
Oracle® Data Relationship
Management Suite
Administrator's Guide

Release 11.2.x
F13691-07
November 2025

Oracle Data Relationship Management Suite Administrator's Guide, Release 11.2.x

F13691-07

Copyright © 1999, 2025, Oracle and/or its affiliates.

Primary Author: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Documentation Accessibility

 Documentation Feedback

1 Revision History

2 About Data Relationship Management Suite

3 Getting Started

Administering Data Relationship Management Applications 1

Accessing Data Relationship Management 1

Changing Passwords 2

Troubleshooting and Tips 2

4 Managing Users

User Permissions 1

User Roles 6

Analytics Roles 10

Creating Users 11

User Authentication 12

Modifying Users 13

Changing Passwords 13

Locking Out Users 13

Unlocking Users 14

Changing User Roles and Assignments 14

Deleting Users 14

Viewing User Login Status 15

System Defined Users 15

Common User Provisioning 15

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page i of v

Prerequisites 16

Provisioning Users and Groups 16

Synchronizing Data Relationship Management Users and Group Membership 16

Manual Synchronization 17

Scheduled Synchronization 17

Partial Synchronization 17

5 Managing Node Access Groups

Workflow Group Type Node Access Levels 2

Creating Node Access Groups 3

Editing Node Access Groups 3

Deleting Node Access Groups 4

Assigning Node Access Group Security 4

6 Managing Object Access Groups

Creating Object Access Groups 2

Editing Object Access Groups 2

Deleting Object Access Groups 3

7 Managing Domains

Creating Domains 1

Editing Domains 2

Deleting Domains 2

8 Managing Property Categories

Property Categories 1

Creating Property Categories 2

Editing Property Categories 2

Deleting Property Categories 3

9 Managing Property Definitions

Data Types 2

External Lookups 4

Creating Properties 4

Using Hierarchy Constraints 8

Editing Property Definitions 9

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page ii of v

Deleting Properties 10

10

Managing Validations

Validation Classes 1

Validation Levels 4

Creating Validations 6

Creating a Script Validation for Move 7

Assigning Validations 7

Editing Validations 8

Deleting Validations 8

11

Managing Formulas

Working with Functions 1

Special Characters 1

Literals 2

Format String Parameter 2

Date-Time Format Strings 4

Formula Evaluation 6

Formula Syntax Checks 6

Property Names in the Syntax Check 7

Considerations for Using Formulas 7

Creating Formulas 9

Function Definitions 9

Function Groups 58

12

Managing Dynamic Scripts

Execution Contexts 1

Derived Properties Using Scripts 1

Validations Using Scripts 2

Governance Requests Using Scripts 3

Enumeration Constants 4

Supported JavaScript Data Types 4

Data Type Conversions 6

Formatting Numbers 7

Formatting Dates 9

Data Relationship Management Objects 10

Execution Environment 23

Creating Dynamic Scripts 25

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page iii of v

13

Managing Node Types

Defining Node Types 1

Editing Node Types 1

Deleting Node Types 2

Working with Node Glyphs 2

14

Working with System Preferences

System Preferences 1

Setting Transaction History Logging Levels 9

Setting Up Change Approval 10

Configuring System Preferences 11

15

Working with External Connections

Defining External Connections 1

Editing External Connections 5

Deleting External Connections 5

16

Configuring Governance Workflows

Managing Workflow Tasks 1

Task Properties 1

Task and Property Instructions 1

Task Validations 2

Calculated Name and Parent Properties 2

External Commits 3

Creating Workflow Tasks 3

Editing Workflow Tasks 6

Copying Workflow Tasks 6

Deleting Workflow Tasks 7

Managing Workflow Models 7

Workflow Stages 7

Model Filters 12

Request and Claim Duration 12

Creating Workflow Models 13

Editing Workflow Models 14

Copying Workflow Models 15

Renaming Workflow Models 15

Hiding Workflow Models 15

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page iv of v

Deleting Workflow Models 16

17

Managing Data Relationship Management Analytics

Accessing Data Relationship Analytics 2

Working with Preferences 2

Working with Execution Plans 3

Creating Execution Plans 3

Editing Execution Plans 4

Inactivating and Reactivating Execution Plans 4

Deleting Execution Plans 5

Viewing Activity 5

18

Integrating External Workflow Applications

External Requests 1

19

Migrating Data Relationship Management Metadata

Opening the Migration Utility 2

Extracting Metadata 2

Loading Metadata 4

Comparing Metadata 5

Viewing Metadata 6

Metadata File Restrictions 6

Generating Reports 6

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page v of v

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page i of i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Documentation Feedback

To provide feedback on this documentation, click the feedback button at the bottom of the page
in any Oracle Help Center topic. You can also send email to epmdoc_ww@oracle.com.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page i of i

1
Revision History

The following topics have been updated in this release of the guide:

Topic Change

Data Types Added note to both Float and Integer that 0 will
export if no default value has been defined.
Added information that data types Date, Date/
Time, and Time are formatted in the invariant
culture.

Function Definitions Updated the Equals function to say that the
comparison is case sensitive.

Creating Dynamic Scripts Added note that when calculating parent
names, any use of special characters must
follow the standard JavaScript rules for
escaping special characters.

Migrating Data Relationship Management
Metadata

Added a note to indicate that the connection
string, user ID, and password for external
connections do not migrate with migration
loads and extracts.
Added a new section called "Migrating Core
Property Configurations and Settings".

Data Relationship Management Objects Updated description for the
NodeNamePendingInRequest method for
RequestItemObject.

Calculated Name and Parent Properties Added note to clarify behavior when name or
parent is manually overridden.

Creating Workflow Models Added note to Recalculate Task Properties
bullet in step 6 to clarify behavior when name
or parent is manually overridden.

Managing Dynamic Scripts Updated description for NodeExists(abbrev) in
HierarchyObject Methods table
Added 2 new properties to
RequestItemDetailObject:
• CalcValue
• HasCalcValue

Notifications Various updates to clarify and update
notification behavior.

Supported JavaScript Data Types Added note to clarify using an Array.

Creating a Script Validation for Move Added new topic Creating a Script Validation
for Move

System Preferences Added a note to description for the
FindByProperties system preference.
Updated descriptions for SharedNodeDelimiter
and SharedNodeSequenceSeparator system
preferences.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 2

Topic Change

Function Definitions Clarified the local use of several functions.

Troubleshooting and Tips Added a new section "Troubleshooting and
Tips" to the Getting Started chapter.
Added workaround information about pasting
into fields.
Added application performance information.

Validation Classes Added recommendation that UniqueProp
validation use indexed properties.

Chapter 1

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 2

2
About Data Relationship Management Suite

Oracle Data Relationship Management Suite consists of:

• Oracle Data Relationship Management

• Oracle Data Relationship Management Read Only Access

• Oracle Data Relationship Steward

• Oracle Data Relationship Governance

• Oracle Data Relationship Management Analytics

• Oracle Data Relationship Management for Oracle Hyperion Enterprise Planning Suite

• Oracle Data Relationship Management for Oracle Hyperion Financial Close Suite

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 1

3
Getting Started

Related Topics

• Administering Data Relationship Management Applications

• Accessing Data Relationship Management

• Troubleshooting and Tips

Administering Data Relationship Management Applications
Oracle Data Relationship Management uses applications to manage data and service user
requests for accessing and changing data. A single Data Relationship Management installation
can support one or more applications. Each application uses its own system metadata and
security configuration to manage and access data. The same application can support multiple
data sets and multiple users with various levels of access to common and restricted sets of
data. However, all system metadata within an application is shared and administered by the
same users. Any changes to system metadata take effect immediately and all users and data
may be affected. If different user groups need to be isolated from any metadata changes being
made by another group, it is recommended that each group use a separate application.

Applications are created in the Configuration Console which is accessible from the Data
Relationship Management primary application server. For more information on creating a new
application, see "Creating an Application" in the Oracle Data Relationship Management
Installation Guide.

A new Data Relationship Management application includes core metadata objects such as
property definitions and categories and a default administrative user. This initial configuration
enables the default user to perform four tasks to build, populate, and provision the application:

• Create versions and hierarchies

• Define user metadata objects such as queries, compares, imports, blenders, and exports

• Set up and configure system metadata objects including domains, property definitions,
validations, and node types

• Add users and configure security to access product features, objects, and data

This guide covers the administration tasks related to system metadata and user security for
Data Relationship Management applications. See the Oracle Data Relationship Management
User's Guide for information on managing versions, hierarchies, and user metadata objects.

Accessing Data Relationship Management
To start the Oracle Data Relationship Management client:

1. Select Start, then Programs, then Oracle EPM System, then Data Relationship
Management, then Web Client .

2. Enter your user name and password.

User names and passwords are case-sensitive.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 2

3. Select an application and click Log On.

For more information, see Changing Passwords.

Changing Passwords
To change a password:

1. From the Oracle Data Relationship Management Home page, select Preferences.

2. Click Change My Password.

3. Type the current password.

4. Type the new password.

Note

When a user is authenticated natively and the PasswordPolicyEnabled system
preference is set to True, a password must contain three of the following
elements:

• Uppercase letters

• Lowercase letters

• Numbers

• Special characters

Note

Otherwise, the password is not restricted unless by an external directory when the
user is authenticated via Oracle Hyperion Shared Services.

5. Type the new password again.

6. Click OK.

Troubleshooting and Tips
Pasting Into Entry Fields

In some cases, content cannot be pasted from the clipboard by using right click and then
Paste. To workaround this issue, use Ctrl-V or click Edit and then select Paste to paste
content from the clipboard.

Application Performance

In order to maintain application performance, a standard programming practice has been
employed to leverage a feature known as String Interning which provides more rapid access to
string data. String Interning is where an immutable copy of each string is stored once and is
maintained for subsequent access while the application is running. Therefore, as data is
accessed and content is managed, the apparent memory footprint of the engine will grow
incrementally until the application is restarted.

Chapter 3
Troubleshooting and Tips

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 2

4
Managing Users

Related Topics

• User Permissions

• User Roles

• Creating Users

• User Authentication

• Modifying Users

• Deleting Users

• Viewing User Login Status

• System Defined Users

• Common User Provisioning

User Permissions
Oracle Data Relationship Management uses three levels of permissions to control user access
to product features and data. Some higher-level permissions also include lower-level
permissions. If a user is granted higher-level permission, then all lower-level permissions are
also granted. For example, if a user is granted a Level 1 permission, they are also granted all
Level 2 and 3 permissions below it.

Version Permissions

Table 4-1 Version Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Versions––User has access to
Version and Hierarchy menu options

Browse Versions––Users have access
to any version that they are granted
rights to in Node Access Groups

NA

Create Versions––Users can manage
(update/delete) any version of which
they are the owner. User has access to
Version menu options.

Note: The user who creates a version is
the owner until a user with Manage
Versions permission changes the
owner.

NA

Manage Hierarchies––Users have
access to Hierarchy menu options.

Browse Hierarchies––Users have
access to any hierarchy that they are
granted rights to in Node Access
Groups. Users have access to Node
menu options if they have Edit node
access or greater.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 17

Table 4-1 (Cont.) Version Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Create Hierarchies––Users can
manage (update/delete) any hierarchy
of which they are the owner. Users have
access to Hierarchy menu options.
Users can disable node types for any
hierarchy of which they are the owner.

Note: The user who creates a hierarchy
is the owner until a user with Manage
Hierarchies permission changes the
owner.

Request Permissions

Table 4-2 Request Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Requests––Users can delete
any request in the system that has not
already been committed.

Create Requests––Users can query
any request in the system and can
manage (update/delete) any request of
which they are the owner.

NA

Workflow Participant––Users can
participate in requests using
governance workflow models.

NA NA

Query Permissions

Table 4-3 Query Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Queries––Users have
access to system queries and to Query
menu options. Users have restricted
access to Version, Hierarchy, Node, and
Property selectors based on Node
Access Group assignments and
Property Category security.

Manage User Queries––Users have
access to view and run User and
Standard queries. Users do not have
access to Query menu options for
Standard Queries. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security.

Run Query––Users can view and run
any Standard query. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security. Users have
access to Node menu options if they
have Edit node access or greater.

Manage Standard Queries––Users
have access to Query menu options for
Standard queries. Users have restricted
access to Version, Hierarchy, Node, and
Property selectors based on Node
Access Group assignments and
Property Category security.

NA

Chapter 4
User Permissions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 17

Compare Permissions

Table 4-4 Compare Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Compares––Users
have access to system compares and
Compare menu options. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security.

Manage User Compares––Users have
access to view and run User and
Standard compares. Users do not have
access to Compare menu options for
Standard Compares. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security.

Run Compare––Users can view and
run any Standard compare. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security. Users have
access to Node menu options if they
have Edit node access or greater.

Manage Standard Compares––Users
have access to Compare menu options
for Standard compares. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security.

NA

Import Permissions

Table 4-5 Import Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Imports––Users have
access to system imports and Import
menu options. Users have restricted
access to Property selector based on
Property Category security.

Manage User Imports––Users have
access to view and run User and
Standard imports. Users do not have
access to Import menu options for
Standard Imports. Users have restricted
access to Property selector based on
Property Category security.

Run Import––Users can view and run
any Standard import. Users have
restricted access to Property selector
based on Property Category security.

Manage Standard Imports––Users
have access to Import menu options for
Standard imports. Users have restricted
access to Property selector based on
Property Category security.

NA

Blender Permissions

Table 4-6 Blender Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Blenders––Users
have access to system blenders and
Blender menu options. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security.

Manage User Blenders––Users have
access to view and run User and
Standard blenders. Users do not have
access to Blender menu options for
Standard Blenders.

Run Blender––Users can view and run
any Standard blender. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security.

Chapter 4
User Permissions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 17

Table 4-6 (Cont.) Blender Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Standard Blenders––Users
have access to Blender menu options
for Standard blenders. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security.

NA

Export Permissions

Table 4-7 Export Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage System Exports––Users have
access to system exports and Export
menu options. Users have restricted
access to Version, Hierarchy, Node, and
Property selectors based on Node
Access Group assignments and
Property Category security.

Manage User Exports––Users have
access to view and run User and
Standard exports and books. Users do
not have access to Export menu options
for Standard exports and books. Users
have restricted access to Version,
Hierarchy, Node, and Property selectors
based on Node Access Group
assignments and Property Category
security

Run Export––Users can view and run
any Standard exports. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security.

Manage Standard Exports––Users
have access to Export menu options for
Standard exports and books. Users
have restricted access to Version,
Hierarchy, Node, and Property selectors
based on Node Access Group
assignments and Property Category
security.

NA

Script Permissions

Table 4-8 Script Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Run Action Script––Users can run
action scripts. Users have restricted
access to Version, Hierarchy, Node, and
Property selectors based on Node
Access Group assignments and
Property Category security.

NA NA

Chapter 4
User Permissions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 17

Audit Permissions

Table 4-9 Audit User Transaction Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Audit User Transactions––Users can
query any transactions that they
performed. Transactions can include
data and metadata changes and logged
actions such as Login and running
asynchronous operations. Users have
restricted access to Version, Hierarchy,
Node, and Property selectors based on
Node Access Group assignments and
Property Category security.

NA NA

Table 4-10 Audit Data Transaction Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Audit Data Transactions––Users can
query any transactions for data objects
they have access to in Permissions or
Node Access Groups. Transactions can
include transactions performed by the
user and changes made by other users.
For node-level transactions, users can
query transactions for a node and all of
its descendants (Include Child Nodes
option), assuming the user also has
read access to all descendants. Users
have restricted access to Version,
Hierarchy, Node, and Property selectors
based on Node Access Group
assignments and Property Category
security.

NA NA

Table 4-11 Audit System Transaction Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Audit System Transactions––Users
can query any transactions that they
performed. Transactions can include
data and metadata changes and logged
actions such as Login and running
asynchronous operations.

NA NA

Chapter 4
User Permissions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 17

Application Permissions

Table 4-12 Application Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Application Manage Categories Browse Categories––Users have
access to any property category that
they are granted rights to in Property
Category security.

Manage Properties Browse Properties––Users have
access to all properties for the property
categories that they are granted rights
to in Property Category security.

Manage Property Lists––User can
manage lists of values and lookup
tables for property definitions.

Manage Validations NA

Manage Node Types NA

Manage Preferences NA

Access Permissions

Table 4-13 Access Permissions

Permission Level 1 Permission Level 2 Permission Level 3

Manage Access Manage Users––Users cannot
edit or delete their own user
profile.

NA

Manage Roles––Users cannot
edit their own role assignment.

NA

Manage Access Groups––
Users cannot edit their own Node
Access Group assignment.

NA

Manage Property Access––
Users cannot edit their own
Property Category assignment.

NA

User Roles
Oracle Data Relationship Management permissions are assigned to users using Roles. Each
user role is associated with a set of permissions that provide access to product features or
data. A user can be assigned one or more roles which grants them the combined permissions
from all roles. If a user is assigned two roles that have conflicting levels of access, the user is
granted the higher level of access.

Data Relationship Management provides the following user roles with assigned permissions
marked:

Chapter 4
User Roles

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 6 of 17

Table 4-14 User Roles - Permissions

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manager

Anonym
ous
User

Applicati
on

Adminis
trator

Data
Creator

Data
Manager

Interacti
ve User

Workflo
w User

Governa
nce User

Manage
Versions

X

Browse
Versions

X X X X X X X

Create
Versions

X

Manage
Hierarchi
es

X

Browse
Hierarchi
es

X X X X X X X

Create
Hierarchi
es

X

Manage
Requests

X

Create
Requests

X X

Manage
System
Queries

X

Manage
User
Queries

X X X

Run
Query

X X

Manage
Standard
Queries

X

Manage
System
Compare
s

X

Manage
User
Compare
s

X X X

Run
Compare

X X

Manage
Standard
Compare
s

X

Chapter 4
User Roles

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 7 of 17

Table 4-14 (Cont.) User Roles - Permissions

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manager

Anonym
ous
User

Applicati
on

Adminis
trator

Data
Creator

Data
Manager

Interacti
ve User

Workflo
w User

Governa
nce User

Manage
System
Imports

X

Manage
User
Imports

X X

Run
Import

Manage
Standard
Imports

X

Manage
System
Blenders

X

Manage
User
Blenders

X X

Run
Blender

Manage
Standard
Blenders

X

Manage
System
Exports

X

Manage
User
Exports

X X X

Run
Export

X X

Manage
Standard
Exports

X

Run
Action
Script

X X X X

Audit
User
Transacti
ons

X X X X X X

Audit
Data
Transacti
ons

X X X X

Chapter 4
User Roles

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 8 of 17

Table 4-14 (Cont.) User Roles - Permissions

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manager

Anonym
ous
User

Applicati
on

Adminis
trator

Data
Creator

Data
Manager

Interacti
ve User

Workflo
w User

Governa
nce User

Audit
System
Transacti
ons

X X

Manage
Applicatio
n

X

Manage
Categorie
s

Browse
Categorie
s

X X X X X X X

Manage
Propertie
s

Browse
Propertie
s

X X X X X X X

Manage
Property
Lists

X

Manage
Validation
s

Manage
Node
Types

X

Manage
Preferenc
es

Manage
Access

Manage
Users

X

Manage
Roles

X

Manage
Access
Groups

X

Manage
Property
Access

X

Chapter 4
User Roles

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 9 of 17

Table 4-14 (Cont.) User Roles - Permissions

Permissions User Roles

Level 1 Level 2 Level 3 Access
Manager

Anonym
ous
User

Applicati
on

Adminis
trator

Data
Creator

Data
Manager

Interacti
ve User

Workflo
w User

Governa
nce User

Workflow
Participa
nt

X

Analytics Roles
Oracle Data Relationship Management Analytics roles can be combined to support multiple
functions. For example, a user with the Analytics User, Governance Manager, and Data
Manager roles would have access to all dashboards and the admin console. A user with the
Access Manager and Application Administrator roles would have access to all reports.

Table 4-15 Analytics Roles for Dashboards and Admin Console

Role Dashboards and Admin Console Permissions

Request Model Change Growth Admin Console

Analytics User X X Browse Version
and Hierarchies

Governance
Manager

X X Browse Version
and Hierarchies

Application
Administrator

X N/A

Data Manager X N/A

Table 4-16 Analytics Roles for Reports

Role Reports

User Role
Assignment

Access
Group

Membership

Hierarchy
Access
Group

Assignment

Workflow
Access
Group

Assignment

Object
Access
Group

Authorization

User Login
Activity

Metadata
Object Usage

Access
Manager

X X X X X

Application
Administrator

X X X

Data
Manager

X X

Chapter 4
User Roles

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 10 of 17

Creating Users
When you create users, you define a unique name and assign roles. If a user is not assigned
the Data Manager role, node access groups and property categories can be assigned to the
user to control their access to data.

Note

The @@ prefix on a user ID indicates an internal only user. You cannot create users
with this prefix. Other @@ users include @@SYSTEM and @@STANDARD.

To create users:

1. On the Home page, select Administer.

2. From New, select User.

3. Enter a unique user name and the full name of the user.

Note

Department, Phone, and Email Address are optional. Data governance workflow
users must have an email address configured to receive email notifications.

4. If mixed authentication is enabled for a Oracle Data Relationship Management application,
select the authentication method for the user.

• Internal––User is authenticated within Data Relationship Management.

• CSS (External)––User is authenticated externally via Oracle Hyperion Shared
Services.

5. Optional: Select from the following options:

• Password does not expire––PasswordDuration system preference setting is ignored.

• Login session does not expire––IdleTime system preference setting is ignored.

Note

If this option is selected, the maximum allowable idle time is 24 hours. After 24
hours of idle time, the login session expires.

• User is exempt from lockout measures––lockout restrictions are disregarded for this
user.

6. On the Roles tab, select roles from the Available list to assign to the user. Use the arrows
to move roles to the Selected list.

Chapter 4
Creating Users

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 11 of 17

Note

For additional information on roles, see User Roles.

7. On the Node Access Groups tab, select groups from the Available list to assign to the
user. Use the arrows to move the groups to the Selected list.

8. On the Property Categories tab. select categories from the Available list to assign to the
user. Use the arrows to move the categories to the Selected list

9. For each category in the selected list, do the following:

a. Click in the Action column and set the user's access (Read or Edit) to the category.

b. Select in the Action column to save the change.

10. Click .

The Change Password dialog box is displayed.

11. Enter a password for the user.

12. Enter the password again.

13. Optional: Select User must change password at next login to require the user to
change their password the next time they log in.

14. Click OK.

User Authentication
Oracle Data Relationship Management supports users that are natively authenticated by the
application using stored password information or users that are authenticated by an external
user directory. Each Data Relationship Management application is configured to support one or
both types of users.

You set up application authentication on the Authentication Settings tab of the Data
Relationship Management Console. For more information, see the Oracle Data Relationship
Management Installation Guide.

Values defined for the following system preferences determine the characteristics of user
passwords and when passwords expire for internal authenticated users:

• PasswordPolicyEnabled––If enabled, the password must contain three of the following
elements:

– Uppercase letters

– Lowercase letters

– Numbers

– Special characters

• PasswordMaxLength––Determines the maximum character length for passwords.

• PasswordMinLength––Determines the minimum character length for passwords.

• PasswordDuration––Determines the number of days a password is valid.

• PasswordWarningPeriod––Indicates how many days before (-) or after (+) the password
expiration date to warn users to change their password before no longer allowing them to
log in. A negative value, for example -3, indicates the user is warned at login during the 3

Chapter 4
User Authentication

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 12 of 17

days prior to password expiration. A positive value, for example 5, indicates the user is
warned at login during the 5 days after their password has expired. After the five-day
period, the user cannot login without changing the password.

Note

Changes to the PasswordDuration and PasswordWarningPeriod values do not
affect users until the next password change. For example, if PasswordDuration is
set to 30 days and the password for User1 was changed 26 days ago, the
password expires in 4 days. If you change the PasswordDuration value to 60
days, the password for User1 still expires in 4 days. After the user changes the
password, the new password expires in 60 days.

Modifying Users
You can change a user password, lockout or unlock a user, or change role, group, or category
assignments.

Changing Passwords
To change a user password:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. Click .

5. Enter a new password for the user.

6. Enter the password again.

7. Optional: Select User must change password at next login to require the user to
change their password the next time they log in.

8. Click OK.

Locking Out Users
You can lockout a user to prevent their access to a Oracle Data Relationship Management
application. When you lockout a user, you can provide a custom reason for the lockout. This
reason is displayed to the user when attempting to log into the application.

To lock out a user:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. Click .

5. Enter a reason for the lockout.

Chapter 4
Modifying Users

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 13 of 17

6. Click OK.

Unlocking Users
Unlocking a locked out user will enable their access to the application.

To unlock a user:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. Click .

5. Click OK.

Changing User Roles and Assignments
To change user roles and assignments:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. On the Roles tab, select roles from the Available list to assign to the user. Use the arrows
to move roles to the Selected list.

5. On the Node Access Groups tab, select groups from the Available list to assign to the
user. Use the arrows to move the groups to the Selected list.

6. On the Property Categories tab. select categories from the Available list to assign to the
user. Use the arrows to move the categories to the Selected list.

7. For each category in the selected list, do the following:

a. Click and set the user's access (Read or Edit) to the category.

b. Select to save the change.

8. Click .

Deleting Users
Users that are no longer active can be deleted from an application. When a user is deleted, all
of the user-level metadata objects associated with the user are also deleted. These metadata
objects include queries, compares, imports, blenders, exports, and books.

To delete a user:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. Click Delete this Item to confirm the deletion.

Chapter 4
Deleting Users

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 14 of 17

Viewing User Login Status
For each user, you can view login statistics and information:

• The date and time of the user's last valid login

• The number of invalid login attempts

• Whether the user is locked out

• The date and time the user was locked out

• The reason for the lockout

To view user login status:

1. On the Home page, select Administer.

2. Under Security, expand Users.

3. Select a user and click .

4. Select the Login Status tab.

System Defined Users
Oracle Data Relationship Management applications include four default users which are added
during the creation of an application repository.

• ADMIN––The default administrative user for an application. The password for this user is
initially configured during the repository creation process.

• @PROCESS––An internal user set up to handle inter-process communication between
server components. This user is not accessible or configurable in the Web client.
Transactions are logged for this user each time an application engine is started.

• @STANDARD––An internal user set up to manage user metadata objects in the Standard
object access group. This user is not accessible or configurable in the Web client.

• @SYSTEM––An internal user set up to manage user metadata objects in the System
object access group. This user is not accessible or configurable in the Web client.

Common User Provisioning
The Common User Provisioning feature enables users and groups to be provisioned to Oracle
Data Relationship Management applications using Oracle Hyperion Shared Services. This
configuration allows Data Relationship Management users to be provisioned in a common
location along with other Oracle EPM applications. Common User Provisioning also eliminates
the need to separately provision users in the Data Relationship Management application.
Provisioning information can be synchronized from Shared Services to Data Relationship
Management on-demand or a scheduled basis.

When a synchronization takes place, the following actions are performed in Data Relationship
Management:

• Add or update users

– User name

– Full name

Chapter 4
Viewing User Login Status

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 15 of 17

– Email address

• Assign roles to users

• Assign users to node access groups

• Assign users to property categories

• Remove user roles (if de-provisioned in Shared Services

When you enable Common User Provisioning, all external Data Relationship Management
users and their roles are managed in Shared Services and cannot be managed in Data
Relationship Management.

Prerequisites
Common User Provisioning is disabled by default in Oracle Data Relationship Management
and should only be turned on after completing the following prerequisite steps:

1. Add Data Relationship Management user roles in Oracle Hyperion Shared Services––See
"Configuring Shared Services Database with Data Relationship Management User Roles"
in Oracle Data Relationship Management Installation Guide.

2. Register Data Relationship Management applications with Shared Services––See
"Configuring EPM Registry Settings" in Oracle Data Relationship Management Installation
Guide.

3. Enable Common User Provisioning––See "Configuring Common User Provisioning" in
Oracle Data Relationship Management Installation Guide.

Provisioning Users and Groups
Any user or group accessible in Oracle Hyperion Shared Services can be provisioned for a
Oracle Data Relationship Management application using Common User Provisioning. Groups
(containing groups and/or users) and individual users may be provisioned for a Data
Relationship Management application. Users and groups provisioned for a Data Relationship
Management application in Shared Services, are synchronized in Data Relationship
Management when a synchronization task is run. Users can be provisioned separately to
multiple registered Data Relationship Management applications.

See "Provisioning Users and Groups" in the Oracle EPM System User Security Administration
Guide.

Synchronizing Data Relationship Management Users and Group
Membership

Full synchronization of user and group changes from Oracle Hyperion Shared Services to
Oracle Data Relationship Management application can be performed manually or scheduled to
run in the background. The synchronization creates or updates users in the Data Relationship
Management application and updates group membership on node access groups or property
categories that are configured to be managed externally.

The results for a synchronization display how many users were created and updated, how
many node access groups were updated, and how many property categories were updated. A
list of error and warning messages that were generated while running the synchronization are
also displayed. You can copy the results and paste to an external editor for further review or
usage.

Chapter 4
Common User Provisioning

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 16 of 17

Manual Synchronization
In Oracle Data Relationship Management, when Common User Provisioning is enabled, a user
with the Access Manager role can manually synchronize users and groups managed in Oracle
Hyperion Shared Services. The results of the job are displayed and can also be viewed on the
Jobs page of the Audit task.

To manually synchronize users and groups:

1. On the Home page, select Administer.

2. From the toolbar, select (Common User Provisioning Synchronize).

Scheduled Synchronization
In Oracle Data Relationship Management, when Common User Provisioning is enabled,
synchronization can be scheduled to run in the background at a specified time every 24 hours.
The results of the scheduled job can be viewed by navigating to the job on the Jobs page of
the Audit task.

• For information on viewing jobs, see "Viewing Job History" in Oracle Data Relationship
Management User's Guide.

• For information on scheduling synchronization, see "Configuring Common User
Provisioning" in Oracle Data Relationship Management Installation Guide.

Partial Synchronization
Partial, real-time synchronization is performed automatically in these scenarios for users and
groups managed in Oracle Hyperion Shared Services:

• User Login––Provisioning information for the individual user being authenticated is
automatically synchronized before a session is created.

• Node Access Group Membership––User membership for an individual node access group
is automatically synchronized when the group is saved.

• Property Category Membership––User membership for an individual property category is
automatically synchronized when the category is saved.

Chapter 4
Common User Provisioning

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 17 of 17

5
Managing Node Access Groups

Oracle Data Relationship Management controls granular user access to hierarchy nodes and
their properties using node access groups. You can assign users to groups that are granted
access to specific nodes in a subset of hierarchies within a Data Relationship Management
version. Node access groups use inheritance to assign similar access to descendant nodes of
a hierarchy node where an access level has been explicitly assigned. This level of access can
be overridden at a lower level or can be locked to prevent overrides.

