{ "cells": [ { "cell_type": "markdown", "id": "9e256324", "metadata": {}, "source": [ "***\n", "# Building and Explaining a Regressor using AutoMLx\n", "

by the Oracle AutoMLx Team

\n", "\n", "***" ] }, { "cell_type": "markdown", "id": "8219b040", "metadata": {}, "source": [ "Regression Demo Notebook.\n", "\n", "Copyright © 2025, Oracle and/or its affiliates.\n", "\n", "Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/" ] }, { "cell_type": "markdown", "id": "7429c73d", "metadata": {}, "source": [ "## Overview of this Notebook\n", "\n", "In this notebook we will build a regressor using the Oracle AutoMLx tool for the public California Housing dataset to predict the value of house prices.\n", "We explore the various options provided by the Oracle AutoMLx tool, allowing the user to control the AutoMLx training process. We finally evaluate the different models trained by AutoMLx. Depending on the dataset size and the machine running it, it can take about tens of minutes. The dataset is sampled down for a snappier demo, with the option to run it with the full dataset. We finally provide an overview of the possibilities that Oracle AutoMLx provides for explaining the predictions of the tuned model.\n", "\n", "---\n", "## Prerequisites:\n", "\n", " - Experience level: Novice (Python and Machine Learning)\n", " - Professional experience: Some industry experience\n", "---\n", "\n", "## Business Use:\n", "\n", "Data analytics and modeling problems using Machine Learning (ML) are becoming popular and often rely on data science expertise to build accurate ML models. Such modeling tasks primarily involve the following steps:\n", "- Preprocess dataset (clean, impute, engineer features, normalize).\n", "- Pick an appropriate model for the given dataset and prediction task at hand.\n", "- Tune the chosen model’s hyperparameters for the given dataset.\n", "\n", "All of these steps are significantly time consuming and heavily rely on data scientist expertise. Unfortunately, to make this problem harder, the best feature subset, model, and hyperparameter choice widely varies with the dataset and the prediction task. Hence, there is no one-size-fits-all solution to achieve reasonably good model performance. Using a simple Python API, AutoML can quickly jump-start the datascience process with an accurately-tuned model and appropriate features for a given prediction task.\n", "\n", "## Table of Contents\n", "\n", "- Setup\n", "- Load California housing dataset\n", "- AutoML\n", " - Setting the execution engine\n", " - Create an Instance of AutoMLx\n", " - Train a Model using AutoMLx\n", " - Analyze the AutoMLx optimization process \n", " - Algorithm Selection\n", " - Adaptive Sampling\n", " - Feature Selection\n", " - Hyperparameter Tuning\n", " - Advanced AutoMLx Configuration \n", " - Use a custom validation set\n", "- Machine Learning Explainability (MLX)\n", " - Initialize an MLExplainer\n", " - Model Explanations (Global Feature Importance)\n", " - Feature Dependence Explanations (PDP + ICE)\n", " - Prediction Explanations (Local Feature Importance)\n", " - Aggregate Local Feature Importance\n", " - Interactive What-IF Explanations\n", " - Counterfactuals Explanations\n", " - Advanced Feature Importance Options\n", " - Configure prediction explanation\n", " - Explain the model or explain the world\n", " - Advanced Feature Dependence Options (ALE)\n", "- References" ] }, { "cell_type": "markdown", "id": "8e6581e4", "metadata": {}, "source": [ "\n", "## Setup\n", "\n", "Basic setup for the Notebook." ] }, { "cell_type": "code", "execution_count": 1, "id": "657a4697", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:36:33.861880Z", "iopub.status.busy": "2025-04-25T10:36:33.861443Z", "iopub.status.idle": "2025-04-25T10:36:34.477398Z", "shell.execute_reply": "2025-04-25T10:36:34.476766Z" } }, "outputs": [], "source": [ "\n", "%matplotlib inline\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "markdown", "id": "ec534f07", "metadata": {}, "source": [ "Load the required modules." ] }, { "cell_type": "code", "execution_count": 2, "id": "2012d12d", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:36:34.479458Z", "iopub.status.busy": "2025-04-25T10:36:34.479204Z", "iopub.status.idle": "2025-04-25T10:36:37.568973Z", "shell.execute_reply": "2025-04-25T10:36:37.568338Z" } }, "outputs": [], "source": [ "import time\n", "import datetime\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import plotly.figure_factory as ff\n", "from sklearn.datasets import fetch_california_housing\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.linear_model import LinearRegression\n", "\n", "# Settings for plots\n", "plt.rcParams['figure.figsize'] = [10, 7]\n", "plt.rcParams['font.size'] = 15\n", "\n", "import automlx\n", "from automlx import init" ] }, { "cell_type": "markdown", "id": "c6587d8e", "metadata": {}, "source": [ "\n", "## Load the California housing dataset using sklearn.datasets\n", "\n", "Dataset details are available here: https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset. The goal is to predict the median price of a house given some features." ] }, { "cell_type": "code", "execution_count": 3, "id": "61f405a3", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:36:37.571130Z", "iopub.status.busy": "2025-04-25T10:36:37.570795Z", "iopub.status.idle": "2025-04-25T10:36:37.643865Z", "shell.execute_reply": "2025-04-25T10:36:37.643328Z" } }, "outputs": [ { "data": { "text/plain": [ "(20640, 9)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X, y = fetch_california_housing(return_X_y=True)\n", "ds = fetch_california_housing(return_X_y=False)\n", "df = pd.concat([pd.DataFrame(X, columns=ds.feature_names),\n", " pd.DataFrame(y.ravel(), columns=['Median Price'])], axis=1)\n", "\n", "target_col='Median Price'\n", "df.shape" ] }, { "cell_type": "code", "execution_count": 4, "id": "536b326c", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:36:37.645702Z", "iopub.status.busy": "2025-04-25T10:36:37.645227Z", "iopub.status.idle": "2025-04-25T10:36:37.679582Z", "shell.execute_reply": "2025-04-25T10:36:37.679046Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MedIncHouseAgeAveRoomsAveBedrmsPopulationAveOccupLatitudeLongitudeMedian Price
08.325241.06.9841271.023810322.02.55555637.88-122.234.526
18.301421.06.2381370.9718802401.02.10984237.86-122.223.585
27.257452.08.2881361.073446496.02.80226037.85-122.243.521
35.643152.05.8173521.073059558.02.54794537.85-122.253.413
43.846252.06.2818531.081081565.02.18146737.85-122.253.422
\n", "
" ], "text/plain": [ " MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \\\n", "0 8.3252 41.0 6.984127 1.023810 322.0 2.555556 37.88 \n", "1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86 \n", "2 7.2574 52.0 8.288136 1.073446 496.0 2.802260 37.85 \n", "3 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85 \n", "4 3.8462 52.0 6.281853 1.081081 565.0 2.181467 37.85 \n", "\n", " Longitude Median Price \n", "0 -122.23 4.526 \n", "1 -122.22 3.585 \n", "2 -122.24 3.521 \n", "3 -122.25 3.413 \n", "4 -122.25 3.422 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "markdown", "id": "0a26be41", "metadata": {}, "source": [ "We first display the density of the target median price." ] }, { "cell_type": "code", "execution_count": 5, "id": "87b6a751", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:36:37.681497Z", "iopub.status.busy": "2025-04-25T10:36:37.681026Z", "iopub.status.idle": "2025-04-25T10:36:38.222119Z", "shell.execute_reply": "2025-04-25T10:36:38.221520Z" }, "lines_to_next_cell": 2 }, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "legendgroup": "Median Price", "marker": { "color": "rgb(31, 119, 180)" }, "mode": "lines", "name": "Median Price", "showlegend": true, "type": "scatter", "x": [ 0.14999, 0.15969004, 0.16939008, 0.17909012000000002, 0.18879016, 0.1984902, 0.20819024, 0.21789028, 0.22759032, 0.23729036, 0.2469904, 0.25669044, 0.26639048, 0.27609052, 0.28579056, 0.2954906, 0.30519064, 0.31489068, 0.32459072, 0.33429076, 0.34399080000000004, 0.35369084, 0.36339087999999997, 0.37309092, 0.38279096, 0.392491, 0.40219104, 0.41189107999999997, 0.42159112, 0.43129116, 0.44099119999999997, 0.45069124, 0.46039128, 0.47009132, 0.47979136, 0.4894914, 0.49919144, 0.50889148, 0.51859152, 0.52829156, 0.5379916, 0.54769164, 0.5573916800000001, 0.5670917200000001, 0.57679176, 0.5864918, 0.59619184, 0.6058918799999999, 0.61559192, 0.62529196, 0.634992, 0.64469204, 0.65439208, 0.6640921200000001, 0.6737921599999999, 0.6834922000000001, 0.6931922399999999, 0.7028922799999999, 0.71259232, 0.72229236, 0.7319924, 0.74169244, 0.75139248, 0.76109252, 0.7707925600000001, 0.7804925999999999, 0.7901926399999999, 0.7998926799999999, 0.8095927199999999, 0.81929276, 0.8289928, 0.83869284, 0.84839288, 0.85809292, 0.8677929600000001, 0.8774929999999999, 0.8871930400000001, 0.8968930799999999, 0.9065931199999999, 0.9162931599999999, 0.9259932, 0.93569324, 0.94539328, 0.95509332, 0.96479336, 0.9744934000000001, 0.9841934400000001, 0.9938934799999999, 1.00359352, 1.01329356, 1.0229936, 1.03269364, 1.04239368, 1.05209372, 1.06179376, 1.0714938, 1.0811938399999999, 1.0908938799999999, 1.10059392, 1.11029396, 1.119994, 1.12969404, 1.13939408, 1.14909412, 1.15879416, 1.1684942, 1.17819424, 1.18789428, 1.1975943199999999, 1.20729436, 1.2169944000000001, 1.22669444, 1.23639448, 1.24609452, 1.25579456, 1.2654946, 1.27519464, 1.2848946799999998, 1.29459472, 1.30429476, 1.3139948, 1.32369484, 1.3333948800000002, 1.34309492, 1.35279496, 1.362495, 1.37219504, 1.38189508, 1.39159512, 1.4012951599999999, 1.4109952, 1.4206952400000001, 1.43039528, 1.44009532, 1.44979536, 1.4594954, 1.46919544, 1.47889548, 1.4885955199999998, 1.49829556, 1.5079956, 1.51769564, 1.52739568, 1.5370957200000002, 1.54679576, 1.5564958, 1.56619584, 1.57589588, 1.58559592, 1.59529596, 1.6049959999999999, 1.61469604, 1.6243960800000001, 1.63409612, 1.64379616, 1.6534962000000002, 1.66319624, 1.67289628, 1.68259632, 1.69229636, 1.7019964, 1.71169644, 1.72139648, 1.73109652, 1.7407965600000002, 1.7504966, 1.76019664, 1.76989668, 1.77959672, 1.78929676, 1.7989968, 1.8086968399999999, 1.81839688, 1.82809692, 1.83779696, 1.847497, 1.85719704, 1.86689708, 1.87659712, 1.8862971599999998, 1.8959972, 1.90569724, 1.9153972799999999, 1.92509732, 1.9347973600000001, 1.9444974, 1.95419744, 1.96389748, 1.97359752, 1.98329756, 1.9929976, 2.0026976399999996, 2.01239768, 2.02209772, 2.03179776, 2.0414977999999997, 2.05119784, 2.0608978799999997, 2.07059792, 2.08029796, 2.0899979999999996, 2.09969804, 2.10939808, 2.11909812, 2.1287981599999997, 2.1384982, 2.1481982399999997, 2.1578982799999995, 2.1675983199999997, 2.17729836, 2.1869984, 2.1966984399999996, 2.20639848, 2.2160985199999996, 2.22579856, 2.2354986, 2.2451986399999995, 2.2548986799999997, 2.2645987199999995, 2.2742987599999998, 2.2839988, 2.29369884, 2.3033988799999996, 2.31309892, 2.3227989599999996, 2.332499, 2.3421990399999997, 2.35189908, 2.3615991199999997, 2.3712991599999995, 2.3809991999999998, 2.3906992399999996, 2.40039928, 2.41009932, 2.4197993599999994, 2.4294993999999996, 2.43919944, 2.4488994799999997, 2.45859952, 2.4682995599999997, 2.4779995999999995, 2.4876996399999998, 2.4973996799999996, 2.50709972, 2.51679976, 2.5264998, 2.5361998399999997, 2.5458998799999994, 2.5555999199999997, 2.56529996, 2.5749999999999997, 2.58470004, 2.5944000799999998, 2.6041001199999996, 2.61380016, 2.6235001999999996, 2.63320024, 2.64290028, 2.6526003199999995, 2.6623003599999997, 2.6720003999999995, 2.6817004399999997, 2.69140048, 2.70110052, 2.7108005599999996, 2.7205006, 2.7302006399999996, 2.73990068, 2.7496007199999997, 2.75930076, 2.7690007999999997, 2.7787008399999995, 2.7884008799999997, 2.79810092, 2.80780096, 2.817501, 2.8272010399999994, 2.8369010799999996, 2.84660112, 2.8563011599999997, 2.8660012, 2.8757012399999997, 2.8854012799999995, 2.8951013199999998, 2.9048013599999996, 2.9145014, 2.92420144, 2.9339014799999994, 2.9436015199999996, 2.9533015599999994, 2.9630015999999997, 2.97270164, 2.9824016799999997, 2.9921017199999995, 3.0018017599999998, 3.0115017999999996, 3.02120184, 3.0309018799999996, 3.04060192, 3.0503019599999996, 3.0600019999999994, 3.0697020399999997, 3.07940208, 3.0891021199999997, 3.09880216, 3.1085021999999993, 3.1182022399999996, 3.12790228, 3.1376023199999996, 3.14730236, 3.1570024, 3.1667024399999995, 3.1764024799999997, 3.1861025199999995, 3.1958025599999997, 3.2055026, 3.21520264, 3.2249026799999996, 3.23460272, 3.2443027599999996, 3.2540028, 3.2637028399999997, 3.27340288, 3.2831029199999997, 3.2928029599999995, 3.3025029999999997, 3.3122030399999995, 3.32190308, 3.33160312, 3.3413031599999994, 3.3510031999999996, 3.36070324, 3.3704032799999997, 3.38010332, 3.3898033599999997, 3.3995033999999995, 3.4092034399999998, 3.4189034799999996, 3.42860352, 3.43830356, 3.4480036, 3.4577036399999996, 3.4674036799999994, 3.4771037199999997, 3.48680376, 3.4965037999999997, 3.5062038399999995, 3.5159038799999998, 3.5256039199999996, 3.53530396, 3.5450039999999996, 3.55470404, 3.5644040799999996, 3.5741041199999994, 3.5838041599999997, 3.5935041999999995, 3.6032042399999997, 3.61290428, 3.6226043199999993, 3.6323043599999996, 3.6420044, 3.6517044399999996, 3.66140448, 3.6711045199999996, 3.6808045599999994, 3.6905045999999997, 3.7002046399999995, 3.7099046799999997, 3.71960472, 3.7293047599999998, 3.7390047999999996, 3.7487048399999994, 3.7584048799999996, 3.76810492, 3.7778049599999997, 3.787505, 3.7972050399999997, 3.8069050799999995, 3.8166051199999997, 3.8263051599999995, 3.8360052, 3.84570524, 3.8554052799999994, 3.8651053199999996, 3.8748053599999994, 3.8845053999999997, 3.89420544, 3.9039054799999997, 3.9136055199999995, 3.9233055599999997, 3.9330055999999995, 3.94270564, 3.9524056799999996, 3.96210572, 3.9718057599999996, 3.9815057999999994, 3.9912058399999997, 4.00090588, 4.01060592, 4.02030596, 4.030005999999999, 4.0397060399999996, 4.04940608, 4.05910612, 4.06880616, 4.0785062000000005, 4.08820624, 4.09790628, 4.1076063199999995, 4.11730636, 4.1270064, 4.136706439999999, 4.14640648, 4.15610652, 4.165806559999999, 4.175506599999999, 4.18520664, 4.19490668, 4.20460672, 4.2143067599999995, 4.2240068, 4.233706839999999, 4.243406879999999, 4.25310692, 4.26280696, 4.272507, 4.282207039999999, 4.29190708, 4.30160712, 4.311307159999999, 4.3210072, 4.33070724, 4.340407279999999, 4.350107319999999, 4.35980736, 4.3695074, 4.379207439999999, 4.38890748, 4.39860752, 4.408307559999999, 4.4180076, 4.4277076399999995, 4.43740768, 4.44710772, 4.456807759999999, 4.4665078, 4.47620784, 4.48590788, 4.495607919999999, 4.50530796, 4.515008, 4.524708039999999, 4.5344080799999995, 4.54410812, 4.55380816, 4.563508199999999, 4.57320824, 4.58290828, 4.592608319999999, 4.60230836, 4.6120084, 4.62170844, 4.631408479999999, 4.6411085199999995, 4.65080856, 4.660508599999999, 4.67020864, 4.67990868, 4.689608719999999, 4.69930876, 4.709008799999999, 4.71870884, 4.72840888, 4.73810892, 4.7478089599999995, 4.757509, 4.76720904, 4.776909079999999, 4.78660912, 4.79630916, 4.806009199999999, 4.8157092399999994, 4.82540928, 4.83510932, 4.844809359999999, 4.8545094, 4.86420944, 4.873909479999999, 4.88360952, 4.89330956, 4.9030096, 4.912709639999999, 4.9224096799999995, 4.93210972, 4.941809759999999, 4.9515098, 4.9612098399999995, 4.970909879999999, 4.98060992, 4.990309959999999 ], "xaxis": "x", "y": [ 0.008902471049679127, 0.009935053279996556, 0.01107405868670814, 0.012327995940826805, 0.013705635029925058, 0.015215950241892323, 0.016868053836628122, 0.018671120523370603, 0.020634303065997884, 0.022766639557396186, 0.025076953132466717, 0.027573745122456642, 0.030265082885259278, 0.03315848377095822, 0.03626079689248977, 0.039578084561096655, 0.04311550540848344, 0.04687720134558632, 0.050866190595628975, 0.05508426908106047, 0.05953192243556771, 0.06420825085009275, 0.06911090884339131, 0.0742360618724203, 0.07957836146637294, 0.0851309402828479, 0.09088542814945136, 0.09683198977461979, 0.1029593843947264, 0.10925504717929709, 0.11570519175197114, 0.12229493271282353, 0.12900842657931103, 0.13582902911055272, 0.14273946655537742, 0.14972201798066306, 0.15675870550470372, 0.163831488991443, 0.17092246156551938, 0.1780140421926036, 0.1850891615417861, 0.19213143741031918, 0.1991253361484073, 0.20605631677210995, 0.212910954793026, 0.21967704321825368, 0.22634366867515127, 0.2329012611814763, 0.23934161669955356, 0.24565789226779666, 0.25184457417731676, 0.2578974203369076, 0.2638133786276417, 0.2695904836688168, 0.2752277349816808, 0.280724960027617, 0.2860826659975303, 0.2913018845246679, 0.2963840136730295, 0.3013306616101475, 0.30614349630222115, 0.3108241053717311, 0.3153738699367229, 0.31979385581631437, 0.3240847249500845, 0.3282466692579404, 0.33227936847942563, 0.3361819728014382, 0.33995311033325964, 0.3435909187434138, 0.347093099658401, 0.35045699376292627, 0.3536796739557529, 0.35675805342478134, 0.3596890051232276, 0.36246948886791813, 0.3650966821462217, 0.3675681107121982, 0.3698817751706047, 0.37203626998249417, 0.3740308916647052, 0.3758657333824987, 0.3775417636304208, 0.3790608872401967, 0.38042598752534174, 0.38164094894664474, 0.38271066024160316, 0.38364099848412914, 0.38443879501252975, 0.38511178457091144, 0.38566853934146783, 0.3861183897984002, 0.38647133448502563, 0.3867379409073227, 0.38692923975392957, 0.38705661460304236, 0.38713168917045643, 0.3871662140016749, 0.3871719543271219, 0.38716058059422664, 0.3871435629759009, 0.387132070940894, 0.3871368787666508, 0.38716827768557255, 0.387235995185486, 0.38734912183663345, 0.38751604589128363, 0.3877443957961197, 0.38804099066986414, 0.38841179872575426, 0.3888619035563847, 0.3893954781441544, 0.3900157664106418, 0.390725072070773, 0.39152475451132523, 0.39241523136832496, 0.39339598743506193, 0.3944655894941911, 0.3956217066356646, 0.39686113560111186, 0.39817983068650203, 0.3995729377419803, 0.4010348318318674, 0.40255915815943494, 0.40413887591941516, 0.4057663048141529, 0.40743317405229906, 0.4091306737371041, 0.4108495086384412, 0.4125799544206853, 0.4143119164608801, 0.41603499143063727, 0.41773853182448095, 0.41941171359238255, 0.4210436069710719, 0.4226232505078438, 0.42413972813239786, 0.42558224896223884, 0.42694022933172665, 0.42820337632384103, 0.4293617718682257, 0.43040595626203093, 0.43132700978510397, 0.4321166309312826, 0.4327672096760681, 0.43327189415800577, 0.43362464917564386, 0.43382030499894103, 0.43385459516545966, 0.4337241821744256, 0.4334266703017446, 0.4329606051226458, 0.43232545973589187, 0.43152160811491264, 0.430550286448965, 0.42941354376178986, 0.42811418348399916, 0.4266556979909398, 0.425042198379858, 0.42327834193521097, 0.42136925980674894, 0.4193204873935815, 0.4171378997882744, 0.41482765438855956, 0.4123961424401798, 0.409849950844288, 0.4071958350639794, 0.40444070341766386, 0.40159161247544894, 0.39865577270285957, 0.3956405629507863, 0.3925535518946618, 0.3894025241043627, 0.3861955080975979, 0.38294080351130066, 0.3796470044283832, 0.37632301592851525, 0.3729780610919888, 0.3696216759709327, 0.3662636904426108, 0.3629141933603337, 0.359583481000114, 0.35628198844253806, 0.3530202042056326, 0.3498085691282535, 0.34665736116886064, 0.3435765684055057, 0.3405757530750076, 0.337663909951517, 0.33484932271956275, 0.33213942223014903, 0.32954065063245197, 0.3270583353435412, 0.32469657665662804, 0.32245815249959775, 0.3203444434511528, 0.3183553806170004, 0.31648941837934297, 0.3147435333823722, 0.3131132504246702, 0.3115926952208473, 0.31017467329187737, 0.3088507735689186, 0.30761149466923227, 0.30644639124356565, 0.3053442373173522, 0.3042932031651881, 0.3032810419777995, 0.3022952824076881, 0.3013234230149928, 0.30035312467585723, 0.2993723971565425, 0.2983697762880841, 0.29733448848824445, 0.2962565997561257, 0.2951271466963173, 0.2939382475986371, 0.2926831920914732, 0.2913565083866285, 0.2899540076278543, 0.28847280533137126, 0.2869113203538242, 0.28526925223247424, 0.28354753810703215, 0.2817482907475865, 0.2798747194756988, 0.27793103597496566, 0.2759223471443135, 0.2738545372533791, 0.2717341417189472, 0.2695682148379607, 0.26736419379109694, 0.2651297611764966, 0.2628727082505743, 0.26060080094670973, 0.2583216506173593, 0.25604259130402696, 0.2537705651860627, 0.25151201769502857, 0.24927280360885673, 0.24705810525970742, 0.2448723638022517, 0.2427192242958986, 0.24060149515515633, 0.23852112231754966, 0.23647917826952639, 0.2344758658579997, 0.23251053660087814, 0.2305817229961159, 0.22868718411838693, 0.22682396358859944, 0.2249884588081914, 0.223176500171572, 0.221383438810156, 0.21960424128502493, 0.21783358953573612, 0.21606598431430973, 0.21429585028833215, 0.2125176409880262, 0.2107259417996098, 0.20891556927167235, 0.20708166510128964, 0.20521978329986182, 0.2033259692018714, 0.2013968291684579, 0.19942959004660576, 0.19742214766828226, 0.19537310390535592, 0.19328179202953075, 0.19114829035552477, 0.18897342436404807, 0.1867587577038723, 0.18450657265452464, 0.18221984078923967, 0.1799021847093546, 0.17755783182442855, 0.17519156122680452, 0.17280864475552316, 0.17041478336396818, 0.16801603990061154, 0.16561876938571285, 0.16322954782204663, 0.16085510051833715, 0.15850223083372092, 0.15617775017367314, 0.15388840998571124, 0.1516408364196134, 0.1494414682342639, 0.14729649845310852, 0.14521182019415885, 0.14319297702871112, 0.14124511815616594, 0.13937295861979537, 0.13758074472993675, 0.1358722248058528, 0.1342506252948703, 0.13271863227635142, 0.13127837830823003, 0.12993143452461353, 0.1286788078442816, 0.1275209431018913, 0.12645772986677278, 0.12548851366917618, 0.12461211131148305, 0.12382682990362506, 0.1231304892287657, 0.12252044701862137, 0.12199362669875863, 0.12154654715378088, 0.12117535406145907, 0.1208758523538631, 0.12064353938265225, 0.1204736383946631, 0.12036113196187133, 0.12030079505600232, 0.12028722751064858, 0.12031488567126228, 0.12037811309358504, 0.12047117021180502, 0.12058826295655971, 0.12072357035766948, 0.12087127121468445, 0.1210255699581768, 0.12118072185424081, 0.12133105772265962, 0.12147100834455171, 0.12159512872774675, 0.12169812237762617, 0.12177486568843622, 0.12182043252621877, 0.12183011902136849, 0.12179946852832271, 0.12172429664482366, 0.1216007161161128, 0.12142516138348815, 0.12119441247482071, 0.12090561787982175, 0.12055631600791966, 0.12014445479382771, 0.11966840899734896, 0.11912699474105204, 0.11851948084295781, 0.11784559653160585, 0.11710553517708489, 0.11629995373290927, 0.11542996765799404, 0.11449714117318954, 0.11350347280010187, 0.11245137622808049, 0.1113436566549882, 0.11018348284533597, 0.10897435524226104, 0.10772007055464437, 0.10642468331458933, 0.10509246496149556, 0.10372786105515405, 0.10233544725076678, 0.1009198846830088, 0.09948587540439376, 0.0980381185060717, 0.09658126751801129, 0.0951198896420421, 0.0936584273175207, 0.09220116255767463, 0.09075218442740134, 0.08931535996274925, 0.08789430876086732, 0.08649238139872915, 0.08511264177142489, 0.0837578533774713, 0.08243046952067708, 0.08113262734618666, 0.07986614558289927, 0.07863252582542195, 0.07743295715600104, 0.07626832387992254, 0.0751392161261925, 0.07404594304828167, 0.0729885483465999, 0.07196682782473918, 0.07098034868462802, 0.07002847026147536, 0.06911036589724877, 0.06822504565149251, 0.06737137955040748, 0.06654812107952379, 0.06575393063206518, 0.06498739863447897, 0.06424706808271308, 0.06353145623786877, 0.06283907524777586, 0.062168451481832976, 0.061518143389889694, 0.06088675772163788, 0.0602729639705992, 0.05967550693558732, 0.05909321732207197, 0.05852502033520444, 0.057969942245076844, 0.057427114932025326, 0.05689577844522078, 0.05637528163078757, 0.055865080905982106, 0.05536473727348022, 0.05487391168441757, 0.054392358870896426, 0.053919919778315784, 0.05345651273569997, 0.0530021235086489, 0.052556794385136024, 0.052120612449751975, 0.051693697207612584, 0.05127618772538444, 0.050868229464143516, 0.05046996098694183, 0.050081500733420346, 0.049702934063727104, 0.049334300784697645, 0.048975583381526695, 0.048626696187876885, 0.04828747573532665, 0.04795767252888168, 0.04763694449771795, 0.04732485236906112, 0.047020857207184324, 0.04672432034852018, 0.046434505947568906, 0.04615058632637765, 0.04587165029298456, 0.04559671456174607, 0.045324738371234255, 0.04505464135415304, 0.04478532466927388, 0.04451569535860041, 0.04424469384471628, 0.043971324434477405, 0.04369468864662521, 0.04341402113308631, 0.043128727917246625, 0.042838426627149345, 0.04254298835757925, 0.04224258075156402, 0.04193771184833488, 0.041629274200285685, 0.0413185887144571, 0.0410074476237579, 0.040698155937700195, 0.04039357066138182, 0.04009713700367574, 0.03981292072121407, 0.039545635664239985, 0.03930066550530486, 0.03908407854454659, 0.03890263439967334, 0.03876378130966391, 0.038675642714619575, 0.03864699172758272, 0.03868721209540064, 0.03880624426403549, 0.039014515228042064, 0.03932285096357759, 0.03974237042752782, 0.040284360359513535, 0.040960130453897174, 0.041780848878381974, 0.04275735860400403, 0.04389997557454526, 0.04521827037335771, 0.04672083573009672, 0.04841504293202493, 0.05030679094288642, 0.052400252761978114, 0.054697624247834746, 0.05719888125411717, 0.05990155144687576, 0.06280050755979147, 0.06588778906588574, 0.06915245927213293, 0.07258050465372959, 0.07615478281979583, 0.0798550248323511, 0.08365789668421575, 0.08753712358798858, 0.09146367935674105, 0.09540604159644059, 0.0993305117206903, 0.10320159698787953, 0.10698244990634186, 0.1106353585156147, 0.11412227929787662, 0.11740540286863231, 0.12044774120459607, 0.12321372404905759, 0.1256697913427082, 0.1277849681036149, 0.1295314081520889, 0.13088489346187943, 0.1318252767168587, 0.13233685584840235, 0.13240867089054736 ], "yaxis": "y" } ], "layout": { "barmode": "overlay", "hovermode": "closest", "legend": { "traceorder": "reversed" }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "xaxis": { "anchor": "y2", "domain": [ 0.0, 1.0 ], "title": { "text": "Median Price" }, "zeroline": false }, "yaxis": { "anchor": "free", "domain": [ 0.0, 1 ], "position": 0.0, "title": { "text": "Density" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# drop unlabeled data in train/test dataset\n", "df = df[df[target_col].notna()]\n", "\n", "\n", "df[target_col]\n", "fig = ff.create_distplot([df[target_col]], group_labels=[target_col], show_hist=False, show_rug=False)\n", "fig.update_layout(\n", " xaxis_title=target_col,\n", " yaxis_title=\"Density\",\n", " showlegend=False)\n", "fig.update_xaxes()\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "13e6e81a", "metadata": {}, "source": [ "We now separate the targets (`y`) from the training features (`X`) and split the dataset into training (70%) and test (30%) datasets. The training set will be used to create a Machine Learning model using Oracle AutoMLx, and the test set will be used to evaluate the model's performance on unseen data." ] }, { "cell_type": "code", "execution_count": 6, "id": "1830d9bc", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:36:38.261724Z", "iopub.status.busy": "2025-04-25T10:36:38.261082Z", "iopub.status.idle": "2025-04-25T10:36:38.307527Z", "shell.execute_reply": "2025-04-25T10:36:38.307006Z" } }, "outputs": [ { "data": { "text/plain": [ "((14448, 8), (6192, 8))" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_full = df.drop(target_col, axis=1)\n", "y_full = df[target_col]\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(X_full, y_full, test_size=0.3, random_state=7)\n", "\n", "X_train.shape, X_test.shape" ] }, { "cell_type": "markdown", "id": "b2542f6e", "metadata": {}, "source": [ "\n", "## AutoML" ] }, { "cell_type": "markdown", "id": "2a9cca1e", "metadata": {}, "source": [ "\n", "### Setting the execution engine\n", "The AutoMLx package offers the function `init`, which allows to initialize the parallelization engine." ] }, { "cell_type": "code", "execution_count": 7, "id": "7d089dd1", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:36:38.309474Z", "iopub.status.busy": "2025-04-25T10:36:38.308941Z", "iopub.status.idle": "2025-04-25T10:36:43.680294Z", "shell.execute_reply": "2025-04-25T10:36:43.679595Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:38,599] [automlx.backend] Overwriting ray session directory to /tmp/lp_0i5w4/ray, which will be deleted at engine shutdown. If you wish to retain ray logs, provide _temp_dir in ray_setup dict of engine_opts when initializing the AutoMLx engine.\n" ] } ], "source": [ "init(engine='ray')" ] }, { "cell_type": "markdown", "id": "5bc95110", "metadata": {}, "source": [ "\n", "### Create an instance of Oracle AutoMLx\n", "\n", "The Oracle AutoMLx solution provides a pipeline that automatically finds a tuned model given a prediction task and a training dataset. In particular it allows to find a tuned model for any supervised prediction task, for example, classification or regression, where the target can be binary, categorical or real-valued.\n", "\n", "AutoML consists of five main steps:\n", "- **Preprocessing** : Clean, impute, engineer, and normalize features.\n", "- **Algorithm Selection** : Identify the right regression algorithm -in this notebook- for a given dataset, choosing from amongst:\n", " - AdaBoostRegressor\n", " - DecisionTreeRegressor\n", " - ExtraTreesRegressor\n", " - KNeighborsRegressor\n", " - LGBMRegressor\n", " - LinearSVR\n", " - LinearRegression\n", " - RandomForestRegressor\n", " - SVR\n", " - XGBRegressor\n", " - TorchMLPRegressor\n", "- **Adaptive Sampling** : Select a subset of the data samples for the model to be trained on.\n", "- **Feature Selection** : Select a subset of the data features, based on the previously selected model.\n", "- **Hyperparameter Tuning** : Find the right model parameters that maximize score for the given dataset.\n", "\n", "\n", "All these pieces are readily combined into a simple AutoML pipeline which automates the entire Machine Learning process with minimal user input/interaction." ] }, { "cell_type": "markdown", "id": "29f937eb", "metadata": {}, "source": [ "\n", "### Train a model using Oracle AutoMLx\n", "\n", "The AutoMLx API is quite simple to work with. We create an instance of AutoMLx pipeline. Next, the training data is passed to the `fit()` function which successively executes the previously mentioned modules." ] }, { "cell_type": "code", "execution_count": 8, "id": "68215d8c", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:36:43.683393Z", "iopub.status.busy": "2025-04-25T10:36:43.682870Z", "iopub.status.idle": "2025-04-25T10:38:25.792696Z", "shell.execute_reply": "2025-04-25T10:38:25.792007Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:43,786] [automlx.interface] Dataset shape: (14448,8)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:47,477] [sanerec.autotuning.parameter] Hyperparameter epsilon autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:47,980] [sanerec.autotuning.parameter] Hyperparameter repeat_quality_threshold autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:47,990] [sanerec.autotuning.parameter] Hyperparameter scope autotune range is set to its validation range. This could lead to long training times\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:48,062] [automlx.data_transform] Running preprocessing. Number of features: 9\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:48,219] [automlx.data_transform] Preprocessing completed. Took 0.157 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:48,243] [automlx.process] Running Model Generation\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:48,290] [automlx.process] KNeighborsRegressor is disabled. The KNeighborsRegressor model is only recommended for datasets with less than 10000 samples and 1000 features.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:48,291] [automlx.process] SVR is disabled. The SVR model is only recommended for datasets with less than 10000 samples and 1000 features.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:48,292] [automlx.process] Model Generation completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:36:48,354] [automlx.model_selection] Running Model Selection\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:37:11,017] [automlx.model_selection] Model Selection completed - Took 22.663 sec - Selected models: [['LGBMRegressor']]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:37:11,044] [automlx.adaptive_sampling] Running Adaptive Sampling. Dataset shape: (14448,9).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:37:13,777] [automlx.trials] Adaptive Sampling completed - Took 2.7323 sec.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:37:13,886] [automlx.feature_selection] Starting feature ranking for LGBMRegressor\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:37:21,712] [automlx.feature_selection] Feature Selection completed. Took 7.846 secs.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:37:21,752] [automlx.trials] Running Model Tuning for ['LGBMRegressor']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:10,028] [automlx.trials] Best parameters for LGBMRegressor: {'num_leaves': 31, 'boosting_type': 'gbdt', 'subsample': 1, 'colsample_bytree': 0.7952797110155084, 'max_depth': 63, 'reg_alpha': 0, 'reg_lambda': 0, 'n_estimators': 376, 'learning_rate': 0.1, 'min_child_weight': 0.001}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:10,029] [automlx.trials] Model Tuning completed. Took: 48.277 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:22,207] [automlx.interface] Re-fitting pipeline\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:22,221] [automlx.final_fit] Skipping updating parameter seed, already fixed by FinalFit_dff48243-0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:24,366] [automlx.interface] AutoMLx completed.\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "est1 = automlx.Pipeline(task='regression')\n", "est1.fit(X_train, y_train)" ] }, { "cell_type": "markdown", "id": "15a6bd05", "metadata": {}, "source": [ "A model is then generated (`est1`) and can be used for prediction tasks. We use the `mean_squared_error` scoring metric to evaluate the performance of this model on unseen data (`X_test`)." ] }, { "cell_type": "code", "execution_count": 9, "id": "9dbeef9e", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:25.795163Z", "iopub.status.busy": "2025-04-25T10:38:25.794594Z", "iopub.status.idle": "2025-04-25T10:38:27.832407Z", "shell.execute_reply": "2025-04-25T10:38:27.831686Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean squared error on test data : 0.20077191793995566\n" ] } ], "source": [ "y_pred = est1.predict(X_test)\n", "score_default = mean_squared_error(y_test, y_pred)\n", "\n", "print(f'Mean squared error on test data : {score_default}')" ] }, { "cell_type": "markdown", "id": "ebfbb529", "metadata": {}, "source": [ "\n", "### Analyze the AutoMLx optimization process\n", "\n", "During the Oracle AutoMLx process, a summary of the optimization process is logged, containing:\n", "- Information about the training data.\n", "- Information about the AutoMLx Pipeline, such as:\n", " - Selected features that the pipeline found to be most predictive in the training data;\n", " - Selected algorithm that was the best choice for this data;\n", " - Selected hyperparameters for the selected algorithm." ] }, { "cell_type": "markdown", "id": "5f6b14fc", "metadata": {}, "source": [ "AutoMLx provides a `print_summary` API to output all the different trials performed." ] }, { "cell_type": "code", "execution_count": 10, "id": "8fecb5f2", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:27.834684Z", "iopub.status.busy": "2025-04-25T10:38:27.834170Z", "iopub.status.idle": "2025-04-25T10:38:27.899003Z", "shell.execute_reply": "2025-04-25T10:38:27.898460Z" } }, "outputs": [ { "data": { "text/html": [ "
General Summary
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
(14448, 8)
None
RepeatedKFoldSplit(Shuffle=True, Seed=7, number of splits=5, number of repeats=2)
neg_mean_squared_error
LGBMRegressor
{'num_leaves': 31, 'boosting_type': 'gbdt', 'subsample': 1, 'colsample_bytree': 0.7952797110155084, 'max_depth': 63, 'reg_alpha': 0, 'reg_lambda': 0, 'n_estimators': 376, 'learning_rate': 0.1, 'min_child_weight': 0.001}
25.2.1
3.9.21 (main, Dec 11 2024, 16:24:11) \\n[GCC 11.2.0]
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trials Summary
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Step# Samples# FeaturesAlgorithmHyperparametersScore (neg_mean_squared_error)All MetricsRuntime (Seconds)Memory Usage (GB)Finished
Model Selection{1: 4000, 2: 4000, 3: 4000, 4: 4000, 6: 4000, 5: 4000, 7: 4000, 8: 4000, 10: 4000, 9: 4000}8LGBMRegressor{'num_leaves': 31, 'boosting_type': 'gbdt', 'subsample': 1, 'colsample_bytree': 1, 'max_depth': 63, 'reg_alpha': 0, 'reg_lambda': 0, 'n_estimators': 100, 'learning_rate': 0.1, 'min_child_weight': 0.001}-0.249{'neg_mean_squared_error': -0.2490324005700733}4.82040.3142Fri Apr 25 03:36:57 2025
Model Selection{1: 4000, 2: 4000, 3: 4000, 4: 4000, 6: 4000, 7: 4000, 5: 4000, 8: 4000, 10: 4000, 9: 4000}8XGBRegressor{'n_estimators': 100, 'min_child_weight': 1, 'reg_alpha': 0, 'booster': 'gbtree', 'max_depth': 6, 'learning_rate': 0.1, 'reg_lambda': 1}-0.2605{'neg_mean_squared_error': -0.2604646831437227}6.70720.3330Fri Apr 25 03:37:02 2025
Model Selection{1: 4000, 2: 4000, 3: 4000, 4: 4000, 5: 4000, 6: 4000, 7: 4000, 8: 4000, 9: 4000, 10: 4000}8RandomForestRegressor{'n_estimators': 100, 'min_samples_split': 0.0003, 'min_samples_leaf': 0.00015, 'max_features': 0.777777778}-0.3021{'neg_mean_squared_error': -0.3021340026929764}12.11820.3436Fri Apr 25 03:36:59 2025
Model Selection{1: 4000, 2: 4000, 4: 4000, 3: 4000, 6: 4000, 5: 4000, 7: 4000, 8: 4000, 9: 4000, 10: 4000}8ExtraTreesRegressor{'n_estimators': 100, 'min_samples_split': 0.00125, 'min_samples_leaf': 0.000625, 'max_features': 0.777777778}-0.3025{'neg_mean_squared_error': -0.3025185088921889}4.01680.2891Fri Apr 25 03:36:57 2025
Model Selection{1: 4000, 2: 4000, 3: 4000, 5: 4000, 4: 4000, 6: 4000, 7: 4000, 8: 4000, 9: 4000, 10: 4000}8DecisionTreeRegressor{'min_samples_split': 0.004, 'min_samples_leaf': 0.002, 'max_features': 1.0}-0.4589{'neg_mean_squared_error': -0.4589419999457891}2.57770.2825Fri Apr 25 03:36:56 2025
Model Selection{3: 4000, 2: 4000, 6: 4000, 1: 4000, 4: 4000, 5: 4000, 8: 4000, 7: 4000, 9: 4000, 10: 4000}8AdaBoostRegressor{'learning_rate': 0.667, 'n_estimators': 50}-0.6038{'neg_mean_squared_error': -0.6038106242123971}6.08820.2775Fri Apr 25 03:36:56 2025
Model Selection{2: 4000, 1: 4000, 6: 4000, 4: 4000, 3: 4000, 5: 4000, 7: 4000, 9: 4000, 10: 4000, 8: 4000}8TorchMLPRegressor{'optimizer_class': 'Adam', 'shuffle_dataset_each_epoch': True, 'optimizer_params': {}, 'criterion_class': None, 'criterion_params': {}, 'scheduler_class': None, 'scheduler_params': {}, 'batch_size': 128, 'lr': 0.001, 'epochs': 18, 'input_transform': 'auto', 'tensorboard_dir': None, 'use_tqdm': None, 'prediction_batch_size': 128, 'prediction_input_transform': 'auto', 'shuffling_buffer_size': None, 'depth': 4, 'num_logits': 1000, 'div_factor': 2, 'activation': 'ReLU', 'dropout': 0.1}-2.4536{'neg_mean_squared_error': -2.4536325523119644}114.00480.6130Fri Apr 25 03:37:10 2025
Model Selection{1: 4000, 2: 4000, 3: 4000, 4: 4000, 5: 4000, 6: 4000, 7: 4000, 8: 4000, 9: 4000, 10: 4000}8LinearSVR{'C': 1.0}-3.3478{'neg_mean_squared_error': -3.347771732858513}1.44160.3151Fri Apr 25 03:36:58 2025
Model Selection{1: 4000, 2: 4000, 3: 4000, 4: 4000, 5: 4000, 6: 4000, 7: 4000, 8: 4000, 9: 4000, 10: 4000}8LinearRegression{}-3.5573{'neg_mean_squared_error': -3.5573203151697577}0.61690.3101Fri Apr 25 03:36:57 2025
Adaptive Sampling{1: 11558, 2: 11558, 3: 11558, 4: 11559, 5: 11559, 6: 11558, 7: 11558, 8: 11558, 9: 11559, 10: 11559}8AdaptiveSamplingStage_LGBMRegressor{'num_leaves': 31, 'boosting_type': 'gbdt', 'subsample': 1, 'colsample_bytree': 1, 'max_depth': 63, 'reg_alpha': 0, 'reg_lambda': 0, 'n_estimators': 100, 'learning_rate': 0.1, 'min_child_weight': 0.001}-0.2183{'neg_mean_squared_error': -0.21828611974711234}2.70490.6072Fri Apr 25 03:37:13 2025
..............................
Model Tuning{1: 11558, 2: 11558, 3: 11558, 4: 11559, 5: 11559, 6: 11558, 7: 11558, 8: 11558, 9: 11559, 10: 11559}6LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 9.999999990000003e-07, 'reg_lambda': 1e-10, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.1075{'neg_mean_squared_error': -1.1074975253749682}0.90450.6196Fri Apr 25 03:37:39 2025
Model Tuning{1: 11558, 2: 11558, 3: 11558, 4: 11559, 5: 11559, 6: 11558, 7: 11558, 9: 11559, 8: 11558, 10: 11559}6LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1e-10, 'reg_lambda': 1.7784127779939314e-05, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.1075{'neg_mean_squared_error': -1.1074975274208296}0.87450.6196Fri Apr 25 03:37:41 2025
Model Tuning{1: 11558, 2: 11558, 3: 11558, 4: 11559, 5: 11559, 6: 11558, 7: 11558, 8: 11558, 9: 11559, 10: 11559}6LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1e-10, 'reg_lambda': 1.8784127778939314e-05, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.1075{'neg_mean_squared_error': -1.1074975275461456}0.78520.6196Fri Apr 25 03:37:41 2025
Model Tuning{1: 11558, 2: 11558, 3: 11558, 5: 11559, 4: 11559, 6: 11558, 7: 11558, 9: 11559, 8: 11558, 10: 11559}6LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1.7784127779939314e-05, 'reg_lambda': 1e-10, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.1075{'neg_mean_squared_error': -1.1074975277105636}0.83800.6196Fri Apr 25 03:37:40 2025
Model Tuning{1: 11558, 2: 11558, 3: 11558, 4: 11559, 5: 11559, 6: 11558, 7: 11558, 9: 11559, 8: 11558, 10: 11559}6LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1.8784127778939314e-05, 'reg_lambda': 1e-10, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.1075{'neg_mean_squared_error': -1.1074975278443453}0.96360.6196Fri Apr 25 03:37:40 2025
Model Tuning{1: 11558, 2: 11558, 3: 11558, 4: 11559, 5: 11559, 6: 11558, 7: 11558, 8: 11558, 9: 11559, 10: 11559}6LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1e-10, 'reg_lambda': 0.005623553830557401, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.1075{'neg_mean_squared_error': -1.107498217910651}0.79350.6196Fri Apr 25 03:37:41 2025
Model Tuning{1: 11558, 2: 11558, 3: 11558, 4: 11559, 5: 11559, 6: 11558, 7: 11558, 8: 11558, 9: 11559, 10: 11559}6LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 1e-10, 'reg_lambda': 0.0056245538305564015, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.1075{'neg_mean_squared_error': -1.1074982180406503}0.84470.6196Fri Apr 25 03:37:42 2025
Model Tuning{1: 11558, 2: 11558, 3: 11558, 4: 11559, 5: 11559, 7: 11558, 6: 11558, 9: 11559, 8: 11558, 10: 11559}6LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 0.005623553830557401, 'reg_lambda': 1e-10, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.1075{'neg_mean_squared_error': -1.1074982822779325}0.87520.6196Fri Apr 25 03:37:40 2025
Model Tuning{2: 11558, 1: 11558, 3: 11558, 4: 11559, 5: 11559, 6: 11558, 7: 11558, 8: 11558, 9: 11559, 10: 11559}6LGBMRegressor{'num_leaves': 7, 'boosting_type': 'gbdt', 'subsample': 0.4, 'colsample_bytree': 0.4, 'max_depth': 2, 'reg_alpha': 0.0056245538305564015, 'reg_lambda': 1e-10, 'n_estimators': 5, 'learning_rate': 0.1, 'min_child_weight': 0.001}-1.1075{'neg_mean_squared_error': -1.1074982824185997}0.91600.6196Fri Apr 25 03:37:40 2025
Model TuningNone0LGBMRegressorNone-infNone2.08350.6214-1
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "est1.print_summary()" ] }, { "cell_type": "markdown", "id": "86f3295e", "metadata": {}, "source": [ "We also provide the capability to visualize the results of each stage of the AutoMLx pipeline." ] }, { "cell_type": "markdown", "id": "b6038067", "metadata": {}, "source": [ "\n", "#### Algorithm Selection\n", "\n", "The plot below shows the scores predicted by Algorithm Selection for each algorithm. The horizontal line shows the average score across all algorithms. Algorithms below the line are colored turquoise, whereas those with a score higher than the mean are colored teal." ] }, { "cell_type": "code", "execution_count": 11, "id": "b276efc5", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:27.900926Z", "iopub.status.busy": "2025-04-25T10:38:27.900503Z", "iopub.status.idle": "2025-04-25T10:38:28.181222Z", "shell.execute_reply": "2025-04-25T10:38:28.180636Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3EAAANRCAYAAABN2DV6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsq0lEQVR4nOzdeVxUZf//8fcAAiKCCwoqoJILZuWuqSlqbndqrmVauVTf9HuruaSlZd5qmZW3ltlipeXWneZ6u5RbqZmmhktqKuaGu4kLuCLC9fvDH/NtAhScgfHA6/l48Libc65zrs9cM8497znnXMdmjDECAAAAAFiCh7sLAAAAAABkHiEOAAAAACyEEAcAAAAAFkKIAwAAAAALIcQBAAAAgIUQ4gAAAADAQghxAAAAAGAhhDgAAAAAsBBCHAAAAABYCCEOALLJyJEjZbPZ1KhRI3eXctdsNptsNpvWrl17V9tPmzZNNptNZcqUcWldeUWjRo1ks9k0cuRId5eSJWXKlJHNZtO0adPcXco9oUePHrLZbOrRo4dL98u/LyDvIsQBQCZcuHBB+fPnt4eaP/74w90ludXFixc1cuRIjRw5UhcvXnR3Odnu7NmzGjNmjB555BEFBQUpX758CgoKUuXKldWmTRu9++672rhxo7vLzHbTpk3TyJEj7zrU34uOHDli/3d9N3+5aSwAWIeXuwsAACv4+uuvdf36dfvjL7/8UmPHjnVjRTmjYsWKkiQ/Pz+H5RcvXtSoUaMk3TrKUKhQoZwuLcf88MMPevLJJ3X+/Hn7sgIFCigpKUl79uzRnj17tHTpUkmSMcZdZeaIadOmad26dZJ02yPM9913n3x9fRUYGJhDld09T09PBQcHp7suPj5e169fl4eHh4oVK5ZuG29v7zv2UaJECVWsWFElSpRwqlYASEWIA4BMmDp1qiSpX79+mjRpkqZPn6633npLnp6ebq4se+3bt8/dJbjV0aNH1a5dO12+fFllypTRiBEj1L59e3tojY+P1+bNm7V48WL95z//cW+x95AffvjB3SVkWlhYmE6fPp3uuh49emj69OkKCwvTkSNH7rqPsWPH5okffQDkHE6nBIA72LZtm3bs2KFChQrpvffeU9myZXXq1Cl999137i4N2eyzzz7T5cuX5e3trXXr1qlnz54ORx0DAwPVvHlzffTRRzpx4oT7CgUA5CmEOAC4g9SjcJ07d5avr6+6desm6dYplc7673//qyZNmqhQoULy9/dXlSpV9N577ykpKSlTE6OsXbtWTzzxhEqVKiUfHx8FBQXp0Ucf1VdffaXk5OR0t/n7fufPn6/mzZurePHi8vDwcJhEI73rfho1aqSyZcvaH5ctW9bhGqHb1bt161Y9+eSTKlGihHx8fBQREaFBgwbpwoULmap18eLFevTRR1W0aFEFBASoXr16WrRokcM2M2fOVP369VW4cGH5+/urYcOGd31kaMeOHZKkqlWrKjw8/LZt8+fPn+G6lJQUff3113rssccUHBwsb29vFStWTM2bN9c333zj1GmYu3fv1osvvqjy5cvLz89P/v7+euihh/T6668rLi7uttteuXJFEyZMUFRUlIKCguTt7a3Q0FBFRUVp/PjxOnPmjKT/m0Aj9VTKUaNGpbk27K9Hqu40sUlycrK+/PJLNWnSREFBQfLx8VGpUqX0xBNP3PYas79O9GKM0RdffKE6deooICBABQsWVN26dTVr1qwsjd/d+uu1dEeOHNHBgwf14osvqmzZsvLx8XGYbOR2E5tcuHBBU6dO1ZNPPqkHH3xQRYoUka+vr0qXLq2uXbtq06ZNd13j5s2b9fTTT6ts2bLy9fVVgQIFVLp0aUVFRenNN9/U8ePH73rfANzMAAAydO3aNVOoUCEjyWzYsMEYY8zBgweNzWYzXl5e5vTp0xlu+69//ctIMlFRUemuf/nll40k+1+hQoWMl5eXkWQaNmxoXnvttdtuP3DgQPu2NpvNFCpUyHh6etqXNWnSxCQkJNy2rkGDBtm3L1y4sPH09DT/+te/7G1T97VmzRr7svbt25ugoCD7uqCgIBMcHGz/a9++vb3tV199ZSSZ0qVLm6+//trky5fPSDKBgYHGw8PDvo/KlSubS5cu3bbWESNGGEnGw8PDBAYGOozd5MmTTUpKiunevbuRZLy8vEzBggXt6z09Pc3SpUszfK0y8thjjxlJJjQ01KSkpGR5e2OMOXfunGnYsKFDvX+v//HHHzeJiYlpto2KijKSHF6Tv3r33XcdxtHPz894e3vbH5coUcJs27Yt3W23bt1qwsLC7G09PDxMkSJFjI+Pj33Z+++/b4wxZvbs2SY4ONj++hUoUMDhNQ8ODjZHjx6177t06dJGkvnqq6/S9Hvx4kXTqFEjh9emUKFCxmaz2ZcNHjw43ZpTx2P48OGmbdu29tc6ICDAYTxHjBhx+xclk1LfT6VLl06z7vDhw/b+vv76a+Pv729/DQoUKOCwTep+unfvnmY/qe/x1LEoXLiww2tgs9nMxIkT063vr/++/m7atGkOY+rj45NmnNJ7fQBYAyEOAG5j1qxZRpIpV66cw/IGDRoYSea9997LcNvbhbhvvvnG/kWqa9eu5vjx48aYW6Hx888/N76+vqZw4cIZbj9p0iT79i+++KI5deqUMcaYy5cvm/fff98eBjt37pxhXalfOl999VXz559/GmOMuX79ujly5Ii9bXohzhjHL7CHDx/OcAxSv2T6+fkZHx8f88ILL9i/7F+5csV89NFH9mDwxhtvZFhrYGCg8fT0NGPGjDEXL140xhhz/Phx06JFCyPJFCxY0IwYMcLkz5/fTJ482Vy5csUYY8z+/ftNzZo1jSQTHh5ukpOTM6w1PSNHjrQ/z0GDBpnLly9nafubN2/ag0fVqlXNkiVL7LVdvnzZTJ8+3RQvXtxIMgMGDEiz/e1C3JQpU+yv45gxY+zvgZs3b5ro6GjTpEkTewD9e0A+evSoPYiHhYWZ2bNn2+tKSUkxv//+uxk5cqSZNWtWpuv5q9uFuI4dOxpJxtvb23z44Yf2fk+dOmWee+45+3h/+umnGY5H4cKFTWBgoJk2bZq5evWqMcaYY8eOmTZt2tgD6f79+29bY2ZkNsT5+/ubOnXqmF9//dW+PiYmJs1+0gtxn332mfnXv/5loqOj7UE+JSXFHDp0yPTv39/YbDbj6emZbhjPKMRduXLF/iPGM888Yw4cOGBfd/nyZRMdHW2GDBlili1blsURAXCvIMQBwG00btzYSDKjR492WP7FF18YSSYyMjLDbTMKcSkpKaZcuXJGkmnWrFm6R3hSv5ylt/3Vq1dNkSJFjCTTpUuXdPv+8MMP7dtHR0enW1dqMLkdV4W4jL7AGmPsRwP/HpT/Xutbb72VZn18fLwpUKCAvc3fQ4cxxhw4cMC+fv369bd9vn939uxZU7JkSfv2BQoUMC1btjRvvPGGWbRokTlz5sxtt58xY4b9fZIaPv8uOjra2Gw24+3tnWZ/GYWmhIQE+xHi5cuXp7vfpKQkU6NGDYcjaqmeeeYZI8kULVrU4QjanTgb4jZt2mQfy88++yzdbVNDXlBQkLl27Vq6/UsyP/74Y5ptr1+/bn+90nu/ZFVmQ1zp0qXTPZL89/1k9G/gdvr06WMkmeeffz7NuoxC3ObNm+3v16SkpCz3CeDexzVxAJCBQ4cOae3atbLZbHr22Wcd1j355JPKnz+/9u3bl+X7g+3YsUMHDhyQJL322muy2Wxp2nTv3j3Da7BWrVpln+4+o5tA//Of/7RPZ57RrIkeHh569dVXs1S7M4YPH57u8rZt20qSDhw4oKtXr6bbxtfXVwMGDEizPCAgQHXr1pUkhYeHq2vXrmna3HfffSpXrpwkaefOnVmqOSgoSD///LOaNWsm6dY1ZMuXL9ebb76pdu3aKTg4WDVr1tS0adOUkpKSZvvU6yn/93//N8Pp9mvUqKHKlSvrxo0bWrNmTabqmj9/vi5evKhq1aqpRYsW6bbx8vJSly5dJEkrVqywL79y5YrmzJkjSRo6dKjCwsIy1acrpPYbGhqqF154Id02b775piQpLi5Oq1atSrdN/fr11bhx4zTLfXx87OOR1dfaGX379pW/v3+27LtVq1aSpJ9//jnT26ROvnPjxg2dO3cuO8oC4GaEOADIwFdffSVjjBo0aOAwSYF0Kzy0a9dO0v99Uc+sbdu2SZLy5cunevXqpdvGZrMpKioq3XXR0dGSbk2NXqFChXTbeHp6qkmTJg7t/65cuXIqXrx4lmq/W0WKFLEHqb8rWbKk/b8zmuDk/vvvV4ECBdJdl3qPr5o1a6YbiP/aJqP9307ZsmW1cuVK7dmzR++8847atm3rELC3bt2qnj176h//+IfDvQSTk5Ptk1KMHDlSISEhGf7FxMRIkmJjYzNV04YNGyRJe/fuve1+R48enWa/0dHRSkpKkiS1adMmy+PhjNT3YuPGjeXhkf5XkEqVKqlUqVIO7f+uTp06GfaR+n766339slv9+vWd2v7QoUMaPHiwatSooUKFCsnT09M+acpjjz0mSVmahOS+++5TZGSkkpKSVKdOHb377rvasWNHhpMdAbAe7hMHAOlISUmxz6yXOhvl33Xv3l3ffPONvv32W02cODHTv8SfPXtWklS0aNHb3ig49Yvs3/3555+3XZ8qNDTUof3f5VSAk6SCBQtmuM7L6//+ryg1XNzN9plpk9H+M6NSpUqqVKmS/fHp06f13//+V2PHjlVsbKxWrlyp4cOH69///rekWyEiMTFRUubDY0ZHIv/u5MmTkqTr1687BMfM7Pev90QrXbp0pvpzlay8d0+cOJHheze7X+uscubf0sKFC9WlSxf7e0W69SORr6+vbDabbty4oQsXLujKlSuZ3qenp6dmz56t9u3b6/Dhwxo6dKiGDh0qPz8/1atXTx06dFD37t3l5+d313UDcC+OxAFAOlasWGH/5fuFF15IM526zWZTy5YtJUmXL1/Wt99+m+U+MjpqlFNy+43Ks1tISIh69eqlzZs327/Ef/nll/bTKv961OP777+XuXUd+m3/Mjo99u9S9925c+dM7fev0/+7+32XG93tv6Vz586pR48eSkxMVJMmTbR27VpdvXpV8fHxOnPmjE6fPq25c+fe1b6rVKmiffv2af78+XrxxRf1wAMP6Nq1a1q9erX++c9/KjIyUrt27bqrfQNwP0IcAKQjq6dIZqV9sWLFJN265ufGjRsZtsvo5tGpgeFOp1elrs/JI255UXBwsP26vgsXLjgcaU09KpTZ0yQzKyQk5K73m7rt3W7vDN67jr777jslJCSocOHCWrJkiaKiotLcb/CvR06zytvbWx06dNBnn32mXbt26ezZs5o8ebKKFCmiY8eOqXv37s4+BQBuQogDgL85e/asFi9eLEmaN2+eLl26lOHfli1bJEkbN260X9d0J9WrV5d063SvjCZFMcbop59+SnddzZo1Jd36ort///502yQnJ9snyahVq1am6sqKv17PZJy4UXVu8ddTaX18fCTduuaxdu3akqQlS5a4tL/Ua7C2bt2qU6dOZWnbmjVr2k/jzWpdqa/73b7mqe/dNWvWpDsRjCTt27fP/gNGdrx37yXHjh2TJFWsWDHDUxtXr17tsv6KFi2qXr166d1335Ukbd++nYlPAIsixAHA38ycOVNJSUkKDAxUmzZt5O/vn+FfrVq1FBkZKSnzR+OqVq1qn+TjnXfeSfcL8axZszI8StKsWTMVLVpUUsazU3722Wf266ZSZyh0pYCAAPt/X7x40eX7v1esX7/+jtepXb58WQsWLJB0axKU1JkBJenFF1+UdOuIy3fffXfb/WRlIo4nnnhChQoVUlJSkgYNGnTbUJWSkuLwGvn5+empp56SdOv9lxokMiP1db/b1zy13xMnTmjKlCnpthkxYoSkWzODNm3a9K76sYrUGUv379+f7rWNO3bsyHB22dv56/V16fnr0b6MJpgBcG/jXy4A/E1qGGvbtu1tJx5J9cQTT0iSZsyYoZs3b96xvc1m06hRoyTduvaue/fuDhNVTJ06Vb169VLhwoXT3T5//vz28PbNN9+od+/eOnPmjKRbE1h8+OGH9un4O3furBo1atyxpqwqVKiQfXKKr776KlPP24omTpyo8PBw9evXT6tXr1ZCQoJ9XUJCgr799lvVq1fPHrhffvllh+2feeYZNW3aVMYYtW/fXm+99Zb9tZZuTfe/Zs0a9enTRxEREZmuq1ChQvrggw8kSbNnz1arVq20efNm+9GtlJQU7d27V+PHj1flypW1dOlSh+3HjBmjoKAgnTt3TvXr19e3336ra9euSbp1lG337t0aMmSIZs6c6bDdAw88IOlWKM3odN/bqV27tjp27ChJ6tevnz766CN7SD59+rT+53/+x34N2JtvvilfX98s92ElzZs3l4eHh86fP6+nn37aPqY3btzQt99+q+bNm992EpeMzJ49W/Xr19dnn32mQ4cO2ZcnJydrxYoVGjp0qCSpbt26GX7OALi3EeIA4C82bdqkPXv2SPq/cHYnqe3OnDmjZcuWZWqbrl272oPWzJkzFRoaqiJFiiggIEAvvPCC6tatq969e0tSul9k+/btq4EDB0q6ddStRIkSKlKkiAIDA9W/f38lJSWpcePG+uKLLzJVz91IrW/SpEny9/dXeHi4ypQpYz/akhvky5dP586d00cffaRmzZopMDBQAQEBKliwoAIDA9W5c2ft2rXLfs+9Pn36OGzv6emp+fPnq3Xr1rpx44beeOMNlSpVSoGBgSpcuLAKFiyoJk2a6JNPPsnS7IPSrdlRP/30U3l7e+v777/Xww8/LD8/PwUFBcnX11f333+/Bg8erH379qWZzCQ0NFQrVqxQqVKldOzYMXXu3FkFCxZUUFCQ/Pz89OCDD+rf//53mlPtunfvLl9fXx04cEDh4eEKCQlRmTJlVKZMmUxPgT916lRFRUXpxo0b6tevnwIDA1WkSBGVLFnSfnRu8ODB9vdXbla+fHkNGTJEkrRgwQKFhoaqUKFC8vf3V+fOneXv768PP/wwy/s1xmjjxo3q3bu37rvvPvn6+iooKEje3t5q2bKljh8/rpIlS+rLL7909VMCkEMIcQDwF6lH4QIDA9W8efNMbfPggw/ap57PygQn77//vhYsWKBGjRqpYMGCSkxMVKVKlTRu3DitWLHC/qX+r6fn/dWECRP0448/qmPHjgoODtbly5dVsGBBNW7cWF9++aVWrVp1V7/iZ9Zrr72miRMnqmbNmsqXL5+OHz+u2NhYpyZiuNfMnDlTP/74o4YNG6ZHH31UoaGhunHjhq5fv67ChQurVq1aGjhwoLZv36533nkn3X0EBARoyZIl+u6779S5c2eFh4crMTFRV69eValSpdS8eXONHTs209dU/lXv3r0VExOjwYMHq0qVKvLx8dHFixfl7++vmjVrql+/flq1alW6p9RWr15de/fu1TvvvKOHH35YBQsW1KVLl1SsWDE1atRIEyZMSHPz9PLly2vNmjV6/PHHVaxYMZ07d06xsbGKjY3N9NHYwMBA/fDDD5o6dar9vX/58mWFhISoY8eOWrNmjcaNG5flsbCqd955RzNmzFDt2rWVP39+JSUlqVy5cnrttde0fft2h/soZtbjjz+uGTNmqGfPnqpSpYoCAwMVHx+vggULqnbt2nrzzTf1+++/208FB2A9NsMV6QBwT6pfv742btyo0aNH64033nB3OQAA4B7BkTgAuAetW7fOPnNl6v3oAAAAJEIcALhNnz59NG3aNJ0+fdo+u+DFixf12Wef2e871qRJk1w/zToAAMgaTqcEADepWrWqfvvtN0m37i3m5+enixcv2gPd/fffr5UrV9pngQQAAJAIcQDgNosXL9aiRYu0efNmnTlzRvHx8QoICFDlypXVoUMHvfjiixneABgAAORdhDgAAAAAsBCuiQMAAAAAC/FydwF5XUpKik6ePKmCBQumuRkrAAAAgLzDGKNLly6pZMmS8vDI+HgbIc7NTp48qbCwMHeXAQAAAOAecezYMYWGhma4nhDnZgULFpR064UKCAhwczUAAAAA3CUhIUFhYWH2jJARQpybpZ5CGRAQQIgDAAAAcMfLrPLExCbXrl3TiBEjVKFCBfn6+qpkyZJ67rnndOLEiSzv68KFC+rfv79Kly4tHx8flS5dWgMGDNDFixddXzgAAAAA/E2uv8XA9evX1bhxY23atEklSpRQgwYNdOTIEW3ZskXFihXTpk2bFBERkal9xcXFqW7dujpw4IAiIiJUs2ZN/f777/r9999VoUIF/fLLLypSpEiW6ktISFBgYKD9/lAAAAAA8qbMZoNcfyTurbfe0qZNm1S3bl3t379fc+bM0ebNmzV+/HidPXtWzz33XKb3NWDAAB04cEAdOnRQTEyM5syZo927d6tfv37av3+/Bg0alI3PBAAAAABy+ZG4GzduqHjx4oqPj9e2bdtUrVo1h/VVqlTRzp07FR0drRo1atx2X6dOnVJoaKi8vLx09OhRBQcH29clJiYqLCxM58+f18mTJ1W8ePFM18iROAAAAAASR+IkSRs2bFB8fLzuu+++NAFOkjp16iRJWrJkyR33tXz5cqWkpKhBgwYOAU6SfHx81KZNGyUnJ+u7775zTfEAAAAAkI5cHeJ+++03SVL16tXTXZ+6fOfOnTm6LwAAAAC4W7k6xB09elSSMrxRXury2NjYHN0XAAAAANytXH2fuMuXL0uS/Pz80l1foEABSdKlS5dybF+JiYlKTEy0P05ISLhj33fj6NGjiouLy5Z9u1pQUJDCw8PdXUamMbbZg3HNHoxr9mBcswfjmj0Y1+zBuGYPxjVzcnWIuxeNHTtWo0aNytY+jh49qkqRFXX12vVs7cdV/PL7au++GEt8uBw9elQVIyN1/do1d5eSKb758ytm3757fmwZ1+zBuGYPxjV7MK7Z4+jRo6pYqZKuX73q7lIyxdfPTzF79zKuLsa4Zg93jmuuDnH+/v6SpKsZvBGuXLkiSSpYsGCO7WvYsGEOtyJISEhQWFjYHfvPiri4OF29dl2z/ilVKunSXbvc3pPSM59cV1xc3D3/wSLdGtvr165JHTpIQUHuLuf24uJ0fcECS4wt45o9GNfswbhmD8Y1e8TFxen61auq9MEY+ZXL3H1x3eXqgUPaO+B1xtXFGNfs4e5xzdUhLnVAjx8/nu761OWlS5fOsX35+PjIx8fnjv25QqWSUvWyOdJV3hMUJJW8xxOyFTGu2YNxzR6Ma/ZgXLOFX7kIFXygkrvLyHUY1+zBuN5Zrp7YpEqVKpKkbdu2pbs+dflDDz2Uo/sCAAAAgLuVq0Nc/fr1FRgYqIMHD2rHjh1p1s+bN0+S1KZNmzvuq2XLlvLw8ND69ev1559/OqxLTEzUkiVL5Onpqccee8wltQMAAABAenJ1iPP29lbfvn0lSX369LFftyZJEyZM0M6dOxUVFaUaNWrYl3/00UeKjIzUsGHDHPZVokQJdenSRTdu3NA///lP3bx5077ulVde0dmzZ/XMM8+oePHi2fysAAAAAORlufqaOEkaPny4Vq9erY0bN6p8+fJq0KCBYmNjtXnzZhUrVkxffvmlQ/u4uDjFxMTo1KlTafb1wQcfaNOmTZo/f74iIyNVs2ZN/f7779q9e7fKly+vCRMm5NTTAgAAAJBH5eojcZLk6+urNWvW6I033pCfn58WLVqk2NhY9ejRQ9u2bVNEROZnvgkKCtKWLVvUr18/3bhxQwsXLlR8fLxeeuklbdmyRUWKFMnGZwIAAAAAeeBInCTlz59fo0eP1ujRo+/YduTIkRo5cmSG64sUKaIPP/xQH374oQsrBAAAAIDMyfVH4gAAAAAgNyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAsxMvdBSD77D3p7gruzAo1AgAAAPcSQlwuFBQUJL/8vnrmk+vuLiVT/PL7KigoyN1lAAAAAJZAiMuFwsPDtXdfjOLi4txdSqYEBQUpPDzc3WVkjRXG1go1AgAAIMsIcblUeHi49YKRBQQFBck3f35dX7DA3aVkim/+/BzlBAAAyGUIcUAWhIeHK2bfPo5yAgAAwG0IcUAWcZQTAAAA7sQtBgAAAADAQghxAAAAAGAhnE4J4N5hhWsNrVDj31mhZivUCADAPYIQB8DtmPUzezCuAADkToQ4AG7HrJ/Zg3EFACB3IsQBuCcw62f2YFwBAMh9mNgEAAAAACyEEAcAAAAAFkKIAwAAAAALIcQBAAAAgIUQ4gAAAADAQghxAAAAAGAhhDgAAAAAsBBCHAAAAABYCCEOAAAAACyEEAcAAAAAFkKIAwAAAAALIcQBAAAAgIUQ4gAAAADAQghxAAAAAGAhhDgAAAAAsBBCHAAAAABYSJ4IcRs2bNBjjz2mIkWKyN/fX7Vr19aMGTOyvJ9p06bJZrNl+PfUU09lQ/UAAAAA8H+83F1Adps/f746d+6slJQUNWzYUEFBQfrhhx/UvXt37dy5U//+97+zvM8qVaqoatWqaZbXqVPHBRUDACwhLs7dFdyZFWoEAGRZrg5x58+f13PPPafk5GTNnz9fHTp0kCSdOXNGjzzyiMaPH6/WrVurUaNGWdpvu3btNHLkSNcXDAC45wUFBck3f35dX7DA3aVkim/+/AoKCnJ3GQAAF8rVIW7KlClKSEhQ27Zt7QFOkoKDg/Xee++pQ4cOGj9+fJZDHAAg7woPD1fMvn2Ks8hRrqCgIIWHh7u7DACAC+XqELds2TJJUqdOndKsa9WqlXx9fbV69Wpdv35dvr6+OV0eAMCiwsPDCUYAALfJ1SHut99+kyRVr149zTpvb2898MADio6O1v79+/XQQw9ler9bt27VkCFDlJCQoJCQEDVp0kRRUVEuqxsAAAAAMpJrQ1xCQoLi4+MlSaGhoem2CQ0NVXR0tGJjY7MU4pYuXaqlS5faH48ePVpRUVGaM2eOgoODnSscAAAAAG4j195i4PLly/b/9vPzS7dNgQIFJEmXLl3K1D5LlCihkSNHavv27YqPj9fp06e1ePFiRUZGat26dWrdurWSk5Nvu4/ExEQlJCQ4/AEAAABAZt3TR+Lat2+vvXv3ZmmbGTNmqHbt2tlST4sWLdSiRQv744CAALVp00aNGzdWjRo1FB0drW+//VZdunTJcB9jx47VqFGjsqU+AAAAALnfPR3iDh8+rJiYmCxtc/XqVUmSv7+/w7KAgIA0ba9cuSJJKliwoBNV3urrpZdeUt++fbVixYrbhrhhw4Zp0KBB9scJCQkKCwtzqn8AAAAAecc9HeJ27Nhx19sGBAQoMDBQ8fHxOn78uO6///40bY4fPy5JKl269F33k6p8+fKSpFOnTt22nY+Pj3x8fJzuDwAAAEDelGuviZOkKlWqSJK2bduWZl1SUpJ2794tX19fVahQwem+Lly4IOn/rrMDAAAAgOyQq0Ncq1atJEnz5s1Ls27p0qW6fv26mjZt6pJ7xM2fP19S+rczAAAAAABXydUh7oUXXlBAQID++9//asGCBfblf/75p1555RVJ0ssvv5xmu8jISEVGRurEiRMOy8eOHau4uDiHZUlJSRo1apTmzp2r/Pnzq2fPntnwTAAAAADglnv6mjhnFSlSRF9++aWefPJJderUSY0aNVLRokW1evVqXbx4UYMGDVKjRo3SbJc6mUpSUpLD8tdee02jRo1SzZo1FRYWpoSEBO3YsUMnT56Ur6+vZs2apVKlSuXEUwMAAACQR+XqECdJHTt21E8//aS33npLmzZt0o0bN3T//ferb9++6t69e5b2NWLECP3yyy+KiYnRtm3bZIxRaGioevXqpYEDB6pixYrZ9CwAAAAA4JZcH+IkqX79+vr+++8z3d4Yk+5y7u8GAAAAwN1y9TVxAAAAAJDbEOIAAAAAwEIIcQAAAABgIYQ4AAAAALCQPDGxCQAAsIi/3Y/1nmSFGgHkaoQ4AADgdkFBQfLNn1/XFyxwdymZ4ps/v4KCgtxdBoA8ihAHAADcLjw8XDH79inOIke5goKCFB4e7u4yAORRhDgAAHBPCA8PJxgBQCYwsQkAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABaSq0PclStXNHPmTPXr10916tSRj4+PbDabRo4c6dR+lyxZoqioKAUEBCggIECNGjXSsmXLXFM0AAAAANyGlzMbDxo0SIULF9Ybb7zhqnpc6o8//lC3bt1cus8PPvhAAwcOlJeXl5o2bSofHx+tXLlSrVu31qRJk9S3b1+X9gcAAAAAf+XUkbiPPvpIO3fudFUtLlewYEE9//zzmjx5srZu3arRo0c7tb+YmBgNHjxYPj4++umnn/T9999r0aJF2rFjh4oWLaqBAwfqwIEDLqoeAAAAANJyKsSFhoYqJSXFVbW43H333acpU6aoV69eql69uvLly+fU/iZOnKjk5GT17t1bdevWtS+vUKGCXn/9dd28eVMTJ050tmwAAAAAyJBTIa5du3Zat26dLl265Kp67mmp17116tQpzbrUZUuWLMnRmgAAAADkLU6FuFGjRik8PFyPPfaYtm/f7qqa7kkXL17U0aNHJUnVqlVLsz4sLExBQUGKjY1VQkJCTpcHAAAAII9wamKTtm3bysfHRxs2bFDNmjVVokQJhYeHy9fXN01bm82mH374wZnu3Co1wBUuXFgFChRIt01oaKji4uIUGxurBx98MN02iYmJSkxMtD8m8AEAAADICqdC3Nq1a+3/bYzRyZMndfLkyXTb2mw2Z7pyu8uXL0uS/Pz8MmyTGu5ud3rp2LFjNWrUKNcWBwAAACDPcCrEHT582FV1pKt9+/bau3dvlraZMWOGateunU0VOW/YsGEaNGiQ/XFCQoLCwsLcWBEAAAAAK3EqxJUuXdpVdaTr8OHDiomJydI2V69ezZZa/P3977j/K1euSLp1a4OM+Pj4yMfHx7XFAQAAAMgznApx2W3Hjh3uLsEuPDxcknThwgVduXIl3evijh8/Lin7wy0AAACAvMslIe7MmTP68ssvtX79ep04cUKSVKpUKTVs2FA9e/ZUcHCwK7pxq0KFCik8PFxHjx7V9u3b9cgjjzisP3bsmOLi4lS6dGkFBAS4qUoAAAAAuZ1TtxiQpPnz56tChQoaPny4li9frl27dmnXrl1avny5Xn/9dVWsWFHz5893Ra1u16pVK0nSvHnz0qxLXdamTZscrQkAAABA3uJUiIuOjlaXLl105coVtW/fXgsXLtT27du1Y8cOLVq0SB06dNDly5fVtWtXRUdHu6rmbBcZGanIyEj7UcVU/fv3l6enpyZPnqxNmzbZl//xxx8aM2aMvLy81L9//5wuFwAAAEAe4tTplGPHjlVycrLmzZun9u3bO6x76KGH9Pjjj2vhwoXq2LGj3nnnnXSPYGW39u3b69SpU5Jkv/3BlClTtHz5cklSiRIltHDhQodtUidTSUpKclhesWJFjRs3ToMGDVKDBg3UrFkzeXt7a+XKlbp27Zo+/PBDlStXLrufEgAAAIA8zKkQ9/PPP6tevXppAtxftW/fXvXr19f69eud6equbd++XbGxsQ7LTpw4YT/KltVJSAYOHKhy5cpp3Lhx9udUs2ZNvfLKK2rdurVrigYAAACADDgV4uLj4+2zNt5OeHi4fv31V2e6umtHjhzJ8jbGmNuub9OmDde+AQAAAHALp66JCwkJ0fbt2+/YbseOHQoJCXGmKwAAAACAnAxxLVq0UExMjF577TUlJyenWW+M0fDhw7Vv3z61bNnSma4AAAAAAHLydMo33nhDCxYs0LvvvqtvvvlGTz75pMqUKSNJio2N1dy5c3XkyBEVLVpUw4cPd0W9AAAAAJCnORXiQkND9eOPP+rpp5/W7t27NW7cONlsNkn/d13Zgw8+qK+//lqhoaHOVwsAAAAAeZxTIU66FdJ27typtWvXav369fZp/EuWLKkGDRqoUaNGznYBAAAAAPj/nApxHTp0UIkSJfTxxx+rUaNGBDYAAAAAyGZOTWzy3Xff6dy5c66qBQAAAABwB06FuLJly+rKlSuuqgUAAAAAcAdOhbguXbpo3bp1On36tKvqAQAAAADchlMhbtiwYWrQoIGioqK0cOFCJSUluaouAAAAAEA6nJrYpGLFikpJSdGxY8fUqVMn2Ww2FS9eXL6+vmna2mw2HTx40JnuAAAAACDPcyrEHTlyxOGxMYZTKwEAAAAgGzkV4lJSUlxVBwAAAAAgE5y6Ju7DDz/UlClTXFULAAAAAOAOnApxL7/8spYsWeKqWgAAAAAAd+BUiAsJCUl3EhMAAAAAQPZwKsS1aNFCP//8s27cuOGqegAAAAAAt+FUiBszZow8PT319NNP69SpU66qCQAAAACQAadmpxw2bJiqVKmiBQsWaNmyZapevbrCw8MzvE/c1KlTnekOAAAAAPI8p0LctGnT7P99/fp1bdy4URs3bky3LSEOAAAAAJznVIhbs2aNq+oAAAAAAGSCUyEuKirKVXUAAAAAADLBqYlNAAAAAAA5y6kjcanOnTunWbNmacuWLYqLi9Ojjz6qV155RZL0+++/6+DBg2ratKn8/Pxc0R0AAAAA5FlOh7i5c+fqhRde0OXLl2WMkc1mU6lSpezrT5w4ofbt22v69Ol65plnnO0OAAAAAPI0p06n/OWXX9S1a1d5eXlp/Pjx2rJli4wxDm0effRRBQYGasGCBU4VCgAAAABw8kjc22+/LQ8PD61atUrVq1dPt42np6eqV6+u3bt3O9MVAAAAAEBOHonbuHGj6tatm2GASxUSEqJTp0450xUAAAAAQE6GuKtXr6pYsWJ3bHfhwgVnugEAAAAA/H9OnU5ZqlQp/f7777dtY4zR7t27VbZsWWe6yvU6d+6sfPnyubsMAACQi8THx0uSDoweJ6+Agm6u5vZuJlySJA0cOFCBgYFurub2GNfswbhKSUlJmWrnVIhr2bKlPv30U82ePVtPPfVUum2mTJmiY8eOqWvXrs50levNmTNHAQEB7i4DAADkItu2bVONGjVUbsQQFXygkrvLua1Lu/dqa+suev/99+94qY67Ma7Zg3GVEhISMhUKnQpxQ4cO1X/+8x9169ZN27dvV/v27SVJV65c0fbt27Vw4UK99957KlasmAYOHOhMVwAAAAAAOXlNXGhoqJYtW6agoCCNGzdO9evXl81m07x581SzZk299dZbKlSokBYvXqzixYu7qmYAAAAAyLOcvtl33bp1FRMTo6lTp2rVqlU6cuSIUlJSFBoaqmbNmqlXr173/Pm3AAAAAGAVToc4SSpYsKAGDBigAQMGZHqb8+fP6/LlywoPD3dFCQAAAACQJzh1OqUzXn75ZUVERLirewAAAACwJLeFOOnW7QcAAAAAAJnn1hAHAAAAAMgaQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIW4LcZGRkWrYsKG7ugcAAAAAS3JbiHv11Ve1Zs0ad3UPAAAAAJbklZXGzz333F13ZLPZNHXq1LveHgAAAACQxRA3bdq0dJfbbDZJkjEmw+WEOAAAAABwXpZCXHqnP86dO1effPKJ6tSpoy5duqhMmTKSpNjYWH3zzTfatGmT+vTpo06dOrmkYAAAAADIy7IU4qKiohwer1ixQpMnT9Ynn3yi3r17p2nfr18/ffbZZ+rTp49atWrlXKUAAAAAAOcmNhkzZoyqV6+eboBL1atXL9WoUUNvvfWWM13dlStXrmjmzJnq16+f6tSpIx8fH9lsNo0cOfKu9jdt2jTZbLYM/5566inXPgEAAAAA+JssHYn7ux07dqhNmzZ3bFeuXDktWbLEma7uyh9//KFu3bq5fL9VqlRR1apV0yyvU6eOy/sCAAAAgL9yKsR5eXlp9+7dd2y3e/dueXk51dVdKViwoJ5//nnVqlVLtWrV0rJlyzRixAin99uuXbu7PpoHAAAAAM5w6nTKhg0bavfu3Ro9enSamSlTvfnmm9q1a5dbbux93333acqUKerVq5eqV6+ufPny5XgNAAAAAOBKTh0ee/vtt/Xjjz9q1KhRmjlzpjp16qTSpUtLujU75fz583Xw4EH5+/trzJgxLikYAAAAAPIyp0Lc/fffrx9//FHdu3fX3r179e6776a5Z1xkZKSmTZumypUrO1/tPWLr1q0aMmSIEhISFBISoiZNmqSZuRMAAAAAsoPTF6rVrFlTv//+u9auXav169fr5MmTkqQSJUqoQYMGatSokT3Y5RZLly7V0qVL7Y9Hjx6tqKgozZkzR8HBwbfdNjExUYmJifbHCQkJ2VYnAAAAgNzHZbONNGrUSI0aNXLV7u5JJUqU0MiRI9W2bVtFRETo2rVr2rJli1555RWtW7dOrVu31qZNm+Tp6ZnhPsaOHatRo0blYNUAAAAAchOXThmZmJio8+fPy8fHR0WKFHF6f+3bt9fevXuztM2MGTNUu3Ztp/tOT4sWLdSiRQv744CAALVp00aNGzdWjRo1FB0drW+//VZdunTJcB/Dhg3ToEGD7I8TEhIUFhaWLfUCAAAAyH1cEuI+//xzffrpp9q1a5eMMerevbu+/PJLSdKCBQs0a9YsvffeeypXrlyW9nv48GHFxMRkaZurV69mqb0r+Pv766WXXlLfvn21YsWK24Y4Hx8f+fj45GB1AAAAAHITp0JccnKyOnXqpMWLFytfvnyqVKmSfv/9d4c2VapUUadOnVSjRg29/vrrWdr/jh07nCkvR5UvX16SdOrUKTdXAgAAACA3c+o+cR999JH++9//6h//+IdiY2O1a9euNG3uu+8+lStXTt9//70zXd3zLly4IEkqUKCAmysBAAAAkJs5FeKmTZum4ODgO87KeP/99ys2NtaZru558+fPlyRVr17dzZUAAAAAyM2cCnExMTGqU6fOHY8+FShQQGfPnnWmqxwVGRmpyMhInThxwmH52LFjFRcX57AsKSlJo0aN0ty5c5U/f3717NkzJ0sFAAAAkMc4dU1cvnz5dP369Tu2O3r0qAoWLOhMV3etffv29uvUUu9hN2XKFC1fvlzSrdsGLFy40GGb1MlUkpKSHJa/9tprGjVqlGrWrKmwsDAlJCRox44dOnnypHx9fTVr1iyVKlUqu58SAAAAgDzMqRBXuXJlbd26VZcuXcowpP3555/asWOHHn74YWe6umvbt29PcyrniRMn7EfZSpcunel9jRgxQr/88otiYmK0bds2GWMUGhqqXr16aeDAgapYsaJLawcAAACAv3MqxD377LPq06ePevfura+++kre3t4O65OTk9WnTx9dvXpV3bt3d6rQu3XkyJEsb2OMSXc5N+kGAAAA4G5OhbgXX3xRc+fO1TfffKONGzfab4T922+/qX///lq6dKkOHz6s5s2b6+mnn3ZJwQAAAACQlzk1sYmnp6e+++47/e///q9Onjypzz//XNKtUxgnTZqko0eP6n/+53+0aNEi2Ww2lxQMAAAAAHmZU0fiJMnX11cff/yxRo4cqbVr1+rIkSNKSUlRaGioGjdurJIlS7qiTgAAAACAnAxx1atX13333ae5c+eqWLFieuKJJ1xVFwAAAAAgHU7fJy5fvnyuqgUAAAAAcAdOhbjy5cvr3LlzrqoFAAAAAHAHToW4559/XuvWrdO+fftcVQ8AAAAA4DacCnH9+vVTjx49FBUVpffff18HDhzQjRs3XFUbAAAAAOBvnJrYxNPTU9Ktm2MPHjxYgwcPzrCtzWbTzZs3nekOAAAAAPI8p0JcWFgY938DAAAAgBzkVIg7cuSIi8oAAAAAAGSGU9fEAQAAAAByFiEOAAAAACzEqdMp/+r333/XH3/8oUuXLskYk26bbt26uao7AAAAAMiTnA5xq1ev1j//+U8dPHgwwzbGGNlsNkIcAAAAADjJqRAXHR2tVq1ayWazqWvXrtq1a5d27dqloUOH6uDBg1q9erUuXLignj17Kjw83FU1AwAAAECe5VSIGzt2rG7evKnly5erWbNm6tmzp3bt2qUxY8ZIki5evKhevXpp6dKlio6OdknBAAAAAJCXOTWxycaNG1WtWjU1a9Ys3fWFChXSjBkz5OHhoeHDhzvTFQAAAABAToa48+fPq3z58vbH3t7ekqQrV67Yl/n4+KhBgwZatWqVM10BAAAAAORkiCtWrJgSEhIcHkvSoUOHHNpdu3ZN8fHxznQFAAAAAJCTIa5cuXI6fPiw/XHt2rVljNFnn31mX3bgwAH9+OOPioiIcKYrAAAAAICcDHGPPfaYYmJitHfvXklSy5YtVbp0aX366aeqU6eOOnbsqFq1aun69et6/vnnXVIwAAAAAORlTs1O2a1bNwUGBiolJUXSrWviFi9erCeffFK//vqrfv31V3l4eOiFF15Q//79XVIwAAAAAORlToW4kJAQ9erVy2HZgw8+qL1792rfvn26cOGCypUrZ79WDgAAAADgHKdC3O1ERkZm164BAAAAIM9y6po4AAAAAEDOcupI3HPPPZfptjabTVOnTnWmOwAAAADI85wKcdOmTbtjG5vNJmMMIQ4AAAAAXMCpELdmzZp0l6ekpOjYsWNauXKlZs+erYEDB6pNmzbOdAUAAAAAkJMhLioq6rbru3XrplatWql79+56/PHHnekKAAAAAKAcmNikS5cuqly5skaOHJndXQEAAABArpcjs1OWL19e0dHROdEVAAAAAORq2R7iUlJStHPnTnl4cDcDAAAAAHBWtiWrq1evaseOHerSpYv++OOPO14/BwAAAAC4M6cmNvH09LxjG2OMihUrpnHjxjnTFQAAAABAToa4sLAw2Wy2dNd5e3urRIkSioqKUp8+fVS8eHFnugIAAAAAyMkQd+TIEReVAQAAAADIDGYbAQAAAAALIcQBAAAAgIU4dTrl6NGj73pbm82mN954w5nuAQAAACDPcSrEjRw5Ms3EJsYYSXJYnrrsrwhxAAAAAJB1ToW4r776Sr/88os+//xzhYaGqlOnTipTpowkKTY2VvPnz9fRo0f14osvqm7duq6oFwAAAADyNKdCXKVKldS7d28NHTpUo0ePlpeX4+7ee+89jRgxQuPHj1fPnj1Vp04dp4oFAAAAgLzOqYlNRowYofvuu09vv/12mgAn3boZ+JgxY1SuXDmNGDHCma4AAAAAAHIyxG3evFlVqlS5Y7sqVapoy5YtznQFAAAAAJCTIS45OVmHDh26Y7tDhw4pOTnZma4AAAAAAHIyxNWuXVtbtmzRjBkzMmwzY8YMbd68WbVr13amKwAAAACAnJzYZNSoUfrpp5/Us2dPTZs2TZ07d1bp0qUl3Zqd8ttvv9XatWvl5eWlUaNGuaRgAAAAAMjLnApx9evX14IFC/Tcc89p7dq1WrduncN6Y4yKFi2qqVOnqn79+k4VCgAAAABwMsRJUuvWrXXo0CHNmzdP69ev18mTJyVJJUqUUIMGDfTEE0/I39/f6UIBAAAAAC4IcZLk7++vHj16qEePHq7YHQAAAAAgA05NbHIncXFxunnzZnZ2cVv79u3Tu+++q8aNGysoKEj58uVTSEiIOnTooPXr19/1fpcsWaKoqCgFBAQoICBAjRo10rJly1xYOQAAAACkz6kQFx0drdGjR2vPnj0OyxcuXKiQkBAFBweraNGimjhxolNF3q2mTZtq6NChio6OVrVq1dShQwcVK1ZMCxcuVFRUlD744IMs7/ODDz7Q448/ro0bN6p+/fpq0qSJtmzZotatW+ujjz5y/ZMAAAAAgL9wKsRNmjRJb7/9toKDg+3LDh8+rKeeekp//vmnQkJCdOXKFQ0aNEhr1651ttYsi4yM1IwZM3T27FmtWrVKc+bM0a5duzR58mQZYzR48OA0AfR2YmJiNHjwYPn4+Oinn37S999/r0WLFmnHjh0qWrSoBg4cqAMHDmTjMwIAAACQ1zkV4jZt2qRq1aqpaNGi9mVffvmlkpKS9O9//1snTpzQ5s2b5eHh4ZajcatXr9azzz4rX19fh+W9evVS8+bNlZycrLlz52Z6fxMnTlRycrJ69+6tunXr2pdXqFBBr7/+um7evOm2o44AAAAA8ganQtyZM2cUHh7usGzVqlUqUKCA+vbtK0mqUaOGGjRooN9++82ZrlyuSpUqkmSfTTMzUq9769SpU5p1qcuWLFniguoAAAAAIH1Ohbjk5GSHiUsuX76sbdu2qX79+vL29rYvL1mypE6fPu1MVy536NAhSVJISEim2l+8eFFHjx6VJFWrVi3N+rCwMAUFBSk2NlYJCQmuKxQAAAAA/sKpEBceHq6tW7faHy9btkw3b95U06ZNHdolJCQoMDDQma5c6uDBg1q6dKkk6fHHH8/UNqkBrnDhwipQoEC6bUJDQyVJsbGxGe4nMTFRCQkJDn8AAAAAkFlOhbg2bdro6NGj6tChgyZNmqTBgwfLw8NDbdu2dWi3fft2lS5d2qlCXeXmzZvq0aOHEhMT1blzZ9WoUSNT212+fFmS5Ofnl2Gb1HB36dKlDNuMHTtWgYGB9r+wsLAsVA8AAAAgr3PqZt+DBw/Wt99+q0WLFmnRokWSpEGDBql8+fL2Nps3b9aJEyfUpUuXLO+/ffv22rt3b5a2mTFjhmrXrp3h+pdeekk///yzIiIi9Mknn2S5JmcNGzZMgwYNsj9OSEggyAEAAADINKdCXFBQkHbu3Kl58+bp7NmzqlGjhpo0aeLQ5vTp0+rfv7+eeeaZLO//8OHDiomJydI2V69ezXDdmDFj9Omnnyo4OFgrVqxQkSJFMr1ff3//O+7/ypUrkqSCBQtm2MbHx0c+Pj6Z7hcAAAAA/sqpECfdCjc9evTIcH3btm3TnF4pSRs3btSBAwfUrVu3DLfdsWOHs+XZTZ48WcOHD1dgYKCWL1+ucuXKZWn71Fk4L1y4oCtXrqR7Xdzx48cl6Z45dRQAAABA7uPUNXHO+OKLL9SzZ88c6Wv27Nnq06eP/Pz8tGzZMlWtWjXL+yhUqJA9yG3fvj3N+mPHjikuLk6lS5dWQECAsyUDAAAAQLrcFuJyynfffadu3brJy8tLCxcuVP369e96X61atZIkzZs3L8261GVt2rS56/0DAAAAwJ3k6hC3YcMGderUScYYzZkzR82bN8/UdpGRkYqMjNSJEycclvfv31+enp6aPHmyNm3aZF/+xx9/aMyYMfLy8lL//v1d+hwAAAAA4K+cvibuXta6dWtdu3ZNZcuWdZhB868eeeQRvfDCCw7LUidTSUpKclhesWJFjRs3ToMGDVKDBg3UrFkzeXt7a+XKlbp27Zo+/PDDLF9rBwAAAABZkatD3MWLFyXdmuXy8OHDGbb7e4i7nYEDB6pcuXIaN26c1q9fL0mqWbOmXnnlFbVu3dqpegEAAADgTnJ1iDPGZMt2bdq04do3AAAAAG6Rq6+JAwAAAIDchhAHAAAAABZCiAMAAAAACyHEAQAAAICFuG1ik3bt2qlMmTLu6h4AAAAALMltIa5t27Zq27atu7oHAAAAAEty+nTKPXv2qEePHoqIiFD+/Pnl6emZ7p+XV66+mwEAAAAA5AinktUvv/yipk2b6tq1a5KkIkWKKCQkxCWFAQAAAADScirEDRs2TNeuXdOAAQM0fPhwFSlSxFV1AQAAAADS4VSIi46OVtWqVTVhwgRX1QMAAAAAuA2nronz9vZWZGSkq2oBAAAAANyBUyHukUce0Z49e1xVCwAAAADgDpwKcW+//bYOHDigjz/+2FX1AAAAAABuw6lr4rZt26aePXvqpZde0rfffqtmzZopNDRUHh7pZ8Nu3bo50x0AAAAA5HlOhbgePXrIZrPJGKP169dr/fr1stlsadoZY2Sz2QhxAAAAAOAkp0LciBEj0g1tAAAAAIDs4VSIGzlypIvKAAAAAABkhlMTmwAAAAAAchYhDgAAAAAsxKnTKVP9/PPP+u9//6s//vhDly5dkjEmTRubzaYffvjBFd0BAAAAQJ7lVIgzxuj555/X9OnT7cEtdbbKVKmPmQAFAAAAAJzn1OmUkydP1rRp01SjRg2tWrVKHTp0kCTFxMTo+++/V48ePeTh4aEhQ4bo0KFDLikYAAAAAPIyp47ETZs2TQUKFND333+vokWLatasWZKk8uXLq3z58mrRooUee+wxde7cWfXq1VPp0qVdUjQAAAAA5FVOHYnbu3ev6tWrp6JFi0qS/ZTJ5ORke5tOnTqpRo0a+ve//+1MVwAAAAAAORniUlJS7AFOkvz8/CRJFy5ccGhXvnx57dq1y5muAAAAAAByMsSVKlVKJ0+etD9OPV1y+/btDu32798vLy+XTIQJAAAAAHmaUyGuevXq2rNnj/30yebNm8sYo1deeUX79u3TpUuXNG7cOG3dulXVqlVzScEAAAAAkJc5FeIef/xxxcXFadmyZZKkKlWq6KmnntJvv/2mypUrq1ChQho6dKi8vLw0ZswYlxQMAAAAAHmZU+c4dunSRR06dHA4VXL69Ol66KGHtGjRIl24cEEVKlTQK6+8otq1aztdLAAAAADkdU5fqObj4+PwOF++fBo6dKiGDh3q7K4BAAAAAH/j1OmUAAAAAICc5ZIpI8+dO6dZs2Zpy5YtiouL06OPPqpXXnlFkvT777/r4MGDatq0qf0WBAAAAACAu+N0iJs7d65eeOEFXb58WcYY2Ww2lSpVyr7+xIkTat++vaZPn65nnnnG2e4AAAAAIE9z6nTKX375RV27dpWXl5fGjx+vLVu2yBjj0ObRRx9VYGCgFixY4FShAAAAAAAnj8S9/fbb8vDw0KpVq1S9evV023h6eqp69eravXu3M10BAAAAAOTkkbiNGzeqbt26GQa4VCEhITp16pQzXQEAAAAA5GSIu3r1qooVK3bHdhcuXHCmGwAAAADA/+dUiCtVqpR+//3327Yxxmj37t0qW7asM10BAAAAAORkiGvZsqViYmI0e/bsDNtMmTJFx44dU6tWrZzpCgAAAAAgJyc2GTp0qP7zn/+oW7du2r59u9q3by9JunLlirZv366FCxfqvffeU7FixTRw4ECXFAwAAAAAeZlTR+JCQ0O1bNkyBQUFady4capfv75sNpvmzZunmjVr6q233lKhQoW0ePFiFS9e3FU1AwAAAECe5fTNvuvWrauYmBhNnTpVq1at0pEjR5SSkqLQ0FA1a9ZMvXr1UmBgoCtqBQAAAIA8z+kQJ0kFCxbUgAEDNGDAAFfsDgAAAACQAadOpwQAAAAA5CyXHImTpKNHj+rUqVNKTEzMsE3Dhg1d1R0AAAAA5ElOh7ipU6dqzJgxio2NvWPb5ORkZ7sDAAAAgDzNqRD3ySefqF+/fjLGqFq1aoqIiJC/v7+ragMAAAAA/I1TIe7999+Xt7e3li1bpiZNmriqJgAAAABABpya2OT48eNq3LgxAQ4AAAAAcohTIS48PFz58+d3VS0AAAAAgDtwKsR1795da9as0fnz511VDwAAAADgNpy6Ju7VV1/Vli1b1LhxY02cOFFRUVGy2Wyuqs1p+/bt03//+18tX75cu3btUnx8vIoWLap69epp4MCBatCgQZb2N23aNPXs2TPD9Z07d9bs2bOdLRsAAMClrh445O4S7sgKNQL3CqdCnKenpz777DM9+uijevTRR5UvXz6FhITIwyPtAT6bzaaDBw86012WNW3aVCdOnJC/v78efvhhFSlSRHv27NHChQu1aNEiTZgwQQMGDMjyfqtUqaKqVaumWV6nTh3niwYAAHCRoKAg+fr5ae+A191dSqb4+vkpKCjI3WUA9zynQtzevXvVuHFjnT17VsYY3bhxQ0ePHnVVbU6LjIzU2LFj9cQTT8jX19e+/LPPPlPv3r01ePBgNW/eXPfff3+W9tuuXTuNHDnSxdUCAAC4Vnh4uGL27lVcXJy7S8mUoKAghYeHu7sM4J7nVIh7+eWX9eeff6pHjx4aOHCgIiIiVKBAAVfV5rTVq1enu7xXr15asGCBVq5cqblz5+pf//pXDlcGAACQM8LDwwlGQC7j1MQmGzZs0EMPPaQvv/xSDz744D0V4O6kSpUqkqSTJ0+6uRIAAAAAyDynjsR5e3tn+VTEe8WhQ7cung0JCcnytlu3btWQIUOUkJCgkJAQNWnSRFFRUa4uEQAAAADScCrENW7cWDt37nRVLTnm4MGDWrp0qSTp8ccfz/L2S5cutW8vSaNHj1ZUVJTmzJmj4ODg226bmJioxMRE++OEhIQs9w8AAAAg73LqdMp33nlHp0+f1vDhw5WcnOyqmrLVzZs31aNHDyUmJqpz586qUaNGprctUaKERo4cqe3btys+Pl6nT5/W4sWLFRkZqXXr1ql169Z3HIexY8cqMDDQ/hcWFubsUwIAAACQhzh1JG7WrFlq3bq1xo4dqzlz5qhRo0YqVapUhrcYeOONN7K0//bt22vv3r1Z2mbGjBmqXbt2hutfeukl/fzzz4qIiNAnn3ySpX23aNFCLVq0sD8OCAhQmzZt1LhxY9WoUUPR0dH69ttv1aVLlwz3MWzYMA0aNMj+OCEhgSAHAAAAINOcCnEjR46UzWaTMUYHDx687X3g7ibEHT58WDExMVna5urVqxmuGzNmjD799FMFBwdrxYoVKlKkSJb2nRF/f3+99NJL6tu3r1asWHHbEOfj4yMfHx+X9AsAAAAg73EqxH311VeuqiNdO3bscNm+Jk+erOHDhyswMFDLly9XuXLlXLZvSSpfvrwk6dSpUy7dLwAAAAD8lVMhrnv37q6qI1vNnj1bffr0kZ+fn5YtW6aqVau6vI8LFy5IkqVuswAAAADAepya2MQZQ4YM0X333Zft/Xz33Xfq1q2bvLy8tHDhQtWvXz9b+pk/f74kqXr16tmyfwAAAACQ3Bji4uLidOTIkWztY8OGDerUqZOMMZozZ46aN2+eqe0iIyMVGRmpEydOOCwfO3as4uLiHJYlJSVp1KhRmjt3rvLnz6+ePXu6rH4AAAAA+DunTqe817Vu3VrXrl1T2bJltWjRIi1atChNm0ceeUQvvPCCw7LUyVSSkpIclr/22msaNWqUatasqbCwMCUkJGjHjh06efKkfH19NWvWLJUqVSrbng8AAAAA5OoQd/HiRUm3Zrk8fPhwhu3+HuIyMmLECP3yyy+KiYnRtm3bZIxRaGioevXqpYEDB6pixYquKBsAAAAAMpSrQ5wxxqXbjRo1yplyAAAAAMBpbrsmDgAAAACQdYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABbithBnjLnr2SMBAAAAIK9yW4ibNm2aUlJS3NU9AAAAAFiSU/eJmzFjRqbaeXt7q2jRoqpSpYqKFy/uTJcAAAAAkKc5FeJ69Oghm82W6fY2m01NmzbVpEmTVL58eWe6BgAAAIA8yakQN2LECB05ckQzZsyQv7+/mjdvrvDwcEnSsWPHtHLlSl26dEnPPvusfHx8tHHjRq1cuVINGjTQ1q1bVapUKZc8CQAAAADIK5wKcc8++6xq166t5557TuPHj1dgYKDD+oSEBA0aNEgLFy7U5s2bFRERoSFDhuj999/XO++8o0mTJjlVPAAAAADkNU5NbDJs2DAVLlxYn3/+eZoAJ0kBAQH6/PPPVbhwYb322mvy8PDQ2LFjVaJECS1fvtyZrgEAAAAgT3IqxK1Zs0Z16tSRh0fGu/Hw8FDt2rX1448/Sro1yUmVKlV04sQJZ7oGAAAAgDzJqRB39epVnT59+o7tzpw5o+vXr9sfBwQEyMvLqTM5AQAAACBPcirEPfjgg/rpp5/0008/Zdhm/fr1WrdunR588EH7smPHjqlYsWLOdA0AAAAAeZJTIe6VV15RcnKyWrRooV69emnVqlXat2+f9u3bp1WrVql3795q0aKFjDF65ZVXJEnx8fHaunWrHn74YZc8AQAAAADIS5w6p7FDhw56//339eqrr+qLL77QlClTHNYbY+Tt7a33339f7du3lySdO3dOo0aN0qOPPupM1wAAAACQJzl9YVr//v31+OOPa+rUqdq4caNOnTolSSpRooTq16+vnj17KiIiwt4+IiJCr776qrPdAgAAAECe5JLZRcqWLau33nrLFbsCAAAAANyGU9fEAQAAAABylktC3J49ezRw4EDVr19fFStWtE9iIkkbN27Uhx9+qPPnz7uiKwAAAADI05w+nXLChAkaOnSobt68KUmy2WyKi4tzaDNw4ED5+PioV69eznYHAAAAAHmaU0fili1bpsGDByssLEwLFizQn3/+KWOMQ5t69eqpWLFi+u9//+tUoQAAAAAAJ4/ETZgwQQUKFNCqVascZqD8u6pVqyomJsaZrgAAAAAAcvJIXOpNu28X4CQpKChIp0+fdqYrAAAAAICcDHE3btxQwYIF79juzz//lJeXS+5mAAAAAAB5mlMhrmzZsvrtt99u2+bGjRvauXOnKlSo4ExXAAAAAAA5GeIef/xxHTlyRBMmTMiwzXvvvaezZ8+qQ4cOznQFAAAAAJCTE5u88sor+vrrrzVkyBBt3rxZ7du3lySdOXNGCxcu1MKFC/X111+rbNmy6tu3r0sKBgAAAIC8zKkQV7hwYa1evVqdOnXS3LlzNW/ePEnS8uXLtXz5chljdP/992vRokWZunYOAAAAAHB7Ts82UqFCBe3YsUOLFy/WqlWrdOTIEaWkpCg0NFTNmjVTx44d5enp6YpaAQAAACDPc8mUkR4eHmrXrp3atWvnit0BAAAAADLgkhB39epVRUdH69SpU0pMTMywXbdu3VzRHQAAAADkWU6HuBEjRuj999/X1atXM2xjjJHNZiPEAQAAAICTnApx7733nt566y15enqqVatWqlChAhOYAAAAAEA2cirEffHFF8qfP7/Wr1+v6tWru6omAAAAAEAGnLrZ97FjxxQVFUWAAwAAAIAc4lSICwkJUYECBVxVCwAAAADgDpwKcU899ZTWrl2rK1euuKoeAAAAAMBtOBXiRo4cqUqVKunxxx/XgQMHXFUTAAAAACADTk1s8thjjyklJUVr165VpUqVVLp0aYWGhsrDI202tNls+uGHH5zpDgAAAADyPKdC3Nq1a+3/nZycrEOHDunQoUPptrXZbM50BQAAAACQkyHu8OHDrqoDAAAAAJAJToW40qVLu6oOAAAAAEAmODWxCQAAAAAgZxHiAAAAAMBCCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWkqtD3M6dO9W3b189/PDDKlmypHx8fBQYGKi6detq0qRJSkpKuqv9LlmyRFFRUQoICFBAQIAaNWqkZcuWubh6AAAAAEgrV4e4n376SR9//LFOnz6t+++/Xx06dFCtWrW0Y8cOvfTSS2rWrJlu3LiRpX1+8MEHevzxx7Vx40bVr19fTZo00ZYtW9S6dWt99NFH2fRMAAAAAOAWL3cXkJ0ee+wxPfbYY4qIiHBYfubMGTVt2lTr1q3T559/rr59+2ZqfzExMRo8eLB8fHy0Zs0a1a1bV5K0f/9+1atXTwMHDlTLli1Vrlw5lz8XAAAAAJBy+ZG4iIiINAFOkoKDg/Xqq69Kkn788cdM72/ixIlKTk5W79697QFOkipUqKDXX39dN2/e1MSJE50vHAAAAAAykKtD3O3ky5dPkuTt7Z3pbVKve+vUqVOadanLlixZ4oLqAAAAACB9eTLEXbhwQePHj5cktWrVKlPbXLx4UUePHpUkVatWLc36sLAwBQUFKTY2VgkJCa4rFgAAAAD+IldfE5fqjz/+0JgxY5SSkqIzZ85o48aNunz5snr37q2nn346U/tIDXCFCxdWgQIF0m0TGhqquLg4xcbG6sEHH0y3TWJiohITE+2PCXwAAAAAsiJPhLgzZ85o+vTpDsteeuklvfnmm/LwyNzByMuXL0uS/Pz8MmyTGu4uXbqUYZuxY8dq1KhRmeoTAAAAAP7ung5x7du31969e7O0zYwZM1S7dm2HZY888oiMMUpOTtbRo0e1cOFCjRo1St9//71WrlypMmXKuLDq2xs2bJgGDRpkf5yQkKCwsLAc6x8AAACAtd3TIe7w4cOKiYnJ0jZXr17NcJ2np6fKli2rQYMGqUyZMurYsaP69euXqclI/P3977j/K1euSJIKFiyYYRsfHx/5+PjcsT8AAAAASM89HeJ27NiRbftu3769/P39tXz5ct24ceOOs1SGh4dLujUpypUrV9K9Lu748eOSpNKlS7u+YAAAAABQHp2dUpJsNpuKFCmimzdv6sKFC3dsX6hQIXuQ2759e5r1x44dU1xcnEqXLq2AgACX1wsAAAAAUh4OcYcOHdKxY8cUEBCgoKCgTG2TejuCefPmpVmXuqxNmzauKxIAAAAA/iZXh7hJkybp9OnTaZbHxMSoa9euMsaoW7du8vT0dFgfGRmpyMhInThxwmF5//795enpqcmTJ2vTpk325am3MPDy8lL//v2z58kAAAAAgO7xa+KcNX78eA0YMEBVqlRRuXLlZIxRbGystm7dqpSUFDVs2FBjx45Ns13qZCpJSUkOyytWrKhx48Zp0KBBatCggZo1ayZvb2+tXLlS165d04cffqhy5crlyHMDAAAAkDfl6hA3ZswYfffdd4qOjtaKFSt07do1FSlSRM2aNVOXLl307LPPZvo+cakGDhyocuXKady4cVq/fr0kqWbNmnrllVfUunXr7HgaAAAAAGCXq0Pc008/raeffjrL2xljbru+TZs2XPsGAAAAwC1y9TVxAAAAAJDbEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQQhwAAAAAWAghDgAAAAAshBAHAAAAABZCiAMAAAAACyHEAQAAAICFEOIAAAAAwEIIcQAAAABgIYQ4AAAAALAQL3cXAAAAAFjR1QOH3F3CHVmhRmQdIQ4AAADIgqCgIPn6+WnvgNfdXUqm+Pr5KSgoyN1lwIUIcQAAAEAWhIeHK2bvXsXFxbm7lEwJCgpSeHi4u8uACxHiAAAAgCwKDw8nGMFtmNgEAAAAACyEEAcAAAAAFkKIAwAAAAALIcQBAAAAgIUQ4gAAAADAQghxAAAAAGAhhDgAAAAAsBBCHAAAAABYCCEOAAAAACyEEAcAAAAAFkKIAwAAAAALydUhbufOnerbt68efvhhlSxZUj4+PgoMDFTdunU1adIkJSUlZWl/06ZNk81my/DvqaeeyqZnAgAAAAC3eLm7gOz0008/6eOPP1bp0qV1//33q1ixYjp79qw2bNigTZs2af78+Vq5cqW8vb2ztN8qVaqoatWqaZbXqVPHRZUDAAAAQPpydYh77LHH9NhjjykiIsJh+ZkzZ9S0aVOtW7dOn3/+ufr27Zul/bZr104jR450YaUAAAAAkDm5+nTKiIiINAFOkoKDg/Xqq69Kkn788cecLgsAAAAA7lquDnG3ky9fPknK8qmUAAAAAOBOufp0yoxcuHBB48ePlyS1atUqy9tv3bpVQ4YMUUJCgkJCQtSkSRNFRUW5ukwAAAAASCNPhLg//vhDY8aMUUpKis6cOaONGzfq8uXL6t27t55++uks72/p0qVaunSp/fHo0aMVFRWlOXPmKDg4+LbbJiYmKjEx0f44ISEhy/0DAAAAyLvyxOmUZ86c0fTp0zVz5kytXLlSly9f1ksvvaR3331XHh6ZH4ISJUpo5MiR2r59u+Lj43X69GktXrxYkZGRWrdunVq3bq3k5OTb7mPs2LEKDAy0/4WFhTn79AAAAADkITZjjHF3ERlp37699u7dm6VtZsyYodq1a6e7Ljk5WUePHtXChQs1atQoBQcHa+XKlSpTpoxTdV6+fFk1atTQ/v379Z///EddunTJsG16R+LCwsIUHx+vgIAAp+oAAAAArGrbtm2qUaOGaiz9RgUfqOTucm7r0u692tq6i7Zu3arq1au7bL8JCQkKDAy8Yza4p0+nPHz4sGJiYrK0zdWrVzNc5+npqbJly2rQoEEqU6aMOnbsqH79+mnJkiVO1env76+XXnpJffv21YoVK24b4nx8fOTj4+NUfwAAAADyrns6xO3YsSPb9t2+fXv5+/tr+fLlunHjhtOzVJYvX16SdOrUKVeUBwAAAADpyhPXxKXHZrOpSJEiunnzpi5cuOD0/lL3UaBAAaf3BQAAAAAZybMh7tChQzp27JgCAgIUFBTk9P7mz58vSS49JxYAAAAA/i5Xh7hJkybp9OnTaZbHxMSoa9euMsaoW7du8vT0dFgfGRmpyMhInThxwmH52LFjFRcX57AsKSlJo0aN0ty5c5U/f3717NnT9U8EAAAAAP6/e/qaOGeNHz9eAwYMUJUqVVSuXDkZYxQbG6utW7cqJSVFDRs21NixY9NslzqZSlJSksPy1157TaNGjVLNmjUVFhamhIQE7dixQydPnpSvr69mzZqlUqVK5chzAwAAAHKjqwcOubuEO3J3jbk6xI0ZM0bfffedoqOjtWLFCl27dk1FihRRs2bN1KVLFz377LNZuk/ciBEj9MsvvygmJkbbtm2TMUahoaHq1auXBg4cqIoVK2bjswEAAAByr6CgIPn6+WnvgNfdXUqm+Pr5ueSyrLtxT98nLi/I7L0gAAAAgNzu6NGjaS5fulcFBQUpPDzcpfvMFfeJAwAAAJB3hIeHuzwY5Ua5emITAAAAAMhtCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ4AAAAALIQQBwAAAAAWQogDAAAAAAshxAEAAACAhRDiAAAAAMBCvNxdQF5njJEkJSQkuLkSAAAAAO6UmglSM0JGCHFudunSJUlSWFiYmysBAAAAcC+4dOmSAgMDM1xvM3eKechWKSkpOnnypAoWLCibzebucm4rISFBYWFhOnbsmAICAtxdTq7BuGYPxjV7MK7Zg3HNPoxt9mBcswfjmj2sNK7GGF26dEklS5aUh0fGV75xJM7NPDw8FBoa6u4ysiQgIOCe/wdgRYxr9mBcswfjmj0Y1+zD2GYPxjV7MK7ZwyrjersjcKmY2AQAAAAALIQQBwAAAAAWQohDpvn4+Ohf//qXfHx83F1KrsK4Zg/GNXswrtmDcc0+jG32YFyzB+OaPXLjuDKxCQAAAABYCEfiAAAAAMBCCHEAAAAAYCGEOAAAAACwEEIcAAAAAFgIIQ7IQYsXL9b333/v7jIAINfh8zV7DBo0SG+++aa7ywDwN8xOCeQgT09PNW/enC8asIydO3fKw8NDDzzwgLtLyVUYV9fj8zV7eHt7q23btpo7d667SwHwFxyJQ4b49c31ihUrpsKFC7u7jFypQ4cO6tOnj7vLyHWqVq2ql156yd1l5DqMq+vx+Zo9QkNDlZKS4u4yIOnmzZvuLgH3EC93F4B710cffaS2bdu6u4xcpVGjRtqyZYuMMbLZbO4uJ1f57rvv1K5dO3eXkesUKVJEJUqUcHcZuQ7j6np8vmaPdu3aacaMGbp06ZIKFizo7nLypOvXr+vzzz/XhAkTdOTIEXeXYzlHjx7VqVOnlJiYmGGbhg0b5mBFrsHplMhQRESEqlWrpvnz57u7lFzjjz/+UK1atdSjRw+988478vX1dXdJuUalSpVUrlw5LVmyxN2l5CqtW7fW0aNHtXPnTneXkqswrq7H52v2uHTpkqKiolSgQAF9+OGHqlatmrtLyjVu3LihCxcuqGjRovLySntc5dKlS/r444/1wQcf6OzZs5Kk5OTknC7Tsr788ku9+eabOnr06B3bWnFcCXHI0KBBgzRjxgwdPnyYX99cZPTo0dq3b5/mzJmjYsWKqWnTpgoPD0/3y4bNZtMbb7zhhiqtafTo0fr3v/+t/fv3KyQkxN3l5Bq//vqrHnnkEb399tt6+eWX3V1OrsG4uh6fr9mjSZMmunbtmjZv3iybzaYSJUrcdlx/+OEHN1RpLbt379agQYO0bt063bx5Ux4eHnr00Uf1wQcfKDIyUsYYvf/++3r77bd14cIFGWNUvXp1jRw5Uq1bt3Z3+Zbw1Vdf6fnnn5ckPfDAA6pQocJtv8t+9dVXOVWayxDikCF+fXM9Dw8P2Ww2Zeafnc1ms+QvQ+6SlJSkdu3a6cCBA3rnnXfUunVr5cuXz91lWd6MGTO0bt06TZs2TQ899JBatWqV4Rc4SerWrVsOV2hNjKvr8fmaPTw8Mj99AuN6Z0eOHFHVqlV16dKlNO/V4OBgbdu2Td26ddOPP/4oY4yqVq2qkSNH6vHHH3dTxdb04IMPKiYmRvPmzcu1Y0eIQ4b49c31pk+fnqX23bt3z6ZKcp+IiAilpKTo2LFjkm69J4sXL57h+/XgwYM5XaIlpffFOL3rjVKvQ+ILXOYwrq7H52v2iI2NzVL70qVLZ1MluUPv3r31+eefKyoqSu+++64qV66sS5cu6fvvv9eQIUMUEBCgI0eOKCgoSB9++KGeeuopd5dsSb6+vnrkkUe0evVqd5eSbQhxyBC/vsFKsvJ+lcRsa5k0cuTILE0S8a9//Ssbq8k9GFcgb6pQoYLi4+N14MCBNKf3ff3113r22Wfl5eWlnTt3KjIy0k1VWl/JkiXVsGFDzZ49292lZBtCHDLEr28AAACu4+fnp6ZNm2rx4sVp1p07d07FihXTo48+qlWrVrmhutzjf//3f7V06VIdOnQo115awS0GkCFCWfb65ZdftH79ep04cUKSVKpUKTVo0EB169Z1c2UAYG18vrremTNn9OWXX6YZ14YNG6pnz54KDg52c4XWcP36dQUFBaW7rmjRopJujSuc8/bbb2vNmjXq2bOnJk2alCvvIUmIA3LY/v379eyzzyo6OlqS7NfEpJ5aVbNmTc2aNUvly5d3W41Aek6cOKENGzY4fIGrX78+XzicxLi6Dp+v2WP+/Pl67rnndPnyZYfrOHft2qUVK1bonXfe0dSpU9WxY0c3Vpl7ZPXyAKT18ssv6/7779c333yjZcuWqUaNGgoNDU13bG02m6ZOneqGKp3D6ZS4I359c51Tp06pevXqOnPmjEqWLKknnnhCZcqUkc1m05EjRzR37lydOHFCJUqUUHR0NDcDvgs7d+7Uxx9/nO779Z///KceeughN1doPWfPnlWfPn20cOHCNNcS2mw2dezYUR999JGKFSvmpgqtiXF1LT5fs0d0dLTq1aunlJQUtWvXTs8++6zDuM6cOVMLFy6Up6enNmzYoJo1a7q75Huah4eHHnnkEb3wwgvpru/Ro8dt1zNTbebkhXkdCHG4rYx+fZNuvekLFizIr29Z0KdPH3366acaOHCgxo4dK29vb4f1SUlJGjZsmCZMmKA+ffpo0qRJbqrUmiZOnKghQ4YoOTk53WnGvby8NG7cOPXv398N1VlTfHy8Hn74YcXExCh//vxq3ry5wxe4FStW6Nq1a6pYsaI2bdqkwMBAd5dsCYyr6/H5mj06duyoRYsWad68eWrfvn26bRYuXKiOHTuqQ4cOmjdvXg5XaC2pM9Nm5O9Hj//OimHDHdatW5el9lFRUdlUSfYhxCFD/PrmemXLlpWvr6/27t2bYRtjjO6//35dv35dhw8fzsHqrG3VqlVq0aKF/Pz81Lt373Tfr5MnT9bVq1e1cuVKPfroo+4u2RKGDRumd999V0888US6R4Xi4uLUt29fffvttxo6dKjefvttN1VqLYyr6/H5mj2Cg4NVoUIFrV+//rbtGjRooP379+vMmTM5VJk19ejRI0sz0/6dFW9KjWxigAx06NDBeHh4mAULFmTYZsGCBcZms5mOHTvmYGXW5ePjY7p27XrHdl27djU+Pj45UFHu0bJlS5MvXz6zYcOGDNts3LjReHl5mX/84x85WJm1VaxY0YSHh5sbN25k2ObGjRsmPDzcVKhQIQcrszbG1fX4fM0ejCtwb2JiE2To559/Vr169TI8fUKS2rdvr/r169/xFzrcEhAQYL8Z9e0cO3ZMAQEBOVBR7rFlyxZFRUWpXr16GbapW7euGjVqpM2bN+dgZdYWGxur9u3b33aK5nz58ql+/fpauHBhDlZmbYyr6/H5mj1CQkK0ffv2O7bbsWOHQkJCcqAia7tw4UKunCnxXnXjxg3Nnz8/3dlqO3bsmOa0ayth+htkKD4+XuHh4XdsFx4ervj4+ByoyPrq1q2rDRs2aNmyZRm2+e6777Rhw4bbhhGkdfXq1UxNAFGsWDFdvXo1ByrKHfLnz6+4uLg7touLi1P+/PlzoKLcgXF1PT5fs0eLFi0UExOj1157Ld3rsYwxGj58uPbt26eWLVu6oUJrKVGihDp27KiFCxcqKSnJ3eXkahs2bFD58uX1zDPPaPLkyVqyZImWLFmiyZMn65lnnlH58uW1ceNGd5d517gmDhkqU6aM/Pz8tGfPntu2q1y5sq5cuaIjR47kTGEW9ssvv6hhw4ay2Wzq3LmzunbtqjJlyki69cv8N998o9mzZyslJUXr16/Xww8/7N6CLaRChQpKSkrSH3/8IS+v9E8yuHnzpsqXL698+fJp//79OVyhNTVr1kw//fTTba973bp1q/0o58qVK3O4QmtiXF2Pz9fscfz4cVWrVk3nz59XeHi4nnzySYdxnTt3ro4cOaKiRYtq27ZtCg0NdW/B9zgvLy+lpKTIZrOpUKFCevLJJ/XMM8+ofv367i4tV9m/f79q1qypy5cvq0aNGnrmmWfSXCe/detWBQQE6Ndff7XmbUfcfDon7mEvvvii8fDwMMOGDTM3b95Msz4lJcW8/vrrxsPDw/Tq1csNFVrTzJkzjZ+fn7HZbMbDw8Phz2azGT8/PzNz5kx3l2k5gwcPNjabzTz77LPmwoULadbHx8ebHj16GA8PDzNkyJCcL9Cili1bZmw2mwkICDDDhw83e/bsMVevXjVXr141e/fuNSNGjDCFChUyHh4e5rvvvnN3uZbBuGYPPl+zx86dO82DDz5obDabw9imPn7ooYfMrl273F2mJZw6dcqMHz/eVKtWzWE8IyIizIgRI8z+/fvdXWKu0K1bN2Oz2cwHH3yQYZuJEycam81munfvnnOFuRBH4pAhfn3LPsePH9cXX3yhn3/+WSdPnpQklSxZUg0aNNDzzz+vsLAwN1doPefPn1etWrV05MgR+fv7q2XLlg7v1+XLlyshIUERERH69ddfuSYhC8aOHas33ngj3ds2SLemwn7zzTc1bNiwHK7M2hjX7MHna/ZZu3at1q9fn2ZcGzVq5N7CLGrfvn2aOXOmvvnmGx05csQ+a2Xt2rX17LPPqnPnzipatKibq7Sm0NBQBQcHa+vWrbdtV6NGDZ05c0bHjx/PocpchxCH29q1a5eefvpp7d69W9L/3bck9W3z4IMP6uuvv9YDDzzgthqBVCdPnlSvXr0yvCamVatW+uyzz1SyZMkcrsz6oqOjNWnSpHS/GPfp00e1atVyc4XWxLgCkG5NJjdz5kzNmzdPFy5ckM1mk5eXl1q2bKlnn31Wbdq0kY+Pj7vLtAwfHx916tRJX3/99W3bPf3005o/f76uX7+eQ5W5DiEOmcKvb7CSw4cPp/lS/Mgjj6hs2bJurgwAco/4+Hj98ccfCg0NZWZKF0lKStJ3332nmTNnatmyZUpMTJTNZlNAQIA6deqkL774wt0lWkLJkiVVsmRJRUdH37ZdrVq1dOLECfv3BUtx24mcQB60f/9+M336dHPo0CGH5b/88oupU6eOKVCggKlUqZKZP3++myoEAGvi8zV7rFixwvTs2dNs27bNYfnEiRONr6+v8fDwMJ6enmbAgAFuqjD3io+PN59//rkpVqyY/do5ZE7Xrl2Nh4eH+fTTTzNs8/nnnxubzWaefvrpHKzMdTgSh7vCr293p3fv3poyZYqOHDliv4bwzJkzqlChgi5duiSbzSZjjDw9PbV582ZVr17dzRXnDnv37tXvv/+usLAw1alTx93lWMqZM2cUExOjihUrKjg42L784MGDev3117V7926Fh4drxIgRzPaXBYyr6/H5mj2efPJJff/99zp16pT8/f0l3brUomrVqvL09FStWrW0d+9excfHa8GCBWrbtq2bK84dtm/frlmzZmn27Nk6ffq0jDHy8vLSjRs33F2aJezdu1c1a9bU9evXVa9evXRnq/3555+VP39+/frrr6pUqZJ7C74bbo2QuKfx65vrVa5c2dSoUcNh2dtvv21sNpt5+eWXTWJiolm4cKHx8PCw7C9D7jJ79mzTuHFjs2nTJoflL7/8ssMMde3atUt3tlWkb8CAAcbDw8PExMTYl8XHx5uQkBCH2en8/PyYVS0LGFfX4/M1e9x3333mkUcecVg2aNAg4+HhYb7++mtjjDGHDh0yvr6+pnnz5u4oMdc4cuSIefvtt03lypUdPgeqVq1qxo8fb06dOuXuEi1l9erVJjg4OMPZakNCQswPP/zg7jLvGiEOGXriiSeMv7+/uXTpkn3Zzp07jYeHh8mXL5+pV6+eKVy4sPHw8DCLFi1yY6XWUaRIEdOhQweHZQ0bNjS+vr4O41y3bl1Trly5nC7P0lq3bm0KFy5sEhMT7cs2bNhgbDabCQwMNF27djURERHGw8PDTJ8+3Y2VWkvVqlXNAw884LAsdVrmp59+2uzfv9+8//77xmazcauRLGBcXY/P1+zh7+9vnnrqKYdlVapUMUWKFDHJycn2ZS1atDBhYWE5XZ7lXbhwwXz22WemQYMGxtPT0x4wQkNDzauvvsqtG5x05coV89VXX5nnnnvOtGzZ0rRs2dI899xz5quvvjJXrlxxd3lOIcQhQ/z65np+fn7miSeesD++fv26yZ8/v4mKinJo17VrV+Pn55fD1VlbmTJl0oxj7969jYeHh1mxYoUxxphz586ZgIAA06BBAzdUaE3FihUzjz/+uMOy5s2bm3z58pmzZ8/al1WtWtVERkbmdHmWxbi6Hp+v2SMwMNC0a9fO/vjcuXPG09PTtG3b1qHdM888Y3x9fXO4OmtKTEw08+bNM+3atTM+Pj724BYQEGB69OhhfvjhB5OSkuLuMnGP83L36Zy4d505cybN9NY//PCDChUqpKeeekqSVLZsWUVFRWnPnj3uKNFyQkNDtXPnTvvj1atX6/r162rSpIlDu2vXrqlAgQI5XZ6l/fnnn6pXr57DsjVr1qh48eJq3ry5JKlIkSJq2LDhHe8bg/9z6dIl+fn52R8nJyfrl19+UY0aNRQUFGRfHhkZqaVLl7qjREtiXF2Pz9fsUaZMGW3cuFFJSUnKly+fFixYIGOMmjVr5tDu3Llz3NMsE/7nf/5H8+fPV3x8vP0azdTbCLRr106+vr7uLhEWQYhDhjw9PR3um3H+/Hnt3r1brVu3loeHh315sWLFdPbsWXeUaDlNmjTR559/rgEDBujRRx/VsGHDZLPZ0lwIvmvXLm5Im0X58+dXQkKC/fGpU6e0f/9+Pfnkkw7tChUqpAsXLuR0eZZVsmRJ7du3z/74559/1uXLl9PcXuTmzZvy9vbO4eqsi3F1PT5fs0fnzp31+uuvq2HDhqpXr56++uor5cuXT+3atbO3McZo69atqlixovsKtYipU6dKunWT6WeffVZdunRRsWLF3FyV9R09elSSVKpUKXl6etofZ1Z4eHh2lJW93HwkEPewKlWqmOLFi5sbN24YY4z54osvjIeHh/noo48c2v3jH/8wpUqVckeJlhMbG2uKFCnicGHt36812L17t7HZbKZfv35uqtKaatWqZQIDA82FCxeMMcaMGzfOeHh4mKlTpzq0a9q0qQkPD3dDhdb09NNPGw8PD/P++++bnTt3mkceecR4eHiYDRs2OLSrXLmyefDBB91UpfUwrq7H52v2uHz5sqlTp459kg1PT08zYcIEhzarV682NpvNjBgxwk1VWsdrr71m9u7d6+4ycp3U92bqZFHpTWaS0Z+np6ebq787HIlDhvj1zfXCw8P122+/acqUKTp79qxq1KihHj16OLTZvn272rZtm+YIEm6vR48e6tu3r2rUqKGqVatq2bJl8vf3d/gVPikpSdHR0apZs6YbK7WWYcOGacGCBXr55Zcl3fo337hxY4dTV48cOaI9e/bo+eefd1eZlsO4uh6fr9mjQIEC2rhxo3766SedPXtWVatWVfny5R3aeHp66v3331ebNm3cVKV1jBkzxt0l5EoNGzaUzWazn6ae+jhXc3OIxD2MX99gJTdu3DCdOnWyv1/9/f3NN99849BmwYIFxmazmbfffttNVVrT1q1bTbdu3cxjjz1m3njjDZOQkOCwfvLkyaZq1apm6dKlbqrQmhhXIO9JSkoyZ86cMRcvXkx3/dmzZ82LL75oSpUqZXx8fExERIR59dVXHWZYBYzhZt+4g5SUlNv++rZ27Vr99ttvatOmjSIiItxUZe4RFxenQoUKycuLg+R368iRIzp79qwiIyNVsGBBh3U7duxQbGysHn74YYcbLAPI/fh8db29e/fq999/V1hYmOrUqePucixh6tSpevHFFzV8+HCNGjXKYV1CQoJq1qypgwcP6q9fz202m+rUqaP169fL09Mzp0vGPcrjzk2Ql3l4eKhRo0Z64okn0gQ4SWrUqJH69+9PgMuk6OhojR49Os1sngsXLlRISIiCg4NVtGhRTZw40U0VWl+ZMmVUq1atNAFOkqpWraq2bdsS4IBciM/X7DFnzhw1adJEmzdvdlg+ZMgQPfDAA+rcubPq1aun9u3bKzk52U1VWse6deskKd3TpN955x0dOHBA+fPn18SJE7Vr1y4tWLBAZcqU0ebNm/XVV1/ldLm5Unx8vKKjo3X69Gl3l+IcNx8JhEXt2bPHzJ0712zatMndpVhKt27djI+Pj4mLi7MvO3TokPH29jY2m82ULFnSfrPPNWvWuK/QXOb7778348aNM7Nnz7ZP1IPM2b9/v5k+fbo5dOiQw/JffvnF1KlTxxQoUMBUqlTJzJ8/300VWhPj6np8vmaP1q1bm8KFC5vExET7sg0bNhibzWYCAwNN165dTUREhPHw8DDTp093Y6XWULlyZXP//fenuy4kJMR4eHiYd99912H5vn37jKenp2nWrFlOlJgrrFixwvTs2dNs27bNYfmHH35ofH197ROaDBgwwE0VOo8QhwzNnj3bNG7cOE1QGzx4sMOsPu3atTM3b950U5XWUqFCBfPwww87LBs+fLix2Wxm/PjxxhhjoqOjjZeXl8PNVXFnH3/8sSlbtqz5+eefHZY/8cQTDu/XOnXqmGvXrrmpSuvp1auX8fT0NMeOHbMvO336tAkICLDP/mWz2YyXl5fZunWrGyu1FsbV9fh8zR5lypRJc8P03r17Gw8PD7NixQpjzK0bgAcEBJgGDRq4oUJrCQoKcrgpfao9e/bY5x/4888/06x/+OGHTXBwcE6UmCs88cQTxt/f3+Fawp07dxoPDw+TL18+U69ePVO4cGHj4eFhFi1a5MZK7x6nUyJDs2bN0o4dO1StWjX7so0bN2r8+PEqWLCgnnrqKZUpU0aLFy/W119/7cZKrePMmTNp7kWyatUqFShQQH379pV0694xDRo00G+//eaOEi1r4cKFunr1qurWrWtftnz5cs2bN0+lSpXS0KFDVbt2bf3666/64osv3Fiptfz888+qWrWqQkND7cu+/PJLXbp0SYMGDdK1a9e0YMECpaSkaMKECW6s1FoYV9fj8zV7/PnnnypVqpTDsjVr1qh48eJq3ry5JKlIkSJq2LChDhw44I4SLSU+Pj7dWRO3bt0qSapcuXK6940rXbo09zjNgm3btqlq1ary9/e3L5s2bZr9fzds2KCtW7fK29tbn3zyiZuqdA4hDhnavXu3HnroIYcbzc6cOVM2m03ffvutvv76a/3666/y9/fXlClT3FipdSQnJ+vmzZv2x5cvX9a2bdtUv359h3EuWbKk9c/VzmExMTF64IEHHG5EP3v2bNlsNs2bN09jxozRmjVrFBQUpFmzZrmxUms5deqUSpcu7bBs+fLl8vHx0ciRI+Xt7a127dqpTp06aa6ZQcYYV9fj8zV75M+fXwkJCfbHp06d0v79+xUVFeXQrlChQoSMTChcuLAOHjyYZvnGjRslSbVq1Up3u+TkZIdAgts7c+aMw49kkvTDDz+oUKFCeuqppyRJZcuWVVRUlPbu3euOEp1GiEOG+PXN9cLDw+2/tknSsmXLdPPmTTVt2tShXUJCggIDA3O6PEs7e/asQkJCHJatW7dOYWFhql27tiTJ19dX9erV0+HDh91RoiVdv37dYTa0xMRE/frrr6pTp47DF4qyZcvq5MmT7ijRkhhX1+PzNXtERERo/fr1unjxoiTp66+/ls1ms38PSHX69GkVL17cDRVaS40aNbR9+3aHH2euXLmi+fPny2az6dFHH013u/3796tkyZI5VableXp66vr16/bH58+f1+7du9WgQQOHH3uLFSums2fPuqNEpxHikCF+fXO9Nm3a6OjRo+rQoYMmTZqkwYMHy8PDw+GG1NKtG9L+/Vd63F5gYKDi4uLsjw8fPqzY2Fg1atTIoV2BAgV05cqVHK7OukJDQ7Vz507749WrV+v69etq0qSJQ7tr166pQIECOV2eZTGursfna/bo0aOHEhISVKNGDXXs2FHDhw+Xv7+/w7gmJSUpOjpaFSpUcGOl1vDCCy/IGKN//OMf+te//qVJkyapUaNGOnv2rIoWLap27dql2ebUqVP6/fffdf/99+d8wRZVpkwZbdy4UUlJSZKkBQsWyBijZs2aObQ7d+6cihYt6o4Snefui/Jw76pVq5YJDAw0Fy5cMMYYM27cOOPh4WGmTp3q0K5p06YmPDzcDRVaz9mzZ03ZsmXtN6S22Wzm5ZdfdmizadMmY7PZzJAhQ9xUpTXVr1/f5M+f38TGxhpjjBk6dKjx8PBIc8PvqKgoExER4Y4SLSl1AoP+/fubxYsXm8qVKxsPDw+zY8cOh3blypUz1atXd1OV1sO4uh6fr9njxo0bplOnTvYx9ff3T/O5umDBAmOz2czbb7/tpiqt5bnnnrNPYJQ6iZGnp6eZPXt2uu3feustY7PZ0nz/QsbefvttY7PZzMMPP2wGDRpkChcubHx8fMzx48ftbVJSUkzx4sUtOyEPIQ4Z+vjjj43NZjMRERGmQ4cOxsfHxwQEBDhM33zjxg1TqFAh07RpUzdWai2XLl0yX331lXnvvffMDz/8kGb9okWLzIABA8xvv/3mhuqsa9asWfYpr6tXr248PDxMcHCww8xUV69eNQUKFDCtW7d2Y6XWEhsba4oUKeLwZeOpp55yaLN7925js9lMv3793FSl9TCu2YPP1+xz+PBhs2XLFpOQkJBm3fbt282iRYvM6dOn3VCZNc2fP988/fTTpnnz5ub55583GzZsyLDt888/b9q1a2dOnjyZgxVa2+XLl02dOnXsPz54enqaCRMmOLRZvXq1sdlsZsSIEW6q0jk2Y/5yS3jgL5KSktS1a1fNnz9f0q3T0L744gv7BaHSrRkBO3bsqDFjxmjYsGHuKhWQdOvmsx999JESExMVGhqq6dOnq3Hjxvb106dPV8+ePTVhwgQNGDDAfYVazPHjxzVlyhSdPXtWNWrUUI8ePRyuKZg1a5bmz5+vl19+WY888ogbK7UWxhUAsk9KSop++uknnT17VlWrVlX58uUd1q9du1a//fab2rRpo4iICDdVefcIcbijI0eO6OzZs4qMjFTBggUd1u3YsUOxsbF6+OGHFRwc7KYKrSsxMVHnz5+Xj4+PihQp4u5ycoXExEQlJCSkO0XzsWPHdP78ed13333M8gXkcny+ut758+e1detWxcXFqXTp0qpXr567S7K86tWr67777tPcuXPdXQosholNcEdlypRRrVq10gQ4Sapataratm1LgMuizz//XNWqVVOBAgUUGhqqwYMH29ctWLBAHTp0YMbPu+Tj45NugJOksLAwValShQAH5GJ8vrre2bNn1bVrV4WEhKhly5Z65plnHG4tNGXKFBUpUkQ///yzG6u0ppiYGOXLl8/dZeQpe/fu1bx58yx/+xZCHDLl/PnzWrVqlb755hv7vUyQdcnJyWrfvr3+93//V3v37lWlSpX094PhVapU0aJFizRnzhw3VWl9v/32m7744guNHTtWixcvti9PPUqHrFu5cqXat2+vUqVKycfHR88//7x93YoVKzRo0CCmwr8LjKvr8PmaPc6fP6969epp9uzZeuCBB/TPf/4zzbh26NBBly5d0rx589xUpXWVL19e586dc3cZuc6cOXPUpEmTNEFtyJAheuCBB9S5c2fVq1dP7du3V3JyspuqdJIbr8eDBfz555+mS5cuJl++fPYL8Hv27Glf/8UXX5jChQub9evXu7FK6/jggw+MzWYzrVq1sl8AbrPZHMbUGGPKly9v6tev744SLW3fvn2mbt269vfq39+vX375pfHw8DDff/+9G6u0npdeesk++UbB/9fencfVlP9/AH+d066ESghpUSRLixCVZN8lMiiFGYxlbMM0YxljG7LvjDVl3xm7IUqMLBXKllKWNqGUpbqf3x9+3e9cdVuoezrX+/l49Hh87zmf+3i8vp/HneO8z+dzPp/KlQv8ZiMjIxnHcQVeGidFo34tW3R9LR+TJk1iHMex33//XXqssH61s7NjNjY2Ck4nfitXrmQaGhosJiZG6ChKpUePHqxatWrsw4cP0mOXL1+WLoA2aNAgZmZmxnieZwEBAQIm/XI0EkfkoqdvZW/btm2oUaMG9uzZU+QU1EaNGuHJkycKTCZ+iYmJcHFxwdWrV9GzZ0/4+/sX+L16enpCXV1dulgPKd727duxatUq2Nvb4+bNm4WOZDZt2hR169bFsWPHBEgoTtSvZY+ur+Xj8OHDsLS0xKxZs4psZ25ujmfPnikmlBIZN24cfH190bZtWyxbtgyPHj3Cx48fhY4lenfu3EHTpk2hrq4uPRYYGAiO47B3717s2LED4eHh0NHRkZkaLCZUxBG55s2bh9jYWMycORM3b97EqlWrCrTR09ND06ZNcfHiRQESis/9+/fRsmXLYjfv1dbWRmpqqoJSKYfZs2cjLS0NmzZtwuHDhzF58uQCbbS1tWFjYyP6efCKtG7dOlStWhXHjx+HjY2N3HZNmzbF48ePFRdM5Khfyx5dX8vHs2fP0KxZs2LbcRxH09W/gIqKCjZu3IjU1FT8/PPPaNCgAbS0tKCiolLgT1VVVei4opGSkoLatWvLHLtw4QIMDQ3RqVMnAJ/uYV1cXET7jiz9GohcpXn6FhwcrJBMYqempob3798X2y4hIaHQhWSIfKdOnULTpk0xbNiwItuZmJjgzJkzCkolfnfu3EHbtm3lLhaTr0qVKkhOTlZQKvGjfi17dH0tH7q6unjx4kWx7WJjY4v9PZOC6tatC47jhI6hdLS0tGQeKrx48QIPHjyAp6enTLuqVavi1atXio5XJqiII3I9e/YMvXv3LrYdPX0rOWtra9y4cQOZmZlybyJSUlIQERGBVq1aKTiduKWkpKBNmzbFtsvJyUF2drYCEimPktxgPH/+HFpaWgpIozyoX8sWXV/Lh4ODA86fP4+4uDiYmpoW2iYyMhIRERHo16+fgtOJX3x8vNARlJKZmRlCQkLw+vVrVK1aFTt27ADHcdJRuHxJSUkwNDQUKOXXoemURC56+lb2vL298fLlS4waNarQOe95eXkYM2YMsrOz4ePjI0BC8dLX10dCQkKx7R48eIBatWopIJFysLCwwM2bN5GTkyO3TWZmJiIiImBtba3AZOJG/Vr26PpaPsaNG4cPHz7A3d0dMTExBc4/evQI3t7eYIxh7NixAiQkpCBfX19kZGTA3t4eHh4emD59OnR0dGQGJ3JycnD9+nVYWloKmPTLURFH5HJwcEB4eDji4uLktsl/+laSERACjBgxAq6urti1axcaNGiAUaNGAfjUj+PHj4elpSUOHDiAjh07YvDgwQKnFZc2bdogPDwcERERcttcvHgRd+7cgaurq8JyiV3//v3x4sUL+Pn5yW3z66+/4s2bN/juu+8UmEzcqF/LHl1fy0eXLl0wdepUREVFoXHjxmjYsCE4jsPp06fRrFkzWFlZ4c6dO/jtt9/g5OQkdFxCAAA//PADPDw8EBcXh0OHDkFNTQ0bNmyAvr6+tM3ff/+NN2/ewM3NTcCkX0Hg1TFJBXby5EnGcRxr1qwZi46OZozJLiv88OFD1qRJE8bzPG0xUArv3r1jo0ePZurq6ozjOJk/VVVVNmLECPbu3TuhY4rO1atXmYqKCjM2NmYnTpxgubm5Mr/Xf/75h9WtW5epqamxyMhIgdOKR3Z2NmvatCnjeZ61atWK/fnnn4zjOObi4sKWLl3KnJ2dGcdxzN7eXmYpZ1I06tfyQdfX8rN3717WrFmzAv1qZWXFdu7cKXQ8pXDnzh126NAhtn37dhYQEFDoHymduLg4du3aNZaRkVHg3K1bt9jhw4elW5KIDcfYZ2twE/Iffn5+8Pf3B8dxsLCwwMOHD1GzZk0YGBggOjoaeXl5mDZtGubMmSN0VNFJTU1FcHAw4uPjIZFIUKdOHbRr1w5GRkZCRxOttWvXYvz48ZBIJKhUqRKys7Oho6MDnueRkZEBjuOwdu1ajBgxQuioopKamgpfX1+cPHkSHMcV2LqhY8eOCAoKomnVpUT9Wn7o+lp28q+d+e8ZpqamyvTr5ysAktI7d+4cRo8ejdjYWLltGGPgOE68G1OTMkdFHCnWvn37MG/ePERFRckcb9iwIWbMmIGBAwcKlEx87OzsYG5ujn379gkdRWldvXoVCxYswPnz5/H27VsAgKamJlxdXTFt2jSa+vsVIiMjcebMGZkbuI4dO6JFixZCRxM16teyQdfX8sHzPFq2bIkrV64IHUUpXb9+HW3atAHHcejfvz9u376N27dvw8/PD7GxsTh37hxevXoFX19fGBsb4/fffxc6suikp6fjxo0bSEtLQ7169dC6dWuhI5UJKuKIXPT0rexpa2ujd+/e2Llzp9BRlE5UVBR4nkfjxo0BfHpqmZaWBolEAgMDA6ioqAicUJz69u2LWrVqYc2aNUJHUSrUr2WPrq/lo1q1aujWrRt27NghdBSl5OHhgcOHD+PUqVPo2LEjhg4diu3bt0tH3F6/fo2RI0ciODgY169fR926dQVOLB6pqakYP3489u/fL+1PHx8fbNmyBQCwadMmTJ06FUePHhXl+5y0sAmRq2rVqjJLsVavXh0ODg5o2bIlFXBfyMLCAi9fvhQ6hlKysbHBuHHjpJ85jkP16tVRo0YNKuC+wokTJ+g3Ww6oX8seXV/Lh62tbZHT/MjXCQsLg62tLTp27Fjo+apVq2L79u3geR7Tp09XcDrxSk9PR+vWrbF79240btwYo0ePLjBlvW/fvsjMzMT+/fsFSvl1qIgjclWpUgVmZmZCx1Aqw4cPx8WLF3Hv3j2hoygdPT09et+lHJiamiIrK0voGEqH+rXs0fW1fPzyyy8IDw8X7Y1uRZeeng4LCwvpZ3V1dQCQuT5oaGjA2dkZZ8+eVXg+sZo3bx5iY2Mxc+ZM3Lx5E6tWrSrQRk9PD02bNsXFixcFSPj1aLNvIhc9fSt748aNw927d9G2bVv4+fmhZ8+eMDY2ll60yZdr1aoVbt++LXQMpTNw4EAsXrwYSUlJqFmzptBxlAb1a9mj62v50NLSwvfff48BAwagR48e0n7V1NQstL2Li4uCE4pb9erVkZGRIfMZAB4/fowmTZpIj7979w5v3rxReD6xOnz4MCwtLTFr1qwi25mbmyM4OFghmcoavRNH5Dp9+jS6deuGPXv2oF+/fkLHUQr50/ryV5kqCsdxyM3NVUQspRAeHg4nJyfMnz8fkydPFjqO0sjJyUGfPn3w6NEjLFiwAD169ICamprQsUSP+rXs0fW1fPA8L7N6anF9S6snlo6rqytSUlIQHR0NADh69Cj69OmD0aNHY/Xq1QA+bajerFkzmJmZ0cPKEtLU1ETv3r2xZ88e6TGe5+Hr6yt9Jw4ABgwYgCNHjuD9+/dCxPwqNBJH5KKnb2Wvbt26xf4DSL5MTEwMvLy8MHXqVAQFBaF79+5F/l6HDBmi4ITi1KBBA0gkEiQmJqJfv37gOA6GhoaF9ivHcTR6X0LUr2WPrq/lY8iQIdSv5ahbt2749ddfERMTAysrK3Tp0gX16tXDunXrEB4ejjp16uD8+fN4//49hg8fLnRc0dDV1cWLFy+KbRcbGyvabVxoJI7IRU/fiJh8/nsFCv/N0l47pcPzpXt1WiKRlFMS5UL9SggBgKSkJBw5cgROTk6wtrYGANy+fRuenp64f/8+gE/Xi+HDh2P9+vVUUJdQ9+7dcf78eURHR8PU1BRAwZG4yMhI2Nvbo1+/fti9e7eQcb8IjcQRuejpGxGTmTNn0u+1HFDxUD6oXwkhAFCzZk2MHDlS5liTJk0QExODe/fu4dWrV6hfv75oR4uEMm7cOJw8eRLu7u7YtWsXrKysZM4/evQI3t7eYIxh7NixAqX8OjQSRwghhBBCCFEqfn5+8Pf3B8dxsLCwwMOHD1GzZk0YGBggOjoaeXl5mDZtGubMmSN01C9CRRwhCrR9+/YStVNXV4e+vj6aNWsGQ0PDck5FCCHiR9fX8jFs2LAStcvvVxsbG/To0QNaWlrlnEz5pKen48aNG0hLS0O9evXQunVroSOJ3r59+zBv3jxERUXJHG/YsCFmzJiBgQMHCpTs61ERR4gC5b+3VVIcx6FDhw5YtWqVzD4yhCjKpUuXStQu/waufv36NK21BKhfyx5dX8tH/vub+X37+W3j58c5jkO1atWwYcMGeHh4KDCpeKWmpmL8+PHYv3+/9H1tHx8f6btbmzZtwtSpU3H06FE4OTkJGVU0MjIywHEcKleuDOBTH8fHx0MikaBOnTqoXbu2wAm/HhVxRC56+lb2Zs2ahfj4eGzfvh06Ojro1KkTjI2NAQCJiYk4c+YMMjMz4e3tDQ0NDYSFhSE6OhqGhoa4ceOGUlx0youbm1uJ2v339/rdd9+hbt265ZxM3Ep7Y6yjo4OBAwdi3rx50NfXL8dk4kb9Wvbo+lo+Ll68iIMHD2LVqlVo06YNBgwYINOve/bsQWhoKMaOHYtWrVrh0qVL2Lx5MziOQ0hICFq2bCnw/4OKLT09HS1btkRsbCxsbGzQpk0brFmzRmYBjvT0dNSoUQNjxozB8uXLhQ0sEjzPo2XLlrhy5YrQUcoPI0QOjuMYx3GM53nG87z0s7zjPM8zfX19tn//fqGjV1iPHj1ienp6bPjw4ez169cFzr9584YNHz6c6enpsYcPH7K8vDw2adIkxnEcGzt2rACJxeO/v8PPf6vyzqmrq7Nly5YJHb1C8/HxYb1792YcxzEVFRVmb2/P3N3dmbu7O2vevDlTUVFhPM+zXr16sY4dO7Lq1aszjuOYhYUFS09PFzp+hUX9Wvbo+lo+zp49y1RVVdmWLVvkttm6dStTUVFhZ86cYYwxtnv3bsZxHOvfv7+iYopW/m/w999/lx7jOI4NHTpUpp2dnR2zsbFRcDrxqlq1Khs0aJDQMcoVFXFEruDgYPbTTz8xjuOYk5MTW7VqFTty5Ag7cuQIW716NXN2dmYcx7Fx48axHTt2sJEjRzJVVVWmpqbGrl69KnT8Cql///7M3Nyc5eXlyW2Tl5fHzM3Npf/4ffjwgRkZGbH69esrKqYoxcfHswkTJjB1dXXm5eXFjh07xiIjI1lkZCT7+++/mbe3N1NXV2c//fQTu3z5Mvvzzz+Zrq4u43menT59Wuj4FVZKSgozNTVlXbp0YQ8ePChw/uHDh6xr167M1NSUJScns7dv37KBAwcynufZr7/+KkBicaB+LXt0fS0fLi4urGXLlsW2a9myJXN2dpZ+btiwITMyMirPaErBzMyMNWjQQOZYYUVc//79WfXq1RUZTdTatWtXot+tmFERR+Sip29lz8DAoERPhgYOHMj09fWln7t27cq0tLTKM5ro7d69W+a3WJgzZ84wVVVVtnPnTsYYY+fPn2ccx7EePXooKqboDB8+nBkZGbF3797JbZOdnc2MjIzYsGHDGGOfRjz09fWZtbW1omKKDvVr2aPra/moXLlyifp10KBBrHLlytLP7u7uTF1dvTyjKQUNDQ3m6ekpc6ywIs7T05NpaGgoMpqonTp1ivE8z/bt2yd0lHJD+8QRuebMmQN7e3sMHTpUbhtfX1+sX78ec+bMQceOHTFgwADMmjULly9fVmBS8cjOzkZSUlKx7ZKTk/H+/XvpZ11dXaiq0n+uRVm8eDGcnZ3RsWNHuW06duwIJycnLFmyBAMHDkS7du3QrFkzXLt2TYFJxeX48eNwdXWFpqam3DZaWlpwdnbGiRMnAHz6vdra2iIsLExRMUWH+rXs0fW1fKioqCA6OrrYdtHR0VBRUZE5pq2tXV6xlIauri5evHhRbLvY2FjaK64UtLS08P3332PAgAHo0aMHevbsCWNjY7nXXBcXFwUn/Hq80AFIxXXr1i2Ym5sX287c3BwRERHSz1ZWVkhLSyvHZOLVpEkTXLp0qciV6UJCQnDx4kU0adJEeiwxMZEu3sWIiYmBkZFRse2MjIxw79496WcLCwu8fv26HJOJ25s3b/DmzZti22VkZMi0MzAwKM9Yokf9Wvbo+lo+nJycEBUVhYULF8pt4+/vj8jISJkb4cePH5fomvytc3BwQHh4OOLi4uS2iYyMREREBNq0aaPAZOLm6uqKTZs2gTGGY8eOYeTIkejatSvatWtX6J8Y0aMnIhc9fSt7U6dORb9+/dC5c2cMGTIE/fr1k66OmJiYiAMHDmD79u1gjGHq1KkAPt3s3bhxg5ZqLkalSpVw/fp1MMbkrvrHGMP169dRqVIl6bH3799DV1dXUTFFx8LCAhcuXEBMTAysrKwKbRMTE4MLFy6gQYMG0mMvXryggqMI1K9lj66v5WP+/Pm4cOECfvvtN2zduhUeHh4y/Xro0CHcv38f2tramDt3LgDgyZMniIqKwtixY4WMLgrjxo3DyZMn4e7ujl27dhW4Hjx69Aje3t5gjFF/lsKQIUOUf1sWIedykoqtR48ejOd5tmDBArltFi5cyDiOY7169ZIea9asGb2zUYTly5czDQ0NmRU+/7vSp4aGBluxYoW0fWxsLFuwYAELDw8XMHXFl7/ow5gxY1hWVlaB89nZ2WzcuHGM53k2ePBg6fGGDRsyW1tbRUYVlQ0bNjCO45iBgQGbP38+e/DgAXv37h179+4de/DgAfvzzz9Z9erVGc/z7K+//mKMfeprHR0d5u7uLnD6iov6tXzQ9bV8hIWFMUtLS7mrU1taWrIrV65I26enp7OrV6+ylJQUAVOLxy+//CLt1wYNGjCe55mRkRFr2rQpU1VVZRzHsenTpwsdk1QwtE8ckev27dtwdHTEu3fvYGFhIffpW6VKlRAWFoYmTZrgyZMnMDU1xdixY7Fy5UqB/x9UXHFxcdi8eTPCwsKkc+Fr1aqFNm3aYOjQoTAzMxM4ofg8efIEDg4OePnyJapWrYouXbrI/F5Pnz6NV69eoXr16vj3339Rr149xMTEwNraGlOmTClyqtC3buLEiVixYkWRI5wTJkzA0qVLAQD37t3DihUr4OHhgQ4dOigyqqhQv5YPur6WD8YYzp8/j8uXLxfoVzc3N+Uf9Shn+/btw7x58xAVFSVzvGHDhpgxYwYGDhwoUDJSUVERR4p05coV+Pr64uHDhwAgvUjn/2wsLCwQEBCAVq1aAQBevXqFBw8ewMzMjN4xIAoXGxuLkSNH4vz584Web9++PdatW4f69esDAD58+IDXr1+jSpUqRS4wQYDLly9j3bp1hd4Yjxw5Ek5OTgInFCfqV0LIf6WmpiI+Ph4SiQR16tShTeiJXFTEkWLR0zciNrGxsQV+r61bt5YWb4QQQr7Mhw8fkJ6eDg0NDejp6Qkdh5BCDRs2rETt1NXVoa+vDxsbG/To0QNaWlrlnKzsUBFHiACio6OxceNGXLt2DWlpaejduzf8/f0BAGFhYbh+/Tq8vLzoH0hCCCklur6Wj7/++gvr1q3D7du3wRiDj48PtmzZAgA4ePAggoKC4O/vTw/LSIXA858W4P98Blm+z49zHIdq1aphw4YNolnoiFanJCVGT9/KxtKlS+Hn54fc3FwAny4cn2/JMHHiRGhoaGDkyJFCRFQKDx8+RFpaGvT19WFpaSl0HNF7+fIlgoKCpDfG7du3l67wd/fuXcTGxqJDhw4yK3+S4lG/li26vpa9vLw89OvXD0ePHoWamhqsrKxw9+5dmTbNmjVDv379YG9vj2nTpgmUVLxSUlKwdu1aXLp0CS9evMCHDx8KbcdxHGJjYxWcTpwuXLiAgwcPYtWqVWjTpg0GDBgAY2NjAJ/ek9+zZw9CQ0MxduxYtGrVCpcuXcLmzZsxcOBAhISEoGXLlgL/PygBxa+lQsRmw4YNzMbGhqmoqDCe59nQoUOl5w4cOMDc3d3Zw4cPBUwoHn///TfjOI6ZmZmxQ4cOsdTUVMZxnEyfMsZYjRo1WNeuXQVKKV7v379nv/76K9PX15eunvbfvg0MDGS2trbs1q1bwoUUob179zJdXV3panSf9+vp06cZz/MsMDBQwJTiQ/1atuj6Wj6WL1/OOI5j3bt3Z0lJSYwxVmi/WlhYsDZt2ggRUdSio6OlK9Hmr/ZZ1B8pmbNnzzJVVVW2ZcsWuW22bt3KVFRU2JkzZxhjjO3evZtxHMf69++vqJhfhTb7JnLl5eXB3d0dP/74o3QvI/bZcHSzZs1w+PBh7NmzR6CU4rJ06VJoa2vj7Nmz6NOnj9z9nmxsbHD//n0FpxO3d+/ewdXVFQsXLoS6ujq6detW4Pfq5uaGyMhI7N27V6CU4nPlyhUMGjQIqqqqWLJkCa5du1agX9u3b48qVarg4MGDAqUUH+rXskfX1/Kxbds21KhRA3v27EGNGjXktmvUqBGePHmiwGTKYcqUKUhLS0Pfvn1x/fp1ZGRkQCKRyP0jJTNnzhzY29tj6NChctv4+vqiefPmmDNnDgBgwIABaNCgAS5fvqyomF+Fijgi1+rVq3HkyBF07doVT548we3btwu0MTc3R/369XHy5EkBEorPjRs30KpVq2KXuDYwMEBSUpKCUikHf39//Pvvvxg2bBgeP36MY8eOFWhjZGSERo0a4dy5cwIkFKf58+eD53mcPXsWEyZMQPPmzQu0UVFRgZ2dHe7cuSNAQnGifi17dH0tH/fv30fLli2hra1dZDttbW2kpqYqKJXyCAkJQYMGDbB3717Y2dlBR0dH6EhK4datWzA3Ny+2nbm5OSIiIqSfraysCkzBrqioiCNy0dO3svfx40dUrly52HYpKSlQVaVXVktjz549MDY2xrp164rcLqBBgwZITExUYDJxCwsLg6OjI+zs7IpsV7NmTelqoKR41K9lj66v5UNNTQ3v378vtl1CQkKJ+p/IYozBxsaGVvouYyoqKoiOji62XXR0NFRUVGSOFffAoqKgIo7IRU/fyp6pqSkiIyOLbPPx40dERUXRYhylFBcXh+bNmxd7c6auro5Xr14pKJX4ZWdnl2jPR+rT0qF+LXt0fS0f1tbWuHHjBjIzM+W2SUlJQUREBGxsbBQXTEk0b96cHoSXAycnJ0RFRWHhwoVy2/j7+yMyMhIuLi7SY48fP4aRkZEiIn41KuKIXPT0rez16tUL8fHxWLp0qdw2/v7+SE1NRd++fRWYTPy0tLRKdMMbFxeHatWqKSCRcqhdu3aBleg+xxjDnTt3YGpqqqBU4kf9Wvbo+lo+vL298fLlS4waNQofP34scD4vLw9jxoxBdnY2fHx8BEgobrNmzUJ4eHihrwCQLzd//nxoaWnht99+Q8OGDTFt2jSsX78e69evx7Rp09CoUSP8+uuv0NbWxty5cwEAT548QVRUFNzc3AROX0ICLqpCKjhHR0dmYGDAMjIypMc+X5EqOTmZ6ejosA4dOggRUXTS09NZ3bp1Gc/zzNPTk+3atYtxHMe6devGDh48yLy9vRnP88zc3Fym30nx2rVrx3R1dVlKSor02Oe/18ePHzMNDQ3Ws2dPISKK0pgxYxjP82zXrl3SY5/3619//cU4jmN+fn5CRBQl6teyR9fX8pGbm8vatWvHOI5jJiYmbOTIkYzjOGZnZ8d++uknZmZmxjiOY507d2YSiUTouKJz8eJFNnnyZKaqqsqGDBnCAgMD2YULF9jFixcL/SMlFxYWxiwtLaUre+avWp3/2dLSkl25ckXaPj09nV29elXmPqIioyKOyLV27VrGcRwbNGgQ+/DhA2NM9iYjNzeX9evXj5bALqX79++zJk2aSC8on19YrK2tacuGL7Bz507GcRxr3749S01NZYzJ/l5fvXrFXF1dGc/z7NixY0JGFZXExERWrVo1pqamxqZOncquXLnCOI5jnp6e7ObNm2zGjBlMQ0ODGRoasuTkZKHjigb1a/mg62v5ePfuHRs9ejRTV1cvsOS9qqoqGzFiBHv37p3QMUXpv7/V//5e5f2R0pFIJOzcuXPsjz/+YKNGjWKjRo1if/zxBzt37pzoHzpwjH22pjEh/y8vLw8dO3ZEcHAw6tWrh86dO+Ovv/6Cra0tnJyc8PfffyMuLg6dOnXCyZMn6aXcUpBIJDh27BjOnDmD+Ph4SCQS1KlTBx07doSHh0eBl2xJyQwaNAi7d++Gjo4OWrdujTNnzsDCwgINGzbExYsXkZGRgSFDhmDbtm1CRxWVK1euwMPDA0lJSQX+O2eMwdDQEEeOHBHH5qgVCPVr+aDra/lJTU1FcHCwTL+2a9dONO8QVUS+vr6lun/aunVrOaYhYkJFHCnS+/fvMXnyZGzatAk5OTky51RUVDBs2DCsWLGiyNUAyZfJ35uPlBxjDIsXL8aiRYsKLBFcpUoVTJ06FX5+fvTA4QtkZmZi8+bNOHv2bIEb45EjR6JKlSpCRxQl6ldh0PW17H38+BFbtmzBqFGjhI5CSAEfPnxAeno6NDQ0oKenJ3ScMkFFHCkRevqmODdu3MD8+fNx9OjRAoUzKZm8vDzcvHlT5vfq4OAAdXV1oaMptfT0dKX5x7EioX4tO3R9LXvZ2dlYt24dli5diqSkJOTl5QkdiRCpv/76C+vWrcPt27fBGIOPjw+2bNkCADh48CCCgoLg7++P+vXrC5y09GijFFIi1atXR//+/Qs9R0/fivfu3TtcvXoVKSkpMDQ0RKtWraClpSXTJjQ0FHPnzsXZs2fBGEOlSpUESit+KioqcHBwgIODQ4FzKSkpWLp0KRYsWCBAMuX04sULLFq0CJs2bUJGRobQcZQG9WvJ0PW1fISFheH06dPSfu3SpQscHR2l57OysrBs2TKsWLEC6enpYIzB3t5ewMSE/E9eXh769euHo0ePQk1NDVZWVgVWBG7WrBn69esHe3t7TJs2TaCkX45G4sgXo6dvJbNt2zZMmjQJb968kR6rVq0a1q1bh/79+yMpKQkjRozA8ePHwRiDlpYWRo0ahV9++QWGhoYCJlcuiYmJ8Pf3x5YtW/D+/Xv6vZZAXFyc9AausGXu4+PjsWDBAgQEBODDhw/geR65ubkCJBUX6teyQ9fX8jFs2DAEBAQA+DRNPX8K+tixY7FixQqcO3cOPj4+SEpKAmMMtra2mDVrFnr27ClkbFGYPXs2OI7DmDFjoKenh9mzZ5f4uxzHYcaMGeWYTnmsWLECEydORLdu3bB582bUqFEDPM/D19dXOhIHAJaWljA0NERoaKiAab+QghdSISJw+fJlNnPmTDZq1Cg2c+ZMFhYWJnP+7du3bM6cOczAwEC6olLz5s0FSluxXbp0SdpHVatWZc2bN2cNGjRgqqqqTE1NjZ0/f57VrVuXcRzHNDU12YQJE1hSUpLQsUUjLy+P7dixgw0ZMoR16dKFDRkyhO3atYvl5eVJ2yQkJLDhw4czdXV16epeHh4eAqau+M6ePcssLCxkVkSzsrJiISEhjDHGsrKy2Lhx42T6tG/fviwqKkrg5BUb9WvZoutr+di2bZt0pcSuXbuyn3/+mY0cOZKZm5sznufZ/PnzmYaGBuM4jjVu3JgdPnxY6Miikr8C5f3792U+f77qZ2F/tDplydnY2LCaNWuyt2/fSo99vo0LY4z17t2b1alTR9HxygQVcUTG0KFDZZZjzv/fP/30E2Ps002IkZGR9LydnR07evSowKkrrr59+zKO49iUKVOk2zQwxtiDBw9YkyZNmJaWFuM4jrVu3ZrFxcUJF1SEcnJyWMeOHQv845d/48vYp5sRHR0daRt3d3cWGRkpcPKKLTIyUmYZcQMDA+nvtHLlyuzOnTusadOm0j7t06cPi4iIEDp2hUf9Wvbo+lo+2rZty3ieZ0eOHJE5npOTw/r27Su9Lxg/fjzLzc0VKKV4bdu2jW3btk26V2H+55L+kZLR0tJivXv3ljlWWBE3aNAgpqGhocBkZYeKOCJFT9/KnpGREbO0tCz0XHBwMOM4jlWrVo02nv0Cy5cvZxzHMS0tLfbjjz+y1atXsz///JO5uLgwnufZyJEjpTfEnTt3Zrdu3RI6sih4eXlJ94f876jF+fPnWb169Zi+vr50k9TPR+mJfNSvZY+ur+VDT0+PtWzZstBz0dHRjOM4ZmpqKvo9tohy09XVZZ07d5Y5VlgR5+TkxAwMDBQZrcxQEUek6Olb2VNTU2Oenp6FnsvKymIcx7FevXopOJVyaNWqFVNVVWXXrl0rcG7UqFHSUbnFixcLkE686tWrx4yNjdnHjx8LnDt27BjjOI5VqlSJPX/+XIB04kX9Wvbo+lo+VFRUmJeXV6HncnJypJvSE8XavHkz++OPP4SOIRqOjo7MwMBA5iHO50VccnIy09HRYR06dBAi4lfjhX4nj1Qct2/fhoODA3r16iVzXFVVFXPnzgVjDPXq1cOyZctos9QSys3Nhba2dqHn8ldH09fXV2QkpRETE4PWrVsXugLllClTAAANGzbE5MmTFR1N1JKSktC8eXOoqakVOOfi4gIAcHV1Ra1atRQdTdSoX8seXV/Lh0QiKfR3Cny6HwAgt99J+dm4cSP++OMPoWOIhre3N16+fIlRo0bh48ePBc7n5eVhzJgxyM7Oho+PjwAJvx5tMUCk3rx5AwsLi0LP5R93cHCgjZJJhZCZmQkTE5NCz+Wv+NesWTMFJlIOHz9+lLvBtK6uLgDQqn5fgPqVEEIUZ8SIEdi3bx927dqFsLAwdO7cGQAQGRmJ8ePH4++//0ZcXBw6deqEwYMHC5z2y1ARR6To6Vv5CA0NxbBhw0p9nuM4bN68uTyjiRpjTO6IcP6DBk1NTUVG+mbQg5zyQf1aenR9LR/79+9HcHBwoec4jpN7nuM4xMbGlm84QkpARUUFJ06cwOTJk7Fp0yb89ddfAIBbt27h1q1bUFFRwQ8//IAVK1aI9tpLRRwh5ezRo0d49OhRqc/TTQYRSkRERJF7F8k7T3sYFY36tezR9bV8vH37Fm/fvi31ebHeDBPlpKmpiTVr1mDWrFkIDg5GfHw8JBIJ6tSpg3bt2sHIyEjoiF+FNvsmUjzPQ0dHBwYGBoWef/LkCbS1tQs9T0/fCpe/WeqXEus8bUXgef6Lbxg4jqPNk+Xg+dK/Ks1xnHRDYNpEvXDUr2WPrq/l48mTJ1/1/Xr16pVREvJfjo6OuHbtGl0LytjHjx+xZcsWjBo1SugopUYjcUQGPX0rW3STUL6+9BkUPbuS7/fffxc6glKifi17dH0tH1SEkW9BdnY21q1bh6VLlyIpKUmURRyNxBEpevpGCCFErBISEqCjowM9Pb0i27169QqZmZkwNjZWUDLxysvLQ1paGjQ0NFC1alWh43zTaCSuZMLCwnD69GmkpKTA0NAQXbp0gaOjo/R8VlYWli1bhhUrViA9PR2MMdjb2yM8PFzA1F+GijhCKoiXL1+iUqVK0NLSEjoKIYSIjoqKCnx9fYt91+2HH37A1q1baUp1ERISEvDzzz/j+PHjeP/+PQCgdu3aGD16NH755ReaffMVvnaLJiri5Bs2bJh0mnX+VHQAGDt2LFasWIFz587Bx8cHSUlJYIzB1tYWs2bNQs+ePYWM/cVoOiUhCnD48GFcunQJubm5sLKygre3N3R0dMAYwx9//IFVq1bh9evX4DgOrq6uWL16NRo2bCh0bFGZPXs2bGxsCuxz+Lljx47h1q1bmDlzpoKSKa9Tp07hzp07qFu3Lvr27St3dVtStPT0dNy4cQNpaWmoV68eWrduLXQkUWKMlXiqND2/li85ORmOjo7SG918T58+xbRp0/Dw4UNaFOYrfM1vj4pn+QICArBt2zYAQJcuXWBtbY3MzEycO3cOq1evRs2aNfHHH3/g48ePsLa2xty5c9G7d29hQ38thW4tTsg3Jjc3l3Xv3p3xPM94nmccxzGe55mJiQl7/vw5Gzt2LOM4rsBfjRo1WHJystDxRYXjODZ06NBi233//feM53kFJFIOa9asYaampiw0NFTmeP/+/aW/a57nWcuWLdm7d+8ESilOKSkpbODAgUxNTU3aj//9DW/cuJFVq1aNhYSECJhSPEp6DejTpw/T1tZWQCJxmjhxIuM4jjk4OLBLly6xzMxM9vz5c7Z+/XpWpUoVxvM8i4yMFDomITLatm3LeJ5nR44ckTmek5PD+vbtK73Gjh8/nuXm5gqUsmzRSByRMjMz++Lv0uqUhVu3bh1OnDgBLS0t9OvXD4aGhggPD8elS5cwdepU7NmzB926dYO/vz9MTU3x+PFjTJkyBadOncKSJUuwcOFCof8vKJ28vLwvWinwW3Xo0CFkZ2fLvFNw6tQp7N+/H3Xq1IG3tzfOnz+Pa9euYePGjRg3bpyAacUjPT0drVu3RmxsLGxsbNCmTRusWbNGpk3fvn3x448/Yv/+/XBychIoacV26dIlmc9JSUkFjuXLzc3F/fv3cfr0aVhbWysiniidPHkSenp6OHnyJPT19QEAOjo6GDlyJNTV1TF8+HCcPHkSTZs2FTgpIf9z+/ZtODg4FJiNo6qqirlz5+LQoUMwMTHBsmXLlGZEk4o4IhUfHy9d0rq0lOU/iLK2Y8cOqKioICQkBHZ2dtLjkyZNwvLly6Gvr489e/ZIN1G3trbG3r17YWJighMnTlARVw7u3r2LatWqCR1DNO7fv4/GjRvLFL67d++WbvjbokULvH//HvXq1UNQUBAVcSU0b948xMbGYubMmZg1axYAFCji9PT00LRpU1y8eFGAhOLg6uoq8+/P6dOncfr0abnt2f+/JzN58mRFxBOlJ0+ewM3NTVrA/Vf+u0NfuxAaIWXtzZs3sLCwKPRc/nEHBwelul+lIo4UYG9vDy8vL/Tu3ZsW2fhKMTExaN26tUwBBwDjxo3D8uXL0bx5c2kBl09HRwcODg4ICQlRZFRRGjZsmMzn0NDQAsfy5T+Fv379Ovr06aOAdMohNTUVLi4uMscuXryIunXrokWLFgA+bajaunVrXL58WYiIonT48GFYWlpKCzh5zM3NERwcrJBMYjRkyBDpTVlAQADMzc3Rpk2bQtuqq6vDyMgIPXv2LHBNJv/z/v17GBoaFnouf5/Y/MVOCKkoJBKJ3PeyVVU/lTuf32+JHRVxRGr37t3YsWMHTp06hUmTJmHmzJno27cvvLy84ObmplRPLxQlIyOj0K0X8pe2rlmzZqHfq1GjBt69e1eu2ZRB/kvMwKfR4EePHuHRo0dFfqdp06ZYtGhROSdTHlWqVEFaWpr0c1xcHJ48eYIhQ4bItNPW1kZWVpai44nWs2fPSvRSPcdxyMjIUEAicfrvNSAgIABOTk7YsmWLcIEIIURBqIgjUp6envD09ER6ejp2796NoKAgBAQEYPv27ahVqxYGDhyIwYMHw8bGRuioopL/BOi/8pcYllcYU8FcMhcuXADwaYqUm5sbunTpgl9++aXQtvlP4Wk/w9KpX78+Ll26hISEBBgbG+Ovv/4Cx3Ho0qWLTLunT5/KfShBCtLV1cWLFy+KbRcbG4vq1asrIJH4SSQSoSMojUePHmH79u1fdP7zBzyEKMr+/fvlzlzIfwWgsPNiXdeBijhSgJ6eHkaPHo3Ro0cjLi4OQUFB2LlzJ5YsWYKlS5dKl8gfNGgQ6tatK3Rc8g1r27at9H/7+PjA2dlZ5hj5ej/++CO8vb3RtGlTmJubIyIiAtWrV0ePHj2kbd69e4fr16+jXbt2AiYVFwcHB5w/fx5xcXEwNTUttE1kZCQiIiLQr18/BadTPrQdRulcvny5yOnRoaGhcs9TEUeE8vbtW7x9+7bU58X64JyKOFIkU1NTzJgxAzNmzEB4eDh27NiBPXv24LfffsOyZcuQlJQkdMQKr6gnlvLOFTclkBS0detWoSMopcGDByMiIgKrV6/GrVu3UKdOHQQEBEBHR0faZu/evcjOzkb79u0FTCou48aNw8mTJ+Hu7o5du3bByspK5vyjR4/g7e0NxhjGjh0rUEpxWbt2LRYvXozAwECZ9+I8PT1x4MAB6WcHBwcEBwdDU1NTiJgVno+Pj9ARCCm1uLg4oSMoHMe+ZClC8k1KSUnB7t27ERAQgFu3bsHAwAApKSlCx6rQeJ6X+4Qn/z+9ws7nr6CWl5dXrvmUSXJyMu7fv48GDRqgRo0a0uOxsbGYNm0a7ty5A2NjY8ycOROtWrUSMKk4ffjwARkZGYVO7UtMTER6ejrMzc1lijtSND8/P/j7+4PjOFhYWODhw4eoWbMmDAwMEB0djby8PEybNg1z5swROqoodOzYEbdv38bz58+lq6meOnUK3bp1K7AdxvLly2klVUKIqFERR4qUnZ2NgwcPYseOHfjnn3+Ql5eHKlWqoH///vD29qa9i4oxdOjQr/o+jS6V3MSJE7Fy5UrExMTA0tISwKeFZRo0aICUlBRp0aylpYWIiAi5SxETokj79u3DvHnzEBUVJXO8YcOGmDFjBgYOHChQMvExNjaGpaUlzp07Jz3m6+uLwMBAXLlyRWY7DBMTE/z7778CplU+ERERyMjIKLCaLSFCsLOzg7m5Ofbt2yd0lHJDRRwpQCKR4PTp0wgKCsLRo0eRnZ0NdXV1dO/eHV5eXujWrRvU1dWFjkmIDFtbW+Tm5uL27dvSYytXrsSECRMwaNAg/P777zh+/DgmTZqEESNGYP369QKmFafIyEhcu3YNaWlpsLa2lm6q+uHDB3z48AG6uroCJxSv1NRUxMfHQyKRoE6dOqhdu7bQkURHS0sLHh4eCAoKkh4zNTUFYwzx8fHSY+7u7rh8+TLNJCljjo6OCA8PR25urtBRCIG2tjZ69+6NnTt3Ch2l3NA7cUTq33//lb7zlpqaCo7j4OLiAi8vL/Tr1w9VqlQROiIhcj179gyOjo4yx44fPw5VVVUsX74cBgYGmDBhAgICAmjz5FK6f/8+hg4dKjNy4ePjIy3idu7cie+//x7Hjx8vsGolKZnq1avTKpRfibbDEB6NC5CKwsLCAi9fvhQ6RrnihQ5AKg5HR0esWbMGtWrVwsKFC5GQkIALFy5g+PDhVMCRCi8zMxOVKlWSfs7Ly8OVK1dgb28v3aAW+DRN7enTp0JEFKXExES4uLjg6tWr6NmzJ/z9/QvcqHl6ekJdXV1m8QhScpGRkdi4cSP+/PNPHD16VHo8/z1EUjL/3Q4DAG2HQcg3bPjw4bh48SLu3bsndJRyQyNxpIDo6GhMmzYN06ZNK/F3OI7Dhw8fyjGVeD148ABpaWkwMzOTuXHYsmULQkNDC/1Ot27daFnxUjIyMpK5WIeGhuLt27dwdXWVaZebm0vTgUth9uzZSEtLw6ZNmzBs2DAAwJQpU2TaaGtrw8bGht4xKiUa4SxbtB0GISTfuHHjcPfuXbRt2xZ+fn7o2bMnjI2NlerffyriiAzGGM1nL0OZmZlo3bo1VFRUZN7VAoCQkBAEBAQU+r2jR4+ic+fOqFy5siJiKgVHR0fs2rULy5cvR/v27TF9+nRwHIeePXvKtIuJiaH3jUrh1KlTaNq0qbSAk8fExARnzpxRUCrxyx/hTE1NRa9eveDs7FygOPb09MTo0aNx4MABKuJKgLbDIITkU1FRAfDpvvbnn3/Gzz//LLctx3GivPelIo5ISSQSoSMonT179iA9PR0rVqyAoaFhgfMcxxV46TY8PBxLly7F7t278cMPPygqquj9+uuvOHjwICZPngzg04W7Xbt2aN26tbRNfHw8oqOjMXz4cKFiik5KSorMnlvy5OTkIDs7WwGJlAONcJaPRYsWYe7cuXK3w3Bzc8OtW7dgbm4uQDpCiKLUrVtXtJt4lxQVcYSUo+PHj0NDQ6PIomHAgAEyn/v27YvNmzfj+PHjVMSVgrW1NUJDQ7FixQqkpaXB3t6+wE3x6dOn0axZM/Tp00eYkCKkr68vfceoKA8ePECtWrUUkEg50Ahn+dHQ0JC7SEzdunVRt25dBScihCjaf1ekVVZUxBFSjiIiItC8eXOZBTeKo6amhiZNmiAiIqL8gikpOzs7uVNUAWDkyJEYOXKkAhOJX5s2bXD48GFERETAxsam0DYXL17EnTt34Ovrq9BsYkYjnOXr2bNnuHz5Mp49ewYAqF27Ntq0aUNTqUvAzc3ti74XHR1dxkkIIUWhIo6USl5eHo4fP46HDx9CR0cHnTp1gqmpqdCxKqzk5GS0atWq0HPW1tZy/7E0MjLCjRs3yjMaISXy888/49ChQ+jduzfWr1+PTp06yZw/f/48fH19oaqqigkTJggTUoRohLN8pKamYsyYMTh06FCBVwQ4joOHhwdWr15N2zkUITg4+Iu/q+zT1wipSKiIIzLu37+PX375BZcuXUJubi4aNWoEPz8/9OnTB48fP0aXLl0QGxsrba+iooI///xT+h4SkcVxHPLy8go9V9SLtvR+4peLjo7Gxo0bpZtS9+7dG/7+/gCAsLAwXL9+HV5eXtDT0xM4qTi0bNkSK1euxPjx49GjRw9UqlQJHMfhwIEDOHToEDIyMsBxHNauXYumTZsKHVc0aISz7L158wYuLi64f/8+tLS00KlTJ5iYmIDjOMTHx+P06dPYt28foqKicPXqVdo6R44LFy4IHYGQMnX37l08fPgQmZmZcvcy/Hw/SVFghPy/hIQEpqenx3ieZxzHSf9UVFTYuXPnmI2NDeM4jjk4ODBPT0/WvHlzxnEc43meXbx4Uej4FZKJiQmzs7Mr9fdsbW1ZvXr1yj6QkluyZAlTU1OT/nZ5nmdDhw6Vnr98+TLjeZ6tX79ewJTidOXKFda7d29WuXJlaf9qaWmxrl27stDQUKHjic7Vq1eZiooKMzY2ZidOnGC5ubmM4zjp7/Wff/5hdevWZWpqaiwyMlLgtOLg5+fHOI5jnp6eLCUlpcD51NRUNmDAAMZxHPv1118FSEgIUaSzZ88yCwsLxvO83L/8ewUxoiKOSP3444+M4zjWvn17dv78eXbnzh22detWVqNGDWZpacl4nmdbtmyR+c6mTZsYx3Gsf//+AqWu2Dw9PZmKigqLj48v8XceP37MeJ5nnp6e5ZhM+fz999+M4zhmZmbGDh06xFJTU2VuivPVqFGDde3aVaCU4ieRSFhKSgpLSkpiubm5QscRtTVr1jBVVVXG8zzT0dFhPM8zXV1dVrVqVcbzPFNRUWEbNmwQOqZoNGjQgBkbG7OPHz/KbfPx40dmbGzMLC0tFZiMEKJo4eHhTF1dnWloaDAvLy/WrFkzxvM8++2339iAAQOYvr4+43meDRs2jM2aNUvouF+EijgiVb9+fWZoaMiysrJkju/Zs4dxHMesra0L/Z61tTWrU6eOIiKKzv79+xnHcaxnz55MIpEU214ikbDu3bsznufZwYMHFZBQebi5uTEdHR0WGxsrPVZYEde5c2dmZmam6HiEFIpGOMuOpqYmGzhwYLHtBg4cyDQ1NRWQiBAilL59+zKe59mZM2cYY4z5+vrKjLi9evWKeXp6MkNDQ5aQkCBUzK9C78QRqadPn6J9+/YFVlLM3xTVysqq0O9ZWVnh6NGj5Z5PjDw8PNCiRQscP34cPXr0wMqVK+XuTxQbG4tx48bh9OnTaNmyJdzd3RWcVtxu3LiBVq1awczMrMh2BgYGCAkJUVAq5ZGbm4vjx49L3zVs2bKldHn858+fIy0tDY0aNYKqKv2zUhJRUVHgeR6tWrXC4cOHwRhDWloaJBIJDAwMpBvVkpLT0tJCWlpase3S0tKgpaWlgETi9KWrUwKf3gP/559/yjANIV8mLCwMtra26NixY6Hnq1atiu3bt8PExATTp08vcmXrior+tSVSHz58KHRDan19fQBA5cqVC/2ejo6OKHe6V5RDhw7BxcUFJ0+eRIMGDWBnZwdbW1sYGBgA+HRDcevWLdy8eRMSiQTm5uY4ePCgwKnF5+PHj3J/o/+VkpJChUYphYaGwsvLC4mJiWCMgeM45OTkSIu4K1euwNPTE/v27UPfvn0FTisONjY2aNu2rXQRCY7jaMXEr2Rvb4+LFy/i+vXraN68eaFtbty4geDgYLi6uio2nIgEBweD4zi5C0AUhVanJBVFenq6zH/n6urqAICsrCxoa2sD+LSnpLOzM86ePStExK9GdzKElLNatWrh5s2bmDJlCgICAnD9+nVcv35d+o9d/j+UGhoa8PX1xcKFC6GrqytkZFEyNTVFZGRkkW0+fvyIqKgoWFpaKiiV+EVHR6NLly7IycnBuHHj4OTkBE9PT5k2PXv2RKVKlXDgwAEq4kpIT08PRkZGQsdQKhMnTsQ///yD9u3b46effsKgQYNgYmICAHjy5Al27dqFlStXIi8vDxMnThQ2rAjY29vDy8tL7jY5hFRk1atXR0ZGhsxnAHj8+DGaNGkiPf7u3Tu8efNG4fnKAhVxhChA5cqVsX79esybNw8XLlxAZGQkXr58CeDTSGezZs3Qrl076agnKb1evXrB398fS5cuxaRJkwpt4+/vj9TUVIwfP17B6cRrzpw5eP/+PU6cOFFgj7h86urqsLOzw61btxScTrxatWqF27dvCx1DqXTr1g3z5s3DjBkzMH/+fMyfP79AG47jMHfuXHTt2lWAhOKwYMEC7NixAzdu3MDNmzdhbm6OwYMHY/Dgwahfv77Q8Qgpkfr16yMuLk76uUWLFmCMYcOGDVi9ejUA4NGjRzh//nyxr2FUVBz7kvFyopR4nkfNmjXRsGHDAueCg4Plnrt37x6Sk5Pl7of2LXv58uUXF2b79u1D//79yziR8nr16hWaNWuGZ8+eoV+/fnB3d8egQYPQtWtXfP/99zh06BB27NgBU1NT3Lp1q0RTLwlQs2ZNmJmZISwsTHqM53n4+vpiy5Yt0mODBg3CiRMn8Pr1awFSik94eDicnJwwf/582mezjF2/fh2rVq1CaGgonj9/DgAwMjKCs7MzxowZAwcHB4ETisPt27cRGBiI3bt34+nTp+A4Di1atICXlxcGDBggfSWAkIrI398fv/76K+7cuQMrKyt8/PgRDRo0QEJCApo3b446derg/PnzyMjIwJIlSzBhwgShI5caFXFEiuf5L/5uUZtaf8sMDQ2xdOlSeHl5lfg7CQkJ+PHHH3Hq1Cnq01J68OAB+vXrhzt37kjf6fjvtNVGjRrh8OHD9DS5FDQ1NdG7d2/s2bNHeqywIq537944d+4csrKyhIgpOtu3b8fFixexbds2NG3aFN27d4exsTE0NTULbS/KjWiJUmCMITg4GEFBQTh48CDevHkDNTU1dOzYEV5eXujTp4/c3y0hQklKSsKRI0fg5OQEa2trAJ8eTHh6euL+/fsAPv1bNnz4cKxfv16U73NSEUekLl68+FXfb9u2bRklUR75K8x17NgR69evl76fURiJRIJly5Zh1qxZyMrKgqWlJe7du6egpMpDIpHg2LFjOHPmDOLj4yGRSFCnTh107NgRHh4etOpfKRkbG6N69eq4ceOG9FhhRZylpSV4nqffrBxubm7o0qULpk6dCuBTH36+eERhNxH5DyLogQ6pCD58+ICjR48iKCgIp06dQm5uLurWrYv4+HihoxFSYvfu3cOrV69Qv359US8oRe/EESkqwsre5cuX8cMPP+DMmTNo3Lgx/vjjD0ycOLHAqOeNGzfwww8/IDIyEmpqapg5cyZ+++03gVKL06RJk1CtWjXMmDEDvXv3Ru/evYWOpBTc3NwQGBiICxcuoF27doW2OXToEB49eoQxY8YoOJ14BAcHyzzEmTlzpiif/IrBx48fceDAAYSEhODZs2cAgNq1a8PZ2RkeHh7SVepI6WloaMDd3R3q6urIysrC+fPnkZ2dLXQsQkqlsFeDREnxW9MR8m3Jyclhc+bMYZqamozneWZvb89u3rzJGGPs7du3bPz48UxVVZVxHMdcXFxYTEyMwInFSU1NjfXr10/oGEonJiaGaWpqMl1dXbZ27Vr24sUL6Sbq6enpbPPmzaxatWpMR0eHPX78WOi4FVZhG8+TshcaGsqMjY0Zz/PSzdPz/3ieZ8bGxuzy5ctCxxSlkJAQNmrUKKavr894nmeqqqqsU6dObOfOnUJHI6RIL1++ZGfOnGE7d+5Uqv/+aTolIQpy//59jBgxAiEhIVBVVYWPjw9Onz6Np0+folq1avD398fw4cOFjilaZmZmsLW1xYEDB4SOonQOHz4Mb29vuU/cNTU1sWvXLvTq1UvBycSjsCmopGw9ePAAzZs3x9u3b6XL45uYmIDjOMTHxyMwMBA3btyArq4uwsPDYWFhIXTkCi8mJgZBQUHYuXMnEhISwBiDnZ0dvLy88N1336FmzZpCRyRErvzVqPfv3y+dku7j4yO9Dm/atAlTp07F0aNH4eTkJGTULyNwEUkqGH9/f/bDDz+wiIgImeO+vr6M5/lC/7y9vQVKK05z5syRPhXmeZ717duXJScnCx1L9CZOnMj09fVZRkaG0FGUUnx8PBs/fjxr1KgRq1SpEtPU1GT169dnP/74I3v06JHQ8So8Gokrf0OGDGEcx7Hly5fLbbNixQrGcRzz8fFRXDCRef78OVuyZAmztbWVjmiamZmx6dOn00wRIhovX75k9evXZxzHMVtbWzZ27NgC1+GXL18yVVVVNn78eOGCfgUaiSNSMTExaNy4MZycnAoscjJ06FAEBARAQ0ND5nheXh4kEgnu3LmjPHOMy9HWrVsxZcoUpKenSxc1MDIywurVq9GnTx+h44laZmYm2rZtC21tbaxcuRK2trZCR1IKR48ehZqaGu2r9ZV4noeTkxO+//77L/o+rU5ZvDp16qBGjRoyi/AUxt7eHsnJyXj69KmCkomLqqoqGGPQ19dH//794eXlBUdHR6FjEVIqkydPxrJlyzBz5kzMmjULQOEzIuzt7SGRSES5zyktbEKkdu7cCQDSH/vnOI7Du3fvZI5du3YNrVq1wvbt2wvdWJV8EhsbixEjRiA4OBg8z+Pnn3/GxIkTMXPmTGzZsgUeHh7o3bs3Vq9eDSMjI6HjilLv3r2hoaGBy5cvo3nz5qhVq5bcJds5jsM///wjQErxcXd3R6dOnaiIKwOXL1/G5cuXv+i7VMQVLzU1tUQLdDVs2BB3795VQCJxkkgk4DgO2traOHv2LM6ePVvi73IcJ12+nRAhHT58GJaWlnLvafOZm5sjODhYIZnKGhVxRCo4OBjVq1eXuwJdYVq0aAFzc3NcunSpHJOJV15eHvz9/TF37ly8e/cOtra22LhxI+zs7AAAGzduhLe3N0aMGIHDhw/j/PnzmD9/PkaPHi1wcvH570WYMYbnz59LN/r9HK0KWHLVq1dHtWrVhI6hFGrUqIEGDRoIHUNp6evrl6iAePDgAfT09BSQSLwYY3jy5Empv0fXVlJRPHv2rESrVHMch4yMDAUkKntUxBGpe/fuoUWLFoWeK2rWrbm5OW7evFlesUTNzs4Od+7cgaamJvz9/TFx4sQC+5S5uLggKioKc+bMgb+/P8aNG4cdO3Zg48aNaNSokUDJxScuLk7oCErJ1dUV165dk9k4nXyZLl260MIm5ahdu3bYvXs31q9fj1GjRhXaZuPGjbhx4wYGDRqk4HTiQddSogx0dXXx4sWLYtvFxsaKdq84KuKI1Js3b+Q+nRw1ahQ6duxY6DkDAwO8efOmPKOJ1u3bt9GhQwds2LABpqamctupq6tjzpw5GDBgAH744QdcuXIFdnZ2eP/+vQLTilu9evWEjqCU5syZAwcHB0ycOBELFiwodHoqIRXB9OnTcfjwYYwZMwY7duzAoEGDpHvzPXnyBLt27UJoaCgqVaqEadOmCRu2AqNrKVEGDg4OOH/+POLi4uTef0VGRiIiIgL9+vVTcLqyQUUckdLR0ZFbjLVq1QqtWrUq9FxGRga0tbXLM5poBQQEwNvbu8TtGzdujLCwMKxZs4ZuMkiFsGvXLnTr1g2rVq3C7t270aFDhyLfNZwxY4YAKQkBrKyscPToUQwePBiXL19GWFiYzHnGGGrUqIEdO3bAyspKoJSEEEUYN24cTp48CXd3d+zatavAf/OPHj2Ct7c3GGMYO3asQCm/Dq1OSaRsbGyQlpZW6hW7jIyMYGhoiIiIiPIJ9o169uwZateuLXQM0UlOTsaWLVsQEhKCZ8+eAQBq164NFxcXDB06FDVq1BA4YcVmZmaG/v37Y+HChQA+reaVv5JqcTiOk+7FQ2TRPnGKk52djb179yIkJET6XqyRkRGcnZ3h6emJSpUqCZxQvHJzc/Hy5Ut8+PBBbhtjY2MFJiJEPj8/P/j7+4PjOFhYWODhw4eoWbMmDAwMEB0djby8PEybNg1z5swROuoXoZE4ItWuXTusXLkSx48fR/fu3Uv0naNHjyIpKQnfffddOaf79lABV3oHDhzAsGHD8PbtW5mi4/bt2zh9+jQWLFiAzZs3w8PDQ8CUFVt8fDxSU1Oln7du3SpgGkJKr1KlSvD19YWvr6/QUZTGuXPnMHfuXFy9ehU5OTly23Ech9zcXAUmI0S+BQsWwN7eHvPmzUNUVBQA4MWLF3jx4gUaNmyIGTNmYODAgQKn/HI0EkekHjx4AGtraxgaGuLixYuoX79+ke0fPnwIFxcXpKWl4e7du7C0tFRQUkIKun79Olq3bg2JRII+ffrA29sbJiYm4DgO8fHxCAwMxKFDh6CioiLdhoAURCNG5ePJkyfQ0dGBvr6+0FEIKZW///4b7u7uyMvLQ7Vq1WBqaorKlSvLbX/hwgUFpiOkZFJTUxEfHw+JRII6deooxYNyKuKIjBkzZmDevHnQ0dHBhAkT8N133xVYITE6Ohq7d+/G8uXLkZWVhWnTpmH27NkCJSbkEw8PDxw+fBj79++Hu7t7oW0OHToEDw8P9O3bF/v371dwQnGgIk7xaIra18vIyEBubm6Bxblev36N7du34+HDh9DR0UG3bt3g7OwsUEpxcnBwwM2bN7F06VKMHTu2wArLhBBhUBFHCpg6dSqWLFki/ayhoSHdJ+rVq1fSGw3GGKZMmSJ9d4YQIdWoUQOWlpYICQkpsp2zszMePHiA5ORkBSUTFyriFIemqH29kJAQjBs3Drdv3wbwaV/D3377DT/99BNu3LiBTp064fXr1zJbZIwZMwYrV64UMraoVKpUCXZ2dggNDRU6CiHkP+idOFKAv78/+vbti8WLF+PcuXPIyMiQ2WujcuXK6NSpEyZPnix3xUpCFO3NmzclGq0wNjZGeHi4AhKJV0RExBePrs+cObOM0yin0k5RIwVFR0ejU6dOMiOYKSkpmDhxImrWrAk/Pz9kZmbCw8MDpqamePz4MQ4fPow1a9agffv2JdoImHxauZpGgokYpaSkYO3atbh06RJevHghd7YDx3GIjY1VcLqvRyNxpEgSiQRxcXF4+fIlAEBfXx+mpqbgeV7gZITIMjExQaVKlRAdHV1kO2tra2RlZSE+Pl4xwUQmfzXK0sof6aDVKUuGpqh9PR8fHwQGBmLw4MGYPXs2DA0NER4ejhEjRuDt27dITk7GqVOnZPY4PX36NLp27Yru3bvj2LFjAqYXj0GDBuH69et48OCB0FEIKbGYmBi0bdsWL1++LNHqyhKJRAGpyhYVceSrbdmyBU+fPqUn8ERQI0eOxKZNm/DLL79gzpw5BW6KGWOYMWMG/vzzT/zwww9Yv369QEkrNp7nUb9+fbRp0+aLvk+rWZYMTVH7eiYmJpBIJHj8+DFUVf83sejUqVPo1q0b7O3tCx11b968OZ49eyYzw4TIl5iYCAcHB/j4+GDevHkyfU1IRdWjRw+cOHECHh4e+PXXX2FpaQkdHR2hY5UpKuLIV3N0dMS1a9foCTwR1NOnT2Fra4v09HQYGxvD09MTJiYmAD6tDLhv3z7Ex8dDX18fN2/eRJ06dYQNXEHRO3GKYWhoiA4dOmDnzp1CRxEtDQ0NdO3aFYcPH5Y5/ubNG1SrVg0DBgzArl27Cnzvu+++w8GDB/Hx40cFJRWXwqZSx8XFYfv27TA1NYWrqyvq1KlT6IwcjuMwY8YMRcQkpEhVqlSBkZERoqOjv2h2iRjQ4xRCiFKoU6cOzp8/j8GDB+POnTtYtGiR9MKd/6yqSZMm2LFjBxVwRHAdOnTA9evXhY4hajk5OQVWowQ+3bwBgJaWVqHf09LSooeORZg1axY4jit0Ctrjx4/x+PFjud+lIo5UFIwx2NjYKG0BB1ARRwhRIk2aNEFUVBSCg4MREhKC58+fAwCMjIzg7OwMV1dXYQMS8v8WLlwIBwcH/PLLLzRFjVQoNCWaKIPmzZvjyZMnQscoV/SvBiFE6bi6ulLBRiq0rVu3omvXrli8eDEOHDhAU9RIheHj4yN0BEK+2qxZs9C+fXscO3YMPXv2FDpOuaB34shXo3fiiBDc3NzQpUsXTJ06tcC5hIQE6OjoFDrVihSN3olTjPxVQEvyTzCt+lk4nueho6MDAwODAueePHkCbW3tQs+lpaUhKyuL+pQQJXbp0iUcPXoUK1aswKBBg9CxY0e5D8oAwMXFRcEJvx4VceSrURFHhFBUsaGiogJfX19s3rxZgGSEFC8gIKBU7Wl0pKCv2eqGCuOSe/ToEU6cOAE3Nzc0bty40DZ37tzB+fPn0aNHD5iZmSk4ISEFff6grLh348R4PaDplIQQpcMYK9EIBym9169fIzMzU27/0qbAJUNF2deLi4sTOsI3Yfny5diwYUORmyFXrlwZkyZNwuPHj7F8+XLFhSNEjiFDhij1oiYAFXHkP2izWUJIYZKSkjB9+nQcPXoUL1++lNuO4zjk5uYqMBn5ltWrV0/oCN+Ef/75BzY2NkU+oKlXrx5sbGxw9uxZBSYjRL5t27YJHaHcURFHpL5m5ELZn3YQ8q168eIFHBwc8Pz5c9SuXRvVq1dHSkoKHB0d8fjxYyQnJ4PjODg6OkJNTU3ouKJ05coVhISE4NmzZwCA2rVrw9nZGY6OjgInI+TTZt/du3cvtp25uTlOnTqlgESEEICKOPIfEolE6AiEkApm7ty5eP78OWbPno3p06dj6NCh2L59Oy5fvgzg08vjP/74IziOw8mTJwVOKy4PHjyAt7e3dL+4z9/daN68OYKCgmBhYSFYRkJUVFTw4cOHYtt9+PBBlO8VESJWVMQRQgiR69SpUzA1NcX06dMLPe/i4oIzZ86gQYMGmDNnDubNm6fghOL04sULtG3bFsnJyTAyMkL//v1hYmICjuMQHx+Pffv2ITw8HK6urrh+/Tpq1aoldGRRyM7OxtKlS3HkyBE8fPgQmZmZhbajqb8lZ2lpidDQUGRnZ6NSpUqFtsnOzkZoaCg9cCCCmT17NjiOw5gxY6Cnp4fZs2eX+Lui3caFEUKICHEcx3ie/6I/FRUVoeOLhoaGBuvbt6/08/DhwxnP8+z9+/cy7Xr06MHq16+v6HiiNXr0aMZxHJs0aRL78OFDgfMfP35kkydPZhzHsbFjxwqQUHxev37NmjRpwnieZ2pqakxbW5txHMeMjIwYz/OM4zjGcRwzMTFhJiYmQscVjQULFjCO49jAgQPZ27dvC5zPyspigwYNYjzPs7lz5wqQkJD/3RPcv39f5nP+f/dF/fE8L3D6L0MjcYQQ0WJf+B7nl37vW6SrqyvzuWrVqgCAZ8+eySwlrqmpKX2nixTvxIkTaNCgAZYsWVLoeTU1NSxatAjHjx/H33//jVWrVik4ofgsWLAAd+7cwciRI7Fs2TKMGjUKgYGBePbsGd6/f4+9e/fCz88PLVu2xK5du4SOKxrjxo1DYGAg9uzZgwsXLmDgwIEwNzcHAMTGxmLXrl1ISUlBgwYNMGHCBGHDkm/W1q1bAUA6ayH/szKjfeIIIYTI1bx5c3Ach/DwcACfVvwaPnw4VqxYgbFjxwL4NJWqfv360NLSKnIZcvI/mpqa8PDwwI4dO4psN3jwYBw4cADv379XUDLxsrKyQmZmJuLi4qCmpiZ9f/O/72lFR0fD1tYW8+bNw88//yxgWnFJSkqCl5cXzp8/D+B/723m30K2a9cOgYGBMDIyEiwjId8aGokjhBAil5ubG1asWIHU1FRUr14dvXr1gra2NqZMmYKnT5+idu3aCAoKQnJyMn788Ueh44qGrq4uEhMTi22XmJhYYDSUFO7Jkyfo0KGDdJXU/M3Ac3JypMcaNWqEtm3bYtu2bVTElULNmjVx7tw5hIeH49y5c9Lfbt26ddGhQwc4ODgInJCQL7NlyxY8ffoUM2fOFDpKqVERRwghRK7BgwcjMTER0dHRaNu2LfT09LBhwwYMHToU/v7+4DgOjDFYW1vToial4OjoiL///hvHjx+Xu3z7iRMncPnyZfTs2VPB6cRJU1MTmpqa0s/5xW9SUhLq1q0rPa6npyddXZUUr2/fvqhVqxbWrFkDBwcHKtiIUtm4cSOuXbsmyiKOplMSQpROQkICXrx4UeSy2C4uLgpMpHwSEhJw4sQJvHr1CpaWlujVqxftE1cKV65cgYuLCziOw4ABAzBo0CCYmJgA+DSitGvXLuzevRsSiQQhISFo1aqVsIFFoFmzZqhUqRKuXLkCANiwYQNGjx6NgIAAeHl5AQByc3PRoEED5OTkICEhQci4oqGpqYk+ffpg9+7dQkchpMw5Ojri2rVrotweg4o4QojS2Lx5M+bNm4cnT54U21aMF2whREVFged5NG7cWOgoSicoKAgjR47Eu3fvpO8Y5WOMQUtLCxs2bJAWIKRoY8eOxdatW5GUlITKlSvj+fPnMDU1hba2NubPn4/atWtj8+bNOHbsGAYNGoTAwEChI4uClZUV6tevj2PHjgkdhZAyJ+YijqZTEkKUwtq1azFu3DgwxmBrawszMzPo6OgIHUv0bGxs0LZtW1y4cEHoKErHy8sLrq6u2LhxI0JDQ/H8+XMAgJGREZydnTF8+HCZaYCkaN999x1u3LiBsLAwdO7cGUZGRvjzzz/x888/Y8yYMQA+Fcc1a9bEwoULBU4rHgMHDsTixYuRlJSEmjVrCh2HEPL/aCSOEKIULCws8PTpUxw/fhxubm5Cx1EaBgYG6Ny5c7GrKBJSUf377784dOiQdOrv0KFDoaenJ3Qs0cjJyUGfPn3w6NEjLFiwAD169KCp00RpiHkkjoo4QohS0NLSQrt27XDixAmhoyiVHj16ICEhAVFRUUJHIYQIwMzMDBKJRLoiJcdxMDQ0lFlEJh/HcbTNCBEVMRdxNJ2SEKIUjI2NoaWlJXQMpfP777/DyckJS5YsweTJk4WOQwhRsPj4eJnPjDEkJSUJE4YQIkVFHCFEKfj4+GDx4sVIT0+nqVJlKCYmBl5eXpg6dSqCgoLQvXt3GBsbF/oUHgCGDBmi4ITiwPM8eJ5HdHQ0LC0toaKiUuLvchyH3NzcckwnTpcuXfqq79MKtSUjkUiEjkBIsUpzTVUWNJ2SEKIU8vLy4OHhgbi4OKxYsQJt27YtsOIfKT2e56V7weUrrF8ZY+A4TpRTUhTBxMQEHMfh/PnzMDU1lX4uqbi4uHJMJ075v80vRb9VQpQHz/Nf/F2x/ttFI3GEEKWgoqKCDRs2oH379mjfvj3U1NRQs2bNQi/s9N5Gyc2cOZOK4TLw+ZS0zz+T0hsyZEiB32Z6ejqOHTsGjuPQrFkzmb33IiIiAHx6z5NG6wlRLt/iiDGNxBFClEJMTAzatWuH1NRUlOSy9i1e8AlRZsnJyWjZsiXq16+PVatWwcrKSub8vXv3MG7cODx69AhXrlyh5fJLKSoqCmvWrEFISAiePXsGAKhduzZcXFwwevRoNG3aVOCEhHxbqIgjhCiFbt264dSpU/D19cXEiRNhZmYGbW1toWOJXkJCAnR0dIoduXj16hUyMzNhbGysoGTKLS0tDVWrVoWqKk2YKamhQ4fi1KlTiI2NRaVKlQptk5WVhfr166Nz587Ytm2bYgOK2IoVKzBlyhTk5eUV+pBMVVUVixYtwvjx4wVIR8i36csnkBJCSAVy+fJlNG3aFFu2bEGTJk2ogCsjpqammDJlSrHtpk6dCjMzMwUkUg7Xr1/H7NmzER0dLXP80KFDqFmzJmrUqAF9fX2sWLFCoITic+rUKbRt21ZuAQcA2traaNu2LU6fPq3AZOJ29uxZTJw4Eerq6pg4cSJu3bqFV69e4fXr14iIiMDkyZOhoaGBSZMm4Z9//hE6LiHfDCriCCFKQV1dHY0aNRI6htJhjJVoemp+W1Iyq1atwvz581GjRg3psbi4OHz33XdISUlBzZo1kZWVhUmTJiE4OFi4oCLy5s0bvHnzpszakU+WLl0KVVVVnDlzBosXL0azZs1QpUoV6OrqomnTpli0aBHOnDkDnuexZMkSoeMS8s2gIo4QohTatWtHG1ILKC0tjfbpK4WrV6/C1tYW+vr60mNbtmxBTk4OFi9ejGfPnuHff/8Fz/M0GldClpaWuHDhQpHXgaioKJw/fx4NGjRQYDJxu3btGtq2bYvWrVvLbePo6AhXV1f8+++/CkxGyLeNJtsTQpTCggUL0KJFC0yfPh1//PHHN7lnTFn5fP+tpKQkuXty5ebm4v79+zh9+jSsra0VEU8pJCcnw8bGRubY2bNnoa2tjbFjxwIA7O3t4ezsjMjISAESis9PP/2E77//Hq6urpgwYQIGDBiAevXqAfi0OuXevXuxfPly5ObmYty4cQKnFY/s7GxUr1692HbVq1dHdna2AhIRQgBa2IQQoiRmz56Nx48fIzAwEGZmZnB1dUXt2rXlbjEwY8YMAVKKw3/338rf/60o+W127NiB7777ThERRa9y5cro1KkTDhw4AAB4+/Yt9PT04ObmhlOnTknbeXl54eDBg3RzXEJ+fn5YtGiR3POMMfz888/w9/dXYCpxs7S0RE5ODh4+fCh3oZ3c3FxYWFhATU0NDx48UHBCQr5NNBJHCFEKs2bNkm5KHRsbW+Q+cFTEFe2/+28FBATA3Nwcbdq0KbSturo6jIyM0LNnT9jZ2SkypqgZGxvjxo0b0s/Hjx9Hbm4uOnToINMuIyMDVapUUXQ80VqwYAHc3d2xdu1ahIaG4vnz5wCAWrVqwdnZGaNGjYKjoyMkEslXbQ78LenduzeWLFmCYcOGYeXKlahatarM+YyMDIwfPx4JCQmYPHmyMCEJ+QbRSBwhRCkEBASUqr2Pj085JVEuPM/D19cXW7ZsETqKUvHz84O/vz/69OmDdu3awd/fHy9evEBMTAwsLCyk7erWrYvatWvj6tWrAqZVHrdu3UJgYCB2794tLfCILDMzM/Tv3x8LFy4E8GkDdQcHB8THx0NHRwddunSR2UT91KlTyMjIgJmZGcLDw1GtWjUB0xPy7aAijhBCCFGwtLQ0tGjRAvHx8dJjkyZNwuLFi6Wf//33Xzg6OtL0v6+UmJiIHTt2ICgoCDExMdLpv3l5eUJHq5AKe3Dz/PlzjBw5EsePHy/0O927d8eGDRtgZGSkqJiEfPNoOiUhhBC5wsLCilyV7r9WrFhBm/2WkIGBAaKiorB//36kpqbC3t4ebm5uMm2SkpIwfvx4eHl5CZRSvDIzM7Fv3z4EBQXh0qVL0q0yateujQEDBmDgwIFCRxQVIyMjHDt2DHFxcTLTVI2MjODk5ARTU1OBExLy7aGROEKI0rly5QpCQkLw7NkzAEDt2rXh7OwMR0dHgZOJj5qaGn777Tf8/vvvct8hSkpKgo+PD86dO0ejG0QweXl5OHXqFAIDA3Hs2DG8f/9eunchx3G4cOECnJ2di12o51tHU6gJEQcaiSOEKI0HDx7A29sb169fBwCZGzgAaN68OYKCgmTeOSJFq169OubOnYszZ84gKCgI5ubmMucPHTqEESNG4OXLl3BychIoJfmWhYeHIzAwEHv27EFaWhoYY1BTU0OvXr3g5eUFf39/XL9+HS4uLkJHJYSQMkMjcYQQpfDixQvY2dkhOTkZRkZG6N+/P0xMTMBxHOLj47Fv3z48e/YMtWrVwvXr11GrVi2hI4vCy5cv8f333+PIkSPQ1tbG8uXLMXz4cGRnZ+Onn37C1q1boaqqilmzZsHPz49GOeTI32evRYsW0NTUlLvvnjxUgBQ0d+5c7NixAw8ePJA+sGndujW8vLzg6ekJPT09AICzszPCwsJolLiEeJ6HjY0N+vTp80XfnzlzZtkGIoQUioo4QohSGDNmDNatW4eJEyfizz//hLq6usz5nJwc/Prrr1i6dCnGjBmDVatWCZRUnDZu3IiJEyfi3bt36Nq1K+7fv4/Y2Fg0bNgQQUFBtL1AMfL33ouJiYGlpaXMXnwlQQVIQfl9WLNmTYwePRqDBw+Wrpr4X1TElU5pf5v5aMEYQhSLijhCiFIwNTWFpqYmYmJi5LZhjKFRo0Z4//494uLiFJhOOdy7dw+tWrVCZmYmAKBv374ICgqChoaGwMkqPl9fX3AchwULFqBGjRrSzyW1devWckwnTvnvaHIchzZt2sDb2xv9+/cvsI8ZFXGlw/M86tevL3dvyOLQb5UQxaAijhCiFDQ1NeHh4YEdO3YU2W7w4ME4cOAA3r9/r6BkyuHJkycYPHgwwsLCoKmpiffv30NbWxvLli3D999/L3Q88g0KDw/H9u3bpe/CcRwHdXV1dOvWDYMHD0bPnj2hpqZGRVwp0cImhIhD4UuNEUKIyOjq6iIxMbHYdomJidDV1VVAIuURGBiIZs2aISwsDN27d0d8fDw2bNgAABg5ciTc3d3x8uVLgVOSb42DgwNWrVqF58+f48iRI+jXrx84jsOhQ4fQv39/1KpVCyNHjkRycrLQUQkhpMxREUcIUQqOjo64fPmy3M1oAeDEiRO4fPlyifc9I8B3330HX19f5OTkYM2aNTh27BgMDQ3xww8/4ObNm2jevDmOHDmCpk2b4vTp00LHFQ2JRIKMjAzk5OTIbZOTk4OMjAxIJBIFJhMfVVVV9OzZE3v27EFSUhI2btwIZ2dnvHr1Chs3bkRsbCwAwM/PDxEREcKGJYSQMkJFHCFEKfj5+YHnebi7u8Pb2xsnT55ETEwMYmJicOrUKfj4+MDd3R08z8PPz0/ouKKxd+9e2NjY4MaNG/jxxx9lzllYWCAsLAzTp09HSkoKunfvLlBK8Vm2bBmqVauGixcvym1z8eJFVKtWjRbhKQVdXV0MHz4cwcHBiI+Px7x589CwYUMwxrBo0SLY29vDysoKc+bMEToqIYR8FXonjhCiNIKCgjBy5Ei8e/euwKIRjDFoaWlhw4YN8PLyEiih+Pj5+WHOnDlQU1Mrst2VK1fg7e2NR48eKSiZuDk5OeHp06eIj48vsl29evVQr169Um9JQGTdvHkTgYGB2L17N5KTk2kVxSLQO3GEiAMVcYQQpfL06VNs3LgRoaGheP78OQDAyMgIzs7OGD58OOrWrStwQuWVlZUFbW1toWOIQo0aNdC8efMip/8CQPfu3XHz5k28ePFCQcmUm0QiwenTpxEUFFTsIkiEEFKRURFHCCGEKJimpib69u2LnTt3Ftlu0KBBOHjwIK2mSgghRAa9E0cIIURq2LBhcqdRHT16VO7CEL///jvs7e3LMZlyqVWrFqKiooptFxUVBUNDQwUkIoQQIiaqQgcghJAvkZCQ8FXfNzY2LqMkymXbtm0APhVzn+vTp4/cd2USEhJo5b9ScHNzw7Zt27Bnzx4MGDCg0DZ79+5FdHQ0vL29FZyOEEJIRUdFHCFElExMTAosXlJSHMchNze3jBMRUnJTpkzBzp07MWTIEISEhGDEiBEwNzcHAMTGxuKvv/7Cxo0boa6ujilTpgiclhBCSEVDRRwhRJRcXFwKFHEfPnzA1atXAQDVqlVDvXr1AHwaJUpPTwfHcWjZsiU0NDQUnpeQ/2rYsCG2b98OHx8frFu3DuvWrZM5zxiDpqYmtm7disaNGwuUkhBCSEVFRRwhRJSCg4NlPmdmZsLNzQ2NGzfGokWL0LlzZ5nzZ86cwdSpU5GTk0ObUpMKoX///rC1tcXSpUvxzz//IDExEQBQt25ddOjQARMmTICFhYXAKQkhhFREVMQRQpTCjBkzEBsbiwcPHsDAwKDA+U6dOsHOzg6WlpaYNm0aVq5cKUBKQmTVr18fa9euFToGIYQQkaHVKQkhSuHgwYNwc3MrtIDLZ2BgADc3Nxw6dEiByQghhBBCyhaNxBFClEJqamqJFivJzc1FWlqaAhIRUryXL18iKCgI165dQ1paGtq3b4+pU6cCAO7evYvY2Fh06NABlSpVEjgpIYSQioQ2+yaEKAUrKys8ffoU0dHRqFu3bqFtEhMT0ahRI9SpUwcxMTEKTigOPM9/8aqfAJCXl1eGaZTbvn378P333+Pt27dgjIHjOPj4+Ei3cDhz5gy6du2KgIAAeHl5CZyWEEJIRULTKQkhSmH48OHIyspC27ZtsX37drx//1567sOHDwgMDETbtm2RnZ2N4cOHC5i04mOMfdEfKbkrV65g0KBBUFVVxZIlS3Dt2rUCfdi+fXtUqVIFBw8eFCglIYSQiopG4gghSkEikWDw4MHYs2ePdCSpevXqAD5NtQQ+FSf9+/fHrl27wPP0DIsIp2fPnjhz5gyuXLkCOzs7AJ9GQT/fTL1Dhw5ISEjAgwcPhIpKCCGkAqK7GEKIUuB5Hrt27cKuXbvg5OQENTU1pKSkICUlBWpqanBycsLOnTuxZ88eKuCI4MLCwuDo6Cgt4OSpWbMmXrx4oaBUhBBCxIIWNiGEKJUBAwZgwIAByM3NxcuXLwEA+vr6UFWlyx2pOLKzs6UjxUV59eqVAtIQQggRG7qrIYQoJVVVVdSoUUPoGIQUqnbt2rh7926RbRhjuHPnDkxNTRWUihBCiFjQnCJCCCFEwbp06YL79+9j9+7dctts2rQJiYmJ6N69uwKTEUIIEQMq4gghSiM6Ohq+vr4wMzODlpYWVFRUCv2jqZVEaH5+fqhSpQqGDBmCX375BVevXgUAZGVl4datW5g5cybGjRuH6tWrY+LEiQKnJYQQUtHQ6pSEEKVw5coVdOjQAe/evQMA6OnpoXLlynLbx8XFKSoaIYW6cuUKPDw8kJSUVGBvPsYYDA0NceTIEbRs2VKghIQQQioqKuIIIUrB1dUVly5dwoQJEzB9+nTo6ekJHYmQYmVmZmLz5s04e/Ys4uPjIZFIUKdOHXTs2BEjR45ElSpVhI5ICCGkAqIijhCiFHR0dGBpaYmbN28KHYUQQgghpFzRO3GEEKWgrq6Ohg0bCh2DEEIIIaTc0dv9hBCl4OTkhOjoaKFjEFIiYWFhuHDhAmJiYvDq1StwHAc9PT00atQI7dq1o/fgCCGEFImmUxJClMKdO3fQqlUrLFy4EGPGjBE6DiGFioqKwrBhw3Dr1i0AnxYw+a/8BU5atGiBzZs3o1GjRgrPSAghpOKjIo4QohS2b9+O8PBwrF27Fk5OTujYsSPq1KkDni981viQIUMUnJB868LDw+Hm5oasrCxoa2uja9eusLGxgYGBARhjSEtLw61bt3D69GlkZWWhcuXKCA4Ohq2trdDRCSGEVDBUxBFClALP8+A4TmZk4/Nl24FPIx8cxyEvL0+R8cg3Li8vD1ZWVnj06BGGDx+OJUuWQFdXt9C2GRkZmDRpErZs2YIGDRogOjq60N8yIYSQbxe9E0cIUQozZ86kG11SYR05cgSPHj3CgAEDsHHjxiLb6urqYtOmTcjMzMT+/ftx7Ngx9OrVS0FJCSGEiAGNxBFCCCHlbOjQoQgMDMTDhw9hampaou88fvwYFhYW8PHxwZYtW8o5ISGEEDGhIo4QQggpZ02bNkVeXh7u3r1bqu9ZW1tDVVUVkZGR5ZSMEEKIGNE+cYQQQkg5e/HiBSwtLUv9PUtLSzx//rwcEhFCCBEzeieOEKJUQkNDceTIETx8+BCZmZkFlnAHPi148s8//wiQjnyr3rx5gypVqpT6e7q6usjIyCiHRIQQQsSMijhCiFJgjGH48OEICAiQFm6FrVaZvzolIYqUm5srd7uLovA8j9zc3HJIRAghRMxoOiUhRCmsX78e27Ztg729Pc6ePYu+ffsCAO7fv4+TJ0/C19cXPM9jypQpePz4scBpCSGEEEK+HC1sQghRCi1btkR0dDTi4+Ohr6+PoUOHYvv27TL7we3fvx8DBgzAwYMH0bt3bwHTkm9N/j6GX4r2NSSEEPJfNBJHCFEKMTExaN26NfT19QH8b6Pv/9789uvXD/b29li8eLEgGcm3jTH2RX+EEELI56iII4QoBYlEIi3gAKBSpUoAgFevXsm0s7CwwO3btxWajRCJRPLFfzQKRwgh5HNUxBFClELt2rVllmKvV68eAODWrVsy7R48eABVVVrTiRBCCCHiRUUcIUQp2NnZITo6Wjpq0alTJzDGMHXqVNy7dw+ZmZlYtGgRbty4AVtbW4HTEkIIIYR8OVrYhBCiFHbt2oXBgwfj8OHD6NWrFwBg0KBB2L17t8yCEioqKggNDUWLFi2EikoIIYQQ8lWoiCOEKI0PHz5AVVUVKioqAICcnBwsWbIEhw8fxqtXr2BpaYmpU6fC2dlZ4KSEEEIIIV+OijhCCCGEEEIIERF6J44Q8k1JSUmBn5+f0DEIIYQQQr4YjcQRQr4JiYmJ8Pf3x5YtW/D+/Xtatp0QQgghokXrbBNCREsikWD37t04ffo0UlJSYGhoiK5du8LT0xM8/2miQWJiIv744w8EBgYiNzcXAODu7i5kbEIIIYSQr0IjcYQQUcrNzUW3bt3wzz//4L+XMY7j0KdPHxw4cAABAQEYO3YssrOzwRhDnz59MGvWLDRt2lTA5IQQQgghX4dG4gghorRmzRqcO3cOmpqa8PX1hbW1NTIzM3Hy5EkcPnwYo0aNwsaNG8EYQ6dOnbBgwQLY2NgIHZsQQggh5KvRSBwhRJQcHR1x/fp1hIWFwcHBQebcjz/+iA0bNoDjOPj7+2Py5MkCpSSEEEIIKXtUxBFCRKlq1apo1qwZLl68WODc48ePUb9+fVhZWeHu3bsCpCOEEEIIKT+0xQAhRJQyMzNhYmJS6DlTU1MAQLNmzRSYiBBCCCFEMaiII4SIEmMMKioqhZ7jOA4AoKmpqchIhBBCCCEKQUUcIYQQQgghhIgIvRNHCBElnuelI26lxXGcdM84QgghhBCxoS0GCCGi9aXPoOjZFSGEEELEjEbiCCGEEEIIIURE6J04QgghhBBCCBERKuIIIYQQQgghRESoiCOEEEIIIYQQEaEijhBCCCGEEEJEhIo4QgghhBBCCBERKuIIIYQQQgghRESoiCOEEEIIIYQQEfk/04idYtkMpIYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est1.completed_trials_summary_[est1.completed_trials_summary_[\"Step\"].str.contains('Model Selection')]\n", "name_of_score_column = f\"Score ({est1._inferred_score_metric[0].name})\"\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "models = trials['Algorithm'].tolist()\n", "\n", "y_margin = 0.10 * (max(scores) - min(scores))\n", "s = pd.Series(scores, index=models).sort_values(ascending=False)\n", "\n", "colors = []\n", "for f in s.keys():\n", " if f.strip() == est1.selected_model_.strip():\n", " colors.append('orange')\n", " elif s[f] >= s.mean():\n", " colors.append('teal')\n", " else:\n", " colors.append('turquoise')\n", "\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Algorithm Selection Trials\")\n", "ax.set_ylim(min(scores) - y_margin, max(scores) + y_margin)\n", "ax.set_ylabel(est1._inferred_score_metric[0].name)\n", "s.plot.bar(ax=ax, color=colors, edgecolor='black')\n", "ax.axhline(y=s.mean(), color='black', linewidth=0.5)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "cd3b0edc", "metadata": {}, "source": [ "\n", "#### Adaptive Sampling\n", "\n", "Following Algorithm Selection, Adaptive Sampling aims to find the smallest dataset sample that can be created without compromising validation set score for the chosen model. This is used to speed up feature selection and tuning; however, the full dataset is still used to train the final model." ] }, { "cell_type": "code", "execution_count": 12, "id": "36d33290", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:28.183336Z", "iopub.status.busy": "2025-04-25T10:38:28.182745Z", "iopub.status.idle": "2025-04-25T10:38:28.363795Z", "shell.execute_reply": "2025-04-25T10:38:28.363194Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5oAAAKBCAYAAAA2k9RnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC99UlEQVR4nOzdd1hT1xsH8G8ChDDDBpWpIogDJ66quKqFuq22al0damtbR13VWrXWto76a+1yVWtra91arbXuWfdEERfglk3YI7m/PzC3BAICiYTx/TwPz2POPeeeN+EE8+bcc65EEAQBRERERERERAYiNXYAREREREREVLUw0SQiIiIiIiKDYqJJREREREREBsVEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SSiCksikUAikeDQoUPGDqXUDh06JMZPVUNwcDAkEglmz55dqmOVRXZ2NurUqQNzc3Pcu3fP2OEQVWhjxoyBRCLBqlWrjB0KUYXFRJOI9JaYmAgLCwsxsbp586axQ3pukpKSMHv2bMyePRtJSUnGDue5iI6OxvTp09GyZUvY29vDzMwMrq6uaNy4Mfr374///e9/uHTpkrHDJANbunQp7ty5gzfffBMeHh5ax6KiosT395o1a8rcR3h4OD766CO0a9cONWvWhLm5OaysrODp6YmQkBDMnz8fN27cKLK9t7e3GEf+HxMTE9jb2yMoKAiffPIJ4uLiijzHiBEjtNqePHnymXE3bNhQq40uuuKSSqWwtbVF48aN8e677+LatWvPfpGoUvjoo48gk8kwa9YspKenGzscoopJICLS09KlSwUA4s+0adMMcl7N+Q4ePGiQ8xlCZGSkGFdkZGSR9U6dOiX4+fkJfn5+5RecAfz666+CpaWl1u/T1tZWsLa21irz8vIydqjlrmPHjgIA4ZNPPil07PXXXxf8/PyEpUuXln9gBhAfHy/Y2dkJ5ubmwr179wodzz/uV69eXerzK5VKYciQIYJEItEaRzY2NoKtra1WGQChZ8+eQmJiYqHzeHl5CQAEuVwuuLq6ij8KhUKrvaOjo3D27FmdsQwfPlyr7ttvv11s7CdPniwUny6aY1ZWVmJcTk5OWs/ZzMxMWLVqValfP6qYRo8eLQAQ5syZY+xQiCokzmgSkd40lw699957AICff/4ZKpXKmCEZXVBQEK5fv47r168bO5QSO3PmDIYNG4b09HQ0btwYmzZtQmpqKpKTk5GSkoKYmBhs27YNI0aMgJWVlbHDrVDWrl2L69evY9y4ccYOpUyWL1+OpKQk9OzZE+7u7gY9d3x8PFq1aoV169YBAAYOHIh9+/YhLS0NSqUSycnJyMzMxNGjRzFt2jQ4Ojrizz//xOPHj4s856BBg/D48WPxJykpCUqlEsuWLYNcLkd8fDyGDBlSbFyenp6QSCT4448/kJGRUWS91atXA8ibTS2JDz/8UIwrNjYWGRkZ2LZtGzw8PJCTk4PRo0cjIiKiROeiim3MmDEAgG+++QZZWVlGjoao4mGiSUR6OX/+PC5evAg7OzssWLAAPj4+ePToEf766y9jh0al9L///Q9qtRouLi44cuQI+vfvr5VQOjs7o3fv3li9ejXOnj1rxEjJkARBwPLlywEAQ4cONfj5Bw0ahPDwcJiZmWHz5s34448/0KVLF1haWop1zM3N8cILL+Dzzz/H3bt3MWnSJJiampaqHxsbG7z99tuYMWMGACAiIgLh4eFF1vfx8UGHDh2QnJyMzZs366yTkZGB9evXQyKRYNiwYaWKR8Pc3By9e/cWE+3c3Fz8/PPPZToXVSxNmjRBgwYNEB8fj02bNhk7HKIKh4kmEelFM5s5aNAgyOVy8cPYTz/99My2iYmJmDx5MurUqQO5XI4aNWrglVdewblz557Z9uTJk5g6dSrat28PLy8vyOVy2NnZoXXr1vjyyy+RmppaZNv8mww9fvwY48aNg4+PD+RyOdzc3DBkyBCdM5HBwcHw8fERH/v4+GitxwoODhaPFbUZUO/evSGRSNCvX79in9/t27fF9kePHi10PDY2FjNnzkTTpk2hUCggl8tRu3ZtvPHGG7h69Wqx5y7KxYsXxeepUCiKrWthYVGoTK1WY//+/Xj//ffRunVruLu7QyaTwdHRER07dsSPP/6InJwcnefLvwYwKioK0dHReOutt+Dp6Qm5XI46depg5syZSEtLE9uEhYVh6NCh8PDwgFwuh6+vL+bNm1dkH/k37MnOzsYXX3yBxo0bw8rKCvb29ujWrRt2795dwler6HMXpFlXuGbNGmRnZ2PhwoUIDAyElZUVFAoFOnfujL///rvY86elpeGTTz5B/fr1YWFhARcXF4SEhGD//v2F+iitffv2ITIyEnZ2dggJCSl1++Ls3LlTjHHevHno27fvM9tYWlpi0aJFqFu3bpn6bNKkifjv4v4OAMDIkSMB/DdrWdDmzZuRnJxc6L1fFi+88IL4xU1x79Hjx49j6NCh4t81hUKBoKCgZ/5dA4Dt27ejc+fOsLOzg7W1NQIDA7FgwQLk5ORg9uzZhf5OaeQfvzk5OVi8eDFatGgBOzs7nRuyhYWF4e2334avry8sLS1hbW2Nxo0bY8aMGcWujz116hSGDBki/r21srKCl5cXOnbsiE8//RT3798v1Ob69et4++23Ua9ePVhaWkIul8PDwwOtW7fGRx99VORVI8nJyZg7dy6aNWsGW1tbWFhYwNfXF2PHjsWdO3eKjDH//w8xMTGYOHGi2Leu9bmDBw8GAPHLGiLKx9jX7hJR5ZWRkSHY2dkJAITjx48LgiAIt2/fFiQSiWBqaio8fvy4yLaRkZHieisAgkwmE9dqyWQyYfv27cWu0US+9VKWlpaCvb29VllAQIDw5MkTnX1r6vz000+Cm5ubAECwsLDQWocol8uF3bt3a7Xr27ev4OTkJNZxcnLSWifWt29fse7Bgwd1rufauHGj+Bzj4+OLfH1mz54tABB8fHwEtVqtdWzv3r3i646n676srKy0Xsuff/65yHMXJSAgQAAgtG3bttRtBUF7HR8AwdrautDaufbt2wvp6enFtt28ebP4/GxtbQUTExOt9tnZ2cLOnTvFtaQKhUJrHdygQYN0xqdZYzl9+nShffv2AgDB1NRU67VEEWsw87fXdby4Y5pxvnTpUqFVq1bi7yz/eJNIJEWu3Xvy5In4u9G01cQskUiEH374QeyjLOsnJ06cKAAQunfvXmSdsq7R7NGjhwBAcHBw0Pl7Ly3N8xw+fHiRdebNmycAEExMTHS+xzRrNDt27CikpqYKNjY2gkQi0bnmunPnzgIAYe3atcLq1atLtEazqPGjVqvF92loaGih4yqVSnj//fcLvYfyj38/Pz8hKipK5/knTZqk1dbOzk4wNTUVAAgdOnQQPvroI/F5F6QZv1OnThXatm0rvjfs7e0FiUSi9Tf4yy+/FKRSqdbfX5lMJj6uUaOGcP78+UJ9rFmzRut9am5uXmh9bsGx9c8//wjm5uY6x35xr3dYWJjg7u6u9ffcxsZGq+9NmzbpfB01dVasWCG4uroWal/Q0aNHxfGmVCp1npOoumKiSURl9uuvvwoAhLp162qVaz7EL1iwQGe73NxcoUWLFgIAwd7eXtiwYYOQk5MjCIIgXL16VWjfvr3WhwldiWbPnj2FP/74Q3j06JFYlp6eLmzZskXw8/MTAGglfvlpzqtQKARPT0/hn3/+EZO5U6dOCY0aNRKTnIIbo5R0M6CiEs3MzEwxKf7hhx+KbF+3bl0BgDBr1iyt8suXLwsWFhYCAOGtt94Srl27JuTm5gqCIAjR0dHCO++8I35IPHPmTJHn12XEiBFizIsWLRKysrJK1f7evXvCkCFDhB07dmh9wE9JSRFWr14t1KxZUwAgTJgwoVDb/K+rnZ2d0KVLF+Hq1auCIOT9Xr/55hvxA/fMmTMFhUIhDBo0SPzQnZKSIsyYMUM8x969ewv1ofkwrVAoBHNzc+HHH38UMjIyBEEQhLt37woDBgwQ22/fvr3I9mVNNO3t7YVatWoJ27ZtE7KzswVBEITr168LrVu3FpOKpKSkQu01yZqFhYWwatUqITMzU4x50KBBgkwmE5PusiSamvfixx9/XGSdsiSa2dnZYmI1cODAUselS3GJZkpKirBy5Urx/VHUJj/5E01BEIQ33nhD5+8uMjJSkEgkgq2trZCWlqZ3onn48GGxznvvvVfo+MyZMwUAgouLi/Ddd9+J76Hs7Gzh4MGDQtOmTQUAQrNmzQSVSqXV9vfffxfPPXjwYOH+/fuCIOR9Gbh8+XJBLpeLf3eKSzStra0Fa2trYfXq1eIXA3FxcWIsK1euFOt99tln4t/f3Nxc4ezZs2Ji7u7uLqSkpIjnT0tLExO1oUOHCrdu3RKPpaamCmfPnhUmT54s7Nq1SyuuOnXqCACEF198Ubhy5YpYnpGRIYSFhQlz5swpNB6VSqXg4+MjABBq1aol7Nq1S3y9Ll68KL7fzM3NhYsXLxZ6LfIn+X5+fsL+/fvF9hEREYXqp6eniwl9wS8niao7JppEVGadOnUSAAhz587VKl+xYoUAQPD399fZ7o8//hD/M9+3b1+h42lpaeIHjKISzeLcv39fMDc3FyQSiRAdHV3ouOa8MplMuHbtWqHjT548ERwcHAQAwjvvvKN1TN9EUxD+26mwTZs2OtueOHFCbHvz5k2tY5oPctOnTy+yb82sSO/evYuso8v169e1vvW3t7cX+vTpI8ybN0/YvXu3zl1AS+PMmTMCkLcrpybB08j/ujZo0EBMpvJ7/fXXxTrdunUrNNMrCP99yfHGG28UOqb5MA1A5+yhSqUSOnToIMZQVPuyJprm5uZCeHh4oeMxMTGCXC4XAAi//vqr1jHNbAkA4ZdfftEZs+Z9WJZEMysrS0zgi5rhEYSyJZo3b94U28yfP79UcRWlqF1n838x5efnJ8yfP1/8AqaggonmsWPHBACCt7e31piaNWuW+IWOIAhlTjQzMzOFbdu2CR4eHmKdc+fOadWJjIwUTExMBAsLC53JjyDkJVCaWbqtW7eK5Wq1Wvxiqqj3Rf7Yi0s0AQg7duwosn/N6/z333/rrJOTkyM0b95cACAsWbJELD916pT43td8qfgsT548EWN6+PBhidoIgiB88cUXApA3+5k/Oc3/PLy9vQVA98yypk9dXzQWpUGDBjq/GCSq7rhGk4jK5M6dO+I6xNdff13r2MCBA2FhYYHr16/jxIkThdquX78eANCuXTt06dKl0HFLS0tMmTKlzLHVqlULgYGBEARBZ/8ar7zyCurXr1+o3MXFRdxN8I8//ihzHEXRvF7//vsvbt26Vej4L7/8AgBo06aN1jq1qKgoHDhwAKampvjwww+LPL9mney+fftKtfuvn58fDh8+jJYtWwLIW0O7bds2zJw5Ey+99BIcHR0RHByMbdu2lfic+bVo0QIuLi5IS0sT14PqMmHCBJibmxcq7969u/jvadOm6Vwvpalz+fLlIs/v4eEhrs3LTyqVYubMmQDy1tBduXKlyHOUxYABA+Dv71+o3NnZGW3atAFQOO6NGzcCyFuDqWsX1fwxl0VMTIw4Rpydnct8Hl3i4+PFfzs4OBRZLzQ0FG5uboV+PvjggyLbZGZm4smTJ+JP/nvaJiQkIDY2tsT3NmzXrh3q1auHqKgoHDx4EAAgCIK4Yc+oUaNKdB6NRYsWic/B2dkZFhYW6NOnD+7duyceb9asmVabNWvWQKVSoUePHggMDNR5XhsbG/Tp0wcAsGfPHrH84sWL4t+Rjz76SOf7Yvjw4fD09Hxm7A0aNEDPnj11Htu8eTOSkpLQtGlTrfdifqampnjttdcKxWhnZwcAyM7O1hoXxbGxsYFUmvcx9dGjRyVqA/z3N3vAgAFo2LChzvNq/n/ZvXs3kpOTdZ7n9ddfL/EOzE5OTgCAhw8fljhOouqAiSYRlcnq1ashCALat29faNt/W1tb8QORZrOg/DQ7lnbu3LnI8xd3DMjbeOa3335Dr1694OnpCQsLC62NeU6fPg0AOjeXKEkfmmPx8fGIjIwsNpbSateuHerUqQMA+PXXX7WOZWdnix+UCu5yefz4cQB5zz0gIEDnh3M3Nzf06NEDQN4GMiX9UKfRtGlTnD59GmfOnMGcOXPQo0cPuLm5if0ePnwYffv2xciRIyEIQqH22dnZ+PHHH/Hiiy+iZs2aMDc31/q9xMTEACj+9xIUFKSz3NXVVfy3Jhkuqk5iYmKR59dsfKJL+/btxd1ODb2zbqtWrYo8VrNmTQB5SVJ+58+fBwB06NChyJjbtWtX6h1aNWJjY8V/F5cMPk/x8fFaSaPmp6gEAMhLnIS8q7IgCALUajXi4+OxY8cOuLi4YMmSJWjXrp3W8yuO5osHzSZm+/fvR3R0NOrXr4/WrVuX6vmkpaWJzyEuLk58n9jb2+P48eOYNGlSoTaa9/Y///xT5Pvazc1N3LQoOjpabKsZI2ZmZmjbtq3OmCQSCTp27PjM2Nu1a1fkMU2M4eHhxcY4d+7cQjHWqVMH/v7+yMnJQatWrfDll1/i4sWLxX4RZmFhIX4R2aNHD8yaNQunTp1CdnZ2kW2ys7PFL2u6du1aZL1u3boByPubpnn9CirutShI894p6Xgjqi6YaBJRqanVanF3y6K2/B8+fDgAYMOGDYV2StQkG7Vq1Sqyj+K+SU5PT0fXrl0xZMgQ/Pnnn7h37x7UajUcHBzg6uoKV1dXmJmZAYDWLqUFFdd//mOaeA1JM6tZMNH866+/kJCQAJlMhkGDBmkd03xbrlardX4wz//hVqOkszoFtWjRArNmzcLu3bvx6NEjREZGYtGiReI392vWrMF3332n1SYmJgYtWrTA2LFjsXfvXjx69AhSqRROTk7i70UzQ1Hc78XGxkZnef5k6ll1itp5Fij+9y6Xy+Ho6Cg+H0MqKmag6Lg1H1w1iagu5ubm4u+ltDIzM7XOY0ia1xEonEDnd/LkSa2ksSQJUUESiQQODg7o2bMn/v77b9ja2uLKlSuYOnVqidoPGzYMJiYm2LJlC5RKpZjQ6Zr5fpZPPvlEfC5paWk4ffo0evbsicTERIwYMULnrJemLH+SqutH877J/77WjBFHR0fIZLIi4ypu3Gu4uLgUeUwTY8HZ5II/SqWyUIwmJiZYv349fHx8EB0djWnTpqFp06awtbVFt27d8MMPP+j8W7Vy5UoEBgYiNjYWn376KVq3bg0bGxu88MILWLhwYaFxlZCQICavJf3/paj3eXGvRUGaXbjzv5+IiIkmEZXBnj17xBmpN998U2vGSvOjmVVLTU3Fhg0bDNr/Z599hoMHD8LCwgJLlixBdHQ0MjMzER8fL94oXTN7pGvWrSLQJJq3b98WZwqA/y6bffnll2Fvb6/VRvMBytXVVeuDeXE/Jb3J/LN4e3tj0qRJOHz4sPihauXKlVp1JkyYgCtXrsDR0RE//fQTHj16hIyMDMTGxoq/F03CVFF/LxVVUbOZ+sqfDBY3C1wWXl5e4u08irtU2tDc3d3Fvz8bNmxAbm7uM9vUrFkT3bt3R0ZGBn788Uds3boVJiYmhZYFlJalpSVatmyJbdu2oUuXLrh58yaGDBlSaPxr3ttTp04t0fu64O1GAMOMERMTkyKPaWIcNGhQiWKMiorSah8YGIjr169j8+bNePvtt9GwYUNkZGRg3759eOedd+Dv71/ocnVPT0+cP38ef//9N95//300b94carUax48fx5QpU1C3bl0cOHBA7+etS3GvRUGahDf/+4mImGgSURnouhy2NPU13xQ/ePCgyDbFHdOs8Zw1axbGjx8PT0/PQh+yHj9+/My4Stp/ab7ZLqnatWuLl2ZpksvExETs2rULgO6ZYs0lrHFxccXOCD5PAQEBeOGFFwAAERERYnlOTg62bNkCAPj2228xcuRIMV4NlUpV7D32yktxv/esrCzxcuPn8XsvLc26yeLWfmVlZZX5dc2/LrO4WceyMDMzQ/v27QHkrRfOyMgw6PmL4+XlBSBvhrC0l89+/PHHyMjIwEsvvVRoDJeVVCrFDz/8AFNTUxw6dEj8G6ah6Sf/5aYlpfkdxsXFFXtZaXHjviT0iVFDJpOhX79+WLZsGa5cuYLY2Fj8+OOPcHBwwL1798QrYfKTSqXo3r07vv76a5w9exYJCQlYt24dPD09kZiYiMGDB4vP28HBQUwQi7s8P/8xQ7zPNe8dQ69zJqrsmGgSUanExsZix44dAIBNmzYhJSWlyB/NOskTJ05oJSUtWrQAAHHjDV2K+5Zas6lG06ZNdR6PiorSuclOQcX1rznm4OCgdaN2zaWfgP6zcppkcsOGDcjOzsaGDRuQlZUFJycnhISEFKqvSUxVKhV2796tV9/6sLa2BqB9qWVsbKx42VhRv5djx45ViEvLDh8+XOTv7ujRo+IMmGacGpNm05jDhw8XWef48eMlmrXTxd7eXkwgiruJfVm9++67API+iC9dutTg5y9K/kRCM6v6LL169YKjo6OYtJR2E6Bn8fX1FTd0mjlzptbvTPPe3rdvX6nfI5oxkpOTU+TmZ4Ig4MiRI2UJu1CM586dK9XmPMVxdHTE6NGj8eWXXwIALly48Mx15TY2Nhg8eLD4BeaTJ0/EmVCZTIbGjRsDyFtnW5R9+/YByPt7XnBjprLQrOPXtbkcUXXGRJOISuWXX35BTk4OFAoFevbsCWtr6yJ/WrZsKe6ymX9WU7P28NixYzovAcvIyMDChQuLjEGhUAAALl26pPP4tGnTSvRcNm7cqJUAa8TFxWHZsmVasWrY2tqK/86/02VZDBw4EObm5khMTMSff/4pzmy++uqr4hrT/Hx9fREcHAwAmDFjRrGbpQCln6E6cOBAsWsbgbxZEc2HtPwf0GxtbcVZZV2/l9zcXMyYMaNU8Twvd+/eFXcUzU+tVmP+/PkA8mZuGzVqVN6hFTJgwAAAeV+e/Pbbb4WOC4IgxlxWHTp0AADxiyFDevnll8UNXWbOnImtW7cavI+C4uLisHfvXgB575n879niyGQyfP3115g0aRKmTJmCl19+2eCxTZs2DVKpFHfu3BHXgQJ5Sa2pqSni4uLwySefFHuO7OxsrXXvTZo0EXen/uKLL3R+ifLrr7/qNRMJ5O3SbWdnh5ycHEycOLHYL9rUarXW38esrKxiz625HB/478u84mZni2oD5P39BPK+CA0LCyvULjU1FQsWLAAAhISEiP+flFVkZKQ4a16W9cVEVRkTTSIqFU3C2Lt372I3ntB45ZVXAABr164Vv8Hv37+/mKT0798fmzdvFtf/hIeH46WXXir2cjfN+qt58+Zhy5Yt4nkjIyMxePBgbNiwodD6Rl3kcjl69OiBffv2iR+azpw5g65duyIuLg42NjaFklY7Oztxk4nVq1eXeSZJcy7NrQQ+//xzca1mcevCli5dCmtra9y4cQOtW7fG9u3btWZAHjx4gF9++QVdunQp8UYoGlOmTEHt2rUxbdo0HDt2TOtSx4SEBKxcuRIvvPACUlJSAEBr90xra2txxmPixIk4cOAA1Go1ACAsLAwhISE4e/ZsiWeXnieFQoGxY8dixYoV4mt37949vPbaa+JM9rx584wZoqh9+/biDplvvfUW1qxZI35ov3//PoYMGYKjR4/C0tKyzH1ovrw4depUieqnpqYiLi6u2J/8u4n+8ccfqF+/PnJyctC/f38MGjQI+/bt09r8JTc3F5cvX8bHH39c5t1+1Wo1zpw5gz59+oiXEk+cOLFU5xgyZAgWLVqEL7/8UueXPfry9/dHv379AOSNMU0yVadOHXz88ccAgAULFmDYsGFaSVJubi4uXryIuXPnom7dulprXiUSCebMmQMgb/388OHDtTbuWbVqFUaPHl2iv4nFsbOzw//+9z8AecsXQkNDcerUKfF9rlarER4ejsWLF6NBgwbYuXOn2Hb9+vVo164dli1bpjVzrlKpsGfPHvHvbJs2bcQ4T5w4gcaNG2PJkiUIDw8X+9Hctmrs2LEA8tbkamYxAWDs2LHw8fFBTk4OXnrpJezevVtse+XKFXTv3h2RkZEwNzc3yPtc875xdXXVefsiomrNsLflJKKq7N9//xVvZv3nn3+WqM3ly5fFNtu2bRPLb9++rXUDc3Nzc0GhUAgABJlMJmzfvl08dvDgQa1zRkVFCa6uruJxU1NTsS2e3hxecwPygjdPF4T/bsj9008/CW5ubgIAwdLSUrC2ttaKZ+fOnTqf06effqpVz8PDQ/Dy8hIGDRok1jl48GCxN3fX2LFjh1gPgODv7//M1/TYsWNi3AAEExMTwdHRUbCwsNA615tvvvnMc+XXunVrrfYSiURQKBSCpaWlVrlMJhO+/vrrQu3Pnj0rWFlZab02NjY24u9o7dq1gpeXlwBAWL16tVbbyMhIsV1kZKTO+ErymmpuTO/l5VXomGZMTJ8+XXjhhRfEm7rb29trPb+ZM2fqPHdxY6q4Y0U95/yGDx8uABCGDx9e6NijR48Ef39/MT4zMzPBzs5OACBIpVJh+fLlgqenpwBA+P3334vsoyhPnjwRzMzMBADCjRs3dNbJ//spyc+FCxe02iuVSmHIkCGCRCLRqmdjYyM4ODgIpqamWuW9evUSIiIiCsWheS3lcrng6uoq/ri4uAhyuVzrHBMnTiz2te7YsWOpXifN2Cpq/GmO6RoD+Z0/f16s++2334rlarVa+Pjjj7VeIwsLC8HR0VEwMTHRem7Hjh0rdN7x48drvXft7e3F32vnzp2F6dOnCwCE7t27F2pb3Pgt6IcffhBkMpnW+9zR0VHsS/Pz66+/6nzt8reRSqViWc2aNYXw8HCxTf73u2bcOzo6ao0VW1tb4ciRI4VivHLlilCrVi2xnlwuF2xtbbX637hxo87nV9T/O0V57bXXBADC+PHjS1SfqDrhjCYRlZhmNlOhUODFF18sUZtGjRqJ61byXz5bu3ZtXLx4ERMnToSPjw8EQYBcLseAAQNw4sQJ9OrVq8hzenl54ezZs3jjjTfEXUzlcjlefvll7NmzB9OnTy9RbD4+Prhw4QLeffddODs7Izs7Gy4uLnjttddw4cIFhIaG6mz30Ucf4euvv0aLFi1gZmaG+/fvIzo6ukQbEBX00ksvaW0gUZJdLtu1a4cbN25g0aJF6NChA+zs7JCUlAQTExPUr18fQ4cOxbp168TZh5I6ePAgdu7ciYkTJ6J9+/ZwdXVFRkYGcnJy4OTkhLZt22LGjBkIDw/H+++/X6h98+bNcfr0aQwcOBBOTk5Qq9WwsbHBwIEDceLECb138DQUmUyG/fv3Y/78+fDz80NWVhYUCgW6dOmCXbt24dNPPzV2iFrc3Nxw5swZfPzxx/Dz84NUKoWpqSlCQkJw4MABvPXWW+Jl1HZ2dqU+v4uLC/r27QsAWLdunSFDF9nY2ODXX39FWFgYpk+fjrZt28LNzQ1ZWVnIzMyEm5sbunfvjrlz5+LWrVvYvn076tWrV+T5Ct5iIyYmBlKpFPXq1cOoUaNw4sQJLF68+Lk8F301bdpUXIM9f/58cVZdIpFg7ty5uHz5Mt555x3Ur18fJiYmSE5Ohr29Pdq2bYvJkyfjxIkTOu/xuGTJEmzZsgXBwcGwsbFBVlYW6tevj4ULF2LPnj3iBmJlGSP5jRkzBhEREfjwww8RGBgIc3NzJCUlwdraGi1atMB7772HvXv34rXXXhPb9OrVC2vXrsXIkSMRGBgIhUKB5ORk2NjYICgoCJ9++imuXr2qNSPYsmVLbNiwAWPHjkXz5s3h5OQEpVIJuVyOJk2aYMqUKQgPDxc3nMqvYcOGuHr1KmbPno0mTZrA1NQUWVlZqFOnDsaMGYOrV6+Kl6XrIzU1Fdu3bwcAjB49Wu/zEVU1EkHgHvNEVL1o1hIePHhQvGyQqr7g4GAcPnwYn3zyCWbPnm3scAzm5s2bYlJ29+5deHh4lPocR44cQceOHVGnTh3cvHnzud1OhYynXbt2OHHiBObOnStepkv6Wbt2LYYPH45OnTo9t9usEFVmnNEkIiKqxD7//HMAeRsYlSXJBPI2BHrxxRdx+/ZtbNy40ZDhUQVw+PBhcUdazRp30o9arRY3FdJ3Qy6iqoqJJhERUQV2/fp1vPnmmzhy5Ii4EZOmfOTIkeLupSXdbbkoixYtglQqxdy5c8XNU6jyePfdd7FmzRo8fvxY3NwsKSkJy5YtQ+/evQEAnTt3RsuWLY0ZZpWxceNGXL16Fa+88gpat25t7HCIKiRTYwdARERERdPsHJp/jXROTo7Wrq3vv/++3mtgGzVqhFWrViEqKgqPHj0Sd1emyuH48eP4/vvvAeTd49bS0hJJSUli0hkQEIC1a9caM8QqJScnB5988glGjhxp7FCIKiwmmkRERBVYnTp1sGjRIuzbtw8RERGIiYmBSqWCh4cH2rRpg7ffflu8V6W+RowYYZDzUPmbO3cutm3bhlOnTuHJkyfiJkINGjRAv3798Pbbb+t1GxzSNnToUGOHQFThcTMgIiIiIiIiMiiu0SQiIiIiIiKD4qWzlZBarcbDhw9hY2PDLeiJiIiIiKoxQRCQkpKCmjVrQiqtOPOITDQroYcPH5Z5C3siIiIiIqp67t27B3d3d2OHIWKiWQnZ2NgAyBtMtra2Ro6GNBIyEgAADhYORo6EKhKOCyqIY4J04biggjgmSBdd40KpVMLDw0PMESoKJpqVkOZyWVtbWyaaFUiuWS4AwNaCvxP6D8cFFcQxQbpwXFBBHBOkS3HjoqItqas4F/ESERERERFRlcBEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SQiIiIiIiKDYqJJREREREREBsVEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SQiIiIiIiKDYqJJREREREREBsVEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SQiIiIiIiKDYqJJREREREREBsVEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUEx0SQiIiIiIiKDYqJJREREREREBsVEk4iIiIiIiAyKiSYREREREREZFBNNIiIiIiIiMigmmkRERERERGRQTDSJiIiIiIjIoJhoEhERERERkUGZGjsAIiIiIiKiyuJucjLi0tPFx06WlvBUKIwYUcXERJOIiIiIiKgEopOS4Pftt8hSqcQyuakpIsaNY7JZAC+dJSIiIiIiKiArNxfnHz3C9bg4sex6XJxWkgkAmbm5WjOclKdaJJrHjx9HSEgIHBwcYG1tjaCgIKxdu7bU5zl37hxmz56Ntm3bws7ODjKZDB4eHhg6dCguX76ss010dDSWLl2KHj16wM3NDWZmZnByckKPHj2wY8cOfZ8aERERERHpKSEjAwcjI5GrVotlsw8dQvPly/G/kyfFMidLS2OEVylV+UtnN2/ejEGDBkGtVqNDhw5wcnLC/v37MXz4cFy+fBmLFi0q0Xlyc3PRokULAICDgwPatm0LKysrXLhwAevWrcPGjRuxbt06DBgwQKvdkCFDcPz4cZibm6N169Zwc3PDnTt3sGfPHuzZswcTJkzAV199ZfDnTURERERE2gRBQHRyMlKzs9HQxQUAoBYEeP3vf0jNzsbVd95BgLMzAKCJmxvs5XKYSv+bm5NIJEaJuzKq0jOaCQkJGDVqFFQqFTZt2oRDhw5h06ZNuH79OurWrYvFixfj0KFDJT5fy5YtsW3bNsTExOCvv/7Cxo0bcePGDcyYMQPZ2dkYNWoU4vJNrQOAu7s7li5ditjYWBw6dAjr16/H6dOnsXPnTpiammLJkiX4559/DPzMiYiIiIiqt2yVChcfP4YyK0ssW3PxIny+/hrj//5bLJNKJAh0dYWPnZ3WJbADAgIQP2UKvg0JEcucLC0hN9Weq5ObmnKmU4cqPaO5cuVKKJVK9O7dG/369RPLXV1dsWDBAvTr1w+LFy9GcHDwM89lamqK06dPFyqXSqX49NNPsWnTJkRERGDXrl0YPny4eHz9+vU6zxcaGopRo0Zh+fLl+P333/Hiiy+W/gkSERERERGSMjPxQKlEg6ezlADQZtUqnH/0CNtffRW9/PwAAI1dXWEmLTzXdmD4cMhMTLTKTHTU81QoEDFuHHedLYEqnWju2rULAApdzgrkJXpyuRz79u1DZmYm5HJ5mfuRSCRo3LgxIiIi8PDhwxK3CwwMBIBStSEiIiIiqq4EQcDd5GRYmpnB2coKAHDi3j20++kneCkUiBo/Xqzb0MUFdxITkZCRIZY1cXND6kcfFUoqCz4ujqdCwcSyBKr0pbOXLl0CADRr1qzQMZlMhoYNGyIzMxM3btzQu687d+4AANzc3J5rGyIiIiKi6iBbpdLa8RUAXt+6Fd5ff41f8m3EqVlTKZFIkJGTI5Z/HxKChClTMKJJE7HMRCotVVJJZVdlZzSVSiWSk5MB5K2T1MXd3R1nz55FdHQ0GjduXOa+jh07hnPnzkEmk6FHjx4lapOUlCTufNu7d+9i62ZlZSEr37XlSqUSAJCQkYBcs9wyRk2GlpiRaOwQqALiuKCCOCZIF44LKqi6jQllVhYycnLhap03Sxmblo5GP6yGWhAQPX4MLMzy0hZPhSVMpVLcU8YjISNBbB/5wduwNTdHRm4KMvJ9PM7SvhNJpadrXCgzlEaI5Nmq7Ixmamqq+G/LIhbnWj2dbk9JSSlzP0qlEqNGjQIATJgwATVq1ChRuzFjxiA2NhatW7dG3759i637+eefQ6FQiD8eHh5ljpeIiIiIyFgEQcB9ZQpU+W4j8tW/Z+Dz9XIsPHFGLHOytICtuQxWMjPcU/6XSI1u3gR3x4/Bxx3aap3X1tz8+QdPpVKhZzT79u2L8PDwUrVZu3YtgoKCnlNE2lQqFYYMGYKbN28iKCgIc+fOLVG7L7/8En/88QccHBywbt26Z26TPH36dEycOFF8rFQq4eHhAQcLB9ha2Or1HMjwHCwcjB0CVUAcF1QQxwTpwnFBBVXmMZGjUiExMxMuTyd3hKe3EbmnVCL83Xfh75T33Bo41wQAJGbmaD3fq++8CxcrK63Pyg4W5fgEKrD8r5NpTsVM6SpmVE9FRkYiIiKiVG3Sn+4AZW1trVVma1s4IUtLSwMA2NjYlCm+sWPHYufOnfDz88OuXbsgk8me2ebXX3/F9OnTYWVlhV27dqF27drPbGNubg5zfktDRERERBWUMisLMhMT8dYfm69dw+AtW9DRywv/vP46gLw1lO62tniUmorbCQnwd3ICAPTy80P8lClwsNDOIl3zfZ6nyqdCJ5oXL14sc1tbW1soFAokJyfj/v37CAgIKFTn/v37AAAvL69Sn3/atGlYsWIFPDw8sHfvXjg9faMUZ+fOnRg5ciTMzMywZcsWtG7dutT9EhEREREZiyAISMrMhH2+pDD0t9/w182b+PO11/ByvXoAAC87O2SrVLiTqL2mcOMrr8DJ0hLm+e5FaSWTwap8wqdyVGXXaAL/3T7k/PnzhY7l5OQgLCwMcrkc9Z6+IUpqwYIF+PLLL+Hi4oK9e/eWaM3k4cOH8corr0AQBPz222+8byYRERERVWg5KhXS8+3ievHxYzgvXIjmy5dr1XN8mnTeiI8Xyxq7uuL2++/jxnvvadWtZWurlWRS1VWlE83Q0FAAwKZNmwod27lzJzIzM9G1a9dS3UNzxYoVmDp1Kuzs7LBnzx74Pb35a3HOnz+PXr16ISsrCytXrkT//v1L/iSIiIiIiJ6z/AklAHz4zz+w+fxzLD93TizzUigQn5GBe0olUvLdEeGzzp0RN3kyJrZpI5bJTExQ294e0mfsRUJVV5VONN98803Y2tpi+/bt2LJli1geExODKVOmAAAmTZpUqJ2/vz/8/f3x4MEDrfJNmzZhzJgxsLa2xl9//YUm+e7JU5SIiAj06NEDSqUSX3/9NUaMGKHXcyIiIiIiKitBEJCV+9/9PxIzMuC7dCnsvvgCmfnKbWQyZKlUCIuJEcvsLSxwcfRopEyfDpt8+4d4KBRwLOIuD1R9SQRBEIwdxPO0efNmDBw4EIIgIDg4GI6Ojti3bx+SkpIwceJELF68uFAbzc5WkZGR8Pb2BpCXnHp4eCA7OxuNGjVCs2bNdPbXp08f9OnTR3zctGlTXLx4Ec7OzggJCdHZxt/fH9OmTSvxc1IqleL6U12bHJFxaO7lVJl3hyPD47iggjgmSBeOCyrIEGMiV62GiUQifrZdfu4cZhw4gIEBAfju6ZV/giDAaeFCJGRk4MLo0Wji5gYAeJiSgoycHPhwVrJC0TUuKmpuUOUvkO7fvz+OHDmCefPm4eTJk8jOzkZAQADGjRuH4cOHl/g86enpyM7OBgBcuXIFV65c0VnP29tbK9FMfLoAOjY2Fj///LPONh07dixVoklERERElJ9KrYaJNO9iRUEQ0Onnn3HqwQNcHD0afk83rbQyM0NcejouPXkitpNIJPhn6FB4KhRwtvpvS56aZbwrA5FGlU80AaBdu3bYvXt3ievrmuT19vbWWf4sUVFRpW5DRERERKSLIAgQAHGWcd+dO3hn1y7UdXDAX0OGAMhLHjNyc5GZm4uLjx+LiWaPunVx5q230MDZWeuczWvWLNfnQNVDtUg0iYiIiIgqm4KTHGN27sSW8HCs6dMHIb6+AABbc3PcTEhAcr7NeQDg+5AQKORy1La3F8scLS25lpLKDRNNIiIiIqIKJCIuDoO3bEJmbi6uvjNOLE/NzkZsejouPn4sJpqNXV3xz9ChCHy6tlKDs5RkbEw0iYiIiIiMZPGJE1hx/jzGBQVhXFAQAMDJ0hLnH+Wto1RmZcH26Q6vk9u2xfutWqGRi4vYXm5qim516pR/4ETPwESTiIiIiOg5S8nKwisbN+JqbCxuvfcezE3zPoanZGcjIj4e5x89Eus6Wlpibd8Q+Dk6wFomE8sLzloSVWRMNImIiIiIDGjztWtY9O+/6ODpiS+7dQMAWMtkOP3gARIzMxEeFyfeRmRwo0Zo6+GBpgWSyFDfvFlK3lqEKismmkREREREZTRq+3b8e/8+drz6KnwdHQEAGbm5OHn/Pkyf3m4EyNsJdk2fPnC1skL9p7vAAkA9R0fUe9qOqCphoklERERE1dbd5GTEpaeLj50sLeGpUBSqd/rBA8w+dAjOVlb4Od8908NiYnA9Lg4XHz8WE83OPj5Y378/mtWooXWOXn5+z+dJEFVATDSJiIiIqFq6m5wMv2+/RWZurlgmNzXFuJYtcfzePczt1Alda9cGAKgFAbtv3YKbtbXWOeYEB0MikaBVrVpiWU0bGwxq2LB8ngRRBcVEk4iIiIiqpStPnmglmQCQmZuLKzEx+Pf+fZx58EBMNBu7uuKH0FA0cXODIAiQPF07+dLT24wQkTYmmkRERERU5eRPBgFg6alTWH3xIt5q1gxjW7YEAMjNzHS27Ve/PoYHBqKdp6dYZmlmhjEtWjzfoImqECaaRERERFSp5arV4sY7yqwsvLRuHSLi4vBg4kTxNiKx6em48Pix1m1E7OVynedrUbNmofWVRFQ6TDSJiIiIqFJIzc6GpZmZeMuP5efO4ZNDhzCgfn0sDQkBANjIZLgaE4PkrCxExMejsasrAODVhg3RvEYNNM2XQDpZWkJualpojaaTpWU5PiuiqomJJhERERFVKNkqFZIyM+FiZQUg7zLYRj/8gKuxsbgxbpy4u6vc1BSPU1NxJSZGbCuRSLDhlVdQw9oa/vluIxLg7IwAZ2etfjwVCkSMG1eiXWeJqHSYaBIRERGRUagFAXcSE1HD2hpWMhkAYH1YGF7fuhVda9fG7iFDAOQlj/Knl8Bej4sTE82X6tbFyTfeQAMXF63zvlinTolj8FQomFgSPQdMNImIiIjouRIEAY9SUxGTloYmbm5iedCKFTj36BH+GjxY3L3Vw9YWuWo1opOStM6xrl8/OFpaal3W6mxlBeens55EVLEw0SQiIiIig0nKzERYTAy87ezgbmsLADgUFYXOa9eiroMDbr73nli3roMDwmJi8Dg1VSxrUbMm7o4fL7bV8Mt3GSwRVXxSYwdARERERJVPjkqF848eYdv161rlw7dtQ/vVq7E1PFwsa+DiAqlEAjOpFLlqtVj+Q2goUj/6CCObNhXLzE1N4aFQaN2ahIgqH85oEhEREVGxopKScPrBA9S2t0eLmjUBAI9SU9F8+XKYSaVI++gjmJmYAAAaubjg4uPHWu1drKyQ9tFH4jpLDXsLi/J5AkRU7phoEhERERGAvFnKPbdv42pMDCa3ayfeRmTpqVP46uRJvB8UJCaaHra2qGNvD0+FAgkZGXC1tgYAzO3UCfM6dy507oJJJhFVbXzHExEREVVD1+PisOfWLbjb2qJ/QACAvN1dB2zYgCyVCgMCAlDHwQEA0LJWLbSqVUtrd1aJRIJb779f6LxSXvJKRGCiSURERFTl/XThAi49foyP2rcXZx4PRUVh/J49CPH1FRNNU6kUvf39YSKRQC0IYvtXGzbEqw0bGiV2IqqcmGgSERERVRHhsbH4+dIl2Jqb46P27cXyhSdO4HpcHEJ8fdG9bl0AQMuaNdHH3x8dvby0zvHHgAHlGjMRVU1MNImIiIgqoe9On8ah6GhMbddOXDd5X6nEl8ePo56jo1ai+XrjxkjIyECtfLcMaV6zJrYOGlTucRNR9cBEk4iIiKgCu52QgLlHjiBbpcLv/fuL5X/fvo2dN24g2MtLTDQD3dwwtkULBLq6ap0jf9JJRFQemGgSERERVRDfnDqFDVev4p2WLTG4USMAeZvrrL10CTITE+Sq1TCV5t0GfXhgIIK9vBDs7S22d7GywvehocYInYhICxNNIiIionIgCAIkT3dkjU1Lw+AtWxCVlISIcePEOpGJiTh+7x5a1qwpJppednb4rHNnBDg7Q8i3Qc+Apxv4EBFVREw0iYiIiAwoW6WCmVQqJpU/nDmDRf/+i1cbNMBnXboAAOzkchyJjka2SoXopCQo5HlthzRuLN5KREMqkfDSVyKqdJhoEhEREZWBWhCQmp0NW3NzAIBKrUbz5ctxNTYWd8ePRw0bG7HencREXImJEduamZhgXb9+8LC1RU0bG6TlKAEALWrWFNdbEhFVZkw0iYiIiIohCAIep6bCwcIC5qZ5H51+uXQJY3btQqivLza88goAwEQqRUZuLnLVaoTFxIiJZm9/fwQ4O6Ohi4vWefNf+pqWU05PhoionDDRJCIiInoqKTMTsWlp8HV0FMuaLluGS0+e4OjIkXjB0xNA3qY76Tk5iIiP12r/e//+cLa0hHu+24i429pqPSYiqg6YaBIREVGVcTc5GXHp6eJjJ0tLeCoUhepl5OQgPC4OHra2cLayAgD8dfMmQn/7DU3d3HB+9Gixbi1bW1yJiUF0UpKYaL7g6Ynr776LOg4OWudtVqPG83haRESVDhNNIiIiqhLuJifD79tvkZmbK5bJTUywc/BgAECX2rXF8p6//479kZFY3bs3RjRpAgDwezqLmZqdrbVD7MqePWEnl8PCzExsbyWTwc/J6Xk/JSKiSouJJhEREVUJdxIStJJMAMhUqdD1l19ga26OpKlTxeSxgbMzLj5+jPSc/xZH+tjbI2nqVCjkcq1zaNZaEhFRyTHRJCIiokonJi0NV5480ZqlXHLypM66NjIZ6js5ITkrC3ZPk8iFL76I//XoISaeQN5tRAommUREVDZMNImIiKjCEgQBD1JSkJWbK66HTM3OhtuiRRAAPPnwQ7g8XWNZ39kZO27cKHSOg8OHo3mBW4bITEyee+xERNWZ1NgBEBEREQF5SeWdxERk5bv8dcnJk/BYsgQzDhwQy6xlMvg7OcHfyQmPU1PF8rEtWkBuqv0dutzUVNzsh4iIyg9nNImIiKjcqdRqxGdkiLORANDg++8RHheHE6NGoY2HR16ZszNMJBJkFFh7eWnMGJgVmJX0srNDxLhxJdp1loiIni8mmkRERPRc5ahUUAsCzJ/ONh6IjESv339HfWdnnHnrLbGej709bicmIjo5WUw0O/n4IPWjjwrNVBZMMjU8FQomlkREFQATTSIiIjIYlVoNE+l/K3NG//knfr50CSt69sTrgYEAAC+FAmk5ObidkKBV/6devWBvYaG1fpJrKYmIKicmmkRERFQm+e81eV+pRM/ff8fDlBQ8njRJLLcwM0OWSoVLT57g9aftatvbI2zsWPg7OWklpa7W1uX9FIiI6DlhoklERESlsuLcOfzv1CkMatAAszp2BAC4WFnhWmwsslUqRCYloba9PQBgfOvWGBcUJD4GAIlEggYuLkaJnYiIygcTTSIiItJJpVZj6NatOPvwIf594w04WVoCALJUKlyLjcWZhw/FujITE/w1eDDqOjhorZH0trMr77CJiKgCYKJJREREOH73Lhb/+y987OywuHt3AICJVIpzDx/iVkICLjx6hG516gAAetarBx87OzSrUUPrHF1q1y73uImIqGJioklERFTNLD5xAgejovBpp05o+jRZTMnOxtbr1+Hv5CQmmgCwsFs3WJqZoZW7u1jmZWcHL85UEhFRMZhoEhERVVH3kpPx3ZkzSMvOxtKQELF8X2Qk/r51C6G+vmKi2bJmTXz14otoXrOm1jl6+/uXa8xERFQ1MNEkIiKqAv65fRt/37qFEF9fdH16CWtmbi6+PH4c5iYm+Kp7d/Hek283a4aX89UDAEdLS0xo08YosRMRUdXDRJOIiKgSycjJwe9hYbgaE4NFL74o3kbkz4gIfHvmDCSAmEDWcXDAuJYt0cjVFSpBgNnTc/StX984wRMRUbXBRJOIiKiCupWQgP137qCWrS1erlcPACCVSDBm507kqNV4v1Urca1kiK8vJBIJXny6YY+mbv5LZomIiMoLE00iIqIK4MS9ezj78CGGBwZCIZcDAHbduIHxe/agl5+fmGiam5piRJMmsDU3h/TpbCYAvOTri5d8fY0SOxERUUFMNImIiMpRanY2LjyKgZlJPELyJYavb92KO4mJaODsLN4mpLW7O7rXqYP2np5a51jes2e5xkxERFRaTDSJiIiek9i0NFx4/BgNnJ1Ry9YWAHDi3gO8tnknApydtRLNHnXq4J5SCbnpf/81t3J3x99Dh5Z73ERERPpioklERKQnQRDwKDUVtxMS0N7LSywfunUr/rl9Gz+GhmJ0ixYAgMauLvBS2KKBszPUgiBe/vpdaKhRYiciInoemGgSERGVgiAIiE5OhqlUCvens5Q3ExLg9+23sDA1hXL6dJhKpQCAFjVqICopSWstpZu1Fc6PHg4HCwejxE9ERFQepMYOgIiIqKJSCwJuxMdDEASxbNI//8Dn66/xzalTYlldBwcozM1Rx8EBMWlpYvm8zp0RMW4c3mrevFzjJiIiMjbOaBIREQHIVauRnJkJR0tL8bHLwoVIzMzEvQkTxNnLBs7OMJNKoczKEttKJRLETJ4MmYmJ1jkl+WYyiYiIqhMmmkREVO1k5eZCKpHA7Gli+NuVK3hjxw68VLcutgwaBAAwlUrhoVAgMzcXtxMSxERzcKNGeD0wsFBSWfAxERFRdcZEk4iIqjSVWg0T6X8rRXqvX4/dN29iz9Ch6OTjAwCoZWODzNxcRMTHa7XdPWQIXKysxDWXAGBhZlY+gRMREVViTDSJiKhKuvDoEV7fuhVmJia4MHq0WG4qlSJHrcblJ0/ERLOVuzsixo1DXQftDXpq2tiUa8xERERVBRNNIiKqsO4mJyMuPV187GRpCU+FolC9z48exZpLlzClbVu80awZAMDFygpXY2NhIpEgIydHnImc37kzFr/4IrzynUduaop6jo7P+dkQERFVH0w0iYioQrqbnAy/b79FZm6uWGZuYoJOPj64m5yMy2PGiJfEJmVm4kZ8PM49eoQ3ntataWODXYMHo4mbG+Sm//135+fkVJ5Pg4iIqFpioklERBXSA6VSK8kEgCyVCoeiopCZm4sb8fGo7+wMABjepAm61K6NZjVqiHUlEglCfH3LNWYiIiLKw0STiIgqpI3Xruksn9m+Pdp5esLbzk4sC3B2RsDTpJOIiIiMT/rsKkRERM9XrlqNbdev49Ljx2JZaBGzkS/5+iLY25u7vxIREVVgTDSJiMjopuzdi75//IEFJ06IZb6OjlprK4G8TXucLC3LOzwiIiIqJV46S0RE5UoQBByMikKAszPcrK0BAIMbNcIvly+jjr29WM9ToUDEuHEl2nWWiIiIKhYmmkREVK6GbduGXy9fxuyOHfFJcDAAoEXNmngwcSJkJiZadT0VCiaWRERElRAvnSUioufqzIMHyMq3e2xI3bqwlskgFKhXMMkkIiKiyoszmkRE9Nz0Wb8e2yMisK5fPwxu1AgA0D8gAC/Xqwcbc3MjR0dERETPC2c0iYjIYO4kJmo9burmBpmJCaKTksQymYkJk0wiIqIqjjOaRESkN7UgIPS33/D3rVs489ZbaFGzJgDg/Vat8G5QEHeKJSIiqmY4o0lERGWSmJEh/lsqkcDRwgJSiQQn798Xy+0tLJhkEhERVUOc0SQiolJJz8nBq5s2Yd+dO4gaPx4uVlYAgE87dcLnXbrAg7vEEhERVXuc0SQiomfKUanEf1uameFJWhoycnOx9/ZtsdzH3p5JJhEREQHgjCYRERUjNi0N4/fswb/37iFi3DiYPb0FyTc9esBOLoefk5ORIyQiIqKKiDOaRESkRRD+u8OlQi7H3tu3EZmUhENRUWJ5K3d3JplERERUpGqRaB4/fhwhISFwcHCAtbU1goKCsHbt2lKf59y5c5g9ezbatm0LOzs7yGQyeHh4YOjQobh8+XKJz/PLL79AIpFAIpFg3rx5pY6DiOh5uK9UYszOnQj97TexTGZigmUvv4yzb72FbnXqGDE6IiIiqkyq/KWzmzdvxqBBg6BWq9GhQwc4OTlh//79GD58OC5fvoxFixaV6Dy5ublo0aIFAMDBwQFt27aFlZUVLly4gHXr1mHjxo1Yt24dBgwYUOx54uLiMHHiREgkEq1ZAyIiY5NKJFh5/jxUgoBrsbEIcHYGAPStX9/IkREREVFlU6VnNBMSEjBq1CioVCps2rQJhw4dwqZNm3D9+nXUrVsXixcvxqFDh0p8vpYtW2Lbtm2IiYnBX3/9hY0bN+LGjRuYMWMGsrOzMWrUKMTFxRV7jgkTJiAtLQ1Dhw7V89kREZXdveRkTP7nH3z4zz9iWU0bGyzs1g0Hhw9HfV4WS0RERHrQK9GcOHEiPv30U0PFYnArV66EUqlE79690a9fP7Hc1dUVCxYsAAAsXry4ROcyNTXF6dOn0bt3b5g83QwDAKRSKT799FP4+fkhJSUFu3btKvIce/fuxa+//ooZM2agdu3aZXxWRET6u5ucjEX//ovvz5zRuh/mhDZtEOztDYlEYsToiIiIqLLTK9H89ttvS7U2sbxpkj5dl7OGhoZCLpdj3759yMzM1KsfiUSCxo0bAwAePnyos056ejrGjBmD+vXrY/LkyXr1R0RUGo9SUvDp4cNYce6cWNbWwwPvtGiB9QMGwMbc3IjRERERUVWkV6Lp7u4OtVptqFgM7tKlSwCAZs2aFTomk8nQsGFDZGZm4saNG3r3defOHQCAm5ubzuOzZ8/GnTt38OOPP0Imk+ndHxFRSe25fRuzDh3C/GPHoHr6N1sikeC70FD08vODqbRKr6IgIiIiI9BrM6A+ffpg7dq1SElJgY2NjaFiMgilUonk5GQAeQmxLu7u7jh79iyio6PFGcmyOHbsGM6dOweZTIYePXoUOn7x4kUsWbIEI0eORIcOHUp9/qysLGRlZYmPlUolACAhIwG5ZrlljpsMKzEj0dghUAVU3uMiKTMTv18Jh7+zIzp5ewIAutWuia61vTCgvh/iMxKYWBoZ/1aQLhwXVBDHBOmia1woM5RGiOTZ9Pq0MWfOHHh6eiIkJAQXLlwwVEwGkZqaKv7b0tJSZx0rKysAQEpKSpn7USqVGDVqFIC8jX5q1KihdVylUuGtt96CQqHAwoULy9TH559/DoVCIf54eHiUOV4iqhruK1Nw6XGM+HNfmfd37LszFzDz4DF8c+q/y2QtzEzxx4BeeKUBZy+JiIiofOg1o9m7d2+Ym5vj+PHjaNGiBWrUqAFPT0/I5fJCdSUSCfbv31+q8/ft2xfh4eGlarN27VoEBQWVqk1ZqVQqDBkyBDdv3kRQUBDmzp1bqM7XX3+Ns2fP4qeffoKjo2OZ+pk+fTomTpwoPlYqlfDw8ICDhQNsLWzLHD89Hw4WDsYOgSogQ46Lu8nJaLXyV2Tm/ndFg9zUFBHjxuG9oHY4GHkfgxsGwl5uz019KjD+rSBdOC6oII4J0iX/uDDNqZh3rNQrqvy3BhEEAQ8fPixyM5yyfNiJjIxEREREqdqkp6cDAKytrbXKbG0LJ2RpaWkAUObLfseOHYudO3fCz88Pu3btKrT2Mjo6GrNmzUKHDh0wYsSIMvUBAObm5jDnZh1E9FRcerpWkgkAmbm5iEtPR7MaNXB+9GgjRUZERESUR69EMzIy0lBx6HTx4sUyt7W1tYVCoUBycjLu37+PgICAQnXu378PAPDy8ir1+adNm4YVK1bAw8MDe/fuhZOOe84dPHgQaWlpiImJQadOnbSORUVFAQBWrVqFffv2oUmTJvjf//5X6jiIiIiIiIgqGr0SzbIkaOUpMDAQR44cwfnz5wslmjk5OQgLC4NcLke9evVKdd4FCxbgyy+/hIuLC/bu3fvMNZPXr1/H9evXdR6LiooSk04ioqKkZWdj9qFD8HdyQtMCa8GJiIiIKpoqvStEaGgoAGDTpk2Fju3cuROZmZno2rWrzjWlRVmxYgWmTp0KOzs77NmzB35+fkXWHTFiBARB0PnzySefAAA+/fRTCIKgdRkyEVFBv1y+jEX//osP9+6FmYkJ5Kba3xPKTU3hVMTGZ0RERETlzSArR588eYKffvoJR48exYMHDwAAtWrVQocOHTBy5Ei4uroaoptSe/PNN/HZZ59h+/bt2LJlC/r16wcAiImJwZQpUwAAkyZNKtTO398fALB//37UqlVLLN+0aRPGjBkDa2tr/PXXX2jSpMnzfxJERADebNYMe+/cwRtNm6KRiwsixo1D3NM16QDgZGkJT4XCiBESERER/UfvRHPz5s0YNWoUUlNTIQiCWH7lyhXs2bMHX3zxBVatWoX+/fvr21WpOTg44KeffsLAgQMxYMAABAcHw9HREfv27UNSUhImTpyI4ODgQu00GxDl5OSIZTExMRgyZAjUajV8fHywbNkyLFu2rFDbPn36oE+fPs/rKRFRNaAWBKw8fx47b9zAtldfhVQigalUis0DB4p1PBUKJpZERERUYemVaJ49exavvfYa1Go1+vbti9dffx3e3t6QSCSIiorCL7/8gq1bt2Lw4MHiLVDKW//+/XHkyBHMmzcPJ0+eRHZ2NgICAjBu3DgMHz68xOdJT09HdnY2gLwk+sqVKzrreXt7M9EkIr08SknBhD17kJ6Tg03XrmFggwbGDomIiIioVCRC/mnIUurfvz+2bduGTZs2oW/fvjrrbN26Ff3790e/fv10rpWk0lMqleKOurpu20LGkZCRAID3uyJtJR0XgiBo3QbqhzNnkKVSYVxQEEylVXo5fbXDvxWkC8cFFcQxQbroGhcVNTfQ69PLsWPH0LZt2yKTTADo27cv2rVrh6NHj+rTFRFRlXUgMhKNf/wR1+PixLKxLVtifOvWTDKJiIioUtLrE0xycjI8PT2fWc/T0xPJycn6dEVEVGV99e+/CIuJwayDB40dChEREZFB6LVG083NDRcuXHhmvYsXL8LNzU2froiIqgxBEKASBHG28tuQENT591/M7dTJyJERERERGYZeM5rdu3dHREQEPvroI6hUqkLHBUHAzJkzcf36dfTo0UOfroiIqoRbCQno9ssvmJ9vOYG3nR2+fuklKEpxT18iIiKiikyvGc2PP/4YW7ZswZdffonff/8dAwcOhLe3NwAgOjoaGzduRFRUFBwdHTFz5kxDxEtEVKmdffgQ+yMjce7RI4xv3Rq25ubGDomIiIjI4PRKNN3d3XHgwAEMGTIEYWFhWLhwobhromYz20aNGmHdunVwd3fXP1oiokooIycXsMj796AGDRAeG4thgYFMMomIiKjK0ivRBPISycuXL+PQoUM4evQoHj58CACoWbMm2rdvj+DgYH27ICKqlJRZWfjwn0M4ef8hLo4ZC5mJCSQSCeZwLSYRERFVcXolmv369UONGjXw3XffITg4mEklEVE+uWo1dt64hdj0DPx96xZ6+fkZOyQiIiKicqFXovnXX3+hT58+BgqFiKjyS8rMhN3TTX0cLCzwdY8usDQzY5JJRERE1Ypeu876+PggLS3NULEQEVVqX588Cc8lS3D87l2xrHtdH7T34hp1IiIiql70SjRfe+01HD58GI8fPzZUPEREldblJ0+Qkp2N1RcvGjsUIiIiIqPSK9GcPn062rdvj44dO2Lr1q3IyckxVFxERBVeanY2UrKyxMcLX3wRq3r1wvKePY0YFREREZHx6bVG08/PD2q1Gvfu3cOAAQMgkUjg4uICuY6bjkskEty+fVuf7oiIKowDkZEYuX07Qn198X1oKIC8NZmjmjY1cmRERERExqdXohkVFaX1WBAEXkZLRNWCVCLB3eRk7Ll9G6nZ2bCWyYwdEhEREVGFoVeiqVarDRUHEVGFphYERCclwcfeHgAQ7O2NPwYMQKivL6yYZBIRERFp0WuN5jfffIOVK1caKhYiogrpgVKJ9qtXo91PPyE5M1MsH9igAZNMIiIiIh30SjQnTZqEP//801CxEBFVSI6WlohNS0NKdjbOP3pk7HCIiIiIKjy9Lp11c3PTufEPEVFld+nxYwS6uQEA5KamWD9gAJwtLeGhUBg5MiIiIqKKT68Zze7du+PYsWPIzs42VDxEREYlCALe2rEDTZYtw9bwcLG8WY0aTDKJiIiISkivRPOzzz6DiYkJhgwZgke8nIyIqgCJRAIXKytIAFx+8sTY4RARERFVSnpdOjt9+nQEBgZiy5Yt2LVrF5o1awZPT88i76O5atUqfbojInoubsbHw0omQ00bGwDAzA4d0MffHy1r1TJyZERERESVk0QQBKGsjaXSkk+ISiQSqFSqsnZF+SiVSigUCiQnJ8PW1tbY4dBTCRkJAAAHCwcjR0Kl8evly3hzxw6E+Ppiy6BBBj8/xwUVxDFBunBcUEEcE6SLrnFRUXMDvWY0Dx48aKg4iIiMItDVFSpBQGp2NtJzcmBpZmbskIiIiIgqPb0SzY4dOxoqDiKicpGUmYmLjx8j2NsbANDI1RVn33oLjV1dIZFIjBscERERURWh12ZARESVya2EBNT/7jv0+v13PFAqxfJANzcmmUREREQGpNeMpkZ8fDx+/fVXnD59GnFxcejSpQumTJkCALh69Spu376Nrl27wtLS0hDdERGViY+dHbwUCiRmZiI2PR21KtA6BiIiIqKqRO9Ec+PGjXjzzTeRmpoKQRAgkUhQK99OjQ8ePEDfvn3x888/Y+jQofp2R0RUYrlqNX6/cgVDGjeGVCKBiVSKTQMHwtnSEuamBvmejYiIiIh00OvS2X///ReDBw+GqakpFi9ejNOnT6PgJrZdunSBQqHAli1b9AqUiKg0BEFA17VrMWzbNiw7e1Ysd7e1ZZJJRERE9Jzp9Wlr/vz5kEql2Lt3L5o1a6azjomJCZo1a4awsDB9uiIiKhWJRIL+9evj0pMnsJbJjB0OERERUbWiV6J54sQJtGnTpsgkU8PNzQ2nTp3Spysiomf6MyICdRwcEODsDAB4p2VLDGrYEC5WVkaOjIiIiKh60evS2fT0dDg//UBXnMTERH26ISJ6psUnTqDX+vV4688/oX56Cb+JVMokk4iIiMgI9Eo0a9WqhatXrxZbRxAEhIWFwcfHR5+uiIiKNbBBA9jJ5Wjn4YEclcrY4RARERFVa3olmj169EBERATWr19fZJ2VK1fi3r17CA0N1acrIiItYTExWH3hgvjYQ6FA5AcfYEG3btzsh4iIiMjI9Po0Nm3aNPz2228YNmwYLly4gL59+wIA0tLScOHCBWzduhULFiyAs7MzJkyYYJCAiYiuxcai6bJlkABo5e4ursm0k8uNGxgRERERAdAz0XR3d8euXbvQv39/LFy4EIsWLYJEIsGmTZuwadMmCIIAFxcXbN++HS4uLoaKmYiqufpOTnipbl1IJRIozM2NHQ4RERERFaD39WVt2rRBREQEVq1ahb179yIqKgpqtRru7u7o1q0bRo8eDYVCYYhYiaiaik1Lw8ITJzC3UyfITU0hkUjwx4ABsDAzM3ZoRERERKSDQRYy2djYYPz48Rg/fnyJ2yQkJCA1NRWenp6GCIGIqihBENBl7VpciYmBhakp5nTqBABMMomIiIgqML02A9LHpEmTULt2bWN1T0SVhEQiwccdOqCxqytCfH2NHQ4RERERlYBRt2YUnt7rjohII1ulwoLjx9He0xMdvb0BAAMCAtC3fn2YSo323RgRERERlQI/tRFRhTL/6FF8fPAgRu/ciazcXAB5s5pMMomIiIgqD35yI6IKZXzr1gh0dcUnHTtCZmJi7HCIiIiIqAx4V3MiMhpBELDx2jVcfPwY87t0AZB3L8wLo0dDIpEYOToiIiIiKismmkRUbu4mJyMuPV18HJeWhkGbNgEAXq5XD209PACASSYRERFRJcdEk4jKxd3kZPh9+y0yn667BAC5qSlGBAbC284OzWvUMGJ0RERERGRITDSJqFzEpadrJZkAkJmbi/datUIzJplEREREVQo3AyIiIiIiIiKDYqJJREREREREBmW0RNPf3x8dOnQwVvdEVM6cLC0hN9W+Wl9uagonS0sjRUREREREz4tEEATB2EFQ6SiVSigUCiQnJ8PW1tbY4dBTCRkJAAAHCwcjR1KxpOfkIDU7Gy5WVoV2nXWytISnQmHE6J4/jgsqiGOCdOG4oII4JkgXXeOiouYGpdoMaNSoUWXuSCKRYNWqVWVuT0SVjyAIeGPHDhy7exdbBw1Ci5o1q3xiSURERESlTDTXrFmjs1xzz7uCk6P5y5loElU/8RkZuPDoER6npiI9J8fY4RARERFROSlVonnw4MFCZRs3bsT333+PVq1a4bXXXoO3tzcAIDo6Gr///jtOnjyJd999FwMGDDBIwERUeThZWuLUm2/i2N276ODlZexwiIiIiKiclCrR7Nixo9bjPXv24Mcff8T333+PMWPGFKr/3nvvYdmyZXj33XcRGhqqX6REVGlormIAAIVcjtB69YwcERERERGVJ712nf3ss8/QrFkznUmmxujRo9G8eXPMmzdPn66IqJJIzc5G+9WrsSMiwtihEBEREZGR6JVoXrx4Eb6+vs+sV7duXVy+fFmfroiokljy7784fu8exuzcibTsbGOHQ0RERERGUKpLZws1NjVFWFjYM+uFhYXB1FSvroiokpj2wgtIyMjAgIAAWMlkxg6HiIiIiIxArxnNDh06ICwsDHPnzi2046zGp59+iitXrqBDhw76dEVElYSZiQmW9OiBdp6exg6FiIiIiIxEr2nG+fPn48CBA5gzZw5++eUXDBgwAF5Pd5aMjo7G5s2bcfv2bVhbW+Ozzz4zSMBEVPHcjI/HP7dv452WLcVNgIiIiIio+tIr0QwICMCBAwcwfPhwhIeH48svvyx0T01/f3+sWbMGDRo00D9aIqpwMnJy0OePP3AtNhYp2dmY9sILxg6JiIiIiIxM74WTLVq0wNWrV3Ho0CEcPXoUDx8+BADUqFED7du3R3BwMGc4iKowuakp3m7WDF+dPInhgYHGDoeIiIiIKgCD7dATHByM4OBgQ52OiCoJiUSCD1q3xlvNm8PSzMzY4RARERFRBaDXZkAFZWVl4dGjR0hISDDkaYmoArr85AlyVCrxMZNMIiIiItIwSKK5fPlyNG3aFFZWVnB3d8eHH34oHtuyZQv69euHW7duGaIrIqoAIuLi0H71anT75RckZmQYOxwiIiIiqmD0SjRVKhX69u2LsWPHIjw8HPXr1y90m5PAwEBs27YNf/zxh16BElHFEZ2cDLUgQCUIvFcmERERERWiV6L57bffYvv27XjppZcQHR2NK1euFKpTp04d1K1bF7t379anKyKqQF6sUwen3nwTm155BTITE2OHQ0REREQVjF6bAa1Zswaurq74448/YGVlVWS9gIAAnDt3Tp+uiKgCyFGpYPY0sQxwdjZyNERERERUUek1oxkREYFWrVoVm2QCgJWVFWJjY/XpioiMbEdEBJosW4aIuDhjh0JEREREFZxeiaaZmRkyMzOfWe/u3buwsbHRpysiMiKVWo3p+/fjWmwsVl24YOxwiIiIiKiC0yvRbNCgAc6dO4eUlJQi68TExODixYto0qSJPl0RkRGZSKU4MGwYJrZujc86dzZ2OERERERUwemVaL7++uuIj4/HmDFjkJ2dXei4SqXCu+++i/T0dAwfPlyfrojIyFytrbG4e3dxjSYRERERUVH0SjTffvttBAcH4/fff4efnx/GjBkDALh06RI++OAD1KtXD5s3b0a3bt0wZMgQgwRMROVn0YkTOBIdbewwiIiIiKiS0SvRNDExwV9//YWxY8fi4cOHWL58OQDgwoULWLp0Ke7evYu33noL27Ztg0QiMUjARFQ+/r51C5P37kWXtWtxMz7e2OEQERERUSWi1+1NAEAul+O7777D7NmzcejQIURFRUGtVsPd3R2dOnVCzZo1DREnEZWzDl5eeK1hQ7hZW8PX0dHY4RARERFRJaJXotmsWTPUqVMHGzduhLOzM1555RVDxUVERmZpZoZ1/fpBLQjGDoWIiIiIKhm976NpZmZmqFiem+PHjyMkJAQODg6wtrZGUFAQ1q5dW+rznDt3DrNnz0bbtm1hZ2cHmUwGDw8PDB06FJcvX35m+8OHD6N///5wc3ODubk5atasiZdeegk7duwoy9MiMjiVWo19d+6IjyUSCUykev2ZICIiIqJqSK8ZTV9fX8RX8LVbmzdvxqBBg6BWq9GhQwc4OTlh//79GD58OC5fvoxFixaV6Dy5ublo0aIFAMDBwQFt27aFlZUVLly4gHXr1mHjxo1Yt24dBgwYoLP97NmzMWfOHJibm6Ndu3ZwcXHBgwcPcPToUdSqVQu9evUy2HMmKquPDx7E58eOYUb79pjH25gQERERURnplWi+8cYbmDx5Mq5fvw5/f39DxWQwCQkJGDVqFFQqFTZv3ox+/foBAJ48eYIXXngBixcvxssvv4zg4OASna9ly5aYMWMGXn75ZZg8vcWDWq3GrFmz8Nlnn2HUqFEIDg6Gk5OTVrs1a9Zgzpw5aNWqFTZt2gR3d3fxWHp6Ou7km0EiMhZBECB9umlXA2dnI0dDRERERJWZRBD0W4A1ZswYbN26FdOmTUPPnj3h6ekJmUxmqPj0smDBAkydOhW9e/fGtm3btI5t3boV/fr1w8svv4w///xTr34EQUD9+vURERGBNWvWaN0zNCMjAx4eHsjOzsaNGzfg5uamV18AoFQqoVAokJycDFtbW73PR4aRkJEAAHCwcDByJPq58uQJGrm6GjuMKqOqjAsyHI4J0oXjggrimCBddI2Lipob6DWjqZnVEwQBH374IT788MMi60okEuTm5urTXant2rULAHRezhoaGgq5XI59+/YhMzMTcrm8zP1IJBI0btwYERERePjwodaxLVu2ID4+HqNGjTJIkklkaGnZ2bAwMxNnM5lkEhEREZG+9Eo0PTw8KvT9MS9dugQgb3fcgmQyGRo2bIizZ8/ixo0baNy4sV59aS5/LZhMHjhwAADQtm1bJCUlYd26dQgLC4OFhQXatm2LPn36wNRU77vMEJXK3eRkxKWnQ6VW4/2//4bC3BwbX3kFNubmxg6NiIiIiKoAvTKcqKgoA4VheEqlEsnJyQCgtSYyP3d3d5w9exbR0dF6JZrHjh3DuXPnIJPJ0KNHD61j165dAwDExsYiICAAjx49Eo8tWbIEjRo1wq5du+Dh4VHm/olK425yMvy+/RaZBa4wOHn/PrrVqWOkqIiIiIioKqmyU2mpqanivy0tLXXWsbKyAgCkpKSUuR+lUolRo0YBACZMmIAaNWpoHU9MTAQAfPzxx/Dz88OGDRsQGBiI8PBwjB07FufPn0f//v1x6tSpImeHs7KykJWVpdUnkHeNdq5Z+V6OTEVLzEg0dgglcjshplCSCQCm0hzxun8ynMoyLqj8cEyQLhwXVBDHBOmia1woM5RGiOTZKnSi2bdvX4SHh5eqzdq1axEUFPScItKmUqkwZMgQ3Lx5E0FBQZg7d26hOmq1GkDeetbdu3eLM5dBQUHYvXs3ateujTNnzmDfvn3o1q2bzn4+//xzzJkz5/k9ESIiIiIiIgMyWKJ59epV3Lx5EykpKShqI9thw4aV6pyRkZGIiIgoVZv09HQAgLW1tVaZrh2Y0tLSAAA2Njal6kNj7Nix2LlzJ/z8/LBr1y6du+1q4ujSpUuhy2NdXFwQGhqKDRs24PDhw0UmmtOnT8fEiRPFx0qlEh4eHnCwcICtRcXZWYryVPTd4WzNM3WWK+SKCh97ZcbXlgrimCBdOC6oII4J0iX/uDDNqZhzh3pHtW/fPrzzzju4fft2kXUEQYBEIil1onnx4sUyx2Vraytu83v//n0EBAQUqnP//n0AgJeXV6nPP23aNKxYsQIeHh7Yu3dvoXtnanh5eeHChQvw9vbWeVxTHhMTU2Rf5ubmMOcmLWQge3S8V+WmpnAq4hJzIiIiIqLS0ivRPHv2LEJDQyGRSDB48GBcuXIFV65cwbRp03D79m3s27cPiYmJGDlyJDw9PQ0Vc4kFBgbiyJEjOH/+fKFEMycnB2FhYZDL5ahXr16pzrtgwQJ8+eWXcHFxwd69e4vdyKdp06bYtm2buFazoISEvDVx+WdgiZ6nfvXr44+wMHSrUweDGzUCADhZWsJToTByZERERERUVUj1afz5558jNzcXf/75J3755Rc0bdoUAPDZZ59h/fr1uHXrFgYMGICdO3eKG+aUp9DQUADApk2bCh3buXMnMjMz0bVr11LdQ3PFihWYOnUq7OzssGfPHvj5+RVbv1evXgCAEydOICcnR+uYWq3GsWPHAEB87YieN38nJ5wbPRoLunVDsxo10KxGDSaZRERERGRQeiWaJ06cQNOmTYtcW2hnZ4e1a9dCKpVi5syZ+nRVJm+++SZsbW2xfft2bNmyRSyPiYnBlClTAACTJk0q1M7f3x/+/v548OCBVvmmTZswZswYWFtb46+//kKTJk2eGUOTJk3QrVs3REdHY+bMmVrrV+fNm4fr16/DxcUF/fr1K+OzJCqZtOxs8d+mUimkFfgeuERERERUuel16WxCQgKCg4PFx5rNcNLS0sRbh5ibm6N9+/bYu3evPl2ViYODA3766ScMHDgQAwYMQHBwMBwdHbFv3z4kJSVh4sSJWvFraDYgyj8DGRMTgyFDhkCtVsPHxwfLli3DsmXLCrXt06cP+vTpo1W2atUqtGnTBgsWLMC2bdvQqFEjhIeH49q1a7CwsMC6devE14voebjy5AmCf/4Z8zt3xtvNmxd5Kx0iIiIiIkPQK9F0dnYW7+moeQwAd+7cQaOna78AICMjA8nJyfp0VWb9+/fHkSNHMG/ePJw8eRLZ2dkICAjAuHHjMHz48BKfJz09HdlPZ4Q0a1F18fb2LpRoenh44MKFC5gzZw7+/PNP7NixA/b29nj11VcxY8YMNGzYsMzPj6gkfjx7FgkZGdh58ybebt7c2OEQERERURWnV6JZt25dREZGio+DgoIgCAKWLVuGb7/9FgBw69YtHDhwALVr19YvUj20a9cOu3fvLnF9Xbdn8fb2LvK2LSXh7OyMb7/9VnxdiMrT0pAQ+Ds54ZUGDTibSURERETPnV5rNENCQhAREYHw8HAAQI8ePeDl5YUffvgBrVq1Qv/+/dGyZUtkZmbijTfeMEjARFR6UokE77VqBTfubkxERERE5UCvGc1hw4ZBoVBArVYDyFujuWPHDgwcOBBnzpzBmTNnIJVK8eabb+KDDz4wSMBEVDLpOTn49fJlvNG0KUyken2nRERERERUKnolmm5ubhg9erRWmWajm+vXryMxMRF169YV124SUfmZvm8fvjl9GgciI7F+wABjh0NERERE1YheiWZx/P39n9epiagEGrm6wlomw4gS3IaHiIiIiMiQnluiSUTG9WazZuhXvz4cLCyMHQoRERERVTN6JZqjRo0qcV2JRIJVq1bp0x0RlYBKrRbXZDLJJCIiIiJj0CvRXLNmzTPrSCQSCILARJOoHGy/fh2fHjmCtX37IoBro4mIiIjISPRKNA8ePKizXK1W4969e/jnn3+wfv16TJgwAT179tSnKyJ6BrUgYNr+/bgeF4e1ly7hi65djR0SEREREVVTeiWaHTt2LPb4sGHDEBoaiuHDh6NXr176dEVEzyCVSLB/2DB8fvQoZgcHGzscIiIiIqrGnvvN9V577TU0aNAAs2fPft5dEVV7NW1ssDQkBHJT7vNFRERERMZTLndx9/X1xdmzZ8ujK6Jq575SiXMPHxo7DCIiIiIi0XNPNNVqNS5fvgyptFxyWqJqRRAEjNq+Ha1XrcKaixeNHQ4REREREYDnmGimp6fj4sWLeO2113Dz5s1nruckotLLyM2FQi6HqVSK1u7uxg6HiIiIiAiAnpsBmZiYPLOOIAhwdnbGwoUL9emKiHSwNDPDhgEDcCshAb6OjsYOh4iIiIgIgJ6JpoeHByQSic5jMpkMNWrUQMeOHfHuu+/CxcVFn66IqAgSiYRJJhERERFVKHolmlFRUQYKg4hKY9GJE4hJS8PcTp24wywRERERVTj8hEpUyTxQKjHjwAFkq1RoUbMmBjZoYOyQiIiIiIi0MNEkqmRq2dpi4yuvYEdEBF4JCDB2OEREREREheiVaM6dO7fMbSUSCT7++GN9uieqtnr5+aGXn5+xwyAiIiIi0kmvRHP27NmFNgMSBAEAtMo1Zfkx0SQqnRvx8ahpYwNrmczYoRARERERFUuvRHP16tX4999/sXz5cri7u2PAgAHw9vYGAERHR2Pz5s24e/cu3n77bbRp08YQ8RJVS+k5OXj5t9+gFgRsf/VVNOAuzkRERERUgemVaNavXx9jxozBtGnTMHfuXJgW2P1ywYIFmDVrFhYvXoyRI0eiVatWegVLVF1FJiYiMzcXakFATRsbY4dDRERERFQsiaDrutYS6tGjB+7fv4+wsLBi6zVs2BC1atXCnj17ytoV5aNUKqFQKJCcnAxbW1tjh0NPJWQkAAAcLByey/mTMzMRmZSEJm5uz+X89Hw873FBlQ/HBOnCcUEFcUyQLrrGRUXNDaT6ND516hQCAwOfWS8wMBCnT5/Wpyuiak8hlzPJJCIiIqJKQa9EU6VS4c6dO8+sd+fOHahUKn26IqqWpu7di39u3zZ2GEREREREpaJXohkUFITTp09j7dq1RdZZu3YtTp06haCgIH26Iqp2/rp5EwtOnEDIunWITEw0djhERERERCWm12ZAc+bMwZEjRzBy5EisWbMGgwYNgpeXF4C8XWc3bNiAQ4cOwdTUFHPmzDFIwETVRUcvL7zbsiVsZDL42NsbOxwiIiIiohLTK9Fs164dtmzZglGjRuHQoUM4fPiw1nFBEODo6IhVq1ahXbt2egVKVN1YyWT4NiRE531oiYiIiIgqMr0STQB4+eWXcefOHWzatAlHjx7Fw4cPAQA1atRA+/bt8corr8Da2lrvQImqiwdKJWrl2zFMIpEYMRoiIiIiotLTO9EEAGtra4wYMQIjRowwxOmIqq17yclo9MMP6O3vj+9DQmAlkxk7JCIiIiKiUtNrM6BniYuLQ25u7vPsgqhKORAZiZTsbETExcHc1CDfAxERERERlTu9Es2zZ89i7ty5uHbtmlb51q1b4ebmBldXVzg6OuLrr7/WK0ii6mJ4kyY4OnIk1vbtC1Ppc/0eiIiIiIjoudHrk+zSpUsxf/58uLq6imWRkZF49dVXERMTAzc3N6SlpWHixIk4dOiQvrESVQttPTxQz9HR2GEQEREREZWZXonmyZMn0bRpUzjm+1D8008/IScnB4sWLcKDBw9w6tQpSKVSzmoSFUGlVmPmgQOITUszdihERERERAahV6L55MkTeHp6apXt3bsXVlZWGDduHACgefPmaN++PS5duqRPV0RV1qITJ/DZ0aNo99NPyFWrjR0OEREREZHe9Eo0VSqV1mY/qampOH/+PNq1awdZvt0ya9asicePH+vTFVGV9WKdOmjo4oKP2rfnukwiIiIiqhL02tbS09MT586dEx/v2rULubm56Nq1q1Y9pVIJhUKhT1dEVVbTGjVw7u23YcYkk4iIiIiqCL0+2fbs2RN3795Fv379sHTpUnz44YeQSqXo3bu3Vr0LFy7Ay8tLr0CJqpq07Gzx3zITE0gkEiNGQ0RERERkOHolmh9++CG8vb2xbds2fPDBB3jw4AHGjx8PX19fsc6pU6fw4MEDdOjQQe9giaqKE/fuwet//8Ovly8bOxQiIiIiIoPT69JZJycnXL58GZs2bUJsbCyaN2+Ozp07a9V5/PgxPvjgAwwdOlSvQImqkm9Pn0Z8Rgb+uX0bQxs3NnY4REREREQGJREEQTBGxydOnMCtW7cwbNgwY3RfqWnWvCYnJ8PW1tbY4dBTCRkJAAAHC4dn1s1Vq/H1yZN4o1kz2Mnlzzs0MqLSjAuqHjgmSBeOCyqIY4J00TUuKmpuYLTdR1asWIGRI0caq3siozKVSjGpbVsmmURERERUJXGbS6JykpSZidUXLsBIFxEQEREREZUbJppE5eSDv//GqB078O5ffxk7FCIiIiKi54qJJlE5EAQBTVxdYWVmxs1/iIiIiKjK02vXWSIqGYlEgglt2mBYYCAcLS2NHQ4RERER0XPFGU2i50gQBKjzrclkkklERERE1QETTaLn6JfLlxG8Zg3uJCYaOxQiIiIionLDRJPoOclWqTDjwAEcvXsXG65eNXY4RERERETlhokm0XMiMzHBkREj8F5QED5s29bY4RARERERlRtuBkT0HPnY2+Obl14ydhhEREREROXKaIlmnz594O3tbazuiZ6bWwkJyFapEODsbOxQiIiIiIiMwmiJZu/evdG7d29jdU/0XOSq1Xh963ZcePQI6/r1Q/+AAGOHRERERERU7vReo3nt2jWMGDECtWvXhoWFBUxMTHT+mJryKl2q+tKyc2Avl8Pc1BRBtWoZOxwiIiIiIqPQK/v7999/0bVrV2RkZAAAHBwc4ObmZpDAiCojhdwcuwYPxq2EBHgoFMYOh4iIiIjIKPRKNKdPn46MjAyMHz8eM2fOhIODg6HiIqq0JBIJfB0djR0GEREREZHR6JVonj17Fk2aNMFXX31lqHiIKqWPDxxArjob41s3N3YoRERERERGp1eiKZPJ4O/vb6hYiCql63FxmH/sGNSCgBa13NC/PnebJSIiIqLqTa9E84UXXsC1a9cMFQtRpeTn6Ihf+vbFoahb6OTtaexwiIiIiIiMTq9dZ+fPn49bt27hu+++M1Q8RJWORCLB4EaN8EXXjsYOhYiIiIioQtBrRvP8+fMYOXIk3n//fWzYsAHdunWDu7s7pFLd+euwYcP06Y6oQgmPjYWPvT3kvHUPEREREZEWiSAIQlkbS6VSSCQS5D+FRCIpVE8QBEgkEqhUqrJ2RfkolUooFAokJyfD1tbW2OFUS0mZmWj4/fewk8ux47XXUNveHgkZCQAABwvuvkz/4biggjgmSBeOCyqIY4J00TUuKmpuoNdUzKxZs3QmlkRV3a2EBOSo1chSqeBqZWXscIiIiIiIKhS9Es3Zs2cbKAyiyqVFzZoIGzsWT9LSYCWTGTscIiIiIqIKhYvLiMrI2coKzpzNJCIiIiIqRK9dZ4mqE0EQ8MHu3Th+966xQyEiIiIiqtAMMqN57NgxbN++HTdv3kRKSgp07S8kkUiwf/9+Q3RHZBTrw8LwzenTWH7+PKLHj4cLZzOJiIiIiHTSK9EUBAFvvPEGfv75ZzG51LULrWbXWaLKLMTXFyOaNEE9BwcmmURERERExdDr0tkff/wRa9asQfPmzbF3717069cPABAREYHdu3djxIgRkEqlmDx5Mu7cuWOQgImMRSGXY3Xv3pj2wgvGDoWIiIiIqELTa0ZzzZo1sLKywu7du+Ho6Ihff/0VAODr6wtfX190794dISEhGDRoENq2bQsvLy+DBE1Unh6mpKCmjY34mLPzRERERETF02tGMzw8HG3btoWjoyOA/z6Aq1Qqsc6AAQPQvHlzLFq0SJ+uiIwiIi4OvkuX4p1du5CVm2vscIiIiIiIKgW9Ek21Wi0mmQBgaWkJAEhMTNSq5+vriytXrujTFZFR/H3rFtJzcnAzIQFmJibGDoeIiIiIqFLQ69LZWrVq4eHDh+JjzaWxFy5cQLdu3cTyGzduwNSUt+ykyueD1q0R4OwMfycnSHnJLBERERFRieg1o9msWTNcu3ZNvFT2xRdfhCAImDJlCq5fv46UlBQsXLgQ586dQ9OmTQ0SMFF561anDjwUCmOHQURERERUaeiVaPbq1QtxcXHYtWsXACAwMBCvvvoqLl26hAYNGsDOzg7Tpk2DqakpPvvsM4METPS8ZeXmYuaBA0jKzDR2KERERERElZJeieZrr72GjIwMhIaGimU///wz5s+fj5YtW6Ju3boICQnB/v37ERQUpHewZXX8+HGEhITAwcEB1tbWCAoKwtq1a0t9nnPnzmH27Nlo27Yt7OzsIJPJ4OHhgaFDh+Ly5ctFtlOr1Vi2bBnatGkDW1tbyGQyuLu7Y/Dgwbh48aIez4yeh08OHcJnR4+i69q1WveEJSIiIiKikpEIVfyT9ObNmzFo0CCo1Wp06NABTk5O2L9/P5KSkjBp0qQS74abm5sLMzMzAICDgwNatWoFKysrXLhwAbdv34ZMJsO6deswYMAArXaCIKB///7YunUrLCws0L59eygUCoSFhSE8PBxmZmbYtm0bQkJCSvyclEolFAoFkpOTYWtrW/IXg0rkxL17GL5tGxZ164be/v4lbpeQkQAAcLBweF6hUSXEcUEFcUyQLhwXVBDHBOmia1xU1NygSieaCQkJ8PHxgVKpxObNm9GvXz8AwJMnT/DCCy/g1q1bOHjwIIKDg595rtzcXLRt2xYzZszAyy+/DJOnO5Cq1WrMmjULn332GWxsbHDnzh04OTmJ7Xbs2IHevXvD29sbx48fR82aNcVjCxYswNSpU+Ht7Y3IyMgSP6+KOpiqkqzcXJiXcgMr/odAunBcUEEcE6QLxwUVxDFBulSmRFOvS2c14uPj8fXXX2PIkCHo3r07FixYIB67evUqduzYgfT0dEN0VSorV66EUqlE7969xSQTAFxdXcUYFy9eXKJzmZqa4vTp0+jdu7eYZAKAVCrFp59+Cj8/P6SkpIjrVTWOHDkCABg9erRWkgkAkydPhkKhQFRUFGJiYsr0HMlw0rKzxX+XNskkIiIiIqL/6J1obty4EbVr18bEiRPx+++/Y9++fbh+/bp4/MGDB+jbty+2bNmib1elpkn6Cl7OCgChoaGQy+XYt28fMvXc9EUikaBx48YAoHW7FwAwNzcvtp1EIoGJiQkU3NXUqP65fRt1vvkG2/ONXSIiIiIiKhu9Es1///0XgwcPhqmpKRYvXozTp08X2jylS5cuUCgURkk0L126BCDvNiwFyWQyNGzYEJmZmbhx44befd25cwcA4ObmplX+4osvAgCWLVtWKAldsGABkpKSMHTo0GITUnr+lpw8iSdpadj39PdIRERERERlp9f1gfPnz4dUKsXevXt1JnMAYGJigmbNmiEsLEyfrkpNqVQiOTkZAODu7q6zjru7O86ePYvo6GhxRrIsjh07hnPnzkEmk6FHjx5axzp27IjJkydj4cKFqFu3Ljp06ABbW1uEhYXh1q1bGDFiBL7//vtiz5+VlYWsrCyt5wbkXaOda5Zb5rjpPz/1ehE/nHXG280DxWvfSysxI9HAUVFVwHFBBXFMkC4cF1QQxwTpomtcKDOURojk2fRKNE+cOIE2bdoUmWRquLm54dSpU/p0VWqpqanivy0tLXXWsbKyAgCkpKSUuR+lUolRo0YBACZMmIAaNWoUqrNgwQLUqlULH374Ifbs2SOW161bF926dYOFhUWxfXz++eeYM2dOmWOkZzM3NcH41i2MHQYRERERUZWgV6KZnp4OZ2fnZ9ZLTCzbNzJ9+/ZFeHh4qdqsXbu23O7ZqVKpMGTIENy8eRNBQUGYO3duoTpZWVkYNmwYNm/ejBkzZmDkyJFwdHTE2bNn8f7772PIkCF48OABJk+eXGQ/06dPx8SJE8XHSqUSHh4ecLBwgK1FxdlZqrJ5kpqK/ZGReK1hQ0gkEoOdl7vDkS4cF1QQxwTpwnFBBXFMkC75x4VpTsXcxFKvqGrVqoWrV68WW0cQBISFhcHHx6fU54+MjERERESp2mh2t7W2ttYq07XVb1paGgDAxsam1LEBwNixY7Fz5074+flh165dkMlkhep8/vnn2LBhAz744AOtWclOnTph165dCAgIwOzZszFy5Eit26LkZ25uzjWcBiYIAt7680/8eeMGwmJiML9LF2OHRERERERUZei1GVCPHj0QERGB9evXF1ln5cqVuHfvHkJDQ0t9/osXL0IQhFL9aO6JaWtrK+7kev/+fZ3n15R7eXmVOrZp06ZhxYoV8PDwwN69e4tMEn/55RcAune+9fT0RKtWrZCeno5z586VOgYqOwFAUK1asDIzw6sNGxo7HCIiIiKiKkWvRHPatGlQKBQYNmwYpk6dipMnTwLImym8cOECZs2ahffeew/Ozs6YMGGCQQIujcDAQADA+fPnCx3LyclBWFgY5HI56tWrV6rzLliwAF9++SVcXFywd+9eeHh4FFlXk8wWdfsSTXlZLy+mspFKJJjZoQOix49HY1dXY4dDRERERFSl6JVouru7Y9euXXBycsLChQvRrl07SCQSbNq0CS1atMC8efNgZ2eHHTt2wMXFxVAxl5hmFnXTpk2Fju3cuROZmZno2rUr5HJ5ic+5YsUKTJ06FXZ2dtizZw/8/PyKra+53cnZs2cLHVOpVLhw4QIAwNvbu8QxUNmpn858azgWsVEUERERERGVnV6JJgC0adMGERER+Oqrr9CjRw/4+/ujXr166Ny5M7744gtERESgVatWhoi11N58803Y2tpi+/btWvfxjImJwZQpUwAAkyZNKtTO398f/v7+ePDggVb5pk2bMGbMGFhbW+Ovv/5CkyZNnhlDnz59AACzZs3Sul+nSqXCRx99hKioKHh5eaFFC+54Wh6WnjqFkN9+wwNlxdwGmoiIiIioKpAI+ad3qqDNmzdj4MCB4vpNR0dH7Nu3D0lJSZg4cSIWL15cqI1mB9LIyEhxpjEmJgYeHh7Izs5Go0aNirylS58+fcTkEgDi4+PRrl07REREwNzcHG3btoWDgwMuXLiAO3fuwMLCAjt37kTnzp1L/JyUSiUUCgWSk5N1bnJEhd1NTsbd5GSErFuHlOxsfNa5Mz5q396gfWjuv8nd4Sg/jgsqiGOCdOG4oII4JkgXXeOiouYGFXMvXAPq378/jhw5gnnz5uHkyZPIzs5GQEAAxo0bh+HDh5f4POnp6cjOzgYAXLlyBVeuXNFZz9vbWyvRdHR0xJkzZ7B48WJs3boVp0+fRnZ2NmrUqIHhw4dj6tSpqF+/vl7PkYp3NzkZft9+i8zcXLHs0yNHMLRxY3gWsXaWiIiIiIjKzmCJ5t27d/Ho0SNkZWUVWadDhw6G6q5U2rVrh927d5e4vq5JXm9vb53lJWFjY4PZs2dj9uzZZWpP+olLT9dKMgEgMzcXcenpTDSJiIiIiJ4DvRPNVatW4bPPPkN0dPQz66pUKn27IyIiIiIiogpOr0Tz+++/x3vvvQdBENC0aVPUrl0b1tbWhoqNyCBUarWxQyAiIiIiqlb0SjSXLFkCmUyGXbt2lWozG6Ly9Dg1tVCZ3NQUTry1CRERERHRc6FXonn//n106tSJSSZVaC/WqYPf+vXDzYQEvFyvHgDAydKS6zOJiIiIiJ4TvRJNT09PWFhYGCoWoufC3NQUrzVqZOwwiIiIiIiqDak+jYcPH46DBw8iISHBUPEQERERERFRJadXojl16lR06NABnTp1wqFDh8p8+w+i5+XMgwdYdOIErsbEGDsUIiIiIqJqQ69LZ01MTLBs2TJ06dIFXbp0gZmZGdzc3CCVFs5fJRIJbt++rU93RKW2PiwMX508ifDYWKzq3dvY4RARERERVQt6JZrh4eHo1KkTYmNjIQgCsrOzcffuXUPFRqS3FjVrItTXV9wEiIiIiIiInj+9Lp2dNGkSYmJiMHz4cFy6dAkpKSlQq9VF/hCVt9caNcLOwYPRt359Y4dCRERERFRt6DWjefz4cTRu3Bg//fSToeIhIiIiIiKiSk6vGU2ZTIaAgABDxUJkUFdjYpCek2PsMIiIiIiIqh29Es1OnTrh8uXLhoqFyGAEQUCPdetg/+WXOPPggbHDISIiIiKqVvRKNL/44gs8fvwYM2fOhEqlMlRMRHqLTU8HAEgANHRxMW4wRERERETVjF5rNH/99Ve8/PLL+Pzzz/HHH38gODgYtWrVKvL2Jh9//LE+3RGVmIuVFe6OH48HKSmwMDMzdjhERERERNWKRBAEoayNpVIpJBIJSnIKiUTCWU8DUSqVUCgUSE5Ohq2trbHDoacSMhIAAA4WDkaOhCoSjgsqiGOCdOG4oII4JkgXXeOiouYGes1orl692lBxEBERERERURWhV6I5fPhwQ8VBZDAn7t3D23/+iVcCAvBJcLCxwyEiIiIiqnb02gxIH5MnT0adOnWM1T1VYf/cvo2rsbG4Ghtr7FCIiIiIiKolvWY09REXF4eoqChjdU9V2HtBQWjg7Aw3a2tjh0JEREREVC0ZLdEkel4cLS3xSoMGxg6DiIiIiKjaMtqls0RERERERFQ1cUaTqpS1ly4hV61GqK8vXHnpLBERERGRUXBGk6qUz48dwxs7duDY3bvGDoWIiIiIqNpioklVhkqtxoD69dHG3R2dfXyMHQ4RERERUbXFS2epyjCRSvFp58741NiBEBERERFVc5zRJCIiIiIiIoNioklVgiAIOPfwIVRqtbFDISIiIiKq9oyWaAqCAEEQjNU9VTFXYmLQYsUK+Hz9NdQcV0RERERERmW0RHPNmjVQc/aJDOROYiJsZDI0cHGBVCIxdjhERERERNWaXpsBrV27tkT1ZDIZHB0dERgYCBcXF326JNKpj78/4qdMQXxGhrFDISIiIiKq9vRKNEeMGAFJKWaPJBIJunbtiqVLl8LX11efrokKMTMxgZu1tbHDICIiIiKq9vRKNGfNmoWoqCisXbsW1tbWePHFF+Hp6QkAuHfvHv755x+kpKTg9ddfh7m5OU6cOIF//vkH7du3x7lz51CrVi2DPAkiIiIiIiKqOPRKNF9//XUEBQVh1KhRWLx4MRQKhdZxpVKJiRMnYuvWrTh16hRq166NyZMnY8mSJfjiiy+wdOlSvYInAoC5hw9jf2QkJrZujd7+/sYOh4iIiIio2tNrM6Dp06fD3t4ey5cvL5RkAoCtrS2WL18Oe3t7fPTRR5BKpfj8889Ro0YN/P333/p0TSTaeeMGjkRHIzEz09ihEBERERER9Ew0Dx48iFatWkEqLfo0UqkUQUFBOHDgAIC8jYECAwPx4MEDfbomEv3Wvz9+CA1Fj7p1jR0KERERERFBz0tn09PT8fjx42fWe/LkCTLzzTbZ2trC1FSvrolEdR0cUNfBwdhhEBERERHRU3rNaDZq1AhHjhzBkSNHiqxz9OhRHD58GI0aNRLL7t27B2dnZ326JiIiIiIiogpKr0RzypQpUKlU6N69O0aPHo29e/fi+vXruH79Ovbu3YsxY8age/fuEAQBU6ZMAQAkJyfj3LlzaN26tUGeAFVvnxw8iB0REcjKzTV2KERERERE9JRe16/269cPS5YswdSpU7FixQqsXLlS67ggCJDJZFiyZAn69u0LAIiPj8ecOXPQpUsXfbomQmRiIuYeOQITiQQJU6fCnJdjExERERFVCHp/Mv/ggw/Qq1cvrFq1CidOnMCjR48AADVq1EC7du0wcuRI1K5dW6xfu3ZtTJ06Vd9uiQAAY1u0QHJWFmzNzY0dChERERERPWWQKSAfHx/MmzfPEKciKjEfe3t8Hxpq7DCIiIiIiKgAvdZoEhERERERERVkkETz2rVrmDBhAtq1awc/Pz9x4x8AOHHiBL755hskJCQYoisiAEBMWhqikpKMHQYREREREemg96WzX331FaZNm4bcp7t+SiQSxMXFadWZMGECzM3NMXr0aH27IwIA/HThAqbv34+3mjXD8p49jR0OERERERHlo9eM5q5du/Dhhx/Cw8MDW7ZsQUxMDARB0KrTtm1bODs7Y/v27XoFSpTf49RUmEgkaOTiYuxQiIiIiIioAL1mNL/66itYWVlh7969WjvLFtSkSRNERETo0xWRlv/16IG5nToZOwwiIiIiItJBrxnNc+fOoXXr1sUmmQDg5OSEx48f69MVUSG25ua8rQkRERERUQWkV6KZnZ0NGxubZ9aLiYmBqalB7qRCREREREREFZxeiaaPjw8uXbpUbJ3s7GxcvnwZ9erV06crIlGXtWvRf8MG3IyPN3YoRERERESkg16JZq9evRAVFYWvvvqqyDoLFixAbGws+vXrp09XRADybmtyIDISW8LDedksEREREVEFpdf1rFOmTMG6deswefJknDp1Cn379gUAPHnyBFu3bsXWrVuxbt06+Pj4YNy4cQYJmKo3RwsLnHzjDVx4/Biu1tbGDoeI6P/t3Xl8VNX9//H3ZN/IHogIBJIYIeygrGKAgoagsgfcGsDl60JFgfLT2opSHrWy2lKXVi2ISoplURZBAdlRBNmkIAESFllkSwiQPTm/P2ymTDKEhEwyIbyej8c8Hubcc+79zL0fnPnMvfdcAABgh8WUfB5JBaWkpGjw4MHas2ePLBaLjDGyWCySJGOMYmNj9dlnnyk6OtohAUPKzMxUQECALly4IH9/f2eHg/86n31ekhTsHezkSFCTkBcoiZyAPeQFSiInYI+9vKiptUGlZ+iJiYnRzp07tXjxYq1cuVKHDx9WUVGRGjRooN69e2vQoEFydXV1RKwAAAAAgBuAQ6aCdXFxUf/+/dW/f39HrA6w63BGhmbv3Kn46Gh1atDA2eEAAAAAuAqHFJpZWVnatm2bTp48qdzc3Kv2+/Wvf+2IzeEmtSwlRa+tW6f1R47o66QkZ4cDAAAA4CoqXWi+8sormjFjhrKysq7ap/i+TQpNVEZMSIgSmzdXt0aNnB0KAAAAgDJUqtCcPHmyJk2aJFdXV/Xt21cxMTGqU6eOo2IDbPSOilLvqChnhwEAAADgGipVaL733nvy9vbWhg0b1K5dO0fFBAAAAAC4gblUZvCxY8cUFxdHkYkqt//sWWXk5Dg7DAAAAADlUKlCMzw8XL6+vo6KBbiqJ5YsUcjkyZq/d6+zQwEAAABwDZUqNIcNG6a1a9fq8uXLjooHKKWwqEgZOTkqMkZtw8OdHQ4AAACAa6hUofnqq6+qWbNmeuCBB3Tw4EFHxQTYcHVx0e6nn9ZPL7ygqOBgZ4cDAAAA4BoqNRlQQkKCioqKtHbtWjVr1kwRERFq0KCBXFxK168Wi0WrV6+uzOZwk7vV39/ZIQAAAAAoh0oVmmvXrrX+d2FhoVJTU5Wammq3r8ViqcymAAAAAAA3iEoVmmlpaY6KA7DrxMWL6vrPf+reqCi93bevXPjBAgAAAKjxKlVoRkREOCoOwK5Vqak6nJGh70+epMgEAAAAbhCVKjSBqjawWTOF+fioyBhnhwIAAACgnCg0UaP5eXioz223OTsMAAAAABVQqcebAAAAAABQEmc0UWMt2b9fhzMydF9MjJoEBTk7HAAAAADlRKGJGuvd77/XFwcOKLewUOO6dHF2OAAAAADKiUITNda9UVHKKSjQPVFRzg4FAAAAQAVQaKLGeq5jRz3XsaOzwwAAAABQQUwGBAAAAABwqJui0Ny0aZMSEhIUHBwsPz8/dejQQXPmzKnwetavX68nnnhC7dq1U7169eTh4aHg4GD16NFDH330kUwZz3r8z3/+oyFDhigsLEze3t5q2bKl3nzzTRUVFVXmrdVa20+eVF5hobPDAAAAAHAdav2lswsWLNDQoUNVVFSku+++W6GhoVq9erWSkpK0e/duTZ06tdzrWrx4sd5//33FxMSobdu2CgoK0vHjx7VhwwatXbtWy5cv19y5c0uN++abb/SrX/1K2dnZ6tChgxo3bqz169frhRde0ObNmzVv3jxZLBZHvu0bWkZOju587z15u7npyPPPK8THx9khAQAAAKiAWn1G8/z58xo5cqQKCws1f/58rV27VvPnz9ePP/6o6OhoTZs2TWvXri33+kaOHKnjx49r//79WrFihZKTk7V+/Xr9+OOPuuWWW5ScnKylS5fajMnPz9fDDz+s7OxsTZ8+XVu2bNG8efN04MABde7cWf/+97/14YcfOvid39gOnDunEG9v3ervT5EJAAAA3IBqdaH5/vvvKzMzU/369dPAgQOt7fXq1dPkyZMlSdOmTSv3+mJjY1W/fv1S7dHR0XrmmWckSV9//bXNskWLFiktLU2tW7fWCy+8YG338/PT3/72twrHcDO489ZbdWrcOK1NSnJ2KAAAAACuQ60uNJctWyZJGjx4cKllffv2lZeXl1atWqWcnJxKb8vd3V2S5OHhUe4Y2rVrp8jISO3Zs0eHDx+udAy1iYvFolvq1HF2GAAAAACuQ60uNHft2iXpl4KuJA8PD7Vo0UI5OTlKSUmp1HaOHTumd999V5KUkJBQ7hiubN+9e3elYgAAAACAmqLWTgaUmZmpCxcuSJIaNGhgt0+DBg20bds2HTlyRK1atSr3ur/55hv9/e9/V2FhoU6cOKGNGzeqoKBAkyZN0t13323T9+jRo9eMQZKOHDly1e3l5uYqNzfX5r1J0vns8ypwLyh33DeCuT/s0wc7duvXrZorqU0LZ4dTIenZ6c4OATUQeYGSyAnYQ16gJHIC9tjLi8zsTCdEcm21ttC8dOmS9b99rjKhjK+vryTp4sWLFVr3oUOHbCbwcXV11cSJEzVu3LirxlGZGF5//XW99tprFYrxRrUm7Yh2njqt3pERzg4FAAAAwHWq0YXmgAEDtG/fvgqNmTNnjjp06FBFEf3ikUce0SOPPKK8vDwdPnxYc+bM0cSJE7VkyRItX75cQUFBDt3eSy+9pDFjxlj/zszMVMOGDRXsHSx/b3+HbsvZZibcr/5NU3VH/foK9g52djjX5UaNG1WLvEBJ5ATsIS9QEjkBe67MC7f8mlnS1cyo/istLU379++v0JisrCxJv8zqemWbv3/pguzy5cuSpDrXOemMh4eHYmJiNGnSJAUHB2vs2LF65ZVXNHPmTGsfPz8/paenW+O6nhg8PT3l6el5XTHeaOrXqaNHW7d2dhgAAAAAKqFGTwa0c+dOGWMq9Orevbskyd/fXwEBAZKkn376ye76i9sjIip/meajjz4qSfr8889t2hs1alRtMQAAAABATVCjC83Kav3fM2Pbt28vtSw/P1979uyRl5eXYmJiKr2t4OBgubi46MyZM+WO4cr2ikxGVFtN27xZyT/8oMwrJj4CAAAAcOOp1YVm3759JUnz588vtWzp0qXKyclRr1695OXlVeltbdiwQUVFRYqKiip3DDt27FBqaqpatGihxo0bVzqGG1lOQYF+v2aNHlq4UD9l1syZswAAAACUT60uNB9//HH5+/vr888/18KFC63tp0+f1vjx4yVJY8eOLTWuadOmatq0qY4fP27TPmXKFKWnl55SeOvWrXriiSckSSNGjLBZNmDAADVp0kS7du3SjBkzrO2XL1/Ws88+e9UYbjZZ+fkadeed6h0ZqWahoc4OBwAAAEAlWIwxxtlBVKUFCxYoMTHRev9mSEiIVq1apYyMDI0ZM0bTpk0rNcZisUj6ZTKiK880WiwWeXh4qG3btmrcuLHy8vKUmpqqXbt2SZISExP1ySefyM3Ndo6lzZs3q1evXsrOzlbHjh0VERGhDRs26OTJkxo8eLA+/fRT6zbLIzMzUwEBAbpw4YLdSY7gHOezz0tidjjYIi9QEjkBe8gLlEROwB57eVFTa4MaPeusIwwaNEjr16/XpEmT9O233yovL0+xsbEaNWqUkpKSKrSumTNnas2aNdq5c6f27Nmj/Px8hYWFqV+/fho+fLj69+9vd1yXLl20detWTZgwQWvXrtWuXbsUFRWl3/72txo9enSFikwAAAAAqOlq/RnN2qim/mpxvS7m5urohQuKDQu7oYtufnmEPeQFSiInYA95gZLICdhzI53RrNX3aOLGsPzgQbV45x31/ugjZ4cCAAAAwAEoNOF0xzMz5eXmplb16jk7FAAAAAAOUOvv0UTN90Lnznr6zjuVlZ/v7FAAAAAAOACFJmoELzc3ebmRjgAAAEBtwKWzAAAAAACHotCEUz26aJHu/fhjffvTT84OBQAAAICDUGjCaQqLirQ0JUVfHTqkG/ehJgAAAABK4qY4OI2LxaKNI0ZodVqa2tev7+xwAAAAADgIhSacxmKxqHndumpet66zQwEAAADgQFw6CwAAAABwKApNOMXlvDyNX7lSXx06JGOMs8MBAAAA4EAUmnCK9UeOaMrmzXpyyRJnhwIAAADAwbhHE05Rz89PI9q00S1+frJYmHMWAAAAqE0oNOEU7W65Rf/s18/ZYQAAAACoAlw6CwAAAABwKApNVLu09HSdvHjR2WEAAAAAqCIUmqh2r61bp/rTp2vq5s3ODgUAAABAFaDQRLU7n50ti6Q24eHODgUAAABAFWAyIFS7xQ8+qHNZWarj6ensUAAAAABUAQpNOEWIj4+zQwAAAABQRbh0FgAAAADgUBSaqDb5hYW6beZMPbRggTJycpwdDgAAAIAqwqWzqDZbjh/XwfPnlZGTI3/uzwQAAABqLQpNVJsOt96qtUlJOnnpklwsFmeHAwAAAKCKUGii2ni4uiqucWNnhwEAAACginGPJgAAAADAoSg0US02HzumP2/cqD2nTzs7FAAAAABVjEIT1SL5hx/00urVenvrVmeHAgAAAKCKcY8mqkWXhg115MIF3RcT4+xQAAAAAFQxCk1UiwdbttSDLVs6OwwAAAAA1YBLZwEAAAAADkWhiSq369QpXc7Lc3YYAAAAAKoJhSaqVJExuufjjxX0xhvaeeqUs8MBAAAAUA0oNFGlTl26JG83N7m7uio2LMzZ4QAAAACoBkwGhCpVv04dpY0erVOXLsnD1dXZ4QAAAACoBpzRRJWzWCy6pU4dZ4cBAAAAoJpQaAIAAAAAHIpCE1VmTVqaYt96SxPXrXN2KAAAAACqEYUmqszK1FTtO3tWB86fd3YoAAAAAKoRkwGhyvy2SxfdUb++6nN/JgAAAHBTodBElQny9tbAZs2cHQYAAACAasalswAAAAAAh+KMJqrEB9u3y0i6PyZG9fz8nB0OAAAAgGrEGU1UiT9t3KgnlizR1hMnnB0KAAAAgGpGoQmHKygq0qOtWqlbo0aKi4hwdjgAAAAAqhmXzsLh3Fxc9Gr37nq1e3dnhwIAAADACTijCQAAAABwKApNOFRhUZG+O35chUVFzg4FAAAAgJNQaMKhdpw6pY7vv6/omTNljHF2OAAAAACcgEITDnUkI0MBnp5qXa+eLBaLs8MBAAAA4ARMBgSHGhQbq35Nmyo9O9vZoQAAAABwEs5owuHcXFwU5uvr7DAAAAAAOAmFJhyGezIBAAAASBSacKCXv/5a3WbN0uL9+50dCgAAAAAnotCEw3xx4IA2Hj2qy3l5zg4FAAAAgBMxGRAcZtHQoVqVmqreUVHODgUAAACAE1FowmGaBAXpifbtnR0GAAAAACfj0lkAAAAAgENRaKLSjDF6cdUqLdq3T7kFBc4OBwAAAICTUWii0lLOndMbmzbpwQULVMQjTgAAAICbHvdootLcXV016s47lV1QIG93d2eHAwAAAMDJKDRRaZFBQZqZkODsMAAAAADUEBSaqJSjFy7obFaW9e9QHx81CghwYkQAAAAAnI1CE9ft6IULipk5U7mFhdY2Lzc37R81imITAAAAuIkxGRCu29msLJsiU5JyCgpsznACAAAAuPlQaAIAAAAAHIpCEwAAAADgUBSauG6hPj7ycrO9zdfLzU2hPj5OiggAAABATcBkQLhujQICtH/UKGadBQAAAGCDQhOV0igggMISAAAAgA0unQUAAAAAOBSFJgAAAADAoSg0AQAAAAAORaEJAAAAAHCom6LQ3LRpkxISEhQcHCw/Pz916NBBc+bMqfB61q9fryeeeELt2rVTvXr15OHhoeDgYPXo0UMfffSRjDGlxhw5ckQzZ85UfHy8wsPD5e7urtDQUMXHx2vx4sWOeHsAAAAAUKPU+llnFyxYoKFDh6qoqEh33323QkNDtXr1aiUlJWn37t2aOnVqude1ePFivf/++4qJiVHbtm0VFBSk48ePa8OGDVq7dq2WL1+uuXPn2ox5+OGHtWnTJnl6eqpTp04KDw9XamqqvvzyS3355Zd64YUXNH36dEe/bQAAAABwGouxdxquljh//ryaNGmizMxMLViwQAMHDpQk/fzzz7rrrrt08OBBrVmzRt27dy/X+vbu3avAwEDVr1/fpv3gwYO6++67dfLkSS1ZskT33XefddmwYcN01113KSkpSXXq1LG2L1u2TP3791dBQYG+/PJL3XPPPeV+X5mZmQoICNCFCxfk7+9f7nGoWuezz0uSgr2DnRwJahLyAiWRE7CHvEBJ5ATssZcXNbU2qNWXzr7//vvKzMxUv379rEWmJNWrV0+TJ0+WJE2bNq3c64uNjS1VZEpSdHS0nnnmGUnS119/bbPsX//6l0aNGmVTZEpS3759NXLkSElScnJyuWMAAAAAgJquVheay5YtkyQNHjy41LK+ffvKy8tLq1atUk5OTqW35e7uLkny8PAo95jWrVtLkk6cOFHp7QMAAABATVGrC81du3ZJktq1a1dqmYeHh1q0aKGcnBylpKRUajvHjh3Tu+++K0lKSEgo97jU1FRJUnh4eKW2DwAAAAA1Sa2dDCgzM1MXLlyQJDVo0MBunwYNGmjbtm06cuSIWrVqVe51f/PNN/r73/+uwsJCnThxQhs3blRBQYEmTZqku+++u1zryMjIsM58269fv3JvGwAAAABqulpbaF66dMn63z4+Pnb7+Pr6SpIuXrxYoXUfOnRIH374ofVvV1dXTZw4UePGjSv3Op566imdOXNGnTp10oABA8rsm5ubq9zcXOvfmZmZkn65GbjAvaBCsaPqpGenOzsE1EDkBUoiJ2APeYGSyAnYYy8vMrMznRDJtdXoQnPAgAHat29fhcbMmTNHHTp0qKKIfvHII4/okUceUV5eng4fPqw5c+Zo4sSJWrJkiZYvX66goKAyx7/xxhuaN2+egoOD9cknn8hisZTZ//XXX9drr73myLcAAAAAAFWmRheaaWlp2r9/f4XGZGVlSZL8/Pxs2uxN9Xv58mVJKjUjbHl5eHgoJiZGkyZNUnBwsMaOHatXXnlFM2fOvOqYjz/+WC+99JJ8fX21bNkyRUZGXnM7L730ksaMGWP9OzMzUw0bNlSwd7D8vWvOFMb4BdOQwx7yAiWRE7CHvEBJ5ATsuTIv3PJrZklXoycD2rlzp4wxFXoVPxPT399fAQEBkqSffvrJ7vqL2yMiIiod66OPPipJ+vzzz6/aZ+nSpRoxYoTc3d21cOFCderUqVzr9vT0lL+/v80LAAAAAGqqGl1oVlbx40O2b99eall+fr727NkjLy8vxcTEVHpbwcHBcnFx0ZkzZ+wuX7dunYYMGSJjjObOnat77rmn0tsEAAAAgJqoVheaffv2lSTNnz+/1LKlS5cqJydHvXr1kpeXV6W3tWHDBhUVFSkqKqrUsu3bt+uBBx5Qbm6u3n//fQ0aNKjS2wMAAACAmqpWF5qPP/64/P399fnnn2vhwoXW9tOnT2v8+PGSpLFjx5Ya17RpUzVt2lTHjx+3aZ8yZYrS00vP9LR161Y98cQTkqQRI0bYLNu/f7/i4+OVmZmpv/zlLxo+fHhl3xYAAAAA1GgWY4xxdhBVacGCBUpMTLTevxkSEqJVq1YpIyNDY8aM0bRp00qNKZ4FNi0tTY0bN7Zp9/DwUNu2bdW4cWPl5eUpNTVVu3btkiQlJibqk08+kZvb/27Ibdu2rXbu3KmwsDAlJCTYjbFp06Z68cUXy/2eMjMzFRAQoAsXLnC/Zg1yPvu8JG7ahy3yAiWRE7CHvEBJ5ATssZcXNbU2qJlTFDnQoEGDtH79ek2aNEnffvut8vLyFBsbq1GjRikpKalC65o5c6bWrFmjnTt3as+ePcrPz1dYWJj69eun4cOHq3///qXGFJ8BPXPmjM2zN68UFxdXoUITAAAAAGqyWn9Gszaqqb9a3Oz45RH2kBcoiZyAPeQFSiInYM+NdEazVt+jCQAAAACofhSaAAAAAACHotAEAAAAADgUhSYAAAAAwKEoNAEAAAAADkWhCQAAAABwKApNAAAAAIBDUWgCAAAAAByKQhMAAAAA4FAUmgAAAAAAh6LQBAAAAAA4FIUmAAAAAMChKDQBAAAAAA5FoQkAAAAAcCgKTQAAAACAQ1FoAgAAAAAcikITAAAAAOBQFJoAAAAAAIdyc3YAqDhjjCQpMzPTyZHgSpnZvxwPt3z+WeF/yAuURE7AHvICJZETsMdeXhTXBMU1Qk1B5t6ALl68KElq2LChkyMBAAAAUBNcvHhRAQEBzg7DymJqWumLayoqKtKJEydUp04dWSwWZ4eD/8rMzFTDhg117Ngx+fv7Ozsc1BDkBUoiJ2APeYGSyAnYYy8vjDG6ePGi6tevLxeXmnNnJGc0b0AuLi5q0KCBs8PAVfj7+/OBgFLIC5RETsAe8gIlkROwp2Re1KQzmcVqTskLAAAAAKgVKDQBAAAAAA5FoQk4iKenpyZMmCBPT09nh4IahLxASeQE7CEvUBI5AXtupLxgMiAAAAAAgENxRhMAAAAA4FAUmgAAAAAAh6LQBAAAAAA4FIUmbhpZWVn67LPP9Nhjj+n222+Xl5eXfH191bp1a02cOFGXLl266tjZs2erQ4cO8vPzU3BwsBISErR58+Yyt7dp0yYlJCQoODhYfn5+6tChg+bMmVPmmJ9++kkjRoxQ/fr15eXlpZiYGE2YMEE5OTnX9Z5RcefOnVPdunVlsVgUHR1dZl/yovY7c+aMxo0bp9tvv13e3t4KDg5Wu3bt9Nvf/tZu/yVLliguLs76fLPu3btr2bJlZW7jP//5j4YMGaKwsDB5e3urZcuWevPNN1VUVHTVMenp6Ro9erQiIiLk6empiIgIPf/888rIyKjM20U5bN26VYmJiapfv77c3d0VGBiobt26adasWbI37UVhYaFmzJihli1bytvbW2FhYUpMTNS+ffvK3E515RKu7fvvv9ef//xnDRw4UA0aNJDFYpHFYrnmuJr8GZGdna1XXnlFMTEx8vLyUv369TVy5EgdP378mu8Lv6hIXhQVFWnDhg0aP3682rdvrzp16sjT01NRUVF66qmnlJaWVua2bti8MMBN4r333jOSjCTTrFkzM2TIEHPvvfeaOnXqGEmmadOm5ueffy41bvTo0UaS8fb2Nv369TP33nuvcXNzM66urmbRokV2tzV//nzj6upqLBaLiYuLM4MGDTKBgYFGkhk7dqzdMQcOHDChoaFGkmnRooVJTEw0kZGRRpLp2rWrycnJceTuwFUkJSUZi8ViJJmoqKir9iMvar9t27aZkJAQI8k0b97cDB061PTp08dEREQYV1fXUv1nzJhhJBk3NzcTHx9v+vXrZ7y9vY0kM3PmTLvb2Lx5s7VPhw4dTGJiogkPDzeSzJAhQ0xRUVGpMWfOnDHR0dFGkomMjDSJiYmmefPmRpKJiYkx586dc/i+wC+K/w1LMu3atTOJiYmmR48exs3NzUgyDz30kE3/wsJCM2DAACPJBAYGmkGDBpm4uDhjsViMj4+P2bJli93tVFcuoXz69etn/f5w5assNfkzIjs723Tq1MlIMrfccotJTEw0HTp0MJJMWFiYOXToUIX30c2oInlx4MAB6/Lw8HDzwAMPmAEDBphbb73VSDJ16tQxGzZssDv2Rs4LCk3cNGbPnm2efPJJs3fvXpv2EydOmLZt2xpJ5sEHH7RZtnLlSiPJhISEmJSUFGv75s2bjYeHhwkMDDTp6ek2Y86dO2f8/f2NJLNgwQJr+6lTp6xfDtesWVMqvq5duxpJ5rnnnrO25efnW7+kTJgw4frfPMpl1apVRpJ58sknyyw0yYva7/Tp0yY0NNT4+PiYzz//vNTykgXCjz/+aFxdXY2np6fZvHmztX3//v0mJCTEuLm5mQMHDtiMycvLM02aNDGSzPTp063tFy9eNJ07dzaSzKxZs0pt++GHHzaSzMCBA01+fr61/Te/+Y2RZJKSkq7zXaMs+fn5pm7dukaS+eSTT2yW7d271wQHBxtJ5uuvv7a2F//Aedttt5lTp05Z2+fPn28kmejoaJtjaEz15hLK589//rP5wx/+YBYvXmxOnjxpPD09yyw0a/pnxMsvv2wkmc6dO5uLFy9a26dNm2Ykmbi4uGvvFFQoLw4ePGh69+5tVq9ebfOjT05Ojhk+fLiRZBo1amTy8vJsxt3oeUGhCZhf/ucvyXh6eprc3Fxre58+fYwkM2PGjFJjnnvuOSPJTJ061ab9jTfeMJJMv379So1ZuHChkWTuu+8+m/YtW7YYSaZu3bqlfmU6deqUcXd3N0FBQaW+kMBxsrKyTFRUlImNjTUpKSllFprkRe339NNPG0nmrbfeqlD/0aNHl1o2ffp0I8mMGjXKpn3evHlGkmndunWpMd9//731l+grnThxwri4uBgPDw+bwsWYX76whIWFGVdXV7tXZ6ByfvjhByPJ3H777XaXF//bf+ONN6xtzZo1M5LsnsF64IEHjCQzf/58m/bqyiVcv2sVmjX5MyI3N9cEBAQYSWb79u2lttWqVSsjyWzbtu2q7w/2XSsvriYrK8t6TNauXWuz7EbPC+7RBCS1bt1akpSbm6tz585J+uU69a+//lqSNHjw4FJjituWLFli0158D429MX379pWXl5dWrVplc4188Zj777+/1AN469Wrp27duik9PV0bN268rveHa3vttdeUmpqqd999V+7u7lftR17UftnZ2fr444/l6+urESNGlGtMWcf3enKiXbt2ioyM1J49e3T48GFr+4oVK1RUVKRu3bqpXr16NmM8PT11//33q7CwUF988UW54kb5lffh6CEhIZKktLQ07du3T97e3urbt2+pfteTF47MJVSNmv4ZsWnTJl24cEFRUVFq27ZtueND1fH29lZMTIwk6cSJEzbLbvS8oNAEJKWmpkqS3N3dFRwcLEnav3+/cnNzFRYWpgYNGpQa065dO0nS7t27bdp37dpls/xKHh4eatGihXJycpSSklKuMWVtC46xe/duTZs2TSNGjFC3bt3K7Ete1H7btm3TxYsX1bZtW3l7e2v58uUaM2aMnnnmGb355pulvghkZGTo6NGjkmT3A7phw4YKDQ3VkSNHlJmZaW2/nuNLTjhPZGSkoqKitH//fs2dO9dm2b59+/Txxx8rKChIAwYMkPS/Y9WiRQu7P17ZO1bVmUuoGjX9M4JcqXmKiop05MgRSVJ4eLjNshs9Lyg0AUl/+ctfJEnx8fHWX3+KP+ztfVBIkq+vrwIDA5Wenq6LFy9KkjIzM3XhwoUyxxW3F/9PpTzbsjcGjlFUVKTHH39cgYGBmjx58jX7kxe13969eyVJdevWVf/+/ZWQkKAZM2bonXfe0QsvvKDo6GglJydb+xcfp6CgIPn6+tpdp6OOLznhPK6urvrwww8VGBiohx9+WO3bt9ewYcPUs2dPtWrVSg0aNNDq1autP1ZW5vhWRy6hatT0zwhypeZJTk7W6dOnFRYWpi5duljba0NeUGjipvfFF1/ogw8+kLu7u/74xz9a24sfd+Lj43PVscVfBIo/LK58RMrVxpUcU55t2RsDx5g5c6a2bt2qKVOmWC95Kwt5Ufulp6dLkhYvXqwVK1borbfe0unTp3X48GGNGzdO2dnZSkpK0s6dOyVdX06UZxw5UfN07dpV69atU2RkpLZv36558+ZpzZo1cnFxUe/evRUZGWntWxXH93rHkRfVp6Z/RpArNcuxY8f0/PPPS5ImTpxoc6lrbcgLCk3c1H788Uc98sgjMsZoypQp1ns1cXM4evSofv/73ysuLk7Dhw93djioIYqfOVhQUKCJEyfqmWeeUVhYmCIiIjRlyhQNGTJE+fn5mjJlipMjRXVLTk5Whw4d1LBhQ23ZskWXLl1SSkqKhg8frmnTpqlnz57Kzc11dpgAbgCXL1/WwIEDdfbsWfXv319PPfWUs0NyOApN3LSOHz+u+Ph4paena8yYMRo9erTNcj8/P0lSVlbWVddx+fJlSVKdOnVsxpQ1ruSY8mzL3hhU3rPPPqu8vDy9++675R5DXtR+Vx4ve5MBFbetW7fOpn9FcqI848iJmuXAgQNKSkpSaGioli5dqg4dOsjX11e33Xab/v73v+u+++7T9u3b9c9//lNS1Rzf6x1HXlSfmv4ZQa7UDPn5+RoyZIi2bdumu+66q9R931LtyAsKTdyUzp8/r3vuuUdHjhzRiBEjNHXq1FJ9GjVqJEn66aef7K7j8uXLysjIUFBQkPUfnr+/vwICAsocV9weERFR7m3ZG4PKW7p0qXx8fPTUU0+pe/fu1tewYcMk/fJjRHHbqVOnJJEXN4Pi/enj46OwsLBSyxs3bixJOn36tKT/Haf09HTrh3FJjjq+5ITz/Otf/1J+fr7i4+NtvgAWS0xMlCStX79eUuWOb3XkEqpGTf+MIFecr6ioSElJSVq+fLnatGmjJUuWyNvbu1S/2pAXFJq46Vy6dEl9+vTR3r17NXDgQL333nuyWCyl+t1+++3y9PTUmTNndPz48VLLt2/fLklq1aqVTXvx5bfFy6+Un5+vPXv2yMvLyzqV9bXGlLUtVF5GRobWrVtn89qyZYskKScnx9pWPHU4eVH7Fc/2mZ2dbfcyyPPnz0v63y/AgYGB1g/pHTt2lOp/7NgxnT17VhEREfL397e2X8/xJSecp/iLVvEXv5KK24vv8S0+Vnv27FF+fn6p/vaOVXXmEqpGTf+MIFec7ze/+Y2Sk5MVExOjL7/8UoGBgVfte6PnBYUmbiq5ubnq16+fvvvuO917771KTk6Wq6ur3b7e3t7q2bOnJOnf//53qeXz58+X9Mtziq5U/Ly04uVXWrp0qXJyctSrVy95eXmVGrNkyZJSX2x//vlnbdiwQUFBQeratWt53yrKwRhj95WWliZJioqKsrYVn8UiL2q/Ro0aqXXr1jLGWC+PvVJx25WPnyjr+F5PTuzYsUOpqalq0aKFNfekX2bGdnFx0YYNG6xnVIvl5uZqyZIlcnV1VUJCQnneKiqg+LED27Zts7t869atkv53xrtJkyZq1qyZsrOzrc+1u9L15IUjcwlVo6Z/RnTt2lUBAQE6dOiQdUKz8sQHx/j973+vt99+W40aNdLKlStVt27dMvvf8HlhgJtEQUGBGTBggJFkunXrZi5fvnzNMStXrjSSTEhIiElJSbG2b9682Xh6eprAwECTnp5uM+bcuXPG39/fSDILFiywtv/8888mOjraSDJr1qwpta2uXbsaSWb06NHWtvz8fDNw4EAjyUyYMKGibxnXKS0tzUgyUVFRdpeTF7XfJ598YiSZli1bmhMnTljbd+zYYYKDg40k8+mnn1rbf/zxR+Pq6mo8PT3NN998Y21PSUkxISEhxs3NzRw4cMBmG3l5eaZJkyZGkpk+fbq1/dKlS6Zz585Gkpk1a1ap2B5++GEjyQwaNMjk5+db25977jkjySQlJTlgD6Ck77//3kgykszbb79ts+ybb74xvr6+RpJZuXKltf29994zksxtt91mfv75Z2v7ggULjCQTHR1tcwyNqd5cwvXx9PQ0ZX2FrumfES+//LKRZLp06WIuXbpkbZ82bZqRZOLi4q65D1DatfJi+vTpRpIJDw+3yYuy3Oh5QaGJm8abb75p/ZIwYMAAk5SUZPd15swZm3GjR482koyPj4/p16+f6dOnj3FzczOurq5m0aJFdrc1f/584+LiYiwWi+nRo4cZPHiwCQwMNJLMmDFj7I4p/hJR/OV26NChJjIy0vqPPicnx9G7BFdxrULTGPLiZpCUlGQkmcDAQJOQkGB69Ohh/SLxxBNPlOpf/CXCzc3N9OnTx/Tr1894e3sbSeavf/2r3W1s2rTJ2qdjx44mMTHR3HLLLUaSGTx4sCkqKio15syZMyYqKsqao0OHDjUtWrSwFjTnzp1z+L7AL8aNG2f9HGnevLkZMmSI6dq1q3FxcTGSzJNPPmnTv7Cw0PoDZ1BQkBk8eLDp3r27sVgsxtvb23z77bd2t1NduYTyWbp0qenYsaP1ZbFYrPu5+LV06VKbMTX5MyI7O9t07NjRSDK33HKLSUxMtP4dFhZmDh06VOl9djOoSF7s2LHDurxz585X/Q66YcOGUtu5kfOCQhM3jQkTJli/IJT1SktLKzV21qxZpn379sbHx8cEBgaa+Ph4s2nTpjK3t3HjRhMfH28CAwONj4+PueOOO8zs2bPLHHP06FEzfPhwEx4ebjw8PEx0dLT5wx/+YLKzsyvz1lFB5Sk0jSEvaruioiLzj3/8w3qMfX19TefOncs8XosXLzbdunUzfn5+xs/Pz3Tr1s0sWbKkzO3s2bPHDBo0yISEhBgvLy/TvHlzM336dFNYWHjVMefOnTO/+c1vTMOGDY2Hh4dp2LChee6550qdJYHjLVy40Nxzzz3Ws4tBQUGmR48eZu7cuXb7FxQUmGnTppnmzZsbLy8vExISYgYPHmz+85//lLmd6solXNusWbOu+d3B3hnjmvwZkZWVZf7whz+YqKgo4+HhYcLDw83w4cPNsWPHyrVPULG8WLNmTbm+g17tyoMbNS8sxhgjAAAAAAAchMmAAAAAAAAORaEJAAAAAHAoCk0AAAAAgENRaAIAAAAAHIpCEwAAAADgUBSaAAAAAACHotAEAAAAADgUhSYAAAAAwKEoNAEAAAAADkWhCQAok8VisXm5u7srNDRULVu21PDhw7VgwQIVFBQ4O0zUYN27d5fFYtHhw4edHYok6dVXX5XFYtHs2bOdHQoA1FoUmgCAcklKSlJSUpIefPBBde3aVQUFBZozZ44GDx6sZs2a6bvvvnPIdmbPni2LxaJXX33VIeurDjWtkAIAwNncnB0AAODGYO/sz6FDh/S73/1On376qXr06KFNmzapTZs21R4bUBGjRo3SsGHDdMsttzg7FACotTijCQC4blFRUZo3b54ee+wxZWVlaeTIkc4OCbim0NBQNW3aVAEBAc4OBQBqLQpNAEClTZs2Tb6+vtqxY4c2btxos2zZsmUaOXKkmjVrJn9/f/n6+qp169b605/+pNzcXJu+3bt314gRIyRJr732ms29ocVnVI0xSk5O1rBhwxQTEyNfX1/VqVNHHTp00Ntvv62ioqJS8Rlj9Mknn+iuu+5SvXr15OXlpYYNG6pXr15666237PZPTk5Wz549FRQUJC8vLzVr1kyvvvqqsrKyrP0OHz4si8WidevWSZKaNGliE3N5HDlyRE8//bRiYmLk4+Oj4OBgNW/eXP/3f/+n/fv3X/e+lGwvQz506JASExMVGhoqf39/9enTR3v37pUkFRQU6E9/+pNiYmLk5eWl6Ohou/ul+P12795dmZmZGj16tBo2bGjdPzNmzLC7/8ty/vx5vfTSS4qNjZW3t7cCAgLUs2dPLV26tELrqcgxtnePZnFbWa+SZ/WzsrL0+uuvq23btvLz85Ofn586deqkDz/8sEKxA0BtxKWzAIBKCwgIUJ8+fTR//nytWbNGd911l3XZY489puzsbLVo0UKtWrXShQsX9N133+nll1/W6tWr9dVXX8nV1VWSFB8fr4KCAm3atEmtW7e2uQw3OjpakpSbm6uHHnpIISEhio2NVbt27XTu3Dlt3rxZzz77rL777rtSBcH48eM1depUeXp66u6771ZoaKhOnTql3bt36+DBg3r22WetfYuKivTII48oOTlZfn5+uuOOOxQUFKRt27bptdde0/Lly7V27Vp5e3vLz89PSUlJWrFihX7++WcNGjRIfn5+5d5vx44dU7t27XT+/HnddtttSkhIUGFhoY4cOaL33ntPnTt31u23335d+/JKaWlp6tChg+rVq6devXpp7969WrFihb7//nvt3r1bTz31lNauXasePXooMjJSa9as0ahRo+Th4aEnnnii1Ppyc3PVs2dPHTp0SD179lReXp5Wr16tMWPGaNeuXeWeZCclJUW9evXSsWPH1LhxY9177726ePGivv32W91///2aMmWKxo0bV651VeQY29OmTRslJSXZXbZgwQJdunTJZt+ePn1avXv31u7duxUeHq64uDgZY7R582YNHz5c27Zt08yZM8sVOwDUSgYAgDJIMuX5uJg0aZKRZB588EGb9s8++8xkZWXZtGVmZpr77rvPSDIffvihzbJZs2YZSWbChAl2t5Ofn28WLVpk8vLybNpPnz5t7rjjDiPJrFu3ztqenZ1tPD09TZ06dUxqamqpda1fv96mbfLkyUaS6d69uzl58qS1PTc31zz22GNGkvl//+//2YyJi4szkkxaWprdmK/mlVdeMZLMqFGjSi07cuSIOXjwoE3b9e5LSebFF180RUVFxhhjioqKzPDhw40kExsba1q0aGFOnz5tHbdq1SojyURERNisLy0tzbq+Vq1amTNnzliXHTx40NSvX99IMosWLbIZZ2//FBQUmJYtWxpJZvLkyaawsNC67MCBA6ZJkybG1dXV/PDDD1ffgf9V0WM8YcIEI8nMmjXrmuuePn26kWTat29vs+8TEhKMJDN69GiTk5NjbT916pQ1D5cvX37N9QNAbUWhCQAoU3kLzXfffddIMvHx8eVa74EDB4wkM3DgQJv2axWaZVm5cqWRZMaMGWNt+/nnn40k06ZNm2uOz8/PN6GhocbX19ecOnWq1PKsrCwTHh5ugoKCbAqj6y00n376aSPJfPbZZxUaV9K19mVkZGSpwnzXrl3WY7tq1apS62zbtm2p93RlofnVV1+VGvPOO+8YSeZXv/qVTbu9/bNo0SIjyQwaNMjue1q4cKGRZJ577rlrvf0KHWNjyl9orlixwri6uprw8HDz008/Wdt37NhhJJk777zTJg+Kbd++3UgyDzzwQLniAYDaiEtnAQAOYYyRJLv3Jh44cEBffPGFDh48qMuXL6uoqMja/8CBA9e1vZ07d+qrr77SkSNHlJWVJWOMLl68WGqddevWVYMGDbRz5069+OKLevLJJxUZGWl3ndu3b9fZs2fVu3dv1atXr9Ryb29vtW/fXsuWLdOBAwdsLmu9Hu3bt5ck/e53v5Orq6t69eolLy+vMsdcz77s3r273N3dbdqK94G7u7u6d+9eakxkZKR27NihkydPqnHjxjbLgoOD1bt371JjHnzwQT399NPavHmzioqK5OJy9akgvvrqK0nSwIED7S7v1q2bJJXrsTkVOcbltX//fg0bNkxubm767LPPdOutt5aKvX///nbfY/E9m4565A8A3IgoNAEADnH27FlJvxQhxYwxGjdunGbMmGEthkoqLg7LKy8vT8OHD1dycvJV+5Rc54cffqhhw4bpjTfe0BtvvKGIiAjFxcVp2LBh6tOnj7Vf8XMwV65cec3JfM6ePVvpQnP48OH66quv9Omnn+r++++Xl5eX7rzzTsXHx2vkyJEKDw+39q3MvryySCpWfC9peHi43fs6i5fbm2QoIiLC7nYCAgIUGBiojIwMpaenKyQkxG4/6X/7+uGHH9bDDz981X7FeXUt5T3G5ZGRkaEHHnhAGRkZmjNnjjp27Gg39pdfflkvv/zyVdeTk5NToe0CQG1CoQkAcIgdO3ZIkmJjY61t8+bN0/Tp09WwYUPNmDFDnTt3VlhYmNzd3ZWXlydPT8+rFk1XM336dCUnJ6tly5aaPHmy2rVrp6CgILm7uyslJUW33357qXX27NlTBw8e1NKlS7VixQqtXbtWc+bM0Zw5czRo0CDNnz9fkqwzpkZHR6tr165lxlFWEVVerq6umjdvnl588UV9/vnn+vrrr7VlyxZt2LBBf/7zn7VixQp16dJFUuX2ZVlnFstaVpWK93V8fLzds8fFQkNDy7W+8h7jayksLNTQoUOVkpKi8ePH69FHH71q7HfddZeioqLKtV4AuNlQaAIAKu3ChQv68ssvJUk9evSwti9atEiS9M4776hv3742Y1JTU69rW8XrTE5OVvPmzcu9Tn9/fz300EN66KGHJEnffvuthgwZogULFuiLL75QQkKCGjRoIElq2rRpuWdOdYS2bduqbdu2evXVV5WZmalXX31VM2bM0PPPP2+9/LIq9uX1Onr0qN32zMxMZWRkyNvbW4GBgWWuo3hfP/744xo0aJBD4irPMb6WsWPH6quvvlLfvn31+uuvlxl7//79NXbsWIfEDgC1Dc/RBABU2tixY3X58mXdeeed6ty5s7U9PT1d0v++mF/p008/tbsuDw8PSb8829Ge61mnPZ06dbKerdqzZ48k6c4771RAQIDWrVun8+fPl3td14q5Ivz9/fX666/LYrFY45Ic974d4dy5c1q9enWp9n/961+SpM6dO9u9HPdKxfd4FhfQVcHeMS7LBx98oL/85S+KjY3V3Llzr3q2tzpiB4AbHYUmAOC6paamaujQofrggw/k6+urDz74wGZ5TEyMJOkf//iHzWWdGzZs0JQpU+yus379+pJ+mYzFnuJ1vvvuuzbt8+fP15w5c0r1P3r0qGbPnq2srCyb9pycHK1Zs0aS1LBhQ0mSp6enxo8fr4sXL2rgwIF2zxQeP35cH330UYVivpqPPvrIbgG0fPlyGWOscUnXty+r0rhx43Tu3Dnr32lpaZo4caIkXfOZlZI0aNAgxcbG6pNPPtEf//jHUveCGmO0adMmbdq06ZrrqsgxvpqNGzfqmWeeUXBwsBYvXix/f/+r9u3YsaN69+6tTZs26dlnn1VmZmapPrt27dKKFSuuGTsA1FZcOgsAKJfhw4dL+uX+tMzMTKWkpOjHH3+UMUa33Xab5s6dq5YtW9qMee655zR79my9/fbbWrt2rVq1aqXjx49r48aNGjt2rKZOnVpqO506dVLdunU1f/58de/eXZGRkXJxcdHIkSPVpUsXjR8/XitWrNCLL76of//734qJidGBAwe0bds2jRs3rtQ6z58/rxEjRujZZ5/VHXfcoQYNGujy5cvavHmzzpw5ozvuuMNm5tMXX3xRP/74oz766CM1a9ZMbdu2VZMmTZSXl6f9+/dr7969atWqlc29ew888IA+/PBDPfTQQ7rnnnsUEBAgSXr//ffL3KcLFizQr3/9a0VFRally5by9vZWWlqatmzZIhcXF02aNKlS+7KqdOrUSXl5eYqOjlbPnj2Vn5+v1atXKysrS4888shVZ5K9UvFsrvfee69eeeUV/e1vf1OrVq1Ut25dnT17Vjt37tTp06c1Y8aMa94vW9FjbM+ECROUl5enRo0a6Y9//KPdPo8//rjuuusuSdLHH3+s+Ph4vf3225o7d67atGmj+vXr68KFC9q9e7eOHTum0aNHKz4+/pr7AgBqpep/ogoA4Eai/z43sfjl5uZmgoODTYsWLUxSUpJZuHChKSgouOr4ffv2mfvvv9/UrVvX+Pj4mLZt25p//OMf1nVHRESUGrN161bTu3dvExAQYCwWS6lnHn7zzTemZ8+eJigoyNSpU8d06dLFLFiwwPqcx7i4OGvfzMxMM23aNJOQkGAaN25svLy8TEhIiLnjjjvMjBkzzOXLl+3G/fnnn5u+ffuaunXrGnd3d1O3bl3Tvn17M378ePP999+X6j9jxgwTGxtrPD09y/3s0XXr1plnn33WtGnTxoSEhBgvLy8TGRlphg0bZrZu3VrpfXmtZ5Jebf8bY0xSUpKRZNasWWNtu3L/ZmRkmGeeecbUr1/feHh4mNtvv91MnTrVbi6U9ZzRjIwMM2nSJNOuXTvj5+dnvLy8TOPGjc29995r3nrrLXPmzBm78V2posfY3nM0i2Ms61XyuZvZ2dnmr3/9q+nSpYsJCAgwHh4epmHDhiYuLs5MmTLFHDt27JqxA0BtZTGmgtP9AQCAm9Lhw4fVpEkTxcXFae3atc4OBwBQg3GPJgAAAADAoSg0AQAAAAAORaEJAAAAAHAo7tEEAAAAADgUZzQBAAAAAA5FoQkAAAAAcCgKTQAAAACAQ1FoAgAAAAAcikITAAAAAOBQFJoAAAAAAIei0AQAAAAAOBSFJgAAAADAof4/EzahixJmOBYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est1.completed_trials_summary_[est1.completed_trials_summary_[\"Step\"].str.contains('Adaptive Sampling')]\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "n_samples = [int(sum(d.values()) / len(d)) if isinstance(d, dict) else d for d in trials['# Samples']]\n", "\n", "y_margin = 0.10 * (max(scores) - min(scores))\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Adaptive Sampling ({})\".format(est1.selected_model_))\n", "ax.set_xlabel('Dataset sample size')\n", "ax.set_ylabel(est1._inferred_score_metric[0].name)\n", "ax.grid(color='g', linestyle='-', linewidth=0.1)\n", "ax.set_ylim(min(scores) - y_margin, max(scores) + y_margin)\n", "ax.plot(n_samples, scores, 'k:', marker=\"s\", color='teal', markersize=3)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "abd78e62", "metadata": {}, "source": [ "\n", "#### Feature Selection\n", "\n", "The next step of the pipeline is to find a relevant feature subset to maximize score for the chosen algorithm. AutoMLx Feature Selection follows an intelligent search strategy, looking at various possible feature rankings and subsets, and identifying that smallest feature subset that does not compromise on score for the chosen algorithm. The orange line shows the optimal number of features chosen by Feature Selection." ] }, { "cell_type": "code", "execution_count": 13, "id": "23974d4e", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:28.365783Z", "iopub.status.busy": "2025-04-25T10:38:28.365275Z", "iopub.status.idle": "2025-04-25T10:38:28.559586Z", "shell.execute_reply": "2025-04-25T10:38:28.558999Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Features selected: ['AveOccup', 'AveRooms', 'HouseAge', 'Latitude', 'Longitude', 'MedInc']\n", "Features dropped: ['AveBedrms', 'Population', 'Median