Class: OCI::AiAnomalyDetection::Models::ModelTrainingDetails
- Inherits:
- 
      Object
      
        - Object
- OCI::AiAnomalyDetection::Models::ModelTrainingDetails
 
- Defined in:
- lib/oci/ai_anomaly_detection/models/model_training_details.rb
Overview
Specifies the details of the MSET model during the create call.
Constant Summary collapse
- ALGORITHM_HINT_ENUM =
- [ ALGORITHM_HINT_MULTIVARIATE_MSET = 'MULTIVARIATE_MSET'.freeze, ALGORITHM_HINT_UNIVARIATE_OCSVM = 'UNIVARIATE_OCSVM'.freeze, ALGORITHM_HINT_UNKNOWN_ENUM_VALUE = 'UNKNOWN_ENUM_VALUE'.freeze ].freeze 
Instance Attribute Summary collapse
- 
  
    
      #algorithm_hint  ⇒ String 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    User can choose specific algorithm for training. 
- 
  
    
      #data_asset_ids  ⇒ Array<String> 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    [Required] The list of OCIDs of the data assets to train the model. 
- 
  
    
      #target_fap  ⇒ Float 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    A target model accuracy metric user provides as their requirement. 
- 
  
    
      #training_fraction  ⇒ Float 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    Fraction of total data that is used for training the model. 
- 
  
    
      #window_size  ⇒ Integer 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    This value would determine the window size of the training algorithm. 
Class Method Summary collapse
- 
  
    
      .attribute_map  ⇒ Object 
    
    
  
  
  
  
  
  
  
  
  
    Attribute mapping from ruby-style variable name to JSON key. 
- 
  
    
      .swagger_types  ⇒ Object 
    
    
  
  
  
  
  
  
  
  
  
    Attribute type mapping. 
Instance Method Summary collapse
- 
  
    
      #==(other)  ⇒ Object 
    
    
  
  
  
  
  
  
  
  
  
    Checks equality by comparing each attribute. 
- 
  
    
      #build_from_hash(attributes)  ⇒ Object 
    
    
  
  
  
  
  
  
  
  
  
    Builds the object from hash. 
- #eql?(other) ⇒ Boolean
- 
  
    
      #hash  ⇒ Fixnum 
    
    
  
  
  
  
  
  
  
  
  
    Calculates hash code according to all attributes. 
- 
  
    
      #initialize(attributes = {})  ⇒ ModelTrainingDetails 
    
    
  
  
  
    constructor
  
  
  
  
  
  
  
    Initializes the object. 
- 
  
    
      #to_hash  ⇒ Hash 
    
    
  
  
  
  
  
  
  
  
  
    Returns the object in the form of hash. 
- 
  
    
      #to_s  ⇒ String 
    
    
  
  
  
  
  
  
  
  
  
