a64020875160a276293b25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6919e92a0bcc46ecb270c240d1b9339a", "placeholder": "​", "style": "IPY_MODEL_86220747e9434db49874c24563e82147", "tabbable": null, "tooltip": null, "value": "

Model Predictions

" } }, "33c78ee4d70f4120bd4cec4978757c33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_c337dcb077f145078dfc76d9b8055129", "IPY_MODEL_039fb35e19774a11b1615a2641451684" ], "layout": "IPY_MODEL_d483e4f6d24c4dc3aa9ab85ca12f249b", "tabbable": null, "tooltip": null } }, "33d17d03d3484042af0f699eeed93404": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "Normal", "Anomaly" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Labels", "description_allow_html": false, "disabled": false, "index": 1, "layout": "IPY_MODEL_3b40d54ffa15433493afbe3a64a814ed", "style": "IPY_MODEL_6f4274b0ba4d43babcb34b040711d167", "tabbable": null, "tooltip": null } }, "35657a203e3142ab88a0a8f0de3264e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4504d51e075647c7875f0799d14ff863", "placeholder": "​", "style": "IPY_MODEL_de54130f2e624e69aad01eb80e3d58e5", "tabbable": null, "tooltip": null, "value": "\n

Select and Explore Sample

\n " } }, "358f1ee754cd4398a661205f33a12c9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "35d5a19c6b274b2fac6c0b4072c68918": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4537cdf0d9ff4ca0b25af0b0269e261a", "placeholder": "​", "style": "IPY_MODEL_ca1820de73754740b223c2c1cbacff51", "tabbable": null, "tooltip": null, "value": "

Model Prediction Probabilities

" } }, "38fd8141725d42cebc9acc398c5a82dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_fbc4f6b925b843d0b2b2eb693b4f4ea5", "IPY_MODEL_c2f2b4885f3a406dbed9d570d92dd213", "IPY_MODEL_0a3dc9808b3f4f528635ccf438d7fbde", "IPY_MODEL_339f93c858a64020875160a276293b25", "IPY_MODEL_765001a54755447ca8e0c50357b9cdb8", "IPY_MODEL_35d5a19c6b274b2fac6c0b4072c68918", "IPY_MODEL_6309a2e542e24b7c91335d2536dac336" ], "layout": "IPY_MODEL_c02ecf5313bd4f6584fa8e329546ab3c", "tabbable": null, "tooltip": null } }, "393c5946208a4d19933311bc2cc95622": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_302ade22e4ca4d379615083b2f082cd8", "IPY_MODEL_fc94e5a4581a458fb682fea423cbacc5" ], "layout": "IPY_MODEL_5c9fadcdde2b4bfbaa89227624ca8f72", "tabbable": null, "tooltip": null } }, "3a5236f2108c4cd29b133832afe3ac1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V19", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_df5b895877dd4956b165b82f99d3d347", "step": null, "style": "IPY_MODEL_648795a91e84430f9e35e585350ba7c4", "tabbable": null, "tooltip": null, "value": -0.27366085753472397 } }, "3b40d54ffa15433493afbe3a64a814ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "3bd4d7dd3b0346b0b3229afd76f5ddb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5115aaf1189d4e12ab5956a97673466d", "placeholder": "​", "style": "IPY_MODEL_817e9f8549b742a2bcfa141c035ab0a0", "tabbable": null, "tooltip": null, "value": "

Sample (Row: 0)

" } }, "3fcfdb820c1944acafd0af161a5d003b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "3ff8df618f9146ffb5092913d70bd10d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "CheckboxView", "description": "Show all features", "description_allow_html": false, "disabled": true, "indent": false, "layout": "IPY_MODEL_c96843d50c7945d8b98dee04ffffb268", "style": "IPY_MODEL_b69fd0aee38e4012a0dea5001a388957", "tabbable": null, "tooltip": null, "value": true } }, "403eb906c3964b828aa0ca71d98c5c0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "41a87a771ad1407892bc0ccb214cb8a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "15px 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "41bda3fc37914697aaa6d81f7e0df29b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "42a1dc2334814ab49e0a7ad6d8785345": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "15px 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4322c57299bd48f5bdb9cb0a2fbce387": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "44c3758a8c064ca0803b22d77ed530cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4504d51e075647c7875f0799d14ff863": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4537cdf0d9ff4ca0b25af0b0269e261a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4739553a6a504cd086eb548860daac03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "47686c9505974f81a8d0834168eb43e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "487f0dd73ec041e982f1403abdeedc7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "48fc52b918d8451893e9100bd1992984": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "495e8b04994b44b2a0769f010c375028": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V18", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_66c1436761344f1195358ad1b3fabe6d", "step": null, "style": "IPY_MODEL_0fe4501bb2e74d36a6cb87ed4a5c7447", "tabbable": null, "tooltip": null, "value": -0.028500870424174533 } }, "49f9ac9419bb4d9b9d7cc79495477e8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "4c7f7e72aa414f13855bed1d8d55b4c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V19", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_e5e9df1ab7cf4eeb96fb06b994716d00", "step": null, "style": "IPY_MODEL_7bf04bb13ed14b1fa5c03b0486035f1b", "tabbable": null, "tooltip": null, "value": -0.5662567785776434 } }, "4c942b1fd2314fa78c1db35e877d1288": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e0e89a4346cd4260a0d00a9830f1a7d9", "placeholder": "​", "style": "IPY_MODEL_08866ff023dd47018e56d80ec3c82f17", "tabbable": null, "tooltip": null, "value": "

