
JD Edwards
EnterpriseOne
Tools

APIs and Business Functions Guide

9.2

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

9.2

Part Number: E53573-06

Copyright © 2011, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Contents

Preface .. i

1 Introduction to JD Edwards EnterpriseOne Tools: APIs and Business
Functions

1

APIs and Business Functions Overview ... 1

APIs and Business Functions Implementation ... 1

2 Working with APIs 3
Understanding APIs ... 3

Calling APIs .. 7

Using the SAX Parser .. 9

Working with JDECACHE .. 17

Working with JDECACHE Cursors .. 27

3 Using Business Functions 33
Understanding Business Functions ... 33

Understanding Transaction Master Business Functions .. 49

Building Transaction Master Business Functions .. 51

Implementing Transaction Master Business Functions .. 62

Working with Master File Master Business Functions .. 64

Working with Business Functions .. 68

Working with Business Function Builder .. 69

Working with Business Function Documentation .. 85

Configuring the B98ORCH Business Function to Invoke an Orchestration or Notification (Release 9.2.3) 86

4 Understanding Record Locking 91
Record Locking .. 91

Optimistic Locking .. 91

Pessimistic Locking .. 92

5 Debugging Business Functions 95
Debugging ... 95

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Debugging Strategies .. 95

Debug Logs ... 96

Debugging Business Functions with Microsoft Visual C++ .. 96

6 Glossary 101
business function .. 101

business function event rule .. 101

business view ... 101

checksum .. 101

deployment server .. 101

driver manager .. 102

named event rule (NER) ... 102

Index ... 103

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Preface

Preface
Welcome to the JD Edwards EnterpriseOne documentation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc .

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

Related Information
For additional information about JD Edwards EnterpriseOne applications, features, content, and training, visit the JD
Edwards EnterpriseOne pages on the JD Edwards Resource Library located at:

http://learnjde.com

Conventions
The following text conventions are used in this document:

Convention Meaning

Bold

Boldface type indicates graphical user interface elements associated with an action or terms defined in
text or the glossary.

Italics

Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular
values.

Monospace

Monospace type indicates commands within a paragraph, URLs, code examples, text that appears on a
screen, or text that you enter.

> Oracle by Example

Indicates a link to an Oracle by Example (OBE). OBEs provide hands-on, step- by-step instructions,
including screen captures that guide you through a process using your own environment. Access to
OBEs requires a valid Oracle account.

i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://learnjde.com

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Preface

ii

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 1
Introduction to JD Edwards EnterpriseOne Tools: APIs and

Business Functions

1 Introduction to JD Edwards EnterpriseOne
Tools: APIs and Business Functions

APIs and Business Functions Overview
JD Edwards EnterpriseOne Tools APIs and business functions are used to create complex, reusable routines in C.
Business functions can call APIs directly and can in turn be invoked from event rules (ER).

APIs and Business Functions Implementation
The following implementations steps need to be performed before working with JD Edwards EnterpriseOne Tools APIs
and business functions:

1. Configure Object Management Workbench.

See "Configuring JD Edwards EnterpriseOne OMW" in the JD Edwards EnterpriseOne Tools Object Management
Workbench Guide .

2. Configure Object Management Workbench user roles and allowed actions.

See "Configuring User Roles and Allowed Actions" in the JD Edwards EnterpriseOne Tools Object Management
Workbench Guide .

3. Configure Object Management Workbench functions.

See "Configuring JD Edwards EnterpriseOne OMW Functions" in the JD Edwards EnterpriseOne Tools Object
Management Workbench Guide .

4. Configure Object Management Workbench activity rules.

See "Configuring Activity Rules" in the JD Edwards EnterpriseOne Tools Object Management Workbench Guide
.

5. Configure Object Management Workbench save locations.

See "Configuring Object Save Locations" in the JD Edwards EnterpriseOne Tools Object Management
Workbench Guide .

6. Set up default location and printers.

See JD Edwards EnterpriseOne Tools Report Printing Administration Technologies Guide .

1

olink:EOTOM00221
olink:EOTOM00221
olink:EOTOM00222
olink:EOTOM00222
olink:EOTOM00223
olink:EOTOM00223
olink:EOTOM00224
olink:EOTOM00225
olink:EOTOM00225
olink:EOTRP00108

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 1
Introduction to JD Edwards EnterpriseOne Tools: APIs and

Business Functions

2

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

2 Working with APIs

Understanding APIs
This section discusses:

• API fundamentals

• Common library APIs

• Database APIs

API Fundamentals
APIs are routines that perform predefined tasks. JD Edwards EnterpriseOne APIs make it easier for third-party
applications to interact with JD Edwards EnterpriseOne software. These APIs are functions that you can use to
manipulate JD Edwards EnterpriseOne data types, provide common functionality, and access the database. Several
categories of APIs exist, including the Common Library Routines and JD Edwards EnterpriseOne Database (JDEBASE)
APIs.

Programing with APIs is useful for these reasons:

• No code modifications are required as functionality is upgraded.

• When a data structure changes, source modifications are minimal to nonexistent.

• Common functionality is provided through the APIs, and they are less prone to error.

When the code in an API changes, business functions typically only need to be recompiled and relinked.

Common Library APIs
The Common Library APIs, such as determining whether foreign currency is enabled, manipulating the date
format, retrieving link list information, or retrieving math numeric and date information are specific to JD Edwards
EnterpriseOne functionality. You can use these APIs to set up data by calling APIs and modifying data after API calls.
Some of the more commonly used categories of APIs include MATH_NUMERIC, JDEDATE, and LINKLIST. Other
miscellaneous Common Library APIs are also available.

JD Edwards EnterpriseOne provides the data types, MATH_NUMERIC and JDEDATE, for use when creating business
functions. Because these data types might change, you must use the Common Library APIs provided by JD Edwards
EnterpriseOne to manipulate the variables of these data types.

MATH_NUMERIC Data Type
 The MATH_NUMERIC data type exclusively represents all numeric values in JD Edwards EnterpriseOne software. The
values of all numeric fields on a form or batch process are communicated to business functions in the form of pointers
to MATH_NUMERIC data structures. MATH_NUMERIC is used as a data dictionary (DD) data type.

The data type is defined as follows:

struct tagMATH_NUMERIC

3

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

{
 ZCHAR String[MAXLEN_MATH_NUMERIC+1];/* Just the digits - no separators */
 BYTE Sign; /* #-# if negative, 0x00 otherwise */
 ZCHAR EditCode; /* The Data Dictionary edit code to Format for display */
 short nDecimalPosition; /* # of digits from right end of string to decimal point#
 */
 short nLength; /* The number of digits in s */
 WORD wFlags; /* Processing Flags */
 ZCHAR szCurrency[CURRENCY_CODE_SIZE];/* The Currency Code */
 short nCurrencyDecimals; /* The Number of Currency Decimals */
 short nPrecision; /* The Data Dictionary Size */
};

This table lists various elements:

MATH_NUMERIC Element Description

String

Digits without separators

Sign

A minus sign indicates the number is negative, otherwise the value is 0x00

EditCode

Data dictionary edit code that formats the number for display

nDecimalPosition

Number of digits from the right to place the decimal

nLength

Number of digits in the string

wFlags

Processing flags

szCurrency

Currency code

nCurrencyDecimals

Number of currency decimals

nPrecision

Data dictionary size

JDEDATE Data Type
 The JDEDATE data type exclusively represents all dates in JD Edwards EnterpriseOne software. The values of all date
fields on a form or batch process are communicated to business functions in the form of pointers to JDEDATE data
structures. JDEDATE is used as a data dictionary data type.

This code sample illustrates defining the data type:

struct tagJDEDATE
{
 short nYear;;
 short nMonth;;
 short nDay;
};
typedef struct tagJDEDATE JDEDATE, FAR *LPJDEDATE;

4

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

This table lists the elements in the JDEDATE data type:

JDEDATE Element Description

nYear

Year (4 digits)

nMonth

Month

nDay

Day

Database APIs
JD Edwards EnterpriseOne software supports multiple databases. An application can access data from a number of
databases.

Standards and Portability
These standards affect the development of relational databases:

• ANSI (American National Standards Institute) standard.

• X/OPEN (European body) standard.

• ISO (International Standards Institute) SQL standard.

Ideally, industry standards enable users to work identically with different relational database systems. Although each
major vendor supports industry standards, it also offers extensions to enhance the functionality of the SQL language.
Vendors also periodically release upgrades and new versions of their products.

These extensions and upgrades affect portability. Due to the industry impact of software development, applications
need a standard interface to databases that is not affected by differences between database vendors. When a vendor
provides a new release, the affect on existing applications should be minimal. To solve many of these portability issues,
many organizations use standard database interfaces called open database connectivity (ODBC).

JD Edwards EnterpriseOne ODBC
JD Edwards EnterpriseOne ODBC enables you to use one set of functions to access multiple relational database
management systems. Consequently, you can develop and compile applications knowing that they can run on a
variety of database types with the correct database driver. Database drivers are installed that enable the JD Edwards
EnterpriseOne ODBC interface to communicate with a specific database system using a database driver.

The driver handles the I/O buffers to the database, which enables a programmer to write an application that
communicates with a generic data source. The database driver is responsible for processing the API request and
communicating with the correct data source. The application does not have to be recompiled to work with other
databases. If the application must perform the same operation with another database, a new driver is loaded.

A driver manager handles all application requests to the JD Edwards EnterpriseOne database function call. The driver
manager processes the request or passes it to an appropriate driver.

JD Edwards EnterpriseOne applications access data from heterogeneous databases, using the JDB API to interface
between the applications and multiple databases. Applications and business functions use the JDB API to dynamically

5

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

generate platform-specific SQL statements. JDB also supports additional features, such as replication and cross-data
source joins.

Standard JDEBASE API Categories
You can use control and request level APIs to develop and test business functions. This table lists the categories of
JDEBASE APIs:

Category Description

Control Level

Provides functions for initializing and terminating the database connection.

Request Level

Provides functions for performing database transactions. The request level functions perform these
tasks:

• Connect to and disconnect from tables and business views in the database.

• Perform data manipulation operations of select, insert, update, and delete.

• Retrieve data with fetch commands.

Column Level

Performs and modifies information for columns and tables.

Global Table/Column Specifications

Provides the capability to create and manipulate column specifications.

Connecting to a Database
To perform a request, the driver manager and driver must manage the information for the development environment,
each application connection, and the SQL statement. The pointers that return this information to the application
are called handles. The APIs must include these handles in each function call. Handles used by the development
environment include these handles:

Handle Purpose

HENV

The environment handle contains information related to the current database connection and valid
connection handles. Every application connecting to the database must have an environment handle.
This handle is required to connect to a data source.

HUSER

The user handle contains information related to a specific connection. Each user handle has an
associated environment handle with it. A connection handle is required to connect to a data source. If
you are using transaction processing, initializing HUSER indicates the beginning of a transaction.

HREQUEST

The request handle contains information related to a specific request to a data source. An application
must have a request handle before executing SQL statements. Each request handle is associated with a
user handle.

Understanding Database Communication Steps
Several APIs called in succession can perform these steps for database communication:

• Initialize communication with the database.

6

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

• Establish a connection to the specific data to access.

• Execute statements on the database.

• Release the connection to the database.

• Terminate communication with the database.

This table lists some of the API levels and the communication handles and API names that are associated with them:

API Level Communication Handles API Name

Control level (application or test
driver)

Environment handle

JDB_InitEnv

Control level (application or test
driver)

User handle (created)

JDB_InitUser

Request level (business function)

User handle (retrieved)

JDB_InitBhvr

Request level (business function)

Request handle

JDB_OpenTable

Request level (business function)

Request handle

JDB_FetchKeyed()

Request level (business function)

Request handle

JDB_CloseTable

Request level (business function)

User handle

JDB_FreeBhvr

Control level (application or test
driver)

User handle

JDB_FreeUser

Control level (application or test
driver)

Environment handle

JDB_FreeEnv

Calling APIs
This section discusses how to:

• Call an API from an external business function.

• Call a Visual Basic program from JD Edwards EnterpriseOne software.

Calling an API from an External Business Function
 You can call APIs from external business functions. To call an API from an external business function, you must first
determine the function-calling convention of the .dll that you are going to use. It can be either cdecl or stdcall. The code
might change slightly depending on the calling convention. This information should be included in the documentation

7

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

for the .dll. If you do not know the calling convention of the .dll, you can execute the dumpbin command to determine
the calling convention. Execute this command from the MSDOS prompt window:

 dumpbin /EXPORTS ExternalDll.DLL.

Dumpbin displays information about the dll. If the output contains function names preceded by _ and followed by an @
sign with additional digits, the dll uses the stdcall calling convention; otherwise, it uses cdecl.

Stdcall Calling Convention
This example is standard code for Windows programs and is not specific to JD Edwards EnterpriseOne software:

ifdef JDENV_PC
HINSTANCE hLibrary = LoadLibrary(_TEXT(YOUR_LIBRARY.DLL)); // substitute the name#
 of the external dll
if(hLibrary)
{
// create a typedef for the function pointer based on the parameters and return#
 type of the function to be called. This information can be obtained
// from the header file of the external dll. The name of the function to be called#
 in the following code is StartInstallEngine. We create a typedef for
// a function pointer named PFNSTARTINSTALLENGINE. Its return type is BOOL. Its#
 parameters are HUSER, LPCTSTR, LPCTSTR, LPTSTR & LPTSTR.
// Substitute these with parameter and return types for the particular API.
typedef BOOL (*PFNSTARTINSTALLENGINE) (HUSER, LPCTSTR, LPCTSTR, LPTSTR, LPTSTR);
// Now create a variable for the function pointer of the type you just created.#
 Then make call to GetProcAddress function with the first
// parameter as the handle to the library you just loaded. The second parameter#
 should be the name of the function you want to call prepended
// with an _, and appended with an @ followed by the total number of bytes for the#
 parameters. In this example, the total number of bytes in the
// parameters for StartInstallEngine is 20 (4 bytes for each parameter). The Get#
ProcAddress API will return a pointer to the function that you need to
// call.
PFNSTARTINSTALLENGINE lpfnStartInstallEngine = (PFNSTARTINSTALLENGINE) GetProc#
Address(hLibrary, _StartInstallEngine@20);
if (lpfnStartInstallEngine)
{
// Now call the API by passing in the requisite parameters.
lpfnStartInstallEngine(hUser, szObjectName, szVersionName, pszObjectText, szObject#
Type);
}
#endif

Cdecl Calling Convention
The process for using the cdecl calling convention is similar to the process for using the std calling convention. They
differ principally in the second parameter for GetProcAddress . Note the comments that precede that call.

ifdef JDENV_PC
HINSTANCE hLibrary = LoadLibrary(_TEXT(YOUR_LIBRARY.DLL)); // substitute the name#
 of the external dll
if(hLibrary)
{
// create a typedef for the function pointer based on the parameters and return#
 type of the function to be called. This information can be obtained
// from the header file of the external dll. The name of the function to be called#
 in the following code is StartInstallEngine. We create a typedef for
// a function pointer named PFNSTARTINSTALLENGINE. Its return type is BOOL. Its#

8

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

 parameters are HUSER, LPCTSTR, LPCTSTR, LPTSTR & LPTSTR.
// Substitute these with parameter and return types for the particular API.
typedef BOOL (*PFNSTARTINSTALLENGINE) (HUSER, LPCTSTR, LPCTSTR, LPTSTR, LPTSTR);
// Now create a variable for the function pointer of the type you just created.#
 Then make call to GetProcAddress function with the first
// parameter as the handle to the library you just loaded. The second parameter#
 should be the name of the function you want to call. In this
// case it will be StartInstallEngine only. The GetProcAddress API will return a#
 pointer to the function that you need to call.
PFNSTARTINSTALLENGINE lpfnStartInstallEngine = (PFNSTARTINSTALLENGINE) GetProc#
Address(hLibrary, StartInstallEngine);
if (lpfnStartInstallEngine)
{
// Now call the API by passing in the requisite parameters.
lpfnStartInstallEngine(hUser, szObjectName, szVersionName, pszObjectText, szObject#
Type);
}
#endif

Note: These calls work only on a Windows client machine. LoadLibrary and GetProcAddress are Windows APIs. If
the business function is compiled on a server, the compile will fail.

Calling a Visual Basic Program from JD Edwards EnterpriseOne
Software
You can call a Visual Basic program from a JD Edwards EnterpriseOne business function and pass a parameter from the
Visual Basic program to the JD Edwards EnterpriseOne business function using this process:

1. Write the Visual Basic program into a Visual Basic .dll that exports the function name of the program and
returns a parameter to the JD Edwards EnterpriseOne business function.

2. Write a business function that loads the Visual Basic .dll using the win32 function LoadLibrary.
3. In the business function that you create, call the win32 function GetProcAddress to get the Visual Basic function

and call it.

Using the SAX Parser
This section provides an overview of the SAX parser and of examples for its use.

Understanding the SAX Parser
 The SAX parser is one of two main parsers used for XML data. It is an events-based parser, as opposed to the other
XML parser, DOM, which is a tree-based parser. The Xerces product, from the Apache organization, provides both XML
parsers. The Xerces code is written in C++. To make XML parsing available to business functions, a C-API interface,
XercesWrapper, exists to provide access to both parsers. The design of the parsers is quite different, and that provides
advantages for each parser, depending on the intended usage.

The DOM parser reads the XML file and builds an internal model (DOM document tree) of that file in memory. This has
the advantage of enabling you to traverse the tree, retrieve parent-child relationships, and revisit the same data multiple
times. The disadvantages include high memory requirements for large XML files. Also, the entire XML file must be read

9

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

into memory before any of the data in the DOM document tree can begin to be processed. The DOM parser can also be
used to programmatically build a DOM document tree in memory, and then write that tree to a file, in XML format.

The SAX parser reads an XML file and as each item is read, the parser passes that piece of data to callback functions.
This methodology has the advantage of enabling fast processing with minimal memory usage. Also, the parsing can
be stopped after a specific item has been found. The disadvantages include that the current state of parsing must be
maintained by the callback functions, and previous data items can not be revisited without rereading the XML file.
Finally, the SAX parser is a read-only parser.

This is a typical sequence used for parsing an XML data file using the DOM parser:

1. Initialize the XercesWrapper, which in turn, initializes the Xerces code.
2. Initialize the DOM parser.
3. Parse the XML data file.
4. Retrieve a pointer to the root element of the DOM document tree.
5. Retrieve additional elements and data, by traversing the DOM document tree.

The callback functions are called whenever the specified events in the XML file are parsed.
6. Free all DOM elements that have been retrieved.
7. Free the DOM document tree.
8. Free the DOM parser.
9. Terminate the XercesWrapper interface, which in turn, closes the Xerces code.

This is a typical sequence used for parsing an XML data file, using the SAX parser:

1. Initialize the XercesWrapper, which in turn, initializes the Xerces code.
2. Initialize the SAX parser.
3. Set up various callback functions for specific parsing events.
4. Parse the XML data file.
5. Call the callback functions as each event in the XML file is parsed.
6. Within the callback functions, process the retrieved data and maintain a context for coordination between

callback functions.
7. Free the SAX parser.
8. Terminate the XercesWrapper interface, which in turn, closes the Xerces code.

Examples of SAX Parser Usage
Many of the initialization, parsing, and termination functions are the same for both SAX and DOM parsers. The major
difference is that the DOM parser returns a document handle which is then used with the traversing and data retrieval
functions. Those functions are not used with SAX. SAX does all of the data processing within the user-defined callback
functions. The callback functions are not used with DOM.

The processing of SAX-parsed data items occurs within the callback functions. Typically, each callback function
maintains a context. The context can be passed to all callback functions and can be implemented as a data structure.
The context, plus the other data passed to the callback functions, enables each data item to be processed appropriately.

