Show / Hide Table of Contents

Class ClassMetrics

class level Text Classification model metrics

Inheritance
object
ClassMetrics
Inherited Members
object.Equals(object)
object.Equals(object, object)
object.GetHashCode()
object.GetType()
object.MemberwiseClone()
object.ReferenceEquals(object, object)
object.ToString()
Namespace: Oci.AilanguageService.Models
Assembly: OCI.DotNetSDK.Ailanguage.dll
Syntax
public class ClassMetrics

Properties

F1

Declaration
[Required(ErrorMessage = "F1 is required.")]
[JsonProperty(PropertyName = "f1")]
public float? F1 { get; set; }
Property Value
Type Description
float?

F1-score, is a measure of a model\u2019s accuracy on a dataset

Remarks

Required

Label

Declaration
[Required(ErrorMessage = "Label is required.")]
[JsonProperty(PropertyName = "label")]
public string Label { get; set; }
Property Value
Type Description
string

Text classification label

Remarks

Required

Precision

Declaration
[Required(ErrorMessage = "Precision is required.")]
[JsonProperty(PropertyName = "precision")]
public float? Precision { get; set; }
Property Value
Type Description
float?

Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)

Remarks

Required

Recall

Declaration
[Required(ErrorMessage = "Recall is required.")]
[JsonProperty(PropertyName = "recall")]
public float? Recall { get; set; }
Property Value
Type Description
float?

Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.

Remarks

Required

Support

Declaration
[JsonProperty(PropertyName = "support")]
public float? Support { get; set; }
Property Value
Type Description
float?

number of samples in the test set

In this article
Back to top