Building and Explaining a Text Classifier using AutoMLx

by the Oracle AutoMLx Team


AutoMLx Text Classification

Copyright © 2025, Oracle and/or its affiliates.

Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/

Overview of this Notebook¶

In this notebook we will build a classifier using the Oracle AutoMLx tool for the public 20newsgroup dataset. The dataset is a binary classification dataset, and more details about the dataset can be found at http://qwone.com/~jason/20Newsgroups/. We explore the various options provided by the Oracle AutoMLx tool, allowing the user to exercise control over the AutoML training process. We then evaluate the different models trained by AutoML. Finally we provide an overview of the possibilities that Oracle AutoMLx offers for explaining the predictions of the tuned model.


Prerequisites¶

  • Experience level: Novice (Python and Machine Learning)
  • Professional experience: Some industry experience

Business Use¶

Data analytics and modeling problems using Machine Learning (ML) are becoming popular and often rely on data science expertise to build accurate ML models. Such modeling tasks differs according to type of problem to be solved, eg. Text classification primarily involve the following steps:

  • Preprocess dataset (vectorize).
  • Pick an appropriate model for the given dataset and prediction task at hand.
  • Tune the chosen model’s hyperparameters for the given dataset.

All of these steps are significantly time consuming and heavily rely on data scientist expertise. Unfortunately, to make this problem harder, the best feature subset, model, and hyperparameter choice widely varies with the dataset and the prediction task. Hence, there is no one-size-fits-all solution to achieve reasonably good model performance. Using a simple Python API, AutoML can quickly jump-start the datascience process with an accurately-tuned model and appropriate features for a given prediction task.

Table of Contents¶

  • Setup
  • Load the 20newsgroup Income dataset
  • AutoML
    • Set the engine
    • Create an Instance of Oracle AutoMLx
    • Train a Model using AutoMLx
    • Analyze the AutoMLX optimization process
      • Algorithm Selection
      • Adaptive Sampling
      • Feature Selection
      • Hyperparameter Tuning
    • Advanced AutoML Configuration
  • Machine Learning Explainability (MLX)
    • Initialize an MLExplainer
    • Global Token Importance
    • Local Token Importance
  • References

Setup¶

Basic setup for the Notebook.

In [1]:
%matplotlib inline
%load_ext autoreload
%autoreload 2

Load the required modules.

In [2]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_20newsgroups
import time
import datetime

# Settings for plots
plt.rcParams['figure.figsize'] = [10, 7]
plt.rcParams['font.size'] = 15

import automlx
from automlx import init

Load the 20 News Group dataset¶

We start by reading in the dataset from sklearn. The dataset has already been pre-split into training and test sets. The training set will be used to create a Machine Learning model using AutoMLx, and the test set will be used to evaluate the model's performance on unseen data.

In [3]:
train = fetch_20newsgroups(subset='train')
test = fetch_20newsgroups(subset='test')

target_names = train.target_names

X_train, y_train = pd.DataFrame(train.data), pd.DataFrame(train.target)
X_test, y_test = pd.DataFrame(test.data), pd.DataFrame(test.target)

column_names = ["Message"]
X_train.columns = column_names
X_test.columns = column_names

Lets look at a few of the values in the data. 20 NewsGroup is a classification dataset made of text samples. Each sample has an associated class (also called topic), which can be one of the followings:

In [4]:
train.target_names
Out[4]:
['alt.atheism',
 'comp.graphics',
 'comp.os.ms-windows.misc',
 'comp.sys.ibm.pc.hardware',
 'comp.sys.mac.hardware',
 'comp.windows.x',
 'misc.forsale',
 'rec.autos',
 'rec.motorcycles',
 'rec.sport.baseball',
 'rec.sport.hockey',
 'sci.crypt',
 'sci.electronics',
 'sci.med',
 'sci.space',
 'soc.religion.christian',
 'talk.politics.guns',
 'talk.politics.mideast',
 'talk.politics.misc',
 'talk.religion.misc']

We display some examples of data samples.

In [5]:
X_train.head()
Out[5]:
Message
0 From: lerxst@wam.umd.edu (where's my thing)\nS...
1 From: guykuo@carson.u.washington.edu (Guy Kuo)...
2 From: twillis@ec.ecn.purdue.edu (Thomas E Will...
3 From: jgreen@amber (Joe Green)\nSubject: Re: W...
4 From: jcm@head-cfa.harvard.edu (Jonathan McDow...
In [6]:
len(X_train)
Out[6]:
11314

We further downsample the train set to have a reasonable training time for this demonstration.

In [7]:
X_train, _, y_train, _ = train_test_split(X_train, y_train,
                                          test_size=0.7,
                                          stratify=y_train,
                                          random_state=42)

Finally we generate a validation set and only use that for internal pipeline validation.

In [8]:
X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train,
                                                      test_size=0.2,
                                                      stratify=y_train,
                                                      random_state=42)

AutoML¶

Setting the execution engine¶

The AutoML package offers the function init, which allows to initialize the parallelization engine.

In [9]:
init(engine='ray')
[2024-05-23 09:56:52,788] [automlx.backend] Overwriting ray session directory to /tmp/zdvafa74/ray, which will be deleted at engine shutdown. If you wish to retain ray logs, provide _temp_dir in ray_setup dict of engine_opts when initializing the AutoMLx engine.

Create an instance of Oracle AutoMLx¶

The Oracle AutoMLx solution provides a pipeline that automatically finds a tuned model given a prediction task and a training dataset. In particular it allows to find a tuned model for any supervised prediction task, for example: classification or regression where the target can be binary, categorical or real-valued.

AutoML consists of five main steps:

  • Preprocessing (Feature extraction and selection) : The pipeline extracts tabular features using TFIDF that it then selects between.
  • Algorithm Selection : Identify the right classification algorithm for a given dataset, choosing from amongst:
    • AdaBoostClassifier
    • CatBoostClassifier
    • DecisionTreeClassifier
    • ExtraTreesClassifier
    • TorchMLPClassifier
    • KNeighborsClassifier
    • LGBMClassifier
    • LinearSVC
    • LogisticRegression
    • RandomForestClassifier
    • SVC
    • XGBClassifier
    • GaussianNB
    • TabNetClassifier
  • Adaptive Sampling : Select a subset of the data samples for the model to be trained on.
  • Feature Selection : Select a subset of the features (extracted with TFIDF), based on the previously selected model. In the rest of this notebook, we will implicitly refer to the extracted features as data features.
  • Hyperparameter Tuning : Find the right model parameters that maximize score for the given dataset.

All these pieces are readily combined into a simple AutoMLx pipeline which automates the entire Machine Learning process with minimal user input/interaction.

Train a model using AutoMLx¶

The AutoMLx API is quite simple to work with. We create an instance of the pipeline. Next, the training data is passed to the fit() function which executes the four previously mentioned steps.

A model is then generated and can be used for prediction tasks. We use the roc_auc scoring metric to evaluate the performance of this model on unseen data (X_test).