Example Context Data Structure
This is a sample function which uses the SAX parser:

typedef struct tagParserCallbackValues {
 FILE *fp;
 JCHAR *szIndentString;
 int nIndentLevel;
} ZCALLBACK_VALUES, *PCALLBACK_VALUES;

10

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

Example Main Function
This is a sample context data structure:

/* SAX callbacks - display callback events into file */
int testcase_read_15(JCHAR *m_infile, JCHAR *m_outfile)
{
 XRCS_Status XRCSStatus;
 XRCS_hParser hParser;
 ZCALLBACK_VALUES zCbValues;
 PCALLBACK_VALUES pCbValues = &zCbValues;

 /* initialize context structure */
 pCbValues->fp = NULL;
 pCbValues->szIndentString = _J(" ");
 pCbValues->nIndentLevel = 0;

 /* open display file */
 pCbValues->fp = jdeFopen(m_outfile, _J("w"));

 if (pCbValues->fp != NULL)
 {
 XRCSStatus = XRCS_initEngine();
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_getParserByType(&hParser, XRCS_SAX_PARSER_TYPE);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_START_DOC,
 (void *) cb_startDoc_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 /* set up callbacks for the SAX parser */
 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_END_DOC,
 (void *) cb_endDoc_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_START_ELEM,
 (void *) cb_startElement_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_END_ELEM,
 (void *) cb_endElement_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_CHARACTERS,
 (void *) cb_characters_Display, (void *) pCbValues);

11

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser,
 XRCS_CALLBACK_IGNORABLE_WHITESPACE,
 (void *) cb_ignorableWhitespace_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_FATAL_ERROR,
 (void *) cb_fatalError_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_ERROR,
 (void *) cb_error_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_WARNING,
 (void *) cb_warning_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 /* now do the actual parsing */
 XRCSStatus = XRCS_parseXMLFile(hParser,m_infile, NULL);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_freeParser(hParser);
 XRCSStatus = XRCS_terminateEngine();

 /* close display file */
 jdeFclose(pCbValues->fp);
 }
 else
 {
 /* could not open display file */
 return -1; }

 return 0;
}

Example Callback Functions
These are sample callback functions:

/* callbacks for display of SAX parser events */
XRCS_CallbackStatus cb_startDoc_Display(void *pContext)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("START DOCUMENT"));

12

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_endDoc_Display(void *pContext)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("END DOCUMENT"));
 indentNewLine(pCbValues);
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_startElement_Display(void *pContext,
 const JCHAR *szUri,
 const JCHAR *szLocalname,
 const JCHAR *szQname,
 unsigned int nNumAttrs,
 const XRCS_ATTR_INFO *pAttributes)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;
 unsigned int nAttrNum;
 const XRCS_ATTR_INFO * thisAttr = NULL;

 pCbValues->nIndentLevel++;
 /* display element name */
 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("ELEMENT: "));
 if (jdeStrlen(szLocalname) != 0)
 {
 jdeFprintf(pCbValues->fp, _J("<%ls"), szLocalname);
 }
 else
 {
 jdeFprintf(pCbValues->fp, _J("<%ls"), szQname);
 }
 /* display attributes */
 if (nNumAttrs > 0U)
 {
 for (nAttrNum = 0U; nAttrNum < nNumAttrs; nAttrNum++)
 {
 thisAttr = &pAttributes[nAttrNum];
 /* display attrribute name */
 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J(" ATTR: "));
 if (jdeStrlen(thisAttr->szAttrLocalname) != 0)
 {
 jdeFprintf(pCbValues->fp, _J("%ls"),
 thisAttr->szAttrLocalname);
 }
 else
 {
 jdeFprintf(pCbValues->fp, _J("%ls"), thisAttr->szAttrQname);
 }
 /* display attribute value */
 jdeFprintf(pCbValues->fp, _J(" \""));
 jdeFprintf(pCbValues->fp, _J("%ls"), thisAttr->szAttrValue);
 jdeFprintf(pCbValues->fp, _J("\""));
 }
 indentNewLine(pCbValues);

13

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

 }
 /* display close of element name */
 jdeFprintf(pCbValues->fp, _J(">"));
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_endElement_Display_Terminate(void *pContext,
 const JCHAR *szUri,
 const JCHAR *szLocalname,
 const JCHAR *szQname)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("END_ELM: "));
 if (jdeStrlen(szLocalname) != 0)
 {
 jdeFprintf(pCbValues->fp, _J("</%ls>"), szLocalname);
 }
 else
 {
 jdeFprintf(pCbValues->fp, _J("</%ls>"), szQname);
 }
 pCbValues->nIndentLevel--;
 return(XRCS_CB_TERMINATE);
}

XRCS_CallbackStatus cb_endElement_Display(void *pContext,
 const JCHAR *szUri,
 const JCHAR *szLocalname,
 const JCHAR *szQname)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("END_ELM: "));
 if (jdeStrlen(szLocalname) != 0)
 {
 jdeFprintf(pCbValues->fp, _J("</%ls>"), szLocalname);
 }
 else
 {
 jdeFprintf(pCbValues->fp, _J("</%ls>"), szQname);
 }
 pCbValues->nIndentLevel--;
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_warning_Display(void *pContext,
 XRCS_CallbackType eCallbackType,
 int nLineNum,
 int nColNum,
 const JCHAR *szPublicId,
 const JCHAR *szSystemId,
 const JCHAR *szMessage)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("Warning: "));

14

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

 jdeFprintf(pCbValues->fp, _J(" %ls (%ls) - %ls found at Column %d
 Line %d"), szSystemId, szPublicId, szMessage, nColNum, nLineNum);
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_error_Display(void *pContext,
 XRCS_CallbackType eCallbackType,
 int nLineNum,
 int nColNum,
 const JCHAR *szPublicId,
 const JCHAR *szSystemId,
 const JCHAR *szMessage)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("Error: "));
 jdeFprintf(pCbValues->fp, _J(" %ls (%ls) - %ls found at Column %d
 Line %d"), szSystemId, szPublicId, szMessage, nColNum, nLineNum);
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_fatalError_Display(void *pContext,
 XRCS_CallbackType eCallbackType,
 int nLineNum,
 int nColNum,
 const JCHAR *szPublicId,
 const JCHAR *szSystemId,
 const JCHAR *szMessage)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("Fatal Error: "));
 jdeFprintf(pCbValues->fp, _J(" %ls (%ls) - %ls found at Column %d Line %d"),
 szSystemId, szPublicId, szMessage, nColNum, nLineNum);
 return(XRCS_CB_TERMINATE);
}

XRCS_CallbackStatus cb_characters_Display(void *pContext,
 const JCHAR *szText)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;
 int nTextLen;
 int nTextRemaining;
 int nTextPieceLen;
 int nTextStartPosition;

 nTextLen = jdeStrlen(szText);
 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("CHARS: "));
 if (hasPrintingChars(szText, nTextLen) == TRUE)
 {
 /* initial quote */
 jdeFprintf(pCbValues->fp, _J("\""), szText);
 /* actual text, output in blocks of 10000 characters */
 /* jdeFprintf will not work with very large strings */
 nTextRemaining = nTextLen;
 nTextStartPosition = 0;
 while (nTextRemaining > 0)

15

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

 {
 if (nTextRemaining > 10000)
 {
 nTextPieceLen = 10000;
 }
 else
 {
 nTextPieceLen = nTextRemaining;
 }
 jdeFprintf(pCbValues->fp, _J("%.*ls"), nTextPieceLen,
 (JCHAR *) &(szText[nTextStartPosition]));
 nTextRemaining -= nTextPieceLen;
 nTextStartPosition += nTextPieceLen;
 }
 /* trailing quote */
 jdeFprintf(pCbValues->fp, _J("\""), szText);
 }
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_ignorableWhitespace_Display(void *pContext,
 const JCHAR *szText)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;
 int nTextLen;

 nTextLen = jdeStrlen(szText);
 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("IGNORABLE WHITESPACE: "));
 if (hasPrintingChars(szText, nTextLen) == TRUE)
 {
 jdeFprintf(pCbValues->fp, _J("\"%ls\""), szText);
 }
 return(XRCS_CB_CONTINUE);
}

void indentNewLine(PCALLBACK_VALUES pCbValues)
{
 int nIndent = 0;

 jdeFprintf(pCbValues->fp,
 _J("\n"));

 while (nIndent < pCbValues->nIndentLevel)
 {
 jdeFprintf(pCbValues->fp, _J("%ls"), pCbValues->szIndentString);
 nIndent++;
 }
}

BOOL hasPrintingChars(const JCHAR *szText, int nTextLen)
{
 BOOL bHasPrinting = FALSE;
 int nText = 0;

 /* true if contains any printing characters */
 /* false if all blanks or control characters */
 while (nText < nTextLen)
 {
 if (szText[nText] > _J(' '))

16

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

 {
 bHasPrinting = TRUE;
 break;
 }
 nText++;
 }
 return(bHasPrinting);
}

Example of a SAX Parsing Sequence
This is an example of the sequence of callback functions called, for an example string of XML data. Before parsing,
these callback functions were set up:

• cb_startAllElements for start-of-element event type.

• cb_endAllElements for end-of-element event type.

• cb_startElement1 for start-of-element, with optional name specified as "elapsedTime."

• cb_endElement1 for end-of-element, with optional name specified as "elapsedTime."

• cb_chars for characters event type.

• cb_allCharacters for characters, with optional setting for characters after elements.

• cb_fatalError for fatal-error event type.

The example XML string to be parsed is:

<main>startMain<elapsedTime>123</elapsedTime>endMain</main>

This callback sequence results from parsing this XML string:

• cb_startAllElements for main.

• cb_chars for startMain.

• cb_allCharacters for startMain.

• cb_startAllElements for elapsedTime.

• cb_startElement1 for elapsedTime.

• cb_chars for 123.

• cb_allCharacters for 123.

• cb_endAllElements for elapsedTime.

• cb_endElement1 for elapsedTime.

• cb_allCharacters for endMain.

• cb_endAllElements for main.

• cb_fatalError is not called while parsing this example XML string.

Working with JDECACHE
This section provides overviews of caching, JDECACHE standards, and the JDECACHE API set, and discusses how to:

• Call JDECACHE APIs.

17

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

• Set up indices.

• Initialize the cache.

• Use an index to access the cache.

• Use the jdeCacheInit/jdeCacheTerminate rule.

• Use the same cache in multiple business functions or forms.

Understanding Caching
Caching is a process that stores a local copy of frequently accessed content of remote objects. Caching can improve
performance. JD Edwards EnterpriseOne software caches information in these ways:

• The system automatically caches some tables, such as those associated with constants, when it reads them
from the database at startup.

It caches these tables to a user's workstation or to a server for faster data access and retrieval.

• Individual applications can be enabled to use cache.

JDECACHE APIs enable the server or workstation memory to be used as temporary storage.

JDECACHE is a component of JDEKRNL that can hold any type of indexed data that the application needs to store in
memory, regardless of the platform on which the application is running; therefore, an entire table can be read from a
database and stored in memory. No limitations exist regarding the type of data, size of data, or number of data caches
that an application can have, other than the limitations of the computer on which it is running. Both fixed-length and
variable-length records are supported. To use JDECACHE on any supported platform, you need to know only a simple
set of API calls.

Data handled by JDECACHE is in RAM. Therefore, ensure that you really need to use JDECACHE. If you use JDECACHE,
design the records and indices carefully. Minimize the number of records that you store in JDECACHE because JD
Edwards EnterpriseOne software and various other applications need this memory as well.

JDECACHE supports multiple cursors, multiple indexes, and partial keys processing. JDECACHE is flexible in terms
of positioning within the cache for data manipulation, which improves performance by reducing searching within the
cache.

The JDB environment creates, manages, and destroys the JDECACHE environment. Each cache that you use within the
JDECACHE environment is associated with a JDB user. Therefore, you must call JDB_InitBhvr API before you call any of
the JDECACHE APIs.

When to Use JDECACHE
Here is a scenario that highlights when an application might use the JDECACHE APIs.

You use workfiles when an application must store records that a user enters in a detail area until OK processing
is activated upon the Button Clicked event. On OK processing, all records must be simultaneously updated to the
database. This is similar to transaction processing. For example, in the detail area of purchase order detail, if a user
enters 30 lines of information and then decides to cancel the transaction, all records in the workfile are deleted and
nothing is written to the database. As the user exits each detail row, editing takes place for each field, and then that
record is written to the workfile.

If you implement this situation without using workfiles, irreversible updates to database tables occur when the user exits
each row. Using workfiles enables you to limit updates to tables so that they only occur on OK button processing, and
they are included in a transaction boundary. The workfile defines a data boundary for the grid for processing purposes.

18

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

This is useful when multiple applications or processes (such as business functions) must access the data in the workfile
for updates and calculations.

Using cache might increase performance in some cases. You can use JDECACHE to store in memory the records that
the user enters in one purchase order. The number of records that you store depends on the cache buffer size for each
record, the local memory size, the location in which the business function that you use runs (for example, server or
workstation), and so on. Typically, you should not store more than 1000 records. For example, do not cache the entire
Address Book table in memory.

Performance Considerations
Follow these guidelines to get the best JDECACHE performance:

• Cache as few records as possible.

• The fewer columns (segments) that you use, the faster the search, insert, and delete actions occur.
In some cases, the system might have to compare each column before it determines whether to go further in
the cache.

• The fewer records in the cache, the faster all operations proceed.

Understanding the JDECACHE API Set
You use a set of public APIs to interact with JDECACHE. You must understand how the JDECACHE APIs are organized to
implement them effectively.

JDECACHE Management APIs
You can manage cache using the JDECACHE management APIs for these purposes:

• Setting up the cache.

• Clearing the cache.

• Terminating the cache.

 Use the jdeCacheGetNumRecords and jdeCacheGetNumCursors APIs to retrieve cache statistics. They are only
passed the HCACHE handle. All other JDECACHE management APIs should always be passed these handles:

• HUSER

• HCACHE

These two handles are essential for cache identification and cache management.

The set of JDECACHE management APIs consist of these APIs:

• jdeCacheInit

• jdeCacheInitEx

• jdeCacheInitMultipleIndex

• jdeCacheInitMultipleIndexEx

• jdeCacheInitUser

• jdeCacheInitMultipleIndexUser

• jdeCacheGetNumRecords

• jdeCacheGetNumCursors

19

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

• jdeCacheClear

• jdeCacheTerminate

• jdeCacheTerminateAll

 The jdeCacheInit and jdeCacheInitMultipleIndex APIs initialize the cache uniquely per user. Therefore, if a
user logs in to the software and then runs two sessions of the same application simultaneously, the two application
sessions will share the same cache. Consequently, if the first application deletes a record from the cache, the second
application cannot access the record. Conversely, if two users log in to the software and then run the same application
simultaneously, the two application sessions have different caches. Consequently, if the first application deletes a record
from its cache, the second application will still be able to access the record in its own cache. The jdeCacheInitEx and
jdeCacheInitMultipleIndexEx APIs function exactly the same, but they additionally enable you to define the maximum
number of cursors that can be opened by the cache.

 The jdeCacheInitUser and jdeCacheInitMultipleIndexUser APIs initialize the cache uniquely per application.
Therefore, if a user logs in to the software and then runs two sessions of the same application simultaneously, the two
application sessions will have different caches. Consequently, if the first application deletes a record from its cache, the
second application can still access the record in its own cache.

JDECACHE Manipulation APIs
You can use the JDECACHE manipulation APIs for retrieving and manipulating the data in the cache. Each API
implements a cursor that acts as pointer to a record that is currently being manipulated. This cursor is essential for
navigation within the cache. JDECACHE manipulation APIs should be passed handles of these types:

• HCACHE

Identifies the cache that is being worked.

• HJDECURSOR

Identifies the position in the cache that is being worked.

The set of JDECACHE manipulation APIs contain these APIs:

• jdeCacheOpenCursor

• jdeCacheResetCursor

• jdeCacheAdd

• jdeCacheFetch

• jdeCacheFetchPosition

• jdeCacheUpdate

• jdeCacheDelete

• jdeCacheDeleteAll

• jdeCacheCloseCursor

• jdeCacheFetchPositionByRef

• jdeCacheSetIndex

• jdeCacheGetIndex

20

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

Understanding JDECACHE Standards
It is recommended that you apply several standards when using JDECACHE. This section discusses the standards for
business functions and programming.

The cache business function name should follow the standard naming convention for business functions.

Cache Business Function Source Description
 These standards apply to source descriptions for cache business functions:

• The cache business function description must follow the business function description standards.

• The first word must be the noun, Cache.

• The second word must be the verb, Process.

• For an individual cache function, the words following Process should describe the cache. For a common cache
function, the words following Process should describe the group to which the individual cache functions belong.

These standards apply to cache business function descriptions:

• If the source file contains an individual function, the function name must match the source name.

• If the source file contains a group of cache functions, the individual function names must follow the same
standards as the Cache Business Function Source Description standards.

Cache Programming Standards
 A variety of cache programming standards apply:

• General standards.

• Cache termination instead of clearing.

• Cache name.

• Cache data structure definition.

• Data structure standard data items.

• Cache action code standards.

• Group cache business function header file.

• Individual cache business function header file.

Prerequisites
Before you can use JDECACHE, you must:

• Define an index

The index specifies to the cache the fields in a record that are used to uniquely identify a cache record.

• Initialize a cache

Each group of data that an index references requires a separate cache.

21

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

Calling JDECACHE APIs
 JDECHACHE APIs must be called in a certain order. This list defines the order in which the JDECACHE-related APIs
must be called:

1. Call JDB_InitBhvr.
2. Create index or indices.
3. Call jdeCacheInit , jdeCacheInitEx , jdeCacheInitMultipleIndex , or jdeCacheInitMultipleIndexEx.
4. Call jdeCacheAdd.
5. Call jdeCacheOpenCursor.
6. Call JDECACHE Operations.

At JDECACHE Operations, the actual JDECACHE APIs can be called in any order. The operations in this list of JDECACHE
operations can occur in any order:

• jdeCacheFetch

• jdeCacheOpenCursor (the second cursor)

• jdeCacheFetchPosition

• jdeCacheUpdate

• jdeCacheDelete

• jdeCacheDeleteAll

• jdeCacheResetCursor

• jdeCacheCloseCursor (if the second cursor is opened)

• jdeCacheCloseCursor

• jdeCacheTerminate

• JDB_FreeBhvr

Setting Up Indexes
 To store or retrieve any data in JDECACHE, you must set up at least one index that consists of at least one column.
The index is limited to a maximum of 25 columns (which are called segments) in the index structure. Use the data type
provided to tell the cache manager what the index looks like. You must provide the number of columns (segments) in
the index and the offset and size of each column in the data structure. To maximize performance, minimize the number
of segments.

This code is the definition of the structure that holds index information:

#define JDECM_MAX_UM_SEGMENTS 25
struct _JDECMKeySegment
{
 short int nOffset; /* Offset from beginning of structure in bytes */
 short int nSize; /* Size of data item in bytes */
 int idDataType; /* EVDT_MATH_NUMERIC or EVDT_STRING*/
} JDECMKEYSEGMENT;
struct _JDECMKeyStruct
{
 short int nNumSegments;
 JDECMKEYSEGMENT CacheKey[JDECM_MAX_NUM_SEGMENTS];

22

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

} JDECMINDEXSTRUCT;

Observe these rules when you create indices in JDECACHE:

• Always declare the index structure as an array that holds one element for single indexes.

Declare the index structure as an array that holds more than one element for multiple indexes. You can create
an unlimited number of indexes.

• Always use memset() for the index structure.

When you use memset() for multiple indexes, multiply the size of the index structure by the total number of
indexes.

• Always assign as elements the number of segments that correspond to the number of columns that you have in
the CacheKey array.

• Always use offsetof () to indicate the offset of a column in the structure that contains the columns.

This example illustrates a single index with multiple fields:

/* Example of single index with multiple fields.*/
JDECMINDEXSTRUCT Index[1] = {0};
memset(&dsCache,0x00,sizeof(dsCache));
/* Initialize cache. */
Index->nNumSegments=5;
Index->CacheKey[0].nOffset=offsetof(DSCACHE,szEdiUserId);
Index->CacheKey[0].nSize=DIM(dsCache.szEdiUserId);
Index->CacheKey[0].idDataType=EVDT_STRING;
Index->CacheKey[1].nOffset=offsetof(DSCACHE,szEdiBatchNumber);
Index->CacheKey[1].nSize=DIM(dsCache.szEdiBatchNumber);
Index->CacheKey[1].idDataType=EVDT_STRING;
Index->CacheKey[2].nOffset=offsetof(DSCACHE,szEdiTransactNumber);
Index->CacheKey[2].nSize=DIM(dsCache.szEdiTransactNumber);
Index->CacheKey[2].idDataType=EVDT_STRING;
Index->CacheKey[3].nOffset=offsetof(DSCACHE,mnEdiLineNumber);
Index->CacheKey[3].nSize=sizeof(dsCache.mnEdiLineNumber);
Index->CacheKey[3].idDataType=EVDT_MATH_NUMERIC;
Index->CacheKey[4].nOffset=offsetof(DSCACHE.cErrorCode);
Index->CacheKey[4].nSize = 1;
Index->CacheKey[4].idDataType=EVDT_CHAR

The flag, idDataType, indicates the data type of the particular key.

