
Oracle® Business Intelligence
Applications
Administering Business Intelligence
Applications

12c (11.1.1.10.3 PS4)
F83298-03
December 2023

Oracle Business Intelligence Applications Administering Business Intelligence Applications, 12c (11.1.1.10.3
PS4)

F83298-03

Copyright © 2014, 2023, Oracle and/or its affiliates.

Primary Author: Hemala Vivek

Contributors: Nick Fry, Christine Jacobs, Padma Rao

Contributors: Oracle Business Intelligence development, product management, and quality assurance teams.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Functional Setup Manager - Statement of Direction v

Audience v

Documentation Accessibility v

Diversity and Inclusion vi

Related Documentation vi

Conventions vi

1 About Multi-Language Support

About Pseudo-Translations 1-2

About Oracle BI Applications Domains 1-2

About Dimension Translation Tables 1-4

2 Localizing Oracle Business Intelligence Deployments

Maintaining Translation Tables Workflow for Oracle Analytics 2-1

Adding String Localizations for Oracle BI Repository Metadata 2-1

About Translating Presentation Services Strings 2-3

Changing the Default Currency in Oracle BI Applications 2-4

3 Oracle Business Analytics Warehouse Naming Conventions

Naming Conventions for Oracle Business Analytics WarehouseTables 3-1

Table Types for Oracle Business Analytics Warehouse 3-2

Aggregate Tables in Oracle Business Analytics Warehouse 3-4

Dimension Class Tables in Oracle Business Analytics Warehouse 3-4

Dimension Tables in Oracle Business Analytics Warehouse 3-4

Dimension Tables With Business Role-Based Flags 3-4

Fact Tables in Oracle Business Analytics Warehouse 3-5

Helper Tables in Oracle Business Analytics Warehouse 3-5

Hierarchy Tables in Oracle Business Analytics Warehouse 3-5

Mini-Dimension Tables in Oracle Business Analytics Warehouse 3-5

iii

Staging Tables in Oracle Business Analytics Warehouse 3-6

Translation Tables in Oracle Business Analytics Warehouse 3-6

Internal Tables in Oracle Business Analytics Warehouse 3-7

Standard Column Prefixes in Oracle Business Analytics Warehouse 3-7

Standard Column Suffixes in Oracle Business Analytics Warehouse 3-8

System Columns in Oracle Business Analytics WarehouseTables 3-8

Multi-Currency Support for System Columns 3-10

Oracle Business Analytics Warehouse Primary Data Values 3-10

About Multi-Language Support in Oracle Business Analytics Warehouse 3-11

Oracle Business Analytics Warehouse Currency Preferences 3-11

4 Administering Oracle GoldenGate and Source Dependent Schemas

Source Dependent Schema Architecture 4-1

Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema 4-2

Setup Step: Configure Source and Target Database 4-2

Setup Step: Install Oracle GoldenGate on Source and Target Systems 4-5

Setup Step: Configure Configuration Manager and ODI to Support the Source
Dependent Schema 4-8

Adding SDS Physical Schemas in ODI 4-8

Setup Step: Generate, Deploy, and Populate the Source Dependent Schema Tables on
Target Database 4-8

Setup Step: Generate and Deploy Oracle GoldenGate Parameter Files to Source and
Target Systems 4-13

Setup Step: Start Oracle GoldenGate on Source and Target Systems 4-19

Replicate Views from Source 4-19

ETL Customization 4-21

Patching 4-22

Troubleshooting Oracle GoldenGate and SDS 4-22

Create the SDS Tables 4-22

Using the DML Option to Perform an Initial Load 4-23

Create SDS Indexes and Analyze the SDS Schema 4-24

Setting up Ledger Correlation using Oracle GoldenGate 4-25

iv

Preface

Oracle Business Intelligence Applications (Oracle BI Applications) is comprehensive suite of
prebuilt solutions that deliver pervasive intelligence across an organization, empowering
users at all levels — from front line operational users to senior management - with the key
information they need to maximize effectiveness.

Intuitive and role-based, these solutions transform and integrate data from a range of
enterprise sources and corporate data warehouses into actionable insight that enables more
effective actions, decisions, and processes.

Oracle BI Applications is built on Oracle Analytics Server, a comprehensive set of enterprise
business intelligence tools and infrastructure, including a scalable and efficient query and
analysis server, an ad-hoc query and analysis tool, interactive dashboards, proactive
intelligence and alerts, and an enterprise reporting engine.

Functional Setup Manager - Statement of Direction
Functional Setup Manager (FSM) has been desupported in the current release. Ignore the
references to FSM that you might see in the online Help.

Audience
This information is intended for system administrators and ETL team members who are
responsible for managing Oracle BI Applications.

It contains information about ETL customization, domains and localization, Oracle Business
Analytics Warehouse naming conventions, and system administration tasks, including setting
up and using Oracle GoldenGate and Source-Dependent Schemas to support ETL
performance.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documentation
See the Oracle BI Applications documentation library for the complete set of Oracle BI
Applications documents.

Conventions
This document uses these text conventions.

Convention Meaning

boldface Boldface type indicates graphical user interface elements
associated with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables
for which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs,
code in examples, text that appears on the screen, or text that you
enter.

Preface

vi

1
About Multi-Language Support

Oracle Business Intelligence Applications (Oracle BI Applications) provides multi-language
support for metadata level objects exposed in Oracle Analytics dashboards and reports, as
well as for data, which enables users to see records translated in their preferred language.

• About Pseudo-Translations

• About Oracle BI Applications Domains

• About Dimension Translation Tables

Configuring Base and Installed Data Warehouse Languages

After installing Oracle BI Applications, you use the Oracle BI Applications Configuration
Manager (Configuration Manager) to configure which languages you want to support in the
Oracle Business Analytics Warehouse. You must configure one "Base" language, and you
can also configure any number of "Installed" languages. Typically, the Base language
specified for the data warehouse should match the Base language of the source system. The
Installed languages that you specify for the data warehouse do not have to match the
languages that are installed in the source system. The data warehouse can have more,
fewer, or completely different Installed languages compared to the source system. Note that
for languages that match between the transactional system and the data warehouse, the
corresponding record is extracted from the transactional system; languages that do not match
will have a pseudo-translated record generated.

Note:

You should only install the languages that you expect to use, because each
installed language can significantly increase the number of records stored in the
data warehouse and can affect overall database performance.

To configure data warehouse languages, see Manage Warehouse Languages, Oracle
Business Intelligence Applications Functional Configuration Reference.

Translation Tables

There are two types of translation tables: the Domains translation table and Dimension
translation tables. There is a single Domain translation table which holds a translated value in
each supported language for a domain. Dimension translation tables are extension tables
associated with a given dimension. Depending on certain characteristics of a translatable
attribute, it will be found in either the domain or a dimension translation table.

The user's session language is captured in an Oracle Analytics session variable named
USER_LANGUAGE_CODE. This is set when users log in from Answers, where they select
their preferred language. If users decide to change their preferred language in the middle of a
session by using the Administration option to change the current language, this session
variable will detect this change. Records returned from a translation table are filtered to those
records with a LANGUAGE_CODE value that matches this session variable.

1-1

About Pseudo-Translations
The ETL process extracts translation records from the source system that correspond
to the languages installed in the data warehouse. If a record cannot be found in the
source system that corresponds to a language that has been installed in the data
warehouse, a pseudo-translated record will be generated. Without a pseudo-translated
record, a user that logs in with the missing language as their preferred language will
not see any records.

A pseudo-translated record is generated by copying the translation record that
corresponds to the data warehouse Base language and flagging it with the missing
record's language by populating the LANGUAGE_CODE column with the language
value. SRC_LANGUAGE_CODE stores the language from which the pseudo-
translated record was generated; this will always match the data warehouse Base
language.

In the future, if a translation record is created in the source system, it will be extracted
and the pseudo-translated record will be overwritten to reflect the actual translated
value. The table provides an example in which "US" is the data warehouse Base
language, and "IT" and "SP" are the Installed languages. The source system only had
translated records for "US" and "IT" but did not have a translated record for "SP". The
"US" and "IT" records are extracted and loaded into the data warehouse. Because
there is no translation record in the source system for the "SP" language, a pseudo-
translated record is generated by copying the "US" record and flagging
LANGUAGE_CODE as if it were an "SP" record. The pseudo-translated record can be
identified because SRC_LANGUAGE_CODE is different from LANGUAGE_CODE,
matching the Base Language.

INTEGRATION_ID NAME LANGUAGE_CODE SRC_LANGUAGE_CODE

ABC Executive US US

ABC Executive IT IT

ABC Executive SP US

About Oracle BI Applications Domains
A domain refers to the possible, unique values of a table column in a relational
database. In transactional systems, domains are often referred to as list of values
(LOVs), which present attribute selections in the user's session language.

The storage of the transaction is independent of the user's language; and, therefore,
the field is stored using a language independent identifier. This identifier is typically a
character code but can also be a numeric ID. The LOV or domain is then based on an
ID-value pair, referred to as a member, and the LOV presents the values in the user's
session language. At run time, the IDs are resolved to the value for the user's session
language.

In the Oracle Business Analytics Warehouse, the number of unique values in any
particular domain is relatively small and can have a low cardinality relative to the
dimension it is associated with. For example, the Person dimension may have the
domain 'Gender' associated with. The dimension may have millions of records, but the
domain will generally have two or three members (M, F and possibly U). In the Oracle
Business Analytics Warehouse, the Gender Code is stored in the Person dimension

Chapter 1
About Pseudo-Translations

1-2

which acts as a foreign key to the Domains Translation table which stores the translated
values. When a query is run, the user-friendly text associated with the code value is returned
in the user's session language.

Depending on certain properties associated with a domain, domains can be configured in the
Configuration Manager. In addition to serving as a mechanism for supporting translations,
domains can be used to conform disparate source data into a common set of data.

Data Model

Oracle BI Applications domains are associated with dimensions as fields in the dimension
table that follow the %_CODE naming convention. For example, the Person dimension
W_PARTY_PER_D stores the Gender domain in the GENDER_CODE column.

Oracle BI Applications domains are stored in the domain translation table
W_DOMAIN_MEMBER_LKP_TL. This table stores the translated values for each domain
member code. The translated values are usually either a Name or a Description value which
are stored in the NAME and DESCR columns of this table. The DOMAIN_MEMBER_CODE
column acts as a key column when joining with the %_CODE column in the dimension table.
As domains come from various systems, a DATASOURCE_NUM_ID column is used to
identify which system the translated value comes from and is used as part of the join key with
the dimension table. A LANGUAGE_CODE column is used to identify the language the
translated values are associated with. Note that the LANGUAGE_CODE column follows the
%_CODE naming convention. Language is considered a domain with a given set of unique
values.

ETL Process

The W_DOMAIN_MEMBER_LKP_TL table stores both domains that are extracted from the
source system as well as internally defined domains that are seeded in the Configuration
Manager. For each of the %_CODE columns that have translated values available in the
source system, an ETL process extracts the domain members from the transactional system
and loads them into W_DOMAIN_MEMBER_LKP_TL. Internally defined domains—usually
domains specific to the Oracle Business Analytics Warehouse and known as conformed
domains but can also include source domains—are stored in the Configuration Manager
schema and are similarly extracted and loaded into the W_DOMAIN_MEMBER_LKP_TL
table through ETL processes.

Only those translation records that match one of the languages that have been installed in
the data warehouse are extracted from the transactional system. If translated records are not
found in the transactional system matching an installed language, the ETL will generate a
'pseudo-translated' record for that language.

Some source applications store translations that can be extracted and loaded into the
translation table. Some source applications do not maintain translations for an entity that
corresponds to a dimension table. In these cases, whatever record is available is extracted
and used as the Base language record to generate pseudo-translations for all other installed
languages.

The figure shows an overview of the Oracle BI Applications domain ETL process.

Chapter 1
About Oracle BI Applications Domains

1-3

About Oracle BI Applications Domains and Oracle Analytics

The exact mechanism used to retrieve the translated value in Oracle BI EE is the
LOOKUP() function. When the LOOKUP() function is used, Oracle BI EE performs all
aggregations before joining to the lookup table. The aggregated result set is then
joined to the lookup table. Low-cardinality attributes tend to be involved in several
aggregations, so it is useful to be joined after results are aggregated rather than
before.

In a logical dimension, a Name or Description attribute will use the LOOKUP()
function, passing the value in the %_CODE column associated with that Name or
Description to the Domain Lookup Table. The LOOKUP() function includes the Domain
Name to be used when looking up values. The results from the Domain Lookup table
are filtered to match the user's session language and returned as part of the query
results.

Domains can be either source or conformed (internally defined warehouse domains).
Source domains can come from a variety of transactional systems and so must include
a Datasource_Num_Id value to resolve. Conformed domains are defined as part of the
Oracle BI Applications and do not require a Datasource_Num_ID to resolve. As a
result, there are two lookup tables implemented in the Oracle BI Repository that are
aliases of W_DOMAIN_MEMBER_LKP_TL. When resolving a source domain, the
source domain lookup requires Datasource_Num_Id to be passed as part of the
LOOKUP() function while the conformed domain lookup does not.