Price']\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3IAAAKBCAYAAAASppniAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7mklEQVR4nOzdd1hTZ/8G8DsBQsIKBJQ9HChOFBUHiritWhW17rpbW2uXba1dvnaoXb5929phqxZX67ZurVr3RnHgACfKkCFC2Cvn9weSHwgokMAJ4f5cF1fl5Jzz3OEQmm+e5zyPRBAEAURERERERFRrSMUOQERERERERJXDQo6IiIiIiKiWYSFHRERERERUy7CQIyIiIiIiqmVYyBEREREREdUyLOSIiIiIiIhqGRZyREREREREtQwLOSIiIiIiolqGhRwREREREVEtw0KOiIiomgUFBUEikWDevHliR6kULy8vSCQShISEiB3FIEyaNAkSiQSTJk3S63lDQkIgkUjg5eWl1/MSkXFjIUdEpEfz5s2DRCKp0JchmDdvHubNm4e7d++KHaVGJCYmYv78+ejatSscHBxgZmYGBwcHtGjRAs8//zy++uornDhxQuyY1S4kJATz5s3DoUOHxI6iN3fv3q3wa6+sL2P6WRBR3WAqdgAiImPl6OgodoRn+vTTTwEU9hgZe2/AgQMHMHLkSCQnJ2u3WVpaIi8vD1evXsXVq1exY8cOAIAgCGLFrBEhISE4fPgwgMJrX55GjRpBLpdDqVTWULKqMzExKfc1l5qaiuzsbEilUtSrV6/MfWQy2TPbcHZ2RtOmTeHs7KxTViIifWAhR0RUTR48eCB2BHrs3r17GDp0KNLT0+Hl5YW5c+ciODgYtra2AArf6J8+fRrbtm3Dn3/+KW5YA3LgwAGxI1SYu7t7ua+5SZMmYcWKFXB3d9ep93nhwoVYuHBhlY8nItInFnJERGT0lixZgvT0dMhkMhw+fBgeHh4lHlcqlejbty/69u2Lb775RqSUREREFcd75IiIDERiYiI+/vhjtG3bFkqlEnK5HA0bNsTUqVNx5cqVco87deoU3n//fXTr1g2enp6Qy+WwtbVFp06d8NVXXyE9Pb3UMUWTNhTp0aNHifuFig+zrMhEDMXvT3qyx+PJ4w8ePIihQ4fC2dkZJiYmpSaOSEtLw5dffonOnTtDpVLB3Nwc7u7uGD16NE6ePFluhqe5cOECAKBNmzalirgnKRSKch/TaDRYs2YNBgwYAEdHR8hkMtSrVw99+/bFX3/9pdOQzPDwcLz88svw9vaGhYUFrKys0Lp1a3z00UdISkp66rEZGRn473//i+7du8PBwQEymQxubm7o3r07Fi1ahPj4eAD/fy2KhlV++umnpe4VK379njXZSUFBAZYvX46ePXvCwcEB5ubmcHV1xQsvvPDUe86KT/4iCAJ+//13dOzYETY2NrC2tkbnzp2xevXqSv38qurJ391bt27h5ZdfRoMGDWBubl7i9/5pk508evQIy5Ytw8iRI9GqVSuoVCrI5XJ4enpi7NixOHXqVJUznj59GuPGjUODBg0gl8thaWkJT09PdO/eHZ9//jmio6OrfG4iqsUEIiLSm//85z8CAKGyf1737dsn2Nraao81MzMTLC0ttd/LZDJhxYoVZR5btA8AwcLCQrCzsyuxrXnz5kJ8fHyJY9544w3B0dFRu4+dnZ3g6Oio/Wrfvr123z/++EMAIHh6epab/86dO9pz3blzp8RjxY//3//+J0gkEgGAoFQqBTMzM2HixInafcPCwgQ3NzftuUxMTARra2vt9xKJRFiwYEGlfraCIAgDBgwQAAhubm6CRqOp9PGCIAgPHz4UAgMDS/xslUplie8HDx4s5OTklDq2e/fuAgDhP//5T5nn/uqrrwSpVFriOspkMu33zs7Owvnz58s89ty5c4K7u7t2X6lUKqhUKsHc3Fy77bvvvhMEQRDWrl0rODo6CmZmZgIAwdLSssR1d3R0FO7du6c9t6enpwBA+OOPP0q1m5KSIgQFBZW4Vra2ttrrC0B49913y8xc9PP4+OOPhSFDhggABFNTU8HGxqbEz3Pu3LlPvygVNHHixHJ/h4v/7q5Zs0awsrLSXgNLS8sSxxSdp/jvbJHir30TExPBzs6uxDWQSCTC999/X2a+p73GQkJCSvxMzc3NS/2cyro+RGT8WMgREelRVQq5S5cuCQqFQgAgvPTSS8LVq1eF/Px8QRAEISoqSpgxY4b2je7Zs2dLHf/8888L69atE+Li4rTbMjMzhc2bNwtNmzYVAAjBwcFltl2U9eDBg+Xm01chJ5fLBRMTE2HSpEnaYiE/P1+4efOmIAiCEBsbK9SvX18AIAwbNkwIDQ0VcnNzBUEQhPj4eOGTTz4RTE1NBQDCli1bys1Slnnz5mnzzZo1S0hPT6/U8fn5+drio02bNsL27duFjIwMQRAEIT09XVixYoU2+1tvvVXq+KcVckuXLhUACFZWVsL8+fO11zE/P18IDQ0VevbsqS1C09LSShx77949wcHBQQAguLu7C2vXrtXm0mg0wpUrV4R58+YJq1evrnCe4p5WyA0fPlz7IcMPP/ygbTcuLk6YMmWK9uf9yy+/lPvzsLOzE5RKpRASEiJkZmYKgiAI9+/fF55//nltURoZGfnUjBVR0ULOyspK6NixY4nXWURERKnzlFXILVmyRPjPf/4jhIaGaot5jUYj3L59W3jzzTcFiUQimJiYlFmQl/cay8jI0H6QMX78eO1rRRAKf+9CQ0OF9957T9i5c2clfyJEZAxYyBER6VHxQu7Jno7iX+Hh4dpjit6of/DBB+We94033hAACEOGDKlUnujoaMHc3FyQSCRCVFRUqcdrspArKtDKU/Tmf+zYseXu89///lcAIPj6+pa7T1kSExMFFxcXbQ5LS0uhf//+wieffCL8/fffpXosn7Ry5UoBgODj4yOkpKSUuU9oaKggkUgEmUxW6nzlFU5qtVrbE7tnz54yz5uXlye0a9euRM9akfHjxwsABHt7+xI9ac+iayF36tQp7c9yyZIlZR5bVOg5ODgIWVlZZbYPQPj3339LHZudna29Xl988UWFn1d5KlrIeXp6liqWyzpPWYXcs7z22msCAGHq1KmlHivvNXb69Gnt72teXl6l2yQi48Z75IiIqkl8fHy5X3l5eQAK78/5999/YWpqinfffbfcc02YMAEAsH//fhQUFFQ4g6urK3x9fSEIgkGsj/bBBx+UuT07O1s7W+T7779f7vFFP4eLFy9q7/uqCAcHBxw7dgx9+vQBUHhP2Z49e/D5559j6NChcHR0RPv27RESEgKNRlPq+GXLlgEAXn311XKn4m/Xrh1atGiB3NxcHDx4sEK5Nm3ahJSUFLRt2xb9+vUrcx9TU1OMGTMGALB3717t9oyMDKxbtw4AMGfOHLi7u1eoTX0oatfNzQ3Tpk0rc5/PP/8cAJCUlIR9+/aVuU9AQAB69OhRaru5ubn253Hp0iV9RK6QmTNnwsrKqlrOPXDgQADAsWPHKnxM0ayqubm5ePjwYXXEIqJajLNWEhFVE6ECE18cP34cQOEkGs2bNy93v6LiLSMjAw8fPkT9+vW1j2k0GqxduxZr167FhQsXkJiYiOzs7FLnEHtCBIVCAT8/vzIfO3funDZz3759K3S+qKioSq3V16BBA/zzzz+4du0atm3bhpMnTyIsLAz37t3TZpg8eTL++usvbN26FXK5HEDhz75ooop58+ZhwYIF5bZRtEZdVFRUhTIVXf9r167Bycmp3P2ysrJKnTc0NFT7gcDzzz9fofb0JTQ0FEDhJDlSadmfCTdr1gyurq6IiYlBaGhomRk7duxYbhsuLi4AUGLdv+oWEBCg0/G3b9/Gzz//jIMHD+LWrVtIS0sr9cFAZV6HjRo1go+PD65fv46OHTvi1VdfRb9+/dCqVSuYmJjolJWIaj8WckREIoqNjQVQWIxVtIcpMzOzxL8HDRpUogdIJpNBpVLBzMwMQOEb4by8PGRkZOgxeeXZ29uX+6a/6OcAoEo/h8po1qwZmjVrpv3+wYMH2Lp1KxYuXIioqCj8888/+Pjjj/Htt98CKPz55eTkACicmVCf2Yqed3Z2dpnF99POW3zNNE9Pzwq1py8JCQkACnt8n8bNzQ0xMTHa/Z9kbW1d7rGmpoVvUYqK1ZpQ/AOSytqyZQvGjBmj/V0BABsbG8jlckgkEuTm5uLRo0eVeh2amJhg7dq1CA4Oxp07dzBnzhzMmTMHFhYW6NKlC4YNG4aJEyfCwsKiyrmJqPbi0EoiIhEV9bQ5OjpCKLxv+ZlfxadDnz9/Pg4ePAiFQoHvvvsOUVFRyM7OxsOHD/HgwQM8ePBA2+tRkR7C6vS0HoTiw0WzsrIq9HMICgrSSy4nJydMnz4dp0+f1r6RX758ubYnpXi23bt3VyjbvHnzKtR20blHjRpVofMWXxqg+PIRpB9V7eV6+PAhJk2ahJycHPTs2ROHDh1CZmYmUlNTER8fjwcPHmDDhg1VOrevry+uX7+OTZs24eWXX0bLli2RlZWF/fv3Y8aMGfDx8cHly5erdG4iqt1YyBERiahoOF1SUlKVeszWrl0LAJg7dy7eeusteHh4lHqDX7znpiqKekae1mOUmpqqUxvFhxVWdFiivjk6OmLIkCEACnveEhMTART2JBb9DPSdreh5V+W8Yv7MigreZw0TLHpcl56u2mDXrl1Qq9Wws7PD9u3b0b1791LrEeryOpTJZBg2bBiWLFmCy5cvIzExEb/++itUKhXu37+PiRMn6voUiKgWYiFHRCSiontyCgoKsHv37koff//+fQBA27Zty3z87t27uHnzZrnHFxV9T+uts7OzA1A4nK74sLHiTp8+XaG85enQoQNkMhkAYPv27TqdSxfFJ7owNzcHAJiZmcHf3x+A/rMVXf9z584hLi6uUse2b9++yj+zoiGuVe2lbd++PYDCxd3LmhwGAK5fv46YmBgAhdfXmBW9Dps2bVruMMf9+/frrT17e3tMnz4dX331FQAgLCyMk6EQ1UEs5IiIROTt7a0dIvjRRx89s2fryYkfimZQvHjxYpn7z5kz56nns7GxAQCkpKSUu4+vry+Awjf9W7ZsKfV4VlYWvvvuu6e28yyWlpYYO3YsAOCrr77STkBSnspOgHH06NFn3reWnp6OzZs3AyicGKVoxkAAePnllwEU9rzs2rVLb9leeOEF2NraIi8vD7NmzXpqYaXRaEpcJwsLC4wePRoA8OWXX2qLiYqoyHV/mqJ2Y2JisHTp0jL3mTt3LoDCGUN79+5dpXZqi6LXYWRkZJk91xcuXNDOyloZ5X1wUqR4r195958SkfHiq56ISGQ//vgjrKysEBkZiU6dOmHr1q0l3gzGxMRg1apV6NWrV6mp+fv37w8A+OKLL7B582bk5+cDAO7cuYOxY8di/fr12h61srRs2RIAsGbNmnILHTc3N3Tt2hUAMGvWrBJLIJw7dw69e/cudzKLyliwYAFcXFyQlJSEzp07Y9WqVUhLS9M+npiYiE2bNiE4OFg7HX9Fff/99/Dw8MDrr7+O/fv3Q61Wax9Tq9VYv349unTpoh2i+M4775Q4fvz48ejduzcEQUBwcDC++OKLEhO0ZGRk4ODBg3jttdfQsGHDCueytbXF//73PwCFw2QHDhyI06dPa3u5NBoNrl27hkWLFqFFixbYsWNHiePnz58PBwcHPHz4EAEBAVi/fr12hktBEBAeHo733nsPq1atKnFc0XXftWuXttesMvz9/TF8+HAAwOuvv47Fixdrf38ePHiAl156SXtP2Oeff66dAdRY9e3bF1KpFMnJyRg3bpz2Z5qbm4v169ejb9++T53YpTxr165FQEAAlixZgtu3b2u3FxQUYO/evdoPajp37vzU1zkRGanqWJyOiKiuKr4geGUcO3ZMcHJy0h5rYmIi2NvbCwqFQrsNgDBt2rQSx929e1dwdHTUPm5qaioolUrt9wsWLHjq4s+rVq3S7mtmZia4uroKnp6eQkBAQIn9wsLCBBsbG+2+crlcsLS01C58vnPnzmcuCP60BcWLXL16VWjSpIn2XFKpVFCpVNq2ir569+5dqZ/v6NGjSxwPQLC2thasrKxKbJNKpcL7779f5jlSU1OFQYMGldjfxsZGsLW1FSQSSYlr8KRnLcD9yy+/CDKZTHsOc3Nzwd7eXjAzMyvR3urVq0sde+7cOcHV1bXU745cLtdue3Ih8cjISO3jUqlUcHR0FDw9PQVPT0/h/v372v3KWxBcEAQhJSWlxMLepqamgp2dXYmfxbvvvlvm863IguRFr6Xu3buXu09FVXRB8Cd/d8s7T1kLgr///vslrpVSqdRevwYNGghr1qwp929Dea+Rou1P/l5IpVLtNhcXF+HatWuV+GkQkbFgjxwRkQEICAhAZGQkvv32WwQGBsLW1hYpKSkwMTFBs2bNMH78eKxZs0bbe1PE09MToaGhmDp1qnbdLblcjkGDBmHv3r3lLsBdZPz48Vi1ahW6du0KCwsLxMXFISoqqtQkFm3atMHp06cxevRo1K9fHxqNBg4ODnjttddw4cKFp66BVxnNmjXDpUuXsGTJEvTt2xcODg5Qq9UQBAGNGzfGCy+8gN9++w3r16+v1HlXrVqFf//9Fx988AF69eoFNzc35ObmIjs7G3Z2dujQoQPefvtthIWF4csvvyzzHDY2Nti+fTt27dqFUaNGwcPDAzk5OcjMzISrqyv69u2LhQsXIiIiotLP+5VXXkFERATeffdd+Pr6wtzcHCkpKbCyskL79u3x+uuvY9++fWX2RPr5+eHatWv48ssv0alTJ1hbWyMtLQ316tVDUFAQ/vvf/2qHrRbx9vbGwYMHMXjwYNSrVw8PHz5EVFQUoqKitL26z6JUKnHgwAEsW7YMQUFBsLa2Rnp6OpycnDB8+HAcPHgQ33zzTaV/FrXVl19+iZUrV8Lf3x8KhQJ5eXlo3LgxPvzwQ4SFhWlfn5UxePBgrFy5EpMnT4avry+USiVSU1NhbW0Nf39/fP7557hy5Qp8fHyq4RkRkaGTCILI81ETERERERFRpbBHjoiIiIiIqJZhIUdERERERFTLsJAjIiIiIiKqZVjIERERERER1TIs5IiIiIiIiGoZFnJERERERES1jKnYAeo6jUaD2NhYWFtbQyKRiB2HiIiIiIhEIggC0tLS4OLiAqn06X1uLOREFhsbC3d3d7FjEBERERGRgbh//z7c3Nyeug8LOZFZW1sDKLxYNjY2omZJzkoGAKgUKlFz0P/jNTE8vCaGhdfD8PCaGB7NtiaQZscDCmfg+etix6nz+BoxPIZ0TdRqNdzd3bU1wtOwkBNZ0XBKGxsb0Qu5fLP8wiwKcXPQ/+M1MTy8JoaF18Pw8JoYHo2FFFIpAIUUEPm9BvE1YogM8ZpU5JYrTnZCRERERERUy7CQIyIiIiIiqmVYyBEREREREdUyLOSIiIiIiIhqGRZyREREREREtQwLOSIiIiIiolqGhRwREREREVEtw0KOiIiIiIiolmEhR0REREREVMuwkCMiIiIiIqplWMgRERERERHVMizkiIiIiIiIahkWckRERERERLUMCzkiIiIiIqJahoUcERERERFRLcNCjoiIiIiIqJZhIUdERERERFTLsJAjIiIiIiKqZVjIERERERER1TIs5IiIiIiIiGoZFnJERERERES1DAs5IiIiIiKiWoaFHBERERERUS3DQo6IiIiIiKiWqROF3PHjxzFgwACoVCpYWVnB398fK1eurPR5zp07h3nz5qFLly6wtbWFTCaDu7s7xo8fj0uXLlVDciIiIiIiotJMxQ5Q3TZt2oRRo0ZBo9EgMDAQDg4OOHDgACZOnIhLly7h22+/rdB58vPz0b59ewCASqVCly5dYGlpibCwMKxZswYbNmzAmjVrMGLEiOp8OkRERERERMbdI5ecnIwpU6agoKAAGzduxKFDh7Bx40Zcv34djRs3xqJFi3Do0KEKn69Dhw74+++/kZCQgF27dmHDhg2IjIzERx99hNzcXEyZMgVJSUnV94SIiIiIiIhg5IXc0qVLoVarMWTIEAwbNky73dHREV9//TUAYNGiRRU6l6mpKc6cOYMhQ4bAxMREu10qleLzzz9H06ZNkZaWhp07d+r3SRARERERET3BqAu5oqKqrOGOAwcOhFwux/79+5Gdna1TOxKJBK1btwYAxMbG6nQuIiIiIiKiZzHqQu7ixYsAAD8/v1KPyWQytGzZEtnZ2YiMjNS5rdu3bwMAnJycdD4XERERERHR0xjtZCdqtRqpqakAADc3tzL3cXNzQ2hoKKKiorQ9alVx7NgxnDt3DjKZDP3793/qvjk5OcjJySmREwCSs5KRb5Zf5Qz68CjrkajtU2m8JoaH18Sw8HoYHl4Tw2MjaCAFoBE0SMlKFjtOncfXiOExpGuizlJXeF+j7ZFLT0/X/tvCwqLMfSwtLQEAaWlpVW5HrVZjypQpAIC3334bzs7OT91/4cKFUCqV2i93d/cqt01ERERERHWTQffIBQcH49q1a5U6ZuXKlfD396+mRCUVFBRg3LhxuHHjBvz9/fHZZ58985gPPvgAs2bN0n6vVqvh7u4OlUIFG4VNdcatMJVCJXYEegKvieHhNTEsvB6Gh9fEcGgkhZ/bSyVSXhcDwmtheAzhmpjmVbw8M+hC7s6dO4iIiKjUMZmZmQAAKyurEttsbEoXSRkZGQAAa2vrKuV79dVXsWPHDjRt2hQ7d+6ETCZ75jHm5uYwNzevUntERERERESAgRdyFy5cqPKxNjY2UCqVSE1NRXR0NJo3b15qn+joaACAp6dnpc8/Z84c/P7773B3d8e+ffvg4OBQ5axERERERESVYbT3yAGAr68vAOD8+fOlHsvLy0N4eDjkcjmaNGlSqfN+/fXX+Oqrr1C/fn3s27eP97kREREREVGNMupCbuDAgQCAjRs3lnpsx44dyM7ORu/evSGXyyt8zt9//x3vv/8+bG1tsXfvXjRt2lRveYmIiIiIiCrCqAu5adOmwcbGBlu3bsXmzZu12xMSEjB79mwAwDvvvFPqOB8fH/j4+CAmJqbE9o0bN+KVV16BlZUVdu3ahTZt2lRrfiIiIiIiorIY9D1yulKpVFi+fDlGjhyJESNGICgoCPb29ti/fz9SUlIwa9YsBAUFlTquaIKVvLw87baEhASMGzcOGo0GDRo0wJIlS7BkyZJSxw4dOhRDhw6trqdERERERERk3IUcAAwfPhxHjhzBF198gVOnTiE3NxfNmzfHzJkzMXHixAqfJzMzE7m5uQCAy5cv4/Lly2Xu5+XlxUKOiIiIDMK91FTU12ggB5Cr0eBBaio8lEqxYxGRHhh9IQcAAQEB2L17d4X3FwSh1DYvL68ytxMREREZmsy8PMSlpaHlL7/ghlsm3MyAhPR0NF28GBEzZ7KYI3rsXmoqbiUnAACU8hw4WFjUmtdHnSjkiIiIiIxNclYWQmNjIZVI0LthQ+12/99/x9nYWCx7/nlk5+eXOCY7Px9JmZm15o0qkT5pBAEJGRlIzc5GUwcH3EtNRdPFi0u8TuSmprXmww6jnuyEiIiIqDbSPDEK6LuTJzF+82Zcjo/XbjsaFYV+q1fjwwMHSuxrKZMBAB6kp1d/UCIRFH99pOfmYsu1a1h96VKJff536hR6rliBNcW2R6vVcF60CK1//RWCICApM7PcDztqAxZyREREpBf3UlNx8UECLj5IwPm4ONxLTRU7kkGLUatx+O5dJGRkaLcdjYqC5//+h4Dly0vsuy0yEmsuX8blhATttkYqFVrUq4emDg4l9l0xdCiSZ89Gv8aNq/cJEOnBg/R0nI+LQ1xamnZbQkYG3v3nH7z5xK1RM3buhGL+fHx/6pR226OsLAxbvx5Ttm4tcRvUzeRkHLx7F9eTkrTb7BUKSABYyWTIeqKAq404tJKIiIh0VtuHKFWn+6mpWHHxIgDg48BA7fZxmzfjcFQU1gwbhrGtWgEArM3NcS81FVnFZs4GgMlt2qB/o0Zo4+Sk3dayfn2Ez5hRqr2in3e93FyYSCQlHjM3MYGDhYV+nhgRgAKNBum5uVAWW5f54J07uJKYiG4eHvB9/Dt7NyUFYzdtglQiwbEpU7T7ztq7F3+Fh+O/ffvi7c6dAQA5+flYdPIkzKRS/K9/f0ge/x5LJRJk5+cjOStLe7xKoUAXd3fYyeXILSiAuWlhefNi69YIcHfXtg8AFmZmyJ87F9InXhe1FQs5IiIi0tnThigZYyEnPL7XJjEzEy3r19duf/eff7AtIgLze/bECy1aAAAeZmXhk4MHUc/CokQh19TeHjFpaSV6EXwcHHBiyhR42dqWaG+Cr2+VcppKOfiKKicjNxcX4+ORk5+PHg0aaLf/cvYsjt67h8lt2qBPo0YAgPCEBLT+5RfUs7RE/LvvavddGhaGPy9fxqK+fbWFlKlUipPR0TCVSiEIgrY4c7aygou1NUyK/a46WFjg3c6doVIoUCAIMH2870fduuG9Ll1Qz9JSu6+lTIbjxQrDIh3d3NDRza3ENolEguIlnIOFBeSmpqU+gKotH3awkCMiIiJ6isN37+JMTAx6NGiA9i4uAICwBw/Q7rffUP+JN7CJmZm4kZyMG8nJ2m0NbG0xuU0beNnalngDu+T550u1JTc1RWd3d73kTsrMRE5BQYltOQUFRltcU6GiHitrmQzW5uYACocvrr50CVKJBLMe93oBwOu7dmF7ZCQW9Oql7RW+9egRApYvL/W7fez+ffwVHo72Li7aQs5WLoeAwol3iv9ud3ZzQ25BARra2WmPr29pic0jR0KlUEAAtAXVon79sKhfvxLPQWFmhm/69i313JytrXX98ZTgoVQiYuZM3EqOAwAo5UrOWklERERk6FKysyEBtEPCotVqvLpzJ9JycnBo0iTtfsvCwrDq0iUs7NVLW8g1sLWFBIVDFXPy87XDud7u1AmT27RB83r1tMcr5XIsHzKkpp4WGaHQ2FjcTUlBexcXbW9t5MOHmLN/P6xkMqwMDtbuO2zdOuy+eRPLBw/G5LZtARTec/bevn2ob2lZopBLzs5GVGpqiYlxHCws0NDODo7Fer0AYEzLlmjv7IzuXl7abc5WVnjwzjuwUyi0RRwAzPT3x0x//xLHy0xMENysmc4/C33zUCphJSv8wEOlUImcpnJYyBERUa1Um9f+MTZ3U1Kw/soVyExMkFusB8gQhihl5eVh/+3beJCejpfatdNuf3n7dvx+/jy+7NUL73ftCqDw/pkdkZHa4xRmZgCA7p6eKBAE+BSbVMRWLkf2xx9DZmJSor3i97ARAYX3e0Wr1cgtKECzYgV+yIULuBQfj/GtW8PP2RkAcDYmBs//9RfqW1ri0quvavede/BgqeIsJz8fW65fR70nXmMqhQJSiQQZxe6zdLaywvjWrVH/iX0/6tYNb/j7l+g5c7G2xq033ij1PAY1aVJqm4lUCkcrq8r8OEiPWMgREVGtw4k1DEe+RoNRGzfiTEwMXvLzw5iW3gBqZohS8WILANaGh2PTtWsY3KQJXnx8T1lmXh4Gr10LABjfurV2f6fHbz6LzxhpJ5djyaBB8FQqS9yvM9XPD1P9/Eq0LZFIShVxhsbBwqLUZCeGUFzXRvkaDYD/v+cwPj0d+27fhplUilEtW2r3e2fvXhy/fx/ze/ZEr8dr+52OiUH3kBA0tbfH9ZkztftuuHoVu27cQKv69bWFnNzUFPEZGaWWn2jt6Ii03FzYFptQxEOpxM8DBpS6nssGD8bK4OASE3rUs7TEqmK9dkWK9xxT7cNCjoiIap26NrGGITOVSvFahw6ITUvDR926wdq88A2vvoYoxaalITwhAY6WltpJE9Q5OfD+8UckZmQg48MPtcXZlYQEbLx6FQ4KhbaQUykU6OrhAUdLS2QUK/ze6dwZ7wcEaNdcAwqLs5eL9drVdh5KJf4aPhyWl34ABKC+lRU/7HjsZnIyHqSnw8fBQVsIXUtMxI9nzkClUOCLnj21+/ZeuRIH7tzBllGjMNTHBwAQ8fAhXtyyBU3s7UsUctcfPsTpmJgSS2+oFApYmpmV+NABAIb5+KBV/fpoUWyyHG97e1yYPh0qhaLEvl/27l3qOSjlcrzaoUOp7UXDfMn48UoTERGRTib4+mJUixaIz8jAxQcVH+5afHKEvIICfHb4MO6mpuL355+H/PGb0V/OnsUXR4/ilXbt8MugQQAAa5kMmXl5EPC4d/bxkMdBTZrAwcIC/q6u2jYkEgmOTp5cqu3iU6UbsxdatIAmQgZkAzKp1CiKOEEQkJmXh+z8fNgX643aePUqbj96hOHNmqGRqvCDhOP37uG1XbvgZWuLv0eP1u47YcsWnIyOxuaRI7X3bSVmZuKX0FA0sbcvUcgVFUbFp7x3sbZG74YN0eCJ2UXfDwjAy35+aPf4XkqgcJmI9A8/LPU8nuzlBQp75Hw5PJcqiIUcERERVVp8ejqUcrm24IrPyID3jz+WukfuwIsvIk+jQRd3d5g9Hor4+7lz+PzIEQz18cEPzz0HoLBn77tTp5CRl4ePu3XTFmdNHRzQol491C828YJEIsGZadPgZGUFu2I9F2VNN061Q1JmJsLi4mBuaopAT0/t9o8OHEB4YiI+DQrS3n+4PTISQ9auRUdXV5yaNk27739PnsTJ6Gh4q1TaQk4jCLgYH19q8WcvW1skZmaWGELbWKXC3MBAuD9R7C4bPBgmEkmJ37XGKhX2vfhiqedRPDtRdWMhR0RUQZxcw3CsuXSpzO05T7xZo+qRV1CA4HXrkJmXh40jR6KxSoWkzMwSRRxQONy116pVyM7PR+TMmfC2twdQWIjdV6txs9gU/RKJBLMDAiA3NS3RWza+dWuMb926VIZmvLenQh5lZcFSECB79q46t5OUmQlXGxtYPB5CeC0xERuuXkV9S0u80r69dt8Ba9bgbGwsNo8ciW6PC5/j9+5h6Lp1pYqzg3fv4mR0NCb5+moLObvHvx/qnJwSGfo3bowm9vZwKTZFfStHR+wdP77EBwEA8Ofw4aWeg4u1NT7t0aPUdidO5kEGioUcEVEFcHINwxGjVuPn0NAyH+O9ITXj5uN10vIKCkpNpvEkT6USBYJQ4k33QG9vnJgyRdtrUmRu9+7Vkrcu++DAAXycngE3MyBXo8GD1NRy/2ZpBKHEBBn7bt1CXHo6+jdurC2EDt+9iwXHjsHH3h7fP+5NBYAuy5fjelISDk6ciKDH09PfSE7Gfw4dgr+ra4lCLiU7G0mZmUjKzNRuc7G2Rqv69dH4id+Jtzt1wqTs7BKzgXZyc0PaBx/A8ol7zsr6/bGVy9H38ZpnRMaG/8cjIqoATq5hOJytrfFe5874/OhRsaPUWc3q1cPFV15BRFISGhSbtrwsa4YNK3G/EFB4DfW9sC+Vdi81FUvPn8fHj0f7JaSno9EPP2Bk8+aY36uXdj2yDVeuYMq2bejq4YHd48Zpj39jzx5tcVZUyKXm5OCfW7eQkp1doi2VQgFrmQxZxaa891apML1dOzR53BNb5LfHC6F7Fbu/rIOra4np9ou80KJFqW1mJibaYbpEdRkLOSKiCohMShI7Aj0mlUgwtFkzFnIic7G2LjGEzcHCAnJT01K91vWeGNJGNScpMxMFT0xjn6/R4M/wcEzz89MWUnJTU6Tn5uJhsR4yAAhwd4enUqkdKgkA7ZydsWLoULjb2JTY98ikSSXuNwMKC/5fH09QU1zLYrM0ElHVsZAjIqoA1yfetFDNy8nPh6lUChOptNyigetjVZ98jQaT/v4bb3TsWGJWyCIeSiUiZs7EreQ4ADWzjhxVzfR27UpclyAvL9x4/XXYPzHl/dLBg0sd62pjgwmPl3Yo7skijoiqH191REQV4Glrq52drwgLh5r1n0OH0HHpUpyPi9MWDe42hT1Cvw0axPsVq9l/T57EmsuXMWDNGmTk5pa5j4dSCV+n+vB1KlzgmNfDML3crl2J+xOtzc3RWKUqMSsjERk+9sgRET1FZl4eLMzM4KFUYn6PHlhxMQxd3F3xUruO7G2oQem5uVgeFobEzEzEpqVpi4Qfn+uNjLw89GvUrMR6UqR/09u1w9nYWLzQvHmJRbTJcBX1XBfHD6CIjAcLOSKicuRrNAgKCUGzevXwv379kJGXh0sJSfBzdoKfs7PY8eoUK5kMl199FWvDwzGoSRPt9m6ehWuGqRR8Y1rdlHI51o8YoV3AmwxfUc+1w74fgdw01LeyYs81kRFhIUdEVI4jUVEIjY3FjeRkLOzVC8ObN4e7UgFPJe+XE4OjlRXe7NRJ7Bh1Sr5Gg1PR0ejq4QEALOJqIQ+lEprH96/JpFIWcURGhIUcEVE5ejZogGNTpiA+PV07Q5+TFae8rkkPMzNxX60usYZUcWdj4pCZn48gTwXv76kGnx0+jM+PHMF/unfHvKAgseMQEVExnOyEiOgpuri7I7hZM7Fj1Fnv79+Pdr/9hv+dOlXm46/vPoBh6/7Gpfj4Gk5m/ARBQNrjRbyfXAeMiIjExx45IqIn7L5xAx1cXUtNCHAvNRXhCbGob2kBlUJVztGkLwUaDdJzc6ERhDKnuweARipbmJlIOflGNZBIJPiuf3+86OvLe0KJiAwQCzkiomJuJidj+Pr1sJLJcGraNDS0s9M+tuLCBcw9dAiTfFvij6ENRUxZN5hIpVg7YgQ+CQxEi3IWEF4zrHCxYRbW+iM8XkC66H44FnFERIaJQyuJiIrJystDI5UKrR0d0cDWtsRjKoUCjexs4WDBe7FqUnlFHFWPz48cwYS//0Z6OWvFERGRYWCPHBFRMa0cHRH60ktQ5+SUmqHvNX9/jGnVWKRkdUdUSgp+DQ3Fx4GBHDJZw2LUasw/ehS5BQUY3KQJXmjRQuxIRERUDhZyRERPMDc1RT1T/nkUyxt79mBbRATupqbir+HDn7rva7v2IVqdjsXPDYRvOTNbUsW52tjgwIQJ2BEZySKOiMjA8Z0KEdV5giBg1MaNGNK0Kca2asW1skT2kp8friUm4pPAwGfuey42HjeSHyElO7sGktUNXT08tOvGERGR4WIhR0R13rorV7Dh6lXsiIxEkJcXXG3KXvD7r8uXsfzCOfRq4Ik5XXvUcMq6Y1CTJniucWOYSJ99G/fnPboiPTcXzerVq4FkxmtdeDiCvLzgaGUldhQiIqogFnJEVOcNb9YMX/ToAVu5vNwiDiic0XL/7Si4WVvXYLq6QyMIkD7uDa1IEQcAfRp5AQBUCsvqimX0jkZFYezmzahvaYmw6dPhxGKOiKhWYCFHRHWemYkJPqrAML7BTZtCZWGKxna21R+qjrkcH48RGzbgu379MMDbW+w4dYq9hQV8HBzQztkZjpYsiImIagsWckRUZ91MTkYjO7sK3xPn6+QEdyVnUawOnx85gsiHD7H0/PlKFXKX4xORnZ+PTm4WUMrl1ZjQeDWvVw9npk0DAN4fSkRUi3AdOSKqk2LUarT/7Tc8t2YNHmVliR2nzls2eDBmd+mC7/v3r9RxL23fi/5rNuLCgwfVlMx4FV8nzlIm41IPRES1DAs5IqqTzsbGIjs/H8lZWbA2N6/QMQ/S03EpPhHR6rRqTlf3WJub46s+feCuVFbqOFcbK3jZ2kDO5SIq5cT9+/D83/+wLjxc7ChERFRF/D8fEdVJQ318cPGVVwAAphWcWOP3c+cw99AhTPJtiT+GelZnvDrjamIimusw4+SmkUMBACqFSk+J6obFZ84gOSsLWyMiMKplS7HjEBFRFbCQI6I6q6mDQ6X2tzY3h7OVJWzkHIKmD0ejohAYEoJxrVphZXCwdsZKqn4rg4PR1skJr7RvL3YUIiKqIhZyRFRnCIKAL44cwbjWrdHQzq7Sx7/VqRMm+DaphmR105mYGEglEliambGIq2GmUineCwgQOwYREemA98gRUZ2x4epVzD10CO1++w2p2dlix6nz3unSBWemTcPC3r2rfo5/DmLspu24HB+vx2TG6XR0NL4/dQqCIIgdhYiI9IA9ckRUZ7RzdkZ3T0909/TkVPUGop2Li07HH78XgxvJj/BBV848+jRpOTkYtXEjolJTUSAImNW5s9iRiIhIRyzkiKjOaKRS4d+JE6GpYo/ExqtXsfLieQR5eWBW52cvIE6lCYKA70+fxthWrVBfD4tPf9itE9JyctHE3l4P6YyXlUyGd7t0wS+hoZjatq3YcYiISA9YyBGR0cstKIDMxAQAIJVIqnw/1rXERGyPvAV7hUKf8eqUrREReHvvXnx57BhuvfGGzmuXDW7aGACgUljrI57RkkgkmOnvj+nt2sHs8WuBiIhqNxZyRGTUHmZmosPvv+O1Dh3wVqdOMKngUgNlec7bG3IzAT7s/akyNxsbtHFywoDGjbkAdQ2ISkmBq42NdokNFnFERMaDhRwRGbVlYWG4k5KCZWFhmOnvr1Mh197FBQ3teG+dLtq7uODsSy+hQKPRy/luPHyE3IICtHW2ghULwxJSs7PRc+VKOFtZYf0LL8DFmr2WRETGhIUcERm197p0gb1CgZb168PclH/yDIGpVFrhRdif5cUtO3Ej+REOTZyI7l5eejmnsQhPSEBSZiY0ggAFf/eJiIwO/7ITkVGTSCSY6uenl3M9zMzErUePYGNuDpVCpZdz1gUaQUDwunUI9vHBRF9fSPS4Zpy9hRzqHAvtPZD0/wI8PBA2fTpSs7Nhx/s6iYiMTp1YR+748eMYMGAAVCoVrKys4O/vj5UrV1b6PEeOHMFLL70EPz8/ODo6QiaTQaVSoUePHli1ahXX5iEyIDsiI5FXUKDXc/589iw6Ll2Nr46d1ut5jd268HBsi4jA67t3Iz4jQ6/n3jl2BK6+NhWd3d31el5j0dDODm2dncWOQURE1cDoe+Q2bdqEUaNGQaPRIDAwEA4ODjhw4AAmTpyIS5cu4dtvv63wubZt24alS5eiSZMmaNu2Lezs7BATE4OjR4/i0KFD2L17N/78889qfDZEVBF7bt7E83/9hfYuLjg2ebLehlTKTU2hNDeHwszo/3Tq1YjmzRGtVsNKJoOTlZXYcYyaOicH4zdvxoJevdCyfn2x4xARUTUy6ncjycnJmDJlCgoKCrBp0yYMGzYMABAfH4+uXbti0aJFGDRoEIKCgip0vilTpmDWrFlweWIB25s3byIwMBB//fUXxo4di0GDBun7qRBRJWTm5cFOLkeAu7te74t7LyAAU/2a6e18dYWZiQneCwgQO0ad8OGBA9geGYkbyckIf/VVnSb3ISIiw2bUf+GXLl0KtVqNIUOGaIs4AHB0dMTXX38NAFi0aFGFz9e8efNSRRwANG7cGDNmzAAA/PvvvzqmJiJdDWvWDFdmzMD8nj3FjlKnJWRkVPuQ84//PYqpW3fjamJitbZTW/yne3cMatIEywcPZhFHRGTkjPqv/M6dOwEAI0aMKPXYwIEDIZfLsX//fmRnZ+vclpmZGQBAxumviQyCs7U11ykTUW5BAYJCQtB71SrcT02ttnb2347C3xE3kajne+9qq3qWltg+ZgzvGSQiqgOMupC7ePEiAMCvjBnrZDIZWrZsiezsbERGRurUzv379/Hrr78CAAYMGKDTuYioatJzczH4r79wLja22trYev06Zuzchz8vX6u2NoxFaGws7qSk4HJ8fLWu7zarc3ss7BWIxqq6O4toem4ujt+7J3YMIiKqYUZ7j5xarUbq40+B3dzcytzHzc0NoaGhiIqKQuvWrSt87pMnT2LJkiUoKChAbGwsjh07hvz8fHzxxRcIDAx86rE5OTnIyckpkRMAkrOSkW+WX+EM1eFR1iNR26fSeE0qbt6h49geGYnwhHicmjZeb+uUFXc65i7WXbkOqaQAY1vxXrmn8XGwxPEpY3EvVQ0BWUjOyqqWdvo0dAQAKMzykZyVXC1tGDJBEPDqzn3YdC0SC3sFYppfxf9fVl34d8vw2AgaSAFoBA1S6uDrxNDwNWJ4DOmaqLPUFd7XaAu59PR07b8tLCzK3MfS0hIAkJaWVqlz37p1CytWrNB+b2Jigs8++wzvvvvuM49duHAhPv3000q1R0TPNtPfD9HqNIxr3bxaijgA6O7pDkHIg4+DXbWc39h42SrhZasUO4ZRy9doIJVIIAHQsr6D2HGIiKgGSQQDXvwsODgY165VbgjTypUr4e/vj9jYWLi6ugIA8vLyYFrGzHXjx4/HmjVrsGbNGowdO7bS+XJzc3H37l2sXLkS33zzDdq2bYvdu3fDzq78N3ll9ci5u7sjNTUVNjY2lc6gT0WfZnOhY8PBa2J4eE2e7mhUFFysrdGohoY6XoqPQl6BBs3ruUHx+F7luig8IcFglhvga8TwaDa7QJodByhcgeBosePUeXyNGB5DuiZqtRpKpbJCtYFB98jduXMHERERlTomMzMTAGBVbK2izMzMMn8QGY9vjre2tq5SPplMhiZNmuCLL76ASqXCO++8g7lz5+LHH38s9xhzc3OYm5tXqT0iKu1+airclez1MQRpOTkYu3kzEjMysGf8eAR5eVV7myPWb8WN5Ec4NHEiutdAe4ZCIwiQSiTa7w2liCMioppj0JOdXLhwAYIgVOqraE04GxsbKB+/uYuOLvvTp6Ltnp6eOmd98cUXAQBbt27V+VxEVDEn7t9Hwx9+wLv//ANNDQwuUOfkICYtHSl6mOnWGKXl5sLHwQGuNjbo+HhERHWzMDODlcyszk21P2XrVszctQvZ+eLeW01EROIx6B45Xfn6+uLIkSM4f/48mjdvXuKxvLw8hIeHQy6Xo0mTJjq3pVKpIJVKkci1jIhqzO4bN5Cv0SApM7NE70R1+f7UKcw9dAiTfFvij6HDq7292sbF2hr/jB+P+IyMGhvm+O/EUQAMYzhMTQmLi8OKixchlUgwrlUrLjVARFRHGfVHmAMHDgQAbNy4sdRjO3bsQHZ2Nnr37g25XK5zW0ePHoVGo0GjRo10PhcRVcznPXti59ix+K5fvxppTyqRwEwqhVRa/UVjbSWRSOBUbGg76V9bZ2fsHjcOi/r2ZRFHRFSHGXUhN23aNNjY2GDr1q3YvHmzdntCQgJmz54NAHjnnXdKHefj4wMfHx/ExMSU2P7NN9/g0aPS05OePXsWL730EgBg8uTJ+nwKRPQMA7y9YadQ1EhbHwUG4sG7r+GbPkE10l5tEXLhAr48dgy5BQViR6kz+jdujLc6dRI7BhERicioh1aqVCosX74cI0eOxIgRIxAUFAR7e3vs378fKSkpmDVrlvaeuuKKJljJy8srsX327Nn4+OOP0bZtW3h5eSE3Nxe3b9/WLjw+cuRIvPnmm9X+vIjqspz8fHxz4gTe6tSpWheapop5mJmJt/fuRUp2NupbWmJK27Y12v4XR04iPiMDcwN7oqmDcU+//9u5cxjZogVs9TCKhIiIaj+j7pEDgOHDh+PIkSPo168fwsLCsGvXLjRu3BghISFYtGhRpc71448/YtCgQUhMTMSOHTuwc+dOJCUlYciQIdiyZQvWrVtX5jIHRKQ/Xxw5gk8OHkSfVatgwKun1BkqhQI/9O+Pfo0aYYKvb423vyPyFv68fA0Piq0daozWXLqE6Tt2oP1vvyHziQ8ZiYiobqoTVUdAQAB2795d4f3Le3M4c+ZMzJw5U1+xiKgKunl6wuPSJbzbuTMkNTDBSXG7btzAxquX0cnNGS+361yjbRsqiUSCF3198aIIRRwAvNahLZKzs9HgKet3GoMm9vZoYGuLca1awaIOr5dHRET/r04UckRkPPo2aoTrr70myuLP52Jj8ceFyxAEAS+3q/HmDUre4/vhzExMRM3xom8LAIBKYdxrCXZwdUXY9OkcTkxERFpGP7SSiIxDgUaj/bcYRRwABHp64v0Af/Rt5CVK+4bkmxMn0P7333G6nHU6ST+Kr1molMvr3Hp5RERUPv4fgYgM3qX4eDRdvBh7b94UNUd3Ly/MDuiIfo0biJpDbDn5+fglNBSX4uNxMzlZ1CxJmVl4kJ6BHCNcGHtdeDi8f/wRu2/cEDsKEREZIBZyRGTwPj9yBLcePcIvoaFiRyEA5qamCJs+HV/37o2xrVqJmmXQn5vQ4uflOGVkPYOCIODXc+eQlJmJY/fuiR2HiIgMEO+RIyKDFzJkCBra2oq+blZWXh5SsrNhJjWBqmaWrjNYDhYWeC8gQOwYkEokkNbwpDc1QSKRYPe4cfjl7Fm83rGj2HGIiMgAsZAjIoNnKZPhqz59xI6Bb0+cwNxDhzDJtyX+GDpc7Dg1Li0nBxEPH6K9i4vYUbROTB0HAFApVCIn0T+5qSne7szZUYmIqGwcWklEBqlAo8HBO3fEjkHFzD14EP6//44FR4+KHcVobbl2DSEXLogdg4iIagH2yBGRQfru1Cm8t28fXm3fHj8PHCh2HADAR4GBmN6+BYxvIN+zCYKAR9nZEAC0c3YWO45RilarMWnrVqhzcmBhZoaRLVqIHYmIiAwYCzkiMkjqnBxIJRKDKhqkEglM6+j07xKJBCFDh+Kdzp3RytFR7Dha3544i8TMTMzuEghve3ux4+jExdoas7t0wT+3byPYx0fsOEREZOBYyBGRQfqsRw+MatECzevVEzsKFWNIRRwAbLwagRvJjzC+VdtaX8hJJRJ8FBiIOV27cr04IiJ6Jv6fgogMVov69SExoBkJ9926hbkHj2FbhLjr2dWk+PR0vL9vH9JycsSOUqbJbVvh3c4d4GlrK3aUKotISoJGELTfs4gjIqKK4P8tiMhg3H70COM3b0Z8errYUcp0KjoaP50Nw+G798WOUmPe3bcPX584gbGbN4sdpUzT2/nig26d4FVLC7m7KSnotGwZBqxZg5TsbLHjEBFRLcKhlURkMF7ZsQP7bt9GVn4+No0cKXacUjq7u+N1fz+0czGs4YXV6cXWrXEmJgZzAwPFjmKULsfHIyc/HynZ2bAwMxM7DhER1SIs5IjIYHzVuzcydu/GNwawZlxZejdsCD9nW7Fj1Ki+jRrh6owZBjvcLz03FxoBsDHX1MqJaJ5v2hRnX3oJVjIZZCYmYschIqJahIUcERmMts7OOD5litgxCIBGECB9fH+ioRZxANB75XrcSH6EQxMnoruXl9hxqqRF/fpiRyAiolrIcP/vTER1giAISMzIEDtGhRRoNMgtKEC+RiN2lGp1KzkZzX/6CdsiIsSOYpTup6ai3+rVuJWcLHYUIiKqxVjIEZGoloWFocnixVhz6ZLYUZ5pwdGjcF70M97fd1jsKNVq/tGjiHj4ED+eOQOh2GyKhujI5DGInTUD3Tw9xY5SYa/t2oV/bt3C9B07xI5CRES1GIdWEpFoBEHA2vBwpGRn44GBzlRZF/343HNwsrLCpDZtDGr5h7IU3VcmNfCcxf00YAAKBAE/Pvec2FGIiKgWYyFHRKKRSCTYM348Vl28iAm+vmLHeab3AgLwom8TmEmNe1IKS5kMC3r1EjuG0XJXKrFz7FixYxARUS3HoZVEJCpTqRST27Y16Ak1ishNTWFjbg6FmXF+BnY9KUnsCJW2+Mx5zDt0HLcfPRI7ylPFqNU4FxsrdgwiIjIihv/OiYiMTlxaGpadP2/w91/VJefj4tDi55/xwoYNyCsoEDtOha2+dBU/njmP+6mpYkcpV75GgzGbNqHzsmVYFx4udhwiIjISxvmxMhEZLEEQ8MrOndgWEYHLCQn4X//+YkeqsMN372Lnjato4+SIsa1UYsfRq1PR0ZCgsIfUrBatZzamVTMkZWTCzcZG7Cjlys7Ph72FBcxNTeHn7Cx2HCIiMhIs5IioRgkAgjw9cfjuXUxt21bsOJVyJCoK35w4i0m+LTG2VTux4+jVjA4d0NXDA/UsLMSOUilvdiy8DiqF4RbWVjIZNo8ciRvJyfC2txc7DhERGQkWckRUo6QSCd7u3BlT/fxgY24udpxKae/igqltW6GTm4vYUapFa0dHsSMYlXyNBqaP7/2USCRowiKOiIj0iIUcEdUYQRC009nXtiIOAJ7z9kZHN+N6M/7z2bMI9vGBs7W12FGqpODx4uzFf7cMQYFGg/6rV8Pf1RWf9eihLeiIiIj0hf9nIaIasfHqVQStWIGbycliR6HHDty+jdd27UKLn3/Go6wsseNUScDyP1H/259wJCpK7Cgl7Ll5Ewfu3MEPp0/jngFPxEJERLUXe+SIqNoVaDR4f/9+3H70CKsuXsSnPXqIHYkA2FtYoL2LCzq7ucFOoRA7jlEZ2KQJ1o0YAUEQ0NDOTuw4RERkhFjIEVG1M5FKcWDCBHx17Bg+7NZN7DhV9sWRI5h36BAm+LbE8iHDxI6jszZOTjg1dSpya9FyA0/aO/4FaAQBHkrDu79vZIsWYkcgIiIjxqGVRFQjvGxt8cugQTA3rb2fHwmCgAJBMKr170ykUijMzMSOUWVKuTnsFHKDWDKhQKPBohMnkJGbK3YUIiKqA1jIEVG1Sc7KwrXERLFj6M1bnToh/NXJmNu9i9hRqkwQBIzZtAm/nTsHjREVpIZg4bFjeHffPvRYsYI/WyIiqnYs5Iio2szauxdtlyzBH2FhYkfRC2tzczhbW0Epr30zbhbZdeMG1oaH443du41iEo5lYZfwzfEzuJuSInYUdPXwgLOVFV7r0AFSA5pBk4iIjFPtHeNERAYtt6AAiZmZyC0ogI+Dg9hx6LF+jRvjf/36IU+jgZetrdhxdPb7uUu4kfwI/Rv7iP58gry8cH3mzFq5tAYREdU+LOSIqFrITEywY8wYnIuLQ3sX41hA+8T9+/jn1nW0rO+AEc1VYsepElOpFG926iR2DL0Z1swb8RmZoq2DpxEEpGRnQ/V41k8WcUREVFN0KuRmzZoFOzs7fPLJJ/rKQ0RGRCKRGE0RBwCbrl7Ff0+dwvPejdDQzgkOFhbwUCrFjlUhSZmZsFcoDGrRbH2YHdARAKBSiFNYf3XsGBafPYu/hg9HoKenKBmIiKhu0ukeucWLF+PSpUv6ykJERmD/7dv47PBh5NXiKe3Lci81FT+eOQMA2H7jFtr99huaLl5cK+4zK9Bo8NyaNegeEoLbjx6JHcdo5BYUYM3ly4hNS8ONhw/FjkNERHWMTj1ybm5u0Gg0+spCRLVcZl4epm7bhnupqTCTSvFBLV4z7klJmZnIe+LvXXZ+PpIyMw2+V+5yQgKuJibCTCqFRS1easDQyExMcGraNPx5+TKmtG0rdhwiIqpjdOqRGzp0KA4fPoy0tDR95SGiWkxhaoove/VCBxcXvN6xo9hx6LE2Tk649tpr+Gv4cDhZWYkdR6+6/fEnnBf9hCNRUaK0byWT4eV27YxuyCoRERk+nQq5Tz/9FB4eHhgwYADCjGR6cSKqOolEgjGtWuH0tGmwksnEjkPFeCiVeM7bW+wYepdXoEFugaZGF2n/6cwZbL52rcbaIyIiKotOQyuHDBkCc3NzHD9+HO3bt4ezszM8PDwgl8tL7SuRSHDgwAFdmiMiA5WVlwepRAJz08I/KcbYO+FgYQFTqRT5xYZXyk1N4WBhIWKqpzsTEwOluTmaGvHyD3+PDkaBRgNve9caaS8sLg5v7d2LfI0GRydPRlcPjxppl4iI6Ek6FXKHDh3S/lsQBMTGxiI2NrbMfY3xjR0RFfrgwAHsu30bK4YONapZKovzUCrxhr+/dtbKeT16GfSsldn5+Ri3eTPupaZiy6hRGGCEvXEA4GRlCaCwqK4JLevXx6xOnXBfrUaAu3uNtElERFQWnf7Pd+fOHX3lIKJaSp2Tg/VXriAuPR0PMzPFjlOtPgoMxJhW3rCWydDUwVnsOE+VlpMDb5UKGbm57DXSIzMTE3zVpw80gsAPKImISFQ6FXKeXDOHqM6zMTfH5VdfxZbr19GvcWOx41SrwkWfbcWOUSH1LC2xc+xYxKWnG/Ui1WsuX0VKVjYmtekA92rsHb0UH49W9etrizcpizgiIhKZTpOdEBEBgL2FBab5+Ykdg54gkUjgYm0tdoxq9ePp85h76Hi1ro93JiYG7X/7DSM3bkR2fn61tUNERFQZermpID4+HsuXL8fRo0cRExMDAHB1dUVgYCAmT54MR0dHfTRDRAYkNDYW2fn5dWrY3tmYGPx7NxI+9vYY4qMSO06ZNly5gutJSZgdEKCdfMaY9W/cAG0z6sOxGpdVuJqYqP23uYlJtbVDRERUGTr/X37Tpk2YMmUK0tPTS0z/fPnyZezduxdffvklli1bhuHDh+vaFBEZiOz8fLy4ZQsikpKwetgwjG3VSuxINWLPzZuYe+gIJvm2xBCf1mLHKSUtJwdv7NmDB4+HU77ZqZPYkardvKAAAIBKUX2F9aQ2bdCyfn14q1S8L46IiAyGTkMrQ0NDMWbMGGRkZCA4OBhbtmxBWFgYLly4gL///hvDhg1Deno6xo4di9DQUH1lJiKR5RUUoIubGxytrNDfyO+LK65ZvXoY0rQxfJ3qiR2lTFYyGb7r1w/dPT3xSvv2YscxKu1dXKAsY2kdIiIisehUyC1cuBAFBQXYsGEDNm7ciCFDhsDX1xetW7fG4MGDsWHDBmzYsAF5eXn48ssv9ZW50o4fP44BAwZApVLBysoK/v7+WLlypV7OPXXqVEgkEkgkEhw7dkwv5yQydNbm5lg2ZAjCX3318QQgdcOI5s2xfMhzmODbUuwoZZJIJBjdsiUOTZpUJ4ZVVqdzsbHou2oVYtPSxI5CRERUJp0KuWPHjqFLly4IDg4ud5/g4GAEBATg6NGjujRVZZs2bUL37t2xZ88etG7dGv3798eNGzcwceJEvPvuuzqd++DBg1i+fDmH2lCdUXz4NFA4yQmJr0CjQW5BgdgxRNF31Xo0+uE3HL93T2/nFAQB07Zvx77bt/Hxv//q7bxERET6pFMhl5qaCo8KTHTg4eGB1NRUXZqqkuTkZEyZMgUFBQXYuHEjDh06hI0bN+L69eto3LgxFi1aVGJR88rIzs7G9OnT0aJFC3Tu3Fm/wYkM1KeHD+PVHTuQlpMjdhQq5pfQULRdsgTH9FjM1BbqnFykZOcgX6PR2zklEgnWjxiBIU2bYlHfvno7LxERkT7pVMg5OTkhLCzsmftduHABTk5OujRVJUuXLoVarcaQIUMwbNgw7XZHR0d8/fXXAIBFixZV6dyff/45bt68iV9//RVmZmZ6yUtkyGLUaiw4ehS/njuHfbdvix1HFN+dPInmPy3HvEPHxY6ila/R4PvTp3E1MRGX4+PFjlPj1o14HqemjkcHV1e9ntfb3h5/jx4Nuzo0dJiIiGoXnQq5fv36ISIiAh9++CEKyhjWIwgCPv74Y1y/fh39+/fXpakq2blzJwBgxIgRpR4bOHAg5HI59u/fj+zs7Eqd9/Lly/jmm28wZcoUdO3aVS9ZiQydq40N9owfjzc7dkSwj4/YcUSRnpuL+IwMpOXkih1Fy1Qqxelp07CgZ0+83K6d2HFqnKetEt72drDQwwdql+PjSyw1QEREZMh0uhv+k08+webNm/HVV1/hr7/+wsiRI+Hl5QUAiIqKwoYNG3D37l3Y29vj448/1kfeSrl48SIAwK+MhYplMhlatmyJ0NBQREZGonXrik0lrtFo8PLLL8PW1lbbq0dUV/Rs0AA9GzQQO4ZoXm7XDt29nAyul0alUOCDbt3EjlGrpeXkYPj69YhJS8PW0aPRu2FDsSMRERE9lU6FnJubG/7991+MGzcO4eHh+Oabb7QTfxRNitCqVSusWbMGbm5uuqetBLVarb0vr7y23dzcEBoaiqioqAoXcj/99BNOnTqFFStWQKWq/LpFOTk5yCl2f5FarQYAJGclI98sv9Ln06dHWY9EbZ9KM4Rrci9VDaW5OZRyc7GjiM7MBHC1NgWQh+SsZFGzZOfn40piEto51/ywdUOy8uJ5qHPyMLxZCzhbV31R8IeZWXCxtkRmXi4a2MpFv761mSH83aKSbAQNpAA0ggYp/N0WHV8jhseQrok6S13hfXWen7pVq1a4dOkSDh06hKNHjyI2NhYA4OLigm7duiEoKEjXJqokPT1d+2+LcmbWs7S0BACkVXB66ejoaHz00UcICgrChAkTqpRr4cKF+PTTT6t0LFFNy9doMGXrbsSlZyBk6AB0cKnbRYMh+d+pUHxz4ize6dwBH3Yz/oW/y7P4zGXceqRGWyc3nQo5ewsFNrwwGLFp6bBTcL04IiIyfDoVcsOGDYOzszN++uknBAUF6b1oCw4OxrVr1yp1zMqVK+Hv76/XHEVee+015OTk4JdffqnyOT744APMmjVL+71arYa7uztUChVsFDb6iKkzlaLyPY1UvcS6JvdSU5Gem4+svHy0rOcGlYH8jorlwoMHOHovDt4qO/RvLO7rJC2ncJbGTm5edfo127OBF5rVy0BDO8cq/RxyCwogMzHRfl/P0kGf8eq0uvx7aWg0ksIpEaQSKa+LAeG1MDyGcE1M8ypenulUyO3atQtDhw7V5RRPdefOHURERFTqmMzMTACAlZVViW02NqXfgGZkZAAArK2tn3neTZs2Ydu2bfjkk0/go8NED+bm5jA35xA1qh08lEpceOUVhCckwLWM11Bdsz0iAnMPHcIk35bo37iFqFl+GTQIr7Rvj9aOjqLmENuXvbsDqNr/fNNzc9F52TKMa9UKswMCIOWaoEREVIvoVMg1aNBAWwxVhwsXLlT5WBsbGyiVSqSmpiI6OhrNmzcvtU90dDQAwNPT85nn2759OwBg3759OHLkSJk5X3/9dSiVSkyaNAmTJk2qcnYiQ2JhZgZ/PU/tXlt529ujb0MvNKtnL3YUAICvCMu6GJM1ly4hPCEBP545g5fbtYPKwCaxISIiehqdCrkxY8bg22+/xYMHD0RZJ+5ZfH19ceTIEZw/f75UIZeXl4fw8HDI5XI0adKkwuc8depUuY8VFXRi3RdIpC9Lz5+HSqHAsGbNxI5iUEa3bIm+jVxEaz8lOxsLjh7Fh926wVbO+7h09XK7djCRStHE3p5FHBER1To6rSP3wQcfoFu3bujevTu2bNmCvLw8feXSi4EDBwIANm7cWOqxHTt2IDs7G71794a8Am+IQkJCIAhCmV/duxcO7Tl69CgEQcC8efP0+jyIatKt5GS8sXs3hq9fj323bokdh4r56MABfHPiBILXrRM7isEY8tdmtPrlD5x6PMKiMiQSCab5+SGwAqMyiIiIDI1OhVzTpk1x5coV3Lx5EyNGjIBCoYCLiwsaNmxY6qtRo0b6ylxh06ZNg42NDbZu3YrNmzdrtyckJGD27NkAgHfeeafUcT4+PvDx8UFMTEyNZSUyFK42Nni7Uyf0b9yYa2kZmOHNm6OpvT3mBgaKHcVgxGdkIjYtHTn5FVu+JSM3FwuPHkVuQUE1JyMiIqpeOg2tvHv3bonvBUHAgwcPdDmlXqlUKixfvhwjR47EiBEjEBQUBHt7e+zfvx8pKSmYNWtWmcMgiyZYMbQeRqKaIDc1xfxevaARBO26kFRo8Zkz+O/JExjWrAm+7Tugxtvv2aABrsyYAROpTp/BGZWQoQOQk58PP2fnCu3/xu7dWH7hAk7FxGDr6NHVnI6IiKj66FTIaTQafeWoNsOHD8eRI0fwxRdf4NSpU8jNzUXz5s0xc+ZMTJw4Uex4RAYjIzcXFmZm2uKNM/iV9igrC3dSUvEwM6tG29UIgvZ6sIgrycehcLZK6wrOBhzcrBm2R0bi7U51d+09IiIyDjoVcj/88AMsLCwwbdo0feWpFgEBAdi9e3eF9xcEoVLnP3ToUCUTERkWQRAweO1a2Jib45eBA+FkVfWFlY3ZpDZt0MHVAfUsLGqszdi0NPReuRKf9eiB4c2asZdUR4OaNMGdN9+EpUwmdhQiIiKd6PTR7jvvvKOdlp+Iaq+wBw9wJCoKe2/eRHpurthxDJa7Ugl/V2c0sFPWWJtfHTuGa0lJ+PbECVTuI6a6YdeN21gbfg0P0tPL3ScrLw/qnBzt9yziiIjIGOjUI+fk5FShGR+JyLD5OTvj3Msv42piIhqrKr+wMlWfL3v3hlIux7BmzTjctQyfHT6BG8mP0KKea7k9yW/u2YN/79zBhhdeQNsK3ktHRERk6HQq5Pr164fdu3cjNzcXMn7CSVSrtXZ0RGtHR7FjGLSriYk4FX0bnkob9GpYMwWvwswMn/XoUSNt1Uad3VzgobSGXTnrwCVnZWHvrVu4n5qK5KyavbeRiIioOuk0tHL+/PkwMTHBuHHjEBcXp69MRFRD9t26hWi1WuwYtcamq1cxddserL50tdrbinz4sNrbMAbf9e+J9S8MKfdDCJVCgbDp0/Hn8OHoxeU0iIjIiOjUI/fBBx/A19cXmzdvxs6dO+Hn5wcPD48yh1tKJBIsW7ZMl+aISI9i1Gq8sGEDBABHJk2Cr5OT2JEMnqetLbq6u6KRyrZa27melITWv/yC57y98dfw4bAwM6vW9oydSqHA6JYtxY5BRESkVzoVciEhIdp/Z2dn48SJEzhx4kSZ+7KQIzIs2fn58HFwgEYQ0KJ+fbHj1AoTfH0xqIl7tbdzKjoaAoB8jQYKU53+TNdZH//7LwI9PdG3USOxoxAREVULnd4hHDx4UF85iKiGNVKpcHzKFCRlZsKUa5MZlElt2sDf1RWWxdb1o7KN3LAVd1PU+HP4CPi7ugIAdkZGYv7Ro/jy2DFEzJyJRpzAh4iIjJBOhVz37t31lYOIRGAilcKRa8YZpOb16okdoVa4l5qGW49SkJWXp93Ws0EDTG/XDiqFgkUcEREZLY7ZIapDBEHAxL//Ric3N7zSvj2ns6+kJaGh+PHMKQxu2hgLevXX+/mXnT+Pfo0bw83GRu/nNla/DOyD7Pz8Evd4KszM8OugQRAErrxHRETGSy/jqR4+fIjvv/8e48aNQ79+/fD1119rH7ty5Qq2bduGzMxMfTRFRDr459YtrLp0CW/u2YMbnBWx0hIyMnAl8SHi0jL0fu7T0dF4aft2NP/pp6cubk0ltXV2RGd3V9jK5TgbE1PiMQ5LJSIiY6Zzj9yGDRswbdo0pKenQxAESCQSuD6+TwEAYmJiEBwcjBUrVmD8+PG6NkdEOujTqBF+fO45ZOTmoqmDg9hxap1xrVujRX0lnK31PxzVSiZDJzc3eNvbl7uwNZVv09WrGLFhA6a2bYvfn3+eRRwRERk9nQq5kydPYuzYsbCxscGiRYvQtWtX+Pv7l9inV69eUCqV2Lx5Mws5IpFJJRLMfOI1ShXX0M4OtvLqGa7Xon59HJsypcS9XvR091JTsS78EjLy8nDnUWEvpkqhYBFHRER1gk6F3IIFCyCVSrFv3z74+fmVuY+JiQn8/PwQHh6uS1NEpIMbDx+ioZ0dTDg7pUGTSiSwlMnEjlEr3EtNRdPFi5Gdn6/dJjMxwfR27URMRUREVHN0eld34sQJdO7cudwiroiTkxPi4uJ0aYqIquhhZia6/fEHAkNCEJeWJnacWi3y4UPsvXkHVxKS9HbOadu24aczZ1Cg0ejtnHVBUmZmiSIOAHILCpCakyNSIiIiopqlUyGXmZmJehWYIvvRo0e6NENEOrgYH4/MvDw8ysqCnUIhdpxabV14OMZu3oHlYZf1cr7Dd+9iWVgY3tyzBxGcfIaIiIgqQaehla6urrhy5cpT9xEEAeHh4WjQoIEuTRFRFfVs0ADhM2YgNTsbclOuOKILF2trtHWqD3eltV7O19XDAz8NGIDEjAyuG0dERESVotO7uv79++OXX37B2rVrMXr06DL3Wbp0Ke7fv4+xY8fq0hQR6cBDqQSUSrFj1HpT/fwQ3MxLb+czkUoxo0MHvZ2vLnGwsIDc1LTE8Eq5qSkcLCxETEVERFRzdCrk5syZgz///BMTJkxAWFgYgoODAQAZGRkICwvDli1b8PXXX6NevXp4++239RKYiCrmq2PHMLBJE7SsX1/sKPSE5Kws2MrlXJBdBx5KJSJmzsSt5ML7r5VyJRwsLAo/tCAiIqoDJIIg6DSX9smTJzF8+HA8ePCg1JTPgiCgfv362Lp1Kzp27KhTUGOlVquhVCqRmpoKGxsbUbMkZyUDAFQKlag56P9V9ZrsvXkT/desgdzUFLfeeAMu1voZCki6v04EQUDPlSuRnZ+PkCFDuJ6fjvh3y/DwmhgezWYXSLPjAIUrEBwtdpw6j68Rw2NI16QytYHON8x07twZERERWLZsGfbt24e7d+9Co9HAzc0Nffr0wfTp06HkJ6RENaqVoyOeb9IEDWxtWcTp0R9hYfgl9AwGeDfEvKA+VTpH5MOHCI2NRYFGA3Pes0hERERVpJd3EdbW1njrrbfw1ltvVfiY5ORkpKenw8PDQx8RiKgYF2trbB09Gvmc0l6votVqnI19gBb1qt6L1tTBAddfew2hsbHwsrXVXzgiIiKqU0T7OPidd97BqlWrkP/EOkBEVHU5+fnaXh6JRAIzExORExmXkS1aoIGdJTx0nLXS1cYGriIPpSYiIqLaTdRxPTrenkdExaTn5qLdb79hVIsW+KhbNw7bqwZNHRxQz7Jqy29eePAAZlIpWnDyGSIiItIDnRYEJyLDsS48HJEPH2LlxYvI45BKg5Kv0WDi33+jzZIl2HT1qthxiIiIyAjwI3siIzHVzw9KuRz2CgWsZDKx4xiluykpuPggGk5WlujoVvGZrdJyctDA1hbRajUCPT2rMSERERHVFSzkiIzIiObNxY5g1FZdvIi5hw5hkm9LdHRrVOHj7BQK/D16NKLVatSztKzGhERERFRXcGglUS23IzIS2Zw0qEbUs7SEj4MKTlZVK8bcOMEJERER6Ql75IhqsRP372PwX3+hqYMDTk+bBhtzc7EjGbVX2rfHyBYNK7z/7hs3cOL+fXzYrRsUZmbVmIyIiIjqGhZyRLVYZl4enKys0NHVlUWcgcnOz8eMXbtwNyUF5qam+DgwUOxIREREZERYyBHVYr0bNsSVGTMgkUjEjkJPMDcxwaK+ffHtiRN4q1MnseMQERGRkWEhR1TL2SkUYkeoM1ZfuoTfz59Fv0YN8GG3nk/dVyKRYFizZgj28WGhTURERHon2mQnPj4+CORQI6JKy8nPx5C1a3H47l2xo9Q5dx49wpGoaNx4+KjcfQRBQE6xyWdYxBEREVF1EK2Qe//993Hw4EGxmieqtb47dQrbIiIwetMmZOXliR2nTglu1gxLBvXF2NbNyt1n1aVLaP3rr/j3zp0aTEZERER1TaWGVk6ZMqXKDUkkEixbtqzKxxNRoRkdOuDOo0fo26gRZ0KsYS3r14eLdfl/NgVBwKKTJxH58CHOxsSgZ4MGNZiOiIiI6pJKFXIhISFlbi8aOiQIQrnbWcgR6YeNuTmWPP+82DGoDBKJBEcmTcIPp0/j7c6dxY5DRERERqxShVxZQyE3bNiAn3/+GR07dsSYMWPg5eUFAIiKisJff/2FU6dO4bXXXsOIESP0EpioropKSYGnra3YMeq0GLUaV5MewEGhgEqhKnMfpVyOT7p3r+FkREREVNdUqpDr/sSbk7179+LXX3/Fzz//jFdeeaXU/q+//jqWLFmC1157DQMHDtQtKVEddjk+Hu1//x0TWrfGTwMHQmZiInakOml5WBjmHjqESb4t8cfQ/x82mVdQgHNxcejk5iZiOiIiIqpLdJrsZP78+fDz8yuziCsyffp0tGvXDl988YUuTRHVaftv30ZuQQESMzNhJhVtjqI6z1Yuh4fSBnYKeYntP5w+jc7LlmHW3r0iJSMiIqK6Rqd15C5cuIDnK3CvTuPGjbF9+3ZdmiKqc+6lpuJWcgIAoLuXF9YNH45unp6czl5Er3fsiHGtvUttj01LA1A4GQoRERFRTdCpkDM1NUV4ePgz9wsPD4epKdceJ6qoe6mpaLp4MbKLrUcmNzVFxMyZIqai8izq1w8v+vqitaOj2FGIiIiojtBpjFZgYCDCw8Px2WeflZqxssjnn3+Oy5cvc/FvokpIyswsUcQBQHZ+PpIyM0VKRM/SxskJUvaWEhERUQ3RqZtswYIF+Pfff/Hpp59i1apVGDFiBDw9PQEUzlq5adMm3Lp1C1ZWVpg/f75eAhMRiWVdeDhCLp5HzwYeeK1DAD47fBizAwKgUijEjkZERER1jE6FXPPmzfHvv/9i4sSJuHbtGr766qtSa8r5+PggJCQELVq00D0tEZGIIh8+xJ6bd+BkaYnPDx/GV8ePY//t2zj70ku8d5GIiIhqlM43rrVv3x5XrlzBoUOHcPToUcTGxgIAnJ2d0a1bNwQFBfENDlElOVhYQG5qWuoeOQcLCxFT0aAmTWBjLoW3vR1szG2wPTISc7t35984IiIiqnF6m4EkKCgIQUFB+jodUZ3moVQiYuZM3EqOAwAo5Uo4WFjAQ6kUOVnd1tbZGZ625gAAlUKFC6+8AlMuB0FEREQi0OtUkjk5OUhOToa5uTlUKpU+T01U53golbCSFQAoLBpIfPdSU3EzOR4SSKCU57C4JiIiItHo5aPk3377DW3btoWlpSXc3Nzw7rvvah/bvHkzhg0bhps3b+qjqSo5fvw4BgwYAJVKBSsrK/j7+2PlypWVPk9ISAgkEkm5X6NHj66G9FRXxaalYcT6rXhxy06xoxAKizjvH39Er5Xr0XPlOrT77Tc0XbwY91JTxY5GREREdZBOPXIFBQUYMWIEtm3bBjMzMzRr1gxXrlwpsY+vry9GjBiBdu3a4aOPPtIpbFVs2rQJo0aNgkajQWBgIBwcHHDgwAFMnDgRly5dwrffflvpc/r6+qJNmzaltnfs2FEPiYkKZeXl4eDde7CSmYkdhVC4JERuQUGJbUVLQrBXjoiIiGqaToXc4sWLsXXrVgwYMADLli2Do6MjpE/cL9KoUSM0btwYu3fvrvFCLjk5GVOmTEFBQQE2bdqEYcOGAQDi4+PRtWtXLFq0CIMGDar0vX1Dhw7FvHnz9B+YqJj6lpb4ZWAfmPEeLCIiIiJ6gk7vEENCQuDo6Ih169bB0dGx3P2aN2+OqKgoXZqqkqVLl0KtVmPIkCHaIg4AHB0d8fXXXwMAFi1aVOO5iCrC2twcI1v4ILhZE7GjEBEREZGB0amQi4iIQMeOHWFpafnU/SwtLZGYmKhLU1Wyc2fhvUUjRowo9djAgQMhl8uxf/9+ZGdn13Q0IqplipaEKI5LQhAREZFYdBpaaWZmVqEi6N69e7C2ttalqSq5ePEiAMDPz6/UYzKZDC1btkRoaCgiIyPRunXrCp/33LlzeO+996BWq+Hk5ISePXuie/fuestNBBTefxUWFw+pRIIeDThrpdi4JAQREREZEp0KuRYtWuDcuXNIS0srt1BLSEjAhQsX0KlTJ12aqjS1Wo3Ux7PJubm5lbmPm5sbQkNDERUVValCbseOHdixY4f2+88++wzdu3d/5hBToHCJhpycnBI5ASA5Kxn5ZvnlHVYjHmU9ErV9KunOo1T0XrUelmZmuPf2K2LHIQBWMsBDWTj5jJ3CHEABkrOSxQ1Vx/HvluHhNTE8NoIGUgAaQYMU/s0SHV8jhseQrok6S13hfXUaWvniiy/i4cOHeOWVV5Cbm1vq8YKCArz22mvIzMzExIkTdWmq0tLT07X/tihn6FPRkNC0tLQKndPZ2Rnz5s1DWFgYUlNT8eDBA2zbtg0+Pj44fPgwBg0ahIInZrV70sKFC6FUKrVf7u7uFXxGVNeYSiVwsbaEszWH7hERERFRSRJBEISqHlxQUIA+ffrg0KFD8PT0RL9+/bRrynXt2hU7duzAnTt30LdvX+zevRsSiaRS5w8ODsa1a9cqdczKlSvh7++P2NhYuLq6AgDy8vJgalq683H8+PFYs2YN1qxZg7Fjx1aqneLS09PRrl07REZG4s8//8SYMWPK3besHjl3d3ekpqbCxsamyhn0oahngYtPGw5eE8PDa2JYeD0MD6+J4dFsdoE0Ow5QuALB0WLHqfP4GjE8hnRN1Go1lEplhWoDnYZWmpiYYNeuXXjnnXewdOlS/PbbbwCAsLAwhIWFwcTEBC+99BK+//77ShdxAHDnzh1ERERU6pjMzEwAgJWVVYltZf0gMjIyAEDn+/esrKzwxhtvYObMmdi7d+9TCzlzc3OYm5vr1B4REREREdVtOhVyACCXy/HTTz9h3rx5OHToEO7evQuNRgM3Nzf06NEDLi4uVT73hQsXqnysjY2NtpqNjo5G8+bNS+0THV34qZSnp2eV2yni7e0NAIiLi9P5XERERERERE+jUyHn5+eHRo0aYcOGDahXrx5eeOEFfeXSC19fXxw5cgTnz58vVcjl5eUhPDwccrkcTZrovk7Xo0eFN0k+aykGoop6kJ6Oqdt2QmFqio0jy+/lJSIiIqK6R+d15MzMzPSVRe8GDhwIANi4cWOpx3bs2IHs7Gz07t0bcrlc57Y2bdoEoOylDoiqIiM3F7tu3MbeW3fEjkJEREREBkanQs7b2xsPHz7UVxa9mzZtGmxsbLB161Zs3rxZuz0hIQGzZ88GALzzzjuljvPx8YGPjw9iYmJKbF+4cCGSkpJKbMvLy8Onn36KDRs2QKFQYPLkydXwTKgucrCwwKK+PbCgZ6DYUYiIiIjIwOg0tHLq1Kl47733cP36dfj4+Ogrk96oVCosX74cI0eOxIgRIxAUFAR7e3vs378fKSkpmDVrFoKCgkodVzTBSl5eXontH374IT799FO0b98e7u7uUKvVuHDhAmJjYyGXy7F69WrtTJlEulLK5ZjUpqXYMYiIiIjIAOlUyL3++uu4cuUKunfvjjlz5uD555+Hh4cHZDKZvvLpbPjw4Thy5Ai++OILnDp1Crm5uWjevDlmzpxZ6bXt5s6di5MnTyIiIgLnz5+HIAhwc3PD9OnT8fbbb6Np06bV9CyIiIiIiIj+n07ryJmYmAAABEF45vICEokE+fn5VW3KaFVmrYjqZkhraBCQW1CAc3F3IIUEHd0aiR2HHuPrxLDwehgeXhPDw3XkDAtfI4bHkK5Jja0j5+7uXqX14Yjo2e6npqLLsjWwkpkh7YMPxY5DRERERAZEp0Lu7t27eopBRE+SSiRQKeSwNOCZYYmIiIhIHDovCE5E1aOBnR1uvP6S2DGIiIiIyADptPwAERERERER1Ty99chduXIFN27cQFpaGsqbP2XChAn6ao6IiIiIiKjO0rmQ279/P2bMmIFbt26Vu0/RrJYs5IgqLj49HTN3/wO5iQlWDXtB7DhEREREZEB0KuRCQ0MxcOBASCQSjB07FpcvX8bly5cxZ84c3Lp1C/v378ejR48wefJkeHh46CszUZ2QnpuLjVcjYCXjZCdEREREVJJOhdzChQuRn5+PPXv2oE+fPpg8eTIuX76M+fPnAwBSUlIwffp07NixA6GhoXoJTFRXZObnY0b7NjCVSnE+Lg4OFhbwUCrFjkVEREREBkCnQu7EiRNo27Yt+vTpU+bjtra2WLlyJby8vPDxxx9jxYoVujRHVGfcS02F/++/Izs/HwDww5nzkJuaImLmTBZzRERERKTbrJXJycnw9vbWfi+TyQAAGRkZ2m3m5ubo1q0b9u3bp0tTRHVKUmamtogrkp2fj6TMTJESEREREZEh0amQq1evHtRqdYnvAeD27dsl9svKykJqaqouTREREREREdFjOhVyjRs3xp07d7Tf+/v7QxAELFmyRLvt5s2b+Pfff9GwYUNdmiIiIiIiIqLHdCrkBgwYgIiICFy7dg0A0L9/f3h6euKXX35Bx44dMXz4cHTo0AHZ2dmYOnWqXgIT1QUOFhaQmZiU2GZuYgIHCwuREhERERGRIdFpspMJEyZAqVRCo9EAKLxHbtu2bRg5ciTOnj2Ls2fPQiqVYtq0aXjzzTf1EpiorpCIHYCIiIiIDJZOhZyTkxOmT59eYlurVq1w7do1XL9+HY8ePULjxo21984RUcUkZWYip6CgxLacggIkZWZy1koiIiIi0q2QexofH5/qOjWR0VNnZ4sdgYiIiIgMmE73yBGR/uVrNJi+c6fYMYiIiIjIgOnUIzdlypQK7yuRSLBs2TJdmiOqE0ylUkxt0wbvHzhQYrvc1JSTnRARERERAB0LuZCQkGfuI5FIIAgCCzmiZyh6nQDA7K5dMahJE8RnJAMAlHIlHCwseH8cEREREQHQsZA7ePBgmds1Gg3u37+Pf/75B2vXrsXbb7+N559/XpemiIza9ogILD57Fn+PGgWFmRkAoHn9+nDKKnyJqhQqMeMRERERkYHRqZDr3r37Ux+fMGECBg4ciIkTJ2Lw4MG6NEVktNJycjB561Y8zMrC/06dwgfduokdiYiIiIgMXLVPdjJmzBi0aNEC8+bNq+6miGola3NzbB41Ci/7+eHdLl3EjkNEREREtUC1LT9QnLe3N/bs2VMTTRHVCgUaDeIzMuBibQ0ACPT0RKCnp8ipiIiIiKi2qPYeOY1Gg0uXLkEq5UoHRACQnZ+P0Zs2IWD5csSlpYkdh4iIiIhqoWqrrjIzM3HhwgWMGTMGN27ceOb9dER1RXpuLi48eIAYtRrn4+LEjkNEREREtZBOQytNTEyeuY8gCKhXrx6++eYbXZoiMhoOFhbYO348olJS0KNBA7HjEBEREVEtpFMh5+7url336kkymQzOzs7o3r07XnvtNdSvX1+XpohqtYikJMSlpyPIywsA0NDODg3t7MQNRURERES1lk6F3N27d/UUg8h4XU9KQtfly5FTUIAjkyahrbOz2JGIiIiIqJarkVkrieqyBra2aO3oCHVODlxtbMSOQ0RERERGgIUcUTUzNzXF36NHQyqRwEomEzsOERERERkBnQq5zz77rMrHSiQSfPLJJ7o0T2SQBEHAtydOwFImw4wOHQAANubmIqciIiIiImOiUyE3b968UpOdCIIAACW2F20rjoUcGat9t29j9v79kADo6uGB1o6OYkciIiIiIiOjUyH3xx9/4OTJk/jtt9/g5uaGESNGwOvxrHxRUVHYtGkT7t27h5dffhmdO3fWR14ig9enYUPMaN8eDe3sWMQRERERUbXQqZBr1qwZXnnlFcyZMwefffYZTE1Lnu7rr7/G3LlzsWjRIkyePBkdO3bUKSyRoUrPzYXC1BQmUikkEgkWDxhQ7tIcRERERES6kupy8Ny5c9GoUSMsWLCgVBEHFC4YPn/+fDRu3Bhz587VpSkigxWfno7uISF4Y/fuMocWExERERHpm06F3OnTp+Hr6/vM/Xx9fXHmzBldmiIyWKdjYhAWF4cNV68iLj1d7DhEREREVAfoNLSyoKAAt2/ffuZ+t2/fRkFBgS5NERmswU2bImToUHR2c4OLtbXYcYiIiIioDtCpR87f3x9nzpzBypUry91n5cqVOH36NPz9/XVpisigHI2KgjonR/v9BF9feNvbi5iIiIiIiOoSnXrkPv30Uxw5cgSTJ09GSEgIRo0aBU9PTwCFs1auX78ehw4dgqmpKT799FO9BCYS28arVzF20yZ08/TErrFjYV7G/aFERERERNVJp3egAQEB2Lx5M6ZMmYJDhw7h8OHDJR4XBAH29vZYtmwZAgICdApKZCga2tnB3NQU9SwsxI5CRERERHWUzl0JgwYNwu3bt7Fx40YcPXoUsbGxAABnZ2d069YNL7zwAqysrHQOSmQo/JydcWbaNDR1cICUs1MSERERkQj0MibMysoKkyZNwqRJk/RxOiKDkldQgNn79uGNjh3RwM4OANCsXj2RUxERERFRXabTZCfPkpSUhPz8/OpsgqjavbdvH/53+jQG/fUX8jUaseMQEREREelWyIWGhuKzzz7D1atXS2zfsmULnJyc4OjoCHt7e3z//fc6hSQS0+yAADSvVw/f9ukDU2m1fvZBRERERFQhOr0r/fHHH7FgwQI4Ojpqt925cwejR49GQkICnJyckJGRgVmzZuHQoUO6ZiWqMbnF1j10sbbGpVdewXPe3iImIiIiIiL6fzoVcqdOnULbtm1hX2z9rOXLlyMvLw/ffvstYmJicPr0aUilUvbKUa1x8cED+CxejCNRUdptJuyJIyIiIiIDotO70/j4eHh4eJTYtm/fPlhaWmLmzJkAgHbt2qFbt264ePGiLk3p5Pjx4xgwYABUKhWsrKzg7+//1EXMn0UQBISEhCAwMBAqlQoKhQINGzbE2LFjceXKFT0mJzF8e/Ik7qSk4JODByEIgthxiIiIiIhK0WnWyoKCghKTmaSnp+P8+fPo2bMnZDKZdruLiwtOnTqlS1NVtmnTJowaNQoajQaBgYFwcHDAgQMHMHHiRFy6dAnffvttpc6XnZ2N4OBg7NmzByqVCgEBAVAoFLh9+zbWr1+PAQMGoEWLFtX0bKgm/DZoEOpZWGBu9+6QcHkBIiIiIjJAOhVyHh4eOHfunPb7nTt3Ij8/H7179y6xn1qthlKp1KWpKklOTsaUKVNQUFCATZs2YdiwYQAKexK7du2KRYsWYdCgQQgKCqrwOV955RXs2bMHL730Er7//nsoFArtY3FxccjLy9P306AacC42Fu1cXAAACjMz/LdfP5ETERERERGVT6ehlc8//zzu3buHYcOG4ccff8S7774LqVSKIUOGlNgvLCwMnp6eOgWtiqVLl0KtVmPIkCHaIg4AHB0d8fXXXwMAFi1aVOHznTlzBitWrIC/vz+WLFlSoogDChdBf3KoKRk2QRDw0YEDaP/77/gjLEzsOEREREREFaJTIffuu+/Cy8sLf//9N958803ExMTgrbfegnex2f1Onz6NmJgYBAYG6hy2snbu3AkAGDFiRKnHBg4cCLlcjv379yM7O7tC5/v9998BADNnzuSQOyMhkUhQ8Pg+uAfp6SKnISIiIiKqGJ2GVjo4OODSpUvYuHEjEhMT0a5dO/Ts2bPEPg8ePMCbb76J8ePH6xS0KoomWPHz8yv1mEwmQ8uWLREaGorIyEi0bt36mef7999/AQBdunTBrVu38Ndff+H+/fuoV68e+vfvj65du+r3CVCNWNirF/o3bowgLy+xoxARERERVYhOhRwAWFlZYdKkSeU+PmTIkFJDLQHgxIkTuHnzJiZMmKBrhDKp1WqkpqYCANzc3Mrcx83NDaGhoYiKinpmIZednY3bt28DKCzoXn/9deTk5Ggfnz9/PkaNGoWVK1eWmOjlSTk5OSWOU6vVAIDkrGTkm+WXd1iNeJT1SNT2a0pyVhaWh4VjVuf2kD7uWW3taIPkrGSRk5VWV65JbcJrYlh4PQwPr4nhsRE0kALQCBqkGOD/6+oavkYMjyFdE3WWusL7irY41u+//47JkydX2/nTiw2Ts7CwKHMfS0tLAEBaWtozz5eSkqL994wZMzBw4EBcu3YNKSkp2Lx5MxwcHLBu3Tp89NFHTz3PwoULoVQqtV/u7u4VeDakL/kaDYau3YKFx05h4TFxZlIlIiIiItKVzj1y1Sk4OBjXrl2r1DErV66Ev7+/3rNoNBrtv318fLBhwwZIHy8SHRwcDHNzcwwcOBCLFy/GJ598AhsbmzLP88EHH2DWrFna79VqNdzd3aFSqGCjKPuYmqZSqMSOUK3mdA3EhwcOYGpb/1rzXGtLzrqE18Sw8HoYHl4Tw6GRFL5fkUqkvC4GhNfC8BjCNTHNq3h5ZtCF3J07dxAREVGpYzIzMwEUDvksvq2swiojIwMAYG1t/czzFj/fhAkTtEVckQEDBqB+/fpISEjAmTNnSi3BUMTc3Bzm5ubPfiKkV4IgaCeoGd+6NYJ9fGD5lCGwRERERESGTLShlRVx4cIFCIJQqa+iNeFsbGy0a9dFR0eXef6i7RVZGsHGxgZ2dnYAAK9yJsUo2p6QkFCJZ0nVbcu1a+i5ciUycnO121jEEREREVFtZtCFnK58fX0BAOfPny/1WF5eHsLDwyGXy9GkSZMKna9NmzYAgEePyr4hMjm58Abi4r13JK60nBxM37EDh+7exQ+nT4sdh4iIiIhIL4y6kBs4cCAAYOPGjaUe27FjB7Kzs9G7d2/I5fIKnW/w4MEAgEOHDpV67N69e7h79y4AoG3btlULTHpnbW6OraNH43V/f7wXECB2HCIiIiIivTDqQm7atGmwsbHB1q1bsXnzZu32hIQEzJ49GwDwzjvvlDrOx8cHPj4+iImJKbF9ypQp2tkpt23bpt2emZmJGTNmID8/HwMGDOBMlCIr0Ghw//HSEwDQ2d0dPzz3HEylRv3rTkRERER1iFG/s1WpVFi+fDmkUilGjBiBnj174oUXXkDTpk1x8+ZNzJo1S3tPXXERERGIiIhAXl5eie02NjZYvXo1TExMMHToUHTu3BnDhg2Dt7c3du7cCS8vL/z222819OyoLFl5eRixYQO6LF9eopgjIiIiIjImRl3IAcDw4cNx5MgR9OvXD2FhYdi1axcaN26MkJAQLFq0qNLn69evH86ePYvg4GDcvHkTO3bsgFwux9tvv42zZ8/C1dW1Gp4FVVRWfj6uJyUhMSMDVxITxY5DRERERFQtDHr5AX0JCAjA7t27K7y/IAhPfdzX1xebNm3SNRZVA5VCgb3jxyMqJQXdKjAbKRERERFRbSRaITd06NByp/EnqoyriYmIUavRp1EjAICHUgmPx0tPEBEREREZI9EKuSFDhmDIkCFiNU9G4lpiIrouX46cggIcnjQJ7V1cxI5ERERERFTtdL5H7urVq5g0aRIaNmwIhUIBExOTMr9MTevEKE6qYY1VKvi7uqK1oyMa2NqKHYeIiIiIqEboVF2dPHkSvXv3RlZWFoDCWSKdnJz0EoyoIsxMTLBx5EhIAFjKZGLHISIiIiKqEToVch988AGysrLw1ltv4eOPP4ZKpdJXLqIyCYKABUePwlImw1udOgEArFjAEREREVEdo1MhFxoaijZt2uC///2vvvIQPdW+27fx8cGDAIAeXl7wZQ8wEREREdVBOhVyMpkMPj4++spC9Ex9GjbE2506oYGtLYs4IiIiIqqzdCrkunbtiqtXr+orC1GZ1Dk5sDAzg6lUColEgv/26yd2JCIiIiIiUek0a+WCBQtw8+ZN/PTTT/rKQ1RCbFoauv3xB6Zv3/7MhdqJiIiIiOoKnXrkzp8/j8mTJ+ONN97A+vXr0adPH7i5uUEqLbs+nDBhgi7NUR104cEDhCckICEjA7FpaXC1sRE7EhERERGR6HQq5CZNmgSJRAJBEHD06FEcPXoUEomk1H6CIEAikbCQo0ob4O2N1cHB6OjmxiKOiIiIiOgxnQq5uXPnllm4Eeni4J07aOvsDFu5HAAwplUrkRMRERERERkWnQq5efPm6SkGUaG14eEYv3kzuri7Y+/48VCYmYkdiYiIiIjI4Og02QmRvjVzcIClTAZPW1uYlHOvJRERERFRXadTjxyRvvk6OSH0pZfQSKWClMN2iYiIiIjKpJdC7tixY9i6dStu3LiBtLS0MqeJl0gkOHDggD6aIyOSk5+Pt/fuxdudOsHb3h4AtP8lIiIiIqKy6VTICYKAqVOnYsWKFdrirWgWyyJF33NSFCrL+/v345fQUPx75w7CZ8yAKYdTEhERERE9k07vmn/99VeEhISgXbt22LdvH4YNGwYAiIiIwO7duzFp0iRIpVK89957uH37tl4Ck3H5oGtX+Do64ofnnmMRR0RERERUQTr1yIWEhMDS0hK7d++Gvb09Vq9eDQDw9vaGt7c3+vXrhwEDBmDUqFHo0qULPD099RKaarec/HyYmxb+6jlaWeH89Om8H46IiIiIqBJ06gK5du0aunTpAvvH9zQVDZ8sKCjQ7jNixAi0a9cO3377rS5NkZEIjY1F4x9/xL937mi3sYgjIiIiIqocnQo5jUajLeIAwMLCAgDw6NGjEvt5e3vj8uXLujRFRmLxmTOIVqvx2eHDZU6KQ0REREREz6ZTIefq6orY2Fjt90VDJ8PCwkrsFxkZCVNTrnRAwK+DBuH9gABsGzOGE+AQEREREVWRToWcn58frl69qh1K2bdvXwiCgNmzZ+P69etIS0vDN998g3PnzqFt27Z6CUy1z6noaO2/5aam+LJ3b9iYm4uYiIiIiIiodtOpkBs8eDCSkpKwc+dOAICvry9Gjx6NixcvokWLFrC1tcWcOXNgamqK+fPn6yUw1R6CIGD2vn3ovGwZfg0NFTsOEREREZHR0Gm845gxYzBs2LASwyZXrFiB1q1b4++//8ajR4/QpEkTzJ49G/7+/jqHpdpFIpFA8fh3Q52TI3IaIiIiIiLjofONa+ZPDJEzMzPDnDlzMGfOHF1PTUZgXlAQ+jVujC7u7mJHISIiIiIyGlyBmfQqISMDcw8eRIFGA6CwV45FHBERERGRfullKsmHDx9i9erVOHPmDJKSktCrVy/Mnj0bAHDlyhXcunULvXv31i5PQMYpX6NBzxUrcCUxEfkaDRb06iV2JCIiIiIio6RzIbdhwwZMmzYN6enpEAQBEokErq6u2sdjYmIQHByMFStWYPz48bo2RwbMVCrFJ4GB+PDffzGpTRux4xARERERGS2dhlaePHkSY8eOhampKRYtWoQzZ86UWuS5V69eUCqV2Lx5s05ByXBpil3zUS1b4sqMGWhSbKF4IiIiIiLSL5165BYsWACpVIp9+/bBz8+vzH1MTEzg5+eH8PBwXZoiA7XhyhX87/Rp7Bk3DtaPJ76Rc/F3IiIiIqJqpVOP3IkTJ9C5c+dyi7giTk5OiIuL06UpMkDpubl4ffdunLh/H4vPnBE7DhERERFRnaFT10lmZibq1av3zP0ePXqkSzNkoKxkMmwfMwZrw8MxOyBA7DhERERERHWGToWcq6srrly58tR9BEFAeHg4GjRooEtTZCDyCgoQrVajgZ0dAKCDqys6FJvchoiIiIiIqp9OQyv79++PiIgIrF27ttx9li5divv372PgwIG6NEUGICM3F0PXrUPA8uW4m5IidhwiIiIiojpLp0Juzpw5UCqVmDBhAt5//32cOnUKAJCRkYGwsDDMnTsXr7/+OurVq4e3335bL4FJPHkaDe6lpiIlOxs3Hj4UOw4RERERUZ0lEZ5cL6CSTp48ieHDh+PBgweQSCQlHhMEAfXr18fWrVvRsWNHnYIaK7VaDaVSidTUVNjY2IiaJTkrGQCgUqjK3SdGrcZ9tRqd3NxqKladVpFrQjWL18Sw8HoYHl4Tw6PZ7AJpdhygcAWCo8WOU+fxNWJ4DOmaVKY20Hme+M6dOyMiIgLLli3Dvn37cPfuXWg0Gri5uaFPnz6YPn06lEqlrs2QSC7Hx+O+Wo0B3t4AAFcbG7iKXHASEREREdV1elnwy9raGm+99RbeeustfZyODMS1xER0++MP5BQU4NDEiejIXjgiIiIiIoPAlZupXN729ujm6YmU7Gw0sbcXOw4RERERET2mt0Lu3r17iIuLQ05OTrn7BAYG6qs50rN7qam4lZwAAFDKc+BgYQEPpRLrRoyABIDCzEzcgEREREREpKVzIbds2TLMnz8fUVFRz9y3oKBA1+aoGtxLTUXTxYuRnZ+v3SY3NUXEzJnw4P2NREREREQGR6dC7ueff8brr78OQRDQtm1bNGzYEFZWVvrKRjUkKTOzRBEHANn5+UjKzGQhR0RERERkgHQq5L777jvIZDLs3LkTPXv21FcmIiIiIiIiegqdFgSPjo5Gjx49WMQRERERERHVIJ0KOQ8PDygUCn1lIZE4WFhAblqyc1ZuagoHCwuREhERERER0dPoVMhNnDgRBw8eRHJysr7yVIvjx49jwIABUKlUsLKygr+/P1auXFnp83h5eUEikTz1q2HDhtXwDKqXh1KJiJkz8XWf7vikW2fsGTeOE50QERERERkwne6Re//993HmzBn06NED33//Pbp37w6JRKKvbHqxadMmjBo1ChqNBoGBgXBwcMCBAwcwceJEXLp0Cd9++22FzzVixAgkJSWV+djhw4dx9+5ddOvWTV/Ra5SHUom14ddxPi4e28d4sYgjIiIiIjJgOhVyJiYmWLJkCXr16oVevXrBzMwMTk5OkEpLd/RJJBLcunVLl+YqLTk5GVOmTEFBQQE2bdqEYcOGAQDi4+PRtWtXLFq0CIMGDUJQUFCFzlde0afRaODm5gYAePHFF/WSXQy+jvVhYWYGew6XJSIiIiIyaDoVcteuXUOPHj2QmJgIQRCQm5uLe/fu6SubzpYuXQq1Wo0hQ4ZoizgAcHR0xNdff41hw4Zh0aJFFS7kynPgwAHExcXB1dW1Vk/88m3fIACASqESNwgRERERET2VTvfIvfPOO0hISMDEiRNx8eJFpKWlQaPRlPtV03bu3AmgcEjkkwYOHAi5XI79+/cjOztbp3ZWr14NABg7dmyZvZFERERERET6pFPVcfz4cbRu3RrLly9Hq1atYGlpqa9cenHx4kUAgJ+fX6nHZDIZWrZsiezsbERGRla5jaysLGzZsgUAMH78+Cqfh4iIiIiIqKJ0Glopk8nQvHlzfWXRK7VajdTUVADQ3r/2JDc3N4SGhiIqKgqtW7euUjt///030tLS0Lp16wqdIycnBzk5OSVyAkByVjLyzfKrlEFfJv+9HREPU/BNn54I8HAVNQsVepT1SOwI9AReE8PC62F4eE0Mj42ggRSARtAgJcuwZxqvC/gaMTyGdE3UWeoK76tTj1yPHj1w6dIlXU5RbdLT07X/tihnPbSiHsS0tLQqt7Nq1SoAFZ/kZOHChVAqldovd3f3Kretb1GpaYh4mIL03FyxoxARERER0VPo1CP35Zdfwt/fHx9//DE+/fRTmJiY6CsXACA4OBjXrl2r1DErV66Ev7+/XnOUJyEhAfv27YNUKsXYsWMrdMwHH3yAWbNmab9Xq9Vwd3eHSqGCjcKmuqJWyDd9eyItJxfdPLyhUhjWMNm6jhPQGB5eE8PC62F4eE0Mh0ZS+Lm9VCLldTEgvBaGxxCuiWlexcsznQq51atXY9CgQVi4cCHWrVuHoKAguLq6lrv8wCeffFKp89+5cwcRERGVOiYzMxMAYGVlVWKbjU3pIikjIwMAYG1tXak2iqxduxb5+fno06cPXFxcKnSMubk5zM3Nq9RedWvn7AQALOKIiIiIiAycToXcvHnzIJFIIAgCbt269dR14qpSyF24cKHK2WxsbKBUKpGamoro6Ogy7+WLjo4GAHh6elapjaLZKjnJCRERERER1SSdCrk//vhDXzmqha+vL44cOYLz58+XKuTy8vIQHh4OuVyOJk2aVPrckZGROHv2LCwsLEqsUVebnYqORWp2Dno2kMGxWI8mEREREREZFp0KuYkTJ+orR7UYOHAgjhw5go0bN5bqNduxYweys7MxaNAgyOXySp+7qDcuODi4xDDO2uyTg8dwPi4e28dYY1AVilsiIiIiIqoZoq1e/d5776FRo0bV2sa0adNgY2ODrVu3YvPmzdrtCQkJmD17NoDCRc2f5OPjAx8fH8TExJR77jVr1gCo+GyVtYGPgwp+zo6wrUJhS0RERERENUenHjldJCUl4e7du9XahkqlwvLlyzFy5EiMGDECQUFBsLe3x/79+5GSkoJZs2YhKCio1HFFE6zk5eWVed4TJ07g9u3bcHJyQu/evavzKdSoH58rfC6GMGMPERERERGVT7RCrqYMHz4cR44cwRdffIFTp04hNzcXzZs3x8yZM6s8NLRoWOWYMWP0vuQCERERERHRsxh9IQcAAQEB2L17d4X3FwThqY///PPP+Pnnn3WNRUREREREVCWi3SNHhueN3QfQb/UGHLt3T+woRERERET0FHWiR44q5lrSQ5yPi0dKdrbYUYiIiIiI6ClYyJHWp0EBSM3OQXsXF7GjEBERERHRU7CQI60u7q4AAJXCONbFIyIiIiIyVrxHjoiIiIiIqJZhIUdaYXHxOBJ1H0mZmWJHISIiIiKipxCtkBME4ZnT/FPNmr3/MILX/Y1T0dFiRyEiIiIioqcQrZALCQmBRqMRq3kqg5fSBj4OKljLZGJHISIiIiKip9BpspOVK1dWaD+ZTAZ7e3v4+vqifv36ujRJ1ej3wf0BACqFSuQkRERERET0NDoVcpMmTYJEIqnw/hKJBL1798aPP/4Ib29vXZomIiIiIiKqs3Qq5ObOnYu7d+9i5cqVsLKyQt++feHh4QEAuH//Pv755x+kpaXhxRdfhLm5Of6vvTsPq6rc////2gwCgszOIM4aDimW5gh6ND1ZDmCWdk5oWQ4NfjSzrJ+NdjSLTM1Tp9TUhnMqcsgcUlPU45RhlqWiJpIahgqKMsmwvn942L8I2GIMa295Pq6L64r7XsNr7RvTN+te99q5c6c2bNignj17Kj4+Xg0bNqyQiwAAAACA6qRchdzf//53de7cWQ888IBiYmLk4+NTpD89PV2TJ0/WihUrtGfPHjVt2lRPPvmk5syZo1mzZmn+/PnlCo+KNXVjnI6mpunVvv11W1CQ2XEAAAAAlKJci51MmzZNfn5+evfdd4sVcZLk7e2td999V35+fnrmmWfk5OSkmTNnqn79+lq/fn15To1K8N2ZFG1LOsXrBwAAAAA7V647clu2bNHtt98uJ6fS60EnJyd17txZGzZskHR14ZObb75ZcXFx5Tk1KsEzPW5Tala2OtarZ3YUAAAAADaUq5DLzMzUmTNnrrndb7/9puzsbOv33t7ecnEp16lRCXo3ufp8o7+Ht8lJAAAAANhSrqmV7dq107Zt27Rt27ZSt9m+fbu2bt2qdu3aWdtOnjyp2rVrl+fUAAAAAFBtlauQmzp1qvLz89W/f3+NHTtWGzdu1OHDh3X48GFt3LhR48aNU//+/WUYhqZOnSpJunjxouLj43XbbbdVyAWg4hw6e17f/npGaVlZZkcBAAAAYEO55jdGRkZqzpw5euqpp/Tee+9p4cKFRfoNw1CNGjU0Z84cDR06VJJ0/vx5vfjii/rLX/5SnlOjEjy+/mvtS/5Nq0eM0J0tW5odBwAAAEApyv2g2sSJEzVo0CAtWrRIO3fuVHJysiSpfv366t69u0aPHq2mTZtat2/atKmeeuqp8p4WlaCel6dCfLxV09XV7CgAAAAAbKiQFUeaNGmiGTNmVMShYKIPhg6UJPl7+JucBAAAAIAt5XpGDgAAAABQ9SqkkDt48KAmTZqk7t27q1WrVtaFTSRp586dmjdvnlJTUyviVAAAAABQ7ZV7auUbb7yhp59+Wnl5eZIki8Wic+fOFdlm0qRJcnNz09ixY8t7OlSi57b8Vz+nXtBLvf+iWxs2NDsOAAAAgFKU647cmjVrNGXKFAUHB2v58uVKSUmRYRhFtunWrZtq166tVatWlSsoKt+uU79q/c+J+i0jw+woAAAAAGwo1x25N954Q56entq4cWORlSn/qEOHDkpISCjPqVAFJt12i85nZql93bpmRwEAAABgQ7kKucIXe9sq4iQpMDBQ27dvL8+pUAXuaHF1HP09fExOAgAAAMCWck2tvHLlimrVqnXN7VJSUuTiUiFvOgAAAACAaq9chVyTJk30/fff29zmypUr+uGHH9SyZcvynApVIDHtog6dPa/0nByzowAAAACwoVyF3KBBg3TixAm98cYbpW4ze/ZsnT17VpGRkeU5FarAw19+pR7vf6xtSUlmRwEAAABgQ7nmO06dOlUfffSRnnzySe3Zs0dDhw6VJP32229asWKFVqxYoY8++khNmjTRo48+WiGBUXn83N1Uu6aHajg7mx0FAAAAgA3lKuT8/Py0adMmDRs2TJ999pliY2MlSevXr9f69etlGIZCQ0O1cuXKMj1LB3N9evdgSZK/h7/JSQAAAADYUu4VSFq2bKn9+/friy++0MaNG3XixAkVFBQoKChI/fr1U1RUlJy5wwMAAAAAFaZClpJ0cnLSkCFDNGTIkIo4HAAAAADAhgop5DIzM/Xtt98qOTlZOTZWPLz//vsr4nSoJK9s36UTaRf1bK/eCqtf3+w4AAAAAEpR7kLuueee05w5c5SZmVnqNoZhyGKxUMjZubgTJ7Uv+TeN7ngLhRwAAABgx8pVyM2ePVszZsyQs7OzBg4cqJYtW7KoiQObcEsHpWRmqU3t2mZHAQAAAGBDuQq59957Tx4eHtq+fbvCwsIqKhNMMvSmqy9t9/fwMzkJAAAAAFvK9ULwkydPKjw8nCIOAAAAAKpQue7I1atXT56enhWVBSb79dJlXcnPl5uzlzxr1DA7DgAAAIBSlOuO3L333qu4uDhlZGRUVB6YKHrlWnV6d5m2nDhhdhQAAAAANpSrkHvhhRd00003adCgQTp27FhFZYJJPFxc5OnqKmeLxewoAAAAAGwo19TKO+64QwUFBYqLi9NNN92kkJAQBQUFycmpeH1osVj09ddfl+d0qGRfjIiUJPl7+JucBAAAAIAt5Srk4uLirP+dn5+v48eP6/jx4yVua+EuDwAAAABUiHIVcomJiRWVAwAAAABQRuUq5EJCQioqB+xAzK69+uVCuqZ066mb69UzOw4AAACAUpRrsRPcWNYfS9SHBw7qZHq62VEAAAAA2FAtCrkdO3bojjvukL+/v7y8vNS5c2ctW7bsTx3r4sWLeuaZZ9SmTRvVrFlT7u7uatWqlSZNmqSUlJQKTl61Rndop/+vV1e1Dgw0OwoAAAAAG8o1tdIRfP7557rnnntUUFCgXr16KTAwUF9//bWio6P1ww8/6PXXXy/zsc6dO6du3brp6NGjqlevnvr16ydJ+uabb/Tmm2/qk08+0a5duxx2yunIdjdJYtVKAAAAwN7d0HfkUlNT9cADDyg/P1+xsbGKi4tTbGysDh8+rObNmysmJqbIypvX8o9//ENHjx7VoEGDlJiYqFWrVmnVqlVKTEzU0KFDlZycrOeee67yLggAAAAAdIMXcgsXLlR6eroGDx6syMhIa3vdunU1e/ZsSVJMTEyZj7dt2zZJ0rRp0+Tu7m5td3d31/Tp0yVJe/furYjopkjNylJKRqZy8vLMjgIAAADAhhu6kFuzZo0kadiwYcX6Bg4cKHd3d23atEnZ2dllOp6bm9s1twkICLi+kHbkntjVumnBIm0s5V2AAAAAAOzDDV3Iff/995KksLCwYn01atRQ27ZtlZ2drSNHjpTpeLfffrskadasWUWKv+zsbL388suSpAcffLC8sU1j+d8XAAAAAPt2wy52kp6erosXL0qSgoKCStwmKChI3377rZKSktS+fftrHnPKlCnaunWrVq1apSZNmqhLly6SpD179ig7O1uvv/66Ro0aZfMYOTk5ysnJKZJTklKzUpXnau6Uxk+GXV28xc/DT6lZqaZmwVVpWWlmR8AfMCb2hfGwP4yJ/fE2CuQkqcAo0AX+fjcdf0bsjz2NSXpW2V8DdsPekbt8+bL1v2vWrFniNp6enpKkS5culemYnp6eWrNmjf72t7/pzJkz1sVOzpw5o44dO6pHjx7XPMbMmTPl4+Nj/QoODi7TuQEAAACgkF3fkRs6dKgOHTp0XfssW7ZMnTt3rpQ8v/zyiwYOHKjk5GQtW7ZMAwYMkCStW7dOkyZNUkREhDZs2KCePXuWeoxp06Zp8uTJ1u/T09MVHBwsfw9/eXt4V0ru68XrB+wPY2J/GBP7wnjYH8bEfhRYrv7e3snixLjYEcbC/tjDmLjklr08s+tCLjExUQkJCde1T2ZmpiTJy8urSJu3d/EiKSMjQ5JUq1atMh07OjpaP/74o1asWKEhQ4ZY2++//355eXkpKipKU6ZM0Z49e0o9hpubW5kWTTHDgm/26WT6JT3epbva1qljdhwAAAAApbDrqZX79++XYRjX9RURESFJ8vb2lo+PjyTp1KlTJR6/sL0sL/A+efKk4uLi5ObmprvuuqtY/+DBg1WjRg3t3bu3zKtg2puVCcf03r4fdOLCBbOjAAAAALDBrgu58rr55pslSfv27SvWl5ubqx9//FHu7u5q2bLlNY9VWPR5enrK2dm5WL+zs7M8PT1lGIYuOGghNLLtTZrc9RY19zf/tjIAAACA0t3QhdzAgQMlSbGxscX6vvzyS2VnZ6tv375FXu5dmnr16kmSUlNTlZiYWKz/559/Vlpamjw9PRUYGFjO5OYY3bGdnu3ZVa0dND8AAABQXdzQhdyYMWPk7e2tVatWafny5db2lJQUTZ06VZL0xBNPFNuvdevWat26tU6fPm1ta9KkifUVBWPHjrW+2kCSLly4oLFjx0qShgwZIhcXu370EAAAAICDu6ErDn9/fy1evFjDhw/XsGHDFBERoYCAAG3atEkXLlzQ5MmTrc/U/V7hAiu5ublF2t9991317dtXGzduVPPmza3vkdu9e7fOnz+vxo0ba/bs2ZV+XZUlMzdXBYYhb7cCuTjd0DU+AAAA4NBu+H+tR0VFadu2berfv7++++47rV27Vs2bN9eSJUsUExNzXcfq0qWL9u/fr4ceekje3t7atGmTNm/erLp16+rpp59WfHy8GjRoUElXUvkG/2eFQt78l9YfO2Z2FAAAAAA23NB35Ap1795d69atK/P2hmGU2tesWTO9++67FRELAAAAAP6UalHIoWxWj4iUYUj1vFjsBAAAALBnFHKwcv/fIi3OPB8HAAAA2DX+xQ4AAAAADoZCDlaLvvtBL23dqUNnz5odBQAAAIANFHKw+s+PhzV3T7x+TkszOwoAAAAAG3hGDlZRN7VUl4b11cTX1+woAAAAAGygkIPVuFs6SJL8PfzNDQIAAADAJqZWAgAAAICD4Y4crAr+9yJ0wzBksVhMTgMAAACgNNyRg1X/Dz9T7dfe0pqjR82OAgAAAMAGCjkAAAAAcDBMrYRV7N2DlVdQoBDfemZHAQAAAGADhRysfNzdJEk1nJ1NTgIAAADAFqZWAgAAAICDoZCD1Uc/HNTrO/fq6PnzZkcBAAAAYANTK2G15PsftS/5N3ULbqIWAQFmxwEAAABQCgo5WN3Roqna1QlUIx8fs6MAAAAAsIFCDlaTbrtFkuTv4W9yEgAAAAC28IwcAAAAADgYCjkAAAAAcDAUcrC68+PP1fCNf2rt0aNmRwEAAABgA4UcrHLy85Wdl68CwzA7CgAAAAAbWOwEVh8OHajcggK18G9gdhQAAAAANlDIwaqul6ckycPV1eQkAAAAAGxhaiUAAAAAOBgKOVjFHkzQP/d+p+NpaWZHAQAAAGADUyth9a/477Uv+Td1qBespn5+ZscBAAAAUAoKOVj9pUkjNfXzVcNatcyOAgAAAMAGCjlYPd3jNkmSv4e/yUkAAAAA2MIzcgAAAADgYCjkAAAAAMDBUMjBKurTlWox/z19deyY2VEAAAAA2EAhB6v0nCtKzcpWbkGB2VEAAAAA2MBiJ7BaeFd/Zefnq23tYLOjAAAAALCBQg5WIb4+kqRabm4mJwEAAABgC1MrAQAAAMDBUMjB6ssjP2vJ/h+VdOGC2VEAAAAA2MDUSljN3ROvfcm/qWVAPYX4+podBwAAAEApKORg1T24oep7eaqel5fZUQAAAADYQCEHqxciukuS/D38TU4CAAAAwBaekQMAAAAAB0MhBwAAAAAOhkIOVvd9/qXav/2+Nh0/bnYUAAAAADZQyMEqJTNTpy9dVnZentlRAAAAANjAYieweuuOvsq8kqtODRqZHQUAAACADRRysGoVcHW1Sl93d5OTAAAAALClWkyt3LFjh+644w75+/vLy8tLnTt31rJly/7UsTIzMzVjxgy1adNGHh4eCggI0F//+lfFxcVVbGgAAAAAKMUNX8h9/vnnCg8P1/r169W+fXsNGDBAR48eVXR0tKZMmXJdx7p8+bLCw8M1ffp0nTlzRn379lWbNm309ddfq0+fPlq8eHElXUXV2HT8hD796bBOpaebHQUAAACADTd0IZeamqoHHnhA+fn5io2NVVxcnGJjY3X48GE1b95cMTEx13Unbdq0afr222/VqVMnHT58WKtXr9a2bdsUFxcnT09PjR8/XklJSZV3QZXs1R3faPyajdp/5ozZUQAAAADYcEMXcgsXLlR6eroGDx6syMhIa3vdunU1e/ZsSVJMTEyZjnXlyhXrHbd58+apdu3a1r5u3brp8ccf15UrV/Tmm29W3AVUsU7166p340aqXbOm2VEAAAAA2HBDF3Jr1qyRJA0bNqxY38CBA+Xu7q5NmzYpOzv7msc6dOiQMjMz5ebmpq5duxbr7927tyRp1apV5Uxtnll9wxU7fLC6BAWZHQUAAACADTd0Iff9999LksLCwor11ahRQ23btlV2draOHDlyzWNlZGRIknx8fGSxWIr1BwQESJISExOVzjNmAAAAACrRDfv6gfT0dF28eFGSFFTKHaagoCB9++23SkpKUvv27W0er3Aq5dmzZ5WVlSUPD48i/YmJidb//uWXX9S2bdsSj5OTk6OcnJwiOSUpNStVea7mvog7LSvN1POjOMbE/jAm9oXxsD+Mif3xNgrkJKnAKNCFrFSz41R7/BmxP/Y0JulZZb8hdMPekbt8+bL1v2uW8syXp6enJOnSpUvXPF7z5s1Vv359GYahpUuXFuv//YqVto43c+ZM+fj4WL+Cg4Ovee6q8vi67er/4Rf67y+nzI4CAAAAwAa7viM3dOhQHTp06Lr2WbZsmTp37lzhWSwWi55++mlNnDhRTz75pNzc3DR48GClp6drzpw5WrNmjVxcXJSXlycnp9Lr42nTpmny5MnW79PT0xUcHCx/D395e3hXeO7rcSYjWz+npcvJ4i5/D39Ts6AoxsP+MCb2hfGwP4yJ/SiwXP13iZPFiXGxI4yF/bGHMXHJLXt5ZteFXGJiohISEq5rn8zMTEmSl5dXkTZv7+JFUuFzb7Vq1SrTsR977DEdO3ZM8+fP1wMPPGBtt1gsmjFjhubOnauzZ8/Kz8+v1GO4ubnJzc2tTOerajG399blK1fUlcVOAAAAALtm14Xc/v37//S+3t7e8vHx0cWLF3Xq1CmFhoYW2+bUqatTCENCQsp0TIvFonnz5umBBx7QqlWrdPr0adWpU0dRUVEKDQ3V888/Lw8PDzVt2vRP5zZT+7pXnwP09+D1AwAAAIA9s+tCrrxuvvlmbdu2Tfv27StWyOXm5urHH3+Uu7u7WrZseV3H7dChgzp06FCkbdu2bcrPz1f37t3l4nJDf6wAAAAATHbDLnYiXX1XnCTFxsYW6/vyyy+VnZ2tvn37yt3dvdznmj9/viTp4YcfLvexzLI96ZRWHzmm5DIs/gIAAADAPDd0ITdmzBh5e3tr1apVWr58ubU9JSVFU6dOlSQ98cQTxfZr3bq1WrdurdOnTxdpT0lJ0S+//FKkLS8vT88//7xiY2PVu3dv3X333ZVwJVXjpW07NWrlOsUnJ5sdBQAAAIANN/QcQH9/fy1evFjDhw/XsGHDFBERoYCAAG3atEkXLlzQ5MmTFRERUWy/wgVWcnNzi7QfPHhQffr0UceOHdWkSRMZhqFdu3YpOTlZHTt2LPHOnyNpWztQrk5O8quAO5QAAAAAKs8NXchJUlRUlLZt26YZM2Zo9+7dunLlikJDQ/Xoo48qOjr6uo7VrFkzRUdHa8eOHVq3bp2cnJzUqlUrTZkyRY8++qhq1KhRSVdRNeYM6CPJPpZeBQAAAFC6G76Qk6Tu3btr3bp1Zd7eMIwS24ODg/X+++9XVCwAAAAA+FNu6GfkAAAAAOBGRCEHqwlrNqrP0k+0PSnJ7CgAAAAAbKCQg9XR1DR9/1uKLubkmB0FAAAAgA3V4hk5lM0rfXoqPSdHnRs2NDsKAAAAABso5GDVuWF9SZK/h6fJSQAAAADYwtRKAAAAAHAw3JGDJOmXixf1RcIhZeZeUVj9ELUMCFAjHx+zYwEAAAAoAYUc9MvFi2r11lvKzsuztrm7uCjh0Ucp5gAAAAA7xNRK6FxmZpEiTpKy8/J0LjPTpEQAAAAAbKGQAwAAAAAHQyEHAAAAAA6GQg4KrFlT7i5FH5d0d3FRYM2aJiUCAAAAYAuLnUCNfHyU8Oij+jk1WZLk4+6jwJo1WegEAAAAsFMUcpB0tZjzqpEvSfL38Dc5DQAAAABbmFoJAAAAAA6GQg4AAAAAHAyFHAAAAAA4GAo5AAAAAHAwFHIAAAAA4GAo5AAAAADAwVDIAQAAAICDoZADAAAAAAdDIQcAAAAADoZCDgAAAAAcDIUcAAAAADgYCjkAAAAAcDAUcgAAAADgYCjkAAAAAMDBUMgBAAAAgIOhkAMAAAAAB0MhBwAAAAAOhkIOAAAAABwMhRwAAAAAOBgKOQAAAABwMBRyAAAAAOBgKOQAAAAAwMFQyAEAAACAg6GQAwAAAAAHQyEHAAAAAA6GQg4AAAAAHAyFHAAAAAA4GAo5AAAAAHAwFHIAAAAA4GAo5AAAAADAwVDIAQAAAICDoZADAAAAAAdzQxdyGRkZ+uCDD/TYY4+pS5cucnNzk8Vi0QsvvFCu465evVrh4eHy9vaWt7e3IiIitGbNmooJDQAAAADX4GJ2gMp09OhR3X///RV6zDfffFOTJk2Si4uL+vbtKzc3N23YsEF33nmn5s+fr0cffbRCzwcAAAAAf3RD35GrVauWHnzwQb3zzjuKj4/XSy+9VK7jJSQkaMqUKXJzc9O2bdu0bt06rVy5Uvv371dAQIAmTZqkY8eOVVB6AAAAACjZDV3INWvWTAsXLtTYsWMVFhYmV1fXch1v7ty5ys/P17hx49S1a1dre8uWLfXss88qLy9Pc+fOLW9sAAAAALDphi7kKlrhc3DDhg0r1lfYtnr16irNBAAAAKD6oZArowsXLuiXX36RJHXs2LFYf3BwsAIDA5WUlKT09PSqjgcAAACgGrmhFzupSIVFnJ+fnzw9PUvcJigoSOfOnVNSUpLatWtX4jY5OTnKycmxfl9Y9KVmpSrPNa+CU1+ftKw0U8+P4hgT+8OY2BfGw/4wJvbH2yiQk6QCo0AXslLNjlPt8WfE/tjTmKRnlf2GEIVcGV2+fFmSVLNmzVK3KSzwLl26VOo2M2fO1Isvvlis3dY+VeVS1tUMzrnOJidBIcbE/jAm9oXxsD+MiR3KLJBLjlRQUMCsITvAnxH7Y09jUlgTGIZxzW3tupAbOnSoDh06dF37LFu2TJ07d66kROU3bdo0TZ482fr96dOnFRoaqvYt2puYCgAA3Ph+k9TE7BAAyuDSpUvy8fGxuY1dF3KJiYlKSEi4rn0yMzMrJYuXl9c1j5+RkSHp6msPSuPm5iY3N7cixz158qRq1aoli8VSQWn/nPT0dAUHB+vkyZPy9vY2NQuuYkzsD2NiXxgP+8OY2B/GxL4wHvbHnsbEMAxdunRJDRo0uOa2dl3I7d+/3+wIVo0aNZIkpaWlKSMjo8Tn5E6dOiVJCgkJKfNxnZycFBQUVDEhK4i3t7fpP8QoijGxP4yJfWE87A9jYn8YE/vCeNgfexmTa92JK8SqlWXk6+trLea+++67Yv0nT57UuXPnFBISYhc/AAAAAABuXBRy12HgwIGSpNjY2GJ9hW133XVXlWYCAAAAUP1QyJWgdevWat26tU6fPl2kfeLEiXJ2dtY777yj3bt3W9uPHj2qV155RS4uLpo4cWJVx60wbm5uev7554s8wwdzMSb2hzGxL4yH/WFM7A9jYl8YD/vjqGNiMcqytqUDGzp0qJKTkyVJv/76q06ePKmGDRtan0urX7++VqxYUWSfwkVHEhMT1bhx4yJ9c+bM0eTJk+Xi4qJ+/fqpRo0a2rBhg7KysjRv3jw99thjlX9RAAAAAKq1G76Qa9y4sZKSkkrtDwkJ0YkTJ4q02SrkJGn16tV67bXXrM/KdezYUVOnTtWdd95ZYbkBAAAAoDQ3fCEHAAAAADcanpEDAAAAAAdDIVfNxcfHa9asWYqMjFRQUJAsFovpLyavzjIzM7Vy5Uo9+OCDatWqldzd3eXp6ambb75ZL730ki5fvmx2xGrpjTfeUGRkpFq0aCEfHx+5ubkpJCRE999/vw4cOGB2vGrv/PnzqlOnjiwWi5o3b252nGopIiLC+vdHSV/r1683O2K1dPbsWU2ZMkWtWrWSh4eH/P39FRYWpieffNLsaNVKXFyczT8fhV8vvfSS2VGrnb1792r48OFq0KCBXF1d5evrq549e+r999+XI0xaZGplNTdkyBCtWrWqWDs/FuZYuHChHnroIUnSTTfdpLZt2yo9PV07d+7UpUuX1Lp1a23dulV16tQxOWn1EhgYqIyMDLVv314NGzaUJP300086cuSIXF1dtXz5cp6RNdGoUaO0bNkyGYahZs2a6dixY2ZHqnYiIiK0detWRUVFycvLq1j/E088oXbt2pmQrPqKj49X//79df78ebVp08b698nBgwd16tQp5eXlmR2x2jh8+LBmzZpVYl9+fr4+/PBDSdLmzZvVu3fvqoxWrX3++ee65557lJ+fr7CwMDVv3lxnz57V9u3blZeXp5EjR+qjjz4yO6ZtBqq1WbNmGdOnTze++OILIzk52XBzczP4sTDPkiVLjIcfftg4ePBgkfZff/3V6NixoyHJGDFihEnpqq///ve/RlZWVrH2BQsWGJKMunXrGrm5uSYkw6ZNmwxJxsMPP2xIMpo1a2Z2pGopPDzckGQkJiaaHQWGYaSkpBiBgYFGzZo1jVWrVhXr37NnjwmpUJK1a9cakozg4GCjoKDA7DjVRm5urlGnTh1DkvHRRx8V6Tt48KDh7+9vSDI2b95sUsKy4Y4cinB3d1dOTg535OzQrl271K1bN7m5uSk9PV01atQwOxIkNW/eXD///LO+//57tW/f3uw41UpWVpbatWsnNzc3rVy5Ui1btuSOnEkK78iVttozqtaECRP09ttva8GCBZowYYLZcWDDfffdp48//lhPP/20Zs6caXacauPHH39Uu3bt1KpVKx0+fLhY/8SJEzVv3jy9+uqrmjp1qgkJy8bF7AAAyubmm2+WJOXk5Oj8+fOqX7++yYkgSa6urpJEYW2CF198UcePH9fWrVut4wBUd1lZWfrwww/l6emp0aNHmx0HNmRkZFgfb/n73/9ucprqpawv/g4ICKjkJOVDIQc4iOPHj0u6Wjj4+/ubnAaS9MEHHyghIUEtWrRQixYtzI5Trfzwww+KiYnR6NGj1bNnz2LvA4U5Fi1apPPnz8vJyUktW7bUkCFD1KhRI7NjVSvffvutLl26pB49esjDw0Pr1q3Txo0blZ2drZYtW1oXdoD5li9froyMDHXs2FGhoaFmx6lWmjZtqmbNmikhIUEff/yxRo4cae07dOiQPvzwQ/n5+Wno0KEmprw2CjnAQcydO1eSNGDAgDL/JgkV67XXXtNPP/2kjIwMHTp0SD/99JMaNGigf//733J2djY7XrVRUFCgMWPGyNfXV7NnzzY7Dn5nxowZRb6fMmWKpk+frunTp5uUqPo5ePCgJKlOnTolLmj2zDPPaNGiRRoxYoQZ8fA7hYuccDeu6jk7O2vp0qW68847dd999ykmJkYtWrRQSkqKtm/frtDQUC1ZssTuf3HO6wcAB7B27VotWrRIrq6uevnll82OU2199dVXWrp0qWJjY/XTTz8pJCRE//73v9WpUyezo1Ur8+fP1969e/Xaa6/Z/bSX6qJXr1764IMP9PPPPyszM1MJCQl65ZVX5OLioueee876iyhUvrS0NEnSF198ofXr12vBggVKSUnRiRMnNGXKFGVlZSk6Olr79+83N2g1l5ycrK+//lrOzs4U1Sbp3r27tm7dqqZNm2rfvn365JNPtGXLFjk5Oalfv35q2rSp2RGvzeTFVmBnWLXS/hw6dMjw8/MzJBlvvvmm2XFgGEZaWpqxbds2o2/fvoYkY8aMGWZHqjaSkpIMLy8vIzw8vEh7YmIiq1baoa+++sqQZPj6+hqZmZlmx6kWXnnlFUOSIcl49dVXi/XffffdhiRj5MiRJqRDoZiYGEOSMWDAALOjVFsff/yx4ebmZoSHhxt79uwxLl++bBw5csS6CnJYWJiRnZ1tdkybuCMH2LHTp09rwIABSktL0+TJkzVx4kSzI0GyvjB07dq16tSpk6ZPn669e/eaHataeOSRR3TlyhW98847ZkdBGdx+++265ZZbdOHCBe3Zs8fsONXC79/jV9JiJ4VtW7durbJMKI5pleY6evSooqOjFRgYqC+//FKdO3eWp6enWrRooX/961+68847tW/fPi1evNjsqDZRyAF2KjU1VbfffruSkpI0evRovf7662ZHwh+4urrqnnvukWEYWr16tdlxqoUvv/xSNWvW1Lhx4xQREWH9uvfeeyVd/eVHYduZM2dMTgtJ1oWAkpOTTU5SPYSEhEiSatasqdq1axfrL3w9REpKSlXGwu8cOnRI3333nby8vDRkyBCz41RL//nPf5Sbm6sBAwYU+eVHoeHDh0uStm3bVtXRrguLnQB26PLly/rrX/+qgwcPKjIyUu+9954sFovZsVCCwMBASdLZs2dNTlJ9XLhwodS7CdnZ2da+7OzsqoyFUhQ+s+Xp6WlykuqhY8eOkq6+hiAnJ6fY4lipqamSVOI/XlE1PvjgA0lSZGSkatasaXKa6unUqVOSJB8fnxL7C9sL//9lr7gjB9iZnJwcDR48WN9884369+/Pioh2rrBoaNasmclJqgfDMEr8SkxMlHR1HArbeDG1+c6ePavt27dLksLCwkxOUz00atRIN998swzDKPEXHoVthQUfqpZhGPr4448lMa3STPXq1ZN09XUdJSl8XMLe/x6hkAPsSH5+vkaMGKHNmzerZ8+eWr58OS+aNtmOHTu0fv16FRQUFGnPzc3V/Pnz9cEHH8jDw0P33HOPSQkBc+3cuVMrV65Ufn5+kfYTJ05o6NChysjI0KBBgxQUFGRSwupn6tSpkq6+/uH3U1r379+vmJgYSdK4ceNMyVbdbd++XUlJSWrYsKH69Oljdpxqa/DgwZKuTp18++23i/Tt3r1bc+bMkSQNGzasyrNdD6ZWVnNr1qwpspz9lStXJEm33XabtW369OkaOHBglWerjt566y2tWLFC0tUpexMmTChxu9dff906pQ+V6+jRoxo9erQCAwPVqVMnBQQE6Ny5czpw4ICSk5Pl7u6uJUuWKDg42OyogCmOHDmi0aNHq169egoLC5Ovr6+SkpIUHx+v7OxstWnTRu+9957ZMauVkSNHasOGDVq6dKlCQ0PVrVs3ZWVlaefOncrJydFDDz2ku+++2+yY1VLhIicjR46UkxP3U8wSFhamKVOm6PXXX9eECRO0YMEChYaG6tdff9WuXbtUUFCghx9+WH379jU7qk0UctXc2bNnS1xJ7PdtPPtTdX4/F7uwoCvJCy+8QCFXRcLDw/XMM89o69at+uGHH3Tu3DnVqFFDjRs31rBhw/T444+refPmZscETNOlSxeNHz9ee/bs0d69e5WWliZPT0916NBBd999t8aPHy8PDw+zY1Y777//vrp3765//etfiouLk8ViUVhYmMaOHavo6Giz41VLOTk5io2NlST97W9/MzkNXnvtNXXr1k3vvPOO4uPjlZCQoFq1aik8PFwPPfSQQ7zfz2IYhmF2CAAAAABA2XFPFwAAAAAcDIUcAAAAADgYCjkAAAAAcDAUcgAAAADgYCjkAAAAAMDBUMgBAAAAgIOhkAMAAAAAB0MhBwAAAAAOhkIOAAAAABwMhRwAVEMWi0UWi0W+vr66cOFCidvMmjVLFotFL7zwQpVmK4u4uDhZLBaNGjXK7CiVYt68eWrTpo3c3NxksVgUERFxzX0Kx7S0r7IcAwDgOFzMDgAAMM/Fixf1xhtv6KWXXjI7Cv5n+fLlmjhxovz8/DRo0CB5enqqdevWZd4/Ojq6xPbrOUZFGDVqlJYuXaotW7ZQRAJAJaCQA4BqymKxyM3NTXPnztWkSZPk5+dndiRIWrlypSQpNjZWffr0ue79lyxZUrGBAAB2iamVAFBNOTk56eGHH1Z6erpef/11s+Pgf06dOiVJatq0qclJAAD2jEIOAKqxp59+Wh4eHpo/f77Onz9fpn0iIiJksVh04sSJYn0nTpwo8XmsF154QRaLRUuWLFF8fLz++te/ytfXV/7+/ho+fLi1eMnIyNDUqVPVuHFjubu7q23btoqNjbWZJzk5WaNGjVLdunXl4eGhsLAwLVu2rNTtU1NTNW3aNIWGhsrDw0M+Pj7q06ePvvzyS5vXk56ersmTJ6tJkyZydXXV//3f/13zs5KkkydPauzYsQoJCZGbm5vq1KmjyMhI7d27t8TPaMuWLZKkJk2aWJ9vi4uLK9O5rsehQ4c0atQoBQcHy83NTXXr1tW9996rn376qdi22dnZWrRokQYPHqymTZvKw8NDvr6+6tWrl/7zn/8U295isWjp0qWSpN69exd5Vq/w52bUqFE2r81isahx48ZF2pYsWWJ9bvPIkSO69957VbduXTk5OVnvZF7vtUnS2rVr1a9fPzVs2FBubm5q0KCBevTooRdffPHaHyQAmIRCDgCqsfr162vcuHG6dOmSXnvttUo/3549e9S9e3edPXtW/fv3V0BAgD777DP95S9/0cWLF9W7d28tXbpUt956q7p27aqDBw9q+PDh+uqrr0o8Xmpqqm677TatX79eERER6tmzpw4cOKDo6OgSF2k5cuSIOnTooFmzZikrK0v9+/fXLbfcoj179uiuu+4q9c5kVlaWwsPDtWTJEnXo0EGDBg0q01TUAwcOKCwsTO+++648PDwUGRmpFi1aaMWKFerWrZs+++wz67YdOnRQdHS06tatK0mKiopSdHS0oqOjVa9evTJ8umW3cuVKdezYUUuXLlVgYKAGDRqkJk2a6NNPP1Xnzp21bdu2ItufOHFCY8aM0bfffqvGjRtr8ODB6tChg3bv3q0RI0YU+6yjo6PVrFkzSVL//v2t1xEdHS0vL69y509ISNCtt96qb775Rr1791a/fv3k6ur6p65twYIFGjhwoLZs2aLmzZsrKipKbdu2VVJSkl0u9AMAVgYAoNqRZDg7OxuGYRhnzpwxatasaXh6ehopKSnWbWbOnGlIMp5//vki+4aHhxuSjMTExGLHTUxMNCQZ4eHhRdqff/55Q5IhyXj77bet7VeuXDH69u1rSDJCQ0ONPn36GJcvX7b2L1y40JBk9OrVq8jxtmzZYj1ev379iuzzzTffGF5eXoaTk5MRHx9vbc/LyzPatWtnSDJmz55t5OfnW/uOHj1qNGnSxHB2djYOHDhQ7HokGV27djXS0tJK/1D/oKCgwHq+qVOnGgUFBda+2NhYw8nJyfDy8jJ+/fXXIvvZ+nxtKcx5LYmJiYanp6fh5eVlbNy4sUjfunXrDFdXVyM4ONjIycmxtp87d87YuHFjkWswDMM4fvy40bhxY8PJyalY3ujoaEOSsWXLlhJzXKtfkhESElKk7f3337de56OPPmrk5eWV+9oaNWpkWCwWY+/evUW2LygoKDUbANgD7sgBQDVXt25djR8/XhkZGXr11Vcr9Vw9evTQuHHjrN+7urrqsccekyQdPnxYb7/9tjw9Pa39o0aNUmBgoHbt2qXc3Nxix3NyctL8+fOL7HPrrbfqkUceUUFBgf75z39a21evXq0DBw4oKipKTz75pJyc/v+/Aps3b66YmBjl5+frvffeKzH7vHnz5OvrW+ZrjYuL04EDB9SoUSPNmDFDFovF2hcVFaUhQ4bo8uXLWrx4cZmPWRalvX6gcErjm2++qYyMDM2cOVN9+/Ytsu+AAQM0fvx4nTx5UmvWrLG2BwQEqG/fvkWuQbo6/fPZZ59VQUGBVq9eXaHXYUvt2rX16quvytnZuUj7n7m2s2fPytfXV7fcckuR7XllAwB7RyEHANBTTz0lT09Pvf322/rtt98q7Ty33357sbbCRT0aN26sli1bFulzdnZWSEiIcnNzde7cuWL7dujQQa1atSrWPmLECEnS9u3brW0bNmyQJEVGRpaYrWfPnpKkb775plhf/fr1i/1D/1oKzz18+HDrtL/f+/vf/14sY0X4/TTGkqY0ludz+O9//6sZM2Zo/PjxGj16tEaNGmWdHnr06NEKvQ5b+vbtq5o1axZr/zPX1qlTJ6WlpenBBx8s9Rk6ALBHvH4AAKDatWvrkUce0ezZszVr1izNmTOnUs7TsGHDYm2FBUZJfb/vz8nJKdYXEhJS4j6Fi2T8+uuv1rbCO1L33Xef7rvvvlIzllQwNmrUqNTtS1N47j8u2PHHjKdPn77uY9tyrdcPFH4OpX3ehX7/OVy8eFGRkZHavHlzqdtfunSpzBnLq7Tx+DPXtmDBAg0ZMkSLFy/W4sWLVbduXYWHhysyMlLDhg0rdtcPAOwFhRwAQJL05JNP6p///KfeeecdTZ069U8do6CgwGb/76czXk9fRSjMNmDAAOuCIiUJDAws1ubu7l7hef44TbGqFH4Opb04vFCXLl2s//3UU09p8+bNCg8P14svvqi2bdvK19dXzs7O2rBhg/r37y/DMCo8Y2lKG48/c23t27fXwYMHtX79eq1du1ZxcXH69NNP9emnn6pr166Ki4tTjRo1rvMKAKDyUcgBACRdLWAee+wxzZw5UzNnzlSDBg1K3K7wH7WXL18u1nfy5MlKzfhHSUlJNtt/fw1BQUGSpDFjxigqKqrSsxWeu7SMZb17VNGCgoL0888/KyYmRgEBAWXaZ8WKFXJ2dtYXX3whb2/vIn3Hjx//Uzkq4+foz1ybdLUwHDJkiIYMGSJJ+umnnzRy5Ejt2rVLCxcu1IQJE/5UHgCoTDwjBwCweuKJJ1SrVi29++67pU75q1+/vqSrS/n/0caNGys13x/t37+/xGezCt9t1qNHD2tbv379JF0tSqpC4fNYn332mfLz84v1f/jhh0W2qyp/5nNIS0uTt7d3sSJOkj799NMS9yks1PLy8krsr4yfo4oa4zZt2uiRRx6RJP3444/lOhYAVBYKOQCAVUBAgB5//HHl5ORo0aJFJW4THh4uSYqJiVFmZqa1ffPmzXrzzTerIqZVQUGBHnvssSI54uPj9dZbb8lisWj8+PHW9qioKIWGhuqjjz7Syy+/XOyZO8MwtGPHDu3YsaNCskVERKhdu3Y6ceKEnnvuuSJTD1esWKHly5fLy8tLDzzwQIWcr6yeeOIJeXh4aMqUKVq+fHmx/pycHMXGxlpf0i5JLVu2VFpamj755JMi286ZM8f6AvM/KrwjmZCQUGJ/4c/R22+/XeRl9Pv379dzzz13fRf1P9d7bZmZmZo3b54uXLhQZLuCggKtX79ekhQcHPynsgBAZaOQAwAU8cQTT8jb21tZWVkl9o8YMUKtWrXSzp07ddNNN2nYsGG67bbb1K9fvyKFU1W48847dfDgQTVr1kz33HOPBgwYoK5du+rSpUt69tlni6w06eLiopUrV6pJkyZ67rnn1KhRI/Xr10/33Xef+vfvr3r16qlHjx7au3dvhWSzWCz66KOPFBAQoH/84x9q06aNRo4cqR49eigyMlJOTk5atGiR9c5UVWnevLn+/e9/Kzc3V1FRUWrRooUGDRqkESNGqFevXgoICNDdd99dZEGQadOmSZLuvfde9erVSyNHjlSbNm00ZcoUTZo0qcTz3HXXXbJYLJoyZYqGDBmiMWPGaMyYMdairXfv3goPD9exY8cUGhqqyMhI9erVS126dLG5GE1FXtuVK1c0ceJE1alTR127dtWIESMUFRWlxo0ba8WKFWrcuLEefvjhP5UFACobhRwAoAg/Pz/93//9X6n9Hh4e+vrrrzVixAhdunRJa9euVX5+vj755BPrdLSqEhAQoN27d6tv377asmWL4uLiFBoaqvfff18vv/xyse1btGih7777TjNmzFBQUJB2796t5cuX68iRI+rYsaMWLFigv/3tbxWWr127dtq3b58eeughXb58WbGxsUpISNCQIUO0Y8cODR8+vMLOdT0GDx6sH374QRMmTJDFYtHGjRu1Zs0apaSk6K677tKnn36q0NBQ6/b33Xef1qxZo9tuu0379+/XunXr1KBBA23evFmDBg0q8RydOnXShx9+qNDQUG3YsEGLFi3SokWLrKtbWiwWrVq1SuPGjZPFYtHatWuVmpqquXPn6rXXXquSa/Py8tKCBQt011136ezZs/riiy+0efNm+fn56cUXX1R8fPx1PWsHAFXJYlTkMlMAAAAAgErHHTkAAAAAcDAUcgAAAADgYCjkAAAAAMDBUMgBAAAAgIOhkAMAAAAAB0MhBwAAAAAOhkIOAAAAABwMhRwAAAAAOBgKOQAAAABwMBRyAAAAAOBgKOQAAAAAwMFQyAEAAACAg/l/mbxm74kXICoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print(f\"Features selected: {est1.selected_features_names_}\")\n", "dropped_features = df.drop(est1.selected_features_names_raw_, axis=1).columns\n", "print(f\"Features dropped: {dropped_features.to_list()}\")\n", "\n", "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est1.completed_trials_summary_[est1.completed_trials_summary_[\"Step\"].str.contains('Feature Selection')]\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "trials.sort_values(by=['# Features'],ascending=True, inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "n_features = trials['# Features'].tolist()\n", "\n", "y_margin = 0.10 * (max(scores) - min(scores))\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Feature Selection Trials\")\n", "ax.set_xlabel(\"Number of Features\")\n", "ax.set_ylabel(est1._inferred_score_metric[0].name)\n", "ax.grid(color='g', linestyle='-', linewidth=0.1)\n", "ax.set_ylim(min(scores) - y_margin, max(scores) + y_margin)\n", "ax.plot(n_features, scores, 'k:', marker=\"s\", color='teal', markersize=3)\n", "ax.axvline(x=len(est1.selected_features_names_), color='orange', linewidth=2.0)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "95fd3fff", "metadata": {}, "source": [ "\n", "#### Hyperparameter Tuning\n", "\n", "Hyperparameter Tuning is the last stage of the AutoMLx pipeline, and focuses on improving the chosen algorithm's score on the reduced dataset (after Adaptive Sampling and Feature Selection). We use a novel iterative algorithm to search across many hyperparameter dimensions, and converge automatically when optimal hyperparameters are identified. Each trial represents a particular hyperparameter configuration for the selected model." ] }, { "cell_type": "code", "execution_count": 14, "id": "d1a905d1", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:28.561609Z", "iopub.status.busy": "2025-04-25T10:38:28.561051Z", "iopub.status.idle": "2025-04-25T10:38:28.804767Z", "shell.execute_reply": "2025-04-25T10:38:28.804181Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5kAAAKBCAYAAADdpG9kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAACubklEQVR4nOzdeVhUZf8/8PewDPsiu8rqAuSGmmLumqYmKi6klSZuT2llipbLU19T03pyt6yn0sxIKxVBSy3DLTW3xBVT3AA3FFkHZJ85vz98mB/jDDhwBoY5vl/XxXXFfe5z35+ZD2N8OOfct0wQBAFEREREREREBmBm7ACIiIiIiIhIOlhkEhERERERkcGwyCQiIiIiIiKDYZFJREREREREBsMik4iIiIiIiAyGRSYREREREREZDItMIiIiIiIiMhgWmURERERERGQwLDKJiIiIiIjIYFhkEhERERmYTCaDTCbDwYMHjR1KvZCSkqJ+T1JSUgw6tr+/P2QyGTZs2GDQcYmo5lhkEhEZ0Pz589W/SD1JxV+6+MsRGcP8+fMxf/58g//Sb0i9evVSf06q+zVu3Dhjh28yxo0bV+P3uVevXsYOn4jqGQtjB0BERETGsWDBAgCPCjl/f3/jBlMJFxcXeHp6arWXlJQgOzsbANCgQQPI5XKtPk5OTrUeX2WCgoIAALa2tkaLoTqcnJx0vs9KpRIZGRkAAEdHR9jY2Gj1cXFxeeL4lpaW6vfE0tJSZLREVN+xyCQiIqJ6KzY2Vmf7wYMH0bt3b3Wf+nY17fLly8YOoVpWr16N1atXa7WnpKQgICBA3aemV4cbN25scu8JEdUcb5clIiIiIiIig2GRSURUz1y+fFn9rNPJkyer7Pvaa69pPRP1+AIbV69exbhx4+Dt7Q0rKyv4+vpi8uTJuHv3bpVjq1QqbNq0CQMHDoSnpyfkcjnc3d3Rr18//PTTTxAEQed5FRfhyM/Px7x589C6dWs4ODhoLPpR/vxqeexbtmxBz5494eLiAjs7Ozz77LNYs2YNlEqlznkKCgrw008/YezYsWjbti3c3d1hZWWFRo0aYejQofjtt98qfW0bNmyATCZT3yJ64MABDB06FA0bNoS5ubnG1Zrk5GR8+umnGDBgAAIDA2FnZwd7e3u0aNEC06dPx82bNyudp/x5wvnz56OsrAwrV65Eu3btYG9vDw8PDwwdOhTnzp3TeE2LFi1Cq1atYGdnB1dXV4waNQrXr1+vdA7g0a2jX375JXr37g03NzfI5XJ4eXkhPDxc5/tQ/vxdud69e2s8Y6fr1tna/nkwNH0W3qmYn6rOz8vLwwcffIDg4GDY2NjA1dUVgwYNwokTJ6o9/+Ofz/v372PatGkICAiAtbU1PD098fLLLz/xql9qaiomTpyo/lx7e3tj/PjxuHbtWq0usvO48p+lcePGQRAErFu3Dt26dYOrq6vG8+ZPiun48eOYPXs2unfvDj8/P1hbW8PZ2RnPPfccPv30U+Tn59covsLCQixbtgydO3dGgwYNYGlpCXd3d7Ro0QKRkZHYtm2biFdPRJUSiIjIYD788EMBgKDPP6/Jycnqvt99953GsZ49ewoAhIkTJ1Z6flZWlmBtbS0AEDZt2qRz3J9//llwcHAQAAj29vaCjY2N+piLi4uQkJCgc+zMzEyhR48e6r4ABCcnJ43vhwwZIhQXF2ud6+fnJwAQli1bJgQGBgoABLlcLjg7OwsAhOTkZI33qmfPnsKsWbMEAIJMJhMaNGggmJmZqefp37+/UFRUpDXPd999p+4jk8kEJycnwdbWViPGmTNn6nx95ef6+fkJq1atEmQymfo1WlpaCpGRkVq5KH8drq6uGvE5OTkJhw8f1jlP+bn//ve/hT59+qjHsLOzU59vb28v/P3330JGRobQrl07AYBgbW2tkSsPDw8hNTVV5xwpKSlCy5Yttd6Liu/D5MmTNc555513BE9PT/XxBg0aCJ6enuqvDh061PnPQ3UdOHBAPfeBAwe0jld1rFx5fj788MNKz//xxx+FZs2aqfNS8WdMLpcLe/bs0Tl2ZfNX/Hzu3LlT8PDwEAAItra2gpWVlfqYo6OjcPbsWZ1jHz16VP25BiDY2NgI9vb26vO2bNmiPlbT91dXvI//OyUIghAZGSkAEMaOHSuMGDFCACCYmZmpP8fl51QcR1dMFX+WbG1thQYNGmi0tWjRQrh//77OGMt/xh6PT6FQCCEhIRqfDWdnZ8HCwkLd5ufnJ+r9ISLdWGQSERmQoYrMn3/+WQAg2NnZCQqFQuf5n332mQBAcHV11SjCKo7r5OQktGnTRjhx4oQgCIKgUqmEPXv2CL6+vgIAwdfXV2v8srIy9S/fbdu2FX799Vfh4cOHgiAIQn5+vvD999+rfzGePn26Vlzlv/DZ29sLXl5eQlxcnFBSUiIIgiDcunVLPVb5e1VerLz99ttCenq6IAiCkJubK3z00Ufq4i8qKkprnu3btwvvvvuucOTIEfWYgiAId+/eFRYsWCBYWloKAIQdO3ZonVteZFpbWwvm5ubCuHHjhJs3b6pf/7Vr19R9p02bJnzxxRfClStXBKVSKQiCIJSWlgonTpwQBgwYIAAQGjVqJBQUFGjNU/4+Ojs7C66ursLWrVuFkpISQaVSCSdPnhSaNGkiABC6dOkiDBs2TPD39xf27NkjKJVKQalUCnv37hXc3d0FAMLo0aO1xs/PzxeCg4MFAEKvXr2EgwcPqn8WcnJyhBUrVqiLj1WrVmmdr08hVlc/D9VVV0VmgwYNhBYtWgj79+8XlEqlOndBQUHqIqX850Kf+St+Phs0aCB07dpV+PvvvwVBePRzFR8fLzRs2FAAIHTv3l1r3OzsbPXxJk2aCPv37xdUKpUgCIJw8uRJISQkRKNAq6si097eXrCwsBCWLVsm5ObmCoIgCHl5ecLdu3e1xtEV0+DBg4XNmzcLaWlp6raCggIhNjZW/V4PGzZMZ4yVFZkfffSRADz6g9q2bdvUnw2lUincuXNHiI6OFv71r3/V4F0hoidhkUlEZEAVi8yKV4Z0fbm5uVX6y1tJSYn6F/evvvpK51ytW7cWAAgzZszQaK/4y5yrq6vOv/7/888/glwuFwAIS5Ys0TgWHR0tABCCg4OFnJwcnXOfOnVKkMlkglwu1xq//Bc+c3Nz4fTp03q9V6+99prOPh988IEAQLCwsBDu3LlT6Vi6LF26VAAg9OnTR+tYxaugw4cPr9a4FZWVlQlt2rQRAAg//PCD1vGKV0F1Xe3ct2+fxtWoq1evavX59ttv1cfLi7NyCxcuFIBHV4MfP1YuNjZWACC4ubkJpaWlGsf0KcTq6uehuuqqyHR3d9f5GTp//ry6z5EjR/Sev+LnMzg4WOcfJ3755Rd1n1u3bmkcKy+crK2tdf68PHjwQOPflroqMgEIn332mV7jVDem27dvC1ZWVoJMJtN5Rb+yIvPFF18UAAgff/xxteYjIvH4TCYRUS25f/9+lV/l2wLoYmlpiYkTJwIAvvnmG63jx48fx4ULFwAAr7/+eqXjTJ48GR4eHlrtzzzzDCIiIgAAP//8s8axb7/9FgAwZcqUSreAePbZZ9GyZUuUlJTgwIEDOvsMGDAA7dq1qzS2iubNm6ez/b333oONjQ3Kysqq/exUWFgYAODYsWOVPtcJAHPnzq3WuBWZm5tjwIABAIAjR45U2q9bt27o1q2bVnvPnj1hZWUFAIiIiECzZs20+vTv3x/Ao2fLrl69qnGsPFczZsyodFuIoUOHwtHRERkZGUhISNDjVWkyxs9DffL666/r/Ay1bt1averq+fPnazT2zJkzdW4J8uKLL6q3ZCn/nJfbunUrAGDUqFE6f17c3NwwZcqUGsUjRoMGDfDGG2/UytiNGzdGSEgIBEHA0aNH9T7P2dkZAJCWllYrcRFR5VhkEhHVEuHR3SKVfiUnJ1d5/uuvvw4zMzOcPn0ap0+f1ji2du1aAI+KlPK953R5/vnnn3js/PnzKC0tBfBoT7zjx48DeLQwj5eXV6VfSUlJAB4tQKJL165dq3x95Xx8fHT+sgw82pfv2WefBQCcOnVK6/j9+/fx4YcfonPnznB1dYWFhYV6cZEWLVoAeLSYTvl+io+zsbFB+/btnxjj4cOHMW7cOAQHB8Pe3l5jkZwlS5YAAG7fvl3p+aGhoTrbzc3N4ebmBgDo2LGjzj4V9y6s+Dru3Lmjfu8nTpxYaZ4aNmyoXjSlslxVxhg/D/VNp06dKj3WqFEjAEBWVpZBx7awsIC7u7vW2CUlJbh48SKAR5/9yhhjO5eOHTvq3KtUXyqVCj/++COGDBkCX19f2NjYaHzOyhdBq+pz9rhBgwYBANasWYNXXnkF27dvr/KPe0RkONwnk4ionvL390f//v3x22+/4ZtvvsFXX30FAFAoFNi8eTMAPPHKQePGjZ94rKysDFlZWfD09ERWVhaKi4sBoNLC7HEFBQU623Vd/alujBWPp6ena7QfO3YMAwcORE5OjrrN3t4etra2kMlkGpvIP3z4UF3MVeTq6gozs6r/3jp79mx1IQk8KgwbNGig/oU6Pz8fDx8+xMOHDysdw8HBodJjFhYWVfYpPw5A/ccAABqrA+v7i3NluaqMMX4e6ht9clcxL7U5dlZWlvqqfHmBq8uTPlO1QUx+CwoKMGjQII2r4HK5HC4uLuor9FlZWSgtLa3yc/a4V199FSdPnsTnn3+On3/+WX3XRrNmzdCvXz9MmDBB/UcsIjIsXskkIqrHym97+/HHH9W/XJX/t6urK4YPH27Q+SreVvrbb7898WqsIAg6t38AHhVjtaWsrAyvvPIKcnJy0LZtW+zevRsKhQJ5eXm4f/8+7t27p74CB6DS7TWeFGN8fLy6wHzzzTdx4cIFFBcXIysrC/fu3cO9e/cQFRVV5Ry1pWKuLl26pFeuKm7NUt056vPPw9Oo4hY09YGY/C5evBgHDhyAjY0NVq5cidTUVBQVFSEzM1P9OSu/6lvdz9mqVauQlJSEjz/+GC+++CKcnZ1x7do1fPnll+jQoQOmT59e47iJqHIsMomI6rGBAwfCx8cHeXl56r/Cl98qO27cOPXzfJW5c+fOE49ZWFjAxcUFANS3nALVv7WypqqKseLxildKjh07htTUVJibm2Pnzp148cUXta4K3bt3T3Rs5e95//798cUXX6BVq1Zav0wbYp6a8PLyUv93beXKGD8PhlKep6Kiokr75Obm1lU4BuHi4qJ+XVXtc/ukz1R9U/45mzdvHqZPnw5fX1+tIlrM56xZs2aYO3cudu/ejczMTBw7dgxDhw4FAKxevRq//PJLjccmIt1YZBIR1WPm5ubqhX2++eYbjeczq1rwp1xli7BUPNamTRv1LWmWlpbq5wd//fVXUbHr69atW7h+/brOY3l5eerFajp06KBxDgC4u7tXemvg3r17DRIbgEoXrBEEAfv37xc9T034+/urX3tNc1X+i3xlV4eM8fNgKA0aNADw/3P4uLy8PFy6dKkuQxJNLpejZcuWAICDBw9W2q+qY/XRkz5nKSkpuHbtmkHmMjMzw3PPPYeYmBj4+voCeHTHAhEZFotMIqJ6buLEibCwsMDJkyfVt2b27NkTgYGBTzz3q6++0vm8XlJSEmJiYgA8WqWyovLidffu3di9e3eV49d0wZPHffTRRzrbly9fjsLCQlhYWGDEiBHq9vJVTstX6n3c7du38dlnn4mOq3yec+fO6Tz+1Vdf4caNG6Lnqal//etfAB6tAHvmzJkq++rKlaOjIwBoPNf6OGP8PBhCSEgIAFS6KvGyZcvUz5uakvJVoTdv3qzzjzOZmZnq57dNxZM+Z3PmzKnRuFXl19zcXP1c9ZOeyyai6uOnioionmvYsCHCw8MBAIcOHQLw5AV/ypWWluKFF17A33//DeDRFau9e/eif//+KC4uho+PDyZPnqxxzpgxY9C3b18IgoBhw4Zh0aJFGrfmPXz4EAcOHMBbb72FJk2aiH59Tk5O+P777zFt2jR1QZyXl4ePP/4YCxcuBAC89dZbGguddOvWDXZ2dhAEASNHjsSVK1cAPHqGcM+ePejVq5dBnlkr357kt99+w0cffaR+LjYnJwcff/wxpk6dCldXV9Hz1NTMmTPRunVrFBUVoXfv3lizZg0yMzPVx3NycvDbb79h7Nix6N69u9b5rVq1AgBs2rSp0gV76vrnwVBeeeUVAMCePXvw4YcfQqFQAHi0SNK///1vLFq0SL3FhSl5++234enpiaKiIgwYMAB//vmn+kr0qVOn8MILL6CsrMzIUVZP+eds0aJFiI2NVcefnJyMV199FVu2bFFfma6OTp064Z133sHBgwc1Fgy6e/cupk6dqr46OnDgQAO8CiLSUBubbxIRPa0+/PBD9YbjT/KkTc4r2rt3r7qvq6urUFRUpNe4P//8s+Dg4CAAEOzt7QVbW1v1MWdnZ+Hvv//WOUZubq4waNAgdV8AgqOjo+Ds7CzIZDJ1m4WFhda5lW2M/rjy96pnz57CrFmzBACCTCYTGjRoIJibm6vn6Nu3r1BYWKh1/n//+1+N+Ozt7QVra2sBgODm5qaxof3jm79/9913AgDBz8+vyhhLSkqE7t27q8cpj8/MzEwAIISFhQkffPCB+nU8rmfPngIA4cMPP6x0Dn3er/L5Dxw4oHXszp07wnPPPacRo7Ozs+Do6Kjx/jRr1kzr3B9++EF93NLSUmjcuLHg5+cndO3aVaNfXfw8VNeBAweqfF/KysqE3r17a+VOJpMJMplMWLp0aZX5qWrscjU5v+Ln8/Gfy4qqet8OHz4s2Nvbq8extbVVf+/s7Cxs3bpVfSwtLa3SOfTxpH+nIiMjBQBCZGSk3uM8/rpTUlIET09PjZ8jJycn9fcff/xxle91Ze9VeXvFz4WdnZ3Gz3FUVFT13hAi0guvZBIRmYDnn39evTiPPgv+lOvUqRNOnTqFsWPHwsnJCWVlZWjcuDH+9a9/4cKFCxrPOVbk6OiIX3/9Fbt378aoUaPg6+uL4uJiFBQUoHHjxujXrx8++eQT9d6IYn366af4+eef0a1bNwiCALlcjrZt22L16tX4/fffYW1trXXO5MmTsWvXLvTq1Qv29vbq1zZ16lScO3cOrVu3Fh2XpaUl/vjjD3z44YcIDAyEpaUlBEFAaGgo/vvf/+KXX34x+qqpjRo1wpEjR/DTTz9hyJAhaNiwIQoKClBSUgJ/f38MHjwYq1atUl8Fr2jMmDH44Ycf0K1bN9ja2iItLQ2pqalaexHW9c+DIZibm2PXrl1YsGABgoODIZfLIZPJ0K9fP8THx+Pdd981dog11q1bN5w/fx7jx49Ho0aNUFZWBmdnZ0yYMAGnT59G06ZN1X1N4Wqtn58fTp06hYkTJ6rvWLC2tsagQYOwZ88ezJ07t0bj/vzzz1iwYAH69OmDgIAAlJSUoLS0FH5+fhg1ahT27duHFStWGPKlENH/yAShjtdcJyKiaktISFAXhElJSVU+j5mSkoKAgAAAj2438/f3r4sQq23+/PlYsGABevbsaXILlRDVZ2vXrsXrr7+OJk2aVLqoFhFRbeKVTCIiE/D5558DeHRFU58Ff4jo6VRUVIRVq1YB+P/POhIR1TUWmURE9dzu3buxceNGADDpW/yIyDB+/vlnfPDBB0hMTERJSQkAoKysDIcOHcLzzz+Pf/75B9bW1pg2bZqRIyWip5WFsQMgIiJtt2/fRrdu3VBQUIAHDx4AAAYNGoQXX3zRyJERkbHdu3cPixcvxuLFiyGTydCgQQPk5+erC065XI7vvvuOdz0QkdGwyCQiqofKysqQmpoKmUwGb29vREREVLqXJBE9XQYNGoQHDx7g4MGDSE1NRUZGBiwtLdGkSRP07t0b06dPZ4FJREbFhX+IiIiIiIjIYPhMJhERERERERkMb5elKqlUKty9excODg6QyWTGDoeIiIiIiIxEEATk5eWhUaNGMDOr/Holi0yq0t27d+Hj42PsMIiIiIiIqJ64desWvL29Kz3OIpOq5ODgAODRD5Kjo2OdzJlVmAUAcLFxqZP5qHYxn9LBXEoL8ykdzKW0MJ/SIcVcKhQK+Pj4qGuEyjwVReZff/2FxYsX4/jx4ygpKUGLFi3w9ttvY+zYsdUaJyEhAb/++iv++OMP/PPPPygoKICnpyd69uyJWbNmoU2bNpWee/HiRcyfPx8HDx5Efn4+mjVrhokTJ+Kdd96p9FJzdnY25s+fj+3bt+PevXvw8vLCsGHDMH/+fDg7O+s8R6lU4rPPPsP69etx7do12Nvbo3fv3liwYAGeeeaZar1eAOpbZB0dHeusyCyzLHs0p03dzEe1i/mUDuZSWphP6WAupYX5lA4p5/JJj9FJfnXZbdu2YdSoUVCpVOjRowfc3Nywb98+5OTkYObMmVi2bJle45SVlcHS0hIA4OLigk6dOsHOzg5nzpzB9evXIZfLsWnTJkRERGide+zYMfTp0weFhYUIDQ2Fv78/Dh06hHv37uGll17C5s2btRKVkZGBzp0749q1a2jSpAk6dOiAixcv4uLFiwgMDMSxY8fg4qL5VxGVSoWIiAjExcXB2dkZffr0QUZGBg4dOgQbGxscOHAAoaGh1Xr/FAoFnJyckJubyyuZVCPMp3Qwl9LCfEoHcyktzKd0SDGXetcGgoRlZmYKjo6OAgBh27Zt6vZ79+4JzZo1EwAIBw4c0Gus0tJSoWPHjsL27duFsrIydbtSqRTef/99AYDg4OAgPHjwQOO8kpISISAgQAAgrFixQt2el5cndO7cWQAgfPfdd1rzjR49WgAgDB8+XCgtLVW3T506VQAgREZGap2zdu1aAYDQvHlz4d69e+r2mJgYAYDQrFkzjbH0kZubKwAQcnNzq3WeGJkFmUJmQWadzUe1i/mUDuZSWphP6WAupYX5lA4p5lLf2kDSW5isW7cOCoUC4eHhGD58uLrd09MTS5YsAQAsX75cr7EsLCxw8uRJhIeHw9zcXN1uZmaGjz76CEFBQcjLy8OuXbs0zouLi0NycjJCQkIQFRWlbre3t8eaNWt0xpCWloaffvoJcrkcX375JSws/v9dzUuXLoW7uzs2btyI9PR0jfNWrFgBAFiyZAk8PT3V7SNGjMCQIUNw7do17NixQ6/XS0REREREVBOSLjLLCz5dt7CGhYXB2toae/fuRVFRkah5ZDKZ+nnMu3fv6h1D+/bt0aRJEyQmJiIlJUXd/vvvv0OlUqF79+4axSIAWFlZYfDgwVAqldi9e7e6PTk5GZcuXYKNjQ3CwsK05iqf/9dff63ZiyQiIiIiItKDpIvMc+fOAXhUzD1OLpejVatWKCoqwpUrV0TPdePGDQCAl5eX3jFUbD9//rxBzmnVqpX62dEnnUNERERERGRokl1dVqFQIDc3FwAq3cPF29sbp06dQmpqapUrwz7JkSNHkJCQALlcjgEDBmgcu3nz5hNjAIDU1NQ6P0eX4uJiFBcXq79XKBQAHj24XL5CVm3LLsyuk3mobjCf0sFcSgvzKR3MpbQwn9IhxVwqChV69ZPslcz8/Hz1f9va2ursY2dnBwDIy8ur8TwKhQITJkwAAERFRaFhw4Y646hODHV1ji6ffPIJnJyc1F8+Pj5V9iciIiIiIqqoXl/JHDZsGC5dulStc6Kjo6u9TUdNKZVKjB49GlevXkVoaCgWLlxYJ/PWprlz52LGjBnq78s3XHWxcanzPX6ktNwzMZ9SwlxKC/MpHcyltDCf0iGlXFqU6lc+1usiMzk5GUlJSdU6p6CgAMCj1Vsrtunax+Xhw4cAAAcHhxrFN2XKFOzcuRNBQUHYtWsX5HK5Vh97e3tkZ2er49InhvLYa/scXaysrGBlZVVlHyIiIiIiosrU69tlz549C0EQqvXVq1cvAICjoyOcnJwAALdv39Y5fnm7n59ftWObM2cO1q5dCx8fH8THx8PNzU1nP19f32rHUFfnEBERERERGVq9LjLFCgkJAQCcPn1a61hpaSkSExNhbW2NwMDAao27ZMkSfPrpp/Dw8EB8fHyVzy1WFUPF9ooLD4k5JzExEaWlpXqdQ0REREREZGiSLjLL94uMiYnROrZz504UFRWhb9++sLa21nvMtWvXYvbs2XB2dsaePXsQFBRU4xjOnDmDGzduoFWrVvD391e3DxgwAGZmZjh8+DDS09M1zikuLsavv/4Kc3NzDBw4UN0eEBCAZ555BoWFheq9OSsqn3/w4MF6v1YiIiIiIqLqknSROWnSJDg6OmLHjh2IjY1Vt6enp2PWrFkAgJkzZ2qdFxwcjODgYNy5c0ejPSYmBpMnT4a9vT12796Ntm3bPjGGYcOGISAgAOfOncPKlSvV7Q8fPsRbb72lM4aGDRvilVdeQUlJCd58802Ulf3/rUNmzZqFBw8eYMyYMfDw8NA4r3zBnlmzZmkUp7Gxsfjll1/QrFkzhIeHPzFmIiIiIiKimpIJgiAYO4jatG3bNowcOVL9vKarqyv27t2LnJwczJgxA8uXL9c6RyaTAXi08FD5Fcb09HT4+PigpKQErVu3Rvv27XXON3ToUAwdOlSj7ejRo+jbty8KCwvRqVMn+Pn54fDhw0hLS0NERAS2bNminrNcRkYGnnvuOVy/fh1NmzZFhw4dcPHiRSQmJqJ58+Y4fvw4XFw0V6pSqVSIiIhAXFwcGjRogD59+iAjIwN//vknrK2tceDAAXTq1Kla759CoYCTkxNyc3N1Lp5UG7IKswBIayWupxnzKR3MpbQwn9LBXEoL8ykdUsylvrVBvV5d1hBGjBiBQ4cOYdGiRTh+/DhKSkrQokULvP3224iMjNR7nIKCApSUlAAALly4gAsXLujs5+/vr1VkdunSBX///Tc+/PBDHDx4EOfOnUPTpk3x3nvvYdq0aVoFJgC4ubnh5MmTmD9/PrZv3464uDh4enrinXfewYIFC+Ds7Kx1jpmZGbZu3YrVq1dj/fr12LlzJ+zs7DBixAgsWLAALVq00Pv1EhERERER1YTkr2SSOLySSWIxn9LBXEoL8ykdzKW0MJ/SIcVc6lsbSPqZTCIiIiIiIqpbLDKJiIiIiIjIYFhkEhERERERkcGwyCQiIiIiIiKDYZFJREREREREBsMik4iIiIiIiAyGRSYREREREREZDItMIiIiIiIiMhgWmURERERERGQwLDKJiIiIiIjIYFhkEhERERERkcGwyCQiIiIiIiKDYZFJREREREREBsMik4iIiIiIiAyGRSYREREREREZDItMIiIiIiIiMhgWmURERERERGQwLDKJiIiIiIjIYFhkEhERERERkcGwyCQiIiIiIiKDYZFJREREREREBsMik4iIiIiIiAyGRSYREREREREZjIWxAyAiIiIiotp1MzcXGQUF6u/dbG0BQKvN18lJZ19DtdfmnPXt9VzPSgcAOFkXG3RsU8Aik4iIiIhIwm7m5iJozRoUlZWp26zMzQEAxUqlus3awgL7x45F7++/17t9z5gx6PfDD1rt20aOxPDNmzXarczMIMhkKHmsb+zIkRj2WF9rc3NsHD4co2NjNccwN8cmHe1yMzPgsbEr61vePiY2FkWPtW8fNQrDtmzReq/2jh2LF374QaNdbmYGmUymNXb8a6+h38aNmn3NzXEwMhLPR0drjX2gknZAOz9Jb79tEoUmi0wiIiIiIgnLKCjQKGAAzeKlXFFZGW7k5Ggdq6r96M2bOtsX/vmnVnuxSqVzzk+OHNEeQ6lExNatWv2LK2kv0TF2ZX2ral9y9KjO9+p0WppWe2VzHr9zR7uvUokbOTk6x66s/XFFZWXIKCgwiSKTz2QSEREREZFBWchk+vc1012SWFaz3RBjVBa3/q+men2likUmERERERHViI+zs872KaGheo8xsX17ne3fDR1arXZDjBHZrp3Odpf/PSOpj4YODnr3lSoWmUREREREEuZmawtrC82n5KzMzdXP/ZWztrBAE2dnrb6Gaq/NOZ+W1+NWjWLXmGSCIAjGDoLqL4VCAScnJ+Tm5sLR0bFO5swqzAIAuNi41Ml8VLuYT+lgLqWF+ZQO5lJaDJ1PlSDg1N278LSzQ2Zhobq9Pq7GWp/HrtnqsmkAACdrJ8msLqtvbcAik6rEIpPEYj6lg7mUFuZTOphLaTF0PvcnJ6NPdDS6+PjgyPjxkFXjWUkSR4qfTX1rA94uS0REREQkUVcyM2FjYYE2Hh4sMKnOcAsTIiIiIiKJmtyhA15u1Upriwyi2sQik4iIiIhIwpytrY0dAj1leLssEREREZHECIKAe/n5xg6DnlIsMomIiIiIJOZASgq8V6zAuO3bjR0KPYVYZBIRERERSczBlBQoBQE2Fnw6juoef+qIqNY82iMqHQDgZF381O2PVZ/Hrtl+X5q5NPXXU5/Hros5+dmsn2Pzs1m/xzalz+bQ4GC09vBAQwcHENU1FplEVCtu5uYiaM0ajdXsrMzNAQDFSqW6zdrCAvvHjsXz0dEafavbXptjG2NOvp76PSdfT/0Ym6+nfo/N11N/xk56+234OjmBqK6wyCSiWpFRUKC1XHrF/0mWKyorw9u7d2v1rap94aFDeo89b/9+nWPsvHJFZ/uNnBy92yubszpjGGPsorIy/JyYqPec2y5d0jnG7Ph4vfNmqNwv1pH7orIyxN+4ofecu69erff5McSc17Ozdbb/eOGC3mNvvXhR5xjv/vFHnef+k8OHdbbvS07We8491649Fbm/kpmps33j+fN6j63r34iisjLMqEbuDfUz8elff+lsP1iN3Ov6N8IU/r2u7tiXMzJ0tmcUFLDIpDrFZzKJyOhO37tXrfZLDx7oPXZiRobO9szCQr3HkKLqrDj4oJK+5+7f19leWd6q07ey9suV5DO3qEjvObOr0VeK0qqR+/sVbsWryBi5T8rK0tmeV1ys95xPS+4FQdDZfjcvT+8xKvs34mxams726uazOn2vZGbqbM8rKdF77Or8G2HKlJXknqiuscgkIqOb0K5dtdqHBgfrPXbEM8/obG/m4qL3GFIU4umpd99nPDx0to9u00Zne2V5q07fytqHBAXpbK/OX+ibODvr3deUySppb+vlpfcYrd3ddbaPMULuBzVvrrO9saOj3nMGPCW5NzPT/evds40a6T1GZf9GjA0J0dle3XxWp+/ASnLfqBrPGj4tV/EsK8k9UV3jTyIR1Qo3W1uYyTR/zbUyN1c/X1LO2sICk9q1g/Vjq99V1T6qZUut9srGfrV1a51jdPXx0dnexNlZ7/bK5qzOGMYY29rCAr0DAvSes6efn84xXmvTRu+8GSr3L+nIvbWFBUIbN9Z7zs71PPcGm7NBA53tfaqTe39/nWNEhoTUee4jWrTQ2d6xUSO95+zk7f1U5L65i4vo3Ov6N8LawgLj2ratVt4M8TMx4plndLY/W43c6/o3whT+va7u2IGurjrbyxcQIqorMqGyeyqIACgUCjg5OSE3NxeO1fhrsRhZhY9uiXKxebqvNEnBH9eu4ejtZDRt4IyWHt5cUbAejV2zFSwf3SbnZO0kiddTn8eumxUsNfPJ96p+jM3PZv0e25Q/m1T3pPg7rb61AYtMqhKLTBKL+ZQO5lJamE/pYC6lhfmUDinmUt/agLfLEhERERERkcFwCxMiqhXlW0XYWarQoZH+C40QERERkWnjlUwiqhWpOTkYsWULIrbugExW2TqXRERERCQ1vJJJRLWiVKVCZ29vWPBPWURERERPFRaZRFQrWnl44OjEieqH3omIiIjo6cBrDERERERERGQwT0WR+ddff2HgwIFwcXGBvb09QkNDER0dXe1xEhISMH/+fHTp0gXOzs6Qy+Xw8fHBmDFjcP78+SrPvXjxIl566SW4u7vDxsYGrVu3xqpVq6BSqbT65uTk4Mcff8Qrr7yCgIAAyOVyODg4oFOnTli9ejVKS0t1zjFu3DjIZLJKv7766qtqv2YiIiIiIqLqkPztstu2bcOoUaOgUqnQo0cPuLm5Yd++fYiMjMT58+exbNkyvcYpKytDhw4dAAAuLi7o0qUL7OzscObMGWzatAlbt27Fpk2bEBERoXXusWPH0KdPHxQWFiI0NBT+/v44dOgQoqKicPToUWzevFljYZRly5Zh8eLFkMlkaNu2LTp16oQHDx7gr7/+wsmTJxETE4M9e/bA9n8b9D6uf//+8PLSXs0zKChIr9dKZAgz9uzB8du38VbHELzYvImxwyEiIiKiOiLpIjMrKwsTJkyAUqnEtm3bMHz4cADA/fv30a1bNyxfvhyDBg1Cr1699BqvY8eOeP/99zFo0CCYm5sDAFQqFebNm4fFixdjwoQJ6NWrF9zc3NTnlJaWYvTo0SgsLMSKFSsQFRUFAMjPz0e/fv2wdetWDBw4EOPGjVOfY2dnh1mzZuGtt96Cr6+vuv3q1avo27cvjhw5gkWLFuHjjz/WGeecOXP0fk1EteXMvXs4dvs2xrVtYexQiIiIiKgOSfp22XXr1kGhUCA8PFxdYAKAp6cnlixZAgBYvny5XmNZWFjg5MmTCA8PVxeYAGBmZoaPPvoIQUFByMvLw65duzTOi4uLQ3JyMkJCQtQFJgDY29tjzZo1OmOYO3cuPv30U40CEwCaN2+O//znPwCAn376Sa+4iYxlRb9+iHnpJXT2aWzsUIiIiIioDkm6yCwv+HTdwhoWFgZra2vs3bsXRUVFouaRyWRo06YNAODu3bt6x9C+fXs0adIEiYmJSElJ0WuukJAQnfMQ1TftGjbEiBYt0NjB3tihEBEREVEdknSRee7cOQCPirnHyeVytGrVCkVFRbhy5YrouW7cuAEAWs9CVhVDxfYnLRz0pHkqio2NxdSpU/Hmm29i6dKluHz5sl5jExERERERiSXZZzIVCgVyc3MBAN7e3jr7eHt749SpU0hNTVVfiayJI0eOICEhAXK5HAMGDNA4dvPmzSfGAACpqal6zbV69WoAQHh4eKV9Pv/8c43vZ8+ejSlTpmD16tWwsKg65cXFxSguLlZ/r1AoAABZhVkosyzTK0axsguz62Qeqj05RUU4lHobjR3t0cTZytjhkIHwsyktzKd0MJfSwnxKhxRzqShU6NVPslcy8/Pz1f9d2SqsdnZ2AIC8vLwaz6NQKDBhwgQAQFRUFBo2bKgzDkPE8NVXX2Hv3r1wdnbGnDlztI63a9cOX331Fa5cuYKCggLcuHEDX3zxBZydnfHll1/ivffee+Icn3zyCZycnNRfPj4+TzyH6HGXHmRi/I7fMPnXP4wdChERERHVsXp9JXPYsGG4dOlStc6Jjo5GaGhoLUWkSalUYvTo0bh69SpCQ0OxcOHCWpvr8OHDmDZtGmQyGdavX49GjRpp9Zk2bZrG9wEBAXjzzTfRs2dPtG/fHmvWrMGMGTOqLBznzp2LGTNmqL9XKBTw8fGBi40LHG0cDfeC9OBi41Kn85HhOFvno4uPD3ydnNDApgEA5lNKmEtpYT6lg7mUFuZTOqSUS4tS/crHel1kJicnIykpqVrnFBQUAHi0emvFNkdH7QLp4cOHAAAHB4caxTdlyhTs3LkTQUFB2LVrF+RyuVYfe3t7ZGdnq+OqSQyJiYkIDw9HSUkJPvvsMwwbNqxacbZs2RJDhgxBTEwM9u3bp7FdyuOsrKxgZcXbG0mcrr6++Ot/V/izCrOMHA0RERER1aV6fbvs2bNnIQhCtb7K94d0dHSEk5MTAOD27ds6xy9v9/Pzq3Zsc+bMwdq1a+Hj44P4+HiNvTErKt+GpKYxJCcno1+/fsjOzsb8+fMxderUascKPNr+BADS0tJqdD4REREREZE+6nWRKVb5dh+nT5/WOlZaWorExERYW1sjMDCwWuMuWbIEn376KTw8PBAfH1/l7adVxVCxXdfCQ2lpaXjhhReQlpaGadOm4cMPP6xWnBVlZz968Lj8GVAiIiIiIqLaIOkiMywsDAAQExOjdWznzp0oKipC3759YW1trfeYa9euxezZs+Hs7Iw9e/YgKCioxjGcOXMGN27cQKtWreDv769xLDs7G/3798f169cxfvx4rFy5Uu8YH1dcXKzer7OyrVSIDOm1uDh0/vZb/Knn/q9EREREJB2SLjInTZoER0dH7NixA7Gxser29PR0zJo1CwAwc+ZMrfOCg4MRHByMO3fuaLTHxMRg8uTJsLe3x+7du9G2bdsnxjBs2DAEBATg3LlzGoXiw4cP8dZbb+mMoaCgAGFhYbhw4QJGjhyJtWvXQiaTVTnP5cuX8cMPP2hsPwIADx48wMsvv4xbt24hJCQEXbt2fWLMRGIl3L2L47dvo0ylMnYoRERERFTHZIIgCMYOojZt27YNI0eOVD+v6erqir179yInJwczZszA8uXLtc4pL+iSk5PVVxjT09Ph4+ODkpIStG7dutIrgkOHDsXQoUM12o4ePYq+ffuisLAQnTp1gp+fHw4fPoy0tDRERERgy5YtGkVkVFQUVq1aBXNzc4waNQqWlpY659qwYYP6vw8ePIjevXujQYMG6NChA9zd3XH37l0kJCQgLy8P3t7e2LdvX7VvDVYoFHByckJubq7OxZNqQ/lCMVJaietpk3D3Lm7m5qKHnx9ksiIAzKcU8LMpLcyndDCX0sJ8SocUc6lvbVCvV5c1hBEjRuDQoUNYtGgRjh8/jpKSErRo0QJvv/02IiMj9R6noKAAJSUlAIALFy7gwoULOvv5+/trFZldunTB33//jQ8//BAHDx7EuXPn0LRpU7z33nvqbUkqKn9+UqlU4scff6w0popFZmBgIKZPn47jx4/jwoULyMzMhJWVFQIDAzF48GBMmzYNDRo00Pv1EonxbKNGePZ/2+xkFRYZORoiIiIiqkuSv5JJ4vBKJonFfEoHcyktzKd0MJfSwnxKhxRzqW9tIOlnMomo7t3Ny0PMP//gNLfLISIiInoqscgkIoM6eusWXtq6FVN/+83YoRARERGREbDIJCKDsrW0RBcfH7T38jJ2KERERERkBJJf+IeI6tbA5s0xsHlzY4dBREREREbCK5lERERERERkMCwyiYiIiIiIyGBYZBKRQQ3YuBHPrVuHs/fuGTsUIiIiIjICPpNJRAZ16u5dZBYWwsKMf8MiIiIiehqxyCQig9r16qu4m5eHJg0aGDsUIiIiIjICFplEZFCdvL2NHQIRERERGRHvZyMiIiIiIiKDYZFJRAZzLSsLWy9exPn7940dChEREREZCYtMIjKYPdeuYWRMDOYfPGjsUIiIiIjISFhkEpHBuNraoquPD0I8PY0dChEREREZCRf+ISKDeblVK7zcqpWxwyAiIiIiI+KVTCIiIiIiIjIYFplERERERERkMCwyichgnv3mG3Ratw4pOTnGDoWIiIiIjITPZBKRQZQqlTidlgYAsLW0NHI0RERERGQsLDKJyCDMZDKcmDQJd/Py4GZra+xwiIiIiMhIWGQSkUGYm5khtHFjY4dBREREREbGZzKJiIiIiIjIYHglk4gM4sL9+7ickYGWHh5o4e5u7HCIiIiIyEh4JZOIDCLmn38wMiYGn584YexQiIiIiMiIWGQSkUE0cnBAN19ftPLwMHYoRERERGREvF2WiAzijQ4d8EaHDsYOg4iIiIiMjFcyiYiIiIiIyGBYZBIREREREZHB8HZZItJyMzcXGQUF6u/dbG3h6+RUaXtydja6rF8PVxsbfDFwIAIaNICvk5MxQiciIiIiI2ORSUQabubmImjNGhSVlanbLM3MsCUiAq/Exmq1/zluHHp//z2KlUrcy89Hr++/h7WFBZLefpuFJhEREdFTiLfLEpGGjIICjUISAEpVKsTfuKGz/UZODoqVSo32orIyjSueRERERPT0YJFJRHpxkMuNHQIRERERmQAWmUSkl9ZeXsYOgYiIiIhMAItMItLgZmsLawvNx7WtLSzQxNm5Wu1utra1HisRERER1T9c+IeINPg6OSHp7bfRc8MGpOTk4KuwMLzYvLm6XdfqspW1ExEREdHTh0UmEWnxdXLC5ogI5BUXo33DhmhgY6Nu11U8VtZORERERE8fFplEpFNo48bGDoGIiIiITBCfySQiIiIiIiKD4ZVMItJp15UrUAkCevn7w8HKytjhEBEREZGJ4JVMItLptbg4DPn5Z9zJyzN2KERERERkQnglk4h06ti4MXKKimBnaWnsUIiIiIjIhLDIJCKd9owZY+wQiIiIiMgE8XZZIiIiIiIiMhgWmURERERERGQwLDKJSEupUokO33yD59atQ15xsbHDISIiIiITwmcyiUhLqUqFhLQ0AIBMJjNyNERERERkSlhkEpEWubk5dr36KspUKthY8J8JIiIiItIff3skIi0WZmYY2Ly5scMgIiIiIhPEZzKJiIiIiIjIYHglk4i0FJaW4lBqKqwsLNDL39/Y4RARERGRCeGVTCLSkpafjwGbNmHQjz8aOxQiIiIiMjFPRZH5119/YeDAgXBxcYG9vT1CQ0MRHR1d7XESEhIwf/58dOnSBc7OzpDL5fDx8cGYMWNw/vz5Ks+9ePEiXnrpJbi7u8PGxgatW7fGqlWroFKpdPb39/eHTCar9Ovy5cs6z1MqlVi5ciVat24NGxsbuLu7Y+TIkbh06VK1Xy89vSzMzNDWywutPT2NHQoRERERmRjJ3y67bds2jBo1CiqVCj169ICbmxv27duHyMhInD9/HsuWLdNrnLKyMnTo0AEA4OLigi5dusDOzg5nzpzBpk2bsHXrVmzatAkRERFa5x47dgx9+vRBYWEhQkND4e/vj0OHDiEqKgpHjx7F5s2bK90mIjIyUme7k5OTVptKpcJLL72EuLg4ODs7IywsDBkZGYiJicGuXbtw4MABhIaG6vV66enm6+SEM2+8YewwiIiIiMgUCSJERUUJCxcuFDNErcrMzBQcHR0FAMK2bdvU7ffu3ROaNWsmABAOHDig11ilpaVCx44dhe3btwtlZWXqdqVSKbz//vsCAMHBwUF48OCBxnklJSVCQECAAEBYsWKFuj0vL0/o3LmzAED47rvvtObz8/MTqpuetWvXCgCE5s2bC/fu3VO3x8TECACEZs2aCaWlpdUaMzc3VwAg5ObmVus8MTILMoXMgsw6m49qF/MpHcyltDCf0sFcSgvzKR1SzKW+tYGo22XXrFnzxNtEjWndunVQKBQIDw/H8OHD1e2enp5YsmQJAGD58uV6jWVhYYGTJ08iPDwc5ubm6nYzMzN89NFHCAoKQl5eHnbt2qVxXlxcHJKTkxESEoKoqCh1u729PdasWVOtGJ5kxYoVAIAlS5bAs8JtjiNGjMCQIUNw7do17NixwyBzERERERER6SKqyPT29q70mcL6oLzg03ULa1hYGKytrbF3714UFRWJmkcmk6FNmzYAgLt37+odQ/v27dGkSRMkJiYiJSVFVAzJycm4dOkSbGxsEBYWpnW8fP5ff/1V1Dz0dEhMT0fPDRvwWlycsUMhIiIiIhMjqsgcOnQo/vzzT+Tl5RkqHoM6d+4cgEfF3OPkcjlatWqFoqIiXLlyRfRcN27cAAB4eXnpHUPF9squCC9duhSTJ0/GtGnT8M033+DBgwc6+5XP06pVK1haWlZ7HqKKsgoLcSg1FX/fuWPsUIiIiIjIxIha+GfBggU4ePAgBg4ciM8++wzt2rUzVFyiKRQK5ObmAnh0xVUXb29vnDp1CqmpqeorkTVx5MgRJCQkQC6XY8CAARrHbt68+cQYACA1NVXn8VmzZml8HxUVhc8//xwTJkww6DzliouLUVxcrP5eoVAAALIKs1BmWVbluYaSXZhdJ/NQ5bzsLbB+yADYWloiqzBL1FjMp3Qwl9LCfEoHcyktzKd0SDGXikKFXv1EFZnh4eGwsrLCX3/9hQ4dOqBhw4bw9fWFtbW1Vl+ZTIZ9+/aJma5a8vPz1f9ta2urs4+dnR0AiLoSq1Ao1AVfVFQUGjZsqDOO6sYwZMgQ9O7dG88++yzc3d1x48YNrF+/HqtXr8akSZPg6uqK8PBw0fM87pNPPsGCBQuq7EPS52Zrg/Dg5sYOg4iIiIhMkKgi8+DBg+r/FgQBd+/e1XomsVxlW3RUZdiwYdXe3zE6OrrOtulQKpUYPXo0rl69itDQUCxcuNBgY3/22Wca37ds2RLLly9HcHAwXn/9dcyePVujyDSUuXPnYsaMGervFQoFfHx84GLjAkcbR4PPVxUXG5c6nY9qF/MpHcyltDCf0sFcSgvzKR1SyqVFqX7lo6giMzk5Wczpeo2flJRUrXMKCgoAPFq9tWKbo6N2gfTw4UMAgIODQ43imzJlCnbu3ImgoCDs2rULcrlcq4+9vT2ys7PVcYmNYeLEifjggw+QlJSElJQU+Pv7q+cBIHoeKysrWFlZ6RULSdeDhw+RlJmJBtbWaOnhYexwiIiIiMiEiCoy/fz8DBWHTmfPnq3xuY6OjnByckJubi5u376NFi1aaPW5ffs2gJq9jjlz5mDt2rXw8fFBfHw83NzcdPbz9fVFdnY2bt++rfO5z+rGYGZmhqZNmyI9PR1paWnqItPX11djPLHz0NPtQEoKRsXEoIefH/4cN87Y4RARERGRCRG1umx9FxISAgA4ffq01rHS0lIkJibC2toagYGB1Rp3yZIl+PTTT+Hh4YH4+Hj4+PjUKIaK7dVZeCg7+9FDxOXPWVacJzExEaWlpQaZh55etpaWaO7iAh8ddwAQEREREVXFIEXm/fv38cknn2DgwIEICQlBSEgIBg4ciP/85z+4f/++IaaokfL9ImNiYrSO7dy5E0VFRejbt6/OhYoqs3btWsyePRvOzs7Ys2cPgoKCahzDmTNncOPGDbRq1Up9RfJJLl68iKSkJNja2iI4OFjdHhAQgGeeeQaFhYXqvTkrKp9/8ODBes1DT7dBgYG4MnUqNg4fbuxQiIiIiMjUCCLFxMQIjo6OgpmZmSCTyTS+zMzMBCcnJyEmJkbsNDWSmZkpODo6CgCEbdu2qdvv378vNGvWTAAgHDhwQOu8oKAgISgoSLh9+7ZG+9atWwUzMzPB3t5eOHr0qF4xlJSUCAEBAQIAYcWKFer2/Px8oXPnzgIA4bvvvtM4Z9euXcK+ffu0xjp37pzwzDPPCACEd955R+v42rVrBQBC8+bNhfv376vbt23bJgAQmjVrJpSWluoVd7nc3FwBgJCbm1ut88TILMgUMgsy62w+ql3Mp3Qwl9LCfEoHcyktzKd0SDGX+tYGMkEQhJoWqKdOnUKXLl2gUqkwdOhQvPbaa/D394dMJkNKSgp++OEHxMXFwdzcXL3NSV3btm0bRo4cCUEQ0KtXL7i6umLv3r3IycnBjBkzsHz5cq1zylfCTU5OVl9hTE9Ph4+PD0pKStC6dWu0b99e53xDhw7F0KFDNdqOHj2Kvn37orCwEJ06dYKfnx8OHz6MtLQ0REREYMuWLRqr786fPx8LFiyAn58fQkJCYGtrixs3buD06dMoKytDr169sHv3btjY2GjMo1KpEBERgbi4ODRo0AB9+vRBRkYG/vzzT1hbW+PAgQPo1KlTtd4/hUKhfrZV1+JJtaF8X0YprcT1NGM+pYO5lBbmUzqYS2lhPqVDirnUuzYQU8kOHz5cMDMzE2JjYyvtExsbK8hkMmHEiBFiphLlyJEjwoABAwRnZ2fB1tZW6NChg7Bhw4ZK+wMQAAjJycnqtuTkZHV7VV8ffvihzjETExOFESNGCK6uroK1tbXQsmVLYcWKFYJSqdTqe/ToUWHChAlC69atBVdXV8HCwkJwcXERevXqJaxdu1YoKyurNPaysjJh+fLlQsuWLQVra2vB1dVViIiIEC5evKj3+1URr2Q+neIuXRJe3LhRWHLkiOixmE/pYC6lhfmUDuZSWphP6ZBiLuvkSqanpycCAwNx+PDhKvt1794dV65cMerzmVQzvJL5dFp+9CjejY/H6NatRT+XyXxKB3MpLcyndDCX0sJ8SocUc6lvbSBqC5Pc3Fz11hlV8fX1xd9//y1mKiKqQwOaNYOrrS0CnJ2NHQoRERERmRhRRaaXlxfOnDnzxH5nz56Fl5eXmKmIqA619PBASw8PY4dBRERERCZI1BYm/fv3R1JSEv79739DqVRqHRcEAR988AEuX76MAQMGiJmKiIiIiIiITICoZzJv376Ndu3aISsrC76+vhg5cqR6NdbU1FRs3boVKSkpcHV1xenTp+Ht7W2ouKmO8JnMp9NthQIPHj6El709Gjo4iBqL+ZQO5lJamE/pYC6lhfmUDinmsk6eyfT29sb+/fsxevRoJCYmYunSpeqtOMpr19atW2PTpk0sMIlMyGcnTmDp0aOY2bkzlvXrZ+xwiIiIiMiEiCoygUdF5Pnz53Hw4EEcPnwYd+/eBQA0atQI3bt3R69evcROQUR1zF4uRyMHBzSwtjZ2KERERERkYkQVmcOHD0fDhg3xxRdfoFevXiwoiSRiXs+emNezp7HDICIiIiITJGrhn927dyMzM9NQsRAREREREZGJE1VkBgQE4OHDh4aKhYiIiIiIiEycqCLzlVdewZ9//ol79+4ZKh4iqgdWHz+Ol7Zuxc4rV4wdChERERGZGFFF5ty5c9G9e3f07NkTcXFxKC0tNVRcRGREx+/cQcw//+B6VpaxQyEiIiIiEyNq4Z+goCCoVCrcunULERERkMlk8PDwgLWOFSllMhmuX78uZjoiqiMT2rZFNx8fdPP1NXYoRERERGRiRBWZKSkpGt8LgsBbZ4kk4IWmTfFC06bGDoOIiIiITJCoIlOlUhkqDiIiIiIiIpIAUc9kfvbZZ1i3bp2hYiGieuJmbi6uZmYir7jY2KEQERERkYkRVWTOnDkTv/76q6FiIaJ6Ytz27Qhcswa7rl41dihEREREZGJEFZleXl46F/khItNma2kJRysrWFuIuqOeiIiIiJ5Con6D7N+/P3777TeUlJRALpcbKiYiMrKdr75q7BCIiIiIyESJupK5ePFimJubY/To0UhLSzNUTERERERERGSiRF3JnDt3LkJCQhAbG4tdu3ahffv28PX1rXSfzG+//VbMdERERERERFTPiSoyN2zYoP7voqIiHD16FEePHtXZl0UmkemYFR+P9IcPMbdbNwS5uRk7HCIiIiIyIaKKzAMHDhgqDiKqR+IuX8a1rCxMat8eQcYOhoiIiIhMiqgis2fPnoaKg4jqkTlduyKzsBABzs7GDoWIiIiITAz3JyAiLRPbtzd2CERERERkogxSZGZmZmLjxo04efIkMjIy0KdPH8yaNQsAcPHiRVy/fh19+/aFra2tIaYjIiIiIiKiekp0kbl161ZMmjQJ+fn5EAQBMpkMjRs3Vh+/c+cOhg0bhu+//x5jxowROx0R1YFbubkwNzODh50dLMxE7XRERERERE8ZUb89Hjt2DK+++iosLCywfPlynDx5EoIgaPTp06cPnJycEBsbKypQIqo7Lb78Eo1XrEBqTo6xQyEiIiIiEyPqSubHH38MMzMzxMfHo30lz3CZm5ujffv2SExMFDMVEdUhCzMzmMtkvIpJRERERNUmqsg8evQoOnfuXGmBWc7LywsnTpwQMxUR1aHs2bONHQIRERERmShRlykKCgrg7u7+xH7Z2dlipiEiIiIiIiITIarIbNy4MS5evFhlH0EQkJiYiICAADFTERERERERkQkQVWQOGDAASUlJ+Pnnnyvts27dOty6dQthYWFipiKiOlJcVoY3fv0Vb+3ahRKl0tjhEBEREZGJEVVkzpkzB05OThg7dixmz56N48ePAwAePnyIM2fOYN68eZg6dSrc3d0RFRVlkICJqHYVlZXhm9On8eWpU1qrRRMRERERPYmohX+8vb2xa9cujBgxAkuXLsWyZcsgk8kQExODmJgYCIIADw8P7NixAx4eHoaKmYhqkdzcHAt79UKZSgVLc3Njh0NEREREJkZUkQkAnTt3RlJSEr799lvEx8cjJSUFKpUK3t7eeOGFF/DGG2/AycnJELESUR2wsbTE//XsaewwiIiIiMhEiS4yAcDBwQHTp0/H9OnT9T4nKysL+fn58PX1NUQIREREREREVA8Ybaf1mTNnokmTJsaanogqUaZSIaOgAIriYmOHQkREREQmyGhFJgAuKkJUD13PyoL70qXwW7XK2KEQERERkQkyapFJRPVPmUoFALA04z8PRERERFR9Bnkmk4iko6WHB5Tz5qmLTSIiIiKi6uClCiLSYiaTQc7tS4iIiIioBlhkEhERERERkcGwyCQiDdeysjBjzx4sO3rU2KEQERERkQlikUlEGlJzcrDy+HF8f+6csUMhIiIiIhPEhX+ISIOvkxNmd+0KDzs7Y4dCRERERCaIRSYRaWju6or/9O1r7DCIiIiIyEQZ7XbZ4OBg9OjRw1jTExERERERUS0wWpE5e/ZsHDhwwFjTE1ElylQqFJaWQsl9MomIiIioBqp1u+yECRNqPJFMJsO3335b4/OJqG5sTkzEmLg49G3SBPGvvWbscIiIiIjIxFSryNywYYPOdplMBgAQBKHSdhaZRKah7H9XMC3MuPg0EREREVVftX6LPHDggNbXm2++CUEQEBoailWrVmH79u3Yvn07Vq9ejU6dOkEQBLz11lvYv39/bb2GJ/rrr78wcOBAuLi4wN7eHqGhoYiOjq72OAkJCZg/fz66dOkCZ2dnyOVy+Pj4YMyYMTh//nyV5168eBEvvfQS3N3dYWNjg9atW2PVqlVQ6bglccOGDZDJZE/8evw1jBs3rsr+X331VbVfMz19RrdpA8WcOdj60kvGDoWIiIiITFC1rmT27NlT4/s9e/bgq6++wpdffonJkydr9Z86dSq+/vprvPXWWwgLCxMXaQ1t27YNo0aNgkqlQo8ePeDm5oZ9+/YhMjIS58+fx7Jly/Qap6ysDB06dAAAuLi4oEuXLrCzs8OZM2ewadMmbN26FZs2bUJERITWuceOHUOfPn1QWFiI0NBQ+Pv749ChQ4iKisLRo0exefNm9VVfAGjWrBkiIyN1xpGbm4vt27cDALp166azT//+/eHl5aXVHhQUpNdrpaebhZkZHKysjB0GEREREZkqQYTu3bsLHTt2fGK/0NBQoWvXrmKmqpHMzEzB0dFRACBs27ZN3X7v3j2hWbNmAgDhwIEDeo1VWloqdOzYUdi+fbtQVlamblcqlcL7778vABAcHByEBw8eaJxXUlIiBAQECACEFStWqNvz8vKEzp07CwCE7777Tu/X9OWXXwoAdL6fkZGR1XpN+sjNzRUACLm5uQYb80kyCzKFzILMOpuPahfzKR3MpbQwn9LBXEoL8ykdUsylvrWBqIeuzp49i+bNmz+xX7NmzZ54O2ltWLduHRQKBcLDwzF8+HB1u6enJ5YsWQIAWL58uV5jWVhY4OTJkwgPD4e5ubm63czMDB999BGCgoKQl5eHXbt2aZwXFxeH5ORkhISEICoqSt1ub2+PNWvWVCsGANi4cSMA4DUuyEK15HBqKv5v/37EXbpk7FCIiIiIyASJKjItLCyQmJj4xH6JiYmwsKjWnbkGUV7w6bqFNSwsDNbW1ti7dy+KiopEzSOTydCmTRsAwN27d/WOoX379mjSpAkSExORkpLyxHmSk5Nx9OhRyOVyjBw5UlTMRJX569YtLDp8GL9cuWLsUIiIiIjIBIkqMnv06IHExEQsXLhQa2XZch999BEuXLiAHj16iJmqRs6dOwfgUTH3OLlcjlatWqGoqAhXDPDL9I0bNwBA61nIqmKo2K7Pld7yq5hhYWFo0KBBpf1iY2MxdepUvPnmm1i6dCkuX7785BdA9D/PNmyItzt2RJ+AAGOHQkREREQmSNTlxY8//hj79+/HggUL8MMPPyAiIgJ+fn4AgNTUVGzbtg3Xr1+Hvb09Fi9ebJCA9aVQKJCbmwsA8Pb21tnH29sbp06dQmpqqvpKZE0cOXIECQkJkMvlGDBggMaxmzdvPjEG4NH79ST63ir7+eefa3w/e/ZsTJkyBatXrzbKFWUyLS80bYoXmjY1dhhEREREZKJEVRwtWrTA/v37ERkZiUuXLuHTTz/V2jMzODgYGzZsQMuWLcVHWw35+fnq/7a1tdXZx87ODgCQl5dX43kUCgUmTJgAAIiKikLDhg11xiE2hpMnT+LKlStwcXGpdKXedu3aoXPnznj++efh7e2Ne/fu4bfffsMHH3yAL7/8EnK5HCtXrqxynuLiYhQXF2u8PgDIKsxCmWVZlecaSnZhdp3MQ3WD+ZQO5lJamE/pYC6lhfmUDinmUlGo0Kuf6MtaHTp0wMWLF3Hw4EEcPnxY/Uxiw4YN0b17d/Tq1Utje47qGDZsGC5Vc/GR6OhohIaG1mi+6lIqlRg9ejSuXr2K0NBQLFy4sNbmKr+KOXLkSMjlcp19pk2bpvF9QEAA3nzzTfTs2RPt27fHmjVrMGPGDPj4+FQ6zyeffIIFCxYYLnAyOYIg1PgzS0RERERksHsne/XqhV69ehlqOACPFrpJSkqq1jkFBQUAHq3eWrHN0dFRq+/Dhw8BAA4ODjWKb8qUKdi5cyeCgoKwa9cuncWfvb09srOz1XHVJIaysjJs3rwZQM1WlW3ZsiWGDBmCmJgY7Nu3D+PGjau079y5czFjxgz19wqFAj4+PnCxcYGjjfZ7WJtcbFzqdD56JOr337H6xAn8u3t3LHr+eYONy3xKB3MpLcyndDCX0sJ8SoeUcmlRql/5aNAH9IqLi5GVlQUrKyu4uIh/M8+ePVvjcx0dHeHk5ITc3Fzcvn0bLVq00Opz+/ZtAFA/R1odc+bMwdq1a+Hj44P4+Hi4ubnp7Ofr64vs7Gzcvn1b53Of+sTwxx9/ID09HU2aNEGXLl2qHSsA9VYzaWlpVfazsrKClZVVjeYgaShVqSAAMOPVTCIiIiKqAVGry5b75ptv0K5dO9jZ2cHb2xvvvvuu+lhsbCyGDx+Oa9euGWKqagkJCQEAnD59WutYaWkpEhMTYW1tjcDAwGqNu2TJEnz66afw8PBAfHx8lbefVhVDxfaqFh4qv1V2zJgx1YqzouzsR/eElz8DSlSZT/r0QdrMmXi3hn/QICIiIqKnm6giU6lUYtiwYZgyZQouXbqEZ555Rmsrk5CQEGzfvl19u2ddKl8gJyYmRuvYzp07UVRUhL59+8La2lrvMdeuXYvZs2fD2dkZe/bsQVBQUI1jOHPmDG7cuIFWrVrB399f5/n5+fnYsWMHgJoXmcXFxer9OivbSoWonIOVFbzs7eHIK9pEREREVAOiisw1a9Zgx44dePHFF5GamooLFy5o9WnatCmaNWuG3377TcxUNTJp0iQ4Ojpix44diI2NVbenp6dj1qxZAICZM2dqnRccHIzg4GDcuXNHoz0mJgaTJ0+Gvb09du/ejbZt2z4xhmHDhiEgIADnzp3TWNn14cOHeOuttyqNoVxsbCwKCgrw3HPPqW951eXy5cv44YcfNFaGBYAHDx7g5Zdfxq1btxASEoKuXbs+MWYiIiIiIqKaEvVM5oYNG+Dp6YnNmzdXeRtmixYtkJCQIGaqGnFxccH69esxcuRIREREoFevXnB1dcXevXuRk5ODGTNm6FysqHyxodLSUnVbeno6Ro8eDZVKhYCAAHz99df4+uuvtc4dOnQohg4dqv7e0tISGzduRN++fTFjxgxs3rwZfn5+OHz4MNLS0hAREYHIyMhKX4O+e2Peu3cPY8eOxbRp09ChQwe4u7vj7t27SEhIQF5eHry9vbFlyxauGkpPFHfpEpIyM9GvaVO0f2xLHiIiIiKiJxFVZCYlJaFfv35PfM7Pzs4ODx48EDNVjY0YMQKHDh3CokWLcPz4cZSUlKBFixZ4++23qyzuHldQUICSkhIAwIULF3RetQUAf39/jSITALp06YK///4bH374IQ4ePIhz586hadOmeO+99zBt2rRKC7+0tDTs378flpaWGDVqVJXxBQYGYvr06Th+/DguXLiAzMxMWFlZITAwEIMHD8a0adPQoEEDvV8vPb02XbiAbZcuwdHKikUmEREREVWbqCLT0tISRUVFT+x38+bNGm8TYghdu3at1u26jz9XCjwqHnW166tly5Y6n8usSsOGDVFWVqZX30aNGmncjktUU88HBMDRygrPVLJiMhERERFRVUQVmS1btlTfjllZEZmeno6zZ8/iueeeEzMVEdWRNzt2NHYIRERERGTCRC3889prryEzMxOTJ09W30pakVKpxFtvvYWCgoJq3ZpKREREREREpknUlczXX38dW7duxU8//YSjR4+if//+AIBz585h2rRp2LlzJ5KTk9GvXz+MHj3aIAETERERERFR/SXqSqa5uTl2796NKVOm4O7du/jmm28APNr/8fPPP8fNmzfxr3/9C9u3b+eqpkQmom90NBw++QS//G+VZSIiIiKi6hB1JRMArK2t8cUXX2D+/Pk4ePAgUlJSoFKp4O3tjd69e6NRo0aGiJOI6kh+SQnyddz+TkRERESkD1FFZvv27dG0aVNs3boV7u7ueOmllwwVFxEZSdyoUXhYWgove3tjh0JEREREJkjU7bJJSUmwtLQ0VCxEVA80dHBAMxcX2Mvlxg6FiIiIiEyQqCKzefPmyMzMNFQsREREREREZOJEFZkTJ07En3/+icuXLxsqHiIysu/OnMHnJ07gXn6+sUMhIiIiIhMk6pnMqVOn4uLFi+jZsyfmzJmDwYMHw9fXF3LeZkdkshYeOoSUnByENm7M5zKJiIiIqNpEFZnm5uYAAEEQ8O677+Ldd9+ttK9MJkNZWZmY6YioDgwODMS9/Hy42doaOxQiIiIiMkGiikwfHx/uf0kkMZ+9+KKxQyAiIiIiEyaqyExJSTFQGERERERERCQFohb+ISIiIiIiIqqIRSYRafBesQINly/HbYXC2KEQERERkQkSdbtsRRcvXsTVq1eRl5cHQRB09hk7dqyhpiOiWpKWnw+VIMCMz1sTERERUQ2ILjL37t2LN998E9evX6+0jyAIkMlkLDKJTMCFKVNQqlTCnavLEhEREVENiCoyT506hbCwMMhkMrz66qu4cOECLly4gDlz5uD69evYu3cvsrOzMX78ePj6+hoqZiKqRS3c3Y0dAhERERGZMFFF5ieffIKysjL8/vvveOGFFzB+/HhcuHABixcvBgDk5OTgjTfewM6dO3Hq1CmDBExERERERET1l6iFf44ePYp27drhhRde0Hnc2dkZ0dHRMDMzwwcffCBmKiKqA8VlZfgmIQHfnTkDVSXPVhMRERERVUVUkZmVlYXmzZurv5fL5QCAhw8fqtusrKzQvXt3xMfHi5mKiOpAXkkJ3ti5ExN++cXYoRARERGRiRJ1u6y7uzsUFbY5cP/fs1w3btxA69at1e2FhYXIzc0VMxUR1QELMzOEBwVBydVliYiIiKiGRF3JbNasGZKTk9Xfh4aGQhAEfP311+q2a9euYf/+/WjSpImYqYioDjhbW2P7yy/j11deMXYoRERERGSiRBWZAwcORFJSEi5dugQAGDBgAPz8/PDf//4XnTp1wogRI9CxY0cUFRVh4sSJBgmYiIiIiIiI6i9Rt8uOHTsWTk5OUKlUAB49k/nLL79g5MiR+Pvvv/H333/DzMwMkyZNwrRp0wwSMBEREREREdVfoopMLy8vvPHGGxptrVu3xqVLl3D58mVkZ2ejWbNm6mc1iah+S8rIQL+NG+Flb48TkyYZOxwiIiIiMkGiisyqBAcH19bQRFRLCkpLcTM3F2X/uzuBiIiIiKi6aq3IJCLTE+TmhpOTJnFlWSIiIiKqMVFF5oQJE/TuK5PJ8O2334qZjohqma2lJTo2bmzsMIiIiIjIhIkqMjds2PDEPjKZDIIgsMgkIiIiIiJ6CogqMg8cOKCzXaVS4datW/jjjz/w888/IyoqCoMHDxYzFRHVgbS8POxPToabrS36N2tm7HCIiIiIyASJKjJ79uxZ5fGxY8ciLCwMkZGRGDJkiJipiKgOnLt/H2Pi4tDOy4tFJhERERHViFltT/DKK6+gZcuWmD9/fm1PRUQiNbC2Rt8mTdCJz2USERERUQ3VyeqyzZs3x++//14XUxGRCJ28vRH/2mvGDoOIiIiITFitX8lUqVQ4f/48zMxqfSoiIiIiIiIyslqr/AoKCnD27Fm88soruHr16hOf3yQiIiIiIiLTJ+p2WXNz8yf2EQQB7u7uWLp0qZipiKgOxF26hPf370dvf398ERZm7HCIiIiIyASJKjJ9fHwgk8l0HpPL5WjYsCF69uyJt956Cx4eHmKmIqI6kFlYiEsZGWjm4mLsUIiIiIjIRIkqMlNSUgwUBhHVB2HNm+NAZCQaWFsbOxQiIiIiMlF1srosEZmGhg4OaOjgYOwwiIiIiMiEcclXIiIiIiIiMhhRVzIXLlxY43NlMhn+7//+T8z0RGRglzMycDkjAwHOzgjx8jJ2OERERERkgkQVmfPnz9da+EcQBADQaC9vq4hFJlH9s/XiRcw7eBD/at8e3wwebOxwiIiIiMgEiSoyv/vuOxw7dgzffPMNvL29ERERAX9/fwBAamoqtm3bhps3b+L1119H586dDREvEdWixo6O6OztzdVliYiIiKjGRBWZzzzzDCZPnow5c+Zg4cKFsLDQHG7JkiWYN28eli9fjvHjx6NTp06igiWi2jWhXTtMaNfO2GEQERERkQkTtfDPvHnz0LRpU3z88cdaBSYAmJubY/HixWjWrBnmzZsnZioiIiIiIiIyAaKKzBMnTiAkJOSJ/UJCQnDy5EkxUxEREREREZEJEFVkKpVK3Lhx44n9bty4AaVSKWYqIqoD/zlyBB3XrsXahARjh0JEREREJkpUkRkaGoqTJ08iOjq60j7R0dE4ceIEQkNDxUxFRHUgOTsbp+7exb38fGOHQkREREQmStTCPwsWLMChQ4cwfvx4bNiwAaNGjYKfnx+AR6vLbtmyBQcPHoSFhQUWLFhgkICJqPZM7dQJQ4KC0NzV1dihEBEREZGJElVkdu3aFbGxsZgwYQIOHjyIP//8U+O4IAhwdXXFt99+i65du4oKlIhqXysPD7Ty8DB2GERERERkwkTdLgsAgwYNwo0bN7B+/XqMGzcO/fr1Q79+/RAZGYlvv/0WycnJGDJkiCFirbG//voLAwcOhIuLC+zt7REaGlrlLb6VSUhIwPz589GlSxc4OztDLpfDx8cHY8aMwfnz53Weo1QqsWXLFrz77rvo0aMH7OzsIJPJMG7cuCfOl52djWnTpsHPzw9WVlbw8/PD9OnTkZOTU+k5SqUSK1euROvWrWFjYwN3d3eMHDkSly5dqvbrJSIiIiIiqi6ZIAiCsYOoTdu2bcOoUaOgUqnQo0cPuLm5Yd++fcjJycHMmTOxbNkyvcYpKyuDpaUlAMDFxQWdOnWCnZ0dzpw5g+vXr0Mul2PTpk2IiIjQOC8nJwcNGjTQGi8yMhIbNmyodL6MjAx07twZ165dQ5MmTdChQwdcvHgRFy9eRGBgII4dOwYXFxeNc1QqFSIiIhAXFwdnZ2f06dMHGRkZOHToEGxsbHDgwIFqPxurUCjg5OSE3NxcODo6VuvcmsoqzAIAuNi4PKEnGdqZtDRkFBSghbs7Ghso38yndDCX0sJ8SgdzKS3Mp3RIMZf61gair2RWJSMjA2VlZbU5RZWysrIwYcIEKJVKxMTE4ODBg4iJicHly5fRrFkzLF++HAcPHtR7vI4dO2L79u1IT0/H7t27sXXrVly5cgXvv/8+SkpKMGHCBGRkZGicY2lpiddeew2rV6/G0aNH8d133+k11/Tp03Ht2jUMHz4cSUlJ2Lx5MxITEzF16lRcuXIFM2bM0Dpn/fr1iIuLQ/PmzXH58mX1a966dSsKCgowevRoo+aD6r/5f/6Jfhs3YvfVq8YOhYiIiIhMlKgi89SpU1i4cCH++ecfjfa4uDh4eXnB09MTrq6uWL16tagga2rdunVQKBQIDw/H8OHD1e2enp5YsmQJAGD58uV6jWVhYYGTJ08iPDwc5ubm6nYzMzN89NFHCAoKQl5eHnbt2qVxnp2dHaKjo/HOO++gc+fOsLa2fuJcaWlp+OmnnyCXy/Hll1/CwuL/Pzq7dOlSuLu7Y+PGjUhPT9c4b8WKFQCAJUuWwNPTU90+YsQIDBkyBNeuXcOOHTv0er30dPJ3ckIbT0+429kZOxQiIiIiMlGiiszPP/8cH3/8sUZBk5ycjJdffhnp6enw8vLCw4cPMWPGjGpdMTSU8oLv8VtYASAsLAzW1tbYu3cvioqKRM0jk8nQpk0bAMDdu3dFjQUAv//+O1QqFbp3767x3gKAlZUVBg8eDKVSid27d6vbk5OTcenSJdjY2CAsLExrzPL34NdffxUdH0nX6hdfxLnJkzE0ONjYoRARERGRiRJVZB4/fhzt2rWDa4XtDtavX4/S0lIsW7YMd+7cwYkTJ2BmZmaUq5nnzp0DALRv317rmFwuR6tWrVBUVIQrV66InuvGjRsAAC8vL9FjVRV3xfaKiw2Vn9OqVSv1s6NPOoeIiIiIiMjQRBWZ9+/fh6+vr0ZbfHw87Ozs8PbbbwMAnn32WXTv3l1dBNUVhUKB3NxcAIC3t7fOPuXtqampouY6cuQIEhISIJfLMWDAAFFjAcDNmzc14nucrrhrcg4REREREZGhidonU6lUaiwkk5+fj9OnT+P555+HXC5Xtzdq1AjHjx8XM1W15efnq//b1tZWZx+7/z13lpeXV+N5FAoFJkyYAACIiopCw4YNazxWufLYqxN3Tc7Rpbi4GMXFxervFQoFgEerY5VZ1s2iQdmF2XUyD2mbsWc/rmXl4P96dEbHxuJ/lgHmU0qYS2lhPqWDuZQW5lM6pJhLRaFCr36iikxfX18kJCSov9+1axfKysrQt29fzWD+t9RtdQ0bNqza+ztGR0dXe5uOmlIqlRg9ejSuXr2K0NBQLFy4sE7mrU2ffPIJFixYYOwwyEjO3kvHufsPkFvhDw1ERERERNUhqsgcPHgwlixZguHDh6N3795YsmQJzMzMEB4ertHvzJkz8PPzq/b4ycnJSEpKqtY5BQUFAAB7e3uNNl37uDx8+BAA4ODgUO3YAGDKlCnYuXMngoKCsGvXLo2rt2KUx17+Wh6nK+6anKPL3LlzNbZHUSgU8PHxgYuNCxxt6mafzHJS2lPIVCzvNwCZhYXo7usLF5uafS4qw3xKB3MpLcyndDCX0sJ8SoeUcmlRql/5KKrIfPfdd7FlyxZs374d27dvBwDMmDEDzZs3V/c5ceIE7ty5g1deeaXa4589e7bGsTk6Oqo3Cr19+zZatGih1ef27dsAUKMCeM6cOVi7di18fHwQHx8PNze3Gsf6uPLnXMvje5yuuGtyji5WVlawsrKqXsAkGX2aNDF2CERERERk4kQVmW5ubjh//jxiYmLw4MEDPPvss3j++ec1+ty7dw/Tpk3DmDFjRAVaEyEhITh06BBOnz6tVWSWlpYiMTER1tbWCAwMrNa4S5YswaeffgoPDw/Ex8fDx8fHkGEjJCQEAHD69Gmdx8vby7dNqXhOYmIiSktLtVaY1XUOERERERGRoYlaXRZ4dJvmuHHj8N5772kVmAAQHh6OlStXahU3R48eRXR0tNjpq1S+X2RMTIzWsZ07d6KoqAh9+/aFtbW13mOuXbsWs2fPhrOzM/bs2YOgoCCDxVtuwIABMDMzw+HDh5Genq5xrLi4GL/++ivMzc0xcOBAdXtAQACeeeYZFBYWqvcHraj8PRg8eLDB4yXpOHH7No7euoX8khJjh0JEREREJkp0kVlTa9euxfjx42t1jkmTJsHR0RE7duxAbGysuj09PR2zZs0CAMycOVPrvODgYAQHB+POnTsa7TExMZg8eTLs7e2xe/dutG3btlbibtiwIV555RWUlJTgzTff1FjBd9asWXjw4AHGjBkDDw8PjfPKn6WcNWuWRnEaGxuLX375Bc2aNdN6XpaoohFbtqDr+vW4mplp7FCIiIiIyESJul22vnNxccH69esxcuRIREREoFevXnB1dcXevXuRk5ODGTNmoFevXlrnlS82VFpaqm5LT0/H6NGjoVKpEBAQgK+//hpff/211rlDhw7F0KFDNdrefPNN9e2qmf/75X3Xrl147rnn1H0e3+Jl1apVOH78OLZt24bg4GB06NABFy9eRGJiIpo3b44VK1ZozT1hwgTs3r0bcXFxCA4ORp8+fZCRkYE///wTNjY22LhxIywsJJ1yEsnf2RlWFhaweex2ayIiIiIifUm+4hgxYgQOHTqERYsW4fjx4ygpKUGLFi3w9ttvIzIyUu9xCgoKUPK/WwgvXLiACxcu6Ozn7++vVWT+888/OHHihEZbRkYGMjIyKp3Pzc0NJ0+exPz587F9+3bExcXB09MT77zzDhYsWABnZ2etc8zMzLB161asXr0a69evx86dO2FnZ4cRI0ZgwYIFOhc/IqroyP/2fCUiIiIiqimZIAiCMSYeP348oqOjoVQqjTE96al8j9Pc3Fyd28DUhqzCLADSWu75acZ8SgdzKS3Mp3Qwl9LCfEqHFHOpb21gtGcyiYiIiIiISHpYZBKR2sBNmzDoxx+RVVho7FCIiIiIyERJ/plMItKPShDw27VrAAClSmXkaIiIiIjIVLHIJCK16KFDUapSwdHKytihEBEREZGJYpFJRAAAM5kMr4WEGDsMIiIiIjJxfCaTiIiIiIiIDMZoVzKHDh0Kf39/Y01PRI8pVSpx/v59WJqbo42np7HDISIiIiITZbQiMzw8HOHh4caanogek1FQgA5r18JMJoNy3jxjh0NEREREJkr07bL//PMPxo0bhyZNmsDGxgbm5uY6vyws+PgnUX0mAPB2dIR3FRvrEhERERE9iajK79ixY+jbty8K/7ennouLC7y8vAwSGBHVrUYODrgVFWXsMIiIiIjIxIkqMufOnYvCwkJMnz4dH3zwAVxcXAwVFxEREREREZkgUUXmqVOn0LZtW6xYscJQ8RAREREREZEJE/VMplwuR3BwsKFiISIjupGdjeGbN2PKzp3GDoWIiIiITJioK5ndunXDP//8Y6hYiMiIMgoKEHf5MvycnIwdChERERGZMFFXMj/++GNcu3YNX3zxhaHiISIj8XNywn/DwrCwd29jh0JEREREJkzUlczTp09j/PjxeOedd7Blyxa88MIL8Pb2hpmZ7tp17NixYqYjolrkaW+PyR06GDsMIiIiIjJxoorMcePGQSaTQRAEHD58GIcPH4ZMJtPqJwgCZDIZi0wiIiIiIiKJE1Vkzps3T2dRSUSmJ6+4GHfy8mAvl8Pb0dHY4RARERGRiRJVZM6fP99AYRCRsR1MScGQn39GaOPGODFpkrHDISIiIiITJWrhHyKSDjOZDA2sreFkZWXsUIiIiIjIhIm6kklE0hEWGIis2bONHQYRERERmTiDFJlHjhzBjh07cPXqVeTl5UEQBK0+MpkM+/btM8R0REREREREVE+JKjIFQcDEiRPx/fffqwvL8tVmy5V/zwWCiIiIiIiIpE/UM5lfffUVNmzYgGeffRbx8fEYPnw4ACApKQm//fYbxo0bBzMzM7z33nu4ceOGQQImotqxPzkZr8XF4fMTJ4wdChERERGZMFFF5oYNG2BnZ4fffvsNffr0gYODAwCgefPm6N+/P9avX4+ffvoJy5Ytw9mzZw0RLxHVkqSMDGw8fx4HU1ONHQoRERERmTBRRealS5fQpUsXuLq6AoD6llilUqnuExERgWeffRbLli0TMxUR1bLOPj5Y9sILGNumjbFDISIiIiITJuqZTJVKpS4wAcDW1hYAkJ2dDTc3N3V78+bNsWvXLjFTEVEta+vlhbZeXsYOg4iIiIhMnKgrmY0bN8bdu3fV3/v5+QEAzpw5o9HvypUrsLDgbilERERERERSJ6rIbN++Pf755x/17bH9+vWDIAiYNWsWLl++jLy8PCxduhQJCQlo166dQQImotqRU1SEW7m5yC0qMnYoRERERGTCRBWZQ4YMQUZGhvpW2JCQELz88ss4d+4cWrZsCWdnZ8yZMwcWFhZYvHixQQImotqx8tgx+K5ahX9zP1siIiIiEkHUPayvvPIKhg8frnEr7Pfff482bdpg+/btyM7ORmBgIGbNmoXQ0FDRwRJR7ZHJZJCbm0Nubm7sUIiIiIjIhMkEQRCMHQTVXwqFAk5OTsjNzYWjo2OdzJlVmAUAcLFxqZP5qHYxn9LBXEoL8ykdzKW0MJ/SIcVc6lsbiLpdloiIiIiIiKgigyz5mpmZiY0bN+LkyZPIyMhAnz59MGvWLADAxYsXcf36dfTt21e9xQkRERERERFJk+gic+vWrZg0aRLy8/MhCAJkMhkaN26sPn7nzh0MGzYM33//PcaMGSN2OiKqJT+cO4e/bt3C0OBgDGjWzNjhEBEREZGJEnW77LFjx/Dqq6/CwsICy5cvx8mTJ/H4I559+vSBk5MTYmNjRQVKRLXrQEoKvk5IwJm0NGOHQkREREQmTNSVzI8//hhmZmaIj49H+/btdfYxNzdH+/btkZiYKGYqIqplQ4OD4e/sjO5+fsYOhYiIiIhMmKgi8+jRo+jcuXOlBWY5Ly8vnDhxQsxURFTLhgQFYUhQkLHDICIiIiITJ+p22YKCAri7uz+xX3Z2tphpiIiIiIiIyESIupLZuHFjXLx4sco+giAgMTERAQEBYqYiolqWW1QEpSDAXi6H3Nzc2OEQERERkYkSdSVzwIABSEpKws8//1xpn3Xr1uHWrVsICwsTMxUR1bJXtm2D65Il+PHCBWOHQkREREQmTNSVzDlz5uDHH3/E2LFjcebMGQwbNgwA8PDhQ5w5cwZxcXFYsmQJ3N3dERUVZZCAiah2lKlUAABLM1F/eyIiIiKip5xMeHzPkWo6duwYRowYgXv37kEmk2kcEwQBHh4e2LFjBzp16iQqUDIOhUIBJycn5ObmwtHRsU7mzCrMAgC42LjUyXz0iCAIUAoCZADMDVhoMp/SwVxKC/MpHcyltDCf0iHFXOpbG4i6kgkAnTt3RlJSEr799lvEx8cjJSUFKpUK3t7eeOGFF/DGG2/AyclJ7DREVMtkMhksHvtDERERERFRdYkuMgHAwcEB06dPx/Tp0w0xHBEREREREZkogxSZRGT6lv71F+7l5+P1Z59FkJubscMhIiIiIhNlsCLz5s2bSEtLQ3FxcaV9evToYajpiMjAfjh/HhfS0/Fi8+YsMomIiIioxkQXmd9++y0WL16M1NTUJ/ZVKpVipyOiWjKhXTuk5eXB39nZ2KEQERERkQkTVWR++eWXmDp1KgRBQLt27dCkSRPY29sbKjYiqkPTn3vO2CEQERERkQSIKjJXrlwJuVyOXbt24fnnnzdUTERERERERGSiRG2Gd/v2bfTu3ZsFJpEEFJSWorisDCK3ziUiIiKip5yoItPX1xc2NjaGiqXW/PXXXxg4cCBcXFxgb2+P0NBQREdHV3uchIQEzJ8/H126dIGzszPkcjl8fHwwZswYnD9/Xuc5SqUSW7ZswbvvvosePXrAzs4OMpkM48aNq3SenJwc/Pjjj3jllVcQEBAAuVwOBwcHdOrUCatXr0ZpaanO88aNGweZTFbp11dffVXt10xPD/9Vq2C9eDEuPnhg7FCIiIiIyISJul02MjISy5YtQ1ZWFlxcXAwVk0Ft27YNo0aNgkqlQo8ePeDm5oZ9+/YhMjIS58+fx7Jly/Qap6ysDB06dAAAuLi4oEuXLrCzs8OZM2ewadMmbN26FZs2bUJERITGeXl5eRg1alS1Yl62bBkWL14MmUyGtm3bolOnTnjw4AH++usvnDx5EjExMdizZw9sbW11nt+/f394eXlptQcFBVUrDnq6lKlUAAALM1F/eyIiIiKip5yoInP27Nk4efIkevfujdWrV6Nnz56QyWSGik20rKwsTJgwAUqlEtu2bcPw4cMBAPfv30e3bt2wfPlyDBo0CL169dJrvI4dO+L999/HoEGDYG5uDgBQqVSYN28eFi9ejAkTJqBXr15wq7D9g6WlJV577TV06NABHTt2RFJSEsaPH1/lPHZ2dpg1axbeeust+Pr6qtuvXr2Kvn374siRI1i0aBE+/vhjnefPmTNH79dEVO5WVBTKVCrYy+XGDoWIiIiITJioSxbm5ub4+uuvoVQq0adPH9jY2MDf3x9NmjTR+mratKmhYtbbunXroFAoEB4eri4wAcDT0xNLliwBACxfvlyvsSwsLHDy5EmEh4erC0wAMDMzw0cffYSgoCDk5eVh165dGufZ2dkhOjoa77zzDjp37gxra+snzjV37lx8+umnGgUmADRv3hz/+c9/AAA//fSTXnET6ctOLoeTtTXMeSWTiIiIiEQQdSXz0qVL6N27Nx48eABBEFBSUoKbN28aKjbRygu+x29hBYCwsDBYW1tj7969KCoq0qv4q4xMJkObNm2QlJSEu3fv1ngcfYSEhABArc9DRERERERUE6IuWcycORPp6emIjIzEuXPnkJeXB5VKVelXXTt37hwAoH379lrH5HI5WrVqhaKiIly5ckX0XDdu3AAAnc9CGpI+88TGxmLq1Kl48803sXTpUly+fLlWYyLTJwgC/r1vH+YdOICCShaWIiIiIiLSh6grmX/99RfatGmD9evXGyoeg1EoFMjNzQUAeHt76+zj7e2NU6dOITU1FW3atKnxXEeOHEFCQgLkcjkGDBhQ43H0sXr1agBAeHh4pX0+//xzje9nz56NKVOmYPXq1bCwqDrlxcXFKC4uVn+vUCgAAFmFWSizLKtp2NWSXZhdJ/PQ/1eiVOKTI0cAAOPbBsPJ2spgYzOf0sFcSgvzKR3MpbQwn9IhxVwqChV69RN1JVMul6NFixZihqg1+fn56v+ubBVWOzs7AI9WgK0phUKBCRMmAACioqLQsGHDGo/1JF999RX27t0LZ2dnzJkzR+t4u3bt8NVXX+HKlSsoKCjAjRs38MUXX8DZ2Rlffvkl3nvvvSfO8cknn8DJyUn95ePjUxsvheoZGYA3ng3BhHatYWVh/sT+RERERESVEXUls3fv3pXuD2kIw4YNw6VLl6p1TnR0NEJDQ2spIk1KpRKjR4/G1atXERoaioULF9baXIcPH8a0adMgk8mwfv16NGrUSKvPtGnTNL4PCAjAm2++iZ49e6J9+/ZYs2YNZsyYUWXhOHfuXMyYMUP9vUKhgI+PD1xsXOBo42i4F6QHF5v6uS2OVH01aGitjs98SgdzKS3Mp3Qwl9LCfEqHlHJpUapf+SiqyPzPf/6D0NBQfPDBB1iwYIHGqquGkJycjKSkpGqdU1BQAACwt7fXaHN01C6QHj58CABwcHCoUXxTpkzBzp07ERQUhF27dkFeS1s/JCYmIjw8HCUlJfjss88wbNiwap3fsmVLDBkyBDExMdi3bx/GjRtXaV8rKytYWRnuVkkiIiIiInq6iCoyN27ciEGDBuGTTz7B5s2b0atXLzRu3BhmOrZAkMlk+L//+79qjX/27Nkax+bo6AgnJyfk5ubi9u3bOm/rvX37NgDAz8+v2uPPmTMHa9euhY+PD+Lj4zX2xjSk5ORk9OvXD9nZ2Zg/fz6mTp1ao3GaN28OAEhLSzNkeCQRgiAAQL3a55aIiIiITJOoInP+/PmQyWQQBAHXr1/H9evXK+1bkyJTrJCQEBw6dAinT5/WKjJLS0uRmJgIa2trBAYGVmvcJUuW4NNPP4WHhwfi4+Nr7bnFtLQ0vPDCC0hLS8O0adPw4Ycf1nis7OxHDx6XP4dKVNEthQJ+q1bB1tISD//9b2OHQ0REREQmTFSR+d133xkqjloRFhaGQ4cOISYmBmPGjNE4tnPnThQVFWHQoEHV2iNz7dq1mD17NpydnbFnzx4EBQUZOmwAj4rC/v374/r16xg/fjxWrlxZ47GKi4vVe4bq2s6FqFSpBPBoASAiIiIiIjFEFZmRkZGGiqNWTJo0CYsXL8aOHTsQGxuL4cOHAwDS09Mxa9YsAI/2+nxccHAwAGDfvn1o3Lixuj0mJgaTJ0+Gvb09du/ejbZt29ZK3AUFBQgLC8OFCxcwcuRIrF279om3MV6+fBl///03Ro4cqfFM5YMHD/D666/j1q1bCAkJQdeuXWslZjJt/s7OuP/uu1AaYT9bIiIiIpIWmVD+MFYde++99xAbG1vlLbaGsG3bNowcORKCIKBXr15wdXXF3r17kZOTgxkzZmD58uVa55QXdMnJyfD39wfwqDD18fFBSUkJWrduXekVwaFDh2Lo0KEabW+++SZOnz4NAMjMzMS1a9fg5uaGpk2bqvscP35c/d9RUVFYtWoVzM3NMWrUKFhaWuqca8OGDer/PnjwIHr37o0GDRqgQ4cOcHd3x927d5GQkIC8vDx4e3tj37591b41WKFQqJ9t1bV4Um3IKswCIK2VuJ5mzKd0MJfSwnxKB3MpLcyndEgxl/rWBqKuZIqRkZGBlJSUWp9nxIgROHToEBYtWoTjx4+jpKQELVq0wNtvv12tK7EFBQUoKSkBAFy4cAEXLlzQ2c/f31+ryPznn39w4sQJjbaMjAxkZGToHKP8+UmlUokff/yx0pgqFpmBgYGYPn06jh8/jgsXLiAzMxNWVlYIDAzE4MGDMW3aNDRo0OBJL5OIiIiIiEgUo13JHD9+PKKjo6H837NgVD/xSubT4Y5CgQ1nz8LN1hZvdOhg0LGZT+lgLqWF+ZQO5lJamE/pkGIu9a0NtPcaIaKnTkpODj44cADLjh0zdihEREREZOKMdrssEdUfHnZ2mNSuHdxsbY0dChERERGZOBaZRITmrq5YO2SIscMgIiIiIgng7bJERERERERkMCwyiYiIiIiIyGBYZBIRdly+DLuPP8aAjRuNHQoRERERmTgWmUSEorIyFJSWophbChERERGRSEZb+EcQBBhpi04iesygwEDceOcdWJqbGzsUIiIiIjJxRruSuWHDBqhUKmNNT0QV2MnlCGjQAN5VbKpLRERERKQPUVcyo6Oj9eonl8vh6uqKkJAQeHh4iJmSiIiIiIiI6jFRRea4ceMgk8n07i+TydC3b198/vnnaN68uZipiciAzt67h4MpKQh2c8OAZs2MHQ4RERERmTBRRea8efOQkpKC6Oho2Nvbo1+/fvD19QUA3Lp1C3/88Qfy8vLw2muvwcrKCkePHsUff/yB7t27IyEhAY0bNzbIiyAicQ6lpiJqzx6MatmSRSYRERERiSKqyHzttdcQGhqKCRMmYPny5XByctI4rlAoMGPGDMTFxeHEiRNo0qQJ3nvvPaxcuRL/+c9/8Pnnn4sKnogMo7mLC15p1Qqdvb2NHQoRERERmTiZIGKJ15EjR+L06dO4cuUKzMx0ryGkUqkQGBiI9u3bY8uWLSgpKUFAQABsbW1x9erVGgdOdUOhUMDJyQm5ublwrKNFYbIKswAALjYudTIf1S7mUzqYS2lhPqWDuZQW5lM6pJhLfWsDUavLHjhwAJ06daq0wAQAMzMzhIaGYv/+/QAeLQIUEhKCO3fuiJmaiIiIiIiI6iFRRWZBQQHu3bv3xH73799HUVGR+ntHR0dYWBhti04iIiIiIiKqJaKKzNatW+PQoUM4dOhQpX0OHz6MP//8E61bt1a33bp1C+7u7mKmJiIDWnToEDyWLsWHBw4YOxQiIiIiMnGiisxZs2ZBqVSif//+eOONNxAfH4/Lly/j8uXLiI+Px+TJk9G/f38IgoBZs2YBAHJzc5GQkIDnnnvOIC+AiMTLLSrCg4ICFJSWGjsUIiIiIjJxou5ZHT58OFauXInZs2dj7dq1WLduncZxQRAgl8uxcuVKDBs2DACQmZmJBQsWoE+fPmKmJiIDerdLF0S2bQsXGxtjh0JEREREJk7U6rLlkpOT8e233+Lo0aNIS0sDADRs2BBdu3bF+PHj0aRJE9GBknFwdVkSi/mUDuZSWphP6WAupYX5lA4p5lLf2sAgq+8EBARg0aJFhhiKiIiIiIiITBiXeCUiHEhOxrWsLDzn7Y3Wnp7GDoeIiIiITJiohX/K/fPPP4iKikLXrl0RFBSkXuQHAI4ePYrPPvsMWVlZhpiKiGrB+rNn8frOndhz/bqxQyEiIiIiEyf6SuaKFSswZ84clJWVAQBkMhkyMjI0+kRFRcHKygpvvPGG2OmIqBa09/KCorgYzV2k88wAERERERmHqCuZu3btwrvvvgsfHx/ExsYiPT0dj68j1KVLF7i7u2PHjh2iAiWi2hPVuTN2vPwywoODjR0KEREREZk4UVcyV6xYATs7O8THx1e5gmzbtm2RlJQkZioiIiIiIiIyAaKuZCYkJOC555574hYlbm5uuHfvnpipiIiIiIiIyASIKjJLSkrg4ODwxH7p6emwsOBCtkT11avbtiFg9Wr8wjsOiIiIiEgkUUVmQEAAzp07V2WfkpISnD9/HoGBgWKmIqJadDcvDyk5OSgsLTV2KERERERk4kQVmUOGDEFKSgpWrFhRaZ8lS5bgwYMHGD58uJipiKgWfT1oEI5PnIg+T7j1nYiIiIjoSUTdwzpr1ixs2rQJ7733Hk6cOIFhw4YBAO7fv4+4uDjExcVh06ZNCAgIwNtvv22QgInI8ILc3IwdAhERERFJhKgis0GDBti7dy8iIiKwdetWxMTEAAB+//13/P777xAEAS1atMD27dv1enaTiIiIiIiITJvo1XgCAwNx9uxZ/PLLL4iPj0dKSgpUKhW8vb3xwgsvYMSIETA3NzdErERUS35JSkJ+SQn6BATA097e2OEQERERkQkzyJKvZmZmGDp0KIYOHWqI4Yiojs3euxeXMzJwMDKSRSYRERERiWKQIrOgoACnTp1CWloaiouLK+03duxYQ0xHRAbW2dsbjR0c4Gpra+xQiIiIiMjEiS4y582bh5UrV6KgoKDSPoIgQCaTscgkqqfWh4cbOwQiIiIikghRReaSJUuwaNEimJubIywsDIGBgVzgh4iIiIiI6Ckmqshcu3YtbGxscPjwYbRv395QMREREREREZGJMhNz8q1bt9CzZ08WmEQmLnTtWrT68kuk5OQYOxQiIiIiMnGirmR6eXnBzs7OULEQkZFcyshAfkkJlCqVsUMhIiIiIhMnqsh8+eWX8e233+Lhw4csNolM2G+jR6NEqUQjPlNNRERERCKJul12/vz5eOaZZzBkyBBcu3bNUDERUR3r5uuL5wMCYGNpaexQiIiIiMjEibqSOXDgQKhUKhw8eBDPPPMM/Pz84O3tDTMz7dpVJpNh3759YqYjIiIiIiKiek5UkXnw4EH1fyuVSty4cQM3btzQ2Vcmk4mZiohqiVKlwvbLl2FhZoaBzZvD0tzc2CERERERkQkTVWQmJycbKg4iMpKisjJEbN0KAMifO5dFJhERERGJIqrI9PPzM1QcRGRE3Xx9UaZSscAkIiIiItFEFZlEZPrs5HIcHj/e2GEQERERkUSIWl2WiIiIiIiIqCIWmURERERERGQwLDKJnnK3cnPR/uuv0fv7740dChERERFJAJ/JJHrKFZSW4sy9e3C2tjZ2KEREREQkAU/Flcy//voLAwcOhIuLC+zt7REaGoro6Ohqj5OQkID58+ejS5cucHZ2hlwuh4+PD8aMGYPz58/rPEepVGLLli1499130aNHD9jZ2UEmk2HcuHFVzuXv7w+ZTFbp1+XLlyudb+XKlWjdujVsbGzg7u6OkSNH4tKlS9V+vfR0aOzoiN2vvoqfRowwdihEREREJAGSv5K5bds2jBo1CiqVCj169ICbmxv27duHyMhInD9/HsuWLdNrnLKyMnTo0AEA4OLigi5dusDOzg5nzpzBpk2bsHXrVmzatAkREREa5+Xl5WHUqFE1jj8yMlJnu5OTk1abSqXCSy+9hLi4ODg7OyMsLAwZGRmIiYnBrl27cODAAYSGhtY4FpIme7kcLzZvbuwwiIiIiEgiJF1kZmVlYcKECVAqldi2bRuGDx8OALh//z66deuG5cuXY9CgQejVq5de43Xs2BHvv/8+Bg0aBPP/7SeoUqkwb948LF68GBMmTECvXr3g5uamPsfS0hKvvfYaOnTogI4dOyIpKQnjq7FdxIYNG/Tuu379esTFxaF58+Y4fPgwPD09ATwqtCMiIjB69GhcunQJFhaSTjsRERERERmRpG+XXbduHRQKBcLDw9UFJgB4enpiyZIlAIDly5frNZaFhQVOnjyJ8PBwdYEJAGZmZvjoo48QFBSEvLw87Nq1S+M8Ozs7REdH45133kHnzp1hXYvPva1YsQIAsGTJEnWBCQAjRozAkCFDcO3aNezYsaPW5ifTlFVYiN+vXcOxW7eMHQoRERERSYCki8zygu/xW1gBICwsDNbW1ti7dy+KiopEzSOTydCmTRsAwN27d0WNVVPJycm4dOkSbGxsEBYWpnW8/D349ddf6zo0qufO37+PFzdtwsRffjF2KEREREQkAZK+b/LcuXMAgPbt22sdk8vlaNWqFU6dOoUrV66oi8SaunHjBgDAy8tL1DiPW7p0Ka5fvw4rKyu0bNkSw4YNg7u7u1a/8tfaqlUrWFpaah0vfw8qW6CInl62lpZo6+WFAGdnY4dCRERERBIg2SJToVAgNzcXAODt7a2zj7e3N06dOoXU1FRRReaRI0eQkJAAuVyOAQMG1HgcXWbNmqXxfVRUFD7//HNMmDBBo/3mzZsAqn6tAJCamlrlfMXFxSguLlZ/r1AoAABZhVkosyyrXvA1lF2YXSfz0CPNXGywb+xLAB7l2dCYT+lgLqWF+ZQO5lJamE/pkGIuFYUKvfpJ9nbZ/Px89X/b2trq7GNnZwfg0QqwNaVQKNQFX1RUFBo2bFjjsSoaMmQIYmNjkZqaioKCAiQmJmLGjBkoLi7GpEmTtJ6tLH+9Yl/rJ598AicnJ/WXj4+PAV4NERERERE9Ler1lcxhw4ZVe3/H6OjoOtumQ6lUYvTo0bh69SpCQ0OxcOFCg4392WefaXzfsmVLLF++HMHBwXj99dcxe/ZshIeHG2y+cnPnzsWMGTPU3ysUCvj4+MDFxgWONo4Gn68qLjYudTof1S7mUzqYS2lhPqWDuZQW5lM6pJRLi1L9ysd6XWQmJycjKSmpWucUFBQAAOzt7TXaHB21C6SHDx8CABwcHGoU35QpU7Bz504EBQVh165dkMvlNRqnOiZOnIgPPvgASUlJSElJgb+/P4D//3rLX//j9H2tVlZWsLKyMlzAVO/tu3EDC/78Ex0bNcLy/v2NHQ4RERERmbh6fbvs2bNnIQhCtb7K97x0dHSEk5MTAOD27ds6xy9v9/Pzq3Zsc+bMwdq1a+Hj44P4+HiNvTFrk5mZGZo2bQoASEtLU7f7+voCqJ3XStKWlp+Pwzdv4kJ6urFDISIiIiIJqNdFplghISEAgNOnT2sdKy0tRWJiIqytrREYGFitcZcsWYJPP/0UHh4eiI+Pr/PnFrOzHz1EXP6cJfD/X2tiYiJKS0u1zil/D8SuokvS08PPD1tfegnvd+9u7FCIiIiISAIkXWSW7xcZExOjdWznzp0oKipC3759YW1trfeYa9euxezZs+Hs7Iw9e/YgKCjIYPHq4+LFi0hKSoKtrS2Cg4PV7QEBAXjmmWdQWFio3h+0ovL3YPDgwXUWK5kGXycnRLRogZ7/u/WaiIiIiEgMSReZkyZNgqOjI3bs2IHY2Fh1e3p6unprkJkzZ2qdFxwcjODgYNy5c0ejPSYmBpMnT4a9vT12796Ntm3b1krcu3fvxv79+7Xaz58/j5deegmCIGDSpElaz4D+v/buPLyq6tzj+O+QOYHkZGKSMAUIkyCDKJNB6xAGCZPRFpVBa5HLFUpRaR2q1t6rIFJrHRALlAviACgIWkVEROYACpZRQUCmEAgZSMh01v3DnlPCOQlJPMkJO9/P8+R5YK211343L2d4s/de27lgzyOPPKK0iy59XLp0qZYvX65WrVpVyWJBAAAAAOBkM8YYXwdRlZYsWaKUlBTX/ZrR0dH67LPPdO7cOU2ePFkzZsxw28Zms0n6aeEh58I6aWlpiouLU0FBga6++mp17drV4/6GDBmiIUOGlGgbP36863LVM2fO6LvvvlNMTIzr3kpJ2rRpk+vPTz31lJ5++mk1a9ZMnTt3VmhoqA4ePKjt27erqKhI/fr100cffaSQkJAS+3E4HBoxYoTef/99RUZG6he/+IXS09O1du1aBQcHa82aNbruuusq9O+XlZWliIgIZWZmelw8qSo4n9VopZW4arIfs7L0w7lzahAWptbR0V6fn3xaB7m0FvJpHeTSWsindVgxl+WtDWr06rLeMHz4cH355Zd69tlntWnTJhUUFKh9+/aaMGGCRo0aVe55cnNzVVBQIEnatWuXdu3a5XFc8+bN3YrM3bt3a/PmzSXa0tPTlZ6e7nGO2267TUePHtXWrVu1fv16VxL79OmjkSNHasyYMfLz83Pbrk6dOnrvvff00ksvac6cOVqxYoXCwsI0fPhwPf3002rfvn25jxe1x9vffquHV63SPZ06af7Qob4OBwAAAFc4y5/JxM/DmUzre3P7dk1bv15D27bV87fc4vX5yad1kEtrIZ/WQS6thXxahxVzyZlM4BJHMjOVftFzRGNCQ9U0IsIr7ZKuyLmbRkTo1vh4dW3USJK0/cQJVzsAAABQGRSZqBWOZGYq4W9/04WiIldbsL+/Pr/3Xt00f/7Pag/696XL+cXFV9TcZbXvmzCBQhMAAACVYunVZQGn9NzcEoWUJF0oKtLqQ4c8th88d67c7fnFxSWKwMrMUdVz/+v0aY/ts7dv99h+8RlPAAAAoCIoMlGrZefn+zqEalHkcHhsP5GTU82RAAAAwOooMlGrxdWSS0JDPKxGLEm94+KqORIAAABYHUUmaoWY0FDX/Y1Owf7+6taokYL9/d3aW9rt5W4P8vPzOHdF5qjqudvExHhs/0WLFh7bnQsOAQAAABXFI0xQJis9wuSrI0fUd+5cBfr5acPYsYoNC7siVoCtyrnLavcWKy7fXVuRS2shn9ZBLq2FfFqHFXPJI0yAS8SEhqpbo0YK8PNTt8aNXe1NIyI8FlWVaffGHL6Ym5VkAQAA4C0Umag12sbEKPWBB3wdBgAAAGBp3JMJAAAAAPAaikwAAAAAgNdQZKLW+POXXypx3jwt2rXL16EAAAAAlkWRiVrj61On9OXhwzp90UqqAAAAALyLhX9Qa/yhTx+NaNdOXRo18nUoAAAAgGVRZKLW6NKoEQUmAAAAUMW4XBYAAAAA4DUUmagVCouL9eG+fdpy7Jgcxvg6HAAAAMCyKDJRK5zMydHgt99WnzlzZPN1MAAAAICFcU8maoULRUXq3rix6thsstkoMwEAAICqQpGJWqF1dLS2/vrXvg4DAAAAsDwulwUAAAAAeA1FJgAAAADAaygyUSs899VXumHuXC3cudPXoQAAAACWRpGJWuGbU6e07sgRpZ0/7+tQAAAAAEtj4R/UClN799bQtm3VuUEDX4cCAAAAWBpFJmqFzg0bqnPDhr4OAwAAALA8LpcFAAAAAHgNRSYsr8jh0PJ9+7T5xx9V7HD4OhwAAADA0igyYXlp588r+e231WvOHF+HAgAAAFge92TC8i4UFenaxo3lMEZ+dfi9CgAAAFCVKDJheS0jI7Xl17/2dRgAAABArcBpHQAAAACA11BkAgAAAAC8hiITljd9/Xr1nTtX87/5xtehAAAAAJZHkQnL25mWpq+OHNGpnBxfhwIAAABYHgv/wPIe7tVLg9u00dUNGvg6FAAAAMDyKDJheZ0aNFAnCkwAAACgWnC5LAAAAADAaygyYWkOY7Rs715t+vFHFTscvg4HAAAAsDwul4Wlpefmasg770iSCh5/XH4+jgcAAACwOopMWFpeYaF6XHWVCouLFeBHiQkAAABUNYpMWFozu12b77/f12EAAAAAtQb3ZAIAAAAAvIYiEwAAAADgNRSZsLQXN25UnzlzNGfHDl+HAgAAANQKFJmwtF1paVp/9KhO5eT4OhQAAACgVmDhH1ja73r21MDWrdUhNtbXoQAAAAC1AkUmLK1j/frqWL++r8MAAAAAag0ulwUAAAAAeA1FJizLGKNle/dq49GjKnI4fB0OAAAAUCtQZMKyMi5c0JB33lGvOXNUTJEJAAAAVItaUWSuX79eAwYMUFRUlOrWrasePXpo/vz5FZ5n27Zteuqpp9SrVy/Z7XYFBgYqLi5Od999t3bu3Olxm+LiYr377ruaMmWKbrjhBoWFhclms2n06NGl7mfevHmy2WyX/bn0GEaPHl3m+Ndff73Cx3wlyy0s1HVXXaVODRooyJ/bjwEAAIDqYPlv3kuWLNGdd94ph8OhG264QTExMVq9erVGjRqlnTt36oUXXijXPEVFRerevbskKSoqSr169VJYWJh27NihhQsX6r333tPChQs1YsSIEttlZ2frzjvvrFDMrVq10qhRozz2ZWZm6oMPPpAk9enTx+OY2267TQ0bNnRrT0hIqFAcV7om4eHadP/9vg4DAAAAqFUsXWSePXtWY8eOVXFxsZYsWaJhw4ZJkk6dOqU+ffpoxowZGjRokPr161eu+a699lo99thjGjRokPz8/CRJDodDTz75pP785z9r7Nix6tevn2JiYlzbBAQE6J577lH37t117bXXat++fRozZkyZ++nTp0+pBeRrr72mDz74QL1791bLli09jpk6dWq5jwkAAAAAvMnSl8u++eabysrKUnJysqvAlKQGDRpo2rRpkqQZM2aUay5/f39t2bJFycnJrgJTkurUqaM//elPSkhIUHZ2tlauXFliu7CwMM2fP18PPfSQevbsqeDg4J91TAsWLJAk3XPPPT9rHgAAAACoCpYuMp0F36WXsErSwIEDFRwcrM8++0wXLlz4Wfux2Wzq1KmTJOn48eM/a66yHDp0SBs2bFBgYKBSUlKqbD9W8ZdNm9R7zhzN3rbN16EAAAAAtYalL5f95ptvJEldu3Z16wsMDFTHjh2Vmpqq/fv3u4rEyjp48KAkebwX0lucZzEHDhyoyMjIUsctXbpUS5YsUXFxsVq0aKHbb79dbdu2rbK4aqp/paVpw9GjSoqP93UoAAAAQK1h2SIzKytLmZmZkqQmTZp4HNOkSROlpqbq8OHDP6vI/Oqrr7Rt2zYFBgYqKSmp0vNcTnkvlX355ZdL/P3RRx/Vgw8+qJdeekn+l1llNT8/X/n5+a6/Z2VlSZLO5p1VUUBRZcKusIy8DK/MM6ZLO/Vu2lBtoiN1Nu+sV+ZExXkrn/A9cmkt5NM6yKW1kE/rsGIus/KyyjXOspfL5uTkuP4cGhrqcUxYWJikn1aAraysrCyNHTtWkvTb3/5WjRo1qvRcZdmyZYv279+vqKgoDRw40OOYLl266PXXX9f+/fuVm5urgwcP6pVXXpHdbterr76qhx9++LL7+d///V9FRES4fuLi4rx9KNWmbUy0Bie0UtuYaF+HAgAAANQaNfpM5tChQ7Vnz54KbTN//nz16NGjiiIqqbi4WCNHjtSBAwfUo0cPPfPMM1W2L+dZzJSUFAUGBnocM3HixBJ/b9GihcaPH6/ExER17dpVf/vb3zR58uQyC8ff//73mjx5suvvWVlZiouLU1RIlMJDwr1wJOUXFRJVrftD1SKf1kEurYV8Wge5tBbyaR1WyqV/YfnKxxpdZB46dEj79u2r0Da5ubmSpLp165ZoCw93L5DOnz8vSapXr16l4nvwwQe1YsUKJSQkaOXKlaUWfz9XUVGR3nnnHUmVW1W2Q4cOGjx4sBYvXqzVq1dr9OjRpY4NCgpSUFBQZUOtMYwxWrZvn+qHhenaxo0VcNGKwAAAAACqTo0uMr/++utKbxseHq6IiAhlZmbqxx9/VPv27d3G/Pjjj5KkZs2aVXj+qVOnavbs2YqLi9OqVatKPBvT2z799FOlpaWpZcuW6tWrV6XmaN26tSTpxIkT3gytxsouKNDQfxfmOb//PUUmAAAAUE0se0+mJHXu3FmStH37dre+wsJCffvttwoODlabNm0qNO+0adP0/PPPq379+lq1alWV37fovFT27rvvrvQcGRk/3XjsvA/V6nILC3V9kybqEBursCo6wwwAAADAnaWLTOcCOYsXL3brW7FihS5cuKCbb75ZwcHB5Z5z9uzZevTRR2W32/XJJ58oISHBa/F6kpOTo2XLlkmqfJGZn5/vemaop8e5WFHDunW18b779O348b4OBQAAAKhVLF1k3n///QoPD9eyZcu0dOlSV3taWpoeeeQRSdLvfvc7t+3atm2rtm3b6tixYyXaFy9erHHjxqlu3br66KOPdM0111Rp/NJPz7zMzc3V9ddf77rk1ZO9e/fq//7v/0o8fkSSTp8+rbvuuktHjx5V586d1bt376oOGQAAAEAtVqPvyfy5oqKiNGfOHKWkpGjEiBHq16+foqOj9dlnn+ncuXOaPHmy+vXr57adc7GhwsJCV1taWppGjhwph8OhFi1aaNasWZo1a5bbtkOGDNGQIUNKtI0fP951ye6ZM2ckSStXrtT111/vGrNp0yaPx1DeZ2OePHlS9957ryZOnKju3bsrNjZWx48f17Zt25Sdna0mTZro3Xfflc1mK3OemupIZqbS/72okyTFhIaqaUSEx3ZJHscCAAAAqHqWLjIlafjw4fryyy/17LPPatOmTSooKFD79u01YcIEjRo1qtzz5ObmqqCgQJK0a9cu7dq1y+O45s2buxWZu3fv1ubNm0u0paenKz09vcx9njhxQp9//rkCAgJ05513ljm2TZs2mjRpkjZt2qRdu3bpzJkzCgoKUps2bXT77bdr4sSJioyMvMxR1kxHMjOV8Le/6UJRkast2N9fn997r26aP79Ee9C/F/jJLy4uMXbfhAkUmgAAAEA1sHyRKUm9e/fWxx9/XO7xxhi3tubNm3tsL48vvviiUts1atRIRRcVUGVp3LixZs6cWan91HTpubklCklJulBUpIPnzrm1X1xcXjw2PTeXIhMAAACoBpa+JxMAAAAAUL0oMgEAAAAAXkORiRovJjRUwf4lr+wO9vdXS7vdrT3Iz891X+bFY50LAgEAAACoWrXinkxc2ZpGRGjfhAkeV4z11C6xuiwAAADgKxSZuCI0jYjwWCiW1Q4AAACg+nG5LAAAAADAaygyAQAAAABeQ5EJAAAAAPAaikwAAAAAgNdQZAIAAAAAvIYiEwAAAADgNRSZAAAAAACvocgEAAAAAHgNRSYAAAAAwGsoMgEAAAAAXkORCQAAAADwGopMAAAAAIDXUGQCAAAAALyGIhMAAAAA4DUUmQAAAAAAr6HIBAAAAAB4DUUmAAAAAMBrKDIBAAAAAF5DkQkAAAAA8BqKTAAAAACA11BkAgAAAAC8hiITAAAAAOA1FJkAAAAAAK+hyAQAAAAAeA1FJgAAAADAaygyAQAAAABeQ5EJAAAAAPAaikwAAAAAgNdQZAIAAAAAvIYiEwAAAADgNRSZAAAAAACvocgEAAAAAHgNRSYAAAAAwGsoMgEAAAAAXkORCQAAAADwGopMAAAAAIDXUGQCAAAAALyGIhMAAAAA4DUUmQAAAAAAr/H3dQCo2YwxkqSsrKxq22dW3k/78i/kv6cVkE/rIJfWQj6tg1xaC/m0Divm0lkTOGuE0ljniFElsrOzJUlxcXE+jgQAAABATZCdna2IiIhS+23mcmUoajWHw6Hjx4+rXr16stls1bLPrKwsxcXF6ejRowoPD6+WfaLqkE/rIJfWQj6tg1xaC/m0Divm0hij7OxsNW7cWHXqlH7nJWcyUaY6deqoSZMmPtl3eHi4ZV6QIJ9WQi6thXxaB7m0FvJpHVbLZVlnMJ1Y+AcAAAAA4DUUmQAAAAAAr6HIRI0TFBSkP/7xjwoKCvJ1KPAC8mkd5NJayKd1kEtrIZ/WUZtzycI/AAAAAACv4UwmAAAAAMBrKDIBAAAAAF5DkQkAAAAA8BqKTNQYeXl5evLJJ9WmTRsFBwercePGGjt2rI4dO+br0HCJ3NxcffDBB7rvvvuUkJCg4OBghYWFqXPnznrmmWeUk5NT6rbz5s1Tjx49VLduXUVFRWnAgAHasGFDNUaPyzlz5ozq168vm82mVq1alTmWfNZcp0+f1pQpU5SQkKCQkBBFRUWpa9euevjhhz2O//DDD5WYmOh6nlu/fv20cuXKao4al9q6datSUlLUuHFjBQQEyG63q2/fvpo7d648LatRXFysmTNn6uqrr1ZISIhiY2OVkpKiPXv2+CD62mfbtm167rnnNGzYMDVp0kQ2m002m+2y21XmvXT9+vUaMGCAoqKiVLduXfXo0UPz58/31qFAFcunw+HQunXr9Mgjj6hbt26qV6+egoKCFB8fr3HjxunQoUNl7sty+TRADZCXl2euv/56I8k0atTIpKSkmB49ehhJJjY21nz//fe+DhEXmT17tpFkJJl27dqZO+64w9x2222mXr16RpJp27atOXXqlNt2EydONJJMSEiISU5ONrfddpvx9/c3fn5+5v3336/+A4FHo0aNMjabzUgy8fHxpY4jnzVXamqqiY6ONpJMhw4dzJ133mn69+9vmjVrZvz8/NzGz5w500gy/v7+JikpySQnJ5uQkBAjybz88ss+OAIYY8zixYuNn5+fkWS6du1qUlJSzI033mj8/f2NJPOrX/2qxPji4mIzdOhQI8nY7XYzfPhwk5iYaGw2mwkNDTWbN2/20ZHUHsnJya7Px4t/ylKZ91Ln/w2bzWYSExPN8OHDjd1uN5LM7373uyo4stqpIvk8cOCAq79hw4Zm8ODBZujQoeaqq64ykky9evXMunXrPG5rxXxSZKJGeOyxx4wk07NnT5Odne1qnzFjhpFkEhMTfRcc3MybN8888MADZvfu3SXajx8/brp06WIkmV/+8pcl+latWmUkmejoaLN//35X+4YNG0xgYKCx2+0mIyOjOsJHGT777DMjyTzwwANlFpnks+ZKS0szMTExJjQ01Cxbtsyt/9JCY+/evcbPz88EBQWZDRs2uNr37dtnoqOjjb+/vzlw4ECVx42SCgsLTf369Y0ks3DhwhJ9u3fvNlFRUUaS+fzzz13tzl8Atm7d2pw8edLVvnjxYiPJtGrVyhQWFlbbMdRGzz33nHniiSfM8uXLzYkTJ0xQUFCZRWZl3kvPnDljwsPDjSSzZMkSV/vJkydNq1atjCSzZs0abx9arVSRfH733XfmlltuMatXrzYOh8PVfuHCBTN69GgjyTRt2tQUFBSU2M6q+aTIhM/l5+ebiIgII8ls377drb9Tp05GkklNTfVBdKioDRs2GEkmKCjI5Ofnu9r79+9vJJmZM2e6bfPQQw8ZSeaFF16oxkhxqdzcXBMfH2/at29v9u/fX2aRST5rrgcffNBIMq+88kqFxk+cONGt78UXXzSSzIQJE7wcJS5n165dRpJJSEjw2O98nT3//POutnbt2hlJHs9+DR482EgyixcvrqqQ4cHliszKvJc+//zzRpJJTk5222bp0qVGkhk0aNDPDR0eXC6fpcnNzXV91/3iiy9K9Fk1n9yTCZ9bv369MjMzFR8fry5durj1jxgxQtJP9wuh5uvcubMkKT8/X2fOnJH00/22n3/+uaT/5PNi5LhmePrpp3Xw4EG9/vrrCggIKHUc+ay58vLytGDBAoWFhWnMmDHl2sZ53yW5rFnK+/D26OhoSdKhQ4e0Z88ehYSEaODAgW7jyGXNU9n30rJeswMHDlRwcLA+++wzXbhwwdsho5JCQkLUpk0bSdLx48dL9Fk1nxSZ8LlvvvlGktS1a1eP/c72nTt3VltMqLyDBw9KkgICAhQVFSVJ2rdvn/Lz8xUbG6smTZq4bUOOfW/nzp2aMWOGxowZo759+5Y5lnzWXKmpqcrOzlaXLl0UEhKijz/+WJMnT9b48eP1l7/8xe3Lzblz53TkyBFJ8vhLvri4OMXExOjw4cPKysqqlmPAT1q2bKn4+Hjt27dPb731Vom+PXv2aMGCBYqMjNTQoUMl/eeztGPHjh5/ScTrsuap7HtpWd+bAgMD1bFjR124cEH79++vgqhRGQ6HQ4cPH5YkNWzYsESfVfNJkQmfc37B8fQGe3G788WJmu2ll16SJCUlJbl+E3+5HIeFhclutysjI0PZ2dnVEyhcHA6H7r//ftntdk2bNu2y48lnzbV7925JUv369TVkyBANGDBAM2fO1Guvvabf/va3atWqlRYtWuQa78xlZGSkwsLCPM7Je7Bv+Pn56R//+IfsdrtGjhypbt266a677tJNN92kTp06qUmTJlq9erXrl3l8ll55KvNempWVpczMzDK3I9c1z6JFi5SWlqbY2Fj16tXL1W7lfFJkwuecj7sIDQ312O/84sOX1Zrvo48+0t///ncFBAToT3/6k6v9cjmWyLMvvfzyy9q6daumT5/uuvSuLOSz5srIyJAkLV++XP/85z/1yiuvKC0tTT/88IOmTJmivLw8jRo1Sl9//bUkclnT9e7dW2vXrlXLli21fft2vfPOO1qzZo3q1KmjW265RS1btnSN5bP0ylOZ19/Fjwgj11eGo0ePatKkSZKkZ555psSl8FbOJ0UmAK/Yu3ev7r77bhljNH36dNe9majZjhw5oscff1yJiYkaPXq0r8PBz+RwOCRJRUVFeuaZZzR+/HjFxsaqWbNmmj59uu644w4VFhZq+vTpPo4U5bFo0SL16NFDcXFx2rx5s3JycrR//36NHj1aM2bM0E033aT8/HxfhwmgFOfPn9ewYcOUnp6uIUOGaNy4cb4OqdpQZMLn6tatK0nKzc312H/+/HlJUr169aotJlTMsWPHlJSUpIyMDE2ePFkTJ04s0X+5HEvk2Vf+67/+SwUFBXr99dfLvQ35rLmcuZHkceEfZ9vatWtLjCeXNc+BAwc0atQoxcTEaMWKFerRo4fCwsLUunVrzZo1S4MGDdL27ds1Z84cSXyWXokq8/q7+DVOrmu2wsJC3XHHHUpNTVWfPn3c7q2WrJ1Pikz4XNOmTSVJP/74o8d+Z3uzZs2qLSaU39mzZ3Xrrbfq8OHDGjNmjF544QW3MZfL8fnz53Xu3DlFRkZecW+iV7oVK1YoNDRU48aNU79+/Vw/d911l6SffoHgbDt58qQk8lmTOd8nQ0NDFRsb69bfvHlzSVJaWpqk/+QyIyPD9UXmUrwH+8bbb7+twsJCJSUllfgi6pSSkiJJ+vLLLyXxWXolqsx7aXh4uCIiIsrcjlz7nsPh0KhRo/Txxx/rmmuu0YcffqiQkBC3cVbOJ0UmfM55WeX27ds99jvbO3XqVG0xoXxycnLUv39/7d69W8OGDdPs2bNls9ncxiUkJCgoKEinT5/WsWPH3PrJsW+dO3dOa9euLfGzefNmSdKFCxdcbc7l08lnzeVcITYvL8/jZZRnz56V9J/fntvtdtcX3R07driNP3r0qNLT09WsWTOFh4dXVdjwwPnF0vkF9FLOdud9uM7P0m+//VaFhYVu43ld1jyVfS8t63tTYWGhvv32WwUHB7semYHq99///d9atGiR2rRpo08++UR2u73UsVbNJ0UmfK53796KiIjQ999/71qM4mKLFy+WJN1+++3VHBnKkp+fr+TkZG3ZskW33XabFi1aJD8/P49jQ0JCdNNNN0mS3nvvPbd+cuw7xhiPP4cOHZIkxcfHu9qcZ8HIZ83VtGlTde7cWcYY1yWxF3O2Xfy4EuczFZ15uxi59B3nYw5SU1M99m/dulXSf85Ot2jRQu3atVNeXp7ruXsXI5c1T2XfS8t6za5YsUIXLlzQzTffrODgYG+HjHJ4/PHH9eqrr6pp06ZatWqV6tevX+Z4y+bTADXAY489ZiSZXr16mZycHFf7jBkzjCSTmJjou+DgpqioyAwdOtRIMn379jXnz5+/7DarVq0ykkx0dLTZv3+/q33Dhg0mKCjI2O12k5GRUYVRoyIOHTpkJJn4+HiP/eSz5lq4cKGRZK6++mpz/PhxV/uOHTtMVFSUkWTeffddV/vevXuNn5+fCQoKMhs3bnS179+/30RHRxt/f39z4MCBaj0GGLNt2zYjyUgyr776aom+jRs3mrCwMCPJrFq1ytU+e/ZsI8m0bt3anDp1ytW+ZMkSI8m0atXKFBYWVtsxwJigoCBT1tftyryXnjlzxoSHhxtJZsmSJa72U6dOmVatWhlJZs2aNd4+FJjL5/PFF180kkzDhg1L5LMsVs0nRSZqhLy8PHPdddcZSaZRo0YmJSXF9ffY2Fjz/fff+zpEXOQvf/mL68vP0KFDzahRozz+nD59usR2EydONJJMaGioSU5ONv379zf+/v7Gz8/PvP/++745GHh0uSLTGPJZk40aNcpIMna73QwYMMDceOONri9Hv/71r93GO78Y+fv7m/79+5vk5GQTEhJiJJm//vWvPjgCGGPMlClTXO+1HTp0MHfccYfp3bu3qVOnjpFkHnjggRLji4uLXb8AjIyMNCNGjDD9+vUzNpvNhISEmE2bNvnoSGqPFStWmOuuu871Y7PZjKQSbStWrCixTWXeSxcvXmzq1KljbDabufHGG82IESOM3W43kszkyZOr4Uhrh4rkc8eOHa7+nj17lvrdaN26dW77sWI+KTJRY+Tm5ponnnjCxMfHm8DAQNOwYUMzevRoc/ToUV+Hhkv88Y9/dH3xKevn0KFDbtvOnTvXdOvWzYSGhhq73W6SkpLM+vXrq/8gUKbyFJnGkM+ayuFwmDfeeMOVm7CwMNOzZ08zb968UrdZvny56du3r6lbt66pW7eu6du3r/nwww+rMWp4snTpUnPrrbe6zipHRkaaG2+80bz11lsexxcVFZkZM2aYDh06mODgYBMdHW1GjBhh/vWvf1Vz5LXT3LlzL/vZOHfuXI/bVfS99KuvvjJJSUnGbreb0NBQ07179zJf46i4iuRzzZo15fpu5Cn/xlgvnzZjjKnUdbYAAAAAAFyChX8AAAAAAF5DkQkAAAAA8BqKTAAAAACA11BkAgAAAAC8hiITAAAAAOA1FJkAAAAAAK+hyAQAAAAAeA1FJgAAAADAaygyAQAAAABeQ5EJAEAVsdlsstlsvg6jythsNjVv3tzXYQAAahiKTAAAqtEPP/wgm82mfv36+TqUMl0pcQIAah5/XwcAAACuTHv27FFAQICvwwAA1DAUmQAAoFLatm3r6xAAADUQl8sCAFBNnnrqKbVo0UKStHbtWtc9mzabTaNHjy4x9ujRo5owYYLi4+MVHBysqKgoDRo0SBs2bHCb9+JLW7OysjR58mS1aNFCAQEBmjRpkiRp5cqVGjt2rNq1a6fw8HCFhYWpc+fO+p//+R/l5+dXKs6y7sncuHGjkpOTFRsbq6CgIDVv3lzjx4/X8ePHy4w/Ly9PU6dOVbNmzRQUFKRWrVrp+eeflzGmnP/KP/nuu+9ks9l0yy236Pz583r66afVrl07hYaGKj4+XtOmTavwnACA8uFMJgAA1eSaa67R8OHDtWTJEjVo0EBJSUmuvj59+rj+vHHjRg0cOFAZGRlKSEjQwIEDdfr0aX3yySf65z//qYULF+rOO+90mz8vL0+JiYk6fPiwEhMT1bVrV0VGRkqS7rvvPuXl5aljx47q1KmTMjMztWXLFj322GNavXq1Pv30U/n5+VUoztIsWLBAo0ePVnFxsXr37q24uDht375dr732mpYuXaovvvjC41nQgoIC3Xrrrdq9e7f69eun8+fPa+3atZo6daqys7P17LPPlvvf+ptvvpEkRUVFqXPnzsrPz1fPnj0VFxen1atX69FHH1VMTIzGjh1b7jkBAOVkAABAlZBkLv2oPXTokJFkEhMTPW6TmZlpGjVqZPz8/MyCBQtK9G3dutVERkaaunXrmrS0NLc5JZmePXuajIwMt3k/+OADk5ubW6ItKyvLDBo0yEgy//jHPyoUp/P4mjVrVqLtyJEjJiQkxPj5+Zlly5a52ouLi82kSZOMJNO9e3eP+3LuLzMzs8Qx+/n5mdDQUJOdnV1qLJd64oknXHP+4Q9/MIWFha6+uXPnGklm4MCB5Z4PAFB+XC4LAEANMmfOHJ04cUKTJk3SyJEjS/R1795dTzzxhHJycrRgwQKP2//1r3+V3W53a09OTlZISEiJtnr16mnmzJmSpGXLlnkl/jfffFN5eXlKSUnR4MGDXe116tTRc889p8aNGys1NVXr169327ZOnTqaNWuWwsPDXW3du3dX//79lZubq9TU1HLH8fXXX0uShg8frj//+c/y9//PxVvOM7NpaWkVPTwAQDlwuSwAADXIp59+KkkaNmyYx/6+fftKkrZs2eLW16hRI3Xv3r3UuQ8cOKCPPvpI3333nc6fPy+Hw+G6L/HAgQM/N3RJ0rp16yTJrUCWpKCgIN1xxx166aWXtG7dOvXu3btEf7NmzZSQkOC2XZs2bSRJJ06cKHcczstln3zySbe+9PR0SVLjxo3LPR8AoPwoMgEAqEF++OEHSXIrwC7lLJQu1rRpU49jjTGaMmWKZs6cWepiN9nZ2RULtBTOhX1KWxDI2X7s2DG3viZNmnjcpl69epLktkBRac6dO6cjR46oRYsW6tSpk1v/zp07JUkdO3Ys13wAgIqhyAQAoAZxOBySpBEjRigsLKzUcZ4WzgkODvY49p133tGLL76ouLg4zZw5Uz179lRsbKwCAgJUUFCgoKCgaltp1WazldpXp4537uJxXirbo0cPj/07duyQ9NMCRwAA76PIBACgBmnSpIn27dunqVOnqlu3bl6Z8/3335ckvfbaaxo4cGCJvoMHD3plH06NGzfWvn37dPjwYXXo0MGt33mm9qqrrvLqfi/mvFS2S5cuHvspMgGgarHwDwAA1SgwMFCSVFRU5LH/lltukfSfwtAbMjIyJHm+HPXdd9/1uM3l4iyN857RRYsWufUVFBTovffeKzGuKpSnyKxXr57i4+OrLAYAqM0oMgEAqEYxMTEKCAjQ999/r+LiYrf+3/zmN6pfv76mTZumN954w3X5rFNRUZE++eQTffvtt+Xep3PhnDfeeKPEZbHr1q3T9OnTKxVnae677z6FhITo7bff1sqVK13tDodDf/jDH3Ts2DF169btsvec/hzOy2U9FZlHjhzR2bNn1alTpzIv3QUAVB5FJgAA1SgwMFBJSUk6efKkOnfurHvvvVf333+/5s6dK0my2+1atmyZIiIi9Jvf/EbNmzfXgAEDNHLkSP3iF79QbGyskpKS9N1335V7nw899JDCwsL06quvqmPHjvrlL3+pG264QYmJiRo3blyl4ixN06ZNNWvWLDkcDt1+++3q27evfvWrX6l9+/aaMWOGGjRoUOrjV7yhqKhIu3fv1lVXXaXY2Fi3fi6VBYCqR5EJAEA1e/PNN3XPPffozJkzeuutt/T3v/9da9eudfVff/312rVrlx555BGFh4dr7dq1+uCDD3T48GElJiZq3rx5uvnmm8u9vzZt2ig1NVW333670tPTtXz5cuXk5GjWrFmlnsksT5ylueeee7Ru3ToNGjRIe/bs0eLFi5WXl6cHH3xQ27Zt87hokbfs3btX+fn5pRaRFJkAUPVsprqWkwMAAAAAWB5nMgEAAAAAXkORCQAAAADwGopMAAAAAIDXUGQCAAAAALyGIhMAAAAA4DUUmQAAAAAAr6HIBAAAAAB4DUUmAAAAAMBrKDIBAAAAAF5DkQkAAAAA8BqKTAAAAACA11BkAgAAAAC85v8B6JzjMY5MFwIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Each trial is a row in a dataframe that contains\n", "# Algorithm, Number of Samples, Number of Features, Hyperparameters, Score, Runtime, Memory Usage, Step as features\n", "trials = est1.completed_trials_summary_[est1.completed_trials_summary_[\"Step\"].str.contains('Model Tuning')]\n", "trials.replace([np.inf, -np.inf], np.nan, inplace=True)\n", "trials.dropna(subset=[name_of_score_column], inplace = True)\n", "trials.drop(trials[trials['Finished'] == -1].index, inplace = True)\n", "trials['Finished']= trials['Finished'].apply(lambda x: time.mktime(datetime.datetime.strptime(x,\n", " \"%a %b %d %H:%M:%S %Y\").timetuple()))\n", "trials.sort_values(by=['Finished'],ascending=True, inplace = True)\n", "scores = trials[name_of_score_column].tolist()\n", "score = []\n", "score.append(scores[0])\n", "for i in range(1,len(scores)):\n", " if scores[i]>= score[i-1]:\n", " score.append(scores[i])\n", " else:\n", " score.append(score[i-1])\n", "y_margin = 0.10 * (max(score) - min(score))\n", "fig, ax = plt.subplots(1)\n", "ax.set_title(\"Hyperparameter Tuning Trials\")\n", "ax.set_xlabel(\"Iteration $n$\")\n", "ax.set_ylabel(est1._inferred_score_metric[0].name)\n", "ax.grid(color='g', linestyle='-', linewidth=0.1)\n", "ax.set_ylim(min(score) - y_margin, max(score) + y_margin)\n", "ax.plot(range(1, len(trials) + 1), score, 'k:', marker=\"s\", color='teal', markersize=3)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "d7afa416", "metadata": {}, "source": [ "\n", "### Advanced AutoMLx Configuration\n", "\n", "You can also configure the pipeline with suitable parameters according to your needs." ] }, { "cell_type": "code", "execution_count": 15, "id": "d1d7f6c9", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:28.806911Z", "iopub.status.busy": "2025-04-25T10:38:28.806349Z", "iopub.status.idle": "2025-04-25T10:38:28.857856Z", "shell.execute_reply": "2025-04-25T10:38:28.857307Z" } }, "outputs": [], "source": [ "custom_pipeline = automlx.Pipeline(\n", " task='regression',\n", " model_list=[ # Specify the models you want the AutoMLx to consider\n", " 'LinearRegression',\n", " 'AdaBoostRegressor',\n", " 'XGBRegressor'\n", " ],\n", " n_algos_tuned=2, # Choose how many models to tune\n", " min_features=1.0, # Specify minimum features to force the model to use. It can take 3 possible types of values:\n", " # If int, 0 < min_features <= n_features,\n", " # If float, 0 < min_features <= 1.0, 1.0 means disabling feature selection\n", " # If list, names of features to keep, for example ['a', 'b'] means keep features 'a' and 'b'\n", "\n", " adaptive_sampling=False, # Disable or enable Adaptive Sampling step. Default to `True`\n", " preprocessing=True, # Disable or enable Preprocessing step. Default to `True`\n", " search_space={ # You can specify the hyper-parameters and ranges we search\n", " 'AdaBoostRegressor': {\n", " \"n_estimators\": {\"range\": [10, 20], \"type\": \"discrete\"}\n", " },\n", " },\n", " max_tuning_trials=2, # The maximum number of tuning trials. Can be integer or Dict (max number for each model)\n", " score_metric='r2', # Any scikit-learn metric or a custom function\n", ")" ] }, { "cell_type": "markdown", "id": "d4681aa4", "metadata": {}, "source": [ "\n", "### Use a custom validation set\n", "You can specify a custom validation set that you want AutoMLx to use to evaluate the quality of models and configurations.\n" ] }, { "cell_type": "code", "execution_count": 16, "id": "bc5e4df4", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:28.859917Z", "iopub.status.busy": "2025-04-25T10:38:28.859468Z", "iopub.status.idle": "2025-04-25T10:38:28.908722Z", "shell.execute_reply": "2025-04-25T10:38:28.908169Z" } }, "outputs": [], "source": [ "X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, train_size=0.7, random_state=0)" ] }, { "cell_type": "markdown", "id": "a76698df", "metadata": {}, "source": [ "A few of the advanced settings can be passed directly to the pipeline's fit method, instead of its constructor." ] }, { "cell_type": "code", "execution_count": 17, "id": "684828ce", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:28.910709Z", "iopub.status.busy": "2025-04-25T10:38:28.910269Z", "iopub.status.idle": "2025-04-25T10:38:36.826319Z", "shell.execute_reply": "2025-04-25T10:38:36.825627Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:29,002] [automlx.interface] Dataset shape: (14448,8)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:29,056] [automlx.interface] Adaptive Sampling disabled.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:29,095] [automlx.data_transform] Running preprocessing. Number of features: 9\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:29,243] [automlx.data_transform] Preprocessing completed. Took 0.148 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:29,269] [automlx.process] Running Model Generation\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:29,318] [automlx.process] Model Generation completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:29,353] [automlx.model_selection] Running Model Selection\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:30,704] [automlx.model_selection] Model Selection completed - Took 1.352 sec - Selected models: [['XGBRegressor', 'AdaBoostRegressor']]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:30,781] [automlx.trials] Running Model Tuning for ['XGBRegressor']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:33,261] [automlx.trials] Best parameters for XGBRegressor: {'n_estimators': 100, 'min_child_weight': 1, 'reg_alpha': 0, 'booster': 'dart', 'max_depth': 6, 'learning_rate': 0.1, 'reg_lambda': 1}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:33,262] [automlx.trials] Model Tuning completed. Took: 2.482 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:33,308] [automlx.trials] Running Model Tuning for ['AdaBoostRegressor']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:34,419] [automlx.trials] Best parameters for AdaBoostRegressor: {'learning_rate': 0.000996552734375, 'n_estimators': 10}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:34,420] [automlx.trials] Model Tuning completed. Took: 1.112 secs\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:34,588] [automlx.interface] Re-fitting pipeline\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:34,606] [automlx.final_fit] Skipping updating parameter seed, already fixed by FinalFit_f9b0e6c7-1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:38:36,476] [automlx.interface] AutoMLx completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Prediction error (MSE) on test data : 0.23716484748805952\n" ] } ], "source": [ "custom_pipeline.fit(\n", " X_train,\n", " y_train,\n", " X_val,\n", " y_val,\n", " time_budget= 20, # Specify time budget in seconds\n", " cv='auto' # Automatically pick a good cross-validation (cv) strategy for the user's dataset.\n", " # Ignored if X_valid and y_valid are provided.\n", " # Can also be:\n", " # - An integer (For example, to use 5-fold cross validation)\n", " # - A list of data indices to use as splits (for advanced, such as time-based splitting)\n", ")\n", "y_pred = custom_pipeline.predict(X_test)\n", "score_modellist = mean_squared_error(y_test, y_pred)\n", "\n", "print(f'Prediction error (MSE) on test data : {score_modellist}')" ] }, { "cell_type": "markdown", "id": "9b4937da", "metadata": {}, "source": [ "\n", "## Machine Learning Explainability" ] }, { "cell_type": "markdown", "id": "2c4d5e6e", "metadata": {}, "source": [ "For a variety of decision-making tasks, getting only a prediction as model output is not sufficient. A user may wish to know why the model outputs that prediction, or which data features are relevant for that prediction. For that purpose the Oracle AutoMLx solution defines the `MLExplainer` object, which allows to compute multiple types of model explanations.\n", "\n", "\n", "### Initialize an MLExplainer\n", "\n", "The `MLExplainer` object takes as argument the trained model, the training data and labels, as well as the task." ] }, { "cell_type": "code", "execution_count": 18, "id": "54a92527", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:36.828608Z", "iopub.status.busy": "2025-04-25T10:38:36.828142Z", "iopub.status.idle": "2025-04-25T10:38:37.099040Z", "shell.execute_reply": "2025-04-25T10:38:37.098403Z" } }, "outputs": [], "source": [ "explainer = automlx.MLExplainer(est1,\n", " X_train,\n", " y_train,\n", " task=\"regression\")" ] }, { "cell_type": "markdown", "id": "81788980", "metadata": {}, "source": [ "\n", "### Model Explanations (Global Feature importance)" ] }, { "cell_type": "markdown", "id": "d4383e76", "metadata": {}, "source": [ "The notion of Global Feature Importance intuitively measures how much the model's performance (relative to the provided train labels) would change if a given feature were dropped from the dataset, without allowing the model to be retrained. This notion of feature importance considers each feature independently from all other features." ] }, { "cell_type": "markdown", "id": "aa07f57c", "metadata": {}, "source": [ "#### Compute the importance" ] }, { "cell_type": "markdown", "id": "47956229", "metadata": {}, "source": [ "By default we use a permutation method to successively measure the importance of each feature. Such a method therefore runs in linear time with respect to the\n", "number of features in the dataset.\n", "\n", "The method `explain_model()` allows to compute such feature importances. It also provides 95% confidence intervals for each feature importance." ] }, { "cell_type": "code", "execution_count": 19, "id": "eef5ffdb", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:37.102276Z", "iopub.status.busy": "2025-04-25T10:38:37.101106Z", "iopub.status.idle": "2025-04-25T10:38:38.102890Z", "shell.execute_reply": "2025-04-25T10:38:38.102297Z" } }, "outputs": [], "source": [ "result_explain_model_default = explainer.explain_model(\n", " n_iter=5, # Can also be 'auto' to pick a good value for the explainer and task\n", "\n", " scoring_metric='r2', # Global feature importance measures how much each feature improved the\n", " # model's score. Users can chose the scoring metric used here.\n", ")" ] }, { "cell_type": "markdown", "id": "a7b63010", "metadata": {}, "source": [ "#### Visualization" ] }, { "cell_type": "markdown", "id": "25c011d1", "metadata": {}, "source": [ "There are two options to show the explanation's results:\n", "- `to_dataframe()` will return a dataframe of the results.\n", "- `show_in_notebook()` will show the results as a bar plot.\n", "\n", "The features are returned in decreasing order of importance. We see that `Latitude` and `Longitude` are considered to be the most important features." ] }, { "cell_type": "code", "execution_count": 20, "id": "93adbe6d", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:38.105341Z", "iopub.status.busy": "2025-04-25T10:38:38.104893Z", "iopub.status.idle": "2025-04-25T10:38:38.163721Z", "shell.execute_reply": "2025-04-25T10:38:38.163234Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FeatureAttributionLower BoundUpper Bound
0Latitude1.2545041.2317051.277303
1Longitude1.0742431.0272641.121221
2MedInc0.3703380.3531110.387564
3AveOccup0.1511740.1421890.160159
4AveRooms0.1165480.1140870.119010
5HouseAge0.0641330.0604620.067804
\n", "
" ], "text/plain": [ " Feature Attribution Lower Bound Upper Bound\n", "0 Latitude 1.254504 1.231705 1.277303\n", "1 Longitude 1.074243 1.027264 1.121221\n", "2 MedInc 0.370338 0.353111 0.387564\n", "3 AveOccup 0.151174 0.142189 0.160159\n", "4 AveRooms 0.116548 0.114087 0.119010\n", "5 HouseAge 0.064133 0.060462 0.067804" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result_explain_model_default.to_dataframe()" ] }, { "cell_type": "code", "execution_count": 21, "id": "4de55053", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:38.165656Z", "iopub.status.busy": "2025-04-25T10:38:38.165212Z", "iopub.status.idle": "2025-04-25T10:38:38.303814Z", "shell.execute_reply": "2025-04-25T10:38:38.303323Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ 0.02279923901816372, 0.04697820329084057, 0.017226423228137944, 0.008984958379256669, 0.0024614526979618717, 0.0036710554741379714 ], "arrayminus": [ 0.02279923901816372, 0.04697820329084057, 0.017226423228137944, 0.008984958379256669, 0.0024614526979618717, 0.0036710554741379714 ], "type": "data" }, "legendgroup": "None", "marker": { "color": "rgb(248,0,0)" }, "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 1.2545042273040707, 1.0742425873288592, 0.3703378500230231, 0.15117437788995763, 0.11654810373051364, 0.06413275511008436 ], "y": [ "Latitude", "Longitude", "MedInc", "AveOccup", "AveRooms", "HouseAge" ] } ], "layout": { "height": 340, "margin": { "b": 20, "t": 80 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "The Features' Impact on the Model's r2 Score", "x": 0.5 }, "xaxis": { "categoryorder": "total ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "total ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_model_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "08d32966", "metadata": {}, "source": [ "\n", "### Feature Dependence Explanations (PDP + ICE)\n", "\n", "Another way to measure dependency on a feature is through a partial dependence plot (PDP) or an individual conditional expectation (ICE) plot. For accumulated local effects (ALE) explanations, see Advanced Feature Dependence Options (ALE)\n", "\n", "Given a dataset, a PDP displays the average output of the model as a function of the value of the selected set of features (Up to 4 features).\n", "\n", "It can be computed for a single feature, as in the cell below. The X-axis is the value of the `Latitude` feature and the y-axis is the corresponding outputted price. Since we are considering the whole dataset, the average over outputs is given by the red line, while the shaded interval corresponds to a 95% confidence interval for the average.\n", "\n", "The histogram on top shows the distribution of the value of the `Latitude` feature in the dataset." ] }, { "cell_type": "code", "execution_count": 22, "id": "3a113b44", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:38.305769Z", "iopub.status.busy": "2025-04-25T10:38:38.305440Z", "iopub.status.idle": "2025-04-25T10:38:41.975452Z", "shell.execute_reply": "2025-04-25T10:38:41.974891Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "toself", "fillcolor": "rgb(248,0,0)", "legendgroup": "None", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94, 38.94, 38.51, 38.03, 37.87, 37.75, 37.61, 37.35, 36.98, 36.33, 34.71, 34.21, 34.15, 34.09, 34.05, 34.01, 33.96, 33.9, 33.83, 33.74, 33.49, 32.8 ], "xaxis": "x2", "y": [ 3.607492182282778, 3.5542043322447374, 3.164702561151392, 3.008053800138084, 2.843117548923982, 2.7929643531782204, 2.87043202890469, 3.0229099495819747, 2.951846522548357, 2.804514023588157, 2.5872739905624087, 1.9614867821185173, 1.714896428224352, 1.6577471705608235, 1.7756379093582924, 1.637120306400751, 1.5423064890833602, 1.8764002980814825, 1.3749857034846695, 1.3695574818710416, 1.3721267732820255, 1.3170966831073112, 1.3097335358687854, 1.3153983080551261, 1.8047203777232084, 1.4706520965263479, 1.5635349726705297, 1.6885780424360268, 1.5768076686898225, 1.6226835194621838, 1.8753319819622432, 2.5000155047352752, 2.7107105946144814, 2.8524700262903533, 2.921507610423229, 2.76940779099252, 2.6946158716158246, 2.743955472633222, 2.910942661942478, 3.0654283674828724, 3.45693538132729, 3.511801207004682 ], "yaxis": "y2" }, { "legendgroup": "None", "line": { "color": "rgb(248,0,0)" }, "mode": "lines+markers", "opacity": 1, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.55964669464373, 3.5055698567860136, 3.1150654643171323, 2.959498231040281, 2.793536510778602, 2.7437901123970225, 2.819919909948605, 2.972208780002602, 2.9021582744193553, 2.757612309101319, 2.543644747648842, 1.9184093820403803, 1.6687899738432679, 1.617277419625323, 1.7321079758971596, 1.6003276395356403, 1.506479292804854, 1.8405603379023454, 1.3451920057698978, 1.3396455088699135, 1.3446117281946683 ], "yaxis": "y2" }, { "legendgroup": "None", "marker": { "color": "Black" }, "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.12403521126760139, "x": [ 32.60064669014085, 32.735845070422535, 32.86640845070423, 32.99697183098591, 33.127535211267606, 33.2580985915493, 33.388661971830984, 33.51922535211267, 33.64978873239437, 33.780352112676056, 33.91091549295774, 34.04147887323944, 34.17204225352113, 34.30260563380281, 34.433169014084505, 34.5637323943662, 34.694295774647884, 34.82485915492958, 34.95542253521127, 35.085985915492955, 35.21654929577465, 35.34711267605634, 35.47767605633803, 35.60823943661972, 35.73880281690141, 35.8693661971831, 35.99992957746478, 36.13049295774648, 36.26105633802817, 36.391619718309855, 36.522183098591555, 36.65274647887324, 36.783309859154926, 36.91387323943662, 37.04443661971831, 37.175, 37.30556338028169, 37.43612676056338, 37.56669014084507, 37.69725352112676, 37.827816901408454, 37.95838028169014, 38.08894366197183, 38.219507042253525, 38.35007042253521, 38.480633802816904, 38.6111971830986, 38.74176056338028, 38.87232394366197, 39.00288732394367, 39.13345070422535, 39.26401408450704, 39.39457746478873, 39.525140845070425, 39.65570422535211, 39.7862676056338, 39.916830985915496, 40.04739436619718, 40.177957746478874, 40.30852112676057, 40.43908450704225, 40.569647887323946, 40.70021126760564, 40.830774647887324, 40.96133802816902, 41.09190140845071, 41.222464788732395, 41.35302816901409, 41.48359154929578, 41.61415492957747, 41.74471830985915 ], "xaxis": "x", "y": [ 0.0084, 0.0422, 0.019, 0.0094, 0.0076, 0.005, 0.002, 0.01, 0.0258, 0.061, 0.0952, 0.1366, 0.085, 0.0212, 0.0098, 0.0032, 0.0042, 0.003, 0.0054, 0.005, 0.0026, 0.0112, 0.0008, 0.0024, 0.0014, 0.0006, 0.0014, 0.0036, 0.0066, 0.0048, 0.0042, 0.0116, 0.0184, 0.0056, 0.0062, 0.0058, 0.0392, 0.0208, 0.0224, 0.051, 0.0448, 0.0344, 0.0138, 0.0072, 0.0118, 0.0178, 0.0234, 0.012, 0.0046, 0.008, 0.0078, 0.005, 0.0036, 0.0032, 0.0016, 0.005, 0.0014, 0.0012, 0.001, 0.0012, 0.0018, 0.0026, 0.0008, 0.003, 0.0014, 0.0, 0.0002, 0.0, 0.0008, 0.0004, 0.0006 ], "yaxis": "y" } ], "layout": { "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Partial Dependence Plot (PDP)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ 32.492999999999995, 39.247 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Latitude" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.14343 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ 1.1948456035480857, 3.7223801146034776 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Target" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_feature_dependence_default = explainer.explain_feature_dependence('Latitude')\n", "result_explain_feature_dependence_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "b4086447", "metadata": {}, "source": [ "The ICE plot is automatically computed at the same time as any one-feature PDP. It can be accessed by passing `ice=True` to `show_in_notebook`.\n", "\n", "Similar to PDPs, ICE plots show the median prediction as a model red line. However, the variance in the model's predictions are shown by plotting the predictions of a sample of individual data instances as light grey lines. (For categorical features, the distribution in the predictions is instead shown as a violin plot.)" ] }, { "cell_type": "code", "execution_count": 23, "id": "2e1b4a18", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:41.977386Z", "iopub.status.busy": "2025-04-25T10:38:41.977010Z", "iopub.status.idle": "2025-04-25T10:38:42.194715Z", "shell.execute_reply": "2025-04-25T10:38:42.194187Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.793207049104864, 3.700193470955604, 3.3505482631162535, 3.2409578100209373, 2.9752579751844626, 2.793263140741192, 2.944556099863117, 3.1241840295745833, 3.0884014928000076, 2.74657235649316, 2.0881391598318793, 1.0127451862084313, 0.7784305695694831, 0.8626715749895468, 0.9676918622096194, 0.9485382212771156, 0.9275244358824455, 1.2561267863529715, 0.8296300853859865, 0.8242791823335914, 0.9548465453994184 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.431388244862131, 4.435403731419481, 3.9518892710885645, 3.8256949216359057, 3.580722776562564, 3.4342152965972286, 3.63745608482931, 3.8466518783517287, 3.7153590892398123, 3.525820607120899, 2.4708829886826997, 1.259237858795118, 0.9581702760204764, 0.9106635757909165, 0.9939689232611042, 1.0987621435955492, 1.0535876882753201, 1.2844929325832775, 1.1786309711038958, 1.12997769023883, 1.2358265572806255 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.343866672084969, 4.195428468170048, 4.003966825075959, 3.912842824580773, 3.8638346731624016, 3.8390765262199666, 3.879788689837068, 3.950042918099961, 3.910285228983823, 3.61492723005343, 3.3376514992370327, 2.9559407898603576, 2.9880201248492106, 2.692163503557529, 2.6742280821978026, 2.038352968084123, 1.8613405604639068, 2.221927507973861, 1.412463267560069, 1.482242105426966, 1.2444572502573676 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.797316106032142, 3.7872652515182765, 3.0196365742589406, 2.445041727517901, 2.405546857994866, 2.458421451646677, 2.7509082730731644, 3.1340255106287715, 3.09734853464395, 3.15874212047264, 2.691227349536293, 1.5644317996092834, 1.1338956663526794, 1.1703208616084089, 1.248529643303865, 1.2478922425540089, 1.1405068766796411, 1.5560588037609573, 1.0503890986056121, 1.1305207971578692, 1.3057536201661097 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.728879705623909, 3.7232247224968016, 3.572097506192532, 3.1462746367710044, 3.078498183450841, 3.0896970258202296, 3.1168644114657273, 3.182314343923516, 3.1301274839264286, 2.722794919388314, 2.2976104998853843, 1.8831146315185383, 1.492652055865393, 1.5409505535760957, 1.5284623617734114, 1.2256809581308203, 1.0530010884348644, 1.3358569118251964, 0.9499326312139474, 0.9782334345395768, 1.0910181738218843 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.806865135956847, 4.7461265780506965, 4.348248594630747, 4.135354225967711, 4.123517920108598, 4.097701495811651, 4.24764944287512, 4.403754946799607, 4.204251965552705, 4.0800842649577564, 3.7064791901310956, 3.618419044823261, 3.6831512095542207, 3.282863324492906, 3.440117104991075, 2.80580857698506, 2.655454872029259, 2.91723753969656, 2.2855581695294838, 2.478064244597577, 2.3417679380060483 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.390960403995013, 3.3105268308933375, 3.08689818115252, 3.0052672364204516, 2.9357793822519853, 2.876408384911361, 2.8666184387154767, 2.80508932364603, 2.6659722595598465, 2.188090762727258, 1.82964778621797, 0.8218627118549197, 0.58241608970606, 0.6484125874620409, 0.7287339892022839, 0.7245018310064579, 0.6370970350467976, 0.8702695852798475, 0.6858006785205605, 0.6655203708395543, 0.8221054505253539 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.671868975651251, 4.680056762771996, 4.328870902576406, 4.029902478135997, 3.809002908414656, 3.728398048806602, 3.77321371759421, 4.03056983003345, 3.9427977035218342, 3.6682902375791833, 3.252163450092155, 2.91488587382004, 2.9573679130949873, 2.6219728398326025, 2.5787786029509343, 2.1851606320730816, 1.9774890462862387, 2.5046592784781945, 1.3560727029746644, 1.4880871432594314, 1.450198446588329 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.371237190106227, 3.2930294300648137, 2.166657840704062, 1.963416724172979, 1.8318004700230097, 1.8452740797093043, 1.974279385751205, 2.0977391999644066, 2.1550867600756938, 2.2051313955733063, 1.9511860358790445, 1.1927179796615313, 1.0224518990046851, 1.0529570320436203, 1.1362623795138085, 1.1477486315073882, 1.0723648443456208, 1.4650844877062486, 0.9844258968358396, 0.9447286229344759, 0.9821089773620637 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 5.012395724951677, 4.974793398819969, 4.6612505809813, 4.548437573419372, 4.533676369805648, 4.506853439612821, 4.653265192633566, 4.734279592189562, 4.6182526577686, 4.555524356659899, 4.499798818625738, 4.133189810310056, 4.134357561698113, 3.739355822275252, 4.277891979313018, 3.91771950114201, 3.8061522654870488, 4.022367284718276, 3.6358865858053666, 3.6059352043894126, 3.2948548192803946 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.542398235902499, 4.565940403826493, 4.291743383974308, 4.308990866292244, 4.036570773524858, 3.989638499739336, 4.090907616124646, 4.178465948962536, 4.124070332944072, 4.008111914331497, 3.669476159489743, 3.00142391936238, 2.931927074646576, 2.5560466087754485, 2.988419475306361, 2.161335809500991, 1.8287709671810755, 2.1911905475306725, 1.5047793118248165, 1.509415749150897, 1.271270859171326 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.4498722622086393, 3.066925925957597, 2.834365996947306, 2.777455082471805, 2.723544895483049, 2.6206093615637904, 2.6933463321809366, 2.647434422967138, 2.59019025592418, 2.5581873750363155, 2.318985984498802, 1.6408842317520347, 1.075737258249306, 1.1377825627593399, 1.2671025561702307, 1.132138393571672, 1.0674848105212162, 1.260418855683807, 0.9650310425403459, 1.0383657064994654, 1.1810504664193695 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.074096497348618, 2.976488123552784, 2.597484299840585, 2.541275463907383, 2.2812761925629204, 2.14035775844622, 2.261706596515092, 2.1599970552797636, 2.0622194310645483, 1.8177391527532316, 1.726058575644442, 0.8986364189273499, 0.6941701675617682, 0.7550155664277148, 0.8600358536477875, 0.8634435224903237, 0.8439799947721831, 1.400242055324668, 0.8605680828432765, 0.832041805640118, 0.9702168402141219 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.114311994361222, 4.117742484775859, 3.8894799529213158, 3.552733213278101, 3.405427486733694, 3.444629041894959, 3.533776898733215, 3.6582204562745857, 3.6115895611326234, 3.252072616095859, 2.8966890777605023, 2.5599750698093433, 2.4963726068880656, 2.2519525026955973, 2.2064129160781025, 1.8330413466642623, 1.6300190214485155, 1.7467752880928216, 1.2753874136811858, 1.2980546455256667, 1.1531443969883326 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.008420402600577, 4.0152579116161204, 3.4964026313738157, 3.39286793741638, 3.4874289510789613, 3.483979168113687, 3.638663451882336, 3.690923360064073, 3.7154216480869, 3.832874383101919, 3.561477649473359, 2.6111986584385565, 2.0965143441136003, 2.140845793223877, 2.2279146146671422, 2.380075029614434, 2.318031717544767, 2.389989202793427, 2.2207151666407325, 2.347062981063612, 2.4610061821267903 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.36823695532549, 4.263634109234814, 3.898074450755856, 3.8151651344111666, 3.6191894448009854, 3.6386324821197684, 3.67288984281674, 3.7094110591521643, 3.6058376162353274, 3.563244440330159, 3.505240775501265, 3.123856935814768, 3.136707084118951, 2.7889516683287954, 3.1286330707657677, 2.9219268419132485, 2.940515686570168, 3.349596116739727, 1.972845995109073, 1.548765588039792, 0.8686640032431157 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.2229500977816588, 3.1432330142596383, 2.17620828376115, 1.9260859622011903, 1.703814412485995, 1.739227150153318, 1.9126622484018272, 2.3914733779467854, 2.3174085023142057, 2.3554573931376037, 1.9520336243131278, 0.9282228052385842, 0.7060474157444118, 0.772290563344999, 0.8773108505650716, 0.9178937502257333, 0.8762341073945207, 1.2147286029286024, 0.7145896055745947, 0.7163803820935464, 0.850328037078904 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.061239272600648, 4.058815369445696, 3.6588991591172437, 3.5228222881346767, 3.3319286416408502, 3.310290120956348, 3.416712710537661, 3.508263669919018, 3.5726497704073488, 3.4883513449118837, 3.26522271775563, 1.6790164593422472, 1.3396283402844655, 1.2870046249296136, 1.3434831132916742, 1.2973777340716135, 1.3310563219839242, 1.5770734814394445, 1.203718808170344, 1.0661889796113888, 1.2373776820711007 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.431725978904037, 4.314475534926882, 4.106754247431241, 3.6620355284863715, 3.038125795943399, 2.7941439134098336, 2.635115871917502, 3.7280872373806986, 3.850000086664781, 3.4438314678620476, 2.728077299933672, 1.6381327295955423, 1.252510434795475, 1.2709804191627454, 1.383868542993652, 1.4414880313231104, 1.3331135707169048, 1.3130411070479144, 1.1213222819813584, 1.1379764995917558, 1.2520078712145484 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.922248437309346, 4.952591412349962, 4.432009149220541, 4.382499898196363, 4.15899405217893, 4.1095361920785685, 4.221497244683374, 4.298873174469596, 4.192587469097431, 4.130433165532156, 3.83279315556644, 3.0842179156848286, 3.1048821937938116, 3.1833314624589453, 2.950314972659348, 2.3063583316376546, 2.1148401002411976, 2.4504393454656794, 1.6177164366932544, 1.5998262160401164, 1.5239445315878584 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.1137466073947495, 2.9310193186916247, 1.8840713200114867, 1.9526610902909893, 1.8962489152025164, 1.851942322847743, 1.8678873621123844, 1.8415272577687063, 1.8255219100618871, 1.735425816269548, 1.7134535585128425, 1.2461526684942543, 0.9266714561700576, 0.9214400198784419, 1.03810185902712, 1.054929349806759, 0.9407973425619328, 1.227032320120418, 0.8584416774412554, 0.901358231397254, 0.9380169902455268 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.8484716902531684, 2.6494282676992675, 1.9063318733923384, 1.910772074928154, 1.7504619900449132, 1.6426748878107342, 1.6348427784793016, 1.5805600001655915, 1.588844281432967, 1.6445024824294114, 1.5844441071515634, 1.1561733631338642, 0.8712507948979178, 0.9361674162592908, 1.0057205466937058, 0.9865766190707159, 0.8892081126417383, 1.1221200958559514, 0.9317268532372318, 0.9684704545109911, 1.079536387453184 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.5617297027762653, 2.6508531661603953, 2.2335273905028123, 1.672962776782486, 1.266541795533019, 1.0895340382344365, 1.1861614898944612, 1.9044274174589837, 1.9123281839730861, 1.8188021791080526, 1.6568629070585061, 0.7196669186700354, 0.5425165874484214, 0.6220980429071807, 0.7024194446474238, 0.6981872864515978, 0.6109910058048642, 0.9415054187220916, 0.7192267292968957, 0.7133965139906108, 0.9006443681293343 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.4727888875589676, 3.443724229550084, 3.139702755356954, 3.0863560020215464, 2.8586139482956447, 2.7905620260039594, 2.8774396488461607, 3.009536978786015, 2.8628443445024336, 2.5873110301704063, 2.5786400432264256, 1.9199055768483797, 1.6140908433899162, 1.9338255748745374, 1.8447430904020101, 1.4344069426447563, 1.1700557990770082, 1.4838642273344922, 1.0028283093621373, 0.9282254651128102, 1.0404000996062464 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.441237579612406, 4.445695242187737, 3.934362420711235, 3.5152108130852935, 2.6802035860473907, 2.366027359889761, 2.3958100119044965, 3.464679522693399, 3.7743279074867373, 3.327962224100101, 2.7526648841124177, 1.7799673398497455, 1.3990769263332012, 1.411199922837743, 1.5809965933899397, 1.6648413558477995, 1.5728355153862108, 1.6607894652727355, 1.2454122812755022, 1.2469237287609753, 1.3512218029158876 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 1.3071665686813838, 1.4441384637417138, 1.0827746841256571, 1.1159590677541813, 0.9955956335162829, 0.9310793111977919, 0.9496353672478272, 0.9941837424995443, 0.9519957564640066, 0.9128215048241739, 0.8873040094662263, 0.6750889001911461, 0.48589482114663973, 0.5763725386132205, 0.6813928258332931, 0.6898868119609145, 0.6885451473307191, 1.0708383769372483, 0.6238538553824265, 0.5912119378515125, 0.6922056576557847 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.1637117569735, 1.613069789801265, 1.3346942336256111, 1.402302177698583, 1.3494367556862772, 1.1573095965786258, 1.153992485147027, 1.1310903744750216, 1.0814996503259673, 1.0695459085014825, 1.0695459085014825, 0.9679843849502253, 0.7198459737102018, 0.7783776403755398, 0.8833979275956124, 0.9101221849465561, 0.813577713449747, 1.0547109828127101, 0.8018912312975607, 0.7917137808661683, 0.8044634044051867 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.914942696330061, 2.3929129585919124, 2.153360559537772, 2.2108829668415733, 2.109182166010059, 2.0218129782513756, 2.0221120824826886, 1.971595198674308, 1.9293149734149493, 1.9719680755494597, 1.9211626032820257, 1.571339304036559, 1.3134802714880236, 1.3391776910206086, 1.4261082048565605, 1.3113167763680733, 1.2203570930943666, 1.5344834767862257, 1.1023941884622175, 1.133495578165018, 1.218154781363562 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.7227420365679973, 3.6141535331550716, 3.585327596898465, 3.4221377488142433, 3.396570967071412, 3.3662680432678673, 3.400534117422995, 3.5059448811044462, 3.452607129037344, 3.264529412095788, 3.2736768233925417, 3.026523395936741, 3.027929118305587, 2.636942405724317, 3.0357398577826338, 2.829506083400805, 2.9047029154421127, 3.5637395794807696, 2.0566729857144783, 1.6302199387010572, 1.0893240148716887 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.154230182051204, 4.160194713058286, 3.925544531445872, 3.8994574701678166, 3.735546902183309, 3.7206696297965935, 3.735456718880625, 3.806133675915768, 3.7504907403988756, 3.7275712662216534, 3.672521794158275, 3.1845197337783615, 3.159852348838596, 2.7368427399674453, 2.9976061752004703, 2.8955950078150794, 2.894186828205957, 3.255539765539511, 2.044517080268501, 1.680028218000697, 1.2800082690959205 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 1.3293535357540025, 1.457193797732993, 1.4527281388263116, 1.5209472326739109, 1.4527407905055287, 1.3697682025045665, 1.418679903241678, 1.39009436082641, 1.3560965228368023, 1.3219556227710003, 1.3219556227710003, 1.2476564413964868, 0.9143608781273466, 0.9121408025778891, 1.0632654627710036, 1.095198078874605, 1.022659597428351, 1.1754143047750698, 1.1437881225613928, 1.1461212773506324, 1.1138530792000627 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.762700450995827, 3.644100594289225, 3.380819668616214, 3.3217729771330053, 3.2309812395678565, 3.173175699983567, 3.274227952120697, 3.3789309868122857, 3.165314350432647, 2.768828256937188, 2.595597481806964, 1.573967182448691, 1.4369653104979514, 1.373922260873789, 1.3724827206006351, 1.27780395937532, 1.2830770128459752, 1.512689811145931, 1.1522553966918878, 1.0692778452916756, 1.1098938688592102 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.848540582315867, 3.7498339728573593, 2.579016646296314, 2.529802584970274, 2.5094441301435713, 2.4712746655406055, 2.599231149066976, 2.6390851455999895, 2.678680320277769, 2.749556081806416, 2.4206555364077835, 1.556496574634641, 1.2656533326279427, 1.3524995123452612, 1.4220526427796774, 1.3834624747149291, 1.2628891040316352, 1.4531214646305934, 1.0192566396281884, 1.0282884239184786, 1.1565670777416521 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.980705360726348, 4.980808303526751, 4.650076445066036, 4.56026487170464, 4.369496073751017, 4.306926522781973, 4.410951217211468, 4.569757305092458, 4.377340261898943, 4.1126386870176, 3.7031939946150247, 2.322636094738765, 1.4532091613817866, 1.4034084038540897, 1.4032141140276166, 1.5272381966612243, 1.462986328346145, 1.719777786252635, 1.375885145071834, 1.3359151060035996, 1.4444989703388424 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.242187973270201, 3.194967014339824, 2.18662305176379, 1.82355980461048, 1.690396206074963, 1.7113050740213338, 1.76801596050581, 1.9791514035088005, 2.059587947247376, 2.1197680647800334, 1.7721683133554464, 1.1052193729480426, 0.9329116320356605, 0.9784330302265207, 1.0617383776967082, 1.0769604076070391, 0.9987019326443007, 1.4874440171830017, 0.9235774778632265, 0.9249592975084688, 1.0109541629498486 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.372459055973891, 4.270824049652163, 4.194171049779152, 4.068730605850191, 3.9460434311213195, 3.9342848083965434, 3.948899495196669, 4.014520506114194, 3.989730210939265, 3.7507096249412037, 3.5835874291797207, 3.1973175354960968, 3.21173565783365, 2.82074894525238, 3.3231004160676187, 2.4683736767826745, 2.313255009255163, 2.257634673213309, 1.2953209762662743, 1.4235703279118561, 1.2337803401527043 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 5.225889097528877, 5.242761211069858, 5.068396576763177, 4.846169979589934, 4.859941673999314, 4.852021842516798, 4.931041299192233, 4.998489852768001, 4.814136211780103, 4.596425874124013, 4.44323302319279, 4.046526722392956, 4.065147499942355, 3.6918776586959567, 4.277736297067206, 3.571288799874207, 3.2889254185182506, 3.1628268239852844, 2.8592272457178916, 2.968796703459857, 2.856641223443121 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 5.074745937707202, 5.171215396065853, 4.980221067121184, 4.844395705607319, 4.812398085000081, 4.61712797841812, 4.832012479432629, 4.941506718397131, 4.926216415391946, 4.807736478046222, 4.545860250915943, 3.381494997884421, 2.8833110170219145, 2.927642466132191, 3.0338270126260594, 3.1930061304730337, 3.073515372714155, 3.07924327406493, 3.054013971351993, 3.1382909066174283, 3.29804064697441 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.8806966288925477, 2.795286424018806, 2.304457275643054, 1.8067661628279432, 1.5979682042982453, 1.686416590818247, 1.6748678619844328, 2.011112285878817, 1.9777752036336955, 1.9635642362775796, 1.8975129144666376, 0.8440515759185928, 0.6025758014714183, 0.6185538832263884, 0.6988752849666314, 0.7317268695067448, 0.6270954486130339, 1.015835327464684, 0.6901132679506221, 0.6599215450491155, 0.7956578603942535 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.897168672638401, 2.767160069181854, 2.625860153868486, 2.5182828438776883, 2.170939995310553, 2.038073334260423, 2.0806181189622817, 2.625323096634493, 2.401338649855813, 2.121307417631929, 1.8046462608500211, 1.1174836155947547, 0.8997212741195395, 0.96352699200157, 1.0438483937418126, 1.0114811899821399, 0.9288883767229026, 1.4050068961512647, 0.8686823343204798, 0.8790769969506231, 0.9292096533896843 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.6564645577203563, 2.582210970173127, 2.4168265552691293, 2.1654989752964298, 1.7366322010496622, 1.4767811264143624, 1.4847973775089376, 2.5754987432886423, 2.4671783901581272, 2.3482101453186357, 1.6403088718726153, 0.9215856721620164, 0.3545730116533129, 0.31784813303305093, 0.47742372163862346, 0.565250404107994, 0.45945103687593014, 0.46251590342151805, 0.3661682048696796, 0.4090847588256784, 0.42883551735868985 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.6832357115840244, 3.6541710535751406, 3.4301975482571447, 3.376629669458755, 3.255995830394409, 3.2386924308085234, 3.2720316800922005, 3.367746196500257, 3.332944175257508, 3.1232897720765087, 3.2094259912716696, 2.754882937127721, 2.6698019383187406, 2.3397120512609284, 2.738509503319245, 2.5315777411331712, 2.7436492871611255, 3.3764749516098767, 2.5028161457810096, 2.110855941995256, 1.5559491184291767 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.991425344118825, 3.0910308765984293, 2.9369685793542635, 2.9527282404344284, 2.9129617799544683, 2.9012772067482735, 2.9410252326065716, 2.8646833136308953, 2.739308478825208, 2.6274729804530175, 2.727543576799407, 2.7049451951999193, 2.5258250047300335, 2.32740559616035, 2.664888235801636, 2.477888381170167, 2.367656000165334, 3.031409248112534, 1.856065719653785, 1.7222281232693808, 1.2364604597620887 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 2.3718908353786183, 2.317924077494059, 1.679919533601738, 1.6797376625377707, 1.534028633361315, 1.52795969710522, 1.518116436367673, 1.48415596476028, 1.4686565716207736, 1.409562719007848, 1.3586706747284014, 0.9931377047116433, 0.8323004408572374, 0.8518852349514778, 0.932206636691721, 0.9338222497341959, 0.8566387225132455, 1.3679371472514108, 0.736878907728097, 0.7710009292247668, 0.8044041487404957 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.762429225200157, 4.687369293042529, 4.065609854646361, 3.917425329327979, 3.7618229729962884, 3.6150187702824916, 3.8543642838759675, 3.974974559066815, 3.876400680659072, 3.583532106405164, 2.384747656267687, 1.3293060853138199, 0.9768744527741227, 1.02251795274392, 1.0694774699904077, 1.1182515770072952, 1.0899625473049954, 1.4700829123531747, 1.2014481973131539, 1.2095917999142203, 1.3111475535071795 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.2871511200605448, 3.220155243403703, 2.9058937501979156, 2.702096503075154, 2.2634977626264225, 1.9919049660659927, 1.9539464718994888, 2.81415778028883, 2.6281866468863035, 2.4916682723315366, 1.9527732584658395, 1.010402705569843, 0.629728620136299, 0.6244971838446837, 0.7737257450840255, 0.7965373664212437, 0.7041027308035512, 0.8999442588253979, 0.8288063054624106, 0.8717228594184093, 0.8764713810593988 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 4.14412456746515, 4.11820865504242, 3.8824416209642942, 3.829221955481545, 3.477679019622049, 3.3360552881187178, 3.495474689501143, 3.562761497646861, 3.5365646309649796, 3.253470207220326, 3.1670513737007653, 1.0633836536801513, 0.7379994187404718, 0.8148014228098114, 0.919821710029884, 0.8901943867651827, 0.8816586252006495, 1.2040105495341678, 0.9030634521527244, 0.8773767030542071, 1.0072799193190216 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.4756603278308296, 3.4250509255171706, 2.460471956239207, 2.3820160776532955, 2.34579218263061, 2.326766712493421, 2.4337758034793375, 2.5307622450473577, 2.4857587981543325, 2.601398557586536, 2.325103900162283, 1.5995931172275495, 1.3370170882042838, 1.3797892713227429, 1.4267487885692305, 1.3857765320233069, 1.307309541747641, 1.5793024620626201, 1.133139735424752, 1.1232728850533713, 1.2395430805471246 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 5.4982800439455, 5.484639681709736, 5.126693165455271, 5.096320694033305, 5.092926908863338, 5.050958255171714, 5.137793378695507, 5.158447405843467, 5.119391586501086, 5.076305516699075, 5.1000591064817495, 4.699495733521109, 4.776841658702066, 4.361189694036277, 4.758859611285158, 4.224243853730901, 4.006798834242395, 4.2047412442253895, 3.5562194115215977, 3.744011393405588, 3.5851478346118433 ], "yaxis": "y2" }, { "legendgroup": "datum", "line": { "color": "Black", "width": 1 }, "mode": "lines", "name": "Type=datum", "opacity": 0.25, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 1.4603185468278144, 1.5538446607499516, 1.3357333603489105, 1.3997882046555445, 1.3832840723805986, 1.2749514072399732, 1.2730436506379803, 1.262463140201712, 1.1851310616132102, 1.150414761748453, 1.150414761748453, 0.9521791452693347, 0.6922119326773447, 0.7531463337080359, 0.8334677354482789, 0.8366157644279646, 0.7366235181034017, 0.9652283467794707, 0.6770025160398064, 0.6812751579831356, 0.7344406774101673 ], "yaxis": "y2" }, { "legendgroup": "median", "line": { "color": "rgb(248,0,0)", "width": 4 }, "mode": "lines", "name": "Type=median", "opacity": 1.0, "showlegend": false, "type": "scatter", "x": [ 32.8, 33.49, 33.74, 33.83, 33.9, 33.96, 34.01, 34.05, 34.09, 34.15, 34.21, 34.71, 36.33, 36.98, 37.35, 37.61, 37.75, 37.87, 38.03, 38.51, 38.94 ], "xaxis": "x2", "y": [ 3.670285599356213, 3.5885141412646098, 3.229423983311605, 3.0814808253077004, 2.909766049131517, 2.865161311575175, 2.933618647078119, 3.0915543041114093, 2.9974442186009083, 2.77144389639498, 2.462740899589744, 1.6462848480308467, 1.2497391449907764, 1.2681623217610163, 1.330197959992509, 1.2941227031211078, 1.2192461172323488, 1.5202855432286322, 1.1139577105126395, 1.1192379319083847, 1.1380152339694813 ], "yaxis": "y2" }, { "legendgroup": "None", "marker": { "color": "Black" }, "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.12403521126760139, "x": [ 32.60064669014085, 32.735845070422535, 32.86640845070423, 32.99697183098591, 33.127535211267606, 33.2580985915493, 33.388661971830984, 33.51922535211267, 33.64978873239437, 33.780352112676056, 33.91091549295774, 34.04147887323944, 34.17204225352113, 34.30260563380281, 34.433169014084505, 34.5637323943662, 34.694295774647884, 34.82485915492958, 34.95542253521127, 35.085985915492955, 35.21654929577465, 35.34711267605634, 35.47767605633803, 35.60823943661972, 35.73880281690141, 35.8693661971831, 35.99992957746478, 36.13049295774648, 36.26105633802817, 36.391619718309855, 36.522183098591555, 36.65274647887324, 36.783309859154926, 36.91387323943662, 37.04443661971831, 37.175, 37.30556338028169, 37.43612676056338, 37.56669014084507, 37.69725352112676, 37.827816901408454, 37.95838028169014, 38.08894366197183, 38.219507042253525, 38.35007042253521, 38.480633802816904, 38.6111971830986, 38.74176056338028, 38.87232394366197, 39.00288732394367, 39.13345070422535, 39.26401408450704, 39.39457746478873, 39.525140845070425, 39.65570422535211, 39.7862676056338, 39.916830985915496, 40.04739436619718, 40.177957746478874, 40.30852112676057, 40.43908450704225, 40.569647887323946, 40.70021126760564, 40.830774647887324, 40.96133802816902, 41.09190140845071, 41.222464788732395, 41.35302816901409, 41.48359154929578, 41.61415492957747, 41.74471830985915 ], "xaxis": "x", "y": [ 0.0084, 0.0422, 0.019, 0.0094, 0.0076, 0.005, 0.002, 0.01, 0.0258, 0.061, 0.0952, 0.1366, 0.085, 0.0212, 0.0098, 0.0032, 0.0042, 0.003, 0.0054, 0.005, 0.0026, 0.0112, 0.0008, 0.0024, 0.0014, 0.0006, 0.0014, 0.0036, 0.0066, 0.0048, 0.0042, 0.0116, 0.0184, 0.0056, 0.0062, 0.0058, 0.0392, 0.0208, 0.0224, 0.051, 0.0448, 0.0344, 0.0138, 0.0072, 0.0118, 0.0178, 0.0234, 0.012, 0.0046, 0.008, 0.0078, 0.005, 0.0036, 0.0032, 0.0016, 0.005, 0.0014, 0.0012, 0.001, 0.0012, 0.0018, 0.0026, 0.0008, 0.003, 0.0014, 0.0, 0.0002, 0.0, 0.0008, 0.0004, 0.0006 ], "yaxis": "y" } ], "layout": { "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Individual Conditional Expectations (ICE)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ 32.492999999999995, 39.247 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Latitude" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.14343 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ 0.05882653748742844, 5.757301639491122 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Target" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_feature_dependence_default.show_in_notebook(ice=True)" ] }, { "cell_type": "markdown", "id": "920f74bd", "metadata": {}, "source": [ "We can also plot the PDP for multiple features. The plot below is the PDP for the `Latitude` and `Longitude` features. The X-axis still shows the values of `Latitude`, while there is a different curve and confidence interval for each value of the feature `Longitude`.\n", "\n", "The histogram displays the joint distribution of the two features." ] }, { "cell_type": "code", "execution_count": 24, "id": "9cb48b7b", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:42.196483Z", "iopub.status.busy": "2025-04-25T10:38:42.196208Z", "iopub.status.idle": "2025-04-25T10:38:50.721687Z", "shell.execute_reply": "2025-04-25T10:38:50.721153Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "toself", "fillcolor": "rgb(87.618429682915, 2.1991622871402274, 162.60376970786896)", "legendgroup": "-122.48", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 4.146234941003392, 4.08887499242896, 3.7575307045009843, 3.619515360913271, 3.5751801205526896, 3.646836993422278, 3.6972595493418567, 3.6070172244048093, 3.4005138982589327, 3.4101017250264425, 3.148122154260614, 2.8388314913361268, 3.2080131386474546, 2.8482648017489978, 3.4628251474601917, 2.717018740762365, 2.355563635239291, 1.821208721763804, 1.7386694512351542, 2.2836796807011743, 2.6441546029017835, 3.3971533353767236, 2.7861670723495364, 3.142253317934297, 2.7791379686861624, 3.08622986560374, 3.3452499456710987, 3.3342064555243405, 3.538324336514127, 3.6268117076837494, 3.5756372383178787, 3.5062837545028827, 3.5506084061148795, 3.6840988065469182, 4.018565781332161, 4.078309269348434 ], "yaxis": "y2" }, { "legendgroup": "-122.48", "line": { "color": "rgb(87.618429682915, 2.1991622871402274, 162.60376970786896)" }, "mode": "lines+markers", "name": "Longitude=-122.48", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 4.112272105175913, 4.053720386880561, 3.7208147555239512, 3.5850618835140753, 3.540731937527786, 3.6112371158700785, 3.662035628512803, 3.572670780459468, 3.3673601768916366, 3.3776758353487706, 3.117176009932177, 2.8089847300111446, 3.1751332282908757, 2.817215937049267, 3.4299892414184576, 2.6805866718320743, 2.3196216579702327, 1.779939086499479 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(108.79665243628841, 1.2365157983505268, 166.93567890742264)", "legendgroup": "-121.99199999999999", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 4.24781206374707, 4.190346741915731, 3.85240727572081, 3.718650466294805, 3.658114478839808, 3.7313755989570203, 3.825136481947541, 3.7096128088835183, 3.286757609479817, 3.246505169045947, 2.948239258670262, 2.736646895620753, 2.598239824798212, 2.0793491472810595, 2.114453406241017, 1.7587998962564937, 1.7171404943530892, 1.4859567357357337, 1.419752030048192, 1.6548163210287572, 1.6952605134863998, 2.044823786596745, 2.008732217032041, 2.528865895140464, 2.665638583174724, 2.8748672509615503, 3.175542605910719, 3.2145117925328814, 3.634404183296086, 3.750878511464987, 3.657043199351348, 3.5858534579413757, 3.6462175160741346, 3.776316198129705, 4.114994953611265, 4.174633068370629 ], "yaxis": "y2" }, { "legendgroup": "-121.99199999999999", "line": { "color": "rgb(108.79665243628841, 1.2365157983505268, 166.93567890742264)" }, "mode": "lines+markers", "name": "Longitude=-121.992", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 4.21122256605885, 4.152670847763498, 3.8143617369252576, 3.6824339911844697, 3.621983968390592, 3.6942093991541842, 3.788007496706264, 3.672008496089802, 3.250634701006349, 3.211023887478333, 2.911553254815906, 2.7011427393977385, 2.563552859969338, 2.04404068215655, 2.079638596418881, 1.7270302048714468, 1.6859784076909232, 1.452854382891963 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(155.5124234987004, 22.744602785033546, 158.11608964316656)", "legendgroup": "-120.87", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 3.9586284927217514, 3.9044739678680376, 3.562121516886402, 3.424681086676774, 3.3323769361939153, 3.4257120670221375, 3.5406988532348866, 3.393824007631898, 2.8909697487769606, 2.830938721975898, 1.8524909730148382, 1.7282766189198904, 1.6128726671177054, 1.5283301159654121, 1.6137299500031643, 1.4123927039150337, 1.394590113703379, 1.5498640394544605, 1.4891167416117992, 1.3374277294837065, 1.358150644472069, 1.5522567677846268, 1.4672845279184463, 1.547571568612455, 1.661030592897103, 1.7809231577951248, 2.7621590113251986, 2.8209716476302242, 3.319601955586018, 3.4670343493825775, 3.353926996253113, 3.2624809528901295, 3.3544038737076898, 3.4869571881865613, 3.8300901900427604, 3.8864704570476425 ], "yaxis": "y2" }, { "legendgroup": "-120.87", "line": { "color": "rgb(155.5124234987004, 22.744602785033546, 158.11608964316656)" }, "mode": "lines+markers", "name": "Longitude=-120.87", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 3.922549474884697, 3.867282078955399, 3.5245393525364817, 3.389542480192232, 3.2974289445420224, 3.389819531637625, 3.503866601308732, 3.356712981608958, 2.8559706982035924, 2.7965488666505482, 1.8167070654049815, 1.6946536059084967, 1.5802221178650802, 1.4978073219419292, 1.5829933588938956, 1.3852716741935514, 1.3660089215935427, 1.5194903905331298 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(223.25951838086016, 98.75350594996405, 98.70340756473126)", "legendgroup": "-118.48", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 4.199168781122474, 4.128449767959056, 3.699890044351444, 3.535945876777969, 3.426107555319671, 3.5163641377090222, 3.6657952446065423, 3.54804099047519, 2.6776372768341985, 2.377559734630428, 1.1760051772666817, 1.2012803149615012, 1.3204362128844418, 1.3560187626224502, 1.3200258684693178, 1.2241994686803441, 1.2305496680659074, 1.362469318832276, 1.308520430353437, 1.1786780043698588, 1.1749698377072286, 1.2681386801320074, 1.302983756051117, 1.2685660735503743, 1.1522403509512358, 1.1236716503410284, 2.3102159276775285, 2.6110874369998975, 3.4768340472218666, 3.5943677211103475, 3.4484186814380555, 3.361913431707939, 3.4700128107121473, 3.6290674386972466, 4.057736612873887, 4.130582550330081 ], "yaxis": "y2" }, { "legendgroup": "-118.48", "line": { "color": "rgb(223.25951838086016, 98.75350594996405, 98.70340756473126)" }, "mode": "lines+markers", "name": "Longitude=-118.48", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 4.164875665726277, 4.093093190416472, 3.6644787415243454, 3.502979343745058, 3.394010493513805, 3.482391409573539, 3.630081482858445, 3.5124375188485284, 2.644362356917048, 2.343887831153978, 1.149838413803855, 1.1767603329563685, 1.294501143217408, 1.3295012593367836, 1.2940822743006626, 1.1995846531937864, 1.204613836217883, 1.3354948745928565 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(228.4376885305997, 107.13721000192331, 92.78549882217179)", "legendgroup": "-118.23", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 3.37774108670118, 3.2515792467073603, 2.369963732218118, 2.128361365896592, 2.0709500185211622, 2.215711306515764, 2.5093871728816115, 2.499103582908499, 2.5188111210906756, 2.31849169353837, 1.1645724174566938, 1.1913703965087659, 1.3073855960900755, 1.3486344512843116, 1.3138624580770786, 1.206407848077634, 1.2122048940089454, 1.3438300195744053, 1.2895461051102992, 1.1601259854351298, 1.1569533307638333, 1.2615783407862267, 1.295201408300876, 1.255223233008807, 1.1415014520534639, 1.1114824700244528, 2.246530802158033, 2.4443875971164672, 2.421078309601679, 2.4318269423552845, 2.1351524557751502, 1.992797607821645, 2.051946390813174, 2.291893682786849, 3.1716006801422885, 3.2994075638208615 ], "yaxis": "y2" }, { "legendgroup": "-118.23", "line": { "color": "rgb(228.4376885305997, 107.13721000192331, 92.78549882217179)" }, "mode": "lines+markers", "name": "Longitude=-118.23", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 3.3385743252610207, 3.2115899634248244, 2.3309287075024834, 2.090153878354883, 2.0318738131714036, 2.175431881145457, 2.470607057618448, 2.460090946255089, 2.4815993591035714, 2.2825112478482015, 1.1380274437405733, 1.1664359242811149, 1.2813044145494412, 1.3219179297925938, 1.2877203994316526, 1.1816805894207336, 1.1861654397220376, 1.3166880623423523 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(235.4799999342455, 118.53904751258798, 84.73714293229082)", "legendgroup": "-117.89", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 3.138172652695973, 3.000711878796774, 2.2424669724158504, 2.1534407551917054, 2.107014526318952, 2.1573565750847803, 2.193762608341596, 2.200823492115383, 2.0909073143576706, 1.9626322251940747, 1.0506494197558267, 1.0771084842329055, 1.19324746452269, 1.1971299925382195, 1.1707377258162424, 1.0694308325070467, 1.0436334328435068, 1.1725917780890829, 1.1230978387147006, 0.9963544978007322, 1.025262577798651, 1.1234880482971052, 1.1499876090505365, 1.146771673729961, 1.0327438965553524, 1.0029467332251059, 1.8972178419168446, 2.0233115983975334, 2.130525988825676, 2.124736921800258, 2.0886013523774847, 2.039649201216425, 2.087786185796066, 2.17496426306956, 2.928502580855713, 3.0675436110105467 ], "yaxis": "y2" }, { "legendgroup": "-117.89", "line": { "color": "rgb(235.4799999342455, 118.53904751258798, 84.73714293229082)" }, "mode": "lines+markers", "name": "Longitude=-117.89", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 3.1028581318532598, 2.9646072298262434, 2.208715617742705, 2.1206134704938857, 2.0733318637676885, 2.1229789637311325, 2.159249765070927, 2.1656747404705294, 2.057109456377602, 1.9299250335554596, 1.0267980764904663, 1.054926190394129, 1.1700095691263255, 1.173558800794378, 1.1471128870566738, 1.047346705152849, 1.0199939653221195, 1.1478448084018917 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(247.44768322092048, 149.35799731392703, 64.34342281978485)", "legendgroup": "-117.06", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94, 38.94, 38.44, 37.97, 37.79, 37.66, 37.37, 36.96, 36.06479411764706, 34.31, 34.17, 34.1, 34.05, 34.01, 33.94, 33.88, 33.77, 33.57, 32.8 ], "xaxis": "x2", "y": [ 1.780236616791517, 1.879134044106263, 1.6591433144220535, 1.6257692740150156, 1.469682429530098, 1.4874575905248166, 1.5070993386469513, 1.4483969297198573, 1.394297476776623, 1.4179587010959822, 0.9650072434854389, 0.9919266942315298, 1.1090271701038734, 1.140203790786936, 1.1116877476075826, 1.0254123538410378, 1.0318501247298588, 1.1278649185731988, 1.0821842783556315, 0.9874112913810688, 0.9837968439228139, 1.0672837094920744, 1.0957610894155039, 1.067004119242048, 0.9519676334171171, 0.921832665096419, 1.3652227829916583, 1.3426444493813152, 1.3954160748057238, 1.4541320260862733, 1.4347061897869877, 1.4169469775456565, 1.56675297350196, 1.596748330105965, 1.8110203262781048, 1.71733511388442 ], "yaxis": "y2" }, { "legendgroup": "-117.06", "line": { "color": "rgb(247.44768322092048, 149.35799731392703, 64.34342281978485)" }, "mode": "lines+markers", "name": "Longitude=-117.06", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.8, 33.57, 33.77, 33.88, 33.94, 34.01, 34.05, 34.1, 34.17, 34.31, 36.06479411764706, 36.96, 37.37, 37.66, 37.79, 37.97, 38.44, 38.94 ], "xaxis": "x2", "y": [ 1.7487858653379684, 1.8450771851921839, 1.6279458222640093, 1.5962611237584878, 1.4433147035378773, 1.4610818901559022, 1.4806156823666123, 1.4219065022627906, 1.368470963078969, 1.3915907420438203, 0.943419954290929, 0.9719471638243234, 1.0880156446729607, 1.11798244010122, 1.0894857285498285, 1.0046045988819259, 1.0096307080554638, 1.1050245984644151 ], "yaxis": "y2" }, { "legendgroup": "-123.899845", "marker": { "color": "rgb(13.0, 8.0, 135.0)", "line": { "width": 0 } }, "name": "Longitude=-123.9", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 39.121700000000004, 39.3071, 39.4925, 40.048700000000004, 40.234100000000005, 40.4195, 40.6049, 40.7903, 40.9757, 41.7173 ], "xaxis": "x", "y": [ 0.0004, 0.0004, 0.0008, 0.0002, 0.0002, 0.0004, 0.0004, 0.0026, 0.001, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-123.325", "marker": { "color": "rgb(45.31786238560746, 5.165099790736187, 148.6075210044663)", "line": { "width": 0 } }, "name": "Longitude=-123.325", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925, 39.6779, 40.234100000000005, 40.4195 ], "xaxis": "x", "y": [ 0.0002, 0.0002, 0.0008, 0.0004, 0.0006, 0.0004, 0.001, 0.0006, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-122.755", "marker": { "color": "rgb(75.68398038542044, 2.7416372552081616, 160.16263235156327)", "line": { "width": 0 } }, "name": "Longitude=-122.755", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.6779, 39.8633, 40.9757, 41.5319, 41.7173 ], "xaxis": "x", "y": [ 0.0002, 0.0038, 0.0088, 0.0056, 0.003, 0.0122, 0.0026, 0.0008, 0.0032, 0.0014, 0.0006, 0.0004, 0.0002, 0.0002, 0.0004, 0.0004 ], "yaxis": "y" }, { "legendgroup": "-122.185", "marker": { "color": "rgb(100.42083892931872, 1.6172345941218762, 165.22244432645155)", "line": { "width": 0 } }, "name": "Longitude=-122.185", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 39.121700000000004, 39.3071, 39.4925, 39.6779, 39.8633, 40.048700000000004, 40.234100000000005, 40.4195, 40.6049, 40.9757, 41.161100000000005, 41.3465, 41.7173 ], "xaxis": "x", "y": [ 0.0008, 0.001, 0.0034, 0.0032, 0.0218, 0.0206, 0.0302, 0.0496, 0.0236, 0.0054, 0.0044, 0.0002, 0.0004, 0.0012, 0.0008, 0.0006, 0.0004, 0.0004, 0.0006, 0.0006, 0.0014, 0.002, 0.0004, 0.0002, 0.0002, 0.0004 ], "yaxis": "y" }, { "legendgroup": "-121.61500000000001", "marker": { "color": "rgb(124.65052940625259, 6.578848736608495, 165.46415966517796)", "line": { "width": 0 } }, "name": "Longitude=-121.615", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925, 39.6779, 39.8633, 40.048700000000004, 40.6049, 40.7903, 41.5319 ], "xaxis": "x", "y": [ 0.0012, 0.005, 0.0032, 0.0022, 0.0126, 0.0034, 0.0034, 0.0012, 0.0028, 0.0004, 0.0012, 0.0222, 0.0058, 0.0002, 0.004, 0.0014, 0.0022, 0.0036, 0.0004, 0.0006, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-121.045", "marker": { "color": "rgb(148.26298528906517, 18.947278008557944, 159.84214635974638)", "line": { "width": 0 } }, "name": "Longitude=-121.045", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 35.2283, 35.4137, 35.5991, 36.1553, 36.3407, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.8633, 40.048700000000004, 40.234100000000005, 40.4195, 40.7903 ], "xaxis": "x", "y": [ 0.0006, 0.0008, 0.0002, 0.0004, 0.0006, 0.0002, 0.0004, 0.0044, 0.0092, 0.0062, 0.006, 0.0028, 0.0006, 0.003, 0.0074, 0.0032, 0.002, 0.0016, 0.0006, 0.0004, 0.0006, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-120.475", "marker": { "color": "rgb(168.4735609207611, 35.09557422619257, 148.92831933035558)", "line": { "width": 0 } }, "name": "Longitude=-120.475", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.6721, 34.8575, 35.0429, 35.2283, 35.5991, 35.7845, 36.1553, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.8239, 38.0093, 38.1947, 38.3801, 38.7509, 39.121700000000004, 39.3071, 39.4925, 39.8633, 40.234100000000005, 40.4195, 40.6049 ], "xaxis": "x", "y": [ 0.0022, 0.003, 0.0052, 0.002, 0.0012, 0.0002, 0.0008, 0.0004, 0.0002, 0.001, 0.0042, 0.0006, 0.0006, 0.0022, 0.0004, 0.002, 0.0012, 0.0002, 0.0002, 0.0004, 0.0008, 0.0004, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-119.905", "marker": { "color": "rgb(187.0262048286848, 53.08601680357313, 135.43548739732014)", "line": { "width": 0 } }, "name": "Longitude=-119.905", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.3013, 34.4867, 34.6721, 35.2283, 35.9699, 36.1553, 36.3407, 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.4531, 37.6385, 38.1947, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925 ], "xaxis": "x", "y": [ 0.0004, 0.0058, 0.001, 0.0004, 0.0004, 0.0002, 0.003, 0.0014, 0.0138, 0.0068, 0.0004, 0.0006, 0.0002, 0.0004, 0.0004, 0.003, 0.0006, 0.0004, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-119.33500000000001", "marker": { "color": "rgb(202.56451260267966, 71.07645938095368, 120.43548739732033)", "line": { "width": 0 } }, "name": "Longitude=-119.335", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.115899999999996, 34.3013, 34.4867, 34.6721, 34.8575, 35.0429, 35.2283, 35.4137, 35.5991, 35.7845, 35.9699, 36.1553, 36.3407, 36.5261, 36.7115, 37.082300000000004, 37.4531, 38.5655 ], "xaxis": "x", "y": [ 0.004, 0.0076, 0.0006, 0.0002, 0.0002, 0.0002, 0.001, 0.0018, 0.0002, 0.0012, 0.0006, 0.0032, 0.005, 0.0032, 0.0024, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-118.765", "marker": { "color": "rgb(217.35640441015713, 89.1960833307306, 105.44982353124898)", "line": { "width": 0 } }, "name": "Longitude=-118.765", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.8575, 35.0429, 35.2283, 35.4137, 35.7845, 35.9699, 36.1553, 36.3407, 36.5261, 37.4531, 37.6385 ], "xaxis": "x", "y": [ 0.0018, 0.016, 0.013, 0.0004, 0.0002, 0.0002, 0.0014, 0.007, 0.0002, 0.0006, 0.0006, 0.0004, 0.0002, 0.0004, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-118.195", "marker": { "color": "rgb(229.16263235156345, 108.31092856919794, 91.95699159821322)", "line": { "width": 0 } }, "name": "Longitude=-118.195", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.6721, 34.8575, 35.0429, 35.5991, 37.2677, 37.4531 ], "xaxis": "x", "y": [ 0.0002, 0.0044, 0.0432, 0.1144, 0.1092, 0.0134, 0.0006, 0.0028, 0.0002, 0.0012, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-117.625", "marker": { "color": "rgb(239.64590686197963, 128.18174719680184, 78.27516631789354)", "line": { "width": 0 } }, "name": "Longitude=-117.625", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.0035, 33.1889, 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.4867, 34.6721, 35.0429, 35.5991, 36.1553 ], "xaxis": "x", "y": [ 0.0004, 0.0012, 0.001, 0.016, 0.0178, 0.0232, 0.0212, 0.0002, 0.0002, 0.0006, 0.001, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-117.055", "marker": { "color": "rgb(247.51672548958362, 149.54539775744124, 64.22013305431497)", "line": { "width": 0 } }, "name": "Longitude=-117.055", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.628065, 32.8181, 33.0035, 33.1889, 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.8575 ], "xaxis": "x", "y": [ 0.0198, 0.0434, 0.0114, 0.0096, 0.0006, 0.0012, 0.0032, 0.0056, 0.0108, 0.0016, 0.0016, 0.0008 ], "yaxis": "y" }, { "legendgroup": "-116.485", "marker": { "color": "rgb(251.62679201674112, 172.476028359934, 51.73207983258884)", "line": { "width": 0 } }, "name": "Longitude=-116.485", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.0035, 33.5597, 33.7451, 33.9305, 34.115899999999996 ], "xaxis": "x", "y": [ 0.0004, 0.0002, 0.0006, 0.0036, 0.0022, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-115.91499999999999", "marker": { "color": "rgb(252.75119467782744, 196.65068557328973, 40.4880532217257)", "line": { "width": 0 } }, "name": "Longitude=-115.915", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.3743, 33.5597, 33.7451, 34.4867, 35.5991 ], "xaxis": "x", "y": [ 0.0002, 0.0006, 0.0006, 0.0004, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-115.345", "marker": { "color": "rgb(247.30861729706086, 222.5765374644723, 35.81100665271571)", "line": { "width": 0 } }, "name": "Longitude=-115.345", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.628065, 32.8181, 33.0035, 33.1889 ], "xaxis": "x", "y": [ 0.0002, 0.003, 0.0008, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-114.775", "marker": { "color": "rgb(240, 249, 33)", "line": { "width": 0 } }, "name": "Longitude=-114.775", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.0035, 33.5597, 33.9305, 34.8575 ], "xaxis": "x", "y": [ 0.0004, 0.0002, 0.0004, 0.0004, 0.0004 ], "yaxis": "y" } ], "layout": { "barmode": "stack", "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Partial Dependence Plot (PDP)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ 32.492999999999995, 39.247 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Latitude" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.16947000000000004 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ 0.7555336951638865, 4.414111033679603 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Target" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_feature_dependence_default = explainer.explain_feature_dependence(['Latitude', 'Longitude'])\n", "result_explain_feature_dependence_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "74e55a7c", "metadata": {}, "source": [ "\n", "### Prediction Explanations (Local Feature Importance)" ] }, { "cell_type": "markdown", "id": "69cc68e5", "metadata": {}, "source": [ "Given a data sample, one can also obtain the local importance, which is the importance of the features for the model's prediction on that sample.\n", "In the following cell, we consider sample $10$. The function `explain_prediction()` computes the local importance for a given sample.\n", "\n", "`Latitude=33.0` means that the value of feature `Latitude` for that sample is `33.0`. Removing that feature would change the model's prediction by the magnitude of the bar. That is, in this case, the model's prediction for the median house price is approximately 1.15 (i.e., $115 000) less because the model knows the value of `Latitude` is `33.0`." ] }, { "cell_type": "code", "execution_count": 25, "id": "0c5f3701", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:50.723717Z", "iopub.status.busy": "2025-04-25T10:38:50.723350Z", "iopub.status.idle": "2025-04-25T10:38:53.261974Z", "shell.execute_reply": "2025-04-25T10:38:53.261455Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ 0.017325769036878935, 0.06843759973472838, 0.08518322570480663, 0.17046574680016302 ], "arrayminus": [ 0.017325769036878935, 0.06843759973472838, 0.08518322570480663, 0.17046574680016302 ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "negative", "marker": { "color": "#626567" }, "name": "33756=negative", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ -0.04518678466592693, -0.048870756514710595, -0.17908513674831922, -0.743590201968912 ], "y": [ "HouseAge", "MedInc", "AveOccup", "Longitude" ] }, { "error_x": { "array": [ 0.036217812754812645, 0.13950984563160984 ], "arrayminus": [ 0.036217812754812645, 0.13950984563160984 ], "type": "data" }, "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "positive", "marker": { "color": "#F80000" }, "name": "33756=positive", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.012453285589094632, 0.15519027152363712 ], "y": [ "AveRooms", "Latitude" ] }, { "marker": { "line": { "color": "rgba(0,0,0,0)", "width": 1 } }, "name": "", "orientation": "h", "showlegend": false, "type": "bar", "width": 0, "x": [ 0.743590201968912 ], "y": [ " " ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "AveRooms = 5.6008", "x": 0, "xanchor": "left", "xref": "x", "y": 1, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "HouseAge = 36.0", "x": 0, "xanchor": "right", "xref": "x", "y": 2, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "MedInc = 3.8214", "x": 0, "xanchor": "right", "xref": "x", "y": 3, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Latitude = 33.95", "x": 0, "xanchor": "left", "xref": "x", "y": 4, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveOccup = 2.8601", "x": 0, "xanchor": "right", "xref": "x", "y": 5, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Longitude = -118.04", "x": 0, "xanchor": "right", "xref": "x", "y": 6, "yref": "y", "yshift": 12.0 }, { "font": { "color": "#626567", "size": 14 }, "showarrow": false, "text": "⇩ Target", "x": 0.15, "xref": "paper", "y": 1.05, "yref": "paper", "yshift": 40 }, { "font": { "color": "#F80000", "size": 14 }, "showarrow": false, "text": "⇧ Target", "x": 0.85, "xref": "paper", "y": 1.05, "yref": "paper", "yshift": 40 } ], "barmode": "overlay", "height": 316, "margin": { "b": 20, "t": 56 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryarray": [ " ", "AveRooms", "HouseAge", "MedInc", "Latitude", "AveOccup", "Longitude" ], "categoryorder": "array", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "title": { "text": " " }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryarray": [ " ", "AveRooms", "HouseAge", "MedInc", "Latitude", "AveOccup", "Longitude" ], "categoryorder": "array", "gridcolor": "white", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": false, "side": "top", "type": "category", "visible": false, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_prediction_default = explainer.explain_prediction(X_train.sample(n=10))\n", "result_explain_prediction_default[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "4633e0b5", "metadata": {}, "source": [ "\n", "### Aggregate Local Feature Importance\n", "We now summarize all of the individual local feature importance explanations into one single aggregate explanation." ] }, { "cell_type": "code", "execution_count": 26, "id": "faf7c4ef", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:53.263958Z", "iopub.status.busy": "2025-04-25T10:38:53.263579Z", "iopub.status.idle": "2025-04-25T10:38:54.375113Z", "shell.execute_reply": "2025-04-25T10:38:54.374451Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 1, 8, 9, 4, 2, 7, 0, 3, 6, 5 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Target", "marker": { "color": "rgb(248,0,0)", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Target", "orientation": "h", "showlegend": false, "type": "box", "uid": "a445fc8a-582a-4e28-bdb9-e42296b092de", "x": [ 0.5706966256408518, 0.6712518684706921, 0.8004450969449324, 1.3082281050725053, 1.4307282263289802, 1.7780936992483436, 1.9587214082286688, 4.3822810468649, 4.965213491906465, 5.05226333621734 ], "xaxis": "x", "y": [ "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target" ], "yaxis": "y" }, { "boxmean": true, "boxpoints": "all", "customdata": [ 1, 8, 4, 9, 0, 9, 2, 7, 1, 8, 7, 2, 0, 2, 9, 3, 9, 4, 7, 1, 4, 8, 1, 1, 0, 9, 0, 7, 7, 2, 5, 9, 5, 8, 8, 0, 2, 4, 4, 6, 4, 5, 1, 3, 2, 8, 6, 0, 7, 6, 3, 5, 3, 6, 3, 6, 6, 5, 5, 3 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Target", "marker": { "color": "rgb(0, 128, 128)", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Target", "orientation": "h", "showlegend": false, "type": "box", "uid": "95c062b0-c54e-4b94-8d7f-e887cab0c9ba", "x": [ -3.249209504803882, -1.840584345825653, -1.5380714278110608, -1.2431293944052866, -0.743590201968912, -0.700958116942288, -0.5521426216622144, -0.5371149382488095, -0.5100938692535816, -0.4112247433565576, -0.243422846726938, -0.18860908520864075, -0.17908513674831922, -0.1379254066983604, -0.13207991349449794, -0.1109768634757406, -0.10941827625596331, -0.10653494986475426, -0.1048153553665466, -0.09615385983301446, -0.08784135529532287, -0.07448598134192673, -0.0711507511750415, -0.05917729116882946, -0.048870756514710595, -0.04702832949003988, -0.04518678466592693, -0.03984852315668093, -0.030734538433578547, -0.026513756739664177, -0.02428796311948831, -0.02425414928575159, -0.021014184151179324, -0.014787833714143996, -0.004895523467185263, 0.012453285589094632, 0.01990996059334378, 0.03465123084705314, 0.058080663203666394, 0.05925388014076716, 0.06535295125797862, 0.073827576846079, 0.07696533725063738, 0.07837726442192276, 0.08544269504786, 0.11978519363308726, 0.12919618428236, 0.15519027152363712, 0.3058114710462463, 0.3871129817833703, 0.3924259488258418, 0.47246685390631393, 0.5208677461926075, 0.7187398349282053, 0.8198908360120132, 0.9249518556675764, 1.223348770781036, 1.3631088830439377, 1.8364324860194692, 2.0178516908529094 ], "xaxis": "x2", "y": [ "Longitude", "Latitude", "Longitude", "Latitude", "Longitude", "Longitude", "Latitude", "Longitude", "MedInc", "MedInc", "AveOccup", "MedInc", "AveOccup", "AveOccup", "AveOccup", "Latitude", "MedInc", "AveOccup", "HouseAge", "AveOccup", "AveRooms", "AveOccup", "HouseAge", "AveRooms", "MedInc", "HouseAge", "HouseAge", "AveRooms", "MedInc", "AveRooms", "HouseAge", "AveRooms", "Latitude", "AveRooms", "HouseAge", "AveRooms", "Longitude", "MedInc", "HouseAge", "HouseAge", "Latitude", "AveOccup", "Latitude", "HouseAge", "HouseAge", "Longitude", "AveOccup", "Latitude", "Latitude", "AveRooms", "AveOccup", "AveRooms", "AveRooms", "Longitude", "MedInc", "MedInc", "Latitude", "Longitude", "MedInc", "Longitude" ], "yaxis": "y2" } ], "layout": { "annotations": [ { "font": { "size": 16 }, "showarrow": false, "text": "Model Predictions", "x": 0.225, "xanchor": "center", "xref": "paper", "y": 1.0, "yanchor": "bottom", "yref": "paper" }, { "font": { "size": 16 }, "showarrow": false, "text": "Aggregated Feature Attributions", "x": 0.775, "xanchor": "center", "xref": "paper", "y": 1.0, "yanchor": "bottom", "yref": "paper" } ], "height": 600, "plot_bgcolor": "white", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "10 Sample Predictions to Explain", "x": 0.5 }, "width": 1080, "xaxis": { "anchor": "y", "domain": [ 0.0, 0.45 ] }, "xaxis2": { "anchor": "y2", "domain": [ 0.55, 1.0 ] }, "yaxis": { "anchor": "x", "domain": [ 0.0, 1.0 ] }, "yaxis2": { "anchor": "x2", "domain": [ 0.0, 1.0 ] } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2b9c66708fbf4c6ab344c84e71b936a7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value='