Typically, node access groups represent functional areas of an organization, and a user may
require assignment to multiple groups. If assigned access levels conflict, the highest security
level is used.

There are two types of node access groups. The group type controls the type of data access
that can be assigned to users of that group. Each node access group can be of only a single
group type.

• Interactive––Users have direct access to browse, search, and modify data based on the
level of access assigned

• Workflow––Users have restricted access to browse, search, and modify data using
governance workflows based on the level of access assigned

Table 5-1 Interactive Group Type–Node Access Levels

Level Description Example Usage

Read Enables read-only access––no
changes permitted

View and report

LimitedInsert Enables insertion of a node for
which the user has (at least)
global insert privilege.

Insert

Edit Enables property values to be
edited

Edit

Insert Enables nodes to be inserted,
moved, or, removed

Edit, insert, copy, move, remove

Inactivate Enables nodes to be inactivated
and reactivated

Edit, insert, move, remove,
inactivate, reactivate

Add Enables nodes to be added or
deleted

Edit, insert, copy, move, remove,
inactivate, reactivate, add, delete

Keep the following information in mind:

• Access levels are cumulative; assignment of the Edit access level implies that the Read
Only and LimitedInsert access levels are granted. Assignment of the Add access level
implies that all other access levels are granted.

• Node access group security is only applied at the hierarchy level. Node access groups do
not control access to global lists of nodes such as orphans.

• Access levels are assigned separately for limb and leaf nodes which allows you to define a
different level of access for each. This capability is useful when a user should be able to

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 5

maintain the roll-up structure of a hierarchy but not edit any properties of leaf nodes or
when a user can insert leaf nodes to an existing roll-up structure but not reorganize the
structure itself.

• Node access groups are defined only by a user with the Access Manager role.

• Node access groups use local inheritance for access assignment to related nodes. A node
access group can be defined as global in order to use global inheritance based on the level
of access assigned to a controlling hierarchy.

• Global node access groups can be created and must have a controlling hierarchy defined
for each version. This is done by assigning controlled node access groups to a hierarchy.
See the see the Oracle Data Relationship Management User's Guide for more information.

• Interactive and Workflow node access groups handle the visibility of nodes in hierarchies
differently. An interactive access group provides users visibility to the entire hierarchy if the
group has access to any node in the hierarchy. In contrast, a workflow access group
provides users limited visibility to only nodes in hierarchies to which they have been
assigned access. For both group types, members of the group cannot view hierarchies to
which they have not been assigned access.

Workflow Group Type Node Access Levels
Users with the Governance User role use the Workflow node access levels to determine their
access to data.

Table 5-2 Workflow Group Type–Node Access Levels

Level Description

Notify Enables notification of change requests for a node

Submit Enables nodes to be submitted as part of a change
request

Approve Enables nodes to be approved as part of a change
request

Enrich Enables nodes to be enriched as part of a change
request

Commit Enables changes for a node to be committed to
Oracle Data Relationship Management

Workflow node access levels are cumulative for hierarchy access but are also filtered by
workflow stage.

Table 5-3 Workflow Node Access Levels by Hierarchy Access

Hierarchy Access Stage Access

Access Submit Approve Enrich Commit

Notify Notify Notify Notify Notify

Submit Submit Notify Notify Notify

Approve Submit Approve Notify Notify

Enrich Submit Approve Enrich Notify

Commit Submit Approve Enrich Commit

Chapter 5
Workflow Group Type Node Access Levels

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 5

Creating Node Access Groups
To create a node access group:

1. On the Home page, select Administer.

2. From New, select Node Access Group.

3. Enter a name, label, and description for the group.

Note

The node access group will be assigned to the Custom namespace. The Fully
Qualified Name for the group must be unique. The Label field is filled in
automatically after entering the name. The node access group label is a user-
friendly descriptor that is displayed for all features aside of application
administration. Multiple node access groups can have the same Label for
convenience purposes.

4. Select a Group Type for the node access group.

• Interactive––To use interactive access levels; see Interactive Node Access Levels.

• Workflow––To use workflow-oriented access to versions, hierarchies, and nodes in
the context of submitting, enriching, approving, committing, and being notified of
requests. See Workflow Node Access Levels.

5. Optional: Select Global to make the group a global node access group.

Note

Global node access groups must have a controlling hierarchy defined in every
version where the group will be used. After a group is created, you can assign it to
a single hierarchy in each version as a controlled node access group.

6. If using Common User Provisioning, from External Group select a user group provisioned
to the Oracle Data Relationship Management application in Oracle Hyperion Shared
Services. Users in this external group will be assigned membership to the node access
group when a synchronization from Shared Services takes place.

7. Select users from the Available list to assign to the group. Use the arrows to move users
to the Selected list.

8. Click .

Editing Node Access Groups
To edit a node access group:

1. On the Home page, select Administer.

2. Under Security, expand Node Access Groups.

3. Select a group and click .

Chapter 5
Creating Node Access Groups

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 5

4. Select users from the Available list to assign to the group. Use the arrows to move users
to the Selected list.

5. Click .

Deleting Node Access Groups
To delete a node access group:

1. On the Home page, select Administer.

2. Under Security, expand Node Access Groups.

3. Select a group and click .

4. Click Delete this Item to confirm the deletion.

Note

Deleting a node access group removes the assignment of the group from the
users as well as from any hierarchy nodes.

Assigning Node Access Group Security
Node Access Group security is applied to data by a user with the Data Manager role.

Note

Before assigning node access group security, ensure that appropriate node access
groups are created and appropriate users are assigned to the groups.

To set node access group security:

1. Open a version and hierarchy, and select a node.

2. From Nodes, select Assign, then Node Access.

3. In the Property Grid, select the Leaf Access or Limb Access category.

4. Assign the level of access for each node access group.

The level of access available for assignment for each node access group is based on its
group type (interactive or workflow).

5. Click Save.

Note

You must assign both Limb and Leaf Workflow NAG access to at least one Leaf and
one antecedent Limb node to a value other than "None" to be able to visualize node(s)
to choose in the DRG Node Selector. Typically Limb WNAG access is set on the Top
Node in a hierarchy.

Chapter 5
Deleting Node Access Groups

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 5

Chapter 5
Assigning Node Access Group Security

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 5

6
Managing Object Access Groups

Object access groups in Oracle Data Relationship Management determine which metadata
objects users have access to, including exports, books, imports, blenders, compares, queries,
version variables, and external connections.

Table 6-1 Types of Object Access Groups

Object Access Group Type Description Permissions

User Each user has a core object access
group for their personal metadata
objects.

A user has Run and Manage
permissions to their own object access
group.

Standard A core object access group named
Standard is available for all public
objects.

All users have implicit Run permission
to objects in the Standard object access
group.

Only users with Manage Standard
[Object] role permissions have Manage
permission for the Standard object
access group.

System A core object access group named
System is available for all system
operation/integration objects.

Only users with Data Manager or
Application Administrator roles have
Manage permission for the System
object access group.

Custom Custom object access groups Only users with Access Manager role
can create, edit, or delete custom object
access groups. Users with Run
permission may execute objects in the
group.

Custom object access groups provide a specific group of users access to a subset of user
metadata objects – queries, compares, imports, blenders, exports, and books. Object access
groups define a list of users and node access groups and set the permission level (Run or
Manage) for each user and node access group. Metadata objects are assigned to object
access groups at the time they are created, and they may subsequently be copied or moved to
a different group.

• Run––Users can run objects in the group but cannot edit and save changes to the objects

• Manage––Users can create, edit, or delete objects in the group and run them

Guidelines for using object access groups are:

• An object access group enables users to be members of the group either directly or
through their node access group assignments. Both are not required.

• Users and node access groups may be assigned to more than one object access group.

• Each user in the object access group is assigned either Manage or Run permission.

• A user's permission assignment in the object access group may override the user's role
security. For example, an Interactive User role with Manage permission in an object access
group may create or modify objects within the object access group.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 3

• Core object access groups such as User, Standard, and System are managed implicitly
based on user existence and their role assignments.

• When saving or copying a user metadata object, the user must assign the object to an
object access group for which that user has Manage permission.

• A user metadata object may be assigned to only one object access group.

• Data Manager role users have implicit Manage permission to the core Standard object
access group and may be explicitly assigned to a custom object access group.

• Application Administrator role users have implicit Manage permission for all standard,
system, and custom object access groups. These users require the ability to migrate
metadata objects for any object access group.

Creating Object Access Groups
To create a custom object access group:

1. On the Home page, select Administer.

2. From New, select Object Access Group.

3. Enter a name for the group. A description is optional.

4. On the Users tab, select users from the Available list to assign to the group. Use the
arrows to move users to the Selected list.

Note

By default, each user is granted Run access. To change a user's access, click .
Then from Access, select Manage.

5. On the Node Access Groups tab, select node access groups from the Available list to
assign to the group. Use the arrows to move node access groups to the Selected list.

Note

By default, each node access group is granted Run access. To change a group's

access, click . Then from Access, select Manage.

6. Click .

Editing Object Access Groups
To edit a custom object access group:

1. On the Home page, select Administer.

2. Under Security, expand Object Access Groups.

3. Select a group, and then click .

4. On the Users and Node Access Groups tabs, make changes to selected users and
groups and to access permissions.

Chapter 6
Creating Object Access Groups

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 3

5. Click .

Deleting Object Access Groups
To delete an object access group:

1. On the Home page, select Administer.

2. Under Security, expand Object Access Groups.

3. Select a group, and then click .

4. Click Delete this Object Access Group to confirm the deletion.

Caution

When an object access group is deleted, all metadata objects assigned to it are
also deleted. This operation cannot be undone

Chapter 6
Deleting Object Access Groups

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 3

7
Managing Domains

Domains are used to manage referential integrity for multiple sets of nodes from different
sources within the same Oracle Data Relationship Management application. A domain is a
registered list of nodes of a common type which enables consistent management of these
nodes in different versions within the same application. A domain provides a simple method
for:

• Qualifying node names to ensure uniqueness

• Sharing identifying properties across versions

• Restricting certain types of changes such as renaming, promoting, demoting, and deleting
nodes

• Assigning validations to ensure consistency of business rules regardless of version

Domain nodes are global nodes in a version with membership to a domain. Domain nodes
cannot be renamed and cannot be removed from a domain after being assigned as a member.
A domain node must have a unique name, regardless of domain assignment. The name of a
domain node may represent the natural identifier of the node or may be qualified with a prefix
or suffix to ensure referential integrity when used with nodes of different domains in the same
version. The domain node description and inactive status/date are shared by a domain node in
any version where it exists.

Creating Domains
To create a domain:

1. From the Home page, select Administer.

2. From New, select Domain.

3. Enter the following information:

• Name

• Description (optional)

• Qualifier (optional)––Text used for fully qualifying a node name. No two domains can
use the same qualifier text. Select Prefix or Suffix to denote the location of the
qualifier.

Note

After a domain has nodes assigned to it, the qualifier text cannot be changed.

• Delimiter (optional)––A single, optional character used to separate the domain
qualifier text from the node name.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 3

Note

After a domain has nodes assigned to it, the delimiter cannot be changed.

• Allow Node Delete––Select if you want to give users the ability to delete nodes from
the version.

• Allow Leaf Edit––Select if you want to give users the ability to change the leaf system
property value for nodes in the domain.

4. From the Available Validations list, select the node-level validations to be enforced for
members of the domain and move them to the Selected Validations list.

Note

Domain-level validation assignments override assignment values for the same
validation that were set at the node or inherited from an ancestor node, hierarchy,
or version level assignment.

5. Click .

Editing Domains
A domain may be edited after it is created, with two exceptions:

• The name cannot be changed

• The qualifier and delimiter cannot be changed after nodes have been assigned to it

To edit a domain:

1. From the Home page, select Administer.

2. Select a domain and click .

3. Make changes to the domain and click .

Deleting Domains
A domain may be deleted. The domain node records are also removed when the domain is
deleted.

Note

If a domain with nodes assigned is deleted, all nodes that are assigned to the domain
revert back to non-domain nodes.

To delete a domain:

1. From the Home page, select Administer.

2. Select a domain and click .

Chapter 7
Editing Domains

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 3

3. Select Delete this Domain.

Chapter 7
Deleting Domains

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 3

8
Managing Property Categories

Related Topics

• Property Categories

• Creating Property Categories

• Editing Property Categories

• Deleting Property Categories

Property Categories
Property categories enable the grouping of Oracle Data Relationship Management properties
and are used to control the assignment of security privileges to sets of properties. Core
properties available by default are only located in a single property category. Custom
properties created by application administrators can be associated with multiple property
categories.

Data Relationship Management includes the core property categories described in the
following table.

Table 8-1 Property Categories

Category Description

System Properties related to the basic identifying
characteristics of a node, such as ID, name, and
description.

The only change that can be made to this category
is assigning the read-only flag for individual users.
Users with read access cannot edit values but can
view them. Properties cannot be assigned to this
category.

Shared Info Provides information about which nodes are
primary/shared, a list of related shared nodes, and
identifies whether the primary node is missing.

This category is only displayed when Shared
Nodes is enabled via system preferences.

Note: All properties in this category are read only.

Stats Properties that provide statistical information about
a node such as number of children and number or
siblings

Note: All properties in this category are read only.

Validation Validations assigned for the node—one property
for each validation

Leaf Access Node security groups and their leaf access levels
for the node—one property for each group

Limb Access Node security groups and their limb access levels
for the node—one property for each group

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 3

Note

Not all property categories are visible to all users because user access can be
restricted to specific categories and the node types can be filtered. The Validation,
Leaf Access, and Limb Access categories are available only to users assigned the
Data Manager role and are only accessible when assigning validations or node access
group security.

Creating Property Categories
To create a property category:

1. From the Home page, select Administer.

2. From New, select Property Category.

3. Enter a name and description for the property category.

4. If using Common User Provisioning, from External Group - Edit and External Group -
Read, select a user group provisioned to the Oracle Data Relationship Management
application in Oracle Hyperion Shared Services. Users in these external groups will be
assigned membership to the property category with the specified level of access (edit or
read) when a synchronization from Shared Services takes place.

5. On the Properties tab, select properties from the Available list to assign to the property
category and use the arrows to move the properties to the Selected list.

Note

You can use Ctrl+Click or Shift+Click to select multiple properties. Double-click a
property to select or deselect it.

6. Use the arrows to reorder the selected properties or click to alphabetize the selected
properties.

7. On the Users tab, select users from the Available list to assign to the property category
and use the arrows to move the users to the Selected list.

8. Select the row for a user in the selected list and click in the Action column.

9. From the Access column, select Read or Edit to assign the user a level of access to the
property category.

10. Click in the Action column to save the change or to discard the change.

11. Click .

Editing Property Categories
To edit a property category:

1. From the Home page, select Administer.

2. Select a property category and click .

Chapter 8
Creating Property Categories

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 3

3. On the Properties tab, select properties from the Available list to assign to the property
category and use the arrows to move the properties to the Selected list.

Note

You can use Ctrl+Click or Shift+Click to select multiple properties. Double-click a
property to select or deselect it.

4. Use the arrows to reorder the selected properties or click to alphabetize the selected
properties.

5. On the Users tab, select users from the Available list to assign to the property category
and use the arrows to move the users to the Selected list.

6. Select the row for a user in the selected list and click in the Action column.

7. From the Access column, select Read or Edit to assign the user a level of access to the
property category.

8. Click in the Action column to save the change or to discard the change.

9. Click .

Deleting Property Categories
To delete a property category:

1. From the Home page, select Administer.

2. Under Metadata, expand Property Categories.

3. Select a property category and click .

4. Select Delete this Item to confirm the deletion.

Note

The deletion of a property category does not result in the deletion of properties
associated with the category. These properties remain available within the
application.

Chapter 8
Deleting Property Categories

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 3

9
Managing Property Definitions

Property definitions are used to manage the attributes of versions, hierarchies, and nodes in
Oracle Data Relationship Management. Properties can store a variety of different data types
including text, numeric, date, and references to other data objects. Properties can store explicit
values, use inheritance to automatically assign values to descendant nodes, or be calculated
based on a formula or lookup table. Property categories can be used to group and organize
properties into related sets to simplify their usage and control user access.

System-defined properties that are available by default are used with standard product
functionality. User-defined property definitions can be created by application administrators to
manage additional attributes that are necessary to support business or system integration
requirements.

Property definitions in Data Relationship Management can come from a variety of sources. For
example, properties can be:

• System-defined in Data Relationship Management

• User-defined properties created by an application administrator

• Loaded from application templates used with other Oracle products

• Loaded from another Data Relationship Management application or environment using the
Migration Utility

Namespaces

Namespaces are used in property definitions to avoid conflicts where properties from different
sources have similar names and need to remain separate for data integrity purposes. Property
names are differentiated using a namespace prefixing convention.

Table 9-1 Property Definition Example Using Namespaces

Field Example

Fully Qualified Name Custom.AccountType

Namespace Custom

Name AccountType

Label AccountType

There are special rules in Data Relationship Management that apply to namespaces to ensure
that conflicts do not occur:

• System-defined properties use the "Core" namespace.

• User-defined properties use the "Custom" namespace.

• Other namespaces are reserved for use by Data Relationship Management application
templates for other Oracle products.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 10

Data Types
Property data types are described in the following table.

Table 9-2 Property Data Types

Property Data Type Description

Associated Group Associated node group. Points to multiple nodes.
The nodes point back to the Associated Group
node and to each other. Analogy: Fraternity.

Note: This data type should only be used with
global node level properties.

Caution: Associated node properties that are
loaded by an import may not correctly point to all
other nodes as a result of their not yet existing in
the version based on the order in which nodes are
imported.

Associated Node Associated node. Points to a single other node.
The node pointed to points back to the Associated
Node node. Analogy: Marriage.

Note: This data type should only be used with
global node level properties.

Caution: Associated node properties that are
loaded by an import may not correctly point to all
other nodes as a result of their not yet existing in
the version based on the order in which nodes are
imported.

Associated Nodes Associated node list. Points to multiple nodes. The
nodes pointed to point back to the Associated
Nodes but not each other. Analogy: Friends.

Note: This data type should only be used with
global node level properties.

Caution: Associated node properties that are
loaded by an import may not correctly point to all
other nodes as a result of their not yet existing in
the version based on the order in which nodes are
imported.

Boolean True or False

Date Date values are formatted in the invariant culture.
This allows for a predictable response and action
can be taken to re-format the result, if desired.

Caution: The default, maximum, and minimum
values must be entered in English (United States)
format.

Date/Time Date and time values are formatted in the invariant
culture. This allows for a predictable response and
action can be taken to re-format the result, if
desired.

Caution: The default, maximum, and minimum
values must be entered in English (United States)
format.

Chapter 9
Data Types

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 10

Table 9-2 (Cont.) Property Data Types

Property Data Type Description

Float Floating point value is formatted based on the
regional settings associated with the user's
session.

Note: If a default value is not defined, then 0 is
output for the value when exported.

Formatted Memo Formatted memo — retains all formatting (spaces,
tabs, new lines, and so on) to the text. Also allows
for hyperlink text to be included in the formatted
memo. See the Hyperlink data type for details on
formatting URLs for hyperlinks.

Note: Non URL text is not suppressed when both
text and hyperlink is used in property value.

Global Node Points to a node in a version; when value is
assigned it shows node name only in the value
field of the property grid

Group List of comma-delimited items

Hierarchy Points to a hierarchy

Hierarchy Group Points to a hierarchy group.

Hierarchy group properties allow hierarchies to be
grouped in multiple ways based on the context in
which you want to view them. You can group
hierarchies within the same version in different
ways based on usage.

Hyperlink Allows for hyperlink capability for URL text. Multiple
URL input is separated by Carriage Return-
Linefeed (CRLF, or 0x0D0A) with no spaces.
Entered URLs are displayed as navigable
hyperlinks. Only the parsed, delimited URLs or
formatted URLs are displayed. URLs should follow
this format:

[url=http_URL]URL_Title[/url]

where http_URL specifies the hyperlink text and
URL_Title specifies the text displayed to the user.

For example, this markup example:
[url=https://support.oracle.com]Oracle
Support[/url] would render in the property grid
as

My Oracle Support

Integer Integer value

If a default value is not defined, then 0 is output for
the value when exported.

Leaf Node Points to a leaf node in a hierarchy. When value is
assigned it shows hierarchy name and node name
in the value field of the Property Grid.

Limb Node Points to a limb node in a hierarchy. When value is
assigned it shows hierarchy name and node name
in the value field of the Property Grid.

List Group Check list of items. Multiple items can be selected
from the list.

Chapter 9
Data Types

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 10

https://support.oracle.com/

Table 9-2 (Cont.) Property Data Types

Property Data Type Description

Memo Memo field — formatting is not saved and data is
merged into a single line of text. Also hyperlink in
the memo. See the Hyperlink data type for details
on formatting URLs for hyperlinks.

Note: Non URL text is not suppressed when both
text and hyperlink is used in property value.

Multiple Node Points to multiple nodes

Node Points to a node in a hierarchy; when value is
assigned, it shows hierarchy name and node name
in the value field of the property grid.

Node Properties Points to the properties of a node

Property Points to a property

Range List Defines a range of values; accepts only integer
values

Sort Integer value that is used for sorting

Sort Property Points to a Sort property

Standard Query Points to a standard query

String String value

Time Time values are formatted in the invariant culture.
This allows for a predictable response and action
can be taken to re-format the result, if desired.

Caution: The default, maximum, and minimum
values must be entered in English (United States)
format.

Version Points to a version

External Lookups
External Lookup Properties are properties that access an external data source for their list of
selectable values. The external data source is accessed using external operations. The
external lookup property type allows for return of a recordset from Oracle or SQL Server
databases. Use the results of an external lookup to select an item from an external list of
values for use as a property value or to calculate request item property values using data from
an external source. External lookups for property lists are accessible in Data Relationship
Management and Data Relationship Governance.

Creating Properties
To create a property definition:

1. On the Home page, select Administer.

2. From New, select Property Definition.

3. Enter a name for the property.

Chapter 9
External Lookups

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 10

Note

The property is assigned to the Custom namespace. The Fully Qualified Name
and Label fields are filled in automatically after entering the name. The Fully
Qualified Name for the property must be unique. The property label is a user-
friendly descriptor that is displayed for property definitions for all features aside of
application administration. Multiple properties can have the same Label as long as
they are not in the same namespace. The property Description is an optional, long
descriptor that is displayed at the bottom of the Property Editor.

4. Define parameters for the property:

Note

Not all parameters below are displayed. The parameters displayed depend on the
selected data type.

• Data Type––See Property Data Types

You can restrict the list of nodes displayed to a user by selecting a data type:
Associated Group, Associated Node, Associated Nodes, Global Node, Leaf Node,
Limb Node, Multiple Node, or Node. After you select a data type, the Constraints tab
is displayed.

• Property Level––Level of property definition:

– Local node––Property values are managed for nodes in a specific hierarchy and
accessible only at this level.

– Global node––Property values are managed for nodes in a version but also
accessible at a local node level.

– Hierarchy––Property values are managed for hierarchies but also accessible at a
local node level.

– Version––Property values are managed for versions but also accessible at a
global or local node level.

Note

If defining a global node inherited property, you must define a controlling
hierarchy for the global property. You do with on the Home page on the
Hierarchies tab by assigning controlled properties to a hierarchy.

• Property Type

– Defined––Values are defined by the user and stored.

– Lookup––Lookup based on another property and a lookup table.

– Derived––Calculated by using a Deriver class.

Chapter 9
Creating Properties

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 10

Note

Derived properties using the Script deriver class may be used for version,
hierarchy, and node properties. The Formula deriver class may only be
used for global or local node properties.

– External Lookup––Lookup using an external data source.

Note

Values are retrieved from an external data source in real-time. If multiple
values are returned, a specific value must be selected for the property.

• Default Value––Default value for the property

• Domain––For any property where the data type is Node, Limb Node, LeafNode,
MultiNode, Associated Node, Associated Nodes, or Associated Group (all of which
represent a node or nodes stored as the value), a Domain drop-down is available. The
drop-down contains all the domains defined in the system and you can optionally
select one of the existing domains.

• Column Width––Width for fixed-width columns if the property type is Defined.

• Minimum Value/Length––Value or length for the property based on data type.

• Maximum Value/Length––Value or length for the property based on data type.

5. Select from these options:

• Inherited––Defines the property as Inheriting

Note

This option has no effect on the Derived property type except in the special
case where property derivers, such as AncestorProp or DualAncestorProp,
are used and the property is global. In such cases, although the property is
not literally inheriting values, enable the Inherited option to allow the
specification of a controlling hierarchy.

• Overrideable––Allows property to be overridden in the property grid.

Note

This option is enabled only for the Derived property type.

• List––Allows property values to be selected only from a predefined list of values.

Note

Property values stored for a list property can be limited to only values in the
list using the EnforceListProps system preference.

Chapter 9
Creating Properties

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 6 of 10

Note

A list of values can be used for a defined property or a derived, overrideable
property.

• Hidden––Hides the property in the property grid.

• Indexed––Creates an index for the property to improve performance of searches,
property queries, and validations. This option is available only for defined, string data
type properties.

Note

Indexed properties can increase memory usage on the application server and
should only be used for properties most likely to be used in searches, queries,
and validations that check uniqueness.

6. Do any of the following:

• To assign a property to categories, select categories from the Available list and move
them to the Selected list.

• If you selected the Defined property type along with the List option, on the List
Values tab do the following:

a. Click Add and enter a value to the list.

b. Click Save in the Action column for the row.

Note

Use Move or Delete for each row to reorder or delete list values. Use Edit
or double-click a row to edit it and Cancel to cancel edits.

• If you selected the Lookup property type, select the Lookup Table tab and do the
following:

a. Click Add to enter a new key-value pair to the list.

b. Click Save in the Action column for the row.

Note

Use Move or Delete for each row to reorder or delete list values. Use Edit
or double-click a row to edit it and Cancel to cancel edits.

• If you selected a data type that allows hierarchy constraints, select the Constraints
tab and do the following:

a. Select a property from Hierarchy Group Property and then select a hierarchy
group.

In the node selector, users will see nodes only from hierarchies that belong to the
selected hierarchy group.

Chapter 9
Creating Properties

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 7 of 10

Note

Only the default Core property type is supported by Oracle Data
Relationship Management Analytics.

b. Optional: Select Enforce Constraint on Server Property Update to validate this
constraint when the property is updated via the Web client, imports, action scripts,
or the Web Service API.

• If you selected the Derived property type, select the Parameters tab and define a
formula or script for the derived property.

For more information on formulas, see Creating Formulas. For more information on
scripts, see Creating Dynamic Scripts.

• If you selected the External Lookup property type, select the External Lookup tab
and enter the following information:

– External connection––Select a database or Web service connection

– Operation––Select the external operation to perform

– For each parameter configure:

* Parameter source type––Select Literal or Property.

* Source––If Literal was selected for source type, then enter a literal value in
the Param Source column. When the external operation is called for this
External Lookup property, the literal value is passed in for the current
parameters. If Property was selected for source type, then select a property to
provide the parameter value for the external operation. When the External
Lookup is executed, the parameter value comes from the selected property on
the current node or request item.

– In Column/Property Mappings, select which result column in the selected lookup
result will supply the value for the external lookup property. Click Add to add
additional columns which can be mapped to different properties, so that when the
external lookup value is selected, other property values get updated automatically.

The first Column/Property mapping is automatically defined and cannot be deleted.
This mapping is for the current property. A column must be selected, and defaults
to the first column stored on the operation. You can modify the column value for
the first row but not the property value. For additional mappings, you can select
and edit the Column Name and the Result Column.

7. Click .

Using Hierarchy Constraints
Hierarchy constraints can limit the hierarchies and nodes available for viewing and selection
when updating a node data type property value. A hierarchy constraint is an optional
configuration for property definitions which use a node data type. The hierarchy constraint
feature uses hierarchy groups and hierarchy group properties, which must be configured
before you can assign hierarchy constraints.

You can use a hierarchy constraint with the following data types:

• Associated Group

• Associated Node

Chapter 9
Creating Properties

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 8 of 10

• Associated Nodes

• Global Node

• Leaf Node

• Limb Node

• Multiple Node

• Node

Note

The Associated Group, Associated Node, and Associated Nodes node data types may
require additional consideration when setting up a hierarchy constraint because
associated nodes create a cross-reference. If a hierarchy constraint is defined, care
should be taken that the hierarchy group include all hierarchies that may be
associated with one another. An example is a cross-reference between nodes in
Employee and Cost-Center hierarchies. It may be necessary to create a separate
hierarchy group property and hierarchy group to be used for hierarchy constraints.

Editing Property Definitions
If a property definition is modified from a Defined property type to a non-editable type such as
Derived or Lookup, then the following conditions apply:

• The confirmation message when switching to a non-stored property type is modified to
state that pending updates to change request items may be affected.

• Pending property updates for in-flight requests are no longer displayed, validated or
committed for items with that task assigned.

To edit a property definition:

1. On the Home page, select Administer.

2. Under Metadata, expand Property Definitions.

3. Expand Core or Custom depending on the type of property definition.

4. Double-click a property.

5. Modify any parameters that can be edited.

Caution

If you change the Property Type from a defined value (RWDerived or Defined) to a
value that does not allow storage (Derived or Lookup), defined property values are
deleted and this data will be lost. Before making this type of change, you must
confirm that the potential for data loss is acceptable.

For more information see Creating Properties.

6. Click .

Chapter 9
Editing Property Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 9 of 10

Deleting Properties
If a property definition is deleted from Oracle Data Relationship Management, then the
following conditions apply:

• The dependency check for property definitions is modified to include workflow metadata
references, and the user must confirm the deletion. Property definition dependencies for
workflow metadata consist of the following

– Workflow Task Properties

– Workflow Task Validation Properties

– Change Request Item Details

• Upon confirmation, if a property is deleted, then each dependent reference to the property
is also deleted, including assignment to workflow tasks, pending updates to in-flight
requests, and historical change requests.

• As with interactive deletion of a property definition, transaction history is always retained.

To delete a property:

1. From the Home page, select Administer.

2. Under Metadata, expand Property Definitions.

3. Select a property and click .

4. Select Delete Property Definition to confirm the deletion.

Caution

The deletion of a property definition will also result in the deletion of all values
stored for the property as well as the removal of the property from all metadata
objects where it was being used.