Select and Explore Predictions

" } }, "4cd6b56717dc4faa92dc92320cb4e5d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_2150500fb1b44a6e9cad3e6fd7c9608f", "IPY_MODEL_0cff4c8ae10f43e39292b6baa72af9df" ], "layout": "IPY_MODEL_578ed2e443df42e6a86f70317c7cab4d", "tabbable": null, "tooltip": null } }, "4d88694b56ac49c3bf6552d4580b2a95": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "5060d3d2ab7f49e6bce500f97f008651": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 18px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "50b58413b2034cab80ff9ebf6be79a3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "50f588fdbde74013bcf1b2e1c08b7540": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5115aaf1189d4e12ab5956a97673466d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "51667ceb52bc4988b812c0ec9e914183": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V12", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_61067bf9dbbe4c3f9eb55cb943d8e751", "step": null, "style": "IPY_MODEL_759595bf01624b3fac166b24c6ff49af", "tabbable": null, "tooltip": null, "value": 1.1650589176757253 } }, "51b34caa54a349ba8c6c081a48cdbd3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "521175ed422346aab8a524271bef6cf7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_574d16033e64482484ba2c3c974deea4", "placeholder": "​", "style": "IPY_MODEL_d34188e1b5424fdea5b62eb6a4b17cbb", "tabbable": null, "tooltip": null, "value": "" } }, "52ddd8e819134cc381cd962ffe26341d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "53c808f8da9244af8032f36285695fb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "553a767c65f848b9977f942c0693ae5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "574d16033e64482484ba2c3c974deea4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "578ed2e443df42e6a86f70317c7cab4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "58204100440f4e688dac93937ce28c48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "59491687e2c0425a854bd1ac96050ab2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V14", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_8824a361252043609f82acedc541fe4c", "step": null, "style": "IPY_MODEL_eef6984126574a49b9783ff9f5596294", "tabbable": null, "tooltip": null, "value": 0.2479554103817461 } }, "59ac7766f0fe4f61af40df632b244348": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "5a3f21eb965e4349b53ddf21e525df52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_44c3758a8c064ca0803b22d77ed530cd", "placeholder": "​", "style": "IPY_MODEL_759306603aa84627975c74ae5eda46f1", "tabbable": null, "tooltip": null, "value": "

Sample Values

" } }, "5c9fadcdde2b4bfbaa89227624ca8f72": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1100px" } }, "5da25bb3029846129db5b9f48d3c054a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5dc4a570b4f24fd794384cdbf9c86589": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "5ea6f66082664627bb307716119bd900": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "5febf53dd723403cb170a9432909e0fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "600bceb298b7486f9facc39cb1124e67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "scatter", "bar", "box" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Plot Type", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_7850529fca4740dba92ad6efeb6c5e2e", "style": "IPY_MODEL_6b7dcc2f2c5c40d58fad4dcd80e15727", "tabbable": null, "tooltip": null } }, "6095eb28324844df98f3b549a6ddd821": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V12", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_e36644363edd4fd8b070f8516cef8252", "step": null, "style": "IPY_MODEL_796c4f7734714ccfb9f2bf0f68e4f9c0", "tabbable": null, "tooltip": null, "value": 1.1944318873587512 } }, "61067bf9dbbe4c3f9eb55cb943d8e751": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "61efdc483a524b418d1231fb6085ceb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "622125bb9b3e43bbabc5ea78ffc8aba1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "Normal", "Anomaly" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Labels", "description_allow_html": false, "disabled": false, "index": 1, "layout": "IPY_MODEL_64760a219f3143f4972238e4420cfb78", "style": "IPY_MODEL_7c9eaaa1b8854bdf851b22ab5a45d110", "tabbable": null, "tooltip": null } }, "62abd25ecb8a41dfaaae3aa5204ec191": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "62f653a28ca34dd681d744b9807f447b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "6309a2e542e24b7c91335d2536dac336": { "buffers": [ { "data": "AAAAAAAAAAAAAAAAAAAAAA==", "encoding": "base64", "path": [ "_data", 0, "x", "buffer" ] }, { "data": "AAAAAAAA8D8AAAAAAADwPw==", "encoding": "base64", "path": [ "_data", 1, "x", "buffer" ] } ], "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "legendgroup": "Anomaly", "marker": { "color": "#F58518" }, "name": "Target=Anomaly", "orientation": "h", "showlegend": true, "text": "", "textposition": "outside", "type": "bar", "uid": "9bf53e05-8ce1-43c4-8eb7-223dc05e63f9", "x": { "dtype": "float64", "shape": [ 2 ] }, "y": [ "Original Sample", "Modified Sample" ] }, { "legendgroup": "Normal", "marker": { "color": "#4C78A8" }, "name": "Target=Normal", "orientation": "h", "showlegend": true, "text": "", "textposition": "outside", "type": "bar", "uid": "67f7ad39-f97f-4d4b-920e-a33da6ffc4dc", "x": { "dtype": "float64", "shape": [ 2 ] }, "y": [ "Original Sample", "Modified Sample" ] } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "autosize": false, "barmode": "relative", "height": 300, "legend": { "y": 0.98 }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "width": 700, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "range": [ -0.05, 1.0 ], "showline": false, "showticklabels": true, "side": "bottom", "title": { "text": "Prediction Probability" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "showgrid": false, "showline": false, "showticklabels": true, "side": "left", "title": { "text": "Sample" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "64760a219f3143f4972238e4420cfb78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "648795a91e84430f9e35e585350ba7c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "64920d8c24b34b349e31e822b6b8682c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aa01a027300546fea7f15fc17869c914", "placeholder": "​", "style": "IPY_MODEL_04e5868e2c3b448bb2609889f02db2fc", "tabbable": null, "tooltip": null, "value": "