Samples

'), Output()), layout=Layout(align_items…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "alfi = explainer.aggregate(explanations=result_explain_prediction_default)\n", "alfi.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "70035608", "metadata": {}, "source": [ "\n", "## Interactive What-If Explanations" ] }, { "cell_type": "markdown", "id": "f3522eac", "metadata": {}, "source": [ "The Oracle AutoMLx solution offers also What-IF tool to explain a trained ML model's predictions through a simple interactive interface.\n", "\n", "You can use What-IF explainer to explore and visualize immediately how changing a sample value will affect the model's prediction. Furthermore, What-IF can be used to visualize how model's predictions are related to any feature of the dataset." ] }, { "cell_type": "code", "execution_count": 27, "id": "63a88c6b", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:54.378423Z", "iopub.status.busy": "2025-04-25T10:38:54.378191Z", "iopub.status.idle": "2025-04-25T10:38:54.655679Z", "shell.execute_reply": "2025-04-25T10:38:54.655157Z" }, "lines_to_next_cell": 2 }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d61b0377ee88458abc65e8060368ab1d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value=\"

Select and Explore Predictions

\"), HTML(value=''), H…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "MedInc: %{x}
predictions: %{y}", "marker": { "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "", "showlegend": false, "type": "scatter", "uid": "f7e842b5-5ce3-4fa5-9509-65f09a996afc", "x": [ 2.0278, 4.3056, 3.675, 2.6392, 9.1974, 7.866, 4.5094, 2.4896, 2.5804, 5.8151, 3.625, 4.5913, 2.8603, 2.2578, 3.9625, 1.3333, 1.6469, 2.1731, 3.7156, 5.1171, 1.9956, 5.0123, 2.6058, 6.8406, 2.4531, 5.0767, 7.2639, 1.7743, 2.875, 6.1168, 5.3366, 5.0359, 2.9094, 3.725, 3.3456, 4.5399, 2.3929, 4.1154, 2.6949, 5.5461, 4.5428, 2.5921, 3.1635, 1.6178, 5.193, 2.2417, 6.2893, 2.11, 2.1875, 3.9828, 4.7788, 5.7621, 4.4063, 5.6738, 4.9867, 5.5696, 4.0256, 4.9394, 5.6177, 4.976, 3.8668, 1.3532, 1.7463, 5.2099, 3.7562, 2.5893, 2.53, 4.2813, 3.5417, 1.7566, 2.7587, 4.0221, 0.9365, 2.1199, 5.033, 3.4821, 3.2159, 3.4103, 3.8304, 5.1993, 1.5729, 3.0225, 15.0001, 1.867, 2.6051, 5.5, 4.233, 8.1548, 3.4519, 3.6597, 4.4347, 3.2757, 6.3794, 3.4539, 3.4028, 3.0817, 1.5089, 4.636, 3.6791, 3.5568, 2.56, 3.8967, 3.5272, 4.087, 3.2875, 2.3375, 3.8125, 3.94, 5.3081, 15.0001, 5.3339, 1.8828, 3.0788, 1.7552, 2.8906, 3.1215, 2.2188, 6.1426, 1.4886, 5.0447, 4.0061, 4.4042, 2.2361, 1.9805, 2.7813, 3.0491, 2.098, 4.9028, 4.1926, 2.59, 6.1868, 1.2292, 2.3042, 5.1008, 2.9762, 3.1573, 3.8869, 8.8793, 5.0858, 6.1986, 5.5842, 3.6538, 3.8125, 4.517, 4.0977, 2.5969, 2.8, 1.9832, 2.4821, 6.0266, 2.6619, 3.1864, 3.2258, 8.3912, 3.6806, 2.2165, 2.1471, 2.8036, 1.7941, 2.4722, 3.8269, 5.0, 6.1966, 1.9386, 0.9338, 2.9832, 5.9333, 6.348, 2.3482, 1.9429, 2.5147, 2.25, 3.3155, 1.7778, 2.5388, 2.2976, 5.4322, 5.5469, 4.8839, 5.0804, 6.3842, 4.2137, 3.525, 3.1832, 3.3472, 1.8519, 1.9472, 2.9405, 2.9485, 4.3317, 4.3438, 4.9286, 6.9794, 3.6343, 6.3267, 6.4781, 3.115, 4.8536, 5.0232, 3.625, 2.6607, 3.7125, 3.2121, 2.3789, 4.7946, 2.6884, 4.2431, 2.7143, 4.5417, 4.66, 6.4001, 2.4375, 2.5625, 9.8892, 3.475, 6.7274, 2.9, 2.7125, 1.6667, 2.7983, 3.3287, 5.2851, 4.7986, 2.9072, 2.3365, 15.0001, 3.6422, 6.6188, 4.2917, 3.6974, 3.8864, 3.755, 3.0877, 6.5378, 4.2037, 3.8935, 2.1667, 3.963, 3.925, 3.6417, 2.3545, 4.6667, 1.3125, 3.2862, 2.0571, 4.6, 2.9821, 1.7639, 4.7308, 5.9897, 4.0789, 2.355, 2.7048, 6.3054, 4.125, 2.9821, 3.5691, 3.6007, 3.5234, 3.7933, 2.5, 4.5556, 5.6704, 1.75, 4.5655, 7.0735, 3.5313, 3.0469, 2.8024, 3.8487, 3.9803, 3.9417, 4.4777, 2.7083, 2.0938, 2.4861, 0.8658, 2.4866, 1.0298, 9.4664, 3.7917, 3.8259, 3.6563, 3.375, 1.7333, 4.0223, 2.3068, 3.4784, 2.3482, 3.8393, 1.5227, 3.9041, 5.2442, 2.76, 3.1042, 3.6094, 2.5368, 2.3716, 2.4206, 1.7165, 6.1321, 4.1674, 4.8021, 8.9172, 3.1333, 2.75, 3.1645, 2.6852, 10.0595, 2.2308, 3.6016, 2.2478, 3.125, 2.9706, 2.3824, 4.0417, 5.6631, 2.0243, 5.966, 2.4632, 4.3229, 4.6985, 3.6429, 2.6964, 6.6633, 1.6228, 3.3542, 4.6458, 5.7268, 3.4375, 1.5174, 3.8917, 5.103, 2.6364, 3.0042, 1.3071, 4.131, 4.6786, 1.4048, 3.9643, 5.1857, 4.1528, 6.6739, 3.1728, 1.5256, 2.5, 10.2264, 3.5242, 4.8269, 4.7098, 4.4167, 7.218, 3.6298, 3.1042, 4.239, 3.599, 2.1944, 4.25, 2.3889, 2.9063, 2.9219, 7.2494, 2.4375, 2.9386, 5.0761, 4.065, 2.6226, 2.875, 3.7895, 3.2917, 1.5885, 2.3125, 5.1629, 4.2224, 6.8099, 4.5987, 4.4477, 5.8993, 1.1607, 4.8286, 3.2303, 6.1527, 4.2679, 1.775, 3.625, 4.125, 2.0066, 3.6728, 2.6442, 3.5761, 4.1312, 3.5192, 3.0, 3.9107, 4.4261, 3.6023, 3.1417, 3.3926, 4.2578, 4.0568, 2.506, 3.8819, 4.2667, 5.0, 5.1506, 4.9904, 2.0, 3.235, 6.0824, 5.0162, 4.2273, 3.9375, 4.665, 4.6953, 3.3438, 3.7301, 1.7727, 2.6997, 4.7356, 2.4297, 4.1419, 3.712, 2.6923, 2.9479, 4.002, 2.6371, 8.111, 5.4051, 2.25, 1.9375, 3.05, 11.4537, 3.5833, 4.2721, 4.9118, 7.9135, 2.5707, 3.6193, 7.1924, 5.1669, 2.0043, 4.325, 1.4804, 3.1914, 3.7, 2.9107, 4.4732, 6.02, 14.2959, 4.8224, 2.7763, 3.7321, 4.8237, 2.7031, 4.2333, 5.373, 2.625, 2.8167, 4.675, 4.2019, 2.8042, 5.8864, 4.3036, 5.2557, 1.2387, 3.1354, 3.1433, 2.6036, 3.7454, 9.2873, 4.21, 2.8348, 3.1384, 1.7212, 3.4375, 7.2472, 4.075, 3.6641, 3.2277, 4.175, 5.5486, 4.625, 5.3363, 3.7198, 4.7375, 2.375, 3.2216, 4.6833, 5.0056, 3.233, 2.7188, 2.1949, 2.8345, 5.0464, 3.6815, 4.8962, 1.2094, 2.8311, 1.6948, 5.1515, 8.2266, 2.4444, 5.8527, 2.8214, 5.7519, 3.6042, 1.7169, 6.2096, 3.2303, 2.7593, 3.4318, 1.3304, 2.567, 2.4922, 7.9835, 3.6118, 3.901, 9.1415, 6.0804, 3.7847, 3.9038, 1.84, 2.0958, 6.6916, 2.0893, 3.175, 3.4187, 4.2404, 6.992, 4.0227, 2.6818, 3.1513, 9.3125, 6.3178, 6.1008, 2.7308, 3.6563, 3.6719, 4.8214, 3.6296, 3.7431, 4.125, 4.35, 1.0714, 1.4274, 6.8419, 3.0526, 5.5777, 2.3929, 2.3658, 2.4848, 3.5536, 2.6403, 3.25, 4.1865, 1.4329, 1.4079, 6.5704, 4.875, 2.6713, 6.4598, 2.9292, 4.5707, 5.1005, 4.869, 3.3594, 10.3416, 6.148, 4.1875, 2.9083, 3.0313, 3.9099, 1.9964, 5.4171, 3.79, 4.9384, 6.3824, 3.1304, 5.128, 3.0078, 6.057, 4.8059, 4.8611, 5.5111, 3.6287, 2.9375, 2.6506, 2.0804, 3.371, 5.4496, 1.125, 2.8648, 5.2099, 2.4906, 3.6382, 2.5797, 1.2794, 1.6071, 4.1016, 3.7188, 5.5379, 2.5197, 5.1775, 2.5991, 3.625, 3.1591, 4.8274, 6.827, 1.8589, 5.0195, 1.1642, 4.5687, 6.3314, 3.175, 2.7222, 2.809, 5.3559, 2.489, 4.85, 2.8326, 1.5122, 5.8083, 3.875, 3.0827, 3.3929, 4.175, 2.3562, 4.5075, 3.3235, 4.7083, 2.3784, 2.6442, 7.3672, 3.8259, 3.125, 4.575, 3.8803, 3.6412, 2.2321, 2.3284, 2.774, 4.5735, 4.4559, 3.8506, 4.1071, 3.6667, 5.038, 3.18, 13.4883, 3.1667, 4.665, 5.1615, 2.325, 5.0753, 2.1602, 3.23, 1.125, 10.2614, 6.3373, 3.7337, 2.2868, 6.276, 3.0833, 1.74, 1.5615, 2.949, 4.8929, 5.6029, 3.0143, 0.9, 3.2115, 3.0321, 3.6712, 3.6389, 3.5703, 3.1326, 4.4485, 2.5917, 6.2475, 4.5588, 2.2241, 2.4042, 3.6893, 2.7411, 8.5294, 5.1433, 4.75, 2.8649, 3.9375, 1.7991, 1.1875, 7.7876, 2.7466, 4.1563, 2.7045, 6.2976, 5.5797, 4.1563, 4.4732, 5.2548, 4.0966, 4.7325, 1.7266, 6.5412, 1.4583, 5.3028, 2.1793, 3.7433, 3.2619, 2.8679, 5.7415, 4.4375, 1.3134, 7.2217, 3.7619, 4.875, 1.7292, 5.6096, 4.625, 3.3616, 3.8162, 2.8562, 3.4, 4.3218, 1.474, 2.3256, 4.1842, 1.4194, 4.75, 2.5972, 2.1103, 3.6202, 3.4032, 4.0132, 3.8194, 4.0625, 2.9293, 10.3599, 5.1439, 6.759, 3.3375, 1.9766, 2.8357, 2.875, 4.8214, 2.625, 2.825, 2.25, 5.3283, 3.4934, 2.8058, 2.4659, 9.2298, 6.2578, 4.8571, 3.1875, 2.1375, 2.9405, 5.3819, 2.0, 3.654, 3.9479, 2.2125, 7.3522, 2.4271, 5.0912, 3.9536, 5.5, 3.4896, 4.0023, 2.9688, 5.1461, 3.625, 3.8068, 5.0077, 1.4419, 3.7949, 4.4306, 1.8685, 4.15, 2.9519, 3.395, 1.9797, 2.0474, 3.0119, 8.0409, 1.4191, 6.0426, 3.5242, 1.0208, 8.4355, 3.402, 3.6696, 4.0, 5.0679, 3.3917, 3.0149, 3.0403, 5.5198, 3.3281, 3.7015, 2.0976, 4.1947, 3.5, 5.2486, 5.2949, 2.7202, 1.6901, 8.1657, 3.875, 5.9199, 2.6667, 1.3365, 3.337, 2.6406, 2.6726, 2.2449, 2.1736, 5.9277, 3.6466, 2.184, 3.6563, 3.1875, 4.0433, 4.2639, 3.1588, 5.6409, 6.5319, 4.0, 3.125, 3.2262, 4.3631, 4.6458, 4.4861, 2.5819, 1.6944, 2.7298, 4.3222, 3.3047, 2.6385, 4.7437, 5.6629, 1.6036, 3.2011, 6.5501, 3.2308, 2.5208, 4.2672, 2.1667, 5.7797, 2.6979, 6.1253, 6.5858, 2.4732, 6.6959, 7.5426, 4.7909, 6.8162, 3.9464, 2.087, 4.712, 1.6691, 4.7391, 2.025, 3.343, 4.1339, 1.6571, 4.1731, 5.2261, 3.875, 5.9714, 3.225, 5.2855, 1.4464, 2.0938, 3.1406, 1.4481, 4.7475, 6.0609, 4.875, 2.2292, 3.5187, 3.1923, 2.8942, 4.1807, 6.3489, 3.5774, 3.0078, 2.1953, 3.2359, 1.4091, 8.3634, 3.7045, 4.0556, 3.375, 4.125, 2.29, 3.5462, 4.3333, 2.0972, 6.3814, 2.0655, 3.4625, 3.625, 6.0722, 6.8007, 3.5109, 8.9088, 1.2746, 3.7313, 4.0938, 2.4779, 7.9943, 5.7628, 3.168, 10.6605, 2.4286, 2.1944, 5.3988, 3.1667, 1.0472, 3.1842, 2.4659, 2.2607, 1.25, 4.1042, 3.3558, 3.5659, 3.3897, 3.25, 3.071, 8.1871, 5.409, 1.7361, 1.4911, 2.0899, 2.0579, 2.2138, 3.0453, 4.0329, 2.3438, 3.2723, 6.4667, 3.996, 3.5083, 2.6759, 3.1406, 2.4817, 3.6128, 3.9375, 3.4042, 2.7432, 2.7138, 1.8438, 4.2042, 12.8665, 6.2551, 4.125, 2.1792, 5.583, 5.7239, 3.1389, 3.875, 4.119, 4.4063, 4.0079, 3.8462, 13.1499, 2.3276, 7.5488, 4.2312, 3.175, 7.2574, 4.6488, 4.2109, 2.6066, 3.18, 4.3646, 2.0417, 4.9091, 2.1056, 2.25, 3.4375, 5.8371, 6.0, 3.7663, 4.4375, 1.8208, 8.5957, 3.7708, 4.8152, 4.525, 2.3333, 1.9135, 7.1262, 4.9783, 3.475, 1.3587, 4.8906, 3.3892, 2.0133, 5.8411, 5.2416, 6.868, 3.9224, 2.5588, 1.7788, 4.7547, 3.2614, 5.6228, 4.0844, 4.6364, 2.1411, 4.0775, 6.7805, 2.655, 2.6111, 4.3009, 8.051, 4.5417, 4.2304, 4.7986, 4.9984, 3.7328, 6.3566, 3.3882, 1.3007, 4.5368, 3.5707, 3.5694, 2.8155, 4.1, 2.3895, 1.35, 4.0781, 5.3674, 2.5833, 2.1005, 2.3917, 3.4031, 5.6651, 4.2188, 2.8438, 3.9688, 3.125, 1.186, 2.6042, 3.8472, 3.2591, 6.8323, 2.2925, 4.5682, 2.7727, 5.4819, 5.193, 5.9639, 5.6864, 4.0208, 3.1484, 2.8258, 3.25, 3.2699, 3.0, 7.1134, 2.7708, 1.9955, 2.8462, 3.3542, 3.2371, 2.1563, 5.8322, 3.0875, 6.5928, 4.5833, 4.1467, 2.7826, 4.3056, 7.3731, 4.125, 1.7546, 3.4531, 2.1213, 3.7396, 4.2273, 7.75, 4.3456, 2.5625, 4.0208, 3.4261, 4.0429, 2.1591, 3.2019, 4.1339, 3.6629, 3.0431, 2.9219, 5.0822, 4.7279, 4.4423, 5.1995, 4.0391, 6.256, 3.4087, 3.2664, 2.442, 3.0, 5.3668, 1.6767, 3.5078, 4.6354, 2.6862, 2.9821, 0.7714, 2.25, 4.4148, 11.2463, 3.2447, 2.4185, 5.273, 1.4167, 2.288, 1.5347, 4.5, 4.7222, 6.6031, 2.8365, 1.6929, 2.6275, 2.8903, 2.8625, 5.3678, 6.5576, 5.565, 5.3441, 3.9028, 7.2013, 2.7206, 6.0, 7.2623, 3.0992, 2.2278, 0.957, 2.4706, 1.7456, 2.8285, 2.525, 3.6509, 3.8542, 4.0926, 4.5333, 4.0167, 5.0897, 2.7969, 3.0757, 3.0294, 2.6726, 5.7396, 2.5363, 8.5282, 2.0156, 5.1508, 4.2344, 5.1207, 4.5461, 1.1563, 1.0481, 5.316, 2.6914, 5.9339, 3.6373, 4.0125, 8.2737, 6.4339, 6.2892, 1.9206, 2.6111, 3.9323, 4.5625, 5.0393, 4.9464, 2.125, 3.1739, 1.7463, 6.2475, 2.9871, 2.4968, 4.9237, 3.1654, 4.2297, 3.0859, 2.6343, 3.7067, 3.9914, 3.5051, 8.0073, 3.9489, 5.0483, 4.125, 3.4474, 6.0224, 3.3036, 2.4375, 1.9083, 1.4766, 8.0448, 3.212, 4.1071, 2.246, 7.2589, 3.5258, 6.2498, 1.5917, 3.2361, 5.2661, 3.575, 3.5114, 3.3456, 3.1364, 3.55, 3.915, 1.7696, 3.1719, 4.7955, 1.3523, 3.0529, 3.1061, 2.625, 2.6719, 2.2007, 2.5872, 10.1597, 4.87, 10.2264, 4.7685, 5.9856, 2.6341, 2.5742, 3.5288, 3.5156, 1.9375, 8.565, 1.7262, 6.5948, 4.9732, 1.3417, 4.3833, 4.1492, 2.6779, 4.0417, 3.5611, 4.6023, 4.4236, 4.54, 4.174, 2.7917, 2.6941, 3.8687, 5.2079, 3.1786, 2.6389, 2.125, 2.75, 1.965, 7.355, 3.428, 4.0972, 3.75, 6.1724, 3.0212, 2.7201, 4.4, 7.333, 2.2604, 4.9688, 1.5694, 5.8966, 3.8214, 2.0216, 3.29, 2.9491, 2.6567, 2.871, 4.8229, 7.0875, 2.462, 3.9868, 3.7969, 5.4719, 3.2237, 8.944, 8.9571, 3.9167, 4.4063, 4.8906, 2.3036, 10.3661, 3.6528, 8.6454, 3.3438, 2.1864, 4.196, 3.6625, 3.925, 4.3814, 6.4894, 4.8438, 2.3152, 1.5594, 2.5275, 2.0529, 5.6441, 4.8096, 2.6181, 2.5739, 4.1099, 1.3157, 6.4913, 3.1312, 1.9208, 10.3713, 1.4254, 3.1662, 2.0833, 3.8819, 1.625, 2.837, 2.8226, 3.3906, 3.6823, 7.5118, 4.0231, 4.3542, 2.4632, 3.6648, 5.6533, 3.6273, 4.5625, 7.9976, 5.9734, 5.4243, 1.9891, 6.0622, 3.275, 2.8438, 1.8913, 2.319, 5.2289, 4.1528, 2.6316, 4.4615, 4.793, 2.5179, 3.6339, 5.3135, 2.5074, 4.0507, 2.4432, 2.0278, 1.6078, 5.1782, 1.6006, 9.7194, 1.9236, 2.24, 3.455, 5.5218, 2.66, 5.2773, 5.7979, 3.3929, 3.3208, 1.3167, 6.9113, 3.3268, 4.0862, 3.5379, 4.0602, 2.4912, 9.802, 5.2417, 3.1204, 10.6834, 5.6902, 1.5313, 4.6861, 5.3737, 3.494, 3.1607, 3.8571, 2.675, 3.2937, 4.0972, 5.253, 1.55, 3.5179, 4.375, 1.2545, 2.0353, 4.6771, 3.025, 2.7, 5.2853, 1.9718, 3.625, 2.625, 7.3343, 2.5486, 3.6033, 4.8523, 2.7321, 2.8385, 3.1125, 3.5583, 3.5208, 4.4529, 1.625, 1.4617, 10.1357, 5.0796, 2.8466, 2.5234, 5.1814, 3.4013, 5.482, 3.194, 3.875, 2.6983, 2.4012, 3.5812, 6.057, 4.1029, 5.311, 5.6407, 5.0574, 6.3052, 3.0263, 2.0089, 5.9567, 4.0185, 4.2841, 3.0375, 1.9792, 2.6042, 3.2768, 2.3438, 3.2993, 3.183, 1.9495, 8.2064, 4.2885, 3.9583, 2.5612, 3.9, 3.996, 2.6014, 3.8958, 4.5461, 2.575, 4.0735, 6.6842, 2.598, 4.375, 3.1458, 3.8897, 5.3767, 2.125, 1.3438, 4.575, 2.6739, 1.76, 4.2109, 6.0777, 3.7784, 3.1382, 4.1071, 5.9357, 4.0, 4.5455, 3.3304, 9.2327, 6.2048, 4.1302, 6.3942, 2.4211, 2.25, 5.8666, 5.2039, 5.0965, 5.1696, 4.3428, 4.7931, 3.5909, 1.7199, 5.7907, 2.25, 5.5842, 3.1364, 3.6375, 5.7083, 2.5272, 3.1977, 3.0125, 2.625, 4.4595, 1.9038, 2.4659, 5.2837, 3.175, 3.5391, 6.8753, 2.8667, 4.0972, 2.4911, 3.0403, 1.8849, 3.4148, 2.0833, 1.5078, 5.4449, 1.8463, 2.9688, 4.2875, 2.7857, 4.8214, 4.9615, 3.5313, 3.025, 2.5714, 2.6618, 2.6447, 2.8274, 4.1836, 15.0001, 2.765, 2.2574, 2.9453, 0.8941, 2.3958, 2.2961, 3.4047, 2.5395, 3.5056, 2.2583, 2.0917, 3.15, 0.7069, 2.5763, 3.3393, 5.6846, 7.0842, 2.9716, 4.8152, 5.01, 5.1265, 3.4703, 2.2679, 3.2516, 1.735, 0.7054, 9.1232, 5.4035, 4.7422, 4.6923, 3.075, 4.2875, 6.3131, 3.6902, 4.7845, 2.8824, 4.7159, 6.0922, 2.152, 4.3472, 5.25, 2.6544, 2.7361, 8.8742, 3.5302, 5.5061, 2.885, 3.2083, 1.5407, 5.536, 2.3347, 7.7317, 5.5224, 2.8922, 2.2201, 1.5771, 4.7891, 1.4946, 2.1406, 2.2161, 3.5139, 8.6718, 5.4413, 5.6327, 2.0802, 2.8548, 12.3411, 0.536, 3.9, 4.8603, 4.3529, 5.5118, 1.4688, 2.1111, 2.9271, 5.5954, 4.9643, 4.1379, 5.3508, 3.6705, 3.4784, 3.0912, 1.4034, 4.5417, 4.7188, 4.3906, 1.6728, 6.3373, 2.5, 1.2647, 4.282, 2.4526, 7.1937, 4.4831, 3.8864, 5.5238, 3.0466, 1.3844, 4.2042, 3.1087, 4.2333, 1.6559, 3.6923, 3.8026, 3.9712, 3.16, 4.3836, 2.8036, 3.337, 7.5655, 4.2099, 2.0156, 4.2833, 1.0649, 1.9853, 2.2024, 3.4456, 3.7316, 2.788, 5.3168, 5.3106, 5.2155, 2.8529, 2.7368, 4.1146, 1.8167, 2.5547, 2.0926, 9.7821, 1.7596, 2.1856, 6.0097, 5.7519, 7.3151, 7.0329, 3.5046, 3.226, 2.4688, 4.0469, 4.5972, 2.3851, 3.864, 2.375, 4.375, 6.0689, 1.9657, 1.6806, 3.5179, 6.0574, 3.2375, 6.4335, 4.1189, 3.6823, 5.1021, 1.5903, 1.2679, 4.2206, 4.75, 2.964, 4.0388, 1.8929, 4.1667, 4.6563, 2.9334, 2.8031, 2.6734, 4.45, 8.3065, 4.5739, 4.0096, 8.0257, 1.3062, 3.7167, 4.2562, 1.5195, 1.6458, 2.9063, 4.5179, 1.7961, 3.0347, 1.9189, 4.7946, 8.7124, 5.8831, 5.1145, 5.2549, 4.1652, 3.2426, 3.1944, 3.4063, 3.96, 3.2115, 2.8062, 4.6591, 2.9286, 3.1768, 4.8889, 3.4583, 5.5737, 4.5, 2.3269, 4.5179, 13.2949, 2.5902, 3.9758, 2.8352, 5.2, 4.3977, 1.1346, 2.0591, 3.089, 5.9539, 5.1836, 5.3526, 4.1552, 2.0125, 3.5256, 7.4837, 2.75, 2.6951, 2.4662, 8.4952, 1.2904, 1.9766, 5.3096, 4.1164, 3.9833, 2.5469, 4.0, 4.1875, 1.6065, 4.7159, 4.9861, 2.1292, 8.7477, 1.6991, 5.5176, 1.8477, 4.2589, 3.0181, 2.2024, 3.0296, 4.9286, 6.3406, 3.2031, 2.5663, 4.1932, 4.6184, 6.0666, 3.875, 2.5029, 3.5819, 5.4741, 1.7995, 3.5769, 5.0962, 6.2308, 5.2088, 4.4896, 4.0905, 3.5114, 2.4375, 3.3839, 5.2551, 3.0556, 3.875, 1.9013, 4.3651, 8.0103, 6.9615, 4.1779, 4.0208, 1.1793, 5.2769, 3.5, 4.6852, 2.9018, 4.5795, 6.2113, 8.4262, 3.6364, 3.0606, 7.2074, 2.2264, 3.1964, 7.0935, 6.8939, 4.5833, 2.052, 6.626, 3.5551, 2.735, 2.375, 2.5129, 6.1628, 4.6167, 3.9732, 4.6029, 4.3047, 6.8322, 6.5382, 4.5432, 3.0625, 2.3125, 6.822, 10.9529, 3.6953, 2.6465, 7.7364, 2.9808, 12.0088, 5.31, 2.4492, 1.6037, 5.75, 8.735, 3.7802, 2.4464, 4.5357, 8.5491, 2.8281, 2.6528, 3.7813, 3.0184, 5.086, 3.9375, 2.5787, 5.7951, 2.5, 3.0357, 3.358, 2.9569, 2.3496, 3.625, 4.7019, 4.2171, 4.5694, 2.2132, 4.125, 3.2042, 2.0057, 2.1591, 6.0265, 2.8261, 3.4327, 8.6572, 3.4706, 3.5481, 3.9219, 7.2316, 1.7604, 2.8289, 3.3026, 3.7238, 3.1563, 3.2279, 7.8904, 3.3854, 2.5521, 2.875, 4.0781, 2.8841, 3.9792, 3.5385, 2.8056, 2.5504, 4.6648, 7.5813, 2.2254, 5.752, 1.125, 2.1827, 5.4351, 2.5313, 1.9375, 3.2083, 4.4271, 3.6635, 2.4598, 3.8177, 6.5138, 2.1406, 4.4432, 5.2166, 4.6898, 3.5938, 1.8261, 3.1901, 3.4695, 3.0917, 2.2083, 0.8362, 7.9338, 2.6729, 1.5313, 2.6899, 4.0547, 5.1998, 2.6023, 2.625, 2.3661, 5.5121, 3.4063, 6.0102, 1.9362, 0.9708, 3.9028, 2.3814, 2.4643, 1.3286, 2.6607, 1.1912, 3.5387, 5.3701, 2.075, 3.9009, 2.9877, 4.2061, 3.0375, 3.8068, 5.7837, 4.1141, 1.6111, 3.4868, 1.6369, 2.6136, 1.6731, 3.5977, 2.7222, 2.3199, 3.6435, 3.7031, 2.9605, 3.9917, 4.9335, 3.8073, 5.2402, 3.7804, 2.5556, 2.6719, 2.5562, 5.0543, 5.0814, 5.5194, 4.2583, 3.5777, 6.5764, 4.75, 6.994, 1.9267, 2.1333, 4.1958, 2.3075, 1.5987, 4.3438, 4.6875, 4.7472, 3.25, 4.675, 4.6944, 1.8914, 3.152, 5.0866, 4.7245, 4.8693, 2.7451, 3.775, 4.5116, 4.1303, 1.6618, 1.7719, 3.25, 5.3154, 5.3177, 4.6429, 1.7062, 6.0226, 2.3266, 3.8187, 4.2192, 3.274, 1.0486, 1.0972, 2.0446, 8.2335, 2.3056, 3.8906, 4.4531, 3.58, 3.5054, 5.8642, 1.6645, 2.25, 2.6573, 3.8529, 2.4612, 3.0903, 2.5183, 2.9201, 4.2039, 2.8981, 5.1483, 3.4514, 1.9837, 4.5217, 4.6776, 2.1403, 3.8657, 3.6946, 4.5066, 2.4605, 3.6181, 3.5294, 4.3906, 6.005, 2.8835, 2.75, 1.9049, 4.7332, 1.4444, 2.2991, 2.065, 4.0156, 3.4151, 3.099, 9.0064, 4.9957, 2.0658, 5.0376, 1.7308, 3.4048, 2.2467, 4.5375, 4.0679, 3.5164, 5.5196, 5.4346, 3.9356, 7.8336, 6.2631, 2.3508, 3.1297, 3.1591, 2.8102, 4.8977, 5.0527, 8.058, 4.149, 5.2285, 2.6181, 2.1898, 4.2218, 4.0859, 4.125, 2.5057, 5.5693, 2.2167, 6.884, 5.6149, 3.5547, 4.8611, 3.625, 4.224, 3.5595, 2.0096, 4.7965, 3.8083, 2.9083, 3.3987, 5.0043, 3.1642, 3.9032, 7.0895, 6.4599, 2.9222, 3.0208, 3.0588, 3.6719, 4.5523, 3.6292, 3.4792, 2.02, 4.26, 3.3125, 4.1295, 1.4828, 5.0829, 3.9583, 3.0319, 3.0521, 1.6902, 3.274, 2.1009, 4.5234, 6.2464, 3.9954, 2.6406, 2.1875, 0.9687, 1.5727, 5.6779, 5.5422, 4.125, 2.0586, 4.625, 4.1797, 1.2049, 3.8403, 2.2765, 3.3088, 1.6318, 2.2411, 4.0556, 2.0147, 4.5306, 4.504, 3.212, 6.9133, 7.9294, 1.4565, 2.1111, 4.0675, 2.8819, 4.8311, 2.4864, 2.9219, 2.8906, 3.2596, 5.6798, 5.4381, 1.8692, 3.1032, 3.8586, 4.8623, 2.0268, 3.1625, 4.7375, 4.0972, 7.6717, 10.6767, 2.6563, 3.3438, 1.125, 3.4676, 4.9444, 8.5325, 2.6563, 5.844, 4.9063, 3.2708, 7.5839, 5.1033, 1.1806, 3.0897, 2.5386, 4.0437, 6.2558, 5.5882, 1.7692, 4.7007, 5.1416, 4.4063, 5.1182, 2.1583, 3.8, 1.2347, 3.5363, 4.9091, 3.65, 3.3598, 3.0089, 2.3882, 1.775, 2.2981, 4.8906, 5.5456, 3.7589, 5.397, 2.2903, 4.0717, 2.4281, 2.2926, 1.5326, 3.567, 3.2813, 4.0074, 5.3946, 7.5402, 3.2636, 2.3496, 3.625, 2.4828, 2.5401, 3.5, 5.012, 4.475, 1.3333, 3.2311, 4.084, 4.5458, 15.0001, 7.6245, 1.7214, 3.6364, 7.672, 1.7225, 3.2566, 7.143, 3.3625, 3.35, 1.9405, 2.7019, 3.5066, 6.1509, 2.3393, 4.0, 15.0001, 3.1719, 6.8443, 0.9838, 0.536, 1.2292, 1.125, 4.3162, 6.6605, 3.6397, 3.6694, 2.6535, 3.9, 10.7569, 4.0467, 2.2672, 1.2091, 3.016, 5.1584, 7.5057, 5.756, 1.7292, 4.9955, 3.25, 5.1616, 3.4265, 2.662, 1.8618, 1.9612, 3.4472, 3.4327, 4.0313, 4.1818, 4.0491, 3.9531, 3.1941, 5.8491, 3.5547, 2.575, 3.375, 3.9922, 4.3882, 4.0982, 3.4471, 1.8214, 6.5254, 3.2687, 4.6629, 4.0458, 1.4792, 4.5594, 4.0214, 4.7228, 2.5664, 5.687, 5.3377, 1.6286, 2.8631, 1.9875, 2.7014, 6.838, 3.851, 4.75, 3.6484, 3.2484, 2.1006, 3.125, 3.8837, 3.4491, 2.0278, 1.9439, 2.9464, 1.2227, 3.776, 7.5139, 5.6875, 3.3462, 2.1435, 4.744, 2.8833, 1.5491, 4.9292, 4.0882, 1.9767, 7.2554, 6.0247, 2.6598, 4.1908, 2.3125, 7.5752, 3.7083, 4.2143, 5.3428, 2.3611, 3.319, 3.1875, 2.7708, 5.7421, 7.2137, 3.4286, 3.1546, 2.0357, 5.2852, 3.7292, 4.2599, 3.8239, 1.6654, 9.7066, 1.8357, 5.8819, 4.3, 1.7115, 5.5083, 2.1, 1.5517, 2.5741, 4.6923, 4.5122, 5.4851, 3.3621, 3.4038, 4.2289, 7.4559, 1.9954, 1.625, 3.7188, 3.3021, 3.1968, 2.3079, 3.75, 3.6339, 3.2625, 3.725, 2.425, 2.8139, 5.8718, 4.7944, 6.3443, 8.8062, 4.0588, 5.894, 3.7083, 3.4792, 3.6897, 5.3275, 2.2566, 3.5313, 3.0865, 3.875, 10.3329, 5.5875, 4.4491, 2.9917, 2.1429, 8.5153, 3.6875, 2.7171, 3.2232, 4.4453, 4.1591, 2.8152, 3.1845, 5.2363, 5.4791, 3.8, 6.204, 0.813, 1.625, 6.3974, 4.3125, 2.2577, 4.4375, 4.45, 1.6198, 2.5473, 5.2049, 2.825, 3.9375, 3.625, 4.5568, 2.5101, 1.9464, 2.3594, 2.588, 1.608, 5.8623, 2.3715, 4.0703, 1.8856, 2.2109, 5.3032, 4.7569, 2.9899, 4.5547, 6.8004, 2.0557, 4.0345, 7.167, 3.609, 2.8705, 3.8512, 4.8088, 3.9926, 3.4115, 6.9682, 1.7567, 1.7109, 2.1465, 10.2317, 2.8393, 2.0114, 2.875, 2.6319, 3.9531, 4.575, 3.8438, 4.3594, 2.8929, 7.508, 3.3156, 2.7356, 4.5913, 3.1786, 3.767, 4.1687, 1.6236, 5.159, 1.875, 5.9073, 8.1325, 3.4306, 3.3942, 1.681, 1.9132, 6.4114, 1.3448, 2.535, 1.7446, 6.9695, 4.0313, 7.8588, 2.3384, 5.3509, 8.2435, 4.2143, 7.0568, 1.2235, 4.8508, 3.6912, 1.3679, 7.3028, 2.8295, 2.4464, 3.6667, 3.1051, 2.4083, 7.674, 4.2045, 2.2721, 2.6591, 2.462, 4.5337, 4.6477, 3.8899, 2.3762, 2.8, 4.2596, 2.7436, 5.533, 3.6667, 5.0754, 4.3, 2.1162, 3.449, 3.6036, 6.5945, 3.5893, 6.5901, 2.2105, 7.5699, 6.0, 5.3649, 2.3958, 4.2216, 5.8142, 2.7961, 2.3571, 3.2301, 3.6486, 2.0335, 4.0109, 5.3077, 2.5643, 1.8208, 3.1731, 3.3617, 4.1528, 4.55, 3.6429, 2.6129, 2.45, 2.4583, 2.6786, 5.5981, 1.4861, 5.4493, 3.9688, 6.1946, 5.0877, 3.2011, 4.2415, 2.4519, 1.043, 2.6172, 5.0782, 4.7019, 2.9571, 4.0451, 5.0681, 4.1319, 3.725, 2.25, 5.898, 3.0521, 5.8798, 2.5938, 2.1793, 4.5667, 5.1099, 3.9063, 3.0293, 6.6813, 2.6678, 7.629, 3.6923, 4.9432, 3.0469, 10.157, 3.9485, 2.2768, 4.8036, 5.3623, 1.4773, 7.3195, 3.6042, 3.6531, 3.0833, 5.2539, 5.7281, 4.6445, 2.517, 1.9762, 5.5449, 7.3861, 2.0, 3.7768, 3.3261, 3.3438, 2.4375, 4.9671, 8.3637, 2.6842, 6.4891, 3.5861, 4.9562, 6.1043, 3.8846, 2.7051, 3.0263, 2.6765, 2.6875, 2.2917, 2.3167, 2.6914, 2.1062, 5.5184, 3.7625, 1.9962, 3.099, 5.25, 4.3833, 5.1782, 6.3822, 2.5625, 3.053, 5.2614, 3.6719, 5.308, 9.9025, 2.4167, 1.9063, 3.0043, 3.6607, 3.0871, 3.1599, 2.7348, 2.9083, 2.3971, 3.6, 1.6445, 2.8333, 4.3403, 4.0542, 3.0777, 4.2386, 2.7981, 1.9038, 3.3452, 3.25, 5.635, 3.3981, 1.6321, 9.267, 13.3913, 4.2222, 5.8995, 4.7478, 3.7031, 3.0744, 4.4821, 13.466, 3.7105, 1.9091, 3.5, 2.8702, 1.7292, 5.4834, 2.3816, 7.4597, 4.0444, 2.375, 3.1364, 2.5833, 4.174, 3.9306, 4.7841, 2.033, 5.6506, 7.9168, 3.9722, 3.1563, 6.37, 5.1806, 2.4583, 3.6361, 3.6852, 5.6975, 3.1047, 4.2679, 3.4297, 2.3277, 2.3958, 3.2243, 6.083, 2.9375, 5.015, 3.3616, 1.0349, 8.1872, 5.0374, 2.8594, 9.1373, 3.0911, 3.2891, 4.6186, 4.3315, 3.0972, 15.0001, 3.5435, 5.32, 4.3693, 3.0147, 4.65, 4.1731, 4.1287, 2.7917, 5.4925, 3.8796, 4.9861, 4.375, 1.6575, 3.9615, 7.8407, 3.7477, 3.7533, 7.7889, 2.9803, 4.0132, 5.3261, 6.4044, 1.9881, 3.6771, 2.5625, 3.3611, 2.0469, 3.8047, 2.8906, 4.7411, 2.473, 4.1, 7.9813, 2.9449, 3.5437, 4.6477, 2.8889, 2.9205, 4.2463, 4.7984, 3.9469, 4.6667, 5.9617, 4.8787, 2.7778, 5.5563, 3.0278, 1.852, 5.5048, 3.1028, 2.875, 3.5562, 4.5224, 3.0862, 9.5221, 1.8958, 1.8056, 4.3088, 1.3047, 3.1551, 3.7917, 1.1707, 2.1771, 3.755, 5.3074, 2.8966, 5.25, 5.1718, 5.3468, 4.7557, 3.4152, 4.6141, 2.9293, 3.5347, 4.3333, 2.7157, 1.9659, 5.2128, 5.2534, 4.0962, 5.237, 5.5248, 3.5625, 3.5625, 2.625, 4.1518, 1.8625, 5.8783, 2.0425, 5.7128, 2.7, 3.2964, 3.3199, 8.5759, 3.9722, 2.4091, 4.375, 1.8839, 5.8779, 0.8054, 2.2813, 3.3409, 3.7115, 4.8281, 3.2158, 1.8633, 3.0685, 3.8825, 4.4318, 3.8897, 10.7237, 2.125, 3.692, 4.7973, 1.9327, 1.7958, 5.2269, 3.1929, 4.5521, 7.439, 2.0192, 2.6339, 4.8409, 7.2559, 6.2319, 6.8154, 1.6838, 4.6583, 3.4058, 6.1407, 3.375, 5.9572, 7.8061, 8.5938, 2.697, 1.6094, 3.6572, 3.3125, 0.7591, 10.0481, 4.6173, 5.0424, 8.2364, 1.3, 2.3339, 3.875, 4.0781, 6.6054, 3.4912, 3.9227, 2.4833, 3.5313, 1.975, 4.7094, 3.7708, 4.5427, 4.2031, 4.5881, 4.6681, 8.7172, 2.99, 3.725, 2.7083, 4.3661, 6.0701, 3.9128, 4.025, 3.2469, 3.5, 6.1309, 2.5833, 2.2393, 4.375, 3.8438, 6.553, 6.0704, 3.0224, 5.4299, 7.7852, 4.1667, 7.618, 2.1107, 1.5553, 3.2788, 2.6487, 4.325, 3.0989, 5.7796, 1.2157, 3.1125, 2.2222, 5.2563, 3.1167, 2.9107, 1.9444, 3.415, 1.625, 3.4833, 2.0952, 3.0132, 3.0909, 1.3385, 5.0407, 2.8542, 1.625, 3.3988, 3.2984, 4.1488, 2.1731, 1.9688, 3.7167, 2.7219, 2.0677, 1.5071, 1.1667, 1.1859, 2.875, 6.5891, 4.3194, 2.9, 3.9464, 7.457, 3.5076, 1.5972, 2.0286, 9.8074, 7.2731, 4.6904, 2.8125, 3.1691, 1.6307, 3.1563, 2.7079, 6.3002, 4.9821, 3.9375, 2.9952, 8.4888, 3.775, 3.3594, 5.1337, 2.0643, 2.6994, 8.5574, 6.6125, 3.4015, 5.2806, 3.3966, 3.017, 2.2717, 3.7941, 1.5846, 5.057, 3.9688, 4.5317, 6.9014, 1.077, 4.88, 4.675, 6.1359, 4.2716, 3.925, 2.0536, 4.25, 8.0755, 2.2328, 3.1607, 3.371, 4.2019, 1.9093, 6.0791, 4.4444, 4.4653, 3.5988, 5.8972, 3.3516, 2.6159, 4.1607, 4.8693, 3.9485, 6.7501, 1.4821, 2.1179, 3.5109, 4.0703, 5.49, 1.9667, 4.0357, 5.17, 4.9196, 3.4827, 5.1149, 3.3958, 2.8214, 3.7932, 1.4856, 2.3062, 3.35, 2.5096, 3.3977, 4.89, 3.2049, 1.8571, 3.858, 3.0833, 6.3013, 5.0016, 3.821, 2.4408, 1.5, 2.4432, 3.7344, 1.8365, 3.6434, 3.8828, 4.6076, 1.4, 6.1383, 2.9293, 2.2337, 5.2134, 3.1667, 3.1439, 9.459, 3.197, 5.883, 2.8958, 4.7361, 2.7857, 2.0288, 4.8684, 4.5179, 2.148, 2.6667, 3.6875, 1.3092, 4.1696, 2.48, 5.083, 6.0256, 6.9501, 3.4306, 3.5313, 3.725, 2.9, 4.4375, 3.8125, 6.0137, 10.1316, 3.055, 4.2214, 3.2417, 3.9265, 4.625, 4.8494, 2.0865, 1.725, 3.375, 7.3588, 3.9091, 3.1981, 1.7614, 2.0871, 4.4375, 1.577, 3.6455, 5.0849, 3.4906, 10.5424, 2.3844, 4.625, 3.0057, 1.2404, 4.6125, 3.7738, 2.5444, 4.0536, 5.3241, 1.7734, 4.1711, 3.11, 3.9643, 3.9375, 4.008, 2.4322, 5.0782, 3.5, 2.8698, 2.6713, 3.0219, 3.7917, 2.2743, 1.473, 4.625, 3.375, 3.1773, 7.8375, 4.8571, 4.3008, 1.3967, 3.0625, 2.5743, 2.1667, 5.9245, 2.6384, 3.6797, 1.3927, 2.7596, 2.8348, 6.6264, 3.653, 2.8021, 4.5268, 4.6528, 2.9937, 4.8382, 3.5255, 4.5694, 3.0682, 1.5161, 8.3818, 5.1645, 3.0587, 5.5381, 2.0938, 2.7167, 2.5938, 4.1023, 3.8839, 3.5848, 4.9312, 3.0369, 3.0789, 5.9062, 2.1827, 2.9375, 3.0179, 2.5986, 4.425, 4.2415, 3.6875, 4.7917, 2.2543, 6.8219, 6.8279, 7.3841, 5.0605, 1.9355, 5.9632, 3.125, 2.1702, 7.2419, 5.3311, 2.4278, 2.8672, 5.5433, 3.7167, 1.4146, 3.5909, 3.6111, 3.3621, 2.0781, 4.0739, 1.7227, 8.5888, 15.0001, 4.7941, 3.6853, 4.0446, 3.5804, 1.1635, 4.425, 2.8371, 4.3898, 3.875, 1.9949, 2.9896, 5.956, 4.7833, 2.4464, 5.3559, 4.6875, 6.9326, 4.5791, 3.1875, 2.1357, 3.7125, 1.9063, 2.4482, 7.5992, 2.8864, 6.0804, 3.0833, 0.8952, 5.7858, 5.2957, 3.0313, 2.6538, 2.9044, 3.8472, 2.3879, 1.9531, 3.2632, 3.7813, 2.3182, 2.1588, 5.3922, 2.3462, 3.2442, 5.4834, 1.9556, 5.7245, 2.4925, 8.2531, 2.8021, 5.8596, 2.569, 3.75, 2.375, 2.2981, 4.6094, 4.6779, 3.4741, 2.2917, 4.1538, 4.375, 2.8229, 4.0, 2.4207, 3.9699, 1.4044, 1.4107, 3.1814, 3.6411, 2.2375, 2.2788, 2.4375, 2.625, 5.0839, 2.7545, 2.0548, 3.5915, 4.5918, 2.1977, 2.4263, 4.3269, 3.9537, 5.8686, 1.2656, 3.0348, 4.625, 4.8409, 3.0486, 6.287, 2.4798, 5.5, 3.1429, 3.6292, 1.9026, 5.1356, 3.0721, 3.2642, 4.6312, 1.2864, 4.2542, 4.2227, 5.0865, 3.0476, 6.5253, 3.8019, 1.7188, 3.7292, 3.4464, 1.2083, 2.5781, 2.6165, 6.1824, 4.0921, 3.5341, 2.0804, 2.0388, 3.4896, 2.5833, 6.2427, 4.5625, 3.968, 3.6111, 5.5023, 4.5491, 7.2582, 2.375, 3.0278, 5.0267, 6.5778, 1.3222, 1.7692, 4.7083, 6.1953, 3.0721, 4.7321, 6.3997, 2.7026, 3.8618, 2.7857, 2.2328, 4.3646, 1.9722, 6.1632, 2.1734, 2.1293, 5.0176, 2.7273, 5.3041, 3.4659, 5.4324, 3.5673, 2.9559, 3.1406, 1.8158, 2.15, 5.4087, 4.9519, 4.194, 1.5933, 1.5781, 5.0096, 5.422, 8.4882, 5.4216, 4.9688, 3.2969, 4.2222, 6.5799, 3.5125, 4.2454, 4.6389, 5.6013, 4.5662, 7.1472, 4.0153, 2.2321, 3.5, 4.5417, 3.0288, 2.4875, 2.9187, 2.0048, 6.3427, 10.9052, 2.725, 3.9922, 3.4861, 2.0044, 5.0526, 4.7235, 4.0, 2.006, 2.4097, 2.5588, 10.959, 4.1375, 4.125, 3.0161, 7.4947, 2.0043, 1.0531, 6.0116, 4.6696, 5.0362, 5.1788, 2.9875, 4.0221, 11.9993, 2.6667, 6.5615, 2.9803, 4.0673, 1.7694, 6.0878, 7.8164, 2.5509, 6.2473, 2.1289, 4.1518, 3.5893, 2.5181, 3.3793, 1.2639, 3.375, 6.2263, 7.1837, 11.6677, 4.2045, 3.183, 2.9167, 5.0369, 3.8875, 3.1579, 4.5875, 4.3409, 4.1103, 9.5551, 3.2569, 4.875, 5.3693, 4.325, 1.6458, 4.0403, 1.8393, 3.375, 6.4963, 4.605, 7.52, 2.7852, 3.449, 2.1597, 4.5375, 4.0352, 3.6863, 4.7768, 2.625, 1.7375, 3.7019, 2.1641, 4.3889, 3.4083, 7.7743, 4.1458, 6.3501, 3.1146, 3.325, 4.1719, 3.1042, 2.9709, 4.75, 2.5474, 3.8417, 5.5955, 7.2628, 3.9261, 2.8077, 5.2174, 5.0322, 5.4236, 5.163, 3.9076, 1.8672, 5.3259, 4.8717, 2.6719, 2.2132, 4.3173, 10.0549, 5.0778, 3.0184, 5.3131, 13.499, 6.2135, 3.6, 3.37, 3.6625, 2.2639, 3.775, 8.3646, 3.0542, 5.8325, 4.5938, 2.4663, 2.5437, 11.3074, 5.2485, 7.7752, 3.8365, 13.4196, 2.8594, 2.5625, 5.1315, 3.2768, 3.851, 1.4028, 4.4, 2.9243, 3.625, 3.5893, 3.0429, 4.4948, 4.5982, 4.6649, 1.875, 3.8257, 5.3272, 4.4107, 3.7031, 3.6415, 4.2308, 4.0474, 3.6298, 2.2891, 3.0962, 3.4904, 5.1169, 3.7863, 5.5591, 1.6437, 2.2794, 4.1439, 6.7809, 2.4653, 3.8068, 5.0787, 3.3322, 5.1098, 2.4505, 4.6705, 2.2336, 3.5603, 4.6484, 4.2071, 3.6936, 2.5574, 3.2292, 2.0087, 2.478, 2.4931, 4.2262, 4.4107, 11.8603, 1.9625, 3.4886, 3.475, 3.2331, 5.0602, 4.1563, 2.5495, 2.9315, 3.5714, 1.0516, 1.5114, 10.8034, 2.0205, 3.3558, 1.7546, 6.0965, 6.6779, 3.2434, 3.0, 3.0938, 1.2096, 4.1058, 8.4331, 2.0227, 1.9444, 3.5556, 3.8333, 3.7697, 4.375, 4.1167, 5.5261, 7.5845, 6.0115, 3.2404, 4.3826, 2.6147, 4.4097, 3.6458, 1.5223, 1.5521, 3.5972, 1.55, 2.8372, 5.7097, 2.207, 2.5343, 3.443, 5.2019, 3.375, 2.8393, 3.2125, 3.35, 6.0, 3.8018, 3.1528, 2.2024, 6.471, 1.725, 3.5189, 2.73, 5.7654, 4.7361, 2.1719, 3.2552, 3.0432, 2.7153, 2.75, 3.5473, 2.4596, 2.3, 7.1885, 6.6112, 2.8482, 5.0323, 4.4423, 2.1406, 5.6611, 1.5227, 1.871, 3.3015, 2.9886, 0.8639, 4.2292, 4.3056, 4.7083, 3.6875, 5.3363, 3.9808, 1.0217, 1.767, 3.5213, 1.8375, 1.0685, 2.5625, 4.1033, 1.449, 3.5365, 2.8438, 5.9585, 6.2726, 4.5375, 3.6765, 5.0453, 1.5086, 3.7772, 8.1125, 2.8043, 3.9036, 3.3839, 2.3359, 4.0231, 3.4917, 2.3438, 6.9635, 3.8646, 3.9054, 4.8295, 6.2073, 5.2124, 2.92, 1.175, 2.6546, 2.1467, 4.9375, 5.1677, 6.083, 7.4918, 8.4196, 7.1267, 3.2083, 2.0, 4.2656, 4.7361, 7.7068, 5.062, 3.875, 2.6864, 4.375, 2.3654, 3.8029, 2.5875, 4.1387, 2.4942, 3.7344, 4.7583, 2.4297, 3.3447, 2.5893, 2.6182, 1.4913, 4.0536, 4.0167, 2.5, 4.4122, 3.2937, 1.6854, 4.0313, 5.8186, 10.129, 8.0755, 2.6964, 3.9375, 9.1881, 3.05, 4.6989, 4.7344, 5.5395, 5.3416, 6.4247, 6.4419, 1.4861, 3.1645, 7.5, 5.1365, 4.7813, 4.4107, 2.7115, 3.1507, 6.7287, 3.1361, 2.8393, 4.6902, 9.7956, 1.9271, 2.3605, 2.2788, 1.6111, 1.625, 4.0833, 4.0795, 1.9387, 2.3261, 2.6, 3.5978, 8.8619, 2.6981, 2.7989, 1.2012, 2.8173, 4.0057, 3.2, 4.8167, 4.46, 3.3398, 2.2596, 1.5823, 6.019, 3.1696, 5.7704, 2.401, 2.5481, 1.6184, 4.275, 6.0335, 2.5536, 1.901, 2.875, 2.0136, 1.7708, 3.1071, 4.7891, 4.5329, 5.726, 6.7977, 4.8264, 6.9508, 2.1875, 5.6582, 3.1979, 2.0208, 2.3409, 1.0801, 6.1726, 2.085, 4.3214, 3.7411, 5.5785, 5.1061, 3.1979, 3.89, 6.556, 2.894, 11.0567, 4.0156, 7.6877, 4.3523, 2.875, 2.5583, 7.9213, 1.6641, 3.2447, 5.9683, 0.9513, 1.5833, 2.4744, 3.5536, 3.0263, 3.5, 4.4375, 3.5625, 1.0769, 4.3111, 4.0144, 4.175, 3.4044, 3.5684, 7.8774, 2.3487, 4.2654, 3.1776, 4.8088, 4.9167, 7.3463, 6.3088, 2.6346, 1.6571, 2.8015, 2.8247, 2.0734, 2.7379, 0.9809, 1.9732, 1.7038, 6.2187, 4.9464, 3.8056, 5.2571, 3.25, 3.5711, 1.9923, 5.0, 2.1311, 3.8036, 1.191, 4.4583, 3.4222, 2.4459, 5.3345, 3.1103, 4.3281, 3.0833, 2.8788, 3.2955, 3.3368, 3.765, 3.6042, 4.2679, 5.3064, 2.3333, 5.0406, 2.7183, 5.4218, 2.2794, 3.0284, 4.9766, 2.1955, 3.225, 2.0982, 3.6006, 1.4, 4.0417, 5.2131, 3.6548, 1.9535, 1.5676, 15.0001, 2.7778, 4.566, 4.7422, 1.6875, 2.1458, 3.4583, 6.2389, 4.7875, 4.1713, 3.2708, 4.9662, 3.6885, 3.0179, 3.5, 2.3549, 3.0, 1.4911, 4.1953, 5.76, 3.1389, 3.9191, 5.5446, 3.5469, 10.5941, 4.3472, 5.4042, 2.1905, 5.2595, 0.7685, 3.1875, 4.3409, 3.3776, 2.2961, 2.7583, 4.4531, 3.0642, 2.3352, 7.4111, 6.2517, 1.6581, 2.8588, 4.2036, 6.4745, 2.0432, 1.4413, 2.7656, 0.8738, 2.2429, 1.4556, 3.2039, 3.4338, 1.9609, 9.337, 2.1046, 4.615, 5.6754, 4.1797, 3.6133, 0.844, 6.9754, 7.5, 4.1484, 4.18, 3.6204, 2.6641, 5.7528, 5.5291, 6.844, 2.7125, 5.4223, 1.2887, 1.4103, 2.3526, 3.7716, 3.225, 4.0337, 2.5284, 2.3682, 2.9896, 5.285, 4.125, 3.4028, 5.0719, 3.7813, 3.0, 2.5268, 4.4394, 4.4038, 3.1196, 7.1053, 4.875, 2.5119, 2.3438, 4.049, 2.6722, 4.8382, 3.3687, 5.1695, 2.3382, 2.5, 4.2344, 4.2448, 3.9615, 2.483, 2.325, 1.725, 4.8516, 2.1912, 4.621, 12.5902, 1.1786, 4.875, 1.8942, 4.412, 1.6892, 2.9891, 2.892, 2.1442, 3.1375, 4.1544, 6.58, 2.136, 1.4583, 2.5185, 2.3333, 1.725, 1.6125, 2.0833, 3.3173, 3.5625, 1.023, 4.8611, 3.0795, 2.502, 4.7308, 3.5039, 4.775, 6.7093, 4.0714, 3.9265, 1.8224, 3.9352, 5.0599, 2.3684, 4.9517, 5.2769, 3.1375, 2.5577, 4.8831, 1.9018, 4.9962, 2.4273, 6.2924, 4.3427, 2.6538, 3.725, 3.2338, 6.7449, 1.7427, 5.0497, 5.9088, 3.57, 2.3098, 3.0321, 3.5295, 5.828, 3.0687, 4.1708, 2.425, 3.8355, 5.7415, 3.0694, 2.5962, 2.7336, 3.1667, 5.3184, 6.7058, 3.8117, 3.7585, 4.575, 3.1395, 2.4671, 4.1544, 2.4219, 2.1135, 4.6146, 3.5083, 5.9806, 6.4209, 2.933, 3.4914, 3.1429, 2.9145, 10.9704, 3.3565, 7.7848, 4.5556, 5.1345, 3.5556, 3.5696, 2.8214, 2.6014, 2.3667, 2.9312, 6.5958, 8.4045, 3.4706, 4.9236, 1.6477, 3.2314, 2.465, 4.2222, 5.5402, 2.2917, 5.5413, 1.1552, 2.0549, 4.7344, 5.2887, 5.5385, 2.5245, 5.6936, 1.7679, 3.9185, 7.3878, 3.8, 4.5395, 4.9103, 3.4299, 0.7917, 3.2437, 2.5847, 2.6713, 3.8958, 5.6406, 6.1133, 2.6364, 2.3375, 3.0469, 4.3906, 8.1078, 2.1875, 2.8421, 3.9375, 4.3393, 2.1975, 3.4186, 1.9688, 2.1889, 3.0, 6.516, 4.4318, 3.62, 8.155, 7.0548, 2.6447, 2.9899, 9.1808, 4.4688, 2.6042, 3.425, 5.0519, 3.2574, 4.835, 3.0724, 2.0398, 3.0268, 1.7614, 4.3393, 2.0625, 3.6875, 3.875, 5.1874, 4.8194, 1.2634, 3.8068, 2.1719, 2.9861, 3.3438, 5.3749, 4.7953, 3.7252, 2.375, 2.5755, 2.375, 2.6894, 4.0556, 3.9079, 1.6977, 4.125, 4.0521, 3.6729, 4.3512, 6.617, 4.5673, 4.7386, 4.3879, 4.0071, 3.0833, 6.6178, 4.5057, 2.6833, 5.2596, 4.0658, 3.3214, 3.4531, 1.9425, 2.6321, 4.7404, 4.7961, 1.972, 2.5104, 3.4291, 3.3214, 3.1859, 4.0579, 4.8958, 1.7756, 2.5909, 4.2061, 2.5038, 5.4409, 4.4875, 3.4213, 2.5062, 2.8072, 1.6325, 4.0625, 2.8393, 3.6786, 12.5, 3.125, 4.6629, 1.875, 6.0162, 2.4006, 1.1875, 2.3, 3.4632, 5.5551, 4.9231, 1.5817, 5.422, 3.2813, 1.8417, 1.223, 3.1574, 2.0885, 5.5275, 2.3507, 4.8125, 2.3833, 1.6786, 3.1875, 2.5868, 2.6776, 5.0062, 1.6121, 1.4241, 4.0547, 3.2158, 2.1518, 3.0952, 8.3609, 6.4631, 2.1287, 3.4559, 2.8322, 1.6331, 3.4038, 4.1136, 8.1888, 1.3029, 4.2333, 2.2653, 6.2045, 1.746, 3.0417, 2.1094, 8.7974, 4.7609, 1.8269, 4.1875, 2.7321, 2.8351, 1.1157, 3.2321, 4.1448, 2.9375, 4.0042, 3.75, 1.8606, 5.817, 2.2545, 1.9044, 3.3067, 2.2754, 3.0625, 5.2903, 1.6923, 4.375, 2.3099, 4.25, 2.5446, 2.8125, 2.6667, 1.7019, 1.6435, 2.0673, 2.875, 4.2782, 2.1202, 4.1513, 5.2742, 3.5859, 2.3333, 2.7955, 2.9615, 5.3272, 2.9097, 5.234, 4.0174, 3.7031, 1.06, 2.1471, 4.0577, 2.3712, 2.7619, 3.0253, 2.7875, 2.7986, 3.3438, 3.6058, 4.1576, 4.6806, 1.9167, 3.1613, 6.8268, 5.8747, 5.4122, 2.0915, 1.2188, 5.1057, 2.3, 7.8772, 5.3369, 2.7042, 7.9625, 15.0001, 2.6439, 1.9875, 3.5729, 5.4359, 4.8105, 4.0039, 5.7934, 1.4387, 2.9911, 3.0909, 2.6292, 0.9241, 5.753, 2.4605, 5.6765, 4.6442, 3.25, 15.0001, 5.9683, 6.9014, 1.275, 4.3571, 4.2434, 6.6447, 2.0956, 2.5568, 2.2917, 3.5179, 2.3, 3.6398, 4.7794, 1.9487, 3.6797, 3.694, 3.7655, 2.4196, 5.2897, 7.2211, 4.3636, 2.0333, 5.5925, 4.5303, 3.9545, 3.0119, 4.005, 4.4583, 2.6611, 3.6667, 4.3897, 4.0194, 1.75, 5.5057, 5.5221, 2.2222, 2.9943, 1.6424, 4.0441, 1.2273, 0.9304, 2.6312, 1.7038, 3.6979, 4.6908, 4.8264, 1.615, 4.3214, 2.7813, 4.2386, 2.6513, 3.1875, 3.5806, 2.0694, 9.2858, 2.3221, 4.9559, 4.5332, 3.0078, 6.3767, 2.3317, 4.25, 2.2, 3.668, 3.9688, 5.1878, 1.9034, 3.3274, 3.6765, 5.2276, 5.0462, 3.8, 2.5368, 6.2456, 3.9063, 1.5, 3.0417, 5.8602, 3.8065, 5.3727, 4.055, 3.3827, 3.6875, 3.4811, 5.795, 5.7843, 4.7952, 4.0, 3.5129, 2.2643, 2.6316, 4.8125, 4.6905, 3.0461, 4.7604, 4.175, 3.6711, 4.2059, 7.9892, 1.3904, 6.2817, 1.8319, 2.2679, 2.3687, 10.1007, 1.8235, 5.296, 3.1711, 2.7515, 4.2708, 1.7734, 3.2578, 3.8203, 2.7543, 5.6197, 3.0216, 2.3243, 1.4688, 1.3269, 3.1583, 3.7143, 10.1882, 5.2987, 1.5727, 1.9912, 4.6687, 3.8068, 2.7473, 1.2937, 6.2152, 4.3036, 5.1781, 5.8143, 2.6563, 4.9102, 3.8355, 2.4387, 3.4426, 3.9443, 3.3214, 2.444, 4.4472, 4.1359, 1.7994, 1.1957, 4.0833, 2.5737, 3.5481, 1.505, 1.8413, 2.0, 2.5795, 2.5208, 5.6306, 4.3029, 6.2503, 2.2042, 9.9055, 4.8167, 5.1788, 2.5559, 4.4196, 3.6856, 4.9359, 4.0, 5.5792, 2.2254, 5.5073, 2.4398, 1.625, 6.0296, 4.5714, 3.3672, 3.9766, 2.4688, 7.3339, 2.5568, 3.3292, 4.7, 2.227, 2.3818, 7.0173, 4.0651, 3.8162, 4.0911, 2.5463, 1.9707, 2.9844, 5.3738, 3.7891, 4.267, 4.7222, 2.0173, 1.6111, 7.1273, 4.0, 2.4283, 6.4232, 5.6411, 3.2266, 4.2212, 4.3839, 3.665, 3.4432, 4.0313, 4.8311, 5.244, 1.5429, 2.6827, 3.6667, 1.6964, 1.7446, 4.3661, 5.2636, 2.3523, 3.0278, 4.3281, 2.1542, 5.9359, 3.0521, 2.5125, 3.6, 1.6851, 4.0403, 4.9211, 5.1702, 3.6815, 6.4865, 6.4095, 4.1739, 6.1943, 6.187, 1.375, 1.9265, 6.155, 2.8306, 2.1424, 3.9632, 3.4073, 6.1281, 2.3625, 4.4, 2.5074, 2.425, 2.5664, 6.2089, 6.0302, 1.5064, 4.0156, 1.8036, 5.3292, 3.1979, 3.067, 2.0244, 3.0691, 2.9063, 1.9615, 4.6, 1.6785, 1.2813, 1.9286, 4.6667, 2.7312, 2.3261, 2.8208, 4.0686, 3.2929, 2.8917, 0.7684, 4.4118, 4.7381, 2.7958, 8.8693, 2.5263, 3.2321, 3.1002, 4.125, 4.6964, 4.8083, 3.0972, 3.375, 2.6976, 4.0391, 5.7407, 4.75, 2.4461, 2.1771, 6.5843, 3.9156, 4.1333, 2.6434, 4.0931, 1.7179, 5.7914, 3.6, 1.6833, 5.3169, 2.6667, 2.3221, 2.7266, 3.6447, 2.5268, 3.7794, 6.1885, 3.6646, 3.3529, 1.7548, 2.6458, 5.62, 6.8686, 2.7316, 7.7572, 4.6914, 4.0938, 3.6745, 1.7891, 2.92, 8.4016, 15.0001, 3.6125, 2.1682, 2.3566, 4.9079, 3.9464, 3.8287, 10.156, 3.3724, 3.8235, 2.56, 1.6887, 7.2592, 5.1698, 1.0349, 3.0729, 2.1287, 3.0806, 2.976, 1.7238, 2.7344, 3.0875, 7.7751, 4.2841, 3.1982, 2.6146, 5.0391, 6.4967, 3.5426, 1.4712, 1.9704, 6.9238, 3.0147, 2.0411, 1.6993, 3.2599, 1.5491, 3.1324, 1.7, 2.1927, 5.6683, 4.3654, 7.0674, 1.6504, 2.4511, 3.9375, 15.0001, 1.8299, 6.6455, 2.825, 2.4896, 2.2589, 4.7566, 5.6409, 2.8274, 3.63, 6.0957, 1.3365, 6.0889, 4.1833, 3.0135, 2.1759, 4.5, 2.5398, 2.7917, 4.625, 4.0333, 3.2813, 3.7796, 3.9607, 3.5625, 4.0313, 3.8147, 3.6591, 2.4191, 3.9688, 4.0417, 4.0268, 5.5798, 3.7611, 4.9926, 2.6875, 6.7385, 2.881, 3.5867, 2.6, 3.1392, 3.663, 2.8621, 4.4655, 1.625, 2.8281, 2.5172, 6.0961, 2.4599, 5.5, 1.808, 2.1383, 3.3534, 5.112, 3.6522, 2.4167, 1.7656, 2.125, 1.6888, 5.7871, 4.3424, 3.1403, 4.2414, 5.4721, 2.2417, 4.9615, 5.2446, 4.2972, 4.3227, 2.4423, 4.5526, 11.1557, 3.9792, 3.505, 3.3021, 3.4286, 10.0914, 2.5382, 3.7857, 3.9327, 15.0001, 1.4375, 3.756, 4.6133, 8.0599, 2.975, 0.7068, 2.6629, 4.4821, 2.6333, 2.2969, 3.9118, 3.1493, 6.9418, 1.9766, 4.1212, 4.9688, 8.9248, 5.0907, 2.4036, 3.2622, 1.7865, 5.4824, 1.7641, 2.5156, 2.162, 2.8649, 2.1786, 1.9286, 2.7697, 2.6364, 1.9355, 4.4519, 6.2306, 5.3963, 2.5603, 3.1944, 9.4667, 2.5357, 7.8528, 5.0389, 4.0893, 3.8534, 1.4886, 5.0853, 0.9705, 3.135, 7.5385, 1.7802, 1.4896, 6.0097, 4.285, 7.2845, 4.5625, 1.875, 3.5073, 4.6563, 7.7814, 4.2647, 5.7204, 2.25, 3.0977, 2.9241, 1.7926, 1.8295, 6.9473, 2.0817, 7.8543, 4.0865, 3.1771, 3.4598, 2.8958, 3.1875, 2.19, 5.3558, 1.9122, 3.575, 3.5562, 3.3967, 2.25, 3.3438, 3.0739, 10.7751, 3.9022, 4.6852, 3.9688, 1.425, 5.0855, 7.7464, 2.7083, 3.0208, 2.6471, 4.0208, 3.7478, 3.1087, 13.6842, 6.2059, 4.7237, 8.496, 2.7768, 2.7216, 4.9583, 8.7496, 2.1265, 6.7079, 2.6071, 4.3571, 3.575, 2.125, 2.5, 10.2289, 6.4514, 7.585, 3.0, 0.8056, 2.5321, 5.0718, 4.2656, 4.5833, 1.9653, 4.35, 1.7217, 2.1806, 6.5851, 6.3761, 2.5444, 3.225, 3.8333, 4.7933, 3.375, 1.1094, 3.1439, 2.2423, 6.2452, 3.5845, 2.8594, 0.8351, 5.5351, 5.7984, 10.8289, 3.7549, 2.1806, 4.1875, 3.4792, 5.8596, 2.8417, 1.8015, 1.7083, 4.2283, 3.8247, 3.3724, 4.7875, 1.9338, 8.2405, 3.4394, 3.556, 5.0958, 3.5877, 1.1522, 5.0824, 4.7609, 7.745, 1.375, 4.6591, 2.825, 3.2375, 5.2101, 7.3715, 2.517, 3.4583, 4.125, 2.0469, 2.1513, 4.337, 1.6875, 1.6513, 2.3462, 3.4907, 1.4042, 7.375, 4.5833, 1.6667, 3.2632, 8.72, 6.1825, 2.0714, 3.0882, 3.9844, 1.7137, 5.7579, 5.143, 3.0086, 3.5089, 1.9929, 15.0001, 4.125, 1.6471, 3.3889, 2.4412, 3.5671, 3.8194, 2.6477, 3.045, 3.5878, 3.3594, 2.9706, 3.6875, 4.1411, 8.4284, 4.225, 5.753, 3.9205, 3.0197, 4.5648, 2.0074, 2.9125, 3.9659, 4.5066, 4.5659, 1.975, 2.2056, 2.0, 5.5584, 1.8355, 3.0208, 7.0326, 4.9091, 2.0673, 2.9571, 7.2519, 3.6875, 4.7813, 4.7222, 2.4286, 2.4926, 1.3373, 5.1314, 2.0109, 4.2926, 1.2188, 2.6917, 3.575, 6.8677, 4.5795, 2.45, 6.0352, 6.981, 3.7312, 3.9519, 2.9, 3.2794, 10.1154, 5.2527, 2.2409, 7.2096, 4.3958, 2.0162, 3.4612, 2.4342, 4.6477, 4.3145, 4.8333, 11.6833, 3.825, 5.2452, 5.0461, 4.1361, 2.9922, 6.8722, 1.7868, 2.2188, 1.5054, 2.8833, 2.8036, 3.0404, 6.0667, 3.0954, 1.7388, 1.9417, 2.5234, 1.9643, 2.9911, 4.375, 4.4, 1.4867, 3.12, 3.8667, 2.9213, 3.6435, 4.8333, 3.2216, 2.5556, 1.6611, 2.3768, 1.8429, 4.5833, 4.3321, 3.2829, 3.3333, 3.4482, 5.4562, 1.8958, 2.8929, 3.375, 6.7599, 6.8654, 4.4286, 2.4952, 3.9063, 3.765, 3.1902, 1.4327, 2.25, 3.25, 4.3981, 1.2132, 2.0511, 10.9722, 2.9194, 5.1778, 2.6104, 4.2167, 2.75, 2.7121, 1.899, 3.9226, 4.4135, 9.0704, 4.1667, 2.6765, 3.525, 5.2359, 4.625, 1.7727, 3.9417, 4.6154, 1.7472, 2.9726, 3.4899, 1.6903, 5.5875, 8.4614, 1.5536, 1.0521, 3.9741, 2.3693, 1.947, 2.7374, 1.4665, 3.9784, 4.0, 5.9399, 1.8495, 4.0714, 2.5162, 6.5372, 6.8112, 1.6389, 2.52, 3.8203, 8.4352, 3.6471, 4.3714, 3.4609, 2.4028, 1.6699, 6.4524, 3.5268, 2.9936, 3.2708, 2.2725, 3.9777, 2.4545, 4.7647, 8.1189, 3.0491, 3.1083, 2.0775, 5.6152, 1.725, 3.312, 1.2469, 2.9018, 6.3716, 2.4, 2.8676, 2.6734, 8.798, 3.1917, 3.2109, 3.2702, 3.8934, 4.4896, 10.1675, 3.1607, 6.0661, 3.5781, 4.5, 3.9728, 3.4306, 6.6361, 2.2361, 3.2889, 4.9083, 7.0001, 4.7885, 3.1103, 3.008, 3.3661, 3.2024, 2.56, 0.8668, 2.4688, 5.7338, 4.2083, 1.9417, 4.0774, 1.9375, 0.9751, 4.8554, 2.925, 3.2016, 3.4234, 3.7552, 2.6442, 3.5551, 3.0, 2.555, 8.1564, 8.1221, 4.4081, 2.6786, 3.4107, 2.7273, 3.5912, 5.2362, 5.2443, 3.4359, 5.8283, 2.9112, 2.0879, 4.0219, 2.0817, 5.1831, 5.5843, 2.2917, 8.176, 3.0446, 4.5553, 5.0555, 1.5611, 3.3326, 2.3929, 4.2066, 2.7411, 5.1654, 3.175, 3.9934, 5.041, 3.8088, 4.2672, 3.7083, 2.7955, 2.7058, 2.069, 4.7402, 2.1071, 2.5352, 2.125, 1.8047, 10.1241, 4.2396, 4.0815, 3.072, 3.5, 5.815, 2.543, 1.8419, 3.6042, 10.0765, 6.0767, 3.0313, 1.6509, 3.7007, 2.9309, 0.9355, 3.89, 4.9917, 3.0495, 5.8408, 2.4708, 2.6604, 3.4836, 3.6818, 4.0417, 2.9357, 2.83, 2.775, 1.8242, 10.2233, 3.6346, 5.1512, 13.6623, 2.3942, 3.017, 3.1571, 3.1496, 5.6094, 2.5673, 1.5898, 0.8438, 4.425, 3.9243, 2.0674, 2.9054, 1.9483, 5.3276, 2.0972, 1.2891, 2.6458, 2.375, 2.98, 4.9528, 3.3882, 2.7813, 4.526, 6.706, 4.6978, 2.4049, 5.6427, 2.5564, 1.5625, 2.2071, 2.4672, 3.2872, 1.4514, 4.4375, 3.0703, 4.1705, 2.4196, 4.072, 3.9241, 2.7305, 2.6324, 3.875, 4.8438, 3.1848, 2.6485, 2.5013, 3.9934, 3.1406, 4.5556, 5.6163, 3.6486, 4.983, 2.1136, 6.3967, 6.1265, 6.0531, 5.4074, 4.0039, 3.6086, 3.6602, 2.4387, 5.0, 0.9142, 4.925, 4.2381, 8.5184, 15.0001, 3.3348, 1.6792, 2.0332, 4.2802, 1.8594, 6.3047, 5.2923, 3.0568, 4.0556, 5.0953, 1.2024, 1.2679, 2.1055, 1.837, 2.1935, 5.0, 3.3479, 6.0597, 4.3269, 4.9271, 0.6433, 4.3594, 3.2986, 5.5036, 7.9187, 3.069, 7.1148, 3.8906, 7.472, 2.375, 4.1279, 12.8483, 3.4667, 1.8125, 2.1389, 2.0875, 3.15, 3.1711, 3.8512, 3.6336, 2.694, 4.125, 2.2222, 3.6546, 2.6312, 5.7613, 3.1583, 2.2401, 2.875, 1.7426, 6.5861, 3.0625, 3.125, 3.942, 1.4792, 3.8516, 8.19, 1.4455, 5.6817, 1.9342, 2.5872, 2.5428, 3.8788, 3.6227, 3.4821, 3.0625, 5.9849, 2.6637, 7.0913, 1.7464, 1.7393, 3.1115, 2.7652, 4.0179, 4.3333, 1.8214, 3.2857, 2.3438, 2.375, 2.3578, 2.0258, 7.0504, 4.6, 2.1667, 4.6518, 6.5437, 2.7, 2.3095, 4.1172, 1.9906, 2.8657, 2.1513, 2.585, 5.4286, 3.1194, 6.623, 4.8266, 5.7376, 4.5, 4.1375, 3.6034, 1.7451, 4.22, 2.1029, 6.1815, 5.4836, 3.2229, 6.9553, 8.0727, 8.2827, 2.7457, 2.7562, 3.5757, 2.4, 5.4496, 3.2131, 3.3536, 4.6908, 2.4234, 4.95, 4.1042, 2.9779, 2.5556, 2.425, 5.8133, 4.8971, 6.0086, 4.4954, 14.5833, 1.0, 2.375, 5.5336, 3.7585, 3.0179, 3.3472, 7.8496, 1.8906, 3.1281, 4.4375, 1.925, 4.6731, 3.7159, 2.1437, 3.0927, 2.5139, 2.2621, 2.6133, 5.6159, 2.1419, 4.3, 2.3846, 3.5655, 7.2392, 4.4946, 5.7768, 2.6145, 1.6534, 2.6522, 4.9306, 2.1976, 2.2106, 2.1394, 4.0125, 2.9688, 4.425, 4.775, 5.156, 5.0634, 2.7368, 4.4611, 2.3382, 5.3705, 2.1734, 4.3864, 3.3125, 4.0068, 2.6875, 8.6675, 1.375, 2.9583, 5.215, 1.4702, 5.4063, 3.2222, 6.0, 5.4694, 2.4792, 5.6263, 2.625, 2.875, 5.5196, 2.1987, 4.0583, 3.3491, 4.0625, 4.4474, 3.4625, 6.8462, 7.5, 6.7644, 1.9719, 5.0, 3.825, 2.6689, 0.8288, 2.8036, 5.0434, 2.6648, 6.6134, 3.8038, 4.8984, 7.6933, 2.6016, 5.021, 4.7188, 3.0703, 5.4445, 4.6371, 5.0621, 2.2031, 4.1717, 5.4618, 3.8448, 3.1667, 6.9324, 1.3527, 2.2303, 3.13, 1.3993, 2.3844, 5.8518, 2.35, 2.6635, 1.6467, 2.7443, 2.8812, 2.2156, 2.5362, 2.9803, 5.3991, 2.0785, 5.9024, 2.4348, 3.7188, 4.0132, 3.6645, 3.0962, 5.5601, 4.8523, 1.9297, 4.3657, 2.6921, 1.9236, 3.5292, 8.4546, 2.0357, 3.8984, 2.5599, 1.6172, 3.8558, 12.1387, 5.4333, 6.8927, 2.5, 1.6812, 4.7708, 4.875, 2.1927, 3.1672, 2.6774, 1.4115, 2.2969, 4.125, 4.163, 4.4, 5.7409, 3.46, 3.6417, 5.866, 3.65, 4.5461, 4.5859, 4.7727, 2.3056, 3.9187, 8.4721, 0.8229, 1.7276, 8.8342, 3.7821, 2.943, 4.1375, 2.5417, 6.7694, 2.7399, 3.5223, 3.3056, 1.4861, 2.806, 5.7192, 6.3199, 3.6736, 8.2953, 2.1083, 4.3911, 1.0951, 4.2266, 5.4485, 4.4671, 3.3389, 6.3809, 2.5769, 1.9602, 1.9792, 1.5026, 2.4117, 6.227, 2.817, 5.6856, 3.1667, 3.0809, 2.4219, 2.125, 1.9805, 5.2138, 6.4171, 2.619, 3.1964, 1.9908, 5.5608, 2.225, 3.0893, 7.8627, 5.3794, 2.7031, 4.6667, 6.6086, 2.0246, 2.214, 2.9183, 2.025, 1.4812, 3.7414, 3.1576, 2.4618, 4.2685, 4.3429, 3.434, 3.184, 1.6214, 5.7485, 8.0683, 3.9696, 5.5335, 3.662, 2.8565, 5.8733, 1.5954, 5.2894, 5.5148, 5.8625, 2.7011, 3.225, 9.3845, 2.55, 3.2604, 3.2019, 6.4664, 3.0241, 1.9185, 2.8298, 4.1603, 4.3426, 6.7115, 3.3988, 7.0879, 3.5978, 3.5887, 3.125, 3.2073, 2.1563, 3.155, 3.569, 4.0585, 6.7571, 3.5938, 4.6069, 4.0656, 5.0318, 3.305, 2.67, 1.5714, 2.2917, 5.1121, 2.8884, 10.7326, 3.0, 3.4228, 2.675, 5.9114, 9.8098, 2.575, 5.0092, 2.9643, 13.8556, 3.5851, 1.1667, 3.0, 3.3955, 5.485, 4.2941, 1.3807, 3.25, 5.1624, 1.6797, 6.1504, 3.6445, 4.1641, 1.6579, 2.1782, 3.2578, 4.0878, 3.0079, 4.6071, 3.8531, 3.1458, 4.1064, 10.4519, 3.2391, 2.8701, 1.4524, 3.8426, 1.586, 3.3542, 2.3077, 2.5025, 3.3553, 4.0417, 4.7813, 5.3307, 6.3624, 1.6295, 3.2024, 5.2463, 4.6761, 2.182, 3.066, 6.2403, 8.3474, 2.0385, 8.7603, 2.8378, 4.3636, 4.15, 3.0938, 1.1667, 3.8719, 6.221, 2.4539, 1.7885, 4.7679, 1.5152, 5.4788, 2.5156, 2.85, 6.9021, 2.7237, 4.9688, 3.2941, 2.6149, 3.1885, 3.3725, 3.2333, 5.6358, 9.0683, 2.9821, 2.75, 3.055, 2.7846, 2.4353, 4.3611, 1.3386, 3.8571, 9.1228, 5.0196, 2.7625, 4.4167, 4.1806, 3.7361, 6.3586, 4.1645, 3.4455, 3.0919, 5.8407, 5.1805, 5.2528, 6.299, 3.6989, 4.9292, 2.5978, 4.7813, 3.8534, 2.462, 5.7133, 4.4722, 6.5755, 1.9309, 3.2216, 2.2188, 2.7917, 2.9479, 4.8229, 6.8758, 5.6345, 2.5156, 3.0156, 3.0667, 3.5943, 2.1776, 3.0771, 2.0062, 2.2333, 3.2813, 2.875, 6.6437, 2.6583, 3.4943, 3.4543, 3.1702, 4.6366, 3.125, 4.9504, 3.9766, 7.0907, 6.8469, 2.6812, 4.0833, 3.9063, 4.5625, 2.7212, 4.1974, 3.3667, 4.625, 4.3533, 4.825, 3.8292, 3.425, 4.7778, 2.6998, 3.0737, 4.835, 8.1397, 6.1062, 3.495, 5.6447, 2.3611, 3.2077, 2.433, 7.3081, 2.7143, 1.6187, 2.6217, 1.7135, 4.7721, 2.3387, 2.0469, 5.0762, 2.6094, 3.3466, 2.0972, 4.3393, 3.6, 3.8424, 7.7643, 1.8571, 2.639, 2.1705, 1.2069, 10.3653, 3.225, 4.0294, 2.7708, 3.9205, 5.7817, 2.925, 4.8646, 3.3864, 2.9388, 3.1597, 3.2917, 2.1522, 3.3261, 1.5972, 6.6453, 4.875, 1.375, 3.3214, 3.045, 6.5095, 2.4821, 3.4208, 2.8456, 2.4375, 1.6833, 2.3667, 2.2381, 3.2411, 5.3054, 3.0542, 3.0104, 4.3523, 3.1133, 0.8075, 5.1072, 3.7831, 1.9318, 2.4167, 2.9688, 8.9083, 3.6875, 3.2639, 2.4122, 2.2301, 1.8512, 2.2857, 5.7039, 3.6761, 3.4688, 3.5865, 2.1071, 3.2019, 1.9028, 4.4565, 4.25, 3.3295, 0.536, 3.1478, 2.3111, 2.2902, 4.0, 7.8453, 4.3118, 6.2899, 5.2366, 4.05, 5.4607, 6.431, 3.2852, 2.8611, 4.1316, 4.7344, 3.9798, 5.0346, 3.1235, 3.2021, 3.9309, 2.1964, 2.8438, 7.9367, 8.2069, 5.3344, 3.6694, 4.2083, 1.5156, 2.026, 3.6597, 2.5, 2.3333, 1.0513, 2.0577, 3.5192, 2.6397, 1.5774, 3.631, 2.3981, 3.4871, 2.2017, 4.5, 3.4402, 2.8203, 4.0658, 4.2188, 2.3977, 2.5156, 6.2182, 4.5352, 2.6205, 3.7364, 8.7051, 2.0458, 6.8553, 2.7279, 2.0577, 2.913, 2.543, 1.5, 1.5313, 3.4519, 3.9762, 3.4542, 3.9696, 3.4634, 5.1074, 2.5147, 3.5909, 4.2227, 4.8966, 4.3429, 4.1552, 2.7243, 2.0, 4.725, 2.1029, 2.4635, 6.1183, 3.5, 4.2917, 3.6065, 1.3241, 4.5828, 4.175, 10.3224, 4.5938, 3.145, 3.2723, 4.6406, 3.9333, 3.567, 2.9097, 5.7233, 2.375, 3.425, 6.2661, 4.7195, 2.2542, 5.5292, 3.2411, 4.2188, 4.15, 3.0208, 7.8118, 4.0795, 6.777, 4.7821, 2.4866, 3.225, 4.2132, 3.3214, 1.5057, 1.4815, 4.125, 2.6159, 1.4625, 3.3636, 3.2297, 10.0187, 3.1765, 1.6156, 6.6049, 3.4063, 3.9336, 2.1875, 6.101, 1.4524, 1.7227, 2.8942, 2.2596, 5.3886, 6.4246, 2.6818, 5.2655, 5.8151, 3.6667, 2.975, 4.0893, 8.3839, 8.1117, 3.6719, 3.3008, 3.2415, 2.2339, 11.0911, 2.5833, 4.5909, 3.7188, 3.0398, 7.1193, 2.5603, 6.3517, 3.2061, 2.2937, 2.4943, 3.1106, 3.5455, 3.5357, 3.55, 1.4167, 6.1142, 4.6304, 3.4861, 5.5073, 4.0806, 2.1182, 2.3798, 3.6292, 1.9427, 3.6467, 3.1944, 1.654, 2.3598, 2.7863, 1.2969, 2.7644, 4.9777, 2.3421, 5.1999, 1.9208, 4.25, 4.4777, 2.6648, 4.0119, 2.2115, 2.7614, 3.3066, 1.5812, 0.4999, 1.7448, 4.0324, 4.0806, 6.8132, 6.7694, 1.6955, 3.25, 3.3571, 4.1577, 2.4828, 4.7589, 3.6611, 3.6528, 15.0001, 10.0757 ], "y": [ 2.898750393754541, 2.8020732323820403, 2.930520737607181, 3.433318657733475, 4.976601081219721, 4.922276375061544, 1.7035901521881642, 1.1105360583125778, 0.914780929237087, 4.054612453316977, 2.270158646880257, 2.433914138664274, 1.3949959903449238, 2.3421397435656677, 1.8086234148892515, 1.428061910498941, 0.5191144024019259, 1.4196158058055117, 1.4751074514403344, 2.4230344924600535, 0.6850254020581524, 2.112953958347014, 0.7775025890178102, 4.856964599892954, 2.533293899439607, 3.4650705721196284, 3.3064728155836773, 1.3696435583729591, 0.8730114629439654, 2.3176289900685094, 1.9168037081357279, 2.0214430051466534, 1.4693126328268256, 3.0128399691765018, 1.4575513267264666, 4.906660575510023, 1.4535375775413284, 2.3177267199396705, 1.2837078397715684, 2.569167393937419, 2.5058991185575934, 0.8431461642829755, 3.4043832903365683, 1.287596992692137, 2.955010578809903, 1.8060956399713657, 2.6286179471780224, 1.8858477313472681, 0.9559410600052932, 1.9177853728983498, 2.7381563061910743, 2.2949295640710115, 1.5426039675118848, 3.2776084464095723, 2.475614182094048, 1.8985773215020878, 1.435662920091127, 2.0786092999204833, 2.4893550465452448, 1.7845580503683314, 2.4558683481731527, 0.9697946450389117, 1.3820818369217798, 4.128401222606743, 3.2118584466519953, 0.9355354970996932, 1.4033495302769543, 1.7388820237826015, 0.8529850075641386, 0.6112758883443207, 4.054489690670498, 1.3661768944509787, 0.8752656563101825, 1.2954539139966343, 2.5838881718867954, 1.5477764539232557, 0.8552747954109914, 1.001934108076712, 3.075631114170731, 2.0401556575987607, 0.936323782289674, 1.3820939455189454, 4.984963968617285, 0.8270139641841513, 1.54690249865477, 1.7885427627571233, 1.7469046018153893, 4.280524570107003, 1.4678770795228941, 3.1405141614934595, 1.6143220989896305, 2.0542948586228804, 3.8971725097518344, 1.8956956211365208, 1.2998666337471982, 1.0254452427801244, 0.9997640837010526, 2.0797310083917107, 1.4096244356752667, 2.909677170273672, 2.2539160882502087, 1.8599363614221267, 1.9425196639345697, 1.4127186893066042, 1.4701305227528239, 2.5475654347372974, 1.2010721310475496, 2.2688526000830644, 2.6890598915675596, 4.902194676473574, 2.462262249460744, 0.5253318338241626, 1.3375808443358728, 1.0195413965877131, 0.7242009733120163, 1.6877411357252328, 2.266980758384258, 1.681909884731318, 1.0865453337521025, 2.4707251319948207, 1.8865191101774654, 1.4898015467590509, 0.9581592462032388, 1.769370363399167, 1.0475368657697282, 1.9773954864813705, 0.992690104576151, 3.2376487762859543, 2.054006811602244, 1.162810261903414, 3.1410265442145775, 0.5880461071270716, 2.1576100075959075, 2.8106768942644367, 2.256952774967669, 1.937362746103773, 1.8040634484513962, 4.3858781858643745, 4.9003804592136655, 2.0163751916880384, 1.6296719945662672, 3.675859242163215, 1.4252289491799572, 1.6144927331639893, 3.3801690394397, 1.527224570666171, 1.4917153464014743, 1.0934725410274437, 0.7219168811331623, 2.380936670279273, 1.493998232583003, 2.5485569271670765, 1.863556944417075, 4.444185954048376, 2.016925876895193, 1.812275040054589, 1.6380620807098085, 2.2690807743704244, 0.9696283661158508, 2.6292900804158976, 2.5855198358332463, 2.804231287434843, 2.5613795534717814, 0.4541310008704426, 0.7607773717880048, 2.240769577542736, 2.3748578226520562, 4.811806397750111, 2.055419579176523, 0.7192242647658172, 1.267997720250937, 1.2343756879622416, 2.042023206930252, 2.2182774969304853, 1.8108719456830216, 1.6302882824344729, 3.4941485951309423, 2.418364040839587, 1.263128738543343, 4.419001358396429, 2.857383050821364, 1.8739479269929098, 2.316853982111314, 1.2739357913708584, 0.8246445634890902, 2.2139586415866925, 0.6438882262761091, 1.7590169251807144, 1.043182080057557, 1.917848936199399, 0.9228944472971491, 3.1951005470095684, 3.407968202344199, 0.869891459067885, 4.453681329366003, 3.0124337002180335, 3.6521209840160878, 2.582521602347804, 2.432955762129365, 2.1390856467109516, 1.6532172848525948, 3.9375781209265694, 3.024767801727829, 2.5632147030426045, 2.1960436087853528, 1.7765166978136828, 1.4870979953199315, 1.3974415105978921, 2.539782922551131, 2.4112257700209585, 3.642093987645289, 1.0900194080514969, 0.8317105246138364, 4.868481469762497, 2.061217185175399, 3.167861112014932, 1.8496754054323346, 1.4357156507321058, 0.5886190398808314, 1.435615867945663, 2.640511007740171, 2.2879031045833393, 2.430940951244783, 0.9842045113033707, 0.8288783551007813, 3.805506302690418, 1.9286401964382354, 3.6334706583922936, 1.99339258100885, 2.1325630582337736, 1.9240542133933567, 4.225856466200284, 2.137097072721062, 3.4511261798252018, 2.3021217852432394, 4.6661724157816025, 1.4146504659771002, 1.6438070634872668, 1.011818977205875, 2.6072638587456054, 2.6812795985489823, 1.9365909600207958, 2.751396418143803, 1.6276129024474695, 1.2225619124579135, 2.8702922253009917, 0.811573534091275, 0.6427233111320517, 3.1981273819192824, 1.4630215348591513, 1.9587731489024824, 0.7013892964595526, 1.2648112978284933, 2.8859309494817382, 1.8932182326603044, 1.066641965178426, 1.2208092434327131, 1.1765619558087157, 3.530133141082813, 1.7017526735730089, 1.8624227020871396, 2.373332101417805, 3.1166468373155527, 1.4020666453359334, 1.907555323448098, 3.657426277090076, 1.5143648604076885, 0.8008290271803954, 1.6507294467510862, 1.8082762646904793, 1.5574808727791432, 1.4900858214448969, 2.5866971289396417, 1.998057742231413, 0.676136129564828, 0.866319524375673, 0.6010817725718209, 1.1396563910859325, 2.387200941924801, 5.116129616597846, 2.007307223873178, 2.215998971460922, 1.4723662176046128, 1.1344019725764465, 0.7238996968924194, 2.378532585999702, 1.2083247791430776, 1.3317659613377524, 1.0471284796152334, 1.896278445395288, 1.2131505897992676, 2.5438899900229734, 1.783877460876818, 1.1369050729582022, 1.4396540726189102, 2.377454815238331, 1.361210717237344, 1.312461028487295, 1.7383650837327396, 0.5014238646065545, 2.8087355159198593, 2.0206474570973203, 2.670976317205623, 5.0958473586075534, 1.3128630763652027, 1.9206212165037029, 1.6809555093199535, 0.778106931967359, 4.647369940575168, 1.460039058266086, 1.4523042008063372, 0.7946627255699358, 1.5720389947820332, 1.4723944783462772, 1.9067828202650452, 1.4134778806407071, 2.3326290769873106, 0.6969714289275077, 2.7211689527063783, 1.0967286100311409, 1.8078717264960673, 2.266486226714561, 3.1103185908756195, 1.0937958031218062, 2.762669925284529, 1.9540217988086286, 3.878945265664665, 1.7524174410577034, 2.703259119401458, 2.475388380015277, 0.5071495387398115, 1.475337097516097, 1.926380954469225, 1.4617989854993085, 1.0468937594683236, 2.005887509627626, 1.38940217742214, 2.830731540445904, 0.8189413155367075, 2.323357576614773, 1.9377145905195907, 1.1074796514866827, 4.887291030970335, 1.4792949927193433, 1.0961856147957088, 0.6667491366334743, 3.5327687063257645, 1.3728440897678629, 2.7272794305314276, 2.7505846978011235, 4.498557952211003, 4.308902095115977, 2.0232891018139663, 1.8157486661306674, 2.0825237367786738, 2.0077616992349965, 1.0532385027720415, 2.1391219419649925, 0.8494520760603158, 0.8109935160267134, 1.5690193046166978, 3.381235421533226, 0.5510471855638802, 2.601218896082709, 2.128682233230435, 1.5429400771226096, 1.5047016145144576, 1.4451502651684975, 3.2070956680322524, 1.3298630544903447, 2.0854386396448494, 1.2562567119102646, 2.5023332487483705, 1.3353567333026164, 2.973375740967625, 1.9567643449852228, 2.020739134530532, 3.518402082786959, 0.8680011057758699, 1.8331117746733085, 1.41302073715797, 5.122386940584411, 1.4282004550745913, 1.5325041075088721, 2.9094703553575956, 2.604171864311918, 1.0473686370854594, 3.9491894454330763, 1.5731903111576475, 2.744125290736934, 1.8573397802776557, 1.3676938393031834, 1.259725307662792, 1.7566388840410723, 2.1039768145446427, 2.0604720819014504, 0.9072519331973017, 1.1778885376494201, 1.2149555823833613, 3.3169259948369967, 2.1186839397428896, 2.589604126633048, 3.6355794225807525, 2.4488150112588976, 2.9923328047211233, 1.9413711299475955, 1.0847408070295297, 1.3118230279813006, 3.1654883586133518, 2.327518342177257, 2.043285029492027, 1.778259663241941, 1.108222535966527, 2.2147493436882, 2.0577519127838295, 2.2864006021167613, 0.5759677953814607, 1.6527620417829016, 1.4869771974611994, 1.4008780734879005, 3.0368150567937477, 1.4051868124084848, 0.8267805964877647, 2.6516668226393403, 1.348092744839667, 1.8082071176192736, 3.719054339628061, 2.9455749568398013, 0.5860966239058975, 0.8504261575630583, 1.1996996065909251, 4.467057341160765, 4.046779479048032, 1.74584310841442, 2.614787284517936, 4.48969356231977, 1.6273693533348164, 3.3068588508871426, 4.602542260530076, 2.095663554073065, 0.6176841546548194, 2.5563106508292854, 3.259051708890053, 2.469393995816784, 1.5027723161563706, 1.1245340196905664, 2.229293274204467, 3.62620802665238, 5.082603591266749, 1.3352639560101751, 2.1195463828957726, 1.6375466131447154, 2.114488234109331, 1.2330698113028207, 1.5110600683952888, 2.5644297570590315, 0.9471956447412384, 0.9742412826990399, 2.399749567479003, 1.4367285867428459, 2.6955451059498556, 3.83545465769144, 2.6579644377660943, 2.1642865038114643, 1.872799862041113, 1.880915033542036, 3.923279862980681, 2.02161878564692, 2.8280392161129964, 4.701746601764645, 1.615191440719293, 1.8604746149598452, 1.5028202826685761, 0.9168144286015913, 1.0841976213703064, 3.9954480406258788, 2.1518374586001268, 2.205709251000941, 1.4077749730237281, 1.4158843505145466, 1.9826323207256675, 3.333719696867504, 2.0618179305208373, 1.1640663910138465, 3.1831242885053546, 2.0447328937689746, 2.010127090938707, 1.6201497870920625, 1.9631328994736559, 2.074228117493504, 1.1690543233964221, 0.9370828843938539, 2.378728113314834, 1.7812498465717301, 2.1776660231131477, 2.5197791120556525, 1.444775524465664, 1.5918762834815245, 0.6602903014858256, 2.3572795747644597, 4.672584130476048, 2.2283838809151817, 2.632705402369002, 1.4742402914821082, 2.8996179519060847, 0.8411275228100282, 0.9326996580649803, 2.175152439349625, 1.390280092721963, 1.944758336318818, 2.1781379152497355, 0.6088246753011836, 1.055385097593688, 1.0643256159822145, 4.775636417925451, 1.4079541509838296, 4.3058540423470975, 4.669771714134683, 4.121057749619268, 2.932290572737839, 2.8751873857484256, 0.9468974875072305, 1.1901485802358627, 3.5733413320133445, 1.3213117552786748, 1.2342924968926634, 1.4906046339509362, 3.08750283105284, 3.7866807494294554, 1.3665264957966023, 1.7818222823428966, 1.4134496711156896, 3.909388205134558, 2.7844306520950677, 3.725113872900683, 1.4826495239561053, 2.6156371344667853, 2.7873082309818686, 1.32154532663555, 1.9257924464042495, 1.3450814604401777, 2.568160246781683, 1.3557628519468983, 1.4476938084001922, 0.9568339445595591, 3.3480056128731976, 2.7949153793535673, 2.475173102357097, 1.41165004432827, 1.556797871531789, 0.6430865339532501, 1.8855254672417994, 1.8926328342898653, 1.5093326020011482, 1.628463326204526, 1.3164434215084353, 0.7187531828807684, 3.653651495848181, 2.4985219839936743, 0.9382641017138317, 2.783639405421604, 1.0148223216239451, 1.523430224465176, 2.550914403804418, 2.090093165659776, 1.9217994195160555, 4.2231564308084355, 3.0142829975388157, 2.9246955319778616, 1.6893690232337628, 1.1770195209833754, 2.455380437498568, 1.28855639142316, 3.205001450081361, 2.2418766804044736, 3.402411747892679, 4.180818506892444, 3.8442124581959116, 0.9826138947094453, 1.823061500162898, 2.441658018411634, 2.9186377359183964, 1.6776171547841028, 2.575155637208296, 1.864046245503419, 1.57227993500354, 2.3824690569482523, 1.0278038485506964, 1.735200440873328, 1.9170744240637836, 0.8826828875902131, 0.8074252387012195, 2.1556799632889354, 1.261647279816825, 1.5187924428860067, 1.8293517439356006, 0.6661972913449322, 0.6685553864766705, 1.704479182404435, 2.3731492177110294, 4.011996949467159, 2.1705895618698343, 2.022337399680431, 1.5554346069186498, 0.9111885905093126, 1.396883078045873, 1.6700093280712844, 4.0614911978305885, 1.0465603182084426, 2.0815934627269077, 2.480560642402633, 2.0786042746136104, 3.572909950466423, 1.9090026693699609, 2.628392257012259, 0.8731440760641224, 2.5711320282552848, 1.3377492792381105, 3.672037185692255, 1.232434510823366, 0.5981244952149142, 3.9553185679634972, 4.27786282087888, 1.8575349348239365, 1.2755730531478486, 1.8712348176840816, 1.4837782702332338, 3.4169557613743944, 1.1352131354786932, 2.2169222954626786, 2.0530947254377137, 1.0358297446294622, 4.587807260035165, 1.70742448200076, 1.655702000268041, 3.057150586837382, 1.307333266040783, 2.2290112249696135, 0.8167294912095572, 2.6524567534201466, 0.6724066676232221, 1.9141295984611033, 2.190319309271921, 1.9521193330081033, 1.6498710256087241, 1.683476382555932, 2.082308012240433, 2.145321991000718, 4.716080588933764, 1.4568260472355439, 3.2026733481437852, 3.0615717954704524, 1.098875289578384, 1.749832230245444, 0.6407170297642746, 2.3428852313828674, 1.2511870126212563, 4.515046143535363, 3.615752475543814, 2.0817098231387225, 2.149671054740444, 2.595965396173768, 2.6960467868450304, 0.4803156905776946, 1.0811227688007023, 1.4785134030655298, 1.662247565833068, 2.3350368551356158, 1.2488452669206611, 3.053148454137663, 1.471601840774035, 1.5088574811215503, 2.948396194133968, 1.7473722162262797, 1.3686507635862053, 1.2212368900232553, 3.366517251710044, 1.3292898189895415, 3.3156607294098266, 2.5362134697274077, 1.104273957111563, 1.983563516286769, 3.9723719765013934, 2.01410981074094, 5.078549058186187, 1.98250620310741, 4.396985848912757, 1.8750451428205779, 1.9421577210976024, 1.473188471052101, 0.7027672537415963, 3.5366696574537633, 1.9881767305174924, 2.784251446440794, 1.3773733987207986, 3.7922958112834113, 2.3477214339641024, 0.9920706153132057, 2.553653507453892, 2.0610413974918265, 1.5286118881367652, 3.051114214973581, 1.2959334860117495, 2.731191999033287, 0.9370058068907705, 2.7427261682020374, 1.101723836773941, 2.3232241495500197, 2.4929801067403656, 2.423832656555482, 3.4533784369887512, 2.2481069241216427, 1.08547579246018, 4.491840932374163, 1.627098294835289, 2.546717851930563, 0.6759501415991019, 2.5054955976846522, 3.3169034464942317, 2.5987325533435888, 2.4559984124891994, 1.3868624188943852, 1.4847294168847915, 2.0131161346891293, 0.6225533598199648, 0.8130102090401555, 3.7962101313411716, 0.6148152030309814, 3.662417858824971, 1.3080041714452049, 1.0481544481024474, 4.20147527744895, 1.679844470240736, 1.1753269262992774, 1.048890224661772, 1.5648556091018595, 1.396040846225173, 4.966121957636365, 4.10231245892731, 1.96489028127541, 1.8116827591376192, 2.029087929417729, 1.5926946414245091, 2.9707797039608708, 2.292121339083939, 1.2799137769167976, 0.7204512177353399, 0.8772532894286376, 2.375558264833009, 1.342316347562192, 1.8550550809881479, 1.0909132017792469, 5.086284187999419, 2.4690105860353135, 1.1300987582062976, 1.2599440753863962, 1.519330776610171, 2.8745500898854046, 4.769793488986653, 1.1596136856246515, 3.0876798179388527, 1.8410388297459994, 0.7295862174978894, 3.5958795831482684, 1.153573830070587, 1.8844522290598456, 2.1262512320532485, 2.7637233934527554, 1.8512335150674957, 1.9122643174187421, 2.1473907176617324, 2.607569604243773, 0.909870106939982, 1.5142060170307154, 2.0248303308832685, 0.45519429968186964, 1.1387095207793965, 2.5203972708580147, 1.7615665137339265, 2.1339856801213113, 1.5545263957522497, 2.0503737231843013, 1.648450391142948, 1.4176043008513877, 2.012594430173559, 3.24899794463319, 0.7579637672338265, 2.140545737373687, 2.2423866212138175, 1.4330859231336341, 4.141462519246868, 1.9001516911813752, 2.340296620171722, 1.9785942708332214, 3.2373287103459476, 3.3140284303946563, 2.2844028953869815, 1.1972810656958153, 1.9427962111492623, 0.812962879944266, 2.634575516515279, 0.8350481962880899, 2.007158361221309, 1.6095680123467926, 3.081947963464799, 1.9110268162850936, 1.8434815604030481, 1.0055895480322696, 4.6413505957748376, 1.0228359575043462, 3.106128024562182, 1.6853908548244432, 0.9376681317151677, 2.400414380450011, 1.7902591635957432, 0.9725663347485111, 1.076835453038077, 0.7020057759383403, 4.115492039052434, 1.1320189406511967, 0.6835999110540701, 1.2821758974690793, 1.251035985797408, 1.5610229615176836, 1.6100274251137165, 1.8067392478555762, 1.9541456338852736, 2.7043356268200305, 1.8452554108764796, 1.4667078116994463, 1.4769997342391128, 2.425789631332942, 2.8539996374701926, 1.7866654915044493, 1.4181050312446892, 0.7869674089633291, 0.8166316122223376, 1.4586377809894604, 2.6795360347859263, 1.5146303495350093, 2.3638250214672043, 3.569067754936665, 1.2603854315348393, 1.6747386176043069, 3.1754786947860563, 3.6531302115410775, 1.2025960954873842, 2.1365899000117765, 1.7051949411606107, 2.6977062420651254, 1.8642016138959483, 2.4294982460238863, 3.449417293583492, 1.4844123343610505, 3.728414801512688, 4.092596942868813, 1.992916024713761, 1.6287026672056755, 2.187237976538627, 1.4281619175035276, 3.374740533986622, 1.0616371109713039, 2.898192739331612, 0.8080263260177349, 1.8230588366533538, 2.5511568185912528, 1.2238987732547129, 2.005401935958987, 3.2145509595166883, 1.91648210014176, 3.0976913240305186, 1.6651158591147335, 2.61642930716015, 0.8858617550053466, 1.0120986691919667, 1.2258796059552455, 0.47764365630930766, 4.336898852607231, 2.94373371110882, 1.8595342627875175, 0.6407403493991443, 1.929968968883568, 1.2411260851486916, 1.308805391781232, 1.9911872133050883, 2.755685700712785, 1.5493683241769887, 1.6664843697784113, 0.925565124070073, 2.076045896228732, 0.9502593577498026, 3.69983920706034, 1.6233333823406488, 1.3049084323975897, 1.5498958271437049, 3.339904262078371, 1.5251675864832812, 1.508806859825821, 3.069273145922911, 1.6470709788207314, 1.929180147646059, 1.02445274463534, 1.8806288224291847, 2.158797056885605, 2.4258005801162277, 2.9991665631823228, 3.271667521091971, 3.934521659191384, 1.4215641832242993, 2.333848893458479, 1.6630099499598185, 1.8076523141193825, 4.05946194414876, 1.588645921449743, 2.1381042728565998, 4.754810409794274, 1.8183262114038035, 1.5676838948942955, 2.3626498445976045, 0.8652133671103684, 0.6212418516881901, 3.2411794806619056, 3.1049269531945303, 1.8239166232805912, 0.9446215362544741, 1.769645427477946, 1.460337778224618, 4.067412693870252, 2.2600895067341766, 1.0439973921820138, 1.3688274229581565, 4.30897506931352, 3.1659717451049847, 2.0045237629040504, 0.6954511781923586, 0.7152984200558548, 1.4485060931963942, 1.2068094241355272, 1.8223210638247787, 1.6448102598871603, 1.9503737034698319, 1.9204516964461666, 2.30502692560144, 1.2737354353432588, 2.235709673608084, 0.8641264399662941, 0.7331527900677529, 1.8803811566749262, 2.497259256075028, 1.4864776212760964, 2.7126360995521424, 1.4028690561523869, 0.38186672549829775, 2.7751960780017124, 1.6303129379093904, 5.031512633807593, 4.0591937957902, 3.07133117656373, 0.6969629202544535, 2.5083032529540867, 2.725745129403642, 1.2460784252421386, 1.583368537441083, 3.571674313024868, 1.5439809931745807, 1.558483602390801, 2.4756483293852556, 4.746958583299871, 1.4675168309255873, 2.9546933197244156, 1.8943190088686375, 1.0586134693731877, 4.482975026702756, 1.6128682967868075, 2.5775346550256075, 0.7542143953053562, 3.0294082169350927, 2.08695042042597, 1.0408589480266837, 2.789548512626359, 0.5867535801322397, 1.358002988059388, 4.168828808939207, 4.5816348040397665, 2.631806458835849, 1.6410696439767967, 1.4399460919010545, 0.9856293256863672, 4.113265977795347, 1.6399115826799906, 2.350784409992279, 1.4813140399785663, 0.7502806368748224, 0.9973310898793052, 3.9432869631501024, 1.8829138737638347, 2.4878201142545646, 0.6663251496561909, 1.7399575096103186, 2.4428246078640057, 1.5851778664591618, 4.074528471798741, 4.516747044736435, 3.3191017782712207, 1.5574430674851558, 1.911721159637225, 0.6564972512343425, 1.6975739161638699, 1.608957735833837, 2.9974788197929803, 1.901912391763079, 1.828946305828209, 1.4220138638643987, 1.8025861245511272, 3.7478122590932252, 0.9527837003842357, 0.8004278255794893, 1.6464937979817102, 3.5264588202927025, 1.6331507690803884, 0.975704814857443, 3.34056929602877, 1.714792580715944, 1.9999118602873394, 2.725738299564687, 2.1134381592379476, 1.459156087517221, 1.7468617841078278, 2.4843336102782554, 1.7608849516558314, 1.6623016590789295, 1.8654166198365103, 0.9667398004404063, 0.925038492586189, 2.4297273669899955, 3.1472610134026016, 1.7786503311255528, 1.2931408227229972, 1.101307518493133, 2.0517593187300687, 2.367872416939428, 1.5170279892791714, 1.592913956060127, 1.4627316445627476, 1.2992234424698998, 0.8683336962450988, 1.211842546147437, 1.4023298536353945, 1.8958943486983608, 3.1218759275423067, 0.8909375425374333, 2.846179813185263, 1.2227689309041292, 2.358367575810637, 1.916305937722444, 3.3727471087953735, 2.7644122725299276, 3.0933296061162103, 2.7184343417258567, 1.9371430679427744, 1.3087847161733295, 1.3257098820318054, 2.1105401521580576, 4.9111407897222215, 1.4748900256443034, 0.5807462969256977, 1.1316902015180441, 1.77116985151776, 1.4793731728420256, 1.339837853166183, 2.6835254133162794, 2.4849138683266205, 4.095906291774411, 3.038609865505489, 1.6384227746478568, 1.5069499276500358, 2.2807122698165667, 3.303244337211096, 3.04615317290797, 1.125467810143637, 3.7209482026934246, 1.0210410601496163, 2.004421895522827, 1.3127812625942974, 4.470028194357816, 1.836899978796429, 1.8034441207849523, 1.0318906407721622, 2.051291887020795, 4.391750296967228, 0.6977417504812804, 0.9400187504929223, 4.30289105602009, 1.3954480670147766, 2.242847836511254, 2.0531810097098075, 3.0803411424259206, 2.4846521374455546, 2.1689572439506017, 4.063063788326451, 3.5029882424043253, 3.8667857900658587, 2.214621891936943, 1.4079651113808496, 0.9783989599459824, 1.182287908179803, 2.302905405963429, 1.0664949251868021, 2.1144546042976398, 2.5393322567462726, 1.7843034864515894, 1.9509442983215914, 1.2502467362908356, 1.7972327713060983, 2.3788658961157765, 4.917508753139992, 1.3718563466283964, 2.12804775641373, 2.1415956569877936, 1.295544508018354, 1.74720544843009, 1.075544924511043, 2.572203931461765, 1.7711120911793596, 3.7455987327907376, 1.3535318488329215, 0.6228131227777147, 1.207469417920865, 2.194992578918862, 1.8163711079866771, 2.2820942100126675, 3.5433716564070576, 2.62255969431234, 2.2464381791671677, 3.561020558271896, 3.5462378053951245, 1.4212551081001057, 2.750061073156932, 4.767924719650494, 1.2838672837712983, 0.9010571265582072, 0.34088549570614857, 0.9693977904575451, 0.7984182686810247, 1.7026230237062323, 1.4746205282667186, 2.057820755676348, 1.8020534791629181, 1.635293064867232, 2.8481264328148717, 2.4950770146895014, 1.8771459518461415, 1.2691127750684648, 1.5812590134746658, 1.2966659737488464, 0.6877240529390939, 3.002446149558625, 0.9983018972781887, 3.5062578282236414, 1.5491365614097834, 2.6409976782017806, 2.093628844367688, 3.4836642381650123, 2.0174468453079513, 0.8909592586712987, 0.6115559380922007, 4.114635966680486, 4.15642953076946, 2.739927776740383, 3.055399340276847, 1.0043310169632154, 2.20400324828783, 2.9296865931061578, 2.5521231409814398, 0.7898282729191155, 1.5733458155407538, 1.447730725425282, 1.6020455203382946, 3.0115380805908125, 1.7114585204337893, 0.5728434912305922, 2.101377966566418, 0.9350358562898244, 3.2253971821007434, 3.2918516867839323, 1.5891861948636137, 1.6945636984445873, 1.2091665055397545, 3.6916848567372074, 1.7756357160306728, 1.0417907748232809, 1.7932697430552744, 1.584584105079992, 2.8126989719943123, 5.141036904400795, 3.7207621444168484, 2.1251987313612624, 1.7640059446697487, 2.6197015934277035, 2.2756776591286947, 1.8067211845614555, 0.87668158582324, 1.3321387997080587, 0.5384817128692223, 4.449449924081841, 1.2280783904341335, 2.3847764692732207, 1.954437597402949, 3.4956954375001232, 0.8756651937967475, 3.2211719153414737, 0.6436555425258802, 3.405200162193012, 3.081086960339574, 2.5261238741629937, 4.534137500306822, 1.6267860494973758, 3.2444008527203083, 2.844919706133881, 2.1535907053596057, 1.087853069641822, 1.3118279127074686, 1.8435179180380694, 1.0555184264777004, 2.0150690495303962, 1.0865755094378866, 2.7089799826780374, 1.3083484462699326, 1.4999265216368105, 1.6709528800287698, 4.589283461883788, 1.992739797701845, 3.181243005393253, 2.899236453668072, 3.7108724002535434, 0.9658538459195002, 2.539165112654661, 1.8947452395737654, 1.6181638729323802, 0.9960206614229795, 4.639188976189187, 0.727192635042627, 3.8605895224727376, 2.8697315773285434, 0.5085572281404732, 1.5089681000008022, 2.014060611356703, 1.2250948452903019, 3.784090865891015, 1.080688924562717, 1.7091780961822196, 2.681633339498993, 2.083598299363601, 1.3015653441028057, 0.7046662572903165, 0.8885782778234806, 1.448816792941627, 2.983867068789961, 1.2620442286576457, 0.8859611406855912, 0.8350699983282744, 1.1661145267736126, 0.7707310840329766, 3.240520226504564, 1.1364134397492136, 1.1933566867384064, 2.760069914427845, 3.71265729520673, 1.8590364644764399, 1.6895394781159043, 2.0029016871723284, 3.6491153726311, 1.1011455067488913, 2.855086990260856, 0.7731005187355142, 2.562167369832793, 2.0428391437337883, 0.6972444823442224, 1.7451749333202875, 2.6424679282002272, 1.0563441108945304, 1.6631373104972174, 2.3325433325360136, 3.5415951395600582, 1.7239868608413804, 2.7691147366406548, 2.4593562643320355, 2.9000072191121635, 1.9688156022889056, 5.121778145166964, 4.45711762627547, 2.1404427592596624, 1.1883942784815267, 2.231395173674809, 1.1274122387155723, 5.059106721889654, 1.641643637590782, 4.646498245640281, 1.8552353917586348, 1.4697749961265707, 1.5883832461012655, 2.0806265496202268, 2.852880151003891, 2.1894944262226135, 2.2746888691390317, 2.229852308448311, 0.7038463846491387, 1.1578038093201604, 1.6939171635758827, 1.4959910725922299, 2.92163997011155, 2.396251231518431, 1.3347691720723107, 2.0278621296263917, 1.3301463176016535, 2.195083493911992, 4.328649818501229, 2.5954401235817697, 1.149199099973739, 4.959383660744056, 1.1599797098132492, 1.5053702731496734, 0.6302184387970222, 1.667973003248932, 1.780140343781502, 1.196752048861437, 1.2360154554195577, 1.8648527893410245, 3.327771447956252, 3.3316243377720918, 1.72640297317862, 2.047259504374579, 1.3147673962931612, 1.9137310244941728, 3.5443650428263855, 2.249241129912817, 2.460040227700995, 4.748637958640252, 2.5725398749810373, 2.2982205306756605, 2.3360760049788345, 3.3829914090378685, 1.8448896966742192, 1.693246891902846, 0.9466395977112716, 0.6304813078487848, 3.2748318913796934, 2.2570089006046046, 1.6871577240119442, 3.460991916268418, 3.858933607039382, 1.0800944446278293, 1.8522504482968607, 2.137271072689385, 0.7713724110074882, 1.6150546463448416, 1.3481589477766505, 0.8797173888037961, 0.8824734579276748, 2.095339464588564, 1.4202966538155282, 4.687591467365924, 1.1546087111624332, 1.5398882829601286, 2.1497479739444727, 2.4180176826045994, 1.5437574728248122, 2.6170627768866774, 3.6406590104967824, 1.7085453651962397, 2.4105673853577514, 0.9469589802167989, 2.9514001558805254, 2.9458425780145983, 3.048043320412036, 1.0579374679081528, 3.227156999470585, 2.031209817568539, 4.933503813208347, 3.042150881244686, 1.243394191180863, 4.945665299243556, 2.4530967112154873, 0.9229546623489737, 2.3036676014070747, 2.435636003653399, 1.6404318437630245, 1.7119981016294055, 4.696907138425136, 1.2139579565948255, 1.5453285731154647, 1.563734434805679, 1.6874517047640671, 1.4509410569874963, 1.8695680478971632, 3.195062860935068, 0.4592123707732632, 1.030898232278331, 2.1718437915389393, 1.1169409570955906, 1.6596548283776584, 4.46098283163546, 1.1297513786595887, 1.7055418290363635, 1.3289871849607149, 3.2069769745609045, 1.30154675224826, 1.5991902137872125, 1.3706201753108975, 0.7256321536454509, 1.8341526088864253, 1.3611125687969559, 1.7940384466777268, 1.038245078646356, 1.5664808122466167, 0.44306780249710415, 1.0634196967393499, 4.939812403041876, 2.6803096946535896, 1.3194857634999773, 0.9158603123159187, 2.90266342504235, 2.0063675289056313, 3.40473853401197, 3.2247668886802625, 1.5062415677270597, 2.677598491655193, 0.8870622826679398, 2.1890973202291075, 2.545517266742432, 1.3441315334272523, 2.966485533988465, 3.8299513668712994, 2.3458437520509183, 3.4400513477571613, 1.1102658762263564, 0.7474387099162475, 3.2183378932014124, 2.136105686101116, 2.3299089263737933, 1.8144056061730458, 1.1651516597659404, 1.3852360683360958, 1.3622983472651309, 0.5630894728196528, 1.1228120296219226, 1.975671516949531, 1.6731274871741586, 4.991473200055652, 1.408067057759487, 1.8980779250686521, 1.303256308732624, 2.8820742555227623, 0.9517079579006499, 3.094840515208023, 2.1735393154773015, 2.746929597189079, 1.7263612323334463, 2.069323888079533, 2.774232344171172, 1.212932747792501, 1.780345779846427, 1.176365954212386, 1.4893365026151504, 1.4946994467900656, 1.557763973463919, 0.6597260966091224, 2.1538294904006046, 0.877604750357165, 1.327254772444673, 1.5363190509826699, 3.6773115805567924, 1.2284906616152376, 2.2660731403281553, 2.431908326816191, 3.086390317908348, 1.175847551512369, 1.4061417172317323, 1.6000063699468512, 4.592495967907515, 2.891749229261651, 1.9260043264768205, 2.6158135249664465, 2.0253789425163267, 0.9017074542393676, 4.131738050631723, 3.8652917552731956, 3.0421406676720615, 2.7338999242451836, 1.785301663731588, 2.5102537086034022, 2.3201075688386603, 2.617705173389735, 2.73919535837597, 1.6270753761895267, 1.277746240301728, 2.0303653931974313, 2.1358490922426396, 2.8418861143461336, 1.3972246408669695, 2.87488733653904, 1.8369946561423405, 1.2285565540355454, 1.5512238055928782, 0.8645329243096266, 2.128274604833208, 2.8663650131009373, 0.5469033257608503, 1.430165102243847, 4.256713550938757, 2.05122243706725, 2.113764163314372, 1.3720402083786998, 1.4155669285991137, 0.8522078626680519, 2.3786917101292038, 0.9861646062829518, 1.019438873414518, 1.493361914238959, 0.8064416865758426, 1.1452641843159297, 2.8592144992696173, 0.891959148520676, 1.3568514275992283, 2.210137806393007, 1.4643458689048723, 1.70883352795588, 0.8606286795521283, 1.8616706300732209, 0.986616569672383, 1.0709937894883745, 1.7953989640874906, 4.997341169837008, 1.735243414818072, 0.7083443169757838, 0.8180715839216871, 1.2610585755295467, 0.8297905787487487, 1.506924401306802, 3.2755804748781054, 1.2720968108337078, 2.5244223316740113, 1.5826633423507257, 1.1042971905478935, 1.1622646406915131, 1.2173208175929255, 1.4730834939368673, 2.8135481585417694, 2.179492498032099, 5.214884102652775, 1.7886510622890064, 2.104551558672043, 2.597561536587745, 2.761997880532229, 1.235925755389669, 0.7238797756347923, 1.5670370768231299, 0.5764430891550475, 1.2648447722674256, 5.023739346265525, 4.281200901138787, 2.308980692541714, 1.531020249931495, 2.3498843599195216, 1.699614597851771, 3.7885394111366466, 2.4025227219913035, 2.299928004820817, 1.3985405206924044, 2.738283204486687, 3.3580248032738327, 1.400156530341879, 2.2739896774421062, 3.0263975210178655, 1.2395093053902655, 1.497550901567098, 5.083664200783565, 3.511826463986563, 2.5601353204257955, 1.819058055830153, 1.2714327936922099, 0.5620994325222373, 1.9784033653401327, 1.823592991166882, 3.8926006896545764, 4.566736833966091, 1.5463850470504659, 1.0254363636964159, 0.900403287341476, 3.455374756727713, 0.7765909002525956, 1.7578069582106322, 1.038854574309134, 2.1523333468629566, 4.628702567578589, 2.00793848659291, 3.292400080973308, 0.6879867040417197, 1.3294921447873884, 4.68425003127989, 1.2517210579317846, 1.669523139088987, 2.233729209007159, 1.924905399708664, 2.797367312064177, 0.5726308456525309, 0.7696105137043276, 1.990880172938101, 3.009810366254418, 1.938870098216569, 2.499265680561959, 3.197866212505551, 2.752187769554275, 1.5314228351606807, 1.380242502904026, 1.3162962391931365, 2.327592630980821, 2.338299256584599, 0.9882932807113624, 0.5477873151691425, 3.2326477562734808, 0.674894106869047, 0.6357394767694325, 2.560682451318865, 1.6161891971212161, 3.831520731193443, 2.0897030875337235, 1.819148908039149, 1.9125558128896072, 1.8227791824604296, 2.550469348194678, 4.917447026569785, 1.68369462379387, 2.495437028002455, 1.0646008287701654, 1.7162116568585255, 1.8529397234940612, 2.127829859365171, 2.4975504553047525, 1.489005482616695, 0.9816549851526865, 1.7408610258260875, 4.931478574751397, 1.7113800596381499, 0.7628769562246316, 2.0904696428626193, 0.6980461589857029, 1.0576892043522914, 0.6194003818751295, 1.8574934148284217, 2.089133129979436, 1.4459648324873111, 2.5229959998452953, 2.6904589556057474, 3.440896199585767, 0.9465196270311176, 1.3752013722455843, 1.6923303434068648, 0.628366550033491, 1.4717491065209483, 1.2218302826343168, 5.081142727056665, 0.6699087887836213, 1.0444373549396435, 2.3664813225755092, 2.3077459080003218, 4.78495074482796, 3.082151032141422, 1.1314290613367488, 1.5260933788381885, 1.3704717199110559, 1.2354110846723956, 2.7516596643905094, 0.8345622391509765, 1.2163199987742301, 1.000427817030982, 2.0065081280801826, 2.8320568549171288, 0.9979031679665714, 0.8386145817773777, 1.4776637685000884, 3.0500119071209975, 1.6589011513176692, 2.949571050849556, 1.6944039891595088, 2.686857260158328, 1.9723355810929508, 1.4486748726733087, 0.5798427519108866, 1.2971242932656102, 1.894897091764156, 1.2095201661389083, 1.8819303931130196, 1.00330346680856, 2.462513333928444, 2.7379203534043786, 1.5576327084593284, 1.0905667096392408, 1.8302630781495217, 1.8471068098078463, 4.6023868827035965, 2.0224081009852033, 1.6289739530797587, 5.15440188793505, 2.7352942569938103, 1.3098629593727136, 2.482657585128657, 2.205436154252751, 1.0555423149171925, 1.1510566791976982, 1.5344071947236222, 0.8097472103598685, 1.6066200908100545, 1.7267186182487975, 3.9034096174035318, 3.886658670322127, 1.8220374573615303, 2.2478707958952415, 3.051126282845091, 1.6470893500742056, 2.4932441197610116, 1.6872595230839604, 2.5105957715931937, 2.9616456422334503, 1.9012338219807703, 1.8276899686370585, 2.767877204099194, 1.2786766563659908, 1.3157544026159957, 1.3416488806898745, 1.8757987257571769, 2.507271338620506, 2.5161418180542996, 1.0634881655647108, 2.156209599348143, 4.79771332289511, 1.0945828682645986, 3.1367972940752975, 3.5073068479350447, 2.7582212687900176, 3.3227972585108168, 0.9112065589450771, 0.766036052474571, 1.390694230382641, 3.7699755282956744, 2.200251558337881, 1.799439626879396, 2.586328460558335, 1.3271950005538002, 1.7788724773777425, 3.1754811021294747, 1.292317190348787, 1.2335943069154176, 1.2273268222338367, 3.877650023674927, 0.5120423930615425, 1.3506911102658725, 2.4006724877490755, 1.8928322252991738, 1.7249709050144404, 0.8416650971340773, 1.5388449461081222, 2.5623168166663497, 1.1158896113729335, 1.95064887211815, 1.6453946832575912, 1.2790596038119966, 4.5504345545509555, 0.2920392731003134, 1.8371371170331585, 1.171846693410256, 1.50272706641338, 0.9555477767228917, 1.1956286699547756, 3.5495922374865168, 1.9116153670069798, 2.7710564753886233, 1.7240274966234226, 1.4687438956496837, 3.0538045118345103, 2.1237628189523026, 3.3170005773316276, 3.462513031496504, 1.413723022412726, 2.38668952386637, 2.5087278638552917, 1.341837412924335, 1.1255560597091259, 2.287143611814058, 2.79371215929002, 3.362280756431004, 4.113955455086663, 1.5530254796415384, 2.1369189033863867, 0.8377240572427821, 1.2355474778315967, 1.8888514039473854, 0.960012876660636, 1.3003763562685613, 0.6561809956616049, 1.5342836080918467, 3.4073003323784428, 4.072040514676426, 1.5612993426707766, 1.763024603638223, 0.9151304332979758, 2.4593828576651484, 2.193537482345442, 2.5189716830956836, 1.9262011602427531, 1.6984857094955697, 4.854539555446784, 4.4663071759202255, 2.4361095694730484, 1.1163312987372365, 3.45918157042883, 0.6182336353506473, 1.2874956237655202, 3.492410273697506, 3.814760118933707, 3.39617944920641, 1.0958581127216138, 4.852879987513966, 1.9049079878731114, 1.7052483756782995, 1.6159535706459243, 1.1539865322531093, 2.661357856587016, 1.3430137873094157, 2.6180203856058073, 1.6254070350551248, 1.576234551085447, 4.774170101988609, 2.7555445778068406, 1.7079627842300762, 1.5729572110788232, 1.1927093646668674, 4.941232585535007, 4.958203863083318, 1.7038629840178083, 1.8637455550435549, 4.498643693565299, 0.7632064430091077, 4.982289084035264, 1.7645559335819854, 1.061759537430209, 1.516440088362423, 3.048209459895891, 3.6133216158608232, 1.480782211935231, 1.637715309163836, 1.9277465098805915, 4.856542421977048, 0.6302476042360287, 3.025219839681552, 3.9198196818107536, 0.9936505974572638, 1.554379353684732, 2.328357464785314, 2.0831537975904175, 2.3726496452126313, 1.203243126050644, 1.8007562803533421, 1.487740997076621, 0.7326280740061255, 0.8326504844071545, 2.0539403853253106, 2.1502381105310393, 1.98716582114154, 2.3301003098420234, 1.506892419075718, 1.7851506423604866, 0.897189933526607, 0.803220950415026, 0.6146614505573174, 2.825505941021998, 1.8623857038901417, 2.658272423335192, 3.5080003863051994, 1.7152580375531454, 2.049046576088809, 1.8631374503419993, 4.483136814042302, 0.6154062758835117, 1.3552260391483655, 2.634826054886083, 1.7707760925329425, 1.613900869415968, 2.1617087453435353, 4.711313705570846, 1.765677872031261, 0.7454340075220537, 2.063470318630778, 2.269012177940527, 3.2142668281525157, 1.8654800862752188, 1.516252384343483, 1.8072245946955003, 1.7737528957777824, 1.518351542371567, 3.5763401409561917, 1.3681998958887165, 2.628152000762646, 0.7176790394481235, 1.7852176968103706, 3.7725105518255777, 1.4885316013751972, 0.5673136013484188, 2.5652516841962876, 2.465981985787221, 2.2321599680324087, 1.0088950665663599, 1.044731574156316, 2.6988791879053555, 2.180190320937454, 1.8985994942824604, 2.316104027782046, 2.509263665912687, 2.8938296029024047, 0.6104145636588961, 1.4782029177398506, 1.330824290813433, 1.6105654429051792, 1.2143742658933723, 0.6180225502924519, 3.7084540667042805, 2.128835382398188, 1.3056708701994788, 1.051619845216056, 2.6652014333830985, 2.514337059762979, 1.2447777376543006, 1.858253477418733, 0.9306598686553944, 2.664406443133991, 2.780278548938685, 3.140764390248449, 0.5913393012670004, 0.9684220188797847, 1.6164057683144433, 1.1192055237842582, 1.5452450952669572, 0.718097302175734, 1.6886637251440506, 0.7028121755695355, 1.9728139994636233, 2.930299653592348, 0.904458491547559, 1.8239042658411264, 1.1880439950062458, 2.0307772857562267, 2.6822614625895707, 1.705187161937479, 4.438229941484766, 4.66746596617035, 0.8509310565631809, 2.9172900510204527, 0.8416475133425821, 1.7557706688463381, 0.8170064053784309, 1.9995997300100135, 0.7375030838516656, 1.8652804988702365, 3.01444778790682, 1.3242036929915553, 3.35113518134973, 2.863337922231701, 2.537153416845994, 1.7828022424446277, 3.079159073717708, 1.2199238779002661, 1.1139942343281133, 1.843639590243234, 0.7739716616254504, 2.1758481433071863, 3.1975452007275997, 3.753925015632061, 2.336998556611409, 2.642551217191786, 3.396539657362707, 2.068317148173163, 4.298612141033234, 1.3739424854413036, 1.4223535130548701, 1.7884999720067059, 1.6575911654227709, 0.6246467012898155, 3.121982477316677, 2.3040657161432994, 1.6088454099860758, 1.654361315122267, 3.7027111846591994, 2.2337796981471416, 0.7375399602047368, 2.035095527230076, 2.8579335021454324, 2.7888511192853365, 1.6092429038088956, 2.798084601958892, 3.3924872085573803, 2.8151501532664485, 2.2324663392226904, 0.8388178489804559, 0.9551083636585392, 2.2232555067229636, 2.7672707786679394, 3.830904840814274, 2.412512514855015, 0.45095613896606873, 2.537270474484573, 1.2433249542932763, 3.11581092701391, 1.9565770713070687, 3.369134416612629, 0.5844501299894161, 1.174807689233155, 0.7544285495222753, 4.590373898557108, 1.9071560635967686, 2.7240963244001066, 3.2175200738564342, 1.5865735360487032, 1.6951391766519543, 3.1313991076400622, 1.0435768418048672, 1.700687119158941, 1.3038602452580457, 1.339964824503504, 1.5772741206537233, 1.250628013144795, 1.7055861541761854, 3.311913232500923, 2.5153018089304453, 3.080989855964522, 3.302046589988447, 1.230626315118412, 0.8523430296620735, 2.0086621776286044, 2.4035534318370755, 2.4697672394599133, 2.4818304637429502, 1.6469652852919632, 1.4976633620961473, 0.967775096338441, 1.2625697554485975, 2.782798450672067, 2.6176770043757, 2.9454267501801654, 2.012539184883367, 2.2317432109933, 1.4583997324008973, 2.2751046930240864, 1.4475878622473712, 1.327624451504287, 1.285253020354428, 1.3810758734251924, 1.8963820038011394, 0.7079505368712243, 4.264077626575138, 2.5969382613481056, 0.7415381121881465, 5.173765614192079, 0.6426079222285774, 4.107906418097742, 0.6031521288036658, 1.2865910778938892, 1.752415210833384, 1.906014618849976, 2.430297673624943, 4.466025202801981, 2.054434141956956, 3.5786545333982303, 2.503631610348262, 0.7833792957362985, 0.8460675217119173, 1.5010339259472756, 1.2753757393621343, 3.5671136578310043, 2.9482236624103573, 4.309699378706197, 3.708591658290566, 2.7135575592416106, 1.1032371061205342, 0.7123068947971894, 2.4896272070170284, 2.555228110341161, 1.4069333276721299, 1.632244728505926, 1.9655958297907081, 0.7833513688467628, 4.386263764758296, 3.0740151315779376, 1.5115635365137512, 3.3694353087216116, 0.9273494299111712, 3.3414374597083634, 1.2817411844255346, 2.006551451971157, 1.9428516540333254, 1.935375920758119, 2.15899791453906, 1.2265829356122657, 1.9515615511994895, 2.857088865236077, 1.930255823120627, 3.269951191733676, 2.8530313030331174, 1.9425479675924278, 0.8739335189035675, 1.5451175168008002, 1.8126108122186353, 5.095383884006209, 2.6452359403483583, 1.8643248339722602, 0.7881831051040737, 2.070972111655519, 1.9117174096665353, 1.7402085831050291, 0.6142695949309762, 1.811724043459761, 1.5863107015669822, 1.666128526641441, 0.8765692246418801, 0.6709546644271096, 1.6086554883095723, 1.1112687813151387, 1.901950479823773, 2.398009840359714, 3.6408694660594447, 1.2591874233638616, 1.1148584468651594, 1.7280843460036293, 2.620257755304742, 1.9474929881998673, 2.858581555461772, 1.588272739299147, 0.5456001911650187, 2.4879171415069723, 3.0823351941813555, 0.5890527813508489, 2.8397915556840445, 1.1731024507501775, 1.8894541215491052, 1.0031440539192722, 1.2485260268927307, 2.7773720261413195, 1.6672190886697569, 1.6514929475847984, 2.423840986205928, 2.3061397187442703, 3.4338216906663326, 3.188284069164168, 1.6792503143778987, 0.8561130197387962, 1.481563099813354, 1.5418556105471375, 1.6733418877434465, 1.4714494039783366, 1.4666310317451694, 2.8259393156954333, 0.9725828727741002, 3.4322557199763786, 2.8733993376753046, 1.0251728394931996, 1.940109560951872, 1.6997666753143377, 2.138994296761748, 0.8207969273264046, 0.8329308004996152, 3.984530344455174, 1.3587931205222668, 3.6397363899263473, 5.163701852054657, 0.7224997840037184, 1.5010775120734174, 0.8411136600967078, 2.1382231267863596, 1.6754890082445713, 2.9599840981999406, 1.5038920633381314, 2.477158008044258, 1.6820543005430417, 1.8065210462911485, 3.293324862139585, 2.9608782788822716, 0.7142970620316361, 2.375133042186206, 2.7404289776453195, 1.4037274283726389, 1.7518706830917419, 2.0854470968171457, 0.6354716628731087, 2.0624689340313895, 2.0585785257785494, 3.117805124578962, 2.2665355006241725, 0.6011872609383275, 2.137252667699412, 1.0326812619449346, 0.9893635521513424, 1.2693590499629657, 1.4451193386657741, 1.3013867936646362, 1.9142188008471148, 1.1895949049866088, 0.9485633004853141, 0.5892663082585624, 2.0148681136184234, 3.213504452413982, 1.3132380119466966, 3.9990077746559427, 1.359750046324532, 1.3544875385266866, 0.9240896521100141, 1.1754656504908314, 0.8980931996814668, 1.045392437921194, 2.4149908839010226, 2.0235629855411714, 1.209686054104556, 3.732279885169028, 1.9367494011848907, 0.7501998030907814, 1.0442086675103275, 1.4908874096347242, 0.9610147622141331, 2.030298746575933, 3.6562410044954907, 1.1027267955159592, 3.4034635497516734, 1.060687189632905, 2.3127352260418896, 2.2045669504263254, 5.042956763964534, 4.1261063086185965, 1.003281295770447, 3.216797641144174, 4.112606090127981, 1.4216307988404604, 1.4019365101782475, 2.9946880743432045, 2.094029712351207, 1.9472676988164668, 1.176534804834572, 2.727168755738012, 4.046433663181435, 3.2010615884906892, 0.730686610603145, 1.7411309595437534, 4.989002120653565, 2.1116478581207656, 4.835871146879516, 0.5826179332609925, 2.1749782236505633, 1.3352297584777955, 0.6368224918123364, 1.0122131751915224, 3.083622576764826, 1.8206941399014862, 1.5635495286341545, 1.8573568977888348, 1.5159184935738408, 4.7629710770779585, 1.2701341481877553, 1.2194512231365398, 1.0767794540020421, 1.2910399922347702, 3.8472740054680896, 3.5226710770560365, 2.6630137538761587, 0.9719170769327176, 2.2286540554972487, 1.0041376476162667, 2.7734911103227042, 0.9873755778077913, 0.9886287520294184, 1.708961668229177, 0.542191285834122, 2.306619331883874, 0.9444653853068172, 1.8225148982250525, 3.3984818626077034, 1.7928984786182391, 2.2276689756697228, 3.76645209669393, 2.9479710839397826, 1.8051639127058818, 0.9912822567570296, 1.8210332040072024, 1.608298959096624, 2.297274658134243, 1.7988768455218034, 1.517129382022213, 0.692232842124065, 4.071770288183852, 1.3325159692501913, 3.666129376828211, 1.5287567896303853, 0.8984335692704903, 1.977401100399091, 1.8387662216732827, 1.9445532868359496, 1.9435789134605197, 4.4736538964019354, 3.5178035082880363, 0.3747799236070018, 1.6620414927637817, 0.9490347021955656, 1.4520644434036116, 3.622941461635949, 1.7260633504674878, 4.079891210127584, 2.057069365152766, 1.6545507461171258, 0.7071531868440094, 1.4573040026306756, 1.7852055569740088, 1.1783186718688092, 1.6428573922335261, 1.6067922866788358, 1.2274385336107125, 0.778552422425235, 2.005413016146215, 4.00025111498498, 2.3971315950163765, 1.3022783880112032, 2.690565099697762, 2.5166564525513584, 1.3320641192219438, 1.9004975983071077, 1.9869644278625482, 1.496624137498582, 1.0743634486706664, 3.1527690247928706, 5.2957137117835735, 1.4541718508540626, 4.8643032425626815, 1.5560228220538352, 2.6501840249199695, 3.1944466120158337, 2.4701549527877176, 2.911312480875309, 1.8868104996198243, 1.0382167632139523, 1.727901085640236, 1.4274139575578233, 2.026577685246592, 3.333912571016015, 1.9816214085248525, 3.2009381615769508, 0.7085521160551228, 2.2901099440642763, 1.4360249947109063, 2.523241435649443, 1.96905842976155, 0.6999788283048555, 4.601004950807259, 1.3345808642162555, 2.7765453069220345, 2.555660134506, 1.241620025260405, 4.180574953574571, 0.6465166277454384, 1.5556067591894032, 0.7257845891082888, 2.6101554093363304, 1.1106999301162452, 4.087412109870304, 1.5042743484561454, 1.1161491248419193, 3.2811177300648304, 4.263381043026827, 1.290589590108384, 1.525183319540863, 1.8956302507903366, 1.0652902484446156, 1.422933434225668, 1.0701274539387997, 1.663204575999375, 1.0539113567241878, 2.1288839188244513, 2.6307952368887895, 2.3911396957859026, 0.9558916425838004, 2.287292863639299, 1.8071774610407616, 3.398283021072741, 5.116507327761893, 1.9491339083011425, 3.328278171614562, 1.3771740975283404, 1.5044202005046767, 0.9791036973784831, 2.091150432607837, 1.0859225504178616, 0.872974205778324, 2.9138330945966766, 1.7323057431924267, 5.08525408069663, 1.561340385141573, 1.6337379259230589, 1.4156059486227972, 1.1161947444745746, 5.049448727809847, 2.726881492548442, 1.1728430574183208, 1.9571615909341105, 2.544971691919669, 4.686800584390257, 0.7806803149891123, 0.9391004910905385, 3.0561226325617428, 2.8633218490120442, 2.2121058921301855, 2.753359125056316, 1.2952502797551422, 0.8692555451263053, 3.807748744683031, 2.520988510635851, 1.5839330363051005, 3.1365374170996274, 3.422847092236514, 1.092390264986396, 1.2391227427448155, 2.4822573769778056, 1.7099909442396195, 2.2830620273111264, 2.326916581351745, 2.308313037090064, 1.267984730878142, 2.233272419677572, 0.7352935046315962, 1.7265502253448628, 0.8720251358626288, 3.010571277891447, 2.116323051970813, 1.1816383960489116, 1.2211508621536955, 0.8927995177392768, 2.4289849756888966, 2.465343072983606, 2.3179220853237994, 1.4329751893603304, 3.1111224045580954, 2.380557893276094, 2.2041877279522395, 3.2870872303331806, 1.4283663471865398, 1.0456482716720403, 2.0509092656569505, 1.8756343198468732, 1.0012685298021988, 1.7569008572928067, 2.213987537631791, 0.8093419920772523, 0.660342921499702, 0.8291300157743084, 5.024411965118902, 1.471770236901908, 1.321394359210439, 1.8532573304631124, 1.2472949301679994, 2.7311768004619172, 1.9319127683474202, 1.7629042132046102, 3.613294306871562, 1.2603253094669409, 4.225653516759446, 1.7942109704544593, 1.163277269424851, 1.9075093624579225, 1.2726509038753124, 2.342176329506662, 2.608901463433387, 0.8539794684393477, 1.626842152843293, 0.7887575296687137, 4.792899872107857, 4.481550439298426, 1.712659571517246, 3.3129766306743376, 1.5095945704725817, 1.2885786787488385, 2.8948066072591785, 0.9949412646958198, 0.9562929917826887, 1.0887272779802282, 3.372873681742186, 2.5251763096404596, 4.762669890610859, 1.2971456194231286, 3.550754971715682, 4.085702931977266, 3.4176147752559345, 3.3446893442070555, 0.6582281144017653, 1.9334062969631396, 2.4925974166834757, 0.8631509428912868, 4.8598973735058975, 1.0057051326929205, 1.5384180401739933, 1.8541427276788784, 2.204861123050292, 1.2275838801432777, 3.3365546877788934, 2.148277104075399, 0.5955561521304947, 0.9456936996131128, 1.5941912376512026, 2.7183941593932017, 2.1461135522795387, 4.317652630180445, 1.4783083286696719, 3.1408275753744888, 1.734792940616104, 1.948397450562062, 3.031126507103086, 1.915761967602119, 3.9773083988446407, 1.8446340198770514, 2.6848913590594905, 1.4199280926299918, 1.5727685172210308, 2.9288083856497837, 1.2516597314868732, 3.4588672106514817, 1.8963097615500069, 3.426514393355014, 3.272186689493032, 2.836387685746909, 0.8940629544117097, 1.7833376504293266, 4.4013635404303955, 1.6043654569748513, 2.608303484226346, 2.1930032497004692, 2.1110113516324462, 0.6360870922912188, 1.7666408155843747, 3.386364375356476, 1.3688340262387535, 0.7578918337251459, 1.4739490129381345, 2.2265094463601987, 1.0844673157655675, 1.661705527562893, 1.9663043207993691, 1.6367558707292167, 1.8105751279505393, 1.1045235142308667, 2.0144320174892103, 2.570199145763329, 1.372931076662645, 2.75604200181236, 3.3155847106789404, 2.7278447025700596, 2.8824848152462037, 4.110589412698328, 1.7763898991349203, 0.8479625507996436, 0.8172977670293688, 2.1334470703725996, 2.4849484094735703, 1.8564455490431828, 0.9107961633507838, 3.1445019562347354, 1.7989683396309837, 3.2859665273947485, 1.0476684942647565, 0.567241019346017, 2.6024896776154027, 1.1882409609539468, 2.776299294686734, 1.2669937800840716, 1.7854250278660415, 2.4997790698498012, 2.311537679324406, 1.6173912679869007, 2.064437481105699, 2.9173953008501567, 1.4939047029790131, 4.725993198189927, 2.2936055755562346, 1.2504182043512213, 2.2241356562452603, 4.835378022728428, 2.4540777630734034, 1.1750034659272868, 2.6989694155228086, 2.0808004281809054, 0.49287463911918755, 4.11020630516733, 1.5796373203022585, 2.22462846131038, 1.5843939152835782, 5.079916297281442, 3.2016475534274087, 1.3983066039610648, 1.219643155940856, 1.1133690721432332, 2.384569190349409, 3.024862649158779, 2.216012238075419, 1.9394046762278287, 0.9128860946084182, 1.1269374250417135, 1.6277680465591122, 3.111366897294925, 4.075871608551434, 1.6592868440279607, 2.855425469306043, 2.5651741598725666, 1.771127755704516, 3.7656867219176675, 3.2766920049987545, 1.3469009502325657, 1.0719191420002074, 1.1459684096085387, 1.8277004622973452, 1.0084947615598236, 0.8074751445321693, 2.0178690199883653, 1.3064814488385779, 2.9213975051592707, 1.5930995393179355, 0.7971488699318344, 3.1223408403936928, 1.758515448305413, 2.003660716912135, 2.058966606743346, 3.0570011259555434, 0.9070686638557409, 2.6773635732384697, 1.6311125730589737, 1.2485803013313206, 1.3537983358408496, 5.100684403564202, 1.7274954832109106, 1.4004393947398395, 1.493244540957667, 3.61009204704086, 1.4403636980589423, 0.814912454917423, 2.1322974704074915, 1.1715774656965412, 1.6946435550771437, 1.790576192587528, 1.1464974599183473, 3.2897840595259296, 4.417909746504268, 1.9082024946232259, 1.7675433668622382, 4.846630730871959, 1.008626021976882, 1.065736180455531, 2.2729946708265185, 1.5051157498540895, 2.8845290210850676, 1.867458242405114, 1.3299622843146068, 5.018850645832153, 5.051393422265551, 1.8616741959164502, 2.1598420694098093, 2.423621320976432, 1.8745407958212599, 3.5769094789017446, 1.8049936108230502, 4.552250386446171, 3.1785913329012763, 0.5626252108301834, 2.1905755587762274, 1.271797263472518, 0.5516436952197253, 2.668697200690985, 1.2547862297780095, 3.6092128399800316, 1.2898706117524963, 1.7762279753983965, 2.3545841853894283, 1.0401797587820463, 1.9018050099583756, 3.1413002445513794, 3.523409483766834, 0.5460416983493066, 2.0241118997626417, 4.032537891055544, 2.5999775901448294, 2.5882057851568536, 2.9264532193386805, 1.9917612270192333, 1.0735207174601817, 1.49818550290228, 1.2790647877851606, 3.287559379718586, 1.6083216202626107, 1.1904571839748854, 0.8773225894942853, 1.8091906531694772, 2.176563351427158, 1.405286492406572, 3.4148008625735766, 1.1489954366318729, 2.279352651937051, 1.011960581493792, 1.0692705325319924, 4.531770760370315, 1.8934685347786475, 0.9210360933101158, 4.826876362961035, 1.1497105312951545, 0.9120956542533861, 1.9571218057008073, 1.0965755518784528, 1.5242795426969307, 4.963692913119911, 4.185670007831247, 3.05346055670193, 3.590713163600589, 1.317558587111432, 2.383611985704004, 3.6876694104924743, 1.9220360390867577, 1.2760762238546448, 2.7660776985838424, 1.7057161456090717, 1.5809563822121555, 1.7842620786807182, 0.5809687932350001, 1.9108974868103632, 4.64053722234826, 1.3847925142707507, 0.8990896231127303, 4.047344468468965, 1.886017456657752, 1.7997654925933309, 3.4854367007201983, 3.328831987513284, 0.8180528639987807, 1.5432754267100042, 1.6730598421271339, 2.02007750537536, 2.1913676456726696, 1.3773689385240337, 1.6403337670095028, 3.3317259756889337, 2.5586845421480917, 1.0563926842336449, 4.89122763393598, 1.069082975564351, 1.2214910570929127, 4.077513170284528, 1.5804831443269716, 2.0170909438809943, 2.053768042304006, 1.9219400864457996, 1.6021750932274452, 3.049165222003364, 2.150312857820331, 1.571751332903745, 1.6183524444308268, 1.6209067667507084, 2.5854673789678815, 1.0864385410030228, 3.5395085378154, 1.1833038658638202, 0.9466799846002056, 2.606378278641662, 1.5636190128731102, 1.6306692412402244, 5.080197717872178, 1.1034223693843097, 1.990936518988897, 1.8200715302692114, 0.5963842505798103, 2.212980712745191, 0.9136024903357649, 0.7411253343225985, 0.7241731767823977, 0.86242256722044, 3.674880186809813, 0.9688498572653214, 1.6927798925996955, 3.288928392892005, 3.6124044868374736, 1.5950329951881337, 2.030476191469162, 2.124740939004817, 1.8236694593465224, 1.46357334946523, 2.1745364566966674, 1.7546756292530215, 1.1476218242479341, 3.6098192514802756, 2.8106072423316024, 2.387983217608899, 2.2486257753718153, 1.749260133575338, 1.9904158893185682, 1.2836544038223094, 0.8475494761364732, 2.701243763637889, 1.28386027867089, 3.8809582334432227, 0.6618399328334468, 3.9935499546059394, 0.955581820195386, 2.6271887283859736, 1.8889419649352306, 4.678603340518099, 3.6449724570654367, 1.3586321636790493, 1.5826230753212094, 0.5506705908796985, 3.225480447477863, 1.5100605392217366, 1.8201090088354057, 1.8297703551568638, 2.1875240845439645, 1.7534045730158778, 1.583988215009653, 1.554182611775254, 1.2109778052572684, 1.377488844599541, 3.7375592281100007, 1.5124544039807073, 5.232011954551427, 0.7504774252245624, 2.851785576963643, 1.8477165171727152, 1.5234009226524257, 0.9968012693208791, 3.070588293796024, 2.6658607768816855, 3.4442841072023365, 4.57073814644212, 1.6726675443918573, 1.298673015350782, 1.7185215602096515, 4.1976281242934865, 3.5997052124566222, 2.578706716064876, 0.6131583236051517, 2.280725965858326, 2.3890784825830877, 4.919826814840639, 2.106069855304848, 3.7045748168455908, 3.6044599061587896, 5.0734411316191235, 3.0119701508393053, 0.8224319485179774, 2.2371772670320245, 1.7689869707181805, 2.2573196990298108, 5.139092502005465, 1.6286084645568233, 2.550490500445812, 4.063665232743542, 0.8755969885989062, 1.2897580668015944, 2.8381505121592268, 2.0885442887636363, 3.409693011529906, 1.4057034661189018, 2.042915611553183, 1.7538172235597884, 2.130979944752187, 1.1608136479334537, 2.1963390778435743, 1.674442541378342, 2.441766217955286, 4.164560581814153, 1.6287868314974654, 2.4387186895992397, 4.887651000786913, 0.6524984801016046, 1.3580507401450497, 0.8756145596013882, 2.331773637340326, 1.9619634328484823, 1.239110686881994, 1.2795531453987568, 1.863560806225714, 1.268295262749757, 3.4692403915913985, 2.639613967328011, 1.153960463265033, 2.22307618187495, 1.3258385833831328, 3.974956896784657, 2.4180374755545433, 1.1410465471454152, 2.5562520651477754, 3.5708529540104483, 1.576950156345017, 3.012570667971923, 1.307163139835793, 2.029438599856783, 1.1308356726791131, 1.637708474360144, 1.848901005980229, 1.9663364816541722, 2.5645228684850174, 0.5603089392939115, 1.1635839816784261, 0.9893749660550045, 2.0012257802263513, 1.4415938567521962, 1.5014126445959468, 0.9194426633504621, 3.632319849401228, 0.9941028468567235, 2.097605667928941, 1.0919300862128791, 2.604640580504582, 1.8108923451756433, 0.5149309132094362, 2.7860974553459594, 1.5151027491149747, 1.3046680807776443, 2.227793218521938, 1.7253774661749506, 1.712917302850427, 0.6539692091983331, 0.7369443390483656, 1.6943788914301232, 0.8725031281250768, 1.6409752294132314, 1.660611273772669, 1.0851135718411795, 1.85621024759675, 1.9465792948768086, 2.7614198830967407, 4.124099078395572, 0.7270723501172298, 2.535730498884964, 4.258853990310688, 0.9593932557161857, 2.3041117524590287, 1.3719585365135571, 4.624650801501951, 3.583687844344171, 2.5930841277193464, 1.106263589538867, 2.945122334388699, 1.9271593178698374, 1.3763101892201428, 1.1543486527397762, 2.7370434334306935, 3.389923765711582, 1.760619960749532, 0.8786187139881362, 4.70651785808064, 2.0596680685957174, 1.7988057287371435, 1.4805802032025428, 2.0781321119004015, 1.3178845981798453, 4.514223157842458, 4.1995184657621625, 1.0199169337886471, 4.014154926778254, 1.1545725871902992, 0.7552639374999699, 0.8608299319758026, 2.6954105058079922, 1.055070672191393, 1.9708248323447577, 4.635783695760302, 2.5178153362123004, 3.281929480057793, 2.4283783786882047, 2.37181441239169, 2.2083452336723948, 2.9672953607816677, 1.9463208359223225, 2.0306403669830018, 0.5856525105436283, 4.171341140607068, 4.9045350639653496, 2.6359410123673834, 3.643410923968593, 1.4547119864953322, 3.0342118460929997, 1.2882614180218723, 3.0625693346990555, 1.9392064758647225, 1.8767794453846773, 0.9744030342902592, 3.368932803429119, 0.9677382698822743, 2.7709826098152437, 2.174524210455367, 2.347174183668049, 2.6965944076060735, 4.254015928645132, 0.6631456591133734, 1.1760757355462066, 1.8433211546903, 2.309309471223525, 3.1211750148400044, 1.4408999868560515, 2.2318884596155586, 3.596984789833543, 1.3834458428323324, 0.9447970706793041, 3.1440739147378647, 3.01205181857497, 1.927568525777856, 2.1620042904345396, 0.8358773602038742, 1.4278095238577644, 4.446044839302749, 0.8120219999439644, 1.9083381340431804, 4.320559808352462, 2.510477027660268, 0.5550830580826459, 1.9396055709159745, 3.053571170994664, 4.157222316660474, 1.7674239643096668, 4.465343498445059, 1.2478629338394889, 1.7006270701923172, 2.3824676834145007, 1.7039720350509278, 2.4753814372211624, 3.0465635075369506, 2.1430428528319587, 1.9809194055393018, 0.7042245551877111, 2.7391581721923517, 4.399127287743026, 0.7386350367766155, 1.70700596670176, 0.992401403462236, 0.9803296647864808, 4.753040979096165, 2.7191492763594023, 3.0852280103902485, 0.9620882351113117, 2.2985733572193427, 0.9615273565001123, 1.824605337906972, 3.6134211481242096, 4.149814333619089, 1.1138734298545783, 1.3969830744112228, 1.6303900735855943, 1.5440779175178614, 2.6802615534284624, 1.48471862691825, 1.7773672939593392, 2.5776837362422644, 2.755807402649375, 0.8366168269074864, 1.853487923273871, 0.8280056745505363, 1.1154706536742303, 3.9959158734609503, 4.189514625400019, 3.038234924809122, 4.589865031722977, 1.7300482738325242, 0.9644159471561301, 2.350179323435318, 2.2357936752647496, 2.551109285078895, 0.8872389396585321, 0.9418651323531475, 0.9534874373752836, 1.5140246140568718, 3.165664784507723, 4.159132924208971, 2.1256257862498678, 0.8581206530457235, 0.7929870846691449, 1.7423069134513296, 0.7502948364349628, 1.379197911244983, 2.6030759356566957, 1.140155968232326, 4.741854993072093, 1.2858747756870705, 2.05283727032526, 1.9679617213520204, 0.5515609646725029, 2.484116262479158, 2.927678545803162, 1.5045176016377209, 1.5106742783685132, 1.4168905440051067, 0.5944216587471297, 1.7395936449157354, 1.9322637066453952, 2.3639478142696158, 1.7402435036590833, 2.0256211288768418, 1.0139268716355951, 3.2936107453519416, 1.4784775624205395, 1.0189528930293257, 2.4225616752820325, 2.1125005949318374, 1.2803733997205369, 1.0530441049323656, 1.563580901367089, 2.0050516599938977, 0.9781053722255577, 1.847784962853509, 4.7304598080152775, 2.0735733441940716, 1.2795209916431047, 0.508532835863523, 1.9380069462952703, 0.8435272505857102, 1.3776656472734683, 3.668502831757485, 1.25409847447852, 2.4902696421953463, 0.5947584118541329, 0.9214698102868363, 1.1577942056347401, 3.350797498661067, 1.5902364625147265, 1.0685558362634424, 1.3515665198565443, 2.8724774621513256, 0.811858042274304, 3.28643062524043, 1.1984526189798623, 2.1583711738440465, 1.6473421170695575, 1.0499270665656661, 3.923986948642935, 2.036659412737535, 1.3929459802262607, 2.644260719475922, 1.1229933136916854, 1.1612602010769482, 1.1423715485433041, 1.6885451574073398, 3.8054200374490446, 2.6181616738384124, 2.619866460573437, 4.165227111015332, 1.047467427848206, 4.123994724947089, 0.6635774656568998, 2.1950901192059056, 2.9375367669005574, 1.0496715071503824, 2.124751047520718, 4.113851255894532, 1.9378442317745115, 3.236068500263789, 1.5984733797750244, 2.8198287104743103, 4.166776955304595, 2.9163942632075956, 2.0957574890832844, 0.7682279528801149, 3.1321383701578283, 1.6441880832917923, 1.3336654835023123, 4.754919309085194, 2.634827536530977, 1.4899408900287923, 2.0529122908275315, 2.6148607495038214, 3.4999051479156345, 0.5376020878670305, 3.2486779306422915, 1.465378423062572, 2.4931006177522166, 0.7822809168322421, 1.361798366227161, 0.6976537790203753, 5.034343882489204, 4.984008430504937, 1.7468341893621036, 1.1726649300482985, 2.2128807153816963, 3.010070275421222, 0.961346122981291, 3.964350458710182, 1.3983675134040745, 2.5723744103818627, 4.205772496305157, 2.9096606200384794, 2.390512461226882, 3.3796355941286427, 2.306917106441986, 0.9759482895249643, 2.2180192770986986, 1.6256430897633782, 3.6021398114028065, 1.3575901348054464, 1.1754282636139046, 0.7283376322164746, 1.000489006271385, 0.9153264810725296, 1.2319959613720095, 2.8266250152794825, 1.4777406802338848, 2.06484717119419, 3.4940054592405287, 1.080490570224172, 2.3849564968032144, 2.11895927526532, 0.7471917361606869, 1.2508263960106127, 2.5099153690548923, 2.621938307115498, 1.1588236333285875, 0.6697238414872645, 1.5854567547293517, 2.8613313740239765, 2.3687975201422984, 0.6238308473376194, 2.8839304007220434, 1.7514404261104393, 1.9328865734456735, 2.0088897299237045, 1.0447662417470236, 4.2710484588954465, 1.7525787673112296, 3.941618801584442, 2.0941942527531405, 3.17182771307928, 1.388970872509292, 1.9158547726393567, 1.328458019064363, 1.5101045105928326, 2.1692789511028967, 1.4931527784376848, 1.5743025450864483, 0.9642138541448297, 2.2790826957614634, 1.625369572464688, 3.548498878501835, 3.757204666157611, 1.9018305544047442, 2.9756073476569753, 0.7090466546024293, 0.4906336632465446, 0.8144792288276322, 1.7001875180652877, 0.6956544461589337, 1.209452218212, 1.3524968457882212, 1.1369562283819947, 1.5147040177037312, 1.9886574277368188, 2.7098551364050794, 2.17805301779901, 3.9807566561765113, 1.9375764998581755, 1.501195216254235, 2.1294727632370862, 2.4788277777702223, 2.530834243656543, 1.8309722708793263, 1.3519270982238993, 5.200931936524305, 2.678774826535057, 1.2513583557469714, 3.3827313661396934, 1.0725978146849187, 3.188183192847937, 2.552546303380256, 1.434587091438623, 1.2421006393548888, 2.3921504237899196, 1.3488319943072957, 2.172277807666406, 1.3176615636010656, 1.6628305396346865, 2.620136066818658, 1.551249420480129, 2.903544179009187, 3.4966915603249102, 2.4676495206300246, 2.7298792714170266, 0.7826144742883051, 1.3945651419285992, 1.1631793600108062, 0.7954337385857727, 0.941243233970967, 2.017567334369129, 3.4584655970234675, 1.2775451317584237, 2.542467691561172, 1.7031357744582476, 0.8792461339542373, 1.3743867910353125, 2.4252628972532158, 2.96398810124614, 3.0525508435109, 1.3406547078068618, 2.7614205508063825, 2.632370702806142, 2.394305053106254, 2.9424542692905344, 1.3047777328074106, 3.45609221819807, 2.154594917123638, 4.049379594760503, 0.3955892852099623, 0.6239839872993441, 2.8325607320371784, 2.9056033719300434, 0.8397203279418805, 3.6991020639470187, 4.165993806717285, 1.3282777571979507, 1.2476887957032052, 1.1123419762940379, 2.7370414047718437, 1.7408031025319972, 1.2535730638167053, 4.368746157933625, 0.9341166209020847, 1.1728534972054265, 1.9153821831083335, 1.8645310528183157, 2.492575015324588, 1.5666229399243865, 2.1600798507527346, 2.0528607439837008, 1.3867430731349295, 2.866935134294302, 0.5657945907373187, 0.9675761227104781, 2.493871119624627, 3.9216039826913924, 4.151919058219308, 0.8425455221057154, 2.2888373084775577, 2.154928256077909, 2.098606511920781, 3.552869149698278, 2.370747114708304, 2.1390069990208485, 1.8285578419880726, 0.9222847707989721, 2.361152141088888, 2.3117987166827367, 2.4658648602068336, 1.948108385551059, 3.4162600549987463, 1.3754488768919284, 3.0164787014268883, 4.557893082052387, 2.0983633684304817, 1.2097903231084757, 2.3604580980223884, 1.8277037344418445, 1.560977979532888, 1.0396856012814102, 0.9842984551219582, 3.5605420948211624, 4.733194068844915, 0.8058062239448105, 1.6470871187070109, 0.7800909104012047, 2.22362856549049, 2.5222172436754655, 2.8000586244816255, 1.6390052554773646, 1.5318030780048173, 0.8479002066338526, 3.0653398661951106, 4.683367314634753, 2.652685195499079, 4.074264642540258, 1.9884525365326244, 3.0925227210593653, 0.8642385046315259, 0.6631957621086265, 2.651265663401457, 1.919991675299127, 2.17307938305723, 2.3794988649733906, 1.481307726121527, 1.0914896063035315, 5.117509861879835, 2.052469296299591, 3.284405137414624, 1.5571362728958036, 1.2004795558409278, 0.5583457044759736, 2.6996196171876803, 4.969443722711623, 1.5118700510391152, 3.1504972716690562, 1.0769457028292946, 1.133806359445451, 1.970028352379962, 1.112063712590975, 1.0732386692413627, 0.6067117753122407, 1.5345551721127728, 4.4276001733881705, 2.023163676750281, 5.089832465421014, 1.3029927465725322, 1.3175471201907407, 4.037179816597193, 1.6733077628760782, 1.5962466615639779, 3.278743118538882, 2.6803340452343325, 1.8342685376303467, 2.4891722052375997, 4.618396850854125, 2.2416221135611725, 2.3403266576605777, 2.123545052334301, 1.8015660608725705, 1.1213312990336288, 2.132815904172691, 1.9201082388070578, 0.9791765977927164, 3.339454928352104, 2.7518489517115925, 3.5032120744616644, 1.6781925659974206, 2.411699870048854, 1.2746951026993931, 1.697032156171966, 1.2741024897187225, 2.792668258921839, 3.027936216153877, 1.7742782654224019, 1.7557423710464481, 1.5168163410485738, 1.3045659105921985, 4.282543513636057, 0.9590528086280083, 4.487666111322667, 1.3999614683179142, 2.848183216620535, 2.4616372323364133, 2.0440699219983984, 1.2244876800017388, 1.940827977990319, 2.7591909383855726, 1.5460744096144765, 1.6745720930490522, 1.8772557723855772, 2.3921139310936863, 3.238644465304273, 2.0820462050120274, 1.5587170716672054, 1.8384258946696552, 4.574811021671513, 1.964818884339739, 2.768986564668904, 1.4392577715713977, 1.2396498688554256, 2.3949038500215467, 2.3209973448402232, 1.8953376010089023, 0.8132550950505716, 3.101596899339221, 4.829310124103524, 2.2161549788144312, 1.6867049689203075, 2.999893821195287, 4.656654111520846, 2.3290896856418186, 1.5356035407716047, 2.774402147866887, 1.7817652729317275, 1.105992273996053, 2.0865871278768333, 4.374203543440843, 0.9441936455879247, 3.0355574161300423, 1.3229467802479784, 2.198859649284905, 1.3765768373975713, 5.067130861870034, 2.5461243351615033, 3.5329041493323134, 2.0379472363176725, 4.920310057439185, 1.6929187236139198, 1.4156455394802876, 2.383959229071469, 1.6302320691354397, 1.8631749952952261, 0.7756921076430026, 0.9247596905908919, 1.169368663704988, 3.1596812042079603, 2.223683149420144, 1.1468137044188864, 2.3132052350589087, 3.6378478971061634, 2.5314198419267235, 0.7683878987898592, 1.0366342670339321, 1.3928580621532014, 1.6000733729544085, 2.3599450092230145, 1.4667236888612554, 2.7632103293553585, 2.99797686232787, 1.453565340046595, 1.2887295837146167, 1.0449054516670875, 1.995739168887161, 2.78140141703721, 2.222963232546062, 1.995335140285342, 1.0757886164025277, 3.100305432145027, 2.3114793338090114, 4.439745827724324, 0.7904971814836779, 2.2882970201153814, 2.2903766336647804, 1.5377818775078957, 1.9181920379701312, 1.545225809911495, 2.7162242886205377, 1.0170089881638813, 2.681626658164409, 2.5807277898792744, 1.7494778974063736, 2.2788800773029023, 0.83316967909958, 2.2441857705654744, 1.4009632750753975, 2.0063787809894156, 1.8168312561035396, 1.7623213980696597, 2.514865479804894, 4.259762519477371, 0.8850659477332188, 1.5108949142882648, 1.3994422211950637, 2.236198525387379, 3.2549565508465945, 1.103740969895205, 1.2130244317798835, 0.715520857057017, 2.4013076940134463, 1.0416842868204497, 0.9587625462262337, 4.872677504741163, 2.7660249424637136, 1.9521680628656584, 1.6380457953220722, 3.280804540213174, 2.7285062779038034, 1.7711476457737685, 1.81354175292429, 1.452213822398767, 0.991792241910615, 1.4171132483739726, 4.838208925916018, 0.9296536928214544, 0.9851564426171839, 4.540359594448457, 1.5494773080595274, 0.9162513301674123, 1.5086035502108746, 2.062522988815322, 1.566737364339484, 3.66488659114109, 2.303980509485996, 2.075610431793853, 1.6723608746800191, 0.9574222835055626, 2.1192529448546713, 1.476125339522758, 0.5106599757145448, 1.0260332944074273, 2.147067658175632, 1.2045248217550362, 1.2055843713783256, 3.9500550726608883, 0.78552171176425, 1.472745707816026, 1.8143782193244842, 3.1514613199390764, 1.7928715234118437, 0.834867697183908, 1.6777364717592962, 2.1687968030984086, 2.2606107560181186, 2.4413968050568733, 1.555267660910529, 0.6854232272124093, 4.7526611085275645, 0.7386351641223674, 1.1872865625414788, 0.7408954493863295, 3.509894377461778, 4.289551691827282, 2.451129769743003, 1.5534176495402057, 0.9913323401498825, 2.6213355853715403, 1.7351623238212097, 2.2241437581228944, 1.4845678684675176, 1.1870893942418315, 4.4853900107978255, 2.9105029024176847, 1.9535619035599712, 2.6520469628481576, 3.489107620342839, 1.263118972014519, 2.9613641436265943, 0.9695237831147651, 1.2044462311745725, 2.63263425069245, 0.8670050338590325, 0.7098305934721566, 2.162907001968783, 2.443204734229369, 3.943900356083756, 2.5814823808357543, 1.807404585719038, 1.833007203026578, 0.8898915196847079, 1.6962396484675242, 3.2961143487360953, 0.751173770576241, 0.7957462812101547, 0.8383101556905039, 2.5362427668029586, 1.1270229901416455, 1.4713693776821692, 1.5799542937670568, 2.539974997000202, 2.757739817106137, 2.724620552927537, 1.6955187563200222, 3.6924131688276915, 0.6237641392183663, 1.9269702639497956, 3.928949893329351, 1.1932834442911744, 2.5534254545717316, 3.6258589605448477, 0.6854901100808113, 3.706162467509321, 1.4617272559139642, 1.4031153052175744, 3.793436421510414, 2.0859329919906737, 1.0092876136283697, 2.3016353631241184, 2.2937425850021778, 2.51566608702516, 1.802132801868949, 0.5317511643302347, 1.3246027597226049, 0.779780812697035, 1.9165717380363, 3.950503655369607, 4.543654977580189, 3.697398168114856, 4.597294285704076, 3.6351339003426384, 0.8110372308812196, 0.9972491934440275, 1.9831318274923992, 1.5255946900350428, 4.743032619970779, 2.0200993526485376, 3.863060638073532, 2.8889645093270095, 2.8616399891796567, 1.586880653031915, 2.6772172363328424, 0.7889488182206716, 1.6354702770576497, 1.8195278641815589, 2.007458464150824, 2.5572078158811213, 1.4599543915251176, 0.8326854805267772, 0.7959679433075224, 1.8593429439060905, 0.5973853828277007, 2.2159505475625134, 1.816710002743756, 1.4554788907294183, 3.8098801177080213, 1.4188044923888645, 0.6162270843165695, 2.6073092872783032, 2.884111363076126, 4.984293468472215, 4.711533833668146, 1.5034548540049923, 1.0920028367164867, 5.074223370740275, 1.3518122123269496, 1.7859513750084155, 2.86328593399129, 2.665884868192007, 2.364912477884336, 3.9014071314554086, 2.7618933100062697, 1.075864672434159, 1.6429992408376093, 5.050828576393005, 2.026576713946591, 1.8230393511758938, 2.226169982070362, 2.3099909237383347, 1.9318997016051498, 3.1144299026889866, 0.9626828048117316, 1.6200681642821289, 1.953441197206429, 4.403532600972536, 1.582214922272339, 1.424312690271112, 0.765232341044523, 0.8081615461141801, 0.7746370042093432, 4.5817236294636094, 3.0234607290286504, 1.3165172537450647, 0.816450433392476, 1.693238970065775, 0.964473159072413, 5.298191590191923, 0.9152515563117645, 1.436382564647932, 0.49112458128179937, 1.0028914668320479, 1.786083554686744, 1.941864756387581, 1.5033019874045337, 1.9203490456688204, 1.662602276759228, 1.3122667326310915, 0.9886351969334419, 3.4820290971700576, 1.2365095643602237, 3.3908017293958244, 0.7325323285701076, 1.511520724432868, 2.0202926120735065, 2.598658276257759, 2.4918320152104383, 1.05712174877131, 1.063810669192538, 2.387445142096836, 0.8784103090038671, 0.5963256248926891, 1.6246791092277308, 2.564131574654238, 3.0568738890105402, 3.0124220424066763, 3.820665674043337, 2.1959248311171464, 3.6808821537181537, 3.351332093645133, 3.8867973816302115, 2.5248976618665684, 1.0200215082128297, 1.4196613869101995, 0.9975643240637256, 4.58022825219924, 1.0681335431079075, 1.5236494383739934, 2.3344762590237225, 3.197253613307255, 2.658024340352757, 1.3760302765492713, 1.7660940055815677, 2.5169939460281405, 2.4068250304301864, 4.706729185295134, 1.2161683307029985, 3.5133126035797804, 2.830162825328859, 1.1346813661064334, 1.2885950010007239, 4.644631846552497, 0.6723026630521348, 4.825277197641086, 4.020373677711483, 0.5362203886485583, 0.6007998115289098, 1.518077604900041, 1.0146552570414173, 1.8430762017201412, 2.339146659976824, 2.4103300971388, 1.2827049519254854, 1.7138928019333632, 1.1134985709901848, 1.1732806970735352, 4.885562952778325, 1.2631092238616173, 1.5532797480719704, 3.9773676522051975, 0.98129989980986, 1.2604576645896053, 1.8814728983917934, 2.980443943283821, 2.046806594241811, 3.5215849332913014, 3.4761303002586064, 1.0609141117337921, 0.8328110766766176, 1.2122067158522682, 1.3093474164450485, 1.0916625962401172, 1.9455490713702384, 1.7123964056713021, 1.0421617248428827, 0.7045606337969212, 2.904733828737243, 1.3193839508371743, 1.7194701127158574, 4.694888615726799, 1.934084356545056, 2.331963150414637, 1.5569558609522955, 3.1877083795138255, 1.3103916449994577, 1.6846434798184862, 1.1050503625033716, 4.337996270668055, 1.7767236159419755, 1.4217596265935901, 1.9742946142540914, 1.3828508885416269, 1.9886294534736064, 1.9903923158466346, 0.8336805013630835, 1.0968557980281077, 1.058810878449346, 1.3218949615187836, 1.5374312830148547, 1.9675137754527454, 1.9564576707418264, 2.188654151359312, 2.229448908809255, 1.5784541960408105, 3.0346619418091128, 1.309553622822284, 1.4460501702681834, 2.2270535382442262, 0.7817843612395876, 2.1918811763366506, 0.9937741280728267, 1.7435259400152703, 0.6125801997093177, 1.957472342171442, 2.787461097666916, 0.9876826970556718, 0.6940308078572737, 0.5285137785107613, 4.843359687523268, 0.7615837708757096, 1.8005687673306812, 1.9601501957194576, 1.0739757425025682, 0.7963806235093274, 4.039509261839075, 4.2044708880503885, 4.173034170851185, 1.6341156094650418, 1.4876217911877139, 2.7410917621481308, 2.454349378456513, 1.6126188912403474, 2.320654933233753, 1.233228929480535, 1.4197260373675604, 0.6870673364405502, 1.4882504905565672, 2.2957259344951666, 2.1672520105635362, 1.9780005604454451, 2.2980928854883476, 1.5449965999312736, 3.0174239952201596, 2.061733074163134, 2.6734516029496573, 0.5755585903575156, 1.3623879149116864, 1.641980341534866, 1.5669976683574858, 1.8865206129233334, 3.075622919638188, 2.0398627483677583, 0.660355627612029, 1.905880175043433, 3.143535454863541, 1.111951282711783, 4.368079293442736, 2.7127780228931115, 1.6276774933433742, 1.3186723911015255, 2.2361262610288266, 2.872173237418644, 1.1953554657268137, 1.5298592568939096, 1.438378078510452, 0.9200897240610068, 1.7106431696961786, 0.6519563807895311, 1.130663464619972, 1.7898309834035382, 1.594292037084483, 4.927326075760531, 1.7016196879342946, 1.865426140920283, 2.311631436406826, 2.545945020847732, 1.8767235990218072, 1.6873064831411653, 3.1643249133375715, 4.426643809982286, 1.121130373533978, 1.9226657148389508, 0.9523432142913446, 1.7332443415400243, 3.7177480902836915, 2.9007818241279413, 2.700015129373385, 2.2403991350167285, 3.7373846386065748, 1.798318513889194, 1.362732666556193, 1.8840226028303062, 2.322756492937039, 1.7535869307276335, 1.8610076768699642, 2.1834741173741103, 1.0029741914771022, 1.4734878523841932, 2.7636656586741353, 1.4338442157572862, 1.4321478029167445, 2.3300385840690194, 3.164179049791802, 0.883031375807087, 1.3429277502270975, 1.60821653617154, 1.854993338694217, 1.4908274914613562, 2.7588591124402138, 3.6881738530487747, 1.5710652436855657, 1.6045992416679258, 1.0132104058514617, 1.0774358138708338, 3.186848640169133, 1.5466528871719982, 2.289477461048932, 3.0461622925377125, 0.6633997670486975, 2.2798617022127847, 1.9954268372992443, 2.1937089248046093, 2.196948710885732, 1.443778267832896, 1.001082069664633, 3.132047574411954, 1.2049107179671235, 1.9880805536650488, 5.074624938289743, 0.49045629343498404, 2.9017475846519614, 0.8420642362756418, 1.551680609970367, 1.2981713797725485, 1.9977794247236647, 1.2767362975434693, 1.4826921674195388, 1.0229444150643756, 3.2277026828999005, 2.7711931355895754, 1.275108786476771, 0.5878414284363419, 1.3233680582375984, 1.4437470528064147, 0.6858236452442407, 2.905531251767566, 1.0229050648172675, 1.3728552432834396, 2.4327858088279597, 0.7287144819746136, 2.0664414584255297, 2.0692066144097483, 0.7711517245552464, 3.6753825165745946, 0.8812508120691033, 1.931535506499505, 3.015571542963512, 1.805275162950396, 1.7528436085081789, 1.4176036358328974, 2.070274890070016, 1.9022169323067573, 0.8255265908262861, 2.9842849574739327, 2.9543908024303587, 2.2470032480461475, 1.8243655171433117, 1.7152182478491358, 1.545297511409033, 1.5474143584977877, 1.2949269589845067, 3.0049855027962895, 3.8084177143377476, 2.126132565800694, 3.3677946946891075, 1.1539724276655838, 4.623895539446197, 0.6309369197617696, 4.9028810680691315, 3.2169008212019436, 1.2791070957177333, 3.456350426151021, 2.1562643616381187, 2.003079057019279, 3.6424898345841283, 2.3062148065252597, 1.842884186111482, 0.970893647367936, 1.5044864743031774, 3.557739561149345, 1.895049018728189, 1.4386139070141744, 0.8157913507495946, 1.8958660282019955, 3.752564003530891, 4.424301287422129, 0.9588810326405838, 1.4991412451016448, 2.313369124935487, 2.5081780120204082, 2.131576216057287, 1.1677890250218228, 0.8093720873228816, 1.848644935444065, 2.543798135806708, 1.4039191497889125, 4.043191943927761, 4.714984953972785, 1.2820234245726567, 1.5468854412813766, 1.6019237779329547, 3.316920322253057, 4.6888480693693735, 2.959769240098493, 4.65474495526122, 3.360991259534537, 2.1684006866624115, 1.6876377891234937, 1.3594438517186485, 1.6627057151555982, 1.5966794189821463, 1.011015727572386, 1.8315842016594064, 2.683025033996146, 4.195374678107065, 1.6645977371369847, 2.579303099492545, 1.324537831363567, 1.8642445056050942, 2.3894230493779602, 2.227210878155274, 2.8848377177410063, 3.1119347647116924, 2.337372555049054, 2.001789799547519, 0.840054399120584, 2.509807822963095, 2.592832786911871, 3.4558672061452276, 1.3765748993714289, 3.656765570764974, 0.8899932139330399, 1.891976099918206, 3.2778276176012717, 2.213044406042255, 2.345543132705426, 1.5465026473349657, 1.1716606355385002, 0.9461127236335635, 2.3513500906896336, 1.277066654399826, 3.5479618947065554, 2.557117488036592, 3.2555276585239086, 3.57558393252099, 1.1719475349062185, 2.943644978181048, 1.0319795140099197, 2.4192294505937495, 4.351375687693, 0.5828640961849807, 2.828978737324713, 3.1770442588674, 2.50108454268253, 0.7364654479482863, 1.454988357408806, 1.8993830314729283, 0.8260156633526663, 1.974053682935629, 3.5324960268036736, 1.9040134418473984, 2.202654886248523, 3.7386138455331595, 3.7455061703739205, 1.4530652443324663, 3.5469517806891573, 4.554202574334044, 3.679741278501418, 3.493617532658483, 1.732174360132568, 3.791726432203233, 2.292155203454136, 1.885634417101265, 1.3030213467577043, 0.7477998095536067, 0.8863892813409512, 0.5450284038702856, 2.697748152171768, 1.2315311017605253, 2.5628735625555237, 2.803207047622688, 2.5654942964320906, 1.713883152056193, 0.6546072122085804, 5.114271170453018, 0.9050171265262092, 1.8757864654355008, 1.1002658955016233, 2.93780649232718, 1.978038930582122, 1.8786914217213981, 0.5899388458843333, 3.3720224005650894, 1.9909427588726796, 2.4911247335784257, 1.6639520102068943, 4.021333261308134, 0.9269953457828729, 2.041276625057518, 1.6472547880772943, 2.069101228651933, 1.8272671447584832, 3.340369947185274, 2.022021840850387, 3.801720189807106, 1.5179446278419064, 2.317045637688852, 1.9074248231323763, 5.06196360634668, 1.7000689223797631, 1.2635025162208822, 1.773816507641077, 1.7282367964768808, 1.5844218100145355, 1.5908004324152796, 0.8970733551309433, 1.7226067724184024, 4.120939669858798, 2.4124327265560797, 1.0783809141354883, 1.629716013818174, 1.5114119227781058, 1.6550876615345647, 1.2696988925121389, 1.736867641485883, 1.710539572562103, 0.697770473473403, 1.3802324552584961, 1.9876928872344104, 0.9145906074771736, 1.9424927956781235, 4.114144855138665, 1.0636175077863543, 0.6737741809052208, 1.6321738158602137, 0.5456716004583315, 3.5169118000383417, 1.0764491775083678, 1.022732964910509, 3.6790710474755888, 1.2188027425258845, 1.361371119108968, 1.2744894081291287, 2.8839781947312413, 0.7846976587365554, 1.3287949847238891, 1.1596694286460927, 1.407976015672062, 1.2048757466403759, 1.922135605280119, 0.9055062598527905, 2.8832936306415506, 3.02804360429417, 0.8454335738201572, 1.0322967690998066, 0.9015707655350571, 0.7474909025789378, 2.764054405809917, 0.6705639899793305, 2.002771711992791, 1.3516663545876124, 0.9916359747196576, 1.8639818245140014, 1.4472629136269235, 1.0768676092366216, 2.7736118226551967, 1.316337002570923, 1.1169454667914402, 2.367820557101546, 2.0412934120974437, 1.0584278923122568, 1.391850445758801, 4.886808264555052, 3.3571674826731432, 1.2777500511413464, 2.825213540601578, 1.6415652074554616, 0.7555769655175024, 0.7108523341211754, 2.428666471851895, 5.039252976433492, 0.5602810013987444, 3.970571153335652, 2.547467856338357, 3.7143159052966337, 0.7231630500464427, 1.8692740706853153, 1.3097242795325081, 3.748299215130211, 2.207413985500057, 0.8673309284140965, 2.765544843008914, 1.0333188737631251, 1.129719836042345, 1.0685143199729839, 3.0723732338420384, 1.5848406393086376, 1.4767382802800144, 2.7875261685626813, 1.45167536535685, 0.6589213124792322, 2.4996341876362997, 1.85442229608822, 1.2167374827985613, 1.6224674545485807, 0.8119554786756663, 0.9628821509619014, 2.214219709458978, 2.152167799688433, 1.867196141335455, 0.9355088256454553, 2.5700454878767065, 0.8037427194384097, 1.584698015133453, 1.793054068084274, 1.492676996362989, 0.5988172282336339, 0.9723287792750307, 2.5351224747303265, 2.284434555106735, 1.5028516293410044, 2.8593287256611255, 3.404622351669032, 2.669964870665768, 1.5281931933647215, 1.205239839193354, 2.3312731887600218, 3.2586588891980033, 1.5669660825304765, 1.6092066978516781, 2.396446950763241, 1.2197641354393258, 0.6171086378071937, 2.470457844594444, 1.0926549551666849, 0.9380660542954824, 1.7027003030340688, 1.0120303351408209, 2.6205753281508146, 1.6739240713772396, 1.0020564537888523, 2.357836150209648, 2.110024324257144, 1.3129156536998057, 0.908560386679459, 1.7454304410740427, 2.810189324474233, 2.467973555211938, 4.185841462262521, 1.1416089143166186, 0.8891524894350032, 1.932750437385222, 1.0304634070667766, 4.4895905538616265, 3.7757174482052696, 2.3035210090253777, 4.96867936497039, 4.910795320119684, 0.9588641995143511, 0.7781968300496097, 2.8878531192780437, 2.1107699922262637, 3.27103012150696, 2.2269439428691187, 2.7501892802496646, 0.661719859287596, 1.0556194634929572, 1.9304322530990325, 1.517195603205008, 1.37476895966552, 2.873445717454561, 1.7992127101820372, 2.577103030243697, 3.148822214946214, 1.9980286164441865, 4.878345916399426, 4.158394866626281, 3.136867581064386, 0.8224897189273952, 3.3057426157585397, 2.8455995066825044, 3.6043519913050894, 1.3941817719213663, 2.0111294665377595, 1.1493515554908158, 2.915914947787534, 2.1401269267241374, 1.0780734577816677, 2.315004989933709, 2.038467180052582, 2.8475190874895904, 1.513957557323657, 1.9536251574225914, 0.9690615594239919, 2.1532928070216273, 2.391173732313644, 1.8867785343452312, 0.6088834539310517, 2.7818153851648444, 1.676489156257715, 1.5779239833870913, 2.121721699737835, 1.8924345519087815, 1.6736669318845718, 0.8384198672505627, 2.982851396633844, 1.5415826635096976, 1.9142390210379363, 1.6439718300840327, 1.1892608012879988, 3.6365979210197854, 2.0080259861498853, 1.7492742462259676, 1.124453092616867, 1.55085520004667, 0.8529113133228424, 1.7405968297290708, 1.6309571923991075, 1.951050103250717, 1.134700708009805, 1.9788699221523762, 2.3114637903122675, 0.9288646473558854, 3.657040177225959, 1.354230827765398, 1.6893032810891762, 0.7314867429609246, 2.525164801145656, 3.658282275837605, 0.9064443971341883, 4.3444283705579885, 1.2970862259646145, 2.685767142690554, 1.7207675453158626, 0.9841110658288239, 2.6678949683272726, 1.889814788550016, 1.680459298833925, 1.5023924279715397, 1.8106916724310282, 1.6686270792217839, 1.6948318469348198, 0.6740115213889533, 2.7611317413154035, 2.8101313339211043, 4.807990791409832, 2.5128521706744946, 1.5017517085375405, 2.6304863350895777, 3.2685827397424068, 1.654271333258023, 1.7142441002616253, 1.642164106984528, 3.0511607964162866, 1.5091655223102294, 3.9284864316534187, 2.038706851570491, 2.0667957759484366, 1.7217101459316764, 2.2655474118951284, 3.169464722071705, 1.6233508860643002, 1.5171982919936853, 4.185277945082617, 1.2282498261556114, 3.847542829843064, 2.216258022091311, 3.0052794754426615, 3.5634234089414227, 3.1454561239966368, 2.936365440931817, 2.1064151483439213, 1.1167866096065961, 3.135841996882088, 4.847099981646767, 0.5768636958546364, 2.0200397002999915, 0.5385212307876286, 1.151084448498657, 0.6499869507409247, 5.106138582125555, 0.8150622369724193, 4.112986027798672, 1.8032234621974015, 3.235515426912512, 2.7770807119561725, 0.937191533324714, 1.7140924953089745, 1.4486428397445583, 2.202484918024436, 3.434826269393505, 0.9281571524578582, 0.72078863918933, 0.6918367554948147, 1.4727674148434675, 1.6792088247225314, 2.1572448762347216, 4.9815543812955205, 2.4966272813990384, 0.5987521828623213, 1.3527978644448553, 3.608930345992935, 1.8216668030946912, 0.9440998018642429, 0.4740051197343225, 2.0568584383443675, 1.8398765091634532, 1.3817862038635325, 3.7142317212331792, 1.4918335586076945, 4.310518075507843, 1.1636528003119342, 1.532213583206361, 1.0372372795503164, 1.9703449223011957, 0.8439182404368086, 1.1213242056307047, 1.3515616817123013, 2.2401673861303695, 0.5608814328583557, 1.0059009144089786, 1.6820502771220314, 0.7511707028375046, 3.932987591597527, 0.628130151212292, 0.6587145768477823, 0.8628725151732833, 0.9400995354654882, 1.7048896162642808, 2.806929747226469, 1.6315277791606955, 2.3312570836403754, 1.8415873320929874, 4.918414355747982, 2.2793356764276624, 2.638744857438724, 1.0989642917872322, 1.1077672836945684, 1.1211743923743422, 3.2499755852146603, 2.6004215861661275, 1.9661797673896046, 1.7245223230462217, 3.2502085097198528, 0.8477231005642344, 1.418867544198212, 1.7154698069379624, 2.8411825599759246, 1.1346680580882007, 2.1101792785547535, 0.7093429342911691, 3.3897922385892976, 2.6191572250240793, 2.4427139789157, 3.6370358221837464, 1.2236213560925027, 1.1169724876007563, 3.3120681650783665, 4.471953625570248, 2.025776939133541, 2.221614702962339, 2.3274846072991573, 1.0307806402151387, 1.526698311358133, 2.9958903222989286, 1.4204000415862017, 2.007407382394881, 1.3934237081244865, 2.3253139867816293, 0.8920304504934179, 3.7431239640359637, 2.393442647818272, 1.030039205851911, 2.6822612380134894, 3.0430681380759954, 1.5257952021206913, 3.3826493631145027, 1.8930271305539934, 2.1760246714465725, 1.133216504525596, 3.7972241073597437, 1.9398070686160223, 2.0540378256261644, 2.4187735793189415, 0.9799787720588009, 1.3503704068501239, 1.322868407680984, 0.8698353832510519, 2.045763451776849, 1.849832926233559, 0.6529169586504773, 1.1583000465808528, 3.386094612989577, 1.2896840460187209, 2.5394944995166235, 1.8223678364947975, 2.5569094007551274, 1.5802994763701514, 1.2931054291125603, 2.6316937269345893, 4.975461950644223, 2.301376064687261, 1.7523422633729027, 2.8772919268616883, 3.3325369741659454, 1.525754079760609, 1.8352346980531349, 2.884503827288843, 1.029504578991566, 1.2040471032881535, 3.4505967739311654, 1.4767946081549084, 1.0638490275779922, 1.412443570455764, 2.5742267708396205, 3.03222414158887, 2.2784981812716505, 1.8090690051409812, 1.1891187907267597, 2.124655594120302, 0.6943513295349029, 2.9873155721976916, 2.596229711257362, 0.6551614380268383, 1.6900932275402756, 1.6702642865581552, 1.9681475908145956, 1.4605913509219004, 3.6753073428527867, 1.028556624071912, 1.9718700907998612, 1.18615713976667, 1.3537344811875345, 1.6792528925059367, 0.8997914754905756, 0.8759930860578914, 0.6670354879578803, 1.7219686632868176, 0.9193319457969349, 1.327330534463203, 1.1919960153026974, 2.8422058852810874, 1.948352356075335, 1.619042831312779, 2.0804830844141513, 2.0159995972731264, 3.3764519217546054, 0.8584575565202467, 4.190491734903615, 1.0925745605785142, 1.4149485608493797, 2.102106743901978, 2.070394754400558, 1.85419155562557, 2.4277432093735216, 1.6632162501876877, 2.2961781395528513, 1.2861311149840193, 3.187655218529584, 2.619207457361541, 1.8716492130587055, 2.333166697960583, 0.8009111914080947, 2.755179398301001, 2.0456235678543346, 1.355239028720398, 1.8360267116010136, 1.4059119554864583, 1.4216663722746206, 3.7936603626653347, 1.6424660730595488, 0.7194974261981987, 2.51477666379898, 1.1700739039810988, 1.3246456408527976, 2.7520467391912242, 2.158405051147346, 1.4722972131667618, 2.0180656125698135, 3.1642962404816144, 1.1580147443636555, 0.818400797273983, 0.9282522560511974, 2.0659504834826836, 3.127880693821452, 3.6980806686524015, 1.2661365273612173, 5.161551761157894, 1.4911181926448034, 1.2889564836321121, 2.2774900955430923, 0.6501414491584894, 3.318117845406109, 3.454469067890728, 5.125932034911671, 1.6006134832825645, 1.037641938140049, 0.8876144143587376, 2.4117007650055413, 2.351615330440004, 2.9197720586528035, 4.519953571431625, 1.9895815794051155, 1.142480372466329, 1.376917996836222, 1.3929328742607887, 3.0165282471549277, 1.9014750214463576, 0.7402883459490293, 1.2883505075891708, 1.1378132595512471, 1.569543000410176, 3.3305548506743983, 1.9803966041301215, 2.2239062694374208, 1.6198613312511596, 2.4885064467091578, 2.3524805510127065, 1.8922787774761565, 0.7961375845027567, 2.5055698888981683, 3.012058359767819, 2.501069884604178, 0.7495767940813846, 1.5004045222668325, 3.989780969752235, 1.857661904393492, 1.2185470564721592, 0.6845170161238042, 2.020840449178685, 0.5821560166829441, 1.431654280689372, 1.2599582875866748, 0.9751148234261311, 3.582345355314943, 2.308770119036281, 5.065870463268503, 1.4110303381274112, 0.6722579469523111, 2.502204043742266, 5.055302991402097, 0.5610504861975671, 3.071933079654571, 2.0187739253795605, 0.9693741273752813, 1.9484220104319367, 2.095619980549256, 1.8010180287337132, 1.562299838052222, 2.056934093561577, 2.9474827772330148, 1.6784826465659, 2.8172128781302277, 1.7763379245694526, 2.0419431478501004, 0.7095975856878023, 1.4156575237870173, 1.0676827796164383, 2.1408535956896833, 2.28394369433013, 1.3365826782062569, 0.8479637426401996, 1.439868831276588, 1.5411093556524995, 2.0418198056812176, 3.5420852094443602, 1.6241246008844912, 1.8864989450368945, 1.1776957453204795, 1.3908195663893888, 1.9797260990098267, 2.9023925763383347, 2.9935163102399724, 1.434849154950202, 2.3724741673134284, 1.1159972054458818, 3.1026838637935774, 0.8804616429297841, 1.8739399201007512, 1.7530988693740235, 4.179155550171527, 1.8990256199665059, 2.301627304157568, 1.7540751768671863, 0.6992015541819979, 1.9101919549841033, 2.2738274358273607, 2.688022473764126, 1.8228619209164043, 2.1376384296553055, 0.8556447526915305, 0.6284158437116611, 0.9349679297965067, 2.612413092841489, 0.8113171436903313, 1.0422473435372483, 0.7274518645563394, 1.5996628623478872, 1.4696730578049841, 2.259799393402842, 1.8032640354596656, 1.6344916214751217, 1.2862664609723042, 3.546812486289391, 1.1761560008146261, 3.7171133371200584, 2.5312816193019914, 3.281759666996446, 2.672167373240133, 1.1095510021535722, 2.2631721341713353, 5.001472606368316, 2.011047088739063, 2.3659723517452145, 1.5564613759187933, 0.850191903333865, 4.905045716681064, 1.123693486655384, 2.2385427204628114, 1.7386535468242512, 5.156340099056045, 1.2397870113516705, 1.8488418684385022, 3.5331059796991338, 4.468189539609589, 0.929911615684013, 2.2901747706615456, 1.2103938803754, 2.3179996259472544, 1.8761968035464542, 2.2247074634325568, 1.2365496016297728, 2.0112806491341337, 2.7905987108177466, 1.4139666248516882, 2.7850186987507963, 1.5484823109307813, 4.799888990116683, 3.3569497978117964, 0.9173111331656539, 2.0489821929500245, 1.0190932237128276, 2.155379455236361, 2.0216315255680883, 2.007218390363945, 0.5951460885027787, 1.7797873673655762, 1.2516526679007423, 2.1271847589537236, 0.893852129847989, 1.169621170341497, 1.8699301176234444, 2.4911967686944694, 4.005194914649792, 4.8531294871941935, 1.9880609811446066, 1.7643490282236642, 5.062765619778252, 0.8028082909343535, 4.6787852786973065, 1.4633807289105587, 2.9141619054719774, 1.1909009319122745, 1.0169577447890805, 2.5251180537984097, 0.8453222495135466, 1.7245898938381001, 3.94078028016656, 0.8210582962613342, 0.9306241537619367, 2.5863805767579335, 1.9021040690099054, 3.388351356034713, 3.200014049164162, 1.5204612676498868, 2.5181843861664963, 1.574114835467089, 3.2049363008860072, 1.4739287074662506, 2.7755686148185426, 1.363089519274621, 2.5779747231335577, 1.3654238515324106, 0.6217854408889233, 2.5375065403628354, 3.5345989952813044, 1.1940638485789044, 3.893395210438863, 1.8913707752480493, 2.3654484085164866, 0.8241358912338972, 2.328360937537879, 1.41012129013324, 0.5494748046537788, 3.372156783227265, 0.8456474329958296, 1.7231216940873564, 1.0839680467857773, 3.5596945792710204, 1.0590345311388638, 1.3395108744691464, 1.282119426410741, 5.075468592242465, 1.684916710109397, 3.619966253643733, 2.1650938044538584, 0.5002924867611622, 2.516334480139302, 3.9635599501640217, 1.1078900311662758, 2.2674925932534764, 1.0981516384508392, 1.5767495456331508, 1.1451664894684206, 2.0828192197828272, 5.066297514184465, 2.9277066721352285, 2.723511063765472, 5.065205050326357, 1.9225741519659598, 1.3895630122381275, 1.0818747221219025, 3.968445950121891, 0.8019491104854711, 2.7253023770976164, 2.272074611378196, 2.028230123525757, 2.4287677997920785, 0.8685374227304021, 0.7947978440502735, 4.978220234219092, 2.9531005937628447, 4.020966090507664, 2.1155095442875953, 0.7852489738946724, 1.8781938357925305, 1.5667276680685358, 3.27955010570497, 1.9646115129743749, 2.355754122755185, 1.8379203111129008, 1.4647997740214584, 1.4024929981435115, 3.2549060772110305, 2.9279093168482575, 2.6566806462416963, 2.6741407546613307, 3.283286162992556, 2.2280584134951367, 2.8403418640587823, 0.5706674758492104, 2.0292255732907316, 1.7066572292283504, 2.601228679826767, 1.7999028044339072, 1.6870307952528052, 2.3085529669960025, 2.7074003774373216, 3.125560970085217, 4.783236970545607, 3.6114817792749307, 1.3053705561381097, 1.5726954910108624, 2.040876102927562, 3.6980835417307194, 1.1590427863923385, 0.9025996883612949, 1.7573745517821517, 3.6157512771418667, 2.202922150883077, 1.6027818327092886, 2.0925565236339745, 1.0813632896963632, 2.499869401678276, 2.146130526243071, 2.2926312451151056, 2.2516010556347528, 1.6009186809114553, 0.8749537367683308, 2.492429785236006, 2.666648048286897, 4.047013532036489, 0.5864505308029171, 2.6908857655088574, 0.5700813276482763, 1.9552589215840266, 2.7174653471882415, 3.0701680836812932, 1.0164281620950475, 2.2726168508895364, 1.8172632895758045, 0.891533880632957, 0.9290161601074947, 1.1628381584822223, 1.032347262130068, 0.9673479360779877, 1.3696777469160595, 1.6409253745600978, 1.043075172571621, 3.584611327118416, 2.439760409422064, 1.2756077583513432, 3.425870152208945, 4.343277576175923, 2.6386957967756026, 2.3885328783729105, 1.581548543198794, 1.4653651164718038, 1.0969126117488976, 2.4748018379399106, 1.6149605347203408, 1.4960223907290342, 2.4041134649193436, 1.2595750930424179, 5.083870649759833, 1.8896467855229209, 1.5409869204092372, 2.932412502799691, 0.7355502763963591, 2.473487298519183, 2.238494061816877, 0.7608058185665546, 1.5813305986801518, 2.174503971924881, 2.1258091168129147, 1.5403018578218248, 1.7753892559128397, 4.996733779739431, 3.7379897419563406, 1.452362323772016, 2.2813883900959033, 2.5891326941110497, 1.5836245353308012, 2.015170866345691, 0.8791010185393849, 3.3476301286041217, 2.8018575473125087, 1.1192696199927965, 1.3747714462102507, 0.6136349139193545, 1.0523001065020212, 0.913554383558533, 2.5800088581598364, 0.7025290273443455, 1.1152784601617174, 2.632611767014575, 2.904812431882879, 0.7568662795872088, 1.8236727356263305, 2.627462632552236, 1.6955793224934061, 3.02327965610315, 2.429765221388283, 1.8067607690110414, 1.7630314142506243, 0.8297246774131765, 2.0910202405693155, 0.8421413476274564, 1.853802548370034, 2.0866400129514444, 1.5325883953313544, 1.1938172045833217, 3.392482898557272, 3.848596096379471, 1.3682966507866887, 4.43291305054755, 4.072529334980004, 2.172437865985175, 2.1708562852965483, 1.1889948749253958, 1.1274239106119148, 4.89837906391159, 1.7090867051580987, 1.435965233662414, 4.617013866799664, 3.1599641356444472, 1.454627732280257, 2.041524895322359, 1.0880449611730947, 1.901218147402567, 2.124315442671313, 1.1835187446869253, 5.043924725571651, 2.5530980841445525, 2.6112647650757204, 2.1432513123436725, 1.3933852930028214, 1.6071034489084373, 3.2350804535510407, 0.57261632852314, 0.9669390495562641, 1.5734180793690282, 1.3831423525907593, 1.7304035520982506, 1.5167092826975836, 2.7466301074454518, 1.022037437225417, 0.8587557313819648, 0.7567742617422336, 0.7017525080026199, 0.7971095035203217, 2.364170735950494, 2.872049804014261, 3.809160770310531, 1.1385667656747969, 1.674654974564905, 1.4855355456291686, 2.172620509321187, 1.645714153982679, 2.3677610930942206, 1.2172693924650928, 2.4895655398466547, 0.9886336576371221, 1.0249218690541826, 0.558457489678072, 1.9914031449851766, 2.964230391354606, 1.9916820442878396, 1.5340175609728979, 1.6928470723540323, 2.4080009772812514, 0.5706073514078214, 0.9486339828426716, 1.9370721475586703, 3.6141304015223485, 2.737747663773369, 2.877307670994641, 0.901955873329758, 1.8141830895825004, 1.6164654154171865, 1.818984953043545, 1.0002267979678325, 1.5246068494723157, 2.947844864475587, 1.7567034840994828, 1.179755974979741, 2.6020531610494113, 4.696717381065296, 1.7090759503591686, 3.2585246176999774, 2.1719358644164406, 2.6985305457100504, 1.3894532359613039, 1.6125386223470062, 0.5462712717034532, 1.5299366294758903, 2.938112616923019, 4.741707925155708, 2.657272421378624, 0.7831783520753368, 1.8366395905490753, 2.5668043614021276, 2.0711056857565833, 0.5759530379977136, 2.51741770525548, 0.9882824652451604, 1.3904833777652594, 1.565806135306417, 2.2373322168248233, 2.6472490929918346, 2.407134235651559, 4.117128501759593, 1.5821985545829127, 0.75831657243884, 1.4927015131411234, 1.249292246551208, 1.3512561141185158, 1.5249360347716236, 0.5430806328492297, 1.5957541436071654, 1.7935462626738148, 2.605596750419421, 2.6514602778081806, 2.3102410412150682, 1.1201905954796643, 4.2230065253255304, 3.848465945747904, 0.9690068362998778, 1.4875882587576021, 1.9303796429700781, 4.535449025781344, 1.7163451854527867, 1.5664552175726483, 1.123359506890678, 1.1227116769832068, 1.137100807105078, 2.967075776716525, 2.000746528142887, 0.8769566939598651, 1.9858488838961919, 2.3002082945504645, 2.780923553665092, 1.5569231732591633, 1.9258551965458752, 4.867604759110941, 1.635384370343056, 2.1306991226811753, 1.4929205767671019, 3.7254466096705627, 2.150168156563281, 1.3595931114816213, 0.5842316385837487, 2.4852344337988606, 3.0519815064558125, 1.5481892606350491, 2.2466013416883714, 1.4762274555973665, 3.773977381433696, 1.16733456838572, 3.377979679407303, 0.9504722650609925, 2.592382888147191, 2.0371143700516225, 5.097771429368228, 1.5835937837798653, 2.4958472358812265, 2.7405332096916544, 2.708461843961895, 2.485871768748828, 2.086983485922846, 2.7450974699428974, 1.0396302989525075, 1.1373183212031917, 2.8620736780229947, 4.241307950686908, 2.7309157685737815, 1.9166525536420111, 2.1228794895499106, 1.5939044885171845, 2.953143113745971, 2.337645283818096, 2.6521456576301765, 1.1232403811564646, 2.339376677206362, 2.35649712169496, 0.6017192093998087, 1.7960581321637035, 1.0388723049288493, 0.8533211043205204, 2.235858317030819, 1.8344144607271786, 0.9452859476488005, 1.943599365714442, 2.6022160315995486, 0.521021293074465, 2.0038042011202326, 1.2431577729212249, 0.7944570319169876, 4.514738146292825, 4.486000014272648, 2.9810817345200173, 1.9364574265936962, 1.6902895869249424, 2.7133997092440545, 3.2898548636548517, 2.6852511261510585, 2.7917156910967176, 1.6253959158519031, 3.3543658436259576, 1.129320595562956, 1.592222623836315, 1.6542717036884083, 1.2166496145509282, 4.53620835673224, 3.574017472144114, 1.1698001396576616, 3.8842373647281594, 1.2448482125676168, 2.3265181609628036, 2.393145974363031, 0.49429367959956516, 1.637662193724279, 1.5785955658154722, 0.8682319804824109, 1.9723505865319744, 2.5329261257549303, 2.029471387246611, 1.42451654776102, 2.3726048583690886, 0.938451315145964, 3.321373064259568, 1.3385940770996572, 1.5476126222644084, 3.4627436339509643, 0.9219085009699939, 2.7916967049046946, 1.3010280514465913, 1.3865868097949245, 0.877486462293482, 0.5452769285829989, 5.176414569497093, 2.8766342010354298, 1.457980841948684, 1.4492947122076338, 1.0526696185239297, 2.931513399141511, 1.792901489483111, 0.8062887642193811, 1.3098626753860598, 4.604156667340701, 1.8322669296862002, 2.0569599232672173, 0.781886902926052, 1.0024075403216475, 2.3943626240372007, 2.9896188293079136, 1.5229167373045187, 1.9626038387162388, 1.3055905225404296, 4.37141489566134, 1.0485138933659235, 1.9891114402561245, 3.5573072620307307, 2.732378334956337, 2.247238036428642, 1.4980969595974076, 1.1012735191535383, 1.8760212015284699, 0.5778389079727589, 4.845661646582215, 3.476387752540199, 2.871216183872633, 4.805504790567478, 1.6408924180834188, 1.2610871763924134, 1.633649322248243, 1.8478246715357465, 2.406336111806178, 0.9166480998393505, 1.05993346307413, 1.9269421541217115, 1.7549245752617042, 3.0959413448361506, 0.794578375869979, 1.4215202722945406, 1.3145384702179579, 4.208093877986844, 1.8909303136585278, 1.2810466300560792, 1.1749002107011022, 2.4311312935745684, 2.033277857219926, 2.349051494864056, 1.5477584217791078, 2.0215217934204417, 2.656410839537595, 4.255397969706361, 2.645753807148938, 1.5344788652126726, 3.232885609876738, 1.9842624581426096, 1.912090339333717, 0.7335894266710955, 2.2436156524444395, 1.2461065558505982, 0.6389777698809808, 2.0155922845105114, 1.855320381455608, 1.486423011600654, 2.9474349563009485, 2.7889530889432748, 1.3105976191050994, 0.667693141977674, 1.3545437868582502, 2.6995226699724735, 2.9329435842097817, 1.3282014231913486, 1.4540420389993611, 2.5876738014557112, 4.447672803772184, 1.5930829998222484, 3.2209839820638657, 2.238725595094078, 3.1735191156226517, 2.552022206612595, 0.6315728437846625, 4.409328487973041, 2.856795723999143, 3.0827419537117406, 1.8912707914041906, 1.9773731101463987, 1.677126887942421, 1.260949727985769, 1.3652398846711522, 2.2400133072840527, 1.443936077122237, 4.380569215534342, 1.6097434876374523, 4.853440025671888, 4.878112982031041, 1.6681539043599851, 1.4029999347280362, 1.9439117236001708, 1.8822865618629614, 1.273758580172723, 2.665063859056471, 2.2547431339061847, 1.031816598651319, 2.602136068077058, 2.8257767233367512, 0.9328032251321198, 0.9640646940122232, 0.512063298022974, 1.2047704730896862, 1.8021468815216097, 4.275925277940354, 1.569935826829475, 3.9589373232179494, 2.570150162998084, 1.866348290414247, 0.945710141328115, 2.848663289652906, 1.2815236171512543, 2.01893381364755, 3.2938065937137218, 1.2105068126841039, 4.733136170505587, 1.3893944496130484, 4.434526764084722, 1.0133634924257122, 1.9946295179792837, 5.039326934970491, 1.5155987697000524, 0.9101753120809647, 2.2201036672301098, 0.7087539323710179, 1.732570789844991, 1.3305010332364298, 1.526179917639833, 2.1734874816633543, 2.0125526916430796, 3.996739405727191, 2.071633451505596, 2.2248472046705716, 2.126681624534095, 2.664141887026012, 2.54621419732311, 1.8603275820738803, 1.9722975569080092, 0.7505094828794774, 3.1737537999750853, 1.9949571539733808, 1.076136544404584, 1.7371940326664417, 1.0561145671071621, 2.197773137351089, 4.258506981075718, 0.5195017469618969, 2.2556019713050723, 0.6456997084817769, 1.5908431542525272, 0.8752853127011908, 2.610534648263902, 0.9150723911591679, 1.507586909529575, 1.6693638579232242, 3.0348107778196116, 0.9449632377377605, 3.6644758203957624, 2.4194460397471134, 1.3571519173613324, 2.21414846160566, 1.3586365538942917, 2.06818448691144, 1.6068606525349884, 1.3594972788335664, 1.4866973042776217, 1.8961123260063875, 1.4274111898972044, 1.0064277104557446, 0.765734784870841, 3.52769530039606, 1.9421622895460797, 0.9451889237798485, 3.492814828900691, 2.7164433679843576, 1.1015843504832847, 0.7472213940847907, 1.808853802011807, 1.0335388217586428, 1.0294305686370322, 0.962639719403676, 2.010069669067165, 2.4468551970466366, 1.732202369491496, 3.4582207912228955, 1.191590569680524, 2.420495820323479, 2.489749368731904, 1.257633902420902, 2.2742033440557488, 1.0091378251000576, 2.053133438611691, 1.361698181097335, 2.817032568158596, 2.2523283680819435, 1.389615871095627, 4.809043932264975, 4.568017901584683, 4.091408522122649, 1.170333569726715, 1.678109760867894, 1.910732130358133, 1.0785154480462045, 2.847381769545269, 1.3560465079152002, 1.9905846991718303, 2.353542941322873, 1.9386299659129467, 2.403964704314074, 2.3141665010809467, 1.7674119427444392, 1.247644031708413, 0.6462504068009658, 2.5430032456263194, 4.01986872659604, 2.3607784642391665, 1.9295112654980051, 4.4654391267368485, 0.5345521586066758, 1.221716305482437, 2.180412039199702, 2.1691089720144774, 2.59914573472972, 1.397937064884651, 4.914881225064639, 1.8123629360960902, 0.8081947269130275, 3.9267531880173996, 0.5936109863217878, 2.08234035308381, 1.6985739821985113, 1.0894088962438715, 1.4952747965418887, 1.6415727774336872, 2.4379537642051217, 1.2290023045519682, 3.309573940452538, 1.0438041508079359, 2.5539058852307988, 2.2598524462754606, 3.832286416196131, 3.4477726478917194, 1.3832899226399242, 2.879993100682388, 0.8157309746951168, 0.6665678714791857, 0.6458104471102329, 1.995348757345777, 1.055243789400911, 1.0643785131575627, 1.249622871133006, 2.325888774309063, 1.7646574656667262, 3.3082747573237548, 2.0720053310293958, 2.6630272846851906, 2.9722569144082893, 0.8216269244657933, 1.7166006830498113, 1.055485846396166, 3.3207596472647958, 1.9777217404666563, 3.01734126130026, 2.2631975492860334, 2.429723310240125, 2.351404324908981, 4.275723518783272, 0.49864304389242364, 1.4783967566993004, 3.109663449904919, 0.5855793101110826, 3.942687183599996, 1.870317645192209, 2.469959816659554, 2.853682607630503, 1.7835564089078582, 3.8279318339907182, 1.0161426699432927, 0.771478939722388, 2.2788714324360746, 1.7682855213099782, 1.3241884195134737, 1.7163459980525329, 1.893558528072861, 1.985946084594347, 0.9935369315761058, 3.4103063149738335, 2.1167920183935487, 3.8057478255901662, 1.3401307946428416, 2.8024053452500395, 2.3068801743854785, 1.7014831809281912, 2.528989288390601, 1.7819258536229656, 3.6093904396961283, 1.7954217969285093, 2.872552704946032, 2.9844274471601877, 1.5583994884175745, 3.701421416876978, 1.119743926735919, 2.42342639260336, 2.0874753538110147, 2.1535163108008857, 1.9069539491647753, 2.288972053038488, 3.611796661069345, 0.72671332976341, 4.72416599292097, 2.2194787961409395, 1.9458968959912772, 1.160165083020005, 4.007038370817972, 1.2079273504730068, 1.3518752280339066, 1.1785118505009935, 1.1384434092611315, 1.7316815509398635, 3.8349820824259417, 0.9076236576897009, 1.3566981427401825, 1.0115601619455437, 1.2865260680358115, 0.8986329599444153, 1.6580574483656128, 2.0430074331908328, 1.1979521457276197, 3.373867611723148, 1.053235187255151, 2.7314446063561917, 1.8459266025381156, 4.477534612021779, 1.6057888205371198, 1.5957832961798728, 1.6335742271228542, 2.0198774972871196, 1.7970718399698904, 2.585939167961321, 2.1638050570537004, 1.0593620087743778, 0.750051414840768, 3.7146972984798508, 4.856313241767272, 1.4159794362150449, 1.463670950648173, 1.5492657978192739, 1.006639519987054, 1.3065103279753432, 5.061502936473652, 2.5267067283054123, 4.473182009548788, 0.9974203084026498, 0.5286500599285734, 3.788142056928312, 2.1875735101931455, 0.9241074317176494, 1.442512545288744, 1.1290726938772568, 1.4413135058918642, 1.0860290017260945, 2.121619548469004, 3.6974013855849885, 2.652897901588047, 2.368426148031333, 1.8832493327008453, 1.9334234886024058, 4.7214458685609415, 1.4448220666751685, 1.980510547038207, 2.2736749798019895, 2.6512718583834123, 0.959498519046675, 3.196132027338197, 3.8427980158005015, 0.7331508357717509, 1.0394980981807593, 4.49901560251255, 0.8629912672333137, 4.441759025143066, 3.860783541039867, 0.6918190066520787, 4.174592850344038, 2.648554918170718, 1.2785798973196414, 1.5895763381130077, 0.5705526918380388, 2.0747906451255256, 2.1751800484820514, 2.5721218345532098, 1.3752601543466356, 3.489871866820612, 1.462962398843517, 1.074824565800269, 0.6247482421278339, 1.5066062116892998, 2.1546824046486455, 1.850875195074212, 1.8217235141577977, 2.538137316008562, 0.43540137038513355, 0.49082784813478575, 1.2426243234419534, 1.4453806311513393, 1.5338710142014718, 4.102239608576518, 1.1931158817373397, 1.8966792782120954, 1.7747410301986715, 1.5610316588316047, 0.7118425538408849, 0.7881819955580558, 1.0134634598143797, 2.473850700370063, 3.4202444023511362, 1.7411837127262895, 1.1324232682905098, 1.2835146756972713, 2.8370859753607958, 1.9525449380990165, 1.4875307030764588, 4.520997645826407, 3.893196531788586, 2.116641878693583, 1.861557055657228, 2.9373114249721177, 1.2706050923447378, 0.752365685033006, 1.205398728897287, 1.8435077371376836, 0.56994027347174, 1.388982150910516, 3.9771146630677827, 1.041005112895554, 2.1494526204749014, 2.279231000466803, 1.528162988082662, 1.5300355678043844, 0.8728174470218488, 1.9511999626627299, 3.650811651910203, 2.249474627765198, 3.604622100283909, 2.4145363653157834, 1.095756672426575, 2.8921395819484, 2.211077759597384, 2.644836857333266, 2.4516617415697923, 1.287185941706877, 1.4078275132334004, 2.17579734645818, 4.418669136598086, 2.2807733926372515, 1.161154904777879, 2.124259876290868, 3.0216068884814375, 1.7914297905508494, 1.0091292638862766, 0.76648236650464, 1.9831217034330841, 1.7029856006663022, 4.6935832982079715, 1.535045957140995, 3.636952531005394, 0.952776788920609, 1.850088179602505, 1.1674552338503348, 1.2262430962382396, 0.7814670557807373, 1.5227348366617828, 0.9127431707090352, 2.4205361206710494, 4.074821166394108, 1.9655370736549802, 2.4902501965533497, 1.5819392111090582, 1.4099858645151622, 1.3022716134624794, 2.370630649155206, 0.941673612881683, 1.033357951349736, 2.9541641908886245, 2.2623568676686006, 5.3176386202708334, 1.6774111615522642, 1.1402345749420901, 2.1692042478923863, 3.53465162414363, 5.272881434517486, 0.8908302200985093, 2.8813134577195183, 1.5872050995624127, 5.0732788634568875, 1.2795109084342065, 1.4296228371033928, 1.969993303749351, 3.2324336165373677, 3.5701916104551907, 1.2202539391642633, 0.5517668631463829, 1.1981047742798983, 1.9970239801674359, 0.7564377906859683, 2.7969641628434703, 1.6301376957433353, 1.6403578579215305, 0.5955011923820828, 1.6084649756948686, 1.1070166738716853, 2.0382729188349815, 2.539275706856721, 2.7917642137067227, 1.1892476031792263, 1.5244685245148124, 1.9511008268528278, 4.9312057585513, 1.5549662618326128, 2.0459066994118777, 0.9855939970271557, 1.9091265086492708, 0.5706298163242068, 2.109645691001868, 1.4041941162815306, 0.9231696480356291, 1.163753261037235, 2.493271311742866, 1.8406006922861275, 2.3667788491625155, 2.8056508418379686, 1.2772418734125646, 2.2137231416539347, 2.1779194185468493, 2.770713629604398, 0.7391793511346937, 1.101403429833492, 2.6466767083468534, 4.313666220681894, 2.2922800015525064, 3.5804416048039176, 1.812052996076401, 1.2442970552107546, 1.9108196899426646, 1.6739659932168958, 2.323686620642875, 1.5675495574752385, 3.7707716270124076, 1.5880703556408924, 0.6076727795462894, 2.408689547132681, 1.0022188242882402, 2.9032409902718954, 1.602020689125992, 1.2909592285933238, 4.111715267732145, 1.905452474872337, 2.368696970468183, 1.121662471377563, 0.9053057476686586, 2.736662981333607, 3.7144683194687342, 1.3872565657004368, 2.8722718576660236, 4.095180166174344, 1.2498554524012584, 1.5886110814889558, 1.0652645919659627, 1.5558062653207954, 1.0067701800696827, 1.7320029836330577, 0.6668968608276669, 4.399247753087977, 4.72508720409561, 3.301668284123148, 1.8851933059781503, 2.0496698385389216, 3.1075559973804747, 1.579412369782195, 3.6222128092130514, 2.5144243312127035, 2.1247223599629823, 2.1474404639968743, 2.483632339309612, 2.287051965925129, 2.7873159481493177, 2.7794874038717747, 1.1347034494657895, 1.0655574639594407, 1.812356766297752, 2.6054016698550138, 1.3698660299437808, 2.161928521074367, 1.8386259487096452, 2.128883757877153, 2.5959319717801126, 2.5295018000617646, 2.060146081727357, 0.8165470884097427, 2.165499471170943, 1.1385849277614448, 1.5438481067604315, 2.8953289496198527, 2.4655953945312663, 1.12872679638434, 3.4376939278354093, 0.8712306741018402, 2.530749044535133, 0.806290009729084, 1.444122001543635, 1.1283847276049686, 0.7855362501116402, 0.8334866097730705, 2.068835128109688, 3.368754971923987, 1.2983566991214517, 3.1209717204741843, 1.67115674423594, 2.6238730261396617, 3.771586180199401, 1.076787137781441, 1.7138941384932174, 1.4004558617377048, 3.2583028208869216, 3.2226343827546082, 0.9480050557890397, 1.6280837092174154, 2.8019502979145576, 2.7269688650345243, 1.356889640872295, 1.728067636004108, 1.1836634066415344, 2.4210097362427714, 1.6051003416529612, 1.9591380703379406, 1.9022755070533688, 2.366317277827126, 2.870707946180032, 2.092964621002545, 1.326443097641339, 3.539091024263763, 4.0104468512240885, 2.8144031279419597, 1.172133629197067, 2.579152010606969, 1.6477089067179238, 1.0674964745369717, 1.2916252152379755, 4.341115177794801, 0.9098839560193386, 1.9139807226110845, 1.7084454549150576, 1.1081975974358873, 2.350739341123407, 0.6040827495568039, 0.8836365748088386, 1.33254995366243, 2.1808290867121642, 1.6230481685657292, 1.0168999493938584, 2.178754712239858, 1.6695228428490123, 1.8285965702764269, 4.2094809465332785, 0.9975108193109802, 2.3469921903855977, 0.705047024532578, 0.6918469114242506, 4.9980887092432225, 1.7687921782554024, 1.2417247467472097, 1.4239799041335708, 2.8373492719106674, 2.6733368462660305, 1.0905934799801742, 1.407306017782533, 2.0367072291706054, 1.3531761144137828, 1.5704815682268913, 1.3235032110236633, 1.3664823701302422, 1.5523264357861306, 0.5923771295704621, 3.2919839847403067, 1.5536955719741945, 1.3445335849103945, 1.5237136276210175, 1.5675168060037394, 2.9487505940824956, 1.3326872057364596, 2.558205268602543, 1.6278750547514194, 2.1042846816928025, 0.8994433486583115, 0.8531812209536767, 1.7197898435096424, 3.849855877680136, 2.337675984998158, 1.6172476370401256, 1.526151383796496, 1.0744971910171588, 1.8177684532996568, 1.7490806609056657, 4.197048163096002, 1.437555878073482, 1.3701818102904297, 1.6280220988739702, 1.995507479855096, 4.606844572221593, 1.6370433921328387, 1.195962605220169, 1.3170598471312807, 1.0359296746521545, 1.383308951322495, 3.9108492766012426, 2.7277214047407403, 1.8389643991263027, 1.3443755528900385, 1.0080840184541913, 1.2636692058377765, 0.8729602872235257, 1.3822810026732733, 2.046349491468472, 2.8882702026840694, 4.145366971675797, 1.7069212948913528, 2.524998927885563, 1.9075997178753574, 1.5419489304760883, 1.9309376150635564, 3.7855449544668844, 1.4220900596894883, 2.683300531731873, 3.546180839246285, 3.9329152496486333, 1.9346679963745441, 3.9203992036208737, 1.176828699562333, 0.8984154982632208, 3.316278489619576, 1.2253243132573854, 1.9042740839141532, 1.7897975431635107, 3.2440287828468937, 2.1692106734545558, 1.474111777895053, 1.393873784508758, 1.2983742734686063, 4.144108691132422, 4.094420266067182, 2.33138889406931, 2.945637490156379, 1.6856351647964045, 0.68265598839841, 1.7529389781114928, 1.056637750002775, 1.805226966047846, 0.9687291688424154, 0.7194011839002176, 0.7839922653392456, 2.3722584904689277, 2.8279838077224815, 0.7483464303710731, 2.673909512008702, 1.9895297448802483, 1.2758169499848777, 2.368737391723235, 2.9252219885085924, 1.4181570338958418, 2.626203368613883, 1.8724253908145356, 1.1871610990973442, 0.9145140872634128, 0.8931499080951364, 3.7350225628618556, 3.841970702957368, 2.047703625501683, 1.9597776216675353, 5.099397994356671, 1.0017862781999345, 4.334462764648096, 2.804831506010541, 0.819867219035909, 1.6370333566111215, 1.308331049579284, 0.9291582033884431, 0.5728130271381903, 0.9566754504220418, 1.1862013465881585, 1.3842073250136082, 3.0103570292578854, 1.3290254543839668, 1.8819306576954276, 1.4998166090778708, 4.337312973909565, 2.162180995767334, 3.681141199634331, 2.039623144892363, 2.1995620231870436, 2.2958909416648936, 0.6105846775374697, 2.121640233417991, 1.124380930881564, 1.851939255376599, 2.195292350483957, 1.931933639678164, 1.8071960868097399, 4.286795135571273, 2.2493349253550976, 2.528420995812072, 1.699584709998413, 4.6886453788836695, 1.2749502414319445, 1.4581440818536897, 1.058190503136309, 3.8405912716690653, 1.558596846569369, 2.537881627674089, 1.5429297205401145, 2.4347550829000935, 2.312700490586485, 1.656914447578574, 3.073464645545558, 1.4667813064091832, 1.2135397207610918, 2.3626466315066876, 1.4956480995447625, 1.4530750580713385, 1.3506834170711708, 1.367378501161215, 2.9430726304678436, 4.220300281186744, 4.609009461250734, 2.394589859158129, 0.7397973557872805, 2.2742972472518814, 2.466436305261724, 2.3273876209844815, 1.4576866571647942, 0.7539864514439168, 2.2339780326729755, 2.0394870256873023, 0.984995021294062, 2.190169671643165, 2.024605403610921, 4.823176505072249, 1.7831395506663235, 1.044370878618916, 2.8355044275408368, 1.6533521436279082, 2.3786598467507827, 0.6718135012483835, 3.652799001238848, 0.5295987319274811, 1.0812682692975486, 1.8234689790374332, 1.4675199248812136, 3.212787828733984, 4.631000791773322, 1.5501794148183174, 2.2017987608664757, 3.2958916212763785, 2.6130887944337156, 0.8807753879467068, 4.142338036561833, 5.2729992462646305, 3.6507316467709123, 2.473585585747593, 2.1228807884721914, 1.8545289956797781, 1.3661847488993943, 4.708383816191502, 2.187140331352218, 1.9563631391792715, 1.8133309965928697, 1.4360376915685242, 3.3152966504179044, 3.1965774335730543, 2.5740446680344875, 1.3994929166559862, 0.7185690048066, 0.7789786670700548, 1.3032241147768409, 1.6548190448180622, 1.804347798563597, 2.0219612466881913, 2.081240201267488, 2.7315002058516673, 2.4766191835835536, 1.8932429688616563, 2.3555772950443066, 0.9627000574438557, 0.5579113407745752, 1.0031539636294116, 1.9307294877561463, 1.0245948062262402, 1.361689280582949, 0.93930056435797, 0.7043348772381106, 0.8009568229536211, 0.9927532486336933, 0.9819132603828409, 0.9289834264086735, 2.201647137848135, 2.275981994806389, 5.152784209869803, 1.055834829486096, 1.853471286522286, 3.1625518675898596, 0.7199144352784629, 1.4951793352070057, 0.7748664025599403, 2.2530620192805704, 0.9612522668032337, 1.2800194729528662, 2.2395722535545457, 0.8570479342581605, 2.251193201666134, 1.7579777056827288, 3.3470333039344253, 3.1093945184615595, 0.8651853278695959, 0.9495075214497728, 2.3687484287412652, 1.712869486809335, 0.7965404790869093, 1.8212949609287388, 3.6971700448486593, 1.145208645255154, 5.1879186881849035, 4.212667318693194 ] } ], "layout": { "height": 600, "legend": { "itemsizing": "constant" }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "MedInc" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "predictions" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b5076febcebe4faaa42c846e92db6cd9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(VBox(children=(HTML(value='\\n

Select and Explore Samp…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "explainer.explore_whatif(X_test, y_test)" ] }, { "cell_type": "markdown", "id": "a8a6b167", "metadata": {}, "source": [ "\n", "### Advanced Feature Importance Options\n", "\n", "We now display more advanced configuration for computing feature importance. Here, we will explain a custom `LinearRegression` estimator from `scikit-learn`. Note that the `MLExplainer` object is capable of explaining any regression model, as long as the model follows a scikit-learn-style interface with the `predict` function." ] }, { "cell_type": "code", "execution_count": 28, "id": "4c79b3a1", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:54.661005Z", "iopub.status.busy": "2025-04-25T10:38:54.660464Z", "iopub.status.idle": "2025-04-25T10:38:54.730316Z", "shell.execute_reply": "2025-04-25T10:38:54.729749Z" } }, "outputs": [], "source": [ "scikit_model = LinearRegression()\n", "scikit_model.fit(X_train, y_train)\n", "\n", "explainer_sklearn = automlx.MLExplainer(\n", " scikit_model,\n", " X_train,\n", " y_train,\n", " target_names=[ # Used for plot labels/legends.\n", " 'Median Price'\n", " ],\n", " selected_features='auto', # These features are used by the model; automatically inferred for AutoML Pipelines,\n", " task=\"regression\",\n", " col_types=None # Specify type of features\n", " )" ] }, { "cell_type": "markdown", "id": "eb072e16", "metadata": {}, "source": [ "\n", "### Configure prediction explanation\n", "\n", "#### Include the effects of feature interactions (with Shapley feature importance)\n", "\n", "The Oracle AutoMLx solution allows one to change the effect of feature interactions. This can be done through the `tabulator_type` argument of both global and local importance methods.\n", "\n", "`tabulator_type` can be set to one of the following options:\n", "\n", "- `permutation`: This value is the default method in the MLExplainer object, with the behaviour described above\n", "\n", "- `shapley`: Feature importance is computed using the popular game-theoretic Shapley value method. Technically, this measures the importance of each feature while including the effect of all feature interactions. As a result, it runs in exponential time with respect to the number of features in the dataset. This method also includes the interaction effects of the other features, which means that if two features contain duplicate information, they will be less important. Note that the interpretation of this method's result is a bit different from the permutation method's result. An interested reader may find this a good source for learning more about it.\n", "\n", "- `kernel_shap`: Feature importance attributions will be calculated using an approximation of the Shapley value method. It typically provides relatively high-quality approximations; however, it currently does not provide confidence intervals.\n", "\n", "- `shap_pi`: Feature importance attributions will be computed using an approximation of the Shapley value method. It runs in linear time, but may miss the effect of interactions between some features, which may therefore produce lower-quality results. Most likely, you will notice that this method yields larger confidence intervals than the other two.\n", "\n", "**Summary: `permutation` can miss important features for AD. Exact SHAP (`shapley`) doesn't, but it is exponential. `kernel_shap` is an approximation of exact SHAP method that does not provide confidence intervals. `shap_pi` is linear, thus faster than exact SHAP and kernel_shap but unstable and very random leads to lower quality approximations.**" ] }, { "cell_type": "markdown", "id": "a42d50f4", "metadata": {}, "source": [ "\n", "##### Local feature importance with kernel_shap" ] }, { "cell_type": "code", "execution_count": 29, "id": "40491ab7", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:54.732283Z", "iopub.status.busy": "2025-04-25T10:38:54.731916Z", "iopub.status.idle": "2025-04-25T10:38:54.807796Z", "shell.execute_reply": "2025-04-25T10:38:54.807289Z" } }, "outputs": [], "source": [ "explainer_sklearn.configure_explain_prediction(tabulator_type=\"kernel_shap\")" ] }, { "cell_type": "markdown", "id": "e31af468", "metadata": {}, "source": [ "\n", "#### Local feature importance using surrogate models (LIME+)\n", "\n", "The Oracle AutoMLx solution allows one to change the type of local explainer effect of feature interactions. This can be done through the `explainer_type` argument of local importance methods.\n", "\n", "`explainer_type` can be set to one of the following options:\n", "\n", "- `perturbation`: This value is the default explainer type in local feature importance. As we showed above, the explanation(s) will be computed by perturbing the features of the indicated data instance(s) and measuring the impact on the model predictions.\n", "\n", "- `surrogate`: The LIME-style explanation(s) will be computed by fitting a surrogate model to the predictions of the original model in a small region around the indicated data instance(s) and measuring the importance of the features to the interpretable surrogate model. The method of surrogate explainer can be set to one of the following options:\n", " - `systematic`: An Oracle-labs-improved version of LIME that uses a systematic sampling and custom sample weighting. (Default)\n", " - `lime`: Local interpretable model-agnostic explanations (LIME) algorithm (https://arxiv.org/pdf/1602.04938)." ] }, { "cell_type": "code", "execution_count": 30, "id": "996a3b3b", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:54.809807Z", "iopub.status.busy": "2025-04-25T10:38:54.809459Z", "iopub.status.idle": "2025-04-25T10:38:54.885747Z", "shell.execute_reply": "2025-04-25T10:38:54.885193Z" } }, "outputs": [], "source": [ "explainer_sklearn.configure_explain_prediction(\n", " explainer_type='surrogate',\n", " method='lime'\n", " )" ] }, { "cell_type": "code", "execution_count": 31, "id": "14f892e6", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:54.887871Z", "iopub.status.busy": "2025-04-25T10:38:54.887488Z", "iopub.status.idle": "2025-04-25T10:38:55.098114Z", "shell.execute_reply": "2025-04-25T10:38:55.097530Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "negative", "marker": { "color": "#626567" }, "name": "54072=negative", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ -0.006797128048286199, -0.036460920926630905, -0.26588728516479304, -0.870363289968378, -0.8976761267903238 ], "y": [ "Population", "AveOccup", "AveRooms", "Longitude", "Latitude" ] }, { "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "positive", "marker": { "color": "#F80000" }, "name": "54072=positive", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.12075319441496005, 0.3133013693494969, 0.8124265545822025 ], "y": [ "HouseAge", "AveBedrms", "MedInc" ] }, { "marker": { "line": { "color": "rgba(0,0,0,0)", "width": 1 } }, "name": "", "orientation": "h", "showlegend": false, "type": "bar", "width": 0, "x": [ 0.8976761267903238 ], "y": [ " " ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "Population = 2564.0", "x": 0, "xanchor": "right", "xref": "x", "y": 1, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveOccup = 4.9786", "x": 0, "xanchor": "right", "xref": "x", "y": 2, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "HouseAge = 33.0", "x": 0, "xanchor": "left", "xref": "x", "y": 3, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveRooms = 3.2544", "x": 0, "xanchor": "right", "xref": "x", "y": 4, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveBedrms = 1.0194", "x": 0, "xanchor": "left", "xref": "x", "y": 5, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "MedInc = 2.1957", "x": 0, "xanchor": "left", "xref": "x", "y": 6, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Longitude = -118.25", "x": 0, "xanchor": "right", "xref": "x", "y": 7, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Latitude = 34.02", "x": 0, "xanchor": "right", "xref": "x", "y": 8, "yref": "y", "yshift": 12.0 }, { "font": { "color": "#626567", "size": 14 }, "showarrow": false, "text": "⇩ Median Price", "x": 0.15, "xref": "paper", "y": 1.0375, "yref": "paper", "yshift": 40 }, { "font": { "color": "#F80000", "size": 14 }, "showarrow": false, "text": "⇧ Median Price", "x": 0.85, "xref": "paper", "y": 1.0375, "yref": "paper", "yshift": 40 } ], "barmode": "overlay", "height": 398, "margin": { "b": 20, "t": 58 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryarray": [ " ", "Population", "AveOccup", "HouseAge", "AveRooms", "AveBedrms", "MedInc", "Longitude", "Latitude" ], "categoryorder": "array", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "title": { "text": " " }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryarray": [ " ", "Population", "AveOccup", "HouseAge", "AveRooms", "AveBedrms", "MedInc", "Longitude", "Latitude" ], "categoryorder": "array", "gridcolor": "white", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": false, "side": "top", "type": "category", "visible": false, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "index = 0\n", "result_explain_prediction_kernel_shap = explainer_sklearn.explain_prediction(X_train.iloc[index:index+1, :])\n", "result_explain_prediction_kernel_shap[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "f08ed4b4", "metadata": {}, "source": [ "\n", "#### Explain the model or Explain the world\n", "\n", "Oracle AutoMLx solution also provides the `evaluator_type` attribute, which allows one to choose whether to get feature importance attributions that explain exactly which features the model has learned to use (`interventional`), or which features the model or a retrained model could have learned to use (`observational`).\n", "\n", "- `interventional` : The computed feature importances are as faithful to the\n", " model as possible. That is, features that are ignored by\n", " the model will not be considered important. This setting\n", " should be preferred if the primary goal is to learn about\n", " the machine learning model itself. Technically, this\n", " setting is called 'interventional', because the method will\n", " intervene on the data distribution when assessing the\n", " importance of features. The intuition of feature importance attributions computed with this method is that the features are dropped from the dataset and the model is not allowed to retrain.\n", "\n", "- `observational` : The computed feature importances are more faithful to\n", " the relationships that exist in the real world (i.e., relationships\n", " observed in the dataset), even if your specific model did not learn\n", " to use them. For example, when using a permutation tabulator, a feature\n", " that is used by the model will not show a large impact on the model's\n", " performance if there is a second feature that contains near-duplicate\n", " information, because a re-trained model could have learned to use the\n", " other feature instead. (Similarly, for Shapley-based tabulators, a\n", " feature that is ignored by the model may have a non-zero feature\n", " importance if it could have been used by the model to\n", " predict the target.) This setting should be preferred if the\n", " model is merely a means to learn more about the\n", " relationships that exist within the data. Technically, this\n", " setting is called 'observational', because it observes the\n", " relationships in the data without breaking the existing\n", " data distribution." ] }, { "cell_type": "markdown", "id": "d5fb1060", "metadata": {}, "source": [ "\n", "##### Explain the model with observational evaluator_type" ] }, { "cell_type": "code", "execution_count": 32, "id": "2433daf9", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:55.100313Z", "iopub.status.busy": "2025-04-25T10:38:55.099923Z", "iopub.status.idle": "2025-04-25T10:38:55.167475Z", "shell.execute_reply": "2025-04-25T10:38:55.166935Z" } }, "outputs": [], "source": [ "explainer_sklearn.configure_explain_model(evaluator_type=\"observational\")" ] }, { "cell_type": "code", "execution_count": 33, "id": "82ef74ed", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:38:55.169281Z", "iopub.status.busy": "2025-04-25T10:38:55.168862Z", "iopub.status.idle": "2025-04-25T10:39:01.193144Z", "shell.execute_reply": "2025-04-25T10:39:01.192613Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "error_x": { "array": [ 0.052677444773990834, 0.04803786023355938, 0.11651295227342795, 0.017270332356290122, 0.007083385293243261, 0.003645895233758318, 6.480638325135897e-05, 0.0001677178730428485 ], "arrayminus": [ 0.052677444773991056, 0.048037860233559604, 0.11651295227342828, 0.017270332356290177, 0.007083385293243281, 0.003645895233758332, 6.480638325135919e-05, 0.00016771787304284904 ], "type": "data" }, "legendgroup": "None", "marker": { "color": "rgb(248,0,0)" }, "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 1.1117034099269385, 1.0359469069814577, 0.9142951476601523, 0.08752183345599909, 0.06527554708280937, 0.020080932182162902, 0.0015267051738343973, 1.0082363043228959e-05 ], "y": [ "Latitude", "Longitude", "MedInc", "AveRooms", "AveBedrms", "HouseAge", "AveOccup", "Population" ] } ], "layout": { "height": 420, "margin": { "b": 20, "t": 80 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "The Features' Impact on the Model's r2 Score", "x": 0.5 }, "xaxis": { "categoryorder": "total ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "total ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result_explain_model_kernel_shap = explainer_sklearn.explain_model()\n", "result_explain_model_kernel_shap.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "833911da", "metadata": {}, "source": [ "\n", "##### Explain predictions with observational evaluator_type" ] }, { "cell_type": "code", "execution_count": 34, "id": "e5605d0d", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:39:01.195231Z", "iopub.status.busy": "2025-04-25T10:39:01.194783Z", "iopub.status.idle": "2025-04-25T10:39:01.281592Z", "shell.execute_reply": "2025-04-25T10:39:01.280928Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:39:01,261] [automlx.mlx] AutoMLx got an unexpected keyword argument 'evaluator_type', which is not a configurable attribute of any of ['TabularLocalSurrogateExplainer', 'RandomSampleGeneration', 'DistanceWeighting', 'SurrogateHandler'].\n", "Valid options are:\n", "{'TabularLocalSurrogateExplainer': ['method', 'exp_sorting', 'num_features', 'scale_weight'], 'RandomSampleGeneration': ['discretizer', 'num_samples', 'sample_around_instance'], 'DistanceWeighting': ['kernel_width', 'distance_metric', 'dataset_type'], 'SurrogateHandler': ['model', 'feature_selection', 'force_fit_sample']}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[2025-04-25 03:39:01,261] [automlx.mlx] AutoMLx got an unexpected keyword argument 'tabulator_type', which is not a configurable attribute of any of ['TabularLocalSurrogateExplainer', 'RandomSampleGeneration', 'DistanceWeighting', 'SurrogateHandler'].\n", "Valid options are:\n", "{'TabularLocalSurrogateExplainer': ['method', 'exp_sorting', 'num_features', 'scale_weight'], 'RandomSampleGeneration': ['discretizer', 'num_samples', 'sample_around_instance'], 'DistanceWeighting': ['kernel_width', 'distance_metric', 'dataset_type'], 'SurrogateHandler': ['model', 'feature_selection', 'force_fit_sample']}\n" ] } ], "source": [ "explainer_sklearn.configure_explain_prediction(evaluator_type=\"observational\",\n", " tabulator_type=\"permutation\")" ] }, { "cell_type": "code", "execution_count": 35, "id": "2b8ab3e1", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:39:01.283683Z", "iopub.status.busy": "2025-04-25T10:39:01.283341Z", "iopub.status.idle": "2025-04-25T10:39:01.503085Z", "shell.execute_reply": "2025-04-25T10:39:01.502485Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "negative", "marker": { "color": "#626567" }, "name": "20181=negative", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ -0.006797128048286199, -0.036460920926630905, -0.26588728516479304, -0.870363289968378, -0.8976761267903238 ], "y": [ "Population", "AveOccup", "AveRooms", "Longitude", "Latitude" ] }, { "hovertemplate": "(%{x:.4g}, %{y})", "legendgroup": "positive", "marker": { "color": "#F80000" }, "name": "20181=positive", "orientation": "h", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.3, "x": [ 0.12075319441496005, 0.3133013693494969, 0.8124265545822025 ], "y": [ "HouseAge", "AveBedrms", "MedInc" ] }, { "marker": { "line": { "color": "rgba(0,0,0,0)", "width": 1 } }, "name": "", "orientation": "h", "showlegend": false, "type": "bar", "width": 0, "x": [ 0.8976761267903238 ], "y": [ " " ] } ], "layout": { "annotations": [ { "showarrow": false, "text": "Population = 2564.0", "x": 0, "xanchor": "right", "xref": "x", "y": 1, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveOccup = 4.9786", "x": 0, "xanchor": "right", "xref": "x", "y": 2, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "HouseAge = 33.0", "x": 0, "xanchor": "left", "xref": "x", "y": 3, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveRooms = 3.2544", "x": 0, "xanchor": "right", "xref": "x", "y": 4, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "AveBedrms = 1.0194", "x": 0, "xanchor": "left", "xref": "x", "y": 5, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "MedInc = 2.1957", "x": 0, "xanchor": "left", "xref": "x", "y": 6, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Longitude = -118.25", "x": 0, "xanchor": "right", "xref": "x", "y": 7, "yref": "y", "yshift": 12.0 }, { "showarrow": false, "text": "Latitude = 34.02", "x": 0, "xanchor": "right", "xref": "x", "y": 8, "yref": "y", "yshift": 12.0 }, { "font": { "color": "#626567", "size": 14 }, "showarrow": false, "text": "⇩ Median Price", "x": 0.15, "xref": "paper", "y": 1.0375, "yref": "paper", "yshift": 40 }, { "font": { "color": "#F80000", "size": 14 }, "showarrow": false, "text": "⇧ Median Price", "x": 0.85, "xref": "paper", "y": 1.0375, "yref": "paper", "yshift": 40 } ], "barmode": "overlay", "height": 398, "margin": { "b": 20, "t": 58 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryarray": [ " ", "Population", "AveOccup", "HouseAge", "AveRooms", "AveBedrms", "MedInc", "Longitude", "Latitude" ], "categoryorder": "array", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "top", "title": { "text": " " }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryarray": [ " ", "Population", "AveOccup", "HouseAge", "AveRooms", "AveBedrms", "MedInc", "Longitude", "Latitude" ], "categoryorder": "array", "gridcolor": "white", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": false, "side": "top", "type": "category", "visible": false, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "index = 0\n", "result_explain_prediction_kernel_shap = explainer_sklearn.explain_prediction(X_train.iloc[index:index+1, :])\n", "result_explain_prediction_kernel_shap[0].show_in_notebook()" ] }, { "cell_type": "markdown", "id": "412bea11", "metadata": {}, "source": [ "\n", "### Advanced Feature Dependence Options (ALE)\n", "\n", "We now show how to use an alternative method for computing feature dependence: accumulated local effects (ALE). ALE explanations are sometimes considered a better alternative to PDPs when features are correlated, because it does not evaluate the model outside of its training distribution in these cases. For more information, see https://christophm.github.io/interpretable-ml-book/ale.html.\n", "\n", "Given a dataset, an ALE displays the average change in the output of the model, accumulated over multiple small changes in one or two features, when all other features are held fixed. By default, the ALE explanations are centered around 0, and thus, unlike PDPs, ALEs show the change in the prediction measured by changing a given feature, rather than the average model's prediction for a particular feature value." ] }, { "cell_type": "markdown", "id": "02c20e68", "metadata": {}, "source": [ "We can compute ALEs for two features (At least one is numerical). The plot below is the ALE plot for the `Latitude` and `Longitude` features. The X-axis still shows the values of `Latitude`, while there is multiple lines, one for each value of the feature `Longitude`.\n", "\n", "The histogram displays the joint distribution of the two features." ] }, { "cell_type": "code", "execution_count": 36, "id": "0fdd7e12", "metadata": { "execution": { "iopub.execute_input": "2025-04-25T10:39:01.505209Z", "iopub.status.busy": "2025-04-25T10:39:01.504795Z", "iopub.status.idle": "2025-04-25T10:39:02.126599Z", "shell.execute_reply": "2025-04-25T10:39:02.126040Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "fill": "toself", "fillcolor": "rgb(13.0, 8.0, 135.0)", "legendgroup": "-124.18", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -1.92932529323826e-15, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -1.92932529323826e-15 ], "yaxis": "y2" }, { "legendgroup": "-124.18", "line": { "color": "rgb(13.0, 8.0, 135.0)" }, "mode": "lines+markers", "name": "Longitude=-124.18", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -1.92932529323826e-15, -2.154330492895625e-15, -1.4611095154984093e-15, -7.05504586086512e-16, -5.330632125808431e-16, 5.04342301116281e-17, 1.3774064384278486e-16, 1.0400282750371593e-16, -4.307601195217025e-16, -7.779249532875186e-16, -1.5691223005160059e-16, -2.4711517865885998e-17, -6.926397472704855e-17, 1.2473289062850504e-16, 6.51312932296065e-17, 1.4923225545657874e-16, 3.8459140151959375e-16, 6.085481153634215e-16 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(111.82043343653275, 1.0990712074303293, 167.5541795665635)", "legendgroup": "-122.08", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -1.7716288638156129e-15, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -1.7716288638156129e-15 ], "yaxis": "y2" }, { "legendgroup": "-122.08", "line": { "color": "rgb(111.82043343653275, 1.0990712074303293, 167.5541795665635)" }, "mode": "lines+markers", "name": "Longitude=-122.08", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -1.7716288638156129e-15, -1.996634063472978e-15, -1.3034130860757622e-15, -5.478081566638649e-16, -3.7536678315819597e-16, 2.0813065953427503e-16, 2.954370732654318e-16, 2.6169925692636286e-16, -2.7306369009905536e-16, -6.202285238648715e-16, 7.841993710463456e-19, 1.3298491155676093e-16, 8.843245469559839e-17, 1.7023836177324146e-16, 1.1063676437434293e-16, 1.9473772660131516e-16, 1.6364334675429277e-16, 1.5463522920136605e-16 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(151.3188854489168, 20.547987616099274, 159.11455108359124)", "legendgroup": "-121.07", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -1.2821806010529717e-15, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -1.2821806010529717e-15 ], "yaxis": "y2" }, { "legendgroup": "-121.07", "line": { "color": "rgb(151.3188854489168, 20.547987616099274, 159.11455108359124)" }, "mode": "lines+markers", "name": "Longitude=-121.07", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -1.2821806010529717e-15, -1.5071858007103368e-15, -8.13964823313121e-16, -3.167390705412602e-16, -1.442976970355913e-16, 4.391997456568799e-16, 5.265061593880367e-16, 4.927683430489677e-16, -4.1994603976450685e-17, -3.4082319721436895e-16, 2.8018952602154924e-16, 2.286291858555138e-16, 4.1205835544144236e-16, -9.825468394766499e-17, 3.684716710683255e-16, 3.8089370768572496e-17, -6.899888456081347e-17, -2.0719659043375805e-16 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(222.17647058823522, 96.99999999999987, 99.94117647058833)", "legendgroup": "-118.48", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -1.2828207011784504e-15, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -1.2828207011784504e-15 ], "yaxis": "y2" }, { "legendgroup": "-118.48", "line": { "color": "rgb(222.17647058823522, 96.99999999999987, 99.94117647058833)" }, "mode": "lines+markers", "name": "Longitude=-118.48", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -1.2828207011784504e-15, -1.5078259008358155e-15, -8.146049234385997e-16, -5.75758347306775e-16, -4.033169738011065e-16, 1.8018046889136448e-16, 2.6748688262252124e-16, 2.337490662834527e-16, -3.010138807419659e-16, -5.51506233451986e-16, 6.950648978393224e-17, 5.85485916613308e-17, 6.867465496430793e-17, 8.468956799008997e-17, 5.514159230060804e-16, 1.0569662530123275e-15, 1.5958259392830328e-15, 1.5722319004681688e-15 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(227.83281733746134, 106.15789473684217, 93.47678018575846)", "legendgroup": "-118.19", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -5.136686439381257e-16, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -5.136686439381257e-16 ], "yaxis": "y2" }, { "legendgroup": "-118.19", "line": { "color": "rgb(227.83281733746134, 106.15789473684217, 93.47678018575846)" }, "mode": "lines+markers", "name": "Longitude=-118.19", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -5.136686439381257e-16, -7.386738435954909e-16, -4.5452866198275234e-17, -6.498546670648671e-17, -1.6374361066650534e-16, -7.984652905535459e-17, -1.917577047896465e-16, -4.862451489305867e-16, 1.6322979697749456e-16, 5.336000289122226e-16, -9.770154551321597e-16, -3.1196015605350616e-15, -1.7320330212434088e-14, -3.151517001461031e-14, -3.1048443659594314e-14, -2.970696069928207e-14, -2.852215307141128e-14, -2.843114344316806e-14 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(237.2600619195046, 121.70588235294106, 82.53560371517035)", "legendgroup": "-117.7", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ 2.370907643877283e-16, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, 2.370907643877283e-16 ], "yaxis": "y2" }, { "legendgroup": "-117.7", "line": { "color": "rgb(237.2600619195046, 121.70588235294106, 82.53560371517035)" }, "mode": "lines+markers", "name": "Longitude=-117.7", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ 2.370907643877283e-16, 1.2085564730363176e-17, -2.6134509390171343e-17, 2.136522366389037e-17, 1.4290013350336914e-17, -5.739479253521205e-16, -4.884861189308297e-16, -1.2506362255315842e-16, -3.9929423313320667e-16, 1.1553138917350206e-15, -3.1185233424875295e-15, -8.0243311980686e-15, -8.01420513476562e-15, -7.998190221739837e-15, 6.6793908484781545e-15, 8.856806439096404e-15, 1.0687562008567291e-14, 1.0893175303868587e-14 ], "yaxis": "y2" }, { "fill": "toself", "fillcolor": "rgb(240, 249, 33)", "legendgroup": "-114.49", "line": { "color": "rgba(0,0,0,0)" }, "name": "confidence interval", "opacity": 0.3, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81, 41.81, 38.74, 38.32, 37.89, 37.74, 37.5, 37.25, 36.31, 34.39, 34.17, 34.1, 34.05, 33.98, 33.91, 33.82, 33.66, 32.84, 32.54 ], "xaxis": "x2", "y": [ -9.122727340128286e-17, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, -9.122727340128286e-17 ], "yaxis": "y2" }, { "legendgroup": "-114.49", "line": { "color": "rgb(240, 249, 33)" }, "mode": "lines+markers", "name": "Longitude=-114.49", "opacity": 1, "showlegend": true, "type": "scatter", "x": [ 32.54, 32.84, 33.66, 33.82, 33.91, 33.98, 34.05, 34.1, 34.17, 34.39, 36.31, 37.25, 37.5, 37.74, 37.89, 38.32, 38.74, 41.81 ], "xaxis": "x2", "y": [ -9.122727340128286e-17, 1.3377792625608227e-16, -2.855441611949148e-17, -5.900913137169444e-16, -3.1294942972645794e-16, -5.459160005488653e-16, -5.808851662903026e-16, -2.1746266991263178e-16, -3.183901742097294e-16, 2.657303422178699e-15, -7.283553923437254e-16, -4.74598482822467e-15, 9.474995950280312e-15, 2.3701865578508098e-14, 5.25903013639281e-14, 5.5603649584852347e-14, 5.808035309592332e-14, 5.84005700582827e-14 ], "yaxis": "y2" }, { "legendgroup": "-123.899845", "marker": { "color": "rgb(27.831735294118037, 6.69897058823526, 141.24494117647075)", "line": { "width": 0 } }, "name": "Longitude=-123.9", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 39.121700000000004, 39.3071, 39.4925, 40.048700000000004, 40.234100000000005, 40.4195, 40.6049, 40.7903, 40.9757, 41.7173 ], "xaxis": "x", "y": [ 0.0004, 0.0004, 0.0008, 0.0002, 0.0002, 0.0004, 0.0004, 0.0026, 0.001, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-123.325", "marker": { "color": "rgb(58.2647058823531, 4.029411764705869, 154.05882352941182)", "line": { "width": 0 } }, "name": "Longitude=-123.325", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925, 39.6779, 40.234100000000005, 40.4195 ], "xaxis": "x", "y": [ 0.0002, 0.0002, 0.0008, 0.0004, 0.0006, 0.0004, 0.001, 0.0006, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-122.755", "marker": { "color": "rgb(84.23529411764746, 2.35294117647057, 161.91176470588243)", "line": { "width": 0 } }, "name": "Longitude=-122.755", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.6779, 39.8633, 40.9757, 41.5319, 41.7173 ], "xaxis": "x", "y": [ 0.0002, 0.0038, 0.0088, 0.0056, 0.003, 0.0122, 0.0026, 0.0008, 0.0032, 0.0014, 0.0006, 0.0004, 0.0002, 0.0002, 0.0004, 0.0004 ], "yaxis": "y" }, { "legendgroup": "-122.185", "marker": { "color": "rgb(107.52941176470597, 1.2941176470588196, 166.6764705882353)", "line": { "width": 0 } }, "name": "Longitude=-122.185", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 39.121700000000004, 39.3071, 39.4925, 39.6779, 39.8633, 40.048700000000004, 40.234100000000005, 40.4195, 40.6049, 40.9757, 41.161100000000005, 41.3465, 41.7173 ], "xaxis": "x", "y": [ 0.0008, 0.001, 0.0034, 0.0032, 0.0218, 0.0206, 0.0302, 0.0496, 0.0236, 0.0054, 0.0044, 0.0002, 0.0004, 0.0012, 0.0008, 0.0006, 0.0004, 0.0004, 0.0006, 0.0006, 0.0014, 0.002, 0.0004, 0.0002, 0.0002, 0.0004 ], "yaxis": "y" }, { "legendgroup": "-121.61500000000001", "marker": { "color": "rgb(130.05882352941157, 9.411764705882247, 164.17647058823533)", "line": { "width": 0 } }, "name": "Longitude=-121.615", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925, 39.6779, 39.8633, 40.048700000000004, 40.6049, 40.7903, 41.5319 ], "xaxis": "x", "y": [ 0.0012, 0.005, 0.0032, 0.0022, 0.0126, 0.0034, 0.0034, 0.0012, 0.0028, 0.0004, 0.0012, 0.0222, 0.0058, 0.0002, 0.004, 0.0014, 0.0022, 0.0036, 0.0004, 0.0006, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-121.045", "marker": { "color": "rgb(152.29411764705887, 21.058823529411793, 158.88235294117646)", "line": { "width": 0 } }, "name": "Longitude=-121.045", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 35.2283, 35.4137, 35.5991, 36.1553, 36.3407, 37.082300000000004, 37.2677, 37.4531, 37.6385, 37.8239, 38.0093, 38.1947, 38.3801, 38.5655, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.8633, 40.048700000000004, 40.234100000000005, 40.4195, 40.7903 ], "xaxis": "x", "y": [ 0.0006, 0.0008, 0.0002, 0.0004, 0.0006, 0.0002, 0.0004, 0.0044, 0.0092, 0.0062, 0.006, 0.0028, 0.0006, 0.003, 0.0074, 0.0032, 0.002, 0.0016, 0.0006, 0.0004, 0.0006, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-120.475", "marker": { "color": "rgb(170.558823529412, 37.11764705882376, 147.41176470588218)", "line": { "width": 0 } }, "name": "Longitude=-120.475", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.6721, 34.8575, 35.0429, 35.2283, 35.5991, 35.7845, 36.1553, 36.7115, 36.8969, 37.082300000000004, 37.2677, 37.4531, 37.8239, 38.0093, 38.1947, 38.3801, 38.7509, 39.121700000000004, 39.3071, 39.4925, 39.8633, 40.234100000000005, 40.4195, 40.6049 ], "xaxis": "x", "y": [ 0.0022, 0.003, 0.0052, 0.002, 0.0012, 0.0002, 0.0008, 0.0004, 0.0002, 0.001, 0.0042, 0.0006, 0.0006, 0.0022, 0.0004, 0.002, 0.0012, 0.0002, 0.0002, 0.0004, 0.0008, 0.0004, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-119.905", "marker": { "color": "rgb(188.0294117647059, 54.05882352941178, 134.70588235294116)", "line": { "width": 0 } }, "name": "Longitude=-119.905", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.3013, 34.4867, 34.6721, 35.2283, 35.9699, 36.1553, 36.3407, 36.5261, 36.7115, 36.8969, 37.082300000000004, 37.4531, 37.6385, 38.1947, 38.7509, 38.9363, 39.121700000000004, 39.3071, 39.4925 ], "xaxis": "x", "y": [ 0.0004, 0.0058, 0.001, 0.0004, 0.0004, 0.0002, 0.003, 0.0014, 0.0138, 0.0068, 0.0004, 0.0006, 0.0002, 0.0004, 0.0004, 0.003, 0.0006, 0.0004, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-119.33500000000001", "marker": { "color": "rgb(202.49999999999983, 70.99999999999979, 120.50000000000017)", "line": { "width": 0 } }, "name": "Longitude=-119.335", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 34.115899999999996, 34.3013, 34.4867, 34.6721, 34.8575, 35.0429, 35.2283, 35.4137, 35.5991, 35.7845, 35.9699, 36.1553, 36.3407, 36.5261, 36.7115, 37.082300000000004, 37.4531, 38.5655 ], "xaxis": "x", "y": [ 0.004, 0.0076, 0.0006, 0.0002, 0.0002, 0.0002, 0.001, 0.0018, 0.0002, 0.0012, 0.0006, 0.0032, 0.005, 0.0032, 0.0024, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-118.765", "marker": { "color": "rgb(216.6176470588235, 87.99999999999996, 106.29411764705885)", "line": { "width": 0 } }, "name": "Longitude=-118.765", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.8575, 35.0429, 35.2283, 35.4137, 35.7845, 35.9699, 36.1553, 36.3407, 36.5261, 37.4531, 37.6385 ], "xaxis": "x", "y": [ 0.0018, 0.016, 0.013, 0.0004, 0.0002, 0.0002, 0.0014, 0.007, 0.0002, 0.0006, 0.0006, 0.0004, 0.0002, 0.0004, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-118.195", "marker": { "color": "rgb(227.7352941176472, 106.00000000000021, 93.5882352941175)", "line": { "width": 0 } }, "name": "Longitude=-118.195", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.6721, 34.8575, 35.0429, 35.5991, 37.2677, 37.4531 ], "xaxis": "x", "y": [ 0.0002, 0.0044, 0.0432, 0.1144, 0.1092, 0.0134, 0.0006, 0.0028, 0.0002, 0.0012, 0.0002, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-117.625", "marker": { "color": "rgb(238.23529411764704, 124.35294117647054, 80.79411764705885)", "line": { "width": 0 } }, "name": "Longitude=-117.625", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 33.0035, 33.1889, 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.4867, 34.6721, 35.0429, 35.5991, 36.1553 ], "xaxis": "x", "y": [ 0.0004, 0.0012, 0.001, 0.016, 0.0178, 0.0232, 0.0212, 0.0002, 0.0002, 0.0006, 0.001, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-117.055", "marker": { "color": "rgb(245.6470588235293, 144.4705882352938, 67.55882352941197)", "line": { "width": 0 } }, "name": "Longitude=-117.055", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.628065, 32.8181, 33.0035, 33.1889, 33.3743, 33.5597, 33.7451, 33.9305, 34.115899999999996, 34.3013, 34.4867, 34.8575 ], "xaxis": "x", "y": [ 0.0198, 0.0434, 0.0114, 0.0096, 0.0006, 0.0012, 0.0032, 0.0056, 0.0108, 0.0016, 0.0016, 0.0008 ], "yaxis": "y" }, { "legendgroup": "-116.485", "marker": { "color": "rgb(251.2941176470588, 165.3235294117646, 55.05882352941181)", "line": { "width": 0 } }, "name": "Longitude=-116.485", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.0035, 33.5597, 33.7451, 33.9305, 34.115899999999996 ], "xaxis": "x", "y": [ 0.0004, 0.0002, 0.0006, 0.0036, 0.0022, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-115.91499999999999", "marker": { "color": "rgb(252.3529411764706, 188.08823529411785, 44.47058823529402)", "line": { "width": 0 } }, "name": "Longitude=-115.915", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.3743, 33.5597, 33.7451, 34.4867, 35.5991 ], "xaxis": "x", "y": [ 0.0002, 0.0006, 0.0006, 0.0004, 0.0002, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-115.345", "marker": { "color": "rgb(250.32352941176475, 211.67647058823516, 36.97058823529413)", "line": { "width": 0 } }, "name": "Longitude=-115.345", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.628065, 32.8181, 33.0035, 33.1889 ], "xaxis": "x", "y": [ 0.0002, 0.003, 0.0008, 0.0002 ], "yaxis": "y" }, { "legendgroup": "-114.775", "marker": { "color": "rgb(243.44117647058837, 236.5588235294113, 34.32352941176475)", "line": { "width": 0 } }, "name": "Longitude=-114.775", "orientation": "v", "showlegend": false, "text": "", "textposition": "outside", "type": "bar", "width": 0.1761299999999945, "x": [ 32.8181, 33.0035, 33.5597, 33.9305, 34.8575 ], "xaxis": "x", "y": [ 0.0004, 0.0002, 0.0004, 0.0004, 0.0004 ], "yaxis": "y" } ], "layout": { "barmode": "stack", "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Accumulated Local Effects (ALE)", "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "x2", "mirror": true, "scaleanchor": "x2", "showline": true, "showticklabels": false, "side": "bottom", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "xaxis2": { "anchor": "y2", "categoryorder": "category ascending", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x2", "mirror": true, "range": [ 32.076499999999996, 42.273500000000006 ], "scaleanchor": "x2", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Latitude" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryorder": "category ascending", "domain": [ 0.8794871794871795, 1.0 ], "gridcolor": "#ECECEC", "linecolor": "LightGrey", "linewidth": 1, "matches": "y", "mirror": true, "nticks": 3, "range": [ 0, 0.16947000000000004 ], "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "tickformat": "p", "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis2": { "anchor": "x2", "categoryorder": "category ascending", "domain": [ 0.1, 0.8461538461538461 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y2", "mirror": true, "range": [ -3.601095701825496e-14, 6.289635706192736e-14 ], "scaleanchor": "y2", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "ALE of Median Price" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "explainer_sklearn.configure_explain_feature_dependence(explanation_type='ale')\n", "result_explain_feature_dependence_default = explainer_sklearn.explain_feature_dependence(['Latitude', 'Longitude'])\n", "result_explain_feature_dependence_default.show_in_notebook()" ] }, { "cell_type": "markdown", "id": "bed55be1", "metadata": {}, "source": [ "\n", "## References\n", "* Oracle AutoML http://www.vldb.org/pvldb/vol13/p3166-yakovlev.pdf\n", "* scikit-learn https://scikit-learn.org/stable/\n", "* Interpretable Machine Learning https://christophm.github.io/interpretable-ml-book/\n", "* LIME https://arxiv.org/pdf/1602.04938" ] } ], "metadata": { "jupytext": { "formats": "ipynb,py:percent" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.21" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "00ecf468ae154f33958514eea3ad1161": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_048f1c771d8a4bae84feacffd57906f0", "IPY_MODEL_0472aa3493174dd1841d4c66589fa52d" ], "layout": "IPY_MODEL_6033b8da6cf04f1fb0d5960da0b837e3", "tabbable": null, "tooltip": null } }, "012c8c96c458456cb821ead44244cf60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "03a842af589b4233b24236f54bf75003": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "03ca69a3b96f4019a20d946f5df532b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_410e635f681447f9807a249270e378b4", "placeholder": "​", "style": "IPY_MODEL_cbd4679a237e4d6fa0f487faf50953aa", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 MedIncHouseAgeAveRoomsAveBedrmsPopulationAveOccupLatitudeLongitude
Original Sample2.027831.02.84692849949647541.09164149043303123107.03.128902316213494634.06-118.31
Modified Sample2.027831.02.84692849949647541.09164149043303123107.03.128902316213494634.06-118.31
\n" } }, "0472aa3493174dd1841d4c66589fa52d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "", "description": "Select Sample", "disabled": false, "icon": "", "layout": "IPY_MODEL_3e61a8dbb3a649f9adfa56f7fd28952a", "style": "IPY_MODEL_12038714b07949e4a1f370a184ce9de7", "tabbable": null, "tooltip": "Select the sample at the specified row index" } }, "048f1c771d8a4bae84feacffd57906f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoundedIntTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "BoundedIntTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntTextView", "continuous_update": false, "description": "Row Index:", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_3fb99455bea2488f82c0d61b2ffe19dc", "max": 6191, "min": 0, "step": 1, "style": "IPY_MODEL_c80d233020384256936997c995e1e9e6", "tabbable": null, "tooltip": null, "value": 0 } }, "080090386d93400eb75c165a8c9e981f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fee91a7c068a488ab6e01cbdc21bdd3a", "placeholder": "​", "style": "IPY_MODEL_03a842af589b4233b24236f54bf75003", "tabbable": null, "tooltip": null, "value": "" } }, "0872c6d6bfaf496591f67470bdac29a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "predictions", "MedInc", "HouseAge", "AveRooms", "AveBedrms", "Population", "AveOccup", "Latitude", "Longitude" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Y-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_9bce29e9732e4a91bd86b869b5e21778", "style": "IPY_MODEL_012c8c96c458456cb821ead44244cf60", "tabbable": null, "tooltip": null } }, "08de16a0aec942689ae01d19771eab79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_c65653ff036042b4a186e911610e2455", "IPY_MODEL_5e0f8ab94a1e4550b74d15694fc8eae4", "IPY_MODEL_00ecf468ae154f33958514eea3ad1161", "IPY_MODEL_eafd86c21fb34967a73591d7cd4441a4", "IPY_MODEL_9a33f7a6855b4f87928b4beb86b31578", "IPY_MODEL_a12c1242526d4555952112e0b8be00bc" ], "layout": "IPY_MODEL_58e1e2cf61e14fed9fa82552ecca97e2", "tabbable": null, "tooltip": null } }, "0a0b08844e6c463f92359ba90b33bd56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "119cf133862e4b359ceba6373a087a92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "12038714b07949e4a1f370a184ce9de7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "164b57476e1e48a08ec0403eb6f8bd86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "1c888a05c91744ff865654c4e5b7f179": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5a1de0a97802416db4477db798ce343e", "placeholder": "​", "style": "IPY_MODEL_70802df91e8f418fb85af2ec2ec0043f", "tabbable": null, "tooltip": null, "value": "

