
JD Edwards
EnterpriseOne
Tools

Development Standards for
Business Function Programming
Guide

9.2

JD Edwards EnterpriseOne Tools
Development Standards for Business Function Programming Guide

9.2

Part Number: E53574-04

Copyright © 2011, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Contents

Preface .. i

1 Introduction to JD Edwards EnterpriseOne Tools Development Standards
for Business Function Programming

1

Development Standards for Business Function Programming Overview .. 1

Development Standards for Business Function Programming Implementation .. 1

2 Understanding Naming Conventions 3
Source and Header File Names ... 3

Function Names .. 3

Variable Names ... 4

Business Function Data Structure Names .. 6

3 Ensuring Readability 7
Understanding Readability ... 7

Maintaining the Source and Header Code Change Log .. 7

Inserting Comments .. 7

Indenting Code ... 8

Formatting Compound Statements ... 8

4 Declaring and Initializing Variables and Data Structures 13
Understanding Variables and Data Structures ... 13

Using Define Statements .. 13

Using Typedef Statements ... 14

Creating Function Prototypes .. 14

Initializing Variables .. 16

Initializing Data Structures ... 18

Using Standard Variables .. 19

5 Applying General Coding Guidelines 23
Using Function Calls .. 23

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Passing Pointers between Business Functions ... 26

Allocating and Releasing Memory ... 27

Using hRequest and hUser .. 27

Typecasting .. 28

Comparison Testing ... 28

Copying Strings with jdeStrcpy or jdeStrncpy ... 29

Using the Function Clean Up Area .. 29

Inserting Function Exit Points ... 30

Terminating a Function ... 31

6 Coding for Portability 33
Portability Concepts ... 33

Portability Guidelines ... 33

Preventing Common Server Build Errors and Warnings ... 34

7 Understanding JD Edwards EnterpriseOne Defined Structures 37
.. 37

MATH_NUMERIC Data Type ... 37

JDEDATE Data Type ... 38

8 Implementing Error Messages 41
Understanding Error Messages ... 41

Inserting Parameters for Error Messages in lpDS .. 42

Initializing Behavior Errors ... 43

Using Text Substitution to Display Specific Error Messages .. 43

Mapping Data Structure Errors with jdeCallObject .. 44

9 Understanding Data Dictionary Triggers 47
Data Dictionary Triggers .. 47

10 Understanding Unicode Compliance Standards 49
Unicode Compliance Standards ... 49

Unicode String Functions .. 49

Unicode Memory Functions ... 51

Pointer Arithmetic ... 51

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Offsets ... 52

MATH_NUMERIC APIs ... 53

Third-Party APIs ... 53

Flat-File APIs ... 54

HMAC-SHA-256 API (Release 9.2.9.3) .. 55

11 Understanding Standard Header and Source Files 57
Standard Header .. 57

Standard Source ... 60

12 Glossary 65
add mode ... 65

business function ... 65

compound statement .. 65

define statement .. 65

edit mode ... 65

error message ... 66

event rule ... 66

named event rule (NER) ... 66

portability ... 66

trigger ... 66

Index ... 67

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Preface

Preface
Welcome to the JD Edwards EnterpriseOne documentation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc .

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

Related Information
For additional information about JD Edwards EnterpriseOne applications, features, content, and training, visit the JD
Edwards EnterpriseOne pages on the JD Edwards Resource Library located at:

http://learnjde.com

Conventions
The following text conventions are used in this document:

Convention Meaning

Bold

Boldface type indicates graphical user interface elements associated with an action or terms defined in
text or the glossary.

Italics

Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular
values.

Monospace

Monospace type indicates commands within a paragraph, URLs, code examples, text that appears on a
screen, or text that you enter.

> Oracle by Example

Indicates a link to an Oracle by Example (OBE). OBEs provide hands-on, step- by-step instructions,
including screen captures that guide you through a process using your own environment. Access to
OBEs requires a valid Oracle account.

i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://learnjde.com

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Preface

ii

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 1
Introduction to JD Edwards EnterpriseOne Tools

Development Standards for Business Function
Programming

1 Introduction to JD Edwards EnterpriseOne
Tools Development Standards for Business
Function Programming

Development Standards for Business Function
Programming Overview
Business Function Programming is an integral part of Oracle's JD Edwards EnterpriseOne tool set. Application
developers can attach custom functionality to application and batch processing events by using business functions. You
program business functions are programmed in C code, discussed in this guide, or as Named Event Rules.

Development Standards for Business Function
Programming Implementation
This section provides an overview of the steps that are required to implement Development Standards for Business
Function Programming.

In the planning phase of your implementation, take advantage of all JD Edwards EnterpriseOne sources of information,
including the installation guides and troubleshooting information.

Business Function Programming Implementation Steps
This table lists the steps for JD Edwards EnterpriseOne Tools Business Function Programming implementation.

• Set up default project in OMW.

See "Understanding JD Edwards EnterpriseOne OMW Configuration" in the JD Edwards EnterpriseOne Tools
Object Management Workbench Guide .

• Configure OMW transfer activity rules and allowed actions.

See "Understanding JD Edwards EnterpriseOne OMW Configuration" in the JD Edwards EnterpriseOne Tools
Object Management Workbench Guide .

• Set up default location and printers.

See JD Edwards EnterpriseOne Tools Report Printing Administration Technologies Guide .

1

olink:EOTOM00205
olink:EOTOM00205
olink:EOTOM00205
olink:EOTOM00205
olink:EOTRP00108

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 1
Introduction to JD Edwards EnterpriseOne Tools

Development Standards for Business Function
Programming

2

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 2
Understanding Naming Conventions

2 Understanding Naming Conventions

Source and Header File Names
Source and header file names can be a maximum of 8 characters and should be formatted as bxxyyyy, where:

• b = BSFN object

• xx (second two digits) = The system code, such as:

◦ 01 = Address Book

◦ 04 = Accounts Payable

• yyyyy (the last five digits) = A sequential number for the system code, such as:

◦ 00001 = The first source or header file for the system code

◦ 00002 = The second source or header file for the system code

Both the C source and the accompanying header file should have the same name.

This table shows examples of this naming convention:

System System Code Source Number Source File Header File

Address Book

01

10

b0100010.c

b0100010.h

Accounts Receivable

04

58

b0400058.c

b0400058.h

General Ledger

09

2457

b0902457.c

b0902457.h

Function Names
An internal function can be a maximum of 42 characters and should be formatted as Ixxxxxx_a, where:

• I = An internal function

• xxxxxx = The source file name

• a = The function description

Function descriptions can be up to 32 characters in length, and must not contain spaces. Be as descriptive as
possible and capitalize the first letter of each word, such as ValidateTransactionCurrencyCode. When possible
use the major table name or purpose of the function.

An example of a Function Name is I4100040_CompareDate

3

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 2
Understanding Naming Conventions

Note: Do not use an underscore after I.

Variable Names
Variables are storage places in a program and can contain numbers and strings. Variables are stored in the computer's
memory. Variables are used with keywords and functions, such as char and MATH_NUMERIC, and must be declared at
the beginning of the program.

A variable name can be up to 32 characters in length. Be as descriptive as possible and capitalize the first letter of each
word.

You must use Hungarian prefix notation for all variable names, as shown in this table:

Prefix Description

c

JCHAR

sz

NULL-terminated JCHAR string

z

ZCHAR

zz

NULL-terminated ZCHAR string

n

short

l

long

b

Boolean

mn

MATH_NUMERIC

jd

JDEDATE

lp

long pointer

i

integer

by

byte

ul

unsigned long (identifier)

us

unsigned Short

4

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 2
Understanding Naming Conventions

Prefix Description

ds

data structures

h

handle

e

enumerated types

id

id long integer, JDE data type for returns

ut

JDEUTIME

sz

VARCHAR

Example: Hungarian Notation for Variable Names
These variable names use Hungarian notation:

Variable Description

JCHAR

cPaymentRecieved;

JCHAR []

szCompanyNumber = _J(00000);

short

nLoopCounter;

long int

lTaxConstant;

BOOL

bIsDateValid;

MATH_NUMERIC

mnAddressNumber;

JDEDATE

jdGLDate;

LPMATH_NUMERIC

lpAddressNumber;

int

iCounter;

byte

byOffsetValue;

unsigned long

ulFunctionStatus;

5

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 2
Understanding Naming Conventions

Variable Description

D0500575A

dsInputParameters;

JDEDB_RESULT

idJDEDBResult;

Business Function Data Structure Names
The data structure for business function event rules and business functions should be formatted as DxxyyyyA, where:

• D = Data structure

• xx (second two digits) = The system code, such as

◦ 01 = Address Book

◦ 02 = Accounts Payable

• yyyy = A next number (the numbering assignments follow current procedures in the respective application
groups)

• A = An alphabetical character (such as A, B, C and so on) placed at the end of the data structure name to
indicate that a function has multiple data structures

Even if a function has only one data structure, you should include the A in the name.

An example of a Business Function Data Structure Name is D050575A.

6

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 3
Ensuring Readability

3 Ensuring Readability

Understanding Readability
Readable code is easier to debug and maintain. You can make code more readable by maintaining the change log,
inserting comments, indenting code, and formatting compound statements.

Maintaining the Source and Header Code Change Log
You must note any code changes that you make to the standard source and header for a business function. Include this
information:

• SAR - the SAR number

• Date - the date of the change

• Initials - the programmer's initials

• Comment - the reason for the change

Inserting Comments
Insert comments that describe the purpose of the business function and your intended approach. Using comments will
make future maintenance and enhancement of the function easier.

Use this checklist for inserting comments:

• Always use the /*comment */ style. The use of // comments is not portable.

• Precede and align comments with the statements they describe.

• Comments should never be more that 80 characters wide.

Example: Inserting Comments
This example shows the correct way to insert block and inline comments into code:

 /*--
 * Comment blocks need to have separating lines between
 * the text description. The separator can be a
 * dash '-' or an asterisk '*'
 --/
 if (statement)
 {
 statements
 } /* inline comments indicate the meaning of one statement */
 /*--
 * Comments should be used in all segments of the source

7

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 3
Ensuring Readability

 * code. The original programmer may not be the programmer
 * maintaining the code in the future which makes this a
 * crucial step in the development process.
 --/
 /**
 * Function Clean Up
 **/

Indenting Code
Any statements executed inside a block of code should be indented within that block of code. Standard indentation is
three spaces.

Note: Set up the environment for the editor you are using to set tab stops at 3 and turn the tab character display
off. Then, each time you press the Tab key, three spaces are inserted rather than the tab character. Select auto-
indentation.

Example: Indenting Code
This the standard method to indent code:

function block
{
 if (nJDEDBReturn == JDEDB_PASSED)
 {
 CallSomeFunction(nParameter1, szParameter2);
 CallAnotherFunction(lSomeNumber);
 while(FunctionWithBooleanReturn())
 {
 CallYetAnotherFunction(cStatusCode);
 }
 }
}

Formatting Compound Statements
Compound statements are statements followed by one or more statements enclosed with braces. A function block is an
obvious example of a compound statement. Control statements (while, for) and selection statements (if, switch) are also
examples of compound statements.

Omitting braces is a common C coding practice when only one statement follows a control or selection statement.
However, you must use braces for all compound statements for these reasons:

• The absence of braces can cause errors.

• Braces ensure that all compound statements are treated the same way.

• In the case of nested compound statements, the use of braces clarifies the statements that belong to a
particular code block.

8

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 3
Ensuring Readability

• Braces make subsequent modifications easier.

Refer to these guidelines when formatting compound statements:

• Always have one statement per line within a compound statement.