About Dimension Translation Tables
Domains are dimensional attributes that have a relatively small number of distinct
members, have a low cardinality relative to the number of records in the dimension,
and are often used in aggregations. Dimensions have other attributes that require
translation that may not fit one or more of these criteria. Dimensions may have

Chapter 1
About Dimension Translation Tables

1-4

translatable attributes that have a high cardinality relative to the dimension or may have a
large number of members, and, thus, are not likely candidates for aggregation.

If the domains ETL process was implemented in such cases, performance would be very
poor. As a result, these particular attributes are implemented using dimension translation
tables.

Data Model

If a dimension has such high-cardinality attributes that cannot be treated as domains, the
dimension will have an extension table that follows the _TL naming convention. If the _TL
table has a one-to-one relationship with the dimension table (after filtering for languages), the
_TL table name will match the dimension table name. For example, W_JOB_D_TL is the
translation table associated with the W_JOB_D dimension table. If the _TL table does not
have a one-to-one relationship with any dimension table, its name will reflect content.

The dimension and dimension translation table are joined on the translation table's
INTEGRATION_ID + DATASOURCE_NUM_ID. If the translation and dimension tables have a
one-to-one relationship (after filtering for language), the join to the dimension table is on its
INTEGRATION_ID + DATASOURCE_NUM_ID. Otherwise, there will be a %_ID column in the
dimension table that is used to join to the translation table.

ETL Process

Similar to the Oracle BI Applications domain ETL process, when using dimension translation
tables, ETL tasks extract the translated values from the transactional system. Rather than the
domain staging table being loaded, the dimension's translation staging table is loaded. The
ETL process then moves these records into the dimension translation table.

Only those translation records that match one of the languages that have been installed in
the data warehouse are extracted from the transactional system. If translated records are not
found in the transactional system matching a data warehouse Installed language, the ETL will
generate a 'pseudo-translated' record for that language by copying the record that
corresponds to the data warehouse Base language.

Some source applications store translations that can be extracted and loaded into the
translation table. Some source applications do not maintain translations for an entity that
corresponds to a dimension table. In these cases, whatever record is available is extracted
and used as the Base language record, which is then used to generate pseudo-translations
for all other Installed languages.

Oracle BI Applications doesn't support Type 2 SCD tracking of dimension translation
attributes when the dimension and translation tables have a one-to-one relationship with each
other. These tables are joined on INTEGRATION_ID + DATASOURCE_NUM_ID, and,
therefore, can be joined to a single record in the translation table. Attributes in the dimension
table can be Type 2-enabled, but the current and prior records will always have the same
translated value. This figure describes the ETL domain process.

Chapter 1
About Dimension Translation Tables

1-5

Oracle Analytics

In Oracle Analytics, joins are created between the dimension and translation tables as
normal. The translation table is brought in as another supporting table in the logical
table source. If a user selects an attribute from the translation table, it will be included
as a joined table in the SQL that Oracle Analytics generates. If the user does not
select a translation attribute, the translation table will not be included in the generated
SQL.

To ensure this behavior, the physical join between the dimension and translation tables
is configured as one-to-many with the dimension table on the many side.

An important consideration is filtering on a user's language. If the language filter is
included in the logical table source as a content filter, the translation table will always
be joined whether a user selects a translation attribute or not. To avoid this behavior,
opaque views are created in the physical layer that include a WHERE clause on the
user's session language. Filtering on the user's language is still possible, but as the
filter criteria is not implemented as a logical table source content filter, it is ensured
that the translation table is only joined when necessary.

Localizing New Domain Members and Oracle BI Repository Metadata

If you added new domain members that require localization or want to add string
localizations in the Oracle BI Repository metadata, see About Setting Up Domain
Member Mappings, in Oracle Business Intelligence Applications Configuration Guide.

Chapter 1
About Dimension Translation Tables

1-6

2
Localizing Oracle Business Intelligence
Deployments

Oracle Business Intelligence is designed to allow users to dynamically change their preferred
language and locale preferences. You can configure Oracle Business Intelligence
Applications (Oracle BI Applications) for deployment in one or more language environments
other than English.

Topics:

• Maintaining Translation Tables Workflow for Oracle BI EE

• About Translating Presentation Services Strings

• Changing the Default Currency in Analytics Applications

Maintaining Translation Tables Workflow for Oracle Analytics
The Oracle Analytics Presentation layer supports multiple translations for any column name.
When working with Oracle BI Answers or rendering a dashboard, users see their local
language strings in their reports.

For example, English-speaking and French-speaking users would see their local language
strings in their reports. There are two kinds of application strings requiring translation:

• Metadata

Metadata strings are analytics-created objects in the repository such as subject areas,
metrics, and dimensions.

• Presentation Services

Presentation Services objects are end-user created objects such as reports, dashboards,
and pages. Translations for Presentation Services strings are stored in the XML caption
files. .

Adding String Localizations for Oracle BI Repository Metadata
If you added a new domain member, you can add string localizations in the Oracle BI
Repository metadata.

1. Stop the BI Services.

Go to [ORACLE_HOME]/user_projects/domains/bi/bitools/bin and use the
command: ./stop.sh.

2. Open a database administration tool, and connect to the Oracle Business Analytics
Warehouse schema.

3. Identify the strings for the following presentation objects:

• Subject area

2-1

• Presentation table

• Presentation hierarchy

• Presentation level

• Presentation column

For example, for the subject area Payables Invoices - Prepayment Invoice
Distributions Real Time, enter the following strings:

String Presentation Object

Payables Invoices - Prepayment Invoice
Distributions Real Time

Subject area

Time Presentation table

Date - Year Presentation hierarchy

Total Presentation level

Year Presentation level

Calendar Year Presentation column

4. For each subject area, externalize the strings for localization and generate custom
names for the presentation objects:

a. In the Oracle BI Administration Tool, right-click the subject area and select
Externalize Display Names, and then select Generate Custom Names.

b. Save your work.

See Administering Oracle Analytics Server.

5. Check the consistency of the repository, and remove any inconsistencies.

See Managing Metadata Repositories for Oracle Analytics Server.

6. Enter the custom name of one of the presentation objects into the table
C_RPD_MSGS:

INSERT INTO C_RPD_MSGS(MSG_ID, CREATED_BY, CREATION_DATE)
VALUES('<CUSTOM NAME OF PRESENTATION OBJECT>', 'CUSTOM',
SYSTIMESTAMP);
COMMIT;

To view the values for custom names and logical columns in the Oracle BI
Administration Tool, right-click the presentation object and select Properties. The
data in the Custom display name field appears in the format
VALUEOF(NQ_SESSION.VALUE, where VALUE is the custom name for a
presentation object, or the logical value for a presentation column. This value is
the value that you need to enter in the VALUES section of the SQL statement
above.

7. Enter the localized string for the presentation object in the previous step into the
table C_RPD_MSGS_TL:

INSERT INTO C_RPD_MSGS_TL(MSG_ID, MSG_TEXT, LANGUAGE_CODE,
CREATED_BY, CREATION_DATE)
VALUES('<CUSTOM NAME OF PRESENTATION OBJECT>', '<LOCALIZATION OF
THE STRING'>, '<LANGUAGE CODE FOR TRANSLATED LANGUAGE>', 'CUSTOM',

Chapter 2
Maintaining Translation Tables Workflow for Oracle Analytics

2-2

SYSTIMESTAMP);
COMMIT;

To identify the language code for a particular language, use the following SQL:

SELECT LANGUAGE_CODE, NLS_LANGUAGE, NLS_TERRITORY
FROM FND_LANGUAGES_B
WHERE INSTALLED_FLAG IN ('B', 'I');

8. Enter additional details about the presentation object into the table C_RPD_MSGS_REL
as indicated by the following SQL:

INSERT INTO C_RPD_MSGS_REL(MSG_ID, MSG_NUM, MESSAGE_TYPE, CREATED_BY,
CREATION_DATE)
VALUES('<CUSTOM NAME OF PRESENTATION OBJECT>', '<TRANSLATION OF THE
STRING'>, '<LANGUAGE CODE FOR TRANSLATED LANGUAGE>', 'METADATA','CUSTOM',
SYSTIMESTAMP);
COMMIT;

9. Repeat steps 6 through 8 for each presentation object requiring localization.

10. Validate that the physical connection of the session initialization block
INIT_USER_LANGUAGE_CODE is operable:

a. In the Oracle BI Administration Tool, select Manage, Variables, Session
Initialization Block.

b. Right-click INIT_USER_LANGUAGE_CODE.

c. In the Properties dialog, click Edit Data Source.

d. Click Test, and input the value for the language code. Then, click OK.

For example, for Arabic enter 'AR'.

The value USER_LANGUAGE_CODE = '<language code>' should be returned.

If this value is not returned, the TNS entry for the data source is not properly
configured.

11. Restart the BI services.

Go to [ORACLE_HOME]/user_projects/domains/bi/bitools/bin and use the
command: ./start.sh.

12. Verify the localized strings in Oracle BI Answers. On the login page, specify the
appropriate language.

About Translating Presentation Services Strings
The translations for such Presentation Services objects as report and page names are copied
to this location during the Oracle BI Applications installation process: SDD/
service_instances/service1/metadata/content/msgdb/
l_language_abbreviation/captions, where SDD is the Singleton Data Directory for
example, DOMAIN_HOME/bidata. In multiple language deployment mode, if you add any
additional Presentation Services objects, such as reports and new dashboard pages, you
also need to add the appropriate translations.

Chapter 2
About Translating Presentation Services Strings

2-3

Add these translations using the Catalog Manager tool. See Administering Oracle
Analytics Server.

Changing the Default Currency in Oracle BI Applications
In Oracle BI Applications, you might see a dollar sign used as the default symbol when
amounts of money are displayed.

To change this behavior, you must edit the currencies.xml file. The
currencies.xml file is located in the following directories:

• Windows:
ORACLE_HOME\bi\bifoundation\web\display\currencies.xml

• UNIX: ORACLE_HOME/bi/bifoundation/web/display/currencies.xml
To change the default currency in Analytics Applications:

1. In a text editor, open the currencies.xml file.

2. Look for the currency tag for the warehouse default (tag="int:wrhs"):

<Currency tag="int:wrhs" type="international" symbol="$" format="$#"
digits="2"
displayMessage="kmsgCurrencySiebelWarehouse">
 <negative tag="minus" format="-$#" />
</Currency>

3. Replace the symbol, format, digits and negative information in the warehouse
default with the information from the currency tag you want to use as the default.

For example, if you want the Japanese Yen to be the default, replace the contents
of the warehouse default currency tag with the values from the Japanese currency
tag (tag="loc:ja-JP"):

<Currency tag="loc:ja-JP" type="local" symbol="©" locale="ja-JP" format="$#"
digits="0">
 <negative tag="minus" format="-$#" />
</Currency>

When you are finished, the default warehouse currency tag for Japanese should
look like the following example:

<Currency tag="int:wrhs" type="international" symbol="©" format="$#"
digits="0"
displayMessage="kmsgCurrencySiebelWarehouse">
 <negative tag="minus" format="-$#" />
</Currency>

4. Save and close the currencies.xml file.

Chapter 2
Changing the Default Currency in Oracle BI Applications

2-4

3
Oracle Business Analytics Warehouse
Naming Conventions

Oracle Business Analytics Warehouse contains these types of tables and columns. Be sure
to follow the specified naming conventions.

Note:

This information does not apply to objects in the Oracle Business Intelligence
repository.

Topics:

• Naming Conventions for Tables

• Table Types

• Internal Tables

• Standard Column Prefixes

• Standard Column Suffixes

• System Columns in Tables

• Multi-Currency Support for System Columns

• Primary Data Values

• Primary Data Values

• About Multi-Language Support

• Currency Preferences

Naming Conventions for Oracle Business Analytics
WarehouseTables

Oracle Business Analytics Warehouse tables use a three-part naming convention:
PREFIX_NAME_SUFFIX.

Part Meaning Table Type

PREFIX Shows Oracle Business Analytics
Warehouse-specific data warehouse
application tables.

W_ = Warehouse

NAME Unique table name. All tables.

3-1

Part Meaning Table Type

SUFFIX Indicates the table type. _A = Aggregate
_D = Dimension
_DEL = Delete
_DH = Dimension Hierarchy
_DHL = Dimension Helper
_DHLS = Staging for
Dimension Helper
_DHS = Staging for Dimension
Hierarchy
_DS = Staging for Dimension
_F = Fact
_FS = Staging for Fact
_G, _GS = Internal
_H = Helper
_HS = Staging for Helper
_MD = Mini Dimension
_PE = Primary Extract
_PS = Persisted Staging
_RH = Row Flattened
Hierarchy
_TL = Translation Staging
(supports multi-language
support)
_TMP = Pre-staging or post-
staging temporary table
_UD = Unbounded Dimension
_WS = Staging for Usage
Accelerator

Table Types for Oracle Business Analytics Warehouse
This table lists the types of tables used in the Oracle Business Analytics Warehouse.