Samples

" } }, "65392f13225d4ecabf10c61dc1be6018": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "660f2219175c455e8f183bc54f3c3f35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_c3f09e1072044aaeaeeacd14ca3724e4", "IPY_MODEL_bba7149fcabd487b91b6bf1ef2f2df34", "IPY_MODEL_600bceb298b7486f9facc39cb1124e67", "IPY_MODEL_7c97762f90f74f7c91989a61ee609fcd", "IPY_MODEL_622125bb9b3e43bbabc5ea78ffc8aba1" ], "layout": "IPY_MODEL_42a1dc2334814ab49e0a7ad6d8785345", "tabbable": null, "tooltip": null } }, "6655990a6acf445caeeaf49733fb733b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "66c1436761344f1195358ad1b3fabe6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6755b0345a1d47989c958bbed6411998": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%" } }, "6919e92a0bcc46ecb270c240d1b9339a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6992a7816a7d42fabd3d0192d40cb34c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "6aefd7a0f4944a0c8084f4e73dfc58c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6b7dcc2f2c5c40d58fad4dcd80e15727": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "6c81939a89c2490fb63737c44e7680bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "6f4274b0ba4d43babcb34b040711d167": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "702b950641564295ac6e7189ea681b67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "72ec5b14692140a4a47d3e11c6d995fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "73df98df73f04292a1ceab950547f244": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V1", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_99c90549bb984152acf52948d9c31b7b", "step": null, "style": "IPY_MODEL_9baa167e0a144ed2a969248904fdca0a", "tabbable": null, "tooltip": null, "value": -0.8195973075521539 } }, "74877824c4704dd6a452d27fe5bdc983": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V16", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_f5b642acc7024460adbf2f068594fa36", "step": null, "style": "IPY_MODEL_13e441ea6b3c4525aec167778a91c343", "tabbable": null, "tooltip": null, "value": -0.6167199744600596 } }, "74bef3075cdd4fecb5ff16cc5177852a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "759306603aa84627975c74ae5eda46f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "759595bf01624b3fac166b24c6ff49af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "765001a54755447ca8e0c50357b9cdb8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_323a8a4c14d6469fab4cc851a6e59173", "placeholder": "​", "style": "IPY_MODEL_dde913eaf90e4af09cc5faf21fd47fbc", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 Prediction (True value: 0)
Original SampleNormal
Modified SampleNormal
\n" } }, "76ef5c56968e483e8f7b1aa923aa8b2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "77acc738b5f34396a74bb3a3b5d819e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "7850529fca4740dba92ad6efeb6c5e2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "7874063f6e494e54bbf83f6eac76feef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "7894450719c0467f86041023345c874f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V14", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_4739553a6a504cd086eb548860daac03", "step": null, "style": "IPY_MODEL_1f9ce6c6097b4a9884cffd92519a22bb", "tabbable": null, "tooltip": null, "value": 0.16516219940938834 } }, "78a34b267670423fbdd26ceb4e0c69c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "796c4f7734714ccfb9f2bf0f68e4f9c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "79907f177c9b48a99f003d16126115a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "7a102fab811c4baeb37f0a67a803eaba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "7a57f098416449a98ba9578ca7c0db12": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "7ae17ac4ae2c4241a0b9322da94040d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7bf04bb13ed14b1fa5c03b0486035f1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "7c6fab459b744432a543b5c815f777c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "7c97762f90f74f7c91989a61ee609fcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "None", "quartile", "decile", "percentile" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Binning method", "description_allow_html": false, "disabled": true, "index": 0, "layout": "IPY_MODEL_4d88694b56ac49c3bf6552d4580b2a95", "style": "IPY_MODEL_4322c57299bd48f5bdb9cb0a2fbce387", "tabbable": null, "tooltip": null } }, "7c9eaaa1b8854bdf851b22ab5a45d110": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "7d4be84aae9a43568cdf4f7ef8c2491f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7d5eac93ada54a519ca0d3c5ea2578cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "7eeb5f713efe4b7bb18da58a137d3099": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "None", "quartile", "decile", "percentile" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Binning method", "description_allow_html": false, "disabled": true, "index": 0, "layout": "IPY_MODEL_553a767c65f848b9977f942c0693ae5b", "style": "IPY_MODEL_7874063f6e494e54bbf83f6eac76feef", "tabbable": null, "tooltip": null } }, "7f110f7cf4b8468ea70cc07f2adc1bf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7f716a39c4e7425fbdc098688218aedd": { "buffers": [ { "data": "AAAAAAAAAADm3p3MogvuPw==", "encoding": "base64", "path": [ "_data", 0, "x", "buffer" ] }, { "data": "AAAAAAAA8D+gESI200WvPw==", "encoding": "base64", "path": [ "_data", 1, "x", "buffer" ] } ], "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "legendgroup": "Anomaly", "marker": { "color": "#F58518" }, "name": "Target=Anomaly", "orientation": "h", "showlegend": true, "text": "", "textposition": "outside", "type": "bar", "uid": "3cbf8661-3d48-443f-9f55-b05624650b09", "x": { "dtype": "float64", "shape": [ 2 ] }, "y": [ "Original Sample", "Modified Sample" ] }, { "legendgroup": "Normal", "marker": { "color": "#4C78A8" }, "name": "Target=Normal", "orientation": "h", "showlegend": true, "text": "", "textposition": "outside", "type": "bar", "uid": "e97a8fdb-574a-4689-8589-99d8d71d8056", "x": { "dtype": "float64", "shape": [ 2 ] }, "y": [ "Original Sample", "Modified Sample" ] } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "autosize": false, "barmode": "relative", "height": 300, "legend": { "y": 0.98 }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "width": 700, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "range": [ -0.05, 1.0 ], "showline": false, "showticklabels": true, "side": "bottom", "title": { "text": "Prediction Probability" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "showgrid": false, "showline": false, "showticklabels": true, "side": "left", "title": { "text": "Sample" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "7fa2134d1f1b4de9b963e0c798f86d50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "817e9f8549b742a2bcfa141c035ab0a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "81f1f27970154ac98d22cd6cb910ece7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "83b32e9df9ba45d4979900dbb00a2ff9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V13", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_ea1519232e8845aab5feac914768e4a6", "step": null, "style": "IPY_MODEL_48fc52b918d8451893e9100bd1992984", "tabbable": null, "tooltip": null, "value": -0.12427833398317614 } }, "85c86709ed894eb294f2ebde78533bf5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "86220747e9434db49874c24563e82147": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "866994b4c4a3451b903814e2bcabe445": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V2", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_f020f6b7f57045bcb24fe097cddc9a23", "step": null, "style": "IPY_MODEL_702b950641564295ac6e7189ea681b67", "tabbable": null, "tooltip": null, "value": 0.8258281811402914 } }, "87e4d53b127c47e4ae07face04e2c108": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V11", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_d10f1de58d69401abe39f000482c2885", "step": null, "style": "IPY_MODEL_62abd25ecb8a41dfaaae3aa5204ec191", "tabbable": null, "tooltip": null, "value": 1.828519947646691 } }, "880e36caf75244b4bb007ce612d36692": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "8824a361252043609f82acedc541fe4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "88515f041e5f438d8da1bc3d283eeb16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "88b0ff5afd4e41398155acce47bb51a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "20px 0 0 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "89ab0f96aaeb4919b4203d7e7c99007b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8febf59420044f189c7961870241e3ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b191a36ebdfc42e593e317e14f35ac49", "placeholder": "​", "style": "IPY_MODEL_f1404cea0c1845549ac859e5812b723b", "tabbable": null, "tooltip": null, "value": "
Randomly down sampled data from 56962 to 10000 to improve visualization performance.
" } }, "92fdfb1f52ac43e293320d9bf57a9d21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "957dea5e898741408a2b2b3e5c983ba1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V2", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_89ab0f96aaeb4919b4203d7e7c99007b", "step": null, "style": "IPY_MODEL_ac3c9ccb7c0a4291bae34b3260ea6e72", "tabbable": null, "tooltip": null, "value": 0.8527854763983154 } }, "960e92809db241d480f0eb53f105ef7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "99410838133f479a9c2be944e93d67b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "9951de38297f47f6a7e3200f4372e045": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1277b4b7661148fc9a9186ec9d2f2280", "placeholder": "​", "style": "IPY_MODEL_59ac7766f0fe4f61af40df632b244348", "tabbable": null, "tooltip": null, "value": "\n

