Class ClassMetrics
class level Text Classification model metrics
Inherited Members
Namespace: Oci.AilanguageService.Models
Assembly: OCI.DotNetSDK.Ailanguage.dll
Syntax
public class ClassMetrics
Properties
F1
Declaration
[Required(ErrorMessage = "F1 is required.")]
[JsonProperty(PropertyName = "f1")]
public float? F1 { get; set; }
Property Value
Type | Description |
---|---|
float? | F1-score, is a measure of a model\u2019s accuracy on a dataset |
Remarks
Required
Label
Declaration
[Required(ErrorMessage = "Label is required.")]
[JsonProperty(PropertyName = "label")]
public string Label { get; set; }
Property Value
Type | Description |
---|---|
string | Text classification label |
Remarks
Required
Precision
Declaration
[Required(ErrorMessage = "Precision is required.")]
[JsonProperty(PropertyName = "precision")]
public float? Precision { get; set; }
Property Value
Type | Description |
---|---|
float? | Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives) |
Remarks
Required
Recall
Declaration
[Required(ErrorMessage = "Recall is required.")]
[JsonProperty(PropertyName = "recall")]
public float? Recall { get; set; }
Property Value
Type | Description |
---|---|
float? | Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct. |
Remarks
Required
Support
Declaration
[JsonProperty(PropertyName = "support")]
public float? Support { get; set; }
Property Value
Type | Description |
---|---|
float? | number of samples in the test set |