Table Type Description

Aggregate tables (_A) Contain summed (aggregated) data.

Dimension tables (_D) Star analysis dimensions.

Delete tables (_DEL) Tables that store IDs of the entities that were physically
deleted from the source system and should be flagged
as deleted from the data warehouse.

Note that there are two types of delete tables: _DEL and
_PE. For more information about the _PE table type,
see the row for Primary extract tables (_PE) in this table.

Dimension Hierarchy tables (_DH) Tables that store the dimension's hierarchical structure.

Dimension Helper tables (_DHL) Tables that store many-to-many relationships between
two joining dimension tables.

Staging tables for Dimension Helper
(_DHLS)

Staging tables for storing many-to-many relationships
between two joining dimension tables.

Chapter 3
Table Types for Oracle Business Analytics Warehouse

3-2

Table Type Description

Dimension Hierarchy Staging table
(_DHS)

Staging tables for storing the hierarchy structures of
dimensions that have not been through the final Extract
Transform Load (ETL) transformations.

Dimension Staging tables (_DS) Tables used to hold information about dimensions that
have not been through the final ETL transformations.

Fact tables (_F) Contain the metrics being analyzed by dimensions.

Fact Staging tables (_FS) Staging tables used to hold the metrics being analyzed
by dimensions that have not been through the final ETL
transformations.

Internal tables (_G, _GS) General tables used to support ETL processing.

Helper tables (_H) Inserted between the fact and dimension tables to
support a many-to-many relationship between fact and
dimension records.

Helper Staging tables (_HS) Tables used to hold information about helper tables that
have not been through the final ETL transformations.

Mini dimension tables (_MD) Include combinations of the most queried attributes of
their parent dimensions. The database joins these small
tables to the fact tables.

Primary extract tables (_PE) Tables used to support the soft delete feature. The table
includes all the primary key columns (integration ID
column) from the source system. When a delete event
happens, the full extract from the source compares the
data previously extracted in the primary extract table to
determine if a physical deletion was done in the Siebel
application. The soft delete feature is disabled by
default. Therefore, the primary extract tables are not
populated until you enable the soft delete feature.

Note that there are two types of delete tables: _DEL and
_PE. For more information about the _DEL table type,
see the row for Delete table (_DEL) in this table.

Persisted Staging table (_PS) Tables that source multiple data extracts from the same
source table.

These tables perform some common transformations
required by multiple target objects. They also simplify
the source object to a form that is consumable by the
warehouse needed for multiple target objects. These
tables are never truncated during the life of the data
warehouse. These are truncated only during full load,
and therefore, persist the data throughout.

Row Flattened Hierarchy Table
(_RH)

Tables that record a node in the hierarchy by a set of
ancestor-child relationships (parent-child for all parent
levels).

Translation Staging tables (_TL) Tables store names and descriptions in the languages
supported by Oracle Business Intelligence Applications
(Oracle BI Applications).

Pre-staging or post-staging
Temporary table (_TMP)

Source-specific tables used as part of the ETL
processes to conform the data to fit the universal staging
tables (table types_DS and _FS). These tables contain
intermediate results that are created as part of the
conforming process.

Chapter 3
Table Types for Oracle Business Analytics Warehouse

3-3

Table Type Description

Unbounded dimension (_UD) Tables containing information that is not bounded in
transactional database data but should be treated as
bounded data in the Oracle Business Analytics
Warehouse.

Staging tables for Usage Accelerator
(_WS)

Tables containing the necessary columns for the ETL
transformations.

Aggregate Tables in Oracle Business Analytics Warehouse
One of the main uses of a data warehouse is to sum up fact data with respect to a
given dimension, for example, by date or by sales region. Performing this summation
on-demand is resource-intensive, and slows down response time.

Oracle Business Analytics Warehouse precalculates some of these sums and stores
the information in aggregate tables. In the Oracle Business Analytics Warehouse, the
aggregate tables have been suffixed with _A.

Dimension Class Tables in Oracle Business Analytics Warehouse
A class table is a single physical table that can store multiple logical entities that have
similar business attributes. Various logical dimensions are separated by a separator
column, such as, type or category. W_XACT_TYPE_D is an example of a dimension
class table. Different transaction types, such as, sales order types, sales invoice types,
purchase order types, and so on, can be housed in the same physical table.

You can add additional transaction types to an existing physical table and so reduce
the effort of designing and maintaining new physical tables. However, while doing so,
you should consider that attributes specific to a particular logical dimension cannot be
defined in this physical table. Also, if a particular logical dimension has a large number
of records, it might be a good design practice to define a separate physical table for
that particular logical entity.

Dimension Tables in Oracle Business Analytics Warehouse
The unique numeric key (ROW_WID) for each dimension table is generated during the
load process. This key is used to join each dimension table with its corresponding fact
table or tables. It is also used to join the dimension with any associated hierarchy table
or extension table. The ROW_WID columns in the Oracle Business Analytics
Warehouse tables are numeric.

In every dimension table, the ROW_WID value of zero is reserved for Unspecified. If
one or more dimensions for a given record in a fact table is unspecified, the
corresponding key fields in that record are set to zero.

Dimension Tables With Business Role-Based Flags
This design approach is used when the entity is logically the same but participates as
different roles in the business process.

As an example, an employee could participate in a Human Resources business
process as an employee, in the sales process as a sales representative, in the

Chapter 3
Table Types for Oracle Business Analytics Warehouse

3-4

receivables process as a collector, and in the purchase process as a buyer. However, the
employee is still the same. For such logical entities, flags have been provided in the
corresponding physical table (for example, W_EMPLOYEE_D) to describe the record's
participation in business as different roles.

While configuring the presentation layer, the same physical table can be used as a specific
logical entity by flag-based filters. For example, if a particular star schema requires Buyer as
a dimension, the Employee table can be used with a filter where the Buyer flag is set to Y.

Fact Tables in Oracle Business Analytics Warehouse
Each fact table contains one or more numeric foreign key columns to link it to various
dimension tables.

Helper Tables in Oracle Business Analytics Warehouse
The helper tables are used to solve complex problems that cannot be resolved by simple
dimensional schemas.

In a typical dimensional schema, fact records join to dimension records with a many-to-one
relationship. To support a many-to-many relationship between fact and dimension records, a
helper table is inserted between the fact and dimension tables.

The helper table can have multiple records for each fact and dimension key combination.
This allows queries to retrieve facts for any given dimension value. It should be noted that
any aggregation of fact records over a set of dimension values might contain overlaps (due to
a many-to-many relationship) and can result in double counting.

At times there is a requirement to query facts related to the children of a given parent in the
dimension by only specifying the parent value (example: manager's sales fact that includes
sales facts of the manager's subordinates). In this situation, one helper table containing
multiple records for each parent-child dimension key combination is inserted between the fact
and the dimension. This allows queries to be run for all subordinates by specifying only the
parent in the dimension.

Hierarchy Tables in Oracle Business Analytics Warehouse
Some dimension tables have hierarchies into which each record rolls. This hierarchy
information is stored in a separate table, with one record for each record in the corresponding
dimension table. This information allows users to drill up and down through the hierarchy in
reports.

There are two types of hierarchies: a structured hierarchy in which there are fixed levels, and
a hierarchy with parent-child relationships. Structured hierarchies are simple to model, since
each child has a fixed number of parents and a child cannot be a parent. The second
hierarchy, with unstructured parent-child relationships is difficult to model because each child
record can potentially be a parent and the number of levels of parent-child relationships is not
fixed. Hierarchy tables have a suffix of _DH.

Mini-Dimension Tables in Oracle Business Analytics Warehouse
Mini-dimension tables include combinations of the most queried attributes of their parent
dimensions. They improve query performance because the database does not need to join

Chapter 3
Table Types for Oracle Business Analytics Warehouse

3-5

the fact tables to the big parent dimensions but can join these small tables to the fact
tables instead.

The following table lists the mini-dimension tables in the Oracle Business Analytics
Warehouse:

Table Name Parent Dimension

W_RESPONSE_MD Parent W_RESPONSE_D

W_AGREE_MD Parent W_AGREE_D

W_ASSET_MD Parent W_ASSET_D

W_OPTY_MD Parent W_OPTY_D

W_ORDER_MD Parent W_ORDER_D

W_QUOTE_MD Parent W_QUOTE_D

W_SRVREQ_MD Parent W_SRVREQ_D

Staging Tables in Oracle Business Analytics Warehouse
Staging tables are used primarily to stage incremental data from the transactional
database. When the ETL process runs, staging tables are truncated before they are
populated with change capture data. During the initial full ETL load, these staging
tables hold the entire source data set for a defined period of history, but they hold only
a much smaller volume during subsequent refresh ETL runs.

This staging data (list of values translations, computations, currency conversions) is
transformed and loaded to the dimension and fact staging tables. These tables are
typically tagged as <TableName>_DS or <TableName>_FS. The staging tables for the
Usage Accelerator are tagged as WS_<TableName>.

The staging table structure is independent of source data structures and resembles
the structure of data warehouse tables. This resemblance allows staging tables to also
be used as interface tables between the transactional database sources and data
warehouse target tables.

Translation Tables in Oracle Business Analytics Warehouse
Translation tables provide multi-language support by storing names and descriptions in
each language that Oracle Business Analytics Warehouse supports.

There are two types of translation tables:

• Domain tables that provide multi-language support associated with the values
stored in the %_CODE columns.

• Tables that provide multi-language support for dimensions.

Domains and their associated translated values are stored in a single table named
W_DOMAIN_MEMBER_LKP_TL. Each dimension requiring multi-language support
that cannot be achieved with domains has an associated _TL table. These tables have
a one-to-many relationship with the dimension table. For each record in the dimension
table, you will see multiple records in the associated translation table (one record for
each supported language).

Chapter 3
Table Types for Oracle Business Analytics Warehouse

3-6

Internal Tables in Oracle Business Analytics Warehouse
Internal tables are used primarily by ETL mappings for data transformation and for controlling
ETL runs. These tables are not queried by end users.

Name Purpose Location

W_DUAL_G Used to generate records for the Day dimension. Data warehouse

W_COSTLST_G Stores cost lists. Data warehouse

W_DOMAIN_MEMBER_G Staging table for populating incremental changes
into W_DOMAIN_MEMBER_G and
W_DOMAIN_MEMBER_G_TL.

Data warehouse

W_DOMAIN_MEMBER_G_T
L

Stores translated values for each installed
language corresponding to the domain member
codes in W_DOMAIN_MEMBER_G_TL.

Data warehouse

W_DOMAIN_MEMBER_GS Stores all the domain members and value for each
installed language.

Data warehouse

W_DOMAIN_MEMBER_MAP
_G

Used at ETL run time to resolve at target domain
code base on the value of a source domain code.

Data warehouse

W_DOMAIN_MEMBER_MAP
_NUM_G

Used at ETL run time to resolve a target domain
code based on the comparison of a numeric value
within the source numeric range.

Data warehouse

W_EXCH_RATE_G Stores exchange rates. Data warehouse

W_LANGUAGES_G Stores the language translations supported in the
data warehouse and is used during ETL to help
generate missing translation records from the
base language called pseudo-translation.

Data warehouse

W_LOCALIZED_STRING_G Data warehouse

W_LOV_EXCPT_G Stores the list of values for the list of values types
in which the ETL process finds exceptions.

Data warehouse

W_UOM_CONVERSION_G Stores a list of From and To UOM codes and their
conversion rates.

Data warehouse

Standard Column Prefixes in Oracle Business Analytics
Warehouse

The Oracle Business Analytics Warehouseuses a standard prefix to indicate fields that must
contain specific values.

Prefix Description In Table Types

W_ Used to store Oracle BI Applications standard or
standardized values. For example, W_%_CODE (Warehouse
Conformed Domain) and W_TYPE, W_INSERT_DT (Date
records inserted into Warehouse).

_A

_D

_F

Chapter 3
Internal Tables in Oracle Business Analytics Warehouse

3-7

Standard Column Suffixes in Oracle Business Analytics
Warehouse

The Oracle Business Analytics Warehouse uses suffixes to indicate fields that must
contain specific values.

Suffix Description In Table Types

_CODE Code field. (Especially used for domain codes.) _D, _DS, _FS, _G,
_GS

_DT Date field. _D, _DS, _FS, _G,
_DHL, _DHLS

_ID Correspond to the _WID columns of the
corresponding _F table.

_FS, _DS

_FLG Indicator or Flag. _D, _DHL, _DS, _FS,
_F, _G, _DHLS

_WID Identifier generated by Oracle Business Intelligence
linking dimension and fact tables, except for
ROW_WID.

_F, _A, _DHL

_NAME A multi-language support column that holds the
name associated with an attribute in all languages
supported by the data warehouse.

_TL

_DESCR A multi-language support column that holds the
description associated with an attribute in all
languages supported by the data warehouse.

_TL

System Columns in Oracle Business Analytics
WarehouseTables

Oracle Business Analytics Warehouse tables contain system fields. These system
fields are populated automatically and should not be modified by the user.