Row Selection

\n Select a sample between 0 and 0\n " } }, "99c90549bb984152acf52948d9c31b7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9baa167e0a144ed2a969248904fdca0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "9c6c636ffeff4871875ee110ed82f61c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_206cdb089cef481aa49a822cb88558fa", "placeholder": "​", "style": "IPY_MODEL_c36a533bfaf54d638fbc747bb6c24e36", "tabbable": null, "tooltip": null, "value": "

Select and Explore Predictions

" } }, "9d81393d019442ad9e7b424f1c9eb05c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "9e9c872854024eba896aa6648ac3e4b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V11", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_7ae17ac4ae2c4241a0b9322da94040d7", "step": null, "style": "IPY_MODEL_76ef5c56968e483e8f7b1aa923aa8b2b", "tabbable": null, "tooltip": null, "value": 1.8301436434282867 } }, "9f5825d4013c4551965c1cd33f2f9200": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9fb9823b9d004016822bf9182b704965": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "a0a512408e8c411f83eee8c257ffec95": { "buffers": [ { "data": "WS7rujYR6r8=", "encoding": "base64", "path": [ "_data", 0, "x", "buffer" ] }, { "data": "AAAAAAAAAAA=", "encoding": "base64", "path": [ "_data", 0, "y", "buffer" ] } ], "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "hovertemplate": "V1: %{x}
proba_Anomaly: %{y}
predictions: Normal", "marker": { "color": "rgb(248,0,0)", "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "predictions = Normal", "showlegend": true, "type": "scatter", "uid": "e4c0e720-afdf-4968-9a48-b177c3940229", "x": { "dtype": "float64", "shape": [ 1 ] }, "y": { "dtype": "float64", "shape": [ 1 ] } } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "height": 600, "legend": { "itemsizing": "constant" }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "V1" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Prediction probability (Anomaly)" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "a0f0aaef44644a9f942df195160c82f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "a2c2019b393f4824b2c1656548d1c7ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V20", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_de4f47451325497a9a67ec225e30cf99", "step": null, "style": "IPY_MODEL_7c6fab459b744432a543b5c815f777c6", "tabbable": null, "tooltip": null, "value": 0.12669591871187177 } }, "a4a2afa54c89431c83f575a9ae7b760c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "a6514be3858d4eb299ec7f50f487508f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cc42649d2b1c4b2e91f7bf9545864168", "placeholder": "​", "style": "IPY_MODEL_02c2ea62b0574f09a061578bca3b9644", "tabbable": null, "tooltip": null, "value": "