In [10]:
est1 = automlx.Pipeline(task='classification')
est1.fit(X_train, y_train, X_valid, y_valid, col_types=['text'])

y_predict = est1.predict(X_test)
score_default = f1_score(y_test, y_predict, average="micro")

print('F1 Micro Score on test data: {:3.3f}'.format(score_default))
[2024-05-23 09:56:57,946] [automlx.interface] Dataset shape: (3394,1)
[2024-05-23 09:57:01,123] [sanerec.autotuning.parameter] Hyperparameter epsilon autotune range is set to its validation range. This could lead to long training times
[2024-05-23 09:57:01,147] [sanerec.autotuning.parameter] Hyperparameter repeat_quality_threshold autotune range is set to its validation range. This could lead to long training times
[2024-05-23 09:57:01,154] [sanerec.autotuning.parameter] Hyperparameter scope autotune range is set to its validation range. This could lead to long training times
[2024-05-23 09:57:01,487] [automlx.data_transform] Running preprocessing. Number of features: 2
[2024-05-23 09:57:16,738] [automlx.data_transform] Preprocessing completed. Took 15.251 secs
[2024-05-23 09:57:50,052] [automlx.process] Running Model Generation
[2024-05-23 09:57:50,345] [automlx.process] CatBoostClassifier is disabled. The CatBoostClassifier model is only recommended for datasets with less than 10000 features.
[2024-05-23 09:57:50,349] [automlx.process] ExtraTreesClassifier is disabled. The ExtraTreesClassifier model is only recommended for datasets with less than 10000 features.
[2024-05-23 09:57:50,353] [automlx.process] KNeighborsClassifier is disabled. The KNeighborsClassifier model is only recommended for datasets with less than 10000 samples and 1000 features.
[2024-05-23 09:57:50,358] [automlx.process] RandomForestClassifier is disabled. The RandomForestClassifier model is only recommended for datasets with less than 10000 features.
[2024-05-23 09:57:50,360] [automlx.process] SVC is disabled. The SVC model is only recommended for datasets with less than 10000 samples and 1000 features.
[2024-05-23 09:57:50,364] [automlx.process] XGBClassifier is disabled. The XGBClassifier model is only recommended for datasets with less than 5000 features.
[2024-05-23 09:57:50,366] [automlx.process] LogisticRegressionClassifier is disabled. The LogisticRegressionClassifier model is only recommended for datasets with less than 5000 features.
[2024-05-23 09:57:50,368] [automlx.process] Model Generation completed.
[2024-05-23 09:57:50,472] [automlx.model_selection] Running Model Selection
[2024-05-23 10:13:18,091] [automlx.model_selection] Model Selection completed - Took 927.619 sec - Selected models: ['LGBMClassifier']
[2024-05-23 10:13:18,704] [automlx.adaptive_sampling] Running Adaptive Sampling. Dataset shape: (3394,25239).
[2024-05-23 10:13:21,982] [automlx.adaptive_sampling] Adaptive Sampling: top_limit: 144 < bottom_limit: 1000,
sampling process will be skipped
[2024-05-23 10:13:21,995] [automlx.adaptive_sampling] Adaptive Sampling: top_limit: 36 < bottom_limit: 1000,
sampling process will be skipped
[2024-05-23 10:13:22,295] [automlx.feature_selection] Starting feature ranking for LGBMClassifier
[2024-05-23 10:37:23,506] [automlx.feature_selection] Feature Selection completed. Took 1441.215 secs.
[2024-05-23 10:37:27,037] [automlx.trials] Running Model Tuning for ['LGBMClassifier']
[2024-05-23 10:40:58,453] [automlx.trials] Best parameters for LGBMClassifier: {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.00119999, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'}
[2024-05-23 10:40:58,455] [automlx.trials] Model Tuning completed. Took: 211.419 secs
[2024-05-23 10:41:25,079] [automlx.interface] Re-fitting pipeline
[2024-05-23 10:42:06,170] [automlx.interface] AutoMLx completed.
F1 Micro Score on test data: 0.699

Analyze the AutoMLx optimization process¶

During the AutoML process, a summary of the optimization process is logged. It consists of:

  • Information about the training data
  • Information about the AutoMLx Pipeline, such as:
    • selected features that AutoMLx found to be most predictive in the training data;
    • selected algorithm that was the best choice for this data;
    • hyperparameters for the selected algorithm.

AutoMLx provides a print_summary API to output all the different trials performed.

In [11]:
est1.print_summary()

General Summary
Training Dataset size (2715, 1)
Validation Dataset size (679, 1)
CV ManualSplit(Shuffle=False, Seed=7)
Optimization Metric neg_log_loss
Selected Algorithm LGBMClassifier
Selected Hyperparameters {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.00119999, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'}
Python version 3.8.7 (default, Aug 25 2022, 13:59:56) \n[GCC 8.5.0 20210514 (Red Hat 8.5.0-10.1.0.1)]