The following table lists the system columns used in data warehouse dimension
tables:

System Column Description

ROW_WID Surrogate key to identify a record uniquely.

CREATED_BY_WID Foreign key to the W_USER_D dimension that specifies the user
who created the record in the source system.

CHANGED_BY_WID Foreign key to the W_USER_D dimension that specifies the user
who last modified the record in the source system.

CREATED_ON_DT The date and time when the record was initially created in the
source system.

CHANGED_ON_DT The date and time when the record was last modified in the
source system.

Chapter 3
Standard Column Suffixes in Oracle Business Analytics Warehouse

3-8

System Column Description

AUX1_CHANGED_ON_DT System field. This column identifies the last modified date and
time of the auxiliary table's record that acts as a source for the
current table.

AUX2_CHANGED_ON_DT System field. This column identifies the last modified date and
time of the auxiliary table's record that acts as a source for the
current table.

AUX3_CHANGED_ON_DT System field. This column identifies the last modified date and
time of the auxiliary table's record that acts as a source for the
current table.

AUX4_CHANGED_ON_DT System field. This column identifies the last modified date and
time of the auxiliary table's record that acts as a source for the
current table.

DELETE_FLG This flag indicates the deletion status of the record in the source
system. A value of Y indicates the record is deleted from the
source system and logically deleted from the data warehouse. A
value of N indicates that the record is active.

W_INSERT_DT Stores the date on which the record was inserted in the data
warehouse table.

W_UPDATE_DT Stores the date on which the record was last updated in the data
warehouse table.

DATASOURCE_NUM_ID Unique identifier of the source system from which data was
extracted. In order to be able to trace the data back to its source, it
is recommended that you define separate unique source IDs for
each of your different source instances.

ETL_PROC_WID System field. This column is the unique identifier for the specific
ETL process used to create or update this data.

INTEGRATION_ID Unique identifier of a dimension or fact entity in its source system.
In case of composite keys, the value in this column can consist of
concatenated parts.

TENANT_ID Unique identifier for a tenant in a multi-tenant environment. This
column is typically be used in an Application Service Provider
(ASP)/Software as a Service (SaaS) model.

X_CUSTOM Column used as a generic field for customer extensions.

CURRENT_FLG This is a flag for marking dimension records as "Y" in order to
represent the current state of a dimension entity. This flag is
typically critical for Type II slowly changing dimensions, as records
in a Type II situation tend to be numerous.

EFFECTIVE_FROM_DT This column stores the date from which the dimension record is
effective. A value is either assigned by Oracle BI Applications or
extracted from the source.

EFFECTIVE_TO_DT This column stores the date up to which the dimension record is
effective. A value is either assigned by Oracle BI Applications or
extracted from the source.

SRC_EFF_FROM_DT This column stores the date from which the source record (in the
Source system) is effective. The value is extracted from the
source (whenever available).

STC_EFF_TO_DT This column stores the date up to which the source record (in the
Source system) is effective. The value is extracted from the
source (whenever available).

Chapter 3
System Columns in Oracle Business Analytics WarehouseTables

3-9

Multi-Currency Support for System Columns
The following table lists the currency codes and rates for related system columns:

System Column Description

DOC_CURR_CODE Code for the currency in which the document was created in the
source system.

LOC_CURR_CODE Usually the reporting currency code for the financial company in
which the document was created.

GRP_CURR_CODE The primary group reporting currency code for the group of
companies or organizations in which the document was created.

LOC_EXCHANGE_RATE Currency conversion rate from the document currency code to the
local currency code.

GLOBAL1_EXCHANGE_R
ATE

Currency conversion rate from the document currency code to the
Global1 currency code.

GLOBAL2_EXCHANGE_R
ATE

Currency conversion rate from the document currency code to the
GLOBAL2 currency code.

GLOBAL3_EXCHANGE_R
ATE

Currency conversion rate from document currency code to the
GLOBAL3 currency code.

PROJ_CURR_CODE Code used in Project Analytics that corresponds to the project
currency in the OLTP system.

Oracle Business Analytics Warehouse Primary Data Values
It is possible for various dimensions to have one-to-many and many-to-many
relationships with each other. These kinds of relationships can introduce problems in
analyses.

For example, an Opportunity can be associated with many Sales Representatives and
a Sales Representative can be associated with many Opportunities. If your analysis
includes both Opportunities and Sales Representatives, a count of Opportunities
would not be accurate because the same Opportunity would be counted for each
Sales Representative with which it is associated.

To avoid these kinds of problems, the Oracle Business Analytics Warehouse reflects
the primary member in the "many" part of the relationship. In the example where an
Opportunity can be associated with many Sales Representatives, only the Primary
Sales Representative is associated with that Opportunity. In an analysis that includes
both Opportunity and Sales Representative, only a single Opportunity will display and
a count of Opportunities returns the correct result.

There are a few important exceptions to this rule. The Person star schema supports a
many-to-many relationship between Contacts and Accounts. Therefore, when querying
the Person star schema on both Accounts and Contacts, every combination of
Account and Contact is returned. The Opportunity-Competitor star schema supports a
many-to-many relationship between Opportunities and Competitor Accounts, and the
Campaign-Opportunity star schema supports a many-to-many relationship between
Campaigns and Opportunities. In other star schemas, however, querying returns only
the primary account for a given contact.

Chapter 3
Multi-Currency Support for System Columns

3-10

About Multi-Language Support in Oracle Business Analytics
Warehouse

Oracle BI Applications provides multi-language support for metadata level objects exposed in
Oracle BI Enterprise Edition dashboards and reports, as well as data, which enables users to
see records translated in their preferred language.

Oracle Business Analytics Warehouse Currency Preferences
Configure global currencies in Functional Setup Manager (FSM).

To set up currencies, see About Configuring Currencies.

The Oracle Business Analytics Warehouse supports the following currency preferences.

• Contract currency — The currency used to define the contract amount. This currency is
used only in Project Analytics.

• CRM currency — The CRM corporate currency as defined in the Fusion CRM
application. This currency is used only in CRM Analytics applications.

• Document currency — The currency in which the transaction was done and the related
document created.

• Global currency — The Oracle Business Analytics Warehouse stores up to three group
currencies. These need to be pre-configured so as to allow global reporting by the
different currencies. The exchange rates are stored in the table W_EXCH_RATE_G.

• Local currency — The accounting currency of the legal entity in which the transaction
occurred.

• Project currency — The currency in which the project is managed. This may be different
from the functional currency. This applies only to Project Analytics.

Chapter 3
About Multi-Language Support in Oracle Business Analytics Warehouse

3-11

4
Administering Oracle GoldenGate and Source
Dependent Schemas

In a conventional ETL scenario, data is loaded from source online transaction processing
(OLTP) schemas, which in many cases support full-time transactional systems with constant
ongoing updates. Contention can arise during complex extracts from these sources,
particularly in cases where significant OLTP data changes have occurred which must be
processed and loaded by ETL processes.

To relieve this contention, you can set up source dependent schemas which replicate OLTP
schemas in the same database as the Oracle Business Analytics Warehouse schema. In
addition to segregating extract processing on the analytical system and eliminating contention
on transactional systems, physical architecture and ETL performance benefits accrue from
maintaining source data in the same physical location as the warehouse tables, consolidating
multiple sources, regions and timezones, and eliminating network bottlenecks and
incremental change capture during extraction and load.

• Source Dependent Schema Architecture

• Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

• ETL Customization

• Patching

• Troubleshooting Oracle GoldenGate and SDS

In addition to the ETL use case, you can reconcile ledger information available in your Oracle
E-Business Suite and Oracle Fusion Applications using Oracle GoldenGate.

• Setting up Ledger Correlation using GoldenGate

Source Dependent Schema Architecture
The SDS is a separate schema usually stored on the same database as the Oracle Business
Analytics Warehouse, which contains data extracted from an OLTP schema on a separate
machine. The OLTP schema is treated as the source and the SDS schema as the target of
the Oracle GoldenGate processes which maintain the replicated SDS.

The SDS Architecture is an optional addition to the existing Oracle Business Intelligence
Applications (Oracle BI Applications) Architecture that solves many problems associated with
data transport from the source OLTP system to the data warehouse and change data capture
required for incremental ETL. The architecture consists of these main components:

• Source Dependent Data Store (SDS): A separate schema on the Oracle Business
Analytics Warehouse database that is a replication of the source OLTP systems tables.
Also stores deletes and additional optimizations for incremental ETL.

• Oracle GoldenGate: This replication system is deployed on both source and Oracle
Business Analytics Warehouse database systems. On the source database system,
Oracle GoldenGate supports continuous asynchronous change data capture at a low
level in the database, then compresses and ships the changed data across the network

4-1

to the target SDS schema on the analytical warehouse database instance. On the
target Oracle Business Analytics Warehouse database instance, it receives the
changed data from one or more source systems and loads them into the target
database, specifically into the SDS schemas, one per ETL OLTP source.

• Oracle Data Integrator (ODI): ODI metadata stores definitions used to generate
the SDS schemas and to support the Oracle GoldenGate replication processes.

• Oracle BI Applications SDS Components: Components used to support generation
of the SDS schema and Oracle GoldenGate replication processes.

Tasks for Setting Up Oracle GoldenGate and the Source
Dependent Schema

Perform these detailed tasks to set up Oracle GoldenGate and SDS.

Note:

You must perform the tasks in this section in the listed sequence.

• Setup Step: Configure Source and Target Database

• Setup Step: Install Oracle GoldenGate on Source and Target Systems

• Setup Step: Configure BI Applications Configuration Manager and Oracle Data
Integrator to Support the Source Dependent Schema

• Setup Step: Generate, Deploy, and Populate the Source Dependent Schema
Tables on Target Database

• Setup Step: Generate and Deploy Oracle GoldenGate Parameter Files to Source
and Target Systems

• Setup Step: Start Oracle GoldenGate on Source and Target Systems

• Replicate Views from Source

Setup Step: Configure Source and Target Database
In this step, you create Oracle GoldenGate database users on source and target
databases. Unlike other database schemas used by Oracle BI Applications, the SDS
and OGG schemas are not automatically created during installation.

Only the installation process can automatically create database users; because
datasources are defined in Oracle BI Applications Configuration Manager
(Configuration Manager) after installation is complete, the required Source Dependent
Schemas associated with these datasources must be manually created. For this
reason, an SDS schema must be manually defined on the target database.
Additionally, the Oracle BI Applications installer is not able to create the OGG
database user on the source OLTP system. This section describes how to create the
OGG database user on the source database system and the OGG and SDS database
users on the target database system.

1. Create the OLTP database user for Oracle GoldenGate.

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-2

Each OGG process requires a dedicated database user. On the source system, the OGG
user needs to be able to query various metadata.

Secure database practice is to avoid granting privileges to tables not in use, so SELECT
ANY TABLE is not granted to the OGG database user. Instead, as part of the SDS DDL,
SELECT privileges are granted only to those tables in the OLTP schema being replicated.

The user creation scripts use the following parameters:

Parameter Description

&BIAPPS_OGG Oracle GoldenGate Database User Name

&BIAPPS_OGG_PW Oracle GoldenGate Database User Password

Run the following script on the source database to create the source database OGG
user.

-- Create OGG User
CREATE USER &BIAPPS_OGG
IDENTIFIED BY &BIAPPS_OGG_PW
DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;

GRANT CREATE SESSION TO &BIAPPS_OGG;
GRANT ALTER SESSION TO &BIAPPS_OGG;
GRANT SELECT ANY DICTIONARY TO &BIAPPS_OGG;
GRANT FLASHBACK ANY TABLE TO &BIAPPS_OGG;

-- OGG user requires ALTER ANY table to set up supplemental logging for individual
tables. Once accomplished, this privilege can be revoked:
GRANT ALTER ANY TABLE TO &BIAPPS_OGG;

2. Prepare the OLTP database and redo logs.

Oracle GoldenGate requires that the database be configured for supplemental logging.
Execute the following statement in the source database with a user with sufficient
privileges.

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
3. Create the target Oracle GoldenGate database user.

Each OGG process requires a dedicated database user. On the target system, the OGG
user needs to be able to execute various DML operations on the SDS tables as well as
optionally create a checkpoint table. Secure database practice is to avoid granting
privileges to tables not in use, so SELECT ANY TABLE, INSERT ANY TABLE and so on are
not granted to the OGG database user. Instead, as part of the SDS DDL, required
privileges are granted only to those tables in the SDS schema for the OGG database
user.

The user creation scripts use the following parameters:

Parameter Description

&BIAPPS_OGG Oracle GoldenGate Database User Name

&BIAPPS_OGG_PW Oracle GoldenGate Database User Password

Run the following script on the target table to create the target database OGG user.