Chapter 9
Deleting Properties

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 10 of 10

10
Managing Validations

Validations enable business rules to be enforced on versions, hierarchies, nodes, and
properties. Validations can be run in either real time or batch, or both modes. Real-time
validations are run at the time of modification and prevent changes from being saved if the
action would violate the rules being enforced. Batch validations can be explicitly run before or
after edits are made to identify data conditions that are invalid and need to be addressed.

Validation Classes
Validation classes allow different types of business rules to be enforced. Some validation
classes can be used generically while other classes are used for specific purposes. Validations
can be created from a set of existing validation classes. Many business rules on nodes can be
enforced with a validation class that uses a query for its logic. This enables validations to
leverage queries that have been created for analysis purposes to also manage data integrity.
Rules for versions and hierarchies or special cases for nodes can be accomplished using other
validation classes. A few of the validation classes are used for product testing purposes only
and should not be used in a production environment.

Table 10-1 Validation Classes

Validation Class Level Description Parameters

BoolNodeInHier Node Verifies that the specified
boolean property has no True
values in the specified
hierarchy

Property, Hierarchy

ContainAllProp Global Node Verifies that the specified
hierarchy contains all nodes
where the specified property
is True

Hierarchy, Property

ContainAllWith Global Node Verifies that the specified
hierarchy contains all nodes
for which the specified
property has the specified
value

Hierarchy, Property, Value

CustPropQuery Node Verifies using predefined
query and expected result

Only a local property query
can be used.

Property query name, Failure
value

DateRangeCheck Node Verifies that the From Date is
earlier than or equal to the To
Date

From Date Property, To Date
Property

Formula Node Verifies a node using
business logic expressed in a
formula. A formula result of
False results in a validation
failure.

Formula

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 8

Table 10-1 (Cont.) Validation Classes

Validation Class Level Description Parameters

GlobalPropQuery Global Node Verifies using predefined
query and expected result

Property query name, Failure
value

HierContainsRef Node Hierarchy contains a
reference to the node when a
Boolean property is True, or if
the node is a leaf node and a
third Boolean property is
True.

Hierarchy name, Boolean
property for all nodes,
Boolean property for leaf
nodes

HierFail Hierarchy Automatically fails at
hierarchy level for testing
purposes

none

InvalidNameLength Node Verifies that the node name is
not equal to a specified
length.

Length

MaxChildren Version Verifies that the number of
children per node do not
exceed specified limit

Maximum number of children

MaxHierNodes Hierarchy Verifies that the number of
nodes in the hierarchy does
not exceed specified limit

Maximum number of nodes

MaxVersionNodes Version Verifies that the number of
nodes in the version does not
exceed specified limit

Maximum number of nodes

MergeEquiv Merge Verifies that the affected
node and merge node have
the same value for the
specified property

Global node property

MergePropSet Merge Verifies that if the affected
node property value is set
(overridden), the merge node
property value is set for the
specified property (Property
values need not be the same)

Property

MixedKids Node Checks for nodes with both
limb and leaf children.

None

NoBoolBranch Node Verifies that the specified
boolean property is set to
True at least once on a
specified branch

Property

NodeFail Global Node Automatically fails nodes at
the version level for testing
purposes

none

NodeFailRandom Node Automatically fails the
specified percentage of
nodes for testing purposes

Failure percentage

NoDefaults Node Verifies that no default values
are used for the specified
property

Property

Chapter 10
Validation Classes

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 8

Table 10-1 (Cont.) Validation Classes

Validation Class Level Description Parameters

NoPropBranch Node Verifies that the specified
property is set at least once
on a specified branch

Property

PropEquivBool Node Property equivalency when a
third boolean property is
True.

Boolean property to evaluate,
First Property, Second
Property

PropLength Node Verifies that the specified
property is at least minimum
length and no more than
maximum length

Property, Minimum Length,
Maximum Length

PropRemove Remove Prevents the removal of a
node if the property or
properties specified (in the
prop1, prop2 and prop3
parameters) are equal to the
specified values (in the
value1, value2, value3
parameters).

Property1, Property2,
Property3, Value1, Value2,
Value3

RequiredField Node Verifies that, for all nodes for
which the specified property
has a specified value, each
property in the required list
has a value:

• If the Reject Default
Records flag is True,
each property in required
list must have a value
other than the default

• If the Reject Default
Records flag is False,
then default values are
acceptable

Property, Value, Reject
Default Records, Required
Properties

Script Node, Hierarchy, Version,
Global Nodes, Move,
Remove, Merge

Verifies data using a dynamic
script. A return value of True
passes the validation. A
return value of False results
in failure of the validation.

Script

SingleBoolBranch Node Verifies that the specified
boolean property is set to
True only once per branch

Property

SinglePropBranch Node Verifies that the specified
property is set only once per
branch

Property

StrandedParent Node Verifies that all limb nodes
have children

none

StrPropEqual Node Fails for all nodes for which
the specified property equals
the specified value

Property, Value

Chapter 10
Validation Classes

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 8

Table 10-1 (Cont.) Validation Classes

Validation Class Level Description Parameters

UniqueProp Node Verifies that the specified
property has no duplicate
values within a hierarchy

If Include Defaults is False,
then nodes with the default
value are not included.

If Exclude Shared is True,
then shared nodes are not
considered when checking
uniqueness of property
values.

Property, Include Defaults,
Exclude Shared

It is recommended that the
UniqueProp validation use
indexed properties.

UniquePropBranch Node Verifies that the specified
property has unique value
within a branch

Property

VersionFail Version Automatically fails at the
version level for testing
purposes

none

VersionUnique2Prop Global Node Verifies that specified
properties have no duplicate
values within a version

If Include Defaults is False,
then nodes with the default
value are not included.

If Exclude Shared is True,
then shared nodes are not
considered when checking
uniqueness of property
values.

First property, Second
property, Include Defaults,
Exclude Shared

VersionUniqueProp Global Node Verifies that the specified
property has no duplicate
values within a version

If Include Defaults is False,
then nodes with the default
value are not included.

If Exclude Shared is True,
then shared nodes are not
considered when checking
uniqueness of property
values.

Property, Include Defaults,
Exclude Shared

Validation Levels
The validation level defines the scope of a business rule. For node validations, the level can
also include the type of action that needs to be performed in order for the validation to run. The
following table defines each validation level and indicates:

• Whether the validation can run in batch mode, real-time mode, or both.

• Where the validation gets assigned.

• On which object the validation operates.

Chapter 10
Validation Levels

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 8

Table 10-2 Validation Levels

Validation Level Runs in Batch or Real-time Where Assigned Operates On

Node––Reviews node
relationships and properties
to ensure criteria are met.

Use to determine whether a
node level string property
value has a valid length.

Real-time or Batch Version, Hierarchy, or Node Local Node

Hierarchy––Reviews
properties in a hierarchy to
ensure criteria are met. Can
be assigned and run at the
hierarchy or version levels.

Use to ensure that a
hierarchy has no more than
10,000 nodes.

Batch Version or Hierarchy Hierarchy

Version––Reviews the
properties of a version.

Use to ensure that a version
contains no more than
100,000 nodes.

Batch Version Version

Global Node––Assigned at a
version level. Validates every
node in the version
regardless of hierarchy,
including orphans. Only
properties defined as global
are reviewed.

Use to ensure that all nodes
within a version have a
unique property value.

Batch Version Global Node

Merge––Runs when an
operation requiring a merge
(for example, a delete or an
inactivate) is performed.
Assigned at the version level.

Use to ensure that a leaf
node is merged only into
another leaf node.

Real-time Version Global Node

Move––A validation triggered
when an attempt is made to
move a node. Assigned at the
hierarchy level.

Use to prevent moving of cost
centers within a hierarchy.

Real-time Hierarchy Local Node

Chapter 10
Validation Levels

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 8

Table 10-2 (Cont.) Validation Levels

Validation Level Runs in Batch or Real-time Where Assigned Operates On

Remove––Similar to the
Move level. Runs when an
attempt is made to remove or
delete a node from a
hierarchy. Can be used to
prevent specified types of
nodes from being deleted.

Use to prevent the deletion of
cost center nodes from a
hierarchy.

Real-time Version or Hierarchy Global Node

Creating Validations
To create a validation:

1. On the Home page, select Administer.

2. From New, select Validation.

3. Enter a name for the validation.

Note

The validation will be assigned to the Custom namespace. The Fully Qualified
Name for the validation must be unique. The Label field is filled in automatically
after entering the name. The validation label is a user-friendly descriptor that is
displayed for validations for all features aside of application administration.
Multiple validations can have the same Label as long as they are not in the same
namespace.

4. Enter the message to display to the user if the validation fails.

5. Select a validation class. See Validation Classes.

Note

The valid levels are populated depending on the class selected.

6. For classes that can be run in real time at the node level, select a level that includes a type
of action.

7. Select from the following options for the validation:

• RealTime––Runs when a change is made

• Batch––Runs when explicitly requested

• Inherited––Runs for selected node and its descendants

Chapter 10
Creating Validations

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 6 of 8

Note

Depending on the validation class you select, some of these options may not be
available or parameters are displayed for which you may need to edit values.

8. Define the parameters for the selected validation class.

See Validation Classes for the parameters for each validation class. For more information
on creating formulas, see Creating Formulas. For more information on creating scripts, see
Creating Dynamic Scripts.

9. Click .

Creating a Script Validation for Move
To create a script validation for a Move:

1. On the Home page, select Administer.

2. From New, select Validation.

3. From Class, select Script.

By default, validation level is Node and run mode is Batch.

4. Under Run this Validation, select Real Time.

This enables the validation to be triggered on a particular action (such as Move).

5. From Level, select Move.

Note

The Level option is above the Real Time option that you selected in step 4.

6. Save the validation.

Assigning Validations
After you create validations, you can assign them to versions, hierarchies, domains, and
nodes. Multiple validations can be assigned at the same time.

Note

When assigned at a domain level, validations are inherited by all nodes that are
members of that domain. When assigned at the version level, validations are inherited
by all hierarchies and nodes within the version. When assigned at the hierarchy level,
validations are inherited by all nodes within the hierarchy.

For information on assigning validations to domains, see Managing Domains. For information
on assigning validations to versions, hierarchies, and nodes, see the Oracle Data Relationship
Management User's Guide.

Chapter 10
Assigning Validations

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 7 of 8

Editing Validations
To edit a validation:

1. On the Home page, select Administer.

2. Under Metadata, expand Validations.

3. Select a validation and click .

4. Make changes to the validation.

Note

The Class, Level, and Mode of Operation parameters cannot be modified after a
validation has been saved.

5. Click Save.

Deleting Validations
When you delete a validations, all validation assignments to versions, hierarchies, and nodes
are also deleted.

To delete a validation:

1. From the Home page, select Administer.

2. Under Metadata, expand Validations.

3. Select a validation and click .

4. Select Delete this Item to confirm the deletion.

Chapter 10
Editing Validations

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 8 of 8

11
Managing Formulas

Formulas enable you to define complex logic for derived properties and validations using a
native formula language in Oracle Data Relationship Management. Formulas are composed of
functions and string literals and must follow specific syntax rules.

For more information, see:

• Creating Properties

• Managing Validations

Working with Functions
Function names are case-insensitive and should be immediately followed by parentheses,
regardless of whether parameters are required.

Function parameters must be of the expected type and number. Parameters can be nested
functions or string literals. If parameters are of incorrect type, an error is reported. In the case
of too few parameters, a list index out of bounds error is reported. In the case of too many
parameters, additional parameters are ignored.

Special Characters
In certain functions for which parameter values contain special characters (for example:
comma, space, tab), use brackets ([]). For example, FlipList(PropValue(Custom.NodeList),
[comma]) performs the FlipList function on the comma-delimited list returned from the function
call PropValue(Custom.NodeList).

The following functions can take comma, space, or tab, in brackets ([]), for the Delimiter
parameter: ArrayCount, ArrayIndex, ArrayItem, FlipList, Intersection, ListContains,
PadList, RangeListContains, IsRangeListSubset, MinList, MaxList, AvgList, SumList,
SortList, ListDistinct, ListNodePropValues, and ListNodesWith.

The ReplaceStr function, which requires parameters for the old and new patterns, can take
comma, space, tab, crlf, cr, lf, openparen, or closeparen, in brackets ([]), in addition to
normal text strings.

Note

Parameter values that contain literal commas will result in this syntax error, "Invalid
number of parameters". A comma-delimited list passed in as the result of a function
call is a valid use and will be handled as expected. For example:

Invalid syntax: FlipList(a,b,c,[comma])

Valid syntax: FlipList(PropValue(Custom.NodeList),[comma]) where
Custom.NodeList value = a,b,c

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 61

Literals
Any value that is not a valid function name followed by parentheses is considered a literal. A
literal can be a string, integer, floating-point, or boolean literal. In a string literal, spaces are
treated as a character. Therefore, do not use extra spaces in formulas unless they are
necessary to derive the appropriate result. You can use the Remove Spaces option to strip
spaces from the formula before saving.

Format String Parameter
Format strings passed to the string formatting routines contain two types of objects — literal
characters and format specifiers. Literal characters are copied verbatim to the resulting string.
Format specifiers get a property value from the specified property and apply formatting to it.
Only one specifier can exist in the format string.

Format specifiers use the following form:

"%"["-"][width]["."prec]type

Table 11-1 Format String Characters

Character Description

% Indicates start of a format specifier

["—"] Left justification indicator (optional)

Left justifies the result by adding blanks after the
value. The default is to right-justify the result by
adding blanks before the value.

[width] Width specifier (optional)

Sets the minimum field width for a conversion. If
the resulting string is shorter than the minimum
field width, it is padded with blanks to increase the
field width.

["." prec] Precision specifier (optional)

type Conversion type character

Conversion characters may be specified in
uppercase or lowercase. For all floating-point
formats, the actual characters used as decimal and
thousand separators are obtained from the
DecimalSeparator and ThousandSeparator global
variables or their TFormatSettings equivalent. Valid
values for type are listed in the following table.

Chapter 11
Working with Functions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 61

Table 11-2 Format String Type Values

Type Value Description

d Decimal

The property value must be an integer. The value
is converted to a string of decimal digits. If the
format string contains a precision specifier, it
indicates that the resulting string must contain at
least the specified number of digits; if the value has
fewer digits, the resulting string is left-padded with
zeros.

u Unsigned decimal

Similar to d but no sign is output.

e Scientific

The property value must be a floating-point value.
The value is converted to a string of the form "-
d.ddd...E+ddd". The resulting string starts with a
minus sign if the number is negative. One digit
always precedes the decimal point. The total
number of digits in the resulting string (including
the one before the decimal point) is given by the
precision specifier in the format string; a default
precision of 15 is assumed if no precision specifier
is present. The "E" exponent character in the
resulting string is always followed by a plus or
minus sign and at least three digits.

f Fixed

The property value must be a floating-point value.
The value is converted to a string of the form "-
ddd.ddd...". The resulting string starts with a minus
sign if the number is negative. The number of digits
after the decimal point is given by the precision
specifier in the format string; a default of two
decimal digits is assumed if no precision specifier
is present.

g General

The property value must be a floating-point value.
The value is converted to the shortest possible
decimal string using fixed or scientific format. The
number of significant digits in the resulting string is
given by the precision specifier in the format string;
a default precision of 15 is assumed if no precision
specifier is present. Trailing zeros are removed
from the resulting string, and a decimal point
appears only if necessary. The resulting string
uses fixed point format if the number of digits to the
left of the decimal point in the value is less than or
equal to the specified precision, and if the value is
greater than or equal to 0.00001. Otherwise the
resulting string uses scientific format.

Chapter 11
Working with Functions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 61

Table 11-2 (Cont.) Format String Type Values

Type Value Description

n Number

The property value must be a floating-point value.
The value is converted to a string of the form "-
d,ddd,ddd.ddd...". The "n" format corresponds to
the "f" format, except that the resulting string
contains thousand separators.

m Money

The property value must be a floating-point value.
The value is converted to a string that represents a
currency amount. The conversion is controlled by
the CurrencyString, CurrencyFormat,
NegCurrFormat, ThousandSeparator,
DecimalSeparator, and CurrencyDecimals global
variables or their equivalent in a TFormatSettings
data structure. If the format string contains a
precision specifier, it overrides the value given by
the CurrencyDecimals global variable or its
TFormatSettings equivalent.

s String

The property value must be a character, a string, or
a PChar value. The string or character is inserted
in place of the format specifier. The precision
specifier, if present in the format string, specifies
the maximum length of the resulting string. If the
property value is a string that is longer than this
maximum, the string is truncated.

x Hexadecimal

The property value must be an integer value. The
value is converted to a string of hexadecimal digits.
If the format string contains a precision specifier, it
indicates that the resulting string must contain at
least the specified number of digits; if the value has
fewer digits, the resulting string is left-padded with
zeros.

Date-Time Format Strings
Date-time format strings specify the formatting of date-time values (such as TDateTime) when
they are converted to strings. Date-time format strings are composed from specifiers that
represent values to be inserted into the formatted string. Some specifiers (such as "d") format
numbers or strings. Other specifiers (such as "/") refer to locale-specific strings from global
variables. The case of the specifiers is ignored in formats, except for the "am/pm" and "a/p"
specifiers.

Specifier Display

c Date followed by time

Note: The time is not displayed if the date-time
value indicates midnight precisely.

d Day as a number without a leading zero (1–31)

Chapter 11
Working with Functions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 61

Specifier Display

dd Day as a number with a leading zero (01–31)

ddd Day as an abbreviation (Sun-Sat)

dddd Day as a full name (Sunday-Saturday)

ddddd Short format of date

dddddd Long format of date

e Year in the current period/era as a number without
a leading zero (Japanese, Korean, and Taiwanese
locales only)

ee Year in the current period/era as a number with a
leading zero (Japanese, Korean, and Taiwanese
locales only)

g Period/era as an abbreviation (Japanese and
Taiwanese locales only)

gg Period/era as a full name (Japanese and
Taiwanese locales only)

m Month as a number without a leading zero (1–12)

Caution: If the "m" specifier immediately follows an
"h" or "hh" specifier, the minute rather than the
month is displayed.

mm Month as a number with a leading zero (01–12)

Caution: If the "mm" specifier immediately follows
an "h" or "hh" specifier, the minute rather than the
month is displayed.

mmm Month as an abbreviation (Jan-Dec)

mmmm Month as a full name (January-December)

yy Year as a two-digit number (00–99)

yyyy Year as a four-digit number (0000–9999)

h Hour without a leading zero (0–23)

hh Hour with a leading zero (00–23)

n Minute without a leading zero (0–59)

nn Minute with a leading zero (00–59)

s Second without a leading zero (0–59)

ss Second with a leading zero (00–59)

z Millisecond without a leading zero (0–999)

zzz Millisecond with a leading zero (000–999)

t Time using the format given by the
ShortTimeFormat global variable

tt Time using the format given by the
LongTimeFormat global variable

am/pm Uses the 12-hour clock for the preceding "h" or
"hh" specifier, and displays "am" for any hour
before noon, and "pm" for any hour after noon. The
am/pm specifier can use lower, upper, or mixed
case, and the result is displayed accordingly.

Chapter 11
Working with Functions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 61

Specifier Display

a/p Uses the 12-hour clock for the preceding "h" or
"hh" specifier, and displays "a" for any hour before
noon, and "p" for any hour after noon. The a/p
specifier can use lower, upper, or mixed case, and
the result is displayed accordingly.

ampm Uses the 12-hour clock for the preceding "h" or
"hh" specifier

/ Date separator character given by the regional
settings

: Time separator character given by the regional
settings

'xx'/"xx" Characters enclosed in single or double quotation
marks are displayed as-is and do not affect
formatting.

Formula Evaluation
You can test formulas when you create or modify a property definition or validation. The
formula is evaluated using the supplied property values to calculate the result of the formula.
This process may find logic or implementation errors in the formula that a simple syntax
validation may miss. The formula result and any formula error or status message is displayed.

Formulas are evaluated left to right, with evaluation of functions and string literals performed as
they are encountered. By this method, nested functions are evaluated before additional
parameters that are displayed to the right of the nested function. Functions can be nested
explicitly in the formula or they can be implicitly nested by retrieving the value of another
formula property. Circular references (property formulas that refer to the property itself, either
explicitly or implicitly) should be avoided in most cases. Oracle Data Relationship Management
detects and prevents harmful circular references, but they should not be used unless they are
necessary and well understood.

Formula Syntax Checks
Formula syntax is verified for the following before a formula is saved:

• Function names are correct.

• Property names are correct.

• An equal number of open and close parentheses are present.

• The actual number of parameters is at least the expected number of parameters for each
function

Functions such as Concat can take any number of parameters. The parameter count validation
verifies that the actual number of parameters is equal to or greater than the expected number
of parameters. Thus too many parameters do not generate an error, but too few parameters
do.

The syntax validation does not evaluate the formula, therefore errors may occur if invalid
constants are entered. For example: IntToStr(ABC,3) passes the syntax validation, but
generates an error in the Oracle Data Relationship Management application. You must
evaluate each formula to avoid this type of error prior to saving.

Chapter 11
Formula Evaluation

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 6 of 61

Property Names in the Syntax Check
In order to accurately perform a syntax validation on property names, functions that require
property names are partially evaluated for those rare cases in which a property name is not a
literal but is the result of a function.

Consider these examples:

• The formula PropValue(Concat(Core.Abbrev)) is valid, but the Concat function has to be
evaluated (not just validated for syntax) to verify the property name.

• The formula PropValue(If(NodeIsLeaf(),Core.Abbrev,Custom.Label)) is valid, but the If
function has to be evaluated to verify the property name.

If the property name in question comprises only part of the formula, only the parts needed to
determine property names are evaluated. For example, in the formula
Add(PropValue(Concat(Core.,I,D)),If(NodeIsLeaf(),0,1), the only part of the formula
evaluated for the syntax validation is the Concat function and its parameters.

The fact that these formula parts are evaluated becomes significant in cases such as
PropValue(PropValue(NodeType)). For this formula, the syntax validation fails unless a value
is supplied for the Custom.NodeType property.

Considerations for Using Formulas
Data Type Conversion

Some functions require that data values be of a specific data type to be properly evaluated. For
example, functions that perform mathematical calculations require that input arguments are
integer or floating point values, whereas string manipulation functions require that string values
be provided as input. In some cases, data values must be converted from one data type to
another to be successfully derived. Oracle Data Relationship Management provides a set of
functions to handle data type conversions within formulas.

Property Level Restrictions

Generally, property definitions created to manage data at a lower level of granularity can
reference other properties that manage data at a higher level of granularity.

• Local Node––May refer to other local node, global node, hierarchy, or version properties

• Global Node––May refer to other global node or version properties

• Hierarchy––May refer to other hierarchy or version properties (Lookup only)

• Version––May refer to other version properties (Lookup only)

Referencing Properties from Other Nodes

It is common for a derived property or validation to evaluate or retrieve a property value from a
different node than the current node for which the formula is being calculated. Data
Relationship Management provides several functions that enable you to access property
values from nodes within the same version.

• NodePropValue

• ParentPropValue

• HierNodePropValue

Chapter 11
Considerations for Using Formulas

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 7 of 61

• AncestorProp

• DualAncestorProp

• AscNodeProp

• ReplacePropValue

• ListPropValues

• ListNodePropValues

Referencing Local Node Properties from Global Node Properties

Global node properties do not require a hierarchy context to return a value, whereas local node
properties do require a hierarchy to be specified. Derived properties or validations that are
calculated for a global node cannot reference local node property values using the standard
PropValue or NodePropValue functions. Global node properties may reference local node
property values using the HierNodePropValue function whereby a particular hierarchy must be
specified to retrieve the value of the property for a specific local node in the hierarchy.

Nesting Functions

Combining functions into the same formula is referred to as nesting functions. The output of
one function is used as an input argument for another function in the formula. When evaluating
nested functions, Data Relationship Management executes the innermost function first and
then works its way outward. Functions may be nested explicitly within the same formula or
nested implicitly by using one formula that refers to a property that uses a different formula.

Using Properties as Variables for Other Properties

Data Relationship Management enables you to use a combination of nested functions,
references to other properties or nodes, and literal values, which may result in lengthy or
complex formulas. You can use separate property definitions to modularize formula logic and
simplify the formula syntax required to achieve the same results. This approach may
significantly improve the ease of maintenance for these formulas.

In addition, formulas may evaluate the same data or perform the same calculation multiple
times within the same property definition or across multiple property definitions for a given
node. When this logic is embedded in a much larger formula or implemented within property
definitions, these checks and calculations are performed multiple times, which may affect the
performance for operations that require the properties to be calculated. You can minimize
redundant processing by isolating the duplicate formula logic within a separate property
definition.

Using Recursion to Traverse Hierarchy Relationships

Business rules for nodes at lower levels of a hierarchy may require the evaluation of property
values from ancestor nodes above them. One way to allow these property values to be
referenced by lower-level nodes is to enable inheritance on the property definition that
manages the values that must be referenced. However, in many cases, using an inheritance
for a property definition is not appropriate.

You can use specific hierarchical formula functions with a self-reference to the current property
definition to recurse up a branch of a hierarchy to retrieve or evaluate property values for
ancestor nodes.

ParentPropValue––Use this function to recurse up a branch of ancestors in the current
hierarchy. For example: If(Equals(Integer,PropValue(Core.Level),1),Label
Only,ParentPropValue(Essbase.DataStorage))

Chapter 11
Considerations for Using Formulas

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 8 of 61

HierNodePropValue––Use this function to recurse up a branch of ancestors in another
hierarchy. For example:
If(Equals(Boolean,PropValue(Custom.PlanPoint),True),Abbrev(),HierNodePropValue(Ge
ography,HierNodePropValue(Geography,Abbrev(),Core.Parent),Custom.PlanMember))

Creating Formulas
Formulas are created in the formula editor which is available on the Parameters tab for
creating or editing derived property definitions and validations.

To create a formula:

1. You can enter a text formula or insert functions and properties in the following ways on the
Parameters tab:

• To insert a function, place your cursor in the formula and click Insert Function. A list of
functions is displayed. Expand a function to view its input parameters. Enter the
parameter values and click OK.

• To insert a property, place your cursor in the formula and click Insert Property. A list of
properties is displayed. Select a property and click OK.

2. Make selections from the following options:

• Remove Spaces––Selected by default. If selected, all spaces in the formula are
removed when the formula is evaluated and when the property is saved. To preserve
spaces to be evaluated as literal values in the formula, disable this option.

• To evaluate the formula, select an option:

– Evaluate with Selected Node––Click and select a node. The node's current
property values are used in the formula. Click Evaluate. The result is displayed at
the bottom of the formula designer.

– Evaluate with Scratch Pad––Enter property values manually. Values can also be
copied from a node and then modified for the evaluation. In the Copy From Node,

click and select a node to display its property values in the grid. Use the filter
row below the column headings to filter the list of properties. Use the Edit buttons
in the Action column to modify property values for evaluation with the formula.
Click Evaluate. The Evaluation Result is displayed at the bottom of the formula
designer.

3. To test the formula, click Evaluate.

Function Definitions
Following is an alphabetical listing of available functions used with derived formula property
definitions.

Abbrev

Description

Returns the name (Abbrev) of the current node.

Syntax

Abbrev(): String

Chapter 11
Creating Formulas

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 9 of 61

Example

Abbrev()

Return value is the name of the node.

Add

Description

Adds two specified integer values and returns the result.

Syntax

Add(Int1,Int2:Integer):Integer

Example

Add(1,4)

Return value is 5.

AddedBy

Description

Returns the value of the Added By change tracking property.

Syntax

AddedBy():String

Example

AddedBy()

Returns the name of the user who added the current node to the version.

AddedOn

Description

Returns the value of the Added On change tracking property as a date/time.

Syntax

AddedOn():Date/Time

Example

AddedOn()

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 10 of 61

Returns the date and time at which the current node was added to the version.

AddFloat

Description

Adds two specified float values and returns the result.

Syntax

AddFloat(Float1,Float2:Float):Float

Example

AddFloat(2.14,3.75)

The return value is 5.89.

AncestorProp

Description

Returns a property value of the first ancestor where a property equals a specified value.

This function is local in scope and will not function properly if used in a global context.

Note

If the current node is valid for the criteria, then it will be returned.

Syntax

AncestorProp(Operator:String,Property:String,Value:String,FromTop:Boolean,Retu
rnProp:String)

Operator is the operator to use when comparing the property with the value. Valid values: =, <,
>, >=, and <=.

Property is the name of the property to use.

Value is the value to compare.

FromTop specifies whether to search from the top node of the hierarchy. If False, the search is
performed starting from the current node.

ReturnProp is the name of the property to return.

And

Description

Returns True if all specified Boolean expressions evaluate to True.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 11 of 61

Syntax

And(Expression1,Expression2,...ExpressionN:Boolean):Boolean

Example

And(1,T,True)

Return value is True.

ArrayCount

Description

Returns the number of items in a specified list (array).

Syntax

ArrayCount(List:String,Delimiter:String):Integer

List specifies the list of strings in which to search.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Example

ArrayCount(Diet Cola;Root Beer;Cola,[comma])

Return value is 3.

ArrayIndex

Description

Returns the position of the first occurrence of the specified item within the list (array). Returns
zero (0) if the item is not found.

Syntax

ArrayIndex(Item:String,List:String,Delimiter:String):Integer

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 12 of 61

Item specifies the string value to test.

List specifies the list of strings in which to search.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Example

ArrayIndex(Cola,Diet Cola;Root Beer;Cola,[comma])

Return value is 3.

ArrayItem

Description

Returns the item in the list (array) at the specified index position.

Syntax

ArrayItem(List:String,Delimiter:String,Index:Integer):String

List specifies the list of strings in which to search.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Index is the position of the string in the list. A negative value indicates the last item in the list.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 13 of 61

Example

ArrayItem(Diet Cola;Root Beer;Cola,;,3)

Return value is Cola.

AscNodeProp

Description

Returns a property value of the associated node referenced by the specified property.

Syntax

AscNodeProp(LookUpProperty,ReturnProperty)

LookupProperty is the name of the property that points to the node. Property must be
datatype Node or AscNode.

ReturnProperty is the name of the property of the associated node to return. Property must be
global.

AvgList

Description

Returns the average of the items in a list, ignoring blank items. Returns a blank string if the list
contains an item not of the specified item type.

Syntax

AvgList(InputList:String,Delimiter:String,ItemType:String):String

InputList specifies the list to use.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

ItemType indicates the expected item data type for list members. Valid values: integer, float,
and datetime. The default value is float.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 14 of 61

Example

AvgList(1;2;3,[comma],Integer)

Return value is 2.

BoolToStr

Description

Returns a Boolean value converted to True or False. Returns False if the input does not
represent a Boolean value.

Syntax

BoolToStr(Expression:Boolean):String

Example

BoolToStr(1)

Return value is True.