Trials Summary
Step # Samples # Features Algorithm Hyperparameters Score (neg_log_loss) Runtime (Seconds) Memory Usage (GB) Finished
0 Model Selection 2715 25238 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8177 13.8053 1.2231 Thu May 23 09:58:12 2024
1 Model Selection 2715 25238 TorchMLPClassifier {'optimizer_class': 'Adam', 'shuffle_dataset_each_epoch': True, 'optimizer_params': {}, 'criterion_class': None, 'criterion_params': {}, 'scheduler_class': None, 'scheduler_params': {}, 'batch_size': 128, 'lr': 0.001, 'epochs': 18, 'input_transform': 'auto', 'tensorboard_dir': None, 'use_tqdm': None, 'prediction_batch_size': 128, 'prediction_input_transform': 'auto', 'shuffling_buffer_size': None, 'depth': 4, 'num_logits': 1000, 'div_factor': 2, 'activation': 'ReLU', 'dropout': 0.1} -2.9938 915.1965 1.5376 Thu May 23 10:13:14 2024
2 Model Selection 2715 25238 GaussianNB {} -7.644 11.5540 1.4871 Thu May 23 09:58:09 2024
3 Model Selection 2715 25238 DecisionTreeClassifier {'min_samples_split': 0.00125, 'min_samples_leaf': 0.000625, 'max_features': 1.0, 'class_weight': None} -15.4821 12.6717 1.2525 Thu May 23 09:58:10 2024
4 Feature Selection 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 25.3911 1.8933 Thu May 23 10:29:20 2024
5 Feature Selection 2715 9885 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8153 20.3971 2.6275 Thu May 23 10:31:25 2024
6 Feature Selection 2715 11862 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8173 22.7057 1.8509 Thu May 23 10:31:16 2024
7 Feature Selection 2715 20499 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8188 27.9225 2.7320 Thu May 23 10:28:37 2024
8 Feature Selection 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.819 23.8457 1.8576 Thu May 23 10:31:04 2024
9 Feature Selection 2715 17082 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8193 28.2084 2.8665 Thu May 23 10:29:08 2024
10 Feature Selection 2715 5720 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8235 16.3118 1.7139 Thu May 23 10:30:16 2024
11 Feature Selection 2715 2800 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8242 13.4597 2.5051 Thu May 23 10:30:25 2024
12 Feature Selection 2715 24599 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8251 31.1346 2.2462 Thu May 23 10:28:11 2024
13 Feature Selection 2715 11862 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8253 23.1930 1.8396 Thu May 23 10:29:30 2024
14 Feature Selection 2715 20499 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8255 28.9252 2.0524 Thu May 23 10:28:54 2024
15 Feature Selection 2715 17082 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8259 27.1348 2.7111 Thu May 23 10:30:54 2024
16 Feature Selection 2715 24599 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.826 32.5141 3.0002 Thu May 23 10:27:55 2024
17 Feature Selection 2715 2757 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8305 13.5560 1.7122 Thu May 23 10:32:43 2024
18 Feature Selection 2715 8237 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8315 19.6689 1.8418 Thu May 23 10:31:34 2024
19 Feature Selection 2715 6864 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8315 18.0505 2.5070 Thu May 23 10:30:09 2024
20 Feature Selection 2715 4766 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8318 12.5170 1.7119 Thu May 23 10:30:19 2024
21 Feature Selection 2715 9885 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8326 21.3303 1.7615 Thu May 23 10:29:52 2024
22 Feature Selection 2715 8237 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.834 20.3790 1.8199 Thu May 23 10:30:02 2024
23 Feature Selection 2715 3309 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8374 12.2541 1.7265 Thu May 23 10:32:19 2024
24 Feature Selection 2715 6864 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8377 17.6653 1.7352 Thu May 23 10:31:42 2024
25 Feature Selection 2715 1914 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8378 10.8578 1.7405 Thu May 23 10:32:56 2024
26 Feature Selection 2715 5720 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8383 15.5746 1.7591 Thu May 23 10:31:55 2024
27 Feature Selection 2715 1595 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8403 11.4344 1.7144 Thu May 23 10:33:00 2024
28 Feature Selection 2715 2297 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8418 11.2165 1.1772 Thu May 23 10:32:53 2024
29 Feature Selection 2715 4766 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8441 14.2588 2.5272 Thu May 23 10:32:03 2024
30 Feature Selection 2715 3309 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.845 11.1807 1.7050 Thu May 23 10:32:12 2024
31 Feature Selection 2715 2757 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8463 11.5175 2.5268 Thu May 23 10:32:23 2024
32 Feature Selection 2715 1329 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8471 10.7158 2.5423 Thu May 23 10:33:19 2024
33 Feature Selection 2715 3971 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8474 10.0837 1.7367 Thu May 23 10:32:05 2024
34 Feature Selection 2715 3971 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8509 14.6562 2.5236 Thu May 23 10:31:46 2024
35 Feature Selection 2715 2757 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8575 9.8742 1.7469 Thu May 23 10:32:44 2024
36 Feature Selection 2715 1329 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8596 9.6186 2.5307 Thu May 23 10:32:35 2024
37 Feature Selection 2715 1595 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8598 10.0047 1.7409 Thu May 23 10:32:32 2024
38 Feature Selection 2715 1914 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8646 10.9595 1.1232 Thu May 23 10:32:30 2024
39 Feature Selection 2715 11862 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8662 21.0217 2.5132 Thu May 23 10:29:40 2024
40 Feature Selection 2715 2297 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8669 9.3428 2.5347 Thu May 23 10:32:48 2024
41 Feature Selection 2715 2297 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8679 10.5597 1.7073 Thu May 23 10:32:26 2024
42 Feature Selection 2715 13407 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8725 22.8446 1.7808 Thu May 23 10:28:16 2024
43 Feature Selection 2715 1107 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8795 9.4064 1.7200 Thu May 23 10:33:25 2024
44 Feature Selection 2715 1107 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8817 10.1807 1.2341 Thu May 23 10:33:21 2024
45 Feature Selection 2715 922 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8867 9.4246 1.7571 Thu May 23 10:33:22 2024
46 Feature Selection 2715 922 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8874 8.5782 0.5493 Thu May 23 10:33:26 2024
47 Feature Selection 2715 1914 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8974 8.5941 2.5387 Thu May 23 10:33:00 2024
48 Feature Selection 2715 640 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9003 7.8711 0.5570 Thu May 23 10:33:36 2024
49 Feature Selection 2715 768 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9037 8.7857 1.7596 Thu May 23 10:33:32 2024
50 Feature Selection 2715 9885 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9057 19.1298 1.0824 Thu May 23 10:34:23 2024
51 Feature Selection 2715 768 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9157 8.8506 0.5383 Thu May 23 10:33:28 2024
52 Feature Selection 2715 1595 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9177 6.8742 1.2233 Thu May 23 10:33:02 2024
53 Feature Selection 2715 1329 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9346 7.1818 1.7467 Thu May 23 10:33:05 2024
54 Feature Selection 2715 640 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9355 8.0854 2.5462 Thu May 23 10:33:30 2024
55 Feature Selection 2715 6864 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9442 15.6325 1.8140 Thu May 23 10:34:38 2024
56 Feature Selection 2715 8237 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9559 19.4176 2.5739 Thu May 23 10:34:33 2024
57 Feature Selection 2715 533 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9581 7.4298 0.5434 Thu May 23 10:33:38 2024
58 Feature Selection 2715 1107 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9609 6.4102 0.5082 Thu May 23 10:33:16 2024
59 Feature Selection 2715 533 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9718 7.9872 1.2181 Thu May 23 10:33:33 2024
60 Feature Selection 2715 922 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9788 6.2687 0.4773 Thu May 23 10:33:16 2024
61 Feature Selection 2715 5720 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9839 12.0948 0.9443 Thu May 23 10:34:42 2024
62 Feature Selection 2715 444 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9901 6.8942 2.5539 Thu May 23 10:33:39 2024
63 Feature Selection 2715 768 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.015 4.8162 1.2038 Thu May 23 10:33:09 2024
64 Feature Selection 2715 4766 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.0206 12.8944 2.5746 Thu May 23 10:34:50 2024
65 Feature Selection 2715 370 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.0231 6.4792 1.7241 Thu May 23 10:33:43 2024
66 Feature Selection 2715 444 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.026 7.5108 1.7203 Thu May 23 10:33:34 2024
67 Feature Selection 2715 3971 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.0487 11.7980 0.9098 Thu May 23 10:34:55 2024
68 Feature Selection 2715 2757 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.0631 9.5604 2.5782 Thu May 23 10:35:03 2024
69 Feature Selection 2715 370 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.0693 6.8228 0.4255 Thu May 23 10:33:43 2024
70 Feature Selection 2715 3309 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.0706 10.1032 1.7449 Thu May 23 10:34:58 2024
71 Feature Selection 2715 308 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.0747 4.8309 0.5516 Thu May 23 10:33:43 2024
72 Feature Selection 2715 640 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.0868 5.4962 1.7518 Thu May 23 10:33:11 2024
73 Feature Selection 2715 256 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.0918 5.6216 2.5555 Thu May 23 10:33:46 2024
74 Feature Selection 2715 2297 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.1067 8.5754 0.8990 Thu May 23 10:35:06 2024
75 Feature Selection 2715 1914 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.1302 7.5573 1.7469 Thu May 23 10:35:09 2024
76 Feature Selection 2715 308 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.133 6.4522 1.2210 Thu May 23 10:33:41 2024
77 Feature Selection 2715 256 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.147 6.0581 0.5699 Thu May 23 10:33:43 2024
78 Feature Selection 2715 533 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.1487 4.9926 0.5538 Thu May 23 10:33:51 2024
79 Feature Selection 2715 213 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.1505 5.7629 1.2248 Thu May 23 10:33:48 2024
80 Feature Selection 2715 444 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.1718 4.7018 1.2313 Thu May 23 10:33:54 2024
81 Feature Selection 2715 1329 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.1741 5.8695 1.2676 Thu May 23 10:35:13 2024
82 Feature Selection 2715 213 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.1905 4.7250 0.3950 Thu May 23 10:33:49 2024
83 Feature Selection 2715 1595 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.2008 7.2515 2.5813 Thu May 23 10:35:12 2024
84 Feature Selection 2715 177 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.2023 4.5543 2.5595 Thu May 23 10:33:51 2024
85 Feature Selection 2715 177 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.2085 5.4495 1.7271 Thu May 23 10:33:49 2024
86 Feature Selection 2715 1107 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.2119 6.8125 0.9248 Thu May 23 10:35:16 2024
87 Feature Selection 2715 370 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.2418 4.5516 1.7326 Thu May 23 10:33:56 2024
88 Feature Selection 2715 768 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.2567 6.0074 2.5853 Thu May 23 10:35:19 2024