Sample (Row: 0)

" } }, "a6a2fa6d19584c25a859b854aeec4452": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_e271ee0e9ecb45dca4d72ed70b5deef2", "IPY_MODEL_c3c5950627414da9921e7bf888bff2b0", "IPY_MODEL_eb41337beda54e67ae0e1e39c26a3632", "IPY_MODEL_7eeb5f713efe4b7bb18da58a137d3099", "IPY_MODEL_33d17d03d3484042af0f699eeed93404" ], "layout": "IPY_MODEL_41a87a771ad1407892bc0ccb214cb8a0", "tabbable": null, "tooltip": null } }, "a8211859e11c4b88a5c28232c11f3fc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V4", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_50b58413b2034cab80ff9ebf6be79a3e", "step": null, "style": "IPY_MODEL_a892ee8cc9304b5cb59c53412fbd8ad1", "tabbable": null, "tooltip": null, "value": -2.11301493636727 } }, "a892ee8cc9304b5cb59c53412fbd8ad1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "a8ce33b849ee482596b9c423cb2a20e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a9ef0bd179a047969b25dfd548ff41e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": "flex-start", "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "aa01a027300546fea7f15fc17869c914": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ab3b7a63c2384f138b249ad331173212": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "success", "description": "Run Inference", "disabled": false, "icon": "", "layout": "IPY_MODEL_f9dc02a1ab77440883c8b52b2b4f2a84", "style": "IPY_MODEL_49f9ac9419bb4d9b9d7cc79495477e8b", "tabbable": null, "tooltip": "Runs inference on the new sample" } }, "abaf6c13e83f4217a8c4e7f0abb047bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V8", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_0b9ef62b5c904877b28e61e841d49744", "step": null, "style": "IPY_MODEL_99410838133f479a9c2be944e93d67b0", "tabbable": null, "tooltip": null, "value": 0.6267308703871985 } }, "ac3c9ccb7c0a4291bae34b3260ea6e72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "acc0f497f5e1452d8993a3776aa225e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b191a36ebdfc42e593e317e14f35ac49": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b1ab036b0ea14934b76b27874181949b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_52ddd8e819134cc381cd962ffe26341d", "placeholder": "​", "style": "IPY_MODEL_9fb9823b9d004016822bf9182b704965", "tabbable": null, "tooltip": null, "value": "" } }, "b1e3e61853364ec29f2af31850039f76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V15", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_e3fe10930de2445c8cb8bd88024af68b", "step": null, "style": "IPY_MODEL_5ea6f66082664627bb307716119bd900", "tabbable": null, "tooltip": null, "value": 0.38310734245838746 } }, "b1e4bfbed2294cd59eb771602c3d5409": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b47f67b6cde14a198b7136eaa52aa206": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b4c8d25fbaf94f4a8934725171b9ba6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V5", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_b47f67b6cde14a198b7136eaa52aa206", "step": null, "style": "IPY_MODEL_5febf53dd723403cb170a9432909e0fa", "tabbable": null, "tooltip": null, "value": 0.28871233525783424 } }, "b5c996ecfa0d49a6af380a0e5d105a42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b69fd0aee38e4012a0dea5001a388957": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "" } }, "b78b714b09dc4943be245c45b4da1625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_9c6c636ffeff4871875ee110ed82f61c", "IPY_MODEL_083b7489b89e4e1db334b21c5f7381be", "IPY_MODEL_660f2219175c455e8f183bc54f3c3f35" ], "layout": "IPY_MODEL_5dc4a570b4f24fd794384cdbf9c86589", "tabbable": null, "tooltip": null } }, "bba7149fcabd487b91b6bf1ef2f2df34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "predictions", "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Y-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_78a34b267670423fbdd26ceb4e0c69c5", "style": "IPY_MODEL_960e92809db241d480f0eb53f105ef7e", "tabbable": null, "tooltip": null } }, "bbebb1ee69aa41efb084bd274f510ee2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "bd0a0d3820de4b88a2fb6d3bdb9b38f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "" } }, "bd37a3b47f304eb595372e51dd1f1e18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1fe0c246d3494c89ab05a6f76ee00f3f", "placeholder": "​", "style": "IPY_MODEL_2a82a5e3ef4945b39b412582e2182e1e", "tabbable": null, "tooltip": null, "value": "\n