Changed

Description

Returns the value of the Node Changed change tracking property as a Boolean.

Syntax

Changed()

ChangedBy

Description

Returns the name of the user who last updated the current node in the version.

Syntax

ChangedBy():String

Example

ChangedBy()

ChangedOn

Description

Returns the value of the Changed On change tracking property.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 15 of 61

Syntax

ChangedOn():Date/Time

Example

ChangedOn()

Returns the date and time at which the current node was last updated in the version.

Concat

Description

Concatenates two or more specified strings into one and returns the result.

Syntax

Concat(Item1,Item2,... ItemN:String):String

Example

Concat(Abbrev,-,Descr())

If current node name is 100 and current node description is Colas, then return value is 100–
Colas.

ConcatWithDelimiter

Description

Concatenates two or more strings into one delimited list and returns the result.

Syntax

ConcatWithDelimiter(Delimiter:String,SkipBlanks:Boolean,Items:String)

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 16 of 61

SkipBlanks indicates whether to skip blank values in the list of strings. Valid values: 1, 0, T, F,
t, f.

Items specifies the list of strings to concatenate.

Example

ConcatWithDelimiter([comma],1,Item1,Item2,Item3,Item4)

Return value is Item1; Item2; Item3; Item4.

Decode

Description

Returns the input string with all instances of [openparen], [closeparen], [comma], [tab], [space],
[crlf], [cr], and [lf] replaced by the appropriate character.

Note

This function is for upgrading property definition names that use special characters.
These special characters can cause parsing issues with derived property formulas.
This function is used primarily to convert existing properties using deprecated deriver
classes to the Formula deriver class.

Syntax

Decode(CodedString:String):String

CodedString is the string value on which to perform the function.

DefaultProp

Description

Returns the default value for the property.

Syntax

DefaultProp(Property:String)

Property is the name of the property to use.

Descr

Description

Returns the description of the current node.

Syntax

Descr():String

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 17 of 61

Example

If current node description is Colas, then return value is Colas.

Divide

Description

Divides two specified integer values and returns the result.

Syntax

Divide(Int1,Int2:Integer):Integer

Example

Divide(200,10)

Return value is 20.

DivideFloat

Description

Divides two floating-point numbers (float) and returns the result.

Syntax

Divide(Float1,Float2:Float):Float

Example

DivideFloat(2.535,1.5)

The return value is 1.69.

DualAncestorProp

Description

Returns a property value of the first ancestor where two properties equal the specified values.

This function is local in scope and will not function properly if used in a global context.

Syntax

DualAncestorProp(Operator1:String,Property1:String,Value1:String,Operator2:Str
ing,Property2:String,Value2:String,FromTop:Boolean,ReturnProp:String):String

Operator1 is the operator to use when comparing the first property and value. Valid values: =,
<, >, >=, and <=.

Property1 is the name of the first property to check.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 18 of 61

Value1 is the first value to compare.

Operator2 is the operator to use when comparing the second property and value. Valid values:
=, <, >, >=, and <=.

Property2 is the name of the second property to check.

Value2 is the second value to compare.

FromTop specifies whether to search from the top node of the hierarchy. If False, the search is
performed starting from the current node.

ReturnProp is the name of the property of the ancestor to return.

Equals

Description

Returns True if two specified values are equal. This function is case-sensitive.

Syntax

Equals(ParamType:String,Param1:String,Param2:String):Boolean

ParamType is the data type to use for comparing values. Valid values: string, integer, float,
date. The default value is integer.

Param1 is the first value to compare.

Param2 is the second value to compare.

Example

Equals(integer,01,1)

Return value is True.

FlipList

Description

Returns a string representing the reverse of the specified list.

Syntax

FlipList(List,Delimiter:String):String

List specifies the list of strings to flip.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 19 of 61

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Example

FlipList(DietCola;Orange Soda;Root Beer;Lemonade,[comma])

Return value is Lemonade,Root Beer,Orange Soda,Diet Cola.

FloatToStr

Description

Returns a float value converted to a string. Returns zero (0) if the input value does not
represent a float.

Syntax

FloatToStr(Float1:Float):String

Example

FloatToStr(1.001)

Return value is 1.001.

Format

Description

Formats the value using a specified format string parameter type identifier and parameter
value of the specified type. This function is limited to one value parameter.

Syntax

Format(Format:String,ParamType:String, ValueToFormat:String):String

Format is the format to apply.

ParamType is the data type to use for comparing values. Valid values: string, integer, float,
date. The default value is integer.

ValueToFormat is the value on which to perform the function.

Example

Format('%8.2f',Float,123.456)

Return value is 123.46.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 20 of 61

FormattedDate

Description

Returns the value of a date property formatted using the specified format string.

Syntax

FormattedDate(PropertyName:String,FormatString:String): String

PropertyName is the name of the property to use.

FormatString specifies the date format to apply.

GreaterThan

Description

Compares two values and returns True if the first value is greater than the second value.

Syntax

GreaterThan(Value1:Integer,Value2:Integer,ParamType:String):Boolean

Value1 is the first value to compare.

Value2 is the second value to compare.

ParamType is the data type to use for comparing values. Valid values: string, integer, float,
date. The default value is integer.

Example

GreaterThan(1,2)

The return value is False.

GreaterThanOrEqual

Description

Compares two values and returns True if the first value is greater than or equal to the second
value.

Syntax

GreaterThanOrEqual(Value1:Integer,Value2:Integer,ParamType:String):Boolean

Value1 is the first value to compare.

Value2 is the second value to compare.

ParamType is the data type to use for comparing values. Valid values: string, integer, float,
date. The default value is integer.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 21 of 61

Example

GreaterThanOrEqual(2,2)

The return value is True.

HasCharacters

Description

Returns True if the specified Input contains characters from the Character Classes, Special
Characters, or Characters listed in CharList.

Syntax

HasCharacters(Input:String,CharList:String):Boolean

Input is the string value to test.

CharList is a list of characters to test, including optional special values. Special character
values are enclosed in brackets and separated by a comma. Valid values: [alpha], [numeric],
[whitespace], [punctuation], [uppercase], [lowercase], [comma], [space], [tab], [crlf], [cr], [lf],
[openparen], and [closeparen].

HasChildWith

Description

Returns True if the specified expression is True for any child of the current node.

Syntax

HasChildWith(Expression:Boolean):Boolean

Example

HasChildWith(GreaterThan(ID(),200))

If the current node has any children with an ID greater than 200, then return value is True.

HasParentNode

Description

Returns True if the current local node has a parent node.

This function is local in scope and will not function properly if used in a global context.

Syntax

HasParentNode():Boolean

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 22 of 61

Example

HasParentNode()

If the node is a child of the top node of a hierarchy or any descendant node, then the return
value is True.

HasSiblingWith

Description

Returns True if the specified expression is True for any sibling of the current node.

This function is local in scope and will not function properly if used in a global context.

Syntax

HasSiblingWith(Expression:Boolean):Boolean

Example

HasSiblingWith(PropValue(Leaf))

If any of the children are leaves, then the return value is True.

HierNodePropValue

Description

Returns the value of the specified property of the specified node in the specified hierarchy.

Syntax

HierNodePropValue(HierAbbrev:String,NodeAbbrev:String,PropAbbrev:String):Strin
g

HierAbbrev is the name of the hierarchy to use.

NodeAbbrev is the name of the node to use.

PropAbbrev is the name of the property to use.

Example

HierNodePropValue(Assets,1000,Description)

If the description for node 1000 in the Assets hierarchy is "Banking", then the return value is
Banking.

ID

Description

Returns the ID of the current node.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 23 of 61

Syntax

ID():Integer

Example

ID()

If the current node ID is 2000, then the return value is 2000.

If

Description

Returns the value of the TrueResult parameter if the specified expression evaluates to True.
Otherwise, it returns the value of the FalseResult parameter.

Syntax

If(Expression:Boolean, TrueResult:String,FalseResult:String):String

Expression is a Boolean expression to evaluate.

TrueResult is the string value to return if the condition is True.

FalseResult is the string value to return if the condition is False.

Example

If(Equals(String,Descr(),),Abbrev(),Concat(Abbrev,-,Descr()))

If the node name is Colas and the current node description is blank, then the return value is
Colas.

If the node name is 100 and the current node descriptions is Colas, then the return value is
100–Colas.

InheritedPropOrigin

Description

Returns the name of the node from where an inherited property value originates. If the
specified property is global, then the origin hierarchy is also returned. Returns False if the
specified property is not inheriting, or if the node or property is not found.

This function can be local in scope if a local property is passed in the parameters.

Syntax

InheritedPropOrigin(PropAbbrev:String,Node:String):String

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 24 of 61

Example

InheritedPropOrigin(Custom.AccountType,Abbrev())

PropAbbrev is the name of the property to use.

Node is the name of the node to use.

InRange

Description

Returns True if the specified value falls within a specified range of values. If the input
parameter is a string, the Min and Max parameters specify a string length range to check. For
other types, Min and Max specify a numeric or date value range to check.

Note

If MinExclusive/MaxExclusive is True, then values equal to the Min/Max are included
in the range, otherwise they are excluded.

Syntax

InRange(DataType:String,Input:String,Min:String,Max:String,MinExclusive:String
,MaxExclusive:String):Boolean

DataType is the data type to use. Valid values: string, integer, float, and datetime.

Input is the string value to test.

Min is the minimum value for length or range check.

Max is the maximum value for length or range check.

MinExclusive specifies whether to exclude the Min value from the range to check.

MaxExclusive specifies whether to exclude the Max value from the range to check.

Example

InRange(Integer,5,1,10,False,False)

Return value is True.

InternalPrefix

Description

Returns the non-numeric prefix from the name of the current node.

Syntax

InternalPrefix()

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 25 of 61

Intersection

Description

Returns the set of items common to both specified lists of values. The ordering of the results is
based on how the items appear in the first list specified.

Syntax

Intersection(List1:String,List2:String,Delimiter:String):String

List1 specifies a list of strings in which to search.

List2 specifies a list of strings in which to search.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Example

Intersection(A;B;C;D;E,C;E;F;A,[comma])

The return value is A,C,E.

IntToStr

Description

Returns the specified integer value converted to a string data type. Returns zero (0) if the input
value does not represent an integer.

Syntax

IntToStr(Int1:Integer):String

Example

IntToStr(12345)

The return value is 12345.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 26 of 61

InvertedLevel

Description

Returns the maximum depth of descendants below the current node.

Syntax

InvertedLevel()

IsAlpha

Description

Returns True if the specified string contains only alphabetical characters (case-insensitive).

Syntax

IsAlpha(String:String):Boolean

Example

IsAlpha(A23D)

The return value is False.

IsAlphaNumeric

Description

Returns True if the specified string contains only alphabetical or numeric characters (not case-
sensitive).

Syntax

IsAlphaNumeric(String:String,AllowBlanks:Boolean):Boolean

String is the string value to test.

AllowBlanks specifies whether a blank string should be treated as numeric. Default is False.

Example

IsAlphaNumeric(ABC123,True)

Returns True.

IsBlank

Description

Returns True if the specified input value is an empty string (zero length).

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 27 of 61

Syntax

IsBlank(Input:String):Boolean

Example

IsBlank(Descr())

Returns True if the node description is blank.

IsBottomNode

Description

Returns True if the specified node has no child nodes. Returns False if the node is not found.

Syntax

IsBottomNode(Node:String):Boolean

Node is the name of the node to use.

Example

IsBottomNode(Abbrev)

Returns True if the node does not have children.

IsDataType

Description

Returns True if the input value matches the specified data type.

Syntax

IsDataType(DataType:String,Input:String):Boolean

DataType is the data type to use. Valid values: boolean, string, integer, float, and datetime.

Input is the string value to test.

Example

IsDataType(123,Integer)

Returns True.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 28 of 61

IsDefinedPropVal

Description

Returns True if the specified property for the specified node has a defined (overridden) value.
Returns False if the node or property is not found.

This function can be local in scope if a local property is passed in the parameters.

Syntax

IsDefinedPropVal(PropAbbrev:String,Node:String):Boolean

PropAbbrev is the name of the property to use.

Node is the name of the node to use.

Example

IsDefinedPropVal(Custom.AccountType,Abbrev())

Returns True if the Account Type property has a defined (overridden) value.

IsNodeAbove

Description

Returns True if the first node is an ancestor of the second node in the current hierarchy.
Returns False if Node1 or Node2 is not found.

This function is local in scope and will not function properly if used in a global context.

Syntax

IsNodeAbove(Node1:String,Node2:String):Boolean

Node1 is the name of the first node to use.

Node2 is the name of the second node to use.

Example

IsNodeAbove(Parent,Child)

Returns True if node parent is an ancestor of the child node.

IsNodeBelow

Description

Returns True if the first node is a descendant of the second node in the current hierarchy.
Returns False if Node1 or Node2 is not found.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 29 of 61

Syntax

IsNodeBelow(Node1:String,Node2:String):Boolean

Node1 is the name of the first node to use.

Node2 is the name of the second node to use.

Example

IsNodeBelow(Child,Parent)

Returns True if node child is descendant of the parent node.

IsNumeric

Description

Returns True if the specified value contains only numeric characters (0-9).

Syntax

IsNumeric(String: String,AllowBlanksAsNumeric:Boolean):Boolean

String is the string value to test.

AllowBlanksAsNumeric specifies whether to allow a blank value to be considered a string.
The default value is False.

Example

IsNumeric(12345)

The return value is True.

IsRangeListSubset

Description

Returns True if the specified value is a subset of the specified range list.

Syntax

IsRangeListSubset(RangeList:Range List,SubsetRangeList:Range
List,Delimiter:String):Boolean

RangeList is a list of integer ranges to search, separated by the specified delimiter.

SubsetRangeList is a subset list of integer ranges to search, separated by the specified
delimiter.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 30 of 61

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Length

Description

Returns the number of characters in the specified string value.

Syntax

Length(String:String):Integer

Example

Length(Desc())

If the description for the current node is Colas, then the return value is 5.

LessThan

Description

Compares two values and returns True if the first value is less than the second value.

Syntax

LessThan(Value1:Integer,Value2:Integer,ParamType:String):Boolean

Value1 is the first value to compare.

Value2 is the second value to compare.

ParamType is the data type to use for comparing values. Valid values: string, integer, float,
date. The default value is integer.

Example

LessThan(1,2)

The return value is True.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 31 of 61

LessThanOrEqual

Description

Compares two values and returns True if the first value is less than or equal to the second
value.

Syntax

LessThanOrEqual(Value1:Integer,Value2:Integer,ParamType:String):Boolean

Value1 is the first value to compare.

Value2 is the second value to commpare.

ParamType is the data type to use for comparing values. Valid values: string, integer, float,
date. The default value is integer.

Example

LessThanOrEqual(3,3)

The return value is True.

ListAncestors

Description

Returns a comma-delimited list of the names of the current node’s ancestors, starting from the
top node. Returns a blank string if the current node is not a local node.

This function is local in scope and will not function properly if used in a global context.

Syntax

ListAncestors(SortOrder:String):String

SortOrder specifies the sort order for the return list of nodes. Supported sort order values:

• [hier]––Default value for local context. The list of nodes is returned in the standard
hierarchy sort order for the current hierarchy.

• [alpha]––The list of nodes is returned sorted by node name.

• [nodeid]––Limited use for legacy compatibility. The list of nodes is returned sorted
numerically on the node ID of each node in the return list.

Note

You must use brackets around the SortOrder parameter.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 32 of 61

Example

ListAncestors([alpha])

If A, B, C, and D are children of Z, Z is a child of Y, and the current node is D, then the return
value is Z,Y.

ListChildren

Description

Returns a comma-delimited list of children for the current node.

Syntax

ListChildren(SortOrder:String):String

SortOrder specifies the sort order for the return list of nodes. Supported sort order values:

• [hier]––Default value for local context. The list of nodes is returned in the standard
hierarchy sort order for the current hierarchy.

• [alpha]––The list of nodes is returned sorted by node name.

• [nodeid]––Limited use for legacy compatibility. The list of nodes is returned sorted
numerically on the node ID of each node in the return list.

Note

You must use brackets around the SortOrder parameter.

Example

ListChildren([alpha])

If A, B, C, and D are children of Z and the current node is Z, then the return value is A, B, C, D.

ListContains

Description

Returns True if the specified list contains the specified value.

Syntax

ListContains(List:String,Item:String,Delimiter: String):Boolean

List specifies the list of strings in which to search.

Item specifies the string value on which to perform the function.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 33 of 61

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Example

ListContains(PropValue(NodeList),Colas,[comma])

The return value is True.

ListDescendants

Description

Returns a comma-delimited list of descendants for the current node.

Syntax

ListDescendants(SortOrder:String):String

SortOrder specifies the sort order for the return list of nodes. Supported sort order values:

• [hier]––Default value for local context. The list of nodes is returned in the standard
hierarchy sort order for the current hierarchy.

• [alpha]––The list of nodes is returned sorted by node name.

• [nodeid]––Limited use for legacy compatibility. The list of nodes is returned sorted
numerically on the node ID of each node in the return list.

Note

You must use brackets around the SortOrder parameter.

Example

ListDescendants([hier])

If A, B, C, and D are children of Z, Z is a child of Y, and the current node is Y, then the return
value is Z, A, B, C, D.

ListDistinct

Description

Returns a distinct list of items from a specified list, with duplicates removed.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 34 of 61

Syntax

ListDistinct(InputList:String,Delimiter:String):String

InputList specifies the list to use.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Example

ListDistinct(A;B:C;A;D,[comma])

The return value is A,B,C,D.

ListNodePropValues

Description

Returns a list of property values for the specified property for a specified list of nodes. Returns
a blank string in the list, for any node that cannot be found.

This function can be local in scope if a local property is passed in the parameters.

Syntax

ListNodePropValues(NodeList:String,Delimiter:String,PropAbbrev:String):String

NodeList is a comma-delimited list of node names.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 35 of 61

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

PropAbbrev is the name of the property to use.

Example

ListNodePropValues(100;200;300,[comma],Core.Leaf)

Returns True,True,True if nodes 100, 200, and 300 are leaf nodes.

ListNodesWith

Description

Returns a list of nodes from the specified node list where the specified expression evaluates to
True.

Syntax

ListNodesWith(NodeList:String,Delimiter:String,Expression:String):String

NodeList is a comma-delimited list of node names.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Expression is a Boolean expression to evaluate.

Example

ListNodesWith(100;200;300,[comma],NodeIsLeaf())

Returns True,True,True if nodes 100, 200, and 300 are leaf nodes.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 36 of 61

ListRelatedNodesWith

Description

Returns a list of nodes related to the current node where the specified expression evaluates to
True.

This function is local in scope if the relationship parameter is Ancestors or Siblings.

Syntax

ListRelatedNodesWith(Relation:String,Expression:String,SortOrder:String,Max:In
teger):String

Relation can be:

• Ancestors––Local properties can be referenced in the specified expression

• Siblings––Local properties can be referenced in the specified expression

• Children––Local and global properties can be referenced in the specified expression

• Descendants––Local and global properties can be referenced in the specified expression

Expression is a Boolean expression to evaluate.

SortOrder specifies the sort order for the return list of nodes. Supported sort order values:

• [hier]––Default value for local context. The list of nodes is returned in the standard
hierarchy sort order for the current hierarchy.

• [alpha]––The list of nodes is returned sorted by node name.

• [nodeid]––Limited use for legacy compatibility. The list of nodes is returned sorted
numerically on the node ID of each node in the return list.

Note

You must use brackets around the SortOrder parameter.

Max is an integer value indicating the maximum number of nodes to return. Zero or no value
indicates no limit, and all nodes are returned.

Example

ListRelatedNodesWith(children,True,[alpha],1000)

Returns 100,200,300 if the nodes are children of the current node.

ListSiblings

Description

Returns a comma-delimited list of siblings (peers) of the current node.

This function is local in scope and will not function properly if used in a global context.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 37 of 61

Syntax

ListSiblings(SortOrder:String):String

SortOrder specifies the sort order for the return list of nodes. Supported sort-order values:

• [hier]––Default value for local context. The list of nodes is returned in the standard
hierarchy sort order for the current hierarchy.

• [alpha]––The list of nodes is returned sorted by node name.

• [nodeid]––Limited use for legacy compatibility. The list of nodes is returned sorted
numerically on the node ID of each node in the return list.

Example

ListSiblings([alpha])

If A, B, C, and D are children of Z and the current node is B, then the return value is A, C, D.

LowerCase

Description

Returns the specified string value converted to lower case.

Syntax

LowerCase(String:String):String

Example

LowerCase(HOBBES)

The return value is hobbes.

LTrim

Description

Returns the specified value with all spaces trimmed from the beginning of the string.

Syntax

LTrim(String: String): String

Example

LTrim(" 101203")

The return value is 101203.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 38 of 61

MaxList

Description

Returns the maximum item from the specified list, ignoring blank items. Returns a blank string
if the list contains an item not of the specified type.

Syntax

MaxList(InputList: String,Delimiter: String,ItemType: String)

InputList specifies the list to use.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

ItemType indicates the expected item data type for list members. Valid values: integer, float,
and datetime. The default value is float.

Example

MaxList(1;2;3,[comma],Integer)

Return value is 3.

MinList

Description

Returns the minimum item from the specified list, ignoring blank items. Returns a blank string if
the list contains an item not of the specified type.

Syntax

MinList(InputList:String,Delimiter:String,ItemType:String)

InputList specifies the list to use.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 39 of 61

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

ItemType indicates the expected item data type for list members. Valid values: integer, float,
and datetime. The default value is float.

Example

MinList(1;2;3,[comma],Integer)

Return value is 1.

Modulus

Description

Returns the modulus (remainder) of the division of two specified integers.

Syntax

Modulus(Dividend: Integer, Divisor: Integer): Integer

Dividend is the numerator of the fraction being divided.

Divisor is the denominator of the fraction being divided.

Example

Modulus(5,2)

The return value is 1.

Multiply

Description

Multiplies two specified integers and returns the result.

Syntax

Multiply(Int1: Integer, Int2: Integer): Integer

Example

Multiply(2,5)

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 40 of 61

The return value is 10.

MultiplyFloat

Description

Multiplies two specified floating-point numbers (float) and returns the result.

Syntax

Multiply(Float1: Float, Float2: Float): Float

Example

MultiplyFloat(4.76,2.3)

The return value is 10.948.

NextSibling

Description

Returns the next sibling for the current node based on the sort order used for the current
hierarchy.

This function is local in scope and will not function properly if used in a global context.

Syntax

NextSibling(): String

Example

NextSibling()

If A, B, C, and D are children of Z and the current node is B, then the return value is C.

NodeAccessGroups

Description

Returns a comma-delimited list of node access groups for the current user for the current
node.

This function is local in scope and will not function properly if used in a global context.

Syntax

NodeAccessGroups(): String

Example

NodeAccessGroups()

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 41 of 61

The return value is Accounts, Finance.

NodeExists

Description

Returns True if the specified node exists.

Syntax

NodeExists(NodeAbbrev: string): Boolean

NodeAbbrev is the name of the node to use.

Example

NodeExists(2000)

If node 2000 exists, then the return value is True.

NodeInHier

Description

Returns True if the specified node exists in the specified hierarchy.

Syntax

NodeInHier(NodeAbbrev, HierAbbrev: string): Boolean

NodeAbbrev is the name of the node to use.

HierAbbrev is the name of the hierarchy to use.

Example

NodeInHier(2000,Assets)

If the node 2000 is in the Assets hierarchy, then the return value is True.

NodeIsLeaf

Description

Returns True if the current node is a leaf node.

Syntax

NodeIsLeaf(): Boolean

Example

NodeIsLeaf()

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 42 of 61

If the current node is a leaf, then the return value is True.

NodeIsValidForPropertyHiers

Description

Returns True if the specified node satisfies the hierarchy constraint for the specified property.
Also returns True if the property does not store node values or if no constraint is defined for the
property.

This function can be local in scope if a local property is passed in the parameters.

Syntax

NodeIsValidForPropertyHiers(NodeAbbrev: String, PropAbbrev: String): Boolean

NodeAbbrev is the name of the node to use.

PropAbbrev is the name of the property to use.

NodePropValue

Description

Returns the value of the specified property of the specified node in the current hierarchy for a
local node or in the current version for a global node.

This function can be local in scope if a local property is passed in the parameters.

Syntax

NodePropValue(NodeAbbrev: String, PropAbbrev: String): String

NodeAbbrev is the name of the node to use.

PropAbbrev is the name of the property to use.

Example

NodePropValue(2000,Abbrev())

Return value is 2000.

Not

Description

Returns the Boolean opposite of the specified Boolean expression.

Syntax

Not(Expression: Boolean): Boolean

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 43 of 61

Example

Not(NodeIsLeaf())

If the node is a limb, then the return value is True.

Now

Description

Returns the current system date and/or time.

Syntax

Now([DateTimeType: String]): DateTime

DataTimeType is optional for specifying which date portion to return. Valid values: Date, Time,
Datetime. The default value is Date.

Example

Now()

Returns the current date and time; for example 3/25/2010 9:20:44 AM.

Now(Time)

Returns only the current time; for example 9:20:44 AM.

Now(Date)

Returns only the current date; for example 3/25/2010.

NumChildWith

Description

Returns the number of children for the current node where the specified expression evaluates
to True.

Syntax

NumChildWith(Expression: Boolean): Integer

Example

NumChildWith(NodeIsLeaf())

If the node has two leaf children, then the return value is 2.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 44 of 61

NumDescendantsWith

Description

Returns the number of descendants for the current node where the specified expression
evaluates to True.

Syntax

NumDescendantsWith(Expression: Boolean): Integer

Example

NumDescendantsWith(NodeIsLeaf())

If the node has two children and each child has 10 leaf children, then the return value is 20.

Or

Description

Returns True if any of the specified Boolean expressions evaluate to True.

Syntax

Or(Expression1, Expression2,... ExpressionN: Boolean): Boolean

Example

Or(NodeIsLeaf(),Equals(Integer,PropValue(Level),3))

If the current node is a leaf or is at level 3 in the hierarchy, then the return value is True.

OrigPropValue

Description

Returns the value of the specified property for the originating node when using the
HasSiblingWith or NumDescendantsWith functions.

This function can be local in scope if a local property is passed in the parameters.

Syntax

OrigPropValue(PropAbbrev: String): String

PropAbbrev is the name of the property to use.

Example

HasSiblingWith(GreaterThan(OrigPropValue(ID),ID())

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 45 of 61

If the current node's ID is 200 and it has any siblings with a node ID greater than 200, then the
return value is True.

PadChar

Description

Returns a specified string lengthened using a specified pad character. Padding can be on the
left or right of the original string. The resulting string is at least as long as the number of digits
specified. If the original string is longer than the number of digits specified, the original list is
returned.

Syntax

PadChar(String: String, PadChar: String; PadLeft: Boolean; NewLength:
Integer): String

String is the string value on which to perform the function.

PadChar is the character to use for padding the string.

PadLeft specifies whether to pad the string on the left. Valid values: 1, 0, T, F, t, or f.

NewLength is an integer specifying the length of the result.

Example

PadChar(102,0,1,6)

The return value is 000102.

PadList

Description

Returns a specified list lengthened using a specified pad character. Padding can be on the left
or right of the original list. The resulting list is at least as long as the number of digits specified.
If the original list is longer than the number of digits specified, the original list is returned.

Syntax

PadList(String, DelimChar, PadChr:String, PadLeft: Boolean,
NewLength:Integer): String

StringList is the list of strings to apply padding to, separated by the specified delimiter.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 46 of 61

Note

You must use the name of the delimiter (not the character) and include square
brackets around the name.

PadChar is the character to use for padding the string.

PadLeft specifies whether to pad the string on the left. Valid values: 1, 0, T, F, t, or f.

NewLength is an integer specifying the length of the result.

Example

PadList(1;2;3;4,;,T,3)

The return value is 001;002;003,004.

ParentPropValue

Description

Returns the value of the specified property of the current node’s parent node. Returns a blank
string if the node has no parent, or if the current node is not a local node.

This function is local in scope and will not function properly if used in a global context.

Syntax

ParentPropValue(PropAbbrev: String): String

PropAbbrev is the name of the property to use.

Example

ParentPropValue(Abbrev)

If the parent node name is Colas, then the return value is Colas.

Pos

Description

Returns the position (index) of the first character of the specified substring within the specified
string using a case-sensitive search. A zero value is returned if the substring is not found within
the string value.

Syntax

Pos(SubString: String, String: String): Integer

Substring is the string value for which to search.

String is the string value on which to perform the function.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 47 of 61

Example

Pos(D,ABCDEFG)

The return value is 4.

PreviousSibling

Description

Returns the previous sibling for the current node based on the sort order used for the current
hierarchy.

This function is local in scope and will not function properly if used in a global context.

Syntax

PreviousSibling(): String

Example

PreviousSibling()

If A, B, C, and D are children of Z and the current node is B, then the return value is A.

PropControllingHier

Description

Returns the name of the controlling hierarchy of the specified property in the current version.

Syntax

PropControllingHier(PropAbbrev: String): String

PropAbbrev is the name of the property to use.

Example

PropControllingHier(TimeBalance)

The return value is Accounts.

PropDefaultValue

Description

Returns the default value of the specified property definition.

Syntax

PropDefaultValue(PropAbbrev: String): String

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 48 of 61

PropAbbrev is the name of the property to use.

Example

PropDefaultValue(Currency)

The return value is USD.

PropertyCategories

Description

Returns a comma-delimited list of property categories for the current user.

Syntax

PropertyCategories(AccessType: String) :String

AccessType is the access level for a property category. Valid values: ReadOnly, ReadWrite, or
Both.

Example

PropertyCategories(Both)

The return value is System, All, Essbase, Enterprise, HFM, Planning.

PropMaxValue

Description

Returns the maximum value of the specified property definition.

Syntax

PropMaxValue(PropAbbrev: String): Integer

PropAbbrev is the name of the property to use.

Example

PropMaxValue(Volume)

The return value is 10.

PropMinValue

Description

Returns the minimum value of the specified property definition.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 49 of 61

Syntax

PropMinValue(PropAbbrev: String): Integer

PropAbbrev is the name of the property to use.

Example

PropMinValue(Volume)

The return value is 1.

PropValue

Description

Returns the value of the specified property for the current node.

This function can be local in scope if a local property is passed in the parameters.

Syntax

PropValue(PropAbbrev: String): String

PropAbbrev is the name of the property to use.

Example

PropValue(Volume)

The return value is 2.

RangeListContains

Description

Returns True if the specified list of ranges contains the specified value.