89 Feature Selection 2715 922 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.2606 6.2707 1.7489 Thu May 23 10:35:18 2024
90 Feature Selection 2715 147 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.2657 4.1396 0.6062 Thu May 23 10:35:34 2024
91 Feature Selection 2715 147 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.274 5.1502 0.5799 Thu May 23 10:33:53 2024
92 Feature Selection 2715 308 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.2995 3.9022 2.5635 Thu May 23 10:33:56 2024
93 Feature Selection 2715 256 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.3103 4.0943 0.6180 Thu May 23 10:35:40 2024
94 Feature Selection 2715 213 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.3271 4.7975 0.9252 Thu May 23 10:35:42 2024
95 Feature Selection 2715 640 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.3282 5.6817 1.2557 Thu May 23 10:35:21 2024
96 Feature Selection 2715 122 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.3316 4.0702 1.7594 Thu May 23 10:35:36 2024
97 Feature Selection 2715 122 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.3586 4.8518 0.9120 Thu May 23 10:35:36 2024
98 Feature Selection 2715 444 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.3692 5.0455 0.9041 Thu May 23 10:35:23 2024
99 Feature Selection 2715 533 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.3852 5.3884 0.6020 Thu May 23 10:35:22 2024
100 Feature Selection 2715 370 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.421 4.4831 1.7529 Thu May 23 10:35:24 2024
101 Feature Selection 2715 147 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.4254 3.8612 0.6319 Thu May 23 10:35:50 2024
102 Feature Selection 2715 101 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.4297 4.7787 0.4363 Thu May 23 10:35:56 2024
103 Feature Selection 2715 177 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.4351 3.5339 2.6053 Thu May 23 10:35:48 2024
104 Feature Selection 2715 101 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.4378 4.1025 2.5972 Thu May 23 10:35:37 2024
105 Feature Selection 2715 308 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.4792 5.1696 2.5894 Thu May 23 10:35:26 2024
106 Feature Selection 2715 122 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.5403 3.0611 0.4371 Thu May 23 10:35:50 2024
107 Feature Selection 2715 256 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.5427 4.6979 1.2626 Thu May 23 10:35:27 2024
108 Feature Selection 2715 84 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.5441 4.5536 1.2702 Thu May 23 10:35:39 2024
109 Feature Selection 2715 84 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.5765 4.3546 0.6318 Thu May 23 10:35:57 2024
110 Feature Selection 2715 101 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.5962 3.7936 0.9268 Thu May 23 10:35:52 2024
111 Feature Selection 2715 213 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.6081 4.5165 0.6061 Thu May 23 10:35:28 2024
112 Feature Selection 2715 70 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.6246 4.7872 2.6133 Thu May 23 10:35:59 2024
113 Feature Selection 2715 84 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.6468 3.3117 2.6093 Thu May 23 10:35:53 2024
114 Feature Selection 2715 177 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.6859 4.4852 0.9052 Thu May 23 10:35:30 2024
115 Feature Selection 2715 70 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.7001 3.3399 0.6615 Thu May 23 10:36:25 2024
116 Feature Selection 2715 58 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.762 3.0358 0.9763 Thu May 23 10:36:26 2024
117 Feature Selection 2715 70 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.7848 4.0995 1.2841 Thu May 23 10:35:59 2024
118 Feature Selection 2715 58 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.793 4.2778 0.4462 Thu May 23 10:36:01 2024
119 Feature Selection 2715 147 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.8009 4.4626 1.7556 Thu May 23 10:35:31 2024
120 Feature Selection 2715 48 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.801 3.1682 0.4796 Thu May 23 10:36:20 2024
121 Feature Selection 2715 51 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.8163 2.9546 0.5748 Thu May 23 10:33:56 2024
122 Feature Selection 2715 40 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.8358 2.6926 0.6556 Thu May 23 10:36:20 2024
123 Feature Selection 2715 48 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.8889 3.0477 1.3058 Thu May 23 10:36:19 2024
124 Feature Selection 2715 122 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.8891 4.5973 2.5934 Thu May 23 10:35:32 2024
125 Feature Selection 2715 48 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.8955 3.0244 0.6552 Thu May 23 10:36:01 2024
126 Feature Selection 2715 33 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.913 2.9698 0.9724 Thu May 23 10:36:22 2024
127 Feature Selection 2715 58 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.9231 4.1955 0.9366 Thu May 23 10:36:00 2024
128 Feature Selection 2715 101 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.9252 4.4641 1.2652 Thu May 23 10:35:33 2024
129 Feature Selection 2715 48 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.9401 3.0640 1.3055 Thu May 23 10:36:27 2024
130 Feature Selection 2715 84 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.9515 4.5635 1.7627 Thu May 23 10:35:43 2024
131 Feature Selection 2715 27 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.9782 2.8900 1.3096 Thu May 23 10:36:22 2024
132 Feature Selection 2715 40 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.9929 3.6222 1.7660 Thu May 23 10:36:03 2024
133 Feature Selection 2715 70 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.0381 4.4439 2.6012 Thu May 23 10:35:44 2024
134 Feature Selection 2715 40 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.0503 3.0116 1.7699 Thu May 23 10:36:28 2024
135 Feature Selection 2715 33 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.0699 4.1546 1.2980 Thu May 23 10:36:04 2024
136 Feature Selection 2715 22 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.0727 2.8416 0.6702 Thu May 23 10:36:32 2024
137 Feature Selection 2715 40 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.0826 2.7600 0.9562 Thu May 23 10:36:17 2024
138 Feature Selection 2715 33 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.1023 2.7728 0.4761 Thu May 23 10:36:29 2024
139 Feature Selection 2715 58 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.1095 4.4697 1.2739 Thu May 23 10:35:45 2024
140 Feature Selection 2715 48 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.1411 3.6205 0.6216 Thu May 23 10:35:45 2024
141 Feature Selection 2715 27 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.1411 2.5351 0.9802 Thu May 23 10:36:29 2024
142 Feature Selection 2715 22 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.1458 2.9758 0.4945 Thu May 23 10:36:37 2024
143 Feature Selection 2715 33 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.1561 2.7518 0.6710 Thu May 23 10:36:16 2024
144 Feature Selection 2715 18 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.1817 2.8651 0.4852 Thu May 23 10:36:33 2024
145 Feature Selection 2715 40 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.1938 3.8338 0.4333 Thu May 23 10:35:46 2024
146 Feature Selection 2715 18 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.215 2.3860 0.9673 Thu May 23 10:36:38 2024
147 Feature Selection 2715 15 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.2183 2.7508 0.6656 Thu May 23 10:36:36 2024
148 Feature Selection 2715 27 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.2236 3.6306 0.4883 Thu May 23 10:36:24 2024
149 Feature Selection 2715 15 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.2565 2.4850 0.5074 Thu May 23 10:36:44 2024
150 Feature Selection 2715 22 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.3029 2.9781 1.3064 Thu May 23 10:36:31 2024
151 Feature Selection 2715 12 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.3109 2.5892 1.7721 Thu May 23 10:36:39 2024
152 Feature Selection 2715 27 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.3112 2.6588 0.4688 Thu May 23 10:36:15 2024
153 Feature Selection 2715 12 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.3525 2.6103 0.6733 Thu May 23 10:36:40 2024
154 Feature Selection 2715 12 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.3792 2.7457 0.6697 Thu May 23 10:36:45 2024
155 Feature Selection 2715 18 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.4022 3.2052 0.9690 Thu May 23 10:36:34 2024
156 Feature Selection 2715 33 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.4071 3.6131 0.9412 Thu May 23 10:35:47 2024
157 Feature Selection 2715 10 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.431 2.2560 0.5033 Thu May 23 10:36:40 2024
158 Feature Selection 2715 22 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.4472 2.5898 1.3019 Thu May 23 10:36:14 2024
159 Feature Selection 2715 15 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.4729 3.4469 1.3117 Thu May 23 10:36:35 2024
160 Feature Selection 2715 27 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.4812 3.7719 0.9786 Thu May 23 10:36:43 2024
161 Feature Selection 2715 10 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.5027 2.8314 0.4960 Thu May 23 10:36:48 2024
162 Feature Selection 2715 8 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.5188 2.1882 0.6821 Thu May 23 10:36:49 2024
163 Feature Selection 2715 8 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.5313 2.6851 0.5192 Thu May 23 10:36:56 2024
164 Feature Selection 2715 18 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.5424 2.3904 0.9496 Thu May 23 10:36:13 2024
165 Feature Selection 2715 8 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.5501 2.5698 0.5057 Thu May 23 10:36:52 2024
166 Feature Selection 2715 15 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.5725 2.3022 0.6671 Thu May 23 10:36:12 2024
167 Feature Selection 2715 22 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.6016 3.2742 1.7780 Thu May 23 10:36:44 2024
168 Feature Selection 2715 6 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.6036 2.3810 0.6845 Thu May 23 10:36:53 2024
169 Feature Selection 2715 5 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.6066 2.2897 1.7814 Thu May 23 10:36:54 2024
170 Feature Selection 2715 6 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.6299 2.2368 0.9856 Thu May 23 10:36:55 2024
171 Feature Selection 2715 5 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.6518 2.3437 1.7899 Thu May 23 10:36:58 2024
172 Feature Selection 2715 6 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.6546 2.5006 0.6908 Thu May 23 10:36:57 2024
173 Feature Selection 2715 12 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.6615 2.3334 0.4765 Thu May 23 10:36:10 2024
174 Feature Selection 2715 4 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.6717 2.3237 0.5135 Thu May 23 10:37:01 2024
175 Feature Selection 2715 18 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.6718 2.8963 1.3165 Thu May 23 10:36:46 2024
176 Feature Selection 2715 4 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.6834 2.3249 1.7896 Thu May 23 10:37:02 2024
177 Feature Selection 2715 10 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.692 3.3026 0.9810 Thu May 23 10:36:52 2024
178 Feature Selection 2715 4 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.7024 2.1647 0.6942 Thu May 23 10:37:01 2024
179 Feature Selection 2715 10 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.7094 2.0194 0.9606 Thu May 23 10:36:09 2024
180 Feature Selection 2715 15 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.7318 3.1588 1.7826 Thu May 23 10:36:48 2024
181 Feature Selection 2715 3 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.7357 2.1384 1.3207 Thu May 23 10:37:03 2024
182 Feature Selection 2715 8 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.758 1.9295 0.6628 Thu May 23 10:36:08 2024
183 Feature Selection 2715 3 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.7777 2.1884 0.9740 Thu May 23 10:37:02 2024