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-3

-- Create OGG User
CREATE USER &BIAPPS_OGG
IDENTIFIED BY &BIAPPS_OGG_PW
DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;

GRANT CREATE SESSION TO &BIAPPS_OGG;
GRANT ALTER SESSION TO &BIAPPS_OGG;
GRANT SELECT ANY DICTIONARY TO &BIAPPS_OGG;

-- Create Table privilege only required to create checkpoint table. Can be
revoked once table is created. Not required if not creating this table
GRANT CREATE TABLE TO &BIAPPS_OGG;

4. Create the SDS database user.

A separate SDS database user must be configured in the target database for each
OLTP system that will leverage the SDS. Each supported source instance requires
a separate SDS schema. The recommended naming convention for the schema
owner is BIAPPSSDSModel Code_DSN Number where BIAPPS is a user defined
code representing Oracle BI Applications content, Model Code is the unique code
assigned to each datasource type and DSN Number is the unique datasource ID
assigned to a specific datasource instance. For example, if you have the following
two datasources defined as supported source systems in the Configuration
Manager, you would have the corresponding SDS schemas defined in the data
warehouse database:

Source Instance
Name

Model Code Data Source
Number

SDS

Oracle EBS 12.2 EBS_12_2 310 BIAPPS_SDS_
EBS_12_2_310

Siebel CRM 8.2.2 SEBL_8_2_2 625 BIAPPS_SDS_
SEBL_8_2_2_625

Use the following DDL as a template for creating each SDS database user. The
following only represents a bare minimum of the required DDL statements; adjust
for your environment as necessary. Rerun for each supported source instance.

Parameter Description

&BIAPPS_SDS_DATA_TS Tablespace name

&ORADATA Path where tablespace should be located

&BIAPPS_SDS SDS User name

&BIAPPS_SDS_PW SDS User password

&BIAPPS_OGG Oracle GoldenGate Database User Name

-- Create tablespace. Following is only an example and may not reflect PSR
guidance:
CREATE TABLESPACE &BIAPPS_SDS_DATA_TS
DATAFILE '&ORADATA/&BIAPPS_SDS_DATA_TS..dbf' SIZE 100M AUTOEXTEND ON NEXT 10M
LOGGING
DEFAULT COMPRESS FOR OLTP;

-- Create SDS User
CREATE USER &BIAPPS_SDS
IDENTIFIED BY &BIAPPS_SDS_PW
DEFAULT TABLESPACE &BIAPPS_SDS_DATA_TS QUOTA UNLIMITED ON

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-4

&BIAPPS_SDS_DATA_TS;

-- Required Grants
GRANT CREATE SESSION TO &BIAPPS_SDS;
GRANT CREATE TABLE TO &BIAPPS_SDS;

-- OGG user must be granted Quota to insert and update data
ALTER USER &BIAPPS_OGG QUOTA UNLIMITED ON &BIAPPS_SDS_DATA_TS;

Setup Step: Install Oracle GoldenGate on Source and Target Systems
Download and install Oracle GoldenGate software first on the source and then on the target
machines. The software is available from Oracle Technology Network.

See the Oracle GoldenGate Installation and Setup guides for your platform and database:

• Oracle GoldenGate for Oracle Installation and Setup Guide

• Oracle GoldenGate for DB2 LUW Installation and Setup Guide

• Oracle GoldenGate for c-tree Installation and Setup Guide

Installation Recommendations

When installing and configuring the Oracle GoldenGate software, consider the following
recommendations:

• For each OLTP instance supported, install a separate Replicate process on the target
machine. As each OLTP instance has its own separate SDS schema on the target
database, the Replicate process is populating different targets so a separate Replicate
process is required for each.

• Install a Data Pump process on the source machine.

• The name of the Extract, Data Pump and Replicate processes are limited to eight
characters. The suggested naming convention is as follows:

Process Naming Convention Example

Extract EXT_Datasource Num Id EXT_310

Data Pump DP_Datasource Num Id DP_310

Replicate REP_Datasource Num Id REP_310

• Follow the steps in the Oracle GoldenGate documentation to configure an instance of
Oracle GoldenGate on the source and target systems up to the point of starting the OGG
processes.

• Note that as part of the installation and configuration, a procedure is run to generate
Oracle BI Applications-specific parameter files, as discussed in the following section. See
Setup Step: Generate and Deploy Oracle GoldenGate Parameter Files to Source and
Target Machines. The install and configuration of the OGG processes are completed at
this point.

Example Steps to configure the Oracle GoldenGate processes

These example steps illustrate how to configure the OGG processes. Modify these steps as
appropriate for your environment.

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-5

For the source system, configure Extract and Data Pump processes. The initial steps
in the example below effectively remove an existing instance of both processes. If
none already exist, start with the START MGR command.

--Stop Manager on primary database
dblogin USERID <GG User's DB ID, requirement depends on database>,
PASSWORD <GG User's DB password, requirement depends on database >

STOP MGR

--Stop GG processes
STOP <name of Extract process>
DELETE EXTTRAIL <relative or fully qualified path where Extract Trail files are
created on source system>/*
DELETE <name of Extract process>

STOP <name of Data Pump process>
DELETE RMTTRAIL <relative or fully qualified path where Replicat Trail files are
created on target system>/*
DELETE <name of Data Pump process>

--Delete Previous Trail Files
SHELL rm <relative or fully qualified path where Extract Trail files are created
on source system>/*

--Start Manager on primary database
START MGR

--Primary database capture configuration
ADD EXTRACT <name of Extract process>, TRANLOG, BEGIN NOW
ADD EXTTRAIL <relative or fully qualified path where Extract Trail files are to
be created on source system>, EXTRACT <name of Extract process>, MEGABYTES 50

--Primary database pump configuration:
ADD EXTRACT<name of Data Pump process>, EXTTRAILSOURCE <relative or fully
qualified path where Extract Trail files are to be created on source system>,
ADD RMTTRAIL <relative or fully qualified path where Replicat Trail files are to
be created on target system>, EXTRACT<name of Data Pump process>, MEGABYTES 50

Example:

--Stop Manager on primary database
dblogin userid gg, password gg
STOP MGR

--Stop GG processes
STOP EXT_310
DELETE EXTTRAIL ./dirdat/*
DELETE EXT_310

STOP DP_310
DELETE RMTTRAIL ./dirdat/*
DELETE DP_310

--Delete Previous Trail Files
SHELL rm ./dirdat/*

--Start Manager on primary database
START MGR

--Primary database capture configuration

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-6

ADD EXTRACT EXT_310, TRANLOG, BEGIN NOW
ADD EXTTRAIL ./dirdat/tr, EXTRACT EXT_310, MEGABYTES 50

--Primary database pump configuration:
ADD EXTRACT DP_310, EXTTRAILSOURCE ./dirdat/tr
ADD RMTTRAIL ./dirdat/tr, EXTRACT DP_310, MEGABYTES 50

Implement similar steps for the Replicate process in the target system. The initial steps
effectively remove an existing instance of the Replicate process. If none already exist, start
with the START MGR command.

--Stop Manager on target database
dblogin USERID <GG User's DB ID, requirement depends on database>,
PASSWORD <GG User's DB password, requirement depends on database >
STOP MGR

--Stop GG processes
STOP <name of Replicat process>
DELETE <name of Replicat process>

--Delete CHECKPOINTTABLE
DELETE CHECKPOINTTABLE <GG User's DB ID>.GGSCHKPT

--Delete Previous Trail Files
SHELL rm <relative or fully qualified path where Replicat Trail files are created on
target system>/*

--Start Manager on target database
START MGR

--Create CHECKPOINTTABLE in target database
dblogin USERID <GG User's DB ID>,
PASSWORD <GG User's DB password>
ADD CHECKPOINTTABLE <GG User's DB ID>.GGSCHKPT

--Target database delivery configuration
ADD REPLICAT <name of Replicat process>, exttrail <relative or fully qualified path
where Replicat Trail files are to be created on target system>

Example:

--Stop Manager on target database
dblogin userid gg, password gg
STOP MGR

--Stop GG processes
STOP REP_310
DELETE REP_310

--Delete CHECKPOINTTABLE
DELETE CHECKPOINTTABLE

--Delete Previous Trail Files
SHELL rm ./dirdat/*

--Start Manager on target database
START MGR

--Create CHECKPOINTTABLE in target database
dblogin userid gg, password gg
ADD CHECKPOINTTABLE

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-7

--Target database delivery configuration
ADD REPLICAT REP_310, exttrail ./dirdat/tr

Setup Step: Configure Configuration Manager and ODI to Support the
Source Dependent Schema

Configure Configuration Manager and ODI to support the Source Dependent Schema.

Enable the SDS option for each datasource defined in Configuration Manager. You
can enable the SDS option for the entire datasource or for individual Fact Groups. The
SDS option is enabled by setting the value for the IS_SDS_DEPLOYED parameter to
Yes.

1. In Configuration Manager, select the Source Instance.

2. Click Manage Data Load Parameters.

3. Locate the IS_SDS_DEPLOYED parameter in the list.

4. In the Global Parameter Value, replace <Edit Value> with Yes.

A warning is displayed indicating that the parameter is being updated globally for
all Fact and Dimension Groups.

5. Click Yes to confirm or, if you prefer, set the global parameter to No, and then edit
the parameter value at the Fact Group or Dimension Group level.

Adding SDS Physical Schemas in ODI
For each source instance, you must manually add a corresponding physical schema
under the 'BIAPPS_DW' physical server in ODI.

1. In ODI Studio's Topology Navigator, expand the Oracle technology in the Physical
Architecture.

2. Right-click BIAPPS_DW and select New Physical Schema.

3. In the Definition, set Schema (Schema) and Schema (Work Schema) both to the
SDS schema owner.

4. Select Flexfields.

5. For the DATASOURCE_NUM_ID flex field, uncheck the Default checkbox and
assign the DSN value associated with that source as defined in Configuration
Manager.

6. Save the physical schema definition.

Ignore the message about the physical server not being assigned a context.

Setup Step: Generate, Deploy, and Populate the Source Dependent
Schema Tables on Target Database

Generate and run the Data Definition Language (DDL) to create the SDS tables on the
SDS schema in the target database.

1. Generate the SDS DDL.

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-8

Procedures are provided to generate the required objects to enable the SDS. To generate
the required DDL, in ODI Designer execute the 'Generate DDL - SDS' scenario found
under BI Apps Project, Components, SDS, Oracle, then Generate SDS DDL. Provide
an appropriate context when prompted. As the procedure can only accept a single source
type, this process needs to be repeated for each different type of Source system to be
enabled.

To execute the scenario, right-click it and select Execute. When the scenario is executed,
a prompt appears to provide values for the DDL execution options. Refer to the following
table describing the options to provide appropriate values.

Option Description

GG_USER_DW Oracle GoldenGate database user on the Oracle BI
Applications database

GG_USER_SOURCE Oracle GoldenGate database user on the OLTP database.

SDS_MODEL The OLTP model to be used to generate the SDS schema.
Each model is associated with a logical schema. The logical
schema is associated with a physical schema. The logical and
physical schema DSN flexfields must match an SDS physical
schema's DSN flexfield defined under the BI Apps DW physical
server in order for this utility to determine the appropriate
schema name to be used for the SDS. The SDS physical
schema with the matching DSN flexfield value is used to
identify changes and execute the DDL against if the RUN_DDL
option is set to Y.

CREATE_SCRIPT_FILE Y or N. Set to Y if you want to review the DDL or manually
execute the script.

REFRESH_MODE FULL or INCREMENTAL. Full drops and creates all tables.
Incremental compares the repository with the SDS schema and
applies changes using ALTER statements without dropping
tables. Incremental process can take much longer than Full
mode and should be used with filters to limit the number of
tables compared.

CHAR_CLAUSE Y or N. For Unicode support, will include the CHAR clause when
defining string columns. For example FULL_NAME VARCHAR2(10)
would be created as FULL_NAME VARCHAR2(10 CHAR). This
ensures that the right length is chosen when the underlying
database is a unicode database.

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-9

Option Description

RUN_DDL Y or N. Determines whether to execute the DDL commands.
The script will be executed against the physical SDS schema
associated with the SDS_MODEL. Note that this script will be
executed via the user defined in the BIAPPS_DW physical
server which is usually the owner of the BIAPPS_DW schema
and which may not have appropriate privileges to create or
alter tables in another schema. To have the utility execute the
DDL script, you may need to grant CREATE ANY TABLE, CREATE
ANY INDEX, ALTER ANY TABLE and ALTER ANY INDEX to the
BIAPPS_DW database user.

It is recommended to set this option to N. If set to Y, both the
tables and indexes will be created. Having the indexes on the
tables will impact the performance of initially loading the tables.
Rather, it is recommended that you set this option to N,
manually execute the Table DDL, perform the initial load of the
tables, then manually execute the Index DDL.

Also, if an index or primary key constraint is not defined
correctly in ODI, uniqueness or not null errors could be
generated and a table could fail to be loaded. Indexes and
primary keys are useful for Oracle GoldenGate but are not
required. It is better to build the indexes and primary keys after
the data is loaded and make any necessary corrections to the
constraint's definition in ODI and attempt to build the index or
primary key again.

SCRIPT_LOCATION The location where the script should be created if the
CREATE_SCRIPT_FILE option is true.