Syntax

RangeListContains(RangeList: String, Value: Integer, Delimiter: String):
Boolean

RangeList is a list of integer ranges to search, separated by the specified delimiter. For
example, 1-100, 201-300

Value is an integer value to search for in the list of ranges.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 50 of 61

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

Example

RangeListContains(PropValue(MyRangeList),1,[Comma])

If the property MyRangeList' has a value of 1-10, 101-10000, then the return value is True,
because 1 is contained in the specified range. However,
RangeListContains(PropValue(MyRangeList),11,[Comma]) returns False, because 11 is not
contained in the specified range.

Note

If you change MyRangeList to "1-5,6-10,101-1000", Data Relationship Management
replaces this value with "1-10,101-1000", because it verifies RangeList and combines
ranges with contiguous boundaries.

ReplacementAbbrev

Description

Returns the replacement (merge) node name for the current node if the node is inactive and a
merge node is specified.

Syntax

ReplacementAbbrev(): String

Example

ReplacementAbbrev()

ReplacePropValue

Description

Returns the specified property value for the current node's replacement (merge) node if the
node is inactive and a merge node is specified.

This function can be local in scope if a local property is passed in the parameters.

Syntax

ReplacePropValue(PropAbbrev: String): String

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 51 of 61

PropAbbrev is the name of the property to use.

Example

ReplacePropValue(Description)

ReplaceStr

Description

Returns the string with instances of the old pattern replaced by the new pattern.

Syntax

ReplaceStr(String: String,OldPattern: String,NewPattern: String,ReplaceAll:
Boolean): String

String is the string value on which to perform the function.

NewPattern is the string value with which to replace the found string.

OldPattern is the string value to search for.

ReplaceAll specifies whether to replace all occurrences of the search string with the replace
string. Valid values: 1, 0, T, F, t, or f.

Example

ReplaceStr(A1;A2;A3,A,B,T)

The return value is B1;B2;B3.

RTrim

Description

Returns the specified value with all spaces trimmed from the end of the string.

Syntax

RTrim(String: String): String

String is the string value on which to perform the function.

Example

RTrim("100 "))

The return value is 100.

SortList

Description

Returns the specified list in a sorted order.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 52 of 61

Syntax

SortList(InputList: String,Delimiter: String,IgnoreCase: Boolean,ItemType:
String)

InputList specifies the list to use.

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include square
brackets around the name.

IgnoreCase specifies whether to ignore case when sorting. Default value is False.

ItemType indicates the target data type for result list items. Valid values: string, integer, float
date, time, and datetime. The default value is string. If nay item cannot be converted to the
specified type, the function returns a blank string.

StripPadChar

Description

Removes a specified pad character from the beginning of a specified string and returns the
modified value. If the original string contains fewer pad characters than are specified for
StripCount, the original string value is returned.

Syntax

StripPadChar(String: String, PadChar: String, StripCount: Integer): String

String is the string value on which to perform the function.

PadChar is the character to use for padding the string.

StripCount is an integer specifying the number of characters to remove from the string. Zero
removes all padded characters.

Example

StripPadChar(0003333,0,6)

The return value is 3333.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 53 of 61

StrToBool

Description

Returns a Boolean value based on the specified string. If the string starts with a Y, T, or 1 (one)
regardless of case or following characters, a True value is returned. If the string starts with N,
F, or 0 (zero) regardless of case or following characters, a False value is returned.

Syntax

StrToBool(String: String): Boolean

String is the string value on which to perform the function.

Example

StrToBool(0)

The return value is False.

StrToFloat

Description

Returns the float value of the specified string. Returns zero (0) for a space or blank string.

If the specified string does not represent a floating point number, an error is returned.

Syntax

StrToFloat(String: String): Float

String is the string value on which to perform the function.

Example

StrToFloat(11.101)

The return value is 11.101.

StrToInt

Description

Returns the integer value of the specified string. Returns zero (0) for a space or blank string.

If the specified string does not represent an integer number, an error is returned.

Syntax

StrToInt(String: String): Integer

String is the string value on which to perform the function.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 54 of 61

Example

StrToInt(101)

The return value is 101.

Stuff

Description

Returns the specified value with the specified characters replaced by the specified string.

Syntax

Stuff(PropAbbrev: String, CharsToReplace: String, ReplacementChars: String):
String

PropAbbrev is the name of the property to use.

CharsToReplace is the string value to search for.

ReplacementChars is the string value with which to replace the found string.

Example

Stuff(Abbrev(),GEO,RIO)

If Abbrev is GEO101, then the return value is RIO101.

SubString

Description

Returns a portion of the specified string starting at the specified index and containing the
specified number of characters.

Syntax

SubString(String: String, Index: Integer, Count: Integer): String

SubString is the string value on which to perform the function.

Index is an integer representing the index position to start searching for the substring. Zero
indicates the first character position in the string.

Count is a number representing the number of characters to search, beginning from the
starting index.

Example

SubString(Colas,1,2)

The return value is Co.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 55 of 61

Subtract

Description

Subtracts the second integer value from the first value and returns the result.

Syntax

Subtract(Minuend: Integer,Subtrahend: Integer): Integer

Minuend is an integer value

Subtrahend is an integer value.

Example

Subtract(10,2)

The return value is 8.

SubtractFloat

Description

Subtracts the second floating-point value from the first value and returns the result.

Syntax

SubtractFloat(Minuend,Subtrahend: Float): Float

Minuend is floating point value

Subtrahend is floating point value.

Example

SubtractFloat(8.09,3.76)

The return value is 4.33.

SumList

Description

Returns the sum of the items in a list, ignoring blank items. Returns a blank string if the list
contains an item not of the specified item type.

Syntax

SumList(InputList: String,Delimiter: String,ItemType: String):Integer

InputList specifies the list to use.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 56 of 61

Delimiter is the character to use to delineate items in the string list. Supported special
characters:

• [comma]

• [space]

• [tab]

Note

You must use the name of the delimiter (not the character) and include brackets
around the name.

ItemType indicates the expected item data type for list members. Valid values: integer, and
float. The default value is float.

Example

SumList(1;2;3,;,Integer)

Return value is 6.

Trim

Description

Returns the specified value with all spaces trimmed from the beginning and end of the string.

Syntax

Trim(String: String): String

String is the string value on which to perform the function.

Example

Trim(" 101 ")

The return value is 101.

UpperCase

Description

Returns a string value converted to uppercase.

Syntax

UpperCase(String: String): String

String is the string value on which to perform the function.

Chapter 11
Function Definitions

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 57 of 61

Example

UpperCase(smaller)

The return value is SMALLER.

UserName

Description

Returns the user name for the current user.

Syntax

UserName(): String

Example

UserName()

Return value is the user name.

XOr

Description

Returns True if one and only one of the specified Boolean expressions evaluates to True.

Syntax

XOr(Expression1:Boolean, Expression2: Boolean): Boolean

Example

XOr(NodeIsLeaf(),Equals(Integer,PropValue(Level),3))

If the node is either a leaf or is at level 3 in the hierarchy, the return value is True.

Function Groups
The following table groups functions by use.

Table 11-3 Function Groups

Function Group Functions

Aggregate • AvgList
• MaxList
• MinList
• SumList

Chapter 11
Function Groups

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 58 of 61

Table 11-3 (Cont.) Function Groups

Function Group Functions

Change Tracking • AddedBy
• AddedOn
• Changed
• ChangedBy
• ChangedOn
• Now

Comparison • Equals
• GreaterThan
• GreaterThanOrEqual
• InRange
• IsBlank
• IsRangeListSubset
• LessThan
• LessThanOrEqual
• RangeListContains

Conditional • And
• If
• Not
• Or
• XOr

Data Type • BoolToStr
• FloatToStr
• IntToStr
• IsDataType
• IsNumeric
• StrToBool
• StrToFloat
• StrToInt

List • ArrayCount
• ArrayIndex
• ArrayItem
• Intersection
• ListContains
• ListDistinct
• ListNodePropValues
• ListNodesWith
• SortList

Mathematical • Add
• AddFloat
• Divide
• DivideFloat
• Modulus
• Multiply
• MultiplyFloat
• Subtract
• SubtractFloat

Chapter 11
Function Groups

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 59 of 61

Table 11-3 (Cont.) Function Groups

Function Group Functions

Node • Abbrev
• ID
• InternalPrefix
• NodeExists
• NodeInHier
• NodeIsLeaf

Property • AncestorProp
• AscNodeProp
• DefaultProp
• Descr
• DualAncestorProp
• HierNodePropValue
• InheritedPropOrigin
• IsDefinedPropVal
• NodePropValue
• OrigPropValue
• ParentPropValue
• PropControllingHier
• PropDefaultValue
• PropMaxValue
• PropMinValue
• PropValue
• ReplacePropValue

Relationship • Children
• HasChildWith
• HasParentNode
• HasSiblingWith
• InvertedLevel
• IsBottomNode
• IsNodeAbove
• IsNodeBelow
• ListAncestors
• ListChildren
• ListDescendants
• ListRelatedNodesWith
• ListSiblings
• NextSibling
• NumChildWith
• NumDescendantsWith
• PreviousSibling
• ReplacementAbbrev

Chapter 11
Function Groups

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 60 of 61

Table 11-3 (Cont.) Function Groups

Function Group Functions

String Manipulation • Concat
• ConcatWithDelimiter
• Decode
• FlipList
• Format
• FormattedDate
• HasCharacters
• IsAlpha
• IsAlphaNumeric
• Length
• LowerCase
• LTrim
• PadChar
• PadList
• Pos
• ReplaceStr
• RTrim
• StripPadChar
• Stuff
• SubString
• Trim
• UpperCase

User • NodeAccessGroups
• PropertyCategories
• UserName

Chapter 11
Function Groups

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 61 of 61

12
Managing Dynamic Scripts

Dynamic scripting enables you to develop business logic for derived properties and validations
using JavaScript. Dynamic scripts provide a more robust and better performing alternative to
formulas, using a standard scripting language. Scripts allow for better organization and less
complexity of logic through the use of multiple statements, variables, and in-line comments.
Dynamic scripts also provide support for advanced concepts like looping and regular
expressions.

Execution Contexts
There are several contexts for executing a script: property context, validation context, and
request item property context. Each context defines different initial parameters and returns a
different type of result.

Derived Properties Using Scripts
The Script deriver class enables dynamic scripts to be used by derived properties. Derived
properties using scripts are available for versions, hierarchies, and nodes.

Table 12-1 Property Level Descriptions

Property Level Parameter Object

Version version VersionObject

Hierarchy hierarchy HierarchyObject

Global Node node NodeObject

Local Node node LocalNodeObject

For more information, see:

• Node Derived Properties

• Version and Hierarchy Properties

Node Derived Properties

In this context, you are passed a parameter called node. For global properties, the node is a
NodeObject. For local properties the node is a LocalNodeObject. A script for a derived property
must return a value and the value must be appropriate to the data type of the property that is
being evaluated or executed. If the value returned by a script does not match the property data
type, then it will be coerced: for example, a null value being returned for a Boolean property will
be treated as false.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 25

Note

Not all Oracle Data Relationship Management property data types have a JavaScript
representation. See Data Type Conversions.

Version and Hierarchy Properties

In this context, you use a version parameter referencing a VersionObject or a hierarchy
parameter referencing a HierObject. When defining your scripts, a version may not be loaded
when the script is evaluated or executed. If a version or hierarchy derived property only
accesses other version and hierarchy level properties, then the property is calculated
regardless of the version load status. If a version or hierarchy derived property attempts to
access node level information, then the version must be loaded or the property calculation will
produce an error value. For example, if a version-level property attempts to get the list of
orphans, that property will produce an error value when the version is not loaded; after the
version is loaded, that same property will produce the correct value.

Validations Using Scripts
The Script validation class enables dynamic scripts to be used with validations. There are
several different validation levels and some have different parameters. Following are the
validation levels and parameters:

Table 12-2 Validation Levels and Parameters

Level Parameter Description

Any level validation Provides information about the
validation currently executing

Hierarchy hierarchy HierarchyObject for the hierarchy being
validated

GlobalNode node NodeObject for the global node being
validated

Node node LocalNodeObject for the node being
validated

Remove node NodeObject for the node being
validated

Move node LocalNodeObject for the node being
moved

Chapter 12
Execution Contexts

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 25

Table 12-2 (Cont.) Validation Levels and Parameters

Level Parameter Description

move An object that contains information
about the move:

OldParent––LocalNodeObject for the
original parent

NewParent––LocalNodeObject for the
destination parent

IsPost/IsPre––Indicates whether this
script is running just before the move or
just after the move has been completed.
The script will usually be run twice,
once before the move and once after
the move.

Values––During the pre-move phase,
simple key-value pairs can be stored in
this object (for example, Values["key"] =
"value"). During the post-move phase,
these values are present, enabling you
to store information about the pre-move
state and compare it to the post-move
state. All values are converted to String,
Number, or Date objects. Complex
objects are not currently supported.

Merge node The node being deleted or inactivated

merge An object that contains information
about the merge:

Target––NodeObject for the target of
the merge

IsInactivate––True if this is an inactivate
operation

IsDelete––True if this is a delete
operation

Version version VersionObject for the version being
validated

Governance Requests Using Scripts
Dynamic scripts may be used with workflow tasks in a governance request. Scripts are run in
the context of a current request item and are used for calculating values to be used by the
item, such as the Name or Parent of the node being updated.

Table 12-3 Governance parameters

Parameter Description

requestitem Current RequestItemObject for the request being
calculated

Chapter 12
Execution Contexts

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 25

Enumeration Constants
Certain properties are numbers that correspond to named constants, making your code easier
to understand and maintain. For example, instead of using:

if(nodeProp.PropOrigin == 2) you can use if(nodeProp.PropOrigin ==
PropOrigin.Overridden)

Property Enumeration Constants

• DataType––Boolean, LeafNode, Date, Time, Float, Integer, Sort, Group, Node, LimbNode,
String, Hier, Version, ListGroup, MultiNode, AscNode, AscNodes, AscGroup, Memo,
FormatMemo, SortProp, Property, Query, StdQuery, GlobalNode, NodeProps, RangeList,
DateTime, Hyperlink, HierarchyGroup

• PropLevel––Node, Hier, Version

• PropOrigin––Default, Inherited, Overridden, InheritedHier, InheritedVer, Derived,
InheritedDomain, Unknown

• PropType––Invalid, System, Defined, Lookup, Derived, Stats, Validation, Verification,
LimbAccessGroup, LeafAccessGroup, UserSpecific, RWDerived, SharedInfo

Validation Enumeration Constants

• ValidationLevel––Node, Hier, Version, GlobalNodes, Merge, Move, Remove

• ValidationType––None, RealTime, Batch, Both

Request Enumeration Constants

• WorkflowAction––AddLeaf, AddLimb, Update, Inactivate, Insert, Move, Remove, Delete

• WorkflowStageType––Submit, Enrich, Approve, Commit

• WorkflowStatus––None, Draft, Submitted, Calculated, Validated, PushedBack, Pending,
Assigned, Claimed, Escalated, DeEscalated, Rejected, Committed

Note

The WorkflowStatus enumeration is used to return the RequestObject.Status
current value for a request. However, some values are used internally only. The
valid values for RequestObject.Status are: Draft, Submitted, Pending, Claimed,
Escalated, Rejected, or Commited.

Supported JavaScript Data Types
Standard JavaScript data types are available, and Oracle Data Relationship Management uses
them wherever possible. For example, dates are represented using the Date object. Functions
are themselves objects, and a function invoked with new creates an object whose prototype
points to the function's constructor prototype just as in any ECMA-compliant JavaScript
environment.

Chapter 12
Enumeration Constants

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 25

Note

JavaScript Document Object Model (DOM) objects are not supported in Data
Relationship Management scripts.

You must be familiar JavaScript syntax and built-in objects, including what methods are
available. Some of the available data types:

• Array––Includes length, pop, push, concat, join, reverse, slice, shift, sort, and so on

Note

Due to changes in the JavaScript boxing of items by caching mechanisms, not all
Array functions will work as expected or as they did in previous releases. For
example, indexOf in JavaScript will compare objects based on memory locations,
not the string or text value of items. Therefore, other methodologies should be
considered when inspecting arrays. IndexOf() uses "===" comparison in
JavaScript and there is not a single definition of "==" that is available. You can use
JavaScript design patterns to implement your own specialIndexOf() to provide a
"=="-style comparison.

• Boolean––Represents True and False

• Date––Includes Date.parse(), month, day, year, and so on

• Error––Uses try/catch error handling and access error.message

• Function––Supports the standard call and apply functionality

• Math––Includes random, max, pow, round, sin, cos, floor, sqrt, log, and so on

• Number––All numbers in JavaScript are of the floating-point type number

• RegExp––You can use language support for Regular Expressions or access them explicitly

• String––Includes concat, indexOf, lastIndexOf, substr, split, splice, search, replace,
toUpperCase, toLowerCase, and so on

Globally available functions like parseInt, parseFloat, isNaN, decodeURI, encodeURI are also
available.

Print Function

The print function allows you to output debug information while creating scripts. The results are
displayed in the Warnings section of the script editor. Although the print function produces only
output in a testing context, the engine must still construct the arguments; therefore, comment
out any print statements before saving a script for production use.

Format Function

The Format function provides a much richer string formatting mechanism than standard
JavaScript. The first parameter is a string that contains format specifiers surrounded with curly
braces. Escape braces by doubling them, for example "{{" becomes "{" in the output. Format
specifiers start at zero and increase incrementally. If you omit a specifier from a sequence, the
equivalent parameter to the Format function is ignored. For example, "{1}" ignores the first
value parameter to Format and uses the second.

Chapter 12
Supported JavaScript Data Types

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 25

There is one shortcut. You can call Format and pass a format specifier without braces and
pass only one argument. The result is equivalent to Format("{0:<specifier>", <argument>)

The format specifiers work similarly to other languages like Java or C#. The syntax is
{<paramnum>} or {<paramnum>;<format>}, where paramnum is a positive whole integer
starting at zero and increasing sequentially. The format param depends on the type of the
object passed in as that parameter.

The format parameters generally return values appropriate to the user's locale; for example, in
the US "{0:0.00}" returns "1.23" while in Europe it returns "1,23"). Alternately, you can use the
escaping support to explicitly override the locale and output the same value for all users. For
example, "#\,###\,##0" would format a number using commas as thousands separators in all
regions, regardless of culture settings.

Data Type Conversions
Not all Oracle Data Relationship Management property definition data types have
corresponding representations in JavaScript. For any that do not have a corresponding
representation, the StringValue and Value will be identical and you must ensure that you
understand how to parse the string value. If returning a value for a property of one of these
data types, you are also responsible for ensuring you return a proper string representation of
that data type. If the stored value does not have a valid conversion to the property’s data type,
then the value will be undefined.

List properties will return an Array with each element of the array containing objects of the type
appropriate to the data type. For example, a Date property marked List would return an Array
containing Date objects.

Lookup properties may not always return the data type expected when the lookup target is
invalid, the key is not found in the lookup table, or the value in the lookup table is not valid for
the data type. For example, if the value for a key-value pair is "TEST," but the data type is
Date, then the result will be Undefined.

Following are the Data Relationship Management data types with their corresponding
representation in JavaScript.

Table 12-4 Data Type Comparison

Property Definition Data Type JavaScript Data Type

AscGroup NodeObject Array

AscNode NodeObject

AscNodes NodeObject Array

Boolean Boolean

Date Date

DateTime DateTime

Float Number

FormatMemo String

GlobalNode NodeObject

Group String Array

Hier HierObject

Hierarchy Group String (hierarchy group name)

Hyperlink String (representing the URL)

Chapter 12
Supported JavaScript Data Types

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 6 of 25

Table 12-4 (Cont.) Data Type Comparison

Property Definition Data Type JavaScript Data Type

Integer Number

LeafNode LocalNodeObject

LimbNode LocalNodeObject

ListGroup String Array

Memo String

MultiNode LocalNodeObject array

Node LocalNodeObject

NodeProps PropDefObject array

Query String (query name)

Property PropDefObject

Sort Number

SortProp PropDefObject

StdQuery String (query name)

String String

Time String

Version String (version name)

When calling another JavaScript derived property (or a derived property of a different node),
because the value returned by that deriver is not converted to its string representation
immediately, you can pass complex objects between derivers and delay coercion until the final
result is returned by calling toString() on that complex object (except as noted for built-in
conversions such as from Arrays).

Formatting Numbers
Numbers can only be formatted with a single shortcut character such as "G", or a composite of
specifiers, such as "##0,000.0". If you attempt to use a shortcut character in a format specifier
larger than one character, it will be copied to the output unchanged (treated as a literal
character).

Run your production exports with the appropriate culture selected to ensure the output is
correctly formatted.

Table 12-5 Single Character Shortcut Numeric Formats

Format Description

D Whole number (with locale-aware negative sign for
negative numbers)

D<precision> Whole number formatted to at least <precision>
digits, zero-padded if necessary. For example, 123
with "{0:D5}" will output 12300.

E Exponential (scientific) notation "1.234E+10"

Chapter 12
Supported JavaScript Data Types

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 7 of 25

Table 12-5 (Cont.) Single Character Shortcut Numeric Formats

Format Description

F Floating point number "123.456" (with locale-aware
decimal separator and negative sign for negative
numbers)

F<precision> Floating point number rounded to <precision>
significant digits after the decimal

G General number format

N Generalized Numeric format "123,456.789" (with
locale-aware group/decimal separators and
negative sign for negative numbers)

N<precision> Generalized Numeric rounded to <precision> digits
after the decimal

P Percent (for 0.20146 outputs "20.14%" with locale-
aware group/decimal separators and negative sign
for negative numbers)

P<precision> Percent rounded to <precision> significant digits
(for 0.205 "{0:P0" outputs "21%")

X Hexadecimal (base-16) output "4D2"

Table 12-6 Numeric Format Specifiers

Format Description

0 Zero placeholder, outputs digit if present, otherwise
zero

Digit placeholder, outputs digit if present, otherwise
does not produce output

. Locale-specific decimal separator

, When placed between placeholders, outputs a
locale-specific group separator (for 123456789
"{0:#,#}" outputs "123,456,789"). When one or
more are placed immediately to the left of the
decimal point (or implicit decimal point) the number
is divided by 1000 for every comma (for 123456789
"{0:#,##0,,}" outputs "1,235").

% Multiplies the number by 100 and outputs a locale-
specific percentage symbol at the given location

E<sign>0 Exponential notation. At least one zero is required,
with the number of zeros specifying the minimum
digits in the exponent. <sign> is optional and can
be:

• + (always output sign +/- as required)
• - (output - sign only for negative numbers)

\<char> Escape character (<char> is treated as literal
output)

Chapter 12
Supported JavaScript Data Types

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 8 of 25

Table 12-6 (Cont.) Numeric Format Specifiers

Format Description

; Section separator. If present, allows definition of
different formats for positive numbers, negative
numbers, and zeros.

• One section "{0:#,#;}"––Identical to no section
• Two sections "{0:#,#;-#,0}"––The first section

applies to positive numbers and zero, the
second section applies to negative numbers

• Three sections "{0:#,#;-#,0;zero}"––The first
section applies to positive numbers, the
second section applies to negative numbers (If
empty, the first section is used for negative
numbers also), the third section applies to
zero

Any other character Copied to output unchanged

Formatting Dates
Dates can be formatted with a single shortcut character, such as: "G," or a composite of
specifiers, such as "HH:mm". If you want to use a single character as a regular specifier and
not a shortcut, prefix the string with %. For example: "%m" outputs the unpadded minute
instead of the Month+Day.

Table 12-7 Single Character Shortcut Date Formats

Format Description

t Short Time "4:05 PM"

T Long Time "4:05:07 PM"

d Short Date "3/9/2013"

D Long Date "Friday, March 09, 2013"

f Long Date + Short Time "Friday, March 09, 2013
4:05 PM"

F Long Date + Long Time "Friday, March 09, 2013
4:05:07 PM"

g Short Date + Short Time "3/9/2013 4:05 PM"

G Short Date + Long Time "3/9/2013 4:05:07 PM"
(default)

m Month + Day "March 09"

y Month + Year "March, 2013"

r RFC 1123 "Fri, 09 Mar 2013 16:05:07 GMT"

s Sortable Date/Time "2013-03-09T16:05:07"

u Universal Sortable Date/Time "2013-03-09
16:05:07Z"

Chapter 12
Supported JavaScript Data Types

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 9 of 25

Table 12-8 Date Format Specifiers (more than one character)

Format Description
Examples are for 2013-04-05 04:07:09 PM CST

yy Year "13"

yyyy Year "2013"

M Month "4"

MM Month "04"

MMM Month "Apr"

MMMM Month "April"

d Day "5"

dd Day "05"

ddd Day "Sun"

dddd Day "Sunday"

h 12-Hour "4"

hh 12-Hour "04"

H 24-Hour "16" (if 4 AM "4")

HH 24-Hour "16" (if 4 AM "04")

m Minute "7"

MM Minute "07"

s Seconds "9"

ss Seconds "09"

f Fractions of a second (Can be repeated 1-4 times
for more precision)

F Fractions of a second without trailing zeros (Can
be repeated 1-4 times)

t AM or PM designator "P" (blank for 24-hour only
cultures)

tt AM or PM designator "PM" (blank for 24-hour only
cultures)

z GMT offset "-6"

zz GMT offset "-06"

zzz GMT offset "-06:00"

: Time separator (locale-specific)

/ Date separator (locale-specific)

\<char> Escape character (<char> is treated as literal
output), for example: "{0:HH\h}" outputs "16h"

Any other character Copied to output unchanged

Data Relationship Management Objects
Following are the Oracle Data Relationship Management objects with methods and properties
described.

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 10 of 25

SysObject

One SysObject, called Sys, is automatically created. This object is available in all contexts, and
provides general functions as well as information about the Data Relationship Management
application. There are no properties for this object.

Table 12-9 SysObject Methods

Name Description

FormattedDate (value, formatString) Formats dates according to the Formula system
rules. Useful for backward compatibility to exactly
match old Formula properties.

• value must be a Date object or a valid
datetime string

• formatString must be a valid formatting string
(see the FormattedDate function)

GetNextID(key) Returns the next available integer ID for a given
string key value

GetPropDef(abbrev) Returns a PropDefObject for the given property
name. The name must be the fully qualified name.

GetRequestByID(int) Returns a workflow request by ID.

GetSysPrefValue(abbrev) Returns the value of the given system preference
(for example, HierNodeSeparator)

InRange(dataType, input, min, max, minExclusive,
maxExclusive)

Corresponds to the formula function InRange.
Required parameters are dataType, input, and min.

IsNodeAbove(ancestor, child) Returns True if ancestor is above child in the
hierarchy. Returns False if parameters are not
LocalNodeObjects or are not in the same
hierarchy.

IsNodeBelow(descendant, parent) Returns True if descendant is below parent in the
hierarchy. Returns False if parameters are not
LocalNodeObjects or are not in the same
hierarchy.

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 11 of 25

Table 12-9 (Cont.) SysObject Methods

Name Description

RunFormula(node, propDef, formulaString) Runs a Data Relationship Management formula
and returns the string results

• node is either a NodeObject or
LocalNodeObject. Your formula string must not
make references to local properties when
passing in a NodeObject, or an error will
result. When passing a LocalNodeObject, you
can reference all available global and local
properties.

• propDef––To be parsed or executed correctly,
some formula functions require a property
definition. When you use those functions, you
must supply a property definition. Generally,
the property definition characteristics (like
Level, Global vs Local, and Type) must match,
but it doesn't have to be the actual property
that the formulaString is for. They can be
unrelated. In most formulas, you can pass null
for this parameter. Syntax is
Sys.GetPropDef(abbrev). For example:

Sys.RunFormula(node,
Sys.GetPropDef("Custom.MyProp1"),
"Concat(Prop value ',
PropValue(Custom.MyProp2),' ,is, ,
valid)");

• formulaString is a legacy Data Relationship
Management Formula; white space is
considered a literal part of the Formula so it
must be removed if necessary.

Note: This is not considered a best practice
and should be used only when necessary to
achieve an exact match with legacy behavior.
Performance is decreased when using this
method.

PropDefObject

There are no methods for this object.

Table 12-10 PropDefObject Properties

Name Description

Abbrev The property definition name (including fully
qualified namespace)

Cascade True if the property values are inherited

ColumnWidth The default export column width

DataType A DataType enumeration value, for example
DataType.String (see Enumeration Constants)

Descr Description

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 12 of 25

Table 12-10 (Cont.) PropDefObject Properties

Name Description

DefaultValue Default Value of the property definition. The type
depends on the data type of the property definition.

EditorLabel Label

Global True if property is a Global Node property

Hidden True if property is hidden from the property grid

ID ID

Level A PropLevel enumeration value, for example,
PropLevel.Node (see Enumeration Constants)

List True if prop lets user select from a list of values

ListValues Array of values from which a user can select

LookupValues Lookup key-value pairs for a lookup property. Use
the Key and Value properties of the objects in this
array.

MaxValue Maximum value

MinValue Minimum value

Namespace Namespace of property definition

PropType A PropType enumeration value, for example,
PropType.Defined (see Enumeration Constants)

PropClass Deriver class (Formula or Script)

ReadOnly True if property is read-only (such as a Core stats
property)

VersionObject

Table 12-11 VersionObject Properties

Name Description

Abbrev Name

Descr Description

HierCount Number of hierarchies

ID ID

NodeCount Number of nodes

Table 12-12 VersionObject Methods

Name Description

GetHierarchies() Gets an array of all the hierarchies in the version
that are available to the current user

GetGlobalNodes() Gets an array of all the global nodes
(NodeObjects) in the version

GetOrphans() Gets an array of all the orphans (NodeObjects) in
the version

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 13 of 25

Table 12-12 (Cont.) VersionObject Methods

Name Description

HierByAbbrev(abbrev) Gets a HierarchyObject by name

HierByID(id) Gets a HierarchyObject by ID

NodeByAbbrev(abbrev) Gets a NodeObject by name

NodeByID(id) Gets a NodeObject by ID

NodeExists(abbrev) Returns True if a global node exists with the given
name

Prop(abbrev) Gets the NodePropObject for the given property of
the version

PropValue(abbrev) Gets the value of the given property of the version.
The return type depends on the data type of the
property definition.

HierarchyObject

Table 12-13 HierarchyObject Properties

Name Description

Abbrev Name

Descr Description

HierarchyUrl Hierarchy URL

ID ID

NodeCount Number of nodes in hierarchy

SharedNodesEnabled True if shared nodes are enabled

TopNode The LocalNodeObject top node

Version The VersionObject

VersionAbbrev Name of version

VersionID ID of version

Table 12-14 HierarchyObject Methods

Name Description

NodeByAbbrev(abbrev) Gets a NodeObject by name

NodeByID(id) Gets a NodeObject by ID

NodeExists(abbrev) Returns True if a local node with the given name
exists

Prop(abbrev) Gets the NodePropObject for the given property of
the version

PropValue(abbrev) Gets the value of the given property of the version.
The return type depends on the data type of the
property definition.