184 Feature Selection 2715 12 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.7778 3.6926 1.3224 Thu May 23 10:36:51 2024
185 Feature Selection 2715 3 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.7811 2.1009 1.0076 Thu May 23 10:37:05 2024
186 Feature Selection 2715 2 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.8153 2.4933 2.6172 Thu May 23 10:37:09 2024
187 Feature Selection 2715 6 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.8435 2.0641 0.4708 Thu May 23 10:36:07 2024
188 Feature Selection 2715 2 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.8592 2.1753 1.3369 Thu May 23 10:37:06 2024
189 Feature Selection 2715 2 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.8717 2.0603 2.6133 Thu May 23 10:37:04 2024
190 Feature Selection 2715 5 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.8946 1.6382 0.9568 Thu May 23 10:36:06 2024
191 Feature Selection 2715 1 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.9047 1.7968 1.7984 Thu May 23 10:37:07 2024
192 Feature Selection 2715 1 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.922 1.8707 1.0115 Thu May 23 10:37:09 2024
193 Feature Selection 2715 4 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.9311 1.9900 0.6433 Thu May 23 10:36:05 2024
194 Feature Selection 2715 3 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.946 1.9046 0.4669 Thu May 23 10:36:04 2024
195 Feature Selection 2715 2 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.97 1.9467 0.9528 Thu May 23 10:36:03 2024
196 Feature Selection 2715 1 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.9959 1.9442 1.2903 Thu May 23 10:35:52 2024
197 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 20.2350 1.0069 Thu May 23 10:37:52 2024
198 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.00119999, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 20.3789 0.9145 Thu May 23 10:39:42 2024
199 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': 0, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 25.8773 0.9123 Thu May 23 10:38:05 2024
200 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 26.2765 0.8674 Thu May 23 10:38:06 2024
201 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.00119999, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 26.6993 0.8137 Thu May 23 10:38:09 2024
202 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 28.0649 0.9741 Thu May 23 10:38:31 2024
203 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 32.8766 0.7946 Thu May 23 10:38:24 2024
204 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 32.9077 0.8929 Thu May 23 10:38:25 2024
205 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 33.4196 0.8874 Thu May 23 10:38:15 2024
206 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 37.2014 0.8310 Thu May 23 10:38:25 2024
207 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.999990000000001, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8081 28.7169 2.0712 Thu May 23 10:38:30 2024
208 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 101, 'class_weight': 'balanced'} -0.8084 33.3972 2.8085 Thu May 23 10:38:17 2024
209 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 125, 'class_weight': 'balanced'} -0.8091 27.4936 1.3298 Thu May 23 10:39:37 2024
210 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 127, 'class_weight': 'balanced'} -0.8094 28.5509 0.8472 Thu May 23 10:39:40 2024
211 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 128, 'class_weight': 'balanced'} -0.8096 28.6981 1.7672 Thu May 23 10:39:42 2024
212 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 126, 'class_weight': 'balanced'} -0.8096 27.2710 1.3253 Thu May 23 10:39:38 2024
213 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 9.999999999e-06, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8113 30.9955 0.8170 Thu May 23 10:38:30 2024
214 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 32, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8128 15.1494 1.1774 Thu May 23 10:39:45 2024
215 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 32, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8128 33.5865 0.8409 Thu May 23 10:38:26 2024
216 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 177, 'class_weight': 'balanced'} -0.8131 36.7752 0.8498 Thu May 23 10:39:40 2024
217 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 178, 'class_weight': 'balanced'} -0.8131 21.8527 0.8002 Thu May 23 10:40:05 2024
218 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 178, 'class_weight': 'balanced'} -0.8131 37.2306 0.9073 Thu May 23 10:39:42 2024
219 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 174, 'class_weight': 'balanced'} -0.8133 36.2606 0.8474 Thu May 23 10:39:39 2024
220 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 173, 'class_weight': 'balanced'} -0.8135 36.2719 0.8471 Thu May 23 10:39:38 2024
221 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.10241113615453983, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8149 19.9035 1.9263 Thu May 23 10:37:53 2024
222 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 252, 'class_weight': 'balanced'} -0.8157 51.4688 0.9162 Thu May 23 10:38:41 2024
223 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 253, 'class_weight': 'balanced'} -0.8157 52.1458 0.8702 Thu May 23 10:38:43 2024
224 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.09939959374943852, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8174 21.5247 0.8437 Thu May 23 10:39:07 2024
225 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.09926466710275127, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8185 19.0557 0.8452 Thu May 23 10:39:02 2024
226 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.09922325977512633, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8186 19.7455 0.8507 Thu May 23 10:39:02 2024
227 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.09914044511987648, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8186 21.6535 1.3283 Thu May 23 10:39:07 2024
228 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.05623427310243317, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8187 31.1631 0.8408 Thu May 23 10:38:27 2024
229 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': None} -0.8189 24.7093 2.2353 Thu May 23 10:37:55 2024
230 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.10242113515453982, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8195 30.5136 0.8853 Thu May 23 10:38:10 2024
231 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.09927537176656373, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8204 23.9768 0.8466 Thu May 23 10:39:11 2024
232 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.09921326077512634, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8214 19.5727 0.8485 Thu May 23 10:39:01 2024
233 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 511, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8229 25.5383 1.2588 Thu May 23 10:39:24 2024
234 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 523, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8229 26.0735 1.2678 Thu May 23 10:39:26 2024
235 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 510, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8229 27.2237 1.2769 Thu May 23 10:39:24 2024
236 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 522, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8229 28.2897 1.2703 Thu May 23 10:39:28 2024
237 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 564, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8229 29.8900 1.2834 Thu May 23 10:38:25 2024
238 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 190, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8229 31.0321 0.8975 Thu May 23 10:38:24 2024
239 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 563, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8229 32.3063 1.3149 Thu May 23 10:38:27 2024
240 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 189, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8229 33.7906 1.7289 Thu May 23 10:38:22 2024
241 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.07370106425810359, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.824 23.1302 0.8315 Thu May 23 10:39:42 2024
242 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.056244273102432164, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8241 32.7792 0.8992 Thu May 23 10:38:29 2024
243 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.09925466810275127, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8243 21.6087 0.8517 Thu May 23 10:39:04 2024
244 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.13554964757452176, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8264 22.2450 0.8670 Thu May 23 10:39:28 2024
245 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.0001778292746984456, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8272 33.6113 0.8963 Thu May 23 10:38:27 2024
246 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.00018782927469744562, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8272 34.7928 0.8317 Thu May 23 10:38:30 2024
247 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.100009999, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8274 20.5852 0.8955 Thu May 23 10:37:53 2024
248 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.09928537076656373, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8276 24.9883 1.7325 Thu May 23 10:39:12 2024
249 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.13555964757452077, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8284 24.3892 0.8488 Thu May 23 10:39:32 2024
250 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.13727546589824888, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8331 24.0493 0.8336 Thu May 23 10:39:14 2024
251 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.14413873919316136, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8334 23.6209 0.8506 Thu May 23 10:39:32 2024
252 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.14412873919316235, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8335 23.4433 0.9310 Thu May 23 10:39:31 2024
253 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.13726546589824987, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8347 23.0090 0.9776 Thu May 23 10:39:12 2024
254 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.14397169870175522, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8358 15.7275 1.1751 Thu May 23 10:38:59 2024
255 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.1323499720056148, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8373 24.0774 1.0237 Thu May 23 10:39:17 2024
256 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.1321280109270645, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8384 21.7320 1.3201 Thu May 23 10:39:10 2024
257 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0.1321180109270655, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8404 22.4910 2.1311 Thu May 23 10:39:10 2024
258 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.1325499620056148, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8409 22.4901 0.8413 Thu May 23 10:39:17 2024
259 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.15920068096327575, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8428 23.0640 0.8597 Thu May 23 10:39:19 2024
260 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.15328982261520555, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8445 17.4436 0.8408 Thu May 23 10:39:02 2024
261 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.15491868834972752, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8454 21.1098 0.8806 Thu May 23 10:38:04 2024
262 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.15348981261520556, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8455 18.8633 0.8435 Thu May 23 10:39:04 2024
263 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.1437717087017552, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8463 16.0854 0.8449 Thu May 23 10:38:59 2024