This example illustrates a cache with multiple indices and multiple fields:

Memset(jdecmIndex,0x00,sizeof(JDECMINDEXSTRUCT)*2);
jdecmIndex[0].nKeyID=1;
jdecmIndex[0].nNumSegments=6;
jdecmIndex[0].CacheKey[0].nOffset=offsetof(I1000042,szCostCenter);
jdecmIndex[0].CacheKey[0].nSize=DIM(dsI1000042.szCostCenter);
jdecmIndex[0].CacheKey[0].idDataType=EVDT_STRING;
jdecmIndex[0].CacheKey[1].nOffset=offsetof(I1000042,szObjectAccount);
jdecmIndex[0].CacheKey[1].nSize=DIM(dsI1000042.szObjectAccount);
jdecmIndex[0].CacheKey[1].idDataType=EVDT_STRING;
jdecmIndex[0].CacheKey[2].nOffset=offsetof(I1000042,szSubsidiary);
jdecmIndex[0].CacheKey[2].nSize=DIM(dsI1000042.szSubsidiary);
jdecmIndex[0].CacheKey[2].idDataType=EVDT_STRING;
jdecmIndex[0].CacheKey[3].nOffset=offsetof(I1000042,szSubledger);
jdecmIndex[0].CacheKey[3].nSize=DIM(dsI1000042.szSubledger);

23

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

jdecmIndex[0].CacheKey[3].idDataType=EVDT_STRING;
jdecmIndex[0].CacheKey[4].nOffset=offsetof(I1000042,szSubledgerType);
jdecmIndex[0].CacheKey[4].nSize=1;
jdecmIndex[0].CacheKey[4].idDataType=EVDT_STRING;
jdecmIndex[0].CacheKey[5].nOffset=offsetof(I1000042,szCurrencyCodeFrom);
jdecmIndex[0].CacheKey[5].nSize=DIM(dsI1000042.szCurrencyCodeFrom);
jdecmIndex[0].CacheKey[5].idDataType=EVDT_STRING;
************************ KEY 2 *******************************
jdecmIndex[1].nKeyID=2;
jdecmIndex[1].nNumSegments=7;
jdecmIndex[1].CacheKey[0].nOffset=offsetof(I1000042,szEliminationGroup);
jdecmIndex[1].CacheKey[0].nSize=DIM(dsI1000042.szEliminationGroup);
jdecmIndex[1].CacheKey[0].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[1].nOffset=offsetof(I1000042,szCostCenter);
jdecmIndex[1].CacheKey[1].nSize=DIM(dsI1000042.szCostCenter);
jdecmIndex[1].CacheKey[1].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[2].nOffset=offsetof(I1000042,szObjectAccout);
jdecmIndex[1].CacheKey[2].nSize=DIM(dsI1000042.szObjectAccount);
jdecmIndex[0].CacheKey[2].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[3].nOffset=offsetof(I1000042,szSubsidiary);
jdecmIndex[1].CacheKey[3].nSize=DIM(dsI1000042.szSubsidiary);
jdecmIndex[1].CacheKey[3].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[4].nOffset=offsetof(I1000042,szSubledger);
jdecmIndex[1].CacheKey[4].nSize=DIM(dsI1000042.szSubledger);
jdecmIndex[1].CacheKey[4].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[5].nOffset=offsetof(I1000042,szSubledgerType);
jdecmIndex[1].CacheKey[5].nSize=1;
jdecmIndex[1].CacheKey[5].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[6].nOffset=offsetof(I1000042,szCurrencyCodeFrom);
jdecmIndex[0].CacheKey[6].nSize=DIM(dsI1000042.szCurrencyCodeFrom);
jdecmIndex[0].CacheKey[6].idDataType=EVDT_STRING;

Initializing the Cache
After you set up the index or indices, call jdeCacheInit , jdeCacheInitEx , jdeCacheInitMultipleIndex , or
jdeCacheInitMultipleIndexEx . to initialize (create) the cache. Pass a unique cache name so that JDECACHE can
identify the cache. Pass the index to this API so that the JDECACHE knows how to reference the data that will be stored
in the cache. Because each cache must be associated with a user, you must also pass the user handle obtained from the
call to JDB_InitUser . This API returns an HCACHE handle to the cache that JDECACHE creates. This handle appears in
every subsequent JDECACHE API to identify the cache.

The keys in the index must be identical for every jdeCacheInit , jdeCacheInitEx , jdeCacheInitMultipleIndex , and
jdeCacheInitMultipleIndexEx call for that cache until it is terminated. The keys in the index must correspond in
number, order, and type for that index each time that it is used.

After the cache has been initialized successfully, JDECACHE operations can take place using the JDECACHE APIs.
The cache handle obtained from jdeCacheInit or jdeCacheInitEx must be passed for every JDECACHE operation.
JDECACHE makes an internal Index Definition Structure that accesses the cache when it is populated.

Example: Index Definition Structure
In this scenario, assume that each record that the cache stores has this structure:

int nlnt1
JCHAR cLetter1
JCHAR cLetter2

24

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

JCHAR cLetter3
JCHAR szArray(5)

The next step is to determine which values to use to index each record in the cache uniquely. In this example, assume
that these values are required:

• nInt1

• cLetter1

• cLetter3

Pass that information to jdeCacheInit or jdeCacheInitEx , and JDECACHE creates this Index Definition Structure for
internal use. This table lists Index Definition Structure is for STRUCT letters:

Index Key No. Index Key Offset Index Key Offset
INTEGER

Index Key #1

0

INTEGER

Index Key #2

4

JCHAR

Index Key #3

6

JCHAR

Using an Index to Access the Cache
When you use an index to access the cache, the keys in the index that are sent to the API must correspond to the keys
of the index used in the call to jdeCacheInit or jdeCacheInitEx for that cache in number, order, offset positions, and
type. Therefore, if a field that was used in the index passed to jdeCacheInit or jdeCacheInitEx offsets position 99, it
must also offset position 99 in the index structure that passed to JDECACHE access API.

You should use the same index structure that was used for the call to jdeCacheInit or jdeCacheInitEx whenever you
call an API that requires an index structure.

The next example illustrates why the index offsets must be specified for the jdeCacheInit or jdeCacheInitEx and how
they are used when a record is to be retrieved from the cache. It describes how the passed key is used in conjunction
with the JDECACHE internal index definition structure to access cache records.

Example: JDECACHE Internal Index Definition Structure
In this example, assume that the user is looking for a record that matches these index key values:

• 1

• c

• i

JDECACHE accesses the values that you pass in the structure at the byte offsets that were defined in the call to
jdeCacheInit or jdeCacheInitEx .

JDECACHE compares the values 1, c, and i that it retrieves from the passed structure to the corresponding values in
each of the cache records at the corresponding byte offset. The cache records are stored as the structures that were

25

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

inserted into the cache by jdeCacheAdd, which is the same structure as the one you pass first. The structure that
matches the passed key is the second structure to which HCUR1 points.

You should never create a smaller structure that contains just the key to access the cache. Unlike most indexing
systems, JDECACHE does not store a cache record's index separately from the actual cache record. This is because
JDECACHE deals with memory-resident data and is designed to be as memory-conservative as possible. Therefore,
JDECACHE does not waste memory by storing an extra structure for the sole purpose of indexing. Instead, a JDECACHE
record has a dual purpose of index storage and data storage. This means that, when you retrieve a record from
JDECACHE using a key, the key should be contained in a structure that is of the same type as the structure that is used
to store the record in the cache.

Do not use any key structure to access the cache other than the one for which offsets that were defined in the index
passed to jdeCacheInit or jdeCacheInitEx . The structure that contains the keys when accessing a cache should be
the same structure that is used to store the cache records.

If jdeCacheInit or jdeCacheInitEx is called twice with the same cache name and the same user handle without
an intermediate call to jdeCacheTerminate , the cache that was initialized using the first jdeCacheInit or
jdeCacheInitEx will be retained. Always call jdeCacheInit or jdeCacheInitEx with the same index each time that you
call it with the same cache name. If you call jdeCacheInit or jdeCacheInitEx for the same cache with a different index,
none of the JDECACHE APIs will work.

The key for searches must always use the same structure type that stores cache records.

Using the jdeCacheInit/jdeCacheTerminate Rule
For every jdeCacheInit , jdeCacheInitEx , jdeCacheInitMultipleIndex , or jdeCacheInitMultipleIndexEx , a
corresponding jdeCacheTerminate must exist, except instances in which the same cache is used across business
functions or forms. In this case, all unterminated jdeCacheInit , jdeCacheInitEx , jdeCacheInitMultipleIndex , or
jdeCacheInitMultipleIndexEx calls must be terminated with a jdeCacheTerminateAll.

A jdeCacheTerminate call terminates the most recent corresponding jdeCacheInit or jdeCacheInitEx . This
means that the same cache can be used in nested business functions. In each function, perform a jdeCacheInit or
jdeCacheInitEx or jdeCacheInitEx that passes the cache name. Before exiting that function, call jdeCacheTerminate
. This does not destroy the cache. Instead, it destroys the association between the cache and the passed HCACHE
handle. The cache is completely destroyed from memory only when the number of jdeCacheTerminate calls matches
the number of jdeCacheInit or jdeCacheInitEx calls. In contrast, one call to jdeCacheTerminateAll destroys the
cache from memory regardless of the number of jdeCacheInit , jdeCacheInitEx , jdeCacheInitMultipleIndex , or
jdeCacheInitMultipleIndexEx calls or jdeCacheTerminate calls.

Using the Same Cache in Multiple Business Functions or Forms
If the same cache is required for two or more business functions or forms, call jdeCacheInit or jdeCacheInitEx
in the first business function or form, and add data to it. After exiting that business function or form, do not call
jdeCacheTerminate because this removes the cache from memory. Instead, in the subsequent business functions
or forms, call jdeCacheInit or jdeCacheInitEx again with the same index and cache name as in the initial call to
jdeCacheInit or jdeCacheInitEx. Because the cache was not terminated the first time, JDECACHE looks for a cache
with the same name and assigns that to you. Because the cache already has records in it, you do not need to refresh it.
You can proceed with normal cache operations on that cache.

26

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

If a cache is initialized multiple times across business functions or forms, use jdeCacheTerminateAll to terminate all
instances of the cache that were initialized. The name of the cache that corresponds to the HCACHE passed to this API
will be used to determine the cache to destroy. Use this API when you do not want to call jdeCacheTerminate for the
number of times that jdeCacheInit or jdeCacheInitEx was called. If you move from one form or business function to
another when you initialize the same cache across business functions or forms, you will lose the HCACHE because it is
a local variable. To share the same cache across business functions or forms, do not call jdeCacheTerminate when you
exit a form or business function if you intend to use the same cache in another form or business function.

Working with JDECACHE Cursors
JDECACHE Cursors (JDECACHE Cursor Manager) is a component of JDECACHE that implements a JDECACHE cursor
for record retrieval and update. A JDECACHE cursor is a pointer to a record in a user's cache. The record after the record
in which the cursor is currently pointing is the next record that will be retrieved from the cache upon calling a cache
fetch API.

This section discusses how to:

• Open a JDECACHE cursor.

• Use the JDECACHE data set.

• Update records.

• Delete records.

• Use the jdeCacheFetchPosition API.

• Use the jdeCacheFetchPostionByRef API.

• Reset the cursor.

• Close the cursor.

• Use JDECACHE multiple cursor support.

• Use JDECACHE partial keys.

Opening a JDECACHE Cursor
 Manipulating the JDECACHE data is cursor-dependent. Before the JDECACHE data manipulation APIs will work, a
cursor must be opened. A cursor must be opened to obtain a cursor handle of the type HJDECURSOR, which must,
in turn, be passed to all of the JDECACHE data manipulation APIs (with the exception of the jdeCacheAdd API).
HJDECURSOR is the data type for the cursor handle. It must be passed to every API for JDECACHE data manipulation
except jdeCacheAdd.

To open the cursor, call the jdeCacheOpenCursor API. A call to this API also makes possible the calls to all the data
manipulation APIs (except for jdeCacheAdd). If you do not open the cursor, these APIs will not work. With this call, the
cursor opens a JDECACHE data set, within which it will work. This API opens the data set, but does not fetch any data.
This means that the cache must be initialized by a call to jdeCacheInit or jdeCacheInitEx and populated by a call to
jdeCacheAdd before a cursor can be opened.

You can obtain multiple cursors to a cache by calling jdeCacheOpenCursor and passing different HJDECURSOR
handles. In a multiple cursor environment, all the cursors are independent of each other.

When you are finished working with the cursor, you must deactivate it or close it by calling the jdeCacheCloseCursor
API, and passing an HJDECURSOR handle that corresponds to the HJDECURSOR handle that was passed to

27

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

the jdeCacheOpenCursor . When a cursor is closed, it cannot be used again until it is opened by a call to
jdeCacheOpenCursor.

Using the JDECACHE Data Set
The JDECACHE data set includes all of the records from the current position of the cursor to the end of the set of
sequenced records. Thus, if a cursor is in the middle of the data set, none of the records in the cache prior to the
current position of the cursor is considered part of the data set. The JDECACHE data set consists of the cache records
sequenced in ascending order of the given index keys. This means that the order in which the records have been placed
in JDECACHE is not necessarily the order in which JDECACHE Cursors retrieves them. JDECACHE Cursors retrieves
records in a sequential ascending order of the index keys. A forward movement by the cursor reduces the size of the
data set during sequential retrievals. When the cursor advances past the last record in the data set, a failure is returned.

This example illustrates the creation of a JDECACHE cache and a JDECACHE data set:

28

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

Cursor-Advancing APIs
 Cursor-advancing JDECACHE fetch APIs implement the fundamental concepts of a cursor. The cursor-advancing API
set consists of APIs that advance the cursor to the next record in the JDECACHE data set before fetching a record from
JDECACHE. jdeCacheFetch and jdeCacheFetchPosition are examples of cursor-advancing fetch APIs.

29

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

A call to jdeCacheFetch first positions the cursor at the next record in the JDECACHE data set before retrieving it.
JDECACHE Cursors also enable calls to position the cursor at a specific record within the data set. To do this, you call the
jdeCacheFetchPosition API, which advances the cursor to the record that matches the given key before retrieving it.

You can use a combination of cursor-advancing fetch APIs if you need a sequential fetch of records starting from a
certain position. Call jdeCacheFetchPosition , passing the key of the record from which you want to start retrieving.
This advances the cursor to the desired location in the data set and retrieves the record. All subsequent calls to
jdeCacheFetch will fetch records starting from the current cursor position in the data set until the end of the data set,
or until the program stops for another reason.

Non-Cursor-Advancing APIs
Non-cursor-advancing JDECACHE cursor APIs do not advance the cursor before retrieving a record. Instead, they
keep the cursor pointing to the retrieved record. jdeCacheUpdate and jdeCacheDelete are examples of non-cursor-
advancing fetch APIs.

Updating Records
If you want to update a specific record with a key that you know, call jdeCacheFetchPosition , passing the known
key, to position the cursor at the location of the record that matches the key. Because the cursor is already pointing
to the desired location, call jdeCacheUpdate , passing the same HJDECURSOR that you used in the call to
jdeCacheFetchPosition.

If the index key changes, cache resorts the records, and the cursor points to the updated location. However, when you
call jdeCacheFetch , the system retrieves the next record in the updated set. Consequently, the system might not
retrieve the correct record because the changed index key caused the order of the records to change.

To update a sequential number of records, make a call to jdeCacheFetchPosition to return to the beginning of the
sequence, if necessary. Then call jdeCacheUpdate , passing the same HJDECURSOR that you used in the call to
jdeCacheFetchPosition . This call updates only the record to which the cursor is pointing. To update the rest of the
records in the sequence, call jdeCacheFetch repeatedly, passing the same HJDECURSOR that you used in the call to
jdeCacheFetchPosition , until you get to the end of the sequence. A sequential update will not work correctly if you
have changed any index key value. However, a sequential update will work correctly if you are updating a value that is
not an index key.

Deleting Records
If you want to delete a specific record with a known key, first call jdeCacheFetchPosition to point the cursor to
the location of the record that matches the key. Next, call jdeCacheDelete , to remove the record from cache. Pass
jdeCacheDelete the same HJDECURSOR that you used when you called jdeCacheFetchPosition . After deleting a
record, use jdeCacheFetch to retrieve the record that followed the now-deleted record. This process works only when
you call jdeCacheDelete.

You can also delete a specific record by calling jdeCacheDeleteAll and passing it the full key with the specific record
to be deleted. In this case, jdeCacheFetch will not work following jdeCacheDeleteAll , although you can work around
this condition with jdeCacheFetchPosition or jdeCacheResetCursor.

To delete a sequential set of records, first call jdeCacheFetchPosition to point the cursor to the first record in the
set or call jdeCacheDeleteAll to delete the first record in the set. Then, call jdeCacheDelete sequentially. In this

30

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

case, jdeCacheFetch will not work following jdeCacheDeleteAll , although you can work around this condition with
jdeCacheFetchPosition or jdeCacheResetCursor .

If you want to delete records that match a partial key, call jdeCacheDeleteAll and pass it a partial key. The system
deletes all of the records that match the partial key. After you call this API, jdeCacheFetch does not work.

Using the jdeCacheFetchPosition API
The jdeCacheFetchPosition API searches for a specific record in the data set; therefore, it requires a specific key. This
API can perform full and partial key searches.

Note: If you pass 0 for the number of keys, the system assumes that you want to perform a full key search.

Using the jdeCacheFetchPositionByRef API
The jdeCacheFetchPositionByRef API returns the address of a data set. The API finds the one record in cache and
returns a reference (pointer) to the data. jdeCacheFetchPositionByRef retrieves a single, large block of data that is
stored in cache. If the cache is empty or has more than one record, this API fails.

Resetting the Cursor
 JDECACHE cursors supports multiple cursors, as well as an unlimited number of cursor oscillations within the data
set. This means that the cursor can shuttle from beginning to end for an unlimited number of times. The cursor moves
forward only. To reset the cursor (move the cursor back to the beginning of the data set), you must make a call to the
jdeCacheResetCursor API to get a fresh JDECACHE data set.

You can also reset a cursor to a specific position that is outside of the current data set by calling the
jdeCacheFetchPosition API.

Closing the Cursor
 When you no longer need the cursor, call jdeCacheCloseCursor to close it. This call closes both the data set and
the cursor. Any subsequent call to any JDECACHE API passing the closed HJDECURSOR without having called
jdeCacheOpenCursor will fail.

Although opening a JDECACHE Cursor for a long period of time requires no overhead, to release the memory that it
requires, you should close the cursor as soon as you no longer need it.

Using JDECACHE Multiple Cursor Support
JDECACHE supports multiple open cursors. Each cache that you initialize with jdeCacheInit or
jdeCacheInitMultipleIndex enables up to 100 open cursors to access it at the same time. When you initialize a cache

31

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 2
Working with APIs

with jdeCacheInitEx or jdeCacheInitMultipleIndexEx , you can enable any number of cursors, between one and 100,
to access it at the same time.

JDECACHE multiple cursors are designed to enable two or more asynchronously processing business functions to use
one cache. Asynchronously processing business functions can open cursors to access the cache with relative positions
within the cache that are independent of each other. A cursor movement by one business function does not affect any
other open cursor.

Some JD Edwards EnterpriseOne software applications groups restrict the use of multiple cursors. For example, use
multiple cursors only if you have a need for them. Additionally, do not use two cursors to point to the same record at the
same time unless both cursors are fetching the record.

Using JDECACHE Partial Keys
A JDECACHE partial key is a subset of a JDECACHE key that is ordered in the same way as the defined index, beginning
with the first key in the defined index. For example, for a defined index of N keys, the partial key is the subset of the
keys 1, 2, 3, 4...N-1 in that specific order. The order is critical. Partial key components must appear in the same order as
the key components in the index. (The index is passed to jdeCacheInit or jdeCacheInitEx .)

For example, suppose that an index is defined as a structure containing the fields in this order: A, B, C, D, E. The partial
keys that can be synthesized from this index are this, in order: A, AB, ABC, ABCD. The previous set is the only set of
partial keys that can be synthesized for the defined index: A, B, C, D, E.

A JDECACHE partial key implements the JDECACHE cursor. When you implement the JDECACHE partial key,
consider that the JDECACHE cursor works within a JDECACHE data set, which comprises the records within the
cache ordered by the defined index, the full index. If you call a jdeCacheFetchPosition API and pass the partial key, the
JDECACHE cursor activates and points to the first record in the JDECACHE data set that matches the partial key. If a
jdeCacheFetchPosition API was called, subsequent calls to jdeCacheFetch will fetch all of the records in the data set
that succeed the fetched record to the end of the data set. The cursor does not stop on the last record that matches the
partial key, but continues on to fetch the next record using the next call to jdeCacheFetch , even if it does not match
the partial key. When a partial key is sent to jdeCacheFetchPosition , it merely indicates from where the JDECACHE
begins fetching. Because the records in the JDECACHE data set are always ordered, the fetch always retrieves all of the
records that satisfy the partial key first.

JDECACHE knows that you are passing a partial key because the fourth parameter to jdeCacheFetchPosition indicates
the number of key fields that are in the key being sent to the API. If the number of key fields is less than the keys that
were indicated when jdeCacheInit or jdeCacheInitEx was called, then it is a partial key. Suppose the number of keys
is N so that JDECACHE uses the first N key fields to make comparisons in order to achieve the partial key functionality.
If jdeCacheFetchPosition is called with a number of keys that is greater than the number specified on the call to
jdeCacheInit or jdeCacheInitEx , an error is returned.

To delete a partial key, you must make a call to jdeCacheDeleteAll . This call deletes all of the records that match the
partial key. To indicate to JDECACHE the partial keys that you are using, pass the number of key fields to this API.

Verify that the actual number of key fields in the structure corresponds to the numeric value that describes the number
of keys that must be sent to either jdeCacheFetchPosition or jdeCacheDeleteAll .