TABLE_MASK To generate the DDL for all tables, use a wildcard (the default).
To generate for only a subset of tables with names matching a
particular pattern, use that pattern with a wildcard, such as
PER_%.

If you set CREATE_SCRIPT_FILE to Y, four files are generated by the Generate
SDS DDL procedure in the location specified by SCRIPT_LOCATION. One is
a .SQL script to creates the tables. Another is a .SQL script to create the indexes
and analyze the tables. This allows you to create the tables, perform an initial load
of the tables without any indexes that could hurt performance, and then create the
indexes and analyze the tables after they are loaded. Another .SQL script is
generated which grants SELECT privileges to the OGG database user only for those
tables that need to be selected from. The final file is a log file.

2. Grant privileges to OLTP tables.

The OGG user must be able to select from the tables in the OLTP database.
Rather than grant the SELECT ANY TABLE privilege to the OGG user, SELECT
privileges are granted only to those tables that actually need to be replicated to the
target system.

The SDS DDL generator procedure creates a script to grant SELECT privileges to
the OGG user. Refer to the script
BIA_SDS_Schema_Source_Grants_DDL_unique ID.sql and execute the
contents in the OLTP database with a user with sufficient privileges to grant
SELECT privileges on the OLTP tables.

3. Create the SDS tables.

The SDS DDL generator procedure creates a .SQL script that follows the naming
convention BIA_SDS_Schema_DDL_<unique ID>.sql which contains the CREATE

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-10

or ALTER DDL statements to create or alter the tables in the SDS schema. Execute the
SQL in this file against the SDS schema.

The ETL process must be able to select from the SDS tables. Typically, the ETL process
uses the Oracle BI Applications data warehouse schema owner. This must be granted
SELECT privileges on the SDS tables. In addition, the OGG user needs read and write
access to these same tables. The SDS Generate DDL procedure grants SELECT
privileges to the Oracle BI Applications data warehouse schema owner and SELECT,
INSERT, UPDATE and DELETE privileges to the OGG user.

4. Perform initial Load of the SDS tables: create database link to OLTP database.

A variety of methods can be used to initially load the data from the source database to
the target database. A procedure is provided to generate a script to perform an initial load
as described in the steps below. Note however, that you may opt for other methods. The
procedure generates a script that executes DML statements that extract data over a
database link.

Note:

LOB and LONG datatype columns are created in the SDS, but the provided
utilities to initially copy data from the source to target system cannot support
these datatypes, so columns with these datatypes are specifically excluded by
these utilities. If data in these columns are required, an alternate method for
performing an initial load of the SDS will need to be implemented.

Note:

In Siebel implementations, a small number of tables in the Siebel database are
created when installing the Oracle BI Applications. These tables must be
manually created and always have S_ETL as a prefix. Be sure these tables
have already been created prior to executing these steps. If these tables do not
already exist, a "table or view does not exist" error can occur when executing
the following commands.

First, create a database link to the OLTP database on the target database. The
procedure to generate the DML script requires that a database link already exist named
"DW_TO_OLTP" prior to being executed. The procedure executes using the
BIAPPS_DW physical server so the database link has to either be defined in the same
schema as used in the BIAPPS_DW physical server or else defined as a public database
link. This database link must be manually created, it is not automatically created.

The procedure only populates a single SDS schema at a time. If creating multiple SDS
schemas to accommodate multiple sources, this database link will need to be updated
prior to each run to point to a different OLTP instance.

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-11

Note:

The JDE application spreads data across four databases and is tracked
under four different submodels under a single JDE specific model. The
DML option will need to be executed for each separate submodel and
the "DW_TO_OLTP" database link will need to be updated prior to
executing the DML script.

5. Perform initial load of the SDS tables: execute procedure to generate DML script.

This DML script generation procedure requires that the ODI topology is set up
correctly, ensuring the OLTP model logical schema DSN matches with the desired
target warehouse SDS physical schema DSN. The DSNs are set in the logical or
physical schema flexfields.

In ODI Designer, execute the COPY_OLTP_TO_SDS scenario found under BI
Apps Project > Components > SDS > Oracle > Copy OLTP to SDS.

To execute the scenario, right-click it and select Execute. Provide an appropriate
context when prompted. When the scenario is executed, a prompt appears to
provide values for the DML execution options. Refer to the following table
describing the options to provide appropriate values.

Option Description

TABLE_LIST A comma-separated list of tables. A wildcard match %
may be used to match multiple tables. Do not include any
line breaks.

For example:

PER_ALL_ASSIGNMENTS_F,PER%ORG%INFO%,HR%
UNIT,FND_LOOKUP_TYPES

CREATE_SCRIPT_FILE Y or N. Set to Y if you want to review the DDL or manually
execute the script.

RUN_DDL Y or N. Whether to execute the DML commands. The
script will be executed against the physical SDS schema
associated with the SDS_MODEL. Note that this script will
be executed via the user defined in the BIAPPS_DW
physical server which is usually the owner of the
BIAPPS_DW schema and which may not have
appropriate privileges to insert data into tables in another
schema. To have the utility execute the DDL script, you
may need to grant SELECT ANY TABLE and INSERT ANY
TABLE to the BIAPPS_DW database user.

Alternatively, rather than have the procedure execute the
script, create the script file and connect to the database as
the SDS schema owner and execute the contents of the
script file directly.

SDS_MODEL The OLTP model to be used to generate the SDS schema.

SCRIPT_LOCATION The location where the script should be created if the
CREATE_SCRIPT_FILE option is true.

6. Perform initial load of the SDS tables: execute DML script on SDS database.

The resulting DML script can be executed using the SDS schema owner or the
BIAPPS DW schema owner. If executed by the BIAPPS DW schema owner, this

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-12

user must be granted the SELECT ANY TABLE and INSERT ANY TABLE privileges in order
to populate data in another schema. If executed using the SDS schema owner, a private
database link named "DW_TO_OLTP" must be created in the SDS schema (the SDS
user must be granted the CREATE DATABASE LINK privilege to create this database link) or
already created as a public database link.

The DML script that is generated includes all tables used by all ETL tasks. If you are not
executing all ETL tasks, you may want to consider identifying the tasks you are not
executing and removing the corresponding tables from this script so that they are not
replicated, thus keeping the overall size of the SDS down. Refer to the parameter files to
determine the tasks that use each table and edit this script to remove the tables you do
not need to replicate.

7. Create SDS indexes and analyze the SDS schema.

When the tables are populated, execute the BIA_SDS_Schema_Index_DDL_unique
ID.sql script to create indexes and analyze the SDS tables.

Setup Step: Generate and Deploy Oracle GoldenGate Parameter Files to
Source and Target Systems

Parameter files are used to control how Oracle GoldenGate operates. These files are
deployed to the source system, where the Extract and Data Pump processes are executed,
and the target system, where the Replicat process is executed.

An ODI procedure generates these parameter files based on the metadata defined in ODI. A
scenario that executes this procedure is provided to generate the Oracle GoldenGate
parameter files to populate the SDS.

Generate Oracle GoldenGateParameter Files

To generate the required parameter files, execute the
'GENERATE_SDS_OGG_PARAM_FILES' scenario found under BI Apps Project,
Components, SDS, then Generate SDS OGG Param Files. When the scenario is executed,
a prompt appears to provide values for the parameter file options. Refer to the following table
describing the options to provide appropriate values to match your environment. As the
procedure can only accept a single Source type, this process needs to be repeated for each
different type of Source system to be enabled.

Parameter Description

PARAM_FILE_LOCATION Location on machine where ODI client is running where
parameter files will be created. Example: C:\temp\

DATASOURCE_NUM_ID Datasource Num ID value associated with the particular
source for which parameter files are to be generated.
Example: 310

DATAPUMP_NAME Name of the Datapump Process specified when installing
Oracle GoldenGate on the source machine. Limit is eight
characters. Suggested naming convention is DP_Datasource
Num Id, for example DP_310.

EXTRACT_NAME Name of the Primary Extract Process specified when
installing Oracle GoldenGate on the source machine. Limit is
eight characters. Suggested naming convention is
EX_Datasource Num Id, for example EXT_310.

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-13

Parameter Description

EXTRACT_TRAIL Path and name of trail file on source system. Can be a
relative or fully qualified path, though actual file name must
be two characters. In the example below, 'tr' is the name of
the trail file.

Example: ./dirdat/tr
DEFSFILE The relative or fully qualified path on the source system

where the DEFGEN definition file should be created and file
name. This value is included in the DEFGEN.prm parameter
file that is generated by this procedure. The DEFGEN utility
is executed on the source database, so the path provided
must be a path available on the system the source database
runs on. Suggested naming convention is DEF_Datasource
Num Id.def. Example: ./dirdef/DEF_310.def

SOURCE_GG_USER_ID Database user dedicated to the Oracle GoldenGate
processes on the source database. Example: GG_USER

SOURCE_GG_PASSWORD Password for the database user dedicated to the Oracle
GoldenGate processes on the source database.

By default, the password is stored as clear text in the
generated parameter file. If an encrypted value is desired,
use the ENCRYPT PASSWORD utility and edit the
generated parameter files accordingly. Example:
GG_PASSWORD

SOURCE_PORT Port used by the Oracle GoldenGate Manager Process on
the source system. The default value when Oracle
GoldenGate is installed is 7809.

REPLICAT_NAME Name of the Replicat Process specified when installing
Oracle GoldenGate on the target machine. Limit is eight
characters. Suggested naming convention is
REP_Datasource Num Id, for example REP_310

SOURCE_DEF This is the Source Definitions file created by executing the
DEFGEN utility on the source database and copied over to
the target machine. This can be either a relative or fully
qualified path to this definition file on the target system.
Include the /dirdef subfolder as part of the path. Suggested
naming convention is DEF_Datasource Num Id.def, for
example ./dirdef/DEF_310.def

Note that the file name is usually the same as the one
defined for DEFSFILE but the paths are usually different as
DEFSFILE includes the path where Oracle GoldenGate is
stored on the source system, while SOURCE_DEFS
includes the path where Oracle GoldenGate is installed on
the target system.

REMOTE_HOST IP address or Host Name of the target machine where the
Replicat process runs.

REMOTE_TRAIL Path and name of the trail file on target system. Can be a
relative or fully qualified path though the actual file name
must be two characters. In the example below, 'tr' is the
name of the trail file.

Example: ./dirdat/tr
BIA_GG_USER_ID Database user dedicated to the Oracle GoldenGate

processes on the target database, for example GG_USER

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-14

Parameter Description

BIA_GG_PASSWORD Password for the database user dedicated to the Oracle
GoldenGate processes on the target database.

By default, the password is stored as clear text in the
generated parameter file. If an encrypted value is desired,
use the ENCRYPT PASSWORD utility and edit the
generated parameter files accordingly. Example:
GG_PASSWORD

BIA_GG_PORT Port used by the Oracle GoldenGate Manager Process on
the target system. The default value when Oracle
GoldenGate is installed is 7809.

The procedure automatically creates subfolders under a folder you specify. The naming
convention is DSN_DATASOURCE_NUM_ID where DATASOURCE_NUM_ID is the value
you specify when executing this procedure. For example, if you specify 310 as the value for
DATASOURCE_NUM_ID, there will be a folder named DSN_310. Under this folder are two
more subfolders, 'source' and 'target'. The 'source' folder contains all of the files that need to
be copied to the source system, while 'target' contains all of the files that need to be copied to
the target system.

Tip:

The parameter files that are generated include all tables used by all ETL
references. The reference that uses the table is identified in the parameter file. If
you are not executing all ETL references, you may want to consider identifying the
references you are not executing and removing the corresponding tables from the
parameter files so that they are not replicated. This keeps the overall size of the
SDS down.

About JD Edwards Support

The JDE application spreads data across up to four databases. Each database instance must
be assigned its own extract/datapump processes and a separate corresponding replicat
process. If the JDE components are on a single database, generate a single set of parameter
files. If the JDE components are spread across two, three or four databases, generate a
corresponding number of parameter files.

Keep the following in mind when generating the parameter files. Execute the procedure for
each database instance. The name of each process and trail file should be unique. The
following example assumes all four components are on different databases:

Component Extract
Name

Data
Pump
Name

Extract
Trail

Defs File Replicat
Name

Replicat
Trail

Source Defs

Control EX_410A DP_410A ./dirdat/ta ./dirdef/
DEF_310A.def

REP_410
A

./dirdat/ta ./dirdef/
DEF_310A.def

Data EX_410B DP_410B ./dirdat/tb ./dirdef/
DEF_310B.def

REP_410
B

./dirdat/tb ./dirdef/
DEF_310B.def

Data Dictionary EX_410C DP_410C ./dirdat/tc ./dirdef/
DEF_310C.def

REP_410
C

./dirdat/tc ./dirdef/
DEF_310C.def

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-15

Component Extract
Name

Data
Pump
Name

Extract
Trail

Defs File Replicat
Name

Replicat
Trail

Source Defs

System EX_410D DP_410D ./dirdat/td ./dirdef/
DEF_310D.def

REP_410
D

./dirdat/td ./dirdef/
DEF_310D.def

About PeopleSoft Learning Management Support

PeopleSoft has a Learning Management pillar which is tightly integrated with the
Human Capital Management pillar. HCM can be deployed without LM but LM cannot
be deployed without HCM. When both are deployed, BI Applications treats the HCM
with LM pillars in a similar fashion as it treats JDE: the data is spread across two
databases but is treated as a single application. As with the JDE application, in this
configuration each database instance must be assigned its own extract/datapump
processes and a separate corresponding replicat process.