264 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.15511867834972753, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8499 24.6760 0.9141 Thu May 23 10:38:09 2024
265 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.15900069096327574, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.85 23.7525 2.8674 Thu May 23 10:39:20 2024
266 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.068760000093124, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8703 23.4299 0.8458 Thu May 23 10:39:41 2024
267 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.018760000098124004, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8783 24.7752 0.8998 Thu May 23 10:39:40 2024
268 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.068750000093125, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8844 24.4053 2.1321 Thu May 23 10:39:41 2024
269 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.01250000009875, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8845 31.2005 1.9282 Thu May 23 10:39:21 2024
270 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.012510000098749, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8861 30.5409 0.8413 Thu May 23 10:39:22 2024
271 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.018750000098125004, 'n_estimators': 100, 'class_weight': 'balanced'} -0.887 26.0495 0.9392 Thu May 23 10:39:40 2024
272 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'goss', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.8906 11.5748 2.8070 Thu May 23 10:37:41 2024
273 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'goss', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 177, 'class_weight': 'balanced'} -0.9051 12.0602 0.8516 Thu May 23 10:39:55 2024
274 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.025010000097499003, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9125 26.9627 0.9389 Thu May 23 10:39:20 2024
275 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'goss', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 253, 'class_weight': 'balanced'} -0.9154 27.2352 1.1787 Thu May 23 10:39:29 2024
276 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.025000000097500003, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9154 27.6526 0.8441 Thu May 23 10:39:19 2024
277 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': 6, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9358 16.5386 0.8969 Thu May 23 10:37:57 2024
278 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': 5, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9575 12.7152 0.9137 Thu May 23 10:37:53 2024
279 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1.0000099999e-05, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9639 34.5683 2.2728 Thu May 23 10:38:32 2024
280 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 2.0000099998e-05, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9664 32.5344 0.8386 Thu May 23 10:38:31 2024
281 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.0001778292746984456, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9674 32.2133 0.8406 Thu May 23 10:38:31 2024
282 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 1.7602198064430905, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9702 16.4763 0.9145 Thu May 23 10:38:01 2024
283 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 0.00018782927469744562, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9718 30.9401 1.3249 Thu May 23 10:38:31 2024
284 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': 4, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9725 12.0292 0.9135 Thu May 23 10:37:52 2024
285 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'dart', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9785 25.2995 1.2987 Thu May 23 10:37:55 2024
286 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 1.7604197964430905, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -0.9788 15.2991 0.9009 Thu May 23 10:38:01 2024
287 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': 3, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -1.0059 10.9781 0.8135 Thu May 23 10:37:51 2024
288 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 6, 'class_weight': 'balanced'} -1.6527 8.1246 0.8817 Thu May 23 10:37:55 2024
289 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 5, 'class_weight': 'balanced'} -1.7479 7.9676 0.8152 Thu May 23 10:37:53 2024
290 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.10242113515453982, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -2.1368 9.2758 0.8781 Thu May 23 10:38:24 2024
291 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.10241113615453983, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -2.1368 10.3302 0.9744 Thu May 23 10:38:23 2024
292 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.100009999, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -2.1502 10.7863 0.8417 Thu May 23 10:38:23 2024
293 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -2.1502 10.2856 1.1617 Thu May 23 10:38:19 2024
294 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 253, 'class_weight': 'balanced'} -2.9114 8.2499 0.8578 Thu May 23 10:38:39 2024
295 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 252, 'class_weight': 'balanced'} -2.9117 7.0266 0.8430 Thu May 23 10:38:37 2024
296 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.000119998, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.9481 20.8551 0.9050 Thu May 23 10:37:52 2024
297 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.000109999, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 0, 'reg_lambda': 1, 'n_estimators': 100, 'class_weight': 'balanced'} -2.9534 15.2459 1.6288 Thu May 23 10:37:46 2024
298 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 101, 'class_weight': 'balanced'} -2.9693 5.7732 1.7309 Thu May 23 10:38:36 2024
299 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 100, 'class_weight': 'balanced'} -2.9697 5.6526 0.8149 Thu May 23 10:38:35 2024
300 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': None} -2.9877 10.6908 0.9739 Thu May 23 10:38:17 2024
301 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 0, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0112 6.4505 0.7836 Thu May 23 10:38:29 2024
302 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 6, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0112 6.9859 1.1621 Thu May 23 10:38:29 2024
303 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': -1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0112 7.3460 0.8478 Thu May 23 10:38:28 2024
304 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 4, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0112 8.2352 0.8335 Thu May 23 10:38:27 2024
305 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 3, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0112 8.4559 0.8229 Thu May 23 10:38:27 2024
306 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 5, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0112 8.4749 2.8363 Thu May 23 10:38:29 2024
307 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.000119998, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0116 10.9574 0.9758 Thu May 23 10:38:20 2024
308 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 6, 'class_weight': 'balanced'} -3.0116 4.3542 1.1986 Thu May 23 10:38:33 2024
309 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.000109999, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0118 11.2326 0.9755 Thu May 23 10:38:19 2024
310 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 0, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.5213 0.8368 Thu May 23 10:38:39 2024
311 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 564, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.2517 0.8345 Thu May 23 10:38:38 2024
312 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 189, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.3668 0.8418 Thu May 23 10:38:37 2024
313 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 32, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.3696 1.3160 Thu May 23 10:38:36 2024
314 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 31, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.3753 0.8418 Thu May 23 10:38:36 2024
315 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 563, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.3863 1.1756 Thu May 23 10:38:38 2024
316 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 190, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.4110 2.1299 Thu May 23 10:38:37 2024
317 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.8695 0.8391 Thu May 23 10:38:33 2024
318 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.15511867834972753, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 5.5249 0.8365 Thu May 23 10:38:31 2024
319 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.15491868834972752, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 6.0223 0.8328 Thu May 23 10:38:30 2024
320 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 6.2898 1.7299 Thu May 23 10:38:29 2024
321 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.00119999, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 6.4380 0.8360 Thu May 23 10:38:29 2024
322 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'dart', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 10.9715 0.9731 Thu May 23 10:38:14 2024
323 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'goss', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 11.4807 0.8321 Thu May 23 10:38:16 2024
324 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 9.999999999e-06, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.2741 1.3259 Thu May 23 10:38:40 2024
325 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1.0000099999e-05, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.4722 0.9776 Thu May 23 10:38:42 2024
326 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 0.0001778292746984456, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.4987 0.8284 Thu May 23 10:38:40 2024
327 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 0.00018782927469744562, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.5715 1.7346 Thu May 23 10:38:41 2024
328 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 2.0000099998e-05, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.2560 1.1777 Thu May 23 10:38:43 2024
329 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 0.0001778292746984456, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.1203 0.8478 Thu May 23 10:38:43 2024
330 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 0.00018782927469744562, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.3616 0.8424 Thu May 23 10:38:44 2024
331 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 0.05623427310243317, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.4524 0.8340 Thu May 23 10:38:41 2024
332 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 0.056244273102432164, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.4193 0.8345 Thu May 23 10:38:42 2024
333 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 1.7604197964430905, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 4.7082 0.8322 Thu May 23 10:38:32 2024
334 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 1.7602198064430905, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1e-10, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0121 5.0464 1.3080 Thu May 23 10:38:31 2024
335 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 0.999990000000001, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0126 4.3677 1.3344 Thu May 23 10:38:45 2024
336 Model Tuning 2715 14235 LGBMClassifier {'num_leaves': 3, 'boosting_type': 'gbdt', 'learning_rate': 0.0001, 'min_child_weight': 0.001, 'max_depth': 1, 'reg_alpha': 1e-10, 'reg_lambda': 1, 'n_estimators': 5, 'class_weight': 'balanced'} -3.0126 4.4191 0.7945 Thu May 23 10:38:45 2024