32

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

3 Using Business Functions

Understanding Business Functions
You can use business functions to enhance JD Edwards EnterpriseOne applications by grouping related business logic.
Journal Entry Transactions, Calculating Depreciation, and Sales Order Transactions are examples of business functions.

You can create business functions using one of these methods:

• Event rules scripting language.

The business functions that you create using the event rules scripting language are referred to as Business
Function Event Rules (also called Named Event Rules (NERs)). If possible, use NERs for the business functions.
In some instances, C business functions might better suit your needs.

• C programming code.

JD Edwards EnterpriseOne software creates a shell into which you insert logic using C. You use C business
functions mainly for caching, but they can also be used for these objects:

◦ Batch error level messaging.

◦ Large functions.

C business functions work better for large functions (as determined by the group). If you have a large
function, you can break the code up into smaller individual functions and call them from the larger
function.

◦ Functions for which performance is critical.

◦ Complex select statements.

After you create business functions, you can attach them to JD Edwards EnterpriseOne applications to provide
additional power, flexibility, and control. You can attach tables and functions to a business function. You must add
related tables and functions to the business function object to generate the code for the source and header files.
Because the source code for NERs is generated into C, you use the same procedures for debugging both C and NERs.

This section discusses:

• The components of a business function.

• How distributed business functions work.

• C business functions.

• Business function event rules.

Components of a Business Function
The process of creating a business function produces several components. The Object Management Workbench (OMW)
is the entry point for the tools that create the components. These components are created:

33

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Component Where Created

Business Function Specifications

OMW

Business Function Design

Data Structure Specifications

OMW

Data Structure Design Tool

.C file

Generated in Business Function Design

Modified with the IDE

.H file

Generated in Business Function Design

Modified with the IDE

The DLLs are divided into categories. This distribution provides better separation between the major functional
groups, such as tools, financials, manufacturing, distribution, and so on. Most business functions are organized into a
consolidated DLL based on their system code. For example, a financials business function with system code 01 belongs
in CFIN.DLL.

Follow these guidelines when you add or modify business functions:

• Create a custom parent DLL unless you are adding a JD Edwards EnterpriseOne business function.

Assign a parent DLL to the business functions based on the system code defined in UDC table H92/PL. If no
DLL is assigned for the system code in which the business function is created, use CCUSTOM, where CUSTOM
is the 7-character version of the company name. You can change the DLL after the business function is created.

• When you write business function code, ensure that all calls to other business functions use the jdeCallObject
protocol.

Linker errors might occur if you do not use jdeCallObject and you attempt to call a business function in a
different DLL. A linker error prevents the function call from working.

Note: If you change the DLL for a business function, go to C:\B9\System\Bin32\BusBuild.exe, select the old
DLL file where the business function was, and select Build from the Build menu to rebuild the file.

This table lists some of the DLLs for which Business Function Builder manages the builds:

DLL Name Functional Group

CAEC

Architecture

CALLBSFN

Consolidate BSFN Library

CBUSPART

Business Partner

CCONVERT Conversion Business Functions

34

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

DLL Name Functional Group

CCORE

Core Business Functions

CCRIN

Cross Industry Application

CDBASE

Tools - Database

CDDICT

Tools - Data Dictionary

CDESIGN

Design Business Functions

CDIST

Distribution

CFIN

Financials

CHRM

Human Resources

CINSTALL

Tools Install

CINV

Inventory

CLOC

Localization

CLOG

Logistics Functions

CMFG

Manufacturing

CMFG1

Manufacturing - Modification BFs

CMFGBASE

Manufacturing Base Functions

COBJLIB

Tools - Object Librarian

COBLIB

Busbuild Functions

COPBASE

Distribution/Logistic Base Functions

CRES

Resource Scheduling

CRUNTIME

Tools - Run Time

CSALES Sales Order

35

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

DLL Name Functional Group

CTOOL

Tools - Design Tools

CTRAN

Transportation

CTRANS

Tools - Translations

CWARE

Warehouse

CWRKFLOW

Tools - Workflow

JDBTRG1

Table Trigger Library 1

JDBTRG2

Table Trigger Library 2

JDBTRG3

Table Trigger Library 3

JDBTRG4

Table Trigger Library 4

JDBTRIG

Parent DLL for Database Triggers

Note: Do not use table triggers for regular business functions.

How Distributed Business Functions Work
OMW manages these three main components that make up NERs or business functions:

• Object Name

The Object Name is the actual source file.

• Function Name

The name of the business function or event rule.

Note: Any business function, whether it uses C or NERs as its source language, must have a defined data
structure to send or receive parameters to or from applications. You can create a DSTR data structure object,
or select an existing object type to work with in OMW. You can also create data structures for text substitution
messages. Additionally, you can attach notes, such as an explanation of use, to any data structure or data
item within the structure.

36

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

• DLL Name

The DLL is a dynamic link library.

When a business function is called, the Object Configuration Manager (OCM) determines where to run the business
function. After the system maps a business function to a server, calls from that business function cannot be mapped
back to the workstation.

This flowchart illustrates how distributed business functions work:

C Business Functions
 JD Edwards EnterpriseOne software contains two types of business functions: NERs and C business functions. C
business functions are written in C programming language and are used to perform functions that are not available in
NERs. C business functions include both a header file (.h) and a source file (.c).

37

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Header File Sections
This table describes the major sections of a business function header file:

Section What It Includes Description and Guidelines

Header File Comment

• Header file name

• Description

• History

• Programmer

• SAR number

• Copyright information

Comments that the input process
of the Business Function Source
Librarian builds.

The programmer name and SAR
number are manually updated by
the programmer.

Table Header Inclusions

Include statements for header
files associated with tables that
are directly accessed by this
business function.

Table header files include
definitions for the fields in a table
and the ID of the table itself.

External Business Function
Header Inclusions

Include statements for headers
associated with externally
defined business functions that
are directly accessed by this
business function.

External function calls with
jdeCallObject are included
to use the predefined data
structures.

Global Definitions

Global constants used by the
business function.

Use global definitions sparingly.
They include symbolic names
that you enter in uppercase;
words are separated by an
underscore character.

Structure Type Definitions

Data structure definitions for
internal processing.

To prevent naming conflicts,
 define this structure using
structure names that are prefixed
by the source file name.

DS Template Type Definition

Data structure type definitions
generated by Business Function
Design.

Symbolic constants for the data
structure generated by Business
Function Design.

Modify this structure through
OMW.

Source Preprocessor

• Undefines JDEBFRTN if it is
already defined.

• Checks for how to define
JDEBFRTN.

• Defines JDEBFRTN.

Ensures that the business
function declaration and
prototype are properly defined
for the environment and source
file, including this header.

Business Function Prototype

Prototypes for all business
functions in the source file.

Defines the business functions
in the source file, the parameters

38

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Section What It Includes Description and Guidelines

that are passed to them, and the
type of value that they return.

Internal Function Prototype

Prototypes for all internal
functions that are required to
support business functions
within this source file.

Defines the internal functions
that are associated with the
business functions in the source
file, the parameters that are
passed to each internal function,
 and the type of value that they
return.

Example: Business Function Header File
Assume that Business Function Design created this header file. This file contains only the required components in a
business function header file:

Header File Begin
/***
* Header File: B99TEST.h
*
* Description: test Header File
*
* History:
* Date Programmer SAR# - Description
* ---------- ---------- --
* Author 10/14/2003 DEMO Unknown - Created
*
*
* Copyright (c) 1994 Oracle 2003
*
* This unpublished material is proprietary to Oracle.
* All rights reserved. The methods and techniques described
* herein are considered trade secrets and/or confidential. Reproduction
* or distribution, in whole or in part, is forbidden except by express
* written permission of Oracle.
**/
#ifndef __B99TEST_H
#define __B99TEST_H
/***
* Table Header Inclusions
**/
/***
* External Business Function Header Inclusions
**/
/***
* Global Definitions
**/
/***
* Structure Definitions
**/
/***
* DS Template Type Definitions
**/
/***
* TYPEDEF for Data Structure
* Template Name: Test Data Structure

39

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

* Template ID: D59TEST
* Generated: Tue Oct 14 16:53:08 2003
*
* DO NOT EDIT THE FOLLOWING TYPEDEF
* To make modifications, use the EnterpriseOne Data Structure
* Tool to Generate a revised version, and paste from
* the clipboard.
*
**************************************/
#ifndef DATASTRUCTURE_D59TEST
#define DATASTRUCTURE_D59TEST
typedef struct tagDSD59TEST
{
 JCHAR cEverestEventPoint01;
 JCHAR szNameAlpha[41];
 MATH_NUMERIC mnAmountField;
} DSD59TEST, *LPDSD59TEST;
#define IDERRcEverestEventPoint01_1 1L
#define IDERRszNameAlpha_2 2L
#define IDERRmnAmountField_3 3L
#endif
/***
* Source Preprocessor Definitions
**/
#if defined (JDEBFRTN)
 #undef JDEBFRTN
#endif
#if defined (WIN32)
 #if defined (WIN32)
 #define JDEBFRTN(r) __declspec(dllexport) r
 #else
 #define JDEBFRTN(r) __declspec(dllimport) r
 #endif
#else
 #define JDEBFRTN(r) r
#endif
/***
* Business Function Prototypes
**/
JDEBFRTN(ID) JDEBFWINAPI F0101Test
 (LPBHVRCOM lpBhvrCom, LPVOID lpVoid, LPDSD0100018 lpDS);
/***
* Internal Function Prototypes
**/
#endif /* __B99TEST_H */
Header File End

This table describes the contents of the various lines in the header file:

Header File Line Where Input Description

Header File

OMW

Verify the name of the business
function header file.

Description

OMW

Verify the description.

40

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Header File Line Where Input Description

History

IDE

Manually update the
modification log with the
programmer name and the
appropriate SAR number.

#ifndef

Business Function Design

Symbolic constant prevents the
contents from being included
multiple times.

Table Header Inclusion

Business Function Design

When business functions access
tables, related tables are input
and Business Function Design
generates an include statement
for the table header file.

External Business Function
Header Inclusions

Business Function Design

No external business functions
for this application.

Global Definitions

IDE

Constants and definitions for
the business function. It is not
recommended that you use this
block. Global variables are not
recommended. Global definitions
go in .c not .h.

Structure Definitions

IDE

Data structures for passing
information between business
functions, internal functions, and
database APIs.

TYPEDEF for Data Structure

Business Function Design

Data structure type definition.
Used to pass information
between an application or report
and a business function. The
programmer places it on the
clipboard and pastes it in the
header file. Its components
include:

• Comment Block, which
describes the data
structure.

• Preprocessor Directives,
 which ensure that the data
type is defined only once.

• Typedef, which defines the
new data type.

• #define, which contains the
ID to be used in processing
if the related data structure
element is in error.

• #endif, which ends the
definition of the data

41

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Header File Line Where Input Description

structure type definition
and its related information.

Source Preprocessor Definitions

Business Function Design

All business function header files
contain this section to ensure
that the business function is
prototyped and declared based
on where this header is included.

Business Function Prototype

Business Function Design

Used for prototypes of the
business function.

JDEBFRTN(ID) JDEBFWINAPI
CheckForInAddMode

Business Function Design

Business Function Standard

All business functions share the
same return type and parameter
data types. Only the function
name and the data structure
number vary between business
functions.

Parameters include:

• LPBHVRCOM

Pointer to a data structure
used for communicating
with business functions.
Values include an
environment handle.

• LPVOID

Pointer to a void data
structure. Currently used
for error processing; will
be used for security in the
future.

• LPDS#####

Pointer to a data structure
containing information
that is passed between the
business function and the
application or report that
invoked it. This number is
generated through Object
Librarian.

• JDEBFRTN(ID)JDEBFWINAPI

All business functions will
be declared with this return
type. It ensures that they
are exported and imported
properly.

Parameter names (lpBhvrCom,
 lpVoid, and lpDS) will be the
same for all business functions.

42

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Header File Line Where Input Description

Internal Function Prototypes

Business Function Design

Internal function prototypes
required to support the business
functions in this source file.

Source File Sections
OMW builds a template for the business function source file. The business function source file consists of several major
sections, as described in this table:

Section What It Includes Description

Source File Comment Block

• Source file name

• Description

• History

• Programmer

• Date

• SAR Number

• Description

• Copyright information

Built from the information in the
Business Function Design Tool.

The programmer manually
updates the programmer name
and SAR number.

Notes Comment Block

Any additional relevant notes
concerning the business function
source.

Document complex algorithms
used, how the business functions
in the source relate to each other,
 and so on.

Business Function Comment
Block

• Business function name

• Description

• Description list of the
parameters

n/a

Business Function Source Code

Source code for the business
function.

n/a

Internal Function Comment
Block

• Function name

• Notes

• Returns

• Parameters

Copy these blocks and place the
values in the specified sections
to describe the internal function.
Follow the comment block with
internal function source code.

Internal Function Source Code

Source code for the internal
function described in the
comment block.

The business function developer
enters this code as needed. A
populated internal function
comment block must precede
this code.

43

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Example: Business Function Source File
Assume that Business Function Design created this source file called Check for In Add Mode. It contains the minimum
components required in a business function source file. The source code in the Main Processing section is entered
manually, and varies from business function to business function. All other components are generated by Business
Function Design.

#include <jde.h>

#define b98sa001_c

/***
 * Source File: B98SA001.c
 *
 * Description: Check for In Add Mode Source File
 **/
 **/

#include <b98sa001.h>

/**
 * Business Function: CheckForInAddMode
 *
 * Description: Check for In Add Mode
 *
 * Parameters:
 * LPBHVRCOM lpBhvrCom Business Function Communications
 * LPVOID lpVoid Void Parameter - DO NOT USE!
 * LPDSD98SA0011 lpDS Parameter Data Structure Pointer
 *
 ***/

JDEBFRTN(ID) JDEBFWINAPI CheckForInAddMode (LPBHVRCOM lpBhvrCom, LPVOID lpVoid,#
 LPDSD98SA0011 lpDS)
{
 /**
 * Variable declarations
 **/

 /**
 * Declare structures
 **/

 /**
 * Declare pointers
 **/

 /**
 * Check for NULL pointers
 **/
 if ((lpBhvrCom == NULL) ||
 (lpVoid == NULL) ||
 (lpDS == NULL))
 {
 jdeSetGBRError (lpBhvrCom, lpVoid, (ID) 0, _J("4363"));
 return CONTINUE_GBR;
 }

 /**

44

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

 * Set pointers
 **/

 /**
 * Main Processing
 **/

 if (lpBhvrCom->iBobMode == BOB_MODE_ADD)
 {
 lpDS->cEverestEventPoint01 = _J('1');
 }
else

 {
 lpDS->cEverestEventPoint01 = _J('0');
 }

 return (BHVR_SUCCESS);
}

/* Internal function comment block */
/**
 * Function: Ixxxxxxx_a // Replace "xxxxxxx" with source file number
 * // and "a" with the function name
 * Notes:
 *
 * Returns:
 *
 * Parameters:
 **/

The lines that appear in the source file are described in this table:

Source File Line Where Input Description and Guidelines

#include <jde.h>

Business Function Design

Includes all base JD Edwards
EnterpriseOne definitions.

#define b98sa001_c

Business Function Design

Ensures that related header file
definitions are correctly created
for this source file.

Source File

OMW

Verifies the information in the
file comment section. Enter
the programmer's name, SAR
number, and description.

#include <B98SA001.h>

OMW

Includes the header file for this
application.

Business Function

Business Function Design

Verifies the name and
description in the business
function comment block.

JDEBFRTN(ID) JDEBFWINAPI
CheckForInAddMode

Business Function Design

Includes the header of a business
function declaration.

45

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Source File Line Where Input Description and Guidelines

(LPBHVRCOM lpBhvrCom,
 LPVOID lpVoid,

LPDS104438 lpDS)

Variable declarations

IDE

Declares variables that are local
to the business function.

Declare structures

IDE

Declares local data structures to
communicate between business
functions, internal functions, and
the database.

Declare pointers

IDE

Declares pointers.

Check for NULL pointers

Business Function Design

Business Function Standard

Verifies that all communication
structures between an
application and the business
function are valid.

jdeErrorSet (lpBhvrCom, lpVoid,
 (ID) 0, _J("4363"), LPVOID)
NULL);

return ER_ERROR;

Business Function Design

Sets the standard error to
be returned to the calling
application when any of the
communication data structures
are invalid.

Set pointers

IDE

Declares and assigns appropriate
values to pointers.

Main Processing

IDE

Provides main functionality for a
business function.

Function Clean Up

IDE

Frees any dynamically allocated
memory.

Internal function comment block

IDE

Defines internal functions
that are required to support
the business function. They
should follow the same C
coding standards. A comment
block is required for each
internal function and should be
formatted correctly.

Use the MATH_NUMERIC data type exclusively to represent all numeric values in JD Edwards EnterpriseOne software.
The values of all numeric fields on a form or batch process are communicated to business functions in the form of
pointers to MATH_NUMERIC data structures. MATH_NUMERIC is used as a data dictionary (DD) data type.

46

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Business Function Event Rules
 A NER is a business function object for which the source language is event rules instead of C. You create a NER using
the event rules scripting language. This scripting language is platform-independent and is stored in a database as a JD
Edwards EnterpriseOne software object. NERs are modular. That is, they can be reused in multiple places by multiple
programs. This modularity reduces rework and enables you to reuse code.

Not all chunks of code should be packaged in a business function module. For example, when code is so specific that it
applies only to a particular program, and it is not reused by any other programs, you should leave it in one place instead
of packaging it in a business function. You can attach all the logic on a hidden control (Button Clicked event) and use a
system function to process the logic as needed.

An example of a NER is N3201030. This business function creates generic text and Work Order detail records (for the
F4802 table) for a configured work order. Based on the structure of the sales order in the F3296 table, the configured
segments for the item on the passed work order and all lower level segments are included in the generic text.

This example illustrates the function as it appears in Event Rules Design:

Named Event Rule Begin
//
// Convert the related sales order number into a math numeric. If that fails
// exit the function
//
String, Convert String to Numeric
If VA evt_cErrorCode is equal to "1"
//
// Validate that the work order item is a configured item.
//
F4102 Get Item Manufacturing Information
If VA evt_cStockingType is not equal to "C"
 And BF cSsuppressErrorMessages is not equal to "1"
BF szErrorMessageID = "3743"
Else
BF szErrorMessageID = " "
//
// Delete all existing "A" records from F4802 for this work order.
//
VA evt_cWODetailRecordType = "A"
F4802.Delete
F4802.Close
//
// Get the segment delimiter from configurator constants.
//
F3293 Get Configurator Constant Row
If VA evt_cSegmentDelimiter is less than or equal to <Blank>
VA evt_cSegmentDelimiter - /
End If
//
F3296.Open
F3296.Select
If SV File_IO_Status is equal to CO SUCCESS
F3296.FetchNext
//
// Retrieve the F3296 record of the work order item. and determine its key
// sequence by parsing ATSQ looking for the last occurrence of "1". The substring
// of ATSQ to this point becomes the key for finding the lower level configured

47

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

// strings
//
If VA evt_mnCurrentSOLine is equal to BF mnRelatedSalesOrderLineNumber
// Get the corresponding record from F32943. Process the results of that fetch
// through B3200600 to add the parent work order configuration to the work order
// generic text.
F32943.FetchSingle
If SV File_IO_Status is equal to CO SUCCESS
VA evt_szConfiguredString = concat([VA evt_ConfiguredStringSegment01],
[VA evt_ConfiguredStringSegment02])
Confg String Format Segments Cache
End If
//
// Find the last level in ATSQ that is not "00". Note that the first three
// characters represent the SO Line Number to the left of the decimal.
Example:
// SO Line 13.001 will have the ATSQ characters "013". Each configured item can#
 have
// 99 lower-level P-Rule items and a total of ten levels. Therefore every pair
// thereafter is tested.
//
VA evt_mnSequencePosition - 1
While VA evt_mnSequencePosition is less than "23"
And VA evt_szCharacterPair is not equal to "00"
VA evt_mnSequencePosition - [VA evt_mnSequencePosition] + 2
VA evt_szCharacterPair = substr([VA evt_szTempATSQ],[VA evt_mnSequencePostion],2)
End While
VA evt_szParentATSQ = substr([VA evt_szTempATSQ],0,[VA evt_mnSequencePosition])
//
// For each record in F3296 for the related sales order, find those with the same
// key substring of ATSQ. Retrieve the associated record from F32943 if
// available and pass the configured string to N3200600 for addition to the work
// order generic text.
//
F3296.FetchNext
Wile SV File_IO_Status is equal to CO SUCCESS
VA evt_szChildATSQ = substr([VA evt_szTempATSQ],0,[VA evt_mnSequencePosition]}
If VA evt_szChildATSQ is equal to VA evt_szParentATSQ
F32943.FetchSingle
If SV File_IO_Status is equal to CO SUCCESS
VA evt_szCongifuredString = concat([VA evt_ConfiguredStringSegment01],
[VA evt_ConfiguredStringSegment02])
Confg String Format Segments Cache
End If
End If
F3296.FetchNext
End Whil
F32943.Close
//
// Unload segments cache into the work order generic text. B3200600 Mode 6
Confg String Format Segments Cache
//
End If
End If
F3296.Close
//
End If
Else
// The related sales order number is invalid. Return an error.
If BF cSuppressErrorMessages is not equal to "1"

48

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Set NER Error ("0002", BF SzRelatedSalesOrderNumber)
End If
End Ir
Named Event Rule End

Understanding Transaction Master Business Functions
Transaction master business functions provide a common set of functions that contain all of the necessary default
values and editing for a transaction table in which records depend on each other. Transaction master business functions
contain logic that ensures the integrity of the transaction being inserted, updated, or deleted from the database.
Event flow breaks up logic. You use cache APIs to store records that are being processed. You should consider using a
transaction master business function in these situations:

• You accept transaction file records from a non-JD Edwards EnterpriseOne source.