• Always use braces to contain the statements that follow a control statement or a selection statement.

• Braces should be aligned with the initial control or selection statement.

• Logical expressions evaluated within a control or selection statement should be broken up across multiple lines
if they do not fit on one line. When breaking up multiple logical expressions, do not begin a new line with the
logical operator; the logical operator must remain on the preceding line.

• When evaluating multiple logical expressions, use parentheses to explicitly indicate precedence.

• Never declare variables within a compound statement, except function blocks.

• Use braces for all compound statements.

• Place each opening or closing brace, { or }, on a separate line.

Example: Formatting Compound Statements
This example shows how to format compound statements for ease of use and to prevent mistakes:

/*
 * Do the Issues Edit Line if the process edits is either
 * blank or set to SKIP_COMPLETIONS. The process edits is
 * set to SKIP_COMPLETIONS if Hours and Quantities is in
 * interactive mode and Completions is Blind in P31123.
 */
if ((dsWorkCache.PO_cIssuesBlindExecution == _J('1')) &&
 ((dsCache.cPayPointCode == _J('M')) ||
 (dsCache.cPayPointCode == _J('B'))) &&
 (lpDS->cProcessEdits != ONLY_COMPLETIONS))
{
 /* Process the Pay Point line for Material Issues */
 idReturnCode = I3101060_BlindIssuesEditLine(&dsInternal,
 &dsCache,
 &dsWorkCache);
}

Example: Using Braces to Clarify Flow
This example shows the use of braces to clarify the flow and prevent mistakes:

if(idJDBReturn != JDEDB_PASSED)
{
 /* If not add mode, record must exist */
 if ((lpdsInternal->cActionCode != ADD_MODE) &&
 (lpdsInternal->cActionCode != ATTACH_MODE))
 {
 /* Issue Error 0002 - Work Order number invalid */
 jdeStrncpy((JCHAR*)(lpdsInternal->szErrorMessageID),
 (const JCHAR*)_J(0002),
 DIM(lpdsInternal->szErrorMessageID)-1);
 lpdsInternal->idFieldID = IDERRmnOrderNumber_15;
 idReturnCode = ER_ERROR;
 }

9

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 3
Ensuring Readability

}
else
{
 /* If in add mode and the record exists, issue error and exit */
 if (lpdsInternal->cActionCode == ADD_MODE)
 {
 /* Issue Error 0002 - Work Order number invalid */
 jdeStrncpy((JCHAR*)(lpdsInternal->szErrorMessageID),
 (const JCHAR*)_J(0002),
 DIM(lpdsInternal->szErrorMessageID)-1);
 lpdsInternal->idFieldID = IDERRmnOrderNumber_15;
 idReturnCode = ER_ERROR;
 }
 else
 {
 /*
 * Set flag used in determining if the F4801 record should be sent
 * in to the modules
 */
 lpdsInternal->cF4801Retrieved = _J('1');
 }
}

Example: Using Braces for Ease in Subsequent Modifications
The use of braces prevents mistakes when the code is later modified. Consider this example. The original code contains
a test to see if the number of lines is less than a predefined limit. As intended, the return value is assigned a certain
value if the number of lines is greater than the maximum. Later, someone decides that an error message should be
issued in addition to assigning a certain return value. The intent is for both statements to be executed only if the
number of lines is greater than the maximum. Instead, idReturn will be set to ER_ERROR regardless of the value of
nLines. If braces were used originally, this mistake would have been avoided.

ORIGINAL

if (nLines > MAX_LINES)
 idReturn = ER_ERROR;

MODIFIED

if (nLines > MAX_LINES)
 jdeErrorSet (lpBhvrCom, lpVoid,
 (ID) 0, _J(4353), (LPVOID) NULL);
 idReturn = ER_ERROR;

STANDARD ORIGINAL

if (nLines > MAX_LINES)
{
 idReturn = ER_ERROR;
}

STANDARD MODIFIED

if (nLines > MAX_LINES)
{

10

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 3
Ensuring Readability

 jdeErrorSet (lpBhvrCom, lpVoid,
 (ID) 0, _J(4363), (LPVOID) NULL);
 idReturn = ER_ERROR;
}

Example: Handling Multiple Logical Expressions
This example shows how to handle multiple logical expressions:

while ((lWorkArray[elWorkX] < lWorkArray[elWorkMAX]) &&
 (lWorkArray[elWorkX] < lWorkArray[elWorkCDAYS]) &&
 (idReturnCode == ER_SUCCESS))

{
 statements
}

11

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 3
Ensuring Readability

12

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 4
Declaring and Initializing Variables and Data Structures

4 Declaring and Initializing Variables and Data
Structures

Understanding Variables and Data Structures
Variables and data structures must be defined and initialized before they can be used to store data. This chapter
describes how to declare and initialize them. It includes topics on using define statements, using typedef, creating
function prototypes, initializing variables, initializing data structures, and using standard variables.

Using Define Statements
A define statement is a directive that sets up constants at the beginning of the program. A define statement always
begins with a pound sign (#). All business functions include the system header file: jde.h. System-wide define
statements are included in the system header file.

If you need define statements for a specific function, include the define statement in uppercase letters within the source
file for the function whenever possible. The statement should directly follow the header file inclusion statement.

Usually, you should place define statements in the source file, not the header file. When placed in the header file, you
can redefine the same constant with different values, causing unexpected results. However, rare cases exist when it is
necessary to place a define statement in the function header file. In these cases, precede the definition name with the
business function name to ensure uniqueness.

Example: #define in Source File
This example includes define statements within a business function source file:

/***
* Notes
***/

#include <bxxxxxxx.h>

/***
 * Global Definitions
 ***/
#define CACHE_GET '1'
#define CACHE_ADD '2'
#define CACHE_UPDATE '3'
#define CACHE_DELETE '4'

Example: #define in Header File
This example includes define statements within a business function header:

13

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 4
Declaring and Initializing Variables and Data Structures

/**
 * External Business Function Header Inclusions
 **/

#include <bxxxxxxx.h>

/**
 * Global definitions
 **/
#define BXXXXXXX_CACHE_GET '1'
#define BXXXXXXX_CACHE_ADD '2'
#define BXXXXXXX_CACHE_UPDATE '3'
#define BXXXXXXX_CACHE_DELETE '4'

Using Typedef Statements
When using typedef statements, always name the object of the typedef statement using a descriptive, uppercase
format. If you are using a typedef statement for data structures, remember to include the name of the business function
in the name of the typedef to make it unique. See the example for using a typedef statement for a data structure.

Example: Using Typedef for a User-Defined Data Structure
This is an example of a user-defined data structure:

/**
 * Structure Definitions
 **/

typedef struct
{
 HUSER hUser; /** User handle **/
 HREQUEST hRequestF0901; /** File Pointer to the
 * Account Master **/
 DSD0051 dsData; /** X0051 - F0902 Retrieval **/
 int iFromYear; /** Internal Variables **/
 BOOL bProcessed;
 MATH_NUMERIC mnCalculatedAmount;
 JCHAR szSummaryJob[13];
 JDEDATE jdStartPeriodDate;
} DSX51013_INFO, *LPDSX51013_INFO;

Creating Function Prototypes
Refer to these guidelines when defining function prototypes:

• Always place function prototypes in the header file of the business function in the appropriate prototype
section.

• Include function definitions in the source file of the business function, preceded by a function header.

• Ensure that function names follow the naming convention defined in this guide.

14

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 4
Declaring and Initializing Variables and Data Structures

• Ensure that variable names in the parameter list follow the naming convention defined in this guide.

• List the variable names of the parameters along with the data types in the function prototype.

• List one parameter per line so that the parameters are aligned in a single column.

• Do not allow the parameter list to extend beyond 80 characters in the function definition. If the parameter list
must be broken up, the data type and variable name must stay together. Align multiple-line parameter lists with
the first parameter.

• Include a return type for every function. If a function does not return a value, use the keyword void as the return
type.

• Use the keyword void in place of the parameter list if nothing is passed to the function.

Example: Creating a Business Function Prototype
This is an example of a standard business function prototype:

/***
 * Business Function: BusinessFunctionName
 *
 * Description: Business Function Name
 *
 * Parameters:
 * LPBHVRCOM lpBhvrCom Business Function Communications
 * LPVOID lpVoid Void Parameter - DO NOT USE!
 * LPDSD51013 lpDS Parameter Data Structure Pointer
 *
 ***/

JDEBFRTN (ID) JDEBFWINAPI BusinessFunctionName (LPBHVRCOM lpBhvrCom,
 LPVOID lpVoid,
 LPDSXXXXXX lpDS)

Example: Creating an Internal Function Prototype
This is an example of a standard internal function prototype:

Type XXXXXXXX_AAAAAAAA(parameter list ...);

type : Function return value
XXXXXXXX : Unique source file name
AAAAAAAA : Function Name

Example: Creating an External Business Function Definition
This is an example of a standard external business function definition:

/*
 * see sample source for standard business function heading
 */
JDEBFRTN (ID) JDEBFWINAPI GetAddressBookDescription(LPBHVRCOM lpBhvrCom,
 LPVOID lpVoid,
 LPDSNNNNNN lpDS)

15

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 4
Declaring and Initializing Variables and Data Structures

{
 ID idReturn = ER_SUCCESS;
 /*--
 * business function code
 */
 return idReturn;
}

Example: Creating an Internal Function Definition
This is an example of a standard internal function definition:

/*---
 * see sample source for standard function header
 */
void I4100040_GetSupervisorManagerDefault(LPBHVRCOM lpBhvrCom,
 LPSTR lpszCostCenterIn,
 LPSTR lpszManagerOut,
 LPSTR lpszSupervisorOut)
/*---
 * Note: b4100040 is the source file name
 */
{
 /*
 * internal function code
 */
}

Initializing Variables
Variables store information in memory that is used by the program. Variables can store strings of text and numbers.

When you declare a variable, you should also initialize it. Two types of variable initialization exist: explicit and implicit.
Variables are explicitly initialized if they are assigned a value in the declaration statement. Implicit initialization occurs
when variables are assigned a value during processing.

This information covers standards for declaring and initializing variables in business functions and includes an example
of standard formats.

Use these guidelines when declaring and initializing variables:

• Declare variables using this format:

datatype variable name = initial value; /* descriptive comment*/

• Declare all variables used within business functions and internal functions at the beginning of the function.
Although C allows you to declare variables within compound statement blocks, this standard requires all
variables used within a function to be declared at the beginning of the function block.

• Declare only one variable per line, even if multiple variables of the same type exist. Indent each line three
spaces and left align the data type of each declaration with all other variable declarations. Align the first
character of each variable name (variable name in the preceding format example) with variable names in all
other declarations.

16

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 4
Declaring and Initializing Variables and Data Structures

• Use the naming conventions set forth in this guide. When initializing variables, the initial value is optional
depending on the data type of the variable. Generally, all variables should be explicitly initialized in their
declaration.

• The descriptive comment is optional. In most cases, variable names are descriptive enough to indicate the use
of the variable. However, provide a comment if further description is appropriate or if an initial value is unusual.

• Left align all comments.

• Data structures should be initialized to zero using the memset function immediately after the declaration
section.

• Some Application Program Interfaces (APIs), such as the JDB ODBC API, provide initialization routines. In this
case, the variables intended for use with the API should be initialized with the API routines.

• Always initialize pointers to NULL and include an appropriate type call at the declaration line.

• Initialize all variables, except data structures, in the declaration.

• Initialize all declared data structures, MATH_NUMERIC, and JDEDATE to NULL.

• Ensure that the byte size of the variable matches the size of the data structure you want to store.