We also provide the capability to visualize the results of each stage of the AutoMLx pipeline.

Algorithm Selection¶

The plot below shows the scores predicted by Algorithm Selection for each algorithm. The horizontal line shows the average score across all algorithms. Algorithms below the line are colored turquoise, whereas those with a score higher than the mean are colored teal.

In [12]:
# Each trial is a row in a dataframe that contains
# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features
trials = est1.completed_trials_summary_[est1.completed_trials_summary_["Step"].str.contains('Model Selection')]
name_of_score_column = f"Score ({est1._inferred_score_metric[0].name})"
trials.replace([np.inf, -np.inf], np.nan, inplace=True)
trials.dropna(subset=[name_of_score_column], inplace = True)
scores = trials[name_of_score_column].tolist()
models = trials['Algorithm'].tolist()
colors = []

y_margin = 0.10 * (max(scores) - min(scores))
s = pd.Series(scores, index=models).sort_values(ascending=False)
s = s.dropna()
for f in s.keys():
    if f.strip()  ==  est1.selected_model_.strip():
        colors.append('orange')
    elif s[f] >= s.mean():
        colors.append('teal')
    else:
        colors.append('turquoise')

fig, ax = plt.subplots(1)
ax.set_title("Algorithm Selection Trials")
ax.set_ylim(min(scores) - y_margin, max(scores) + y_margin)
ax.set_ylabel(est1._inferred_score_metric[0].name)
s.plot.bar(ax=ax, color=colors, edgecolor='black')
ax.axhline(y=s.mean(), color='black', linewidth=0.5)
plt.show()

Feature Selection¶

After finding a sample subset, the next step is to find a relevant feature subset to maximize score for the chosen algorithm. The feature selection step identifies the smallest feature subset that does not compromise on the score of the chosen algorithm. The orange line shows the optimal number of features chosen by Feature Selection.

In [13]:
# Each trial is a row in a dataframe that contains
# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features
trials = est1.completed_trials_summary_[est1.completed_trials_summary_["Step"].str.contains('Feature Selection')]
trials.replace([np.inf, -np.inf], np.nan, inplace=True)
trials.dropna(subset=[name_of_score_column], inplace = True)
trials.sort_values(by=['# Features'],ascending=True, inplace = True)
scores = trials[name_of_score_column].tolist()
n_features = trials['# Features'].tolist()

y_margin = 0.10 * (max(scores) - min(scores))
fig, ax = plt.subplots(1)
ax.set_title("Feature Selection Trials")
ax.set_xlabel("Number of Features")
ax.set_ylabel(est1._inferred_score_metric[0].name)
ax.grid(color='g', linestyle='-', linewidth=0.1)
ax.set_ylim(min(scores) - y_margin, max(scores) + y_margin)
ax.plot(n_features, scores, 'k:', marker="s", color='teal', markersize=3)
ax.axvline(x=len(est1.selected_features_names_), color='orange', linewidth=2.0)
plt.show()

Hyperparameter Tuning¶

Hyperparameter Tuning is the last stage of the AutoMLx pipeline, and focuses on improving the chosen algorithm's score on the reduced dataset (after Adaptive Sampling and Feature Selection). We use a novel algorithm to search across many hyperparameters dimensions, and converge automatically when optimal hyperparameters are identified. Each trial in the graph below represents a particular hyperparameters configuration for the selected model.