• Multiple applications update the same transaction file.

These transaction tables are examples of candidates for transaction master business functions:

• The F0911 table accepts updates across application suites, as well as external sources.

• The F06116 table accepts updates from batch, interactive, and external sources.

A master business function (MBF) can be called from several different applications. Rather than duplicating the
processing options for the MBF on each application, you typically create a separate processing option template for these
processing options. You can use interactive versions to set up different versions of the MBF processing options. Various
calling programs then pass the version name to the version parameter of BeginDoc .

From within BeginDoc , the business function AllocatePOVersionData can be called to retrieve the processing
options by version name. The processing options needed by other modules can be written to the header cache and
accessed later, rather than calling AllocatePOVersionData multiple times.

The cache structure stores all lines of the transaction. Transaction lines are written to the cache after they have been
edited. The EndDoc module then reads the cache to update the database.

This table describes the components of the header section:

Field Description Field Key Type Size

Job Number

JOBS

X

Num

N/A

Document Action

ACTN

N/A

Char

1

Processing
Options

N/A

N/A

N/A

N/A

Currency Flag

CYCR

N/A

Char

1

Business View
Fields

N/A

N/A

N/A

N/A

Work Fields N/A N/A N/A N/A

49

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Field Description Field Key Type Size

This table explains the fields:

Field Description Purpose

Job Number

A unique system-assigned number assigned when the BeginDoc module starts the job. This
distinguishes transactions in the cache for each job on the workstation that is using the cache.
Use next number 00/4 for the job number. If you are using a unique cache name (Dxxxxxxxxx[job
number]), you do not necessarily need the job number field stored in the cache for a key because you
would only be working with one transaction per cache. You can, therefore, use any field as the key to
the cache.

Document Action

The action for the document. Values are:

• A or 1 = Add

• C or 2 = Change

• D = Delete

Processing Options

Processing option values were read in using AllocatePOVersionData , and are needed in other
modules of the MBF.

Currency Flag

A system value that indicates whether currency is on and what method of currency conversion is used
(N, Y, or Z).

Business View Fields

The fields required for processing the transaction and writing it to the database. All fields in the
record format that are not saved in the header cache will be initialized when the record is added to the
database using the APIs.

Work Fields

Fields that are not part of the business view (BV), but are needed for editing and updating the
transaction.

For example, Last Line Number is the last line number written to the detail cache. It will be stored at the
header level, and retrieved and incremented by the MBF. The incremented line number will be passed
to the header cache and stored for the next transaction.

This table describes the components of the detail section:

Field Description Field Key Type Size

Job Number

JOBS

X

Char

8

Line Number

(Application-
specific)

X

Num

N/A

Line Action

ACTN

N/A

Char

1

50

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Field Description Field Key Type Size

Business View
Fields

N/A

N/A

N/A

N/A

Work Fields

N/A

N/A

N/A

N/A

This table explains the fields:

Field Description Purpose

Job Number

A unique number assigned when the BeginDoc module starts the job. This distinguishes transactions
in the cache for each job on the client that is using the cache. If you are using a unique cache name
(Dxxxxxxxxx[job number]), you do not necessarily need to store the job number field in the cache for a
key because you work with only one transaction per cache. You can, therefore, use line number only as
the key to the cache.

Line Number

The number used to uniquely identify lines in the detail cache. This line number can also eventually be
assigned to the transaction when it is written to the database. The transaction lines are written to the
detail cache only if they are error-free.

Line Action

The action for the transaction line. Values are:

• A or 1 = Add

• C or 2 = Change

• D = Delete

Business View Fields

Fields required for processing the transaction that will be written to the database. All fields in the
record format that are not saved in the detail cache will be initialized when the record is added to
database using the APIs.

Work Fields

Fields that are not part of the business view, but are needed for editing and updating the transaction
line.

Building Transaction Master Business Functions
This section provides an overview of building transaction master business functions, and discusses the component
used to build such a business function:

• Begin document

• Edit line

• Edit document

• End document

• Clear cache

• Cancel document

51

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Understanding Building Transaction Master Business Functions
These flowcharts illustrate how transaction master business functions are built.

First, you create the individual business functions using several basic components:

Next, you combine the business functions into a DLL:

You typically use these basic components to create a master business function as described by this table:

52

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Component Purpose

Begin Document

Called when all header information has been entered. Creates initial header if it has not already been
created. Can also include default values, editing, and processing options (POs).

Edit Line

Called when all line information has been entered. Creates cache for detail information if it has not
already been created.

Edit Document

Called when ready to commit the transaction. Processes any remaining document edits and verifies
that all records are valid to commit.

End Document

Called when you need to commit the transaction. Processes all records in the header and detail cache,
 performs I/O, and deletes caches.

Clear Cache

Called when you are ready to delete all cache records. Deletes header and detail cache records.

Begin Document
Begin Document has this format:

FxxxxxBeginDocument

The Begin Document component performs these tasks:

• Inserts default information and edits information in the header, including data dictionary defaults and UDC
editing.

• Fetches information from the database, if necessary, to ensure that the selected document action can take
place.

• Validates and processes information that is common to all records.

• Writes the record to header cache if no errors exist.

• Contains all header cache information that is common to all detail records. This improves performance by
eliminating the need to use all the detail records to perform the same validations and table I/O.

• Updates the header cache with the new information when information in the header fields changes and Begin
Document has previously been called.

Special Logic or Processing Required
On the initial call, the function assigns the job number. To retrieve the job number, this function calls
X0010GetNextNumber with a system code of 00 and an index number of 04. If called again, Begin Document passes
the job number that was previously assigned; therefore, it does not need to assign another job number.

Hook Up Tips
Keep these tips in mind when calling Begin Document:

• You must call a function at least once before calling Edit Line.

• If errors occur during validation of the header field when the function is called, call the function again to verify
that errors have been cleared before calling Edit Line.

53

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

• If this function might be called multiple times from different events, include it on a hidden button on an
application to reduce duplicate code and ensure consistency. This button might then be called from focus on
grid because the user is then adding or deleting detail records, and is finished adding header information. In
case of a Copy in which the user does not use the grid, this button might also be called on OK button.

• Calling a button from an asynchronous event breaks the asynchronous flow and forces the button to be
processed in synchronous mode (inline).

Common Parameters
This table describes the common parameters for Begin Document:

Name Alias I/O Description

Job Number

JOBS

I/O

Pass Job Number
created in Begin
Document, if previously
called; otherwise, pass
zeros and assign a job
number.

Document Action

ACTN

I

A or 1 = Add

C or 2 = Change

D = Delete

This is the action of the
entire Document, not
the individual detail
lines. For example,
 you might modify a
few detail lines in Edit
Line, add a few detail
lines in Edit Line, and
delete a few detail lines
in Edit Line, but the
Document Action in
Begin Document would
be Change.

Process Edits

EV01

I

Optional

0 = No Edits

Any Other = Full Edits

Note: The GUI interface
usually uses the partial
edit, and the batch
interface uses the full
edit. If you leave this
parameter blank, the
default option is full
edits.

ErrorConditions

EV02

O

Blank = No Errors

1 = Warning

54

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Name Alias I/O Description

2 = Error

Version

VERS

I

This field is required
if this MBF is using
versions.

Header Field One

I/O

Pass in all the header
fields that are common
to the entire document.
Begin Document
processes all of these
fields and validates
them, data dictionary
edits, UDC editing,
 default values, and so
on. Begin document
might also fetch to the
table to validate that
records matching these
header fields exist for
Delete and Change, or
do not exist for Add.

Header Field Two

I/O

N/A

.

.

.

I/O

N/A

Header Field XX

I/O

N/A

Work Field / Processing
Flag One

I

List any work fields
that the program
needs. These could be
flags for processing,
 dates to validate, and
so on. These fields
might or might not
be used. For example,
 currency control might
be saved in the header
cache so that all detail
records would either use
currency or not.

Work Field / Processing
Flag One

I

N/A

.

.

N/A

I

N/A

55

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Name Alias I/O Description

.

Work Field / Processing
Flag One

N/A

I

N/A

Application-Specific Parameters
Application-specific parameters must perform these tasks:

• List the fields that are needed to process header-level information.

• List any work fields that are needed to perform edits.

• List all POs that are needed to process header-level information.

Edit Line
Edit Line has this format:

FxxxxxEditLine

The Edit Line component performs these tasks:

• Validates all user input, performs calculations, and retrieves default information.

Edit Line is normally called for every record that is fetched. It performs the edits for that one record in the file.

• Reads header cache records for default values.

• On an ADD, enters default information in blank columns, such as address book information.

The default values might come from any of these objects:

◦ Another column in the line.

◦ A process performed on a column sent in the line.

◦ A PO.

◦ A saved value from the header record that was determined in the Begin Document module.

◦ A DD default value.

• Edits columns for correct information.

This includes interdependent editing between columns. Also performs UDC and DD edits.

• Writes record to the detail cache if no errors occurred.

If the record already exists in the work file, the line in the work file will be retrieved and updated with the
changes. If a record is deleted from the grid in direct mode, and the record does not exist in the database, the
record will be removed from the detail cache. If the record exists in the database, the action code for the record
will be changed to delete, and the record will be stored in the detail cache until file processing in End Doc.

56

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Special Logic or Processing Required
Depending on the type of document being processed, different editing and inserting of default values takes place. An
example would be vouchers and invoices processed through the journal entry MBF. The tax calculator is only called for
vouchers. Depending on the event processing required, the process edit flag determines the editing that occurs. For
example, in an interactive program, when the Grid Record is Fetched event runs, Partial Edits might be performed to
retrieve descriptions, default values, and so on. When the Row is Exited and Changed event runs, Full Edits might be
performed to validate all user input.

Typical Uses and Hookup
In interactive applications, Edit Line is typically called on Grid Record is Fetched or Row is Exited and Change (Asynch).
In batch applications, Edit Line is typically called in the Do section of the group, columnar, or tabular section.

Common Parameters
This table describes the common parameters for Edit Line:

Name Alias I/O Description

Job Number

JOBS

I

Used as key or to create
a unique name for
the cache or work file.
Retrieved from Begin
Document.

Line Number

LNID

I/O

The unique number
identifying the
transaction line. Can
also be used as the line
number in the Detail
Cache.

Line Action

ACTN

I

A or 1 = Add

C or 2 = Change

D or 3 = Delete

Process Edits (optional)

EV01

I

0 = No Edits

1 = Full Edits

2 = Partial Edits

Note: GUI interface
typically uses the partial
edit, and the batch
interface typically uses
the full edit. If you leave
this parameter blank,
 the default edit is Full.

Error Conditions

ERRC

O

0 = No Errors

1 = Warning

57

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Name Alias I/O Description

2 = Error

Update Or Write to Work
File

EV02

I

1 = Write or update
records to the work file,
 or do both.

Record Written to Work
File

EV03

I/O

1 = A record is written
to the work file. This
reduces I/O calls to the
work file.

Blank = No record is
written to the work file.

Detail Field One

I/O

Pass in all the Detail
fields that will be edited.
Typically, these are the
grid record fields. Edit
Line provides validation,
 data dictionary edits,
 UDC editing, default
values, and so on.

Detail Field Two

I/O

N/A

Detail Field XX

I/O

N/A

Work Field / Processing
Flag One

I

List any work fields that
the program needs.
These fields could be
flags for processing,
 dates to validate, and so
on.

Work Field / Processing
Flag One

I

N/A

Work Field / Processing
Flag One

I

N/A

Edit Document
The Edit Document component performs these tasks:

• Reads cache records if multiple line editing is required.

• Reads header cache record if header information is needed.

58

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

• Performs cross-dependency edits involving multiple lines in a document. For example, Edit Document
processes all records to ensure that percentages total 100 percent, and it ensures that the last record does not
contain certain information.

Special Logic or Processing Required
Depending on the type of document that you are processing, different logic is executed. For example, vouchers and
invoices are processed through the journal entry edit object, although the balancing is different for these document
types.

Hook Up Tips
Edit Document is typically used in this fashion:

• Call the function at least once after calling Edit Line and before End Document.

• If errors occur during validation, call the function again to verify that errors have been cleared before calling
End Document.

• Call this function on the OK Button Clicked event so that, if errors do occur, they are corrected before the user
exits the application.

Common Parameters
This table describes the common parameters for Edit Document:

Name Alias I/O Description

Job Number

JOBS

I

Retrieved from Begin
Document

ErrorConditions

EV01

O

Blank = No Errors

1 = Warning

2 = Error

Application-Specific Parameters
Because all records have been added in Begin Document or Edit Line, and because any information needed to process
the entire document is in cache, few parameters are needed in this function.

End Document
End Document has this format:

FxxxxxEndDocument

59

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

The End Document component performs these tasks:

• Assigns a next number to the document.

For vouchers, you should do this before calling journal entry edit object, but not before the voucher has been
balanced and is ready to be added to the database. By placing this module on the before add/delete/update
events, the document passes all edits before running this event.

• Reads cache records.

• On an ADD, writes new rows to the table.

• On a CHG, retrieves and updates existing rows.

• On a DEL, deletes rows from the table.

• Adds information and updates associated tables.

For example, it adds and updates these objects:

◦ Manual checks associated with vouchers.

◦ Address Book vouchered YTD columns in Address Book.

◦ Address, phones, and who's who information for Address Book.

◦ Batch header.

• Clears the cache for that document and any work fields after all updates are completed successfully.

• Summarizes documents, if designated in a processing option, as it writes to the database.

• Reads work file through an alternate means and writes the records at a control break.

• Performs currency conversion.

Hook-Up Tips
This function is typically called on OK button Post Button Clicked , and it is hooked up Asynch. In the C code, after the
insert or update to the database is successful, call Clear Cache to clear the cache.

Common Parameters
This table describes the common parameters for End Document:

Name Alias I/O Description

Job Number

JOBS

I

Retrieved from Begin
Document

Computer ID

CTID

I

Retrieved from
GetAuditInfo(B9800100)
in application (optional)

Error Conditions

EV01

O

Blank = No errors

1 = Warning

2 = Error

60

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Name Alias I/O Description

Program ID

PID

I

Usually hard-coded

Application-Specific Parameters
Use application-specific parameters in End Document to perform these tasks:

• List the fields that are needed to process update or writes, such as Time and Date Stamp fields.

• List any work fields that are needed to perform updates or writes.

• List all POs that are needed to process updates or writes.

Clear Cache
Clear Cache has this format:

FxxxxxClearCache

The Clear Cache component removes the records from the header and detail cache.

Special Logic or Processing Required
If a unique cache name is selected as the naming convention for the cache (Dxxxxxxxx[Job Number]), then use the
cache API jdeCacheTerminateAll to destroy the cache.

Common Parameters
This table describes the common parameters for Clear Cache:

Name Alias I/O Description

Job Number

JOBS

I

Indicates the job
number of the
transaction that you
want to clear. This job
number should have
been returned from
BeginDoc.

Clear Header

EV01

I

Indicates whether the
header cache should be
cleared.

1 = clear cache

Clear Detail

EV02

I

Indicates whether the
detail cache should be
cleared

1 = clear cache

61

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Name Alias I/O Description

Line Number From
(Optional)

LNID

I

Indicates where to begin
clearing records in the
detail cache. If this line
is blank, the system
begins clearing from the
first record.

Line Number Thru
(Optional)

NLIN

I

Indicates where to stop
clearing records in the
detail cache. If this line
is blank, the system
deletes to the end of the
cache.

Cancel Document
Cancel Document has this format:

FxxxxxxCancelDoc

The optional Cancel Document component is used primarily with the Cancel button to close files, clear the cache, and
so on. Cancel Document is an application-specific function that provides basic function cleanup.

Special Logic or Processing Required
This function is application-specific.

Common Parameter
This table describes the common parameter for Cancel Document:

Name Alias I/O Description

Job Number

JOBS

I

The job number of
the transaction that
you want to clear. This
number should have
been returned from
BeginDoc.

Implementing Transaction Master Business Functions
This section discusses using single-record processing and document processing to implement transaction master
business functions.

62

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Single-Record Processing
This section provides an interactive and a batch program flow example for single-record processing.

Interactive Program Flow Example
This is an example of an implementing transaction master business functions during single-record processing in an
interactive application:

1. Post Dialog is Initialized (optional)
Call Begin Document.

2. Set Focus on Grid
3. Row is Exited and Changed or Row is Exited and Changed ASYNC

Call Edit Line.
4. Delete Grid Record Verify- After

Call Edit Line to perform delete for one record.
Call Edit Document to perform deletes on a group of records.

5. OK Button Clicked
Call Begin Doc.
Call Edit Document.

6. OK Post Button Clicked
Call End Document.

Master Business Functions usually perform all table I/O for the given table. Therefore, these actions must be disabled:

• Add Grid Record to DB - before
Suppress Add.

• Update Grid Record to DB - before
Suppress Update.

• Delete Grid Record to DB - before
Suppress Delete.

Batch Program Flow Example
This is an example of an implementing transaction master business functions during single-record processing in a
batch application:

1. Do Section of Report Header.
Call Begin Document.

2. Do Section of the Group Section.
Call Edit Line.

3. Do Section of a Conditional Section (optional).
Call Edit Document.

63

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

4. Do Section of Report Footer.

Call End Document.

Document Processing
This section provides an interactive program flow example for document processing.

Program Flow Example
This is an example of an implementing transaction master business functions during document processing in an
interactive application:

1. Dialog is Initialized

Call Open Batch Edit Object module.
2. Grid is Entered

Call Begin Document Edit Object module.
3. Row is Exited

Call Edit Line Edit Object module.
4. OK Button Clicked

Call Edit Document Edit Object module.
5. Before Add from Database or Before Delete from Database

Suppress Add/Delete.

Call End Document Edit Object module.
6. Cancel Button Clicked

Call Close Batch Edit Object module.

Working with Master File Master Business Functions
Master business functions (MBFs) enable calling programs to process certain predefined transactions. An MBF
encapsulates the required logic, enforces data integrity, and insulates the calling programs from the database
structures. Use MBFs for these reasons:

• To create reusable, application-specific code.

• To reduce duplicated code.

• To ensure that hookup is consistent.

• To support interoperability models.

• To enable processing to be distributed through OCM.

• To design event-driven architecture.

64

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

MBFs are typically used for multiline business transactions such as journal entries or purchase orders. However, certain
master files also require MBF support due to their complexity, importance, or maintenance requirements from external
parties. The requirements for maintaining master files are different from those for multiline business transactions.

Generally, master file MBFs are much simpler than multiline business transaction MBFs. Transaction MBFs are specific
to a program, while master file MBFs access a table multiple times.

For interoperability, master file MBFs can be used instead of table I/O. This enables you to perform updates to related
tables using the business function instead of table event rules. Multiple records are not used; instead, all edits and
actions are performed with one call.

In their basic form, master file MBFs have these characteristics:

Characteristic Description

Single call

Generally, you can make one call to an MBF to edit, add, update, or delete a master file record. An edit-
only option is available also.

Single data structure

The fields required to make the request and provide all the necessary values are in one data structure.
The data fields should correspond directly with columns in the associated master file.

No cache

Because each master file record is independent of the others, caching is unnecessary. The information
provided with each call and the current condition of the database provides all of the information that
the MBF needs to perform the requested function.

Normal error handling

As with other MBFs, master file MBFs must be capable of executing both in interactive and batch
environments. Therefore, the calling program must determine the delivery mechanism of the errors.

Inquiry feature

To enable external systems to be insulated from the JD Edwards EnterpriseOne database, an inquiry
option is included. This enables an external system to use the same interface to access descriptive
information about a master file key as it uses to maintain it.

Effect on applications

For JD Edwards EnterpriseOne applications, the effect of implementing a master file MBF should be
minimal. Consider and follow several standards before implementing a master file MBF.

Master file applications use the system to process all I/O for find/browse forms. This enables you to use all of the search
capabilities of the software.

You should design all master file applications so that all fix/inspect forms are independent of each other. Each fix/
inspect form can use the system to fetch the record, and all edits and updates occur using the master file MBF. This
independent design has these major benefits:

• It organizes the application in a way that simplifies edits involving dependent fields across multiple forms.

• It enables consistent implementation of modeless processing for all master file applications and all forms within
these applications.

Certain circumstances might justify deviation from this simple model. These circumstances are:

• Extremely large file formats

When the number of columns in the master file plus the required control fields in the call data structure exceed
technical limitations for data structures, the MBF can be split. You can split the MBF into one MBF that handles
base data and performs all adds and deletes, and one or more MBFs that enable the calling program to update

65

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

additional data when the base data has been established. In this case, it is usually logical to split it, regardless
of the technical limitation. For example, assuming that the customer master file exceeded the data structure
limitation, you would use these two MBFs to process the file:

• F0301ProcessMasterData

• F0301ProcessBillingData

In this example, the F0301ProcessMasterData function processes the base data, and the
F0301ProcessBillingData function updates additional data.

• Subordinate detail files

Information can exist in addition to the primary master file that has been normalized to enable for a one-
to-many relationship. Designing the Master File MBF strictly on the basis of how the database is designed
translates into three calls. Including at least one occurrence of a detail relationship in the data structure of a
Master File MBF is valid. This inclusion enables users to establish reasonably complete master file information
using a simple interface to meet simple needs. Street addresses and phone numbers within Address Book are a
good example. Customers expect that they can create an address book record by calling a simple address book
API with basic identifying information, the street address, and a phone number.

MBF Information Structure
This section discusses the parameters of the MBF information structure.

Standard Parameters for Single-Record Master Business Functions
This table describes the standard parameters for single-record MBFs:

Name Alias I/O Required/Optional Description

Action Code

ACTN

I

Required

A = Add.

I = Inquiry.

C = Change.

D = Delete.

S = Same as except (the record is the
same except for what the user changes).

Update Master
File

EV01

I

Optional

0 = No update; edit only (default).

1 = Update performed.

Process Edits

EV02

I

Optional

1 = All Edits (default).

2 = Partial Edits (no data dictionary (DD)).

Suppress Error
Messages

SUPPS

I

Optional

1 = Error messages are suppressed.

0 = Process errors normally (default).

Error Message ID DTAI O Optional Returns error code.

66

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Name Alias I/O Required/Optional Description

Version

VERS

I

Future

The default value is XJDE0001.

Application-Specific Control Parameters (Example: Address Book)
This table describes the application-specific parameters for Address Book:

Name Alias I/O Required/
Optional

Description

Address Book
Number

AN8

I/O

Optional

For additions, AN8 is optional. For all other action
codes, this parameter is required.

Same as except

AN8

I

Optional

Required for S = Action Code. The record is the
same except for what the user changes.

Application Parameters (Example: Address Book)
This table describes the application parameters for Address Book:

Name Alias I/O Required/Optional

Alpha Name

ALPH

I/O

Required

Long Address Number

ALKY

I/O

Optional

Search Type

AT1

I

Required

Mailing Name

MLMN

I

Required

Address Line 1

ADD1

I

Optional

City

CTY1

I

Optional

State

ADDS

I

Optional

Postal Code

ADDZ

I

Optional

67

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Master Business Function Impact on Performance
Performance issues might occur regardless of how you handle large-format tables. Two options for improving
performance are:

• Group data logically to enable data structures to be smaller and easier for the user to implement.

This configuration does, however, force the user to make multiple calls to add or update an entire record in a
table.

• Use a data structure that enables 300 fields.

This configuration is cumbersome to implement, and the user can choose not to apply all of the fields.

Through different interfaces, the user can add additional data later. Most processes dictate that part of the data be
added immediately, while related data can be added later. For example, the user might define a customer master record
but wait until a later date to define the customer's billing instructions. Therefore, you should select the first option of
splitting MBFs so that one MBF handles base data and one MBF handles additional data.

Working with Business Functions
Every business function must follow a defined structure and form. Every line of code must conform to the JD Edwards
EnterpriseOne business function programming standards. Creating a business function involves these overall tasks:

• Use JD Edwards EnterpriseOne Object Management Workbench (OMW) to build business function data
structures.

• Use OMW to build business function source and header files.

• Build and add type definitions for data structures to the header file.

Business function DLLs are consolidated. Therefore, you need to build each of the custom business functions into a
custom DLL that you create. This process ensures that the custom business functions remain separate from JD Edwards
EnterpriseOne business functions. The build program reviews the F9860 table to verify that the custom DLL exists.

When you create a custom business function, you need to specify one of the custom DLLs. If you do not, the build
process builds the custom business function into the JD Edwards EnterpriseOne CCUSTOM.DLL, where CCUSTOM is the
seven-character name of the company, which is the default.

Prerequisite
Create a data structure.

Creating a Custom DLL
To create a custom DLL:

1. In OMW, create a new Business Function Library.
2. In Windows, run BusBuild.exe.

68

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Typically, this file is located in ..\B9\System\Bin32\.
3. Rebuild all libraries by selecting Build, Rebuild Libraries in OMW.

This process takes several minutes.

Specifying a Custom DLL for a Custom Business Function
To specify a custom DLL for a custom business function :

1. In Business Function Design Aid, enter the custom DLL name in the Parent DLL field.

Note: You can also change the business function location if necessary.

2. Run the build for the business function.

Working with Business Function Builder
Use JD Edwards EnterpriseOne Business Function Builder to build business function code into a DLL. You can build
C business functions, Named Event Rules (NERs), and table event rules. The process that occurs when you run JD
Edwards EnterpriseOne Business Function Builder to build business functions includes compiling and linking. Compiling
involves creating a business function object. Linking makes the object part of a DLL.

Note: Link All does not compile any business functions; it only links each DLL.

You usually use JD Edwards EnterpriseOne Business Function Builder to build a single business function. Whenever you
create source code changes to a business function, you must build the business function to test it.

Build Output displays the results of the build. When the build is finished, the message ***Build Finished*** appears
at the bottom of Build Output. The text after this line indicates whether the build was successful. If the build was
successful, you can test the business function. Otherwise, you must correct any problems and rerun the build process.

The system creates a work directory when any object is built. This directory is in the destination directory that you
specified, such as C:\b7\appl_pgf\work\buildlog.txt. This directory contains error and information logs. The build log
contains the same information as the Build Output form in JD Edwards EnterpriseOne Business Function Builder.

Setting Build Options
Use options on the Build menu to control how and when the consolidated business function is built. This table describes
the available options:

Option Result

Build

Generates a makefile, compiles the selected business functions, and links the functions into the current
consolidated DLL. Rebuilds only those components that are out of date.

Compile

Generates a makefile and compiles the selected business functions. The application does not link the
functions into the current consolidated DLL.

69

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Option Result

ANSI Check

Reviews the selected business function for ANSI compatibility.

Link

Generates a makefile for each consolidated DLL and then builds each consolidated DLL. The
application does not compile any of the selected business functions.

Link All

Generates a makefile for each consolidated DLL and then builds each consolidated DLL and links it to
all business functions that are called. The application does not compile any of the selected business
functions.

Rebuild Libraries

Rebuilds the consolidated DLL and static libraries from the .obj files.

Build All

Links and compiles all objects within each DLL.

Stop Build

Stops the build from finishing. The existing consolidated DLL remains intact.

Suppress Output

Limits the text that appears in Build Output.

Browse Info

Generates browse information when compiling business functions. Clear this option to expedite the
build.

Precompiled Header

Creates a precompiled header when compiling a business function. When compiling multiple business
functions, the Business Function Builder generally compiles faster if it uses a precompiled header.

Debug Info

Generates debug information when compiling. The Visual C++ can debug any function that was built
with debug information. Clear this option to expedite the build.

Full Bind

Resolves all of the external runtime references for each JD Edwards EnterpriseOne consolidated DLL.

Reading Build Output
Build Output consists of a series of sections that display important information about the status of a build. You can use
this information to determine whether the build completed successfully and to troubleshoot problems if errors occurred
during the build.

Makefile Section
The makefile section indicates where Business Function Builder generated the makefile for a particular build. JD
Edwards EnterpriseOne Business Function Builder generates one makefile for each DLL that it builds. A Generating
Makefile statement should always appears for each DLL that you are building. If the makefile statement does not
appear, then an error occurred. To resolve the error, you must complete these tasks:

• Verify that the local object directory exists.

• Verify that the permissions for the local object directory and the makefile are correct.

70

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Begin DLL Section
Begin DLL indicates that Business Function Builder is building a particular DLL. For example, assume that the previous
section begins with*****CDIST*****. A Begin DLL section appears for each DLL that you are building.

Compile Section
Before it build DLLs, Business Function Builder compiles the business functions in the DLLs first. The system displays a
sequential list of each business function that the Business Function Builder attempts to compile. During the compilation
process, these events might occur:

• Compiler Warning

When a compiler warning occurs, JD Edwards EnterpriseOne Business Function Builder displays warning CXXXX
(where XXXX is a number) and a brief description of the warning. To review information about the warning,
search for the CXXXX value in Visual C++ online help. Warnings usually do not prevent the business function
from compiling successfully. However, you can select the Warnings As Errors option in the Global Build form so
that the business function will not build if any warnings occur.

• Compiler Error

When a compiler error occurs, JD Edwards EnterpriseOne Business Function Builder displays error CXXXX
(where XXXX is a number) and a brief description of the error. To review extended information about the
error, search for the CXXXX value in Visual C++ online help. Because errors prevent the business function from
compiling successfully, you must resolve them.

Link Section
After Business Function Builder has compiled the business functions for a DLL, it links them. This linking process
creates the .lib and .dll files for the DLL. During linking, these events might occur:

• Linker Warning

When a linker warning occurs, JD Edwards EnterpriseOne Business Function Builder displays warning LNKXXXX
(where XXXX is a number) and a brief description of the warning. To review information about the warning,
search for the LNKXXXX value in the Visual C++ helps. Warnings usually do not prevent the business function
from linking successfully. You can select the Warnings As Errors option in the Global Build form so that the DLL
will not build if it has any warnings occur.

• Linker Error

When a linker error occurs, JD Edwards EnterpriseOne Business Function Builder displays error LNKXXXX
(where XXXX is a number) and a brief description of the error. To review extended information about the error,
search for the LNKXXXX value in the Visual C++ helps. If a nonfatal error occurs, Business Function Builder still
creates the DLL. However, JD Edwards EnterpriseOne Business Function Builder notes that the DLL was built
with errors. If a fatal error occurs, JD Edwards EnterpriseOne Business Function Builder does not build the DLL.

Rebase Section
The Rebase Section displays information about rebasing. Rebase fine-tunes the performance of DLLs so that they load
faster. Rebase does this by changing the desired load address for the DLL so that the system loader does not have to
relocate the image. The system automatically reads the entire DLL and also updates fixes, debug information, checksum
information, and time stamp values.

71

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Summary Section
The Summary Section contains the most important information about the build. This section indicates whether the
build is successful. The summary section begins with *****Build Finished*****. JD Edwards EnterpriseOne Business
Function Builder also displays a summary report for each DLL that you attempted to build. This report includes this
information:

• The number of warnings.

• The number of errors.

• Whether the DLL build is successful.

Building All Business Functions
You can use Build All to build all business functions. Build All performs the same operations as global link, and it
recompiles all of the objects within each DLL. A system administrator usually runs Build All. Build All processes can take
a long time. To run Build All, you must access BusBuild.

To build all business functions:

1. In Windows, run BusBuild.exe.

Typically, this file is located in ..\B9\system\Bin32\.
2. In BusBuild, start the mass build by selecting Build, Build All.
3. Select one of these options for Build Mode:

◦ Debug

A build that includes debug information. After you perform a build, you can debug the built business
function using the Visual C debugger.

◦ Optimize

A build that does not include debug information. Optimized builds generally cannot be debugged using
the Visual C debugger.

◦ Performance Build

A build that is the same as an optimized build except that it includes information that helps developers
measure the performance of business functions. Only JD Edwards developers should select this option.

72

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

4. Complete the Source Directory field.

Use this field to specify where the business function source resides. Business function source includes all .c, .h,
named event rules, and table event rules. Full packages usually have all business function sources. These are
the options for location:

◦ Local

All business function source is on the local machine.

◦ Path Code

All business function source is in the path specified by the selected path code.

◦ Package

The All business function source is in the path specified by the selected package. If a package is built
correctly, it typically contains all required business function sources. Generally, you should use Package
for the location.

◦ Pick Directory

All business function source is stored in another directory on the file server. You specify the directory.
5. Complete the Foundation Directory field.

Use this field to specify the foundation to use for this build. The foundation that you select is the foundation on
which you expect these business functions to run. These are the options for this field:

◦ Local

The recommended foundation is the local JD Edwards EnterpriseOne foundation.

◦ Foundation

The foundation table lists all registered JD Edwards EnterpriseOne foundations. Select a foundation from
this table.

◦ Pick Directory

The JD Edwards EnterpriseOne foundation exists in a directory on the file server. You specify the
directory. JD Edwards EnterpriseOne recommends this location.

6. Complete the Output Destination Directory field.

Use this field to specify the location for the output of the build. The build output includes the file types:
DLL, .LIB, .OBJ, and LOG. The location options are the same as those for Source Directory. Generally, you
should select Package because it is a more stable snapshot of business function source.

73

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

7. Select any of these options:

◦ Treat Warnings As Errors

If you select this option, JD Edwards EnterpriseOne Business Function Builder does not build a business
function if it encounters any warnings.

◦ Clear Output Destination Before Build

If you select this option, JD Edwards EnterpriseOne Business Function Builder deletes the contents of the
bin32, lib32 and obj output directories before it builds all business functions.

◦ Select Which DLLs to Build

If you clear this option, JD Edwards EnterpriseOne Business Function Builder builds all DLLs. If you select
this option, you can click the Select button and select which business function DLLs you want to build.
Select this option if you want to build one or two DLLs. If you build only a subset of all DLLs, verify that
the Clear Output Destination Before Build option is cleared.

◦ Stop Level

You can select the error level at which the build stops. You can ignore errors if you want to continue
building despite them. You can specify that the build process stop if a DLL contains errors. You can stop
on the first compile error.

◦ Generate Missing Source Report

If you select this option, v Business Function Builder generates a report in the work directory of the
destination. This report is called NoSource.txt. It contains business function source file names that do
not have a .c file but do have a record in the F9860 table. To resolve the information in this report, you
can produce the correct .c file for the business function, or you can delete the source file from the F9860
table. It is recommended that you select this option.

◦ Generate ER Source

If you select this option, v Business Function Builder generates NER and table event rule source before
building business functions.

◦ Verify Check-in

If you select this option, the system builds only objects checked in to a specified path code. A log file,
Notchkdn.txt, is written to the same directory as Nosource.txt. Objects that are not checked in to the path
code will be listed in this log and in Buildlog.txt.

Select the From RDB option to generate work from any path code. If this option is cleared, the business function builder
assumes that the event rules source can be generated from the source directory specification files.

If you are troubleshooting a build initiated by Package Build, then the previous settings should already be set to the
correct values. In this case, click Build to rebuild the problem DLLs.

Note: You can also run this build by selecting the Build BSFN option on in a package build.

Using the Utility Programs
The Tools menu contains several utility programs that assist in the build process. This table lists those utilities:

74

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Utility Purpose

Synchronize JDEBLC

You run the Synchronize JDEBLC program to reorganize JD Edwards EnterpriseOne business functions
into new DLL groupings. This program synchronizes DLL field for the local JDEBLC parent specification
table with the parent DLL in the F9860 table. Use this program with caution. You typically use this
program only if you have manually dragged business function DLLs from a recent package build and
you are experiencing failures in the business function load library.

Dumpbin

You run the Dumpbin program to verify whether a particular business function built successfully. This
program displays all the business functions that were built into the selected consolidated DLL.

PDB (Program DeBug file) Scan

You receive a CVPACK fatal error when one of the object files that you are trying to link is incorrectly
compiled with PDB information. To resolve this problem, you can use the PDB Scan to identify any
object fields that were built with PDB information. Recompile any business functions that the PDB Scan
reports.

Customize

You use Customize to add programs to the Tools menu. For example, you could add the programming
tool and pass that tool a file name as a parameter when it opens.

Safety Check

You use Safety Check to check selected files (.c, .h or both) for:

• global variables

• static variables

• extern declarations

• non-"threadsafe" ANSI C APIs

Safety Check-Check All

You use Safety Check-Check All to check all files (.c, .h or both) in a directory for the same conditions as
for Safety Check.

Resolving Errors with JDEBLC, Dumpbin, and PDB
You use JD Edwards EnterpriseOne Business Function Builder tools to help you resolve errors. If you notice any
unresolved external errors during a business function build, the consolidated DLL still builds, and the software should
run normally. However, it cannot execute any unresolved business function.

Use the dumpbin tool to verify that a particular business function is present in a consolidated DLL. If a business function
is present, its name appears in the dumpbin output, followed by a nonzero number in parentheses.

Use the PDB scan to resolve the CVPACK fatal error. The CVPACK error occurs when the Business Function Builder
attempts to link an object file that was built with PDB (Program DeBug file) information. The PDB scan finds the problem
object file. You must then recompile the problem object file on the machine with the JD Edwards EnterpriseOne
Business Function Builder.

If a business function is compiled using Visual C++, it will not work properly. You can use PDB scan to identify any
business functions that have been built outside of JD Edwards EnterpriseOne Business Function Builder. Use JD
Edwards EnterpriseOne Business Function Builder to rebuild these functions so that they work properly.

If one of the DLLs is out of synch, you must rebuild it using the Build option. This generates a makefile and then relinks
all the business functions within it.

The Synchronize JDEBLC option from the JD Edwards EnterpriseOne Business Function Builder Tools menu corrects
any misplaced or incorrectly-built business functions. This option reviews the server DLLs and determines whether

75

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

the local workstation specifications match those of the server. If they do not, then JD Edwards EnterpriseOne Business
Function Builder will rebuild the business functions in the correct DLL on the server and relink them.

The Build Log contains these sections:

Section Description

Build Header

This section defines the configuration for a specific build, including the source path, foundation path,
 and destination path.

Build Messages

This section displays the compile and link activity. During a compile, a line is output for each business
function that was compiled Any compile errors are reported as error cxxxx. During the link part,
 business function builder outputs the text Creating library This text might be followed by
linker warnings or errors.

Build Summary

The last section of the build summarizes the build for each DLL. This summary is in the form x
error(s), x warnings (y). The summary indicates the status of the build. If you have no
warnings and no errors, then the build was successful. If the summary reports an error, search the
log for the word error to determine the source of the error. Typical build errors are syntax errors and
missing files.

Customizing the Tools Menu
This table lists the sections of the Customize menu option:

Menu Option Usage

Menu Contents

Review all current tools menu customizations.

Menu Text

Enter the text to display in the menu.

Command

Enter the executable to run. You must supply a full path for any program that does not reside in
system\bin32 or that is not defined in Initial Directory.

Arguments

Specify any command line arguments to pass to the executable.

Initial Directory

Specify the initial directory that should be used by the executable, if it is not system\bin32.

Include in Build

Select to display output from the program as part of the build process.

Note: This option is only valid and will only appear for Release 8.11 SP1 or later. If you are running an
earlier version, this option is not available, and Safety Check does not run during build. You must,
instead, run Safety Check manually from the menu.

Hide Window

Select to hide command windows. The functionality remains the same.

This table lists the buttons in the Customize menu option:

76

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Button Usage

Add

Select to enter new programs to appear in the pull-down menu.

Remove

Select to remove the selected item from the menu.

Move Up

Select to move the selected item up in the menu.

Move Down

Select to move the selected item down in the menu.

Ellipsis

Select to open a file or directory dialog so that you can browse for a file or directory.

Question Mark

Select to display a list of substitutions you can use as part of command line arguments. In our
SafetyCheck example, one of the command line arguments is: --F <source_file>. By specifying
<source_file>, you are telling SafetyCheck to use as its input file the selected source file. When
BusBuild starts the build process, it can determine which file is being built and substitute that name in
place of the text <source_file>.

Threadsafe Code
All BSFNs created for JD Edwards EnterpriseOne 8.11 Applications Release and earlier Applications releases are designed
to run in a single-threaded environment. BSFNs designed for JD Edwards EnterpriseOne 8.11 SP1 Applications Release
and later Applications releases that also run with JD Edwards EnterpriseOne Tools Release 8.96 and later Tools releases
are designed to run in a multi-threaded environment. To be considered threadsafe, BSFNs cannot use:

• Global variables.

• Static variables.

• External declarations.

• Non-threadsafe ANSI C APIs.

Safety Check is a source code analysis tool that scans C source code and header files for non-threadsafe behaviors.
Given a source or header file, Safety Check finds all instances of non-threadsafe code, returning line numbers and code
fragments.

Several non-threadsafe APIs have a JD Edwards EnterpriseOne replacement. These replacement APIs have the same
parameters as the non-threadsafe C APIs, except where noted. Most non-threadsafe APIs do not have a JD Edwards
EnterpriseOne replacement. These APIs and their replacements do not necessarily have the same parameters. Use care
when using these APIs.