Example: Initializing Variables
This example shows how to initialize variables:

JDEBFRTN (ID) JDEBFWINAPI F0902GLDateSensitiveRetrieval
 (LPBHVRCOM lpBhvrCom,
 LPVOID lpVoid,
 LPDSD0051 lpDS)
/**
 * Variable declarations
 ***/
 ID idReturn = ER_SUCCESS;
 JDEDB_RESULT eJDEDBResult = JDEDB_PASSED;
 long lDateDiff = 0L;
 BOOL bAddF0911Flag = TRUE;
 MATH_NUMERIC mnPeriod = {0};

/**
 * Declare structures
 ***/
 HUSER hUser = (HUSER) NULL;
 HREQUEST hRequestF0901 = (HREQUEST) NULL;
 DSD5100016 dsDate = {0};
 JDEDATE jdMidDate = {0};

/**
 * Pointers
 ***/
 LPX0051_DSTABLES lpdsTables = (LPX0051_DSTABLES) 0L;

/**
 * Check for NULL pointers
 **/
 if ((lpBhvrCom == (LPBHVRCOM) NULL) ||
 (lpVoid == (LPVOID) NULL) ||
 (lpDS == (LPDSD0051) NULL))
 {
 jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0,
 _J(4363), (LPVOID) NULL);

17

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 4
Declaring and Initializing Variables and Data Structures

 return ER_ERROR;
 }

/**
 * Main Processing
 **/
 eJDEDBResult = JDB_InitBhvr ((void*)lpBhvrCom,
 &hUser,
 (JCHAR *) NULL,
 JDEDB_COMMIT_AUTO);

 memcopy ((void*)) &dsDate.jdPeriodEndDate,
 (const void*) &lpDS->jdGLDate, sizeof(JDEDATE));

Initializing Data Structures
When writing to the table, the table recognizes these default values:

• Space-NULL if string is blank

• 0 value if math numeric is 0

• 0 JDEDATE if date is blank

• Space if character is blank

Always memset to NULL on the data structure that is passed to another business function to update a table or fetch a
table.

Example: Using Memset to Reset the Data Structure to Null
This example resets the data structure to NULL when initializing the data structure:

bOpenTable = B5100001_F5108SetUp(lpBhvrCom, lpVoid,
 lphUser, &hRequestF5108);

if (bOpenTable)
{
 memset((void *)(&dsF5108Key), 0x00, sizeof(KEY1_F5108));
 jdeStrcpy((JCHAR*) dsF5108Key.mdmcu,
 (const JCHAR*) lpDS->szBusinessUnit);
 memset((void *)(&dsF5108), 0x00, sizeof(F5108));

 jdeStrcpy((JCHAR*) dsF5108.mdmcu,
 (const JCHAR*) lpDS->szBusinessUnit);
 MathCopy(&dsF5108.mdbsct, &mnCentury);
 MathCopy(&dsF5108.mdbsfy, &mnYear);
 MathCopy(&dsF5108.mdbtct, &mnCentury);
 MathCopy(&dsF5108.mdbtfy, &mnYear);
 eJDEDBResult = JDB_InsertTable(hRequestF5108,
 ID_F5108,
 (ID)(0),
 (void *) (&dsF5108));
}

18

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 4
Declaring and Initializing Variables and Data Structures

Using Standard Variables
This section discusses how to:

• Use flag variables.

• Use input and output parameters.

• Use fetch variables.

Using Flag Variables
When creating flag variables, use these guidelines:

• Any true-or-false flag used must be a Boolean type (BOOL).

• Name the flag variable to answer a question of TRUE or FALSE.

These are examples of flag variables, with a brief description of how each is used:

Flag Variable Description

bIsMemoryAllocated

Apply to memory allocation

bIsLinkListEmpty

Link List

Using Input and Output Parameters
Business functions frequently return error codes and pointers. The input and output parameters in the business
function data structure should be named as follows:

Input and Output Parameter Description

cReturnPointer

When allocating memory and returning GENLNG.

cErrorCode

Based on cCallType, cErrorCode returns a 1 when it fails or a 0 when it succeeds.

cSuppressErrorMessage

If the value is 1, do not display error message using jdeErrorSet(...). If the value is 0, display the error.

szErrorMessageId

If an error occurs, return an error message ID (value). Otherwise, return four spaces.

19

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 4
Declaring and Initializing Variables and Data Structures

Using Fetch Variables
Use fetch variables to retrieve and return specific information, such as a result; to define the table ID; and to specify the
number of keys to use in a fetch.

Fetch Variable Description

idJDEDBResult

APIs or JD Edwards EnterpriseOne functions, such as JDEDB_RESULT

idReturnValue

Business function return value, such as ER_WARNING or ER_ERROR

idTableXXXXID

Where XXXX is the table name, such as F4101 and F41021, the variable used to define the Table ID.

idIndexXXXXID

Where XXXX is the table name, such as F4101 or F41021, the variable used to define the Index ID of a
table.

usXXXXNumColToFetch

Where XXXX is the table name, such as F4101 and F41021, the number of the column to fetch. Do not
put the literal value in the API functions as the parameter.

usXXXXNumOfKeys

Where XXXX is the table name, such as F4101 and F41021, the number of keys to use in the fetch.

Example: Using Standard Variables
This example illustrates the use of standard variables:

 /**
 * Variable declarations
 **/
 ID idJDEDBResult = JDEDB_PASSED;
 ID idTableF0901 = ID_F0901;
 ID idIndexF0901 = ID_F0901_ACCOUNT_ID;
 ID idFetchCol[] = { ID_CO, ID_AID, ID_MCU, ID_OBJ,
 ID_SUB, ID_LDA, ID_CCT };
 ushort usNumColToFetch = 7;
 ushort usNumOfKeys = 1;

 /***
 * Structure declarations
 **/
 KEY3_F0901 dsF0901Key = {0}
 DSX51013_F0901 dsF0901 = {0}

 /***
 * Main Processing
 ***/
 /** Open the table, if it is not open **/
 if ((*lpdsInfo->lphRequestF0901) == (HREQUEST) NULL)
 {
 if ((*lpdsInfo->lphUser) == (HUSER) 0L)

20

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 4
Declaring and Initializing Variables and Data Structures

 {
 idJDEDBResult = JDB_InitBhvr ((void*)lpBhvrCom,
 &lpdsInfo->lphUser,
 (JCHAR *) NULL,
 JDEDB_COMMIT_AUTO);
 }
 if (idJDEDBResult == JDEDB_PASSED)
 {
 idJDEDBResult = JDB_OpenTable((*lpdsInfo->lphUser),
 idTableF0901,
 idIndexF0901,
 (LPID)(idFetchCol),
 (ushort)(usNumColFetch),
 (JCHAR *) NULL,
 &lpdsInfo->hRequestF0901);
 }
 }
 /** Retrieve Account Master - AID only sent **/
 if (idJDEDBResult == JDEDB_PASSED)
 {
 /** Set Key and Fetch Record **/
 memset((void *)(&dsF0901Key),
 (int) _J('\0'), sizeof(KEY3_F0901));
 jdeStrcpy ((char *) dsF0901Key.gmaid,
 (const JCHAR*) lpDS->szAccountID);
 idJDEDBResult = JDB_FetchKeyed (lpdsInfo->hRequestF0901,
 idIndexF0901,
 (void *)(&dsF0901Key),
 (short)(1),
 (void *)(&dsF0901),
 (int)(FALSE));
 /** Check for F0901 Record **/
 if (eJDEDBResult == JDEDB_PASSED)
 {
 statement
 }
 }

21

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 4
Declaring and Initializing Variables and Data Structures

22

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 5
Applying General Coding Guidelines

5 Applying General Coding Guidelines

Using Function Calls
Reuse of existing functions through a function call prevents duplicate code. Refer to these guidelines when using
function calls:

• Always put a comma between each parameter. Optionally, you can add a space for readability.

• If the function has a return value, always check the return of the function for errors or a valid value.

• Use jdeCallObjectto call another business function.

• When calling functions with long parameter lists, the function call should not be wider than 80 characters.

Break the parameter list into one or more lines, aligning the first parameter of proceeding lines with the first
parameter in the parameter list.

• Make sure the data types of the parameters match the function prototype.

When intentionally passing variables with data types that do not match the prototype, explicitly cast the
parameters to the correct data type.

Calling an External Business Function
Use jdeCallObject to call an external business function defined in the Object Management Workbench. Include the
header file for the external business function that contains the prototype and data structure definition. It is good
practice to check the value of the return code.

Example: Calling an External Business Function
This example calls an external business function:

/*---
 *
 * Retrieve account master information
 *
 --/
 idReturnCode = jdeCallObject(_J("ValidateAccountNumber),
 NULL,
 lpBhvrCom,
 lpVoid,
 (void*) &dsValidateAccount,
 (CALLMAP*) NULL,
 (int) 0,
 (JCHAR*) NULL,
 (JCHAR*) NULL,
 (int) 0);
 if (idReturnCode == ER_SUCCESS)
 {
 statement;
 }

23

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 5
Applying General Coding Guidelines

Calling an Internal Business Function
You can access internal business functions (internal C functions) within the same source file.

You may create modular subroutines that can be accessed from multiple source files. Use CALLIBF(fcn(parm1,parm2))
andCALLIBFRET(ret,fcn(parm1,parm2)) to access internal business functions within a different source file but within the
same DLL. Use CALLIBF to call an internal business function with no return value. Use CALLIBFRET to call an internal
business function with a return value. Both CALLIBF and CALLIFBRET can call internal business functions with any type
or number of parameters.

CALLIBF and CALLIBFRET can only call internal functions within the same business function DLL. They cannot call
functions in other business function DLLs. For example, if the internal function intFcn123() is in B550001.C, which is in
the CALLBSFN.DLL, you cannot called it with CALLIBF or CALLIBFRET from a business function in CDIST.DLL.

To use CALLIBF or CALLIBFRET for an internal business function, the business function must have its prototype in the
business function header. If you do not want other modules calling the internal business function, place the prototype in
the C file, not the header file.

Calling internal business functions has several advantages over external business functions. First, they do not have the
jdeCallObject performance overhead of checking OCM mapping and possibly executing the function remotely. A called
function always executes in the same process from where it was called. Second, the parameters are not restricted to JD
Edwards EnterpriseOne data dictionary data types. Any valid C data type, including pointers, may be passed in and out
of internal functions.

Example: Calling an Internal Business Function with No Return Value
This example calls an internal business function that has no return value.

This portion is an example of b550001.h:

/* normal business function header pieces */
...
/* The internal business function prototype must be in the header for other
 modules to call it */
 void i550001(int *a, int b);

This portion is an example of b550001.c:

/* normal business function code pieces */
#include <b550001.h>
JDEBFRTN(ID) JDEBFWINAPI TestBSFN(LPBHVRCOM lpVhvrCom,
 LPVOID lpVoid,
 LPDSB550001 lpDS)
{
...
}
void i550001(int *a, int b)
{
 *a = *a + b;
 return;
}

This portion is an example of b550002.c:

/* normal business function code pieces */

24

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 5
Applying General Coding Guidelines

#include <b550002.h>
#include <b550001.h>

JDEBFRTN(ID) JDEBFWINAPI TestBSFN(LPBHVRCOM lpBhvrCom,
 LPVOID lpVoid,
 LPDSB550001 lpDS)
{
 int total = 3;
 int adder = 7;

 CALLIBF(i550001(&total,adder));
}

Example: Calling an Internal Business Function with a Return Value
This example calls an internal business function that has a return value.