Sample Values

" } }, "1f7e181e7e8f4c2f8faa133a97b6aab9": { "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 1, 8, 9, 4, 2, 7, 0, 3, 6, 5 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Target", "marker": { "color": "rgb(248,0,0)", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Target", "orientation": "h", "showlegend": false, "type": "box", "uid": "a445fc8a-582a-4e28-bdb9-e42296b092de", "x": [ 0.5706966256408518, 0.6712518684706921, 0.8004450969449324, 1.3082281050725053, 1.4307282263289802, 1.7780936992483436, 1.9587214082286688, 4.3822810468649, 4.965213491906465, 5.05226333621734 ], "y": [ "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target", "Target" ] } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "boxmode": "group", "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": true, "range": [ 0.45655730051268145, 6.062716003460808 ], "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Predicted Target Value" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "rgba(0,0,0,0)", "linecolor": "Grey", "linewidth": 1, "mirror": true, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Target" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "2489cb7b5e4e436b9e7e934612d5de5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "261bbe80f4064f5eb61d652c6294cf81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "289ea4fa55aa47efa9453793bbed5af0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2b9c66708fbf4c6ab344c84e71b936a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_6e44ee252ace4b639736ee8935296986", "IPY_MODEL_4be025906b994b7886265b8339381f61" ], "layout": "IPY_MODEL_60c42f475dd648c683040e725a0247b9", "tabbable": null, "tooltip": null } }, "2c84539d966c46399adad910e95ee1a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "HouseAge", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_289ea4fa55aa47efa9453793bbed5af0", "step": null, "style": "IPY_MODEL_2e04ef04abd64777a081a1cf6b89f9b3", "tabbable": null, "tooltip": null, "value": 31.0 } }, "2e04ef04abd64777a081a1cf6b89f9b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "2f04eca3c9a8433aa7968acf152d49d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 18px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "31e860d0bd7149f580e460a627113e4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "CheckboxView", "description": "Show all features", "description_allow_html": false, "disabled": true, "indent": false, "layout": "IPY_MODEL_b2f99bc6704849b8a43837b0dac64830", "style": "IPY_MODEL_a979c796642e4299b8ac7eb31388cc60", "tabbable": null, "tooltip": null, "value": true } }, "3372e84b42b2401eb93f5bc226e71b5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "33ef6078b2b64849b7cacf908cc73ea5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "36b439e24c8f4c2fbf62d56f970e7deb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "39dc34b6302e4bb78afb92a6e74539b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "15px 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "39e1ba71b7954f9e8d69e36bd949ed0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "3a200803ca694be99e4e9d07a5292f44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3e61a8dbb3a649f9adfa56f7fd28952a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3fb99455bea2488f82c0d61b2ffe19dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "410e635f681447f9807a249270e378b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1025px" } }, "45e6ba3096b2473ab0d7908492551d4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "485cd56464324f19a575f2be78780eb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "4899bb88bf8749e3becb6939fee21c94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "20px 0 0 0", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4be025906b994b7886265b8339381f61": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_4d7ee2e09c004b669e2a973fad9cf86b", "msg_id": "", "outputs": [ { "data": { "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
MedIncHouseAgeAveRoomsAveBedrmsPopulationAveOccupLatitudeLongitude
03.821436.05.6008231.0596711390.02.86008233.95-118.04
12.093816.06.4444441.833333123.02.27777832.75-115.72
22.979817.05.5304880.9695121672.03.39837435.02-120.48
35.538543.06.9720931.093023970.02.25581437.93-122.54
44.944416.05.5339810.878641627.03.04368934.11-117.39
510.579316.07.7500001.062500567.02.72596237.27-122.06
68.009552.06.2525771.000000503.02.59278434.06-118.39
73.416736.05.1963471.041096725.03.31050233.86-117.99
82.022125.04.7285971.0145721536.02.79781440.45-122.31
93.830733.05.7284401.0623851733.03.17981735.38-118.92
\n
", "text/plain": " MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \\\n0 3.8214 36.0 5.600823 1.059671 1390.0 2.860082 33.95 \n1 2.0938 16.0 6.444444 1.833333 123.0 2.277778 32.75 \n2 2.9798 17.0 5.530488 0.969512 1672.0 3.398374 35.02 \n3 5.5385 43.0 6.972093 1.093023 970.0 2.255814 37.93 \n4 4.9444 16.0 5.533981 0.878641 627.0 3.043689 34.11 \n5 10.5793 16.0 7.750000 1.062500 567.0 2.725962 37.27 \n6 8.0095 52.0 6.252577 1.000000 503.0 2.592784 34.06 \n7 3.4167 36.0 5.196347 1.041096 725.0 3.310502 33.86 \n8 2.0221 25.0 4.728597 1.014572 1536.0 2.797814 40.45 \n9 3.8307 33.0 5.728440 1.062385 1733.0 3.179817 35.38 \n\n Longitude \n0 -118.04 \n1 -115.72 \n2 -120.48 \n3 -122.54 \n4 -117.39 \n5 -122.06 \n6 -118.39 \n7 -117.99 \n8 -122.31 \n9 -118.92 " }, "metadata": {}, "output_type": "display_data" } ], "tabbable": null, "tooltip": null } }, "4d5bc23758a0475bafe6f01e59f0741c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4d7ee2e09c004b669e2a973fad9cf86b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "53391cdd82694ef8a78923b112f14ef3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "58e1e2cf61e14fed9fa82552ecca97e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "598d7b89c7014679846e1da448ed2138": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "5a1de0a97802416db4477db798ce343e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5ba006b41b28436397ce201e74ceb5e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_1c888a05c91744ff865654c4e5b7f179", "IPY_MODEL_03ca69a3b96f4019a20d946f5df532b9", "IPY_MODEL_31e860d0bd7149f580e460a627113e4a", "IPY_MODEL_74d2857eb4b7439b958c467a0ba66f78", "IPY_MODEL_91f225ad9d354b86b6391862cebc861c", "IPY_MODEL_67116173638c42e6999158540429e540", "IPY_MODEL_efed296cb76e476bb2b72bf47d1b3721" ], "layout": "IPY_MODEL_2f04eca3c9a8433aa7968acf152d49d5", "tabbable": null, "tooltip": null } }, "5e0f8ab94a1e4550b74d15694fc8eae4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c663ccee637d4c8c8d87cb11ff4c6e53", "placeholder": "​", "style": "IPY_MODEL_f0946d93735840a6b5f5fe98dccea9ad", "tabbable": null, "tooltip": null, "value": "\n

Row Selection

\n Select a sample between 0 and 6191\n " } }, "6033b8da6cf04f1fb0d5960da0b837e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "60c42f475dd648c683040e725a0247b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": "flex-start", "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "63aa96faf9b247d890bdd203c67dd7ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": "10px 18px 10px 10px", "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": "10px", "right": null, "top": null, "visibility": null, "width": null } }, "65a5ca9ea1dc40d89186ed6f6eab32fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "67116173638c42e6999158540429e540": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2489cb7b5e4e436b9e7e934612d5de5c", "placeholder": "​", "style": "IPY_MODEL_33ef6078b2b64849b7cacf908cc73ea5", "tabbable": null, "tooltip": null, "value": "" } }, "688f0fd476d54611904b3e3277421480": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "Longitude", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_f340e5857c904ab69ff8ae7cb98cd875", "step": null, "style": "IPY_MODEL_9694cdd212d14886a321a5cfab73e814", "tabbable": null, "tooltip": null, "value": -118.31 } }, "6e44ee252ace4b639736ee8935296986": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd5fbfa819f54961b416aa83dc13ecaf", "placeholder": "​", "style": "IPY_MODEL_ec015d58f5e0446e853adf853357d4b9", "tabbable": null, "tooltip": null, "value": "

Samples

" } }, "70802df91e8f418fb85af2ec2ec0043f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "74d2857eb4b7439b958c467a0ba66f78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a200803ca694be99e4e9d07a5292f44", "placeholder": "​", "style": "IPY_MODEL_39e1ba71b7954f9e8d69e36bd949ed0a", "tabbable": null, "tooltip": null, "value": "

Model Predictions

" } }, "751a7d51c923420b8772550427a4e6d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "755b5107802a4420acc5ad6e1ac6c0ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "76666edb53684244bd1b27e47cbe2b1b": { "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "boxmean": true, "boxpoints": "all", "customdata": [ 1, 8, 4, 9, 0, 9, 2, 7, 1, 8, 7, 2, 0, 2, 9, 3, 9, 4, 7, 1, 4, 8, 1, 1, 0, 9, 0, 7, 7, 2, 5, 9, 5, 8, 8, 0, 2, 4, 4, 6, 4, 5, 1, 3, 2, 8, 6, 0, 7, 6, 3, 5, 3, 6, 3, 6, 6, 5, 5, 3 ], "hovertemplate": "%{x}, %{y}, Explanation Index %{customdata}", "legendgroup": "Target", "marker": { "color": "rgb(0, 128, 128)", "line": { "outliercolor": "rgba(219, 64, 82, 1.0)" }, "outliercolor": "rgba(219, 64, 82, 0.6)" }, "name": "Target=Target", "orientation": "h", "showlegend": false, "type": "box", "uid": "95c062b0-c54e-4b94-8d7f-e887cab0c9ba", "x": [ -3.249209504803882, -1.840584345825653, -1.5380714278110608, -1.2431293944052866, -0.743590201968912, -0.700958116942288, -0.5521426216622144, -0.5371149382488095, -0.5100938692535816, -0.4112247433565576, -0.243422846726938, -0.18860908520864075, -0.17908513674831922, -0.1379254066983604, -0.13207991349449794, -0.1109768634757406, -0.10941827625596331, -0.10653494986475426, -0.1048153553665466, -0.09615385983301446, -0.08784135529532287, -0.07448598134192673, -0.0711507511750415, -0.05917729116882946, -0.048870756514710595, -0.04702832949003988, -0.04518678466592693, -0.03984852315668093, -0.030734538433578547, -0.026513756739664177, -0.02428796311948831, -0.02425414928575159, -0.021014184151179324, -0.014787833714143996, -0.004895523467185263, 0.012453285589094632, 0.01990996059334378, 0.03465123084705314, 0.058080663203666394, 0.05925388014076716, 0.06535295125797862, 0.073827576846079, 0.07696533725063738, 0.07837726442192276, 0.08544269504786, 0.11978519363308726, 0.12919618428236, 0.15519027152363712, 0.3058114710462463, 0.3871129817833703, 0.3924259488258418, 0.47246685390631393, 0.5208677461926075, 0.7187398349282053, 0.8198908360120132, 0.9249518556675764, 1.223348770781036, 1.3631088830439377, 1.8364324860194692, 2.0178516908529094 ], "xaxis": "x", "y": [ "Longitude", "Latitude", "Longitude", "Latitude", "Longitude", "Longitude", "Latitude", "Longitude", "MedInc", "MedInc", "AveOccup", "MedInc", "AveOccup", "AveOccup", "AveOccup", "Latitude", "MedInc", "AveOccup", "HouseAge", "AveOccup", "AveRooms", "AveOccup", "HouseAge", "AveRooms", "MedInc", "HouseAge", "HouseAge", "AveRooms", "MedInc", "AveRooms", "HouseAge", "AveRooms", "Latitude", "AveRooms", "HouseAge", "AveRooms", "Longitude", "MedInc", "HouseAge", "HouseAge", "Latitude", "AveOccup", "Latitude", "HouseAge", "HouseAge", "Longitude", "AveOccup", "Latitude", "Latitude", "AveRooms", "AveOccup", "AveRooms", "AveRooms", "Longitude", "MedInc", "MedInc", "Latitude", "Longitude", "MedInc", "Longitude" ], "yaxis": "y" } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 1, "_last_trace_edit_id": 1, "_layout": { "annotations": [ { "font": { "size": 16 }, "showarrow": false, "text": "Predicted Target = \"Target\"", "textangle": 90, "x": 0.98, "xanchor": "left", "xref": "paper", "y": 0.55, "yanchor": "middle", "yref": "paper" } ], "height": 600, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "width": 850, "xaxis": { "anchor": "y", "categoryarray": [ "HouseAge", "AveOccup", "AveRooms", "MedInc", "Latitude", "Longitude" ], "categoryorder": "array", "domain": [ 0.07058823529411765, 0.98 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "x", "mirror": true, "scaleanchor": "x", "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "Attribution" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "anchor": "x", "categoryarray": [ "HouseAge", "AveOccup", "AveRooms", "MedInc", "Latitude", "Longitude" ], "categoryorder": "array", "domain": [ 0.1, 1.0 ], "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "matches": "y", "mirror": true, "scaleanchor": "y", "showline": true, "showticklabels": true, "side": "left", "title": { "text": "Feature" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": null, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "7c8b8d52d8a346da843b59408147d646": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "AveRooms", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_53391cdd82694ef8a78923b112f14ef3", "step": null, "style": "IPY_MODEL_97aca11e675447a48464f49ee30d467e", "tabbable": null, "tooltip": null, "value": 2.8469284994964754 } }, "82947ddfad1e44668c082167ad865a08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%" } }, "8386e0537e804f8b90362855235977dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8b52ce4f4d9e4c8fa1a3beffdf206f7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "91f225ad9d354b86b6391862cebc861c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_755b5107802a4420acc5ad6e1ac6c0ce", "placeholder": "​", "style": "IPY_MODEL_8b52ce4f4d9e4c8fa1a3beffdf206f7e", "tabbable": null, "tooltip": null, "value": "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 Prediction (True value: 3.6)
Original Sample2.8988
Modified Sample2.8988
\n" } }, "9694cdd212d14886a321a5cfab73e814": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "97aca11e675447a48464f49ee30d467e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "9839495e25254ceea44d0ccf28d5d211": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "1100px" } }, "9a33f7a6855b4f87928b4beb86b31578": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_a335d5daf52e4de4ac4c338bf4d5aeb6", "IPY_MODEL_2c84539d966c46399adad910e95ee1a5", "IPY_MODEL_7c8b8d52d8a346da843b59408147d646", "IPY_MODEL_e97889503fae4d2d855728aa891cde6f", "IPY_MODEL_cffaedfab7234811b944d98f762855cd", "IPY_MODEL_b16ffb2972dd486bb814a701e22875d3", "IPY_MODEL_cd50d0d052c642a3bcee26e4952a4b00", "IPY_MODEL_688f0fd476d54611904b3e3277421480" ], "layout": "IPY_MODEL_82947ddfad1e44668c082167ad865a08", "tabbable": null, "tooltip": null } }, "9ba2d8fb7e254beea68e3d17df70d4a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "None", "quartile", "decile", "percentile" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Binning method", "description_allow_html": false, "disabled": true, "index": 0, "layout": "IPY_MODEL_65a5ca9ea1dc40d89186ed6f6eab32fa", "style": "IPY_MODEL_598d7b89c7014679846e1da448ed2138", "tabbable": null, "tooltip": null } }, "9bce29e9732e4a91bd86b869b5e21778": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "9c5760d0a34e436294a37e986597a8f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "button_color": null, "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "a12c1242526d4555952112e0b8be00bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ButtonView", "button_style": "success", "description": "Run Inference", "disabled": false, "icon": "", "layout": "IPY_MODEL_4899bb88bf8749e3becb6939fee21c94", "style": "IPY_MODEL_9c5760d0a34e436294a37e986597a8f5", "tabbable": null, "tooltip": "Runs inference on the new sample" } }, "a335d5daf52e4de4ac4c338bf4d5aeb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "MedInc", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_8386e0537e804f8b90362855235977dd", "step": null, "style": "IPY_MODEL_751a7d51c923420b8772550427a4e6d8", "tabbable": null, "tooltip": null, "value": 2.0278 } }, "a34230ef6d5b40ff8af64171eb20de7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a4496d3f2c65469db9c383680a943bd4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c572e879ed3c4a37a64d066c8ef96573", "placeholder": "​", "style": "IPY_MODEL_d930f9d03f20450bb1c129de2f5540ab", "tabbable": null, "tooltip": null, "value": "