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 14 of 25

Common Node Properties and Methods

Some properties and methods are common to both NodeObject and LocalNodeObject
although these two objects do not share a prototype chain.

In all cases where the value can differ because of the global or local context, the correct value
is returned for that context. For example, when calling GetChildren() on a NodeObject, the
resulting Array will contain NodeObjects. When making the same call on a LocalNodeObject,
the resulting Array will contain LocalNodeObjects.

Table 12-15 Common Properties for NodeObject and LocalNodeObject

Name Description

Abbrev Core.Abbrev

AddedBy Core.AddedBy

AddedOn Core.AddedOn

Changed Core.Changed

ChangedBy Core.ChangedBy

ChangedOn Core.ChangedOn

ChildNodeCount Number of child nodes

Descr Core.Descr

DomainAbbrev Core.DomainAbbrev

DomainNodeAbbrev Core.DomainNodeAbbrev

ID Core.ID

Inactive Core.Inactive

IsPrimary True if the node is the primary for a shared node;
False if node is not shared or not the primary

IsShared True if the node is a shared node

Leaf Core.Leaf

NodeApproved Core.NodeApproved

Version The node’s owner VersionObject

VersionAbbrev The node’s version name

VersionID The node’s version ID

Table 12-16 Common Methods for NodeObject and LocalNodeObject

Name Description

GetChildren(sorted) Gets an Array of the direct children of this node,
optionally in sorted order. Default for sorted is
False.

GetDescendants(inclusive, sorted) Gets an Array of the descendants of this node,
optionally including this node and/or in sorted
order. Default for inclusive is True. Default for
sorted is False.

NodeByAbbrev(abbrev) Gets a NodeObject by name

NodeByID(id) Gets a NodeObject by ID

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 15 of 25

Table 12-16 (Cont.) Common Methods for NodeObject and LocalNodeObject

Name Description

NodeExists(abbrev) Returns True if a global node with the given name
exists

Prop(abbrev) Gets the NodePropObject for the given property of
the version

PropValue(abbrev) Gets the value of the given property of the version.
The return type depends on the data type of the
property definition.

LocalNodeObject

Oracle recommends that you use the various xxxWith functions to locate other nodes in the
hierarchy. For example ChildrenWith executes much faster than calling GetChildren() and
iterating the results. Similarly, GetReferenceInHier is much faster and easier to use than calling
GetReferences() and iterating the results.

Table 12-17 LocalNodeObject Properties

Name Description

GlobalNode Global NodeObject for the current node

Hier HierarchyObject for the hierarchy the node is in

HierAbbrev Core.HierAbbrev

HierID Core.HierID

Level Number representing the node’s level in the
hierarchy

MissingPrimary True if the primary node is not found

NodeUrl Node URL

Parent LocalNodeObject for the parent node of this node.
Null is returned for the top node of a hierarchy.

ParentNodeAbbrev Name of parent node

Primary The primary node for this shared node. If the
primary is not in this hierarchy, returns the primary
in the first hierarchy in which it occurs. If you need
the list of hierarchies in which the primary appears,
call GetReferences() on the returned primary node.
If a shared node or primary cannot be found,
returns null.

PrimaryNotInHier True if the primary node exists but not in this
hierarchy

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 16 of 25

Table 12-18 LocalNodeObject Methods

Name Description

AncestorsWith(func, maxResults, searchFromTop,
inclusive)

Searches the ancestor chain for nodes that satisfy
the given function. This is the fastest way to locate
ancestors. Returns an Array of LocalNodeObject
results.

• Func must be a function that takes a single
node argument and returns True if the node
should be included in the results or False if it
fails the test.

• maxResults is optional and defaults to 1. Use
0 for no limit (all nodes that pass the
condition).

• searchFromTop is optional and defaults to
False. Use True to start at the top of the
hierarchy.

• inclusive is optional and defaults to False. Use
True to include the current node in the
potential matches (it must still pass the test).

ChildrenWith(func, maxResults) Searches the node’s child list for nodes that satisfy
the given function. This is the fastest way to find
children. Returns an Array of LocalNodeObject
results.

• func must be a function that takes a single
node argument and returns True if the node
should be included in the results or False if it
fails the test.

• maxResults is optional and defaults to 1. Use
0 for no limit (all children that pass the
condition).

DescendantsWith(func, maxResults, inclusive,
depthFirst)

Searches the descendant chain for nodes that
satisfy the given function. This is the fastest way to
find descendants Returns an Array of
LocalNodeObject results.

• func must be a function that takes a single
node argument and returns True if the node
should be included in the results or False if it
fails the test.

• maxResults is optional and defaults to 1. Use
0 for no limit (all nodes that pass the
condition).

• inclusive is optional and defaults to False. Use
True to include the current node in the
potential matches (it must still pass the test).

• depthFirst is optional and defaults to True. If
True, each branch is examined all the way to
its tips before backing up the tree and moving
to the next branch. If False, all the children of a
node are examined first, then each child's
nodes are examined, and so on. If you have a
good idea of where the node may be in the
tree, picking the correct value here can greatly
speed up the search.

GetAncestorEnumerator() Gets a NodeEnumeratorObject that enumerates
the ancestor nodes

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 17 of 25

Table 12-18 (Cont.) LocalNodeObject Methods

Name Description

GetAncestors(inclusive) Gets an Array of LocalNodeObject ancestors

GetChildEnumerator(sorted) Gets a NodeEnumeratorObject that enumerates
the child nodes. If sorted is True, then the children
will be in sorted order.

GetDescendantEnumerator() Gets a NodeEnumeratorObject that enumerates
the descendant nodes

GetImplicitly SharedDescendants(inclusive) Gets the child nodes of the primary node this
shared node is related to

GetInvertedLevel() Equivalent to the formula InvertedLevel function

GetReferences() Gets an Array of LocalNodeObjects that are
references for this node (all hierarchies this node
appears in)

GetReferenceInHier(hierAbbrev) Gets the reference to this node in the given
hierarchy. If the hierarchy is not accessible or this
node does not exist in that hierarchy, then the
result will be null.

NextSibling() Gets the next sibling of this node in the sort order

PreviousSibling() Gets the previous sibling of this node in the sort
order

SiblingsWith(func, maxResults, inclusive) Searches the node’s siblings for nodes that satisfy
the given function. Returns an Array of
LocalNodeObject results.

• func must be a function that takes a single
node argument and returns True if the node
should be included in the results or False if it
fails the test.

• maxResults is optional and defaults to 1. Use
0 for no limit (all ancestors that pass the
condition).

• inclusive is optional and defaults to False. Use
True to include the current node in the
potential matches (it must still pass the test).

NodePropObject

Table 12-19 NodePropObject Properties

Name Description

Abbrev The name of the property definition

ControllingHierarchy The HierarchyObject for the property definition's
controlling hierarchy in this version. If the property
is not a global node property, does not have a
controlling hierarchy, or the controlling hierarchy is
not found, then the return value will be null.

Locked True if the value is locked

Origin A PropOrigin enumeration value, for example,
PropOrigin.Overridden (see Enumeration
Constants)

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 18 of 25

Table 12-19 (Cont.) NodePropObject Properties

Name Description

Owner The object that this value is associated with
(VersionObject, HierarchyObject, NodeObject, or
LocalNodeObject)

PropType A PropType enumeration value, for example,
PropType.Defined (see Enumeration Constants)

StringValue The raw string value of this property. In the case of
Derived or RWDerived properties this may be the
property definition default value or the overridden
value.

Value The interpreted value of this property (for example,
for DataType.Float and DataType.Integer, this value
will be a Number object). Not all DataTypes
necessarily have a non-string representation.

Table 12-20 NodePropObject Methods

Name Description

GetPropDef() Gets the PropDefObject for the node prop

RangeListObject

The RangeListObject represents a RangeList of values and can be used to inspect a
RangeList property without having to manually parse strings. A new RangeListObject can also
be constructed to return from a derived property of the appropriate data type.

Constructor Example

var x = new RangeListObject();

var y = new RangeListObject("1-10,20-25");

var z = new RangeListObject([{start:1, end:10},{start:20, end:25}]);

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 19 of 25

Table 12-21 RangeListObject Constructor Parameters

Parameters Optional Description

ranges True Range values for initialization. This
parameter is optional. Two formats are
accepted:

• Array––An array where each
element of the array is an object
that has a start and end property
indicating the range. Any object in
the array that does not have these
properties is ignored.

• String––A comma-separated list of
string entries. Each entry contains
the start and end values separated
by a dash (-) or equals (=) symbol.

Table 12-22 RangeListObject Properties

Name Description

Ranges An Array of objects. Each object has two
properties:

• start––The start of the range entry
• end––The end of the range entry
This property is read-only. To modify the range use
the methods below.

Table 12-23 RangeListObject Methods

Name Description

AddRange(start, end) Adds a new range to the range list. This may
expand an existing range entry or create a new
one. To add a single number to the list, use it for
both the start and end parameters. Both
parameters will be coerced to integers if
necessary.

Contains(value) Returns True if the value is in the range list,
otherwise False.

value will be coerced to an integer if necessary.

IsSupersetOf(range) Returns True if the current RangeListObject is a
superset of the given RangeListObject. Passing
another type of object is an error.

RemoveRange(start, end) Removes a range from the list. This removal may
split an existing range entry into two or remove an
entry entirely. To remove a single number from the
list use it for both the start and end parameters.
Both parameters will be coerced to integers if
necessary.

NodeEnumeratorObject

A NodeEnumeratorObject is a more efficient way to operate on a list of nodes. Instead of
building the entire list all at once, the enumerator grabs only one node at a time as needed. If

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 20 of 25

you find what you are looking for halfway through the list, you can abandon the enumerator.
Properties and methods that return an Array of node objects must build the entire array
immediately, whether you access the items at the end of the array or not.

The enumerator starts with a null Current value. You must call MoveNext() to advance the
enumerator to the first node in the list.

Note

A good practice is to use the With methods like AncestorsWith or SiblingsWith
methods when you need to find only a few nodes out of all possible matches and need
to iterate the list only one time. If you need to cycle over the list of ancestor nodes
multiple times or you know you will need most or all of the ancestors, then an
enumerator may be faster.

Table 12-24 NodeEnumeratorObject Methods

Name Description

GetCurrent() The current node (either a NodeObject or
LocalNodeObject depending on the context).

MoveNext() Advances the enumerator to the next node.
Returns False if there are no more nodes to
enumerate.

ValidationObject

Table 12-25 ValidationObject Properties

Name Description

Abbrev Name of the validation (including fully-qualified
namespace)

Descr Description

EditorLabel Label

Cascade True if validation assignment is inherited

ValidationClass Name of validation class

ValidationLevel A ValidationLevel enumeration value, for example
ValidationLevel.Node (see Enumeration
Constants).

ValidationType A ValidationType enumeration value, for example
ValidationType.Batch (see Enumeration
Constants).

Validation Scripts

• The validation script returns a JavaScript object that contains a property named "success".
If the script returns a Boolean value or a non-Boolean object (for example, Number or
String), then its value is converted to Boolean using standard JavaScript conversion rules
and then assigned to the success property. The script can optionally return a JavaScript
array of values in a property named parameters. The array values are substituted into the
failure message of the validation using string substitution.

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 21 of 25

• You can return a Boolean value (True or False). If you return True, the validation succeeds;
otherwise it fails. If you do not return a value, it is considered the same as returning False.

• If you return a non-Boolean object, such as Number or String, it is converted to Boolean
then returned. Standard JavaScript conversion applies. Numbers equal to zero, empty
strings, and null or undefined objects are interpreted as false. All other values are true.

• If you return a complex object that contains a property named "success," that success
property is converted to Boolean and used as the return value of the validation. You can
optionally return an Array of values in a property named "parameters." This is a JavaScript
Array object, that needs to be populated and then used in the parametrized Failure
Message. The parameters are substituted into the failure message of the validation using
string substitution. You should return the correct number of values corresponding to the
placeholders in the failure message. If you return extra parameters they are ignored. If you
do not return enough parameters, the missing parameters are considered empty strings.

RequestObject

The RequestObject represents a governance request, including request header, and items.
The Items property represents a list of the request items added to the request. A key attribute
is the Version property, the target version for the request including its hierarchies and nodes, all
accessible via the relevant script objects.

Table 12-26 RequestObject Properties

Name Description

ID ID

Title Title of request

Version Target version for request

ModelName Workflow model for request

StageName Current stage of request

StageType WorkflowStageType enumeration value, for
example, WorkflowStageType.Submit (see
Enumeration Constants)

Status WorkflowStatus enumeration value, for example,
WorkflowStatus.Submitted (see Enumeration
Constants)

Items List of RequestItemObject added to the request

RequestItemObject

The RequestItemObject represents an individual request item for a governance request,
including information about the current task and the node being updated, along with the details
(property values) for the item. The Request property provides access to the full request object
for the item, including header properties and other items.

The NodeNamePendingInRequest method is used for identifying potential node name conflicts
with other in-flight requests for the target version, returning True if an item on another pending
request contains an Add item for the same node name.

Table 12-27 RequestItemObject Properties

Name Description

ItemID Item ID

Chapter 12
Data Relationship Management Objects

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 22 of 25

Table 12-27 (Cont.) RequestItemObject Properties

Name Description

RequestID Request ID

Request Request object to which the item belongs

NodeName Core.Abbrev of node being updated

Description Core.Descr of node being updated

HierarchyName Hierarchy of node being updated

ParentName Core.Parent of node being updated

TaskName Workflow task name of request item

TaskAction WorkflowAction enumeration value, for example,
WorkflowAction.AddLimb (see Enumeration
Constants)

TaskDomain Domain name (if any) of workflow task

ItemDetails List of RequestItemDetailObject for request item

Table 12-28 RequestItemObject Methods

Name Description

NodeNamePendingInRequest(name) Accepts a parameter of a specific node name to
test. Returns True if an in-flight request other than
the current one for the version contains an
AddLimb/Leaf item with the specified name.

RequestItemDetailObject

The RequestItemDetailObject represents an individual request item detail for a governance
request, corresponding to a single property value.

Table 12-29 RequestItemDetailObject Properties

Name Description

CalcValue Calculated value of property

HasCalcValue Returns True if the value is calculated

Modified Returns True if the value was modified in the
request

PropertyName Name of property

Value Value of property

Execution Environment
The Oracle Data Relationship Management engine is a multithreaded, multimachine
environment and scripts may execute simultaneously on multiple threads and across
machines. While you can create values and store them in the global scope, you should not rely
on this behavior because when your script executes on another thread that global value will not
be present. Similarly, global values are not updated across Data Relationship Management
engine instances or machines. In addition, becauseData Relationship Management supports

Chapter 12
Execution Environment

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 23 of 25

multiple live versions, if you rely on calculating a value for a node and storing that value in the
global scope, you may produce incorrect values if a different script accesses the property for
another node.

Note

For the same reason that you should not store variables in the global scope, you
should also avoid modifying the built-in Data Relationship Management object
prototypes, because you cannot be sure that your modifications have been made
across all engine instances and threads.

Setting Script Timeouts

To prevent excessive engine locks, scripts that take too long to execute without returning a
value are terminated based on a time-out setting. The script time-out can be set for each
property definition and validation.

The time-out is per execution context, so if an export is exporting the script property of 100
nodes and the time-out for the property is set to 30 seconds, then the export may take up to 50
minutes, because each node can take 30 seconds to evaluate its property. However if a script
property calls another script property, then it does not increase the time-out. For example, if
PropA has a 10 second time-out, PropB has a 20 second time-out, and PropA calls PropB
which then starts a long-running calculation, when 10 seconds have elapsed, the evaluation of
PropA is terminated because its original time-out was exceeded.

Preventing Infinite Loops

A script that results in an infinite loop (also known as a stack overflow) is a serious error which
can cause a server process to terminate unexpectedly. Although Data Relationship
Management attempts to prevent such scripts from executing, you should exercise caution
when writing self-referencing, or recursive, scripts. Always test new scripts in a development
environment before deploying to production.

A simplified example of a script that will loop infinitely is shown below. Because the script
includes a call to itself, but never terminates execution, the engine executing the function will
eventually terminate due to lack of resources. Lastly, because the script never calls the Data
Relationship Management engine, there is no chance to catch the overflow and stop the script.

function badFunc(a) { badFunc(a); }

badFunc("oops");

Performance Considerations

For the best performance, avoid referencing formula-derived properties from a script, and vice
versa. Scripts in general offer the best opportunity for performance tuning optimization,
compared to formulas, due to considerations such as just-in-time (JIT) compilation for native
hardware, including 64-bit processors. Scripts are also tuned by the JIT compiler for actual
execution characteristics and will run faster over time.

Chapter 12
Execution Environment

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 24 of 25

Creating Dynamic Scripts
Dynamic scripts are created in the script editor which is available on the Parameters tab for
derived property definitions and validations.

The script editor is also available when calculating a Name or Parent during a governance
workflow task.

Note

When calculating parent names, any use of special characters must follow the
standard JavaScript rules for escaping special characters. For more information, see
"Naming Nodes" in Oracle Data Relationship Management User's Guide.

To create a dynamic script:

1. Enter the script in the text area.

Note

To insert a property, place your cursor in the script and click Insert Property. A list
of properties is displayed. Select a property and click OK.

2. Make selections from the following options:

• Script Timeout––The number of seconds until the script times out.

• To evaluate the script with a selected node, click and select a node. The node's
current property values are used in the script. Click Evaluate. The result is displayed
at the bottom of the script designer.

3. To test the script, click Evaluate.

Chapter 12
Creating Dynamic Scripts

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 25 of 25

13
Managing Node Types

Node types enable hierarchy nodes to be viewed and managed differently based on their
relationships and attribution. Nodes of a specific node type share the same characteristics:

• Properties

• Validations

• Glyph

A hierarchy can have nodes of different node types and the same node can be of different
node types in different hierarchies. Examples of node type usage include GL accounts, cost
centers, consolidation entities, product groups, forecast points, and so on.

To categorize nodes by node type:

1. Determine the node types that are necessary to categorize nodes within a hierarchy.

2. Identify properties that are relevant (or not relevant) to each node type.

3. Identify validations that are relevant (or not relevant) to each node type.

4. Optionally, assign a glyph to each node type.

Defining Node Types
To define a node type:

1. On the Home page, select Administer.

2. From New, select Node Type.

3. Enter a name and description for the node type.

4. Optional: Select a glyph to use for the node type

5. On the Properties tab, select properties from the Available list to associate with the node
type. Use the arrows to move properties to the Selected list.

6. On the Validations tab, select validations from the Available list to associate with the node
type. Use the arrows to move validations to the Selected list.

7. Click Save.

Editing Node Types
To edit a node type:

1. On the Home page, select Administer.

2. Under Metadata, expand Node Types.

3. Select a node type and click .

4. Do any of the following:

• Edit the description.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 2

• Change the glyph to use for the node type

• Add or remove properties

• Add or remove validations

5. Click Save.

Deleting Node Types
To delete a node type:

1. On the Home page, select Administer.

2. Under Metadata, expand Node Types.

3. Select a node type and click .

4. Click Delete this Item to confirm the deletion.

Working with Node Glyphs
Glyphs are images that are associated to node types and are displayed as the icon for a node
in the Oracle Data Relationship Management user interface. You can create new glyphs and
modify existing glyphs. You can also delete glyphs that you no longer want to use. Glyphs must
be provided in a PNG format.

To add a node glyph:

1. On the Home page, select Administer.

2. From New, select Glyph.

3. Enter a name for the glyph and add a description.

4. Click Browse and select the PNG file.

5. Click Upload.

6. Click Save.

To modify a node glyph:

1. On the Home page, select Administer.

2. Under Metadata, expand Glyphs.

3. Select a glyph and click .

4. Click Browse a select the different PNG file.

5. Click Upload.

6. Click Save.

To delete a glyph:

1. On the Home page, select Administer.

2. Under Metadata, expand Glyphs.

3. Select a glyph and click .

4. Click Delete this Item to confirm the deletion.

Chapter 13
Deleting Node Types

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 2

14
Working with System Preferences

System Preferences enable administrative users to edit settings that control the behavior of
Oracle Data Relationship Management.

System Preferences
The following table describes Oracle Data Relationship Management system preferences.

Table 14-1 System Preferences

System Preference Type Description

AllowAsOf Boolean True forces capture of core actions and
creates a baseline version to allow the
creation of As-Of versions. If this
preference is set to False, As-Of
versions cannot be created.

Default value is True.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

AllowNextIDGeneration Boolean True enables automatic Next ID
generation.

Default value is False.

AllowNextIDKeyCreation Role List of roles allowed to create a new key
in NextID feature.

Default values are Interactive User,
Data Creator, Data Manager.

AllowPru Boolean True enables the pruning option which
allows a non-admin user to remove a
node that has children. If False, a non-
admin user cannot remove a node that
has children.

Default value is True.

AllowRelaxedMove Boolean When a node is moved, True allows the
new parent to take precedence over any
conflicting parental relationships for the
node in other hierarchies.

Default value is False.

AllwSpac Boolean True allows spaces in node names.

Default is True.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 11

Table 14-1 (Cont.) System Preferences

System Preference Type Description

AnalyticsNodeCountUpdateTime String Specifies a time of day, in local time
using 24-hour format, when the node
counts for versions and hierarchies for
all loaded, normal versions are to be
updated. For example, 2:15 PM would
be entered as "1415". The default time
is 3:00 AM.

ApprovalGroups String Comma-delimited list of approval
groups.

ApprovalGroupTrackProperties String Delimited list of approval properties
tracked by groups.

ApprovalPropertyByApprovalGroup String Global boolean approval property by
approval group.

AuthMethod String User authentication method:

• Internal––Users are only
authenticated within Data
Relationship Management.

• CSS (External)––Users are only
authenticated externally. Requires
access to Shared Services.

• Mixed––Users are authenticated
internally or externally based on a
setting for each individual user.

Default value is Internal.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

CopyLcl Boolean True copies local values when a node is
copied.

Default value is True.

DefaultCurrentVersion Version Default current version. This preference
can be set using the Make Default
option for versions.

DefaultPreviousVersion Version Default previous version. This
preference can be set using the Make
Default option for versions.

DefaultPropCopyMode String Default property copy mode.

Valid values are Overridden, Selected,
and ForceAll.

Default value is Overridden.

EnablePropCopyOptions Role List of roles allowed access to the
property copy options.

Default values are Interactive User,
Data Creator, Data Manager.

EnforceListProps Boolean True allows updates to a List Property
with values from the pre-defined list
only.

Default value is True.

Chapter 14
System Preferences

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 11

Table 14-1 (Cont.) System Preferences

System Preference Type Description

FiltrChr String Set of characters for the Replace
function on the Output Option screen of
exports.

FindByProperties Property List of properties available to search
with when browsing a hierarchy.

The properties displayed are those to
which a user has access. Also, the
properties displayed may not be
applicable to all hierarchies.

Note: The ADMIN user cannot be
added to custom Property Categories in
Data Relationship Management. As a
consequence, if a property listed in the
FindByProperties system preference is
not added to a Property Category that
ADMIN is already a member of, then
ADMIN will not be able to perform a
Find with that property in the Hierarchy
Browse window.

FindWildCardAppend Boolean True appends an asterisk (*) to the Find
criteria when Exact Match is not
selected.

Default value is False.

FindWildCardPrepend Boolean True prepends an asterisk (*) to the
Find criteria when Exact Match is not
selected.

Default value is False.

GlobalPropLocalOverride Property List of properties to exclude from local
checks on global properties. These are
used when GlobalPropLocalSecurity is
enabled.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

GlobalPropLocalSecurity Boolean True enforces local security on global
properties. Changes to global
properties are checked against local
security (node access levels) for the
user for all hierarchies where the node
exists.

Default value is False.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

HierSep String Hierarchy and node separator
character.

Default value is tilde (~).

Chapter 14
System Preferences

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 11

Table 14-1 (Cont.) System Preferences

System Preference Type Description

IdleTime Integer Number of minutes to session time out
on the application server.

Default value is 60.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

Inactivate Role List of user roles allowed to inactivate
nodes.

Default value is all roles.

InactiveChanges Role List of roles allowed to change inactive
nodes.

Default values are Data Manager,
Application Administrator, Access
Manager.

InvDescr String List of invalid characters for node
description property.

InvName String List of invalid characters for node name.

Note: Characters in this list cannot be
used as the delimiter with shared
nodes.

JobResultsMaxSize Integer For jobs that are run using the Client
File option, maximum size (in bytes) of
results saved to the Job History. Job
results exceeding this size are not
saved to the Job History. The default
value is 10,000,000 bytes. A negative
value indicates that all results,
regardless of size, are saved to the Job
History.

Caution: Disabling JobResultsMaxSize
by setting to a negative value is strongly
discouraged because this can
significantly impact performance for
large jobs.

Note: JobResultsMaxSize does not
apply to Exports run using the Server
File or Database Table options.

JobResultsRetentionAge Integer Number of days to retain archived job
result detail in history. A value of zero
indicates that job results are never
purged from history.

Note: Job results are purged to manage
database size. Disabling the purge may
result in significant database growth
over time.

LeafEdit Role List of roles allowed to change the Leaf
property.

Default values are Data Manager, Data
Creator, Application Administrator,
Access Manager.

Chapter 14
System Preferences

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 11

Table 14-1 (Cont.) System Preferences

System Preference Type Description

LockoutInactivity Integer Maximum number of days of inactivity
before a user is locked out.

Default value is 30; zero indicates no
maximum.

LockoutInvalidLogins Integer Maximum number of invalid logins
before a user is locked out.

Default value is 6; zero indicates no
maximum.

LossLevel String Loss level to capture.

Valid values are:

• Defined
• All
Default value is Defined. Selecting All
can significantly impact system
performance for removed or deleted
nodes with many property values.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

LRUPropertyCacheSize Integer Maximum size for the LRU property
cache. The LRU Property cache stores
calculated values that may be accessed
multiple times. Generally, the default for
this preference should be used and
should not be changed.

MaxDescr Integer Maximum number of characters for
node description. Valid values are 12 to
255.

Default value is 80.

MaxFileNameLength Integer MaxFileNameLength is a value between
8 and 255 indicating the length of the
filename (not including the path) for
server-written output files (Exports,
Version Backups, etc.)

MaxLeaf Integer Maximum number of characters for the
leaf name. Valid values are 3 to 20.

Default value is 255.

MaxLimb Integer Maximum number of characters for the
limb name. Valid values are 3 to 20.

Default value is 255.

NodeApprovedSecurity Role List of roles allowed to view and update.
the NodeApproved system property for
nodes

PasswordDuration Integer Number of days that a user password is
valid. Valid values are 1 to 9999.

Default value is 30.

Chapter 14
System Preferences

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 11

Table 14-1 (Cont.) System Preferences

System Preference Type Description

PasswordMaxLength Integer Maximum number of characters for user
password. Valid values are 0 to 255.
Zero indicates no minimum.

Default value is zero.

PasswordMinLength Integer Minimum number of characters for user
password. Valid values are 0 to 9999.
Zero indicates no minimum.

Default value is 6.

PasswordPolicyEnabled Boolean True requires the password to contain
three of the following elements:

• Uppercase letters
• Lowercase letters
• Numbers
• Special characters
Default value is True.

PasswordWarningPeriod Integer Positive or negative number to indicate
how many days before (-) or after (+)
the password expiration date to warn
users to change their password before
no longer allowing them to log in. Valid
values are -30 to 30.

Default value is 1.

RenameLeaf Role List of roles allowed to rename leaf
nodes.

Default values are Data Manager,
Application Administrator, Access
Manager.

RenameLimb Role List of roles allowed to rename limb
nodes.

Default value is all roles.

ReqMerge Boolean True requires merge for inactivates or
deletes when UseMerge is enabled.

Default value is False.

Chapter 14
System Preferences

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 6 of 11

Table 14-1 (Cont.) System Preferences

System Preference Type Description

SharedNodeDelimiter String Specifies the delimiter between the
node name and the shared node suffix.

The SharedNodeDelimiter character
should not be used anywhere that
would affect node names.

Default value is colon (:).

Caution: Different characters must be
used when setting up the
SharedNodeDelimiter and
SharedNodeSequenceSeparator
system preferences. For example, if the
SharedNodeDelimiter is a colon, the
SharedNodeSequenceSeparator
character cannot be a colon.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

SharedNodeIdentifier String Specifies the identifier to be used after
the shared node delimiter.

Default value is Shared.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

SharedNodeMaintenanceEnabled Boolean True enables shared nodes.

Default value is False.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

SharedNodeNamingType String Specifies the alternate name for shared
nodes. Valid values are: Suffix or Prefix.

Default is Suffix

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

SharedNodeSequenceLength Integer Specifies the length of the uniqueness
key when using numeric sequence type.

Default value is 3.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

Chapter 14
System Preferences

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 7 of 11

Table 14-1 (Cont.) System Preferences

System Preference Type Description

SharedNodeSequenceSeparator String Specifies the separator character to be
placed after the shared node identifier.

Default value is dash (-).

Caution: Different characters must be
used when setting up the
SharedNodeDelimiter and
SharedNodeSequenceSeparator
system preferences. For example, if the
SharedNodeDelimiter is a colon, the
SharedNodeSequenceSeparator
character cannot be a colon.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

SharedNodeSequenceType String Specifies the type of uniqueness key.
Valid values are Numeric or Ancestors.

Default is Numeric.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

SortLimbsFirst Boolean True controls the sorting of limb nodes
first followed by leaf nodes. If False,
limb and leaf nodes can be sorted
together. This preference affects
hierarchy exports, display, and node
lists.

Default value is True.

TopNodeParentString String Used in Import and Export to denote
parent value for a top node.

Default value is None.

TransactionLevels String List of transaction levels to capture.
Turning on As-Of or specifying result or
loss actions forces core actions to be
captured.

Valid values are:

• Logged Action
• Core Action
• Result Action
• Loss Action
Note: Transactions at the Admin level
are always logged regardless of this
system preference.

Default values are Logged Action, Core
Action, Result Action, Loss Action.

Note: A change to this preference
requires a restart of the Data
Relationship Management application.

UpName Boolean True uses uppercase always for the
node name

Default value is False

Chapter 14
System Preferences

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 8 of 11

Table 14-1 (Cont.) System Preferences

System Preference Type Description

UseChangeApproval Boolean True enables change approval.

Default value is False.