Keep the following in mind when generating the parameter files.Execute the procedure
for each database instance. The name of each process and trail file should be unique.

Component Extract
Name

Data
Pump
Name

Extract
Trail

Defs File Replicat
Name

Replicat
Trail

Source Defs

HCM Pillar EX_518A DP_518A ./dirdat/ta ./dirdef/
DEF_518A.def

REP_518
A

./dirdat/ta ./dirdef/
DEF_518A.def

LM Pillar EX_518B DP_518B ./dirdat/tb ./dirdef/
DEF_518B.def

REP_518
B

./dirdat/tb ./dirdef/
DEF_518B.def

Configure the Source System

Copy all of the files from the 'source' directory on the ODI client to the corresponding
directories in the source system:

Copy the following file to the <ORACLE OGG HOME> directory:

• ADD_TRANDATA.txt

Copy the following files to the <ORACLE OGG HOME>/dirprm directory:

• DEFGEN.prm

• EXTRACT_NAME.prm where <EXTRACT_NAME> is the value specified when
generating the parameter files.

• DATAPUMP_NAME.prm where <DATAPUMP_NAME> is the value specified when
generating the parameter files.

Edit the Extract parameter file

By default, the procedure creates a basic set of parameter files that do not include
support for a variety of features. For example, the parameter files do not include
support for Transparent Data Encryption (TDE) or unused columns. The procedure
also does not include the options to encrypt data.

If your source tables have unused columns, edit the Extract parameter file to include
DBOPTIONS ALLOWUNUSEDCOLUMN. If encrypting the data is desired, edit the
parameter files to add the ENCRYPTTRAIL and DECRYPTTRAIL options.

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-16

To support such features, edit the generated parameter files using the GGSCI EDIT PARAMS
<parameter file> command. Also edit the generated param files to implement various tuning
options that are specific to the environment.

Start the GGSCI command utility from the <ORACLE OGG HOME> directory. Execute the
following command to edit the Extract parameter file - this should open the Extract parameter
file you copied to <ORACLE OGG HOME>/dirprm:

GGSCI>EDIT PARAMS <EXTRACT_NAME>

Save and close the file.

Enable Table Level Logging

Oracle GoldenGate requires table-level supplemental logging. This level of logging is only
enabled for those tables actually being replicated to the target system. The SDS Parameter
file generator creates 'ADD_TRANDATA.txt' file to enable the table-level logging. This script is
executed using the GGSCI command with the OGG database user. This user must be
granted the ALTER ANY TABLE privilege prior to executing this script. Once the script
completes, this privilege can be removed. Alternatively, edit the script file to use a database
user with this privilege. When the OGG database user is originally created, the ALTER ANY
TABLE privilege is granted at that time. Once the script to enable table level supplemental
logging completes, this privilege can be revoked from the OGG user.

Start the GGSCI command utility from the <ORACLE OGG HOME> directory and execute
the following command:

GGSCI> obey ADD_TRANDATA.txt

Exit GGSCI, then connect to the database and revoke the ALTER ANY TABLE privilege.

Note:

If a table does not have a primary key or any unique indexes defined, you may see
a warning message like the following. This is a warning that a 'pseudo' unique key
is being constructed and used by Oracle GoldenGate to identify a record.
Performance is better if a primary key or unique index is available to identify a
record but as we generally cannot add such constraints to an OLTP table when they
do not already exists, Oracle GoldenGate creates this pseudo unique key.

WARNING OGG-00869 No unique key is defined for table 'FA_ASSET_HISTORY'.
All viable columns will be used to represent the key, but may not guarantee
uniqueness. KEYCOLS may be used to define the key.

Generate Data Definition File on the Source System

As the source and target tables do not match exactly, configure the Replicat process to use a
data definition file which contains definitions of the tables on the source system required to
map and convert data. The procedure generates a basic DEFGEN.prm file used to create a
data definition file. If required, edit this file to reflect your environment. For example, the
DEFGEN.prm file does not leverage the encryption option, so if this or other options are
desired, edit the parameter file to enable them.

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-17

To edit the DEFGEN.prm file, start the GGSCI command utility from the Oracle
GoldenGate home directory. Execute the following command to open and edit the
DEFGEN.prm file you copied to <ORACLE OGG HOME>/dirprm:

GGSCI>EDIT PARAMS DEFGEN

Save and close the file and exit GGSCI, then run the DEFGEN utility. The following is
an example of executing this command on UNIX:

defgen paramfile dirprm/defgen.prm

A data definition file is created in the ORACLE OGG HOME/ folder with the path and
name specified using the DEFSFILE parameter. FTP the data definition file to the
ORACLE OGG HOME/dirdef folder on the remote system using ASCII mode. Use
BINARY mode to FTP the data definitions file to the remote system if the local and
remote operating systems are different and the definitions file is created for the remote
operating system character set.

Configure the Target System

Copy all of the files from the 'target' directory on the ODI client to the corresponding
directories in the target system.

Copy the following file to the <ORACLE OGG HOME>/dirprm directory in the target
system:

• REPLICAT_NAME.prm where <REPLICAT_NAME> is the value specified when
generating the parameter files.

Edit the Replicat Parameter File

By default, the procedure creates a basic set of parameter files that do not include
support for a variety of features. For example, the parameter files do not include
support for Transparent Data Encryption (TDE) or unused columns. The procedure
also does not include the options to encrypt data.If encrypting the data is desired, edit
the generated parameter files to add the ENCRYPTTRAIL and DECRYPTTRAIL
options. To support such features, edit the generated parameter files using the GGSCI
EDIT PARAMS parameter file command. Also edit the generated param files to
implement various tuning options that are specific to the environment.

Start the GGSCI command utility from the <ORACLE OGG HOME> directory. Execute
the following command to edit the Extract parameter file. This should open the
Replicat parameter file - this should open the Replicat parameter file you copied to
ORACLE OGG HOME/dirprm:

GGSCI>EDIT PARAMS <REPLICAT_NAME>

Save and close the file, and exit GGSCI.

Create a Checkpoint Table (Optional)

The procedure does not account for a checkpoint table in the target system. A
checkpoint table is not required but is recommended; in which case, create a
checkpoint table and edit the GLOBALS param file to reference this table.

Start the GGSCI command utility:

GGSCI> EDIT PARAMS ./GLOBALS
CHECKPOINTTABLE <OGG User>.<Table Name>

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-18

Save and close the file, then run the following commands:

GGSCI> DBLOGIN USERID <OGG User> PASSWORD <OGG Password>GGSCI> ADD CHECKPOINTTABLE
<OGG User>.<Table Name>

Setup Step: Start Oracle GoldenGate on Source and Target Systems
Start Oracle GoldenGate on source and target systems.

1. Start Oracle GoldenGate on the source system.

Use the following command to start the Extract and Data Pump processes on the source
system.

START MGR
--Start capture on primary database
START <name of Extract process>

--Start pump on primary database
START <name of Data Pump process>

Example:

START MGR
--Start capture on primary database
START EXT_310

--Start pump on primary database
START DP_310

2. Start Oracle GoldenGate on the target system.

Use the following command to start the Replicat process in the target system.

START MGR
--Start delivery on target database
START <name of Replicat process>

Example:

START MGR

--Start capture on primary database
START REP_310

Replicate Views from Source
The ready-to-use "Generate SDS DDL" schema (warehouse) for Oracle GoldenGate creates
source "Views" as "Tables". This is the expected behavior because Oracle GoldenGate can't
replicate views from source.

When Oracle GoldenGate is the replication technology, the mappings that use a view as
source are set to run in the non-SDS mode. Such mappings try to directly connect to the
source OLTP. If you have any security restrictions on connecting directly to the source OLTP,
then such mappings fail.

1. Create tables or materialized views on top of views in the OLTP schema and trigger a
process to refresh these objects in OLTP before the ETL process starts.

2. Replicate these materialized views to the target tables in the SDS using Oracle
GoldenGate.

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-19

Ensure that the SDS schema has these views as tables and that the first time
replication is a full load of views to the target SDS tables.

3. Populate CDC$_SRC_LAST_UPDATE_DATE and CDC$_DML_CODE with thw current date
and 'I'.

For incremental, you can create a materialized view on the source OLTP on top of
the view using this SQL command:

CREATE MATERIALIZED VIEW test_mv BUILD IMMEDIATE
REFRESH COMPLETE ON DEMAND AS select * from test_v;

In this SQL command, you can set REFRESH to FORCE or COMPLETE. For any
change in the underlying view definition, you must recreate the materialized view
before you run the load plans. Use the Oracle Database procedure,
DBMS_MVIEW.REFRESH, to recreate the materialized view.

4. From the generated Replicat parameter file, remove the complete entry for these
views and add a normal entry like:

Test_v
MAP ggtest.test_mv; TARGET ankur_test.test_v,COLMAP (USEDEFAULTS,
CDC$_SRC_LAST_UPDATE_DATE = @GETENV
('GGHEADER','COMMITTIMESTAMP'),CDC$_DML_CODE =
 'I'),KEYCOLS(COL1,COL2,COL3);

Note:

An Oracle Data Integrator procedure generates the Oracle GoldenGate
Replicat parameter files for Oracle BI Applications.

If no PK is defined on the target system, then you must select the appropriate key
columns and define them in the Replicat processes of Oracle GoldenGate using
the KEYCOLS keyword. In Oracle Data Integrator, alter the source OLTP
connection to point to the SDS. If you encounter performance issues because the
views contain a large amount of data, then you must explore an alternate
approach to achieve this view replication.

List of such views in E-Business Suite:

• PO_VENDORS

• JTF_TASK_ASSIGNMENTS

• GL_SETS_OF_BOOKS

• ORG_ORGANIZATION_DEFINITIONS

• BOM_BILL_OF_MATERIALS

• MTL_ITEM_LOCATIONS_KFV

• CST_ORGANIZATION_DEFINITIONS

• CS_LOOKUPS

• PA_EGO_LIFECYCLES_PHASES_V

• GL_CODE_COMBINATIONS_KFV

Chapter 4
Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema

4-20

• PON_AUCTION_HEADERS_ALL_V

• MTL_ITEM_CATALOG_GROUPS_B_KFV

• AP_INVOICES_V

• PER_WORKFORCE_CURRENT_X

List of such views in PeopleSoft:

• CM_ITEM_METH_VW

• DEPENDENT_BENEF

• EMPLOYMENT

• PERSON_ADDRESS

ETL Customization
Learn about SDS considerations for ETL customization.

Adding a Non-Custom Source Column to an Existing ETL Task

All columns in each source table are replicated. If you extend an existing ETL task with a
column that is a standard part of the source system, no special steps are required.

Adding a Custom Source Column to an Existing ETL Task

If you add a custom source column to the ETL task, the Oracle GoldenGate process already
extracts from this table and needs to be modified to include this column in the extract. In
addition, the SDS table must be altered to include this column.

Run the RKM to add the column to the ODI model, then use the SDS DDL generator in
incremental mode to add this column to the SDS table. If the SDS has already been
populated with data, repopulate it by running the SDS Copy to SDS procedure, providing the
customized table in the Table List parameter.

Adding a Non-Custom Source Table to an Existing ETL Tas

In cases where an ETL task is customized to use an additional table that is included as part
of the standard OLTP application, if the table is already used by another ETL task then that
table should already exist in the ODI model and is already replicated in the SDS. No special
steps are required.

If the table is not already used by any other ETL task, run the RKM to add the table to the
ODI model and use the SDS DDL generator in incremental mode to add this table to the SDS
schema. Use one of the initial load options with this table in the Table List to repopulate the
table. Regenerate the SDS parameter files to ensure the table is included as part of the
replication process.

Creating a Custom ETL Task

If a custom ETL task sources a table that is already extracted from, no special steps are
required. However, if the custom task extracts from a new table that is not already included
as part of the standard Oracle BI Applications source-specific model, run the RKM to add the
table to the ODI model and use the SDS DDL generator in incremental mode to add this table
to the SDS schema. Use one of the initial load options with this table in the Table List to
repopulate the table. Regenerate the SDS parameter files to ensure the table is included as
part of the replication process.

Chapter 4
ETL Customization

4-21

Patching
After releasing Oracle BI Applications, Oracle may release patches. This section
discusses patches that impact SDS related content and considerations when
deploying those patches.

Patch Applied to ODI Datastores or Interfaces

ODI datastores and interfaces are the only Oracle BI Applications content that impacts
SDS related content. Applied patches that impact OLTP-specific datastores are
relevant to the SDS.