This portion is an example of b550001.h:

/* normal business function header pieces */
...
/* The internal business function prototype must be in the header for
other modules to call it */

 int i550001(int a, int b);

This portion is an example of b550001.c:

/* normal business function code pieces */
#include <b550001.h>

JDEBFRTN(ID) JDEBFWINAPI TestBSFN(LPBHVRCOM lpBhvrCom,
 LPVOID lpVoid,
 LPDSB550001 lpDS)
{
...
}
int i550001(int a, int b)
{
 a = a + b;
 return;
}

This portion is an example of b550002.c:

/* normal business function code pieces */
#include <b550002.h>
#include <b550001.h>

JDEBFRTN(ID) JDEBFWINAPI TestBSFN(LPBHVRCOM lpBhvrCom,
 LPVOID lpVoid,
 LPDSB550001 lpDS)
{
 int total = 0;
 int adder1 = 6;
 int adder2 = 7;
 CALLIBFRET(total,i550001(adder1,adder2));
}

25

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 5
Applying General Coding Guidelines

Passing Pointers between Business Functions
Never pass pointers directly in or out of business functions. A pointer memory address should not be greater than
32 bits. If you pass a pointer address that exceeds 32 bits across the platform to a client that supports just 32 bits, the
significant digit might be truncated and invalidate the address.

The correct way to share pointers between business functions is to store the address in an array. This array is located on
the server platform specified in the Object Configuration Manager (OCM). The array allows up to 100 memory locations
to be allocated and stored, and it is maintained by JD Edwards EnterpriseOne tools. The index to a position in the array
is a long integer type or ID. Use the GENLNG data dictionary object in the business function data structure to pass this
index in or out of the business function.

Storing an Address in an Array
Use jdeStoreDataPtr to store an allocated memory pointer in an array for later retrieval. The index to the position in the
array is returned. This index should be passed out through the business function data structure (lpDS).

Example: Storing an Address in an Array
This example illustrates how to store an address in an array:

If (lpDS->cReturnF4301PtrFlag == _J('1'))
{
 lpDS->idF4301RowPtr = jdeStoreDataPtr(hUser,(void *)lpdsF4301);
}

Retrieving an Address from an Array
Use jdeRetrieveDataPtr to retrieve an address outside the current business function. The index to the position in the
array should be passed in through the business function data structure (lpDS). When you use jdeRetrieveDataPtr, the
address remains in the array and can be retrieved again later.

Example: Retrieving an Address from an Array
This example retrieves an address from an array:

 lpdsF43199 = (LPF43199) jdeRetrieveDataPtr
 (hUser, lpDS->idF43199Pointer);

Removing an Address from an Array
Use jdeRemoveDataPtr to remove the address from the array cell and release the array cell. The index to the position
in the array should be passed in through the business function data structure (lpDS). A corresponding call to
jdeRemoveDataPtr must exist for every jdeStoreDataPtr. If you use jdeAlloc to allocate memory, use jdeFree to free the
memory.

26

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 5
Applying General Coding Guidelines

Example: Removing an Address from an Array
This example removes an address from an array:

if (lpDS->idGenericLong != (ID) 0)
{
 lpGenericPtr = (void *)jdeRemoveDataPtr(hUser,lpDS->idGenericLong);
 if (lpGenericPtr != (void *) NULL)
 {
 jdeFree((void *)lpGenericPtr);
 lpDS->idGenericLong = (ID) 0;
 lpGenericPtr = (void *) NULL;
 }
}

Allocating and Releasing Memory
Use jdeAlloc to allocate memory. Because jdeAllocaffects performance, use it sparingly.

Use jdeFree to release memory within a business function. For every jdeAlloc, a jdeFree should exist to release the
memory.

Note: Use the business function FreePtrToDataStructure, B4000640, to release memory through event rule logic.

Example: Allocating and Releasing Memory within a Business
Function
This example uses jdeAlloc to allocate memory, and then, in the function cleanup section, jdeFree to release memory:

statement
lpdsF4301 = (LPF4301)jdeAlloc(COMMON_POOL,sizeof(F4301),MEM_ZEROINIT) ;
statement

/**
 * Function Clean Up Section
 **/
if (lpdsF4301 != (LPF4301) NULL)
{
 jdeFree(lpdsF4301);
}

Using hRequest and hUser
Some API calls require either anhUser or anhRequest variable, or both. To get the hUser, use JDBInitBhvr. To get the
hRequest, use JDBOpenTable. Initialize hUser and hRequest to NULL in the variable declaration line. All hRequest and
hUser declarations should have JDB_CloseTable() and JDB_FreeBhvr() in the function cleanup section.

27

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 5
Applying General Coding Guidelines

Typecasting
Typecasting is also known as type conversion. Use typecasting when the function requires a certain type of value, when
defining function parameters, and when allocating memory with jdeAlloc().

Note: This standard is for all function calls as well as function prototypes.

Comparison Testing
Always use explicit tests for comparisons. Do not embed assignments in comparison tests. Assign a value or result to a
variable and use the variable in the comparison test.

Always test floating point variables using <= or >=. Do not use == or != since some floating point numbers cannot be
represented exactly.

Example: Comparison Test
This example shows how to create C code for comparison tests.

eJDEDBResult = JDB_InitBhvr ((void*)lpBhvrCom,
 &hUser,
 (JCHAR *) NULL,
 JDEDB_COMMIT_AUTO);

/** Check for Valid hUser **/
if (eJDEDBResult == JDEDB_PASSED)
{
 statement;
}

Example: Creating TRUE or FALSE Test Comparison that Uses
Boolean Logic
This example is a TRUE or FALSE test comparison that uses Boolean logic:

/* IsStringBlank has a BOOL return type. It will always return either
 * TRUE or FALSE */
if (IsStringBlank(szString))
{
 statement;
}

28

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 5
Applying General Coding Guidelines

Copying Strings with jdeStrcpy or jdeStrncpy
When copying strings of the same length, such as business unit, you may use the jdeStrcpy ANSI API. If the strings
differ in length-as with a description-use the jdeStrncpy ANSI API with the number of characters you need returned, not
counting the trailing NULL character.

/**
 * Variable Definitions
 **/
 JCHAR szToBusinessUnit(13);
 JCHAR szFromBusinessUnit(13);
 JCHAR szToDescription(31);
 JCHAR szFromDescription(41);
/**
 * Main Processing
 **/
 jdeStrcpy((JCHAR *) szToBusinessUnit,
 (const JCHAR *) szFromBusinessUnit);

 jdeStrncpy((JCHAR *) szToDescription,
 (const JCHAR *) szFromDescription,
 DIM(szToDescription)-1);

Using the Function Clean Up Area
Use the function clean up area to release any allocated memory, including hRequest and hUser.

Example: Using the Function Clean Up Area to Release Memory
This example shows how to release memory in the function clean up area:

lpdsF4301 = (LPF4301)jdeAlloc(COMMON_POOL,
 sizeof(F4301),MEM_ZEROINIT) ;
/**
 * Function Clean Up Section
 **/
if (lpdsF4301 != (LPF4301) NULL)
{
 jdeFree(lpdsF4301);
}

if (hRequestF4301 != (HREQUEST) NULL)
{
 JDB_CloseTable(hRequestF4301);
}

JDB_FreeBhvr(hUser);

return (idReturnValue) ;

29

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 5
Applying General Coding Guidelines

Inserting Function Exit Points
Where possible, use a single exit point (return) from the function. The code is more structured when a business function
has a single exit point. The use of a single exit point also enables the programmer to perform cleanup, such as freeing
memory and terminating ODBC requests, immediately before the return. In more complex functions, this action might
be difficult or unreasonable. Include the necessary cleanup logic, such as freeing memory and terminating ODBC
requests, when programming an exit point in the middle of a function.

Use the return value of the function to control statement execution. Business functions can have one of two return
values: ER_SUCCESS or ER_ERROR. By initializing the return value for the function to ER_SUCCESS, the return value can
be used to determine the processing flow.

Example: Inserting an Exit Point in a Function
This example illustrates the use of a return value for the function to control statement execution:

 ID idReturn = ER_SUCCESS;
/**
 * Main Processing
 **/
 memset((void *)(&dsInfo), 0x00, sizeof(DSX51013_INFO));
 idReturn = X51013_VerifyAndRetrieveInformation(lpBhvrCom,
 lpVoid,
 lpDS,
 &dsInfo);
 /** Check for Errors and Company or Job Level Projections **/
 if ((idReturn == ER_SUCCESS) &&
 (lpDS->cJobCostProjections == _J('Y')))
 {
 /** Process All Periods between the From and Thru Dates **/
 while ((!dsInfo.bProcessed) &&
 (idReturn == ER_SUCCESS))
 {
 /** Retrieve Calculation Information **/
 if ((dsInfo.bRetrieveBalance) && (idReturn == ER_SUCCESS))
 {
 idReturn = X51013_RetrieveAccountBalances(lpBhvrCom,
 lpVoid,
 lpDS,
 &dsInfo);
 }
 if (idReturn == ER_SUCCESS)
 {
 statement;
 }
 } /* End Processing */
 }

/***
 * Function Clean Up
 ***/
 if ((dsInfo.hUser) != (HUSER) NULL)
 {

30

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 5
Applying General Coding Guidelines

 statement;
 }

 return idReturn;

Terminating a Function
Always return a value with the termination of a function.

31

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 5
Applying General Coding Guidelines

32

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 6
Coding for Portability

6 Coding for Portability

Portability Concepts
Portability is the ability to run a program on more than one system platform without modifying it. JD Edwards
EnterpriseOne is a portable environment. This chapter presents considerations and guidelines for porting objects
between systems.

Standards that affect the development of relational database systems are determined by:

• ANSI (American National Standards Institute) standard

• X/OPEN (European body) standard

• ISO SQL standard

Ideally, industry standards enable users to work identically with different relational database systems. Each major
vendor supports industry standards but also offers extensions to enhance the functionality of the SQL language. In
addition, vendors constantly release upgrades and new versions of their products.

These extensions and upgrades affect portability. Due to the effect of software development on the industry,
applications need a standard interface to databases-an interface that will not be affected by differences among
database vendors. When vendors provide a new release, the effect on existing applications needs to be minimal.
To solve portability issues, many organizations have moved to standard database interfaces, called open database
connectivity (ODBC).

Portability Guidelines
Refer to these guidelines to develop business functions that comply with portability standards:

• Business functions must be ANSI-compatible for portability.

Since different computer platforms might present limitations, exceptions to this rule do exist. However, do not
use a non-ANSI exception without approval from the Business Function Standards Committee.

• Do not create a program that depends on data alignment, because each system aligns data differently by
allocating bytes or words.

For example: for a one-character field that is one byte. Some systems allocate only one byte for that field, while
other systems allocate the entire word for the field.

• Keep in mind that vendor libraries and function calls are system-dependent and exclusive to that vendor.

This means that if the program is compiled using a different compiler, that particular function will fail.

• Use caution when using pointer arithmetic because it is system-dependent and is based on the data alignment.

• Do not assume that all systems will initialize a variable the same way.

Always explicitly initialize variables.

• Use caution when using an offset to explicitly retrieve a value within the data structure.

33

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 6
Coding for Portability

This guideline also relates to data alignment. Use offset to define cache index.

• Always typecast if your parameter does not match the function parameter.

Note: JCHAR szArray[13] is not the same as (JCHAR *) in the function declaration. Therefore, typecast of
(JCHAR *) is required for szArray for that particular function.

• Never typecast on the left-hand side of the assignment statement, as it can result in a loss of data.

For example, in the statement (short)nValue = (long),lValue will lose the value of the long integer if it is too
large to fit into a short integer data type.