Select and Explore Predictions

" } }, "a979c796642e4299b8ac7eb31388cc60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "CheckboxStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "CheckboxStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "" } }, "abd892d408f64092873674c771ff6c33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "ad9333f2ebda42d294b999ac4b83e708": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "b16ffb2972dd486bb814a701e22875d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "AveOccup", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_4d5bc23758a0475bafe6f01e59f0741c", "step": null, "style": "IPY_MODEL_bd5aa129fa0045caa6e7140f05f4499b", "tabbable": null, "tooltip": null, "value": 3.1289023162134946 } }, "b2dbe607f7b3431b85d0e476c77c196e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b2f99bc6704849b8a43837b0dac64830": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b4496f8b9d4643e093f63f26cb507e5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "initial" } }, "b5076febcebe4faaa42c846e92db6cd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_08de16a0aec942689ae01d19771eab79", "IPY_MODEL_5ba006b41b28436397ce201e74ceb5e5" ], "layout": "IPY_MODEL_9839495e25254ceea44d0ccf28d5d211", "tabbable": null, "tooltip": null } }, "bd5aa129fa0045caa6e7140f05f4499b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "bd5fbfa819f54961b416aa83dc13ecaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c388c17af88f493ab6ad6827b4d47350": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "initial" } }, "c572e879ed3c4a37a64d066c8ef96573": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c5a3cd6700f3488689f655a3292ee41d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "scatter", "box" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Plot Type", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_ad9333f2ebda42d294b999ac4b83e708", "style": "IPY_MODEL_164b57476e1e48a08ec0403eb6f8bd86", "tabbable": null, "tooltip": null } }, "c6479505d531450c808fda6ac2d40fc6": { "buffers": [ { "data": "YqHWNO84AEBiodY07zgRQGZmZmZmZg1AW9O84xQdBUD3deCcEWUiQBBYObTIdh9AYVRSJ6AJEkAJ+aBns+oDQIbJVMGopARA3+ALk6lCF0AAAAAAAAANQMx/SL99XRJAi/1l9+ThBkA5RUdy+Q8CQDMzMzMzsw9A2ht8YTJV9T+2hHzQs1n6PzSAt0CCYgFACyQofoy5DUBHcvkP6XcUQJJc/kP67f8/lPYGX5gMFECbVZ+rrdgEQAYSFD/GXBtAcoqO5PKfA0Ctad5xik4UQFioNc07Dh1AT6+UZYhj/D8AAAAAAAAHQPKwUGuadxhAm1Wfq61YFUCitDf4wiQUQPXb14FzRgdAzczMzMzMDUAW+8vuycMKQA1xrIvbKBJAhslUwagkA0Bn1edqK3YQQFfsL7snjwVA5WGh1jQvFkBAE2HD0ysSQFuxv+yevARAAiuHFtlOCUA0gLdAguL5PxKDwMqhxRRArIvbaADvAUBj7lpCPigZQOF6FK5H4QBAAAAAAACAAUAGEhQ/xtwPQMx/SL99HRNAXCBB8WMMF0COdXEbDaARQOAtkKD4sRZAUdobfGHyE0DXNO84RUcWQEMc6+I2GhBAGXPXEvLBE0Dx9EpZhngWQIGVQ4ts5xNA5WGh1jTvDkC7Jw8Ltab1P6kT0ETY8Ps/u7iNBvDWFECx4emVsgwOQC1DHOvitgRAPQrXo3A9BECOdXEbDSARQBPyQc9mVQxAJXUCmggb/D82zTtO0REGQGb35GGhFhBAK4cW2c737T+9UpYhjvUAQG8Sg8DKIRRAejarPlfbC0C1pnnHKboJQPFjzF1LSAtAhslUwaikDkAHX5hMFcwUQO0NvjCZKvk/rkfhehQuCECOdXEbDQAuQKwcWmQ73/0/EHo2qz7XBEAAAAAAAAAWQDvfT42X7hBAc9cS8kFPIEDMf0i/fZ0LQJ5eKcsQRw1A6Ugu/yG9EUC/DpwzojQKQNxoAG+BhBlANjy9UpahC0BiodY07zgLQGWqYFRSpwhATfOOU3Qk+D8lBoGVQ4sSQHS1FfvLbg1Aak3zjlN0DEB7FK5H4XoEQOqVsgxxLA9AD5wzorQ3DEAMAiuHFlkQQM3MzMzMTApAMzMzMzOzAkAAAAAAAIAOQIXrUbgehQ9AJJf/kH47FUCOdXEbDQAuQKCJsOHpVRVAcoqO5PIf/j/+ZffkYaEIQPcGX5hMFfw/coqO5PIfB0BGtvP91PgIQBzr4jYawAFAbqMBvAWSGECoNc07TtH3P1mGONbFLRRAvAUSFD8GEEA9LNSa5p0RQE+vlGWI4wFA46WbxCCw/z8c6+I2GkAGQGrecYqOZAhAYhBYObTIAECxUGuad5wTQKHWNO84xRBAuB6F61G4BEA6kst/SL8YQCbkg57NqvM/rIvbaABvAkBIv30dOGcUQHPXEvJBzwdAUkmdgCZCCUBGlPYGXxgPQOC+DpwzwiFAufyH9NtXFEBB8WPMXcsYQPVKWYY4VhZAl/+Qfvs6DUAAAAAAAIAOQMUgsHJoERJA3EYDeAtkEED129eBc8YEQGZmZmZmZgZA0NVW7C+7/z96Nqs+V9sDQF5LyAc9GxhAescpOpJLBUCSy39Iv30JQJF++zpwzglA8WPMXUvIIEDEQq1p3nENQAisHFpkuwFAzO7Jw0ItAUBZhjjWxW0GQL8OnDOitPw/nl4pyxDHA0DMf0i/fZ0OQAAAAAAAABRADJOpglHJGEDcaABvgQT/P1InoImw4e0/6Gor9pfdB0BdbcX+srsXQDEIrBxaZBlA07zjFB3JAkDZX3ZPHhb/P3UCmggbHgRAAAAAAAAAAkCgGi/dJIYKQMRCrWnecfw/rK3YX3ZPBEAaUdobfGECQCZTBaOSuhVAx7q4jQYwFkDTvOMUHYkTQMNkqmBUUhRAKH6MuWuJGUDtnjws1NoQQDMzMzMzMwxAgQTFjzF3CUCeXinLEMcKQP5l9+Rhof0/1lbsL7sn/z+gGi/dJIYHQEoMAiuHlgdAMlUwKqlTEUCOdXEbDWARQC1DHOvithNAQs9m1efqG0CJ0t7gCxMNQK1p3nGKThlA097gC5PpGUDsUbgehesIQGB2Tx4WahNAnRGlvcEXFEAAAAAAAAANQNO84xQdSQVAMzMzMzOzDUBR2ht8YbIJQJyiI7n8BwNAPZtVn6stE0D9h/Tb14EFQGKh1jTv+BBALUMc6+K2BUAJ+aBnsyoSQKRwPQrXoxJAtoR80LOZGUAAAAAAAIADQAAAAAAAgARA1zTvOEXHI0DNzMzMzMwLQA1xrIvb6BpAMzMzMzMzB0AzMzMzM7MFQCbkg57Nqvo/pSxDHOtiBkDFjzF3LaEKQMBbIEHxIxVAqFfKMsQxE0AZc9cS8kEHQP7UeOkmsQJAjnVxGw0ALkD67evAOSMNQCgPC7WmeRpACfmgZ7MqEUDc14FzRpQNQCxlGeJYFw9ACtejcD0KDkCk374OnLMIQLsnDwu1JhpA48eYu5bQEEDZzvdT4yUPQBPyQc9mVQFATmIQWDm0D0BmZmZmZmYPQOC+DpwzIg1AvHSTGATWAkAJ+aBns6oSQAAAAAAAAPU/7uvAOSNKCkAU0ETY8HQAQGZmZmZmZhJAejarPlfbB0BiodY07zj8P86qz9VW7BJAoWez6nP1F0Abnl4py1AQQNejcD0K1wJAM8SxLm6jBUApyxDHujgZQAAAAAAAgBBAejarPlfbB0CTOgFNhI0MQFioNc07zgxAq8/VVuwvDECbVZ+rrVgOQAAAAAAAAARAYqHWNO84EkAf9GxWfa4WQAAAAAAAAPw/UI2XbhJDEkAlBoGVQ0scQBzr4jYaQAxAjnVxGw1gCECze/KwUGsGQO7rwDkjyg5AgSbChqfXD0BGJXUCmogPQGEyVTAq6RFA7Q2+MJmqBUAc6+I2GsAAQE+vlGWI4wNAvw6cM6K06z9q3nGKjuQDQJm7lpAPevA/dLUV+8vuIkAT8kHPZlUOQJYhjnVxmw5AHOviNhpADUAAAAAAAAALQEGC4seYu/s/n82qz9UWEEBqTfOOU3QCQE9AE2HD0wtA07zjFB3JAkAtQxzr4rYOQD7o2az6XPg/QYLix5g7D0CZu5aQD/oUQBSuR+F6FAZAE/JBz2bVCECOdXEbDeAMQEHxY8xdSwRAfoy5awn5AkCvlGWIY10DQBBYObTIdvs/1zTvOEWHGEDPZtXnaqsQQIV80LNZNRNAS8gHPZvVIUBUdCSX/xAJQAAAAAAAAAZAN4lBYOVQCUDswDkjSnsFQFg5tMh2HiRAm1Wfq63YAUBVMCqpE9AMQCSX/5B++wFAAAAAAAAACUAW+8vuycMHQFfsL7snDwNACfmgZ7MqEEAQ6bevA6cWQKhXyjLEMQBAd76fGi/dF0C/DpwzorQDQHuDL0ymShFAJQaBlUPLEkCGyVTBqCQNQKd5xyk6kgVASL99HTinGkBJLv8h/fb5PxPyQc9m1QpA9wZfmEyVEkBj7lpCPugWQAAAAAAAgAtA1zTvOEVH+D/gvg6cMyIPQLbz/dR4aRRALGUZ4lgXBUBGJXUCmggIQCegibDh6fQ/oBov3SSGEEAtQxzr4rYSQJm7lpAPevY/LUMc6+K2D0ADeAskKL4UQLFQa5p3nBBA/Bhz1xKyGkCL/WX35GEJQA1xrIvbaPg/AAAAAAAABED5oGez6nMkQG+BBMWPMQxA5j+k375OE0CfzarP1dYSQAn5oGezqhFArBxaZDvfHECZKhiV1AkNQBPyQc9m1QhA2/l+arz0EECYbhKDwMoMQDy9UpYhjgFAAAAAAAAAEUCxUGuadxwDQBzr4jYaQAdAjnVxGw1gB0BWfa62Yv8cQAAAAAAAgANAbjSAt0CCB0AE54wo7U0UQMP1KFyPQhBAs+pztRX7BEAAAAAAAAAHQDeJQWDlUA5AE/JBz2ZVCkDRItv5fmr5PwAAAAAAgAJA1xLyQc+mFECIhVrTvOMQQCEf9GxWPRtA93XgnBFlEkBDrWneccoRQNQrZRnimBdAp3nHKTqS8j/G3LWEfFATQIEmwoan1wlAlWWIY12cGEDDZKpgVBIRQGZmZmZmZvw/AAAAAAAADUAAAAAAAIAQQJM6AU2EDQBAi/1l9+RhDUBlqmBUUicFQAfOGVHamwxA2PD0SlmGEEBlqmBUUicMQAAAAAAAAAhA07zjFB1JD0BqTfOOU7QRQOELk6mC0QxA4L4OnDMiCUDcRgN4CyQLQJyiI7n8BxFAtaZ5xyk6EEA/NV66SQwEQDy9UpYhDg9AcF8HzhkREUAAAAAAAAAUQEMc6+I2mhRAZ9Xnaiv2E0AAAAAAAAAAQOF6FK5H4QlA+MJkqmBUGEDjx5i7lhAUQPCFyVTB6BBAAAAAAACAD0ApXI/C9agSQJyiI7n8xxJAHOviNhrACkAQejarPtcNQD7o2az6XPw/8BZIUPyYBUAawFsgQfESQMe6uI0GcANAqDXNO06REEAZBFYOLbINQJkqGJXUiQVA9wZfmEyVB0A1XrpJDAIQQLhAguLHGAVARrbz/dQ4IEA7cM6I0p4VQAAAAAAAAAJAAAAAAAAA/z9mZmZmZmYIQPFjzF1L6CZA7Q2+MJmqDEBm9+RhoRYRQKH4MeaupRNAgZVDi2ynH0Abnl4py5AEQGpN845T9AxAaQBvgQTFHEBCz2bV56oUQH/7OnDOCABAzczMzMxMEUBy+Q/pt6/3P5yiI7n8hwlAmpmZmZmZDUDTvOMUHUkHQGrecYqO5BFAFK5H4XoUGEDWxW00gJcsQO7rwDkjShNAEhQ/xtw1BkB6Nqs+V9sNQF3cRgN4SxNAcoqO5PKfBUCQoPgx5u4QQMuhRbbzfRVAAAAAAAAABUBGJXUCmogGQDMzMzMzsxJA5j+k377OEECsi9toAG8GQJayDHGsixdALUMc6+I2EUBLWYY41gUVQBniWBe30fM/9wZfmEwVCUBoImx4eiUJQMDsnjws1ARA2IFzRpT2DUAXSFD8GJMiQNejcD0K1xBAPZtVn6utBkCWIY51cRsJQNIA3gIJivs/AAAAAACAC0DpSC7/If0cQM3MzMzMTBBAVTAqqRNQDUDDZKpgVNIJQDMzMzMzsxBAqFfKMsQxFkAAAAAAAIASQEaU9gZfWBVAUkmdgCbCDUAzMzMzM/MSQAAAAAAAAANAS1mGONbFCUBdbcX+srsSQC9uowG8BRRAd76fGi/dCUAc6+I2GsAFQFfsL7snjwFAkxgEVg6tBkA6I0p7gy8UQMHKoUW2cw1AaLPqc7WVE0C2hHzQs1nzPxKlvcEXpgZAPSzUmuYd+z9CYOXQIpsUQBWMSuoEdCBAPL1SliGOA0BhMlUwKmkXQKd5xyk6kgZAGXPXEvIBF0AT8kHPZtUMQNUJaCJsePs/ZvfkYaHWGECBJsKGp9cJQInS3uALEwZAak3zjlN0C0AMk6mCUUn1P/Cnxks3iQRAx7q4jQbwA0DJdr6fGu8fQNuK/WX35AxAaJHtfD81D0CcxCCwckgiQMNkqmBUUhhAnl4pyxBHDkCX/5B++zoPQHE9CtejcP0/h6dXyjLEAECHp1fKMsQaQC1DHOvitgBAZmZmZmZmCUB9rrZif1kLQGfV52or9hBAK4cW2c73G0AQejarPhcQQGpN845TdAVAEhQ/xtw1CUAAAAAAAKAiQNqs+lxtRRlASL99HThnGECbVZ+rrdgFQBzr4jYaQA1AjnVxGw1gDUDTvOMUHUkTQCh+jLlrCQ1AxEKtad7xDUAAAAAAAIAQQGZmZmZmZhFATfOOU3Qk8T9m9+Rhodb2P3UCmggbXhtAJCh+jLlrCEDImLuWkE8WQIbJVMGoJANAsAPnjCjtAkBwzojS3uADQFmGONbFbQxAyAc9m1UfBUAAAAAAAAAKQOXQItv5vhBAsAPnjCjt9j9JnYAmwob2P7mNBvAWSBpAAAAAAACAE0A7cM6I0l4FQJ/Nqs/V1hlArIvbaABvB0AOT6+UZUgSQPT91HjpZhRAYOXQItt5E0COdXEbDeAKQJCg+DHmriRAZDvfT42XGEAAAAAAAMAQQIenV8oyRAdAHOviNhpACEAPC7WmeUcPQBrAWyBB8f8/eqUsQxyrFUBSuB6F61EOQP5D+u3rwBNAK/aX3ZOHGUDsL7snDwsJQFCNl24SgxRAOUVHcvkPCEDufD81XjoYQLdif9k9ORNAqFfKMsRxE0BB8WPMXQsWQCv2l92TBw1AAAAAAACAB0CGONbFbTQFQIbJVMGopABAK4cW2c73CkBcIEHxY8wVQAAAAAAAAPI/eqUsQxzrBkC7uI0G8NYUQD9XW7G/7ANAJXUCmggbDUD67evAOaMEQNUJaCJsePQ/9GxWfa62+T8rGJXUCWgQQBzr4jYawA1A1xLyQc8mFkB/2T15WCgEQPYoXI/CtRRA0ETY8PTKBEAAAAAAAAANQEtZhjjWRQlAc9cS8kFPE0ACK4cW2U4bQOeMKO0Nvv0/hxbZzvcTFEAbDeAtkKDyP9jw9EpZRhJA3pOHhVpTGUBmZmZmZmYJQJ5eKcsQxwVARrbz/dR4BkDqlbIMcWwVQLbz/dR46QNAZmZmZmZmE0BhMlUwKqkGQOAtkKD4Mfg/XW3F/rI7F0AAAAAAAAAPQJoIG55eqQhAhslUwagkC0AzMzMzM7MQQH2utmJ/2QJASOF6FK4HEkBKDAIrh5YKQPcGX5hM1RJAgnNGlPYGA0BlqmBUUicFQGRd3EYDeB1AliGOdXGbDkAAAAAAAAAJQM3MzMzMTBJAtFn1udoKD0DFjzF3LSENQHo2qz5X2wFAGw3gLZCgAkD+1HjpJjEGQCUGgZVDSxJAUPwYc9fSEUAg0m9fB84OQD2bVZ+rbRBAE/JBz2ZVDUD0/dR46SYUQHE9CtejcAlAC0YldQL6KkAT8kHPZlUJQClcj8L1qBJATDeJQWClFECamZmZmZkCQCKOdXEbTRRAuY0G8BZIAUDXo3A9CtcJQAAAAAAAAPI/S1mGONaFJEBhw9MrZVkZQAKaCBue3g1AQfFjzF1LAkC0yHa+nxoZQO0NvjCZqghA16NwPQrX+z+WQ4ts5/v4P2Q730+NlwdAw2SqYFSSE0CaCBueXmkWQJOpglFJHQhAzczMzMzM7D/+1HjpJrEJQOCcEaW9QQhAApoIG55eDUCxUGuadxwNQDlFR3L5jwxAyJi7lpAPCUAlBoGVQ8sRQHlYqDXNuwRAPQrXo3D9GEDqBDQRNjwSQNBE2PD0ygFAeVioNc07A0D5D+m3r4MNQFmGONbF7QVAOwFNhA0PIUA0ETY8vZIUQAAAAAAAABNAs3vysFDrBkAAAAAAAIAPQNO84xQdyfw/AAAAAAAA8z+DUUmdgCYfQH6MuWsJ+QVAjnVxGw2gEECJQWDl0KIFQI0o7Q2+MBlA/fZ14JxRFkCOdXEbDaAQQGrecYqO5BFATRWMSuoEFUClLEMc62IQQK5H4XoU7hJAqmBUUieg+z98YTJVMCoaQNobfGEyVfc/S+oENBE2FUDlYaHWNG8BQDXvOEVH8g1ARpT2Bl8YCkBTliGOdfEGQJ7vp8ZL9xZAAAAAAADAEUD5D+m3rwP1P8IXJlMF4xxARpT2Bl8YDkAAAAAAAIATQCbkg57Nqvs/AJF++zpwFkAAAAAAAIASQGrecYqO5ApAK/aX3ZOHDkB9rrZif9kGQDMzMzMzMwtARGlv8IVJEUAv3SQGgZX3P+2ePCzUmgJAW7G/7J68EEASFD/G3LX2PwAAAAAAABNAnl4pyxDHBECL/WX35OEAQGfV52or9gxARPrt68A5C0CTOgFNhA0QQDy9UpYhjg5AAAAAAABAEEDlYaHWNG8HQCqpE9BEuCRA3pOHhVqTFEDwp8ZLNwkbQDMzMzMzswpAqmBUUieg/z86I0p7g68GQAAAAAAAAAdA07zjFB1JE0AAAAAAAAAFQJqZmZmZmQZAAAAAAAAAAkBxGw3gLVAVQG3F/rJ78gtANe84RUdyBkC1pnnHKboDQNk9eViodSJAnKIjufwHGUA9m1Wfq20TQAAAAAAAgAlAmpmZmZkZAUCgGi/dJIYHQJ5eKcsQhxVAAAAAAAAAAEAIrBxaZDsNQPcGX5hMlQ9AMzMzMzOzAUDUmuYdp2gdQAn5oGezagNAr5RliGNdFECMuWsJ+aAPQAAAAAAAABZACfmgZ7PqC0CKH2PuWgIQQBzr4jYawAdAS8gHPZuVFEAAAAAAAAANQGpN845TdA5AgLdAguIHFEBuowG8BRL3PyS5/If0Ww5AYqHWNO+4EUBMN4lBYOX9P5qZmZmZmRBAzH9Iv32dB0ApXI/C9SgLQFtCPujZrP8/qaROQBNhAEBGlPYGXxgIQBTQRNjwFCBAvw6cM6K09j8IPZtVnysYQG+BBMWPMQxA2ht8YTJV8D/l0CLb+d4gQJ7vp8ZLNwtAejarPldbDUAAAAAAAAAQQPaX3ZOHRRRA4L4OnDMiC0DmriXkgx4IQPs6cM6IUghA3NeBc0YUFkByio7k8p8KQOkmMQisnA1AgLdAguLHAEDzH9JvX8cQQAAAAAAAAAxAdCSX/5D+FECSXP5D+i0VQDSitDf4wgVAe4MvTKYK+z/35GGh1lQgQAAAAAAAAA9Aklz+Q/qtF0AT8kHPZlUFQPyp8dJNYvU/GQRWDi2yCkByio7k8h8FQBpR2ht8YQVAvVKWIY71AUBPr5RliGMBQC7/If32tRdAsb/snjwsDUBGtvP91HgBQBzr4jYaQA1AAAAAAACACUDOqs/VViwQQFioNc07DhFAodY07zhFCUCOBvAWSJAWQDj4wmSqIBpAAAAAAAAAEEAAAAAAAAAJQHPXEvJBzwlA3bWEfNBzEUD3Bl+YTJUSQKhXyjLE8RFA1lbsL7unBEB4eqUsQxz7P2b35GGh1gVAtRX7y+5JEUDHuriNBnAKQM/3U+OlGwVACyQofoz5EkDXEvJBz6YWQH/ZPXlYqPk/B84ZUdqbCUBPHhZqTTMaQJtVn6ut2AlA7Q2+MJkqBED99nXgnBERQBPyQc9mVQFAysNCrWkeF0D3Bl+YTJUFQFXBqKROgBhAufyH9NtXGkDTvOMUHckDQEYldQKayBpACD2bVZ8rHkAnoImw4SkTQBb7y+7JQxtAp3nHKTqSD0AZBFYOLbIAQAwCK4cW2RJAvw6cM6K0+j/35GGh1vQSQDMzMzMzMwBAWDm0yHa+CkDTvOMUHYkQQME5I0p7g/o/GsBbIEGxEECdgCbChucUQAAAAAAAAA9AbVZ9rrbiF0DNzMzMzMwJQDEIrBxaJBVATfOOU3Qk9z8c6+I2GsAAQHKKjuTyHwlAz2bV52or9z89CtejcP0SQDxO0ZFcPhhAAAAAAACAE0AT8kHPZtUBQEp7gy9MJgxAmSoYldSJCUBlqmBUUicHQH6MuWsJuRBAMEymCkZlGUDmriXkg54MQDlFR3L5DwhAOUVHcvmPAUDeAgmKH+MJQJayDHGsi/Y/mbuWkA+6IECJQWDl0KINQGKh1jTvOBBAAAAAAAAAC0AAAAAAAIAQQFK4HoXrUQJAApoIG55eDED3Bl+YTFURQJ5eKcsQxwBAEce6uI2GGUCgGi/dJIYAQDMzMzMzswtAAAAAAAAADUC1FfvL7kkYQPmgZ7PqMxtAETY8vVIWDECoNc07TtEhQKK0N/jCZPQ/toR80LPZDUCOdXEbDWAQQDQRNjy90gNAtaZ5xyn6H0AijnVxGw0XQPLSTWIQWAlAGQRWDi1SJUBZhjjWxW0DQDy9UpYhjgFARpT2Bl+YFUAT8kHPZlUJQG/whclUwfA/t2J/2T15CUC1pnnHKboDQKCJsOHpFQJAAAAAAAAA9D8J+aBns2oQQJtVn6ut2ApAgnNGlPaGDEB1ApoIGx4LQAAAAAAAAApAxSCwcmiRCEDHKTqSy18gQIlBYOXQohVAnl4pyxDH+z+zDHGsi9v3P4BIv30duABA2IFzRpR2AEASFD/G3LUBQAYSFD/GXAhAUiegibAhEEAc6+I2GsACQD2bVZ+rLQpAPSzUmubdGUArhxbZzvcPQFR0JJf/EAxAY+5aQj5oBUByio7k8h8JQJjdk4eF2gNAEOm3rwPnDEAAAAAAAIAPQHlYqDXNOwtA/Bhz1xLyBUASFD/G3LUFQDnWxW00gP0/cF8HzhnREEDP91PjpbspQKHWNO84BRlAAAAAAACAEECsi9toAG8BQKJFtvP9VBZAMEymCkblFkCxUGuadxwJQAAAAAAAAA9AYOXQItt5EECOdXEbDaARQLmNBvAWCBBAaQBvgQTFDkA/V1uxv0wqQFdbsb/sngJA4C2QoPgxHkA/V1uxv+wQQGZmZmZmZglAK/aX3ZMHHUBGlPYGX5gSQNXnaiv21xBAXwfOGVHaBEBxPQrXo3AJQIV80LNZdRFAE/JBz2ZVAEClLEMc66ITQCqpE9BE2ABAAAAAAAAAAkAAAAAAAIALQCntDb4wWRdAAAAAAAAAGED+ZffkYSEOQAAAAAAAwBFAp+hILv8h/T9UdCSX/zAhQO0NvjCZKg5A+8vuycNCE0CamZmZmRkSQO0NvjCZqgJABFYOLbKd/j9TBaOSOoEcQAu1pnnH6RNAzczMzMzMC0AFNBE2PL31PzlFR3L5jxNAW9O84xQdC0BeS8gHPRsAQJOpglFJXRdAutqK/WX3FEBGtvP91HgbQKmkTkATYQ9A1QloImx4BEAu/yH99nX8PzAqqRPQBBNALGUZ4lgXCkCSy39Iv30WQC0hH/RsVhBAlrIMcayLEkCMuWsJ+SABQI/C9ShcTxBArBxaZDsfG0A9CtejcD0FQE+vlGWI4wRAMnctIR80EUAnMQisHBogQAn5oGezKhJAXf5D+u3rEECoV8oyxDETQDxO0ZFc/hNABhIUP8bcDUCwA+eMKG0ZQCV1ApoIGwtA5IOezarP9D+h+DHmriUSQBueXinLkAxAPL1SliGODECgGi/dJIYGQGZmZmZmZhBABFYOLbIdA0CamZmZmZn1PzlFR3L5TxBAnDOitDd4FUDtDb4wmaoEQOf7qfHSzQBA4L4OnDMiA0ALJCh+jDkLQEVHcvkPqRZAjnVxGw3gEEAc6+I2GsAGQBzr4jYawA9AAAAAAAAACUBg5dAi2/nyPxPyQc9m1QRAnl4pyxDHDkAYJlMFoxIKQNzXgXNGVBtA16NwPQpXAkBLWYY41kUSQB/0bFZ9LgZABcWPMXftFUASg8DKocUUQCV1ApoI2xdAyeU/pN++FkD3Bl+YTBUQQKvP1VbsLwlAXkvIBz2bBkAAAAAAAAAKQPCFyVTBKApAAAAAAAAACEAydy0hH3QcQO0NvjCZKgZAIbByaJHt/z9pAG+BBMUGQBPyQc9m1QpAhA1Pr5TlCUAc6+I2GkABQMDsnjwsVBdAMzMzMzOzCEB0RpT2Bl8aQPcGX5hMVRJA9UpZhjiWEED7y+7Jw0IGQGKh1jTvOBFA54wo7Q1+HUAAAAAAAIAQQFD8GHPXEvw/coqO5PKfC0DVCWgibPgAQAn5oGez6g1A8IXJVMHoEEAAAAAAAAAfQIv9ZffkYRFAAAAAAACABED3Bl+YTBUQQNSa5h2naAtAXf5D+u0rEEBLWYY41kUBQMx/SL99nQlA07zjFB2JEECvJeSDnk0NQCqpE9BEWAhAjnVxGw1gB0DA7J48LFQUQJoIG55e6RJATRWMSurEEUA/NV66ScwUQCsYldQJKBBAoBov3SQGGUBpAG+BBEULQDY8vVKWIQpA8KfGSzeJA0AAAAAAAAAIQPKwUGuadxVAT0ATYcPT+j85RUdy+Q8MQHuDL0ymihJAIR/0bFZ9BUB6Nqs+V9sHQAFNhA1Pr+g/AAAAAAAAAkDwhclUwagRQHUCmggbfiZATKYKRiX1CUAMAiuHFlkDQGQ730+NFxVAJuSDns2q9j/n+6nx0k0CQDy9UpYhjvg/AAAAAAAAEkBPr5RliOMSQNPe4AuTaRpA/tR46SaxBkDZX3ZPHhb7P4XrUbgeBQVAyAc9m1UfB0BmZmZmZuYGQA3gLZCgeBVAl/+Qfvs6GkDD9Shcj0IWQOM2GsBbYBVAYqHWNO84D0A8vVKWIc4cQBb7y+7JwwVAAAAAAAAAGECU9gZfmAwdQAkbnl4pywhA+zpwzojSAUA5tMh2vp/uPxb7y+7JwwNAklz+Q/rt+z9U46WbxKAGQDMzMzMzMwRAMLsnDws1DUAT8kHPZtUOQDtwzojSXhBAw9MrZRkiEkBwXwfOGREQQAfOGVHaWxRAjnVxGw1gBkAldQKaCJsIQOoENBE2PAhAGlHaG3xhBUCFfNCzWfUWQCfChqdXSgRAkX77OnAOIUByio7k8h8AQHzysFBrmhRAx7q4jQbwEEBBguLHmHsUQOVhodY0LxJAOdbFbTSA8j9pAG+BBMXwP90kBoGVQxVAnKIjufyHBUAH8BZIULwXQCntDb4wGQ1AzczMzMwMEECV1AloIowgQAfwFkhQvBlARwN4CyQoGUBfKcsQx7r+P0+vlGWI4wRAhXzQs1l1D0AAAAAAAEASQGPuWkI+KBRA07zjFB3JE0AAAAAAAAABQPkx5q4lZAlAqRPQRNjw+z89CtejcP0YQIQNT6+U5QdA7zhFR3L5A0DEQq1p3rETQDQRNjy9UglAl5APejbrEECrz9VW7K8IQInS3uALEwVAZapgVFKnDUADCYofY+4PQEOtad5xCgxAiIVa07wDIEAsZRniWJcPQFOWIY51MRRAAAAAAACAEEDc14FzRpQLQLu4jQbwFhhAWYY41sVtCkAAAAAAAIADQA5Pr5RliP4/qmBUUieg9z+7uI0G8BYgQBkEVg4tsglAPZtVn6ttEEArhxbZzvcBQNO84xQdCR1A9+RhodY0DEDHKTqSy/8YQPKwUGuad/k/T6+UZYjjCUDG3LWEfBAVQJqZmZmZmQxALGUZ4lgXDEAW+8vuycMKQCxlGeJYFwlAZmZmZmZmDEBSuB6F61EPQI4G8BZIUPw/jnVxGw1gCUA730+Nly4TQMIXJlMFo/U/zqrP1VZsCEBF2PD0StkIQAAAAAAAAAVAjnVxGw1gBUAldQKaCJsBQIqw4emVsgRAqFfKMsRRJEB7FK5H4XoTQPmgZ7PqcyRAbef7qfESE0AawFsgQfEXQBgmUwWjEgVA1edqK/aXBECX/5B++zoMQHKKjuTyHwxAAAAAAAAA/z/hehSuRyEhQOauJeSDnvs/qaROQBNhGkBq3nGKjuQTQPKwUGuad/U/KjqSy3+IEUC4QILix5gQQM6qz9VWbAVACfmgZ7MqEEDpSC7/IX0MQPCFyVTBaBJAqFfKMsSxEUApXI/C9SgSQBkEVg4tshBAE/JBz2ZVBkCTOgFNhI0FQBdIUPwY8w5AhlrTvOPUFEBZhjjWxW0JQLFQa5p3HAVAAAAAAAAAAUAAAAAAAAAGQHE9CtejcP8/7FG4HoVrHUAGgZVDi2wLQE+vlGWIYxBAAAAAAAAADkBUUiegibAYQM9m1edqKwhA+8vuycPCBUCamZmZmZkRQKJFtvP9VB1A9wZfmEwVAkCOdXEbDeATQHh6pSxDHPk/2V92Tx6WF0CneccpOpIOQLG/7J48LABAUrgehetRCkCdEaW9wZcHQP5D+u3rQAVAK4cW2c73BkB7gy9MpkoTQJqZmZmZWRxAGQRWDi2yA0Dbiv1l9+QPQI51cRsNYA5A+u3rwDnjFUDu68A5I8oJQBfZzvdT4yFA0gDeAgnqIUAT8kHPZlUPQI51cRsNoBFAOUVHcvmPE0BZhjjWxW0CQJYhjnVxuyRAYqHWNO84DUBDrWnecUohQBzr4jYawApAkst/SL99AUBiEFg5tMgQQM3MzMzMTA1AZmZmZmZmD0ARx7q4jYYRQEymCkYl9RlAjnVxGw1gE0D2l92Th4UCQE8eFmpN8/g/uB6F61E4BEDOqs/VVmwAQBZqTfOOkxZAzF1LyAc9E0DEQq1p3vEEQCxlGeJYlwRAVFInoIlwEEAijnVxGw31P2UZ4lgX9xlAseHplbIMCUBBguLHmLv+P3UCmggbviRAkX77OnDO9j/4wmSqYFQJQO0NvjCZqgBAPL1SliEOD0AAAAAAAAD6PxkEVg4tsgZATYQNT6+UBkByio7k8h8LQIV80LNZdQ1AB1+YTBUMHkCBJsKGpxcQQAn5oGezahFAvw6cM6K0A0DhC5OpglENQD7o2az6nBZAFD/G3LUEDUAAAAAAAEASQFr1udqK/R9AorQ3+MLkF0Btxf6ye7IVQN6Th4Va0/8/qz5XW7E/GEAzMzMzMzMKQBzr4jYawAZA+8vuycNC/j9aZDvfT40CQLU3+MJk6hRAsVBrmnecEECTOgFNhA0FQH9qvHST2BFAeekmMQgsE0CGyVTBqCQEQKd5xyk6Eg1AGy/dJAZBFUBX7C+7Jw8EQPmgZ7PqMxBAlrIMcayLA0BiodY07zgAQAskKH6Mufk/vJaQD3q2FEBApN++Dpz5Pxx8YTJVcCNAnl4pyxDH/j/sUbgehesBQKRwPQrXowtAETY8vVIWFkBI4XoUrkcFQCS5/If0GxVA4umVsgwxF0CGyVTBqCQLQFR0JJf/kApAjErqBDQR9T8TYcPTK6UbQJOpglFJnQpAKqkT0ERYEECvJeSDnk0MQHbgnBGlPRBAklz+Q/rtA0C0yHa+n5ojQNbFbTSA9xRA2IFzRpT2CEA9LNSa5l0lQPvL7snDwhZAOdbFbTSA+D90JJf/kL4SQJEPejarfhVAwcqhRbbzC0DTvOMUHUkJQHo2qz5X2w5AZmZmZmZmBUB9rrZif1kKQE+vlGWIYxBAUI2XbhIDFUDNzMzMzMz4P4bJVMGoJAxAAAAAAACAEUDfT42XbhL0P/FjzF1LSABAhXzQs1m1EkAzMzMzMzMIQJqZmZmZmQVA+THmriUkFUB4CyQofoz/PwAAAAAAAA1AAAAAAAAABUARNjy9UlYdQE+vlGWIYwRAFmpN847TDEDwhclUwWgTQHo2qz5X2wVAaJHtfD+1BkBmZmZmZuYIQLraiv1ldwxA7Q2+MJkqDEAAb4EExc8RQAAAAAAAAPo/3gIJih9j9z9oImx4ekUkQOELk6mCURRAS1mGONbFBkCrz9VW7C8EQET67evAuRRAEhQ/xtw1C0AhsHJoke0VQFpkO99PjQlAAAAAAAAAD0DZX3ZPHpYFQNk9eVioNQNASnuDL0ymDEDufD81XjoYQJoIG55eaRBAWDm0yHY+FUBVMCqpE5AWQF8pyxDHOhRA8fRKWYY4GUASFD/G3DUIQKd5xyk6EgBAMlUwKqnTF0Bt5/up8RIQQKUsQxzrIhFAzczMzMxMCEAm5IOezar/PxPyQc9m1QRALUMc6+I2CkAc6+I2GsACQNuK/WX3ZApAEFg5tMh2CUD+1HjpJjH/P+/Jw0KtaSBAgZVDi2wnEUDtDb4wmaoPQCEf9GxWfQRAMzMzMzMzD0ArhxbZzvcPQOSDns2qzwRA7Q2+MJkqD0DlYaHWNC8SQJqZmZmZmQRAJQaBlUNLEEBbsb/snrwaQGIQWDm0yARAAAAAAACAEUDtDb4wmSoJQHUCmggbHg9A4JwRpb2BFUAAAAAAAAABQDnWxW00gPU/zczMzMxMEkD5MeauJWQFQClcj8L1KPw/1edqK/bXEEDImLuWkE8YQLWmeccpOg5AJXUCmggbCUA9m1Wfq20QQAN4CyQovhdAAAAAAAAAEEA730+Nly4SQIbJVMGopApA845TdCR3IkAZ4lgXt9EYQL7BFyZThRBAMlUwKqmTGUDKw0KtaV4DQAAAAAAAAAJAutqK/WV3F0Abnl4py9AUQIlBYOXQYhRAPZtVn6utFEB0RpT2Bl8RQJXUCWgiLBNAtaZ5xym6DEAUP8bctYT7P+/Jw0KtKRdAAAAAAAAAAkD1SlmGOFYWQCxlGeJYFwlAmpmZmZkZDUD3Bl+YTNUWQA+cM6K0NwRAhlrTvOOUCUCamZmZmRkIQAAAAAAAAAVASgwCK4fWEUAu/yH99nX+P7WmeccpugNANIC3QIIiFUBmZmZmZmYJQFUwKqkTUAxAVcGopE6AG0Csi9toAO8GQE+vlGWIYxBAWYY41sXtA0D7OnDOiFIIQLivA+eMKP4/4QuTqYJRC0DtDb4wmaoAQHKKjuTyH/g/K/aX3ZPHFUBDrWnecYr9Pxzr4jYawAdAZmZmZmYmEUDTvOMUHUkGQNO84xQdSRNAf2q8dJPYE0Ac6+I2GkAMQDMzMzMzMwhAp3nHKTqSBEBB8WPMXUsFQH/ZPXlYKAVA5q4l5IOeBkCyLm6jAbwQQI51cRsNAC5AH4XrUbgeBkBX7C+7Jw8CQDlFR3L5jwdAsVBrmnec7D/tDb4wmSoDQMrDQq1pXgJAlIeFWtM8C0A3iUFg5VAEQF3cRgN4CwxAVHQkl/8QAkB5WKg1zbsAQDMzMzMzMwlAV1uxv+ye5j94eqUsQ5wEQC1DHOvitgpAzF1LyAe9FkD1SlmGOFYcQEtZhjjWxQdA+8vuycNCE0AK16NwPQoUQKjGSzeJgRRAbHh6pSzDC0CGyVTBqCQCQIhjXdxGAwpAw/UoXI/C+z8YJlMFo5LmPwK8BRIUPyJAd76fGi+dFUBkXdxGA/gSQE0VjErqxBJAmpmZmZmZCEBmZmZmZiYRQKqCUUmdQBlA9pfdk4eFDUAX2c73UyMTQFfsL7snDwdAW9O84xTdEkDKw0KtaV4YQJ7vp8ZLNwFAT6+UZYhjEUAAAAAAAAAVQOoENBE2PAVAT6+UZYjjBUCPU3Qkl78hQK62Yn/ZPQxAvAUSFD8GFkAUrkfhehQHQO0NvjCZqglAuycPC7Wm+D++nxov3SQWQAXFjzF3rQJAzO7Jw0LtHkC7uI0G8BYWQPrt68A5IwdA+8vuycPCAUB5WKg1zTv5PysYldQJKBNAJ6CJsOHp9z9yio7k8h8BQCZTBaOSugFAsVBrmnccDEDV52or9lchQDLmriXkwxVAgLdAguKHFkAVHcnlP6QAQGb35GGh1gZAylTBqKSuKED0/dR46SbhPzMzMzMzMw9Axf6ye/JwE0CaCBueXmkRQAdfmEwVDBZAOdbFbTSA9z9Pr5RliOMAQAn5oGezagdAUiegibBhFkCWIY51cdsTQD55WKg1jRBASL99HThnFUB3vp8aL10NQE9AE2HD0wtAXynLEMe6CEBqTfOOU3T2Pwn5oGezKhJAjnVxGw3gEkA5RUdy+Y8RQBb7y+7Jw/o/YcPTK2VZGUAAAAAAAAAEQOoENBE2PPQ/VOOlm8QgEUBXW7G/7J4DQNjw9EpZxhxAWMoyxLHuEUAsZRniWBcPQEaU9gZfGBZA5fIf0m9fCECDUUmdgCb2P3BfB84Z0RBAApoIG57eCECQoPgx5u4QQHQkl/+Qfvo/mSoYldSJDUAkKH6MuWsOQGkAb4EExQ9ASOF6FK5HCUB/+zpwzogRQFmGONbFbQZAGQRWDi2yCkBQjZduEkMeQLu4jQbw1hBAcoqO5PIfAEDD0ytlGSIRQJkqGJXUCfE/FvvL7snD/z/mriXkg54BQOPHmLuWkAtAXwfOGVHaDUDn+6nx0k0GQL99HThnRBVA54wo7Q0+FUDpJjEIrNwUQDQRNjy90gZA24r9ZffkBUCFfNCzWXUQQIxK6gQ0Ef0/x7q4jQZwBEB24JwRpb0AQDhnRGlvkCNAZapgVFIn/D/OGVHaG3wBQLUV+8vuCRhAGXPXEvIBF0Df4AuTqUIdQFInoImwIRxAKH6MuWsJDEACK4cW2c4JQBzr4jYawANAx7q4jQYwEEBPr5RliGMSQE2EDU+vFANAtvP91HjpDkAAAAAAAAADQAAAAAAAgBFAEce6uI1GGECI9NvXgXP/P4iFWtO84/o/hslUwagkDEBfKcsQxzoYQGZmZmZm5glAlkOLbOe7GUBE+u3rwHkQQIV80LNZdQ1AuK8D54xoFEDEQq1p3nH5PwyTqYJRSfQ/i/1l9+ThEEAAAAAAAAATQIPAyqFFtgdA1lbsL7snEEAMk6mCUUn+Pwn5oGezqhBAjnVxGw2gEkDysFBrmncHQD9XW7G/bAZA3gIJih9jBUDNzMzMzMwRQLByaJHtnCBAlrIMcaxLEkCZKhiV1AkQQLAD54woDSBALpCg+DHm9D95WKg1zbsNQNjw9EpZBhFAHVpkO99P+D/aG3xhMlX6Pxzr4jYaQAdAw2SqYFQSEkCUh4Va07z8P55eKcsQRwhA3bWEfNCz/j89m1Wfqy0TQD9XW7G/bCFA8WPMXUuIF0Boke18P3UUQGkAb4EEBRVAYTJVMCqpEECpE9BE2PAJQDy9UpYhjglAHOviNhpAC0CuR+F6FK4PQP7UeOkmsQlAF0hQ/BhzBkClLEMc66ISQFmGONbFbQdAYHZPHhZqCUBYqDXNO44TQO0NvjCZqgtAXdxGA3hLFkAAAAAAAAASQMx/SL99nQJAw2SqYFQSEkBJLv8h/ZYqQCnLEMe6uARAkX77OnDOD0Af9GxWfa4GQM3MzMzMzBRAEHo2qz6XEUBlqmBUUifyP36MuWsJeQBAg8DKoUW2CEAbnl4py9AXQLIubqMBvBRARUdy+Q9pFUBXW7G/7J4QQJqZmZmZGQBAhjjWxW00DEABTYQNT+8dQAAAAAAAAAZAyJi7lpCPBUBfKcsQx7oDQFr1udqK/SBAaCJseHql9D+qYFRSJ6D/P8xdS8gHPRVAgQTFjzF3EEAgQfFjzN0PQI51cRsNYARAAAAAAAAAEEAAAAAAAMAQQE5iEFg5tPk/W9O84xTdEkCoV8oyxPETQEYldQKaCAFAO3DOiNJ+IUA6I0p7gy/7P26jAbwFEhZAcRsN4C2Q/T/TvOMUHQkRQPd14JwRJQhA5q4l5IOeAUBbsb/snjwIQC1DHOvithNABhIUP8ZcGUByio7k8p8JQGTMXUvIhwRAS1mGONbFEEC3Yn/ZPXkSQIenV8oyRBhAAAAAAAAAD0BnRGlv8AUEQNZW7C+7pwxAaCJseHrlFUCYbhKDwMr8P8x/SL99nQxANIC3QIJiFEDOqs/VVuwYQISezarP1RRAhXzQs1n1EUDpJjEIrFwQQCxlGeJYFwxAAAAAAACAA0CneccpOhILQKHWNO84BRVAxEKtad5xCEAAAAAAAAAPQCQofoy5a/4/EhQ/xtx1EUAwTKYKRgUgQH9qvHST2BtAZ9Xnaiu2EED3Bl+YTBUQQMrDQq1p3vI/swxxrIsbFUAAAAAAAAAMQHbgnBGlvRJALUMc6+I2B0DFILByaFESQEaU9gZf2BhAQxzr4jbaIEAsZRniWBcNQM4ZUdobfAhA+MJkqmDUHEDkg57Nqs8BQKd5xyk6kglAObTIdr5fHEDek4eFWpMbQPcGX5hMVRJA0SLb+X5qAEAbL90kBoEaQKkT0ETYcAxA4XoUrkfhBUAAAAAAAAADQHzysFBrGgRAuycPC7WmGEDWxW00gHcSQNO84xQdyQ9Amggbnl5pEkBkXdxGAzgRQMDsnjwsVBtALNSa5h0nGkCxv+yePCwSQAAAAAAAgAhAAAAAAACAAkB9PzVeukkbQIC3QILi5yVAOUVHcvmPDUB56SYxCCwFQPwYc9cS8h5Am1Wfq63YB0DcaABvgQQoQD0K16NwPRVA1edqK/aXA0DwhclUwaj5PwAAAAAAABdAuB6F61F4IUCutmJ/2T0OQKd5xyk6kgNAat5xio4kEkCad5yiIxkhQHKKjuTynwZAYqHWNO84BUAc6+I2GkAOQKH4MeauJQhA8tJNYhBYFEAAAAAAAIAPQMWPMXctoQRAyjLEsS4uF0AAAAAAAAAEQNO84xQdSQhAd76fGi/dCkDWVuwvu6cHQOtztRX7ywJAAAAAAAAADUDmP6Tfvs4SQK7YX3ZP3hBAnl4pyxBHEkC/DpwzorQBQAAAAAAAgBBA4L4OnDOiCUCWsgxxrAsAQEtZhjjWRQFAQmDl0CIbGEAHzhlR2psGQGfV52ordgtAxty1hHxQIUAW+8vuycMLQDSAt0CCYgxAjnVxGw1gD0CwA+eMKO0cQO0NvjCZKvw/Njy9UpahBkAkKH6MuWsKQCfChqdXyg1AHOviNhpACUA0ETY8vdIJQABvgQTFjx9A9wZfmEwVC0AJ+aBns2oEQAAAAAAAAAdAOUVHcvlPEEAYJlMFoxIHQBPyQc9m1Q9AAiuHFtlODEDEQq1p3nEGQEi/fR04ZwRA8IXJVMGoEkDBqKROQFMeQK8l5IOezQFANV66SQwCF0AAAAAAAADyP2fV52ordgFAWvW52oq9FUAc6+I2GkAEQAAAAAAAAP8/7Q2+MJmqCUCFfNCzWbURQAIrhxbZTg1APZtVn6utA0B7gy9MpooOQDy9UpYhDhpAcoqO5PIfAUBLWYY41sURQCBB8WPM3RRAih9j7lrCEkAc6+I2GsAMQA+cM6K0N/0/vsEXJlOFCUCoxks3icELQHlYqDXNuwhA7Q2+MJmqAUBSSZ2AJsLqP+oENBE2vB9Aw9MrZRliBUA51sVtNID4P00VjErqhAVAZF3cRgM4EECU9gZfmMwUQOELk6mC0QRAAAAAAAAABUBZhjjWxe0CQFwgQfFjDBZAHOviNhpAC0BDrWnecQoYQEI+6Nms+v4/G55eKcsQ7z9iodY07zgPQCKOdXEbDQNALUMc6+K2A0AZc9cS8kH1P9O84xQdSQVAV+wvuycP8z9z1xLyQU8MQJf/kH77ehVAmpmZmZmZAEAwuycPCzUPQNcS8kHP5gdAidLe4AvTEEDNzMzMzEwIQGpN845TdA5ANIC3QIIiF0D35GGh1nQQQJ5eKcsQx/k/24r9ZffkC0CNKO0NvjD6P9Sa5h2n6ARAaQBvgQTF+j+5jQbwFsgMQJ5eKcsQxwVAV+wvuyePAkDZzvdT4yUNQHKKjuTynw1AyXa+nxqvB0Csi9toAO8PQJZDi2znuxNAhXzQs1l1DkAu/yH99vUUQCBj7lpCPg5AxEKtad5xBECOdXEbDWAFQBdIUPwYcwRA8rBQa5o3FEDek4eFWlMUQGsr9pfdExZAKjqSy38IEUCQMXctIZ8MQFioNc07ThpAAAAAAAAAE0Bg5dAi2/kbQE9AE2HD0/4/VHQkl/8QAUAqOpLLf8gQQPYoXI/CdQJA3NeBc0aU+T+OdXEbDWARQAAAAAAAwBJA6Ugu/yH9EkAAAAAAAAAKQDMzMzMzsxJAnl4pyxDHEkBseHqlLEP+P57vp8ZLNwlAm1Wfq61YFEDZzvdT4+USQLWmeccpehNALv8h/fb1BUAzMzMzMzMOQM6I0t7gCxJA2qz6XG2FEECC4seYu5b6P7aEfNCzWfw/AAAAAAAACkA0orQ3+EIVQL7BFyZTRRVAw2SqYFSSEkCU9gZfmEz7P/OOU3QkFxhAIv32deCcAkCx4emVsowOQP8h/fZ14BBA/tR46SYxCkCeXinLEMfwPzy9UpYhjvE/ejarPldbAEBkO99PjXcgQMRCrWnecQJAcoqO5PIfD0A5RUdy+c8RQKRwPQrXowxA7C+7Jw8LDEAU0ETY8HQXQG8Sg8DKofo/AAAAAAAAAkBSSZ2AJkIFQDQRNjy90g5AVFInoImwA0BiodY077gIQGgibHh6JQRAlWWIY11cB0Abnl4py9AQQAFNhA1PLwdAufyH9NuXFECxUGuad5wLQAU0ETY8vf8/9UpZhjgWEkASFD/G3LUSQMgHPZtVHwFAdy0hH/TsDkCtad5xio4NQEmdgCbCBhJAyXa+nxqvA0DEQq1p3vEMQOoENBE2PAxAOUVHcvmPEUCF61G4HgUYQMUgsHJoEQdAAAAAAAAABkAKaCJseHr+P3S1FfvL7hJAeHqlLEMc9z9q3nGKjmQCQIXrUbgehQBAOUVHcvkPEECKjuTyH1ILQJhuEoPAyghAiGNd3EYDIkBBguLHmPsTQEmdgCbChgBAg1FJnYAmFEA2qz5XW7H7P8xdS8gHPQtAt2J/2T35AUBmZmZmZiYSQPaX3ZOHRRBANjy9UpYhDECjAbwFEhQWQMxdS8gHvRVAzhlR2ht8D0BLyAc9m1UfQHZPHhZqDRlAkX77OnDOAkBhVFInoAkJQEtZhjjWRQlA7MA5I0p7BkAQejarPpcTQC7/If32NRRABFYOLbIdIEB/arx0k5gQQESLbOf76RRAxEKtad7xBEAUP8bctYQBQN4CCYof4xBA1edqK/ZXEEAAAAAAAIAQQJayDHGsCwRAgnNGlPZGFkB5WKg1zbsBQPCnxks3iRtA2T15WKh1FkDHuriNBnAMQKhXyjLEcRNAAAAAAAAADUBMN4lBYOUQQGDl0CLbeQxAMlUwKqkTAEBWDi2ynS8TQLraiv1ldw5Ah6dXyjJEB0BUUiegiTALQL99HThnBBRAjgbwFkhQCUBE+u3rwDkPQM/3U+OlWxxAu7iNBvDWGUA4+MJkqmAHQO0NvjCZKghA1QloImx4CECOdXEbDWANQL1SliGONRJARiV1ApoIDUAT8kHPZtULQClcj8L1KABACtejcD0KEUAAAAAAAIAKQPhT46WbhBBACyQofoy59z+GWtO841QUQO0NvjCZqg9Ab/CFyVRBCEAJ+aBns2oIQOwvuycPC/s//tR46SYxCkDKVMGopM4AQNXnaiv2FxJAB/AWSFD8GEDYgXNGlPYPQHKKjuTyHwVAAAAAAACAAUCPU3Qkl//uPwu1pnnHKfk/Z9Xnaiu2FkCXkA96NisWQAAAAAAAgBBAZF3cRgN4AEAAAAAAAIASQGRd3EYDuBBA1zTvOEVH8z9iodY077gOQIPAyqFFNgJA1QloImx4CkAHzhlR2hv6P1mGONbF7QFAYqHWNO84EEB1ApoIGx4AQMgHPZtVHxJAarx0kxgEEkAZBFYOLbIJQEi/fR04pxtAD5wzorS3H0Dn+6nx0k33P0+vlGWI4wBAhetRuB5FEEA8vVKWIQ4HQInS3uALUxNA+THmriXkA0COdXEbDWAHQHKKjuTyHwdAMlUwKqkTCkCASL99HbgWQKqCUUmdwBVAY+5aQj7o/T/ek4eFWtMIQMrDQq1p3g5A+1xtxf5yE0AtQxzr4jYAQM3MzMzMTAlAMzMzMzPzEkBPr5RliGMQQI/k8h/Srx5ACmgibHhaJUAc6+I2GkAFQBzr4jYawApAAAAAAAAA8j924JwRpb0LQJ5eKcsQxxNAcT0K16MQIUAc6+I2GkAFQMdLN4lBYBdAjnVxGw2gE0DtDb4wmSoKQKCJsOHpVR5AC7WmecdpFECIhVrTvOPyPw+cM6K0twhAOwFNhA1PBEA/V1uxvywQQGdEaW/wBRlAXwfOGVFaFkDKVMGopE78P5M6AU2EzRJAVHQkl/+QFECOdXEbDaARQH6MuWsJeRRAh6dXyjJEAUBmZmZmZmYOQG/whclUwfM/J8KGp1dKDEClLEMc66ITQDMzMzMzMw1AcM6I0t7gCkCneccpOhIIQCV1ApoIGwNAZmZmZmZm/D80gLdAgmICQDlFR3L5jxNAWMoyxLEuFkCneccpOhIOQEoMAiuHlhVA+zpwzohSAkAofoy5a0kQQD9XW7G/bANAEHo2qz5XAkD2l92Th4X4P/Cnxks3iQxAHOviNhpACkAr9pfdkwcQQKMBvAUSlBVAYTJVMCopHkAHzhlR2hsKQOtztRX7ywJAAAAAAAAADUAGEhQ/xtwDQIqO5PIfUgRAAAAAAAAADEA/NV66SQwUQGZmZmZm5hFA2ht8YTJV9T9F2PD0StkJQLx0kxgEVhBAkKD4MeYuEkCOdXEbDQAuQHNoke18fx5AtFn1udqK+z8sZRniWBcNQOOlm8QgsB5Aj8L1KFyP+z+TOgFNhA0KQN9PjZdukhxAZmZmZmbmCkDNzMzMzMwKQD81XrpJDP8/zH9Iv32dBUCTOgFNhA0MQJjdk4eFmhhALUMc6+K2AkAAAAAAAAAQQI51cRsNAC5AjnVxGw1gCUAbDeAtkGAbQOzAOSNKe+8/9P3UeOkm4T8m5IOezarzPwAAAAAAAPI/FvvL7slDEUAxCKwcWqQaQHUCmggbHg1ACYofY+5aDUDufD81XjoFQDMzMzMzMw9AT6+UZYiDJUCP5PIf0i8QQPrt68A5IwJAY3/ZPXlY8z9U46WbxCAIQOC+DpwzohRAS1mGONYFHkCgGi/dJAYXQCbkg57Nqvs/CKwcWmT7E0AAAAAAAAAKQGgibHh6pRRAtvP91HhpC0Cyne+nxksFQLUV+8vuyf0/qaROQBNh/z9rK/aX3ZMLQGfV52ordgtAjnVxGw0gEEC1pnnHKboQQDXvOEVHMhBAcoqO5PKfD0CTOgFNhI0JQGgibHh6ZRdAx7q4jQZwDECamZmZmZkEQAAAAAAAAAtAx7q4jQbwD0CTOgFNhI0RQGrecYqOZBBAMlUwKqmTC0BN845TdCT9PwtGJXUCGhpASnuDL0wmCkDXEvJBz6YSQJCg+DHmLhBAJuSDns2q9z+Uh4Va0zwSQKCJsOHpFRBA+THmriXkEkCcoiO5/IcEQHNoke18vxZA0m9fB85ZFUDmP6Tfvg76P7prCfmg5wZAzczMzMzM/z+xUGuad5wFQCcxCKwcWhtAAiuHFtnODkAAAAAAAAATQKvP1VbsLw1AeJyiI7n8CUAg0m9fB84AQAAAAAAAAAlANs07TtERD0CdEaW9wZcLQGKh1jTvOABAQxzr4jYa/z+neccpOpIHQHEbDeAtkPM/aJHtfD81DkBYqDXNOw4eQAAAAAAAwBZAaQBvgQTFCkDZzvdT4yUBQGDl0CLb+RJAVHQkl/8QB0DTvOMUHcn4P9bFbTSAtxNAXwfOGVFaEEAbDeAtkKD/P/aX3ZOHBR1ARdjw9EoZGEDXNO84RUcFQKVOQBNhwxBAAAAAAACAAkAFo5I6AU0eQO0NvjCZqg1AliGOdXHbEEB0RpT2Bl8VQE+vlGWI4wJAWmQ730+NCkAAAAAAAIAJQO0NvjCZKgZAR3L5D+n3FkDtnjws1NocQFmGONbFbQtAW7G/7J48CUDTvOMUHUkAQNxGA3gLJBVAE/JBz2bVDUDu68A5IwoRQCxlGeJYlw5AaCJseHql+j8LtaZ5x2kjQHRGlPYGX/0/nl4pyxCHF0AzMzMzMzMRQPyp8dJNYvs/KjqSy38IFkDNzMzMzMwAQE9AE2HD0/g/nRGlvcGXBEBNFYxK6sQSQHgLJCh+DBJAjSjtDb7wFUCEDU+vlOUKQJf/kH77OgtAtTf4wmTqEEBQ/Bhz19IdQLAD54wo7f8/AAAAAAAA+j8c6+I2GsANQAn5oGezagpAidLe4AuTCUDYgXNGlHYCQAAAAAAAAA5Ap3nHKToSDUCamZmZmRkKQM3MzMzMzA1AZmZmZmZmA0AXt9EA3oIGQHicoiO5fBdABcWPMXctE0AbDeAtkGAZQAYSFD/GnCFA6gQ0ETY8EED6fmq8dJMXQO0NvjCZqg1AE/JBz2bVC0DcaABvgYQNQI/C9ShcTxVAkzoBTYQNAkAc6+I2GkAMQP7UeOkmsQhAAAAAAAAAD0BDrWnecaokQJqZmZmZWRZAzojS3uDLEUCsi9toAO8HQIbJVMGoJAFA8kHPZtUHIUAAAAAAAIANQFuxv+yevAVA07zjFB3JCUCcoiO5/McRQKUsQxzrohBA9pfdk4eFBkBg5dAi23kJQOAtkKD48RRA7Q2+MJnqFUBmZmZmZmYOQDeJQWDl0BhAarx0kxgE6j8AAAAAAAD6P7u4jQbwlhlAAAAAAABAEUAAb4EExQ8CQAAAAAAAwBFAzczMzMzMEUAJ+aBns+r5P3DOiNLeYARANs07TtHRFECamZmZmZkGQAAAAAAAgA9AAAAAAAAADUC1pnnHKToSQE2EDU+vFARATfOOU3Qk/z+OdXEbDeACQE5iEFg5tARA7nw/NV66+T/7XG3F/nIXQEa28/3U+AJAnKIjufxHEEDPZtXnaiv+P6vP1VbsrwFAvJaQD3o2FUCeXinLEAcTQLN78rBQ6wdAZF3cRgM4EkCk374OnDMbQPwYc9cScgBAF9nO91MjEEBeukkMAqscQKwcWmQ73wxAEFg5tMj2BkBz1xLyQc8OQOoENBE2PBNAqRPQRNjwD0CYbhKDwEoLQOXyH9Jv3xtAliGOdXEb/D9Wn6ut2F/7P3npJjEILAFAZvfkYaF2JEAtQxzr4rYGQCxlGeJYFwBAAAAAAAAAB0A8vVKWIQ4FQHKKjuTynw9AzczMzMxMEkAc6+I2GsAOQMe6uI0GcBFAhslUwagkB0DVeOkmMQgeQNjw9EpZhgpANIC3QILiBUDMf0i/fV0SQFmGONbFbQlAiUFg5dAiDkA/V1uxv6wQQNGRXP5D+vk/iUFg5dCiFEAAAAAAAAD+P6mkTkAToRdApHA9CtdDIEDEQq1p3nELQGWqYFRSJwtATDeJQWDl+j+xUGuad5z+PzBMpgpGpRlAo5I6AU2E9T9I4XoUrkcEQCegibDh6fs/VOOlm8TgG0COdXEbDSAQQB04Z0Rpbx9AMLsnDwu1AkBlqmBUUmcVQOkmMQisfCBAliGOdXHbEEC1pnnHKTocQPp+arx0k/M/SL99HThnE0Ar9pfdk4cNQKUsQxzr4vU/S+oENBE2HUCJQWDl0KIGQKd5xyk6kgNAE/JBz2ZVDUAQejarPtcIQIenV8oyRANAGQRWDi2yHkDFILByaNEQQMzuycNCLQJAS1mGONZFBUAZBFYOLbIDQDSAt0CCIhJAEHo2qz6XEkDmriXkgx4PQKYKRiV1AgNAZmZmZmZmBkCZKhiV1AkRQN5xio7k8gVAbxKDwMohFkAT8kHPZlUNQD55WKg1TRRAMzMzMzMzEUCSXP5D+u0AQGQ730+NlwtAwOyePCzUDEBU46WbxGAaQC1DHOvitgxAeHqlLENcGkDJdr6fGq8BQCv2l92TRx5AAAAAAAAAGEDZPXlYqHUVQO0NvjCZKgNApSxDHOviEEDgnBGlvUEXQMrDQq1pXgZAejarPlfbAkAQejarPtcJQBx8YTJVMA1A+FPjpZtEAEAJG55eKQsQQLPqc7UVOxVA+Q/pt6+DBECn6Egu/yH9PzSAt0CCYglAorQ3+MLkCkCxUGuad5wQQDMzMzMzMxJAhslUwagkDUBIv30dOOcEQJqZmZmZmQNA7Q2+MJmqA0BZhjjWxW0FQE3zjlN0ZBZAnl4pyxDH9z8HX5hMFcwVQBzr4jYawA9A1zTvOEXHGEDSb18HzlkUQAfOGVHamwlAnu+nxkv3EEDMf0i/fZ0DQOOlm8QgsPA/x7q4jQbwBEBVMCqpE1AUQOY/pN++zhJARwN4CySoB0DKMsSxLi4QQC9uowG8RRRAnl4pyxCHEEDNzMzMzMwNQAAAAAAAAAJAZDvfT42XF0AJ+aBns2oIQE0VjErqhBdAHOviNhrABEDlYaHWNG8BQKOSOgFNRBJAVFInoIlwFEAc6+I2GkAPQLIubqMBPAhAKA8Ltaa5GkCBJsKGp1cFQGq8dJMYhB5AmSoYldSJDUBLWYY41sUTQI51cRsNYAhAqvHSTWJQJEBKDAIrh5YPQC1DHOviNgJALUMc6+I2E0D7XG3F/nIVQMIXJlMFo/c/ukkMAitHHUAT8kHPZtUMQAskKH6MOQ1A7Q2+MJmqCEBO0ZFc/gMVQNPe4AuT6RZAhxbZzveTEkCJQWDl0CIEQOauJeSDnv8/klz+Q/otFkBB8WPMXYsdQAAAAAAAAABALUMc6+I2DkAHzhlR2psKQBzr4jYawApAAAAAAACAA0Cu2F92T94TQEMc6+I2uiBAt2J/2T15BUD35GGh1vQZQBx8YTJVsAxApb3BFybTE0Am5IOezWoYQDJVMCqpEw9A3EYDeAukBUASFD/G3DUIQLbz/dR4aQVAAAAAAACABUAT8kHPZlUCQEYldQKaiAJAnKIjufyHBUB9rrZif9kAQFD8GHPXEhZAmpmZmZkZDkA4Z0Rpb/D/P5huEoPAyghAAAAAAAAAFUAqOpLLf4gRQLyWkA96thRA8x/Sb1+HGUAAAAAAAIAEQAaBlUOLbAhAlrIMcawLFUCOdXEbDWANQAisHFpkOxVArkfhehTOI0AT8kHPZlUDQDnWxW00gP4/f/s6cM4ICEDTvOMUHUkNQFHaG3xhsghADwu1pnlHCUBwzojS3uAFQIenV8oyRAdAzO7Jw0ItA0DNzMzMzMwMQB1aZDvfT/o/7Q2+MJmqBkCxUGuad1wRQNbFbTSANxBAkDF3LSGfCEBqTfOOU/QQQDSAt0CCYgZALv8h/fZ1/j80orQ3+MIKQAAAAAAAAApACtejcD2KFkABTYQNTy8LQFvTvOMUHfo/YhBYObSIIkB/2T15WMgqQE+vlGWI4xBADAIrhxaZF0CSy39Iv/0SQHKKjuTynw1ARpT2Bl+YCEA9m1Wfq+0RQDvfT42X7ipAyXa+nxqvDUCWsgxxrIv+PwAAAAAAAAxAZ9Xnaiv2BkAm5IOezar7P6yL22gA7xVAkzoBTYQNA0CC4seYu9YdQAXFjzF3LRBAAAAAAAAAA0AsZRniWBcJQO0NvjCZqgRAGQRWDi2yEEDEQq1p3nEPQKUsQxzrIhNA3SQGgZVDAEBDHOviNpoWQCbkg57Nqh9Anl4pyxDHD0Ac6+I2GkAJQHsUrkfhehlAYqHWNO+4FEDtDb4wmaoDQILix5i7Fg1A7MA5I0p7DUAK16NwPcoWQC0hH/Rs1ghAw2SqYFQSEUDHuriNBnALQJAxdy0hnwJA7Q2+MJkqA0BB8WPMXcsJQKJFtvP9VBhAAAAAAACAB0CPwvUoXA8UQGrecYqO5ApAHhZqTfOO8D9Wn6ut2F8gQEp7gy9MJhRAjnVxGw3gBkBKe4MvTEYiQCZTBaOSughAVTAqqRNQCkDvOEVHcnkSQPp+arx0UxFAnl4pyxDHCECOdXEbDQAuQAwCK4cWWQxASOF6FK5HFUC1pnnHKXoRQHUCmggbHghAmpmZmZmZEkAawFsgQbEQQBb7y+7JgxBAE/JBz2ZVBkC4HoXrUfgVQCh+jLlrCQ9AqFfKMsTxE0AAAAAAAIARQIXrUbgehfo//tR46SaxD0Ai/fZ14FwfQOzAOSNK+w1ASZ2AJsIGDkDyQc9m1ScfQIEmwoan1wdAkzoBTYQNEEAE54wo7U0VQHUCmggbnhlAc9cS8kHP/z8J+aBns2oNQAAAAAAAgARAT6+UZYjjCkCOdXEbDWAAQMe6uI0GcA5AcoqO5PIfB0AtQxzr4vYSQGIQWDm0yANAZmZmZmZmEEBbQj7o2ewfQFfsL7snjwdAfa62Yn9ZDEAQejarPpcSQLFQa5p3HAdAd76fGi9dB0DqBDQRNvwQQG+BBMWPMRNAwaikTkCTD0AJ+aBns6oSQLhAguLH2BdAFvvL7smDE0BiodY07zgGQCgPC7WmORZAYqHWNO84CEBvEoPAyqH9P00VjErqBBZA+zpwzojSCEAAAAAAAAAHQBdIUPwYcwxAu7iNBvAWEkBUUiegibAIQLN78rBQCyNA2ht8YTJV/j+IhVrTvOP8P+oENBE2PBFAjnVxGw3g9D924JwRpT0JQBPyQc9mVQ5A0NVW7C+78j8J+aBns2oBQArXo3A9Cg5AXynLEMc6FUCxv+yePCwHQAAAAAAAABVAq8/VVuyvFEDeAgmKH2MVQEtZhjjWBRNAw2SqYFRSC0D35GGh1nQSQOVhodY0bwdAnl4pyxBHDED3Bl+YTFURQET67evAuQVAak3zjlN0/z/uWkI+6NkUQME5I0p7AxVANIC3QIJiEECmm8QgsPIUQGHD0ytlGRZAAAAAAACADEAAAAAAAIAMQAAAAAAAAAVAliGOdXGbEEDNzMzMzMz9P6VOQBNhgxdA16NwPQpXAEDuWkI+6NkWQJqZmZmZmQVAdEaU9gZfCkBX7C+7J48KQGaIY13cJiFAnl4pyxDHD0BLWYY41kUDQAAAAAAAgBFATfOOU3Qk/j80orQ3+IIXQEtZhjjWxek/HOviNhpAAkC1pnnHKboKQP7UeOkmsQ1AOUVHcvlPE0B90LNZ9bkJQFUwKqkT0P0/PzVeukmMCECPwvUoXA8PQLWmeccpuhFAdQKaCBseD0D7OnDOiHIlQAAAAAAAAAFA8KfGSzeJDUA4Z0RpbzATQM6qz9VW7P4/QYLix5i7/D9/2T15WOgUQOwvuycPiwlAhXzQs1k1EkCoxks3icEdQGWqYFRSJwBAp3nHKToSBUBb07zjFF0TQIMvTKYKBh1ABcWPMXftGEA0orQ3+EIbQKkT0ETY8Po/w9MrZRmiEkACvAUSFD8LQFUwKqkTkBhAAAAAAAAAC0DA7J48LNQXQO84RUdyOR9Ax7q4jQYwIUD6fmq8dJMFQBzr4jYawPk/GXPXEvJBDUAAAAAAAIAKQF+YTBWMSug/DeAtkKAYJECASL99HXgSQM9m1edqKxRAfoy5awl5IEDNzMzMzMz0P0ATYcPTqwJAAAAAAAAAD0A5RUdy+U8QQF3+Q/rtaxpAklz+Q/rtC0BSJ6CJsGEPQCBB8WPM3QNAHOviNhpADECamZmZmZn/Py0hH/Rs1hJA7Q2+MJkqDkAkKH6MuSsSQDlFR3L5zxBAQxzr4jZaEkCV1AloIqwSQOVhodY0byFA7FG4HoXrB0DNzMzMzMwNQO0NvjCZqgVALUMc6+J2EUBkzF1LyEcYQHZPHhZqTQ9AmpmZmZkZEEAoDwu1pvkJQAAAAAAAAAxAgy9MpgqGGEDtDb4wmaoEQGB2Tx4W6gFAAAAAAACAEUAc6+I2GsAOQIPAyqFFNhpAuY0G8BZIGEB2cRsN4C0IQJwzorQ3uBVA3EYDeAskH0AJ+aBns6oQQEa28/3UeB5AbVZ9rrbiAEA0gLdAguL4P5f/kH77OgpAVFInoIkwBUDNzMzMzEwRQF+YTBWMyghArthfdk8eF0CI9NvXgXPzP2ZmZmZm5ghAnl4pyxDHAUD129eBcwYVQKyL22gA7whA07zjFB1JB0B4eqUsQxz/P1K4HoXrUQtAAAAAAAAA+j8gQfFjzN0LQDSitDf4wgBAJXUCmggbCEC1pnnHKboIQNEi2/l+avU/78nDQq0pFEAT8kHPZtUGQAAAAAAAAPo/jSjtDb4wC0DeAgmKH2MKQEaU9gZfmBBANIC3QIJiAUA51sVtNID/P3lYqDXNuw1A9dvXgXPGBUB7gy9MpooAQFvTvOMUHfg/JuSDns2q8j/vOEVHcvnyPwAAAAAAAAdAXkvIBz1bGkCeXinLEEcRQDMzMzMzMwdAp3nHKTqSD0CHFtnO99MdQMiYu5aQDwxAPL1SliGO+T8mUwWjkjoAQK+UZYhjnSNAgSbChqcXHUA0orQ3+MISQAAAAAAAgAZAXwfOGVFaCUAsZRniWBf6Pxzr4jYaQAlAC7WmecepBUBsCfmgZzMZQD2bVZ+r7RNAAAAAAACAD0Bn1edqK/YHQNGRXP5D+iBAMzMzMzMzDkCOdXEbDeAKQJvmHafoiBRA+Q/pt6+DAEBGlPYGX5gFQK+UZYhjHSFAMzMzMzNzGkCDwMqhRTYLQMgHPZtVHxVAsb/snjwsC0CJQWDl0CIIQOqVsgxxLAJAXwfOGVFaDkCY3ZOHhVr5P+58PzVeOhRAHOviNhrAD0D/If32dSASQCV1ApoImxtACKwcWmQ78T+F61G4HoUTQDMzMzMzsxJACRueXimLGEDZX3ZPHhYRQGZmZmZmZg9AWYY41sVtAEAAAAAAAAARQC2yne+nJiBABhIUP8bcAUDTvOMUHUkJQCuHFtnO9wpA5j+k377OEEB4CyQofoz+P1R0JJf/UBhAnl4pyxDHEUCxUGuad9wRQCfChqdXygxAguLHmLuWF0BVMCqpE9AKQOjZrPpc7QRAat5xio6kEEC1pnnHKXoTQEoMAiuHlg9AHOviNhoAG0D0bFZ9rrb3P1OWIY518QBAETY8vVIWDECcoiO5/EcQQPYoXI/C9RVA8rBQa5p3/z9q3nGKjiQQQK5H4XoUrhRAPZtVn6utE0DNO07RkdwLQNk9eViodRRA7Q2+MJkqC0CneccpOpIGQGN/2T15WA5AaQBvgQTF9z8XSFD8GHMCQM3MzMzMzApAMlUwKqkTBEAf9GxWfS4LQI/C9ShcjxNAa5p3nKKjCUD0bFZ9rrb9P3e+nxov3Q5A7Q2+MJmqCECjI7n8hzQZQMSxLm6jARRAxSCwcmiRDkBJnYAmwoYDQAAAAAAAAPg/lrIMcayLA0COdXEbDeANQPyp8dJNYv0/ofgx5q4lDUA5RUdy+Q8PQMoyxLEubhJAZmZmZmZm9j+vJeSDno0YQOVhodY0bwdAApoIG57eAUCY3ZOHhdoUQBPyQc9mVQlAuycPC7UmCUBeukkMAusiQPp+arx0kwlA1XjpJjGIF0DtDb4wmSoHQKhXyjLE8RJA07zjFB1JBkCX/5B++zoAQLdif9k9eRNAw2SqYFQSEkDJdr6fGi8BQBPyQc9mVQVAAAAAAACADUBtxf6ye/L0Pz2bVZ+rrRBA16NwPQrXA0CiRbbz/VQUQEMc6+I2GhhA6bevA+fMG0DEQq1p3nELQBzr4jYaQAxAzczMzMzMDUAzMzMzMzMHQAAAAAAAwBFAAAAAAACADkAg0m9fBw4YQKVOQBNhQyRAcT0K16NwCEBtVn2utuIQQKyL22gA7wlAtvP91HhpD0AAAAAAAIASQL3jFB3JZRNA/tR46SaxAECamZmZmZn7PwAAAAAAAAtAHThnRGlvHUBLWYY41kUPQGiz6nO1lQlAWMoyxLEu/D9R2ht8YbIAQAAAAAAAwBFACKwcWmQ7+T9Ei2zn+ykNQLu4jQbwVhRAP1dbsb/sC0Bos+pztRUlQMGopE5AEwNAAAAAAACAEkCWsgxxrAsIQJtVn6ut2PM/MzMzMzNzEkCNKO0NvjAOQAmKH2PuWgRALUMc6+I2EEDOiNLe4EsVQFafq63YX/w/5WGh1jSvEEDhehSuR+EIQC1DHOvitg9AAAAAAACAD0DVeOkmMQgQQEymCkYldQNAVTAqqRNQFEAAAAAAAAAMQIV80LNZ9QZAO3DOiNJeBUBbQj7o2SwIQBPyQc9mVQ5AqFfKMsQxAkDFILByaJH3PwAAAAAAgBJAAAAAAAAAC0B6pSxDHGsJQJqZmZmZWR9APZtVn6ttE0AVjErqBDQRQNQrZRniWPY/AAAAAACACEAOvjCZKpgEQBPyQc9mVQFAppvEILCyF0CWIY51cRsFQMe6uI0GcA1AKjqSy39I9j8yVTAqqRMGQD2bVZ+rrQZAjNtoAG+BGkDTTWIQWDkNQAn5oGezagZAliGOdXEbEkCxUGuad5wSQBdIUPwY8wdAXwfOGVFaE0BOYhBYOTQMQJ5eKcsQRxJAlrIMcayLCEAZc9cS8kH4P8E5I0p7wyBAnMQgsHKoFECcM6K0N3gIQBDpt68DJxZAHOviNhrAAEB5WKg1zbsFQBzr4jYawARA8IXJVMFoEECneccpOhIPQD2bVZ+rrQxACyQofoy5E0B6xyk6kksIQDY8vVKWoQhAcoqO5PKfF0Bn1edqK3YBQAAAAAAAgAdAhslUwagkCEC1FfvL7skEQDMzMzMzsxFAnu+nxkv3EEAAAAAAAIANQAn5oGezKhNAf/s6cM4IAkBhVFInoEkbQABvgQTFTxtADJOpglGJHUDLoUW28z0UQCuHFtnO9/4/XwfOGVHaF0AAAAAAAAAJQM07TtGRXAFAD5wzorT3HECJ0t7gC1MVQJXUCWgibANAx7q4jQbwBkDOqs/VViwWQHlYqDXNuw1A4L4OnDOi9j+1pnnHKboMQE+vlGWI4wxAhA1Pr5TlCkByio7k8p8AQJayDHGsSxBAcRsN4C2Q+z8FxY8xdy0hQI51cRsNAC5AsAPnjCgtE0Akl/+QfnsNQD2bVZ+rLRBAhslUwaikDEAEVg4tsp3yPzMzMzMzsxFAUdobfGGyBkBX7C+7J48RQAAAAAAAAA9AeqUsQxzr/z8J+aBns+oHQG3n+6nx0hdAw9MrZRkiE0CneccpOpIDQOqVsgxxbBVAAAAAAADAEkCX/5B++7obQFR0JJf/UBJAAAAAAACACUCgibDh6RUBQDMzMzMzsw1AOdbFbTSA/j+gibDh6ZUDQIQNT6+UZR5ALGUZ4lgXB0DDZKpgVFIYQO0NvjCZqghAaCJseHql7D+GyVTBqCQXQHS1FfvLLhVAHOviNhpACECX/5B++zoFQOoENBE2PAdAnl4pyxDHDkB88rBQaxoDQOQUHcnlP/8/JXUCmggbCkAc6+I2GkAOQJayDHGsiwJAodY07zhFAUD99nXgnJEVQGkAb4EExQJAMnctIR/0CUCsi9toAO8VQO7rwDkjSv8/2c73U+PlFkBxPQrXo/ADQDY8vVKWgSBACfmgZ7NqBkAAkX77OnAXQFpkO99PjQRAAAAAAAAADkAAAAAAAAADQDSAt0CCYgJAx7q4jQZwEkBn1edqK7YSQNBE2PD0ygtAE/JBz2ZVAkDMf0i/fZ0QQAAAAAAAgBFA9wZfmEyVBkAAAAAAAAAQQOhqK/aXXQNAih9j7lrCD0DVCWgibHj2P6d5xyk6kvY/iPTb14FzCUCMuWsJ+SANQGZmZmZm5gFAl/+Qfvs6AkAAAAAAAIADQAAAAAAAAAVAoImw4elVFEDwp8ZLNwkGQACRfvs6cABACKwcWmS7DEBZF7fRAF4SQIZa07zjlAFARUdy+Q9pA0DmP6Tfvk4RQMWPMXctoQ9A7zhFR3J5F0DkFB3J5T/0P9c07zhFRwhAAAAAAACAEkBb07zjFF0TQE+vlGWIYwhA2c73U+MlGUBm9+RhodYDQAAAAAAAABZAhslUwagkCUBGJXUCmggNQOLplbIMcf4/tFn1udqKFEAyVTAqqZMIQFvTvOMUHQpA2PD0SlmGEkC+MJkqGJX0P6OSOgFNBBFA3EYDeAvkEEB/arx0k1gUQBpR2ht8YQhA7lpCPugZGkCYTBWMSmoOQDnWxW00gPs/E/JBz2bVDUCneccpOpILQNobfGEyVfM/coqO5PKfBEA730+Nl+4EQF8pyxDHuhhArthfdk9eEEBLWYY41kUMQIbJVMGopABArK3YX3ZPAEAJ+aBns+oLQO0NvjCZqgRA8fRKWYb4GEAAAAAAAEASQFg5tMh2vg9AT6+UZYjjDECKH2PuWgIWQDXvOEVHMhJADk+vlGUIHUAAAAAAAAADQGKh1jTvOAhAejarPlcbFEDkg57Nqk8aQNZW7C+7J/U/ylTBqKRO/D/3Bl+YTNUSQJyiI7n8xxhAMlUwKqmTCEA9m1Wfq+0SQEXY8PRKmRlAV1uxv+yeBUDbiv1l9+QOQNO84xQdSQZABhIUP8bcAUCFfNCzWXURQDy9UpYhjv8/LNSa5h2nGEDeAgmKH2MBQH/7OnDOCAFAbqMBvAUSFEDhC5OpgtEFQLraiv1lNxVAtaZ5xym6C0BfKcsQx7oVQJkqGJXUiQxAofgx5q6lB0Byio7k8h8JQJM6AU2EDf0/MzMzMzMzAUA0gLdAgqIVQOY/pN++zhNALbKd76fGEEADeAskKH75P+QUHcnlP/k/mSoYldQJFEDjpZvEILAVQH3Qs1n1+SBAcvkP6bevFUCOdXEbDeATQI51cRsNYApAT6+UZYjjEEA2zTtO0VEaQJqZmZmZGQxA7MA5I0r7EEBYqDXNO44SQNZW7C+7ZxZAFvvL7slDEkCC4seYu5YcQOSDns2qDxBAejarPlfbAUAAAAAAAAAMQAn5oGezKhJAl/+Qfvs6CEBmZmZmZuYDQH2utmJ/WQdAmSoYldQJAEBXW7G/7F4ZQKyt2F92zyVAzczMzMzMBUDHuriNBvAPQE+vlGWI4wtAt9EA3gIJAEASFD/G3DUUQL6fGi/d5BJAAAAAAAAAEEA/NV66SQwAQJ5eKcsQRwNA1QloImx4BEBeukkMAuslQM3MzMzMjBBAAAAAAACAEECMuWsJ+SAIQCZTBaOS+h1Af/s6cM4IAEB9rrZif9nwP86I0t7gCxhAPZtVn6utEkD3deCcESUUQGUZ4lgXtxRAZmZmZmbmB0Bm9+RhoRYQQB3J5T+k/ydAE/JBz2ZVBUDl0CLb+T4aQIEmwoan1wdATRWMSupEEECsrdhfdk/8P+5aQj7oWRhATtGRXP5DH0Bj7lpCPmgEQAU0ETY8/RhAnKIjufwHAUCWIY51cZsQQC1DHOvitgxA93XgnBElBEB/+zpwzggLQGKh1jTvOPQ/AAAAAAAAC0DWVuwvu+cYQM4ZUdobvBxAEhQ/xtxVJ0DFILByaNEQQBBYObTIdglAE/JBz2ZVB0C94xQdySUUQJqZmZmZGQ9ApU5AE2FDCUCamZmZmVkSQFvTvOMUXRFAxf6ye/JwEEDqBDQRNhwjQDy9UpYhDgpAAAAAAACAE0C1pnnHKXoVQM3MzMzMTBFA2ht8YTJV+j9+HThnRCkQQFmGONbFbf0/AAAAAAAAC0DqBDQRNvwZQOxRuB6FaxJAFK5H4XoUHkC5jQbwFkgGQGQ730+NlwtAnl4pyxBHAUBmZmZmZiYSQNxGA3gLJBBAWvW52op9DUCWIY51cRsTQAAAAAAAAAVAzczMzMzM+z/Mf0i/fZ0NQFUwKqkTUAFAWKg1zTuOEUCHp1fKMkQLQNQrZRniGB9A9wZfmEyVEECDUUmdgGYZQAn5oGez6ghAmpmZmZmZCkDHuriNBrAQQBPyQc9m1QhAv30dOGfEB0AAAAAAAAATQKmkTkATYQRAeVioNc27DkBvEoPAymEWQCKOdXEbDR1A1JrmHadoD0Bn1edqK3YGQAKaCBue3hRAjLlrCfkgFECoV8oyxLEVQPT91HjpphRA+8vuycNCD0COdXEbDeD9P8sQx7q4TRVAW7G/7J58E0COdXEbDWAFQL8OnDOitAFATRWMSupEEUDOGVHaGxwkQOSDns2qTxRAofgx5q4lCECqglFJnUAVQHNoke18/ypAtMh2vp/aGEDNzMzMzMwMQPYoXI/C9QpAzczMzMxMDUCxUGuadxwCQDMzMzMzMw5AQj7o2ay6IECsi9toAG8IQBSuR+F6VBdAjnVxGw1gEkCX/5B++7oDQH2utmJ/WQRAr5RliGOdJkBYObTIdv4UQNJvXwfOGR9A/tR46SaxDkCfzarP1dYqQI51cRsN4AZAAAAAAACABEAtsp3vp4YUQC1DHOviNgpAAiuHFtnODkDEQq1p3nH2P5qZmZmZmRFA24r9ZfdkB0AAAAAAAAANQC1DHOvitgxAufyH9NtXCEBCPujZrPoRQGrecYqOZBJADXGsi9uoEkAAAAAAAAD+PyV1ApoImw5AOwFNhA1PFUBq3nGKjqQRQHKKjuTynw1AbxKDwMohDUDOqs/VVuwQQFRSJ6CJMBBAmSoYldQJDUBVMCqpE1ACQGkAb4EExQhAzqrP1VbsC0APnDOitHcUQCfChqdXSg5AP8bctYQ8FkCU9gZfmEz6P+oENBE2PAJA3pOHhVqTEEAdyeU/pB8bQGKh1jTvuANAak3zjlN0DkDjx5i7llAUQH/ZPXlYqApAOGdEaW9wFEC0yHa+n5oDQDvfT42XrhJAysNCrWneAUAkl/+QfnsMQNXnaiv2lxJAowG8BRLUEEB4CyQofowNQL1SliGOdQRAE/JBz2bVCUA2zTtO0REAQG3n+6nx0gNAxEKtad7xA0C6awn5oOcQQGrecYqOpBFAY3/ZPXm4J0BmZmZmZmb/P9Sa5h2n6AtAzczMzMzMC0CvlGWIY90JQHbgnBGlPRRAjnVxGw2gEEBMN4lBYGUEQMHKoUW2cwdAp3nHKTqSDEDek4eFWtPwP1jKMsSxLvg/ejarPlebJUBEi2zn+ykAQJtVn6ut2ApAUPwYc9cS/D+JQWDl0GIYQGfV52orthpAbcX+snvyCUAAAAAAAAAIQBzr4jYawAhAmN2Th4Va8z/Oqs/VVmwQQJLLf0i/3SBAH/RsVn0uAEB4eqUsQxz/P8RCrWnecQxA7Q2+MJmqDkB/2T15WCgOQAAAAAAAgBFA1sVtNIB3EEDQs1n1uRoWQEoMAiuHVh5Asp3vp8YLGEDOqs/VVuwJQGTMXUvIhxFAQs9m1efqBEBPr5RliKMRQO0NvjCZKg1AejarPldb+D8T8kHPZtX4P55eKcsQxwxAzczMzMzM+D+KsOHplbIGQILix5i71hZADi2yne+nAUC8BRIUP0YEQCUGgZVDiwtA5j+k377OFEAAAAAAAAALQC1DHOvitgZAMzMzMzOzCUDNzMzMzMwKQAAAAAAAABhAYHZPHhZqDkBiodY07zgJQOauJeSDngFA/Knx0k3iGUCamZmZmZn7P7snDwu1JgxA16NwPQrXBUAAb4EExQ8XQKhXyjLE8RJAjnVxGw1gAUB7gy9MpgoKQGN/2T15WAhAYqHWNO+4BUAAAAAAAAAGQHDOiNLeYAxAzO7Jw0KtA0BmZmZmZmYCQBsv3SQGwRxAxEKtad5xGkDTvOMUHckGQKmkTkATIRRATRWMSurEEUByio7k8h8BQNuK/WX3pBZAPujZrPpc+D9WDi2yne/9P7bz/dR4aQpA1JrmHafoB0D3deCcEaXrPwn5oGez6hBAYqHWNO84EUD3Bl+YTNUSQAAAAAAAgA1ARpT2Bl9YFUCbVZ+rrdgPQNQrZRniWPA/EoPAyqFF/D8IPZtVnysMQGZmZmZmZv0/f2q8dJMY8T8AAAAAAIAEQAu1pnnHaRBAyXa+nxov9z+YbhKDwEoMQBzr4jYawAZAL90kBoHVF0DzjlN0JBcZQGZmZmZmJhJAtvP91HhpDUADCYofYy4UQPrt68A5I/g/D5wzorQ3DkCamZmZmTkgQOVhodY0bwZAJlMFo5I6D0CneccpOhILQKvP1VbsrwJAgSbChqcXEECsi9toAO8LQBzr4jYawAJAtMh2vp/aG0AJ+aBns+oOQCBj7lpCPg9AxSCwcmhRE0Dc14FzRtQYQH2utmJ/2RRAXI/C9ShcB0DNzMzMzMzyP1uxv+yePAVA6pWyDHEsAUAAAAAAAMATQCQofoy5qxRAokW28/1UGEDysFBrmvcdQJ/Nqs/V1iBA4JwRpb2BHEDtDb4wmaoJQAAAAAAAAABAOUVHcvkPEUCoV8oyxPESQE9AE2HD0x5Ac2iR7Xw/FEAAAAAAAAAPQJLLf0i/fQVAAAAAAACAEUDOqs/VVuwCQM6qz9VWbA5AMzMzMzOzBEAg0m9fB44QQDJ3LSEf9ANAjnVxGw3gDUAqOpLLfwgTQMe6uI0GcANAGXPXEvLBCkAtQxzr4rYEQPwYc9cS8gRAlWWIY13c9z8tQxzr4jYQQHBfB84ZERBAAAAAAAAABEASpb3BF6YRQH2utmJ/WQpAutqK/WX3+j+OdXEbDSAQQLwFEhQ/RhdANV66SQxCJEAtsp3vpyYgQKd5xyk6kgVAAAAAAACAD0BVwaikTmAiQGZmZmZmZghAlrIMcazLEkDHuriNBvASQJzEILByKBZAIEHxY8xdFUDecYqO5LIZQNxoAG+BxBlAnl4pyxDH9z83iUFg5VAJQAAAAAAAAB5Asp3vp8aLFECOdXEbDSATQGrecYqOpBFA/tR46SaxBUC/DpwzojQJQHxhMlUw6hpAguLHmLsWCUAtQxzr4rYGQPvL7snDwhJALGUZ4liXI0AT8kHPZtX+P/yp8dJN4gJAl/+Qfvs6AkCeXinLEMf5PwAAAAAAAPo/9wZfmExVEEDFILByaFEQQE0VjErqBP8/B84ZUdqbAkDNzMzMzMwEQPFjzF1LyAxARdjw9Eq5IUBos+pztZUFQPkx5q4lZAZAgEi/fR048z+ZKhiV1IkGQEtZhjjWBRBAmpmZmZmZCUCjkjoBTUQTQNejcD0K1xFAR3L5D+m3CkAyVTAqqRMCQHBfB84ZUfk/+n5qvHQTGEB6Nqs+V1sJQIZa07zjFBdAaJHtfD81A0A0gLdAgmIEQNuK/WX35Pk/mpmZmZkZEUD8qfHSTSIYQFmGONbFbQRA0SLb+X5q/j8AAAAAAAAHQAfOGVHaGwBA2ht8YTJV/D96Nqs+V9sIQCsYldQJKBNAUiegibAhEkCBlUOLbOcWQKkT0ETYMBtAWKg1zTtOE0CvJeSDns0bQAAAAAAAgAFAp+hILv+hFkD3Bl+YTJUJQO0NvjCZKgBAtaZ5xym6AkC5jQbwFkjxP40o7Q2+sBhArkfhehSuAEDTvOMUHUkRQFmGONbF7Q1AqvHSTWJQFkAibHh6pWwUQPcGX5hMlQlAH4XrUbgeD0DTTWIQWDkaQPT91HjpJgdAzF1LyAcdJkA5RUdy+Q8QQDnWxW00wB5A8IXJVMFoEUAAAAAAAAAHQLraiv1ldwRAHThnRGmvH0CqYFRSJ6D6P0ymCkYl9QlAAd4CCYrfF0Di6ZWyDHHuP9obfGEyVfk/escpOpLLA0BZhjjWxW0MQBIUP8bcNQhAAAAAAAAADEAAAAAAAMARQAAAAAAAgAxAl/+Qfvs68T90JJf/kD4RQOY/pN++DhBAMzMzMzOzEEDqBDQRNjwLQAdfmEwVjAxApgpGJXWCH0Du68A5I8oCQABvgQTFDxFAJCh+jLlrCUDqBDQRNjwTQAn5oGezqhNAUWuad5xiHUDqBDQRNjwZQDJVMCqpEwVAwTkjSnuD+j+28/3UeGkGQPAWSFD8mAZAETY8vVKWAEBIv30dOOcFQE+vlGWIY+8/p3nHKTqS/z/7y+7Jw0L7P3KKjuTy3xhA07zjFB3JE0DEQq1p3nEOQNc07zhFBxVAAAAAAAAACkD99nXgnJEMQP8h/fZ14P8/AAAAAAAAFEB4CyQofgwBQFmGONbFbQ5AdZMYBFYO8z/3Bl+YTNURQDj4wmSqYAtAjErqBDSRA0BKDAIrh1YVQIv9Zffk4QhAOUVHcvlPEUDtDb4wmaoIQGTMXUvIBwdAd76fGi9dCkCoV8oyxLEKQB+F61G4Hg5AE/JBz2bVDEDDZKpgVBIRQET67evAORVA7Q2+MJmqAkDT3uALkykUQAK8BRIUvwVAq8/VVuyvFUDqBDQRNjwCQLWmeccpOghAKxiV1AnoE0Cq8dJNYpABQM3MzMzMzAlA07zjFB3JAEAg0m9fB84MQGZmZmZmZvY/CfmgZ7MqEEBDHOviNtoUQMxdS8gHPQ1AqMZLN4lB/z+GWtO84xT5P451cRsNAC5AYqHWNO84BkDdJAaBlUMSQGRd3EYD+BJAAAAAAAAA+z/tDb4wmSoBQO0NvjCZqgtAvw6cM6L0GEBmZmZmZiYTQB04Z0RprxBA7Q2+MJkqCkCvlGWIY90TQDVeukkMgg1AhslUwagkCEAAAAAAAAAMQJ/Nqs/V1gJAAAAAAAAACECzDHGsi9v3P5yiI7n8xxBACtejcD0KF0CxUGuadxwJQF8HzhlRWg9APZtVn6stFkCOdXEbDWAMQHEbDeAtMCVAT6+UZYhjEUA9LNSa5p0VQKAaL90khgFAfT81XroJFUBkO99PjZfoPwAAAAAAgAlAW9O84xRdEUC+wRcmUwULQMrDQq1pXgJAVHQkl/8QBkA5RUdy+c8RQME5I0p7gwhAH/RsVn2uAkDbiv1l96QdQOCcEaW9ARlAK/aX3ZOH+j87cM6I0t4GQMbctYR80BBA2c73U+PlGUBjf9k9eVgAQMiYu5aQD/c/coqO5PIfBkBn1edqK/brP1OWIY518QFA7uvAOSNK9z82PL1SlqEJQNUJaCJseAtAVp+rrdhf/z8GgZVDi6wiQPVKWYY41gBA9ihcj8J1EkCk374OnLMWQGRd3EYDuBBAKxiV1AnoDEA1XrpJDALrP9cS8kHP5htAAAAAAAAAHkDV52or9pcQQLgehetRuBBA2IFzRpT2DEBVMCqpE1AFQBe30QDeAhdAIEHxY8wdFkDHSzeJQWAbQDMzMzMzswVAOGdEaW+wFUDmriXkg570P+PHmLuWkPY/io7k8h/SAkCxv+yePCwOQM3MzMzMzAlANIC3QIIiEEC1pnnHKToEQPwYc9cS8gJACfmgZ7PqB0CkcD0K1yMVQAAAAAAAgBBAYqHWNO84C0BhVFInoEkUQBzr4jYaQA5AAAAAAAAACEAtQxzr4jYEQBlz1xLywRFAzH9Iv32dEUAU0ETY8PQIQEATYcPTaxxAAAAAAACAE0BGlPYGXxgEQBzr4jYawAJAGQRWDi0yEEA4+MJkqmAFQF8HzhlRWhNAF0hQ/BjzCkAhsHJoka0UQL8OnDOitAJAAAAAAAAABEDHuriNBvAQQEI+6Nms+hBA/tR46SaxD0B3vp8aL90DQJqZmZmZmQJAmpmZmZmZ+z8rGJXUCWgTQCv2l92ThwFAlkOLbOd7EkDKMsSxLi4pQLMMcayL2/I/AAAAAACAE0DKVMGopE7+P9nO91PjpRFAgnNGlPYG+z/vycNCrekHQIlBYOXQIgdAZapgVFInAUCamZmZmRkJQHUCmggbnhBAUrgehetRGkBKDAIrhxYBQNobfGEyVfc/2c73U+MlBEDtDb4wmaoCQJqZmZmZmfs/zczMzMzM+T/tDb4wmaoAQJkqGJXUiQpAAAAAAACADECR7Xw/NV7wP6hXyjLEcRNAiUFg5dCiCEBqvHSTGAQEQM6qz9VW7BJAnKIjufwHDECamZmZmRkTQBE2PL1S1hpA07zjFB1JEEC28/3UeGkPQLivA+eMKP0/7MA5I0p7D0AhH/RsVj0UQG3F/rJ78gJArWnecYrOE0CzDHGsixsVQJqZmZmZGQlAZ9Xnait2BEDxY8xdS4gTQFmGONbFbf4/zhlR2hv8E0B6pSxDHGsDQM9m1edqKxlAV1uxv+xeEUCX/5B++zoFQM3MzMzMzA1AO3DOiNLeCUBfKcsQx/oaQMPTK2UZ4vs/3nGKjuQyFEBRa5p3nKIXQI/C9ShcjwxACmgibHh6AkDgnBGlvUEIQCPb+X5qPAxAHVpkO99PF0Cx4emVsowIQJCg+DHmrhBAZmZmZmZmA0DJdr6fGq8OQJ7vp8ZL9xZAPL1SliGOCEBpAG+BBMUEQMrDQq1p3gVAE/JBz2ZVCUCDL0ymCkYVQDQRNjy90hpAPE7RkVx+DkDFILByaBEOQM3MzMzMTBJABFYOLbIdCUBbsb/snrwDQHUCmggbnhBAjnVxGw1gA0CcxCCwcugAQIV80LNZdRJAVHQkl/8QDECV1AloIuwXQKyL22gArxlAEFg5tMh2B0ADCYofY+4LQIbJVMGoJAlAN4lBYOVQB0CpE9BE2PAlQCcxCKwc2gpAa5p3nKIjH0BiodY07zgSQH0/NV66iRRAxEKtad5xDECtad5xio4MQKd5xyk6kgZA5IOezarPBECsi9toAO8CQBdIUPwYcwdAw9MrZRliGkDJdr6fGs8gQBb7y+7JwwtAqFfKMsSxE0A+6Nms+lz6P+5aQj7o2QlAuB6F61G4A0BPr5RliOMQQGEyVTAqKRZAE/JBz2ZVAkCYTBWMSioWQF1txf6ye/I/OGdEaW9wAEDHuriNBvASQLprCfmgJxVAgZVDi2wnFkAZBFYOLTIEQLwFEhQ/xhZADJOpglFJ/D8MAiuHFlkPQCKOdXEbjR1AZmZmZmZmDkCcxCCwcigSQPkx5q4lpBNAOGdEaW9wC0BLyAc9m1XpPxdIUPwY8wlABcWPMXetBEA7cM6I0l4FQO0NvjCZKg9AOUVHcvmPFkAVjErqBHQYQCxlGeJYFwVAMzMzMzOzAkCOdXEbDWAIQDlFR3L5jxFAgQTFjzE3IEAAAAAAAIABQFuxv+yevAZAAAAAAACAD0CWIY51cVsRQBSuR+F6lAFARdjw9EpZC0A51sVtNID/Pxe30QDeggFAAAAAAAAACECq8dJNYhAaQLWmeccpuhFA9ihcj8L1DECPwvUoXE8gQIBIv30dOBxAf9k9eVgoBUCze/KwUOsHQM07TtGRXCJAjnVxGw3gEUAT8kHPZtUEQGZmZmZmZgtATKYKRiU1FEBX7C+7Jw8KQNejcD0KVxNA3NeBc0aUCEDhC5OpglEAQC1DHOviNghAWMoyxLEu/D+WIY51cVsRQAAAAAAAgABAAAAAAACADUAAAAAAAAAPQOQUHcnlvxRAnl4pyxBHE0AtQxzr4jb0P2pN845TdA5AjnVxGw1gAUBPr5RliOMHQBzr4jYawApA5BQdyeV/FUADCYofYy4TQD55WKg1zQ1AAAAAAAAAA0C0yHa+n5oEQAAAAAAAAANAMuauJeSDBUBiodY07zgQQKVOQBNhQw9AC7Wmeccp+z8AAAAAAIAQQIV80LNZNRBAw9MrZRliDUC6awn5oGcRQCuHFtnOdxpATRWMSupEEkBqTfOOU/QSQD55WKg1jRFA1zTvOEUHEEDtDb4wmaoIQA3gLZCgeBpAS1mGONYFEkC62or9ZXcFQJkqGJXUCRVApU5AE2FDEECneccpOpIKQHKKjuTynwtAFK5H4XoU/z+tad5xig4FQGfV52or9hJA5WGh1jQvE0BaZDvfT43/P/cGX5hMFQRAdLUV+8tuC0CneccpOpIKQHicoiO5fAlA7MA5I0o7EED3Bl+YTJUTQA1xrIvbaPw/taZ5xym6BECJ0t7gC9MQQGTMXUvIBwRAwTkjSnvDFUAzMzMzM/MRQDtwzojSXgtAseHplbIMBEBMpgpGJXUGQB+F61G4Hvo/AAAAAABAEEAtQxzr4rYGQFmGONbFbQ1AAAAAAAAAKUAAAAAAAAAJQNcS8kHPphJAAAAAAAAA/j/jx5i7lhAYQIY41sVtNANAAAAAAAAA8z9mZmZmZmYCQL8OnDOitAtA1QloImw4FkAawFsgQbETQMpUwaikTvk/46WbxCCwFUAc6+I2GkAKQPKwUGuad/0/xSCwcmiR8z+KH2PuWkIJQGiR7Xw/tQBAXI/C9SgcFkBYqDXNO84CQAAAAAAAQBNAVHQkl/8QA0CzDHGsi9v6PwAAAAAAgAlAqFfKMsSxBEAkKH6MuWsFQNjw9EpZBhRACRueXinL+T/TvOMUHcn2P2Rd3EYDOBBAfdCzWfW5CUAtQxzr4jYBQDSitDf4wghAuECC4se4IEBDHOviNtoZQCv2l92TBwFAofgx5q6lC0B/2T15WKgGQMWPMXctIfo/l/+Qfvs6C0BqTfOOU3QQQDj4wmSqYCBAm1Wfq63Y9D+QoPgx5u4QQMgHPZtVHwJAxSCwcmjRGEBWDi2yne/7PxPyQc9mVQhAjnVxGw3gAEAqqRPQRJghQAkbnl4pCxNAl/+Qfvs6/T8AAAAAAMAQQHo2qz5X2wVA5x2n6EiuBkDuWkI+6NnxP3o2qz5X2wlA3NeBc0aUEEAAAAAAAIAHQKOSOgFNBBBAAAAAAAAADkBpAG+BBMX9P/hT46WbRBdA8KfGSzcJAkDVCWgibHj+PzJ3LSEfdApAFYxK6gQ0AkAAAAAAAIAIQH4dOGdEKRVAMlUwKqkT+z8AAAAAAIARQEI+6NmsegJAAAAAAAAAEUB6Nqs+V1sEQAAAAAAAgAZAE/JBz2ZVBUCX/5B++zr7P7Kd76fGS/o/mSoYldSJAEAAAAAAAAAHQCL99nXgHBFAZ9Xnaiv2AEAJih9j7poQQLhAguLHGBVAq8/VVuyvDEDtDb4wmaoCQHe+nxovXQZA/tR46SaxB0A7AU2EDU8VQJ5eKcsQRwdAVg4tsp3vFEA2zTtO0REQQHKKjuTynw1A9ihcj8L18D/M7snDQi0BQLPqc7UVOxBAnDOitDf4AkBGlPYGXxgGQN21hHzQMwhAzczMzMxMBkBPr5RliGMGQBzr4jYawApAm1Wfq63YDED+ZffkYaEQQGKh1jTvuBJAJuSDns2q/j8nwoanV0oJQMpUwaikThtAqz5XW7F/F0ASpb3BF6YVQAisHFpkuwBAOdbFbTSA8z+xv+yePGwUQGZmZmZmZgJAbjSAt0CCH0DwFkhQ/FgVQOC+DpwzogVAmpmZmZnZH0COdXEbDQAuQLsnDwu1JgVAzczMzMzM/z/3Bl+YTJUMQDxO0ZFcvhVAy6FFtvM9E0BO0ZFc/gMQQOqVsgxxLBdATRWMSuoE9z9ZhjjWxe0HQLWmeccpughARiV1ApoIBUCneccpOpLtP1CNl24SAxdAyXa+nxqvA0Db+X5qvLQWQDJVMCqpkxJAAAAAAAAACkCOdXEbDQAuQAHeAgmK3xdAJXUCmgibG0BmZmZmZmb0Pz2bVZ+rbRFAt2J/2T35EEDA7J48LJQaQBb7y+7JwwBAak3zjlN0BEAT8kHPZlUCQIbJVMGoJAxAZmZmZmZmAkCu2F92Tx4NQHUCmggbHhNAdnEbDeAt/z/HuriNBnANQFpkO99PjQ1AObTIdr4fDkB6Nqs+V1sDQNSa5h2nKBVAGJXUCWjiHEBqTfOOU3QRQIenV8oyRABAH4XrUbheFkB0RpT2Bh8SQIlBYOXQog9ARpT2Bl8YCECF61G4HgUQQPcGX5hM1RFAtRX7y+5JBUAT8kHPZlUNQDsBTYQNjxFAayv2l90TEEAAAAAAAAD8P0tZhjjWBRZAZvfkYaEWFkCeXinLEMcBQGpN845T9AdA1zTvOEVH+j+wA+eMKC0QQMIXJlMFo/M/S1mGONbF7T+x4emVsgwFQPvL7snDQvs/9wZfmEyVDUClTkATYcMSQFioNc07ThNA16NwPQrX+T/TvOMUHUkRQBzr4jYaQAZAak3zjlP0EEASFD/G3DUFQAAAAAAAgAlA93XgnBGlDEA8vVKWIY4AQMNkqmBUkiJAMlUwKqmTAkBQ/Bhz19ITQKfoSC7/IRJAOUVHcvkPCEDgnBGlvYEZQGWqYFRSpwJAAAAAAAAAEUCamZmZmZkBQPLSTWIQWA1AHOviNhrAD0BVwaikTsAUQGpN845TdP4/5q4l5IOeCkC28/3UeGkNQEVHcvkP6RRAAU2EDU8vFEBmZmZmZmYOQEHxY8xdSwRAJJf/kH77GEAc6+I2GkAPQAAAAAAAAPg/E/JBz2ZVCECpE9BE2HAXQMHKoUW2cw5AduCcEaV9FUC4HoXrUTgQQABvgQTFDwtAAAAAAACADUBF2PD0StkLQK5H4XoULhdA3gIJih8jF0DnHafoSC4TQAAAAAAAABBAfPKwUGsaDECTqYJRSR0CQJM6AU2EDQVAAAAAAABAE0BQjZduEsMSQMrDQq1pXghAe4MvTKYKE0AzMzMzM7MQQMrDQq1pXg1AUPwYc9fSEEAU0ETY8PQfQAK8BRIUP/Y//yH99nUgGUCsrdhfdk/9P4bJVMGoJAJAF0hQ/BjzAkAWak3zjjMkQJMYBFYOLf0/yXa+nxovFUDKw0KtaV4JQFCNl24SAwZA9wZfmEwVEUBWn6ut2F/8PzlFR3L5DwpAOUVHcvmPDkB/+zpwzggGQCZTBaOSehZAsb/snjwsCEAOvjCZKpgCQDnWxW00gPc/l/+Qfvs69T+Hp1fKMkQJQC1DHOvitg1A4zYawFtgJEDEQq1p3jEVQAu1pnnHKfk/JLn8h/Tb/z8/V1uxv6wSQGpN845TdA5ACmgibHj6BUD7XG3F/rL0P5VliGNd3BhALUMc6+I2EUCfq63YX7YUQP2H9NvXQRdAHOviNhpABUDcRgN4C6QTQMl2vp8arw5ApgpGJXWCA0BDrWnecYoLQATnjCjtjQ9Ap3nHKTqSCkBaZDvfT40DQLUV+8vuyRFACRueXimLEEAnwoanV8r8PzY8vVKWIfM/9wZfmExVEEC7uI0G8JYEQDSAt0CCYgxAFK5H4XoU+D8u/yH99nX9PwAAAAAAAABAiUFg5dCiBEDtDb4wmSoEQC9uowG8hRZAZ9Xnais2EUBVwaikTgAZQOC+DpwzogFAVg4tsp3PI0CjkjoBTUQTQGUZ4lgXtxRAbcX+sntyBEA9m1Wfq60RQM4ZUdobfA1APE7RkVy+E0AAAAAAAAAQQHBfB84ZURZAryXkg57NAUAPC7WmeQcWQBQ/xty1hANAAAAAAAAA+j+u2F92Tx4YQNO84xQdSRJAx7q4jQbwCkBVMCqpE9APQBzr4jYawANAoImw4elVHUBqTfOOU3QEQOC+DpwzogpAzczMzMzMEkA3iUFg5dABQATnjCjtDQNAGeJYF7cRHEDf4AuTqUIQQCv2l92Thw5Ak6mCUUldEEA7cM6I0l4EQJyiI7n8h/8/jnVxGw3gB0Ct+lxtxX4VQFUwKqkTUA5AxSCwcmgREUBPr5RliOMSQDPEsS5uIwBAnl4pyxDH+T+KH2PuWoIcQAAAAAAAABBAsAPnjChtA0A2qz5XW7EZQMbctYR8kBZAVTAqqRPQCUA0gLdAguIQQNO84xQdiRFAUrgehetRDUCWsgxxrIsLQI51cRsNIBBAidLe4AtTE0Bg5dAi2/kUQHL5D+m3r/g/Z9Xnait2BUAT8kHPZlUNQE3zjlN0JPs/J6CJsOHp+z8tQxzr4nYRQATnjCjtDRVA4QuTqYLRAkBiodY07zgIQDlFR3L5TxFAeVioNc07AUA8TtGRXL4XQAn5oGezaghAmpmZmZkZBEDNzMzMzMwMQGfV52or9vo/fh04Z0QpEEDlYaHWNK8TQOcdp+hIrhRAwcqhRbZzDUAZBFYOLfIZQBfZzvdToxlA/Bhz1xKyEECCc0aU9sYYQHNoke18vxhAAAAAAAAA9j9t5/up8dL+Px+F61G4nhhA93XgnBGlBkBrmnecoiMBQL8OnDOitA9AUkmdgCZCC0BseHqlLIMYQGZmZmZm5gJAmpmZmZmZEUBX7C+7Jw8EQGZmZmZmZgNAnKIjufyHBECgibDh6dUYQFdbsb/sHhhAQxzr4jYa+D85RUdy+Q8QQLMMcayL2/w/cF8HzhlRFUD3Bl+YTJUJQPCnxks3iQhA4C2QoPgxAECTOgFNhI0IQBzr4jYaQAdA/Knx0k1i/z9mZmZmZmYSQEJg5dAi2/o/OdbFbTSA9D+zDHGsi9v+Pwn5oGezqhJAfa62Yn/ZBUAHzhlR2psCQFR0JJf/kAZAvAUSFD9GEEC5/If021cKQOC+DpwzIgdAguLHmLuW6D+h+DHmrqURQN21hHzQ8xJAIEHxY8xdBkBb07zjFL0hQBIUP8bcNQRAejarPlfbCUA+eVioNc0IQAAAAAAAgBBA07zjFB3JEkBdbcX+sjsTQJ5eKcsQxwhAAAAAAAAAC0BNhA1Pr5QFQCsYldQJKBBAvJaQD3r2FkAAAAAAAAATQP32deCckQNACfmgZ7NqAUARNjy9UlYaQKW9wRcmUw9AKjqSy3+IEECh+DHmriUFQMgHPZtVXxBAP8bctYR8+z+1N/jCZCoXQM3MzMzMzAxAdLUV+8vu+j/caABvgUQVQBPyQc9mVQVAMlUwKqmTAkBVMCqpE9AFQH/ZPXlYKA1ALUMc6+I2BEDqBDQRNjwOQBsv3SQGwRhAcF8HzhlRDUA0ETY8vdIKQDJVMCqpE/w/7Q2+MJkqBUB7FK5H4XoWQO84RUdyeRtAXwfOGVHaBUDzH9JvXwcfQE7RkVz+wxJAjnVxGw1gEEBMN4lBYGUNQKpgVFInoPw/XI/C9ShcB0CvJeSDns0gQI51cRsNAC5AZmZmZmbmDEBjf9k9eVgBQF8HzhlR2gJAUiegibChE0CneccpOpIPQMWPMXctoQ5AHVpkO99PJEBCPujZrPoKQEoMAiuHlg5AexSuR+F6BEBNFYxK6gT7Pyh+jLlrCR1AdnEbDeCtFEAeFmpN847wP/cGX5hMlQhAK/aX3ZMHAUD3deCcEaUIQAIrhxbZzgdATYQNT6+U+z+OdXEbDeAFQDMzMzMzswhAtoR80LMZH0ClLEMc6yIRQKCJsOHplQlACfmgZ7PqBEArGJXUCSgUQFuxv+ye/BlAEHo2qz5XDEDSAN4CCYr3P0mdgCbChv8/4C2QoPixG0B1ApoIGx4IQMDsnjwsVABAHHxhMlUw+z/c14FzRhQKQNO84xQdyfg/V+wvuycPCUAzMzMzMzP7P3uDL0ymigFAzqrP1VasFkBn1edqK3YRQGkAb4EERRxAKxiV1Alo+j8HzhlR2psDQAAAAAAAgA9AjnVxGw0ALkDXNO84RUf9P6JFtvP9lBpAmpmZmZmZBkAJ+aBns+oDQKd5xyk6EgJASZ2AJsIGE0COBvAWSJAWQOauJeSDngZACtejcD0KDUCn6Egu/2EYQPyp8dJNYvU/JXUCmghbGEBdbcX+srsQQM/3U+OlGwhAY+5aQj5oAUAAAAAAAAASQOELk6mCUQRAE/JBz2ZVBkAAAAAAAIASQMPTK2UZIhBAHOviNhpACkBbsb/snjwOQDojSnuDrw9AAAAAAACADECOdXEbDSAQQNxoAG+BhA5AS1mGONZFDUBfB84ZUVoDQBzr4jYawA9ACfmgZ7MqEECWIY51cRsQQBniWBe3URZAguLHmLsWDkDVCWgibPgTQAAAAAAAgAVATmIQWDn0GkA/NV66SQwHQG+BBMWPsQxAzczMzMzMBEBb07zjFB0JQOf7qfHSTQ1AhA1Pr5TlBkDpJjEIrNwRQAAAAAAAAPo/coqO5PKfBkD67evAOSMEQBiV1AloYhhAdnEbDeCtA0AAAAAAAAAWQCGwcmiR7fw/XkvIBz0bAUBPQBNhw9MKQKabxCCwchRAD5wzorQ3DUAT8kHPZlUDQOQUHcnlP/w/AAAAAAAAAUC+wRcmUwX7P/W52or9JRdAApoIG55eEUDIBz2bVR8JQIEExY8x9xBAM8SxLm7jFUCsi9toAO8BQH9qvHST2BNACmgibHj6FEAcfGEyVTARQEOtad5xShFAmSoYldSJA0ASFD/G3DUSQHL5D+m3TyZAE/JBz2bVD0AK16NwPQoMQAn5oGezagpAWYY41sVtC0B0tRX7yy4kQFioNc07TgRA07zjFB1JDkBn1edqK3YPQI51cRsNAC5AAAAAAAAA9z8/NV66SQwOQBWMSuoEdBJAkQ96NqseIEDNzMzMzMwHQHUCmggbnuY/ryXkg55NBUA9m1Wfq+0RQFR0JJf/EAVAjnVxGw1gAkBB8WPMXUsPQKhXyjLEMQlAv30dOGfEG0CqYFRSJ6D/P84ZUdobfBBAjnVxGw3gE0B9rrZif9khQCL99nXgXBRAJlMFo5I6A0DwFkhQ/BgKQC/dJAaBlfw/klz+Q/rtFUBE+u3rwDn8P3KKjuTyHwRAsp3vp8ZLAUCze/KwUOsGQFmGONbFbQFAswxxrIvb/j9/2T15WCgGQCxlGeJYFwVAK4cW2c73/j/mP6Tfvs4RQJXUCWgi7BhAhJ7Nqs+VFUAkl/+QfnsEQDy9UpYhjglAHhZqTfPuIkDTvOMUHUkEQH4dOGdEaR9A8kHPZtUnFECWIY51cVsQQE9AE2HD0w5AqDXNO07R9z8sZRniWFcUQHWTGARWDu8/FK5H4XoUCUCBlUOLbCceQF1txf6ye/w/E/JBz2bV9z+1FfvL7gkYQKRwPQrXIxFAF9nO91MjHUAAAAAAAEASQAAAAAAAAP4/HhZqTfMODECOdXEbDaASQKpgVFInIB9AOwFNhA0PEUBSJ6CJsOEWQAAAAAAAAAJAuY0G8BbICEBq3nGKjmQHQB/0bFZ9rvw/EoPAyqFF/T/SAN4CCcobQGWqYFRSpwBAJuSDns1qH0B/arx0k1gQQAn5oGezaglAPZtVn6utC0DtDb4wmSoHQAAAAAAAgAlAhetRuB6FAUDOqs/VVmwVQEaU9gZfmP4/mpmZmZmZDEAXSFD8GHMMQOqVsgxxLAtAAAAAAAAAAkAc6+I2GsAKQCxlGeJYlwhAW0I+6NmMJUAPnDOitDcPQHbgnBGlvRJAHOviNhrAD0DNzMzMzMz2P2Q730+NVxRAB/AWSFD8HkDtDb4wmaoFQO0NvjCZKghAzO7Jw0ItBUD3Bl+YTBUQQCSX/5B++w1AApoIG57eCECu2F92T14rQFD8GHPX0hhA93XgnBHlEkDLoUW28/0gQC1DHOviNgZAS1mGONbFBUD3Bl+YTNUTQMcpOpLLfyFAUI2XbhIDAUCGWtO849QaQHo2qz5X2wRAPZtVn6ttEUCamZmZmZkMQAAAAAAAAAFAAAAAAAAABEDaG3xhMnUkQFioNc07zhlA16NwPQpXHkAAAAAAAAAIQA8LtaZ5x+k/4JwRpb1BBEBEaW/whUkUQDlFR3L5DxFA9wZfmExVEkDEQq1p3nH/P2ZmZmZmZhFAB1+YTBWM+z/EQq1p3nEBQPOOU3QkVxpANxrAWyCBGUAJih9j7loEQM3MzMzMzAlA7Q2+MJmqDkDOqs/VViwTQAAAAAAAAAtAHOviNhrA8T+7Jw8LtSYJQACRfvs68AFAs+pztRX7GECTGARWDq0MQI51cRsN4AZAmnecoiO56j/AWyBB8SMWQG+BBMWPMRdADk+vlGWoJUDSAN4CCQoOQMRCrWnecQFAAAAAAADAEEAT8kHPZtULQACRfvs6cBdAeVioNc27BkBt5/up8dL8P9obfGEyVfs/C7WmecfpEEDwFkhQ/JgOQEI+6Nms+gpAZmZmZmYmE0CpE9BE2PD+P0Jg5dAieyBAMuauJeSDC0Cmm8QgsHIMQMPTK2UZYhRApN++DpyzDEAdOGdEaW/yP/jCZKpgVBRACRueXikLE0B7FK5H4foeQAAAAAAAAPY/pSxDHOuiEkCamZmZmZkGQGZmZmZm5glA845TdCTXFEAj2/l+anwdQIlBYOXQIgRA7Q2+MJmqC0AAAAAAAIAQQI51cRsNYABAEhQ/xtw1AUAMAiuHFlkRQAAAAAAAAPs/JCh+jLlr+j9pAG+BBMUCQHctIR/07AtA8rBQa5p39j8AAAAAAIAdQPcGX5hMVRJAJuSDns2q+j8ldQKaCBsKQHE9CtejcCFAexSuR+G6GECneccpOpIAQL8OnDOitAhAjnVxGw3gD0Cze/KwUGv7P7mNBvAWCBdA30+Nl26SFED99nXgnBEIQKd5xyk6EgxApSxDHOvi/z+OdXEbDQAuQAAAAAAAgBBAmN2Th4Va+j+xUGuadxwLQCv2l92ThwNAKH6MuWuJDEA8vVKWIY4OQB/0bFZ9LgVAXI/C9ShcCEDdtYR80LMMQI51cRsN4ApAFvvL7snDB0AAAAAAAIANQMbctYR8kBBAejarPlfbIEBmZmZmZuYQQFCNl24SAxdAd76fGi9dD0B/2T15WCgIQIofY+5aQhJAV+wvuycPAEDNzMzMzEwHQLWmeccpug9ASZ2AJsIGEkDBOSNKe0MSQJqZmZmZmf8/93XgnBGlAUAAAAAAAAAAQHlYqDXNOxZAke18PzVe/T/tDb4wmSoIQP5l9+RhIRxApSxDHOuiE0CZKhiV1IkAQEcDeAskqAdAGXPXEvIBHUAAAAAAAIANQI51cRsNIBNAT6+UZYjjEkBZhjjWxW0DQKkT0ETY8ANAhA1Pr5Rl9T8Rx7q4jYYUQBE2PL1SFgBACD2bVZ8rEUA51sVtNIDzP0YldQKaiAVAmpmZmZmZDEDx9EpZhngbQMUgsHJoURJAmpmZmZmZA0DcRgN4CyQYQAaBlUOL7BtAfa62Yn/ZDUDMf0i/fZ0PQDMzMzMzMwdA6gQ0ETY8CkCz6nO1FTskQPvL7snDAhVA6Nms+lztAUBm9+RhodYcQPcGX5hMlRFAxY8xdy0hAEBUUiegibALQLdif9k9eQNAEHo2qz6XEkA1XrpJDEIRQPcGX5hMVRNArrZif9ldJ0CamZmZmZkOQLPqc7UV+xRA5WGh1jQvFEBB8WPMXYsQQMe6uI0G8AdA6Ugu/yF9G0CC4seYu5b8Pxzr4jYawAFA2V92Tx4W+D9UdCSX/xAHQFmGONbFbQZANBE2PL1SCECjkjoBTUQYQKVOQBNhwwhAio7k8h/S+z+MSuoENBH/P6vP1VbsLwRAWYY41sVt/z9ZhjjWxe0HQAAAAAAAgBFAmpmZmZmZEUBEaW/whcn3P/YoXI/C9QhArIvbaADvDkA7cM6I0l4HQNnO91PjJQ1A9wZfmExVE0BLWYY41sUJQMRCrWnecQRAayv2l92T+j/5D+m3rwMDQD/G3LWEfP0/9wZfmExVEkCjAbwFElQRQKVOQBNhQwpA7Q2+MJmqCkCgibDh6ZULQKW9wRcm0xVA2ht8YTJV/j+GyVTBqCQHQAAAAAAAAAtA7uvAOSMKG0Bn1edqK3YbQC1DHOvithFAZ9Xnaiv2A0Ac6+I2GkAPQB+F61G4Hg5A9pfdk4eFCUDOqs/VVuz2PwAAAAAAAAJAAAAAAAAACkCBJsKGp5cRQH4dOGdEafM/1JrmHadoAECoV8oyxPElQAmKH2PuWgdAS+oENBG2FEDD0ytlGeIEQD0s1Jrm3RBAAAAAAAAABkBR2ht8YbIFQPyp8dJNYv4/GlHaG3xhD0CBlUOLbKcRQNxGA3gLJCJACfmgZ7OqEEC28/3UeGkFQDMzMzMzMwxAb4EExY/xFEAAAAAAAIASQD7o2az6XPw/RiV1ApqID0Bn1edqK3YSQKMjufyH9Ps/gLdAguLHB0Cze/KwUOsLQF3cRgN4C/s/mpmZmZlZFkCxv+yePOwgQLMMcayL2/g/E/JBz2bV8D/QRNjw9MoPQGpN845T9AJA9P3UeOkm/z8ukKD4MeYFQBBYObTIdvc/T0ATYcPTD0AAAAAAAAAQQKYKRiV1whdAZDvfT42X/T/TvOMUHUkQQMWPMXctIQRAEqW9wRcmGkCRD3o2qz4bQGKh1jTvOPo/KVyPwvUoBEA5RUdy+Y8OQDtwzojS3iBAzO7Jw0ItDUAH8BZIUHwRQKvP1VbsrwtAYqHWNO84A0BHcvkP6bf6P3PXEvJBzxlALUMc6+I2DEDecYqO5PIHQO0NvjCZKgpArkfhehQuAkDDZKpgVNIPQIlBYOXQogNAOwFNhA0PE0Ai/fZ14DwgQGrecYqOZAhAIEHxY8zdCEAfhetRuJ4AQC7/If32dRZAmpmZmZmZ+z/l0CLb+X4KQE8eFmpN8/M/LUMc6+I2B0A/xty1hHwZQDMzMzMzMwNAqRPQRNjwBkDeAgmKH2MFQH9qvHSTmCFARiV1ApqICUCrz9VW7K8JQJoIG55eKQpAofgx5q4lD0CFfNCzWfURQPYoXI/CVSRA07zjFB1JCUD5D+m3r0MYQHKKjuTynwxAAAAAAAAAEkDxY8xdS8gPQMRCrWnecQtAQfFjzF2LGkBPr5RliOMBQOSDns2qTwpAw9MrZRmiE0Ac6+I2GgAcQIGVQ4tsJxNAi/1l9+ThCECq8dJNYhAIQFmGONbF7QpA5q4l5IOeCUB7FK5H4XoEQJSHhVrTvOs/HOviNhrAA0AdOGdEae8WQPcGX5hM1RBAjErqBDQR/z9z1xLyQU8QQAAAAAAAAP8/FYxK6gQ07z9d/kP67WsTQGZmZmZmZgdAIv32deCcCUDeAgmKH2MLQHuDL0ymCg5AZapgVFInBUCpE9BE2HAMQAAAAAAAAAhAcT0K16NwBEBVMCqpE1AgQOauJeSDPiBAi/1l9+ShEUBZhjjWxW0FQNO84xQdSQtA4QuTqYLRBUBfKcsQx7oMQMRCrWne8RRAtaZ5xyn6FEB4nKIjuXwLQHEbDeAtUBdA7uvAOSNKB0AVjErqBLQAQC0hH/RsFhBAZapgVFKnAEAkl/+QfrsUQBE2PL1SVhZAE/JBz2ZVAkAnMQisHFogQHo2qz5XWwhADeAtkKA4EkBGtvP91DgUQNGRXP5D+vg/YTJVMCqpCkCGyVTBqCQDQBZqTfOO0xBAWYY41sXtBUCaCBueXqkUQGZmZmZmZglAbcX+snvyD0BEi2zn+ykUQNUJaCJseA5A/fZ14JwREUDtDb4wmaoNQHe+nxovXQZAaCJseHqlBUBaZDvfT40AQC7/If329RJAejarPlfbAEC5jQbwFkgEQAAAAAAAAAFAjnVxGw3g/D8B3gIJij8kQIV80LNZ9RBA+n5qvHRTEED6fmq8dJMIQAAAAAAAAAxAw/UoXI9CF0Dy0k1iEFgEQNUJaCJseP0/E/JBz2bVDEC6SQwCKyckQK1p3nGKThhAHOviNhpACEBgdk8eFmr6PyV1ApoImw1AbcX+sntyB0BWDi2yne/tPx+F61G4Hg9A1sVtNID3E0BMN4lBYGUIQD7o2az6XBdAh6dXyjLEA0AqOpLLf0gFQMrDQq1p3gtAak3zjlN0DUAJ+aBnsyoQQAfwFkhQfAdApHA9CtejBkAzMzMzMzMGQKvP1VbsL/0/w2SqYFRyJEAyVTAqqRMNQO2ePCzUmhRAF0hQ/BhTK0BlqmBUUicDQIlBYOXQIghA4JwRpb1BCUBR2ht8YTIJQMe6uI0GcBZAmSoYldSJBECP5PIf0m/5P3Gsi9toAOs/MzMzMzOzEUDbiv1l92QPQNIA3gIJigBAIGPuWkI+B0Cxv+yePCz/P6yt2F92TxVAnl4pyxDHAECqYFRSJ6D0P+0NvjCZKgVAAAAAAAAAA0DXo3A9CtcHQOSDns2qzxNAJXUCmggbC0Ac6+I2GkAGQLTIdr6fGhJAbef7qfHSGkBfmEwVjMoSQAU0ETY8PQNAio7k8h+SFkCI9NvXgXMEQAAAAAAAAPk/RwN4CySoAUCUh4Va07wDQCNKe4MvTApAYqHWNO849z8AAAAAAMARQDlFR3L5jwhAO99PjZeuEEB6Nqs+V1sDQH0/NV66SRBAat5xio5kD0Dy0k1iENgFQFfsL7snDwVAAAAAAAAAD0COdXEbDWATQApoImx4eglA46WbxCAwBUDf4AuTqQIEQG3F/rJ78g9AcoqO5PIfCUBiodY07zgSQGUZ4lgXdxZAHHxhMlUwDUA730+Nl+4TQNSa5h2n6ABA9UpZhjiWGUCoxks3iYEYQJ+rrdhfNhhAxY8xdy2hFUBO0ZFc/gMQQMrDQq1p3gxAuY0G8BZIDUCmCkYldYIDQAAAAAAAABRANxrAWyBB7T8zMzMzM7MTQN21hHzQ8xBAKH6MuWsJIUCOdXEbDQAuQD2bVZ+rrQpAWRe30QDe+j9O0ZFc/kMAQFdbsb/sHhFAHOviNhrA/T9kXdxGAzgZQLN78rBQKxVAak3zjlN0CEBiodY07zgQQDY8vVKWYRRAzF1LyAc98z8Mk6mCUUn0P/LSTWIQ2ABAMQisHFpk/T8/NV66SYwBQAAAAAAAABRAKjqSy3/ICkDpSC7/IT0YQOY/pN++ThFAhXzQs1m1E0CgibDh6ZXkP8e6uI0GcBFAT6+UZYhjCkD5D+m3rwMWQD9XW7G/rB9AWmQ730+NCEC9UpYhjnUcQHKKjuTyHw9AF9nO91PjHUAAAAAAAAADQDSitDf4ghBAw2SqYFSyKUB5WKg1zbsLQAAAAAAAAP0/sVBrmnccAUAzMzMzM7MAQDMzMzMzMwlAysNCrWleCUBz1xLyQc8OQP32deCcEQ1AWmQ730+NBUAAAAAAAIAQQJ5eKcsQxwFAW7G/7J48DUCx4emVsgwFQHrHKTqSCxdAh6dXyjJECUAkKH6MuesBQAAAAAAAAAdAUiegibDh+z8OvjCZKlgaQAAAAAAAgAhAAAAAAAAACUDwp8ZLN4kPQCbkg57Nqvc/VTAqqRPQDkDhehSuR2EgQFTjpZvEIPc/mbuWkA+6FkBtxf6ye/L+P4qw4emVsgRAgSbChqdXBEBkzF1LyAcPQOzAOSNK+wxAejarPlfbC0AAAAAAAIAIQFRSJ6CJ8BdAc9cS8kFPBUDMf0i/fV0cQBrAWyBB8fs/wOyePCzU+z8xCKwcWuQIQJAxdy0hHwZAw2SqYFQSEED3Bl+YTFURQE3zjlN0JP0/07zjFB1JCkAc6+I2GsACQAAAAAAAAANABhIUP8bcAkD35GGh1jQAQKTfvg6cMxxAZmZmZmZmEkAT8kHPZlUBQJYhjnVxmxJAP1dbsb8sGkCamZmZmZkFQGDl0CLbeQJAZF3cRgN4EEB9rrZif9n/P3ctIR/07AZAEhQ/xtw1AUCuR+F6FK4EQC1DHOvithVAoyO5/If0CEDLoUW2830aQJF++zpwThNATx4Wak3zFkAAAAAAAAASQM3MzMzMjBBAT0ATYcPTDEBd/kP67ev7P+F6FK5H4RBANBE2PL3SAEBg5dAi27kYQOVhodY07xVAKjqSy3/ICUCneccpOtIbQKHWNO84JSBAjSjtDb6QIECBBMWPMfcFQLHh6ZWyDAZAJXUCmgibDEAzMzMzMzMDQFwgQfFjzBVAhjjWxW20CUDA7J48LNQKQKVOQBNhwxJA3gIJih9jA0DNzMzMzMwTQAn5oGezahBANBE2PL3SB0DEQq1p3nEEQGZmZmZmZgNA4lgXt9FAF0Bm9+RhoZYTQH/7OnDOCBhA7MA5I0r7EUB7gy9MpiotQAAAAAAAAPA/AAAAAAAAA0AYldQJaCIWQMUgsHJoEQ5AhslUwagkCECeXinLEMcKQPW52or9ZR9A5BQdyeU//j/Y8PRKWQYJQAAAAAAAwBFAzczMzMzM/j8awFsgQbESQLWmeccpug1ASnuDL0wmAUCutmJ/2b0IQLFQa5p3HARAuECC4scYAkArGJXUCegEQPRsVn2udhZAUWuad5wiAUAzMzMzMzMRQDJVMCqpEwNAoBov3SSGDEAU0ETY8PQcQApoImx4+hFAliGOdXEbF0DRItv5fuoEQGpN845TdPo/D5wzorQ3BUBiodY077gTQE2EDU+vlAFAAU2EDU+vAUDMf0i/fR0BQM3MzMzMDBBAHOviNhrAB0AzMzMzM7MRQJqZmZmZGRNAObTIdr6fFED+Q/rt60AUQNuK/WX35AVADr4wmSrYEUC/DpwzorQCQAisHFpkexVA3gIJih9jAUCWsgxxrIsRQAAAAAAAgApAgnNGlPYGEEAAAAAAAIAFQPYoXI/CVSFAAAAAAAAA9j/tDb4wmaoHQFyPwvUo3BRAZ0Rpb/CF9z+OdXEbDaAVQJ5eKcsQxwlAAAAAAAAAGEA4+MJkquAVQBPyQc9m1QNAb/CFyVSBFkAAAAAAAAAFQAAAAAAAAAdAowG8BRIUFkC7uI0G8JYBQF1txf6yOxBA0ETY8PTKCkAAAAAAAEAQQO7rwDkjyhFAMzMzMzOzC0A0gLdAgmIbQAAAAAAAAB5A5j+k374OG0Dpt68D54z/PwAAAAAAABRAmpmZmZmZDkDuWkI+6FkFQPaX3ZOHheo/WYY41sVtBkDqlbIMcSwUQOELk6mCUQVAMnctIR90GkDKMsSxLm4OQNXnaiv2lxNAZ0Rpb/DFHkBVMCqpE9AEQC/dJAaBFRRAjnVxGw3gEkA5RUdy+Y8IQLpJDAIrxxVAXCBB8WOMEkCPU3Qklz8UQHKKjuTynwFAj+TyH9KvEEDUK2UZ4tgVQFJJnYAmwg5AE/JBz2ZVCUBfKcsQx7obQIbJVMGopPU/gSbChqfXAUAK16NwPQoJQE+vlGWIY/Y/waikTkATA0Bj7lpCPmgXQM3MzMzMzAJAAiuHFtlOBUDUK2UZ4lj6P2pN845T9AVAseHplbIMB0ALJCh+jLkBQO7rwDkjSgRAgSbChqfXB0CbVZ+rrZgVQFTjpZvEoABAQKTfvg6cF0AKaCJseHoDQBzr4jYawA1AkzoBTYQNEEA3iUFg5VANQGkAb4EExQhAWvW52oo9FkDwhclUwWgTQI51cRsN4P4/vJaQD3p2EUAofoy5a4kFQJ5eKcsQx/4/eVioNc07DEDwhclUweggQNO84xQdSQBAq8/VVuwvD0BCPujZrHoEQI51cRsN4Pk/m1Wfq63YDkAQ6bevA0coQF1txf6yuxVAio7k8h+SG0AAAAAAAAAEQC6QoPgx5vo/9wZfmEwVE0AAAAAAAIATQHuDL0ymigFALSEf9GxWCUCze/KwUGsFQC/dJAaBlfY/jnVxGw1gAkAAAAAAAIAQQPT91HjpphBAmpmZmZmZEUD0bFZ9rvYWQK5H4XoUrgtA4L4OnDMiDUAQWDm0yHYXQDMzMzMzMw1A5WGh1jQvEkDV52or9lcSQBB6Nqs+FxNAxEKtad5xAkB9rrZif1kPQBniWBe38SBA2ht8YTJV6j8VHcnlP6T7P3qlLEMcqyFA4JwRpb1BDkAlBoGVQ4sHQM3MzMzMjBBAE/JBz2ZVBEBrK/aX3RMbQLN78rBQ6wVAPZtVn6stDEDEQq1p3nEKQJ5eKcsQx/c/ppvEILByBkD/If32deAWQCv2l92TRxlAT6+UZYhjDUCBBMWPMZcgQCBB8WPM3QBAxty1hHyQEUD2l92Th4XxPysYldQJ6BBAJQaBlUPLFUCu2F92T94RQEvqBDQRtgpAgy9MpgqGGUDMf0i/fZ0EQD7o2az6XP8/JuSDns2q/z97gy9Mpgr4Pwkbnl4pSwNAnMQgsHLoGEDwp8ZLN4kGQOeMKO0NvhZAE/JBz2ZVCUCh+DHmrqUIQI51cRsNYANAAAAAAAAAAUDjpZvEILD/PwmKH2Pu2hRAeqUsQxyrGUDByqFFtvMEQKd5xyk6kglAXwfOGVHa/z8gY+5aQj4WQM3MzMzMzAFALUMc6+K2CEBsCfmgZ3MfQNxoAG+BhBVAcoqO5PKfBUAJ+aBns6oSQOVhodY0bxpAUdobfGEyAECDwMqhRbYBQJtVn6utWAdAMzMzMzMzAED7XG3F/rL3PwMJih9j7g1A+8vuycNCCUCoV8oyxLEDQG3n+6nxEhFAkDF3LSFfEUBGtvP91HgLQEa28/3UeAlAGsBbIEHx+T9YObTIdv4WQDSitDf4IiBA4JwRpb3BD0D8qfHSTSIWQLKd76fGSw1AJzEIrBzaBkAgY+5aQn4XQEmdgCbChvk/f9k9eVgoFUBX7C+7Jw8WQDMzMzMzcxdAB84ZUdqbBUDNzMzMzMwJQL6fGi/dxCJAZmZmZmZmBED3Bl+YTBUKQMx/SL99nQlA6Gor9pfdGUA2qz5XWzEIQBkEVg4tsv4/M8SxLm6jBkD5MeauJaQQQDtwzojSXhFAf2q8dJPYGkCNKO0NvjALQAtGJXUCWhxA8WPMXUvIDEDZPXlYqLUMQAAAAAAAAAlAuK8D54yoCUAc6+I2GkABQD0K16NwPQlAWmQ730+NDECWQ4ts5zsQQNc07zhFBxtAHOviNhrADEAFxY8xd20SQGx4eqUsQxBAGw3gLZAgFEBxPQrXo3AKQFyPwvUoXAVATfOOU3Qk+T8T8kHPZlUCQMKGp1fKchRAliGOdXEbB0BlGeJYF3clQAAAAAAAAAhAi/1l9+RhC0BmZmZmZmYFQDBMpgpGpRdAApoIG56eI0CamZmZmZkEQCh+jLlrCRRALUMc6+K2B0BL6gQ0EbYrQOcdp+hIrgxAJuSDns2q8j8AAAAAAAAIQESLbOf7KQtAcT0K16PwFUCwA+eMKC0RQCxlGeJYF/Y/AAAAAAAACkBKe4MvTKYUQI51cRsN4Po/C0YldQKaGEAOLbKd7ycNQCsYldQJqBBASZ2AJsKG+j93LSEf9GwBQDlFR3L5DwpA7lpCPuhZEEBxGw3gLRAIQD2bVZ+rbRJApb3BFybTDkDtDb4wmSoJQHctIR/0bBBA8x/Sb1/nJEDvycNCrekJQC7/If329QZAzF1LyAc99z924JwRpb0OQMdLN4lBYPk/E/JBz2bVCkBn1edqK3YCQIXrUbgeBQRAgSbChqfXCkAJ+aBnsyoQQI51cRsNIBNAGCZTBaNSFUAXSFD8GHMZQN9PjZduEvo/5q4l5IOeCUDqBDQRNvwUQGpN845TtBJA2/l+arx0AUC6SQwCK4cIQEvqBDQR9hhAxEKtad6xIEACK4cW2U4AQDBMpgpGhSFA3bWEfNCzBkBqTfOOU3QRQJqZmZmZmRBAHOviNhrACEAm5IOezaryPygPC7Wm+Q5A/Knx0k3iGEA2PL1SlqEDQARWDi2ynfw/w2SqYFQSE0AgY+5aQj74P5hMFYxK6hVAcoqO5PIfBEDNzMzMzMwGQOviNhrAmxtA7uvAOSPKBUCOdXEbDeATQF8HzhlRWgpAs3vysFDrBEA1XrpJDIIJQHsUrkfh+gpAIEHxY8zdCUDsL7snD4sWQDSitDf4IiJAejarPlfbB0AAAAAAAAAGQHE9CtejcAhAZohjXdxGBkAkl/+QfnsDQKhXyjLEcRFAQs9m1edq9T96Nqs+V9sOQMnlP6TfPiJAowG8BRIUFECamZmZmRkGQAn5oGezqhFAYqHWNO+4EEBPr5RliOMNQOVhodY0bxlAnMQgsHKoEECq8dJNYpALQOoENBE2vAhAIv32deBcF0BGtvP91LgUQBe30QDeAhVAGQRWDi0yGUAsZRniWJcNQNbFbTSAtxNA8WPMXUvIBECOdXEbDSATQE9AE2HD0w5AGQRWDi2yA0B88rBQa9oWQE+vlGWI4xFAWmQ7309NGkDbiv1l9+T+P0tZhjjWxQlAHOviNhrAAUAT8kHPZlUGQPcGX5hMlQdAe4MvTKZKE0DiWBe30YAbQH0/NV66iRZAcoqO5PIfBEByio7k8h8IQEYldQKaiAhANxrAWyDBDEAkKH6MuWsBQD0s1JrmnQhAseHplbIMAEAgQfFjzN0BQBzr4jYaQApAAAAAAAAAB0ClvcEXJpMaQIenV8oyRAVAak3zjlP0C0AYldQJaKILQM07TtGRXAlAzojS3uCLEkAAAAAAAAAJQD55WKg1zRNAVTAqqRPQD0Ai/fZ14FwcQPrt68A5YxtAF0hQ/BhzBUD3Bl+YTFUQQBzr4jYaQA9AAAAAAABAEkBpAG+BBMUFQO7rwDkjyhBArIvbaADvCkAAAAAAAIASQAu1pnnHaRFAzczMzMxME0Dgvg6cM6IOQGZmZmZmZgtAsVBrmnccE0Ap7Q2+MJkFQLu4jQbwlghA16NwPQpXE0CdgCbChkcgQD9XW7G/bBhA9ihcj8L1C0DA7J48LJQWQE+vlGWI4wJAmggbnl6pCUAQWDm0yHYDQCSX/5B+Ox1ALUMc6+K2BUAukKD4Meb5P7dif9k9+QRA0SLb+X5q+z9m9+RhoRYTQNk9eViotQJAjnVxGw1gAEAg0m9fB04UQI51cRsN4ARAS1mGONbFCkCeXinLEMcAQJYhjnVxWxFAzczMzMzMDEAFNBE2PL0OQMpUwaikDh9A9GxWfa62/T/pJjEIrBwFQHe+nxovXQFArK3YX3ZP8z8ldQKaCLskQM3MzMzMzAlAdQKaCBseEEDtDb4wmSoGQHe+nxovXQ9A/yH99nUgF0BmZmZmZmYHQIV80LNZdRNALGUZ4lgXC0Df4AuTqYIHQJ5eKcsQRwlAE/JBz2ZVCkAPnDOitDcBQAfOGVHamwpAPL1SliGO+T9pb/CFyZQaQAAAAAAAgBNAAAAAAAAA9j+neccpOpIKQFyPwvUoXAhAfT81XroJGkB6Nqs+V9sDQCBB8WPMXQtAFvvL7snDBkAAAAAAAIADQHS1FfvL7vo/rIvbaADvAkC6awn5oOcBQFmGONbF7QlAKcsQx7o4FUCsi9toAG8IQPcGX5hMFQhA8IXJVMFoEUArGJXUCegIQNejcD0K1+k/WYY41sVtFEAW+8vuyUMOQNSa5h2n6P4/E/JBz2ZVA0Ac6+I2GsAHQOLplbIM0SFAAAAAAACADUCxUGuadxwKQCNKe4MvTANAEHo2qz7XAUDmriXkg579P9O84xQdSQJAG55eKcvQFkDUmuYdp2gNQBzr4jYawAtA/tR46SaxDEB6Nqs+V9sAQMx/SL99nQlAxEKtad5x/j/6fmq8dNMRQAAAAAAAABFAiUFg5dCiCkD0/dR46SbhP1jKMsSxLglA6Ugu/yF9AkDDZKpgVFICQAAAAAAAABBANjy9UpZhH0A6kst/SD8RQA1xrIvbKBlANe84RUfyFEAzMzMzMzMQQJ0Rpb3B1xVA001iEFi5GUC5jQbwFkgKQE+vlGWI4wZASZ2AJsKGEEDHuriNBvASQGb35GGh1g9AM8SxLm4jFECwcmiR7fwIQD0s1JrmnQlAbcX+sntyD0CneccpOpIBQBzr4jYawAZAHqfoSC6/H0C1FfvL7mkgQC0hH/RsVhVACYofY+5aDUD3Bl+YTNUQQOQUHcnlP/g/aJHtfD81AECeXinLEEcNQAAAAAAAAARA7Q2+MJmqAkCKjuTyH9LwP2fV52ordgBAZapgVFInDEB1ApoIGx4FQMxdS8gHPfk/PzVeukkMDUABTYQNTy8DQIQNT6+U5QtAW9O84xSdAUAAAAAAAAASQPaX3ZOHhQtAOUVHcvmPBkClTkATYUMQQI51cRsN4BBAH/RsVn0uA0Byio7k8h8EQOXyH9Jv3xhA3EYDeAskEkAQWDm0yPYEQPkx5q4l5A1At9EA3gJpIUAgQfFjzF0AQEATYcPTaxtANBE2PL3SBUBn1edqK3YAQOf7qfHSTQdA8tJNYhBYBEAAAAAAAAD4PznWxW00gPg/zH9Iv32dC0Bz1xLyQc8PQOC+DpwzogtA4JwRpb3BD0AwuycPC7ULQJJc/kP6bRRAdQKaCBseBEC1pnnHKboMQNxGA3gL5BBA2V92Tx6WE0CQMXctIV8RQFdbsb/snhBAQfFjzF3LBUAAAAAAAAAAQGZmZmZm5hJANBE2PL3SAEBoke18P7UDQJp3nKIjeRhAAAAAAAAADEAJ+aBnsyoRQCcxCKwc2gxAOiNKe4Mv9T9pb/CFyVQSQDMzMzMzsxBA93XgnBGlJECOdXEbDWASQClcj8L1KAlAPZtVn6stCkA5RUdy+Y8SQLraiv1ldw9A8KfGSzeJDECeXinLEEcHQIbJVMGo5BZAAAAAAAAAA0BmZmZmZmYLQMbctYR8EBlAVOOlm8TgEkBGJXUCmggCQD0s1JrmHRZAWYY41sXtCUCOdXEbDeAQQJqZmZmZmRBA7Q2+MJkqCEA6kst/SD8fQMUgsHJoURBAz/dT46UbG0BwzojS3iATQGrecYqO5ANAzczMzMzMCUBfB84ZUdoQQKd5xyk6kgpALGUZ4lgX+D9OYhBYObT3PwAAAAAAgBBA6Nms+lztBEBmZmZmZmb3P9Sa5h2n6ApALSEf9GzWCUDT3uALkwkkQLbz/dR4aQlAfa62Yn/Z+T/PZtXnamsaQBzr4jYaQAtAZF3cRgN4D0AAAAAAAIABQIGVQ4tsZxhAzF1LyAc99z9xGw3gLZD7P2WqYFRSJwdAMlUwKqkTAkAE54wo7Y0VQMKGp1fKshlAak3zjlN0BUAdWmQ73w8VQN/gC5OpQhdAE/JBz2ZVDUDNzMzMzMwHQJYhjnVxWxBAat5xio7EIEAp7Q2+MDkgQI51cRsNYA1AKxiV1AloCkA730+Nl+4JQHRGlPYG3wFAylTBqKQuJkDtDb4wmaoEQFvTvOMUXRJAHOviNhrADUDhC5OpglEIQLWmeccpehxAJJf/kH57BEBHA3gLJGgZQBKlvcEXpglAfa62Yn9ZAkBqTfOOU/QDQDSAt0CC4ghAd76fGi9dDEDTvOMUHUkMQGZmZmZmZgxAJuSDns2q9j8U0ETY8HQYQPaX3ZOHhRJAT6+UZYjjC0APC7WmeQcWQPs6cM6IUhBA/Bhz1xLyAECZKhiV1AkDQEYldQKaCA1A9wZfmEwV/z/qlbIMcSwNQDy9UpYhjglAEFg5tMh2+j9wzojS3uACQCfChqdXSgZAHOviNhrA9D/Mf0i/fR0GQGEyVTAq6RNAW7G/7J68AkCx4emVsswUQEGC4seYu/4/AAAAAAAAEUBhMlUwKukRQOELk6mCUQVAI0p7gy8MEED+1HjpJrEBQCxlGeJYFwZA+aBns+pzCkCU9gZfmEz5PzxO0ZFc/t8/CfmgZ7Pq+z/FjzF3LSEQQPs6cM6IUhBAxm00gLdAG0BrK/aX3RMbQFTjpZvEIPs/AAAAAAAACkB6Nqs+V9sKQBpR2ht8oRBABhIUP8bcA0DTvOMUHQkTQLUV+8vuSQ1AYqHWNO84DUCOdXEbDQAuQEmdgCbCJiRA", "encoding": "base64", "path": [ "_data", 