It is possible that an applied patch could change the definition of an OLTP-specific
datastore, for example adding a column or changing a column's size or datatype. A
patch could also introduce a new table. In these cases, run the SDS DDL generator in
incremental mode, providing the list of datastores that are patched. Execute the
generated DDL against the SDS schema. In case of a new column or table being
introduced, run the initial load, specifying just the new or changed table in the table list
in the provided procedure.

A patch could impact an interface by adding a new OLTP table from which data must
be extracted. In the previous step, you would have generated the DDL and DML to
create and populate this table. Run the Oracle GoldenGate parameter generator
procedure to recreate the required parameter files and redeploy to the source and
target systems. To create and recreate parameter files, see Setup Step: Generate and
Deploy Oracle GoldenGate Parameter Files to Source and Target Machines.

Patch Applied to SDS-Related Procedure

In the case an SDS-related procedure is replaced by a patch, depending on the nature
of the reason for the patch, it may be necessary to re-execute the procedure and re-
deploy its output. If the patch is related to the SDS DDL or SDS Copy procedures, the
procedure can be run in incremental mode to make some changes to the SDS or in full
mode to completely replace the SDS. The patch notes will describe exactly what must
be done to implement the patched procedure.

Troubleshooting Oracle GoldenGate and SDS
Review these troubleshooting tips and resolutions for common errors encountered
during setup of Oracle GoldenGate and SDS.

Topics:

• Create the SDS Tables

• Using the DML Option to Perform an Initial Load

• Create SDS Indexes and Analyze the SDS schema

Create the SDS Tables
If you encounter any issues with the script generated by the GENERATE_SDS_DDL
procedure, verify the following have been correctly set.

• The model you are specifying is associated with a logical schema.

Chapter 4
Patching

4-22

• The logical schema's DATASOURCE_NUM_ID flexfield is assigned a numeric value. A
value is automatically assigned when a datasource is registered in Configuration
Manager.

• The logical schema is mapped to a physical schema in the context (for example, Global)
you are executing the procedure with. The physical schema is automatically mapped to
the Global context when the datasource is registered in Configuration Manager.

• The physical schema's DATASOURCE_NUM_ID flexfield is assigned the same numeric
value as the logical schema. A value is automatically assigned when a datasource is
registered in Configuration Manager.

• Under the same context, a physical schema is mapped to the DW_BIAPPS11G logical
schema, for example BIAPPS_DW.OLAP.

• A new SDS physical schema has been added to the same physical server, for example
BIAPPS_DW.SDS_EBS_12_2_310. This physical schema is manually added.

• The physical schema's DATASOURCE_NUM_ID flexfield is assigned the same numeric
value as used previously. This value is manually assigned.

The following are some common error messages and issues you may encounter.

• com.sunopsis.tools.core.exception.SnpsSimpleMessageException:
com.sunopsis.tools.core.exception.SnpsSimpleMessageException:
Exception getSchemaName("[logical schema name]", "D") :
SnpPschemaCont.getObjectByIdent : SnpPschemaCont does not exist
Verify the logical schema is mapped in the context you are executing the procedure with.

• java.lang.Exception: The application script threw an exception:
java.lang.Exception: Model with code '[logical schema]' does not
exist
Verify the logical schema associated with your model has been assigned a value for the
DATASOURCE_NUM_ID flexfield.

• java.lang.Exception: The application script threw an exception:
java.lang.Exception: Can't find physical schema for connection
for DW_BIAPPS11G with DSN 310 in context Global
Verify a physical schema is created under the Data Warehouse physical server and
assigned the same DATASOURCE_NUM_ID value as assigned to the OLTP.

Using the DML Option to Perform an Initial Load
If you encounter any issues with the script generated by the COPY_OLTP_TO_SDS procedure,
verify the following have been correctly set.

A database link with the name DW_TO_OLTP is created in the database user schema used
by the data warehouse Data Server (BIAPPS_DW) that points to the OLTP database. The
procedure is executed by this user so Oracle looks for this database link in the user's
schema, not the SDS schema. You still need a database link with this name in the SDS
schema for other reasons, so you have a total of two database links to the same source
database.

The following are some common error messages and issues you may encounter.

• ODI-1228: Task Copy SDS Data (Procedure) fails on the target
ORACLE connection BI_APPLICATIONS_DEFAULT

Chapter 4
Troubleshooting Oracle GoldenGate and SDS

4-23

PL/SQL: ORA-00942: table or view does not existPLS-00364: loop index variable
'COL_REC' use is invalid"

Verify a database link named DW_TO_OLTP exists in the schema owned by the
database user associated with the DW physical server.

• Insert statement only populates the CDC$ columns
The script has statements such as the following where only the CDC$ columns are
populated:

truncate table SDS_EBS122_FULL.HR_LOCATIONS_ALL;
INSERT /*+ APPEND */ INTO SDS_EBS122_FULL.HR_LOCATIONS_ALL
(CDC$_SRC_LAST_UPDATE_DATE, CDC$_RPL_LAST_UPDATE_DATE, CDC$_DML_CODE) SELECT
SYSDATE, SYSDATE, 'I'
FROM HR_LOCATIONS_ALL@DW_TO_OLTP;

Verify the database link DW_TO_OLTP is pointing to the correct OLTP database.
The procedure gets a column list from the data dictionary on the OLTP database
for the tables that correspond to the SDS tables. If the database link points to the
wrong database, a column list will not be retrieved.

Create SDS Indexes and Analyze the SDS Schema
When executing the script to create indexes and primary key constraints on the SDS
tables, you may see some of the following error or warning messages.

• "such column list is already indexed"

You may see this message when executing the script that creates the indexes.
This message can be ignored.

Oracle GoldenGate works best when a primary key is defined on the target table in
order to determine which record to update. If a primary key is not found, the
replicat process searches for a unique index to determine which record to update.
The definition of the tables in the SDS is based on the definition in the source
system (leveraging both the application dictionary and data dictionary). If the table
does not have a primary key in the source system but does have multiple unique
indexes, a primary key may be added in the ODI definition to ensure Oracle
GoldenGate can correctly identify the record to be updated. This primary key may
be defined on the same column that a unique index is already defined on. The
DDL script creates the primary key as an index and a constraint before creating
the unique index. When creating the unique index, the database will report that the
column is already indexed.

• "column contains NULL values; cannot alter to NOT NULL"

This error can occur when a primary key constraint is being created. Primary key
constraints are introduced in ODI when a primary key is defined in the OLTP
system. A primary key constraint may also be introduced in ODI when there is no
primary key in the OLTP system for the table but the table has multiple unique
indexes; in this case, a primary key constraint is introduced to ensure Oracle
GoldenGate does not use a unique index that may not correctly identify a record
for updates. This error can occur for two reasons:

– OLTP table has Primary Key Constraint

Due to differences in patches and subversions, it is possible the OLTP
instance used to originally import the datastores from had a primary key
constraint that differs from the OLTP release you are using. If the OLTP table

Chapter 4
Troubleshooting Oracle GoldenGate and SDS

4-24

has a primary key constraint, ensure the definition in ODI matches this primary key. If
there is a difference, you can modify the Index DDL script to use the proper definition
to create the primary key constraint in the target database. You should also update
the constraint in ODI to match this definition.

If the OLTP and ODI definitions of the primary key constraint match, it is possible the
initial load process did not populate one or more of the columns that make up the
primary key. If the primary key includes a LOB or LONG datatype, data is not
replicated in these columns, which would leave the column empty. In this case, no
unique index or primary key can be created, and without data in this column the
record cannot be uniquely identified. Any ETL task that extracts from this table needs
to be modified to extract directly from the OLTP system. This is done by modifying
the load plan step for this task, overwriting the IS_SDS_DEPLOYED parameter for
that load plan step to a setting of 'N'.

If the OLTP and ODI definitions of the primary key constraint match and the key does
not include a column that has either the LOB or LONG datatype, review the initial
load files and verify whether the column is populated or not. See Using the DML
Option to Perform an Initial Load.

– OLTP table does not have Primary Key Constraint

Primary key constraints in the ODI model are introduced when a primary key may not
exist in the original table. This primary key generally matches an existing unique
index. Due to differences in patch and subversions for a given OLTP release, it is
possible that the instance used when importing a unique index had a column that is
not nullable but in another OLTP release, that column may be nullable. Unique
indexes allow null values but primary keys do not. In this case, a unique index is
created for the SDS table but the primary key constraint fails to be created. Oracle
GoldenGate uses the first unique index it finds (based on the index name) to identify
a record for update; if the index that the primary key constraint is based on is not the
first index, rename this index in ODI to ensure it will be the first. Generally, the first
unique index is the correct index to use to identify a record, in which case this error
can be ignored.

• "cannot CREATE UNIQUE INDEX; duplicate keys found"

Due to differences in patch and subversions for a given OLTP release, it is possible that
the instance used when importing a unique index uses a different combination of columns
than are used in your particular release of the same OLTP. For example, the OLTP
subversion used to import an index uses 3 columns to define the unique index but a later
subversion uses 4 columns, and you are using this later subversion. Check the definition
of the unique index in your OLTP instance and modify the index script and corresponding
constraint definition in ODI to match.

Setting up Ledger Correlation using Oracle GoldenGate
Reconcile ledger information available in your Oracle E-Business Suite and Oracle Fusion
Applications using Oracle GoldenGate.

If you are analyzing data sourced from Oracle E-Business Suite and Oracle Fusion
Applications and are using the Fusion GL Accounting feature, then you can drill in analyses
from Fusion GL balances to related detailed EBS ledger information. This ledger correlation
is supported by Oracle GoldenGate replication, and requires Oracle GoldenGate
configuration on your source systems.

After setting up the required Oracle GoldenGate configurations on the sources, you need to
expose the following Presentation columns in the applicable reports to support drilling:

Chapter 4
Setting up Ledger Correlation using Oracle GoldenGate

4-25

• Target GL Account ID for GL Account of subject area Financials – GL Balance
Sheet.

• Target Ledger ID for Ledger

• Target Fiscal Period ID for Time

• Dim – Ledger.Source ID (Data Source Num ID)

For information about working with Presentation columns, see Managing Metadata
Repositories for Oracle Analytics Server.

Chapter 4
Setting up Ledger Correlation using Oracle GoldenGate

4-26

	Contents
	Preface
	Functional Setup Manager - Statement of Direction
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 About Multi-Language Support
	About Pseudo-Translations
	About Oracle BI Applications Domains
	About Dimension Translation Tables

	2 Localizing Oracle Business Intelligence Deployments
	Maintaining Translation Tables Workflow for Oracle Analytics
	Adding String Localizations for Oracle BI Repository Metadata

	About Translating Presentation Services Strings
	Changing the Default Currency in Oracle BI Applications

	3 Oracle Business Analytics Warehouse Naming Conventions
	Naming Conventions for Oracle Business Analytics WarehouseTables
	Table Types for Oracle Business Analytics Warehouse
	Aggregate Tables in Oracle Business Analytics Warehouse
	Dimension Class Tables in Oracle Business Analytics Warehouse
	Dimension Tables in Oracle Business Analytics Warehouse
	Dimension Tables With Business Role-Based Flags
	Fact Tables in Oracle Business Analytics Warehouse
	Helper Tables in Oracle Business Analytics Warehouse
	Hierarchy Tables in Oracle Business Analytics Warehouse
	Mini-Dimension Tables in Oracle Business Analytics Warehouse
	Staging Tables in Oracle Business Analytics Warehouse
	Translation Tables in Oracle Business Analytics Warehouse

	Internal Tables in Oracle Business Analytics Warehouse
	Standard Column Prefixes in Oracle Business Analytics Warehouse
	Standard Column Suffixes in Oracle Business Analytics Warehouse
	System Columns in Oracle Business Analytics WarehouseTables
	Multi-Currency Support for System Columns
	Oracle Business Analytics Warehouse Primary Data Values
	About Multi-Language Support in Oracle Business Analytics Warehouse
	Oracle Business Analytics Warehouse Currency Preferences

	4 Administering Oracle GoldenGate and Source Dependent Schemas
	Source Dependent Schema Architecture
	Tasks for Setting Up Oracle GoldenGate and the Source Dependent Schema
	Setup Step: Configure Source and Target Database
	Setup Step: Install Oracle GoldenGate on Source and Target Systems
	Setup Step: Configure Configuration Manager and ODI to Support the Source Dependent Schema
	Adding SDS Physical Schemas in ODI

	Setup Step: Generate, Deploy, and Populate the Source Dependent Schema Tables on Target Database
	Setup Step: Generate and Deploy Oracle GoldenGate Parameter Files to Source and Target Systems
	Setup Step: Start Oracle GoldenGate on Source and Target Systems
	Replicate Views from Source

	ETL Customization
	Patching
	Troubleshooting Oracle GoldenGate and SDS
	Create the SDS Tables
	Using the DML Option to Perform an Initial Load
	Create SDS Indexes and Analyze the SDS Schema

	Setting up Ledger Correlation using Oracle GoldenGate