In [14]:
# Each trial is a row in a dataframe that contains
# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features
trials = est1.completed_trials_summary_[est1.completed_trials_summary_["Step"].str.contains('Model Tuning')]
trials.replace([np.inf, -np.inf], np.nan, inplace=True)
trials.dropna(subset=[name_of_score_column], inplace = True)
trials.drop(trials[trials['Finished'] == -1].index, inplace = True)
trials['Finished']= trials['Finished'].apply(lambda x: time.mktime(datetime.datetime.strptime(x,
                                             "%a %b %d %H:%M:%S %Y").timetuple()))
trials.sort_values(by=['Finished'],ascending=True, inplace = True)
scores = trials[name_of_score_column].tolist()
score = []
score.append(scores[0])
for i in range(1,len(scores)):
    if scores[i]>= score[i-1]:
        score.append(scores[i])
    else:
        score.append(score[i-1])
y_margin = 0.10 * (max(score) - min(score))

fig, ax = plt.subplots(1)
ax.set_title("Hyperparameter Tuning Trials")
ax.set_xlabel("Iteration $n$")
ax.set_ylabel(est1._inferred_score_metric[0].name)
ax.grid(color='g', linestyle='-', linewidth=0.1)
ax.set_ylim(min(score) - y_margin, max(score) + y_margin)
ax.plot(range(1, len(trials) + 1), score, 'k:', marker="s", color='teal', markersize=3)
plt.show()

Advanced AutoML Configuration¶

You can also configure the pipeline with suitable parameters according to your needs.

In [15]:
custom_pipeline = automlx.Pipeline(
    task='classification',
    model_list=[                 # Specify the models you want the AutoML to consider
        'GaussianNB',
        'LGBMClassifier',
],
    min_features=1.0,            # Specify minimum features to force the model to use. It can take 3 possible types of values:
                                 # If int, 0 < min_features <= n_features,
                                 # If float, 0 < min_features <= 1.0, 1.0 means disabling feature selection
                                 # If list, names of features to keep, for example ['a', 'b'] means keep features 'a' and 'b'

    n_algos_tuned=2,             # Choose how many models to tune
    adaptive_sampling=False,     # Disable or enable Adaptive Sampling step. Default to `True`
    preprocessing=True,          # Disable or enable Preprocessing step. Default to `True`
    search_space={},             # You can specify the hyper-parameters and ranges AutoML searches
    max_tuning_trials=2,         # The maximum number of tuning trials. Can be integer or Dict (max number for each model)
    score_metric='f1_macro',     # Any scikit-learn metric or a custom function
)

A few of the advanced settings can be passed directly to the pipeline's fit method, instead of its constructor.

In [16]:
custom_pipeline.fit(
    X_train,
    y_train,
    X_valid,
    y_valid,
    col_types=["text"],
    time_budget= 50,    # Specify time budget in seconds
    cv='auto'           # Automatically pick a good cross-validation (cv) strategy for the user's dataset.
                        # Ignored if X_valid and y_valid are provided.
                        # Can also be:
                        #   - An integer (for example, to use 5-fold cross validation)
                        #   - A list of data indices to use as splits (for advanced, such as time-based splitting)
)
y_proba = custom_pipeline.predict_proba(X_test)
score_default = f1_score(y_test, y_predict, average="micro")

print(f'Score on test data : {score_default}')
[2024-05-23 10:42:32,537] [automlx.interface] Dataset shape: (3394,1)
[2024-05-23 10:42:32,598] [automlx.interface] Model Tune disabled.
[2024-05-23 10:42:32,885] [automlx.data_transform] Running preprocessing. Number of features: 2
[2024-05-23 10:42:52,004] [automlx.data_transform] Preprocessing completed. Took 19.119 secs
[2024-05-23 10:42:52,334] [automlx.process] Running Model Generation
[2024-05-23 10:43:10,641] [automlx.process] Model Generation completed.
[2024-05-23 10:43:11,010] [automlx.model_selection] Running Model Selection
[2024-05-23 10:43:11,011] [automlx.trials] Fewer models (2) than top_k (2) provided, skipping model selection
[2024-05-23 10:43:22,393] [automlx.interface] Re-fitting pipeline
[2024-05-23 10:44:20,154] [automlx.interface] AutoMLx completed.
Score on test data : 0.6987519915029209

Machine Learning Explainability¶

For a variety of decision-making tasks, getting only a prediction as model output is not sufficient. A user may wish to know why the model outputs that prediction, or which data features are relevant for that prediction. For that purpose the Oracle AutoMLx solution defines the MLExplainer object, which allows to compute a variety of model explanations

Initializing an MLExplainer¶

The MLExplainer object takes as argument the trained model, the training data and labels, as well as the task.

In [17]:
explainer = automlx.MLExplainer(est1,
                              X_train,
                              y_train,
                              target_names=target_names,
                              task="classification",
                              col_types=["text"])

Model Explanations (Global Token Importance)¶

For text classification tasks, since we first extract tokens (features), the Oracle AutoMLx solution offers a single way to compute a notion of token importance: Global Token Importance. The notion of Global Token Importance intuitively measures how much a token impacts the model's predictions (relative to the provided train labels). Tokens are the most fine-grained building blocks of the NLP model, such as sentences, words, or characters.

Computing the importance¶

We use a permutation-based method to successively measure the importance of each token (feature). Such a method therefore runs in linear time with respect to the number of features (tokens) in the dataset.

The method explain_model() allows to compute such feature importances.

In [18]:
result_explain_model_default = explainer.explain_model()

Visualization¶

There are two options to show the explanation's results:

  • to_dataframe() will return a dataframe of the results.
  • show_in_notebook() will show the results as a bar plot.

The features are returned in decreasing order of importance.

In [19]:
result_explain_model_default.to_dataframe(n_tokens=20)
Out[19]:
token attribution upper_bound lower_bound
0 israeli 0.014393 0.014393 0.014393
1 atheism 0.012633 0.012633 0.012633
2 hockey 0.012515 0.012515 0.012515
3 bike 0.011961 0.011961 0.011961
4 sale 0.010798 0.010800 0.010797
5 baseball 0.010190 0.010190 0.010190
6 cars 0.010052 0.010055 0.010050
7 moon 0.009464 0.009464 0.009464
8 atheists 0.009376 0.009376 0.009376
9 graphics 0.008399 0.008466 0.008332
10 windows 0.007966 0.007966 0.007966
11 encryption 0.006958 0.006958 0.006958
12 pitching 0.005990 0.005990 0.005990
13 guns 0.005813 0.005813 0.005813
14 israel 0.005534 0.005534 0.005534
15 playoff 0.004587 0.004587 0.004587
16 christians 0.004034 0.004034 0.004034
17 orbit 0.003647 0.003647 0.003647
18 clipper 0.003382 0.003382 0.003382
19 space 0.003147 0.003147 0.003147
In [20]:
result_explain_model_default.show_in_notebook(n_tokens=20)