• Do not use C++ comments (C++ comments begin with two forward slashes).

Preventing Common Server Build Errors and Warnings
JD Edwards EnterpriseOne business functions must be ANSI-compatible for portability. Since different computer
platforms and servers have their own limitations, our business functions must comply with all server standards. This
topic presents guidelines for coding business functions that correctly build on different servers.

Comments within Comments
Never use comments that are included in other comments. Each "/*" should be followed by subsequent "*/". Refer to
these examples.

Example: C Comments that Comply with the ANSI Standard
Use this C standard comment block:

/**
* Correct Method of C Comments *
***/
/* SAR 1234567 Begin*/
/* Populate the lpDS->OrderedPlacedBy value from the userID only in
 the ADD mode */
 if (lpDS->cHeaderActionCode == _J('1'))
 {
 if (IsStringBlank(lpDS->szOrderedPlacedBy))
 .{
 jdeStrcpy((JCHAR *)(lpDS->szOrderedPlacedBy),
 (const JCHAR *)(lpDS->szUserID));
 }/* End of defaulting in the user id into Order placed by
 if the later was left blank */
 }/* SAR 1234567 End */

Example: C Comments that Comply with the ANSI Standard
Use this C standard comment block:

/**
* Correct Method of C Comments *
***/
/* SAR 1234567 Begin*/

34

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 6
Coding for Portability

/* Populate the lpDS->OrderedPlacedBy value from the userID only in
 the ADD mode */
 if (lpDS->cHeaderActionCode == _J('1'))
 {
 if (IsStringBlank(lpDS->szOrderedPlacedBy))
 .{
 jdeStrcpy((JCHAR *)(lpDS->szOrderedPlacedBy),
 (const JCHAR *)(lpDS->szUserID));
 }/* End of defaulting in the user id into Order placed by
 if the later was left blank */
 }/* SAR 1234567 End */

Example: Comments within Comments Cause Problems on Different Servers
This example shows that comments within comments can cause problem on different servers:

/**
 C Comments within Comments Causing Server Build Errors and Warnings
 ***/
/* SAR 1234567 Begin
/* Populate the lpDS->OrderedPlacedBy value from the userID only in
 the ADD mode */
*/
 if (lpDS->cHeaderActionCode == _J('1'))
 {
 if (IsStringBlank(lpDS->szOrderedPlacedBy))
 {
 jdeStrcpy((JCHAR *)(lpDS->szOrderedPlacedBy),
 (const JCHAR *)(lpDS->szUserID));
 }/* End of defaulting in the user id into the Order placed by
 /* if the later was left blank */
 }/* SAR 1234567 End */

New Line Character at the End of a Business Function
Some servers need a new line character at the end of the source and header file in order to build correctly. It is a best
practice to ensure that a new line character is added at the end of each business function. Press the Enter key at the end
of the code to add a new line character.

Use of Null Character
Be careful when using NULL character '\0'. This character starts with a back slash. Using '/0' is an error that is not
reported by the compiler.

Example: Use of NULL Character
This example shows an incorrect and a correct use of the NULL character:

/*************Initialize Data Structures***************************/
/*Error Code*/
/* '/0' is used assuming it to be a NULL character*/
/* memset((void *)(&dsVerifyActivityRulesStatusCodeParms),
 (int)('/0'), sizeof(DSD4000260A));*/

35

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 6
Coding for Portability

/*Correct Use of NULL Character*/
memset((void *)(&dsVerifyActivityRulesStatusCodeParms),
 (int)('\0'), sizeof(DSD4000260A));

Lowercase Letters in Include Statements
When an external business function or table is included in the header file, use lowercase letters in the include
statement. Uppercase letters cause build errors.

Example: Use of Lowercase Letters in Include Statements
This example shows the incorrect and correct use of lowercase letters in the include statement:

/**
* External Business Function Header Inclusions
**/
/*Incorrect method of including external business function header*/
/*Include Statement Causing Build Warnings on Various Servers*/
 #include <B0000130.h>
/*Correct method of including external business function header*/
 #include <b0000130.h>

Initialized Variables that are Not Referenced
Each variable that is declared and initialized under the Variables Declaration section in the business function must be
used in the program. For example: if the variable idReturnValue is initialized, then it must be used somewhere in the
program.

36

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 7
Understanding JD Edwards EnterpriseOne Defined

Structures

7 Understanding JD Edwards EnterpriseOne
Defined Structures

Understanding JD Edwards EnterpriseOne Defined
Structures
Oracle's JD Edwards EnterpriseOne provides two data types that should concern you when you create business
functions: MATH_NUMERIC and JDEDATE. Since these data types might change, use the Common Library APIs
provided by JD Edwards EnterpriseOne to manipulate them. Do not access the members of these data types directly.

MATH_NUMERIC Data Type
The MATH_NUMERIC data type is commonly used to represent numeric values in JD Edwards EnterpriseOne software.
This data type is defined as follows:

struct tag MATH_NUMERIC

{
 ZCHAR String [MAXLEN_MATH_NUMERIC + 1];
 BYTE Sign;
 ZCHAR EditCode;
 short nDecimalPosition;
 short nLength;
 WORD wFlags;
 ZCHAR szCurrency [4];
 Short nCurrencyDecimals;
 short nPrecision;
};

typedef struct tag MATH_NUMERIC MATH_NUMERIC, FAR *LPMATH_NUMERIC;

This table shows math-numeric elements and their descriptions:

MATH_NUMERIC Element Description

String

The digits without separators

Sign

A minus sign indicates the number is negative. Otherwise, the value is 0x00.

EditCode

The data dictionary edit code used to format the number for display

nDecimalPosition

The number of digits from the right to place the decimal

37

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 7
Understanding JD Edwards EnterpriseOne Defined

Structures

MATH_NUMERIC Element Description

nLength

The number of digits in the String

wFlags

Processing flags

szCurrency

Currency code

nCurrencyDecimals

The number of currency decimals

nPrecision

The data dictionary size

When assigning MATH_NUMERIC variables, use the MathCopy API. MathCopy copies the information, including
Currency, into the location of the pointer. This API prevents any lost data in the assignment.

Initialize local MATH_NUMERIC variables with the ZeroMathNumeric API. If a MATH_NUMERIC is not initialized, invalid
information, especially currency information, might be in the data structure, which can result in unexpected results at
runtime.

/***
 * Variable Definitions
 ***/
 MATH_NUMERIC mnVariable = {0};

/**
 * Main Processing
 **/
 ZeroMathNumeric(&mnVariable);
 MathCopy(&mnVariable,
 &lpDS->mnVariable);

JDEDATE Data Type
The JDEDATE data type is commonly used to represent dates in JD Edwards EnterpriseOne. The data type is defined as
follows:

struct tag JDEDATE
{
 short nYear;
 short nMonth;
 short nDay;
};

typedef struct tag JDEDATE JDEDATE, FAR *LPJDEDATE;

JDEDATE Element Description

nYear

The year

38

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 7
Understanding JD Edwards EnterpriseOne Defined

Structures

JDEDATE Element Description

nMonth

The month

nDay

The day

Using Memcpy to Assign JDEDATE Variables
When assigning JDEDATE variables, use the memcpy function. The memcpy function copies the information into the
location of the pointer. If you use a flat assignment, you might lose the scope of the local variable in the assignment,
which could result in a lost data assignment.

/**
 * Variable Definitions
 **/
 JDEDATE jdToDate;
/**
 * Main Processing
 **/
 memcpy((void*) &jdToDate,
 (const void *) &lpDS->jdFromDate,
 sizeof(JDEDATE));

JDEDATECopy
You can use JDEDATECopy, as well as memcpy, to assign JDEDATE variables. The syntax is as follows:

#define JDEDATECopy(pDest, pSource)
 memcpy(pDest, pSource, sizeof(JDEDATE))

39

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 7
Understanding JD Edwards EnterpriseOne Defined

Structures

40

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 8
Implementing Error Messages

8 Implementing Error Messages

Understanding Error Messages
Messages provide an effective and usable method of communicating information to end-users. You can use simple
messages or text substitution messages.

Text substitution messages provide specific information to the user. At runtime, the system replaces variables in the
message with substitution values. Two types of text substitution messages exist:

• Error messages (glossary group E)

• Workflow messages (glossary group Y)

The return code from all JDB and JDE Cache APIs must be checked and an appropriate error message set, returned, or
both to the calling function. The standard error messages for JDB and JDE Cache errors are shown in these tables.

The JDB errors are:

Error ID Description

078D

Open Table Failed

078E

Close Table Failed

078F

Insert to Table Failed

078G

Delete from Table Failed

078H

Update to Table Failed

078I

Fetch from Table Failed

078J

Select from Table Failed

078K

Set Sequence of Table Failed

078S *

Initialization of Behavior Failed

* 078S does not use text substitution

The JDE Cache errors are:

41

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 8
Implementing Error Messages

Error ID Description

078L

Initialization of Cache Failed

078M

Open Cursor Failed

078N

Fetch from Cache Failed

078O

Add to Cache Failed

078P

Update to Cache Failed

078Q

Delete from Cache Failed

078R

Terminate of Cache Failed

Inserting Parameters for Error Messages in lpDS
Include the parameters cSuppressErrorMessage and szErrorMessageID in lpDS for error message processing. The
functionality for each is as follows:

• cSuppressErrorMessage (SUPPS)
Valid data is either 1 or 0. This parameter is required if jdeErrorSet(...) is used in the business function. When
cSuppressErrorMessage is set to 1, do not set an error because jdeErrorSet will automatically display an error
message.

• szErrorMessageID (DTAI)
This 4–character string contains the error message ID value that is passed back by the business function. If an
error occurs in the business function, szErrorMessageID contains that error number ID.

Note: You must initialize szErrorMessageID to 4 spaces at the beginning of the function. Failure to initialize
can cause memory errors.

Example: Parameters in lpDS for an Error Message
This example includes the lpDS parameters, cSuppressErrorMessage, and szErrorMessageID:

 if ((!IsStringBlank(lpDS->szErrorMessageID)) &&
 (lpDS->cSuppressErrorMessage != _J('1')))
 {
 jdeStrcpy ((JCHAR*) (lpDS->szErrorMessageID),
 (const JCHAR*) (_J("0653")));
 jdeErrorSet (lpBhvrCom, lpVoid, (ID) IDERRcMethodofComputation_1,
 lpDS->szErrorMessageID, (LPVOID) NULL);
 idReturnValue = ER_ERROR;

42

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 8
Implementing Error Messages

 }

/***
 * Function Clean Up
 ***/
 return idReturnValue;

Initializing Behavior Errors
Business functions that use the JD Edwards EnterpriseOne database API are required to call the Initialize Behavior
function before calling any of the database functions. Set error 078S if the Initialize Behavior function does not
complete successfully.

Example: Initialize Behavior Error
This example illustrates an initialize behavior error:

/***
 * Initialize Behavior
 ***/
idJDBReturn = JDB_InitBhvr(lpBhvrCom,
 &hUser,
 (JCHAR *) NULL,
 JDEDB_COMMIT_AUTO);
if (idJDBReturn != JDEDB_PASSED)
{
 jdeStrcpy (lpDS->szErrorMessageID, _J("078S"));
 if (lpDS->cSuppressErrorMessage != _J('1'))
 {
 jdeErrorSet(lpBhvrCom, lpVoid, (ID)0, _J(078S), (LPVOID) NULL);
 }
 return ER_ERROR;
}

Using Text Substitution to Display Specific Error
Messages
You can use the JD Edwards EnterpriseOne text substitution APIs for returning error messages within a business
function. Text substitution is a flexible method for displaying a specific error message.