This table lists the non-threadsafe C APIs for which SafetyCheck searches, the threadsafe standard C replacements, and
the threadsafe JD Edwards EnterpriseOne replacements (if applicable):

Non-Threadsafe
Standard C API

Threadsafe Standard C
API

Threadsafe JD Edwards EnterpriseOne API

acltostr

acltostr_r

None

asctime

asctime_r

jdeJAsctime

77

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Non-Threadsafe
Standard C API

Threadsafe Standard C
API

Threadsafe JD Edwards EnterpriseOne API

crypt

crypt_r

None

ctime

ctime_r

jdeJCtime

drand48

drand48_r

None

ecvt

ecvt_r

None

encrypt

encrypt_r

None

endgrent

endgrent_r

None

endhostent

endhostent_r

None

endnetent

endnetent_r

None

endprotoent

endprotoent_r

None

endpwent

endpwent_r

None

endservent

endservent_r

None

endspwent

endspwent_r

None

endusershell

endusershell_r

None

endutent

endutent_r

None

erand48

erand48_r

None

fcvt

fcvt_r

None

fgetgrent

fgetgrent_r

None

fgetpwent

fgetpwent_r

None

getdate

getdate_r

None

getdiskbyname

getdiskbyname_r

None

getgrent getgrent_r None

78

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Non-Threadsafe
Standard C API

Threadsafe Standard C
API

Threadsafe JD Edwards EnterpriseOne API

getgrgid

getgrgid_r

None

getgrnam

getgrnam_r

None

gethostbyaddr

gethostbyaddr_r

jdeGetHostByAddr_r

gethostbyname

gethostbyname_r

jdeGetHostByName_r

gethostent

gethostent_r

None

getlocale

getlocale_r

None

getlogin

getlogin_r

None

getnmtent

getmntent_r

None

getnetbyaddr

getnetbyaddr_r

None

getnetbyname

getnetbyname_r

None

getnetent

getnetent_r

None

getprotobyname

getprotobyname_r

jdeGetProtoByName_r

getprotobynumber

getprotobynumber_r

None

getprotoent

getprotoent_r

None

getpwent

getpwent_r

None

getpwnam

getpwnam_r

None

getpwuid

getpwuid_r

None

getservbyname

getservbyname_r

None

getservbyport

getservbyport_r

None

getservent

getservent_r

None

79

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Non-Threadsafe
Standard C API

Threadsafe Standard C
API

Threadsafe JD Edwards EnterpriseOne API

getspwaid

getspwaid_r

None

getspwnam

getspwnam_r

None

getspwuid

getspwuid_r

None

getusershell

getusershell_r

None

getutent

getutent_r

None

getutid

getutid_r

None

getutline

getutline_r

None

gmtime

gmtime_r

jdeGmtime

inet_ntoa

inet_ntoa_r

jde_inet_ntoa_r

jrand48

jrand48_r

None

l64a

l64a_r

None

lcong48

lcong48_r

None

localtime

localtime_r

jdeLocaltime

Note: The parameters changed on this due to the
need to send a location to store the value. The
standard C call stores it in a global static variable,
 which is not threadsafe.

lrand48

lrand48_r

None

ltoa

ltoa_r

None

ltostr

ltostr_r

None

mrand48

mrand48_r

None

nrand48

nrand48_r

None

ptsname

ptsname_r

None

80

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Non-Threadsafe
Standard C API

Threadsafe Standard C
API

Threadsafe JD Edwards EnterpriseOne API

pututline

pututline_r

None

rand

rand_r

jdePPRand

Note: Must be used in conjunction with
jdePPSRand to seed the random number
generator correctly. Existing calls to srand
should be replaced with jdePPSRand.

readdir

readdir_r

None

seed48

seed48_r

None

setgrent

setgrent_r

None

sethostent

sethostent_r

None

setkey

setkey_r

None

setlocale

setlocale_r

jdeSetLocale

setnetent

setnetent_r

None

setprotoent

setprotoent_r

None

setpwent

setpwent_r

None

setservent

setservent_r

None

setspwent

setspwent_r

None

setusershell

setusershell_r

None

setutent

setutent_r

None

srand

srand_r

jdePPSRand

srand48

srand48_r

None

strerror

strerror_r

None

strtoacl

strtoacl_r

None

81

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Non-Threadsafe
Standard C API

Threadsafe Standard C
API

Threadsafe JD Edwards EnterpriseOne API

strtoaclpatt

strtoaclpatt_r

None

strtok

strtok_r

None

ttyname

ttyname_r

None

ultoa

ultoa_r

None

ultostr

ultostr_r

None

utmpname

utmpname_r

None

wcstok

wcstok_r

None

Safety Check Usage
During the course of development, there may be times when a non-threadsafe type of code must be used. You can
mark source code with an explanation about why the non-threadsafe code exists. Safety Check will then display this
information as part of its run. To mark source code with an exception, include a comment in this format: /*_LRBF
<comment text */. The comment must begin with "/*_LRBF." The remainder of the comment can span multiple lines
and include any other necessary text. The entire comment will print as part of Safety Check output.

You control Safety Check functionality through several options, at least one of which must be supplied. Multiple options
are supported. Quotation marks are required only when the path specified contains spaces. For example, if the single C
source file b1234.c is stored in the "c:\source" directory, you could call SafetyCheck in one of two ways: SafetyCheck --
F c:\source\b1234.c or SafetyCheck --F "c:\source\b1234.c" However, if the same C source file is stored in the "c:\test
files", you must enclose the path/filename in quotations: SafetyCheck --F "c:\test files\b1234.c"

Argument Usage

--F <C source file>

Use to check a single C source file, for example, --F c:\test\b1234.c

--I <Header file>

Use to check a single header file, for example, --I c:\include\b1234.h

--FD <C source directory>

Use to check all C source files in a given directory, for example, --FD c:\my project\source.

Note: Do not include a trailing slash as part of the directory argument.

--ID <Header file directory>

Use to check all header files in a given directory, for example --ID c:\my project\include

Note: Do not include a trailing slash as part of the directory argument.

--P <Project file>

Use to create a text file that contains a list of files, each of which will be scanned by Safety Check. The
project file should contain multiple lines of the form: SOURCE= <fully qualified file name>

82

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Argument Usage

Note: Do not use quotation marks in the project file.

For example, a project file that specifies three files to scan could look like this:

SOURCE=c:\my project\source\b1111.c

SOURCE=c:\my project\source\b2222.c

SOURCE=c:\my project\include\main.h

--csv

Use to produce output in a comma-delimited format. The output will contain these elements:

• File (the fully qualified file name)

• Line (the line number of the erroneous code)

• Global (1 if a global was found, 0 if not.)

• Static (1 if a static was found, 0 if not.)

• Extern (1 if an external declaration was found, 0 if not.)

• API (1 if a non-threadsafe API was found, 0 if not.)

• BraceMismatch (1 if scanning could not complete due to a brace mismatch)

• Exception (1 if an exception comment was found, 0 if not.)

• CouldNotOpen (1 if the file could not be opened, 0 if it could.)

• NotCSource (1 if the file name did not end in either ".c" or ".h")

• C++Comment (1 if a C++ style comment was found)

• CapInclude (1 if a capital letter was used in a #include)

• LastChar (1 if the last character was not a new line character)

• CommentInComment (1 if a comment was found inside a comment)

--X

Select to print a warning message when a file to check is specified that does not end in "c" or "h". By
default, these warning messages are hidden.

Safety Check Output
A "clean" Safety Check run will produce output of this format:

---------------- SafetyCheck Started ---------------

Scanning d:\safetychecktestrun\source\b03b0011.c...

---------------------- Done ----------------------

1 Files Processed 0 Errors 0 Warnings

"Files processed" indicates how many files were scanned. "Errors" reports the number of file-based errors encountered.
"Warnings" reports the number of problems found while scanning the specified files.

A "dirty" Safety Check run will produce output of this format:

---------------- SafetyCheck Started ---------------

Scanning d:\safetychecktestrun\source\b03b0011.c...

83

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

d:\safetychecktestrun\source\b03b0011.c(186): Global variable found

int iGlobal = 0;

---------------------- Done ----------------------

1 Files Processed 0 Errors 1 Warnings

In this case, the output indicates:

• A problem was found in d:\safetychecktestrun\source\b03b0011.c

• The problem occurred on line 186.

• The problem found was the presence of a global variable.

• The section of code that caused the problem is "int iGlobal = 0;"

Note that the global variable was specified as a "Warning" and not an "Error".

Safety Check Limitations
Following are limitations for safety check:

1. Safety Check is a static code analysis tool that does not perform preprocessing of source code. Therefore,
macro substitutions may introduce non-threadsafe behaviors that cannot be detected by Safety Check.

2. Safety Check does not know which compile-time flags may be set. Problems will occur in code that looks like
this because the number of open braces does not match the number of close braces:

int FunctionOne(int i) { if (i == 0) #ifdef FLAG1 { ++i; #else { --i; #endif } }

3. Non-threadsafe code may still exist even though Safety Check reports no warnings. Safety Check is looking for
the presence of only four specific code elements (globals, variables, externs and non-threadsafe ANSI C APIs).
Do not rely solely on a "clean" run of Safety Check as the only test of whether the code is threadsafe.

Understanding Business Function Processing Failovers
In some instances in which a business function fails to process correctly, the software can attempt to recover and
reprocess the transaction. The system recognizes two principle failure states: process failure and system failure.

A process failure occurs when a jdenet_k process aborts abnormally. For a process failure, the software server
processing launches a new jdenet_k process and continues processing.

A system failure occurs when all the server processing fails, the machine itself is down, or the client cannot reach the
server because of network problems. For a system failure, business function processing must be rerouted either to a
secondary server or to the local client. The system uses this process to attempt to recover from this state:

• When the call to the server fails, the system attempts to reconnect to the server.

• If reconnect succeeds and no cache exists, the system reruns the business function on the server.

If a cache does exist, the system forces the user out of the application.

• If reconnect fails and no cache exists, the system switches to a secondary server or to the local client.

If a cache does exist, the system forces the user out of the application.

After one module switches, all subsequent modules switch to the new location.

84

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Working with Business Function Documentation
This section provides an overview of business function documentation, and discusses how to:

• Create business function documentation.

• View documentation from the Business Function Documentation Viewer.

Understanding Business Function Documentation
Business function documentation explains what individual business functions do and how they should be used. The
documentation for a business function should include this type of information:

• Purpose.

• Parameters (the data structure used).

• Descriptions for each parameter that indicate required input and output, and explain return values.

• Related tables (the table accessed).

• Related business functions (business functions called from within the function itself).

• Special handling instructions.

You use Business Function Design and Data Structure Design to document the business functions.

Creating Business Function Documentation
You can create business function documentation for several levels, including these:

• Business Function Notes

Documentation for the specific business function that you are using.

• Data Structure Notes

Notes about the data structure for the business function.

• Parameter Notes

Notes about the actual parameters in the data structure.

Generating business function documentation provides you with an online list of information about business
functions that you can view through the Business Function Documentation Viewer (P98ABSFN). Typically, the system
administrator performs this task because generating the business function documentation for all business functions
takes considerable time. If you create new business function documentation, you need to regenerate the business
function documentation for that business function only.

Run UBE R98ABSFN, batch version XJDE0001 to generate all business function documentation. The system creates
a hypertext markup language (HTML) link for each business function for which you generated documentation. It also
creates an Index HTML file. These HTML files appear in the output queue directory.

85

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Viewing Documentation from Business Function Documentation
Viewer
You can use Business Function Documentation Viewer to view documentation for all business functions or selected
business functions. After you generate the report, use the Business Function Documentation Viewer (P98ABSFN) to
display the information. It is suggested that you use this method to view business function documentation.

The Business Function Documentation form contains the HTML index that you generated. To view the entire
index or select specific functions, click the appropriate letter in the index. Double-click a business function to view
documentation that is specific to that function.

The media object loads the HTML index of the business functions based on a media object queue. In the media object
queue table, a queue named Business Function Doc is defined.

This queue must point to the directory in which the business function HTML files are located. The system administrator
usually generates the documentation for all business functions. Because the generation process places the
documentation files in the local directory, the administrator must then copy the files to a central directory on the
deployment server. The files must be copied to the media object queue for media object business function notes. If
you are using the standalone version of the software, this path is usually the output directory from the Network Queue
Settings section of the jde.ini file. If this entry is not in the jde.ini file, it is in the print queue directory in the JD Edwards
EnterpriseOne software directory.

Configuring the B98ORCH Business Function to Invoke
an Orchestration or Notification (Release 9.2.3)
This section contains the following topics:

• Prerequisites

• Understanding B98ORCH

• Runtime Architecture for Calling B98ORCH

• Configuring B98ORCH

• B98ORCH Design Considerations

• Security Considerations for Invoking Orchestrations and Notifications from B98ORCH

Prerequisites
Make sure communication is enabled between the EnterpriseOne Enterprise Server and the AIS Server. See "Configuring
the AIS Server with an EnterpriseOne Enterprise Server" in the JD Edwards EnterpriseOne Application Interface Services
Server Reference Guide .

86

olink:EOIIS205
olink:EOIIS205
olink:EOIIS205

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Understanding B98ORCH
Use the B98ORCH business function to invoke an EnterpriseOne orchestration or notification automatically from
an EnterpriseOne interactive application or batch application. Orchestrations and notifications are created in the
Orchestrator Studio, typically by a business analyst, to automate manual business processes.

Note:
• "Creating Orchestrations with Orchestrator Studio" in the JD Edwards EnterpriseOne Tools Orchestrator Guide

for Studio Version 8 and Prior

• "Creating Notifications with Orchestrator Studio" in the JD Edwards EnterpriseOne Tools Notifications Guide

You can configure the following items in EnterpriseOne to invoke B98ORCH:

• Named event rule

• Application event rules

• Report or UBE event rules

• Business function

• Table trigger event rules

B98ORCH calls orchestrations and notifications that execute on the AIS Server, a server that provides a JSON over REST
interface to enable communication from calling clients to the EnterpriseOne HTML Server. Data passed from B98ORCH
is converted to JSON in order to interface with orchestrations and notifications on the AIS Server. Optionally, you can
map full JSON payloads in and out of B98ORCH.

B98ORCH supports asynchronous or synchronous processing. By default, B98ORCH calls an orchestration or
notification asynchronously, without waiting for a response. You can enable B98ORCH for synchronous processing if
expecting a response from a completed orchestration or notification. Calls to B98ORCH from a report or UBE always
process synchronously, even if B98ORCH is configured for asynchronous processing.

Runtime Architecture for Calling B98ORCH
How B98ORCH invokes an orchestration or notification depends on how it is called:

• If called directly from an event rule in an interactive application, B98ORCH is executed on the HTML Server,
where it calls the orchestration or notification on the AIS Server associated with the HTML Server.

• If called from a business function, a server-side named event rule, or a report, B98ORCH is executed on
the Enterprise Server, where it calls the orchestration or notification on the AIS Server associated with the
Enterprise Server.

Runtime Architecture for Calling B98ORCH depicts the architecture for both of these scenarios.

87

olink:EOTOT134
olink:EOTOT134
olink:EOTNF134

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Configuring B98ORCH
You can map up to 20 inputs and outputs in B98ORCH. Outputs are supported only when the business function is set
for synchronous processing. If name-value pairs are passed to the inputs of the business function, then the input JSON
is ignored.

The following table describes parameters in the B98ORCH data structure that you need to configure to specify the
orchestration or notification to invoke and define the expected inputs and outputs:

Parameter Value

Name_FUNCNM

Enter the name of the orchestration or notification to invoke. Maximum characters is 255. You can also
enter the UDO name of the orchestration or notification.

Type_WOTYP

Specify the object type being called. Enter ORCH for orchestration or NTF for notification.

InputType_ACTYP

Future use. Do not use.

OutputType_ACTYP

Future use. Do not use.

WaitForResponse_ER066 Complete this parameter to specify asynchronous or synchronous processing. Valid values are:

88

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

Parameter Value

• 0 or blank for asynchronous processing.

• 1 for synchronous processing.

Use synchronous processing if you are configuring B98ORCH with output mappings for the
orchestration or notification response.

<Error flag>

This is a return value. If a failure occurs during B98ORCH processing, a value of 1 is returned.

InputString_REPTEXT

A JSON string that is the input of the orchestration. Maximum characters is 32000.

Use the next 20 parameters as needed
to define the name-value pairs for input
mappings:

NameX_ENTRNM

ValueX_TSTRING

For NameX_ENTRNM, enter the name for the input name-value pair. Maximum characters is 50.

ValueX_TSTRING is for passing the value for the name-value pair. Maximum characters is 200.

OutputString_REPTEXT

A JSON string that is the output of the orchestration, if executing synchronously.

Use the next 20 parameters as needed
to define name-value pairs for output
mappings:

OutNameX_ENTRNM

OutValueX_TSTRING

For OutNameX_ENTRNM, enter the name for the output name-value pair. Maximum characters is 50.

OutValueX_TSTRING is for passing the value for the name-value pair. Maximum characters is 200.

B98ORCH Design Considerations
When you configure B98ORCH to call an orchestration or notification from an EnterpriseOne event, there are many
factors to consider to ensure that the process completes successfully with little or no impact to performance. Some of
the considerations listed here are no different than if you were designing a business function for a custom application.

Understand the action that the orchestration or notification performs

Is the notification set to Run as Subscriber? If so, be aware of impacts when calling a notification that is set to "Run as
Subscriber." See Planning for "Run As Subscriber" and "Allowing Subscriber Overrides" in the JD Edwards EnterpriseOne
Tools Notifications Guide .

Is the orchestration performing updates or deletes? Is it calling a UBE and waiting for it to complete? These operations
take time and have the potential to lock database records.

Consider the event from where you call an orchestration or notification

If you call an orchestration or notification from an event rule, consider how many times the event is executed. Do you
want to call the orchestration or notification every time or do you need to condition the call?

89

olink:EOTNF128
olink:EOTNF128

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 3
Using Business Functions

If called from a table trigger, to avoid recursion and locking, it is recommended that you run it asynchronously.
Recursion and locking can happen on update or delete operations on existing records if the trigger on a table calls an
orchestration that attempts to update the same record in the table.

Consider the performance impact of a UBE designed to invoke an orchestration repeatedly. For example, if you have a
UBE configured to invoke an orchestration hundreds of times to update hundreds of records, expect a marginally longer
processing time. The time the system takes to complete each transaction is no different, but the overhead for each
orchestration invocation (100 milliseconds per invocation at a minimum) should be considered. You should determine
the actual runtime of your orchestration to understand the impact of calling the orchestration repeatedly during the
report execution.

Orchestrations invoked from a UBE always runs synchronously, regardless of whether the B98ORCH parameter is set for
synchronous or asynchronous processing.

Design considerations for avoiding time-outs

If a trigger on a table calls B98ORCH configured for synchronous processing, the table operation may time out, which
will cause the operation to fail, and potentially roll back the transaction.

Note: If a transaction times out or fails, it is important to note that even though the transaction might be rolled back,
the operation performed by the orchestration is not rolled back.

If an orchestration launches a UBE, it has to wait for the UBE to complete before proceeding to the next step. Because
of the time it can take for a UBE to process, it is likely that the session between the calling client and the AIS Server
or the session between the AIS Server and HTML Server will time out. Therefore, the recommendation is to call an
orchestration asynchronously, especially if the orchestration is designed to launch a UBE.

Make sure that the recommended timeout settings for the servers in an EnterpriseOne with AIS Server architecture are
set properly. See "Timeout Settings" in the JD Edwards EnterpriseOne Tools Security Administration Guide for details.

Security Considerations for Invoking Orchestrations and
Notifications from B98ORCH
When invoked, B98ORCH uses the credentials of the EnterpriseOne user to establish the AIS Server session and
invoke the orchestration or notification. The EnterpriseOne user must have UDO view security for the orchestration or
notification called by B98ORCH.

It is recommended that you use roles to establish UDO view security for orchestrations and notifications called by
B98ORCH. All components associated with an orchestration are managed as separate UDOs, therefore you must
associate the orchestration and all its components to the same role. For example, if you use B98ORCH to launch an
orchestration from a table trigger, for security purposes, you need to associate the orchestration and all its components
to the same role allowed to update the table.

90

olink:EOTSC1081

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 4
Understanding Record Locking

4 Understanding Record Locking

Record Locking

JD Edwards EnterpriseOne does not implement any record-locking techniques. It relies on the native locking strategy of
the vendor database management system.

In specific situations, the vendor database does not automatically lock as needed. In these situations, you can instruct
JD Edwards EnterpriseOne to control record locking. For example, you can mandate record locking on the Next
Numbers table to ensure the integrity of the Next Numbers feature.

You can lock JD Edwards EnterpriseOne records using one of the following methods:

• Optimistic locking
Use optimistic locking (sometimes referred to as record change detection) to prevent a user from updating a
record if it has changed between the time the user inquired on the record and the time user updates the record.

• Pessimistic locking
Use pessimistic locking to prevent attempts to update the same record at the same time by different
applications or users. The record is locked before it is updated.

Optimistic Locking

You can set optimistic locking in the workstation jde.ini file. This type of database locking prevents a user from updating
a record that changed since the user has inquired about it. If the record has changed, the user must select the record
again and then make the change. This feature is available for business functions, table I/O, and Named Event Rules.

For example, assume that two users are working in the Address Book application The following table illustrates the
optimistic locking process:

Time Action

10:00

User A selects Address Book record 1001 to inspect it.

10:05

User B selects Address Book record 1001 to inspect it.

Both users now have Address Book record 1001 open.

10:10

User B updates a field in Address Book record 1001 and clicks OK.

JD Edwards EnterpriseOne updates Address Book record 1001 with the information entered by User B.

91

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 4
Understanding Record Locking

Time Action

10:15

User A updates a field in Address Book record 1001 and clicks OK.

JD Edwards EnterpriseOne does not update Address Book record 1001, and the system displays a
message informing User A that the record has changed during the time that User A was viewing it. For
User A to change the record, User A must re-select it and then update it.

When the system detects that a record change has occurred, it displays a message indicating that the record has been
changed since it was retrieved.

Pessimistic Locking

Pessimistic locking is sometimes referred to as record locking. You can use pessimistic locking to prevent multiple users
or applications from updating the same record at the same time. For example, suppose a user enters a transaction
that uses Next Numbers. When the user clicks OK, the Next Numbers feature selects the appropriate Next Numbers
record, verifies that this number is not already in the transaction file, and then updates the Next Numbers record by
incrementing the number. If another process tries to access the same Next Numbers record before the first process has
successfully updated the record, the Next Numbers function waits until the record is unlocked and then completes the
second process.

Pessimistic locking in JD Edwards EnterpriseOne is implemented by calling published JDEBase APIs. When you use
pessimistic locking, you should consider the time required to select and update a record because the record is locked
until the update is complete. Transaction processing uses a special set of locking APIs. A locked record might or might
not be part of a transaction. Record locking APIs are independent of the transaction and its boundaries. They always
lock, regardless of whether you are in manual or auto commit mode.

Records that are updated using pessimistic locking APIs (such as JDB_FetchForUpdate or JDB_UpdateCurrent) within
a transaction boundary are locked from the time the record is selected for update until the commit or rollback occurs.
Records within the transaction boundary that are updated without using pessimistic locking APIs are locked from the
time of the update until the commit or rollback occurs. This is also true if you use a business function to define and
activate transaction processing.

Using Pessimistic Locking Within a Transaction Boundary

You might need to use pessimistic locking in conjunction with transaction processing. For example, if you want the
system to lock records between the read operation and the update, you must use pessimistic locking.

Business Functions and Pessimistic Locking

You might want to use pessimistic locking in a business function if the business function updates a table. The table
being updated should have a high potential for record contention with another user or job. Remember that you should

92

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 4
Understanding Record Locking

lock records for as short a time as possible. Ensure that the select or fetch for an update occurs as closely to the update
as possible.

93

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 4
Understanding Record Locking

94

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 5
Debugging Business Functions

5 Debugging Business Functions

Debugging
Debugging is the method you use to determine the state of your program at any point of execution. Use debugging to
help you solve problems and to test and confirm program execution.

Use a debugger to stop program execution so you can see the state of the program at a specific point. This enables
you to view the values of input parameters, output parameters, and variables at the specified point. When program
execution is stopped, you can review the code line-by-line to check such issues as flow of execution and data integrity.

You use the Visual C++ Debugger to debug C business functions.

Debugging Strategies
You can use several strategies to make debugging faster and easier. Begin by observing the nature of the problem.

Is the Program Ending Unexpectedly?
If the program is ending unexpectedly, the cause is likely an unhandled exception. An unhandled exception is a failure to
handle memory correctly. It is an easy problem to track down if it is happening in the same place: simply set breakpoints
at strategic points throughout the code and run the program until you find the problem.

If other objects are missing, termination is more abrupt. Remember to transfer all Media Object (also called Generic
Text) objects correctly. If an application has a Row exit to an application that does not exist, an unhandled exception in
the program occurs immediately.

Termination of the program is more abrupt and less helpful when other kinds of objects are missing. You must review
all of the pieces of the application to verify that they are all present and correctly built. A common error is to overlook
media objects. If you cannot enter the program at all, a missing object is most likely the problem.

Ensure that the program is terminating in the same place. If the program is failing to restore memory after its use, the
program might eventually have insufficient memory to run. If so, you must reboot the workstation to restore memory.

Is the Output of the Program Incorrect?
Incorrect program output typically indicates a flaw within the logic of the code. To help find the error:

• Set a breakpoint in the code prior to the point where the bad output is produced.

• Step through the ER line by line, while monitoring the values of relevant ER variables.
At some point, a variable will probably take on an erroneous value that subsequently produces incorrect output.

• If that point occurs before your breakpoint, set another breakpoint earlier in the code and restart the
application.

95

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 5
Debugging Business Functions

• Continue this process until you find the statement that is causing the wrong value to be assigned to the
variable.

Where Else Could the Problem Be Coming From?
Spend some time thinking about where the source of the problem might be. If you don't know which ER event is causing
an error, try to isolate it. For example, you might be able to temporarily disable the ER one event at a time to see if the
error still happens. You can try to repeat the processing of a single event by doing unnatural actions in the GUI, like
toggling up and down between grid rows to force the execution of the Row Is Exited event. There are no predefined
debugging strategies that will work in any given situation. Be creative and be persistent, until you narrow down the
problem to its source.

Debug Logs
You can output to a file a log of SQL statements and events by changing the line in the jde.ini file under [DEBUG] from
Output = NONE to Output = FILE, as in the following sample. This is a useful debugging tool when you have narrowed a
problem to a specific issue involving the JDEDB APIs.

[DEBUG]
TAMMULTIUSERON=0
Output=FILE
ServerLog=0
LEVEL=BSFN,EVENTS
DebugFile=c:\jdedebug.log
JobFile=c:\jde.log
Frequency=10000
RepTrace=0

You can set breakpoints and examine the code.

Debugging Business Functions with Microsoft Visual C+
+
This section provides an overview of the Microsoft Visual C++ debugger and describes how to:

• Debug business functions attached to interactive applications.

• Use SQL log tracing.

• Use debug tracing.

Understanding the Visual C++ Debugger
You can use Microsoft Visual C++ to debug business functions that are written in C. You can debug business functions
that are attached to interactive applications or to batch applications. The business function must be configured to run
locally.

96

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 5
Debugging Business Functions

If you are debugging ER for business functions and C business functions, you can use the JD Edwards EnterpriseOne
debugger and the Visual C++ debugger together. Follow the process until you log into JD Edwards EnterpriseOne. At
that point, follow the steps for the JD Edwards EnterpriseOne debugger. Program execution stops if C code is accessed.
You can then use Visual C++ to continue debugging. This method is useful if you are trying to locate a problem and are
not sure whether the problem is in a C business function or in the application that calls the business function.

You must use the Microsoft Visual C++ Debugger to debug business functions that were written with the Event Rules
scripting language and then interpreted as C code, or that were originally written in C. You can run the entire JD
Edwards EnterpriseOne system through the Visual C++ debugger (that is, you can start the activeConsole.exe or JD
Edwards Solution Explorer file from within the Visual C++ Debugger). This enables you to step out of the tool application
code into the business functions that are called in the ER.

You can use the debugger to debug a C program and interactively stop and start it as needed. During debugging, you
can check specific values of variables and parameters to determine whether a program is running correctly. You can also
step through the code to see what code is actually being executed.

The debug commands are listed in the Debug menu. You can customize the tool bar to contain debug buttons, which
you can use instead of the menu.

The Visual C++ has many features in the Debug menu. The Visual C++ debugger helps you efficiently solve real-world
problems.

The Go Command
You can run a program using the Go command from the Debug menu. The program runs until completion unless you
set up breakpoints.

The Step Command
The Step command is available on the Debug menu and executes the current line of code. When the line of code has
been executed, the yellow arrow cursor appears on the next line of code to be executed.

The Step Into Command
You can access the Step Into command from the Debug menu. Use this command when the current line of code
contains a function call. The debugger steps into the function so that it can be debugged line by line. When the function
is complete, the debugger returns to the next line of code after the function call in the calling routine. If the source code
of the function to be stepped into does not exist on the workstation, the debugger skips over the line of code as though
the Step command was used.

Stepping into a standard C function takes you into the function, which you might not want to do. If so, use the Step Over
command to skip those functions.

Setting Breakpoints
You use breakpoints to run the program until it reaches a certain line of code. If a breakpoint is set, the Go command
runs the program until it encounters that line of code.

You can set a breakpoint by placing the cursor anywhere on the line of code. When you select Debug, Breakpoints, a red
octagon appears to the left of the line of code where the breakpoint is set. When the program is run, all lines of code up
to the breakpoint are executed. To continue execution after the breakpoint, you can use Step, Step Into, or Go.

97

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 5
Debugging Business Functions

Using Watch
You can use Watch to inspect what values variables are set to. To use Watch, click the item that you want to watch and
drag it to the Watch window.

Locals Window
All local variables and parameters to a function are listed with their data types and values in the Locals window. You can
modify the values of all items in the Locals window during debugging. This is useful if you are debugging infinite loops.

Understanding Visual C++ Debugger Tracing Utilities
Visual C++ has two tracing utilities that you might find valuable: SQL Log Tracing and debug tracing. You can use SQL
Log Tracing to help you determine the exact SQL statement that is generated and sent to the database.

Debugging Business Functions Attached to Interactive
Applications
To debug a business function attached to an interactive application:

1. Close the application.

The application must be closed to debug in Visual C++.
2. Open Visual C++ and verify that all work spaces have been closed.
3. Select File, Open.
4. Select List Files of Type to accept executables (.exe).
5. Select activConsole.exe on path \b9\System\bin32 and click the OK button.

The system creates a project work space.
6. Select Project, Settings.
7. Click the Debug tab.
8. In the Category list, select Additional DLLs.
9. Click the Browse button to select the CALLBSFN.dll (which must be built in debug mode) or other appropriate

DLL on path \b9\path\bin32, where path varies, depending on the path code.
10. Click the OK button.
11. Select the .h and .c files for the source that you want to debug from and then select File, Open.
12. To set breakpoints in the code, select Edit, Breakpoints.

If this message appears, click the OK button:

cannot open *.pdb

If a message appears notifying you that breakpoints have been moved to the next valid lines, a source code and
object mismatch might exist, and you might need to rebuild the business function.

13. Select Build, Start Debug, Go.

The JD Edwards EnterpriseOne sign-in window appears.
14. Sign in to the application as you normally would sign in.

98

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 5
Debugging Business Functions

15. Run the application.

When the application reaches the business function in debug, the debugger opens or displays the C code in
Visual C so that you can step through it.

Using SQL Log Tracing
This task is useful only for ODBC connections.

To use SQL Log tracing:

1. From the Control Panel on the workstation, select Administrative Tools, and then Data Sources (ODBC).
2. Select the 32 bit ODBC driver, and then click the Tracing tab.
3. Specify when you want the system to trace.
4. Specify the log output path in the Log file Path.

Using Debug Tracing
To use debug tracing:

1. In the jde.ini file under [DEBUG], set Output=FILE.
2. Change the value for Level= to suit the specific debugging needs.

Possible values for Level are contained in the comment line following the Level= line. Any combination is
acceptable. Use commas to separate values.

99

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 5
Debugging Business Functions

100

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 6
Glossary

6 Glossary

business function
A named set of user-created, reusable business rules and logs that can be called through event rules. Business
functions can run a transaction or a subset of a transaction (check inventory, issue work orders, and so on). Business
functions also contain the application programming interfaces (APIs) that enable them to be called from a form, a
database trigger, or a non-JD Edwards EnterpriseOne application. Business functions can be combined with other
business functions, forms, event rules, and other components to make up an application. Business functions can be
created through event rules or third-generation languages, such as C. Examples of business functions include Credit
Check and Item Availability.

business function event rule
See named event rule (NER).

business view
A means for selecting specific columns from one or more JD Edwards EnterpriseOne application tables whose data is
used in an application or report. A business view does not select specific rows, nor does it contain any actual data. It is
strictly a view through which you can manipulate data.

checksum
A fixed-size datum computed from an arbitrary block of digital data for the purpose of detecting accidental errors that
may have been introduced during its transmission or storage. JD Edwards EnterpriseOne uses the checksum to verify
the integrity of packages that have been downloaded by recomputing the checksum of the downloaded package and
comparing it with the checksum of the original package. The procedure that yields the checksum from the data is called
a checksum function or checksum algorithm. JD Edwards EnterpriseOne uses the MD5 and STA-1 checksum algorithms.

deployment server
A server that is used to install, maintain, and distribute software to one or more enterprise servers and client
workstations.

101

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Chapter 6
Glossary

driver manager
The JDBC class that manages multiple registered JDBC drivers and dispatches connection initialization requests to
them. The Java driver manager class is java.sql.DriverManager.

named event rule (NER)
Encapsulated, reusable business logic created using event rules, rather that C programming. NERs are also called
business function event rules. NERs can be reused in multiple places by multiple programs. This modularity lends itself
to streamlining, reusability of code, and less work.

102

JD Edwards EnterpriseOne Tools | Index | 103

Index

A
additional features

record locking 91
API, common library 3
API, database 5
API, JDEBASE 6

B
Business Function Builder, DLLs 34
business functions

calling APIs from 7
creating C business functions 37
creating event rule business functions 47
pessimistic record locking 92

C
caches

calling JDECACHE APIs 22
retrieving data from 22
using cache business functions 21
using programming standards 21

callback functions 12
Cdecl 8
cursor, cache

closing 31
moving 29
opening 27
resetting 31

D
data structures

JDEDATE 4
MATH_NUMERIC 3

database locking 91
DLLs 34
DOM parser 9

H
handles 6

J
JDB_InitUser API 24
jde.ini

detecting record change 91
JDEB_InitBhvr API 22
JDEBase APIs, locking records 92
jdeCacheAdd API 22, 26, 27
jdeCacheCloseCursor API 28, 31
jdeCacheDelete API 30, 30
jdeCacheDeleteAll API 30
jdeCacheFetch API 29
jdeCacheFetchPosition API 29, 30, 31
jdeCacheFetchPositionByRef API 31
JdeCacheGETNumCursors API 19
jdeCacheGetNumRecords API 19

jdeCacheInit API 20, 24, 24, 25, 26
jdeCacheInitEx API 20
jdeCacheInitMultipleIndex 24
jdeCacheInitMultipleIndex API 20, 24
jdeCACHEINITMultipleIndex API 22
jdeCacheInitMultipleIndexEx API 20
jdeCACHEINITMultipleIndexEx API 22
jdeCacheInitMultipleIndexUser API 20
jdeCacheInitUser API 20
jdeCacheOpenCursor API 22, 27
jdeCacheResetCursor API 31
jdeCacheTerminate API 26, 26, 26
jdeCacheTerminateALL API 27
jdeCacheUpdate API 30, 30
jdeCachInit API 22
jdeCachInitEx API 22
JDEDATE 4
JDEKRNL 18

M
MATH_NUMERIC 3

N
native locking strategy 91
null pointer errors 96

O
ODBC 5
optimistic locking 91
output errors 95

P
parsers

DOM 9
SAX 9

pessimistic locking
business functions 92
overview 92
transaction boundary 92

R
record locking

JDEBase APIs 92
native locking strategy 91
optimistic locking 91
pessimistic locking 92

S
SAX parser 9
Stdcall 8

T
transaction boundary, pessimistic locking 92

JD Edwards EnterpriseOne Tools | Index | 104

U
unhandled exception 95

V
Visual Basic program 9

W
workstation jde.ini, record change detection 91

X
XercesWrapper 9

	 APIs and Business Functions Guide
	Preface
	Introduction to JD Edwards EnterpriseOne Tools: APIs and Business Functions
	APIs and Business Functions Overview
	APIs and Business Functions Implementation

	Working with APIs
	Understanding APIs
	API Fundamentals
	Common Library APIs
	MATH_NUMERIC Data Type
	JDEDATE Data Type

	Database APIs
	Standards and Portability
	JD Edwards EnterpriseOne ODBC
	Standard JDEBASE API Categories
	Connecting to a Database
	Understanding Database Communication Steps

	Calling APIs
	Calling an API from an External Business Function
	Stdcall Calling Convention
	Cdecl Calling Convention

	Calling a Visual Basic Program from JD Edwards EnterpriseOne Software

	Using the SAX Parser
	Understanding the SAX Parser
	Examples of SAX Parser Usage
	Example Context Data Structure
	Example Main Function
	Example Callback Functions

	Example of a SAX Parsing Sequence

	Working with JDECACHE
	Understanding Caching
	When to Use JDECACHE
	Performance Considerations

	Understanding the JDECACHE API Set
	JDECACHE Management APIs
	JDECACHE Manipulation APIs

	Understanding JDECACHE Standards
	Cache Business Function Source Description
	Cache Programming Standards

	Prerequisites
	Calling JDECACHE APIs
	Setting Up Indexes
	Initializing the Cache
	Example: Index Definition Structure

	Using an Index to Access the Cache
	Example: JDECACHE Internal Index Definition Structure

	Using the jdeCacheInit/jdeCacheTerminate Rule
	Using the Same Cache in Multiple Business Functions or Forms

	Working with JDECACHE Cursors
	Opening a JDECACHE Cursor
	Using the JDECACHE Data Set
	Cursor-Advancing APIs
	Non-Cursor-Advancing APIs

	Updating Records
	Deleting Records
	Using the jdeCacheFetchPosition API
	Using the jdeCacheFetchPositionByRef API
	Resetting the Cursor
	Closing the Cursor
	Using JDECACHE Multiple Cursor Support
	Using JDECACHE Partial Keys

	Using Business Functions
	Understanding Business Functions
	Components of a Business Function
	How Distributed Business Functions Work
	C Business Functions
	Header File Sections
	Example: Business Function Header File
	Source File Sections
	Example: Business Function Source File

	Business Function Event Rules

	Understanding Transaction Master Business Functions
	Building Transaction Master Business Functions
	Understanding Building Transaction Master Business Functions
	Begin Document
	Special Logic or Processing Required
	Hook Up Tips
	Common Parameters
	Application-Specific Parameters

	Edit Line
	Special Logic or Processing Required
	Typical Uses and Hookup
	Common Parameters

	Edit Document
	Special Logic or Processing Required
	Hook Up Tips
	Common Parameters
	Application-Specific Parameters

	End Document
	Hook-Up Tips
	Common Parameters
	Application-Specific Parameters

	Clear Cache
	Special Logic or Processing Required
	Common Parameters

	Cancel Document
	Special Logic or Processing Required
	Common Parameter

	Implementing Transaction Master Business Functions
	Single-Record Processing
	Interactive Program Flow Example
	Batch Program Flow Example

	Document Processing
	Program Flow Example

	Working with Master File Master Business Functions
	MBF Information Structure
	Standard Parameters for Single-Record Master Business Functions
	Application-Specific Control Parameters (Example: Address Book)
	Application Parameters (Example: Address Book)

	Master Business Function Impact on Performance

	Working with Business Functions
	Prerequisite
	Creating a Custom DLL
	Specifying a Custom DLL for a Custom Business Function

	Working with Business Function Builder
	Setting Build Options
	Reading Build Output
	Makefile Section
	Begin DLL Section
	Compile Section
	Link Section
	Rebase Section
	Summary Section

	Building All Business Functions
	Using the Utility Programs
	Resolving Errors with JDEBLC, Dumpbin, and PDB
	Customizing the Tools Menu
	Threadsafe Code
	Safety Check Usage
	Safety Check Output
	Safety Check Limitations

	Understanding Business Function Processing Failovers

	Working with Business Function Documentation
	Understanding Business Function Documentation
	Creating Business Function Documentation
	Viewing Documentation from Business Function Documentation Viewer

	Configuring the B98ORCH Business Function to Invoke an Orchestration or Notification (Release 9.2.3)
	Prerequisites
	Understanding B98ORCH
	Runtime Architecture for Calling B98ORCH
	Configuring B98ORCH
	B98ORCH Design Considerations
	Security Considerations for Invoking Orchestrations and Notifications from B98ORCH

	Understanding Record Locking
	Record Locking
	Optimistic Locking
	Pessimistic Locking
	Using Pessimistic Locking Within a Transaction Boundary
	Business Functions and Pessimistic Locking

	Debugging Business Functions
	Debugging
	Debugging Strategies
	Is the Program Ending Unexpectedly?
	Is the Output of the Program Incorrect?
	Where Else Could the Problem Be Coming From?

	Debug Logs
	Debugging Business Functions with Microsoft Visual C++
	Understanding the Visual C++ Debugger
	The Go Command
	The Step Command
	The Step Into Command
	Setting Breakpoints
	Using Watch
	Locals Window

	Understanding Visual C++ Debugger Tracing Utilities
	Debugging Business Functions Attached to Interactive Applications
	Using SQL Log Tracing
	Using Debug Tracing

	Glossary
	business function
	business function event rule
	business view
	checksum
	deployment server
	driver manager
	named event rule (NER)

	Index