0, "x", "buffer" ] }, { "data": "A4vjC6QwB0B7n/BepWoGQF4uQtu0cQdA9bG9xW93C0DKTiQdCugTQBEN0zdpsBNAJ/lWv+dB+z9Jszd1wcTxPyp9wqfiRe0/kM2zU+w3EECVqMjvSCkCQDeu1vmneANAP1LJUOdR9j8BNgrDs7wCQLOqGxsf8Pw/hRkkclfZ9j8GXabOlZzgPxkcLRC/tvY/tFpgRQqa9z8ukXHoX2IDQMebWGS66+U/8W6oZ1TnAEDcYAwcTeHoP9d6ySCIbRNA0v6Jly9EBEC/r4zrdrgLQAZcAAWocwpACzkmXQ/q9T8MFEy8te/rP5fYZBGBigJAMbZ0XTqr/j+mqW5P6isAQDZ0mfZNgvc/y45910saCEBfgQhXIVL3P2eNQaFroBNAzMBwnrBB9z9fpnlOtIoCQMwAVzsRivQ/Pkl3oqeNBECgPUrWFAwEQK/7KqoN++o/AFt4Ti08C0CfpuBN/5n0P5yUGpbcowdA2ACyisTl/D9Sd6bYaAcFQPz0tatuLP4/twq0tBGX7j98hxW3P6/+PyRqU36+5wVA33cCCARcAkBVS3J/ga74Pz5h88aKOApAn9zszg7OA0C9dQydkmD+P6bwna55+PY/OI+i6f2gAEDmWoj6MuoDQPxTAr6Mjfw/W3v1TZ6lA0DS5YjHjgjvPyqYH9gBHfY/E3MvnHuDEEBxA17X4rEJQARKiSPo7+0//FcWox509j8i+vv0ddL7P9Xr7janS+s/57Woc5KP4z+FmD0lzDcQQBl8o03c2/U/NUElHy0C7D+tcyHiLbr0Pzoz1o/NqwRAYugxPrHD+D/8Q2w/aV7rP4b7Lg/sB/A//GJPfOSaCECiFiEhPVIAQGrW7Epd9u0/PQ6Aig4d9j9mzANlmvATQCkzMP3lduo/ryqd1RzA+D8aoRgE3538P8h2YD1S8/s/DlY51UEfEUDGlDGtbHz3PwfqgePFHwlAue3FaEPU+T99ApEkMm8AQPMI4sdoLQ9AbDp/7sRU/j93sZH0QMz0P0hFWUU5aPA/BMRmPxH+7z/vJ8wCSqMAQDXiLVrSjfY/KvIB0wRHB0ADtHcoBQgCQDYwT6FMwv0/ZfnGf48U/z9OUZDpfpr2PzoyQZWnhfc/CO+U/GlhBECwxy9plzfzPx9pJjGcJgJA0CQa1TGDBUA0Udjr2JsTQNPf3Iy2sgNAzFG6tITP4D+22+Iru2b1P8QytKMKUPA/RmgDhacs5z9A3GDZ/AD7P5Jfz87GIgJAntfbVhrp+j8QYyFcfWLxP5WVuokLxANAGdyXqS4v/j/yw40lOtb3P4uxWZQ9qe4/GPpUTFdP/D99XT0EtsLwP8EgG3Npo/8/2fTGCR7E7z8nqdBmtOYJQDO+jB+bbgBA9EDl7t6a8j/0J1qG0iAJQA3U1BFG0eI/gywhCclCAUCq6OMqRHwGQBnSqEE9DgJAQRIwFHD//j+oH3Cicd38P/QbsqYjixFA4R7JVf2ZE0B5IAZRiSEAQEbo/fAiE/o/pFLu4yhoDUBTpeDevM32P5QaCVX21Pk/EMO6EJYKC0ChigoIg2/4PzLFO+kQ3vc/GZcsEN1+8T9Jtlxu8RnnP6qSZYYoDANA4JzTsGrn9z8vanHQcWMEQJcUKBYh0f0/3evHrtjGEUCPxL0IqiIAQMpDxhwU//w/IXaXlYA1+j8EOi/SEycCQFG6NxEyB+8//arYPMkIBUAxgRAGJa8EQPueL9AQbwZAYW82kLR9BECvpjV5exDdP9e4a8lJWOg/oVermRjtAUDWhUd1tf8CQMgUJC1KPxNAUfgA0n9xAEAjFfWa4gPnP9YVPvq3SfQ/v2esuADA8z/+gVtDEFYAQEUntkUIvwFATT1/3FT5/D+quoEqqRX6Pyuduy0E9AtA1dMJP89YA0D85up6xjX0P0ArLbEOrRFANWEbpevbBkD2dk3SsPv9PyY0lr3qiAJAeEQSfwpi9D+YUOD+fGPqP899wvIvtgFArVREe7ua5D+1L2zu7iT8P2ntWbHfsPA/I1G6XYKv/j/Zo5nvWYjtP9SzJuCQjwlAjQI31YRDC0BwhficJtbrPy27odaR0BFAEnD+1nYZCEBTE9s0izcNQPFg+hUBqQRA2663grF2A0B9u3/v2BwBQCH7ufeTc/o/Fpk29SiAD0CXURN2uTIIQAGO0bV2gQRAUZXCT3+RAUDehd7FnGz8P0+KfUQny/c/2nMhoetb9j8LX3q1eVEEQHcZjLwwSgNAcCgvLAIjDUAiYtkwuHDxP+OS3mNfneo/bT/XNFN5E0CLQIJvX30AQJ7+EpHHVwlAOcLoPEWY/T/9/mP5sPj2Pzfqwpj31eI/2x8nWEj49j+7xjc8xB8FQIjRlCSgTQJA6tNgK5FyA0Db9JN1mn7vP+mkcOYrhuo/wDfWSa1xDkB1QJfStdv+P/YphhBZEQ1ASFp4nu/k/z+mLH44fQ8BQGoWJBLtyP4/cK7f6kbnEEDgtp1ZxhgBQM+/5QromwtAFTuY075qAkAAHg0aKaoSQO9I6oZoovY/JMmpoghN+j93JIkYaTDwP1PXaiet2wRAX5nZt0JzBUAHTHDNRvz+P8oSEiDcAgZAy/Oo07MK+j+keHUUnY/zP+0LLcVb9gZAzRNnD2n46T8/DDZ6MJHkP4pIDs/DlQlAPQXZRIlo9z8JG22DIlf/P//cQffHceY/HI58xao89D9tTjT3YhYHQIh4lzOfSv4/XbhPKvcQ8T8IK/NFb4jzP+KoHqEy0/I/vs+7cbY9DEC0Bu4CYTr7P+qsTL97zP0/ZxdxipX8AkD3nXuJ5O4IQPd7SG/dbvY/FFMYu1iF/j8zED21aEINQB+a2qXWOvg/Y6wtMmSg6T8BccVHY2n6P4uorxez7vw/GLZLEHHr+D8RbfU6ZNf3P3Ofq0OOsQRAznQmZQv4/z+i/4M86KLlP6SNIrnjuOs/pF1t1w884z9yQwZXCDzyPxthtM78GANAAIqlrup2FECTevwW9w4AQIUnM6tdugFAcY0F4c+O9z9YvcuugibyP5aXd7IvKuc/VLaqFzwHA0Dl2hVdTFXzP0TyHdPpTvU/p4XqygnB8D/aUTERKFf+P7f5xJcQafM/2ym+/uJZBEBomagXw4r8PwoxsF/DMPI/DTl3tdII9z+xVLkHBwUDQEz8l+OEx/U/EAqqItf/9D8nP/LnV9D7PyJpfQ+qC+A/dup/U0p4BkAU1Mc2SSoAQDRP1tQoXgVAfIJazyViFED61JG2fAH1P7kxDlDduv4/rfaomjHl+j8M5zKCQOboPzm8TCXolhJA6ypi6lFc9z/652RUozz3PwOKNYbgbek/PgJqXBIn+T+O7jSD7Y73P+nO2bMugv4/J4pv+5qd9j+S3/puOakCQFyurwaXTeY/oB1WOvTEBUCYvYpMM4zxP2CeSucK7fw/fZbkh8MhAkDbnJ+27uEIQDuQLgcwgPE/JOuVsPIZBkDO3ZhcrEP/P7cHmHQUCA9Ah4bk3uYJ/D9PizNRRqAFQCWDSGyYzQNADDViq5E64D/kg4YS+5r3P0ZS8dV00v4/Z7pAVYdj9z/Y2LSrE8DwP75xKsAODABA+U4Qx/069j9SxO+TVqUGQBdZ8mrENOo/S8tDfzyWAkACOLQD4QD/P7fuQZU8uPE/9DQgBZaME0Cz2+05Mav3P6RKXu35ifE/pkMPSQJW5T/XAlA9HEMMQC/1QF0r9/U/5nzJ4HfRBUCQeM+MMgEGQMKgz/mF/hFAisGw1FA8EUBSJ1Uysi8AQOWWLHlODf0/bN10NAKpAEBuAaNd5Q8AQOmzxJ0Q2vA/TCr39uscAUD5WMYeti7rPwZKk6yo8+k/K/GB/LMa+T/vfhwoxQwLQDeXEbUtouE/t0xD2kvPBEBfaPqMigcBQIXeLu/hr/g/dz8JAEIT+D9TRWviVR/3PwC8CsYhqAlAeh1zex5H9T8Btxh0+q4AQLCPUKOgGfQ/nopYS8cEBEA6c6AFn131P95ncTh5yQdA2gs7IehO/z+lcoRHeSoAQHf8vf2vJQxA1F9GQarG6z9tJiIDbVT9P9mc6qG7m/Y/9hGNAFN9FEDO12q46Nn2P8fH6wYjhfg/+onHZJhGB0B2EPMOWNUEQNM1sp0FwvA/Xb/OovCXD0AI5oyaySv5P6W73vX38wVAQaPd6qm3/T8092vvEuL1PwWvZbnVJ/Q/2WndXzEb/D+MF9DL8dQAQL2zcMnYewBABBbKNDUI7T+zmbimodjyP+LdxkN1cPM/CZ74fhCJCkCWDL6QEPMAQP/NS16CtwRAjPUPqqoVDUCYfBpTLJcDQJEzeC5M8AdANmCILNsP/z9xQS0tGVvxPy0ctSQ6/fQ/j+eAj+tSCUCB7sPvwZ4CQOOYUNKlWABAxbiWZ8Bz/D+lqcqNR7vxP4bT/4DOtwFAAoGFokZ2AEBqKx1mjEoCQJHNlgNUbuI/qHFYnLZx+j+65Q+aqMr3PzcGdSD/afY/rW9HsWVLCEDzCcEqpXv2P/s73JT8dOo/XP5YGJ02BUDZ+rCyyZH1P3cbKZZq7vw/xf7Fj5/ADUA1WVyaiZAHQFMZ/7RNweI/UK7M6rA26z89UPU2+DHzP52RlkdE3hFAdoqy9eYvEEACZOku+e77P2wCiJgV6wRAjuasOnL1EUAMX3FytAn6PyljyGlydApABb2d1gBpEkC0TeFA68MAQNH+b48RxOM/eNOd/1JzBEDaPs2ziRIKQFjGp6NRwQNA0Jzz+1oL+D9p91xiF/7xPyM1T7aX1QFApLeXWnkCDUBjFywJllQUQOd16bw9XfU/tiPnu9T0AEAmHdITZDP6PwE2qs546gBAJ7ATaae68z/jyYBSTS34P4Gpm7/zgwRA3HiiPW1P7j/8X/MN/CzvP7lMt+avMgNABJ9UHdf89j9zlNfzeZAFQNmaANoCrw5AWhfx24JDBUD4WkhxdVABQOG39vz89v0/deK5XDoY/j+HdYSN4GIPQHypSnhGLABAHBZIBtOfBkAWokKpls4SQB+y6vrS1/k/0qakB4HE/T9vO91HjQv4P0oIazaLVu0/uvvimt9Y8T/r11p2rfYPQF/2t472NgFAA0VM5EqlAUAkOtQMP4b2PwUNRll2p/Y/MiYYq9y4/z+fnYA7dasKQK0lL2aafgBAfW98FASg8j/B3vHdCXcJQHNYXuucWwBAOhUjg70UAECJ6OIuIuz5P14ODwv+aP8/P6BI6QSYAEC6wmNOcrTyP0ydwz6V/O0/nRrmmqIHA0BVfdDW/3/8PwEN9yncawFAMmJ784EoBECpQrrwzB33P3xMDURTePk/WexXIBkh5T8bI8lktdsCQBrQ8OS5sBJA0Lab7brTAUBJa5nZxw8FQFLH5fx8lvc/KqaS5WoyB0CPgUdEhOrqP6UkDPSs2O0/8pF2UrZmAUCzVKhWlj72P5bN0eq6Hf8/4WZBktNsAUArU63ifXvjP0yc7Xvb4vA/xwQPTHoH8T88TuJuQBoTQE7ji+76hvY/tetUzTE5EUAw+t+i2K0SQCArDpD2exBAmzmCwlR1B0AwSn0+YgAHQIxCsPX7TO4/3ObXPNkK8z8FivP6M5YMQFDgi8sXJPU/fqI9fam/8z97XaE+hNn3P1VvLa80swhAy4nZRh9LDkCwBQnjSt31Pywm3xRYgvw/0r3/Zn2d9j9YXsNSbUYPQH/T5ZODRgZA69+PgAjNDUCfJA217rj3P2vndSnT7ARAioL/QWhMBkAbTWG2DCX1P5YKg70L0P4/Y74wI3SF9T9WhHaZl4sEQNzlY2M0sfU/UDWb+8Ap9z9gwHI4Yp7uPyfrsCq3yApAvUkrmPxbBkAwgDSOJ80DQAWXXFselvY/EmKL4qTo+D9yePo1KpTkPyRCmcAcK/4/q8XpXTlI/j+wGkbxOSb4P4aKjI8vDvo/8psm+iYQ9T9FzcusBgDnPwIyraKtOg1ADLgMGPn8A0Ar5ftvQgbuPzIkkbzkRAZAnQKqVLY88D/ODf1e+F/4P+zhmc9FaARAltAAxIK4AEAfsYS/sL/+P3bbkB6D5BBAZIt6Z0AdCEBi0WTFxmUHQLGhGtCnB/s/8QjWaxLV8j8uW7J/nqQDQI5tg07tnfQ/LtvdzNejCUCgBIAKXe8BQFLNhaYjOAtAWXWWfCi5EEAfnhZ28sAOQIPpy7GSce8/1b0ciUIr/T/JwMj/g4gDQMMgxb1eWQdAxRnwFYXX+j99W98y65kEQEqz6ici0/0/kvRPAQ8o+T//mNrvSw8DQJ6mw3LicfA/QOSYiWHD+z+8oTU7Vqz+P7oK3i7wPuw/tPlFdG3W6T9nv/ci1T4BQPVo3g61L/Q/sbf5TflM+D/yV5FVBkX9Px1UYPt8UeU/DmwPRM5k5T/lPJL2i0X7P1zGNKg1/AJA7nOm7UgMEEDFKGoPXl0BQE/XCDu/LQBA9YP8ZQ/j+D8HOpf5dCjtP3mvCBKiWfY/MUyBs1u4+j9tsm6M9z4QQCLyPwi2vvA/8dUveRqnAECY6ZYtMNgDQIBUJkf7oABAPHPmz1GVDEAeuw5iRov+PxFrB4XyBgVAg4ds2Mvw6z/QbzirrZEEQEA0yclrZ/U/8vMxCFVgDUB7K+c/DbjzP1tOPPvVI+M/dVG1D36kD0Dgy0ESiBwRQNfwQ412uP0/sdwuSr9o9D84b5Hrk/D9P8+skkiOvfc/vNr35uxVC0D/7a0/1SnyP5xIpsFBvAFAucJq7bxsAEBqhdY1wpLwP0LPeCXqWRJA/VNpVZxR+z8WK3FhwX36P2NP610LdQhAdONpSdbq9D+GSk3WA9UBQIGPzeKlIuo/cPMPPzs4BUAIu+H8WoTlPwYjm1tGoP4/MfZIIcaFAUDTi1J74Tv/Pxy4GSnfZfo/Zqhq7oTv+j/iK2YakagAQMrmdZOeKQFAcBXbOkTdEkDcZk3UKE/3PxVjUDQTnwlAdzZ/Whl+CEBw8nFB/pTxPzpBphRQ//s/fH0aAMGA5D8EkbicOr4CQDY2RqzcBPQ/RqmZQWgPEkA/IkeiD+0MQF4k0XpXpwBA7iTqvIYyAUCC6XCBicQEQN/hT/qAkQVAz1uyBX693j8aXG9jR0zxP2zTjav9p/c/97xR55CY+j/nGH7NJ64CQKEEsyxF+/M/cNXCGNlsCEDguS1frov3Pzff+71HJPg/a6ZrvlCWB0A3GKqRPPX7P4v401f+5fU/HBl1sS+K8z+SHcyYoO4KQBV0t2bFRPU/3ZLrIXmGCkAxO6FJKkoEQBLmOSsbq/E/1Nj/GK28/z+C9nT1ascPQA97vZrlHABARCoQKm9QFEBVaqdsWLj/P2k4WHWDlhFALQLvVS8A/j8GnHz5ExP/P1E1ABMukvc/8KJwwBF95j/OJxx2GUsMQHbaQ2eSz/8/Zm5SnyVGBkDeLV6wuAn2P6TCsS+fVg5AzfPXLCLIAkBY+ALgCr/vPyqk3uPhbQRArm+vRQN9AED+Lz29MXX4P8FgzZGuaAhAR2NDwCS89D8Ej9cwe9kFQCJBGJrz++0/On3SahrxBUD6roIsqaDxPwvC/Ir2lQJASTrgjZ/xA0CODzdgAmQDQFOgvN+EoAtA3xuoex/8AUBgdVPdG17xP1OGPSal9xFAcR67OJgI+j/5cvGbrV8EQHuh/DBioeU/1Z6iRkELBECUdZWsBIkKQFJK/Uo0ygRALFrlfuKlA0DSPtOlljD2P4neDqJzwfc/ZFHModwaAEAoIg4G9evjP+uHZPwtBOo/ZdXWaqNeDkDXQMPukKzjP0uE/7uhTA1APzg2yJXt9D9uHDyZPcXwPxFi/ohPzhBAd85gmKTg+j+ABGmbI87yPzBDwB1ByPA/1d8ACaYJ+T8xrSbtLlb2P5X7DxNP3RNAukPkmMRoEEDm5aTKMHD/P+aRkw+n/Pw/xHXMc5I7AEBl7FZgrXv5P10PQSYoxAdAS6JutkNWAkB261jehnr0P1IsUbbvDec/BPGMfXUS7D8tmgmxJAEDQA2n2rQgevU/sPaRPE6u/T8LqsZmYXTxP0l61uFaWBRA6P5Dn4jAA0Cu8Htv4hTyPy4taR67KPQ/LI3VyS1P+D9jLBYeFP8GQFN8j75EFBNAzAd8FMeN8j9piPR5kbMIQInNxiHldP0/QYH4McVY5z+yzs+DXMQMQEvLGtUJdfI/PftqYbcm/j++/IUBkAIBQMyOsAIbHAZAk5XHCKee/T+v8Al4opj+P5i6QC/bLQFAVCric03cBECxSR3qpx3tP33aqBYwOvg/b72YPtoyAEBoZJ1F5yHdP+5CdnknOPI/RRpaC8YpBECHdGNeYC/8P9wGkhVnEgFACGXoEVff+D8SPK1WKmcAQBGZcIQNYPo/4jXt2IGu9j9UqM0byxkAQCPEZ6Ly/QlAzU/6Oj1B6D/E5Yxx1h8BQG/PmGVo8AFAinhDgevt9j+sGfeM25AQQHMCsXUFZ/4/c500b+24AkCmgVR3Uqj/P52zSpgM5glAXnl0ViGDCkAumXQGdUYCQHCJ1DAQKPM/VdzaerEV/z+DH8e6ygPqPxU0ElScEwVALYS0/ra46j8ztfoKqQ4AQKV5W2PKwPk/4HB4VdSnCEBdk9vakJP+P7xcS4Xmfv0/4/ffEOUW8D//feg1vpASQNZ2qjyJXfA/IXhVplnZCEDsLKdmXPf6P2X6BplgAe4/FQxndAw0A0DlIPDK5qT8PyfvHW9DH+8/14zfz7c68T/LQyjR1HbmP9i2iotDdhBAkcqI5L8c8j/d0rDrDODlPxmWtd/Kg/Q/YOdRTz4E9D9UYIA28/n4P41sCB6swvk/hwffaWfo/D/4iFI2LkT/PyvMlLd6ogVAUbSniSqG/T/ulkCconf3P3YfLHnKofc/NWjsZARoA0C51w3D/dQGQDp07o0ulvw/8NK35o6w9j/LfZBG1i7pP379a57YIeo/tfTgkZRW9z9h366WsG8FQLiCjAjtO/g/WljFFx3pAkD5SSVlc40MQHDADOqJKvQ/CFd/uLrL+j/MAbpfYWcJQLXJFFWcOQ1AVaZGZ9U98z+tHQxyvBcBQHVumX16SPs/BBSfAueUBUAWVk0SxdP9P0jlwsacbwNAXJURGGiYC0Bzwd0lJ8D3P8hasyPL0w1AFFOlu9FeEEBwHt3p++L/P83mKIcqD/o/w2vOn3Z/AUD0H5FPwNn2PzqqD/d3/wpAfnf9MXf88D+ueMesfy8HQNyzkQZa2+k/ZsIhvj8r/T/hiPbnxGgEQGzlS+EWlfM/QzuSKxALAEDGmFN+ZrcJQPCmdyLpqf4/G4OOYxLICED5Le+GUKT6P+hjFH1y7gRA2c1QwPpY7D/sEshfjjHwPw6UBu8znfM/vWG/sraR3j8sCEgD/FgRQMHCikLEjAdA9mvH/6bA/T+3s7zn8YDkP3FlOiQn4f4/etGeBqfb8z80dijs3fD0P1y9lR/n2/8/F+7U8aQLBkCgxpxwNsr4Pynlt4Prqfo/Z19GwDqe7T8aYWrzvZsAQJQbCFCGaO4/CUNWTEWZDUDJh7psLPn5P6PBFqrn4PQ/FKAckV/M+D9SLsu5H7gKQNDWjSAWZ/g/8OpuqRIk+D/q1kEU340IQKycQxlnWvo/ZrejAOzd/j9/GaiPKGTwPzP5gz8OF/4/ozIwZDdFAUB4vHEiCmgDQJT/AApL/gdAoc1zBWAsCkCTC9195nkPQCbQwRW6vvY//a3597irAkASAEBSsJv6P0rnOtUk7Pw/6uaFl+M8EECRzlj8F2v5PwzbumnWGgFAsPwiBe0EE0DPBbc53Rf9PyWXMLU7Ffk/zpEz9rTmAkBnonnx06/rP0QIfZc24eM/8EXvge/tCUD0g0Px49YIQCzveTLDLv0/hu2p8VY67j8ciki5d1D8P5hoaSWLXfc/LwhO1QdFEEADpqvOqRQCQB9/CJw2tPA/ZpJ3lbfm9T9x7Of1YzwRQKRJiv7oUwlAcdItwUMJAECNoEnUIkHmP9imIIO54+Y/Jl2luRQt9z+7qhJmF0/zP5cHvyE6KP0/KHMlkCRR+j/tGXYOuzT/P0mL3I4ruv4/Y9zu9LFwAkDR42hoOGH0P/7628C74gFA13Pofeym6z8n/QnX/HXnP3TvPo0KFv4/5c2TD2P6A0AJ3hnCnMj3PyA0LI56swVAEevL0iZy9j/1h1wigXDYP98JWACaMwZAbRDpBMMV+j8vdQ7ZRCAUQBcuZEydPBBAHTZ0FBaSCECjj6AuhU3mPxIbv0sBEQRA0ShgdlPOBUCeqEru7+/zP2UyXT96Vfk/mD1z+8mSDEBqSfVpJbT4P6DueYCM7/g/itoYtiDOA0Av9fq14vwSQLZ6su3yevc/hmhPQDajB0DLgvRyIU/+P8wBYa0U8PA/a+RhAZHuEUDhRbf8Ts75Pw0iPX3KngRAFElAOoYi6D9Zwg9gOjwIQO3S4A8TsgBAi2BYtlun8D9sr4LP/lAGQAZTr3GvxuI/mF1ZV2G69T/sEJR14awQQMFD9hKYUxJA9c9wi/ANBUBWazU+0kH6Pxd9y+kECvc/uaX5gkaK7z+chRn/+3MQQBYTf+0TPfo/b+iGDmjOAkBrBM1ZdrP3P5lhxolMAug/0xnK4yLq7z9kyAsJ2osPQGcBUExqIP4/SW9oOw7nA0AX0sgeiVLlP3dLg6/d1vs/kx7FoOeKA0D/j2x341z5P178EzFRTBBAYcolIyYREkCmKa47hY0KQM6wA2xJ6/g/w2g77WiW/j+I5P6FBgLlP6Z2R0RDKfs/MdeAd0q++T9Otess1voHQEusJ7A7bv4/N8GaM11D/T9ZGfybkcD2P0O6Uoxk1/w/hdNi/oT7DUAs/Sk+NH3uP3mDtdAanek/V1924QlY+j9/yL4KMDYMQEQzarNiIfo/NpnLTfk47z/0uCNlfLkKQCGTWVjKb/s/+RAtlKP//z8LrrDhT84FQAhdAERS6ABAG1W6DbRY9z9dAZZXJfP7P1/9w0zq3wNA3BX2spUs/D/oSd2fyZj6P4bN+Ri/2P0/c0JUTojv7j+8XCZT6pntP4RY2+YUcANA51GkLpctCUDZQrMMWnX8PyN8a260sPQ/T0XsofSe8T/MqynKAGoAQLLX/hdn8QJAgSERJL9F+D9z7ClYk3z5P2+KA0xZZ/c/Fq05hZ7J9D9hZmy/Y8nrP36seQK1Y/M/hRi5bfFv9j93SgVQlVX+PwO2Fxaa+QhApEL/co+C7D8pVAHs+cQGQBjFjCd2kPM/im3Q0e/dAkBMYDpqMKn+PzGjD9Zi+wpAqGp5LoQdBkA4JLCXI78IQGhJEIFavwVAEszHuon+/j9ngRc+yPD0P0/4tJAbNvU/TU8T4GLiAEBcolcXAqUTQBJslUgmmfc/DzUSQnmV4j8RlEsvZxvyPxnhvjK2Vvw/5/o+NIOr9z9rqhTR+W/1PyptASzcdwVArbeuhRrhA0Bfm0pCNWIQQDkxbbASTwhAXiWizPo2+j+pdv+Gdxz4P6yVExPmPgJAnCb4XQttCkCO+AGOhV4IQFRI1IjqAfI/CG3FfYDEDUDMc5MmL1bwP0VBxVgOCQBAN07a7CYB9T/o2ysST+ERQJZCbzvxY/0/H/XuOOja/D+Eo7LCn4LwP39virgLaQBArLBm/SaREUBY3uuB5lPmP+jN3zOiFO4/w22vEik2EUCjhDFawVP2P/PC3TRa8QFAasZLKupsAEDc8JnliaQIQAkfwkyR4ANAYoVpQQZaAUAmsjHLk0AQQFoxG7MeBgxAWcNnYy3vDkCg/7aui7cBQM2itGwGh/Y/rhHtVQtP7z+EasG5puryPwAoY6tZbAJAv2+Q+1wQ8T8MrvIsZ+oAQJU5I26NUARAdywH0IGM/D8RvlleETf/P0rMxLgCAfQ/PPKAJnfB/D+QGMvX6gcDQLkeImqHqxNAmEP5ox/z9T8z/PDmPQYBQEolYOf8IQFASDjH4Iy69D9uZ0azjfT7P6J1QphuNfE/0Sqip9+TBED4pdKheVb8P7wz6nf89g1AHE8NAxGo9T+GMjvJFe7jP40+znPLUfM/i1rrRFiPAUCmO6Mm2w/9P7Qp85u6QQJAubsuPdNYDEC4CLeTAPsEQPgRgJS0+AFAqUqxWPh8DEBEFjDtsV4MQKIBCf91vfY/ibEZBSAABkBfwZLbWhITQLY7w2u4ivQ/wKVMwXXV7D8mRu9lEdHVP92N2oNOBe8/N3IQeKSM6T8nwsOj8T37Px6n7rELmPc/hUd1ump2AEAwXWoHNtX8P5avjw8pKvo/DoHegvbIBkDkvRjw6vUDQK73jzHKCP4/gq19MklO9D8HEFZA1kz5P4pl8dEkv/Q/rXiB39UB5j/m16J8AgUIQLwGC9IW8u8/JoR859AMDEDIr0RrQ8n4PzaCBWTDIAVABSzEesC/AEDQTilbi94LQNAg8Cu7IwBA5PjB/byC7D+y+jjC3ZHjPyVafyFjdRBAQiIbEC+gEED2AxRBX+sFQBqslTV1cQhAaHKDZr0R8D9ZZH10zKEBQGddR4b/bwdAaAqPib9qBEC2mTTxRUbpP1y8cKlsLPk/5tpxsecp9z+E5sh7+qH5P4Ve9kahFwhAKpRbVCJi+z+6+pHfu1TiP4GAV0CfzwBA1ETrUNDr7T+y3a0Jnc0JQMgnUFa2VQpAOxrjgE5t+T/V7hzT7hz7P7tjS/q+WPM/F5n2EZKIDUBqYR//AGn8P3Q/ss0sq/A/d0I1nTux/D+nR9HcdFr5P8mqkVFogAZA07hv+muQFEC3uHPxHsQNQBiURTFoAAFABOYkTF45/D+aaOgbJvUEQIyQEX2WNAJAyOgKeVTo/D8uuIOKxg3sPzGpJ8ZwUPU/UI5IAD474T8ZfNSZPMwRQDpsvYY1pvM/AmR+rwUUA0AZsq5bYEX/Py23Zisv9wtA8kczA3MF7D+Ee/nH9cQJQJk1IYLTmOQ/gZ8nldk9C0D8UpbrEKYIQCZmCW+ANQRAO4rd8PQiEkBf4gLPUAf6P8piLG+I9AlARLpMQ2XCBkCi6YPDjToBQPhvz57YZ/E/s+/wQz/99D8qBPmkDH/9P/DAIEpn4/A/oFGXhdweAEBluVoAnWLxP2/3eLL9qwVARAfIx/7u9D+IVM3zsv/3P9kWThY5vPo/SHWzH21bEkDDEkkgQ+L/P5pXZogvcwlAzAC/4aIxB0ByvnXe3a8NQBsVHlNG6O4/p/dvzDVQBEA/iWNi4FD+PyoDHc3/4/k/q3beuGbf7z/+yBKOh44SQADOLH0pRec/w2dywnziDkCPZUfUNfUGQG8/4M4ZRuA/Cl8DvLsk+D+sgk/PyxwAQAdScA39mfM//MCQbtFFDkAqV0J4gErxP1pGoiHLWPs/bhcoLvxzBUCgJM6VNasAQON0qC420/Q/HwM1QKCM5j/hAma2O2/sPzxHeYRaLvc/nYOgsvXeB0DKCgNKVTH0P+CvmC3LWew/UxqWt+S46j+EIb60Z6jyPxjV/TvUqeg/r+hW3pXsCUDmUufbvy7yP+kRYC79F/M/ACEJiZ8UBkCLWQGrhbMNQOP2DwWdvv0/gfA8jFoI+z8mEdxR8QUAQF1AhmZjMQ1AO/s5wEqe8T9bPhPZN9cGQF6rj0w9veg/QXsim1F/BEAkmooMvFcAQC2EH6nTT+Y/yY0GjTzs+z9zyqI5xiMFQMnTGRXJ5vA/tXxV3jWc+j/T9Y16DKkCQP+pINUvVQxASMIgP3OV+z818oWgJScGQI0mJPrCrANAVAEi/DYzB0Be9/rJRID/P0hw+2izfBRA+RydpBbUEUCO1w90oB8BQIlODbipA/M/mRV7tuXZAUDkS2Zq4QnyP5b19XiGPBRA3zhyHixE+j8YydeiA5YSQOjCX04Lr/0/cHlNyTKE9z/eTviMBGr5Py93TogfpQBACMEf1LLSBkAKNFunFYQBQAs47BOQMgJAl5CdzrzWAUB4Om/a6IXmP89tg0ldhvI/YRA74kga+z/zQ75VlO/3PzKG0saEXwdAmfgCxIUrA0A0J1zrNlv1P49WvMcPOQBAJOdPgUdI9T87u1Lvh48BQEsy+ZOJUBFARhSMHHbDBEBwrW+YHmPyP5TZnKto1hNAXb5a4kaP8j9jxrgj/xX4PzoF/9u/KuQ/gQq5dQSw+j/XTu1wdHv8P21+9HnlJfM/bgpmJLjG8z9sL+Hgb9b9PwBHDKNGnwpAck8qqSqnCkA1T1i5WJ/7Pz62TZfJYABAttGOiUkJ9T9SsDhspJ7+PyEzQA/cWgxAXlkuInL+AUC0jyaSKa4DQMid8/Ka/hJAi5g1yY+UBEBY+xFywWICQN7V0p1IsAJAm7vDzF0QC0ARF/8Oq4T9PwRsjA2KF/s/npcoIN9K7j8UZb4i5yzkPyb9ChDbMgpAgwW3rloOAkCWM/0Ymf76P+2+oIccsAtADls9lRjfDkDzSMQcEUjxP1D7tl3Rov0/Gxp/kyEZAUDqCsoxFa/oP/HcdIpD1/k/8yroHQ+S9T90UNQUpSbsP4tlLPo4Pew/hGhTVkHDAEBHGOz7iLn2P5VhRfoXwBJA5+jh+0Z58j/k6mzlYaP4P8Pe1RCvMgFA4H2fpxlYA0CTzysJO7P4PzJ18pu+7wRAbsXP1BEgDUDtADSqM1b7P4BTp43XSANAwehV63xN7j9LVFevd5wHQG/l3ekVkQdAA7BPiWRiCECbDp7WT+3wP+tEXrA30QlAAyvO7uo/AEBAr3Fs6LsTQE2MgzNTVghA5oeyTvHk8z8+2vR7XMgTQPHDJCvxnwNAmFhPN9iI7T9pL4dH6W0CQD42pboufANAfXcEdjU/+j+D/xQfWGT7PySKXwaiyRJAQbOkLV9s8z8rrzF0qrn4PzXpEWYOBfk/aajYW83/+j+i9UL4DTf3P4rWdS/A6f0/4goDHn2PCUBZ8phIvGPdP/s7EiWPfvA/bnFFo+9fAUCznSR7/d7xPxN9qDjyjfo/LZEn4gvYEUD0Qn8udhPyP0G9mjrmSfs/mFkDEYhD9T/lHEaL46cJQM/w8a8i0/Q/CspEekiW+T9iK8NrD+71Pw6qGuxgOOc/+KTwZ7BY/T8FhRL5Hcf1P6r1g6hhtPw/BE4g36ac8D9fkiYvThD5P3uuaA45W9w/Fq82X8QD8T+Xwr0uXsITQOWCjTVGcQVA5FGcGp0c9T8rPSNJuk7tP2TRDpqnOAdAiD9DawoNAEBiGXiO5zwLQNzXIJVSzAlAQjcUwpAZ+D/p0gvCuGsFQHddsnDQYuw/fCmxdEWDAUAWfyAoOF0EQGN6GRGQgfU/6UyExFy7B0Ch3M+KvaMOQFGtpLpJxAJA/msZpDmFC0CcHMQmpsPxP9FZ25UE6+c/ijj27ye/CUDc1PSTvhYBQKh4i0qnowJAnBNDLM4H/T+EMhkRdqTyP/Tjq0vtKfY/nmAOWvnL9T/rbs821ATiPzGBLL8J9/E/uv2OvFmc/z8LOvdTIcX6P+FlJMBE9xNAWG66UnGH9j/S3lb1hl7+Py7/hEkj2vQ/FumA8nwOB0Dt1lA/ZHTuP+c7eb47wghApVyklGhjAUB9u4I5tvkFQENFn/Qsn/s/tRDBrvmNAEDKwy26oDEGQGNCQCssaPM/PDFA20t8/D9AhVcbZdLyP5WJN4NS1Pc/ggCV90nq9z/5oY7qmez4PxcgKOd5HOU/knKz9Ao7AUADJbOOVhXsP7bBEYBvPPU/whMDScOU+D9GjH1VImsNQPZC8dLlp/M/dW1g9OogAkBuXVRajHQDQPPbMGjtsAhAnzythUXQ8j870xB1jn/2P7MDhUegmfk/1bJUQ7deEkDFS39rTSIHQFzCounp0P4/rFIxpC/tBEDh6gDg+TMAQF2PUJfJ2uw/fmjsVuaGEECrLHMVHuwOQGjdq9hNVghAClxp7AbfBUCCizN6mJD8PyTqeOX/FARAtemajpSPAkA7O/JoD/EEQGmjjEHf6QVATsaNMIAI+j8S7aoKpnH0P4e0FTYwPgBAxvyCDDgWAUDVlYDJLrwGQA8GmzkIW/Y/MfWQ7sT/BkAN7jCCVGT9P+/nzeoqqPM/6cScDdDR+D/vM4fzQKrrP99TBda0BgFATFatx1DuBkB17UZnO4DhP/1IYM304fY/UuPG6t8GEUC6MyBP52gAQOEihy/96ABAYon8buDz9T8mHvqBKab2P/u0cWxJRes/gSvyhI8HA0Djp44TqY7vPw5i2SKfT/A/+vhrds/k9z+uLb/LXs7pPyysjokAU/I/bOX02avfBkA7dYjp7YrsPxIdsdeptfU/oOPwulyuAUCEqg/v9W33P5cPTtNhV/s/PqIVKEWK6z9CaYEkZ8n9Pyrojelcku8/lyVBYsoi8T/lcqBD9Ln8Pwme7QBH/RNAQONTmY7D+z+J/XazwarmP8tgV3WkLeo/A9bDwUst9D86J8j4pI3qP3WD0sJcHPg/EiQ4iWM0CkDbBn4vglr0P9Kn3lUEMgRAOJf/y5ZS+T9zfOeHM6vxP2oT0c6imPI/V9PEZCV68z+4x2v/v5H3P21DdYklggZA1GZHw5lvAUDASwWUCtwUQIPKh5NQnvw/IfCpIB/WAEBb78dXzscEQNMORFiSGAZAcOy6FVrG8z/CylLrBSrnP08ySXiVEvk/86L9xjhy4j+KezbfzTz0P/tajyBPGBRAvvwHIfMfEUAqf4zeyngCQCWD7xYPf/g/0ePZK5DMAkCjPZkTnzH7PxCDM8DtTg5A4Ms21V04A0Ao4V6nQGYCQDQTaAZsYPY/tqZTBgHoBUBavqkbPN0KQFWWsYgKZ/Y/iHEAgCExAkDWvEvnDzYIQGbSm7UH1fM/TTcl7/f19z922HgRrFUUQJplIHk4GAxAlYEUOih7BEC4DbWe3Br9P/GEv+nJV/Q/tg/58rf84T9V6oZJiqf/P9psJNhvLf0/q6CT1AskD0CySh2pVkQSQMmuQT/+vfg/x0jj9S9o8D8C9gqOGtDsP02OPIWbpAtAV5jeKNXZ6D9sImMw+h/8P99SX/kln/A/2O62i/o3AUAkpRqbyoMSQMpeog1CEABAXgaJ2tVWCkABJT6x/APmP2RpIo6ZRfU/U4lKCqy8EkAsgfioDAf0P9/WJOVdtvo/EXJma63eAUDDR7qaacz+P3W4AR0CYQZALEVY7P1S4j80kmA6pqDoPyxiECul2v8/yssRdRcUCEABhfCmnAX/P/o6UAF//gNAzY594TqVCUCPfnUFewQGQLbNFTu1gPg/BFqoKXkV9j/D6jKljA/1PynJo+LongJA8lWaPda0AkARYfA6GaDvP2UVekN5h+E/g3VFbXbcCUCAgKiGu5jlPxUHsFD6V+Q/WNi+FEd8BEDCixw06dv5P/BfU1f0pg5A5nWaQLa3AEDsUKniOxv9Pz8rwh/Umf4/YPQHgRoq/T+Ykj95XGcEQPu3uzt3qxNAxFQaxmnw+j/d+0Owp/YDQDbM7eCaCPE/nYqzWpp1+z9E3J0fpKX9P9BnS6nLBQFAjCatu/v6A0BVdLZp99L3P/n0Jbe3ae8/a91MF5Ha+z+C7f2E1bkTQBXCsg7QYfs/Cms773xp6D+JAeslSLkAQPMk/uVkVuY/2Gfgg0vs8D8wE+m/INLjPy6T0wNLuP0/rQMybou2AECYLysFrCL3P+Yx2oYYLwRAvXRMWA+GBUBkNjGW9IYLQFTdY4fjSe4/gFhzJ9MA9j/8X2/7yBP7PwRqySqUG+Q/i8uGykiM9z9J1BLpnYzzPwgRPBQXUxRAsh1kjuRv5T/1+6LxA7bwP/9zeMKN7gJAsraSfEN2AkAYB8ggyiMTQFkK48w+qAhADPcCXFUa8j/XCAzk4Gr4PxLGEcFz7fU/jYrcaT7E8z+RPGIkZgMGQMEodN67tOo/GUyD9Qt28z8BgkKZwAHwP7sZKiJUDQBA5ECibA2oBkARuN+f0u7vP33XVT/u1eo/aRKDw4Kk9z9S9oukbGYIQFZMA+/bivo/fwQFtbiYB0C2bnpbRxz7P5Mz6wSvfgVAiIAYwa+O/z+Cswq0xS33P/D0CGMSjuI/PMQmZwXB9D/ameacf1H+P6C0VtExWvM/Lk08C2Mc/j++f57vhw3wPyV+2TA6swNAhGVHyULnBUAYNGBGEOz4PyEcABT2cvE/46f778FI/T9af8Xev439P14BYxvYaBJA4SxnTOQtAEDlNuj9RhD6P558TIcbnhRA38yV9OHhBUAY9svcMvX0P/JZepR73ANA33PftbukAUDL0KFWgOPwP5Lxj2i6avI/aVwBj+6M+D9Vu1D7cunpPwIDskS3tPk/xl2ss6Og+z/OHk3SLjoPQK/8PYDgFw9Auka3vxAn/T9HBxCvo/sBQCNJhuW0aAhAqYnCXHpa+j/2ihr5KfIDQKUpeNcD//o/zb9jPLMVBEBi3j1Fc7EHQM1N9yd0a/4/+l8o1jc+/T+CmbfNnCQGQEwCVKd1dfQ/CNwMfVQN9T/CchTRZHf1P7kWUIZFA/4/8pWMRuQOBEAtISX2DiEEQBSJrCoMBPE/HCyE0eo/AUAErOXC2zATQE9VX1Npg/E/qeABLikYCUDIV4fk9g4MQJKtBFDWEAZA3lakuhaVCkDSO1KomijtP1ftHQpeg+g/Wavjl0hA9j+AAAbu6CgOQB1GMH0dmgFA2CzJNIHK/D8hf9b5zLAEQECxLNMwPPU/cHih/EJ2/D9xstWiYmcJQNO0ScpUrfQ/cLxLYs288z+K9y9zIaPzP7YjKGBtBQ9ASK2LuqZi4D8JcBlIbpz1P11Q+saTNANAApmHcQpJ/j+tankXe5n7P04ETKTr7uo/ZmPS4Buf+D8YlYz1n38EQLevrBCv2vE/u6B7l9s1/z97qBlgiVP6P6odADQHd/Q/6ompHaUzEkDoQsd9xbDSP2DNvuPpZP0/8faBUeK/8j+p81CJKwv4P2JKWe7Yk+4/Edo5h0sh8z/VHnGdkGUMQFw3vf75lf4/Kk5JqB8rBkAHcDbbnZX7P449YJn5f/c/2KZVDzFuCEAk415cd/0AQKOeQ5k3iQpAqwJCCDqzC0DE1i0InJ72P+mxVa3wFwNAUJQO6t8RBEDB8tCBKnj1P78+JBJHAvI/Pfkv8xFMAkCXtLTChVkGQP66BnTz5QpAKzEjvbB0EEBWpM4+Mdn4P179IfBoGAFAC8SdrqLO6j9nEp9uzcTzP8NS7z+8OP4/zOGf7Gy47j9QpCpwV870Pyryk0lv/+Q/nbH492yM+D8FuTmtJkILQMsWGv3ESRBAtpgABRX7+D9mtmpJWTX8PwnaUp6/SO0/Yh5w69CsA0ByyilhXYwBQHyRM6DaJgRAeCjMTrjR/j/4G/BZ/yz7Pxchz2oMaxNAtd7ZoH/dEUAE4JIDJ30DQAA+OTV+3PE/i1cfY2esC0B1yKPnkcjjP3UO3QKVmfQ/KvYtzHTwC0AkPgf0oIQOQLaCjSFgKwtAOyEzhKKI8T85JBdfWWkTQOrdXMyAev4/1YZRhbJI+z9vdZwh8tr5PyrTAJW6dvI/fvPn/HVKBUD7ImkG/Hz1P4qBA6y08QRAWwCkzqoB+j+4y3u4QTj5PwhUFgzAGBNA182i9FoLBkA+2tDI0FP7P2N0OS7VKvk/vQgualYV8z+jNZN50sMTQPZfu2Qz1RNAF4sT1QVD+z+Uo+/b5tH9P+Dg0HOc/hFAZkIa6y9s6D/WmIww3e0TQHMoqwCfO/w/T6mXkff88D9iwp2uVkP4P6riLKS7YghAuWrQKRXoDEBtKkywSLH3P3hG0PcUNPo//qRuuQzY/j+6HOh0GW0TQF1vEgb9KuQ/GySVdaYzCEAnwdxrylsPQJhad1b8y+8/53Sa4rze+D8CNOXgeaACQCuDyYlMqgBAHW+4vC/7AkCfYzjde0DzP4jyQtHlz/w/4cz1gMnN9z/emz9usHHnP4jf8KASpeo/LT/3S3huAEDKv9oJsDMBQKmCWGNuy/8/H16ZoQukAkAdVKg5Oxz4P2nytR76j/w/l4LZqce17D+N0y9s/LPpP94tiH1Oq+M/2L7a26KaBkAF8KvzVMz9P6KqEFUkRAVAIkqsgWIQDEDS3ndpsnH7P/dBAohyZABAVL8SN2nP/T+mOL9qu+4RQOCHlYBoseM/DEfNfwGv9T9PE8OuHxQFQId7308ZVfw/cQrSt4nS+T9I0mX0LUsBQFF+up5i2BJAfVK6cDdA/D8hRXRrmNrnP4FJ9rn8gQBApddT2+8mAkD8QtyG0bYJQNxCnqUB2f0/6Msz3JFC+D+L5ytWZOr8P1/QaLdKYfw/lxKl/CpL+D8iO0Y4WJwMQOe485Il5PU/TophjnQGBUBRim4IOvfmP+CngG5AkPw/BD8fAxouDkDygC+DBtH3PxLCi9puJ+I/SQ7NrKKFBECa2WvDVLoDQOcdca922wFA3vg/J28k8D+AmYF0OLfwP7FEv/hNlwVAXNt7nwdxAUAtUwLdqWD+P4Cpa4xhhwJApxYx1PgSBEDKTIUikCYHQKFYfR+EiOM/A7ZIGrim9z/lQVxpDkv1PyuHFUXgxPk/T9vRtRNu8z+ESjY618bjP2e0Offpqg1AM75P2NoHAUDEi20jB+T0P9BwsFRv0/A/1Q8NIVVSBUAebJa/XB0EQLU5oA+c6vM/VhGT/2e7/T/qYnI098ftP+8YRFO0UAVAJ7ILrgI+BkC/d6QUSSAJQBEA+WVA7OI/PBR6LFD97j/fnn9LzNz5P7p+Ig1E6PE/o53H61K5+D90GYYxp/rmP7T2FkHEBPs/D6ip9W995j94mIxppZD/PyxG3fFAcQdAByk571Lx7D8TKU09ti79PxwtjGs6AvM/2UJeKQg/AECMJWl/RXUFQNhJYVVySPs/YziLWb/AEUArlL8yfKsSQOjdYsTTOus/06GQKpxWB0CbHRLExu7qP3+JH/yiF/w/1CH3neok6j8pvFdJXP7/PxLyOhGgmec/SjpIXTDY/T+FeUTNlh0IQCtCKjbwL/U/GvpC9h/PCkDRDWu2HegGQDxOMhcXTARA7o/opFuG/D/IZAYnHqIIQOkOc+bOhPM/7PJFnuvS8T/bSRs6jH/9P2zJ1jdgxOg/k4hEEiNoAUC42gSUkpQJQDs1rtYJCA5AyI+bTCyyAkDtv37k8SMFQNyE3/scLAtAHEdp3OmLAECDtI9hxzERQLzimB2r+/U/9b3ewfXB9j/Hpoolsp38P7kRWlB+hfo/XQIzFBv94z/eFPby0fkIQMFclQG6bgJAyFtDr9S9+T+lewOSQ3j6P00opQonnw1A9xXw48feAUDOURJn7ZnnPy+D7SngRwBA6dtuPQzdBkC48vUskU8GQFXesnx1v/k/QtYGLnpiBkB40WZV0CMLQMrejHFthQZA8g7jTxfcAUAMgpWHmNfqP4OVQWo/kO4/XzfgLjrJAUApcazcXiMGQEkV62+xpQ5ArPGDXNNMA0BjijIjd9zcPyIkaHZUTARAVtgPtajk8z9+WoBHLu0IQIvgVcIjTv8/K2+5vvzzCkDZUU7C0LPiPx6IxSUDzPI/jr1rV0ck6D/126r5ilwSQG1CmBO2g/4/PZ6DA/PKBUDAfhsqe70JQL5zoO6aYvk/VzfeQUof+z8cTbD5Gg0JQE+jZqF9svA/+UFYsgM2+z9qAX+PnNz0P+GGsPR+cPU/847QyYM8+T+Tsf6EkgL0P3InC7UUSvs/tj9mXcx+CkBAaAeOVh8EQCpndQLepQhAGfMOZ5dqCkA3fRA4pbDzP8Toq+NkRus/GATNeb0RAEAxbr84ejoDQEKzkVMVwgNAnPAf7snaA0Dknl9F+Fn6P/3sidtt9vc/8gSVegP47j+KIAlYfDP0P833h9UrQwZAb0cqpADxBECKTGbmO5AHQMPw5ySuGQBAPkpCL5zaAUAYgzL1mlX3P9cd3BZqMwJAMgbn41Ep9z8qSwkj8z31P64emHhlkPQ/T37aA+MY9j8OyPCnlFf+P4mFYeKHp+Y/afuGXWoOEUAMxTGRh8YEQMu9kiKuuuc/UX/4nO+xFEB86UN9PpDkP4EIIwV/bhBATS93sQVN4z8EE66G4JX0P2GtOIjkCfw/bolaLwl//j+yHB7oP3EDQMmV9LU13RFAdu3bKntvAEAzBcWgFaEMQLprfQJwBwRAF6HxdHER6T8MvP4x/BLrP58UYiY8BPg/R8EqZPBn9D8n/qvicokMQELEmkn2lQdA3ol81SE9EUBxnHQaMqsNQOcMZqpdtQVAjleo89um8T/T0DvUN8vmP631SqvB6gNAn+F9bxtxBEBoEWCFzIL2P4kFAKasHfo/Yq7hnBRz/z9iKM/jNhHpPx8RdbqIixFAgUrMPpWXCEBPcTI/XS/4P22Tx3+a9ApA4dgtttis7T8pnRiQQ7sKQCC0UAsDgvQ/06j/2GoNAECc17Cd6xX/P7/z0b1M9/4/pp7YsqBFAUDplKRtFaDzP4CG6JqYOf8/O6MvaFHbBkBqdxPuU+L+P1IZoCvcKApAmu5nEwLTBkAsiHstrRT/P2o1Um1D9+s/vi0yJc24+D86ru0xdAD9Pw59GVCsYRRAAwDwdXEpBUD5gPBGRtT9P7bQdcbLOOk/euiT01mRAEC6Ypv+ZJb+Pzx5ivTk1/s/lPuktRio4z+8lcBZ0vz8P2tmiFSHYfk/87jNYnao+j/gihDn2gzsP9YEmup1eOU/3SCNiQ29+T9cBw3GwcfxPxhGV6Bjbv4/M6Z+yB8vA0Cm160rgCANQN4dLrahJfQ/jkiPz3XW8T/MCm3FO6b7P3D+sLJJ9gRAuB9YaO4o/z/JQa0BYN4GQNOwBq2Qafk/49c3iI514T8ncS8aQecDQMOMslqfqAhAq6HwN4XZ4j+g9Zii5LcGQHtFTRMHxfI/doi1PjQ7/j+DKYzH4AzwP3RYW232+fM/W9Eo0w44BkAPqFHs7az6P7w4d96DbPo/uKszvgZkA0AyG4Bh+XICQJuorYF3eAtA3lf7E5uBCUAN0OCTNd76P2GnriFHZes/MopKgnu09z/dQ+fJcKv4P/woriQCxvo/7+O8hw6L9z/PTsoZUnf3P9ojaxKGmwZAGN3mHWYf7z+4daZ8QnULQNZOvcq4/AZAl+6lohtn8D+TH69SsAr/P0bklIo+Mvs/uGC3CqkcAUA4xvDq90PqPyhDf35ep+o/Mtb6cVHgD0BKxOranb31P65bxhwuHg1AP3pTdaGnFECUN/Xdtx7nP6rccdppBPg/77HKMWfq6j9FyQi6FBsBQI1884/Nzvo/I5eTJAyuB0APBcwf8Q/4P8SYvDc40QNAN9suxbHp+j/vstWcguf8PyHyj7S6WApAleN58+CvB0CZwCGDhdvmP7+1nsBFAANAmfofB2bsBUAZvVXkqnX2PxE0q42pB/w/OvEy4/6uAEBEZDKryFXkP0dyZbbvfwBA7rujBPh3AEBa8SrQQ/EIQAA7U13dIQJA2g8QEe084z87djjtFxkBQJXtc8nchfA/YAWLwN2o7z+jj2dvS0/0P7YvpnQ1H/c/TMZj9XrS9D9YbbDko6D+P8x9xqqUCPM/2aU4bKFa7j+jXVMERdviP2n0bSxzHgBA+FiF0kG1CUBKzZLcBQP1P67GxMn3/Q9AcSy7Q4nB9T+O/Awg+6v1Pw5OTHYkku0/Lt/mEbXO8j9tiizzLb3sP0C3xWvtufA/t/GTveZRA0AWXWLKQTAAQNTmjMPfWvM/kI5yjrXbDUDhL6rw7Pz+P42ydwSjAeg/aYHSJRS18D+EY6bBrNr3P3fa1QeiwO4/NjrtRA0+AECO0aRI+z8NQG+fMtrEpPE/9336GEs6C0DSJmwhk/jwP7VBgVN7gAJAX2NP//OiAUCJeqHb/CsUQDlYHQMigRBAdVwgsHAN8D9sg9RmALwJQG64yQJPcxBAHhnA7/++9j8Ji2T6VG72P8YzaAUf9QdArTRbppLAAEAbla8sAij/P3bs1SgW0/I/zYpE2j3RBUDjMGNOjC8QQAJlmC3GmwlAjUwF48hh5z9CshQjrNv7P96Gz/i89BNAiWDaoafkAED0ER6b7lcTQA1pLV3OpOI/Erug+1pmAUAF7hThGV31P2oe9o/ZYOQ/T3JAcQYy8D8kTENQQqsIQOtUri2QIf0//Y6ygkwE+T+JDNDdu7f9P9nRFMAzQfg/+l8/SkgNE0DV/D8veFL0P6gEJ0nfgvM/mxi/F3068T93nweNGaj0PxbkAZg3xw5Aiyp0LG4uDEADkq0n2k0FQLEye9fxGe8/6arTk0jUAUCZG1Oj8hDwP3WpdBscMAZA0rbxqpSY7z+uQLvD2KLvPzeXsjDoV/s/BK4aiqFZ4T/TGRbW9HMCQCQZw3gPOe4/BJfFYQUp/T8RmD9CFzALQHdqq1C2r/w/sYWmHETSAUArAgqjsSEOQK2ZGN1xlQdAzNsPjvPh/D9uDDyRlbjvP6lBgrbzIv0/aCx4sJe7+T/i7TSJ0WACQL/DUBYzyPw/pWB5dSlG+D/NekR9xSbmP+tLgiZ+SRBArTzVQ/xR9T9kDoOjO1QNQN8B8K3Jdfg/Wqa0wfe/7D+7nRRWb6P/P0M4MSGWa/0/qKJE6OMc/z9eIegz5hj/P1mt6oYF5RFAOM9uKnYkDECRucXuZPzXP1Y/ANK4l/o/pl4WBn5e7j+0pQHtpzv3PwZkqLvI+wxAEFCRmvSd+z9/8VoAz1EQQBZ6h8jgdABAyFMCNAp5+j/3Oli4/6DmP/MOegAeUfc/DXS9szOQ/D9DFf+tZNryP00oOtUkSfo/sAIs1Gu1+T/RVHuWlqPzP/s2EcXm6eg/0pC6+hULAECUlwrUQQAQQOJtZlRTLQNAQbvs3CHW9D/br7f+RoYFQL7NN8ccIgRAkrtDdyJQ9T9tsG0rcGj+P4vCPzabyv8/sF7PJizy9z++7kC6lzDxPxeeavfeOAlAXFtEk88uFUBt6eKzSUT3P62IwugLdRNASNDIL3jl+D+oTZuukzMFQHZoewY6jglAkzSSmeDCA0BeXq4yXkoHQHTd2TRgMP4/PptCLomc8D9qw9ibe6X7P1oJmQSw1vY//X+HXG42AECB5aFa2qsKQOOuaqa4tP8/Uu6Dd4WbCUC3/L58dazmP+8AkCklUgJAxFlIWPX59j8pNrA0mS8EQNPSe2lDgf8/r8bu/zlm5j8ZzoHXbWcSQNvR2nZxWvU/R73IYl02BkBjJ8vw/XEEQIrVqPWs3fM/aVEApOi4EEBklI+jQ7DkPwV7wunD4/g/FCZFmqA55z/DncQomeEEQNZMOEptxfE/VKtkj4JZEEAsS636gRH4PyV7Si+/2/E/NaIHp7o/CkASv5jCsw0RQEctIUVBpvQ/11LdnyZn+D+QPsdigFT+P9ITncltC/E/uyVG2VXE9j+UgBP3PR/xPwmZx2Z8nPo/yjagJ9Lc8D+UpsJK9AcBQIZHh1/eCwVA8IpM2Q0hA0A+We0RqpbuP8ujbTNgTAJAbdDT6TLq/D/ceTACry8LQD7tabJNdxRAYNl6Cacv/z8NmlhOUKAKQEWF3LTnCPY/5b+J6hoS+D+3Q/RG0VTvPwmJ+BOtugBAvIkAU/Bf8T8lOQKaZ+/rP5JcurmHTwdAf/MaOoa3+z8xxYHYTFcUQK+2QQ5A+/g/xzAhYcoj+j8/ulVsUqb2PxjENwXv2/E/oRbzr6IyFEB9gXQ+p9AFQMc87xT3w/I/E8ogrIhQ/z99U1AeGlwEQMJRA6dIvxJAf0uwSFX76D9ehhx5HA3uP0pYO2zwcghAjW4bSRXoBkCH5++SZLIBQJYUIibhBgZAVe56W1i59D9s5EUB8dDrP65jTvlEdg5AjC42BvwqBEANwN8qylf5P1b86O2gFwlAi+oCqP1hC0CSXek2bnrxP9IZfV5y0/M/z/5ywanbA0D5cd92H1z7P3NTMAa2QwJALmjLcIadAkCr21nTbHcCQAcvb1uqSfQ/eJcs7r3dAUBlU2s+hofnPzIfDCHzn/s/Aj36QaHn6z/HkOZkphUIQGjiv8c67gBAxaWrqf3n8j/P6oZ81YnzP3tkUkvQkew/LHnIrI9uA0DtE//JBbkDQH0i+bsaiwJALoNkZHft9j9wcKsklOMIQAfYzu9hCwNAM2XuLC2iAUC2Cstj9EsKQIH4vauW2vY/lDSfrvm68D/WevgdQ2gAQNz17yGZAv4/KztgJjIF8D8FMcYSRBz8P3gKHxk/tgFAkQpoLSHm6T/lj396hyHlP2o+vKs7iOo/YUQ/c/8YFECThKvyXoz3P+jXXmluJPU/0ZSWKPGm/T9PnFiH6/TzP3Gf7Dhz2QVAkW7sXB3p/j9QHFsM2zT8P9ewdtgG6AxAmLQn30oq9D871iq3EecQQAefA5AWtfw/N8JFoMic8j8gIYmJKIX+P67otTHHXPQ/TJKF8ca8AkCodv+6B98EQPngDMDMU+s/dnUjo4sH+j/400xugD3pP8XSrvHtKxNACqXwjhvtEUAukQ25DWf7P7ZESeT5gApA62Hmokwn+D9TyTitBJ70PxNi012QKAdA0OYpEI/W7z97OKPC85nuP8oCU0tta/E/c/lkMqX7CkBlURSjjzMEQChF91X5DBNA6SbZwxvB9D+tBv048mcMQAAOaILCVxBAsGdQakZXC0AiMaV87MEKQP05FWg0EOU/9mT1cDvv/j81/xXq1vADQDdZ57nunus/G3/k74hwE0DwXeVDXhfwP736ITxcnfg/yPOXkJGq/T9eyH06jqMBQJ3+pP4upPM/UZuKlUOxCkDU/gXoqy8BQF2gisbLDuM/4eP7bh9D7j/CgdSrzoH5P4bZ4W9FvwVAE1gElT0rAUAedCi7RkURQIumUKImp/c/A940NWogCUAFchQ+tsH7P59hHM6iLP8/Kl8QQb8/CEDvWFwF9qb+P54m2RCH0Q9ADWBH9p6D/T+9ySNSqHoFQJJHCIUGuPY/qkgaUg8q+T9X7kQXM24HQNlMx1rMBvQ/jKN3ksKrC0DdFY/nSFf+P1Hd1WCAaQtAjjsON3AtCkAVe+gG7LAGQAluuOkpnOw/axxlD42I/D9A0j8L/5oRQBSgCB17q/k/LVyWN87dBEDE4atJRYsBQAr4ZetZ4wBAd41ZUdNa5D8ja+soKUT8P9r2ozRGFwtAKo8Fgr7m9T+6KPhfpkDoP/2maI9Llfc/JNFCL+TPAUBMtGxm+lnxP9pwB4lYlvo/ixH9hPt1/z98FoXsJjD6PzH6F6Ad+Pw/ko002SCs8T86DZmIjh0AQMgV2pHEjwRAntmek4b39T/efcG/XwwGQI/e20ZRhgpAj9dQPqDSBUCml+UyVA8HQOxK21k+cRBA5Kqb0Bds/D/EWf1bgiLrP9iEj6VNJ+o/hvqXskwRAUBXfbehLOEDQK4ffz8AtP0/lz7d/j0l7T/D40Gk8CcJQGoSlAaTyPw/AEqX0ahJCkDGqv4JQMPwP51OYaPWJuI/MUmsG+bRBEB7CTH0CAPzP/mylGfcNQZA4SQbRZtF9D8GUILVGZH8P3HXQSuM/wNASFyBdwd+AkB0b42q1eD5P4DiT8z3gwBAeT71WNNWB0DTKiqeCOf3P3FgzcJq5xJAj39H4U1ZAkBFL+CEtgH0P/KGi6IHywFAuakdVm1XE0DI7bGF86EDQHKCLW/QzPI/+5jkRn2XBUB7UeSxeqUAQJPcAhJCi98/1wby69lwEEAU1GPIMUb5P46huAEKzAFAZP0hb61Z+T//9uyT1VEUQCVQemT5nAlAk7LcvnZf9j835riKqIPzP5S6kxZc0PE/nsz8ApkTA0AkO0gw6zIIQLqO0J9kugFAV7qhMs0H/z9HHyrmXDbtP+8Uk4nvB/I/gh/XgVYL+j/Y6O1TFOQIQHyxdUmxTRBAwoecXHCM+j/jrfZO6dcGQFqTqQd6hQRA0Z68DopW/D9Q8SxcICAOQElGREyqNgpA/jPDAuiM9T9sjq2vlCbxP+9ImPjiVfI/BzgH10I+/T9fYzFnyyLwPz4nQx3W1uk/W7FDg5gkAEBtenkXWef0P1IzuqcFXwdAi0pK8VV9+T+b0cxYPoLpPwamo9WN+ghAb7g/GOEi/D8cVxtFfwcAQG4m/HvDeABAjoOeAb10CEARlM/ctAbtP8h81Jc9awVAjR9WfwkZ+j+VXYpWL/rzPwANnXEoqfU/IBryzxlnFECoDsZN0qP7P5gAhyMzaPY/2H9FY1Tk9z+0uGzwd+EMQPIjGM66C/c/JSbfSMMT6j8b8+X58Q4BQPVaPgPIvvI/pe92j0Id+z/ZjcI4M6b8P/G9dLgNWPI/I4cUTnpRCkB0qVeI8KsRQIPWyFb/h/4/8PWujdtH/D/ZiJMq82ITQIeQJApVI/A/AYeTYUEN8T8cdXnUFy8CQNYVpUD0FPg/1mKP84MTB0DhaNzkG+H9Pw23QIiGR/U/KG5tlU0TFEC0cC96oDQUQMFKtOFqyf0/6R5lR1tHAUBU2zuTk2MDQDsfUX0e/v0/ShWFt4KdDEBPlf/6QOH8P2v1EyCBNRJAvkfxSsFtCUC5dg2WBgHiP/fignpMhgFAsRtcFkhZ9D8NbcCtEKfhP/8n/+p9WQVAEeLFuZoT9D/gI0D7qt8MQJjG2F1Po/Q/9TiJBm5r/D9Cab87MNYCQITh3oeTpPA/Kz4SF8tt/j+sHsoFYiEJQPGOuU/xLwxAxDOVcCx54T9aZmeUYTEAQITb55xRIRBAGwoADcHMBECUiBQ8pbQEQBurMk5gaQdApdA3BUHe/z92HlEPJC3xP9vnpFyR+Pc/BAqQowx39D8dZZzu60wKQG6kh3Ovu/k/wF0H1RwM8z+McL3SBhPsP/J3+eVx8vw/FWrgC5ppAUA1WWawDXz2P0zZWB2DUQtA52T5CUli8j/L9kA+HTwCQDC2JZT9MPA/ldL8arsb8T/JCaODiCASQLwRjqmlS/4/TntmryB57T8lA2OtuE4TQLl4vN42ZfI/zfG6OeMv7T/8X1z0XlD/P+STTs6Si/E/v4Ud8nJj+D+t8qRQ0toTQN7uTUcgvhBANEl1unxtCECO2bfSx7kMQDJSI1C4FPU/WJ4nKaMRA0C+MuTRWIANQKrGmdyowP4/wIoK585q9D+A5ixY7SAGQPZmWgOdSvs/Fw9g65hL+T+d07ZkVoz8P/Ib3t1Ll+I/4b49PgmT/j8DbVf96I8SQKWdCDIcKPY/CCbumVfF7D8B4n4RezAQQHZ7AKQgLf4/4oWy5tbL/D+c+A6jLOILQGP8QapyoQpAyMMoM30t6j/iCeeSQbH4P839omXaxPo/jMcnZR4pAEC+aZ3C64cBQJbKFwO0CfY/50i9ns4++j+SisbyX6cKQE106pkveARASUboA/zm8D+cLxT6nZATQOglDMD2GvE/4yDpNDqL8z97hs2cX08QQKs3jLGoSfk/kDaokwAjAEANIHrwHW4AQHp/gj9EwP4/xAq+WYKi+T8Z12S8sGQIQI8NRDrXMwFAgkHEueQl+T+DtmOIxeT5P0bzEO877/k/ylVshQmvBEAPjSthDWLxP66jLtrpUAxAANnRCNDu8j9iV7TSM0vuP2wq3trc2QRA2hm7XpUE+T+0hFuhOBf6PzzmvVkfUhRAF+PiNp6n8T+lgldA4Nr/P+UwLlMDH/0/RN+CbJQV4z/cWl87L7QBQBgpMUo7PO0/UuIkeky35z9ld905bSznP7BpMTb3mOs/OohYlSdmDUDXCnZq0QDvP2GsYF6gFfs/I9tysLlPCkD5H9dSNOYMQL37ZVFBhfk/X1UtTWo+AEDy+2steP8AQJC36QbALf0/ZwF048tq9z93xqtec2UBQN6tq8AmE/w/vSG1s6hc8j/CoWzq6OAMQEe4XaYffAZAcjf48ZYaA0AUUbGCL/0BQFRxnjH4/Ps/+v3gVL7Y/z/5hzwz2Yn0P1DwNxQgH+s/Hcq6sCWcBUARZlgTsYr0P54+jtQzDA9AkptW8Mot5T9hzI9RyvIPQNGFTFMglO4/X7MmhnsEBUBNBbc1Gzn+PyXtScvjthJAo1XPUecoDUBJuWQU9bz1P4Nk5pJsUvk/SlBW7hef4T9ecF6xyM0JQO//bj01Kfg/EKbBnyof/T+wbKlHvUb9PxyhkqAMgAFAHykc9PEN/D86dMsGBFj5P6JiGZbu3fg/bzBcQypg8z/EjiK+MQr2P3/D3HOF5g1A65ycYwMz+D9TUbSKlO0UQJk5tzvpA+g/URvi9HTQBkDHktgxP5D9P3bQV6XZX/g/2QWLxsvl7z/GrGqYkJAIQP4qo9CuUwVAYoh00+SNC0C7MaaUb0gSQAPmAws/w/o/rBESW13H9D8+JKl2EH/7P/9w6gZfyhBAdu8VPzLMDEApy5v8MKEEQB7wZDT+nuM/Bv9TQe0+AkBgLPIt1RwDQMflnhTnrRNAlgH9JjvZAED7fh8f+KINQNWPRRPv1QxABPHpJjRLFEBkEHPOgxgIQKQ/Qs5cUeo/wQ7qMb3lAUAcjiRIxU38P8iYX6H9DgJA3e3MQ26OFEBRKtS/xw76PzJjQZBnZwRAXBpydTFBEEC1RND54wTsP/ijylrZovQ/1st2QYi0BkAx5kO1VrUAQJZdLyENRwtAJazt6sJ99j++3uAj5FcAQO2cJaaiD/w/5yOZNj8MAUCI/ulUsZLyP54e8jgakgFAhwQkQ4TK+j+2wxS6vIgDQPtotJGCqBBARP7Wx4IP+j8cyL/xfoIDQNuQSmL0jBNAMzwXfkTh5D+QtLNpk7r1PwJ2LNMIBew/z2nQ73inAkCUg8DEM2T/PySERLpl0/M/m7QPuAx59D+jjM0iJdH9PzPpMvnvSvQ/QMc+GwHBC0Cx6H3t7R0FQPCaKT+fdvI/DVtNKtzIAUAHfbaEojb1PxaZlTO2zA9AxBIwCCRYA0CjQDMGukHyPyMjYUg0cwRAIWaCWhuRDEBwyE4WMDv5P1Ogfqa+GQhAPRqC5SPq9D/T//xNSjwAQEbpdCXnF/I/WCQczQ00+j8XoKM4GZX9P5YuGj4ddv8/6OXPkCSEBEDDjz0DDe7hPzZVtzwKnvI/z/5VsPWo7z/F32+pggIAQNPXTbjEEPc/iXLlQ8kF+D9bZTQFE2ztP8FRjrX9Dg1AIoYDxrDP7z+2Rf165ccAQCzYnK6LePE/JtD4zE3WBEC3snFAavn8P9zi/WRQeuA/D3Bxdu1JBkDGdFhh3D34P3szMaPr3/Q/H2s+QIXSAUDOoOdmJZv7P/rrR/kbaPs/XiHD1VDt5D8Q7GVLDJXnPxGaWwotHPs/kI4erovr6z/LA/49b0H6P22PgyDdkfo/zA54DKBc8T+D2T6ECbP9P+4QqVQwJf8/rGXDTmMXBkDesCzUE38QQCaKsjstROc/C3JhEi1JBEBFSzsFEQkRQDq6KXxZs+4/TyB5JNJuAkAzs1zLivP1P/l7r3WkfxJAZD9UiGSrDEB2piLkor4EQDUzHXNBs/E/X1lnTJyPB0AD7EYCpdX+PySiPdVdBfY/Gi/7SjZ48j/zhxIHd+UFQLdQ7VmQHgtAKqoB1n8r/D+lcUf+pB3sPzv82Wp50xJAa9+ZQDN6AEAhiQyE6Mf8P2HC/d10sPc/fwmLugOgAEBDWhEpDhb1P+cd94OQDhJAGpaVkU7MEEAyJDRrlFHwPwhcDqF+DhBAdXLtGiF58j9MI+1GHyvoP5QgqDbri+s/0esdYjOQBUAIfgDJkeHwP/MLkZ5/iP8/Z3uS4QqLEkBOMfNdfCQEQBUDRT5kQQpAGDy2pFFtA0DqOqvVefkCQAw05+ewqgFAzAmhWQW9B0DE9BxRIST/PxMJcWDAPgBAoF1zVaq94j9/d00NdK8QQApEl3A+nhNAomzSPWgWBUCLrGKgtCUNQNyLcROARvc/fddA3BBGCEDzozEBuJz0P48e8lkkgAhAgXygXv0G/z8ftzviSQf+P2jLrEVPLu8/gjKpCpPzCkB2bIc/tvfuP5SHN+74KgZA0CAC82xlAUBJ9SZCA8cCQOb0uRagkgVAkcZowBwEEUCtCsw+fTjlP0KkXMo00fI/e7e2Uj5+/T8Y/Hk+d3kCQB2kLpsq+AhAOqgFJe0N9z/68jJW6NoBQCNbJPafxgxASgisG5gi9j8kk/0QxzvuP+wLgDkQJwlANhi1n64YCEC5PDAYUtf+PwPTyefISwFAw1ux4IG/6j/RLp7MTtj2P2Zrdfq/yBFA9omsjxX86T9PzTaRjYj+P7YkldRASBFA90fZ+nQVBECP6qCLPcPhP4mT49mfCP8/rXHbuLZtCEBJCBHj/qAQQOwGzlleR/w/OemMAYPcEUAQs6sfP/fzP1qxErvENfs/WVaAN0sPA0AQej0ueEP7P0fsb8iUzQNATXcwsFxfCEDrt7am8yQBQFjZ7IvYsf8/okgy7wGJ5j8qGYHCy+kFQJ4w39K0mBFAjFTU8eWi5z+M+RB95U/7P2f+i5bAwe8/fM8xUdxe7z87EKcsHQMTQN8+91XRwAVAVqLqBYyuCEATbDVEbcnuP0e2pW16YwJA+BLMBNXE7j/5reZdlTH9Py7yzlhJ6AxAzna97WiZEEB/vRHybNLxP3mWmuwKWvY/3l7c5hMW+j+kcOMLi7T4P3mcJfgscQVAuQOmUWjB9z/rkAiwGHD8P6G7lKYYnwRAUqFjwOQLBkD1OtumkMXqPzDg3/Pip/0/ZxqjwQV/6j9j25LB99jxPw2o0L2i9w9AvNM4HxDCEEAq9rwcTk4IQH03MZQFXBJAhspJGUeu+z+f2BjVftzuP+seL9EqzQJAC+1ey+fiAUCCfB/8q2gEQI5GsupCZOw/JGKWWMIj7j/hjhUW+ILuP59pq99xOfg/+Xn8DkhTCUALx8S986IQQNvRmxdIAQFAPlCbcbl16z9SvVlzJmDpP//jzTZ94Ps/ExEbUWoC6D+wIzjUMRH2P2wz5XkZ0wRAVlo+LxQ+8j/NedbVqPcSQKM8xW3xkvQ/inRg8jVsAEDnyQ9uxXz/P3eYIC5jpuE/V3rWWHjfA0BCZ7u64msHQFildAyBEvg/xQTIyrgr+D+iN0hrlav2P7tLC5KABeM/XeFTJWDV+z+nojRZjer+P9LovXhd6QJA7qx0kgnY+z+u5rTZeDQAQBdeI2ILOfA/gVMol1BZCkDNdKcW2Kf3P9Cbe4yhTfA/zwj/A2hhA0AvGkC2ZuYAQBl9Z9FofPQ/s+F+xkTZ8D9+WUBobQT5P+S2U4ZYCgBAjAU4o6NM7z898Rf3hpD9P0rf6af96xJA+10Zn62WAEAmcdoA63j0PyA7X6fmReA/7CRckhMC/z8PnVHcLP7qP6XLPSLrCvY/TXQ9AxhZDUBqlN2PyRD0P+aae30S7ANAmub9ykII4z973W1BrnztPy8xizdThvI/oiRC627OCkAKhfbJm3H5PwA5KwHOGPE/M3ASNwSg9T8Ff7N21foGQNABkre9+uk/Bdi/I5xKCkBXL0Wn3CzzP4JQIhtYRAFAxzFiaINb+j8kW+FSgMzwP2LR8kRTZA9A4GIWFxRLAEDKqWK5gUn2P934ASpyJwVAWes+1sf38T+bWZyThZTyP2n9jWMnR/I/nyNO7UcE+z8MGIMPgHEOQHo2Zr/+8QRAyGYAjHz1BEDG5LhLMakQQIi7ozRtwvA/2Bgiefh+EECAfCvPBjzlP8sYjmiLjwFAcRXFRhOAB0AREKxZdMvwPyDyKXp9/wBAwbNybJV0EECbawP0aAH/P2z9weF34wlAqZCa0liT+T/deN5aAo8GQOwJA5THqhBAxr/1g8ZUB0CjrZ+AHMQAQKnHr8lSleg/Nv/Sj54OCUD2YOMpmE76P7IkN56xVvU/Lo8+kQkFE0CfAaB1IBQFQEZZOkLM1vc/F0l1R11sAEAltNUcPOsEQJIyK0XO/wtAjs40Swk04T/Jw9raSv0JQLQVNaUwcvc/uhCXvN7xA0A/ikL9cQjpP/kRaxXtyfU/qViaBC5T5j9pb/AKKyMUQCkH8Oef7xNAvIQtaAjz+z++kztNPMPyP5Yb9M36swFAU8R8uZ8UCEDK6crxWMPuP7dXkF/9tg9A3b8dnbZf9j9SQu0IOZQEQA4weAa20hBA3zGsJfxGB0ANM03/xB8DQL5w6WJ+CQtAoAK29JB0AkB8GUPo9zrvP7JKCOSAvgFAnAgYVKIC+j/ewWytLtEMQDbJ5W6wuPU/qkDw3Y3O8j9RG9q4ik7nPxcXn8IAAvA/H9GrwlpK7T+KWa5lQbbzP3BydZPtnAZAWyxZadOk9z8kI/yXzoQAQEbeWyK58wtAxPzrerBJ8T9kOGESZBQDQDSQpuug8wBA/9nUpP7o5z8Qbf2JYgP0P1uMToJOFARAfYaJyrr5BECfpm+mioryP9tBkbFgbuU/yI7s5gde+T8hnRO0AeQGQEnbPh1M8wJAJ6LxG2z24z+wVBgaShIHQBWWcGXmBfw/Cjq9eBrt/j82V1rHNBIAQPFKhM5ct/A/PFkquo0VEUBpQJQIkAr8P8XUMHBviA9A/12Y6ujAAECdxkE1518JQEhiiIU5OfY/4fGFVVen/j+c2B8yXUH1P+Kc6FhjKfg/4Ro37K5aAUBqJPUq9OP3P2h+kt1XMPk/et48A9fa7j9oZlm1jzsCQK9jWoaDAfo/6HZIYVNjDEBNNOxRwQ4OQBY7G+Dlbf4/YGSfOQvOB0BrYRucgrDmPz96fbyKZt8/W8BivjYQ6j9uhrLT9zP7P0U68hzNQuY/H7m0kepZ8z80qIm706P1P5QlngP5MPI/bYSyRzo8+D/iO3FzitH/PzoPnofIrQVA8zSDD6dsAUBD5hzyltgPQGU5RjdQAP8/0JNrRuUE+D+5mx4EKQkBQASEb6ij1ANAYdAgBiY/BED183SUqUv9P00qF09+ofU/F2AAGsHNFEB2hwp/IW4FQDkn2FaQBfQ/fslldtUPC0AgU31TXCnxP5CClzBmgQlA5Vl0ZZ1rBEDi4Q+YEfT2P0Trheuk3/M/bFLqwh8jA0CcknXb0JT1P8QH7i/TYAFACM6tSiQV9T8PVigy9Jr6Px1z8OUJ9gRA72qO6erR+D9er9pedToHQIxbvmw5+QtArcQoCL+9A0CRHYbxytYFQF85joItC+k/UpnLiSNQ9j/XDur1YZzyP42Mq3QxdOk/D5JvIaoe7j8Xv7RX+iMAQIx0zALwqgtAJBABKtNw9D+CIhNN+VYEQAUiP0wLQPs/6fjOycgi7D8d0fgAff31P/g83zvwZgNAtq7EZD+2B0BfDdLGn2sIQHwk1FlSc/U/y7lhqGMXBkDgAfxeGA8FQEfpXWiJJwNAnKDEdiWKB0BHT6+dXuD0P2r3SK0TpgtADmSJQpw8AUApWIKQkDIQQMz8p7hVUdk/JbVVRK334z+cROCZFakGQOSxDPusPgdAJ39JKv3e6j+Vv6nSwpcNQNTBzEf6qRBA+bVyLaBA9T8iGNKGiPbzPxZqohknzPE//1fK9nXlBUB6Z6JaVNr7Pw3UA6GiDvQ//GbDl5h5EUBflS2KSOTtP87xVwcCxPI/eqm8yWel/j+lsmODHtX9P5sqbSvL8ANAwjdCN+MQ+T862t3x10cBQME39UBCbABA3RoxgRkw9j8RYQywe+8GQD4O70H9GuI/1dJtM2L27j880JmzcvMDQNwurOhxXw9AosNqq5CbEEC4utoGIvbqP8k0Tu+JTwJAwKWIBks9AUCn+v418skAQBhfJ6lGbAxAdhFmQ0r3AkBcrZWzrxwBQALuIt7FQf0/LMYFWluD7T9y29a7o+MCQG6yWFOQfgJAPI0XWxe6A0AgFdCycyv/P2TO1iaAVAtA2CF5rtYB9j8arN2VvyEIQI9R+FJIOxJAPETUu3LJAEBzSgwZTVvzPxmt9No34gJA00ZjRUY+/T8o670LxPn4PxUDel6NovA/fBFIeV9/7z9ITmp+/XsMQIY9DW3K7hJA5jJYIirJ6T/WJsgFeFr6P7GPgjaB9ug/Sd35xf3JAUB18vc7gC0EQChA2CKFZgZAYPUjk105+j/SFb/xQ4L4PwJzOJ3/Ies/0XZj6NCFCEDjCy6kxLsSQOoDCgSzOAVAkdbLBwxMEEDV5GCbs9D/P/uxaI18vQhAXcMqgten6z9tRqNR5jjlPziJqsXKNQVAMwjgMEm4/j/EvY5xd2IBQExwb7M2CQNAuhDwum+z9z8a9i/OvXbxP+zsVoFUeBRA/zS9BXVrAEDiFGAzdkYKQIALeLkH6vg/faf9DCo18z+ww5LP993hP2OweyvSmAVAh2/x2rXgE0DUPJCmnjD4P4el3+k3NAlATIPTais78T9gCh0jEiTyP52iGnM8hf8/ZVjKUQPL8T+AG5NP/CvxP7cNItAuauM/txxiuYmN+D9P3eHR3LURQNTHEHBwLwBAw2i0Cv1bFECTRBfsDtn0PwqIAkqsFPU/xWxBdxImEECAIVtc3sX6P3FDfPA5ivk/W+AQrN06CkBBGNX5UnEFQO5DU/cpWf0/jdz8HdPpA0CveCkGPXkSQJTiHZPX7gFAlN/ELv24AkAR3jowBf0AQPF/EO820/w/RUqVFvnw8T+ne+bIARABQLVNp2rDuP4/h+cQKWpV7z8P6D0lNLcKQL0QGWLJAwZADx9WDZQGDECAlrVy4Nn6P6oELU0pSwNAr3EnsSZl9D+nTbAwCyf7P2SB0Uq5YvQ/JyzFdGJXBkADCnafNjkIQJviP5txY/w/L4n9T4UX/D/ceC024UT4P+2EF4GA3/Q/IA47FlMhEUA8NwaEj7DuP0/+vb5e8xFAi14h/z1m9j/TNUNIFMkGQL0BfNxusQNAXcPNVEFaAEDqZb9kgJfzP2oVSqOhDf8/4UjestISBkCAoCeFuLz4PwcKZxsMy/o/7vhJWT0J/j+50/KgDCMDQHrT7m2+6AlA8Uw61weoAEDJcOhPgfD4P4KcW0Uxav0/htatQptMEkCS1izt5W//P9mHkm3iJgZAnZs2KDMH9z+LmNMZm9XzP5pBh1nDKANAYohRDmeRAkC2ZTOFTVP+P7+FkYwvBuo/sUsACRLQCEC7EFWsNlETQCMBJ3avugFA9TZ4Wb78+j/CDOxUyP8HQFsQd+9poBJAoELqxfmhAkAFxrME1ZH4P9BS2MD5MQZAmj6GTRyC/D9IEWf0JLLxP3Lik5dUsQBAwYC0Ni9/EUBQhJyX1TbuPzZFm1PSSAhAkTc4Psoq9T+vYVG6Q5cBQN7bEG91BvY/6CLh871EFEAVjHhvdl4EQKdHKkBjQwxA9anXR7dNAEBUhnvCZa4TQFlTi/ExFvs/4Lzs73um9j/p3143WRIDQOc73ThuFfo/hkl4lZDP/T+68UJBeNLoPxjnd6Khl+0/R0h56ru18j9p327wBkcJQApoG2QaygFA81axU1lZ8j+vHAy/cYECQJIlj/9PGg1AiCrMC1lABEAxOv43opboP8AtLdANlvA/3a8OiSVJ9j8vooCJ5pn5PyfFV9kq4QJAVdc+QrN39z+9Z2QEDhsGQDbnDkvb+wdAgpbhus1B9z9SEnfpop70P+8nZcfut/A/GnfbMYzu/z9yyNliT0AGQFv3f/KgyAFAo1xBiuTs/z8lus0fbjbxP25kNe9szQhAcbeA4Oh9AkCBg/K6TMIRQK6uwb7AS+k/RHAHq25OAkAG5wj8sFICQD1yhCvBmvg/B3hoIuqw/j9qFOiyPrn4PwDPwczTugVARW5+N6tF8D/qLmet+HMFQFxHi5xUpQRAp/Ymidz9+z/jLFx6JTsCQGAMeHVTqeo/dNFVqxf0AUC+iJV3WGr2PzHnfVEQDQBAewu1pr0R/T/DABzsdzL8P5rP7MpxHgRACYeXL/8JEUBOKIrSdVLsPx/5SCWgLPg/VMrKhh1k9j++N28NvOMBQPNL/qgmCgpAm0iPSuyo8T+35XtOjGjzPw9OFf+L5eY/D17rzuA1A0AmaookvarwP8x7lcouru4/0UX7K599E0Bbal6v0SAGQNrbJJQUPP8/RCMEgm81+j9tRWZzFj8KQF44dBn70wVAi8Xv6Z5W/D9t2GtbRAT9P5sHoI9EPPc/9ddtFcO87z+g6Qfxfqz2Py0Z0HBTWhNAx8LoGbm/7T8Sgc/NZobvP5zxiAZUKRJAFyjAt6jK+D9/iT9P7lHtPy6Q7Hk9I/g/C66BDQyAAEAtJtQyWxH5P87/ow+wUQ1AAelWVY1uAkALVF6k2ZoAQCvF/Xn9wfo/6saDDjSj7j/u0VDjOvQAQBjBoJo1nvc/dT7illNX4D+EZEHjoWrwPyZP8c4xLQFAnofK0btF8z/RN3rWEkrzP8HRU3m2mQ9AnWnKbf4i6T+oTqbNXZD3P4ssqXSxB/0/hvo9WjE2CUCxvO8Mmq/8P/CI/HU8t+o/oTPYMgLY+j/u0GcjslkBQFOrkBe7FQJAqzlSDPuHA0C5McJXYOL4P3N5GbH87uU/U2P4l7kCE0DemDI25qLnP9mI0TEg//I/A9ObX2q15z+j5tyAQxQMQD2ZGz2AKBFAu2K67OmbA0C23hx3zNr4PwkmjZn+uO8/IRiYyn74BEDsA6GROcP7P0Xs9eELywFArCq8PMrA9z9kJ9tyUf7yPxy6OBQK8RFAVGDmvrVIB0B7BmggykH/P5kc52VkNwVAaMaMQbHpC0DoJjw9vDX0P9tiI6/fsAdA84GlvVYG7z/D9kppaUXzP6VtyIuiDwVAloo8V4G+6z/NOBWm7rbmP3D2rS+iTQFAgZR37K6LA0D5f0ChG40PQEYeBzzgpgRA8dskEiHr/D8sTmVc/1P9P+4Swcf9eew/e4uFL8wj+z88lR0zcV4KQGOdR5OdCeg/bcK258B26T9gDdPRb9PqPwQV0aU5SgRA2flHQkkI8j9Qsdeduor3P/R3Tid+R/k/QzBGad5RBEB1yKrk2Q8GQGmqRtwFzAVAq2KCRtgg+z8welvqD4oNQAGJSzbg9eM/NnaAxd7U/j8sxxtIfW4PQNtrgWGwF/M/s0YhU2ptBEDjlrtXwgENQKzpkPSI7+U/7Ov8gTimDUAjKH0ePGP3PxzTxggpc/Y/cL3OMfVYDkCf+vGi/a8AQO+qzMQKJvA/PHsfzb9pAkD/NmC2lVkCQFBvm4oVIARAOzdxNInV/D+hEI0EGwThP+4y06mSMfU/S6AS5Pbz6D9R3HQgR6r+P8xTFKmhmg9A4A7047MsEkC6v6J9RZQNQCu//ByhYxJAomsUFcEUDUDHJM9ZBPTpP0S++SN36e8//MhrcOi6/z+ibUr61Wj4P/OKCovd+BJAs15y2SkpAED77PdVjOcOQN7ptmyZHAdAjp6zgaPkBkDO1bb33GP5P02y0t7wagVAZDiPlxE/6T/Brpjh4ir6P98g7T/JHP0/dNkcYkYPAECxRxJfKXUEQAcI1CL5W/c/AO5WBVyl6j80cqXDkXjpPxYAAmPev/0/LE9L88cd4z+frNpHRLoBQKibAYI+Ef0/Jzi7O6RJ9z+F5FltonoOQBym41Zss/Y/O5LB3CG44z/MVrv4xNsEQLd4c/qoEgdArgSDoOrvE0ClaEZTnNgSQB9sT60mDvg/dmJt99d48T+lthc2AUwUQEhxpNcFofU/nYS+v0GT/D8at6x0AugGQJtJHnK7UwVAClOzO1frAkBz2y/xFDYPQBslDIVbGAZAZ2zw37028T95AWySuUn6P6Q9BWgMNBRA1OIp2m02AEDC8YlPKyv9PwWiIjUyzwFAlBp8hdx6AkCNvVipD+n+P4nejTla6ghAZdBiK0zO7j+3Hm6YzOv5PzmSio5LQf8//C9wpjedEUAwciaYwFD5PxHgfxr8yfY/fBbUiMh86D8TP06addzpP6c364rTyeg/L23vW69TEkDTWL8tDDAIQM5GV2V0EPU/BjnHqFwg6j9z7Au/gRf7Pwm/gtD23O4/JETfIlkxFUCyG7+hvUntP9BRu0hs+/Y/Sn23y5Vu3z+lsjfs1wvwPw/ZdFnMk/w/4Qhfx+AR/z/goH5ihg34P5vWwOu/uf4/9flO2ASa+j8SeMRmC//0P+wd0Efmou8/xIZAEjLbC0DW5MFAvsjzP27NN6hcIAtANRVPo+dw5z92pepaMC/4PyWmSSyPKQBA8Q2wWQ3KBEAJo6OfRe8DQEfPrX746fA/0BUVVl4F8T9eZrLWfBkDQPSBtO/vG+w/oskVehkV4z9OCoqFr/75P1s/PmpXgwRAcl8qTHp0CEDwFk+6cBkIQDm6Nyq5kA5A0PqwCUGRAUA1MrVXcnINQK/tYTOHzwpA1D3COSkYD0DRtZuL/TIEQOfZrxICUvA/4MXC2+629j9PUnAEDOzvP9ek3VonUhJAjIu2MhMX8T8+KcY73mD4P81cjuMBrQJAQ2HRs/mTCUDoS+5DokMFQPtbwVI4BPY/zya6yetB/D/oXdO4zSIEQIUiR3stQQNAo+LH0LDTEkD+zWzsbHXzP4f/Z6NDGwxAqCNJaCykBkB77OylpyfyPyhlscoVnvQ/vZzrXhqUEkD1UtrfgIPlPxEDOHcVTRNAWOFd1twUEED7NBaptyjhP021vobAOeM/+F4dvgtK+D9aUZsmBzzwP1HIpng9ff0/Si8phpK2AkCINF4lW0gDQNL+rqD1hfQ/JnXS2xps+z+wuqjg49DxP7lX7/rBxfI/q+3CA9GKE0B4L3wEsjX0P7gheN072vg/9B2zIabRD0CtCygMz2bvP3B69qfVKvQ/CHNuU4Ma/j/quH/+8tcHQLcLvCLcXwBAcZS0uDQsDECH9iFnHc8LQDcvXBOB+fA/6VJCamOm6j+gO4neMmXzP7q8y0YW8/Q/VOLRMnN38T8ExiQQ+CD/P81WAsb5Zfs/eH3VxbGs8D8unga+wovmPzEX8BblPAdAL2h7WDIc9T9QBskX84L7PyOjm+GQxxJAPA8xcALy/j9gENRL3KcCQKywgYxK6fg/iJM5QG2ACUDJlsM6Xff0Py7Xs7hM9Po/qCj2SUmu8T/NwcKxG1oRQMEGCL51bfw/3OGvBYe/9j9/Pg7ztZb/P0Z+2EAoIPY//4AoHm3R/z8CVuycpdj/P75aFbuCreo/2lZPqriM8T9ubPms4/DwP5KGx1R7JvU/g1aGi1GZ+D8G/H+573r/P/6C/Y6mTf8/N76SG12CAUBUgjtP6dUBQAar4y9ZQfk/UeMT1/xGCECZFOZ/7vP0P1HV2oAFI/c/rZkJcgHRAUCAiwGjYATpP+CriP/4iAFA7OB1Zv/M7z/tfcF0e+X7P6a3fcpBmuM/vjbHhM5R/z820GpnuEwGQOS7Vb4Ym+8//DrFGIA15j8rDUa6lengP3i1kq6ZXxNAvmqi7eRe6D8hJh4yIc/8PyLPnXPGXP8//u4rMAEv8T80gKQ383vpP6PzrR11KBBAWaQE0WDREEDUlaPeL7EQQEGRyGhWJfo/on3fgUzN9z8BF46Ewe0FQOBtS+2BogNAC6Bsd0nN+T/9UZyIs5ACQI2ZCUJOu/M/oF88pjK39j8KL4WjdPzlP4IkE7/fz/c/4OIJj6VdAkAufNw4iFYBQGNTaerjpf8/573ShX5iAkAfLdJaTrj4PwgXDTGvIwhAy+X06G1+AEBG3BCYOmMFQHaOUNn5auI/Yi4wRVfM9T8WE7ktjUX6P/kOqCVsEvk//MT7PDAv/j92ZHUw4JoIQKyLhI+jUQBA0FcKIKIh5T81gN41fH7+P6Wko+r1JQlAs+CfbY3K8T9zrz7H6XgRQFARzfbEswVAU4UljvcK+j/vtJ44SBn1P7rDRiqW4wFAskZZ9jX6BkCkQ4YNLSDzP6t5PbNNevg/esVnu5gD9z85SUcBYHHtP6qIT1/LXvs/Gxu9oNPc5D+EMrWSMhfyPxdfMdAlo/w/M9H4XTiC+T9eeoD3lLUTQDWF3pDVOfs/mbLFFMnY/T+9Ll6fOH4CQPCjT2wYXgRAm+EWUw8H/j+muDYVNf/6P4yfhZSJUAlAtqhrHeK0EUBYFw5nJvDxP+f65R89w/4/8Fz+eZh57j9qQy5rXrv7P39H9LXyvQ1AlK/bGc00B0BD6TqIoZkFQHwRt2FW7AFAqRrb6inmDUBmIE+i6cX8P6nLwMTAzfU/n0uB4vQk/j/Q4y1bAZUCQPawYiuxDvw/0y5c/K/G/T8vRi5HwXcBQOYEcqouDPA/tbGQ/2eT9z9wq6i9/BsGQO/H46EG8fY//QyJ0BPq9j/p9OdE66MCQGlaDBs9UAlAy90NBMtB7D8f3AHPoXz1PwHkO0NBu/k/DNW/fg2u/T8v3nztbdr3P1Ke8bkkEgZAUnQGS2GBDUA7MBhPFSP5P/tmIkFwrPk/KJVRHRw28D961AFWLT3xP8Sg9n+qfglA8a4KGRe/+D8AEyGP2VACQBkQBlaKXghA2L30JZI65T8hQdMhKD0CQOws/LBE7f8/PdXHQ7eMAUDZ8oHYWZMBQPtIsD23Gfc/PiXdoW4E8D977Gz1bg4JQH5MBHZQR/M/G+H8jS3P/z+OrtV6akwUQLPrGsuiY98/CZ4KcMc2B0BT7H2yMPLqP5mPGgyv0/g/5J5LWk/F9D8U9dyO5/b/P5MLOQqDbfQ/7KIRbBu59z/MPIX2+l3wP9shwshV0glALA6CTmcrBkDfKIx42Gb0P8PGy9OYz+I/YTkr/IMs9T+9/3eClhn3P3u45G1E8uU/98c+K4c+B0DH2ISz0V3wP0K2QA839/U/Q7b4Z1h2A0BEe4YIoVHnPyBKmHUSiABAOnSMMryNAEBGAKdhRq3oPxLT5/IuZw1AsSAt5zQz7D+VpnfGkef+P1w2HvnjHwhAx3KSNWji/D9euVi9pQv8P+F8aSaBrvY/TaUUSOyPAEDAeqIFe2/+PwR5sr22auo/wlyyytDfB0AsVSCll6IHQG7pwtbc+QFAWUqB5Zkw/T87O4CwiHH7P8R4IeKJufg/uL3xjjXC+D9KwbhUBbj0P6S229Y1CghAmrPktKN3DkCtmGjKUQIBQPunSlg+8QpAVvPUyqt28j+yKuh43n4SQKTnhp+iMOQ/TCPO2oycE0CaTWx/NrwJQP0GgwA5d/Q/paxeDZumC0DYIJaHB0ABQEOaCVBOBgBABmnctdEjDUCcnZy/IHMCQFqh2iB0fP0/tdzqjY8R7z/9gMZoYBL4PxuTtihAdgxASBJ86x5S/j+JJSMEkAT3P5iIenb2Guo/iZnLnXdV/j/9frpGQAUOQNSDZAl8shFAw0V+Riev7j+VvbyHe/z3P3dk+avHgQJAP2Qxor8QBEAJLsfUdw0BQBSLcYtDr/I/5BqrSmDm6T9mXzq2DJT9PxpTR9ayWQRA4iQp7XN29j9Ke0qCOiwQQNzHCQQl3BJAgO2T/iqD9D+FZM/yCsD4P0iCztN6ofk/Bx6chQ2JCkCzamdjYcESQDtwz36brQdAjkUodnWeEkDRva5iT+MKQEa2jnXiWAFAZnd8e5AA+z/xEz4ySMD1Pwpz105xmvo/9pfrt/+L+T8EpNrTHi3wP271XzwrTv0/4uY61NV2BUDYvrNMEMgQQLf7nzwxovo/2FXWqWmiBEAtV8CUTjH1PyUl9Qvy0/0/cBjr1IkdA0Bcx9fvU9EBQB64H8wlFAdAA8fNDT7lCEB4B9Rh8LICQBUv1F6qAwBA0K5iw7nh6j+7+LYfFhQEQKFDvh0fvgRAfrOttJ2lC0Bpt9Rmcwb2Pz6YvE4OQQ1AiSNwDNN67D+tZR+7iEX+PzgvnK/9OApAumAkoFC0AUAXnjIerMMCQJWyV495vvg//F/6OB+/8j+TvcowjkbuPzyr56KQzwJAplm3cd1u9D81wInYOWIMQLcseQP6dARATavEFVILCkDsPrK/y5oMQOnM8A5MwPI/8JMCvZWMB0CECG3z/ILwP8aPXviUWgNA+AA9B89nEUAgEeSa0qbiP7Ucr5q/oQZAhj0uLpZqCUAX0tqcOAIEQNdMsvwfkec/9Roy36FH9z+bDix232P+P5qrgma4buo/LhyMULmV/z9H+eJGjUIMQEcQfszWdv4//X5mhgmfAUBxgDdgrugNQA3HZfDL9g1Aist1V8E/9z8jZFRBKGAMQLN+MOGANxJAET0HMhxwDUDQALy/7fILQGHTO3b8tvs/fojtqnRVDkCviKF3VVYCQF+Xmv6OK/4/Bwdl6SzZ9D/Om7/d+e3nP2tM3A1NXew/VXJAaN9w4T+dYLP7/JQFQMYX4fRZtPM/AKy32sOABEA3pgvR92wGQLwAqt8hhgRAqvJzvRBs+z+0KwXTivLkP6vib4ADdRRAsv8Xeub17D/VMjWrOAP+P4hWYWmwmvE/eCy0sKCAB0BbClEmDKb/PzwbebweD/4/gNI2bsfg4j+nc17h5vkKQAsPWcvm2v8/9M7nzdLtA0CtO58kjJ/6P7WK7mLYFRBAFdC1JPKp7T+7sNXWiFQAQNCKL9YnW/o/RGPp8YSNAEAPsDx5fDz9P7Kd/eATuQpARAByyRktAECPHV5G7GkOQKCEW06ASfg/ZrQpOU+JAkAM6i7kz4T+P3A0O2NzPxRAnhJpeHsz+z+BURlqTjf0PxXGFmuNYfw/zMqJoNum+z8NThGvyln5PwX7eifrc/k/CtBMLtO07D+Ce3YezI/7P45U25vXexBAJ96Ch6lMA0Doem1YDEHxP1vdURlRE/o/8tyxRL4u+D973SQzPXv6P4C2McmvUPQ/r5lauTXK+z9XsCq+Xl77P7HYdb4iVOY/jGiDoG4V9j8knpIOl83/P8X7ioVTRO0/TnNiU3MU/z8UT49j4nQQQKFTtsqTBPE/SxH83o6P5T9DHYhKYh36P2hiykkkduE/PKZgp6IiDEDKRdPFIjnxP9tOzT0dXfA/gYskzbxuDUDQx/ZNN4DzP8erJBUtyPU/RDVwAU9k9D9/++UoYxIHQEeusEM+HOk/k6Wnh75C9T+rS+OHAY7yP37SzdsRh/Y/IQZ5yitH8z8DfLJDEcH+Py6DjEPo+ew/6vZCQPwQB0CDcdrsbjkIQG3vz7XKDes/WM3wnUmE8D+QFiDvqtnsPzhKlApy6+c/5ItqjsgcBkCUxNqcQnXlP1zn4iytBQBA2OpA5myg9T8JqB5ee7vvP0oECpve0v0/Z9wrKP0n9z8esLyH2TrxP/3SMGVbMAZAlOiIY7cP9T8XjrQ1At/xP5FhfOdL8QJAfP3zo5FUAEBTfOoVUu/wPytQF/kERfY/ilg4dxeME0DVNAqgetsKQKDUoQmqcfQ/Gc2IjgmaBkDUXATh2UP6P2RGkL6vLeg/Kr7qZE2/5j/69uuv6G0DQMQ1qO4xKBRA03wybNLt4T8ZJBDPusMPQP6s1NM2YQRA6RfiQeu2DUCtADTWJiTnP+Sqje2L6P0/l+g1cqH09D+S2oRMhPwNQGel46nIqAFAryGLyizB6z8HwoL51R8GQE9vEl95iPA/ExxXG1UT8j9hd7l4ohjxP5WoA2s4lAhAvzyz24Fb+T/03KhRuKD3P2fEFYXaTAZARt2p8g869z/Zivcl4hXlPzjkfjVA/wNAD8Gqtrar/T+0/ga5wXfzP7HEAW+g9fk/VwpXDor76T9yEok67s/uP4tHstK4tgFALFRZwKM3AUD/DKQPCeD9P/aHaDSw7+0/dE09AnSPBEC2WsymQrjpP3iMUE7sWvk/gBtmdlmw/D/E7S1GAeL3PzZvcb+CKeM/e0R+PlEd7z8aksJK7kcEQDBJwJ+FRgJAqihsJq4L+D+40im9598GQF0xvaSqPAtAptPHihZcBUBgire0enP4P4K/0pGpSPM/nyC+jnKmAkChZm/AuxEKQNyN5gZLEvk/DG+8hU+/+T8vBAFh7CsDQNu66GUnhPM/kMAunVq/4z80cAVnf8MDQFgNJMODe/E/vPoVGqME7j/XukasQj77P//Vf7hGMfA/0uWYMvD2BECw1mibZMj6PzxNHFlsCPA/3NATM9ncAkBql9NuVOEAQAjBMNizAfU/K1dnO+0S7T+jsV14SO37Pzd7YYpEewZAmTlY62i+A0Alomo5Tb4QQLj9fLUHRPI/a/jo6+9z7D85Y/64i+z+P4M5kTLHfPA/mhDlOVf1EUBe03dZqzQOQKhNO2ycbQJAdm7De+3fE0A6DkWHp6QTQPkER/kDr+4/Bz/dCf3m6D81m3e8UhoHQHnrr2Db4gBAj9Mg1xErCkBtL2X8x9ABQFHbwzxjAAZAVSBYIM8s5T+1kgs80ePwP1ZDI+4M4/4/dWiW5W5G+D8QHJW8Df/1P4ZjuhvR/AZAU3hMRJPJ/D+tjYox6J0EQO/lkLPJMAlAOpnB2uz3/z/xCqYcbYMTQIAOkEMyohBA727EB04YCUBS3IL11VHqP1BpPS8pcgpAgbiVrMnDBkA1bC9/ttUMQDtOsYuRTvY/r2m2C8sWAEBaCed0vmPyP+9RVTfLUwdAo4283foeAUD1uT30yT/xP5m8DlYhhQJAiVyC4cdOAEBHB1wWuMcGQGDLQ48rOfg/uV38cwxC/z+DLTFjjQLvP531RpTxOQFAG7uasR8hA0Da6zywPjD+P1KzNif5e+M/WVe2bChBBkC7myNL5tL6P7GLAzgtP/k/RbP8OUn5AEBQTORzaUf+P090DfpWx/o/7gzF5lXU6j9Y9mox4dwHQPOsPZVSqvg/IVyBGLmg/j9aGdxntU36P7klf1U2B/M/QdqbpsAXDUBYQaDtbxAAQMlo9P0G/fs/3M6qhsL98T8Dg9CKTdD4P0OFo6oMS+s/flKzD3zZ+z97e6iRZhj6P6kbJVCAN/8/DGf67bsn8j+c6+qBc6n/PzE8SrrgfQJAMbtZWkK57T+Rv8pHnkENQF3Mx/HtqvU/KtuU4GIH+z/8MM/iVmjnP45yb5qJMwRAXBJyfylEDUBJriqulwHtP8xxrdSxYBFA6cKJfN3A9D/mN9R7c3wFQLJlsoxDiPs/YrprfdZ97z9bBzFR2VcFQJEchW6uPP4/RgMsSinj+j8xVX6kzAn4P2exw9SX+Pw/GaTnTrKy+j+I3qz/Bx77P67EL5yAkeU/ci0HPcwWBkB8PwUjJnsGQCxMIvBhOxNAJtYlPVIaBEABGK7MLAf4P+5Gbms8CwVAsbUbtQ4mCkA+27A35Xf6PwfBvziLbfs/FJ7i3k1G+j/nj9v9xmgIQM0rKb+KJfg/cdlVS4ptD0DWAq2JRU8AQAOtSTnMiABArHwf8B+M+z8iBE1S1x8CQFj9+FEQWwlAu0JZxz75+T8aj1q3cUb4Px8za4C5vRBAIH8qSumm8z//FAGJxMcOQOIJY3zlugFAHe4y988KCEBLotkh5IEMQD2MfObkKQlAE0EPKq19B0AyfW8v8NkAQNLvzaJb3vE/VkEwVDQWCUDTdXYtbmMTQFdAftqqdeI/5UcLkwopAECy503gkDvhP13G04bXavI/A0oIb7HM5D/TSqyXr2wUQF0JgGb9FOo/czP5m7JzEEChSFjYANr8P3xXgulV4glAHaKhF3Y3BkC89zYZef3tP728mkDsbPs/YplEHaQt9z8ayaZpsJ4BQPLk8zGGegtADlzroHaz7T9DsBRWsxDnP9mr4NWGI+Y/4d+VkHSQ9z/pZ5USCt76PzIiB5oJQgFAnKN7lxztE0A2SF+5F/kDQEuseVb6KOM/jTqeXw+l9T8pp4zfFt8MQFYC+BaMJf0/F1ilyRA27j+JT9mRGVbeP4mGaTJydABAIZK4WSJw/T+ZhrrZyxv2P8ey4x6/tg1AvrmU3Yze9z//fUxz+D0RQDXRE2ZSnvI/lLvlY/KD+D8YxR0ehpjwPwb5sWWIhv8/EJFl02AB6z9XWnam8fDxP5GyVyT/n/U/R/fn4NzrAUCh7WGevfLhP+1ypo4rGPA/RHgnja3p+j830EwklwnoP6jhyzLCdg9Al9MiZ6QZ5D/ltZ6XMBTlPyMrKdKmnOs/2uP5nksV7j87UpJVOkf7P88OVJWXdAZA0Stg37wa+j8UbiYdaqYCQIwTQUckd/0/PXUY0HSsE0Ad59ZXFDwCQAGAiUMmHAVA3CrLlFuV8T81wPAvarnxP37ERY9U8PE/CV0aM/P/CUDvKiPVqc0EQIDsb+p4df8/mkkruKSX+z/ca7NRbQAKQF+WHzKMIOs/lv46dK6z9j8IL+F3kHL7P0t/COy9ugZA2d+UsZkn8j9ht3CspeEAQGe8DfTvsuY/KM6nZEseC0D5ewS0CPQEQFRmZ6CtigNA/Ua1PKYYDUDoq7H885PzP6ZuDIse3/E/ExMZmB1/CkAdNqzPR+MRQGyONIrKNABAu0ns7d3FAUClWPI/sJ4CQPQuMdcTfvA/BURiNVtt+D8VamVYlfcHQK+Y3WT1ufY/cBQJmisPAED82X2odkv2P45EMTg+mgJA2fh8cYOL7D9KRBP66vENQFjZSULFJQNAVLXrYwp78D9yxURhRXUFQMFJpBs0WAhAhAjYOqhp+D/QSyN4qg8LQNS4AtHWSf4/pzd5n39oAUASmSOhpyHyPwuLZQi3YA5ATBYEI3MJ/z+ZfS5iq24AQGnUXPalWQNAiIkYcfxb7z8bhe7/HZv1PzlsPhB4KvU/zPB+A7HV6z9+3oU6uV0AQDvLE2nqmP0/7goNG7Lk5D8VUjChZYjyP7edv8W4FgtAgSz9vIui9D/FXf594lAEQFtwMC1rKP0/N6B46ox0BEDkVI4a6Ej5P4wYhVGPsPQ/6C3ScLUNBUCHCWJ/3+YTQCAIrdo3aQJAIF2JCpgJ/D+CUzehsQQHQDwHJiUJqQpAXfckHH1p+D9f9gkPH139P6kjG752EwdAzJ0dy9l48D9ddTflxkPzP1y9PXvSmgtAk/MOYvOg9z8WQ9WOhgXxPwDZ6G1emfY/a/OJNASYBECBIBK7/kEIQC91JEFdOgJAtZpUV/Lx/D8isNNsoQbzP8gUoG5L/wBAOiuJRyA45j9qXeu0BeYHQPkHNhUUxQRAh569HhX35D8IoDcynwr7P9MaZwtnufo/gP8DVIh9/z/4elAJlV73PzlpQokHZw1AhpFnyvd08D+hIv+mx4z/P5xvs+h/+vI/FLDCfOWo9T8kbPBHON76P5JzDn4Xy+w/FYEEpyII7D+tncHOWljlPwfcWAMvjfs/SrUr1Cpr7T/KBkjxvjz1P5j/6mlqEvM/fD9ucNa8BkCL2SaFcyz/P3D8tHSZ5/k/GIW7UNSkAEBJTJhlxCAAQHqeozn5AgtA40VI+3t46z/+Ru5DEMMQQEgFYnYve/E/9uwlGqGj9j+RFC5XHdEAQMuu/x8rkABAJea+w8Sq/T9Kw7qhBGwDQMC1i6SInPo/Ylv5pJJeAkAOl1M4/pP0P/4QFGFRgAlAAnUWCiP0BECMvfpxRvL9PyrbPk1TqgJAJyTDgRCh6T+shhJ/mwoGQL/jnuNvXQBA4d6pHg+v9T9aio6LXWD9P3vq3YidfvY/GuHrPCW/9j+fO66aalkOQPJISYGKR/o/XXpidx8G5z+5FT46Qx4EQKIH+GmfuPI/EwekoL8x9T81Hq8UMQQGQKyXEd5pRAFA4LDIhYeO9z9AW3mV/yQAQFbLHYx6UAlAQz71dzqH8j+V/GneVjDqPxazRRM+tO0/R7UNDBGHAED+BS5Q5gUJQK+nTlGrlQ1AWJkUYBhC9D8vIyvTbaUUQLgU/r+e2/c/Xaxy1ZCf9D9tkiq6TDgCQL4cvXD1zeQ/hVhyXoGLCkACE72twKILQIDbzVP0gBRAncND4hyc+T8kUNRuLprwP4cgJFhWZ+w/8H5LxSlLA0CuGMiyG9ACQNCB/XOxWwdA7PKCtW4UEkDRTYR+U9X/P1kJwX+ZR/I/a/daKtsH9j/qkkf7c0n2P8rsx4/ZIQhAOl50EnFs/j+iwG4vcbDnP3sW/msVnfQ/7qQrrXs08j+31gYf2Rz5PxVyCfH5pApAw5J9WbSv/z8f08Rej8oBQMZ1HLfz6vk/DAJkEXboA0DmmrhS4dECQJzMghzGRv4/7MgRh/V56T+nR9U5aAsEQP3Epg2yGAhAYRV77TACBEA9cQ15iPznPzqBHiyoAfg/50/6SBLrD0BxUmaw+7j9P7f1wjIrf/M/8dS5OpDn5T9QQL1lrioAQP9UmqcFoeI//9OrUQ7o9j+VJHgFyij0P7a4jgAkNO8/AnGArqSoDEBd8dl3XHgCQNgK9otzQxRAorw+jJST9j9mXBQZI4PlP/1Vvo2DBARAm8XtWKE4FEBO8zMmIPThP4HvhKZRkwhAmy6c8XImAEC5StXjHAXvP6/J2Y68LP8/+myKaNTDAEDYrs5H+ND8P62vbx0u//g/uv6u3Jl0AECU6a3ZcZQHQA93np4Q2/o/0IPL56aJBkCbucpQ4Wv8P7V1AkrmVQBAfDD7/gW15j96BvCAiKb2P5dHz4k6FfE/7haY2XcgAUA4bYhFhEUCQEa8tISkYvU/XKva24Qi6z+RzU3mswn3P9ZkoUhiqPg/p85Nn6VVAECzqzHFMFYMQNrY1hNq/Pk/kPONhBkv/j8Ko2x+19fyPx54hATMQPY/zY4kRvWs/z/tNVyZGTgHQKkv5K248gdACUUzYyT19j9iunm80/oCQEwUveIf2/E/C5Dm6kvSCEDdgTjlvSzsP3gG+Gyo+/0/KttpZrEM/D/NiHONdLcQQDVbQLBoYv4/y393k7tpAkBx6/UhsRD8PwvFEPDbX+Y/D9N7cCWQ/j8oAk1wzDACQOrWPe0RgQVA6Vr3QnEq/T+zVlAt4hkBQHK7uRpxYes/YvQgi/sb5D8/HSndQevtP9cr69U45gRA/rDaXk/26T+hXe2MC63wP93g9SFJR+c/Do/mFTiY+T8IW3Hlx4P3P5x8UbQRFAJAz6KlYyva/D+EJb2v4Cb6P1QV/SOMlPQ/UkKNOd9fDEAz42f0iNHyPwqm0+qlvA1AnfHekxBABEAXp1g2C0EKQGoJrEmZYAVA3OU3jbjA8T8S4Ov9+RoCQGfE8AiCARRAYs0m258WAEAi44/pgu0CQB/vMAtE5/g//pKEpsU06z/GHupNxJ4TQAGcfgWm+vE/c7H4FYnoAUD586phhtH7Pxj/cZ4XoBRAFC285yrW8z/SswY225T9P+ngYBHNQwxAV88jFG3fEUBCETEB1sHtP9TscCZHUgJApNo3+cVd8z9mq0xjQ4sCQNd3gfDmBP4/LOE0bTPMAUB0Gy486MjzP7veGE8aFwBAn8a5aiVTBkDd+bV3m5/2P68QL+K3RwZAhx0+Y5XG+D8u7XMZFjMTQOZS334I2wpAfYCm4Jxa7T8odKbGUGQAQLi/NrI0TvA/Ca91lTc+AUAtBTcmTSwAQN9X9IPIDgBAtcZOz28L4z+VtIpRAnr8P35bqfLEBvQ/DgxicXkEAUCfBiXIb5rsPzE3NbDEtvI/VPjP1zvr/T+KjEuS+O0DQAAb0tBRBRBAXgK7xpppE0AhhAcIGc//P0cz7wvGOvw/BQtxoUVAFECWqVADm7DpP3IL9HwTtxJApUdE6QFq9z9uAvodNFAHQCBttSLuDfM/O4f0e3VF8D+j0xwYcTMEQBy9Bz/hDOs/f7+QkuuX+z/3S8DPt4YPQD6pUQwcRuo/Y84oTqzH7T/DesFM6LAEQPLGH60Eb/4/9DWs9FcbC0B0ND/3oJkJQGZBtjHPU/g/QRD/2j0lBEBQrKcJky/5P4eMsKS1owlA4z+zRDaV9z/omGNRXTQGQLTgrPQ2z/U/sC8uNrGfBEA4KTiuxtj1P1Xmt5Sq5eM/s/ShOtBMBEBKqYnW20YMQHa3r7HiGvM/VedZY6wlD0ABz4QADkP+P+OgFzdw7AJAnuaJO1Jf6j+dEgCze6ACQN8/iFfbj/Y/1dh+L0yV4T+5kOdVLfoKQOU6lTSLD+s/DCKyDeiR+z+fqe3g7lfxP3e9zSZBegxAwzdJMc7x8D+Xs2f0om71P68B4KiPg/Q/5zl+o0dNFEDadWY5a/X6PxMwAN6w9QxAWzZXsxxSAUDKW6JjZQLgP7b2z/hzIQRA14RN6161D0D3xrbl6rnxPzqRHyjTIwJAax/TcweS8T/Joke7XTr5PzbfyxiaUvI/cJSDH52pAEDb6dx+40MUQH3QyHnxawdAwVUpK8DJBUAyvtocxUIUQHxCLR3dwv4/P7TUbKY79j9fH17eW0/xP8O8HZdgvw9AqexSLpGp6T84wypVa80FQLSHL3Q1LQJA+3AKt9A5AECUeu3PHW4DQKRVP/4Oy+s/SxJk4/tu6T+eBqmQsukTQKkTQDTznwdAuTiEIngVEECLuphEkOwAQK4Lw3TCIOk/g3HE+hQN/j+4ewEIURH5P//EDMSEPApAzR5Zewxv/z+cNBWeldgCQBYlziAfaP0/A8RJ49Fv9z9wU35/nHD2P1xiiTIMCgpAwCJMuFtsB0CgMVzI4UAFQJFeceijZAVA5rIriStECkBmUBxKENMBQLi8vCcFuQZAKzk1cOhC4j+i7Aue2jsAQKpIkM93Tvs/ji9q+1DPBEBnWxDiZsz8P21KzwAU/vo/Hacynup3AkC7K3KHwagFQD9cIRwmAQlAxgtW3wgiE0CNryCPUOQMQGhkfDzM4vQ/Q1VHv8Ip+T8vGKrZtlMAQNTf7NKslQ1AVYTjcnCL8j+bh9y9GOLsP8uhK8c0Hvw/PVtuAQ/tDEATag2mlZ8BQNm/IZD+pPk/olBQRo69AEAjdMWXQ03xP5LVY4e7/wNAQ0o5e0YrAUAFddwMT1cCQAS5DGpHAwJAYB8h6Fyd+T/r2p36nv/rP9FR+QZ/8ANA9axqkktVBUDCQ7pQJDAQQN6mUOczxOI/Sw/BHe+GBUBO6EkyGz7iP2SmNpS9SP8/iH7ReF69BUC7EsVItI8IQObnLi1KQ/A/xUVXvlEuAkD7MM+rghP9P0sGkw9yh+w/BMAjGYC67T9ajVMv/JryP6ZrD5B+hPA/mNupqIP07j/aA5E2M+r1P0CYLvc6Qfo/SG+Xl2+w8D8Pwha0SK0MQMBYBBuhhANAR0lKruNo9D/Do0CcLmgLQMGALCiEXxFAdfO5igwcBUBZQjAgtxsDQEc0YdgFTvk/SyE/sSJy9z/dgCA99IzxP8hC8OdkzANAyEWP2+DW+T8tPaQste/3P1adHdefOwNAz5J3Njgn9D9CQAcw4lUUQOL/jET+O/4/+Yqr5uGn+D/cP6+vlHUHQLj0tbugiec/tLBxtbPJA0B6WR6Tb+gBQBEyq3GFWOg/9+xXUCFN+T8HhKNWYmUBQDsA0jWoAQFAJQGVjxOl+D/3C32Q/mf8P4Iyq8en/BNAQONzKmfnDUCnsahG4Dz3P+t8Z45IQAJAzrCxM4u2BEBLOUauhlb5Py90NucRHwBA6ziQdZgh7D/8qwtO8scKQGEQLko0agZAE2jUQofo8T+TKQ9YEP/1P/f03q/louM/VA7wojjW8D/5ChBn1jvtP5F+Ka/bowRAr+idJx575j+7PgU6LtjxP5QjE8KWDwVAC5zfTA49B0BOtsihPzjoP3vzYXbDLf0//DDyIAsFBUDWIJ7IFyH7P1IAjT6tLwhAJ5GWvyhwA0Bdkun6fej8P9ZuoG1gNfw/TY9FxBqN6j9zJ+TRaLoAQNhqVWnS8uo/Idpn3Cyp/T82NrFRcLEAQCrWwmh7hfg/b2axEeAZ8z+XV+wSziMLQGq0C8DsyQ5Ava5lB4vk9T8LdAiPTbsRQID1RiFFShBAo/yXGidhAUBZUW3m6V0BQLKobn0fBvM/1+eMp+0J8j8/pWuu8JcTQDrrCk1rWPs/e15Mrrb59j8NVax70ncSQKgB2UabRwlAO/mfuidG9z/rCBsBC1UAQHcOTdWhaPE/4X1auGNr/j/WSUUYmf4AQBIi6lmx7/I/mkNvmvosFECDDDewvmwEQCiU+cfe4wRAUQCt8WAlAUC8yoJgTkv2P9WbJRuytvk/zXFf3HHhCUAGM4V631LiPyk5Yikq8e4/pTOdb7gs+T/fbyHgWSH2P7hOkqK7r/s/opzr83BE+D9Zf600GfkFQK27gu1DWvA/HTixTO166z/jZRSofjfoPzw7+KzBdOY/JGseyuuB6T9+ishY0ukCQLLLZT/1+QZA6YQtSCl5DkAGLO7IkTfyP45wvQNjy/o/Xl2Y68DE9z8WOpHchmEBQPi3Xl3YVPo/qaVcuizxAkAm83B473nzP6ced1ah6gNAc9doDeOi7z/Br0h5FGbwP1f0yz3i3uE/W85Ni8nc/z8ka2VsvrYHQHbyw/3t3f8/fOR9/1WL+D8XPc7P5hX7P6lFMQSWQwNAtOskWWpC4j8734WnNVvuP5IcPF0//v4/hyQwM73pDEAv20Q/6OYFQIOdW+K5BAdAoV1MkNLc7D/EaOvY5Ab9P1dP5dYK3fk/WM9T948a/T+brJ3Q7QDwP+vb2ybKZPg/ZtU0sC+VB0Djn88cdRv8P/7GHM1H4PI//0hpPwHRBEC+6/hHcMkSQJTDEgZgWPs/w9vRWnURCkDBbBXpH2ABQFKnyC6XlgVAGmf8UDM79j/ORmhM9cz5P7691uMNe+E/nNLI1J56+D/bMQ0wQYEHQEDpRkiC9xJARRITCxhCBUDsKCMMzA/pP1wn/zHgYv0/UZ6budCIBEDMEpfbn5EAQMBsxxA1buI/mozT5KsjBEDnBW6MAqDvP2sikn9rP/Y/gEbwu4oN+T/8ZexuDuYBQO8ftu6QLQVAqqQZmM9BA0Ce8rGI8HcQQK9ke26vUPk/33fUHSFE6D/rF1r7GuL3P0ZX4d0Z/fM/jIsqu76e9T9uYN1TI2b4P6i1paLqYOE/+/wzfzWI+T/CwOCQXbL8Pxzs7BtD2ARAOaJezjA2BUBoKq+nX3sCQGbzTflM7PE/YEWU0lvkEEBADoaDqMkOQNJE8J8aAu8/lnCUWCnN9z/zurbD1eL+P62f2b9MJBJAG6uCXiZ2+z8s+KFYMxD5Pzrwe9FH+fE/2673hKD28T8gWKydkDHyP5sCjjmSvAdAiKxPZYcBAEDdGxJ8BxDsP60dsnoJxv8/Tqg4m9NmAkBkVx3ZVD8GQLqF+EUo6fg/YfDfiU3Q/j8a8chhbXgTQCg1MM2IKvo/mEBM+6sLAUCy18uvAOP3P7A7vPO2zQ1AHbjKXIszAUAb49q05MD1P6IuoIwGsuI/NXlAl8LhA0DVy7FHdWoIQKMiJxpixfg/N5zNHwr5AUC79zOuoJ73P8HPqA0bMQ5Ao08rA2et8j//2sw1GgYLQOokxs9Eau4/7mpaPTO9BEC5qmyeAkwAQJZ6jjEeZBRAE7x3b2ZW+T/7X2/BfvcDQA7S6ayc7AVA1j0SC+6qBUBtm+a8EOMDQEal2mUksgBAjuWNqfX1BUBW6F5hU6LwP2xZK7J0MvI/QM9u4oblBkA23HFuGfcQQKM90V3q2AVAR/863puq/j9zuuc9qPsAQAkQMv6hgPk/i5IvfwmgB0DLLd1ef7MCQAsAfiSYNwVARNHp58r48T8FA40eC7cCQEZitikb2gJAsOi3pEhB4z8surVzp7z8P5Y75pA4n/A/OGKBD2hO6z+CGHGvCeMBQJMfQvrCWf0/kKPQUMg/7j9lUQSm+xj/P5XGhqNW0QRAXcjI2DSs4D/BMDt/ygcAQAxwp2f54/M/XyRFJzFs6T9NU0GEFw8SQFCg3Pyp8RFAP7tjYUHZB0BYD1XIuvv+P6jKCRhtC/s/2G4h6Aq1BUB+3z9tn1EKQIDtQvFkewVAbOxHCW9VBkCdLNolnwH6PyOLacK91QpAM0YKebIR8j+mQBVuvnn5P3+jIJvld/o/8v4SlmV38z8KB7DNEyUSQFGI8XiWlwxAZ/nqWYC38j/0RBsK6xIPQDtkl/Xl6vM/GxW3jbWcAkDSi3O3KSUDQAT6H/WBot8/9A+/Rd0z+j/um4xs7UH5P6tsMG+OyOs/g2sWfb+O/z9JacrFbkMEQLQio35bPABAE+kT3dHK9j8kNYhBGPsCQFcVbg3LB+4/MHuGCiySCkCBMnyf4Wr1P/oJ+HMFw/g/QAMy77KzC0CaQbJBRoDtP0BV/xRlVQZAd0RCygLR9D+TJZKmdS/2P7l2R31eFOw/td/wmehy4T+bHFoFprQUQKEEwMpYAwdAh9MluONT9z8KKfOmTzD3P2TZEBm81/A/58kITL1zB0ByeeR4ua/8Pz2LLhgezek/DIyQkDL19D/9jZ8LqGoSQIa2yCD3UP0/Rux8Z6d0AECunqeuNwXpP9sfL33cCfA/Qglol6cnA0D9ENtGveoHQBoQ1PDdXfg/FqVkSNNm/z+KdUTjsuP0P2pzuC9UfBFASYgWgbbG8D8B/n+EZtP/P1v2gYJddQxAwH0nLOnbBUBjTobvV/oBQI5Te4Q0+Pc/xnFL+9Ce8T+vrbLOLgT+P+ctgwWofeI/YDVuIPVhE0AyAMthpM8LQMDUyzBA+AZA2whxP9Y4E0Alw35oGEH6P5gqQL9pLfQ/MwXDeG0j+j+9zk+asJD9P3QhuyUtQANAiARYZS5V7T87bn3KfPXwP+HI00vB1P4/oSGbyisU/D+EPlPlfMQIQCcNT6Evbek/c7KBCoy+9j9RuK59WQj1PyTOwY8W1RBAudoCJUBB/j+03kvAKn/0P1ll0ClkzPI/xXqx9vRyA0A6hmMuJ0QAQP98mILbygJAwWW6VZ7D+D/zIjeeEywAQFZuhFNUQAVAG2qdC4cFEUAGx9f4gCoFQK7d57U5jfg/bglxIfPcCUABc8b9ib//P0X5Jgrsl/4/w8yHiJB55z8vV2DD7PIBQC5ai20N8PM/f1AQgoFy5D8xVwDZ7h8AQOtDn2xkr/0/1IvtfmPI9z+3MkPHWJQHQGO3GKPGTwZAkVmENTX49D/R1xECvl3lPxzmGBs2rPU/L71yV5+YBUBijTkgq3YHQFC4sSJQQPU/vy7IlcFD9z8Iv29SjrMEQGYKTr1qyhFAVs2AmUR9+T+1O/8/k8QJQHkt/fbo6AFAHKR2/V1jCUDpiGCeimoEQFUZo0DYNeQ/T6nUASejEUCDbm+3t9oGQLOXCZ10qQhAaGBPKaVC/j/wGIH8UaP/P39H7wCD1fo/ZpU5n9ks9D/0t/3GBdj1P1IeyxiM6wFAmhJMt1wa9z9mVrrvs4URQCGhJWOCwfk/wW6dLuxpE0DAELAMMIMTQMu7/iXCsPo/Hic/D7By9j+Ux/ItQxr/P11tjoPYHf4/t3VNrVBh9D9ZMSMADVIFQJcPqMS2CQJAhdYqH1KC8D9fEAG3LNEEQC88pNMwmwZAB3cxJobZ7T8HWIAzntnuP8qyz5HSYuA/17RRZ71G8z9HlOv3l9X8P/qS8yeMGhFAL9KQB3Ue+T85FNFU56sPQDMWf+OqjwRALWVkBpDc/T9M/g/qQUPuPwMAk/oPygZAz3WL6B6B9D8APXPFxiYAQPjLekW3WQpAyQNBZDxe8z8/WI8/u+4SQLhPpaz1OvY/H+yDlfS8EUBG3C6jvDbwP163NaQA6v8/YjPuUUUoFEBSg9t+5D/4P3N14PknIO0/Kd0jtsXCAUDEPA66HK7mP9s5BiacuPs//baQc7tJ9T9uMyGiO2v4P3gToGdNYwFAn6vAObUZAECy3HGCUvkPQAwhHI+0kgBAykH1sHzMAUBUBtOncQMBQI9xJZ8pUAVAwOiQjKVeBEBHqs3a5sP9P9poDuKHjv8/bMSJdiwE6D/5lkMI2WMJQF/KUzFY6/8/YvgD9No38T9UvVH4i8v7PxDfaGPY5fA/GZonFQqVAUAXCNYNtggRQKFRrSDCn+A/KGPcC3kLAkAx6V5vkqnkPwpIifMXdPk/XhAXWFYC7D9T8lr9X+IEQGMJMOVFSO0/cOqEcxMf+D9meW7gtrX6P7hEgt9KRwhAxzBAiyM97j8aqeyy2FANQF00eYYGWwNAc1TM7eS29T8grvh3k7YBQJsE4q75vPU/jQjrTqSLAEA23/2Ds7X5P2V1+TeAwPU/qsfOHIPJ9z+71tvgeVb+P9bYqB2t1vY/GSFj8VMa8D9lwU085oDoP72hS1C4OAxAkv/RwxgT/z/coIXX/D7uP//lqOZI8QtAaG4XqUa7BUAbx3HpFqDxPwznTtc86ec/7ywurxDx/D+NmOkAYInwP6DHHDCMePA/xGsV0PHN7j+imRponxQAQE3nStEokwNAoFDw1Bm3+z9XMoWpb6oLQG3/70XBEPM//Caj6SxdA0B5hY+3AesDQG3RE7pEH/Q/32LZhZExAkCMYT+0bSXwPzZKaTnRbABAMF8tCITJ9T+CEABfSIkGQLceRrzEBAJAebsF2t079j/WazgDdjwTQCFlG3ymRRJAsF4UMppdEEDgMXaxr7nyP3Bq4J6J2fo/mt+02luS/j+CbRlqmUHxP2hj2xdwxwZA1py10l2y9T+yxm1Xb9n/PwS1VVIO1AJAaETq2qAE/z9YI87YUTsDQJ4h/blpgwJA5VrKvlFH/D+oy5OWWfbzPzqUR1UVruQ/97HsFRJYBEDLxat3WBQQQA0RyNHf4gJAdj1pNEff/j9KdA4TnNwRQJ8Z5yANG+E/mpeQZSaM8z/RVgHee3EBQFAZAs5VWgFAx51B6wzLBECfu3hB8132PxeCtZ/WqBNAcj4wR3D//D/tgxwwu9zpP978T5P9aQ9AWIyZd9z+4j+lFh0PoqgAQMMQdulbLfs/E2zVBThu8T8w49pDpez3PyBOEdHhQ/o/Zl4z5+2AA0A9JgxS/qnzPwGA7+YBegpA3WIy+2uz8D+TBnE1Zm4EQEJP9IQtFAJAS73Tx4WoDkD053XTCZULQF3/KZ30IfY/iReh0jkKB0CXylTYdxrqP2soEiWGVOU/ZR24q3qq5D8woY7R8uz/P12LzE9H4vA/ujqJw7EH8T8fmT2NdP7zP95T3pJrmwJAsOR6dwk8/D9YGofBWHcKQHJF74d3kwBA7KDAP+FNBUA8jBWiLscHQCP/QozESuo/3dcfRzJ3+z8+mXogRePwP8UHF2/qkApAokc+jb+k/z+BP7HQgyMIQCCRFFEHGwJASXtexhJwA0CaQRkSrc8CQBamH0RXGhFApFV5g8Tp3z9Pk4hbg6f3P+pDFzuX4AhA34VE0hC94j/WXP+Tn4oPQGC38zHS7P0/QeXXSnrCA0D/fgeMV9QGQIpJ7XFyifw/oXWyuZqfDkACoPfQHkLwPxgi9Zn0r+g/G9AQ8iA7AkBFREDC5Ur8PzbWODLgL/U/BRmkOCd2+z9KKPIGBEz+P0U7z2Zvxv8/IJqP9g3L7z83PWGtTkgLQBV5W6cw7wBA7tx96ityDkDsp/X8LHH1P0bgX35TawZAFTbGl310AkB4fYxtRjn7P1eTbLxeOwRAAVITr8SC/D9h60cYCOAMQAVWxTQMuvw/gjye6fz6BkDDs1Z/G+AHQLC0TU007/g/1prx1IKcDUA1m5ObeOrxPx/1Y2AtYwNAPpg+RyazAEDJVnLCZjoBQIpA6iTigv4/9xBqlNBPAkA4wtil9eQMQOPVHFA8Qec/POIhxYvlEkDuuVwZfsEBQCm6mshkIv8/Q4MYQwmQ8j/X6xERNQcQQKCbI6GrU/M/ytlK60eh9T90mv09L9vyPw35sW8QN/I/7PjFtve0+z+IHwYWC64OQB9N28RAC+0/8s6ZHAm19T+V4Ve1WS/wP/6kuluclfQ/xTTC6JnB7D+J6Tk/Z4f6P/ZQ+EcUWABAoiuB3s8q8z+NE2tNrv0KQPEdxCMN2vA/YBU5of/ZBUBHe0tV6oj9P8pdVdX+6BFAWdRHnk+x+T+5h8kQVIj5P1RMkboeI/o/MTKGiLUoAEBKu9NmzsD8P/C23t8AsARAcLiXBnlPAUAc+eSTJfPwP3joIdNrAOg/hhWcN7O3DUC1FuJg3WwTQFmipQ3ap/Y/5DkSOzJr9z9AH+fuysn4P99JkwoyG/A/NKWoX3fn9D+ZDDOg+j4UQD49ZQSyNgRAOkUg04nkEUBmlJ7+3ervP0N+zYez6uA/yd84bB1ODkD9AF+KJoABQLD4pr9Jku0/pVvhCIgU9z+oJnCHrhDyPydrMcCeD/c/17xO8l9g8T9L1HmrE/kAQE8uei1HlA1A3pT3iCI5BUBhSYZoifICQI6fYg3KIf4/V9nNd03v/j/YNq20wuISQC+LTr79Hfc/PpjO0yuw/z8y3f+BfDACQMV+JAXONQVAebX7PDa07j8G7RirrZEJQIr51+IMvg5AcpfVvfh15z+HDP/ByKHwP8jwM/L9/hFAjwWw3J+d6z8qz1Z6XMQRQEWcLXvi4g5A4UwKnWEj5j9NX9l3yLIQQCKgmY89MAVAcPnEMRB19D+LDSuZ5275P0LaArj3QeI/EuN21iuZAEAIIxnMxGYBQFTexZy0kwRAR5KmyhAB9j/LzPnwQesLQEb4pEJLaPc/+8pwPnsy8T9qhYUG8P3jP/V+ch0PG/g/TtzpIMo8AUBLJP1OL539P0iXOo7HJf0/pxzo7xpOBEDLA5y1nd3bPw4e7TS5ad8/aFvmCsrh8z/IEdFwRyD3P1lxJFW8ivg/mMT8f7FoEEC4ZsatABfzP9a/7l7MWP4/iym52VZl/D/qPCtV/Pn4Px+6FAlqx+Y/xPjGcsk46T8WgPl1JTfwP3w1ajxyygNAzWbjGKlcC0Dey+dz49v7P0OYaNxnHvI/quRAr0aJ9D9G68AhWrIGQJ+w0cKfPf8/ACaY/uzM9z86eChogBUSQPh1JzlEJQ9A26ny7+HuAEA6+RoN8Mj9PxVh4yGdfwdAAAdcAWZU9D9ELnszYRPoP6MPdC1QSfM/et4O+AF//T9egGdi8zziP+Y2DllFOfY/pYsSfiHRD0Deri369KfwP/vtKTcUMgFANEZ4dt07AkDcXIwIW3P4P2f8VpMGe/g/JMnK2h7u6z9MfLlzHTj/PwB7Rr3cNA1AZXe7jez+AUAKRJkcRNYMQKFFIHH4UANAgiIHJjiI8T/ie78TGiMHQNkRU4lJsAFArQPsOaAoBUBdLMfUAJ0DQDAIOElQmPQ/gvF7JHaG9j97F25wCGgBQCMiJpq3rBFAMrbXHgY/AkCYxlkqF5TyP4n+RvZ7/gBAMyt7O0AsCEC777dIsqn8P/I/HbpkJfA/wSMjBwaH6D/9ucPS3br/Px+7RtRtP/s/k2s7szrGEkADcXxZjI/4P0UujpF6GA1AQamZvyV97j8xviEQ9pn9P0fmDorlrfI/05+0FLGe8z9+We8yxwHpP34TPzQfXfg/APd6KjE17T8KjagKQl0DQFfYeuudTBBAaMemANdy/z8Fb4hLCOwDQDuTf32fT/k/d6N+Vk2P9j+9SWXCGtb0P4ciqDMN9wJA4adaszAi7j8iveFYoojwPywM19UgogdAICS0jk4ZAkAHCvgOQ0UVQGD/DBat1vo/2VASnGY+8j8sVrjBh1oBQPWZQ273RgxAr8ATO24XFUAPkrNgroHsP6lw8xHuDAdAyaOqLDFl+T87JEidCUsUQEmaKW7gePQ/t5QvMrzf9j9OFM+yF4X/P+km7CcG3AlAct56nsCPDEA0aZj+KIbzP/tdB/sSqOE/Amtr6W8r8z+pWcJqz/P/PyCNjga9NOg/Svk7vy5gBkBcHLNDCxX6P0YnmOHnPvo/VFJAhFgO4z8w7zXFRbz5P0h9ph1XtvE/6r81CGJOAECx0CPIb1AEQLUb4HmIVQZAwwSofigH8z/vKIkbOWT4P9aAKIC1N/8/gEybAI65E0BoRY9NJOH4P2sh5VQEXgBAoLILbPyJ7z9YNOk8yIv+P8GE53WZQuI/tQCI643gAEAAo+o/lHf2P6Yh3xKbiu0/20pMvbue8j/Q7L86OPIDQHHSJbYZc/0/4iPQvynvAkD1go0R+XEGQEQ4tiyVb/Q/jGp+erS1AUA/2x8EYWwBQNnbTehrKgZAdxBgdFun5z+tZO0zWZ/xPzJ6i9ZkLAVALsG+tzFBEUDyir/lllYCQPT2bpG+pAxAdkVMSCv+/D+QOmoHpOjzP6e0zaq3kv4/Prm3kJDI+j/hgs4C6ZYCQF5yQ9iuFPk/v5+VUIoqDkB2mBN2vGj5P21DWi8OcuM/Hzd5Bv9EA0CXDhybFgnwP93+jGnWOQdA+/s0cuCh+T+EcTTdxKf0P2l+tXxlchBADov6u7t8/j9qXLJlF/MCQIZ5+1hU8vE/VsRjwkP47D98A6iPr+QFQJwrkSo7tw1AsYPN8DMy9j+FLO+qafoGQF/J0+h2YRBAqqZMbmj/8z+e7hB082r5Px1KgeJSC/E/eW9HHJXk+D8OzF8MuxvwP1p0tMJItvs/pOrhFThX5T+wDipn1JgRQNpakUJ95hJAFWW0D9FpCkBHB710wCn+P2j64Ey5ZQBABOeZUUbcCEBVzLHnRUX5P1zHlbVK+gxAFJr2gIodBEC098hvbv8AQATKF0T1LQFAafvEoXreA0AeNa/m4UsCQEpdx01sTAZAjC9a5GM8BkDC0uHNvifyP5Ruu/uFDPE/Oe7+zmn//D/CxKfU3NcEQIgoaKT46vU/s24yLqFLAUDzjvQKA2v9PyyLKDX0BwFAtH1L+3fEBEDdgZNwazwEQCgDcN4tewBAyaQLXCch6j/ZeQFj8VIBQEpDR9SkN/I/7XCIEpqz+D8BPG45oikHQKdwBRSKuQNA925J1EMP8j/br42sZYALQBNDkSYf4es/DEvlWvk+BEARGNy0IM3pPwkGAawfG/c/R+jlJN0N8j+/qQHrHCPpP9UiVBzsq+o/bGCAbvmMAEAXNYXONfMKQG1OlKwRxvQ/eGt5BcD3CEAvu6/aDr36P94CISSx/QRAEwQQYDUsDkBRZVgmhTrxP8MmmkIcbPs/onraZ0Ro9j8YZMERAREKQGUrB4n0xwlAg8/hsg5W7j+n0+OAoQz6P9579OpkagZApkRkDdXQBUA6Pn3p0bX1P2ue3j8qpvs/GvVPCknw8j+srkNaOl4DQJQqI7J9rvk/NjNHKaFY/z+laixxuG/+P2rRwcA37gJAPa9JujX3BkCzIDc8ZL4AQOX9xWUcOfU/cz129A5QDEAgalGUsgoQQKQqgsnlgwZAUhc/MQ/B8j+ywQdzGqIEQAHnugMEXfo/mLTrLncU8T9TLaIzf6r0PwwxE0xNXRFA3EJI9cQd7T/5nwxAqp/+P5/CvebKVfs/9eJnZy278T9vXXxtUM4CQE2TrVilVOM/Nk/LNcBG7D9jQ3TmH1L1Px3BLIVWcgFA+Cg9WwH4+T/5NZ/hOEXwP9CbWPMWbgFAH2KflV22+j/roy567kH9P3P7WSyC1hBAMRlLz5vr7z9tY23Xo8YCQBZOEMe+j+Y/B/xMIpwj5j9z03L3Cv4TQN5w8Ab5TPw/QZyexBre8z9wo+Ymn8j2P1980SzksgZALDyvbf5iBUBN7hsmEnPxP4hwnVBThPY/J4TmKC1LAEA4K1L/m6b1P6wV6EexIPk/Qfb3sxEt9T+/USSeHN31P8yupj5U1vg/YunM4cD04j+zUguz+1UKQFwbWePv2/g/QgX5pTWD9T/xoHGKIWH4P4d2m4CMFPk/vCgtjQqXB0Cz+MbRr1L1P5LS6FI0dwRA2hqitsYL+j8+wQo1k9UAQBbz4mo9yOw/JtYxtEJN6z+13t1aQoT7P7OYBz2BzA5Ag7GBd4+zAkAN7ukOP+D5P+JqorYda/g/QQBx9yMx8T/h9alflBX9P5F+ygA8/Ps/0+9g/sbJEECA+KeXOgD3P/NXDMND7PU/gUN95mAM+j+Qak5Ame3/P5TJ3alobRJAwX51aVQx+j+pjUqvqSLzP5bbpFitEvU/CmSZ/iqT8D9UGyORCCL2P2WzdFhrSQ9Abq+PmV/SBUCZFwzvZWz9Py5Gk/CPgvU/oBgutRwh8D+VkYAz/Tf0Py+eimlK7+s/HdJFr9Id9j+3WHB77F4AQKFQdGgtGwdAfhBVFNuUEEAleCa0jE/7P+KgTaMyMwRAwyIiSIeF/j+e80ek0qv4PwMHNdce5f4/3cgHy8tIDkAiVKWB4cD2P78F6URmdwVA9R1SD5ReDEDHcTlFnHYPQIW+0G1m9P4/Xof2QfpcD0C01JlUStTyP49S6NvRv+w/PcFKBL2HCkAy8saq7ZrzP6GBEBrod/4/KJOlvwKj/D954cxcxfMJQLz4JCCLWgFAnFJLO/aV9z9KePOYTk32Py4/KBokxvQ/tu6NOpGTEEBIWsu0r2AQQElIcjivpgJA0L5wY6qQB0AsnByUXPj6PwrfEl9R2OU/2fXtvQkM/D/xsT/8/OfwP1qG0Ks14vw/gYBbUNT/7j+Dw7GhVQXnP1NefvJ2Fuk/a8fRqGL6AkDuSH75tZ8GQAu1kDZ08uc/WFOUqypkBUDU4EokHdX/P1rhvQi/afQ/7RvylizzAkDXeTHJ2mYHQNHMEm7FsPY/uLtm6XYCBUCm+ZtTdPX9P9xN+6Kc/vI/fuIQDLND7T9iNbYdr5TsP5yCaoJT4Q1A3yLLIlu8DkBhcTtwsmEAQGXqh8c/W/8/GDN8lshlFEBVNGcMUQfwP8KSL2h9VhFAetgogEtwBkBZS5otWjzqP6exkeNJMfo/0Yzkiezu9D+goQv8qbvtP08ASfx7VOI/ElyO1RWd7j+rE2FDrvryP80SfZS2JfY/F5LvEDYVCEBBF+IxsEP1PyBEQlJjHP4/DMtfsz//9z8U1X2SaFkRQMvTxowlTAFA7RlDKPpyDUCn0XvwJVEAQETlWPmzmAFAIBHtEfxdAkDWya7g6InjP75Dw4Me+QBAHx7m23b98T9dVoAOi6H9P4nmk2/1jwFAAVyHPzPp/j+D6aRxRur8P9a4v5+tJRFAujQxT6P+AUDFQnzJNDoEQOWYo7x/Mfs/N2MTQSzBEkDdo285Mmb0P0OuhuOOVPc/H4g+Klnu8D83+ajqh7kOQHCgOj8D8Pg/8NX/4ZRNBEB78BsT16/4P/madt9gegNAzRhkHWmAAkAJ60m5uIL6P0Q+0KF0lghA55XWrO939z/FDVGgqGrzPzab8kaz5gJAr+idsyzu9z+Sy9Chyz/3P5Ef+TZmnPU/y9p7R8jg9T+L5cypaYsHQJf8m2WW4RBAHhscLaBvEkDbVmO6HigDQLXBGIFrrOc/I6NSwcIxAkAiISb1QrsDQODyqWZ9ngJA52mFPq9S9z/VhNIxqCDoP7eA8t8v3wFA1Ivfkt5QAEBHyWVHFIXvPwgwQ613hQFAooJeUWQyAEDKeyDI7koTQFAOZVa9h/w/LAIJPb618D/Ym//xHK8GQCp0mmAhdPo/6dJQ0H4HA0Ag8BsHf3/lP2J1ya7uOA1AFjY0Cnny4D8tXu3030zxP9PH487tLP0/tH05LPZ69z/KMesayrMJQIWqURIlhhJAxDsZ7ojN+D/UWzKrSJ0BQPdWJG38XQpAUhgNGZvnBEBKSsvdTy/sPyoK8A/BkRBALihKHY0XFUCL0yrLsjQNQLEkVT3nyQNAqVs+7Kj7AECd2p6YJqz9P+cRDYrk2/U/kzsukWLVEkDwXBduQ38BQHX/XW9DTf8/CgjzXGcD/T8pw5GoAvr2P3yqEEC6hQpAgJ+CMJeSCUDdNR27pJcEQHxWQK9SZPY/IAnybIT+5j8xH2urZO3oP4kzhYcB2vQ/IarkiCN6+j8+CxfMm978P/1wogT6LABAuoM8Q2GmAECRM6nHHNoFQMUZ8bcd0ANAv0iqI7lK/j/SUqvoONgCQI+E0llwzu4/zTdW4mja4T/uQaor6wzwPyFedZpE5P4/YUoGhr1k8D84rvayesn1P7UEoQ7ADu4/fm/lS+mJ5j/xAAM0cKHpP50k/HWixO8/DkybW9Vr7z/ZcF5zO7rtPzIesyz5nAFAhtNPDDY1AkCr8cJ2c5wUQKXt6Q+z5PA/IQP7gdGn/T8Lnln+50wJQM0Obv+JCec/4eelKkHs9z+gczigtMvoP7FbRWFFBgJAMAYkHZTC7j8jNumy9Xr0P8ldkNuk6gFA8scXyu9s6z+REdGUcQICQCkSEDutIPw/YyuYZbnGCkCHO7k7CuAIQPm5BSSZr+s/cNn9mF1i7j81KU9gMvMCQC6ZwtXpZ/s/UspzdUJ96T++71gvBiT9P7sBc+PNkw1ARnrnTMZS8j/bPrDBbcAUQHLcKnbF2RBA", "encoding": "base64", "path": [ "_data", 0, "y", "buffer" ] } ], "model_module": "jupyterlab-plotly", "model_module_version": "^5.18.0", "model_name": "FigureModel", "state": { "_config": { "plotlyServerURL": "https://plot.ly" }, "_data": [ { "hovertemplate": "MedInc: %{x}
predictions: %{y}", "marker": { "colorscale": [ [ 0.0, "rgb(142,1,82)" ], [ 0.1, "rgb(197,27,125)" ], [ 0.2, "rgb(222,119,174)" ], [ 0.3, "rgb(241,182,218)" ], [ 0.4, "rgb(253,224,239)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(230,245,208)" ], [ 0.7, "rgb(184,225,134)" ], [ 0.8, "rgb(127,188,65)" ], [ 0.9, "rgb(77,146,33)" ], [ 1.0, "rgb(39,100,25)" ] ], "line": { "color": "white" }, "showscale": false, "symbol": 0 }, "mode": "markers", "name": "", "showlegend": false, "type": "scatter", "uid": "f7e842b5-5ce3-4fa5-9509-65f09a996afc", "x": { "dtype": "float64", "shape": [ 6192 ] }, "y": { "dtype": "float64", "shape": [ 6192 ] } } ], "_dom_classes": [], "_js2py_layoutDelta": {}, "_js2py_pointsCallback": {}, "_js2py_relayout": {}, "_js2py_restyle": {}, "_js2py_traceDeltas": {}, "_js2py_update": {}, "_last_layout_edit_id": 0, "_last_trace_edit_id": 0, "_layout": { "height": 600, "legend": { "itemsizing": "constant" }, "margin": { "b": 50, "t": 50 }, "plot_bgcolor": "rgba(0,0,0,0)", "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "x": 0.5 }, "xaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "bottom", "title": { "text": "MedInc" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 }, "yaxis": { "categoryorder": "category ascending", "gridcolor": "LightGrey", "linecolor": "Grey", "linewidth": 1, "mirror": false, "showline": true, "showticklabels": true, "side": "left", "title": { "text": "predictions" }, "visible": true, "zeroline": true, "zerolinecolor": "DarkGrey", "zerolinewidth": 1 } }, "_model_module": "jupyterlab-plotly", "_model_module_version": "^5.18.0", "_model_name": "FigureModel", "_py2js_addTraces": {}, "_py2js_animate": {}, "_py2js_deleteTraces": {}, "_py2js_moveTraces": {}, "_py2js_relayout": {}, "_py2js_removeLayoutProps": {}, "_py2js_removeTraceProps": {}, "_py2js_restyle": {}, "_py2js_update": {}, "_view_count": 0, "_view_module": "jupyterlab-plotly", "_view_module_version": "^5.18.0", "_view_name": "FigureView", "tabbable": null, "tooltip": null } }, "c65653ff036042b4a186e911610e2455": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7559834ebea4135aa725117cb3042b6", "placeholder": "​", "style": "IPY_MODEL_fbe90785eb4d4387bf463bd8ec97b66a", "tabbable": null, "tooltip": null, "value": "\n

Select and Explore Sample

\n " } }, "c663ccee637d4c8c8d87cb11ff4c6e53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c80d233020384256936997c995e1e9e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "ca99404401754b35994a961af2d65be8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cbd4679a237e4d6fa0f487faf50953aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "cd50d0d052c642a3bcee26e4952a4b00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "Latitude", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_b2dbe607f7b3431b85d0e476c77c196e", "step": null, "style": "IPY_MODEL_ce005af61f434bd3b274fb80bde32e62", "tabbable": null, "tooltip": null, "value": 34.06 } }, "ce005af61f434bd3b274fb80bde32e62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "" } }, "cf4403f43fcc4f5997c8f856b2d130a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "Target" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "Labels", "description_allow_html": false, "disabled": true, "index": 0, "layout": "IPY_MODEL_abd892d408f64092873674c771ff6c33", "style": "IPY_MODEL_c388c17af88f493ab6ad6827b4d47350", "tabbable": null, "tooltip": null } }, "cffaedfab7234811b944d98f762855cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "Population", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_36b439e24c8f4c2fbf62d56f970e7deb", "step": null, "style": "IPY_MODEL_3372e84b42b2401eb93f5bc226e71b5e", "tabbable": null, "tooltip": null, "value": 3107.0 } }, "d61b0377ee88458abc65e8060368ab1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_a4496d3f2c65469db9c383680a943bd4", "IPY_MODEL_080090386d93400eb75c165a8c9e981f", "IPY_MODEL_d73ee1b0bd6b4c6098af60699870819a" ], "layout": "IPY_MODEL_63aa96faf9b247d890bdd203c67dd7ea", "tabbable": null, "tooltip": null } }, "d73ee1b0bd6b4c6098af60699870819a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d7a0c3d801b7412594cac07f27246dd4", "IPY_MODEL_0872c6d6bfaf496591f67470bdac29a7", "IPY_MODEL_c5a3cd6700f3488689f655a3292ee41d", "IPY_MODEL_9ba2d8fb7e254beea68e3d17df70d4a7", "IPY_MODEL_cf4403f43fcc4f5997c8f856b2d130a1" ], "layout": "IPY_MODEL_39dc34b6302e4bb78afb92a6e74539b6", "tabbable": null, "tooltip": null } }, "d7a0c3d801b7412594cac07f27246dd4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "DropdownModel", "_options_labels": [ "MedInc", "HouseAge", "AveRooms", "AveBedrms", "Population", "AveOccup", "Latitude", "Longitude" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "DropdownView", "description": "X-axis", "description_allow_html": false, "disabled": false, "index": 0, "layout": "IPY_MODEL_b4496f8b9d4643e093f63f26cb507e5f", "style": "IPY_MODEL_261bbe80f4064f5eb61d652c6294cf81", "tabbable": null, "tooltip": null } }, "d930f9d03f20450bb1c129de2f5540ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "e7559834ebea4135aa725117cb3042b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e97889503fae4d2d855728aa891cde6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatTextModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatTextModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "FloatTextView", "continuous_update": false, "description": "AveBedrms", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_119cf133862e4b359ceba6373a087a92", "step": null, "style": "IPY_MODEL_0a0b08844e6c463f92359ba90b33bd56", "tabbable": null, "tooltip": null, "value": 1.0916414904330312 } }, "eafd86c21fb34967a73591d7cd4441a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ca99404401754b35994a961af2d65be8", "placeholder": "​", "style": "IPY_MODEL_485cd56464324f19a575f2be78780eb6", "tabbable": null, "tooltip": null, "value": "

Sample (Row: 0)

" } }, "ec015d58f5e0446e853adf853357d4b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "efed296cb76e476bb2b72bf47d1b3721": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a34230ef6d5b40ff8af64171eb20de7c", "placeholder": "​", "style": "IPY_MODEL_45e6ba3096b2473ab0d7908492551d4b", "tabbable": null, "tooltip": null, "value": "" } }, "f0946d93735840a6b5f5fe98dccea9ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f340e5857c904ab69ff8ae7cb98cd875": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fbe90785eb4d4387bf463bd8ec97b66a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "fee91a7c068a488ab6e01cbdc21bdd3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }