oci_ai_vision_model
This resource provides the Model resource in Oracle Cloud Infrastructure Ai Vision service.
Create a new model.
Example Usage
resource "oci_ai_vision_model" "test_model" {
#Required
compartment_id = var.compartment_id
model_type = var.model_model_type
project_id = oci_ai_vision_project.test_project.id
training_dataset {
#Required
dataset_type = var.model_training_dataset_dataset_type
#Optional
bucket = var.model_training_dataset_bucket
dataset_id = oci_data_labeling_service_dataset.test_dataset.id
namespace_name = var.model_training_dataset_namespace
object = var.model_training_dataset_object
}
#Optional
defined_tags = var.model_defined_tags
description = var.model_description
display_name = var.model_display_name
freeform_tags = var.model_freeform_tags
is_quick_mode = var.model_is_quick_mode
max_training_duration_in_hours = var.model_max_training_duration_in_hours
model_version = var.model_model_version
testing_dataset {
#Required
dataset_type = var.model_testing_dataset_dataset_type
#Optional
bucket = var.model_testing_dataset_bucket
dataset_id = oci_data_labeling_service_dataset.test_dataset.id
namespace_name = var.model_testing_dataset_namespace
object = var.model_testing_dataset_object
}
validation_dataset {
#Required
dataset_type = var.model_validation_dataset_dataset_type
#Optional
bucket = var.model_validation_dataset_bucket
dataset_id = oci_data_labeling_service_dataset.test_dataset.id
namespace_name = var.model_validation_dataset_namespace
object = var.model_validation_dataset_object
}
}
Argument Reference
The following arguments are supported:
compartment_id
- (Required) (Updatable) The compartment identifier.defined_tags
- (Optional) (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:{"foo-namespace": {"bar-key": "value"}}
description
- (Optional) (Updatable) An optional description of the model.display_name
- (Optional) (Updatable) A human-friendly name for the model, which can be changed.freeform_tags
- (Optional) (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:{"bar-key": "value"}
is_quick_mode
- (Optional) Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.max_training_duration_in_hours
- (Optional) The maximum model training duration in hours, expressed as a decimal fraction.model_type
- (Required) Which type of Vision model this is.model_version
- (Optional) The model versionproject_id
- (Required) The OCID of the project that contains the model.testing_dataset
- (Optional) The base entity which is the input for creating and training a model.bucket
- (Required when dataset_type=OBJECT_STORAGE) The name of the Object Storage bucket that contains the input data file.dataset_id
- (Required when dataset_type=DATA_SCIENCE_LABELING) OCID of the Data Labeling dataset.dataset_type
- (Required) The dataset type, based on where it is stored.namespace
- (Required when dataset_type=OBJECT_STORAGE) The namespace name of the Object Storage bucket that contains the input data file.object
- (Required when dataset_type=OBJECT_STORAGE) The object name of the input data file.
training_dataset
- (Required) The base entity which is the input for creating and training a model.bucket
- (Required when dataset_type=OBJECT_STORAGE) The name of the Object Storage bucket that contains the input data file.dataset_id
- (Required when dataset_type=DATA_SCIENCE_LABELING) OCID of the Data Labeling dataset.dataset_type
- (Required) The dataset type, based on where it is stored.namespace
- (Required when dataset_type=OBJECT_STORAGE) The namespace name of the Object Storage bucket that contains the input data file.object
- (Required when dataset_type=OBJECT_STORAGE) The object name of the input data file.
validation_dataset
- (Optional) The base entity which is the input for creating and training a model.bucket
- (Required when dataset_type=OBJECT_STORAGE) The name of the Object Storage bucket that contains the input data file.dataset_id
- (Required when dataset_type=DATA_SCIENCE_LABELING) OCID of the Data Labeling dataset.dataset_type
- (Required) The dataset type, based on where it is stored.namespace
- (Required when dataset_type=OBJECT_STORAGE) The namespace name of the Object Storage bucket that contains the input data file.object
- (Required when dataset_type=OBJECT_STORAGE) The object name of the input data file.
** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values
Attributes Reference
The following attributes are exported:
average_precision
- The mean average precision of the trained model.compartment_id
- The compartment identifier.confidence_threshold
- The intersection over the union threshold used for calculating precision and recall.defined_tags
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example:{"foo-namespace": {"bar-key": "value"}}
description
- An optional description of the model.display_name
- A human-friendly name for the model, which can be changed.freeform_tags
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example:{"bar-key": "value"}
id
- A unique identifier that is immutable after creation.is_quick_mode
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.lifecycle_details
- A message describing the current state in more detail, that can provide actionable information if training failed.max_training_duration_in_hours
- The maximum model training duration in hours, expressed as a decimal fraction.metrics
- The complete set of per-label metrics for successfully trained models.model_type
- What type of Vision model this is.model_version
- The version of the model.precision
- The precision of the trained model.project_id
- The OCID of the project that contains the model.recall
- Recall of the trained model.state
- The current state of the model.system_tags
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example:{"orcl-cloud": {"free-tier-retained": "true"}}
test_image_count
- The number of images set aside for evaluating model performance metrics after training.testing_dataset
- The base entity which is the input for creating and training a model.bucket
- The name of the Object Storage bucket that contains the input data file.dataset_id
- OCID of the Data Labeling dataset.dataset_type
- The dataset type, based on where it is stored.namespace
- The namespace name of the Object Storage bucket that contains the input data file.object
- The object name of the input data file.
time_created
- When the model was created, as an RFC3339 datetime string.time_updated
- When the model was updated, as an RFC3339 datetime string.total_image_count
- The number of images in the dataset used to train, validate, and test the model.trained_duration_in_hours
- The total hours actually used for model training.training_dataset
- The base entity which is the input for creating and training a model.bucket
- The name of the Object Storage bucket that contains the input data file.dataset_id
- OCID of the Data Labeling dataset.dataset_type
- The dataset type, based on where it is stored.namespace
- The namespace name of the Object Storage bucket that contains the input data file.object
- The object name of the input data file.
validation_dataset
- The base entity which is the input for creating and training a model.bucket
- The name of the Object Storage bucket that contains the input data file.dataset_id
- OCID of the Data Labeling dataset.dataset_type
- The dataset type, based on where it is stored.namespace
- The namespace name of the Object Storage bucket that contains the input data file.object
- The object name of the input data file.
Timeouts
The timeouts
block allows you to specify timeouts for certain operations:
* create
- (Defaults to 20 minutes), when creating the Model
* update
- (Defaults to 20 minutes), when updating the Model
* delete
- (Defaults to 20 minutes), when destroying the Model
Import
Models can be imported using the id
, e.g.
$ terraform import oci_ai_vision_model.test_model "id"