    Returns the string representation of the object. 
Constructor Details
#initialize(attributes = {}) ⇒ ModelTrainingDetails
Initializes the object
| 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 75 def initialize(attributes = {}) return unless attributes.is_a?(Hash) # convert string to symbol for hash key attributes = attributes.each_with_object({}) { |(k, v), h| h[k.to_sym] = v } self.algorithm_hint = attributes[:'algorithmHint'] if attributes[:'algorithmHint'] raise 'You cannot provide both :algorithmHint and :algorithm_hint' if attributes.key?(:'algorithmHint') && attributes.key?(:'algorithm_hint') self.algorithm_hint = attributes[:'algorithm_hint'] if attributes[:'algorithm_hint'] self.target_fap = attributes[:'targetFap'] if attributes[:'targetFap'] self.target_fap = 0.01 if target_fap.nil? && !attributes.key?(:'targetFap') # rubocop:disable Style/StringLiterals raise 'You cannot provide both :targetFap and :target_fap' if attributes.key?(:'targetFap') && attributes.key?(:'target_fap') self.target_fap = attributes[:'target_fap'] if attributes[:'target_fap'] self.target_fap = 0.01 if target_fap.nil? && !attributes.key?(:'targetFap') && !attributes.key?(:'target_fap') # rubocop:disable Style/StringLiterals self.training_fraction = attributes[:'trainingFraction'] if attributes[:'trainingFraction'] self.training_fraction = 0.7 if training_fraction.nil? && !attributes.key?(:'trainingFraction') # rubocop:disable Style/StringLiterals raise 'You cannot provide both :trainingFraction and :training_fraction' if attributes.key?(:'trainingFraction') && attributes.key?(:'training_fraction') self.training_fraction = attributes[:'training_fraction'] if attributes[:'training_fraction'] self.training_fraction = 0.7 if training_fraction.nil? && !attributes.key?(:'trainingFraction') && !attributes.key?(:'training_fraction') # rubocop:disable Style/StringLiterals self.window_size = attributes[:'windowSize'] if attributes[:'windowSize'] raise 'You cannot provide both :windowSize and :window_size' if attributes.key?(:'windowSize') && attributes.key?(:'window_size') self.window_size = attributes[:'window_size'] if attributes[:'window_size'] self.data_asset_ids = attributes[:'dataAssetIds'] if attributes[:'dataAssetIds'] raise 'You cannot provide both :dataAssetIds and :data_asset_ids' if attributes.key?(:'dataAssetIds') && attributes.key?(:'data_asset_ids') self.data_asset_ids = attributes[:'data_asset_ids'] if attributes[:'data_asset_ids'] end | 
Instance Attribute Details
#algorithm_hint ⇒ String
User can choose specific algorithm for training.
| 20 21 22 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 20 def algorithm_hint @algorithm_hint end | 
#data_asset_ids ⇒ Array<String>
[Required] The list of OCIDs of the data assets to train the model. The dataAssets have to be in the same project where the ai model would reside.
| 36 37 38 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 36 def data_asset_ids @data_asset_ids end | 
#target_fap ⇒ Float
A target model accuracy metric user provides as their requirement
| 24 25 26 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 24 def target_fap @target_fap end | 
#training_fraction ⇒ Float
Fraction of total data that is used for training the model. The remaining is used for validation of the model.
| 28 29 30 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 28 def training_fraction @training_fraction end | 
#window_size ⇒ Integer
This value would determine the window size of the training algorithm.
| 32 33 34 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 32 def window_size @window_size end | 
Class Method Details
.attribute_map ⇒ Object
Attribute mapping from ruby-style variable name to JSON key.
| 39 40 41 42 43 44 45 46 47 48 49 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 39 def self.attribute_map { # rubocop:disable Style/SymbolLiteral 'algorithm_hint': :'algorithmHint', 'target_fap': :'targetFap', 'training_fraction': :'trainingFraction', 'window_size': :'windowSize', 'data_asset_ids': :'dataAssetIds' # rubocop:enable Style/SymbolLiteral } end | 
.swagger_types ⇒ Object
Attribute type mapping.
| 52 53 54 55 56 57 58 59 60 61 62 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 52 def self.swagger_types { # rubocop:disable Style/SymbolLiteral 'algorithm_hint': :'String', 'target_fap': :'Float', 'training_fraction': :'Float', 'window_size': :'Integer', 'data_asset_ids': :'Array<String>' # rubocop:enable Style/SymbolLiteral } end | 
Instance Method Details
#==(other) ⇒ Object
Checks equality by comparing each attribute.
| 136 137 138 139 140 141 142 143 144 145 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 136 def ==(other) return true if equal?(other) self.class == other.class && algorithm_hint == other.algorithm_hint && target_fap == other.target_fap && training_fraction == other.training_fraction && window_size == other.window_size && data_asset_ids == other.data_asset_ids end | 
#build_from_hash(attributes) ⇒ Object
Builds the object from hash
| 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 170 def build_from_hash(attributes) return nil unless attributes.is_a?(Hash) self.class.swagger_types.each_pair do |key, type| if type =~ /^Array<(.*)>/i # check to ensure the input is an array given that the the attribute # is documented as an array but the input is not if attributes[self.class.attribute_map[key]].is_a?(Array) public_method("#{key}=").call( attributes[self.class.attribute_map[key]] .map { |v| OCI::Internal::Util.convert_to_type(Regexp.last_match(1), v) } ) end elsif !attributes[self.class.attribute_map[key]].nil? public_method("#{key}=").call( OCI::Internal::Util.convert_to_type(type, attributes[self.class.attribute_map[key]]) ) end # or else data not found in attributes(hash), not an issue as the data can be optional end self end | 
#eql?(other) ⇒ Boolean
| 150 151 152 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 150 def eql?(other) self == other end | 
#hash ⇒ Fixnum
Calculates hash code according to all attributes.
| 159 160 161 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 159 def hash [algorithm_hint, target_fap, training_fraction, window_size, data_asset_ids].hash end | 
#to_hash ⇒ Hash
Returns the object in the form of hash
| 203 204 205 206 207 208 209 210 211 212 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 203 def to_hash hash = {} self.class.attribute_map.each_pair do |attr, param| value = public_method(attr).call next if value.nil? && !instance_variable_defined?("@#{attr}") hash[param] = _to_hash(value) end hash end | 
#to_s ⇒ String
Returns the string representation of the object
| 197 198 199 | # File 'lib/oci/ai_anomaly_detection/models/model_training_details.rb', line 197 def to_s to_hash.to_s end |