UseMerge Boolean True enables use of Merge
methodology for inactivated and deleted
nodes.

Note: If ReqMerge is True, then the
system requires a merge node to be
specified. If ReqMerge is False, then a
merge node is optional unless the node
approved property is True. The node
approved property is set to True when a
version is finalized or when it is
specifically set to True by a user with
appropriate access.

Default value is False.

ValSec Boolean True checks node access group security
to determine whether a user can run
batch validations for a node.

Default value is False.

WarnHL Integer Maximum number of nodes to be
displayed for lists such as Descendants,
Children, Query Results, and so on.
Minimum value is 1000. If set to a value
less than 1000, then 1000 nodes are
displayed.

Default value is 5000.

For more information, see:

• Setting Transaction History Logging Levels

• Setting Up Change Approval

Setting Transaction History Logging Levels
You must have application administrator privileges to set Oracle Data Relationship
Management Transaction History logging levels. Set the TransactionLevels system preference
to specify the action types to capture in the transaction history.

Local Security for Global Properties

You use two system preferences — GlobalPropLocalSecurity and GlobalPropLocalOverride —
to control local security on global properties.

To set Transaction History logging levels:

1. In the Data Relationship Management Web client, select Administer.

2. Under Metadata, expand the System Preferences and edit the TransactionLevels
preference.

3. In TransactionLevels, select transaction level types:

Chapter 14
System Preferences

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 9 of 11

• Logged Action records basic logging information, such as users logging in and
logging out.

• Core Action records actions that change the version, hierarchy, or node information,
such as Add Node, Change Property, or Move Node.

• Result Action records actions that result from core actions. For example, if the "clear
all below" core action is performed, then properties are cleared from individual nodes.
Clearing properties from the individual nodes is a result action.

• Loss Action records loss of data due to a core action. For example, when a node is
deleted, the defined properties for that node are deleted, which is a loss action. Loss
actions are controlled by the LossLevel system preference.

Note

If the Loss Action is specified, or if the AllowAsOf system preference is turned
on, then Core Actions are tracked, even if not set in the TransactionLevels
system preference.

4. Set the LossLevel preference:

• Defined––Only values that are specifically set at the node are tracked when the node
is deleted.

• All Items––Derived, default, and inherited values are tracked in the LossAction.

5. Stop and restart the application, or restart the Data Relationship Management service.

Setting Up Change Approval
The change approval system in Oracle Data Relationship Management enables you to define
approval groups and tie them to an approval flag that is triggered by a set of properties or
special actions. This allows normal users to make changes and approvers to run a query and
then set the approval flag as needed.

The systems preferences that determine the behavior of the change approval in Data
Relationship Management are:

• UseChangeApproval––Set to True to turns on use of change approval.

• ApprovalGroups––A comma-delimited list of the names for the approval groups used in the
system.

• ApprovalGroupTrackProperties––If UseChangeApproval is True, defines properties that
are tracked that will trigger a change of the approval flag to False for this group. The format
is xxx[a,b,c],yyy[d,e,f]... where xxx and yyy are sales groups defined in the
ApprovalGroups preference and a,b,c,d,e,f are property names. For example,
Sales[Custom.SalesGroup,{NodeMove}],Treasury[Custom.AccountDescription,
{NodeAdd}].

Special actions that can be included in the property list are:

– {NodeAdd}––Triggers the Approval Needed mechanism on an added node.

– {NodeInactivate}––Triggers the Approval Needed mechanism on an inactivated node.

– {NodeReactivate}––Triggers the Approval Needed mechanism on a reactivated node.

– {NodeInsert}––Triggers the Approval Needed mechanism on an inserted node.

– {NodeRemove}––Triggers the Approval Needed mechanism on a removed node.

Chapter 14
System Preferences

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 10 of 11

– {NodeMove}––Triggers the Approval Needed mechanism on a moved node.

• ApprovalPropertyByApprovalGroup––If UseChangeApproval is True, defines the global,
boolean property to set to False if any of the trigger properties are changed or the special
actions are used. The format is xxx:bbbb,yyy:cccc…where xxx and yyy are sales groups
defined in the ApprovalGroups preference and bbbb and cccc are the names for the global,
boolean properties to be used to store the approval flag for the groups, for example,
Sales:Custom.SalesApprovedFlag,Treasury:Custom.TreasuryApprovedFlag.

Configuring System Preferences
To configure System Preferences:

1. On the Home page, select Administer.

2. Under Metadata, expand System Preferences.

3. Select a system preference and click .

4. Modify the value and click Save.

Chapter 14
Configuring System Preferences

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 11 of 11

15
Working with External Connections

Application administrators can define and configure common connections to external file
systems, databases, and Web services. Imports, exports and books can share file and
database connections to minimize maintenance of connectivity information. Database and Web
service connections can be configured with external operations to lookup data in an external
system or commit data changes to an external system. External connections enable the
application server to directly access, read, or write data to these resources.

Note

You must set up external resources before defining external connections.

External Operations

External operations can be defined for Web service or database external connections. External
operations are configured as either lookup or commit. Lookup operations read data from an
external system. Commit operations write data to an external system. Database and Web
service connections can support multiple operations. For more information, see External
Commits and External Lookups.

Defining External Connections
To define an external connection:

1. On the Home page, select Administer.

2. From New, select External Connection.

3. Enter a name and description.

4. From Object Access, select Standard, System or a custom group.

5. Select a connection type: Server File, FTP, Database, or Web Service.

6. Do one of the following:

• If you selected Server File, enter a UNC path to the server and click .

Note

The Windows user account used by the Oracle Data Relationship
Management application server is automatically used for Server File
connections. The default Windows user account used for the Oracle DRM
Server Processes Windows service is Local System account. The account
used for the service must be able to access the UNC path for proper Server
File connectivity. Additionally, the UNC path must have the appropriate
permissions for the service account to read and write files.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 5

• If you selected FTP, enter the following information:

– Host Server

– User ID

– User Password

– Click .

• If you selected Database:

– Select the Data Access Provider: Oracle, SqlServer, or OleDb.

* Enter a Database Connection Timeout value

* Enter a Database Command Timeout value

– Enter the Connection String.

– Enter your user ID and password

Note

To establish a writable external connection, the administrator must have
SELECT, INSERT, and DELETE access. A user who has only SELECT
access can establish a read-only external connection to tables and views.

– Click .

– On the Allowed Objects tab, to filter a large list, do any of the following:

* Select or enter a schema/owner, using wildcards if needed.

* Enter the name of an object, using wildcards if needed.

* Select Include Views to include views where the privilege is at least SELECT.
Note that views are always read only.

* Select Include Read-Only Tables to include tables where the privilege is at
least SELECT but does not include both INSERT and DELETE.

* Click and then select objects from the Available list. Use the arrows to
move objects to the Selected list.

* Optional: To use the Quick Add section, enter the schema/owner and name
of the object that you want to add and click the arrow to move it to the
Selected list.

– To add an external operation, click the External Operations tab, click Add, and
then do the following:

* Enter Name for the operation. The name must be unique for the parent
External Connection.

* Enter Description text describing the purpose of the operation.

* Select the Operation Type––Lookup or Commit. This selection is used to filter
the list of operations available for selection with the External Lookup and
External Commit features.

* Select the Database Operation Type––Statement or Stored Procedure.

Chapter 15
Defining External Connections

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 5

* If you selected Statement, click Add, and then do the following:

* Enter parameters to be passed in when calling the operation:

* Parameter Name––Name of the parameter. No white space is
allowed.

* Parameter Description––Description of the parameter

* Test Value––Value used for testing the operation. The value is
stored for reuse.

* In the SQL Statement field, enter a single SQL statement to be
executed. You can use substitution parameters in the SQL statement
to pass runtime values. Substitution parameter formatting is
<%ParamKey%>, where <% and %> denote a substitution parameter
and ParamKey is the name of the parameter to be used for
substitution. For example, <%TopNode%>.

* Click to test the operation. The Rollback option rollbacks any
changes made to the database by the script. Rollback is selected by
default. When an operation is tested, the parameter’s test values are
inserted into the statement and executed. Click the Result tab to view
the results of the test.

* If you selected Stored Procedure:

* Enter the Stored Procedure Name to execute, may include package
name as prefix.

* Enter Name for the operation. The name must be unique for the
parent External Connection.

* Enter Description text describing the purpose of the operation.

* View the list of parameters for the stored procedure. Select True for
Results Param to return the parameter in Data Relationship
Management operation result. Only one parameter may be selected
as a result parameter. Result parameters are only returned for Lookup
operations. For Commit operations, success or failure only is
indicated.

* Test Value––Value used for testing the operation. The value is stored
for reuse.

* Click to test the operation. The Rollback option rollbacks any
changes made to the database by the stored procedure. Rollback is
selected by default. When an operation is tested, the parameter’s test
values are inserted into the stored procedure and executed. Click the
Result tab to view the results of the test.

• If you selected Web Service:

– Select the Protocol: HTTP or HTTPS.

– Enter the Hostname

– Enter the Port––If port 0 is specified, standard ports 80 and 443 are used for
HTTP and HTTPS respectively

– Select the Authentication Type––If set to Basic, then User ID and Password can
be saved.

– Enter User ID and Password.

Chapter 15
Defining External Connections

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 5

– To add an external operation, click Add and then do the following:

* Enter Name for the operation. The name must be unique for the parent
External Connection.

* Enter Description text describing the purpose of the operation.

* Select the Operation Type––Lookup or Commit. This selection is used to filter
the list of operations available for selection with the External Lookup and
External Commit features.

* On the Request tab, click Add, and then enter parameters to be passed in
when calling the operation:

* Parameter Name––Name of the parameter. No white space is allowed.

* Parameter Description––Description of the parameter

* Test Value––Value used for testing the operation. The value is stored for
reuse.

* From HTTP Action select GET, POST, PUT, or DELETE.

Note

Only POST and PUT allow sending HTTP Body content.

* Enter the HTTP URI for the Web service message.

* Enter the raw content of the HTTP Header.

* Enter the text content of the HTTP Body.

* Response tab––Displays the full outgoing and incoming messages for the
Web service operation. Parameters used in the outgoing message will have
their test values inserted into the request. The HTTP body of the incoming
message returned by the Web service is expected to be in XML or JSON
format. For external lookup operations, the incoming message needs to be
converted to a tabular format (rows and columns) for use with external lookup
properties. To handle this conversion, XPath expressions can be used. The
List Identifier Expression parameter identifies the elements in the incoming
message which are the rows of the result set. The Result Columns identify the
attributes of the row elements which are displayed as columns in the result set.

To preview the results of the List Identifier Expression and Result Columns
configurations, click the Preview tab. The results are displayed in a data grid.

You can use substitution parameters in the URI, HTTP Header, and HTTP Body to
pass runtime values to the external operation. Substitution parameter formatting is
<%ParamKey%>, where <% and %> denote a substitution parameter and
ParamKey is the name of the parameter to be used for substitution. For example,
<%TopNode%>.

To test the configuration, click . The HTTP Request is built and sent to the
endpoint. The user-interface automatically switches to the Response tab and
displays the full outgoing message and incoming response. Parameters used in
the outgoing message will have their test values inserted into the request.

7. Click to validate the selected items to verify that they are accessible at the appropriate
level through the connection user name and password.

Chapter 15
Defining External Connections

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 5

8. Click to save the external connection.

Editing External Connections
To edit an external connection:

1. On the Home page, select Administer.

2. Under Metadata, expand External Connections.

3. Select an external connection and click .

4. Make changes as required.

5. Click to save the external connection.

Deleting External Connections
When you delete an external connection, all import and export profiles using the connection
are affected.

To delete an external connections:

1. From the Home page, select Administer.

2. Under Metadata, expand External Connections.

3. Select an external connection and click .

4. Select Delete this Item to confirm the deletion.

Chapter 15
Editing External Connections

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 5

16
Configuring Governance Workflows

Governance workflows are formalized processes used to control the entry, approval, validation,
and commitment of changes to nodes, relationships, and property values.

Application administrators define workflow tasks and workflow models to govern change
requests submitted by business users and remediation requests submitted by data stewards.

It is recommended that you read "Governance Workflows" in the Oracle Data Relationship
Management User's Guide for additional information on governance workflow concepts.

Managing Workflow Tasks
A workflow task is a single set of changes performed by a user for a local node within the
context of a request. Request items in requests are controlled by workflow tasks.

A workflow task consists of an action type, instructions for the user, properties to be viewed or
edited, and validations. The action type for a workflow task specifies the basic type of action
being performed, such as adding, moving, or updating nodes. Each action type defines rules
regarding the selection of nodes and parents, application of property updates, and the actions
to perform when the request is validated and committed.

Note

The following actions are not supported in workflow requests:

• Merging nodes

• Annulling nodes

• Reactivating nodes

• Inserting orphan nodes

• Adding domain nodes where the domain is different from the parent

Task Properties
Workflow task properties can be configured to control which properties are displayed for
request items, whether they are editable, and if values are required. Editable properties may
be configured as required. Default properties for an action type may not be removed from the
task.

Task and Property Instructions
You can add instructions on the request page to help guide users through the creation,
enrichment, and approval of a request item. Instructions can be defined for workflow tasks and
their properties. Task instructions are displayed for the originating task of a request item when
an item is viewed in a Submit, Enrich, or Commit stage. Task instructions for an Update
workflow task assigned to an Approve or Enrich stage are displayed instead of the originating

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 16

task instructions. Task property instructions can be displayed for individual request item
properties.

Hyperlinks can be included in task and property instructions. URLs can be inserted directly into
the instructions field or the URL can use the syntax [url=http_URL]URL_Title[/url] where
http_URL specifies the hyperlink text and URL_Title specifies the text displayed to the user.
For example, this example: [url=http://support.oracle.com]Oracle Support[/url] would render in
the property grid as Oracle Support.

Task Validations
Task validations are optional, node-level validations which must be successfully executed for
request items before a request can be submitted or approved for a particular workflow stage.
Validations configured to run in batch mode are available for selection as task validations. Task
validations can be associated with task properties in order to link the validation messages with
specific properties which may need to be corrected.

Calculated Name and Parent Properties
The Name and Parent properties used in workflow tasks identify the node and hierarchy
location for which changes are being made. The values of these properties are often manually
defined by a user or loaded from a source file. The Calculate Name and Calculate Parent
options available for workflow tasks can be used to calculate the values of these properties
using a dynamic script instead of having to define or load the values explicitly.

The Calculate Name option is available for workflow tasks using the Add Leaf or Add Limb
action types. The Calculate Parent option is available for those tasks as well as Insert and
Move tasks. The calculation logic of the script(s) may access the following data sources:

• NextID function

• Properties of the version for the request

• Hierarchies and their properties in the version

• Nodes and their properties

• Hierarchy relationships between nodes

• Properties of the request

• Request items and their properties

• Request item tasks and their action type

Calculation of the Name and Parent properties takes place when a governance request is
calculated in the stage where a request item is added using a workflow task with these options
enabled. The values may be recalculated in the originating stage for a request item or in a later
stage which has been configured to recalculate these properties.

Note

If a workflow model has been set up to allow Recalculated Task Properties and the
calculated Name or Parent is manually overridden, then the Name or Parent will not
be calculated again during that stage or any subsequent stage.

Chapter 16
Managing Workflow Tasks

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 16

External Commits
External commits can be optionally configured on workflow tasks to immediately synchronize
approved changes in a governance request to an external target system when the request is
committed. For example, an external operation can run an SQL statement that inserts,
updates, or deletes data, or it can invoke a SOAP or REST Web service to create, update, or
delete data in an external system. When you use external commits in Oracle Data Relationship
Governance, external data updates can be initiated after a Data Relationship Governance
request is successfully committed. The external data source is accessed using external
operations defined for database and Web service connections.

After a Data Relationship Governance request has been successfully committed, external
operations for each item are performed as configured by each item’s task.

• Operations are performed synchronously in the order defined, by item and task.

• Operations are performed in the context of the local node for the request item, allowing
output parameters to be based on properties which may not be selected for the task.

• If an error occurs during an external operation, the error message is added to the request
item as an External Commit Failure.

• Request activity is updated with success or failure after each external operation.

• If a Commit Status property is defined for the external operation, then that property will be
updated to True if the operation completed with no errors, and updated to False if the
operation completed with errors.

• If any external operations did not complete successfully, then Data Managers and Commit
stage participants are notified.

Creating Workflow Tasks
To create a workflow task:

1. On the Home page, select Administer.

2. From New, select Workflow Task.

3. Enter a name for the workflow task.

4. From Action Type, select the type of action for the task:

• Add Leaf––Adds a leaf node with global and local properties

• Add Limb––Adds a limb node with global and local properties

• Delete––Updates a node’s global/local properties and deletes the node

• Inactivate–Updates a node’s global and local properties and inactivates the node

• Insert––Inserts a node into a hierarchy and updates its global/local properties

• Move––Moves a node to a different parent and updates its global/local properties

• Remove––Updates a node’s global/local properties and removes the node

• Update––Updates global and local properties for a node

Chapter 16
Managing Workflow Tasks

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 16

Note

If users intend to upload items to a request from a file, the following properties
are required to be defined in the task (and the files to be uploaded by the
users):

– For Add actions: Name, Parent, Description

– For Insert actions: Name, Parent

– For Move actions: Name, Parent

• Reactivate -- Updates a node’s global and local properties and re-activates an inactive
node.

5. Optional: Do any of these tasks:

• Enter text for users in the Instructions field.

URLs can be inserted directly into the instructions field or the URL can use the syntax
[url=http_URL]URL_Title[/url] where http_URL specifies the hyperlink text and
URL_Title specifies the text displayed to the user. For example, this example:
[url=http://support.oracle.com]Oracle Support[/url] would render in the property grid as
Oracle Support.

• Select a Hierarchy Group on which to filter.

Note

The hierarchy group selected for the workflow task is used with the hierarchy
group property configured for the workflow model to filter hierarchies available
for selection for the task.

• Select a Domain for the node for Add Limb or Add Leaf tasks.

Note

The domain configured for a workflow task must match a domain used by the
target version for request items using the task. If the domain for the task is not
used by the version, the request item node cannot be added to the version.

Note

If a domain is assigned, then the Description property for Add Limb and Add
Leaf tasks is required.

6. On the Properties tab, select properties from the Available list to assign to the task. Use
the arrows to move properties to the Selected list. Use the up and down arrows to order
the properties.

7. Click for a property to update these options:

• Editable––Select to allow the property to be edited.

Chapter 16
Managing Workflow Tasks

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 16

• Required––Select to make the property required.

• Calculate––For Add Limb or Add Leaf tasks, select to calculate the Name value from
a dynamic script. If selected, then the Editable option for the Name property is False
and disabled. When you select this option, the Calculate Name tab becomes available
and then you can enter the script for calculating the Name value.

To calculate the Parent value from a dynamic script for Add Limb, Add Leaf, Move, and

Insert tasks, click next to a parent node and then select Calculate. If selected, then
the Editable option for the Parent property is False and disabled. When you select this
option, the Calculate Parent tab becomes available and then you can enter the script
for calculating the Parent value. For information on writing dynamic scripts, see
Managing Dynamic Scripts.

• Custom Label––Optional: Enter an alternate label for the property. This label displays
in the property label column on item details.

• Property Instructions––Optional: Enter specific instructions for the property. The
property does not have to be editable to add instructions. Instructions display above
the property value in the item details.

URLs can be inserted directly into the instructions field or the URL can use the syntax
[url=http_URL]URL_Title[/url] where http_URL specifies the hyperlink text and
URL_Title specifies the text displayed to the user. For example, this example:
[url=http://support.oracle.com]Oracle Support[/url] would render in the property grid as
Oracle Support.

Click to save changes or to cancel changes.

8. On the Validations tab, select validations from the Available list to assign to the task. Use
the arrows to move validations to the Selected list.

9. Click associate validations with specific task properties. If the selected validation fails,
the validation message will be displayed for the specified properties.

Click to save changes or to cancel changes.

10. If you selected to calculate the name or parent, select the Calculate Name or Calculate
Parent tab and then do the following:

• Enter a dynamic script to calculate the name or parent. For information on writing
dynamic scripts, see Creating Dynamic Scripts.

• Enter the following information:

– Request ID––Specifies the request ID to use when evaluating the script.

– Request Item Number––Specifies the request item number to use when
evaluating the script.

– Script Timeout––The number of seconds until the script times out.

• Optional: Select Hidden to specify the hidden property for the name or parent that
you are calculating. If selected, then the calculated name or parent is not displayed in
the request item details.

• Click Evaluate. The results are displayed at the bottom of the script designer.

11. Optional: Select the External Commit tab, click Add, and then configure the following
settings:

• External connection––Select the external connection

• Operation––Select the external operation to perform

Chapter 16
Managing Workflow Tasks

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 16

Note

The operation must have been defined as a Commit type operation in the
connection.

• For each external operation parameter configure:

– Parameter source type––Select Literal or Property

– Source––If Literal was selected for source type, then enter a literal value in the
Param Source column. When the external operation is called, the literal value is
passed in for the current parameters. If Property was selected for source type,
then select a property to provide the parameter value for the external operation.
When the External Commit is executed, the parameter value comes from the
selected property on the current node or request item.

• Commit Status property––Select a Boolean property to indicate if the node had any
external commit errors. This property is set for the node in the target version for the
request. In the event of external commit failure, this property can be used to identify
changes in the version which were not committed successfully to the external system.

12. Click to save the workflow task.

Editing Workflow Tasks
The list of properties and validations for a workflow task can be edited after the task has been
created. The action type for a workflow task cannot be modified after the task is saved.

Request item properties for existing requests will be affected when task properties are added,
removed, changed from editable to read-only, or reordered for a workflow task. Task properties
which are removed will no longer be displayed for request items using the task. Property
values defined for request items using task properties changed from editable to read-only will
be discarded.

To edit a workflow task:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Tasks.

3. Select a task, and then click .

4. On the Properties and Validations tabs, make changes to property and validations
selections.

5. Click .

Copying Workflow Tasks
You can create a workflow task by copying an existing task. The action type, properties, and
validations are copied and can be edited before saving.

To copy a workflow task:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Tasks.

3. Right-click the task that you want to copy and select Copy.

Chapter 16
Managing Workflow Tasks

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 6 of 16

4. Enter a new name for the task.

5. Make any other changes to the task and then click to save the workflow task.

Deleting Workflow Tasks
A workflow task may be deleted if it is not assigned to any model which is assigned to a
change request. If a task is assigned to a model that cannot be deleted, then the task cannot
be deleted.

To delete a workflow task:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Tasks.

3. Select a workflow task, and then click .

4. Click Delete this Workflow Task to confirm the deletion.

Managing Workflow Models
A workflow model defines a set of change management tasks of defined types that can be
included together in a single request, based on that model. The model defines the set of
approvals and enrichment steps required before the changes can be committed to a version.

Workflow Stages
Workflow stages are defined for each workflow model and cannot be shared across workflow
models.

Stage Types

When a stage is assigned to a workflow model, the stage type attribute defines the type of
participation for users in that stage of the workflow.

Chapter 16
Managing Workflow Models

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 7 of 16

Table 16-1 Workflow Stage Types

Workflow Stage Type Description Action Types

Submit The Submit stage is used to define the
initial request items to be included in a
request. Multiple workflow tasks may be
associated with this stage type. At least
one request item must be added to a
request during the Submit stage.

AddLeaf or Add Limb tasks can be
optionally configured with dependent
workflow tasks. The system adds a
request item for the original workflow
task as well as an additional request
item for each dependent task.

A primary task cannot also be a
dependent task. The primary and
dependent tasks are considered a
related group when you are calculating
the name of the add item on the primary
task. If you delete a primary task while
the name calculation is still pending,
non-Add dependent tasks are also
deleted.

Note: Each request has only one
Submit stage. You cannot define
workflow stage criteria for this stage.

• Add Limb
• Add Leaf
• Update
• Inactivate
• Insert
• Move
• Remove
• Delete

Enrich The Enrich stage is used to update
request items that were added in the
Submit stage or add request items. You
can define workflow stage criteria for
this stage.

An Enrich stage has a single workflow
task associated with it. A typical Enrich
stage uses a workflow task with an
Update action for the existing request
items. However, some Enrich stages
may require that additional line items be
created, for example:

• The insertion of a single node into
multiple hierarchies

• Update the local properties of a
single node in several hierarchies

This stage occurs between the Submit
and Commit stages.

Note: Any number of Enrich stages may
be defined for a workflow model.

• Update (existing request items)
• Insert (add new items)
• Move (add new items)
• All action types available for the

Submit stage

Chapter 16
Managing Workflow Models

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 8 of 16

Table 16-1 (Cont.) Workflow Stage Types

Workflow Stage Type Description Action Types

Approve The Approve stage is used to view and
approve all request items that were
added in the Submit stage or added or
updated during an Enrich stage. Users
cannot add or edit request items during
an Approve stage. You can define
workflow stage criteria for this stage.

An Approve stage uses a single
workflow task to view properties and
run validations for request items while
the request is in the stage. Update
tasks are available for use in Approve
stages in a read-only mode. To update
properties of request items in an
intermediate stage, use an Enrich stage
type instead.

This stage occurs between the Submit
and Commit stages.

Note: Any number of approval stages
may be defined for a workflow model.

Update (existing request items)

Commit The Commit stage is used to provide a
final approval of the request to trigger
the commit of the request items in a
request to a target versions. A
committing user must approve all
request items in a request. You can
define workflow stage criteria for this
stage but a request cannot be split at
this stage.

A Commit stage does not have a
workflow task associated with it.
Instead, the commit stage displays the
superset of properties and runs the
superset of validations available for the
request items for previous Submit and
Enrich stages. Users in the Commit
stage can make updates to any editable
properties displayed for request items to
allow for final adjustments.

This is the final workflow stage.

Note: Each request has only one
Commit stage.

N/A

Stage Conditions

Stage conditions can be used to alter the workflow path of a particular request based on
specified criteria evaluated for the items in the request. You set up a condition for the stage
and select what action should be taken if the condition is met, for example whether a request
can enter the stage or if some request items are split off into a separate request. A workflow
stage condition can be evaluated based on these criteria:

• Property Criteria––Use property query operators and literal values to evaluate as stage
criteria for the stage.

Chapter 16
Managing Workflow Models

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 9 of 16

• Selected Validations––Select one or more validations to run as stage criteria for the
stage. You can select this option for an Approve, Enrich, or Commit stage.

• Task Validations––Failures of validations assigned to the workflow tasks. When selected,
validations assigned to the task are also run as stage criteria for the stage. You can select
this option for an Approve or Enrich stage. This option is not available if the task assigned
to the stage does not have any validations assigned to it.

If any of the request items meet the stage condition for a workflow stage, then one of these
actions can be taken:

• Enter Stage––For Approve, Enrich, or Commit stages, the request is assigned to users in
the stage. The request enters the stage and workflow processing continues for that stage.

• Split Request Items––For Approve or Enrich stages, request items that meet the stage
condition are moved into a separate, submitted request using the same workflow model.
The new request enters the workflow stage and is assigned to users in the stage. Items not
meeting the stage condition remain in the original request and the stage is skipped for the
original request. If all request items meet stage criteria, the request is not split and the Split
stage is entered.

If the request items do not meet the stage condition for a workflow stage, the stage is skipped
and the request moves to the next stage in the workflow model.

Approval Methods

You select which users must approve a stage in a request:

• Any Group––Any user from an assigned node access group may approve the request in
order to advance it to the next workflow stage. The node access group must be assigned
to the hierarchy with access to the current stage type or greater. If none of the assigned
access groups to the stage have proper data access to the request items in the request,
the stage may be skipped as long as required values are provided and validations pass for
all request items.

• All Groups––At least one user from all assigned node access groups must approve the
request before it advances to the next stage. If none of the assigned access groups to the
stage have proper data access to the request items in the request, the request is escalated
to Data Managers for resolution.

Reapproval

If a request is pushed back to a previous stage and the request items are modified while
pushed back, the changes to the request may require reapproval by users who have already
provided their initial approval for the original request. This option determines whether changes
made in each stage while in pushback mode are required to be reapproved by other users.
Select one of the following options:

• Current––Changes to the request in this stage must be reapproved for the current stage
only. After approval, the request is assigned to the user who previously pushed back the
request.

• All––Changes to the request in this stage must be reapproved for subsequent stages.

Separation of Duties

Workflow stages can be optionally configured to require a separate approving user who has
not submitted or approved for any other stage in the request. When the Separation of Duties
option is enabled, a user who has submitted or approved for another workflow stage may not
claim the request in the stage where the option is enabled. Note the following exceptions:

Chapter 16
Managing Workflow Models

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 10 of 16

• The submitter may claim a request pushed back to the Submit stage.

• Prior approvers for the stage may claim a request pushed back to an Approve or Enrich
stage.

• Data Manager role users may claim any request assigned to them regardless of prior
approval.

Notifications

Notifications include both Web client alerts and e-mail notifications. You can set up if and when
alerts and notifications are sent to workflow users for a workflow stage. Notifications are filtered
to specific users based on the Notify setting for the stage and the type of workflow event that
triggered the notification.

Note

Users do not receive notifications for actions they perform.

Select from these Notify options for each stage:

• None––No users are notified of actions performed for this workflow stage.

• Assignees––Users who belong to any workflow node access group currently assigned to
the request are notified when Assign, Approve, Commit, or Reject actions occur.

Assignees are only notified if they are members of a workflow access group assigned to
the stage with a Notify setting of either Assignees or Assignees and Participants.

• Participants

– When Commit or Reject actions occur, users who have submitted or claimed the
request are notified.

– When Approve or Promote actions occur, users who have submitted the request are
notified.

Participants are only notified if they are members of a workflow node access group
assigned to the stage with a Notify setting of either Participants or Assignees and
Participants.

• Assignees and Participants––Assignees and participants are notified.

The following table lists actions that trigger notifications and the recipients of the notifications
based on the Notify setting of each stage.

Table 16-2 Workflow Alerts

Workflow Action Notifications Sent To

Assignees Submitter Participants Notify Users

Assign X

Approve X X X

Promote X X

Escalate X X

Reject X X X

Commit X X X

Chapter 16
Managing Workflow Models

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 11 of 16

Note

Notify Users are users who are members of a workflow node access group assigned
to a stage with only Notify access to request items. They are only notified if the Notify
setting is either Assignees or Assignees and Participants. If the Notify option is None
or Participants, then these users are not notified

Dependent Workflow Tasks

Dependent workflow tasks can be used to automatically perform a workflow task in a
governance request when another task is being performed. For example, when a node is being
added, the node can also be inserted into other hierarchies in order to ensure synchronization
across all hierarchies when the request is committed. Dependent tasks can be configured for
primary workflow tasks using an Add Leaf and Add Limb action type.

