TrainingConfig¶
-
class
oci.generative_ai.models.
TrainingConfig
(**kwargs)¶ Bases:
object
The fine-tuning method and hyperparameters used for fine-tuning a custom model.
Attributes
TRAINING_CONFIG_TYPE_LORA_TRAINING_CONFIG
A constant which can be used with the training_config_type property of a TrainingConfig. TRAINING_CONFIG_TYPE_TFEW_TRAINING_CONFIG
A constant which can be used with the training_config_type property of a TrainingConfig. TRAINING_CONFIG_TYPE_VANILLA_TRAINING_CONFIG
A constant which can be used with the training_config_type property of a TrainingConfig. early_stopping_patience
Gets the early_stopping_patience of this TrainingConfig. early_stopping_threshold
Gets the early_stopping_threshold of this TrainingConfig. learning_rate
Gets the learning_rate of this TrainingConfig. log_model_metrics_interval_in_steps
Gets the log_model_metrics_interval_in_steps of this TrainingConfig. total_training_epochs
Gets the total_training_epochs of this TrainingConfig. training_batch_size
Gets the training_batch_size of this TrainingConfig. training_config_type
[Required] Gets the training_config_type of this TrainingConfig. Methods
__init__
(**kwargs)Initializes a new TrainingConfig object with values from keyword arguments. get_subtype
(object_dictionary)Given the hash representation of a subtype of this class, use the info in the hash to return the class of the subtype. -
TRAINING_CONFIG_TYPE_LORA_TRAINING_CONFIG
= 'LORA_TRAINING_CONFIG'¶ A constant which can be used with the training_config_type property of a TrainingConfig. This constant has a value of “LORA_TRAINING_CONFIG”
-
TRAINING_CONFIG_TYPE_TFEW_TRAINING_CONFIG
= 'TFEW_TRAINING_CONFIG'¶ A constant which can be used with the training_config_type property of a TrainingConfig. This constant has a value of “TFEW_TRAINING_CONFIG”
-
TRAINING_CONFIG_TYPE_VANILLA_TRAINING_CONFIG
= 'VANILLA_TRAINING_CONFIG'¶ A constant which can be used with the training_config_type property of a TrainingConfig. This constant has a value of “VANILLA_TRAINING_CONFIG”
-
__init__
(**kwargs)¶ Initializes a new TrainingConfig object with values from keyword arguments. This class has the following subclasses and if you are using this class as input to a service operations then you should favor using a subclass over the base class:
The following keyword arguments are supported (corresponding to the getters/setters of this class):
Parameters: - training_config_type (str) – The value to assign to the training_config_type property of this TrainingConfig. Allowed values for this property are: “TFEW_TRAINING_CONFIG”, “VANILLA_TRAINING_CONFIG”, “LORA_TRAINING_CONFIG”, ‘UNKNOWN_ENUM_VALUE’. Any unrecognized values returned by a service will be mapped to ‘UNKNOWN_ENUM_VALUE’.
- total_training_epochs (int) – The value to assign to the total_training_epochs property of this TrainingConfig.
- learning_rate (float) – The value to assign to the learning_rate property of this TrainingConfig.
- training_batch_size (int) – The value to assign to the training_batch_size property of this TrainingConfig.
- early_stopping_patience (int) – The value to assign to the early_stopping_patience property of this TrainingConfig.
- early_stopping_threshold (float) – The value to assign to the early_stopping_threshold property of this TrainingConfig.
- log_model_metrics_interval_in_steps (int) – The value to assign to the log_model_metrics_interval_in_steps property of this TrainingConfig.
-
early_stopping_patience
¶ Gets the early_stopping_patience of this TrainingConfig. Stop training if the loss metric does not improve beyond ‘early_stopping_threshold’ for this many times of evaluation.
Returns: The early_stopping_patience of this TrainingConfig. Return type: int
-
early_stopping_threshold
¶ Gets the early_stopping_threshold of this TrainingConfig. How much the loss must improve to prevent early stopping.
Returns: The early_stopping_threshold of this TrainingConfig. Return type: float
-
static
get_subtype
(object_dictionary)¶ Given the hash representation of a subtype of this class, use the info in the hash to return the class of the subtype.
-
learning_rate
¶ Gets the learning_rate of this TrainingConfig. The initial learning rate to be used during training
Returns: The learning_rate of this TrainingConfig. Return type: float
-
log_model_metrics_interval_in_steps
¶ Gets the log_model_metrics_interval_in_steps of this TrainingConfig. Determines how frequently to log model metrics.
Every step is logged for the first 20 steps and then follows this parameter for log frequency. Set to 0 to disable logging the model metrics.
Returns: The log_model_metrics_interval_in_steps of this TrainingConfig. Return type: int
-
total_training_epochs
¶ Gets the total_training_epochs of this TrainingConfig. The maximum number of training epochs to run for.
Returns: The total_training_epochs of this TrainingConfig. Return type: int
-
training_batch_size
¶ Gets the training_batch_size of this TrainingConfig. The batch size used during training.
Returns: The training_batch_size of this TrainingConfig. Return type: int
-
training_config_type
¶ [Required] Gets the training_config_type of this TrainingConfig. The fine-tuning method for training a custom model.
Allowed values for this property are: “TFEW_TRAINING_CONFIG”, “VANILLA_TRAINING_CONFIG”, “LORA_TRAINING_CONFIG”, ‘UNKNOWN_ENUM_VALUE’. Any unrecognized values returned by a service will be mapped to ‘UNKNOWN_ENUM_VALUE’.
Returns: The training_config_type of this TrainingConfig. Return type: str
-