Text substitution is accomplished through the data dictionary. To use text substitution, you first must set up a data
dictionary item that defines text substitution for the specific error message. A selection of error messages for JDB and
JDE Cache have already been created and are listed in this chapter.

Error messages for cache and tables are critical in a configurable network computing (CNC) architecture. C
programmers must set the appropriate error message when working with tables or cache APIs.

43

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 8
Implementing Error Messages

JDB API errors should substitute the name of the file against which the API failed. JDE cache API errors should
substitute the name of the cache for which the API failed.

When calling errors that use text substitution, you must:

• Load a data structure with the information you want to substitute in the error message.

• Call jdeErrorSet to set the error.

Example: Text Substitution in an Error Message
This example uses text substitution in JDB_OpenTable:

/**
 * Open the General Ledger Table F0911
 ***/
eJDBReturn = JDB_OpenTable(hUser,
 ID_F0911,
 ID_F0911_DOC_TYPE__NUMBER___B,
 idColF0911,
 nNumColsF0911,
 (JCHAR *)NULL,
 &hRequestF0911);

if (eJDBReturn != JDEDB_PASSED)
{
 memset((void *)(&dsDE0022), 0x00, sizeof(dsDE0022));
 jdeStrncpy((JCHAR *)dsDE0022.szDescription,
 (const JCHAR *)(_J("F0911")),
 DIM(dsDE0022.szDescription)-1);
 jdeErrorSet (lpBhvrCom, lpVoid,(ID)0, _J("078D"), &dsDE0022);
}

Mapping Data Structure Errors with jdeCallObject
Any Business Function calling an external Business Function must use jdeCallObject. When using jdeCallObject, be sure
to match the Error IDs correctly.

You need to match the Ids from the original Business Function with the Error Ids of the Business Function in
jdeCallObject. A data structure is used in the jdeCallObject to accomplish this task.

/***
 * Variable declarations
 ***/
CALLMAP cm_D0000026[2] = {{IDERRmnDisplayExchgRate_62,
 IDERRmnExchangeRate_2}};
ID idReturnCode = ER_SUCCESS; /* Return Code */
/**
* Business Function structures
***/
DSD0000026 dsD0000026 = {0}; /* Edit Tolerance */

 idReturnCode = jdeCallObject(_J("EditExchanbeRateTolerance"),
 NULL,
 lpBhvrCom,

44

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 8
Implementing Error Messages

 lpVoid,
 (void *)&dsD0000026,
 (CALLMAP *)&cm_D0000026,
 ND0000026,
 (JCHAR *)NULL,
 (JCHAR *)NULL,
 (int)0);

45

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 8
Implementing Error Messages

46

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 9
Understanding Data Dictionary Triggers

9 Understanding Data Dictionary Triggers

Data Dictionary Triggers
Data dictionary triggers are used to attach edit-and-display logic to data dictionary items. The application runtime
engine executes the trigger associated with a data dictionary item at the time that the item is accessed in a form.

Custom data dictionary triggers are written in C or Named Event Rule (NER), and require a specific data structure
in order to execute correctly. The custom trigger data structure is composed of three predefined members and one
variable member. The predefined members are the same for every custom trigger. The variable member is different for
each trigger, and it is created using the specific data element associated with the data dictionary item.

This table shows the order of the members in the data structure along with the alias and a description of each member.

Structure Member Name Alias Description

idBhvrErrorId

BHVRERRID

Used by the trigger function
to return the error status (ER_
ERROR or ER_SUCCESS) to the
application.

szBehaviorEditString

BHVREDTST

Used by the application runtime
engine to pass the value for
the data dictionary field to the
trigger function.

szDescription001

DL01

Used by the trigger function to
return the description for the
value to the application.

szHomeCompany,
 mnAddressNumber

HMCO, AN8

Used by the trigger function to
set errors (CALLMAP field).

47

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 9
Understanding Data Dictionary Triggers

48

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 10
Understanding Unicode Compliance Standards

10 Understanding Unicode Compliance
Standards

Unicode Compliance Standards
The Unicode Standard is the universal character-encoding scheme for written characters and text. It defines a
consistent way of way of encoding multilingual text that enables the exchange of text data internationally and creates
the foundation for global software.

Facts about Unicode:

• Unicode is a very large character set containing the characters of virtually every written language.

• Unicode uses two bytes per character.

Up to 64,000 characters can be supported using two bytes. Unicode also has a mechanism called "surrogates,"
which uses pairs of two bytes to describe an additional one million characters.

• 0x00 is a valid byte in a character.

For example, the character "A" is described as 0x00 0x41, which means that normal string functions, such as
strlen() and strcpy, do not work with Unicode data.

Do not use the data type char. Instead, use JCHAR for Unicode characters and ZCHAR for non-Unicode characters. Use
ZCHAR instead of char in a code that needs to interface with non-Unicode APIs.

Old Syntax No Longer Available New Syntax Non-Unicode New Syntax Unicode

Char

ZCHAR

JCHAR

char *, PSTR

ZCHAR*, PZSTR

JCHAR*, PJSTR

'A'

_Z('A')

_J('A')

"string"

_Z("string")

_J("string")

Unicode String Functions
Two versions of all string functions exist: one for Unicode and one for non-Unicode. Naming standards for Unicode and
non-Unicode string functions are:

• jdeSxxxxxx() indicates a Unicode string function

• jdeZSxxxx() indicates a non-Unicode string function

49

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 10
Understanding Unicode Compliance Standards

Some of the replacement functions include:

Old String Functions New String Functions Non-
Unicode

New String Functions Unicode

strcpy()

jdeZStrcpy()

jdeStrcpy()

strlen()

jdeZStrlen()

jdeStrlen()

strstr()

jdeZStrstr()

jdeStrstr()

sprintf()

jdeZSprintf()

jdeSprintf()

strncpy()

jdeZStrncpy()

jdeStrncpy()

Note: The function jdestrcpy() was in use before the migration to Unicode. The Unicode slimer changed existing
jdestrcpy() to jdeStrncpyTerminate(). Going forward, developers need to use jdeStrncpyTerminate() where they
previously used jdestrcpy().

Do not use traditional string functions, such as strcpy, strlen, and printf. All the jdeStrxxxxxx functions explicitly handle
strings, so use character length instead of the sizeof() operator, which returns a byte count.

When using jdeStrncpy(), the third parameter is the number of characters, not the number of bytes.

The DIM() macro gives the number of characters of an array. Given "JCHAR a[10];", DIM(a) returns 10, while sizeof(a)
returns 20. "strncpy (a, b, sizeof (a));" needs to become "jdeStrncpy (a, b, DIM (a));".

Example: Using Unicode String Functions
This example shows how to use Unicode string functions:

/**
 In this example jdeStrncpy replaces strncpy. Also sizeof is
 replaced by DIM.
 ***/
/* Set key to F38112 */

/*Unicode Compliant*/
jdeStrncpy(dsKey1F38112.dxdcto,
 (const JCHAR *)(dsF4311ZDetail->pwdcto),
 DIM(dsKey1F38112.dxdcto) - 1);

50

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 10
Understanding Unicode Compliance Standards

Unicode Memory Functions
The memset() function changes memory byte by byte. For example, memset (buf, ' ', sizeof (buf)); sets the 10
bytes pointed to by the first argument, buf, to the value 0x20, the space character. Since a Unicode character is 2 bytes,
each character is set to 0x2020, which is the dagger character (†) in Unicode.

A new function, jdeMemset() sets memory character by character rather than byte by byte. This function takes a void
pointer, a JCHAR, and the number of bytes to set. Use jdeMemset (buf, _J (' '), sizeof (buf)); to set the Unicode
string buf so that each character is 0x0020. When using jdeMemset(), the third parameter, sizeof(buf), is the number of
bytes, not characters.

Note: You can use memset when filling a memory block with NULL. For all other characters, use jdeMemset. You also
can use jdeMemset for a NULL character.

Example: Using jdeMemset when Setting Characters to Values
other than NULL
This example shows how to use jdeMemset when setting characters to values other than NULL:

/**
 In this example memset is replaced by jdeMemset. We need to change
 memset to jdeMemset because we are setting each character of the
 string to a value other than NULL. Also, because jdeMemset works in
 bytes, we cannot just subtract 1 from sizeof(szSubsidiaryBlank) to
 prevent the last character from being set to ' '. We must multiply
 1 by sizeof(JCHAR).
 ***/

/*Unicode Compliant*/
jdeMemset((void *)(szSubsidiaryBlank), _J(' '),
 (sizeof(szSubsidiaryBlank) - (1*sizeof(JCHAR))));

Pointer Arithmetic
When advancing a JCHAR pointer, it is important to advance the pointer by the correct number. In the example, the
intent is to initialize each member of an array consisting of JCHAR strings to blank. Inside the "For" loop, the pointer is
advanced to point to the next member of the array of JCHAR strings after assigning a value to one of the members of
the array. This is achieved by adding the maximum length of the string to the pointer. Since pStringPtr has been defined
as a pointer to a JCHAR, adding MAXSTRLENGTH to pStringPtr results in pStringPtr pointing to the next member of the
array of strings.

#define MAXSTRLENGTH 10
JCHAR *pStringPtr;
LPMATH_NUMERIC pmnPointerToF3007;
for(i=(iDayOfTheWeek+iNumberOfDaysInMonth);i<CALENDARDAYS;i++)
{

51

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 10
Understanding Unicode Compliance Standards

 FormatMathNumeric(pStringPtr, &pmnPointerToF3007[i]);
 pStringPtr = pStringPtr + MAXSTRLENGTH;
}

These illustrations show the effect of adding MAXSTRLENGTH to pStringPtr. The top row in both tables contains
memory locations; the bottom rows contain the contents of those memory locations.

The arrow indicates the memory location that pStringPtr points to before MAXSTRLENGTH is added to pStringPtr.

The arrow indicates the memory location that pStringPtr points to after MAXSTRLENGTH is added to pStringPtr.
Adding 10 to pStringPtr makes it move 20 bytes, as it has been declared of type JCHAR.

If pStringPtr is advanced by the value MAXSTRLENGTH * sizeof(JCHAR), then pStringPtr advances twice as much as
intended and results in memory corruption.

Offsets
When adding an offset to a pointer to derive the location of another variable or entity, it is important to determine the
method in which the offset was initially created.

In this example, lpKeyStruct->CacheKey[n].nOffset is added to lpData to arrive at the location of a Cache Key segment.
This offset was for the segment created using the ANSI C function offsetof, which returns the number of bytes.
Therefore, to arrive at the location of Cache Key segment, cast the data structure pointer to type BYTE.

lpTemp1 = (BYTE *)lpData + lpKeyStruct->CacheKey[n].nOffset;

52

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 10
Understanding Unicode Compliance Standards

lpTemp2 = (BYTE *)lpKey + lpKeyStruct->CacheKey[n].nOffset;

In a non-Unicode environment, lpData could have been cast to be of type CHAR * as character size is one Byte in a non-
Unicode environment. In a Unicode environment, however, lpData has to be explicitly cast to be of type (JCHAR *) since
size of a JCHAR is 2 bytes.

MATH_NUMERIC APIs
The string members of the MATH_NUMERIC data structure are in ZCHAR (non-Unicode) format. The JD Edwards
EnterpriseOne Common Library API includes several functions that retrieve and manipulate these strings in both JCHAR
(Unicode) and ZCHAR (non-Unicode) formats.

To retrieve the string value of a MATH_NUMERIC data type in JCHAR format, use the FormatMathNumeric API function.
This example illustrates the use of this function:

/* Declare variables */
JCHAR szJobNumber[MAXLEN_MATH_NUMERIC+1] = _J("\0");
/* Retrieve the string value of the job number */
FormatMathNumeric(szJobNumber, &lpDS->mnJobnumber);

To retrieve the string value of a MATH_NUMERIC data type in ZCHAR format, use the jdeMathGetRawString API
function. This example illustrates the use of this function:

/* Declare variables */
ZCHAR zzJobNumber[MAXLEN_MATH_NUMERIC+1] = _Z("\0");
/* Retrieve the string value of the job number */
zzJobNumber = jdeMathGetRawString(&lpDS->mnJobnumber);

Another commonly used MATH_NUMERIC API function is jdeMathSetCurrencyCode. This function is used to update the
currency code member of a MATH_NUMERIC data structure. Two versions of this function exist: jdeMathCurrencyCode
and jdeMathCurrencyCodeUNI. The jdeMathCurrencyCode function is used to update the currency code with a ZCHAR
value, and jdeMathCurrencyCodeUNI is used to update the currency code with a JCHAR value. This example illustrates
the use of these two functions:

/* Declare variables */
ZCHAR zzCurrencyCode[4] = _Z("USD");
JCHAR szCurrencyCode[4] = _J("USD");
/* Set the currency code using a ZCHAR value */
jdeMathSetCurrencyCode(&lpDs->mnAmount, (ZCHAR *) zzCurrencyCode);
/* Set the currency code using a JCHAR value /*
jdeMathSetCurrencyCodeUNI(&lpDS->mnAmount, (JCHAR *) szCurrencyCode);

Third-Party APIs
Some third-party program interfaces (APIs) do not support Unicode character strings. In these cases, you must convert
character strings to non-Unicode format before calling the API, and convert them back to Unicode format for storage in
JD Edwards EnterpriseOne. Use these guidelines when programming for a non-Unicode API:

• Declare a Unicode and a non-Unicode variable for each API string parameter.

• Convert the Unicode strings to non-Unicode strings before calling the API.

53

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 10
Understanding Unicode Compliance Standards

• Call the API passing the non-Unicode strings in the parameter list.

• Convert the returned non-Unicode strings to Unicode strings for storage in JD Edwards EnterpriseOne.

Example: Third-Party API
This example calls a third-party API named GetStateName that accepts a two-character state code and returns a 30-
character state name:

/* Declare variables */
JCHAR szStateCode[3] = _J("CO"); /* Unicode state code */
JCHAR szStateName[31] = _J("\0"); /* Unicode state name */
ZCHAR zzStateCode[3] = _Z("\0"); /* Non-Unicode state code */
ZCHAR zzStateName[31] = _Z("\0"); /* Non-Unicode state name */
BOOL bReturnStatus = FALSE; /* API return flag */
/* Convert unicode strings to non-unicode strings */
jdeFromUnicode(zzStateCode, szStateCode, DIM(zzStateCode), NULL);
/* Call API */
bReturnStatus = GetStateName(zzStateCode, zzStateName);
/* Convert non-unicode strings to unicode strings for storage in
* JD Edwards EnterpriseOne */
jdeToUnicode(szStateName, zzStateName, DIM(szStateName), NULL);

Flat-File APIs
JD Edwards EnterpriseOne APIs such as jdeFprintf() convert data. This means that the default flat file I/O for character
data is in Unicode. If the users of JD Edwards EnterpriseOne-generated flat files are not Unicode enabled, they will not
be able to read the flat file correctly. Therefore, use an additional set of APIs.

An interactive application allows users to configure flat file encoding based on attributes such as application
name, application version name, user name, and environment name. The API set includes these file I/O functions:
fwrite/fread, fprintf/fscanf, fputs/fgets, and fputc/fgetc. The API converts the data using the code page specified
in the configuration application. One additional parameter, lpBhvrCom, must be passed to the functions so that the
conversion function can find the configuration for that application or version.

These new APIs only need to be called if a process outside of JD Edwards EnterpriseOne is writing or reading the flat file
data. If the file is simply a work file or a debugging file and will be written and read by JD Edwards EnterpriseOne, use
the non-converting APIs (for example, jdeFprintf()).

Example: Flat-File APIs
This example writes text to a flat file that would only be read by JD Edwards EnterpriseOne. Encoding in the file will be
Unicode.

FILE *fp;
fp = jdeFopen(_J(c:/testBSFNZ.txt), _J(w+));
jdeFprintf(fp, _J("%s%d\n"), _J("Line "), 1);
jdeFclose(fp);

This example writes text to a flat file that would be read by third-party systems. Encoding in the file will be based on the
encoding configured.

54

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 10
Understanding Unicode Compliance Standards

FILE *fp;
fp = jdeFopen(_J(c:/testBSFNZ.txt), _J(w+));
jdeFprintfConvert(lpBhvrCom, fp, _J("%s%d\n"), _J("Line "), 1);
jdeFclose(fp);

Note:
• "Using Flat Files" in the JD Edwards EnterpriseOne Tools Interoperability Guide .

HMAC-SHA-256 API (Release 9.2.9.3)
Starting with Tools Release 9.2.9.3, JD Edwards provides a new jde_HMAC_SHA256_string() API to compute HMAC-
SHA256 (hash-based message authentication code). This public API can be used by business functions to generate a
unique hash with given input data string and key.

55

olink:EOTIN00487

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 10
Understanding Unicode Compliance Standards

56

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 11
Understanding Standard Header and Source Files

11 Understanding Standard Header and
Source Files

Standard Header
Header files help the compiler properly create a business function. The C language contains 33 keywords. Everything
else, such as printf and getchar, is a function. Functions are defined in header files that you include at the beginning
of a business function. Without header files, the compiler does not recognize the functions and might return error
messages.

This example shows the standard header for a business function source file:

/**
 * Header File: BXXXXXXX.h
 * Description: Generic Business Function Header File
 * History:
 * Date Programmer SAR# - Description
 * ---------- ---------- ----------------------------
 * Author 03/15/2006 - Created
 *
 * Copyright (c) Oracle, 2006
 *
 * This unpublished material is proprietary to Oracle.
 * All rights reserved. The methods and
 * techniques described herein are considered trade secrets
 * and/or confidential. Reproduction or distribution, in whole
 * or in part, is forbidden except by express written permission
 * of Oracle.
 **/
#ifndef __BXXXXXXX_H
#define __BXXXXXXX_H
/***
 * Table Header Inclusions
 ***/

/**
 * External Business Function Header Inclusions
 ***/

/**
 * Global Definitions
 **/

/**
 * Structure Definitions
 **/

/***
 * DS Template Type Definitions
 **/

/***

57

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 11
Understanding Standard Header and Source Files

 * Source Preprocessor Definitions
 **/
#if defined (JDEBFRTN)
 #undef JDEBFRTN
#endif

#if defined (WIN32)
 #if defined (WIN32)
 #define JDEBFRTN(r) __declspec(dllexport) r
 #else
 #define JDEBFRTN(r) __declspec(dllimport) r
 #endif
#else
 #define JDEBFRTN(r) r
#endif
/**
 * Business Function Prototypes
 ***/
JDEBFRTN (ID) JDEBFWINAPI GenericBusinessFunction
 (LPBHVRCOM lpBhvrCom,
 LPVOID lpVoid,
 LPDSDXXXXXXXX lpDS);

/**
 * Internal Function Prototypes
 **/
#endif /* ___BXXXXXXX_H */

Business Function Name and Description
Use the Business Function Name and Description section to define the name of the business function, describe the
business function, and maintain the modification log.

Copyright Notice
The Copyright section contains the Oracle copyright notice and must be included in each source file. Do not change this
section.

Header Definition for a Business Function
The Header Definition section for a Business Function contains the "#define" of the business function. It is generated
by the tool. Do not change this section.

Table Header Inclusions
The Table Header Inclusions section contains the include statements for the table headers associated with tables
directly accessed by the business function.

See Lowercase Letters in Include Statements.

58

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 11
Understanding Standard Header and Source Files

External Business Function Header Inclusions
The External Business Function Header Inclusions section contains the include statements for the business function
headers associated with externally defined business functions that are directly accessed by the business function.

See Lowercase Letters in Include Statements.

Global Definitions
Use the Global Definitions section to define global constants used by the business function. Enter names in uppercase,
separated by an underscore.

See Using Define Statements.

Structure Definitions
Define structures used by the business function in the Structure Definitions section. Structure names should be prefixed
by the Source File Name to prevent conflicts with structures of the same name in other business functions.

See Understanding Naming Conventions Using Typedef Statements.

DS Template Type Definitions
The DS Template Type Definitions section defines the business functions contained in the source that correspond to the
header. You generate the structure from the business function or data structure design window in Object Management
Workbench. After you generate the structure, copy and paste it into this section.

Source Preprocessing Definitions
The Source Preprocessing Definitions section defines the entry point of the business function and includes the opening
bracket required by C functions. Do not change this section.

Business Function Prototypes
Use the Business Function Prototypes section to prototype the functions defined in the source file.

See Creating Function Prototypes.

59

https://www.oracle.com/pls/topic/lookup?ctx=jde9.2&id=u30205697

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 11
Understanding Standard Header and Source Files

Internal Function Prototypes
The Internal Function Prototypes section contains a description and parameters of the function.

See Understanding Naming Conventions Creating Function Prototypes.

Standard Source
The source file contains instructions for the business function. These sections describe the sections of a standard
source file.

A template generated for a standard source file when you create a JD Edwards EnterpriseOne business function appears
in the following pages:

#include <jde.h>
#define bxxxxxxx_c
/***
 * Source File: bxxxxxxx
 *
 * Description: Generic Business Function Source File
 *
 * History:
 * Date Programmer SAR# - Description
 * ---
 * Author 06/06/2005 - Created
 *
 * Copyright (c) Oracle, 2005
 *
 * This unpublished material is proprietary to Oracle.
 * All rights reserved. The methods and techniques described
 * herein are considered trade secrets and/or confidential.
 * Reproduction or distribution, in whole or in part, is
 * forbidden except by express written permission of
 * Oracle.
 **/
/**
 * Notes:
 *
 **/

#include <bxxxxxxx.h>
/***
 * Global Definitions

**/

/***
 * Business Function: GenericBusinessFunction
 *
 * Description: Generic Business Function
 *
 * Parameters:

60

https://www.oracle.com/pls/topic/lookup?ctx=jde9.2&id=u30205697

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 11
Understanding Standard Header and Source Files

 * LPBHVRCOM lpBhvrCom Business Function Communications
 * LPVOID lpVoid Void Parameter - DO NOT USE!
 * LPDSDXXXXXXX lpDS Parameter Data Structure Pointer
 *
 ***/
JDEBFRTN (ID) JDEBFWINAPI GenericBusinessFunction
 (LPBHVRCOM lpBhvrCom,
 LPVOID lpVoid,
 LPDSDXXXXXXXX lpDS)
{
 /***
 * Variable declarations
 ***/

 /***
 * Declare structures
 ***/

 /***
 * Declare pointers
 ***/

 /***
 * Check for NULL pointers
 ***/
 if ((lpBhvrCom == (LPBHVRCOM) NULL) ||
 (lPVoid == (LPVOID) NULL) ||
 (lpDS == (LPDSDXXXXXXXX) NULL))
 {
 jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0,
 4363, (LPVOID) NULL);
 return ER_ERROR;
 }
 /***
 * Set pointers
 ***/

/***
 * Main Processing
 ***/

 /***
 * Function Clean Up
 ***/

 return (ER_SUCCESS);
}
/* Internal function comment block */
/**
 * Function: Ixxxxxxx_a // Replace xxxxxxx with source file
 * // number
 * // and a with the function name
 * Notes:
 *
 * Returns:
 *
 * Parameters:
**/

61

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 11
Understanding Standard Header and Source Files

Business Function Name and Description
Use this section to maintain the name and description of the business function. Also use this section to maintain the
modification log.