Row Selection

\n Select a sample between 0 and 56961\n " } }, "bd9f73346ada485ca771ae26788768db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V17", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_fa6480e81d454456a4306a9ce9919b42", "step": null, "style": "IPY_MODEL_74bef3075cdd4fecb5ff16cc5177852a", "tabbable": null, "tooltip": null, "value": -0.4978313765414018 } }, "bf0126a9dfe04164bfc34cb301e2ab5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c02ecf5313bd4f6584fa8e329546ab3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 18px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "c12247fc91c24e5d99bdcb9f4edf6328": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "success", "description": "Run Inference", "disabled": false, "icon": "", "layout": "IPY_MODEL_88b0ff5afd4e41398155acce47bb51a3", "style": "IPY_MODEL_0e3dde60048247f6a9df30933b3bdb00", "tabbable": null, "tooltip": "Runs inference on the new sample" } }, "c1e036effb6f4484a956a915335d3229": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V8", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_7f110f7cf4b8468ea70cc07f2adc1bf0", "step": null, "style": "IPY_MODEL_88515f041e5f438d8da1bc3d283eeb16", "tabbable": null, "tooltip": null, "value": -0.20909651374437896 } }, "c2c96420e9194200b072d429a652e52f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "c2f2b4885f3a406dbed9d570d92dd213": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d8a6096d84db4d6084c1c0c5ea45c81f", "placeholder": "​", "style": "IPY_MODEL_880e36caf75244b4bb007ce612d36692", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
Original Sample-0.8146012926822080.85278547639831541.0423288727328561-2.22239521255123270.28871233525783424-0.83950585325203510.9928911115798961-0.209096513744378960.7806740947971558-0.61379035756185521.83014364342828671.1944318873587512-0.126993629505732150.165162199409388340.4184581901658031-0.7801235968866925-0.4978313765414018-0.028500870424174533-0.273660857534723970.12669591871187177
Modified Sample-0.8146012926822080.85278547639831541.0423288727328561-2.22239521255123270.28871233525783424-0.83950585325203510.9928911115798961-0.209096513744378960.7806740947971558-0.61379035756185521.83014364342828671.1944318873587512-0.126993629505732150.165162199409388340.4184581901658031-0.7801235968866925-0.4978313765414018-0.028500870424174533-0.273660857534723970.12669591871187177
\n" } }, "c337dcb077f145078dfc76d9b8055129": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoundedIntTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "BoundedIntTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntTextView", "continuous_update": false, "description": "Row Index:", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_edd4b8254b35444d82fcf97a5f791079", "max": 0, "min": 0, "step": 1, "style": "IPY_MODEL_20b7f6f02aee4808824cd74ee9839a56", "tabbable": null, "tooltip": null, "value": 0 } }, "c36a533bfaf54d638fbc747bb6c24e36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "c3c5950627414da9921e7bf888bff2b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "predictions", "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Y-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_7d5eac93ada54a519ca0d3c5ea2578cb", "style": "IPY_MODEL_a0f0aaef44644a9f942df195160c82f4", "tabbable": null, "tooltip": null } }, "c3f09e1072044aaeaeeacd14ca3724e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "X-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_ddc7220034f14c469afbda145960ffb8", "style": "IPY_MODEL_47686c9505974f81a8d0834168eb43e3", "tabbable": null, "tooltip": null } }, "c4c7a1786a3941e18c81c65edd8a84c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_1deff400c3014e2ca192267aa1185837", "IPY_MODEL_38fd8141725d42cebc9acc398c5a82dd" ], "layout": "IPY_MODEL_30214d6858a9452a90ae8f03c2aa42f8", "tabbable": null, "tooltip": null } }, "c7c4f86d44ee4917afb4a94ebbbc9e56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V6", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_e93d796e20df453f8af4a013416b31f6", "step": null, "style": "IPY_MODEL_358f1ee754cd4398a661205f33a12c9a", "tabbable": null, "tooltip": null, "value": -0.8395058532520351 } }, "c96843d50c7945d8b98dee04ffffb268": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c9d89edf93b34b5ab67c01c81fa7463c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "ca1820de73754740b223c2c1cbacff51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "cb0eaa9fdf9544bf88eb2aa521120246": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V5", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_5da25bb3029846129db5b9f48d3c054a", "step": null, "style": "IPY_MODEL_1001a4bb3e8849e3be30c0874acac24d", "tabbable": null, "tooltip": null, "value": 0.28096492348525604 } }, "cb6bb72f28f04455ac2defbbddb4e9b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "cba4ad80e2314a0083fb61559b33938d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V15", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_051ad1c01bfc48d088bfa32f0c19986a", "step": null, "style": "IPY_MODEL_0c0011289ce44a8d984d6eb7b3fa56cb", "tabbable": null, "tooltip": null, "value": 0.4184581901658031 } }, "cbf8f474b3584c5a8eb7f0a0d2693f72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V1", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_a8ce33b849ee482596b9c423cb2a20e7", "step": null, "style": "IPY_MODEL_20c004cd775a4dc2a43b342fe92af495", "tabbable": null, "tooltip": null, "value": -0.814601292682208 } }, "cc42649d2b1c4b2e91f7bf9545864168": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cc529ec115974db68e0d5240567f4c5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "cdbd60aa8a614927965e00c7b9de5321": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "d0ffa888f087431d89d6eef790409d59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2795c315afd64546b870dcbaebe28e63", "placeholder": "​", "style": "IPY_MODEL_fc29a31d02e04c578d06d76627294640", "tabbable": null, "tooltip": null, "value": "