When a request item is added to a request, the selected task for the item is the primary task. If
the primary task is configured with dependent tasks, additional request items will be
automatically added to the request for each dependent task.

Model Filters
You can restrict the versions, hierarchies, and node types that users can view and select for a
particular type of request.

• Version Variable––Limits the selection of a version for request items in a request of a
particular workflow model.

• Hierarchy Group Property––Limits the hierarchies from which nodes can be selected for
request items in a request for a particular workflow model.

• Hierarchy Group––Required if a Hierarchy Group Property is specified.

• Node Types––Limits the nodes that can be added as request items to a request of a
particular workflow model.

Request and Claim Duration
The workflow model for a request may be configured with a request or claim duration interval
to control automatic handling of the request by a governance workflow based on an estimated
amount of time expected for a particular type of request.

• Request Duration––Indicates the expected number of days that a request should take to
be approved and committed. After the age of a request exceeds the request durations, the
request is marked as Overdue.

• Claim Duration––Indicates the expected number of days that a request should be claimed
for a workflow stage by a governance user. After the age of a request exceeds the claim
duration, the request is automatically unclaimed to make it available for other assigned
users to claim.

Note

A value of zero for either option indicates that the Overdue and automatically
Unclaimed functionality is disabled for the workflow model.

Chapter 16
Managing Workflow Models

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 12 of 16

Creating Workflow Models
To create a workflow model:

1. On the Home page, select Administer.

2. From New, select Workflow Model.

3. Enter a name, label, and description for the workflow model.

The name is the unique name for the workflow model. The label is a user-friendly label for
the workflow model and can be the same as the name. The description is optional.

URLs can be inserted directly into the description field or the URL can use the syntax
[url=http_URL]URL_Title[/url] where http_URL specifies the hyperlink text and
URL_Title specifies the text displayed to the user. For example, this example: [url=http://
support.oracle.com]Oracle Support[/url] would render in the property grid as Oracle
Support.

4. Optional: Enter the number of days for Request Duration and Claim Duration

5. On the Workflow Stages tab, double click a stage (Submit or Commit) or click Add Stage.

6. On the Stage tab, configure the following options. See Workflow Stages for additional
information on these options.

• Label––Enter a label for the stage. The stage label can be edited at any time even
after requests exist for the model.

• Type––Select the stage type. The stage type can be edited until requests exist for the
model; then it cannot be changed.

• Workflow Method––Specify which node access groups must approve a stage in a
request.

• Re-Approval––Specify whether changes made only in the current stage or in all
stages require reapproval.

• Notify––Specify to whom notification and alerts are sent.

• Separation of Duties––Select to require a separate approving user who has not
submitted or approved for any other stage in the request.

• Recalculate Task Properties––Select for use with external lookup properties or to
allow a calculated name or parent value to be recalculated. This option is required
when data is input in a later workflow stage which is used to calculate the final Name
or Parent for a request item.

Note

If a workflow model has been set up to allow Recalculated Task Properties
and the calculated Name or Parent is manually overridden, then the Name or
Parent will not be calculated again during that stage or any subsequent stage.

7. For Submit stage tasks only, on the Tasks tab, configure tasks for the stage:

• Select tasks to assign to the stage using the left and right arrow buttons

• Position the tasks in the desired order using the up and down arrow buttons.

Chapter 16
Creating Workflow Models

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 13 of 16

• If a task is a dependent task, you need to set the primary task that it is dependent on.

For the dependent task, click and from the Primary Task drop-down list, select the
primary task.

Note

Only Add Limb or Add Leaf tasks can be set as primary tasks. Primary tasks
cannot be hidden and cannot also be dependent tasks.

• Hidden––If selected for a dependent task, then the task does not display in the Add
Items dialog within requests.

Note

Selected tasks are editable until requests exist for the model, then they cannot be
changed.

8. On the Node Access Groups tab, select workflow node access groups to be associated
with the workflow stage.

Only node access groups of the Workflow type can be assigned to a stage.

9. Optional: To add criteria for a workflow stage, on the Condition tab, select the type of

condition, select the action to perform, and then click :

• Type

– Property Criteria––Select one or more properties to evaluate as stage criteria for
the stage. Click Add to insert a criteria row. Select a Property and Operator for
the row, and enter a Value.

– Selected Validations––Select one or more validations to run as stage criteria for
the stage. Click the arrow to move validations to the Selected list.

– Task Validations––Select to run validations assigned to the task as stage criteria.

• Action––Select an action to perform (Enter Stage or Split Request Items) for the
workflow stage when stage criteria are met. See Stage Conditions for more
information.

10. Click to save the workflow stage.

11. Optional: On the Filters tab, make selections to restrict the versions, hierarchies, and
node types that users can view and select for a particular type of request.

12. Optional: Click Add Stage to add Enrich or Approve stages to the workflow model, and
then follow steps 6-8 for each stage added.

13. Click to save the workflow model.

Editing Workflow Models
Workflow models for which requests have been created are restricted from certain edits in
order to ensure existing requests are not negatively affected during workflow processing and
their content is not altered after the requests have completed. For models that have change
requests these editing restrictions apply:

Chapter 16
Editing Workflow Models

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 14 of 16

• Workflow stages for the model may not be added, removed or reordered.

• The stage type for a stage may not be changed.

• The task for a workflow stage on the model may not be changed.

To edit a workflow model:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Models.

3. Select a model and then click .

4. Make changes to the workflow model and click .

Copying Workflow Models
You can create a workflow model by copying an existing model. All workflow stages, model
filters, and duration settings are copied and can be edited before saving. In situations where an
existing workflow model being used for current requests needs to be edited to handle future
requests differently, the model can be copied and the changes made to the new model. The
edited copy of the model can then be used for newly created requests.

To copy a workflow model:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Models.

3. Select the model that you want to copy and then click .

4. Enter a new name for the model.

5. Make any other changes to the model and then click to save the workflow model.

Renaming Workflow Models
To support different workflow requirements over time, workflow models may be copied to apply
edits to their configuration. In these cases, the model copy can be renamed to match the name
of the original workflow model with which governance users are already familiar.

To rename a workflow model:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Models.

3. Select the model that you want to rename and then click .

4. Enter a new name for the model and then click .

Hiding Workflow Models
Workflow models can be hidden to prevent users from creating new requests using those
models. Existing requests created prior to a workflow model being hidden will continue through
the model to completion. When a workflow model is copied and modified in order to replace the
original model, the original model can be hidden so that only one instance of the model is
available for new requests.

Chapter 16
Copying Workflow Models

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 15 of 16

Note

Requests using the workflow model that you choose to hide will continue their process
flow to completion.

To hide a workflow model:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Models.

3. Select the model that you want to hide and then click .

4. Select Hidden and then click .

Deleting Workflow Models
A workflow model may be deleted only if there are no requests associated with it (including in-
flight or historical requests). Completed requests are retained until the version for the request
is deleted, requiring that the workflow model also be available in order to view the requests.

Tip

Consider the information in Hiding Workflow Models to determine if this may be a more
appropriate option.

To delete a workflow model:

1. On the Home page, select Administer.

2. Under Workflow, expand Workflow Models.

3. Select a model, and then click .

4. Click Delete this Workflow Model to confirm the deletion.

Chapter 16
Deleting Workflow Models

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 16 of 16

17
Managing Data Relationship Management
Analytics

Oracle Data Relationship Management Analytics provides dashboards for change tracking,
growth analysis, request monitoring, workflow model performance, and participant and user
group performance. The Data Relationship Management Analytics Dashboards are:

• Change––Provides aggregated views of changes that have occurred in the Oracle Data
Relationship Management system over time. Metrics in this dashboard are based on
committed requests and all interactive changes. This dashboard includes change actions
such as adds, updates, moves, and deletes across node and property changes to lend
change perspectives by hierarchy, node type, property category, and so on. Users can
understand change trends by change method, interactive, or workflow to ratify governance
uptake. Users can drill into each change contextually to inspect transaction details and
export these details to a flat file for further analysis offline.

• Growth––Provides analysis of how versions and hierarchies have changed over time by
displaying the number of orphan and shared nodes, the total number of nodes, and the
total increase or decrease in nodes from a previous version (for lineaged versions) and the
total increase or decrease in the last 30 days for non-lineaged versions.

• Requests––Displays key performance indicators as they relate to open Oracle Data
Relationship Governance requests allowing you to identify bottlenecks and requests that
are overdue or near due, and provides the ability drill-back into Data Relationship
Governance requests to make changes to a request.

• Model––Provides analysis of Data Relationship Governance workflow model design by
displaying historical performance of requests that are completed (committed or rejected),
including participant behavior trends, resource workload, and the ability to drill-back into
Data Relationship Governance requests. Workflow model analysis reports on performance
of completed requests processed by each workflow model to understand model
performance based on service level agreements, level of automation achieved, cycle time,
resources committed, request workload, throughput, and participant engagement.

• Reports––Used to view user and group membership, security, and activity. Information
provided includes user role assignments, access group assignment reports, and user login
activity.

– User Role Assignment Report––Provides a list of users by role or roles by user with
counts by licensed user types.

– Access Group Membership Report––Provides a list of users by interactive and
workflow user groups.

– Object Access Group Authorization Report––Provides mapping of users and user
groups to specific Data Relationship Management objects.

– Hierarchy Access Group Assignment Report––Provides data grants of users and
groups to nodes in a hierarchy.

– Workflow Access Group Assignment Report––Provides data grants of users and
groups to workflow model stages.

– User Login Activity Report––Provides trend reports for user login activity over time.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 6

– Metadata Object Usage Report––Provides frequency distribution and aging
information for Data Relationship Management objects: queries, compares, imports,
exports, blenders, and books.

Accessing Data Relationship Analytics
Before configuring Oracle Data Relationship Management Analytics ensure the following tasks
have been completed:

• Set up Analytics URL––Provides the link to Data Relationship Management Analytics from
Oracle Data Relationship Management. See "Configuring Analytics URL" in Oracle Data
Relationship Management Installation Guide.

• Set up Web farm––Enables drillback from Data Relationship Management Analytics to
Data Relationship Management. See "Configuring Web Servers" in Oracle Data
Relationship Management Installation Guide.

• Version lineage has been set up––Version lineage allows Data Relationship Management
Analytics to aggregate changes across lineages and across multiple versions. See "Editing
Version Properties" in Oracle Data Relationship Management User's Guide.

• Set up in Data Relationship Management when hierarchy and version node counts are
updated. Node counts are updated when a version is opened, saved, or closed and as
specified in a system preference. See AnalyticsNodeCountUpdateTime in System
Preferences.

• Set hierarchy group property to the default Core property type. Only the default Core
property type is supported in Data Relationship Management Analytics. See Step 6 of
Creating Properties.

In Data Relationship Management, click the Analytics link.

Note

The Analytics link is available only if the user is assigned to any of these roles:
Analytics User, Governance Manager, Access Manager, Data Manager, Application
Administrator.

Working with Preferences
Before creating execution plans, preferences need to be configured.

To set preferences:

1. Click .

2. Optional: Do the following:

• Batch Size––Enter a batch size value. Used for model analysis. The default value is
250 MB and should not be changed unless absolutely necessary. The larger the batch
size the larger the memory and database requirements.

• Initial Extract Date––Set the date from which data will be extracted for all Oracle Data
Relationship Management Analytics tasks.

Chapter 17
Accessing Data Relationship Analytics

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 6

3. Click Save.

Working with Execution Plans
Predefined tasks extract the information from Oracle Data Relationship Management and
return it to the specific Oracle Data Relationship Management Analytics dashboard where it
can be filtered and reviewed. Jobs consist of dashboard-specific tasks. Multiple jobs can be
included in an execution plan.

Execution plans consist of a schedule and one or more jobs and their tasks. Execution plans
can be configured to run daily, weekly, or monthly and can be scheduled to run as Simple (run
now or run at a future date/time) or as Cron (using a Cron expression to indicate scheduling
information). Execution plans can be edited, inactivated when not in use, and deleted when no
longer needed.

Table 17-1 Job Tasks

Jobs Tasks

Change Analysis Transaction Fact Table

Transaction Aggregate

Transaction Property Aggregate

Version Lineage

User Activity Reports Transaction Fact Table

Growth Analysis Version Lineage

Hierarchy Counts

Version Counts

Model Analysis Model Analysis

Creating Execution Plans
To create an execution plan:

1. In the Oracle Data Relationship Management Analytics dashboard, select Settings.

2. Click Create and enter the following information:

• Name––Enter a name for the execution plan

• Schedule Type––Select from the following options:

– Simple––Use to specify a start and end date

– Cron––Use to specify a Cron expression

• Scheduler Timeframe––Select Run Now or Future.

3. Click Next.

4. Do the following:

• If you selected Simple as the Schedule Type and Run Now for the Scheduler
Timeframe, do the following:

a. Optional: Select Truncate and Load to truncate any tables associated with this
job and reload based on the initial extract date in the system. If not selected, then
an incremental load runs.

b. Click OK if you are sure you want to truncate and load.

Chapter 17
Working with Execution Plans

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 6

• If you selected Simple as the Schedule Type and Future for the Scheduler Timeframe,
do the following:

a. Select the Frequency to run the execution plan: Daily, Weekly, or Monthly.

b. Click to enter the start date and time.

c. Optional: Click to enter the end date and time.

• If you selected Cron as the Schedule Type, enter a Cron expression for when the
scheduler will run.

5. Click Next.

6. Select jobs to add to the execution plan. User the Move, Move All, Remove, and Remove
All buttons to move jobs from the Available list to the Selected list.

7. Click Next.

8. Review the execution plan settings and then click Schedule Plan.

Note

For execution plans to run, the Scheduler must be started. To start the Scheduler,

click and select Start.

9. Click OK to confirm scheduling plan.

Editing Execution Plans
When you edit an execution plan, all fields are editable except for the plan name.

To edit an execution plan:

1. Select the plan to edit.

2. Click and make changes to the plan by following steps 2-9 in Creating Execution
Plans.

Note

You cannot change the plan name. If you need to change the plan name, delete
the plan and create a new plan.

Inactivating and Reactivating Execution Plans
When an execution plan is inactivated, any future scheduled plans are removed from the
scheduler and the plan is moved to the Inactive Plan tab. To reactivate the plan, on the Inactive
Plans tab, edit the plan and then schedule it.

To inactivate an execution plan:

Chapter 17
Working with Execution Plans

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 6

1. Select and then select the plan to inactivate.

2. Click next to the plan name.

To reactivate an execution plan:

1. Select and then select the plan to reactivate.

2. Click and make changes to the plan by following steps 2-9 in Creating Execution
Plans.

Note

You cannot change the plan name. If you need to change the plan name, delete
the plan and create a new plan.

Deleting Execution Plans
To delete an execution plan:

1. Select the execution plan that you want to delete.

2. Click next to the plan name.

3. Click OK to confirm the deletion.

Viewing Activity
In the Recent Activity section, you can view the results of execution plans that have been run.
You can view the start and end time of the execution plan, the duration of the run, the number
of records processed, and the status of the run. Note that if you schedule multiple jobs in the
same plan and more than one job includes a task that another job has already run, the
execution will skip the task in subsequent jobs and will show as Skipped Duplicate in the
execution plan results.

To view results of execution plans that have been run:

1. Click or click .

2. Expand the execution plan that you want to view by clicking the arrow to the left of the plan
name. You can expand jobs within the plan to review the associated tasks.

3. Optional: Click the filter bar and set filter options:

• Timeframe––Enter the number days for which to show plan activity. For example, if
you enter 2, then plan activity from the last 2 days is displayed.

• Name––Select All or select execution plan names to include in the results.

• Status––Select All or select execution plan statuses to include in the results. Plan
statuses are Complete, Partial Failure, Failed, and Processing.

Chapter 17
Working with Execution Plans

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 6

Note

The Status filter criteria only applies to execution plan status, not to job or task
status.

Chapter 17
Working with Execution Plans

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 6 of 6

18
Integrating External Workflow Applications

External workflow applications can be used to process proposed changes to Oracle Data
Relationship Management from an external source. The Web Service API provides an external
request interface which allows multiple changes to be grouped together for validation and
commitment of the changes as a single unit of work during an external workflow process. API
users must have the Workflow User role in order to participate with external requests. This
request interface is generic and does not support the use of workflow models, workflow tasks,
or the Worklist page in the Web Client. These generic, external requests are recorded in and
only accessible from the Request History.

For more information on API support for external requests, see the "Oracle Data Relationship
Management API Reference".

External Requests
You can create external requests to:

• Add hierarchies

• Add nodes

• Insert and move nodes

• Activate, inactivate and remove nodes

• Update properties

• Remove property values

External requests can be stored in a draft state for approval and validated against a Oracle
Data Relationship Management version without committing the changes to the version
immediately. External requests in this pending approval state can be updated by multiple users
at different times and re-validated as needed. The transactions in a request are committed to a
Data Relationship Management version when the request is approved.

Note

After an external request has been approved, the request cannot be modified and the
request cannot be deleted until the associated version is deleted.

An external request consists of the following elements:

• Target Data Relationship Management version.

• Owner of the request — A valid Data Relationship Management user ID.

• Custom workflow ID — Identifier for the request in a workflow application.

• Custom workflow label — Short description for the request in a workflow application.

• Custom workflow status — Manages the status of the request in a workflow application.

• Custom workflow info — Stores extra information needed by a workflow application.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 2

• Request comments — Annotation for the request.

• Created by –– User who created the initial request.

• Created date –– Date when the request was created.

• Updated by –– User who last updated the request.

• Updated date –– Date when the request was last updated.

• Approved By –– User who approved the request.

• Approved Date –– Date when the request was approved.

• Validated Flag –– Indicates whether the request has been validated since it was last
updated.

• Approved Flag –– Indicates whether the request has been approved.

• Additional batch validations that should be applied to only the actions in the request during
a validate or approve operation

• List of action items that affect hierarchies and nodes for the current request

Chapter 18
External Requests

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 2

19
Migrating Data Relationship Management
Metadata

The Oracle Data Relationship Management Migration Utility provides application administrators
the ability to move metadata object types between Data Relationship Management
applications.

In the Migration Utility, you can:

• Extract metadata object types from a Data Relationship Management application to an
XML file and generate an HTML report from the results

• Load metadata from an XML file into a Data Relationship Management application

• Compare metadata differences between two sources, create an XML file with the
differences, and generate an HTML report from the results

• View metadata in an XML file and generate an HTML report from the file

You can extract, load, compare, and view the following types of metadata:

• Property Definitions

• Property Categories

• Validations

• Node Types

• Glyphs

• Node Access Groups

• Hierarchy Groups

• Queries (Standard, System, and Custom)

• Compares (Standard, System, and Custom)

• Domains

• Version Variables (Standard, System, and Custom)

• Exports (Standard, System, and Custom)

• Export Books (Standard, System, and Custom)

• Imports (Standard, System, and Custom)

• Blenders (Standard, System, and Custom)

• System Preferences

• External Connections (Standard, System, and Custom)

External Connections display the connection name only; object access group name
prefixes are not added.

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 1 of 7

Note

Connection string, user ID, and password do not migrate with migration loads and
extracts.

• Object Access Groups

• Workflow Tasks

• Workflow Models

Migrating Core Property Configurations and Settings

The following core property configurations and settings can be migrated between instances of
Data Relationship Management (on same release) using the Metadata Migration Utility:

• Core.DefaultDisplayBy [Default Display Properties]

• Core.DefaultPasteProps [Default Paste Properties]

• Core.DefaultSynchBy [Default Match By]

• Core.EnableSharedNodes [Enable Shared Nodes]

• Core.HierarchyNodeType [Hierarchy Node Type]

• Core.IDLengthLeafProp [ID Length Leaf Property]

• Core.IDLengthLimbProp [ID Length Limb Property]

• Core.PrefillLeafProp [Prefill Leaf Property]

• Core.PrefillLimbProp [Prefill Limb Property]

• Core.SortOrder [Sort Order]

• Core.StandardHierSort [Standard Hierarchy Sort]

Opening the Migration Utility
By default, the Migration Utility is installed to:

MIDDLEWARE_HOME\EPMSystem11R1\products\DataRelationshipManagement\client

To open the Migration Utility, double click Data Relationship Management Migration Utility.

Extracting Metadata
You can select the types of metadata to extract from a Oracle Data Relationship Management
application. You extract the information into an XML file which you can then view, load into
another Data Relationship Management application, compare to another XML file, or compare
to another Data Relationship Management application. You can also use this file for backup,
storage, and auditing purposes.

You can generate a report from the information in the XML file that is created.

To extract metadata from a Data Relationship Management application:

1. On the Main Menu, click Extract.

2. Enter Data Relationship Management connection information and click Log In.

3. Select the object types or objects to extract and click Next.

Chapter 19
Opening the Migration Utility

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 2 of 7

Note

Click the plus sign in the hierarchy tree to see objects. Select the checkbox for an
object type to select the object type and all of its objects, or select the checkbox
for the objects that you want to extract. Click on an object name to display the
object type definition in a new window.

4. Optional: Click Find to search for a metadata object type or object.

Note

Any object type containing the text entered is returned. To navigate to a particular
object in the results, click the Jump To link.

5. Review the summary information.

Note

The Migration Utility performs additional checks for object types that have
dependencies. For example, an export may depend on property definitions or a
property definition may reference another property definition. If there are
dependencies missing in the summary, you may select specific dependencies to
include. You can include all excluded dependencies or exclude all dependencies.

Note

Increasing the page size allows you to define the number of object types to view
on a page.

6. Optional: Enter metadata details for this extract.

You can enter the following information:

• Title––Maximum of 255 characters

• Purpose––Formatted memo

• Usage––Formatted memo

• Application Version––Maximum of 20 characters

• File Version––Maximum of 20 characters

7. Click Run Extract.

8. Do any of the following:

• Click Download the Metadata File to open or save the XML file.

• Click View the Metadata File to view the XML file details.

• Click Load the Metadata File to load the XML file into a Data Relationship
Management application. For more information, see Loading Metadata.

• Click Generate Reports for the Metadata File to generate a report from the XML file.
For more information, see Generating Reports.

Chapter 19
Extracting Metadata

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 3 of 7

Loading Metadata
Only files with the Oracle Data Relationship Management XML format can be loaded into a
Data Relationship Management application. A log file is created after a load is performed and
displays the following severities of data: audit, information, warning, and error message.

Note

Before loading a metadata file, it is recommended that you perform an extract of
existing metadata in case you want to revert back to the previous configuration. It is
also a good idea to perform a database backup before loading metadata, particularly if
you are loading a migration file into a production environment.

To load metadata from an XML file into a Data Relationship Management application:

1. On the Main Menu, click Load.

2. Click Browse, select the XML file that you want to load, and click Upload.

Note

Migration files must be UTF-8 encoded.

3. Review the uploaded file information and click Next.

4. Enter Data Relationship Management connection information and click Log In.

5. Select the object types or objects to load and click Next.

Note

Click the plus sign in the hierarchy tree to see objects. Select the checkbox for an
object type to select the object type and all of its objects, or select the checkbox
for the objects that you want to load. Click on an object name to display the object
type definition in a new window.

6. Review the summary information and click Next.

Note

Page size allows you to define the number of object types to view on a page.

7. Optional: Select Continue Load After Error for the load to continue even if errors are
encountered.

8. Click Run Load.

9. Review the load results.

You can change the view of the log file by selecting the severity of detail to display: audit,
information, warning, and error. To save the log file, click Download.

Chapter 19
Loading Metadata

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 4 of 7

Note

The log items can be sorted by any column using the column header links.

Comparing Metadata
You can compare two metadata sources. You can compare metadata differences between two
Oracle Data Relationship Management applications, between two XML files, or between a
Data Relationship Management application and an XML file. You can generate an XML file
containing the differences between the two metadata sources. The results can be used to
restore data, undo unauthorized changes, or find wrong object type configurations.

You can generate a report from the information in the XML file that is created.

To compare metadata:

1. On the Main Menu, click Difference.

2. From the Source #1 drop-down list, select the type of source: Server Connection or XML
File.

3. Do one of the following:

• If you selected Server Connection, enter Data Relationship Management connection
information and click Log In.

• If you selected XML File, click Browse and select the XML file that you want to use in
the comparison and click Upload.

4. If you uploaded a file, review the uploaded file information and click Next. Otherwise, skip
to the next step.

5. Repeat steps 2–4 for Source #2.

6. Click Next.

7. Select the object types to include in a difference file by using the following actions:

• Select a filter

• Click > to select a object type from Source #1.

• Click < to select a object type from Source #2.

• Click X to deselect a object type.

• Click the left column header to select all objects from Source #1 based on the selected
filter.

• Click the right column header to select all objects from Source #2 based on the
selected filter.

• Click the center column header to deselect all objects based on selected filter.

• Click the page links at the top of the compare results to switch to a different page.

Note

Page size allows you to define the number of object types to view on a page.

8. Click Create Difference File.

Chapter 19
Comparing Metadata

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 5 of 7

9. Do any of the following:

• Click Download the Metadata Difference File to open or save the XML file.

• Click View the Metadata Difference File to view the XML file details.

• Click Load the Metadata Difference File to load the file into an Data Relationship
Management application. For more information, see Loading Metadata.

• Click Generate Reports for the Metadata File to generate a report from the XML file.
For more information, see Generating Reports.

Viewing Metadata
You can view a metadata file and generate a report from the information in it.

To view metadata in an XML file:

1. On the Main Menu, click View File.

2. Click Browse and select the XML file that you want to view and click Upload.

3. Review the uploaded file information and click Next.

4. Click the plus signs in the hierarchy tree to view metadata objects.

5. Optional: Click Find to search for an item in the file.

Note

Any object type containing the text is returned. To navigate to a particular object in
the results, click the Jump To link.

6. Optional: Click the Reports tab to generate an HTML report from the file.

Metadata File Restrictions
The default limit for uploaded files in the Migration Utility is 4 MB. When loading or viewing a
large metadata file using the Migration Utility, the following error may occur if the size of the file
exceeds the configured limit.

"Unexpected Error There was an unexpected error trying to process your request: Maximum
request length exceeded."

For information on configuring a larger file size, see "Configuring Migration Utility" in the Oracle
Data Relationship Management Installation Guide.

Generating Reports
You can generate an HTML report from an XML file generated after an extract, from a
difference report, and from a metadata file that you are viewing.

To generate an HTML report:

1. Do one of the following:

• After extracting metadata or creating a difference report, click Generate Reports for
the Metadata File.

Chapter 19
Viewing Metadata

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 6 of 7

• After viewing a metadata file, click Reports.

2. Do one of the following:

• Click View Report to display the report.

• Click Download Report to save the report.

Chapter 19
Generating Reports

Administrator's Guide
F13691-07
Copyright © 1999, 2025, Oracle and/or its affiliates.

November 13, 2025
Page 7 of 7

	Contents
	Documentation Accessibility
	Documentation Feedback
	1 Revision History
	2 About Data Relationship Management Suite
	3 Getting Started
	Administering Data Relationship Management Applications
	Accessing Data Relationship Management
	Changing Passwords

	Troubleshooting and Tips

	4 Managing Users
	User Permissions
	User Roles
	Analytics Roles

	Creating Users
	User Authentication
	Modifying Users
	Changing Passwords
	Locking Out Users
	Unlocking Users
	Changing User Roles and Assignments

	Deleting Users
	Viewing User Login Status
	System Defined Users
	Common User Provisioning
	Prerequisites
	Provisioning Users and Groups
	Synchronizing Data Relationship Management Users and Group Membership
	Manual Synchronization
	Scheduled Synchronization
	Partial Synchronization

	5 Managing Node Access Groups
	Workflow Group Type Node Access Levels
	Creating Node Access Groups
	Editing Node Access Groups
	Deleting Node Access Groups
	Assigning Node Access Group Security

	6 Managing Object Access Groups
	Creating Object Access Groups
	Editing Object Access Groups
	Deleting Object Access Groups

	7 Managing Domains
	Creating Domains
	Editing Domains
	Deleting Domains

	8 Managing Property Categories
	Property Categories
	Creating Property Categories
	Editing Property Categories
	Deleting Property Categories

	9 Managing Property Definitions
	Data Types
	External Lookups
	Creating Properties
	Using Hierarchy Constraints

	Editing Property Definitions
	Deleting Properties

	10 Managing Validations
	Validation Classes
	Validation Levels
	Creating Validations
	Creating a Script Validation for Move

	Assigning Validations
	Editing Validations
	Deleting Validations

	11 Managing Formulas
	Working with Functions
	Special Characters
	Literals
	Format String Parameter
	Date-Time Format Strings

	Formula Evaluation
	Formula Syntax Checks
	Property Names in the Syntax Check

	Considerations for Using Formulas
	Creating Formulas
	Function Definitions
	Function Groups

	12 Managing Dynamic Scripts
	Execution Contexts
	Derived Properties Using Scripts
	Validations Using Scripts
	Governance Requests Using Scripts

	Enumeration Constants
	Supported JavaScript Data Types
	Data Type Conversions
	Formatting Numbers
	Formatting Dates

	Data Relationship Management Objects
	Execution Environment
	Creating Dynamic Scripts

	13 Managing Node Types
	Defining Node Types
	Editing Node Types
	Deleting Node Types
	Working with Node Glyphs

	14 Working with System Preferences
	System Preferences
	Setting Transaction History Logging Levels
	Setting Up Change Approval

	Configuring System Preferences

	15 Working with External Connections
	Defining External Connections
	Editing External Connections
	Deleting External Connections

	16 Configuring Governance Workflows
	Managing Workflow Tasks
	Task Properties
	Task and Property Instructions
	Task Validations
	Calculated Name and Parent Properties
	External Commits
	Creating Workflow Tasks
	Editing Workflow Tasks
	Copying Workflow Tasks
	Deleting Workflow Tasks

	Managing Workflow Models
	Workflow Stages
	Model Filters
	Request and Claim Duration

	Creating Workflow Models
	Editing Workflow Models
	Copying Workflow Models
	Renaming Workflow Models
	Hiding Workflow Models
	Deleting Workflow Models

	17 Managing Data Relationship Management Analytics
	Accessing Data Relationship Analytics
	Working with Preferences
	Working with Execution Plans
	Creating Execution Plans
	Editing Execution Plans
	Inactivating and Reactivating Execution Plans
	Deleting Execution Plans
	Viewing Activity

	18 Integrating External Workflow Applications
	External Requests

	19 Migrating Data Relationship Management Metadata
	Opening the Migration Utility
	Extracting Metadata
	Loading Metadata
	Comparing Metadata
	Viewing Metadata
	Metadata File Restrictions
	Generating Reports