Copyright Notice
The Copyright section contains the Oracle copyright notice and must be included in each source file. Do not make any
changes to this section.

Notes
Use the Notes section to include information for anyone who might review the code in the future. For example, describe
any peculiarities associated with the business function or any special logic.

Global Definitions
Use the Global Definitions section to define global constants used by the business function.

See Initializing Variables.

Header File for Associated Business Function
In the Header File for Associated Business Function section, include the header file associated with the business
function using #include. If you need to include additional header files in the source, place them here.

Business Function Header
The Business Function Header section contains a description of each of the parameters used by the business function.
Do not make any changes to this section.

Variable Declarations
The Variable Declarations section defines all required function variables. For ease of use, define the variables
sequentially by type.

See Understanding Naming Conventions Initializing Variables.

62

https://www.oracle.com/pls/topic/lookup?ctx=jde9.2&id=u30205697

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 11
Understanding Standard Header and Source Files

Declare Structures
Define any structures that are required by the function in the Declare Structures section.

See Creating Function Prototypes.

Pointers
If any pointers are required by the function, define them in the Pointers section. Name the pointer so that it reflects the
structure to which it is pointing. For example, lpDS1100 is pointing to the structure DS1100.

Check for NULL Pointers
The Check for NULL Pointers section checks for parameter pointers that are NULL. Do not change this section.

Set Pointers
Use the Set Pointers section if you did not initialize the variables when declaring them. You must assign values to all
pointers that you define.

See Creating Function Prototypes.

Main Processing
Use the Main Processing section to write the code.

Function Clean Up
Use the Function Clean Up section to release any allocated memory.

See Using the Function Clean Up Area.

Internal Function Comment Block
The Internal Function Comment Block section contains a description and parameters of the function.

See Understanding Naming Conventions.

63

https://www.oracle.com/pls/topic/lookup?ctx=jde9.2&id=u30205697

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 11
Understanding Standard Header and Source Files

64

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 12
Glossary

12 Glossary

add mode
A condition of a form that enables users to input data.

business function
A named set of user-created, reusable business rules and logs that can be called through event rules. Business
functions can run a transaction or a subset of a transaction (check inventory, issue work orders, and so on). Business
functions also contain the application programming interfaces (APIs) that enable them to be called from a form, a
database trigger, or a non-JD Edwards EnterpriseOne application. Business functions can be combined with other
business functions, forms, event rules, and other components to make up an application. Business functions can be
created through event rules or third-generation languages, such as C. Examples of business functions include Credit
Check and Item Availability.

compound statement
A statement followed by one or more statements enclosed with braces. A function block is an obvious example of
a compound statement. Control statements (while, for) and selection statements (if, switch) are also examples of
compound statements.

define statement
A statement that is a directive that sets up constants at the beginning of the program. A define statement always begins
with a pound sign (#).

edit mode
A condition of a form that enables users to change data.

65

JD Edwards EnterpriseOne Tools
Development Standards for Business Function
Programming Guide

Chapter 12
Glossary

error message
A message that provides an effective and usable method of communicating information to end-users. Developers can
create simple messages or text substitution messages.

event rule
A logic statement that instructs the system to perform one or more operations based on an activity that can occur in a
specific application, such as entering a form or exiting a field.

named event rule (NER)
Encapsulated, reusable business logic created using event rules, rather that C programming. NERs are also called
business function event rules. NERs can be reused in multiple places by multiple programs. This modularity lends itself
to streamlining, reusability of code, and less work.

portability
The ability to run a program on more than one system platform without modifying it. JD Edwards EnterpriseOne is a
portable environment.

trigger
One of several events specific to data dictionary items. You can attach logic to a data dictionary item that the system
processes automatically when the event occurs.

66

JD Edwards EnterpriseOne Tools | Index | 67

Index

B
business functions

external 23
internal 24

C
character set 49
comments

/*comment */ style 7
aligning 7

comparison tests 28
compound statements

aligning 9
braces 8, 9
declaring variables 9
defined 9
example 10, 11
logical expressions 9
number allowed per line 9
parenthesis 9

creating
business function definition 15
business function prototypes 15
C++ comments 36
internal function definition 16
internal function prototypes 15

D
data structures

examples of 18
declaring and initializing

examples 13, 14, 15, 15, 15, 16, 18
define statements

examples 13

E
entry point

defining in main body 59
source preprocessing definitions 59

errors
data structure 44
lpDS 42
standard 43
text substitution 43

external business function
calling 23
example 23

F
function blocks 9
function calls

data types 23
external 23
internal 24
jdeCallObject 23
long parameter lists 23

return value 23
function clean up area

example 29
releasing memory 29

function exit points
examples 30
number 30
using 30

function prototypes
examples 15, 15, 15, 16
placement 14
variable names 15

G
GENLNG

retrieving an address 26
storing an address 26
use 26

I
indentation

example 8
internal business functions, calling 24

J
JDB Errors 41
JDE Cache Errors 41
jdeCallObject

calling business functions 23, 24
mapping data structure errors 44

L
logical expressions 9

M
MATH_NUMERIC

assigning variables 38
using in variable declarations 17

MathCopy 38
memcpy 39
memory

allocating 27
jdeAlloc 27
releasing 27, 29

memset
setting data structure to NULL 18

multiple logical expressions 11

P
parenthesis 9
pointer

example 51

JD Edwards EnterpriseOne Tools | Index | 68

R
readability

examples 8, 10, 11
removing an address 27
retrieving an address 26

S
source preprocessor section 59
StartFormDynamic 13
storing an address 26
strcpy vs. strncpy 29
string functions 50
strings, copying 29
syntax 49

T
typecasting

in prototypes 28
use of 28

typedef statements
examples 14

U
Unicode

character set 49
standards 49
syntax 49

user-defined data structure 14
using braces

example 10
for ease in subsequent modifications 10
to clarify flow 10

using StartFormDynamic 13

V
variable declarations

description 17
initial values 17
initialization of 17
memset data structure to NULL 17
number per line 16
placement in functions 16
use of NULL pointers 17
using of MATH_NUMERIC variables 17

variable initialization
types 17

	 Development Standards for Business Function Programming Guide
	Preface
	Introduction to JD Edwards EnterpriseOne Tools Development Standards for Business Function Programming
	Development Standards for Business Function Programming Overview
	Development Standards for Business Function Programming Implementation
	Business Function Programming Implementation Steps

	Understanding Naming Conventions
	Source and Header File Names
	Function Names
	Variable Names
	Example: Hungarian Notation for Variable Names

	Business Function Data Structure Names

	Ensuring Readability
	Understanding Readability
	Maintaining the Source and Header Code Change Log
	Inserting Comments
	Example: Inserting Comments

	Indenting Code
	Example: Indenting Code

	Formatting Compound Statements
	Example: Formatting Compound Statements
	Example: Using Braces to Clarify Flow
	Example: Using Braces for Ease in Subsequent Modifications
	Example: Handling Multiple Logical Expressions

	Declaring and Initializing Variables and Data Structures
	Understanding Variables and Data Structures
	Using Define Statements
	Example: #define in Source File
	Example: #define in Header File

	Using Typedef Statements
	Example: Using Typedef for a User-Defined Data Structure

	Creating Function Prototypes
	Example: Creating a Business Function Prototype
	Example: Creating an Internal Function Prototype
	Example: Creating an External Business Function Definition
	Example: Creating an Internal Function Definition

	Initializing Variables
	Example: Initializing Variables

	Initializing Data Structures
	Example: Using Memset to Reset the Data Structure to Null

	Using Standard Variables
	Using Flag Variables
	Using Input and Output Parameters
	Using Fetch Variables
	Example: Using Standard Variables

	Applying General Coding Guidelines
	Using Function Calls
	Calling an External Business Function
	Example: Calling an External Business Function

	Calling an Internal Business Function
	Example: Calling an Internal Business Function with No Return Value
	Example: Calling an Internal Business Function with a Return Value

	Passing Pointers between Business Functions
	Storing an Address in an Array
	Example: Storing an Address in an Array

	Retrieving an Address from an Array
	Example: Retrieving an Address from an Array

	Removing an Address from an Array
	Example: Removing an Address from an Array

	Allocating and Releasing Memory
	Example: Allocating and Releasing Memory within a Business Function

	Using hRequest and hUser
	Typecasting
	Comparison Testing
	Example: Comparison Test
	Example: Creating TRUE or FALSE Test Comparison that Uses Boolean Logic

	Copying Strings with jdeStrcpy or jdeStrncpy
	Using the Function Clean Up Area
	Example: Using the Function Clean Up Area to Release Memory

	Inserting Function Exit Points
	Example: Inserting an Exit Point in a Function

	Terminating a Function

	Coding for Portability
	Portability Concepts
	Portability Guidelines
	Preventing Common Server Build Errors and Warnings
	Comments within Comments
	Example: C Comments that Comply with the ANSI Standard
	Example: C Comments that Comply with the ANSI Standard
	Example: Comments within Comments Cause Problems on Different Servers

	New Line Character at the End of a Business Function
	Use of Null Character
	Example: Use of NULL Character

	Lowercase Letters in Include Statements
	Example: Use of Lowercase Letters in Include Statements

	Initialized Variables that are Not Referenced

	Understanding JD Edwards EnterpriseOne Defined Structures
	
	MATH_NUMERIC Data Type
	JDEDATE Data Type
	Using Memcpy to Assign JDEDATE Variables
	JDEDATECopy

	Implementing Error Messages
	Understanding Error Messages
	Inserting Parameters for Error Messages in lpDS
	Example: Parameters in lpDS for an Error Message

	Initializing Behavior Errors
	Example: Initialize Behavior Error

	Using Text Substitution to Display Specific Error Messages
	Example: Text Substitution in an Error Message

	Mapping Data Structure Errors with jdeCallObject

	Understanding Data Dictionary Triggers
	Data Dictionary Triggers

	Understanding Unicode Compliance Standards
	Unicode Compliance Standards
	Unicode String Functions
	Example: Using Unicode String Functions

	Unicode Memory Functions
	Example: Using jdeMemset when Setting Characters to Values other than NULL

	Pointer Arithmetic
	Offsets
	MATH_NUMERIC APIs
	Third-Party APIs
	Example: Third-Party API

	Flat-File APIs
	Example: Flat-File APIs

	HMAC-SHA-256 API (Release 9.2.9.3)

	Understanding Standard Header and Source Files
	Standard Header
	Business Function Name and Description
	Copyright Notice
	Header Definition for a Business Function
	Table Header Inclusions
	External Business Function Header Inclusions
	Global Definitions
	Structure Definitions
	DS Template Type Definitions
	Source Preprocessing Definitions
	Business Function Prototypes
	Internal Function Prototypes

	Standard Source
	Business Function Name and Description
	Copyright Notice
	Notes
	Global Definitions
	Header File for Associated Business Function
	Business Function Header
	Variable Declarations
	Declare Structures
	Pointers
	Check for NULL Pointers
	Set Pointers
	Main Processing
	Function Clean Up
	Internal Function Comment Block

	Glossary
	add mode
	business function
	compound statement
	define statement
	edit mode
	error message
	event rule
	named event rule (NER)
	portability
	trigger

	Index
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	P
	R
	S
	T
	U
	V