Model Prediction Probabilities

" } }, "d10f1de58d69401abe39f000482c2885": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d2442bd1c5c0487599ec340e8f886183": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V20", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_92fdfb1f52ac43e293320d9bf57a9d21", "step": null, "style": "IPY_MODEL_c9d89edf93b34b5ab67c01c81fa7463c", "tabbable": null, "tooltip": null, "value": 0.10517011223668252 } }, "d34188e1b5424fdea5b62eb6a4b17cbb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "d483e4f6d24c4dc3aa9ab85ca12f249b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d5e0c7ae245c4c8dbbc13259f2ded429": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d645ea5ad66944109c4f2ee0f36d07bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d6ac0bf9e52145188260932794fdb2c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "d8a6096d84db4d6084c1c0c5ea45c81f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1025px" } }, "dccb9fbffd73422c8f61b840dffae300": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V3", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_51b34caa54a349ba8c6c081a48cdbd3e", "step": null, "style": "IPY_MODEL_62f653a28ca34dd681d744b9807f447b", "tabbable": null, "tooltip": null, "value": 1.1492178989013921 } }, "dd63f6205052407aba31fa8fee4312c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "ddc7220034f14c469afbda145960ffb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "dde913eaf90e4af09cc5faf21fd47fbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "de4f47451325497a9a67ec225e30cf99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "de54130f2e624e69aad01eb80e3d58e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "df5b895877dd4956b165b82f99d3d347": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e0e89a4346cd4260a0d00a9830f1a7d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e271ee0e9ecb45dca4d72ed70b5deef2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "X-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_f8a76daeca1b444987ff76e6174f3cee", "style": "IPY_MODEL_cdbd60aa8a614927965e00c7b9de5321", "tabbable": null, "tooltip": null } }, "e28de89ef78a491eb99916048eeab101": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V17", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_d5e0c7ae245c4c8dbbc13259f2ded429", "step": null, "style": "IPY_MODEL_260b7d3d5e9246de9418b2d3225a7603", "tabbable": null, "tooltip": null, "value": -0.48996835884172363 } }, "e36644363edd4fd8b070f8516cef8252": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e3fe10930de2445c8cb8bd88024af68b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e5e9df1ab7cf4eeb96fb06b994716d00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e93d796e20df453f8af4a013416b31f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ea1519232e8845aab5feac914768e4a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "eb2d483e2b00477b94dbdb0bd32c60ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V18", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_53c808f8da9244af8032f36285695fb6", "step": null, "style": "IPY_MODEL_487f0dd73ec041e982f1403abdeedc7e", "tabbable": null, "tooltip": null, "value": -0.0312665834514463 } }, "eb41337beda54e67ae0e1e39c26a3632": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "scatter", "bar", "box" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Plot Type", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_3fcfdb820c1944acafd0af161a5d003b", "style": "IPY_MODEL_0578b020620340eb9e2a85e8820277fe", "tabbable": null, "tooltip": null } }, "ebaa628bd2bf44d4b857e27eda31dcac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_64920d8c24b34b349e31e822b6b8682c", "IPY_MODEL_ebc7c04e83b44b85a8b38a4e328bcca1" ], "layout": "IPY_MODEL_a9ef0bd179a047969b25dfd548ff41e8", "tabbable": null, "tooltip": null } }, "ebc7c04e83b44b85a8b38a4e328bcca1": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b1e4bfbed2294cd59eb771602c3d5409", "msg_id": "", "outputs": [ { "data": { "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
0-1.0295850.9341101.570084-0.621625-0.2016770.3468780.0384300.738376-0.380538-1.0626470.6882140.463036-0.5610240.6009330.4191230.406264-0.4789820.6787640.543911-0.072558
1-0.8117200.0839701.011055-0.4250810.987052-1.1444100.1728230.165016-0.299322-0.6059590.733559-0.213538-1.4989160.106064-0.2277411.038402-0.6278420.606285-0.512754-0.058735
21.1993490.0600770.5969561.616322-0.1321100.582179-0.4270100.2208560.0337580.429056-1.374210-0.556287-0.592753-0.0354590.3906340.595673-0.321653-0.556582-0.630337-0.151199
3-0.3837021.0107291.7151441.2161770.164226-0.3283180.656598-0.051810-0.911027-0.2056000.2218440.6105971.0721590.1430221.392635-0.7139620.211990-0.5544960.2039660.125105
42.178778-1.475489-0.695829-1.406909-1.514003-0.940760-1.022767-0.318466-1.2422501.509030-0.847194-0.2612881.381097-0.671105-0.224314-0.5434370.423996-0.159418-0.215030-0.270839
\n
", "text/plain": " V1 V2 V3 V4 V5 V6 V7 \\\n0 -1.029585 0.934110 1.570084 -0.621625 -0.201677 0.346878 0.038430 \n1 -0.811720 0.083970 1.011055 -0.425081 0.987052 -1.144410 0.172823 \n2 1.199349 0.060077 0.596956 1.616322 -0.132110 0.582179 -0.427010 \n3 -0.383702 1.010729 1.715144 1.216177 0.164226 -0.328318 0.656598 \n4 2.178778 -1.475489 -0.695829 -1.406909 -1.514003 -0.940760 -1.022767 \n\n V8 V9 V10 V11 V12 V13 V14 \\\n0 0.738376 -0.380538 -1.062647 0.688214 0.463036 -0.561024 0.600933 \n1 0.165016 -0.299322 -0.605959 0.733559 -0.213538 -1.498916 0.106064 \n2 0.220856 0.033758 0.429056 -1.374210 -0.556287 -0.592753 -0.035459 \n3 -0.051810 -0.911027 -0.205600 0.221844 0.610597 1.072159 0.143022 \n4 -0.318466 -1.242250 1.509030 -0.847194 -0.261288 1.381097 -0.671105 \n\n V15 V16 V17 V18 V19 V20 \n0 0.419123 0.406264 -0.478982 0.678764 0.543911 -0.072558 \n1 -0.227741 1.038402 -0.627842 0.606285 -0.512754 -0.058735 \n2 0.390634 0.595673 -0.321653 -0.556582 -0.630337 -0.151199 \n3 1.392635 -0.713962 0.211990 -0.554496 0.203966 0.125105 \n4 -0.224314 -0.543437 0.423996 -0.159418 -0.215030 -0.270839 " }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "edd4b8254b35444d82fcf97a5f791079": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "eef6984126574a49b9783ff9f5596294": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "f020f6b7f57045bcb24fe097cddc9a23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f051c372b1b24bfa92aaef66d47d4894": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%" } }, "f052753eba594f06ae85af08cbfd8731": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_acc0f497f5e1452d8993a3776aa225e1", "placeholder": "​", "style": "IPY_MODEL_19a19b28889d4167b37577bc6cb61885", "tabbable": null, "tooltip": null, "value": "\n

Select and Explore Sample

\n " } }, "f0b1ef569480460681361737b038c648": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d8977332b524da28863a582a01a99bd", "placeholder": "​", "style": "IPY_MODEL_14cb9938ebfa47fdb10c7915b96ad8f2", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 V1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20
Original Sample-0.8146012926822080.85278547639831541.0423288727328561-2.22239521255123270.28871233525783424-0.83950585325203510.9928911115798961-0.209096513744378960.7806740947971558-0.61379035756185521.83014364342828671.1944318873587512-0.126993629505732150.165162199409388340.4184581901658031-0.7801235968866925-0.4978313765414018-0.028500870424174533-0.273660857534723970.12669591871187177
Modified Sample-0.81959730755215390.82582818114029141.1492178989013921-2.113014936367270.28096492348525604-0.82896378922793510.92395690023727580.62673087038719850.5965079515639202-0.62531494386137811.8285199476466911.1650589176757253-0.124278333983176140.24795541038174610.38310734245838746-0.6167199744600596-0.48996835884172363-0.0312665834514463-0.56625677857764340.10517011223668252
\n" } }, "f1404cea0c1845549ac859e5812b723b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f256e1ce34bc407db4eee248da57996a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V3", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_85c86709ed894eb294f2ebde78533bf5", "step": null, "style": "IPY_MODEL_6992a7816a7d42fabd3d0192d40cb34c", "tabbable": null, "tooltip": null, "value": 1.0423288727328561 } }, "f25e2c652dfd40c9901d2dbe4af56330": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_50f588fdbde74013bcf1b2e1c08b7540", "placeholder": "​", "style": "IPY_MODEL_7fa2134d1f1b4de9b963e0c798f86d50", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 Prediction (True value: Normal)
Original SampleNormal
Modified SampleAnomaly
\n" } }, "f5b642acc7024460adbf2f068594fa36": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f87e81b476314f73949b937339c60846": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V10", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_2078a61fd9a54b91928e87f344580cd6", "step": null, "style": "IPY_MODEL_7a102fab811c4baeb37f0a67a803eaba", "tabbable": null, "tooltip": null, "value": -0.6137903575618552 } }, "f8a76daeca1b444987ff76e6174f3cee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "f9dc02a1ab77440883c8b52b2b4f2a84": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "20px 0 0 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f9f43c6881534f4ebe83ed42d92ee54c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fa6480e81d454456a4306a9ce9919b42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fb34ab7b6eb5469a810922c44f912a08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V6", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_65392f13225d4ecabf10c61dc1be6018", "step": null, "style": "IPY_MODEL_bbebb1ee69aa41efb084bd274f510ee2", "tabbable": null, "tooltip": null, "value": -0.8289637892279351 } }, "fbc4f6b925b843d0b2b2eb693b4f4ea5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32eb6172997e422cae3cce06b2f6b9c7", "placeholder": "​", "style": "IPY_MODEL_a4a2afa54c89431c83f575a9ae7b760c", "tabbable": null, "tooltip": null, "value": "

Sample Values

" } }, "fc29a31d02e04c578d06d76627294640": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "fc94e5a4581a458fb682fea423cbacc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_5a3f21eb965e4349b53ddf21e525df52", "IPY_MODEL_f0b1ef569480460681361737b038c648", "IPY_MODEL_3ff8df618f9146ffb5092913d70bd10d", "IPY_MODEL_2d4a3358ce434411b5d1b982f428555f", "IPY_MODEL_f25e2c652dfd40c9901d2dbe4af56330", "IPY_MODEL_d0ffa888f087431d89d6eef790409d59", "IPY_MODEL_7f716a39c4e7425fbdc098688218aedd" ], "layout": "IPY_MODEL_5060d3d2ab7f49e6bce500f97f008651", "tabbable": null, "tooltip": null } }, "fe36682652384c3097882c7f6f7b51cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "V10", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_f9f43c6881534f4ebe83ed42d92ee54c", "step": null, "style": "IPY_MODEL_6655990a6acf445caeeaf49733fb733b", "tabbable": null, "tooltip": null, "value": -0.6253149438613781 } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }