
Oracle® Big Data SQL
User’s Guide

Release 4.0
E93786-04
February 2020

Oracle Big Data SQL User’s Guide, Release 4.0

E93786-04

Copyright © 2012, 2020, Oracle and/or its affiliates.

Primary Author: Frederick Kush, Lauran Serhal, Drue Swadener

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions ix

Backus-Naur Form Syntax x

Changes in Oracle Big Data SQL 4.0 x

1 Introducing Oracle Big Data SQL

1.1 What Is Oracle Big Data SQL? 1-1

1.1.1 About Oracle External Tables 1-1

1.1.2 About the Access Drivers for Oracle Big Data SQL 1-2

1.1.3 About Smart Scan for Big Data Sources 1-2

1.1.4 About Storage Indexes 1-3

1.1.5 About Predicate Push Down 1-5

1.1.6 About Pushdown of Character Large Object (CLOB) Processing 1-6

1.1.7 About Aggregation Offload 1-8

1.1.8 About Oracle Big Data SQL Statistics 1-9

1.2 Installation 1-12

1.3 Security Overview 1-13

2 Using Oracle Big Data SQL for Data Access

2.1 Creating External Tables 2-1

2.1.1 About the SQL CREATE TABLE Statement 2-1

2.1.1.1 Basic Syntax 2-1

2.1.1.2 About the External Table Clause 2-2

2.1.2 Creating an Oracle External Table for Hive Data 2-3

2.1.2.1 Obtaining Information About a Hive Table 2-4

2.1.2.2 Using the CREATE_EXTDDL_FOR_HIVE Function 2-4

2.1.2.3 Using Oracle SQL Developer to Connect to Hive 2-6

2.1.2.4 Developing a CREATE TABLE Statement for ORACLE_HIVE 2-8

iii

2.1.2.5 Hive to Oracle Data Type Conversions 2-10

2.1.3 Creating an Oracle External Table for Oracle NoSQL Database 2-11

2.1.3.1 Creating a Hive External Table for Oracle NoSQL Database 2-11

2.1.3.2 Creating the Oracle Database Table for Oracle NoSQL Data 2-13

2.1.3.3 About Oracle NoSQL to Oracle Database Type Mappings 2-13

2.1.3.4 Example of Accessing Data in Oracle NoSQL Database 2-14

2.1.4 Creating an Oracle External Table for Apache HBase 2-17

2.1.4.1 Creating a Hive External Table for HBase 2-17

2.1.4.2 Creating the Oracle Database Table for HBase 2-18

2.1.5 Creating an Oracle External Table for HDFS Files 2-18

2.1.5.1 Using the Default Access Parameters with ORACLE_HDFS 2-18

2.1.5.2 ORACLE_HDFS LOCATION Clause 2-19

2.1.5.3 Overriding the Default ORACLE_HDFS Settings 2-20

2.1.6 Creating an Oracle External Table for Kafka Topics 2-22

2.1.6.1 Using Oracle's Hive Storage Handler for Kafka to Create a Hive
External Table for Kafka Topics 2-23

2.1.6.2 Creating an Oracle Big Data SQL Table for Kafka Topics 2-26

2.1.7 Creating an Oracle External Table for Object Store Access 2-27

2.1.7.1 Create Table Example for Object Store Access 2-29

2.1.7.2 Accessing a Local File through an Oracle Directory Object 2-30

2.1.7.3 Parquet to Oracle Data Type Conversions 2-31

2.1.7.4 Avro to Oracle Data Type Conversions 2-32

2.1.7.5 ORACLE_BIGDATA Support for Compressed Files 2-33

2.2 Querying External Tables 2-33

2.2.1 Granting User Access 2-33

2.2.2 About Error Handling 2-34

2.2.3 About the Log Files 2-34

2.2.4 About File Readers 2-34

2.2.4.1 Using the Custom Parquet Reader for Oracle Big Data SQL 2-34

2.3 About Oracle Big Data SQL on the Database Server (Oracle Exadata
Machine or Other) 2-35

2.3.1 About the bigdata_config Directory 2-35

2.3.2 Common Configuration Properties 2-35

2.3.2.1 bigdata.properties 2-35

2.3.2.2 bigdata-log4j.properties 2-38

2.3.3 About the Cluster Directory 2-38

2.3.4 About Permissions 2-39

3 Storing Oracle Data in Hadoop

3.1 Using Copy to Hadoop 3-1

3.1.1 What Is Copy to Hadoop? 3-1

iv

3.1.2 Getting Started Using Copy to Hadoop 3-2

3.1.2.1 Table Access Requirements for Copy to Hadoop 3-3

3.1.3 Using Oracle Shell for Hadoop Loaders With Copy to Hadoop 3-3

3.1.3.1 Introducing Oracle Shell for Hadoop Loaders 3-3

3.1.4 Copy to Hadoop by Example 3-3

3.1.4.1 First Look: Loading an Oracle Table Into Hive and Storing the
Data in Hadoop 3-4

3.1.4.2 Working With the Examples in the Copy to Hadoop Product Kit 3-6

3.1.5 Querying the Data in Hive 3-8

3.1.6 Column Mappings and Data Type Conversions in Copy to Hadoop 3-8

3.1.6.1 About Column Mappings 3-8

3.1.6.2 About Data Type Conversions 3-8

3.1.7 Working With Spark 3-9

3.1.8 Using Oracle SQL Developer with Copy to Hadoop 3-10

3.2 Storing Oracle Tablespaces in HDFS 3-10

3.2.1 Advantages and Limitations of Tablespaces in HDFS 3-11

3.2.2 About Tablespaces in HDFS and Data Encryption 3-12

3.2.3 Moving Tablespaces to HDFS 3-13

3.2.3.1 Using bds-copy-tbs-to-hdfs 3-13

3.2.3.2 Manually Moving Tablespaces to HDFS 3-17

3.2.4 Smart Scan for TableSpaces in HDFS 3-20

4 Working With Query Server

4.1 About Oracle Big Data SQL Query Server 4-1

4.2 Important Terms and Concepts 4-2

4.3 Query Server Features 4-2

4.4 Specifying the Hive Databases to Synchronize With Query Server 4-3

4.4.1 Specifying the Hive Databases in the bds-config.json Configuration File 4-4

4.4.2 Updating the Hive Databases With the sync_hive_db_list Configuration
Parameter 4-5

4.5 Synchronizing Query Server With Hive 4-5

4.5.1 Restarting Query Server Manually by Using Cloudera Manager 4-6

4.5.2 Synchronizing Query Server Manually by Using Cloudera Manager 4-6

4.5.3 Synchronizing Query Server Manually by Using the PL/SQL API 4-7

4.5.4 Enabling Query Server Full Synchronization 4-7

4.6 Query Server Restarts and Metadata Persistence 4-8

4.7 Query Server Security 4-8

5 Oracle Big Data SQL Reference

5.1.1 CREATE TABLE ACCESS PARAMETERS Clause 5-1

v

5.1.1.1 Syntax Rules for Specifying Properties 5-1

5.1.1.2 ORACLE_HDFS Access Parameters 5-2

5.1.1.2.1 Default Parameter Settings for ORACLE_HDFS 5-2

5.1.1.2.2 Optional Parameter Settings for ORACLE_HDFS 5-3

5.1.1.3 ORACLE_HIVE Access Parameters 5-3

5.1.1.3.1 Default Parameter Settings for ORACLE_HIVE 5-4

5.1.1.3.2 Optional Parameter Values for ORACLE_HIVE 5-4

5.1.1.4 Full List of Access Parameters for ORACLE_HDFS and
ORACLE_HIVE 5-4

5.1.1.4.1 com.oracle.bigdata.buffersize 5-5

5.1.1.4.2 com.oracle.bigdata.datamode 5-5

5.1.1.4.3 com.oracle.bigdata.colmap 5-6

5.1.1.4.4 com.oracle.bigdata.erroropt 5-7

5.1.1.4.5 com.oracle.bigdata.fields 5-8

5.1.1.4.6 com.oracle.bigdata.fileformat 5-10

5.1.1.4.7 com.oracle.bigdata.log.exec 5-11

5.1.1.4.8 com.oracle.bigdata.log.qc 5-12

5.1.1.4.9 com.oracle.bigdata.overflow 5-12

5.1.1.4.10 com.oracle.bigdata.rowformat 5-13

5.1.1.4.11 com.oracle.bigdata.tablename 5-15

5.1.1.5 ORACLE_BIGDATA Access Parameters 5-16

5.1.2 Static Data Dictionary Views for Hive 5-18

5.1.2.1 ALL_HIVE_DATABASES 5-19

5.1.2.2 ALL_HIVE_TABLES 5-19

5.1.2.3 ALL_HIVE_COLUMNS 5-20

5.1.2.4 DBA_HIVE_DATABASES 5-21

5.1.2.5 DBA_HIVE_TABLES 5-21

5.1.2.6 DBA_HIVE_COLUMNS 5-22

5.1.2.7 USER_HIVE_DATABASES 5-22

5.1.2.8 USER_HIVE_TABLES 5-22

5.1.2.9 USER_HIVE_COLUMNS 5-22

5.1.3 DBMS_BDSQL PL/SQL Package 5-23

5.1.3.1 ADD_USER_MAP 5-23

5.1.3.2 REMOVE_USER_MAP 5-25

5.1.3.3 Multi-User Authorization Security Table 5-25

5.1.4 DBMS_BDSQS_ADMIN PL/SQL Package 5-27

5.1.5 DBMS_HADOOP PL/SQL Package 5-30

5.1.5.1 CREATE_EXTDDL_FOR_HIVE 5-30

5.1.5.1.1 Example 5-31

vi

Part I Appendices

A Manual Steps for Using Copy to Hadoop for Staged Copies

A.1 Generating the Data Pump Files A-1

A.1.1 About Data Pump Format Files A-1

A.1.2 Identifying the Target Directory A-2

A.1.3 About the CREATE TABLE Syntax A-2

A.2 Copying the Files to HDFS A-3

A.3 Creating a Hive Table A-3

A.3.1 About Hive External Tables A-3

A.4 Example Using the Sample Schemas A-4

A.4.1 About the Sample Data A-4

A.4.2 Creating the EXPDIR Database Directory A-4

A.4.3 Creating Data Pump Format Files for Customer Data A-4

A.4.3.1 CREATE TABLE Example With a Simple SELECT Statement A-5

A.4.3.2 CREATE TABLE Example With a More Complex SQL SELECT
Statement A-5

A.4.4 Verifying the Contents of the Data Files A-5

A.4.5 Copying the Files into Hadoop A-6

A.4.6 Creating a Hive External Table A-6

B Using Copy to Hadoop With Direct Copy

B.1 Manual Steps for Using Copy to Hadoop for Direct Copies B-1

B.2 Copy to Hadoop Property Reference B-4

C Using mtactl to Manage the MTA extproc

D Diagnostic Tips and Details

D.1 Running Diagnostics with bdschecksw D-1

D.2 How to do a Quick Test D-4

D.3 Oracle Big Data SQL Database Objects D-5

D.4 Other Database-Side Artifacts D-7

D.5 Hadoop Datanode Artifacts D-13

D.6 Step-by-Step Process for Querying an External Table D-14

D.7 Step-by-Step for a Hive Data Dictionary Query D-17

D.8 Key Adminstration Tasks for Oracle Big Data SQL D-17

D.9 Additional Java Diagnostics D-20

vii

D.10 Checking for Correct Oracle Big Data SQL Patches D-20

D.11 Debugging SQL.NET Issues D-21

E Change History for Previous Releases

E.1 Changes in Oracle Big Data SQL 3.2 E-1

F Oracle Big Data SQL Software Accessibility Recommendations

F.1 Tips on Using Screen Readers and Braille Displays F-1

F.2 Tips on Using Screen Magnifiers F-2

Index

viii

Preface

The Oracle Big Data SQL User's Guide describes how to use and manage the Oracle
Big Data SQL product.

Audience
This guide is intended for administrators and users of Oracle Big Data SQL, including:

• Application developers

• Data analysts

• Data scientists

• Database administrators

• System administrators

The guide assumes that the reader has basic knowledge of Oracle Database single-
node and multinode systems, the Hadoop framework, the Linux operating system, and
networking concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
See the Oracle Big Data SQL Installation Guide for instructions on installing the
product.

See the Oracle Big Data Appliance Owner's Guide for information about using the
Oracle Big Data SQL with Oracle Big Data Appliance.

Conventions
The following text conventions are used in this document:

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/bigdata/bda411/BIGOG/intro.htm#BIGOG107

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

prompt The pound (#) prompt indicates a command that is run as the Linux
root user.

Backus-Naur Form Syntax
The syntax in this reference is presented in a simple variation of Backus-Naur Form
(BNF) that uses the following symbols and conventions:

Symbol or Convention Description

[] Brackets enclose optional items.

{ } Braces enclose a choice of items, only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

... Ellipses indicate that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, and vertical bars must be
entered as shown.

boldface Words appearing in boldface are keywords. They must be typed
as shown. (Keywords are case-sensitive in some, but not all,
operating systems.) Words that are not in boldface are
placeholders for which you must substitute a name or value.

Changes in Oracle Big Data SQL 4.0
The following are new features and updates in Oracle Big Data SQL Release 4.0.

Support for Oracle Database 18c as well as Backward Compatibility for Oracle
Database 12.2 and 12.1

To take advantage of the new capabilities in Oracle Big Data SQL 4.0, you need use
Oracle Database 18c or later. However, use of Oracle Database 12.1 and 12.2 is fully
supported (even though you can't leverage the new 4.0 capabilities with these
database versions). This backward compatibility enables you to install and administer
release 4.0 in a mixed environment that includes both Oracle Database 18c and 12c.

Big Data SQL Query Server

Big Data SQL Query Server is a lightweight, zero-maintenance Oracle Database. It
gives you an easy way to query data in Hadoop without the need for a full-fledged
Oracle Database service. The services consist of the Oracle SQL query engine only. It
provides no persistent storage except for certain categories of metadata that are
useful to retain across sessions.

Preface

x

• Installs Automatically and Requires no Maintenance

Big Data SQL Query Server is included as part of the standard Oracle Big Data
SQL installation. The only thing you need to provide is the address of an edge
node where you would like the service installed. The installation itself is fully
automated and requires no post-installation configuration.

• Provides Single and Multi-User Modes

The service provides two modes – single-user and multi-user. Single-user mode
utilizes a single user for accessing the Query Server. All users connect to the
Query Server as the BDSQL user with the password specified during the
installation. In multi-user mode Hadoop cluster users log into the Query Server
using their Kerberos principal.

• Works with Kerberos, Automatically Imports Kerberos Principals

A Kerberos-secured cluster can support both single user and multi-user mode.

During installation on a secured cluster, the installer automatically queries the
KDC to identify the Kerberos principals and then sets up externally identified users
based on the principals. After installation, the administrator can manually add or
remove principals.

• Resets to Initial State After Each Query Server Restart

Each time Big Data SQL Query Server is restarted, the database instance is reset
to the original state. This also happens if a fatal error occurs. This reset enables
you to start again from a “clean slate.” A restart preserves external tables (both
ORACLE_HIVE and HDFS types), associated statistics, and user-defined views. A
restart deletes regular tables containing user data

• Can be Managed Through Hortonworks Ambari or Cloudera Manager

Big Data SQL Query Service is automatically set up as a service in Ambari or
Cloudera Manager. You can use these administrative tools to monitor and stop/
start the process, view warning, error, and informational messages, and perform
some Big Data SQL Query Service operations such as statistics gathering and
Hive metadata import.

Query Server is provided under a limited use license described in Oracle Big Data
SQL Licensing in Oracle Big Data SQL Installation Guide.

New ORACLE_BIGDATA Driver for Accessing Object Stores

In addition to ORACLE_HIVE and ORACLE_HDFS, release 4.0 also includes the new
ORACLE_BIGDATA driver. This driver enables you to create external tables over data
within object stores in the cloud. Currently Oracle Object Store and Amazon S3 are
supported. ORACLE_BIGDATA enables you to create external tables over Parquet,
Avro, and text files in these environments. For development and testing, you can also
use it to access local data files through Oracle Database directory objects. The driver
is written in C and does not execute any Java code.

In release 4.0, ORACLE_BIGDATA supports the return of scalar fields from Parquet
files. More complex data types as well as multi-part Parquet files are not supported at
this time. Because the reader does not support complex data types in the Parquet file,
the column list generated omits any complex columns from the external table
definition. Most types stored in Parquet files are not directly supported as types for
columns in Oracle tables.

Preface

xi

Oracle Big Data SQL's Smart Scan, including the new aggregation offload capability,
work with object stores by offloading data from the object store to processing cells on
the Hadoop cluster where Oracle Big Data SQL is installed.

Authentication against object stores is accomplished through a credential object that
you create using the DBMS_CREDENTIAL package. You include the name of the
credential object as well as a location URI as parameters of the external table create
statement.

See Also:

Creating an Oracle External Table for Object Store Access which provides
create statement examples as well as conversion tables for Parquet and
Avro data types to Oracle data types.

Aggregation Offload

Oracle Big Data SQL can now utilize Oracle In-Memory technology to offload
aggregations to the Oracle Big Data SQL cells. Oracle Big Data SQL leverages the
processing power of the Hadoop cluster to distribute aggregations across the cluster
nodes. The performance gains can be significantly greater than for aggregations that
do not offload, especially when there are a moderate number of summary groupings.

Oracle Big Data SQL cells support single table and multi-table aggregations (for
example, dimension tables joining to a fact table). For multi-table aggregations, the
Oracle Database uses the key vector transform optimization in which the key vectors
are pushed to the cells for the aggregation process. This transformation type is useful
for star join sql queries that use typical aggregation operators (for example, SUM, MIN,
MAX, and COUNT) which are common in business queries.

See Also:

"About Aggregation Offload"

Sentry Authorization in Oracle Big Data SQL

In addition to supporting authorization for HDFS file access, Oracle Big Data SQL
supports Sentry policies,which authorize access to Hive metadata. Sentry enables
fine-grained control over user access, down to the column level.

See Also:

Sentry Authorization in Big Data SQL in the Oracle Big Data SQL Installation
Guide.

Preface

xii

Installer Improvements

• The Jaguar installer provides easy installation of the optional Query Server
database. Several new parameters are added to the Jaguar configuration file for
the installation of this component.

• Oracle Big Data SQL now includes its own JDK. You no longer need to download
it from the Oracle Technology Network. Other versions of the JDK may be present,
but do not change the JDK path that Oracle Big Data SQL uses.

• The installer now validates principals entered in the Kerberos section of the
configuration file against the corresponding keytab file and flags an error if these
do no match.

• Cluster edge nodes are automatically excluded from the requirements pre-check.

• In the installation pre-check, hardware factors (cores and memory) are validated
only on nodes where Oracle Big Data SQL processing cells will be installed.

• On the database side, the install now validates the subnet (for InfiniBand
connections), the LD_LIBRARY_PATH, and the hostnames of Hadoop systems on
the other side of the connection.

• In an uninstall on the database side, the operation now removes all Oracle Big
Data SQL artifacts from the database server and reverts all changes to
cellinit.*ora and database parameters.

• The Jaguar updatenodes operation is deprecated in this release. Use reconfigure
instead to change cluster settings, create database-side install bundles, and
expand or shrink the configuration.

• Two new scripts to help predetermine readiness for installation.
Prior to installing the Hadoop side of Oracle Big Data SQL, you can run
bds_node_check.sh on each DataNode of the cluster to check if the node meets
the installation prerequisites.

Prior to installing on the Oracle Database system, you can run bds-validate-grid-
patches.sh to ensure that Oracle Grid includes the patches required by the Oracle
Big Data SQL release.

• The script bds_cluster_node_helper.sh, which you can run on each Hadoop node,
provides status on the Oracle Big Data SQL installation on the node and also
collects log data and other information useful for maintenance. There are three
options for the scope of the log data collection.

Preface

xiii

1
Introducing Oracle Big Data SQL

Welcome to Oracle Big Data SQL.

• What Is Oracle Big Data SQL?

• Installation

• Security Overview

1.1 What Is Oracle Big Data SQL?
Oracle Big Data SQL supports queries against non-relational data stored in multiple
big data sources, including Apache Hive, HDFS, Oracle NoSQL Database, Apache
Kafka, Apache HBase, and other NoSQL databases. It enables unified query for
distributed data and therefore the ability to view and analyze data from disparate data
stores seamlessly, as if it were all stored in an Oracle database.

Oracle Big Data SQL enables you to execute highly complex SQL SELECT statements
against data in the Hadoop ecosystem, either manually or through your existing
applications. For example, if you are a user of Oracle Advanced Analytics, Oracle Big
Data SQL enables you to extend your Oracle Database data mining models to big data
in Hadoop.

Components of an Oracle Big Data SQL Installation

The Oracle Big Data SQL architecture consists of an installation on an Oracle
Database system (single node or RAC) that works in conjunction with a parallel
installation on a Hadoop (or NoSQL) cluster. The two systems may be networked via
either Ethernet or InfiniBand. Hadoop and Hive clients on the compute nodes of the
Oracle Database system enable communication between the database and the Oracle
Big Data SQL process (known as Oracle Big Data SQL “cell”) that runs on each of the
DataNodes of the Hadoop cluster. Through this mechanism, Oracle Database can
query data on the Hadoop cluster. In addition, an Oracle Big Data SQL Query Server
can be deployed on an edge node on a cluster and can also connect to the Oracle Big
Data SQL cells.

Since data in the Hadoop HDFS file system is stored in an undetermined format, SQL
queries require some constructs to parse and interpret data for it to be processed in
rows and columns. Oracle Big Data SQL leverages available Hadoop constructs to
accomplish this, notably InputFormat and SerDe Java classes, optionally through Hive
metadata definitions. The Oracle Big Data SQL processing cells on the DataNodes are
a layer on top of this generic Hadoop infrastructure. Three key features provided by
the cells are Smart Scan, Storage Indexes, and Aggregation Offload, which are
described in this chapter.

1.1.1 About Oracle External Tables
Oracle Big Data SQL provides external tables with next generation performance gains.
An external table is an Oracle Database object that identifies and describes the

1-1

location of data outside of a database. You can query an external table using the same
SQL SELECT syntax that you use for any other database tables.

External tables use access drivers to parse the data outside the database. Each type
of external data requires a unique access driver. Oracle Big Data SQL includes two
access drivers for big data: one for data that has metadata defined in Apache Hive,
and the other for accessing data stored in the Hadoop Distributed File System, with
metadata specified only by an Oracle administrator.

1.1.2 About the Access Drivers for Oracle Big Data SQL
By querying external tables, you can access data stored in external sources as if that
data was stored in tables in an Oracle database. Oracle Database accesses the data
via the metadata provided by the external table.

Oracle Database supports these access drivers for Oracle Big Data SQL:

• ORACLE_HIVE: Enables you to create Oracle external tables over Apache Hive data
sources. Use this access driver when you already have Hive tables defined for
your HDFS data sources. ORACLE_HIVE can also access data stored in other
locations, such as HBase, that have Hive tables defined for them and Kafka.

• ORACLE_HDFS: Enables you to create Oracle external tables directly over files
stored in HDFS. This access driver uses Hive syntax to describe a data source,
assigning default column names of COL_1, COL_2, and so forth. You do not need to
create a Hive table manually as a separate step.

Instead of acquiring the metadata from a Hive metadata store the way that
ORACLE_HIVE does, the ORACLE_HDFS access driver acquires all of the necessary
information from the access parameters. The ORACLE_HDFS access parameters are
required to specify the metadata, and are stored as part of the external table
definition in Oracle Database.

• ORACLE_BIGDATA: Enables external table creation over files in object stores. Use
this access driver for querying data captured in object stores. ORACLE_BIGDATA
supports text (i.e. delimited, JSON, and XML), Parquet, and Avro file types.

1.1.3 About Smart Scan for Big Data Sources
Oracle external tables do not have traditional indexes. Queries against these external
tables typically require a full table scan. The Oracle Big Data SQL processing agent on
the DataNodes of the Hadoop cluster extends Smart Scan capabilities (such as filter-
predicate off-loads) to Oracle external tables. Smart Scan has been used for some
time on the Oracle Exadata Database Machine to do column and predicate filtering in
the Storage Layer before query results are sent back to the Database Layer. In Oracle
Big Data SQL, Smart Scan is a final filtering pass done locally on the Hadoop server to
ensure that only requested elements are sent to Oracle Database. Oracle storage
servers running on the Hadoop DataNodes are capable of doing Smart Scans against
various data formats in HDFS, such as CSV text, Avro, and Parquet.

This implementation of Smart Scan leverages the massively parallel processing power
of the Hadoop cluster to filter data at its source. It can preemptively discard a huge
portion of irrelevant data—up to 99 percent of the total. This has several benefits:

• Greatly reduces data movement and network traffic between the cluster and the
database.

• Returns much smaller result sets to the Oracle Database server.

Chapter 1
What Is Oracle Big Data SQL?

1-2

• Aggregates data when possible by leveraging scalability and cluster processing.

Query results are returned significantly faster. This is the direct result reduced traffic
on the network and reduced load on Oracle Database.

See Also:

See Storing Oracle Tablespaces in HDFS for instructions on how to set up
data files for smart scanning.

See Oracle Database Concepts for a general introduction to external tables
and pointers to more detailed information in the Oracle Database
documentation library

1.1.4 About Storage Indexes
For data stored in HDFS, Oracle Big Data SQL maintains Storage Indexes
automatically, which is transparent to Oracle Database. Storage Indexes contain the
summary of data distribution on a hard disk for the data that is stored in HDFS.
Storage Indexes reduce the I/O operations cost and the CPU cost of converting data
from flat files to Oracle Database blocks. You can think of a storage index as a
"negative index". It tells Smart Scan that data does not fall within a block of data, which
enables Smart Scan to skip reading that block. This can lead to significant I/O
avoidance.

Storage Indexes can be used only for the external tables that are based on HDFS and
are created using either the ORACLE_HDFS driver or the ORACLE_HIVE driver.
Storage Indexes cannot be used for the external tables that use StorageHandlers,
such as Apache HBase and Oracle NoSQL.

A Storage Index is a collection of in-memory region indexes, and each region index
stores summaries for up to 32 columns. There is one region index for each split. The
content stored in one region index is independent of the other region indexes. This
makes them highly scalable, and avoids latch contention.

Storage Indexes maintain the minimum and maximum values of the columns of a
region for each region index. The minimum and maximum values are used to eliminate
unnecessary I/O, also known as I/O filtering. The cell XT granule I/O bytes saved by
the Storage Indexes statistic, available in the V$SYSSTAT view, shows the number of
bytes of I/O saved using Storage Indexes.

Queries using the following comparisons are improved by the Storage Indexes:

• Equality (=)

• Inequality (<, !=, or >)

• Less than or equal (<=)

• Greater than or equal (>=)

• IS NULL

• IS NOT NULL

Chapter 1
What Is Oracle Big Data SQL?

1-3

http://docs.oracle.com/database/122/CNCPT/preface.htm#CNCPT88773

Storage Indexes are built automatically after Oracle Big Data SQL service receives a
query with a comparison predicate that is greater than the maximum or less than the
minimum value for the column in a region.

Note:

• The effectiveness of Storage Indexes can be improved by ordering the
rows in a table based on the columns that frequently appear in the
WHERE query clause.

• Storage Indexes work with any non-linguistic data type, and works with
linguistic data types similar to non-linguistic index.

Example 1-1 Elimination of Disk I/O with Storage Indexes

The following figure shows a table and region indexes. The values in column B in the
table range from 1 to 8. One region index stores the minimum 1, and the maximum of
5. The other region index stores the minimum of 3, and the maximum of 8.

For a query such as the one below, only the first set of rows match. Disk I/O is
eliminated because the minimum and maximum of the second set of rows do not
match the WHERE clause of the query.

SELECT *
FROM TABLE
WHERE B < 2;

Example 1-2 Improved Join Performance Using Storage Indexes

Using Storage Indexes allows table joins to skip unnecessary I/O operations. For
example, the following query would perform an I/O operation and apply a Bloom filter
to only the first block of the fact table. Bloom filters are the key to improved join
performance. In the example, a predicate is on the dimension table - not the fact table.
The Bloom Filter is created based on "dim.name=Hard drive" and this filter is then
applied to the fact table. Therefore, even though the filter is on the dimension table,

Chapter 1
What Is Oracle Big Data SQL?

1-4

you are able to filter the data at its source (i.e. Hadoop) based on the results of the
dimension query. This also enables optimizations like Storage Indexes to engage.

SELECT count(*)
FROM fact, dimension dim
WHERE fact.m=dim.m and dim.product="Hard drive";

The I/O for the second block of the fact table is completely eliminated by Storage
Indexes as its minimum/maximum range (5,8) is not present in the Bloom filter.

1.1.5 About Predicate Push Down
Many Big Data systems support some level of predicate off-loading, either through the
filetype itself (e.g. Apache Parquet), or through Hive’s partitioning and StorageHandler
APIs. Oracle Big Data SQL takes advantage of these off-load capabilities by pushing
predicates from the Oracle Database into supporting systems. For example, predicate
push down enables the following automatic behaviors:

• Queries against partitioned Hive tables are pruned, based on filter predicates on
partition columns.

• Queries against Apache Parquet and Apache ORC files reduce I/O by testing
predicates against the internal index-like structures contained within these file
formats.

Note:

Predicate pushdown in queries against Parquet files is inefficient unless
the files are generated through Hive using the workaround described in
the next section.

• Queries against Oracle NoSQL Database or Apache HBase use SARGable
predicates to drive subscans of data in the remote data store.

Required Datatypes to Enable Predicate Push Down

Predicate push down requires that certain mappings between Hive Datatypes and
Oracle Datatypes be present. These mappings are described in the following table.

Chapter 1
What Is Oracle Big Data SQL?

1-5

Hive Datatype Mapped To Oracle Datatype

CHAR(m) CHAR(n), VARCHAR2(n) where n is >= m

VARCHAR(m) CHAR(n), VARCHAR2(n) where n is >= m.

string CHAR(n), VARCHAR2(n)

DATE DATE

TIMESTAMP TIMESTAMP(9) Hive TIMESTAMP has
nanoseconds, 9 digit fractional seconds.

TINYINT NUMBER(3) preferably, but NUMBER or
NUMBER(n) for any value of n is valid.

SMALLINT NUMBER(5) preferably, but NUMBER or
NUMBER(n) for any value of n is valid.

INT NUMBER(10) preferably, but NUMBER or
NUMBER(n) for any value of n is valid.

BIGINT NUMBER(19) preferably, but NUMBER or
NUMBER(n) for any value of n is OK

DECIMAL(m) NUMBER(n) where m = n preferably, but
NUMBER or NUMBER(n) for any value of n is
valid.

FLOAT BINARY_FLOAT

DOUBLE BINARY_DOUBLE

BINARY RAW(n)

BOOLEAN CHAR(n), VARCHAR2(n) where n is >= 5, values
'TRUE', 'FALSE'

BOOLEAN NUMBER(1) preferably, but NUMBER or
NUMBER(n) for any value of n is valid. Values 0
(false), 1 (true).

1.1.6 About Pushdown of Character Large Object (CLOB) Processing
Queries against Hadoop data may involve processing large objects with potentially
millions of records. It is inefficient to return these objects to Oracle Database for
filtering and parsing. Oracle Big Data SQL can provide significant performance gains
by pushing CLOB processing down to its own processing cells on the Hadoop cluster.
Filtering in Hadoop reduces the number of rows returned to Oracle Database. Parsing
reduces the amount of data returned from a column within each filtered row.

Customers can disable or re-enable CLOB processing pushdown to suit their own
needs.

In the current release, this functionality currently applies only to JSON expressions
returning CLOB data. The eligible JSON filter expressions for storage layer evaluation
include simplified syntax, JSON_VALUE, and JSON_QUERY.

The same support will be provided for other CLOB types (such as substr and instr) as
well as for BLOB data in a future release.

Oracle Big Data SQL can push processing down to Hadoop for CLOBs within these
size constraints:

• Filtering for CLOB columns up to 1 MB in size.

Chapter 1
What Is Oracle Big Data SQL?

1-6

The actual amount of data that can be consumed for evaluation in the storage
server may vary, depending upon the character set used.

• Parsing for columns up to 32 KB.

This limit refers to the select list projection from storage for the CLOB datatype.

Processing falls back to the Oracle Database only when column sizes exceed these
two values.

Example 1-3 JSON Document Processing

For queries into large JSON documents, pushdown of CLOB processing to Oracle Big
Data SQL processing cells in Hadoop can be highly effective. Consider the following
example, where purchase orders information is stored in JSON. Assume that this
record could be up to 25K in size and several millions of such records must processed.

{"ponumber":9764,"reference":"LSMITH-20141017","requestor":"Lindsey
Smith","email”: “Lindsey@myco.com”, “company”:”myco” …}

You can create the external table to access this data as follows. Notice there is a
single CLOB column.

CREATE TABLE POS_DATA
 (pos_info CLOB)
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HDFS
 DEFAULT DIRECTORY DEFAULT_DIR
 LOCATION ('/data/pos/*')
)
 REJECT LIMIT UNLIMITED;

You can then query the data with this simple syntax:

SELECT p.pos_info.email, p.pos_info.requestor
FROM POS_DATA p
WHERE p.pos_info.company=’myco’

The query example above engages two data elimination optimizations:

• The data is filtered by the Oracle Big Data SQL cells in the Hadoop cluster. Only
records pertaining to the company “myco” are parsed (and after parsing only
selected data from these records is returned to the database).

• The Oracle Big Data SQL cells in the cluster parse the filtered set of records and
from each record only the values for the two attributes requested
(p.pos_info.email and p.pos_info.requestor) are returned to the database.

The table below shows some other examples where CLOB processing pushdown is
supported. Remember that projections (references on the select side of the CLOB
column) are limited to 32 KB of CLOB data, while predicate pushdown is limited to 1
MB of CLOB data.

Chapter 1
What Is Oracle Big Data SQL?

1-7

Query Comment

SELECT count(*) FROM pos_data p WHERE

pos_info is json;

In this case, the predicate ensures that
only columns which comply with JSON
format are returned.

SELECT pos_info FROM pos_data p WHERE

pos_info is json;

The same predicate as in the previous
case, but now the CLOB value is
projected.

SELECT json_value(pos_info,

'$.reference') FROM pos_data p WHERE

json_value(pos_info,

'$.ponumber') > 9000

Here, the predicate is issued on a field of
the JSON document, and we also
execute a JSON value to retrieve field
"reference" on top of the projected CLOB
JSON value.

SELECT p.pos_info.reference FROM

pos_data p WHERE p.pos_info.ponumber >

9000;

This is functionally the same query as the
previous example, but expressed in
simplified syntax.

SELECT p.pos_info.email FROM po_data p

WHERE json_exists(pos_info,

'$.requestor') and json_query(pos_info,

'$.requestor') is not null;

This example shows how json_exists
and json_query can also be used as
predicates.

1.1.7 About Aggregation Offload
Oracle Big Data SQL uses Oracle In-Memory technology to push aggregation
processing down to the Oracle Big Data SQL cells. This enables Oracle Big Data SQL
to leverage the processing power of the Hadoop cluster for distributing aggregations
across the cluster nodes. The performance gains can be significantly faster compared
to aggregations that do not offload especially when there are a moderate number of
summary groupings. For single table queries, the aggregation operation should
consistently offload.

Oracle Big Data SQL cells support single table and multi-table aggregations (for
example, dimension tables joining to a fact table). For multi-table aggregations, the
Oracle Database uses the key vector transform optimization in which the key vectors
are pushed to the cells for the aggregation process. This transformation type is useful
for star join SQL queries that use typical aggregation operators (for example, SUM, MIN,
MAX, and COUNT) which are common in business queries.

A vector transformation query is a more efficient query that uses bloom filter for joins.
When you use a vector transformed query with Oracle Big Data SQL Cells, the
performance of joins in the query is enhanced by the ability to offload filtration for rows
used for aggregation. You see a “KEY VECTOR USE” operation in the query plan
during this optimization.

In Oracle Big Data SQL cells, vector transformed queries benefit from more efficient
processing due to the application of group-by columns (key vectors) to the Oracle Big
Data SQL Storage Index.

You may not see the benefit of aggregation offload in certain instances:

• Missing predicate

Chapter 1
What Is Oracle Big Data SQL?

1-8

If the SYS_OP_VECTOR_GROUP_BY predicate is missing in the explain plan,
aggregation offload is affected. The predicate can be missing due to the following
reasons:

– Presence of a disallowed intervening row source between the table scan and
group-by row sources.

– The table scan does not produce rowsets.

– Presence of an expression or data type in the query that can not be offloaded.

– Vector group-by is manually disabled.

– The table of table scan or configuration does not expect gains from
aggregation offload.

• Missing smart scan

The cell interconnect bytes returned by XT smart scan and cell XT granules
requested for predicate offload statistics must be available.

• Missing key vectors

The limit on the data transmitted to the cells is 1 MB. If this threshold is exceeded,
then queries can benefit from intelligent key vector filtering but not necessarily
offloaded aggregation. This condition is known as Key Vector Lite mode. Due to
their large size, some of the key vectors are not fully offloaded. They get offloaded
in lite mode along with the key vectors that do not support aggregation offload.
Key vectors are not completely serialized in lite mode. The vector group-by offload
is disabled when key vectors are offloaded in lite mode.

See Also:

Oracle Database In-Memory Guide for information about how aggregation
works in Oracle Database

1.1.8 About Oracle Big Data SQL Statistics
Oracle Big Data SQL provides a number of statistics that can contribute data for
performance analyses.

Five Key Cell XT and Storage Index Statistics

If a query is off-loadable, the following XT-related statistics that can help you to
determine what kind of I/O savings you can expect from the offload and from Smart
Scan.

• cell XT granules requested for predicate offload

Note that number of granules requested depends on a number of a factors,
including the HDFS block size, Hadoop data source splittability, and the
effectiveness of Hive partition elimination.

• cell XT granule bytes requested for predicate offload

The number of bytes requested for the scan. This is the size of the data on
Hadoop to be investigated after Hive partition elimination and before Storage
Index evaluation.

Chapter 1
What Is Oracle Big Data SQL?

1-9

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/18/inmem&id=GUID-A9E6044E-DC81-44C7-8D0C-E77502722388

• cell interconnect bytes returned by XT smart scan

The number of bytes of I/O returned by an XT smart scan to Oracle Database.

• cell XT granule predicate offload retries

The number of times that a Big Data SQL process running on a DataNode could
not complete the requested action. Oracle Big Data SQL automatically retries
failed requests on other DataNodes that have a replica of the data. The retries
value should be zero.

• cell XT granule IO bytes saved by storage index

The number of bytes filtered out by storage indexes at the storage cell level. This
is data that was not scanned, based information provided by the storage indexes.

You can check these statistics before and after running queries as follows. This
example shows the values at null, before running any queries.

SQL> SELECT sn.name,ms.value
FROM V$MYSTAT ms, V$STATNAME sn
WHERE ms.STATISTIC#=sn.STATISTIC# AND sn.name LIKE '%XT%';

NAME VALUE
--- -----
cell XT granules requested for predicate offload 0
cell XT granule bytes requested for predicate offload 0
cell interconnect bytes returned by XT smart scan 0
cell XT granule predicate offload retries 0
cell XT granule IO bytes saved by storage index 0

You can check some or all of these statistics after execution of a query to test the
effectiveness of the query, as in:

SQL> SELECT n.name, round(s.value/1024/1024)
FROM v$mystat s, v$statname n
WHERE s.statistic# IN (462,463)
AND s.statistic# = n.statistic#;

cell XT granule bytes requested for predicate offload 32768
cell interconnect bytes returned by XT smart scan 32

Five Aggregation Offload Statistics

The following statistics can help you analyze the performance of aggregation offload.

• vector group by operations sent to cell

The number of times aggregations can be offloaded to the cell.

• vector group by operations not sent to cell due to cardinality

The number of scans that were not offloaded because of large wireframe.

• vector group by rows processed on cell

The number of rows that were aggregated on the cell.

• vector group by rows returned by cell

The number of aggregated rows that were returned by the cell.

Chapter 1
What Is Oracle Big Data SQL?

1-10

• vector group by rowsets processed on cell

The number of rowsets that were aggregated on the cell.

You can review these statistics by running the queries as follows:

SQL> SELECT count(*) FROM bdsql_parq.web_sales;

 COUNT(*)

 287301291

SQL> SELECT substr(n.name, 0,60) name, u.value
FROM v$statname n, v$mystat u
WHERE ((n.name LIKE 'key vector%') OR
 (n.name LIKE 'vector group by%') OR
 (n.name LIKE 'vector encoded%') OR
 (n.name LIKE '%XT%') OR
 (n.name LIKE 'IM %' AND n.name NOT LIKE '%spare%'))
 AND u.sid=userenv('SID')
 AND n.STATISTIC# = u.STATISTIC#
 AND u.value > 0;

NAME VALUE
--- -----
cell XT granules requested for predicate offload 808
cell XT granule bytes requested for predicate offload 2.5833E+10
cell interconnect bytes returned by XT smart scan 6903552
vector group by operations sent to cell 1
vector group by rows processed on cell 287301291
vector group by rows returned by cell 808

Nine Key Vector Statistics

The following statistics can help you analyze the effectiveness of key vectors that were
sent to the cell.

• key vectors sent to cell

The number of key vectors that were offloaded to the cell.

• key vector filtered on cell

The number of rows that were filtered out by a key vector on the cell.

• key vector probed on cell

The number of rows that were tested by a key vector on the cell.

• key vector rows processed by value

The number of join keys that were processed by using their value.

• key vector rows processed by code

The number of join keys that were processed by using the dictionary code.

• key vector rows filtered

The number of join keys that were skipped due to skip bits.

Chapter 1
What Is Oracle Big Data SQL?

1-11

• key vector serializations in lite mode for cell

The number of times a key vector was not encoded due to format or size.

• key vectors sent to cell in lite mode due to quota

The number of key vectors that were offloaded to the cell for non-exact filtering
due to the 1 MB metadata quota.

• key vector efilters created

A key vector was not sent to a cell, but an efilter (similar to a bloom filter) was
sent.

You can review these statistics by running the queries as follows:

SELECT substr(n.name, 0,60) name, u.value
FROM v$statname n, v$mystat u
WHERE ((n.name LIKE 'key vector%') OR
 (n.name LIKE 'vector group by%') OR
 (n.name LIKE 'vector encoded%') OR
 (n.name LIKE '%XT%'))
 AND u.sid=userenv('SID')
 AND n.STATISTIC# = u.STATISTIC#

NAME VALUE
--- -----
cell XT granules requested for predicate offload 250
cell XT granule bytes requested for predicate offload 61,112,831,993
cell interconnect bytes returned by XT smart scan 193,282,128
key vector rows processed by value 14,156,958
key vector rows filtered 9,620,606
key vector filtered on cell 273,144,333
key vector probed on cell 287,301,291
key vectors sent to cell 1
key vectors sent to cell in lite mode due to quota 1
key vector serializations in lite mode for cell 1
key vector efilters created 1

Tip:

The Oracle Big Data SQL Quickstart blog, published in the Data Warehouse
Insider, provides a series of code and functionality walkthroughs that show
you how to use these statistics to analyze the performance of Oracle Big
Data SQL. See Part 2, Part 7, and Part 10.

1.2 Installation
Oracle Big Data SQL requires installation of components on the Hadoop system where
the data resides and also on the Oracle Database server which queries the data.

See the following resources for installation information:

• Introduction

Chapter 1
Installation

1-12

https://blogs.oracle.com/datawarehousing/entry/big_data_sql_quick_start
https://blogs.oracle.com/datawarehousing/
https://blogs.oracle.com/datawarehousing/
https://blogs.oracle.com/datawarehousing/entry/big_data_sql_quick_start1
https://blogs.oracle.com/datawarehousing/entry/big_data_sql_quick_start6
https://blogs.oracle.com/datawarehousing/entry/big_data_sql_quick_start9

This guide describes installation and configuration procedures for supported
Hadoop system/Oracle Database server combinations.

• Oracle Big Data SQL Master Compatibility Matrix

This is Document 2119369.1 in My Oracle Support. Check the matrix for up-to-
date information on Big Data SQL compatibility with the following:

– Oracle Engineered Systems.

– Other systems.

– Linux OS distributions and versions.

– Hadoop distributions.

– Oracle Database releases, including required patches.

1.3 Security Overview
Security and protection of data are foremost concerns for customers and for Oracle.

This section is an introduction to some aspects of Oracle Big Data SQL's security
strategy. To learn more, read the chapter Securing Oracle Big Data SQL in the Oracle
Big Data SQL Installation Guide.

Accessing the Cluster

At a minimum, you must do the following for each user who needs access to Oracle
Big Data SQL:

• Grant the BDSQL_USER role.

• Grant read privileges on the BigDataSQL configuration directory object. For
example, to grant access to user1:

SQL> grant BDSQL_USER to user1;
SQL> grant read on directory ORACLE_BIGDATA_CONFIG to user1;

Leveraging Hadoop Security

By default, queries executed using Oracle Big Data SQL run as the oracle user on the
Hadoop cluster. All Hadoop audits in this default configuration show that the oracle
user accessed the files.

Oracle Big Data SQL provides a feature called Multi-User Authorization that enables it
to impersonate the connected user when accessing data on the Hadoop cluster. With
Multi-User Authorization, the oracle identity is no longer used to authorize data
access. Instead, the identity of the actual connected user receives authorization.
Additionally, Hadoop audits will attribute file access to the connected user, rather than
to oracle.

Users and applications can connect to Oracle Database in these distinct ways (and
more):

• As a database user

• As an LDAP user

• As an application user

Chapter 1
Security Overview

1-13

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=400361405103392&id=2119369.1&_adf.ctrl-state=j8ryazrl8_77
https://support.oracle.com/
https://www.oracle.com/pls/topic/lookup?ctx=en/bigdata/big-data-sql/4.0/bdsug&id=BDSIG-GUID-4D61AACF-BEE7-497C-8CE0-14DF1F9DC204

Multi-User Authorization allows the administrator to specify how this connected user
should be derived. For example, all users that connect to Oracle Database using their
LDAP identity will use their authenticated identity when running queries on the Hadoop
cluster. Alternatively, applications that manage their own users may use the Oracle
Database client identifier to derive the currently connected user (and use that user’s
identity to authorize access to data on the Hadoop cluster). Oracle Big Data SQL
provides a mapping that contains the rules for identifying the actual user.

Hadoop Authorization: File Level Access and Apache Sentry

The ability to access source data is based on both the underlying access privileges on
the source files and Hive authorization rules defined by Apache Sentry. To populate
Oracle Big Data SQL external tables, either the default oracle user or the actual
connected user (when using Multi-User Authorization) must be authorized to read the
source data and/or Hive metadata.

Access to data files in Hadoop is very similar to the POSIX permissions model (the
model used by Linux). Each file and directory has an associated owner and group. The
file and directory permission bits are used to determine who has access to that
information.

Apache Sentry is a role based authorization engine used for Hive metadata. Sentry
roles are defined for different data access needs (e.g. finance role, marketing role,
etc.). Access to objects (a server, Hive database, table and column) is granted to
specific roles. Users can then view those data objects if their group has been given
appropriate rights.

Oracle Big Data SQL supports Sentry in addition to supporting file-level authorization.
It processes the Sentry policy rules when a user attempt to query Oracle Big Data SQL
external tables, down to the column level. This means that authorization rules do not
need to be replicated in Oracle Database. A user may have rights to select from an
Oracle external table. However, Hadoop authorization only allows the user to see the
data if that user has the appropriate Sentry roles and data access privileges.

Compliance with Oracle Database Security Policies

Oracle Big Data SQL external tables follow the exact same Oracle security policies as
other Oracle tables. Users and roles are granted or revoked privileges on the tables.

Advanced security policies, such as redaction and row level security may also be
applied. These rules are layered on top of the privileges specified in Hadoop. This
means that even when the underlying data source does not have support for advanced
security features, such as redaction, those polices can still be enforced when you use
Oracle Big Data SQL.

See Also:

• DBMS_BDSQL PL/SQL Package in the Oracle Big Data SQL User's
Guide, which explains how to use this package to implement Multi-User-
Authorization.

• The Apache Foundation documentation at https://sentry.apache.org.

Chapter 1
Security Overview

1-14

https://sentry.apache.org

2
Using Oracle Big Data SQL for Data
Access

Oracle Big Data SQL enables you to query diverse data sources using the full power
of Oracle SQL SELECT statements.

This chapter describes how to create Oracle Big Data SQL enabled external tables
over data from Hive, Hadoop, Apache Kafka, Oracle NoSQL Database, and object
stores.

2.1 Creating External Tables
Oracle Big Data SQL enables you to query external data through Oracle Big Data SQL
enabled external tables from the Oracle Database using the full power of Oracle SQL
SELECT statements. It also enables you to write queries that join Oracle tables and
that external data, leverage robust Oracle Database security features, and take
advantage of advanced SQL capabilities like analytic functions, JSON handling, and
others.

The section contains the following topics:

• About the SQL CREATE TABLE Statement

• Creating an Oracle External Table for Hive Data

• Creating an Oracle External Table for Oracle NoSQL Database

• Creating an Oracle External Table for Apache HBase

• Creating an Oracle External Table for HDFS Files

• Creating an Oracle External Table for Kafka Topics

• Creating an Oracle External Table for Object Store Access

2.1.1 About the SQL CREATE TABLE Statement
The SQL CREATE TABLE statement has a clause specifically for creating external
tables. The information that you provide in this clause enables the access driver to
read data from an external source and prepare the data for the external table.

2.1.1.1 Basic Syntax
The following is the basic syntax of the CREATE TABLE statement for external tables:

CREATE TABLE table_name (column_name datatype,
 column_name datatype[,...])
 ORGANIZATION EXTERNAL (external_table_clause);

You specify the column names and data types the same as for any other table.
ORGANIZATION EXTERNAL identifies the table as an external table.

2-1

The external_table_clause identifies the access driver and provides the information
that it needs to load the data. See "About the External Table Clause".

2.1.1.2 About the External Table Clause
CREATE TABLE ORGANIZATION EXTERNAL statement takes the external table clause as
its argument. The external table clause has the following subclauses:

TYPE

The TYPE clause identifies the access driver. The type of access driver determines how
the other parts of the external table definition are interpreted.

Specify one of the following values for Oracle Big Data SQL:

• ORACLE_HDFS: Accesses files in an HDFS directory.

• ORACLE_HIVE: Accesses a Hive table.

• ORACLE_BIGDATA: Accesses files in an object store.

Note:

The ORACLE_DATAPUMP and ORACLE_LOADER access drivers are not associated
with Oracle Big Data SQL.

DEFAULT DIRECTORY

The DEFAULT DIRECTORY clause identifies an Oracle Database directory object. The
directory object identifies an operating system directory with files that the external
table reads and writes.

ORACLE_HDFS, ORACLE_BIGDATA, and ORACLE_HIVE use the default directory solely to
write log files on the Oracle Database system.

LOCATION

The LOCATION clause identifies the data source.

REJECT LIMIT

The REJECT LIMIT clause limits the number of conversion errors permitted during a
query of the external table before Oracle Database stops the query and returns an
error.

Any processing error that causes a row to be rejected counts against the limit. The
reject limit applies individually to each parallel query (PQ) process. It is not the total of
all rejected rows for all PQ processes.

ACCESS PARAMETERS

The ACCESS PARAMETERS clause provides information that the access driver needs to
load the data correctly into the external table. .

Chapter 2
Creating External Tables

2-2

2.1.2 Creating an Oracle External Table for Hive Data
You can leverage Hive metadata when creating your Oracle Big Data SQL external
tables.

External table creation is a technique to access data not only data in HDFS, but also
data in other storage types, including Oracle NoSQL Database, Apache Kafka, HBase,
and object stores.

To enable Oracle Big Data SQL to query Hive data, you must first define an Oracle
external table for your Hive data. There are a number of tools available to help you
create the Oracle external table definition. These tools leverage the underlying hive
metadata, making it easier to create the tables.

The external table provides a level of abstraction. The underlying partitions or file type
may change, but the Oracle external table definition can remain the same. It
automatically picks up these changes when you query the table.

As part of an external table definition, you specify the table columns and their data
types as well as a pointer to the source table in Hive. The rest of the metadata is
derived at query execution time, including the data location, the file type and
partitioning information.

• DBMS_HADOOP

DBMS_HADOOP is a PL/SQL package that contains the
CREATE_EXTDDL_FOR_HIVE procedure. This procedure generates the DDL to create
an Oracle external table for a given Hive table. You can optionally edit the text of
the generated DDL before execution in order to customize the external table
properties.This procedure enables you to easily automate the definition of many
tables at one time.

• The Big Data SQL wizard in Oracle SQL Developer

The most recent versions of the free Oracle SQL Developer tool include a Big
Data SQL wizard that guides you easily through the process of creating Oracle
external table definitions.

If you have a configured Hive connection in Oracle SQL Developer, then in the
Connections navigator, drill down from the connection entry point to a Hive table
and do the following:

1. Right-click on the table icon and select Use in Oracle Big Data SQL...

2. When prompted, select an Oracle Database connection for the import of the
Hive table.

3. Select an Oracle Big Data SQL-enabled target database.

4. In the Create Table dialog, check over the current configuration for columns,
external table properties, and storage. Modify as needed. You can also
preview the text of the DDL that will be generated.

5. Click OK when you are satisfied with the table definition. The wizard will create
the external table at the designated location.

• The Oracle SQL Developer Data Modeler

Chapter 2
Creating External Tables

2-3

This is free graphical design tool that you can use to connect to a Hive metastore
and generate an external table. You can select and import one or multiple Hive
tables, modify table properties as needed, and then generate the DDL that you
can copy into an SQL Worksheet and then run in order to create an Oracle
external table. Although the Data Modeler is a more complex tool to use than the
other options, its advantage is that you can use it to work on multiple Hive tables

See Oracle SQL Developer & Data Modeler Support for Oracle Big Data SQL in
the Oracle Blog space for a demonstration of how to use the Data Modeler.

See Also:

For instructions on how to install Oracle SQL Developer and connect to Hive
in order to create external tables, see Using Oracle SQL Developer to
Connect to Hive

2.1.2.1 Obtaining Information About a Hive Table
The DBMS_HADOOP PL/SQL package contains a function named
CREATE_EXTDDL_FOR_HIVE. It returns the data dictionary language (DDL) to create an
external table for accessing a Hive table. This function requires you to provide basic
information about the Hive table:

• Name of the Hadoop cluster

• Name of the Hive database

• Name of the Hive table

• Whether the Hive table is partitioned

You can obtain this information by querying the ALL_HIVE_TABLES data dictionary view.
It displays information about all Hive tables that you can access from Oracle
Database.

This example shows that the current user has access to an unpartitioned Hive table
named RATINGS_HIVE_TABLE in the default database. A user named JDOE is the owner.

SQL> SELECT cluster_id, database_name, owner, table_name, partitioned FROM
all_hive_tables;
CLUSTER_ID DATABASE_NAME OWNER TABLE_NAME PARTITIONED
------------ -------------- -------- ------------------ --------------
hadoop1 default jdoe ratings_hive_table UN-PARTITIONED

See Also:

"Static Data Dictionary Views for Hive"

2.1.2.2 Using the CREATE_EXTDDL_FOR_HIVE Function
With the information from the data dictionary, you can use the
CREATE_EXTDDL_FOR_HIVE function of DBMS_HADOOP. This example specifies a database
table name of RATINGS_DB_TABLE in the current schema. The function returns the text

Chapter 2
Creating External Tables

2-4

https://blogs.oracle.com/datawarehousing/entry/oracle_sql_developer_data_modeler

of the CREATE TABLE command in a local variable named DDLout, but does not execute
it.

DECLARE
 DDLout VARCHAR2(4000);
BEGIN
 dbms_hadoop.create_extddl_for_hive(
 CLUSTER_ID=>'hadoop1',
 DB_NAME=>'default',
 HIVE_TABLE_NAME=>'ratings_hive_table',
 HIVE_PARTITION=>FALSE,
 TABLE_NAME=>'ratings_db_table',
 PERFORM_DDL=>FALSE,
 TEXT_OF_DDL=>DDLout
);
 dbms_output.put_line(DDLout);
END;
/

When this procedure runs, the PUT_LINE function displays the CREATE TABLE
command:

CREATE TABLE ratings_db_table (
 c0 VARCHAR2(4000),
 c1 VARCHAR2(4000),
 c2 VARCHAR2(4000),
 c3 VARCHAR2(4000),
 c4 VARCHAR2(4000),
 c5 VARCHAR2(4000),
 c6 VARCHAR2(4000),
 c7 VARCHAR2(4000))
ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS
 (
 com.oracle.bigdata.cluster=hadoop1
 com.oracle.bigdata.tablename=default.ratings_hive_table
)
) PARALLEL 2 REJECT LIMIT UNLIMITED

You can capture this information in a SQL script, and use the access parameters to
change the Oracle table name, the column names, and the data types as desired
before executing it. You might also use access parameters to specify a date format
mask.

The ALL_HIVE_COLUMNS view shows how the default column names and data types are
derived. This example shows that the Hive column names are C0 to C7, and that the
Hive STRING data type maps to VARCHAR2(4000):

SQL> SELECT table_name, column_name, hive_column_type, oracle_column_type FROM
all_hive_columns;

TABLE_NAME COLUMN_NAME HIVE_COLUMN_TYPE ORACLE_COLUMN_TYPE
--------------------- ------------ ---------------- ------------------
ratings_hive_table c0 string VARCHAR2(4000)
ratings_hive_table c1 string VARCHAR2(4000)
ratings_hive_table c2 string VARCHAR2(4000)
ratings_hive_table c3 string VARCHAR2(4000)
ratings_hive_table c4 string VARCHAR2(4000)
ratings_hive_table c5 string VARCHAR2(4000)
ratings_hive_table c6 string VARCHAR2(4000)

Chapter 2
Creating External Tables

2-5

ratings_hive_table c7 string VARCHAR2(4000)

8 rows selected.

See Also:

"DBMS_HADOOP PL/SQL Package"

2.1.2.3 Using Oracle SQL Developer to Connect to Hive
Oracle SQL Developer provides methods to connect to a Hive metastore and create
Oracle external tables over Hive.

Follow these steps to set up Oracle SQL Developer to work with Oracle Big Data SQL.

1. Install Oracle SQL Developer

2. Download the Hive JDBC Drivers

3. Add the new Hive JDBC Drivers to Oracle SQL Developer

4. Create a database connection to Hive.

Installing Oracle SQL Developer

Install Oracle SQL Developer 4.2 or greater. Starting with this version, support is
included for Copy To Hadoop, a useful Oracle Big Data SQL tool for off-loading Oracle
Database tables to HDFS.

The installation is simple. Just download the package and extract it.

1. Go to the Oracle SQL Developer download site on the Oracle Technology Network
(OTN).

2. Accept the license agreement and download the version that is appropriate for
your platform.

For most users, Windows 64–bit with JDK 8 included is the correct choice.

3. Extract the downloaded ZIP file to your local drive.

You can extract to any folder name.

See Installing and Getting Started with SQL Developer in the Oracle SQL Developer
User’s Guide for further installation and configuration details.

Downloading and Installing the Hive JDBC Drivers for Cloudera Enterprise

To connect Oracle SQL Developer to Hive in the Hadoop environment, you need to
download and install the Hive JDBC drivers for Cloudera Enterprise. These drivers are
not included in the Oracle SQL Developer download package.

Chapter 2
Creating External Tables

2-6

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html

Note for HDP Users:

At this time, SQL Developer 4.2 requires the Cloudera JDBC drivers for Hive.
However, these drivers appear to work against Hortonworks clusters as well.
HDP users should test to determine if these drivers meet their needs.

1. Download the latest Cloudera JDBC drivers for Hive from the Cloudera website to
any local directory.

You can search for “cloudera hive jdbc drivers download” on the Cloudera
website to locate the available driver packages.

You are prompted to select the driver version, OS, and OS version (32/64 bit). At
this time, the latest drive version is 2.5.18. You can choose the newest version
available.

2. Unzip the archive:

unzip hive_jdbc_<version>.zip

3. View the extracted content. Notice that under the top-level folder there are multiple
ZIP files. Each is for a different JDBC version. For this setup, only JBDC 4.0 is
usable. Select the JDBC4_ ZIP file (JDBC4_<version>.zip).

Important:

Choose only the JDBC4_ ZIP file, which contains the drivers for JDBC
4.0. This is the only compatible version. The drivers in other packages,
such as JDBC41_*, are not compatible with SQL Developer 4.2 and will
return errors upon connection attempts.

4. Unzip the JDBC4 archive to a target directory that is accessible to Oracle SQL
Developer, for example, ./home/oracle/jdbc :

unzip Cloudera_HiveJDBC4_<version>.zip -d /home/oracle/jdbc/

The extracted content should be similar to this:

Cloudera_HiveJDBC4_2.5.18.1050\Cloudera-JDBC-Driver-for-Apache-Hive-
Install-Guide.pdf
Cloudera_HiveJDBC4_2.5.18.1050\Cloudera-JDBC-Driver-for-Apache-Hive-
Release-Notes.pdf
Cloudera_HiveJDBC4_2.5.18.1050\commons-codec-1.3.jar
Cloudera_HiveJDBC4_2.5.18.1050\commons-logging-1.1.1.jar
Cloudera_HiveJDBC4_2.5.18.1050\HiveJDBC4.jar
Cloudera_HiveJDBC4_2.5.18.1050\hive_metastore.jar
Cloudera_HiveJDBC4_2.5.18.1050\hive_service.jar
Cloudera_HiveJDBC4_2.5.18.1050\httpclient-4.1.3.jar
Cloudera_HiveJDBC4_2.5.18.1050\httpcore-4.1.3.jar
Cloudera_HiveJDBC4_2.5.18.1050\libfb303-0.9.0.jar
Cloudera_HiveJDBC4_2.5.18.1050\libthrift-0.9.0.jar
Cloudera_HiveJDBC4_2.5.18.1050\log4j-1.2.14.jar

Chapter 2
Creating External Tables

2-7

https://www.cloudera.com

Cloudera_HiveJDBC4_2.5.18.1050\out.txt
Cloudera_HiveJDBC4_2.5.18.1050\ql.jar
Cloudera_HiveJDBC4_2.5.18.1050\slf4j-api-1.5.11.jar
Cloudera_HiveJDBC4_2.5.18.1050\slf4j-log4j12-1.5.11.jar
Cloudera_HiveJDBC4_2.5.18.1050\TCLIServiceClient.jar
Cloudera_HiveJDBC4_2.5.18.1050\zookeeper-3.4.6.jar

Add the new Hive JDBC Drivers to Oracle SQL Developer

Next, start up SQL Developer and copy all of the extracted driver files into “Third Party
JDBC Drivers” in the Preferences window.

1. Start SQL Developer.

2. In the SQL Developer menu bar, select Tools>Preferences.

3. In the file explorer of the Preferences window, expand Database and then click
Third Party JDBC Drivers.

4. Click Add Entry.

5. Navigate to the folder where you sent the files extracted from
Cloudera_HiveJDBC4_<version>.zip. Copy all of the JAR files from the ZIP
extraction into this window and then click OK.

6. Restart Oracle SQL Developer.

Create a Database Connection to Hive

After the drivers are installed, you can create a connection to Hiveserver2.

If you are creating a Kerberos-secured connection, you will need a user ID, the
Kerberos connection parameters, and the number of the port where Hiveserver2 is
running on the Hadoop system (typically, port 10000). A keytab must exist for the user.

If you not using Kerberos, you will need a user ID (the oracle user or a user with
equivalent privileges), the account password, and the Hiveserver2 port number.

See Create/Edit/Select Database Connection in the Oracle SQL Developer User’s
Guide for a explanation of the fields in the Oracle and Hive tabs in the New/Select
Database Connection dialog.

2.1.2.4 Developing a CREATE TABLE Statement for ORACLE_HIVE
Whichever method you use to create an Oracle external table over Hive
(DBMS_HADOOP, Oracle SQL Developer Data Modeler, Oracle Big Data Wizard in
Oracle SQL Developer, or manual coding), you may need to set some access
parameters to modify the default behavior of ORACLE_HIVE.

Note:

Do not include the LOCATION clause with ORACLE_HIVE. It raises an error. The
data is stored in Hive, and the access parameters and the metadata store
provide the necessary information.

Chapter 2
Creating External Tables

2-8

2.1.2.4.1 Using the Default ORACLE_HIVE Settings
The following statement creates an external table named ORDER to access Hive data:

CREATE TABLE order (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 description VARCHAR2(100),
 order_total NUMBER (8,2))
 ORGANIZATION EXTERNAL (TYPE oracle_hive);

Because no access parameters are set in the statement, the ORACLE_HIVE access
driver uses the default settings to do the following:

• Connects to the default Hadoop cluster.

• Uses a Hive table named order. An error results if the Hive table does not have
fields named CUST_NUM, ORDER_NUM, DESCRIPTION, and ORDER_TOTAL.

• Sets the value of a field to NULL if there is a conversion error, such as a CUST_NUM
value longer than 10 bytes.

2.1.2.4.2 Overriding the Default ORACLE_HIVE Settings
You can set properties in the ACCESS PARAMETERS clause of the external table clause,
which override the default behavior of the access driver. The following clause includes
the com.oracle.bigdata.overflow access parameter. When this clause is used in the
previous example, it truncates the data for the DESCRIPTION column that is longer than
100 characters, instead of throwing an error:

(TYPE oracle_hive
 ACCESS PARAMETERS (
 com.oracle.bigdata.overflow={"action:"truncate", "col":"DESCRIPTION""}))

The next example sets most of the available parameters for ORACLE_HIVE:

CREATE TABLE order (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_date DATE,
 item_cnt NUMBER,
 description VARCHAR2(100),
 order_total (NUMBER(8,2)) ORGANIZATION EXTERNAL
 (TYPE oracle_hive
 ACCESS PARAMETERS (
 com.oracle.bigdata.tablename: order_db.order_summary
 com.oracle.bigdata.colmap: {"col":"ITEM_CNT", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"TRUNCATE", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.erroropt: [{"action":"replace", \
 "value":"INVALID_NUM" , \
 "col":["CUST_NUM","ORDER_NUM"]} ,\
 {"action":"reject", \
 "col":"ORDER_TOTAL}
))

The parameters make the following changes in the way that the ORACLE_HIVE access
driver locates the data and handles error conditions:

Chapter 2
Creating External Tables

2-9

• com.oracle.bigdata.tablename: Handles differences in table names.
ORACLE_HIVE looks for a Hive table named ORDER_SUMMARY in the ORDER.DB
database.

• com.oracle.bigdata.colmap: Handles differences in column names. The Hive
ORDER_LINE_ITEM_COUNT field maps to the Oracle ITEM_CNT column.

• com.oracle.bigdata.overflow: Truncates string data. Values longer than 100
characters for the DESCRIPTION column are truncated.

• com.oracle.bigdata.erroropt: Replaces bad data. Errors in the data for
CUST_NUM or ORDER_NUM set the value to INVALID_NUM.

See Also:

The section CREATE TABLE ACCESS PARAMETERS Clause provides the
complete list of access parameters for ORACLE_HIVE, ORACLE_HDFS, and
ORACLE_BIGDATA.

2.1.2.5 Hive to Oracle Data Type Conversions
When the access driver loads data into an external table, it verifies that the Hive data
can be converted to the data type of the target column. If they are incompatible, then
the access driver returns an error. Otherwise, it makes the appropriate data
conversion.

Hive typically provides a table abstraction layer over data stored elsewhere, such as in
HDFS files. Hive uses a serializer/deserializer (SerDe) to convert the data as needed
from its stored format into a Hive data type. The access driver then converts the data
from its Hive data type to an Oracle data type. For example, if a Hive table over a text
file has a BIGINT column, then the SerDe converts the data from text to BIGINT. The
access driver then converts the data from BIGINT (a Hive data type) to NUMBER (an
Oracle data type).

Performance is better when one data type conversion is performed instead of two. The
data types for the fields in the HDFS files should therefore indicate the data that is
actually stored on disk. For example, JSON is a clear text format, therefore all data in
a JSON file is text. If the Hive type for a field is DATE, then the SerDe converts the data
from string (in the data file) to a Hive date. Then the access driver converts the data
from a Hive date to an Oracle date. However, if the Hive type for the field is string,
then the SerDe does not perform a conversion, and the access driver converts the
data from string to an oracle date. Queries against the external table are faster in the
second example, because the access driver performs the only data conversion.

The table below identifies the data type conversions that ORACLE_HIVE can make when
loading data into an external table.

Chapter 2
Creating External Tables

2-10

Table 2-1 Supported Hive to Oracle Data Type Conversions

Hive Data
Type

VARCHAR
2, CHAR,
NCHAR2,
NCHAR,
CLOB

NUMBER,
FLOAT,
BINARY_N
UMBER,
BINARY_F
LOAT

BLOB RAW DATE,
TIMESTAM
P,
TIMESTAM
P WITH TZ,
TIMESTAM
P WITH
LOCAL TZ

INTERVAL
YEAR TO
MONTH,
INTERVAL
DAY TO
SECOND

INT

SMALLINT

TINYINT

BIGINT

yes yes yes yes no no

DOUBLE

FLOAT

yes yes yes yes no no

DECIMAL yes yes no no no no

BOOLEAN yes1 yes2 yes2 yes no no

BINARY yes no yes yes no no

STRING yes yes no no yes yes

TIMESTAM
P

yes no no no yes no

STRUCT

ARRAY

UNIONTYP
E

MAP

yes no no no no no

1 FALSE maps to the string FALSE, and TRUE maps to the string TRUE.
2 FALSE maps to 0, and TRUE maps to 1.

2.1.3 Creating an Oracle External Table for Oracle NoSQL Database
You can use the ORACLE_HIVE access driver to access data stored in Oracle NoSQL
Database. However, you must first create a Hive external table that accesses the
KVStore. Then you can create an external table in Oracle Database over it, similar to
the process described in "Creating an Oracle External Table for Hive Data".

This section contains the following topics:

• Creating a Hive External Table for Oracle NoSQL Database

• Creating the Oracle Database Table for Oracle NoSQL Data

• About Oracle NoSQL to Oracle Database Type Mappings

• Example of Accessing Data in Oracle NoSQL Database

2.1.3.1 Creating a Hive External Table for Oracle NoSQL Database
To provide access to the data in Oracle NoSQL Database, you create a Hive external
table over the Oracle NoSQL table. Oracle Big Data SQL provides a StorageHandler

Chapter 2
Creating External Tables

2-11

named oracle.kv.hadoop.hive.table.TableStorageHandler that enables Hive to
read the Oracle NoSQL Database table format.

The following is the basic syntax of a Hive CREATE TABLE statement for a Hive external
table over an Oracle NoSQL table:

CREATE EXTERNAL TABLE tablename colname coltype[, colname coltype,...]
STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
TBLPROPERTIES (
 "oracle.kv.kvstore" = "database",
 "oracle.kv.hosts" = "nosql_node1:port[, nosql_node2:port...]",
 "oracle.kv.hadoop.hosts" = "hadoop_node1[,hadoop_node2...]",
 "oracle.kv.tableName" = "table_name");

Hive CREATE TABLE Parameters

tablename
The name of the Hive external table being created.
This table name will be used in SQL queries issued in Oracle Database, so choose a
name that is appropriate for users. The name of the external table that you create in
Oracle Database must be identical to the name of this Hive table.
Table, column, and field names are case insensitive in Oracle NoSQL Database,
Apache Hive, and Oracle Database.

colname coltype
The names and data types of the columns in the Hive external table. See Table 2-2
for the data type mappings between Oracle NoSQL Database and Hive.

Hive CREATE TABLE TBLPROPERTIES Clause

oracle.kv.kvstore
The name of the KVStore. Only upper- and lowercase letters and digits are valid in
the name.

oracle.kv.hosts
A comma-delimited list of host names and port numbers in the Oracle NoSQL
Database cluster. Each string has the format hostname:port. Enter multiple names to
provide redundancy in the event that a host fails.

oracle.kv.hadoop.hosts
A comma-delimited list of all host names in the Hadoop cluster with Oracle Big Data
SQL enabled.

oracle.kv.tableName
The name of the table in Oracle NoSQL Database that stores the data for this Hive
external table.

See Also:

Apache Hive Language Manual DDL at

https://cwiki.apache.org/confluence/display/Hive/LanguageManual
+DDL#LanguageManualDDL-Create/Drop/TruncateTable

Chapter 2
Creating External Tables

2-12

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable

2.1.3.2 Creating the Oracle Database Table for Oracle NoSQL Data
Use the following syntax to create an external table in Oracle Database that can
access the Oracle NoSQL data through a Hive external table:

CREATE TABLE tablename(colname colType[, colname colType...])
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE DEFAULT DIRECTORY directory
 ACCESS PARAMETERS
 (access parameters)
)
 REJECT LIMIT UNLIMITED;

In this syntax, you identify the column names and data types. For more about this
syntax, see "About the SQL CREATE TABLE Statement".

2.1.3.3 About Oracle NoSQL to Oracle Database Type Mappings
When Oracle Big Data SQL retrieves data from Oracle NoSQL Database, the data is
converted twice to another data type:

• To a Hive data type when the data is read into the columns of the Hive external
table.

• To an Oracle data type when the data is read into the columns of an Oracle
Database external table.

In order to execute a Big Data SQL query against data stored in an Oracle NoSQL
Database table, a Hive external table must first be created with a schema mapped
from the schema of the desired Oracle NoSQL Database table.Table 2-2 identifies the
supported data types Oracle NoSQL Database table API and their mappings to Hive.

Table 2-2 Mapping Hive Data Types to the NoSQL Database Table API Data
Model

Oracle NoSQL Database
Table API

Hive

FieldDef.Type.STRING STRING

FieldDef.Type.BOOLEAN BOOLEAN

FieldDef.Type.BINARY BINARY

FieldDef.Type.FIXED_BINARY BINARY

FieldDef.Type.INTEGER INT

FieldDef.Type.LONG BIGINT

FieldDef.Type.FLOAT FLOAT

FieldDef.Type.DOUBLE DOUBLE

FieldDef.Type.ENUM STRING

FieldDef.Type.ARRAY ARRAY

FieldDef.Type.MAP MAP<STRING, data_type>

FieldDef.Type.RECORD STRUCT<col_name : data_type, ...>

Chapter 2
Creating External Tables

2-13

Note:

To complete this mapping a corresponding Oracle Database external table
must be created with a schema mapped from the schema of the Hive table.

Also note that the following Hive data types are not applicable to the
mapping of Oracle NoSQL data types to Oracle Database data types:
VARCHAR, CHAR, TINYINT, SMALLINT, DECIMAL, TIMESTAMP, DATE,
UNION TYPE.

See Also:

Hive to Oracle Data Type Conversions provides details on Hive to Oracle
Database data type mappings.
Predicate Pushdown in Oracle Big Data SQL requires that certain mappings
between Hive Datatypes and Oracle Datatypes be present. See About
Predicate Push Down.

2.1.3.4 Example of Accessing Data in Oracle NoSQL Database
This example uses the sample data provided with the Oracle NoSQL Database
software:

• Creating the Oracle NoSQL Database Example Table

• Creating the Example Hive Table for vehicleTable

• Creating the Oracle Table for VEHICLES

2.1.3.4.1 Creating the Oracle NoSQL Database Example Table
Verify that the following files reside in the examples/hadoop/table directory:

create_vehicle_table.kvs
CountTableRows.java
LoadVehicleTable.java

This example runs on a Hadoop cluster node named some1node07 and uses a
KVStore named SOME1KV.

To create and populate the sample table in Oracle NoSQL Database:

1. Open a connection to an Oracle NoSQL Database node on your Hadoop cluster.

2. Create a table named vehicleTable. The following example uses the load
command to run the commands in create_vehicle_table.kvs:

$ cd NOSQL_HOME
$ java -jar lib/kvcli.jar -host some1node07 -port 5000 \
 load -file examples/hadoop/table/create_vehicle_table.kvs

3. Compile LoadVehicleTable.java:

$ javac -cp examples:lib/kvclient.jar examples/hadoop/table/LoadVehicleTable.java

Chapter 2
Creating External Tables

2-14

4. Execute the LoadVehicleTable class to populate the table:

$ java -cp examples:lib/kvclient.jar hadoop.table.LoadVehicleTable -host
some1node07 -port 5000 -store SOME1KV
{"type":"auto","make":"Chrysler","model":"PTCruiser","class":"4WheelDrive","colo
r":"white","price":20743.240234375,"count":30}
{"type":"suv","make":"Ford","model":"Escape","class":"FrontWheelDrive","color":"
 .
 .
 .
10 new records added

The vehicleTable table contains the following fields:

Table 2-3 Fields in the vehicleTable Example

Field Name Data Type

type STRING

make STRING

model STRING

class STRING

color STRING

price DOUBLE

count INTEGER

2.1.3.4.2 Creating the Example Hive Table for vehicleTable
The following example creates a Hive table named VEHICLES that accesses
vehicleTable in the SOME1KV KVStore. In this example, the system is configured
with a Hadoop cluster in the first six servers (some1node01 to some1node06) and an
Oracle NoSQL Database cluster in the next three servers (some1node07 to
some1node09).

CREATE EXTERNAL TABLE IF NOT EXISTS vehicles
 (type STRING,
 make STRING,
 model STRING,
 class STRING,
 color STRING,
 price DOUBLE,
 count INT)
COMMENT 'Accesses data in vehicleTable in the SOME1KV KVStore'
STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
TBLPROPERTIES
 ("oracle.kv.kvstore" = "SOME1KV",
 "oracle.kv.hosts" = "some1node07.example.com:5000,some1node08.example.com:5000",
 "oracle.kv.hadoop.hosts" =
"some1node01.example.com,some1node02.example.com,some1node03.example.com,some1node04.
example.com,some1node05.example.com,some1node06.example.com",
 "oracle.kv.tableName" = "vehicleTable");

The DESCRIBE command lists the columns in the VEHICLES table:

hive> DESCRIBE vehicles;
OK
type string from deserializer

Chapter 2
Creating External Tables

2-15

make string from deserializer
model string from deserializer
class string from deserializer
color string from deserializer
price double from deserializer
count int from deserializer

A query against the Hive VEHICLES table returns data from the Oracle NoSQL
vehicleTable table:

hive> SELECT make, model, class
 FROM vehicletable
 WHERE type='truck' AND color='red'
 ORDER BY make, model;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
 .
 .
 .
Chrysler Ram1500 RearWheelDrive
Chrysler Ram2500 FrontWheelDrive
Ford F150 FrontWheelDrive
Ford F250 RearWheelDrive
Ford F250 AllWheelDrive
Ford F350 RearWheelDrive
GM Sierra AllWheelDrive
GM Silverado1500 RearWheelDrive
GM Silverado1500 AllWheelDrive

2.1.3.4.3 Creating the Oracle Table for VEHICLES
After you create the Hive table, the metadata is available in the Oracle Database static
data dictionary views. The following SQL SELECT statement returns information about
the Hive table created in the previous topic:

SQL> SELECT table_name, column_name, hive_column_type
 FROM all_hive_columns
 WHERE table_name='vehicles';
TABLE_NAME COLUMN_NAME HIVE_COLUMN_TYPE
--------------- ------------ ----------------
vehicles type string
vehicles make string
vehicles model string
vehicles class string
vehicles color string
vehicles price double
vehicles count int

The next SQL CREATE TABLE statement generates an external table named VEHICLES
over the Hive VEHICLES table, using the ORACLE_HIVE access driver. The name of the
table in Oracle Database must be identical to the name of the table in Hive. However,
both Oracle NoSQL Database and Oracle Database are case insensitive.

CREATE TABLE vehicles
 (type VARCHAR2(10), make VARCHAR2(12), model VARCHAR2(20),
 class VARCHAR2(40), color VARCHAR2(20), price NUMBER(8,2),
 count NUMBER)
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE DEFAULT DIRECTORY DEFAULT_DIR

Chapter 2
Creating External Tables

2-16

 ACCESS PARAMETERS
 (com.oracle.bigdata.debug=true com.oracle.bigdata.log.opt=normal))
 REJECT LIMIT UNLIMITED;

This SQL SELECT statement retrieves all rows for red trucks from vehicleTable in
Oracle NoSQL Database:

SQL> SELECT make, model, class
 FROM vehicles
 WHERE type='truck' AND color='red'
 ORDER BY make, model;
MAKE MODEL CLASS
------------ -------------------- ---------------------
Chrysler Ram1500 RearWheelDrive
Chrysler Ram2500 FrontWheelDrive
Ford F150 FrontWheelDrive
Ford F250 AllWheelDrive
Ford F250 RearWheelDrive
Ford F350 RearWheelDrive
GM Sierra AllWheelDrive
GM Silverado1500 RearWheelDrive
GM Silverado1500 4WheelDrive
GM Silverado1500 AllWheelDrive

2.1.4 Creating an Oracle External Table for Apache HBase
You can also use the ORACLE_HIVE access driver to access data stored in Apache
HBase. However, you must first create a Hive external table that accesses the HBase
table. Then you can create an external table in Oracle Database over it. The basic
steps are the same as those described in "Creating an Oracle External Table for
Oracle NoSQL Database".

2.1.4.1 Creating a Hive External Table for HBase
To provide access to the data in an HBase table, you create a Hive external table over
it. Apache provides a storage handler and a SerDe that enable Hive to read the HBase
table format.

The following is the basic syntax of a Hive CREATE TABLE statement for an external
table over an HBase table:

CREATE EXTERNAL TABLE tablename colname coltype[, colname coltype,...]
ROW FORMAT
 SERDE 'org.apache.hadoop.hive.hbase.HBaseSerDe'
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
 'serialization.format'='1',
 'hbase.columns.mapping'=':key,value:key,value:

Chapter 2
Creating External Tables

2-17

See Also:

• Apache Hive Language Manual DDL at

https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable

• Hive HBase Integration at

https://cwiki.apache.org/confluence/display/Hive/
HBaseIntegration#HBaseIntegration-StorageHandlers

• Class HBaseSerDe in the Apache Hive Javadocs at https://
hive.apache.org/javadoc.html

2.1.4.2 Creating the Oracle Database Table for HBase
Use the following syntax to create an external table in Oracle Database that can
access the HBase data through a Hive external table:

CREATE TABLE tablename(colname colType[, colname colType...])
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS
 (access parameters)
)
 REJECT LIMIT UNLIMITED;

In this syntax, you identify the column names and data types. To specify the access
parameters, see "About the SQL CREATE TABLE Statement".

2.1.5 Creating an Oracle External Table for HDFS Files
The ORACLE_HDFS access driver enables you to access many types of data that are
stored in HDFS, but which do not have Hive metadata. You can define the record
format of text data, or you can specify a SerDe for a particular data format.

You must create the external table for HDFS files manually, and provide all the
information the access driver needs to locate the data, and parse the records and
fields. The following are some examples of CREATE TABLE ORGANIZATION EXTERNAL
statements.

2.1.5.1 Using the Default Access Parameters with ORACLE_HDFS
The following statement creates a table named ORDER to access the data in all files
stored in the /usr/cust/summary directory in HDFS:

CREATE TABLE ORDER (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_total NUMBER (8,2))
 ORGANIZATION EXTERNAL
 (TYPE oracle_hdfs
 DEFAULT DIRECTORY DEFAULT_DIR
)
 LOCATION ('hdfs:/usr/cust/summary/*');

Chapter 2
Creating External Tables

2-18

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration#HBaseIntegration-StorageHandlers
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration#HBaseIntegration-StorageHandlers
https://hive.apache.org/javadoc.html
https://hive.apache.org/javadoc.html

Because no access parameters are set in the statement, the ORACLE_HDFS access
driver uses the default settings to do the following:

• Connects to the default Hadoop cluster.

• Reads the files as delimited text, and the fields as type STRING.

• Assumes that the number of fields in the HDFS files match the number of columns
(three in this example).

• Assumes the fields are in the same order as the columns, so that CUST_NUM data is
in the first field, ORDER_NUM data is in the second field, and ORDER_TOTAL data is in
the third field.

• Rejects any records in which the value causes a data conversion error: If the value
for CUST_NUM exceeds 10 characters, the value for ORDER_NUM exceeds 20
characters, or the value of ORDER_TOTAL cannot be converted to NUMBER.

See Also:

The section CREATE TABLE ACCESS PARAMETERS Clause provides the
complete list of access parameters for ORACLE_HIVE, ORACLE_HDFS, and
ORACLE_BIGDATA.

2.1.5.2 ORACLE_HDFS LOCATION Clause
The LOCATION clause for ORACLE_HDFS contains a comma-separated list of file
locations. The files must reside in the HDFS file system on the default cluster.

A location can be any of the following:

• A fully qualified HDFS directory name, such as /user/hive/warehouse/
hive_seed/hive_types. ORACLE_HDFS uses all files in the directory.

• A fully qualified HDFS file name, such as /user/hive/warehouse/hive_seed/
hive_types/hive_types.csv

• A URL for an HDFS file or a set of files, such as hdfs:/user/hive/warehouse/
hive_seed/hive_types/*. It is invalid to use the directory name alone.

The file names can contain any pattern-matching character described in Table 2-4.

Table 2-4 Pattern-Matching Characters

Character Description

? Matches any one character

* Matches zero or more characters

[abc] Matches one character in the set {a, b, c}

[a-b] Matches one character in the range {a...b}. The character must be less
than or equal to b.

[^a] Matches one character that is not in the character set or range {a}. The
carat (^) must immediately follow the left bracket, with no spaces.

\c Removes any special meaning of c. The backslash is the escape
character.

Chapter 2
Creating External Tables

2-19

Table 2-4 (Cont.) Pattern-Matching Characters

Character Description

{ab\,cd} Matches a string from the set {ab, cd}. The escape character (\) removes
the meaning of the comma as a path separator.

{ab\,c{de\,fh} Matches a string from the set {ab, cde, cfh}. The escape character (\)
removes the meaning of the comma as a path separator.

2.1.5.3 Overriding the Default ORACLE_HDFS Settings
You can use many of the same access parameters with ORACLE_HDFS as ORACLE_HIVE.

2.1.5.3.1 Accessing a Delimited Text File
The following example is equivalent to the one shown in "Overriding the Default
ORACLE_HIVE Settings". The external table accesses a delimited text file stored in
HDFS.

CREATE TABLE taxis
(
 dispatching_base_num varchar2(100),
 pickup_date varchar2(100),
 location_id varchar2(100)
)
ORGANIZATION EXTERNAL
 (TYPE ORACLE_HDFS
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS
 (
 com.oracle.bigdata.fileformat=TEXTFILE
 com.oracle.bigdata.rowformat=DELIMITED FIELDS TERMINATED BY ','
)
 LOCATION ('/data/taxi-trips/')
)
REJECT LIMIT UNLIMITED;

Note that there is no colmap field, since this source contains no metadata that
describes columns. The only access parameters needed in this case are fileformat
and rowformat.

Tip:

Instead of a colon (:) as the delimiter between fields and values, it is better to
use the equal sign (=). This is because certain tools prompt you for a
parameter value when they encounter the colon delimiter.

2.1.5.3.2 Accessing Avro Container Files
The next example uses a SerDe to access Avro container files.

CREATE TABLE order (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_date DATE,

Chapter 2
Creating External Tables

2-20

 item_cnt NUMBER,
 description VARCHAR2(100),
 order_total NUMBER(8,2))
 ORGANIZATION EXTERNAL
 (
 TYPE oracle_hdfs
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (
 com.oracle.bigdata.rowformat: \
 SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
 com.oracle.bigdata.fileformat: \
 INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'\
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
 com.oracle.bigdata.colmap: { "col":"item_cnt", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"TRUNCATE", \
 "col":"DESCRIPTION"}
)
 LOCATION ('hdfs:/usr/cust/summary/*'));

The access parameters provide the following information to the ORACLE_HDFS access
driver:

• com.oracle.bigdata.rowformat: Identifies the SerDe that the access driver needs
to use to parse the records and fields.

• com.oracle.bigdata.fileformat: Identifies the Java classes that can extract
records and output them in the desired format.

• com.oracle.bigdata.colmap: Handles differences in column names. ORACLE_HDFS
matches ORDER_LINE_ITEM_COUNT in the HDFS files with the ITEM_CNT column in
the external table.

• com.oracle.bigdata.overflow: Truncates string data. Values longer than 100
characters for the DESCRIPTION column are truncated.

2.1.5.3.3 Accessing JSON Data
Oracle Big Data SQL user functionality built into Oracle SQL in order to parse data in
JSON format.

Oracle SQL can parse JSON data accessible in columns (which may be external data
or data stored inside the database).

For example, here is a JSON file called station_information.json, stored in HDFS.

{
"station_id":"72","name":"W 52 St & 11 Ave","short_name":"6926.01",
"lat":40.76727216,"lon":-73.99392888,"region_id":71,"rental_methods":
["CREDITCARD","KEY"],
"capacity":39,"rental_url":"http://app.citibikenyc.com/S6Lr/IBV092JufD?
station_id=72",
"eightd_has_key_dispenser":false}{"station_id":"79","name":"Franklin St &
W Broadway",
"short_name":"5430.08","lat":40.71911552,"lon":-74.00666661,"region_id":71,
"rental_methods":["CREDITCARD","KEY"],
"capacity":33,"rental_url":"http://app.citibikenyc.com/S6Lr/IBV092JufD?
station_id=79",
"eightd_has_key_dispenser":false}{"station_id":"82",

Chapter 2
Creating External Tables

2-21

"name":"St James Pl & Pearl St","short_name":"5167.06","lat":40.71117416,
"lon":-74.00016545,"region_id":71,"rental_methods":["CREDITCARD","KEY"],
"capacity":27,"rental_url":"http://app.citibikenyc.com/S6Lr/IBV092JufD?
station_id=82",
"eightd_has_key_dispenser":false
}

To query this data, do the following.

1. First create an HDFS external table over this data. Add a single text as column as
VARCHAR2. (For large JSON objects, you can use CLOB instead.)

CREATE TABLE
 bikes.stations_ext (
 doc varchar2(4000)
)
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HDFS
 DEFAULT DIRECTORY DEFAULT_DIR
 LOCATION ('/data/bike-stations')
)
 REJECT LIMIT UNLIMITED;

2. Then query the external table. Note the use of Oracle SQL's JSON_VALUE function.

select
 s.doc.station_id, s.doc.name, s.doc.lon as longitude,
 s.doc.lat as latitude, s.doc.capacity,
 s.doc.eightd_has_key_dispenser, s.doc.rental_methods,
 json_value(doc, '$.rental_methods[0]'),
 json_value(doc, '$.rental_methods[1]') from stations_exts

See Also:

The Oracle SQL Language Reference provides syntax and more examples
for JSON_VALUE.

2.1.6 Creating an Oracle External Table for Kafka Topics
The Hive storage handler for Kafka enables Hive and Oracle Big Data SQL and Hive
to query Kafka topics.

The ORACLE_HIVE access driver can access Kafka data topics. You first create a
Hive external table that accesses the Kafka topics and then create an Oracle Big Data
SQL table over it.

Chapter 2
Creating External Tables

2-22

https://docs.oracle.com/en/database/oracle/oracle-database/18/sqlrf/JSON_VALUE.html#GUID-C7F19D36-1E75-4CB2-AE67-ADFBAD23CBC2

2.1.6.1 Using Oracle's Hive Storage Handler for Kafka to Create a Hive
External Table for Kafka Topics

The Hive storage handler for Kafka enables Hive and Oracle Big Data SQL to query
Kafka topics.

To provide access to Kafka data, you create a Hive external table over the Kafka
topics. The Oracle Big Data SQL storage handler that enables Hive to read the Kafka
data format is oracle.hadoop.kafka.hive.KafkaStorageHandler .

You can use this storage handler to create external Hive tables backed by data
residing in Kafka. Big Data SQL can then query the Kafka data through the external
Hive tables.

The Hive DDL is demonstrated by the following example, where topic1 and topic2 are
two topics in Kafka broker whose keys are serialized by Kafka's String serializer and
whose values are serialized by Kafka's Long serializer.

CREATE EXTERNAL TABLE test_table
row format serde ‘oracle.hadoop.kafka.hive.KafkaSerDe’
stored by 'oracle.hadoop.kafka.hive.KafkaStorageHandler'
tblproperties('oracle.kafka.table.key.type'='string',
 'oracle.kafka.table.value.type'='long',
 'oracle.kafka.bootstrap.servers'='nshgc0602:9092',
 'oracle.kafka.table.topics'='topic1,topic2');

The example below shows the resulting Hive table. The Kafka key, value, offset, topic
name, and partitionid are mapped to Hive columns. You can explicitly designate the
offset for each topic/partition pair through a WHERE clause in you Hive query.

hive> describe test_table;
OK
topic string from deserializer
partitionid int from deserializer
key string from deserializer
value bigInt from deserializer
offset bigint from deserializer
timestamptype smallInt from deserializer
timestamp timestamp from deserializer
Time taken: 0.084 seconds, Fetched: 7 row(s)

The content of the table is a snapshot of the Kafka topics when the Hive query is
executed. When new data is inserted into the Kafka topics, you can use the offset
column or the timestamp column to track the changes to the topic. The offsets are per
topic/partition. For example, the following query will return new messages after the
specified offsets in the where clause for each topic/partition:

hive> SELECT * \
FROM test_table \
WHERE (topic="topic1" and partitoinid=0 and offset > 199) \
OR (topic="topic1" and partitionid=1 and offset > 198) \

Chapter 2
Creating External Tables

2-23

OR (topic="topic2" and partitionid=0 and offset > 177) \
OR (topic="topic2" and partitionid=1 and offset > 176);

You need to keep track of the offsets for all topics and partitions. For example, you can
use an Oracle table to store these offsets. A more convenient way to keep track of
new data is using the timestamp column. You can query data after a specific time point
using the following query:

hive> SELECT * FROM test_table WHERE timestamp > '2017-07-12 11:30:00';

See the Property Reference section below for descriptions of all table properties

Property Reference

Table 2-5 Table Properties of Hive Storage Handler for Kafka

Property
Name

Requir
ement

Description

oracle.kaf
ka.table.to
pics

Require
d

A comma-separated list of Kafka topics. Each Kafka topic name must
consists of only letters (uppercase and lowercase), numbers, .(dot),
_(underscore), and -(minus). The maximum length for each topic name
is 249. These topics must have the same serialization mechanisms. The
resulting Hive table consists of records from all the topics listed here. A
Hive column “topic” will be added and it will be set to the topic name for
each record.

oracle.kaf
ka.bootstr
ap.servers

Require
d

This property will be translated to the “bootstrap.servers” property for the
underlying Kafka consumer. The consumer makes use of all servers,
irrespective of which servers are specified here for bootstrapping. This
list only impacts the initial hosts used to discover the full set of servers.
This list should be in the form host1:port1,host2:port2,.... Since
these servers are just used for the initial connection to discover the full
cluster membership (which may change dynamically), this list need not
contain the full set of servers. For availability reasons, you may want to
list more than one server.

oracle.kaf
ka.table.k
ey.type

Optional The key type for your record. If unset, then the key part of the Kafka
record will be ignored in the Hive row. Only values of “string”, “integer”,
“long”, “double”, “avro”, “avro_confluent”are supported. “string”, “integer”,
“double” and “long” correspond to the built-in primitive serialization types
supported by Kafka. If this property is one of these primitive types, then
the Kafka key for each record will be mapped to one single Hive
Column. If this property is set to “avro” or “avro_confluent”, then
oracle.kafka.table.key.schema is required. The Kafka key for
each record will be deserialized into an Avro Object. If the Avro schema
is of record type then each first level field of the record will be mapped to
a single Hive column. If the Avro schema is not of Record Type, then it
will be mapped to a single Hive Column named “key”.

The difference between “avro” and “avro_confluent” is that the wire
format for the serialization is slightly different. For “avro”, the entire bytes
array of the key consists of the bytes of avro serialization. For
“avro_confluent”, the bytes array consists of a magic byte, a version
number, then the bytes of avro serialization of the key.

Chapter 2
Creating External Tables

2-24

Table 2-5 (Cont.) Table Properties of Hive Storage Handler for Kafka

Property
Name

Requir
ement

Description

oracle.kaf
ka.table.v
alue.type

Optional The value type of your record. If unset, then the value part of Kafka
record will be ignored in the Hive row. Use of this property is similar to
use of oracle.kafka.table.key.type. The difference between them
is: when the Avro Schema for Kafka value is not of record type. The
whole Avro object will be mapped to a single Hive Column named
“value” instead of “key”.

oracle.kaf
ka.table.k
ey.writer.s
chema

Optional An optional writer schema for the Kafka key’s Avro serialization. It’s
required when the reader schema for the key is different from the
schema in which the keys are written to Kafka brokers. It must be the
exact schema in which Kafka keys are serialized.

oracle.kaf
ka.table.k
ey.schem
a

Require
d when
“oracle.
kafka.ta
ble.key.t
ype” is
“avro”
or
“avro_c
onfluent
”

The JSON string for the Kafka key's Avro reader schema. It doesn't
need to be exactly the same as the Kafka key's writer Avro schema. As
long as the reader schema is compatible with the Kafka key or the
converted object from the converter, it is valid. This enables you to
rename Hive columns and choose what fields to keep from the Kafka
key in the Hive row. If the schema in this property is different from the
schema in which the Kafka keys are serialized, then
oracle.kafka.table.key.writer.schema is required.

oracle.kaf
ka.table.v
alue.writer
.schema

Optional An optional writer schema for the Kafka value’s Avro serialization. Its
use is similar to oracle.kafka.table.key.writer.schema.

oracle.kaf
ka.table.v
alue.sche
ma

Require
d when
“oracle.
kafka.ta
ble.valu
e.type”
is “avro”
or
“avro_c
onfluent
”

The JSON string for the Kafka value's Avro reader schema. Its use is
similar to oracle.kafka.table.key.schema.

oracle.kaf
ka.table.e
xtra.colum
ns

Optional
, default
to “true”

A boolean flag to control whether to include extra Kafka columns:
paritionid, offset, timestamptype.

oracle.kaf
ka.chop.p
artition

Optional
, default
to false

A Boolean flag to control whether to chop Kafka partitions into smaller
chunks. This is useful when the number of Kafka partitions is small and
the size of each Kafka partition is large.

oracle.kaf
ka.partitio
n.chunk.si
ze

Optional When oracle.kafka.chop.partition is true, this property controls the
number of Kafka records in each partition chunk. It should be set a value
estimated by (Ideal size of a split)/(Average size of a Kafka record). For
example, if the ideal size of a split is 256 MB and the average size of s
Kafka record is 256 Bytes, then this property should be set to 1000000.

Chapter 2
Creating External Tables

2-25

2.1.6.2 Creating an Oracle Big Data SQL Table for Kafka Topics
Big Data SQL can use the ORACLE_HIVE access driver to query data stored in Hive
Tables.

After you create a Hive table over Kafka data by using the Hive storage handler for
Kafka, there are no special procedures for generating a Big Data SQL table from the
resulting Hive table. The default ORACLE_HIVE settings can be overridden in the
same way as with other Hive tables This is how to query the Hive external table that
was created using the Hive storage handler for Kafka in the previous section.

CREATE TABLE test_table(
topic varchar2(50),
partitionid integer,
key varchar2(50),
value integer,
offset integer,
timestamptype integer,
timestamp timestamp
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_HIVE DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS
 (
 com.oracle.bigdata.cluster=hadoop1
 com.oracle.bigdata.tablename=default.test_table
)
) PARALLEL 2 REJECT LIMIT UNLIMITED

Some Common Questions

• Is Oracle Big Data SQL access to Kafka Brokers parallelized? For example, if I
have six nodes running Oracle Big Data SQL, will all six nodes participate in a
single query to Kafka so that we have to create a consumer group across all
nodes to read the Kafka topic? Or, will only one node be used for a single
SELECT statement to query from Kafka?

Like any Big Data SQL query, a query to Kafka will engage all of the nodes where
Oracle Big Data SQL is installed.

• In a Kafka query, how can we accommodate new incoming data? Can I have a
query that waits (for a specified timeout) for new data to come into Kafka?

To pick up new data, you can run the Oracle Big Data SQL query periodically and
filter by offset and timestamp to only retrieve the new rows (rows since the last
read).

See Also:

The following section of the Big Data SQL Quick Start blog provides more
information on accessing Kafka through Oracle Big Data SQL – Big Data
SQL Quick Start. Big Data SQL over Kafka – Part 23

Chapter 2
Creating External Tables

2-26

https://blogs.oracle.com/datawarehousing/big-data-sql-quick-start-big-data-sql-over-kafka-e28093-part-23
https://blogs.oracle.com/datawarehousing/big-data-sql-quick-start-big-data-sql-over-kafka-e28093-part-23

2.1.7 Creating an Oracle External Table for Object Store Access
The ORACLE_BIGDATA access driver enables you to create an external table over data
stored in object stores. Oracle Big Data SQL currently supports access to Oracle
Object Store and Amazon S3.

ORACLE_BIGDATA is primarily intended to support queries against object stores. It
uses Smart Scan and Oracle Big Data SQL cells for scale out and performance
against these stores. You can also use this driver to query local data, which is useful
for testing and smaller data sets.

The ORACLE_BIGDATA driver is similar to the ORACLE_HDFS driver in that you create
tables over the raw files. It does not use a metadata store like Hive. You specify the
metadata as part of the table definition.

However, unlike ORACLE_HDFS, ORACLE_BIGDATA does not use Java drivers and the
standard Hadoop mechanisms for data access (SerDes, InputFormats, etc.).
ORACLE_BIGDATA uses optimized C-drivers for all data access. It supports the text,
Avro, and Parquet file types. The text file type support is robust. For example, you can
specify parameters for delimited text. You can also utilize Oracle's extensive JSON
processing capabilities.

Steps for Accessing Data in Object Store

There are two steps required in order access data in an object store:

• Create a credential object
A credential object stores object store credentials in an encrypted format. The
identity specified by the credential must have access to the underlying data in the
object store.

• Create an Oracle Big Data SQL external table whose type is ORACLE_BIGDATA. The
create table statement must reference the credential object, which provides
authentication against the object store. It also requires a LOCATION clause, which
provides the URI to the files within the object store.

Creating the Credential Object

Use the DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure to create your
credential object. This object contains the username and password information
needed to access the object store:

execute dbms_credential.create_credential(
 credential_name => '<my_credential>',
 username => '<username>',
 password => '<password>'
);

Then specify the credential object name in the com.oracle.bigdata.credential
parameter.

Chapter 2
Creating External Tables

2-27

See Also:

The Oracle Database PL/SQL Packages and Types Reference describes
how to use DBMS_CREDENTIAL.CREATE_CREDENTIAL

Defining the LOCATION Clause

The LOCATION is a URI pointing to data in the object store. Currently supported
object stores are Oracle Object Store and Amazon S3. There are different ways of
specifying the URI, depending on its source. Here are some examples.

• For Oracle Cloud Infrastructure Object Storage, the URI format for files is:

location ('https://swiftobjectstorage.region.oraclecloud.com/v1/
<object_storage_namespace>/<bucket>/<filename>')

• For an Amazon S3 location, see https://docs.aws.amazon.com/AmazonS3/
latest/dev/UsingBucket.html#access-bucket-intro. A possible example is:

location ('https://s3-us-west-2.amazonaws.com/adwc/<filename>')

If the URI is for a directory, then all files in the directory will be included.

If the credential parameter is omitted, then ORACLE_BIGDATA assumes LOCATION
contains a file name and optional directory object name. In this case, the file resides in
the local file system. The credential object is required for object store access only. If
the directory object is not specified, the access driver uses the directory object
specified in the DEFAULT DIRECTORY clause. The user that defined the table must
have READ access to the directory object.

Setting Access Parameters

Like ORACLE_HDFS, ORACLE_BIGDATA requires information about how to access
and parse the data. You provide this through access parameters. This is the minimal
set of access parameters:

com.oracle.bigdata.fileformat={textfile|avro|parquet}
com.oracle.bigdata.credential.name=<credential object>
com.oracle.bigdata.credential.schema=<schema that owns the credential>

For delimited text files, the rowformat parameter is also required.

See Also:

ORACLE_BIGDATA Access Parameters in this guide provides tables that list
common access parameters as well as those specific to each file type.

Chapter 2
Creating External Tables

2-28

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro

Note:

You can use ORACLE_BIGDATA to access local files for testing purposes or
simple querying. In this case, the LOCATION field value is the same as what
you would use for ORACLE_LOADER. You can use an Oracle directory
object followed by the name of the file in the LOCATION field. For local files,
a credential object is not required. However, you must have privileges over
on the directory object in order to access the file.

2.1.7.1 Create Table Example for Object Store Access
This section describes how to build a CREATE TABLE statement for object store
access.

As shown in the example below, the required components are as follows:

• The schema for the external table.

• The credential object.

• The fileformat parameter and any access parameters that are particular to the file
format. For example, delimited Text files require the rowformat parameter. Parquet
and Avro require only the fileformat parameter. Note that the default file format is
Parquet.

• The correct LOCATION clause syntax for the particular object store.

• Use of a DEFAULT DIRECTORY clause with a LOCATION that is local rather than
in an object store.

See Also:

ORACLE_BIGDATA Access Parameters for the full set of available
parameters for each file type.

Chapter 2
Creating External Tables

2-29

Example: Accessing a File in an Object Store

Note:

Remember that for object store access you must first use
DBMS_CREDENTIAL.CREATE_CREDENTIAL in the DBMS_CREDENTIAL
PL/SQL package to create the credential object.

exec dbms_credential.create_credential(
credential_name => '<my_credential_object_name>',
username => '<username>',
password => '<password>'
);

Then within the ACCESS PARAMETER clause of the statement, assign the
name of the object to com.oracle.bigdata.credential.name as shown in
the statement. A Parquet file in an object store is the target in this example.

CREATE TABLE tkexbaseballtab
 (date1 date,
 date2 timestamp,
 name varchar2(30),
 nationality varchar2(20),
 age number,
 team varchar2(20),
 active char(1),
 average float,
 payroll char(1),
 exid VARCHAR2(20))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_BIGDATA
 ACCESS PARAMETERS
 (
 com.oracle.bigdata.debug=TRUE
 com.oracle.bigdata.credential.name=MY_CRED
 com.oracle.bigdata.fileformat=parquet
)
 location ('https://<domain>.com/BIGDATA_PARQUET/<filename>.parquet')
) REJECT LIMIT UNLIMITED;

2.1.7.2 Accessing a Local File through an Oracle Directory Object
You can also use the ORACLE_BIGDATA driver to create an external table over a
local file.

The statement below creates an external table over a text file in a local directory. For a
JSON file, set the file format to textfile. No other access parameters are needed.
You do not need to supply a credential when accessing local files. Do the same for a
delimited text file, but if the fields terminator and/or line terminator used in the file are
other than the default values, define those as well. In this example, we set the field

Chapter 2
Creating External Tables

2-30

terminator to the vertical bar (‘|’). This statement does not include a DEFAULT
DIRECTORY clause. Instead in the LOCATION clause we include the name of the
directory object where the file is located – DEF_DIR1 .

CREATE TABLE b19724081
(CONTRACT_STATUS_CODE VARCHAR2(1),
 CONTRACT_STATUS_DESCRIPTION VARCHAR2(200),
 POSTING_AGENT VARCHAR2(50),
 DATA_ORIGIN VARCHAR2(50),
 WAREHOUSE_POSTING_TIMESTAMP DATE,
 WAREHOUSE_UPDATE_TIMESTAMP DATE
)
ORGANIZATION EXTERNAL
 (TYPE ORACLE_BIGDATA
 DEFAULT DIRECTORY "DEF_DIR1"
 ACCESS PARAMETERS
 (
 com.oracle.bigdata.fileformat=textfile
 com.oracle.bigdata.csv.rowformat.fields.terminator = '|'
)
 location ("DEF_DIR1":"<'filename>.csv')
)
REJECT LIMIT UNLIMITED;

Compression Format

There is no compression format support for textfile file format. In other words, the files
for textfile must be uncompressed. We support gzip, snappy, lzo, and zlib for Parquet
and Avro file format. The compression format is detected automatically, and there is
no parameter needed.

2.1.7.3 Parquet to Oracle Data Type Conversions
Oracle Big Data SQL support conversions from Parquet file data types to Oracle data
types, but for scalar fields only.

Note:

Any non-supported conversions cause the SELECT from the external table
to fail. Parquet does not require that every file have data/metadata for every
field. In that case, the unsupported conversion will not be detected until the
metadata for that field is read later.

If data for a column encounters a conversion error, for example, the target
column is not large enough to hold the converted value, the value for the
column will be set to NULL.

Chapter 2
Creating External Tables

2-31

Parquet File Data Types Supported Conversions to Oracle Data
Types

FLOAT, DOUBLE, DECIMAL NUMBER, BINARY_FLOAT,
BINARY_DOUBLE, CHAR, NCHAR,
VARCHAR2, NVARCHAR2, CLOB, NCLOB

DATE NUMBER – number of days

BINARY_FLOAT, BINARY_DOUBLE –
number of days

CHAR, NCHAR, VARCHAR2, NVARCHAR2,
CLOB, NCLOB – string for the represented
date using NLS parameters for the session

DATE, TIMESTAMP

TIME_MILLIS, TIME_MICROS NUMBER – number of milliseconds or
microseconds

BINARY_FLOAT, BINARY_DOUBLE –
number of milliseconds or microseconds

CHAR, NCHAR, VARCHAR2, NVARCHAR2,
CLOB, NCLOB – string for the represented
time using NLS parameters for the session

INTERVAL DAY TO SECOND

TIMESTAMP_MILLIS, TIMESTAMP_MICROS,
TIMESTAMP(from impala)

CHAR, NCHAR, VARCHAR2, NVARCHAR2,
CLOB, NCLOB – string for the represented
timestamp using NLS parameters for the
session

DATE, TIMESTAMP

UTF8, ENUM NUMBER

BINARY_FLOAT, BINARY_DOUBLE

CHAR, NCHAR, VARCHAR2, NVARCHAR2,
CLOB, NCLOB

DATE, TIMESTAMP

RAW, BLOB (interpret as hex string)

INTERVAL

JSON CHAR, NCHAR, VARCHAR2, NVARCHAR2,
CLOB, NCLOB

2.1.7.4 Avro to Oracle Data Type Conversions
Support for Avro to Oracle data type conversions is shown in the table below.

Table 2-6 ORACLE_BIGDATA Mappings From Avro to Oracle Data Types

Avro ORACLE_BIGDATA Mapping

STRING VARCHAR2

BYTES BLOB

INT NUMBER(10)

LONG NUMBER(19)

FLOAT BINARY_FLOAT

DOUBLE BINARY_DOUBLE

BOOLEAN NUMBER(1)

Chapter 2
Creating External Tables

2-32

Table 2-6 (Cont.) ORACLE_BIGDATA Mappings From Avro to Oracle Data
Types

Avro ORACLE_BIGDATA Mapping

NULL VARCHAR2(1) BYTE

ENUM VARCHAR2

UNION BINARY_DOUBLE

FIXED BLOB

DECIMAL(p) NUMBER(p)

DATE DATE

DURATION BLOB

TIME-MILLIS VARCHAR2(20 BYTE)

TIME-MICROS VARCHAR2(20 BYTE)

TIMESTAMP_MILLIS TIMESTAMP(3)

TIMESTAMP_MICROS TIMESTAMP(6)

RECORD CHAR, VARCHAR, or CLOB

ARRAY CHAR, VARCHAR, or CLOB

MAP CHAR, VARCHAR, or CLOB

2.1.7.5 ORACLE_BIGDATA Support for Compressed Files
ORACLE_BIGDATA driver support for access to compressed files in object stores is
as follows:

• Compressed Text files
Not supported at this time. Text files must be uncompressed.

• Compressed Parquet and Avro files
The driver can read from Parquet and Avro files compressed with gzip, snappy,
lzo, or zlib. The compression format is detected automatically. No parameters to
handle compressed files are needed in the external table create statement.

2.2 Querying External Tables
Users can query external tables using the SQL SELECT statement, the same as they
query any other table.

Note:

The MODIFY EXTERNAL clause is not allowed for any external table
created through the ORACLE_BIGDATA driver.

2.2.1 Granting User Access
Users who query the data on a Hadoop cluster must have READ access in Oracle
Database to the external table and to the database directory object that points to the
cluster directory. See "About the Cluster Directory".

Chapter 2
Querying External Tables

2-33

2.2.2 About Error Handling
By default, a query returns no data if an error occurs while the value of a column is
calculated. Processing continues after most errors, particularly those thrown while the
column values are calculated.

Use the com.oracle.bigdata.erroropt and com.oracle.bigdata.overflow parameters to
determine how errors are handled.

2.2.3 About the Log Files
You can use these access parameters to customize the log files:

• com.oracle.bigdata.log.exec

• com.oracle.bigdata.log.qc

2.2.4 About File Readers

2.2.4.1 Using the Custom Parquet Reader for Oracle Big Data SQL
For reading parquet files, you have the option of using the custom Parquet reader for
Oracle Big Data SQL. This proprietary driver improves performance and makes more
efficient use of cluster resources.

Disabling or Re-Enabling the Custom Parquet Reader

The Parquet reader optimization is enabled by default. It can be disabled for an
individual table by adding the following access parameter to the external table
definition:

com.oracle.bigdata.useOracleParquet=false

You can add this setting to the cluster properties file to disable the optimization for all
Parquet-based external tables. Remove the setting to return to the default.

Compatibility with Previously Created Parquet Format Data

Use of the customer reader requires no changes to data format. However, for best
performance, the format must provide min and max values for each column for each
Parquet block. These values are used by the standard Hadoop Parquet InputFormat,
as well as the custom Parquet reader, to optimize the query. The resulting optimization
significantly improves query performance with both Hive and Oracle Big Data SQL.

Note that Parquet files created by Impala do not include min and max values for each
column for each Parquet block.

To ensure that min and max values are available, it is recommended that you write
Parquet files with Hive or other tools that generate output in the standard Hadoop
Parquet InputFormat, such as PrestoDB and Spark.

Chapter 2
Querying External Tables

2-34

To check if a file includes these values, you can use the parquet tools JAR to dump
information about the file:

hadoop jar parquet-tools-1.5.0-cdh5.12.0.jar meta <filename>.parq

On a CDH Hadoop distro, the parquet-tools command may also be configured in
your path.

2.3 About Oracle Big Data SQL on the Database Server
(Oracle Exadata Machine or Other)

This section explains the changes that the Oracle Big Data SQL installation makes to
the Oracle Database system (which may or may not be an Oracle Exadata Machine).

The section contains the following topics:

• About the bigdata_config Directory

• Common Configuration Properties

• About the Cluster Directory

• About Permissions

2.3.1 About the bigdata_config Directory
The directory bigdata_config contains configuration information that is common to
all Hadoop clusters. This directory is located on the Oracle Database system
under $ORACLE_HOME/bigdatasql. The oracle file system user (or whichever user
owns the Oracle Database instance) owns bigdata_config . The Oracle Database
directory ORACLE_BIGDATA_CONFIG points to bigdata_config.

2.3.2 Common Configuration Properties
The installation store these files in the bigdata_config directory
under $ORACLE_HOME/bigdatasql :

• bigdata.properties

• bigdata-log4j.properties

The Oracle DBA can edit these configuration files as necessary.

2.3.2.1 bigdata.properties
The bigdata.properties file in the common directory contains property-value pairs
that define the Java class paths and native library paths required for accessing data in
HDFS.

These properties must be set:

• bigdata.cluster.default

• java.classpath.hadoop

• java.classpath.hive

Chapter 2
About Oracle Big Data SQL on the Database Server (Oracle Exadata Machine or Other)

2-35

• java.classpath.oracle

The following list describes all properties permitted in bigdata.properties.

bigdata.properties

Property Description

bigdata.cluster.default The name of the default Hadoop cluster. The
access driver uses this name when the access
parameters do not specify a cluster. Required.

Changing the default cluster name might break
external tables that were created previously
without an explicit cluster name.

bigdata.cluster.list A comma-separated list of Hadoop cluster
names. Optional.

java.classpath.hadoop The Hadoop class path. Required.

java.classpath.hive The Hive class path. Required.

java.classpath.oracle The path to the Oracle JXAD Java JAR file.
Required.

java.classpath.user The path to user JAR files. Optional.

java.libjvm.file The full file path to the JVM shared library
(such as libjvm.so). Required.

java.options A comma-separated list of options to pass to
the JVM. Optional.

This example sets the maximum heap size to
2 GB, and verbose logging for Java Native
Interface (JNI) calls:

Xmx2048m,-verbose=jni

Chapter 2
About Oracle Big Data SQL on the Database Server (Oracle Exadata Machine or Other)

2-36

Property Description

java.options2 A space-delimited list of options to pass to the
JVM. Optional. The delimiter must be a space
character, not a tab or other whitespace
character.

This example sets the maximum heap size to
2 GB, and verbose logging for Java Native
Interface (JNI) calls:

Xmx2048m -verbose=jni

Note:

Notice that
java.options
is comma-
delimited, while
java.options2
is space
delimited. These
two properties
can coexist in
the same
bigdata.prope
rties file.

LD_LIBRARY_PATH A colon separated (:) list of directory paths to
search for the Hadoop native libraries.
Recommended.

If you set this option, then do not set
java.library path in java.options.

Example 2-1 shows a sample bigdata.properties file.

Example 2-1 Sample bigdata.properties File

bigdata.properties
#
Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
#
NAME
bigdata.properties - Big Data Properties File
#
DESCRIPTION
Properties file containing parameters for allowing access to Big Data
Fixed value properties can be added here
#

java.libjvm.file=$ORACLE_HOME/jdk/jre/lib/amd64/server/libjvm.so
java.classpath.oracle=$ORACLE_HOME/hadoopcore/jlib/*:$ORACLE_HOME/hadoop/jlib/hver-2/
:$ORACLE_HOME/dbjava/lib/
java.classpath.hadoop=$HADOOP_HOME/*:$HADOOP_HOME/lib/*
java.classpath.hive=$HIVE_HOME/lib/*
LD_LIBRARY_PATH=$ORACLE_HOME/jdk/jre/lib
bigdata.cluster.default=hadoop_cl_1

Chapter 2
About Oracle Big Data SQL on the Database Server (Oracle Exadata Machine or Other)

2-37

2.3.2.2 bigdata-log4j.properties
The bigdata-log4j.properties file in the common directory defines the logging
behavior of queries against external tables in the Java code. Any log4j properties are
allowed in this file.

Example 2-2 shows a sample bigdata-log4j.properties file with the relevant log4j
properties.

Example 2-2 Sample bigdata-log4j.properties File

bigdata-log4j.properties
#
Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
#
NAME
bigdata-log4j.properties - Big Data Logging Properties File
#
DESCRIPTION
Properties file containing logging parameters for Big Data
Fixed value properties can be added here

bigsql.rootlogger=INFO,console
log4j.rootlogger=DEBUG, file
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n
log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n
log4j.logger.oracle.hadoop.sql=ALL, file

bigsql.log.dir=.
bigsql.log.file=bigsql.log
log4j.appender.file.File=$ORACLE_HOME/bigdatalogs/bigdata-log4j.log

See Also:

Apache Logging Services documentation at

http://logging.apache.org/log4j/1.2/manual.html

2.3.3 About the Cluster Directory
The cluster directory contains configuration information for a Hadoop cluster. Each
cluster that Oracle Database accesses using Oracle Big Data SQL has a cluster
directory. This directory is located on the Oracle Database system
under $ORACLE_HOME/bigdatasql/clusters/. For example, cluster bda1_cl_1 would
have a directory $ORACLE_HOME/bigdatasql/clusters/bda1_c1_1 and
under $ORACLE_HOME/bigdatasql/clusters/bda1_c1_1/config would be the
following files for client configuration files for accessing the cluster:

• bigdata.hosts (not editable by customers)

Chapter 2
About Oracle Big Data SQL on the Database Server (Oracle Exadata Machine or Other)

2-38

http://logging.apache.org/log4j/1.2/manual.html

• core-site.xml

• hdfs-site.xml

• hive-site.xml

• mapred-site.xml (optional)

• log4j property files (such as hive-log4j.properties)

$ORACLE_HOME/bigdatasql/databases/<database name>/bigdata_config/
default_cluster is a soft link to the directory of the default cluster.

A database directory object points to the cluster directory. Users who want to access
the data in a cluster must have read access to the directory object.

2.3.4 About Permissions
On the Oracle database server, ensure that the oracle user (or whatever user owns
the Oracle Database installation directory) has READ/WRITE access to the database
directory that points to the log directory.

On the Hadoop side, when you run Database Acknowledge (# ./jaguar databaseack
[config file]) this operation creates an account for the database owner and grants
required permissions.

Chapter 2
About Oracle Big Data SQL on the Database Server (Oracle Exadata Machine or Other)

2-39

3
Storing Oracle Data in Hadoop

Copy to Hadoop and Oracle Database Tablespaces in HDFS are two Oracle Big Data
SQL resources for off-loading Oracle Database tables to the HDFS file system on a
Hadoop cluster.
The table below compares these two tools.

Table 3-1 Comparison of Copy to Hadoop and Oracle Tablespaces in HDFS

Copy to Hadoop Oracle Tablespaces in HDFS

Copies Oracle Database tables to Oracle Data
Pump files stored in HDFS.

Oracle Database tables or partitions are stored
within the tablespace in HDFS in their original
Oracle-internal format.

Access is through a Hive external table and
from the database with Oracle Big Data SQL.

Access is directly though the original Oracle
Database tables. External tables are not
needed.

Data is available (through Hive) to other
processes in the Hadoop ecosystem and to
Oracle Database (through Oracle Big Data
SQL).

Data is directly available to Oracle Database
only. Data is not accessible to other processes
in Hadoop.

3.1 Using Copy to Hadoop
Learn how to use Copy to Hadoop to copy Oracle Database tables to Hadoop.

• What Is Copy to Hadoop?

• Getting Started Using Copy to Hadoop

• Using Oracle Shell for Hadoop Loaders With Copy to Hadoop

• Copy to Hadoop by Example

• Querying the Data in Hive

• Column Mappings and Data Type Conversions in Copy to Hadoop

• Working With Spark

• Using Oracle SQL Developer with Copy to Hadoop

3.1.1 What Is Copy to Hadoop?
Oracle Big Data SQL includes the Oracle Copy to Hadoop utility. This utility makes it
simple to identify and copy Oracle data to the Hadoop Distributed File System. It can
be accessed through the command-line interface Oracle Shell for Hadoop Loaders.

Data exported to the Hadoop cluster by Copy to Hadoop is stored in Oracle Data
Pump format. The Oracle Data Pump files can be queried by Hive or Big Data SQL.
The Oracle Data Pump format optimizes queries through Big Data SQL in the following
ways:

3-1

• The data is stored as Oracle data types – eliminating data type conversions.

• The data is queried directly – without requiring the overhead associated with Java
SerDes.

After Data Pump format files are in HDFS, you can use Apache Hive to query the data.
Hive can process the data locally without accessing Oracle Database. When the
Oracle table changes, you can refresh the copy in Hadoop. Copy to Hadoop is
primarily useful for Oracle tables that are relatively static, and thus do not require
frequent refreshes.

Copy to Hadoop is licensed under Oracle Big Data SQL. You must have an Oracle Big
Data SQL license in order to use this utility.

3.1.2 Getting Started Using Copy to Hadoop
To install and start using Copy to Hadoop:

1. Follow the Copy to Hadoop and Oracle Shell for Hadoop Loaders installation
procedures in the Oracle Big Data SQL Installation Guide.

As described in the installation guide, ensure that the prerequisite software is
installed on both the Hadoop cluster (on Oracle Big Data Appliance or another
Hadoop system) and on the Oracle Database server (Oracle Exadata Database
Machine or other).

2. Invoke Oracle Shell for Hadoop Loaders (OHSH) to do a direct, one-step copy or a
staged, two-step copy of data in Oracle Database to Data Pump format files in
HDFS, and create a Hive external table from the files.

OHSH will choose directcopy by default to do a direct, one-step copy. This is
faster than a staged, two-step copy and does not require storage on the database
server. However, there are situations where you should do a staged, two-step
copy:

• Copying columns from multiple Oracle Database source tables. (The direct,
one-step copy copies data from one table only.)

• Copying columns of type TIMESTAMPTZ or TIMESTAMPLTZ to Hive.

Since Hive does not have a data type that supports time zones or time offsets,
you must cast these columns to TIMESTAMP when manually exporting these
columns to Data Pump files

• Copying data from a view. Views are not supported by the directcopy option.

 The staged two-step copy using the manual steps is demonstrated in "Appendix
A: Manual Steps for Using Copy to Hadoop for Staged Copies".

3. Query this Hive table the same as you would any other Hive table.

Tip:

For Hadoop power users with specialized requirements, the manual option
for Direct Copy is recommended. See Manual Steps for Using Copy to
Hadoop for Direct Copies in Appendix B.

Chapter 3
Using Copy to Hadoop

3-2

3.1.2.1 Table Access Requirements for Copy to Hadoop
To copy a table using Copy to Hadoop, an Oracle Database user must meet one of
these requirements.

• The user is the owner of the table, or

• The user is accessing a table in another schema and has the following privileges:

– The SELECT privilege on the table.

– The select_catalog_role privilege (which provides SELECT privileges on data
dictionary views).

3.1.3 Using Oracle Shell for Hadoop Loaders With Copy to Hadoop

3.1.3.1 Introducing Oracle Shell for Hadoop Loaders

What is Oracle Shell for Hadoop Loaders?

Oracle Shell for Hadoop Loaders (OHSH) is a helper shell that provides an easy-to-
use command line interface to Oracle Loader for Apache Hadoop, Oracle SQL
Connector for HDFS, and Copy to Hadoop. It has basic shell features such as
command line recall, history, inheriting environment variables from the parent
process, setting new or existing environment variables, and performing environmental
substitution in the command line.

The core functionality of Oracle Shell for Hadoop Loaders includes the following:

• Defining named external resources with which Oracle Shell for Hadoop Loaders
interacts to perform loading tasks.

• Setting default values for load operations.

• Running load commands.

• Delegating simple pre and post load tasks to the Operating System, HDFS, Hive
and Oracle. These tasks include viewing the data to be loaded, and viewing the
data in the target table after loading.

See Also:

The examples directory in the OHSH kit contains many examples that define
resources and load data using Oracle Shell for Hadoop Loaders. Unzip
<OHSH_KIT>/examples.zip and see<OHSH_KIT>/examples/
README.txt for a description of the examples and instructions on how to
run OHSH load methods.

3.1.4 Copy to Hadoop by Example

Chapter 3
Using Copy to Hadoop

3-3

3.1.4.1 First Look: Loading an Oracle Table Into Hive and Storing the Data in
Hadoop

This set of examples shows how to use Copy to Hadoop to load data from an Oracle
table, store the data in Hadooop, and perform related operations within the OHSH
shell. It assumes that OHSH and Copy to Hadoop are already installed and
configured.

What’s Demonstrated in The Examples

These examples demonstrate the following tasks:

• Starting an OHSH session and creating the resources you’ll need for Copy to
Hadoop.

• Using Copy to Hadoop to copy the data from the selected Oracle Database table
to a new Hive table in Hadoop (using the resources that you created).

• Using the load operation to add more data to the Hive table created in the first
example.

• Using the create or replace operation to drop the Hive table and replace it with
a new one that has a different record set.

• Querying the data in the Hive table and in the Oracle Database table.

• Converting the data into other formats

Tip:

You may want to create select or create a small table in Oracle Database
and work through these steps.

Starting OHSH, Creating Resources, and Running Copy to Hadoop

1. Start OHSH. (The startup command below assumes that you’ve added the OHSH
path to your PATH variable as recommended.)

$ ohsh
ohsh>

2. Create the following resources.

• SQL*Plus resource.

ohsh> create sqlplus resource sql0
connectid=”<database_connection_url>”

• JDBC resource.

ohsh> create jdbc resource jdbc0
connectid=”<database_connection_url>”

Chapter 3
Using Copy to Hadoop

3-4

Note:

For the Hive access shown in this example, only the default hive0
resource is needed. This resource is already configured to connect to the
default Hive database. If additional Hive resources were required, you
would create them as follows:

ohsh> create hive resource hive_mydatabase
connectionurl=”jdbc:hive2:///<Hive_database_name>”

3. Include the Oracle Database table name in the create hive table command
below and run the command below. This command uses the Copy to Hadoop
directcopy method. Note that directcopy is the default mode and you do not
actually need to name it explicitly.

ohsh> create hive table hive0:<new_Hive_table_name> from oracle table
jdbc0:<Oracle_Database_table_name> from oracle table
jdbc0:<Oracle_Database_table_name> using directcopy

The Oracle Table data is now stored in Hadoop as a Hive table.

Adding More Data to the Hive Table

Use the OHSH load method to add data to an existing Hive table.

Let’s assume that the original Oracle table includes a time field in the format DD-MM-
YY and that a number of daily records were added after the Copy to Hadoop operation
that created the corresponding Hive table.

Use load to add these new records to the existing Hive table:

ohsh> load hive table hive0:<Hive_table_name> from oracle table
jdbc0:<Oracle_Database_table_name> where “(time >= ’01-FEB-18’)”

Using OHSH create or replace

The OHSH create or replace operation does the following:

1. Drops the named Hive table (and the associated Data Pump files) if a table by this
name already exists.

Note:

Unlike create or replace, a create operation fails and returns an error
if the Hive table and the related Data Pump files already exist.

2. Creates a new Hive table using the name provided.

Suppose some records were deleted from the original Oracle Database table and you
want to realign the Hive table with the new state of the Oracle Database table. Hive

Chapter 3
Using Copy to Hadoop

3-5

does not support update or delete operations on records, but the create or replace
operation in OHSH can achieve the same end result:

ohsh> create or replace hive table hive0:<new_hive_table_name> from oracle
table jdbc0:<Oracle_Database_table_name>

Note:

Data copied to Hadoop by Copy to Hadoop can be queried through Hive, but
the data itself is actually stored as Oracle Data Pump files. Hive only points
to the Data Pump files.

Querying the Hive Table

You can invoke a Hive resource in OHSH in order to run HiveQL commands. Likewise,
you can invoke an SQL*Plus resource to run SQL commands. For example, these two
queries compare the original Oracle Database table with the derivative Hive table:

ohsh> %sql0 select count(*) from <Oracle_Database_table_name>
ohsh> %hive0 select count(*) from <Hive_table_name>

Storing Data in Other Formats, Such as Parquet or ORC

By default, Copy to Hadoop outputs Data Pump files. In a create operation, you can
use the “stored as” syntax to change the destination format to Parquet or ORC:

ohsh> %hive0 create table <Hive_table_name_parquet> stored as parquet as
select * from <Hive_table_name>

This example creates the Data Pump files, but then immediately copies them to
Parquet format. (The original Data Pump files are not deleted.)

3.1.4.2 Working With the Examples in the Copy to Hadoop Product Kit
The OHSH product kit provides an examples directory at the path where OHSH is
installed. This section walks you through several examples from the kit.

3.1.4.2.1 Using Copy to Hadoop With the Default Copy Method

The section assumes that OHSH and Copy to Hadoop are installed and configured.

The following examples from the Copy to Hadoop product kit show how to use Copy to
Hadoop with the default method of loading data. You can find the code in the
examples directory where the kit is installed (<OHSH_KIT>/examples).

Example 3-1 createreplace_directcopy.ohsh

This script uses the create or replace operation to create a Hive external table
called cp2hadoop_fivdti from the Oracle table FIVDTI. It then loads the Hive table

Chapter 3
Using Copy to Hadoop

3-6

with 10000 rows. It uses the default load method directcopy to run a map job on
Hadoop and split the Oracle table into input splits. The resulting Hive external table
includes all of the splits.

create or replace hive table hive0:cp2hadoop_fivdti \
from oracle table olhp:fivdti using directcopy

In the example below and in the code samples that follow, olhp is a user-defined
JDBC resource.

Example 3-2 load_directcopy.ohsh

The load_directcopy.ohsh script shows how to load the Hive table that was created
in createreplace_directcopy.ohsh with an additional 30 rows. This script also uses
the directcopy method.

load hive table hive0:cp2hadoop_fivdti from oracle table olhp:fivdti \
using directcopy where "(i7 < 30)";

Tip:

You have the option to convert the storage in Hadoop from the default Data
Pump format to Parquet or ORC format. For example:

%hive0 create table cp2hadoop_fivdti_parquet stored as parquet as
select * from cp2hadoop_fivdti

The original Data Pump files are not deleted.

3.1.4.2.2 Using Copy to Hadoop With the Staged Copy Method
The first example below shows how to use Oracle Shell for Hadoop Loaders (OHSH)
with Copy to Hadoop to do a staged, two-step copy from Oracle Database to Hadoop.
The stage method is an alternative to the directcopy method.

The second example shows how to load additional rows into the same table. It also
uses the stage method.

Both examples assume that OHSH and Copy to Hadoop have been installed and
configured, and that the examples have been configured according to the instructions
in README.txt in the examples directory of the OHSH installation. The scripts below
and many others are available in the examples directory.

Example 3-3 createreplace_stage.ohsh

This script uses create or replace to create a Hive table called cp2hadoop_fivdti
from the Oracle table FIVDTI. It uses the stage command, which automatically does
the following:

1. Exports the contents of the source table in Oracle to Data Pump format files on
local disk

2. Moves the Data Pump format files to HDFS.

Chapter 3
Using Copy to Hadoop

3-7

3. Creates the Hive external table that maps to the Data Pump format files in HDFS.

create or replace hive table hive0:cp2hadoop_fivdti \
from oracle table olhp:fivdti using stage

In the command above (and also in the next code example), olhp is a user-defined
JDBC resource.

Example 3-4 load_stage.ohsh

The load_stage.ohsh script shows how to load the Hive table created by
createreplace_stage.ohsh with an additional 30 rows using the stage method.

load hive table hive0:cp2hadoop_fivdti from oracle table olhp:fivdti \
using stage where "(i7 < 30)";

Manual Option

The two-step method demonstrated in the createreplace_stage.ohsh and
load_stage.ohsh example scripts automates some of the tasks required to do staged
copies. However, there may be reasons to perform the steps manually, such as:

• You want to load columns from multiple Oracle Database source tables.

• You want to load columns of type TIMESTAMPZ or TIMESTAMPLTZ.

See Appendix A: Manual Steps for Using Copy to Hadoop for Staged Copies.

3.1.5 Querying the Data in Hive
The following OHSH command shows the number of rows in the Hive table after copying
from the Oracle table.

%hive0 select count(*) from cp2hadoop_fivdti;

3.1.6 Column Mappings and Data Type Conversions in Copy to
Hadoop

Get help with column mappings and data type conversions in Copy to Hadoop.

3.1.6.1 About Column Mappings
The Hive table columns automatically have the same names as the Oracle columns,
which are provided by the metadata stored in the Data Pump files. Any user-specified
column definitions in the Hive table are ignored.

3.1.6.2 About Data Type Conversions
Copy to Hadoop automatically converts the data in an Oracle table to an appropriate
Hive data type. Table 3-2 shows the default mappings between Oracle and Hive data
types.

Chapter 3
Using Copy to Hadoop

3-8

Table 3-2 Oracle to Hive Data Type Conversions

Oracle Data Type Hive Data Type

NUMBER INT when the scale is 0 and the precision is
less than 10

BIGINT when the scale is 0 and the
precision is less than 19

DECIMAL when the scale is greater than 0
or the precision is greater than 19

CLOB

NCLOB

STRING

INTERVALYM

INTERVALDS

STRING

BINARY_DOUBLE DOUBLE

BINARY_FLOAT FLOAT

BLOB BINARY

ROWID

UROWID

BINARY

RAW BINARY

CHAR

NCHAR

CHAR

VARCHAR2

NVARCHAR2

VARCHAR

DATE TIMESTAMP

TIMESTAMP TIMESTAMP

TIMESTAMPTZ

TIMESTAMPLTZ1

Unsupported

1 To copy TIMESTAMPTZ and TIMESTAMPLTZ data to Hive, follow the instructions in Appendix A:
Manual Steps for Using Copy to Hadoop to do Staged Copies. Cast the columns to TIMESTAMP when
exporting them to the Data Pump files.

3.1.7 Working With Spark
The Oracle Data Pump files exported by Copy to Hadoop can be used in Spark.

The Spark installation must be configured to work with Hive. Launch a Spark shell by
specifying the Copy to Hadoop jars.

prompt> spark-shell --jars
orahivedp.jar,ojdbc7.jar,oraloader.jar,orai18n.jar,ora-hadoop-common.jar

Verify the type of sqlContext in spark-shell:

scala> sqlContext

Chapter 3
Using Copy to Hadoop

3-9

Your output will look like the following:

 res0:org.apache.spark.sql.SQLContext =
org.apache.spark.sql.hive.HiveContext@66ad7167

If the default sqlContext is not HiveContext, create it:

scala> val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)

You can now create a Data Frame df that points to a Hive external table over Oracle
Data Pump files:

scala> val df = sqlContext.table("<hive external table>") <hive external
table>:
org.apache.spark.sql.DataFrame = [<column names>]

Now you can access data via the data frame.

scala> df.count
scala> df.head

If a Hive external table had not been created and you only had the Oracle Data Pump
files created by Copy to Hadoop, you can create the Hive external table from within
Spark.

scala> sqlContext.sql(“CREATE EXTERNAL TABLE <hive external table> ROW
FORMAT SERDE
'oracle.hadoop.hive.datapump.DPSerDe' STORED AS INPUTFORMAT
'oracle.hadoop.hive.datapump.DPInputFormat' OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' LOCATION
'/user/oracle/oracle_warehouse/<hive database name>'")

3.1.8 Using Oracle SQL Developer with Copy to Hadoop
Oracle SQL Developer is a free, GUI-based development environment that provides
easy to use tools for working Oracle Big Data Connectors, including Copy to Hadoop.

Using Oracle SQL Developer, you can copy data and create a new Hive table, or
append data to an existing Hive external table that was created by Copy to Hadoop. In
the GUI, you can initiate Copy to Hadoop in Oracle SQL Developer by right-clicking
the Tables icon under any Hive schema. You can then append to an existing Hive
external table by right-clicking the icon for that Hive table.

See Installing Oracle SQL Developer in this manual for instructions on where to obtain
Oracle SQL Developer and how do the basic installation.

3.2 Storing Oracle Tablespaces in HDFS
You can store Oracle read-only tablespaces on HDFS and use Big Data SQL Smart
Scan to off-load query processing of data stored in that tablespace to the Hadoop
cluster. Big Data SQL Smart Scan performs data local processing - filtering query

Chapter 3
Storing Oracle Tablespaces in HDFS

3-10

mailto:org.apache.spark.sql.hive.HiveContext@66ad7167

results on the Hadoop cluster prior to the return of the data to Oracle Database. In
most circumstances, this can be a significant performance optimization. In addition to
Smart Scan, querying tablespaces in HDFS also leverages native Oracle Database
access structures and performance features. This includes features such as indexes,
Hybrid Columnar Compression, Partition Pruning, and Oracle Database In-Memory.

Tables, partitions, and data in tablespaces in HDFS retain their original Oracle
Database internal format. This is not a data dump. Unlike other means of accessing
data in Hadoop (or other noSQL systems), you do not need to create Oracle External
table. After copying the corresponding Oracle tablespaces to HDFS, you refer to the
original Oracle table to access the data.

Permanent online, read only, and offline tablespaces (including ASM tablespaces) are
eligible for the move to HDFS.

Note:

Since tablespaces allocated to HDFS are may not be altered, offline
tablespaces must remain as offline. For offline tablespaces, then, what this
feature provides is a hard backup into HDFS.

If you want to use Oracle SQL Developer to perform the operations in this section,
confirm that you can access the Oracle Database server from your on-premises
location. This typically requires a VPN connection.

3.2.1 Advantages and Limitations of Tablespaces in HDFS
The following are some reasons to store Oracle Database tablespaces in HDFS.

• Because the data remains in Oracle Database internal format, I/O requires no
resource-intensive datatype conversions.

• All Oracle Database performance optimizations such as indexing, Hybrid
Columnar Compression, Partition Pruning, and Oracle Database In-Memory can
be applied.

• Oracle user-based security is maintained. Other Oracle Database security features
such as Oracle Data Redaction and ASO transparent encryption remain in force if
enabled. In HDFS, tablespaces can be stored in zones under HDFS Transparent
HDFS encryption.

• Query processing can be off-loaded. Oracle Big Data SQL Smart Scan is applied
to Oracle Database tablespaces in HDFS. Typically, Smart Scan can provide a
significant performance boost for queries. With Smart Scan, much of the query
processing workload is off-loaded to the Oracle Big Data SQL server cells on the
Hadoop cluster where the tablespaces reside. Smart Scan then performs
predicate filtering in-place on the Hadoop nodes to eliminate irrelevant data so that
only data that meets the query conditions is returned to the database tier for
processing. Data movement and network traffic are reduced to the degree that
smart scan predicate filtering can distill the dataset before returning it to the
database.

• For each table in the tablespace, there is only a single object to manage – the
Oracle-internal table itself. To be accessible to Oracle Database, data stored in

Chapter 3
Storing Oracle Tablespaces in HDFS

3-11

other file formats typically used in HDFS requires an overlay of an external table
and a view.

• As is always the case with Oracle internal partitioning, partitioned tables and
indexes can have partitions in different tablespaces some of which may be in
Exadata , ZFSSA, and other storage devices. This feature adds HDFS as another
storage option.

There are some constraints on using Oracle tablespaces in HDFS. As is the case with
all data stored in HDFS, Oracle Database tables, partitions, and data stored in HDFS
are immutable. Updates are done by deleting and replacing the data. This form of
storage is best suited to off-loading tables and partitions for archival purposes. Also,
with the exception of OD4H, data in Oracle tablespaces in HDFS is not accessible to
other tools in the Hadoop environment, such as Spark, Oracle Big Data Discovery, and
Oracle Big Data Spatial and Graph.

3.2.2 About Tablespaces in HDFS and Data Encryption
Oracle Database Tablespaces in HDFS can work with ASO (Oracle Advanced
Security) transparent table encryption as well as HDFS Transparent Encryption in
HDFS.

Tablespaces With Oracle Database ASO Encryption

In Oracle Database, ASO transparent encryption may be enabled for a tablespace or
objects within the tablespace. This encryption is retained if the tablespace is
subsequently moved to HDFS. For queries against this data, the
CELL_OFFLOAD_DECRYPTION setting determines whether Oracle Big Data SQL or Oracle
Database decrypts the data.

• If CELL_OFFLOAD_DECRYPTION = TRUE, then the encryption keys are sent to the
Oracle Big Data server cells in Hadoop and data is decrypted at the cells.

• If CELL_OFFLOAD_DECRYPTION = FALSE , encryption keys are not sent to the cells
and therefore the cells cannot perform TDE decryption. The data is returned to
Oracle Database for decryption.

The default value is TRUE.

Note:

In cases where CELL_OFFLOAD_DECRYPTION is set to FALSE, Smart Scan
cannot read the encrypted data and is unable to provide the performance
boost that results from the Hadoop-side filtering of the query result set. TDE
Column Encryption prevents Smart Scan processing of the encrypted
columns only. TDE Tablespace Encryption prevents Smart Scan processing
of the entire tablespace.

Tablespaces in HDFS Transparent Encryption Zones

You can move Oracle Database tablespaces into zones under HDFS Transparent
Encryption with no impact on query access or on the ability of Smart Scan to filter
data.

Chapter 3
Storing Oracle Tablespaces in HDFS

3-12

3.2.3 Moving Tablespaces to HDFS
Oracle Big Data SQL provides two options for moving tablespaces from Oracle
Database to the HDFS file system in Hadoop.

• Using bds-copy-tbs-to-hdfs

The script bds-copy-tbs-to-hdfs.sh lets you select a preexisting tablespace
in Oracle Database. The script automates the move of the selected tablespace to
HDFS and performs necessary SQL ALTER operations and datafile permission
changes for you. The DataNode where the tablespace is relocated is
predetermined by the script. The script uses FUSE-DFS to move the datafiles from
Oracle Database to the HDFS file system in the Hadoop cluster .

You can find bds-copy-tbs-to-hdfs.sh in the cluster installation directory
– $ORACLE_HOME/BDSJaguar-3.2.0/<string identifer for the cluster>.

• Manually Moving Tablespaces to HDFS

As an alternative to bds-copy-tbs-to-hdfs.sh, you can manually perform the
steps to move the tablespaces to HDFS. You can either move an existing
tablespace, or, create a new tablespace and selectively add tables and partitions
that you want to off-load. In this case, you can set up either FUSE-DFS or an
HDFS NFS gateway service to move the datafiles to HDFS.

The scripted method is more convenient. The manual method is somewhat more
flexible. Both are supported.

Before You Start:

As cited in the Prerequisites section of the installation guide, both methods
require that the following RPMs are pre-installed:

• fuse

• fuse-libs

yum -y install fuse fuse-libs

These RPMs are available in the Oracle public yum repository.

3.2.3.1 Using bds-copy-tbs-to-hdfs
On the Oracle Database server, you can use the script bds-copy-tbs-to-hdfs.sh
to select and move Oracle tablespaces to HDFS. This script is in the bds-database-
install directory that you extracted from the database installation bundle when you
installed Oracle Big Data SQL.

 This topic does not apply to Oracle Big Data SQL Cloud Service.

Chapter 3
Storing Oracle Tablespaces in HDFS

3-13

Syntax

bds-copy-tbs-to-hdfs.sh syntax is as follows:

bds-copy-tbs-to-hdfs.sh
bds-copy-tbs-to-hdfs.sh --install
bds-copy-tbs-to-hdfs.sh --uninstall
bds-copy-tbs-to-hdfs.sh --force-uninstall-script
bds-copy-tbs-to-hdfs.sh --tablespace=<tablespace name> [-pdb=<pluggable
database name>]
bds-copy-tbs-to-hdfs.sh --list=<tablespace name> [--pdb=<pluggable
database name>]
bds-copy-tbs-to-hdfs.sh --show=<tablespace name> [--pdb=<pluggable
database name>]

Additional command line parameters are described in the table below.

Table 3-3 bds-copy-tbs-to-hdfs.sh Parameter Options

Parameter List Description

No parameters Returns the FUSE-DFS status.

--install Installs the FUSE-DFS service. No action is
taken if the service is already installed.

--uninstall Uninstalls the FUSE-DFS service and
removes the mountpoint.

--grid-home Specifies the Oracle Grid home directory.

--base-mountpoint By default, the mountpoint is under /mnt.
However, on some systems access to this
directory is restricted. This parameter lets you
specify an alternate location.

--aux-run-mode Because Oracle Big Data SQL is installed on
the database side as a regular user (not a
superuser), tasks that must be done as root
and/or the Grid user require the installer to
spawn shells to run other scripts under those
accounts while bds-copy-tbs-to-hdfs.sh is
paused. The --aux-run-mode parameter
specifies a mode for running these auxiliary
scripts.

--aux-run-mode=<mode>

Mode options are:

• session – through a spawned session.
• su — as a substitute user.
• sudo — through sudo.
• ssh — through secure shell.

Chapter 3
Storing Oracle Tablespaces in HDFS

3-14

Table 3-3 (Cont.) bds-copy-tbs-to-hdfs.sh Parameter Options

Parameter List Description

--force-uninstall-script This option creates a secondary script that
runs as root and forces the FUSE-DFS
uninstall.

Caution:

Limit use of this
option to system
recovery, an
attempt to end a
system hang, or
other situations
that may require
removal of the
FUSE-DFS
service. Forcing
the uninstall
could potentially
leave the
database in an
unstable state.
The customer
assumes
responsibility for
this choice.
Warning
message are
displayed to
remind you of
the risk if you
use this option.

--tablespace=<tablespace name> [--
pdb=<pluggable database name>]

Moves the named tablespace in the named
PDB to storage in HDFS on the Hadoop
cluster. If there are no PDBs, then the --pdb
argument is discarded.

--list=<tablespace name> [--
pdb=<pluggable database name>

Lists tablespaces whose name equals or
includes the name provided. The --pdb
parameter is an optional scope. --list=*
returns all tablespaces. --pdb=* returns
matches for the tablespace name within all
PDBs.

--show=<tablespace name> [--
pdb=<pluggable database name>

Shows tablespaces whose name equals or
includes the name provided and are already
moved to HDFS. The --pdb parameter is an
optional scope. --show=* returns all
tablespaces. --pdb=* returns matches for the
tablespace name within all PDBs.

Chapter 3
Storing Oracle Tablespaces in HDFS

3-15

Usage

Use bds-copy-tbs-to-hdfs.sh to move a tablespace to HDFS as follows.

1. Log on as the oracle Linux user and cd to the bds-database-install
directory where the database bundle was extracted. Find bds-copy-tbs-to-
hdfs.sh in this directory.

2. Check that FUSE-DFS is installed.

$./bds-copy-tbs-to-hdfs.sh

3. Install the FUSE-DFS service (if it was not found in the previous check). This
command will also start the FUSE-DFS the service.

$./bds-copy-tbs-to-hdfs.sh --install

If this script does not find the mount point, it launches a secondary script. Run this
script as root when prompted. It will set up the HDFS mount. You can run the
secondary script in a separate session and then return to this session if you prefer.

For RAC Databases: Install FUSE_DFS on All Nodes:

On a RAC database, the script will prompt you that you must install
FUSE-DFS on the other nodes of the database.

4. List the eligible tablespaces in a selected PDB or all PDBs. You can skip this step
if you already know the tablespace name and location.

$./bds-copy-tbs-to-hdfs.sh --list=mytablesapce --pdb=pdb1

5. Select a tablespace from the list and then, as oracle, run bds-copy-tbs-to-
hdfs.sh again, but this time pass in the --tablespace parameter (and the --pdb
parameter if specified). The script moves the tablespace to the HDFS file system.

$./bds-copy-tbs-to-hdfs.sh --tablespace=mytablespace --pdb=pdb1

This command automatically makes the tablespace eligible for Smart Scan in
HDFS. It does this in SQL by adding the “hdfs:” prefix to the datafile name in the
tablespace definition. The rename changes the pointer in the database control file.
It does not change the physical file name.

Chapter 3
Storing Oracle Tablespaces in HDFS

3-16

Tip:

If the datafiles are stored in ASM, the extraction will be made using RMAN.
At this time, RMAN does not support a direct copy from ASM into HDFS.
This will result in an error.

As workaround, you can use the --staging-dir parameter, which that
enables you to do a two-stage copy – first to a file system directory and then
into HDFS. The file system directory specified by --staging-dir must have
sufficient space for the ASM datafile.

$./bds-copy-tbs-to-hdfs.sh --tablespace=mytablespace --pdb=pdb1 --
staging-dir=/home/user

For non-ASM datafiles, --staging-dir is ignored.

The tablespace should be back online and ready for access when you have completed
this procedure.

3.2.3.2 Manually Moving Tablespaces to HDFS
As an alternative to bds-copy-tbs-to-hdfs.sh, you can use the following manual
steps to move Oracle tablespaces to HDFS.

Note:

In the case of an ASM tablespace, you must first use RMAN or ASMCMD to
copy the tablespace to the filesystem.

Oracle Big Data SQL includes FUSE-DFS and these instructions use it to connect to
the HDFS file system. You could use an HDFS NFS gateway service instead. The
documentation for your Hadoop distribution should provide the instructions for that
method.

Perform all of these steps on the Oracle Database server. Run all Linux shell
commands as root. For SQL commands, log on to the Oracle Database as the oracle
user.

1. If FUSE-DFS is not installed or is not started, run bds-copy-tbs-to-hdfs.sh --
install . This script will install FUSE-DFS (if it’s not already installed) and then
start it.

The script will automatically create the mount point /mnt/fuse-<clustername>-
hdfs.

Note:

The script bds-copy-tbs-to-hdfs.sh is compatible with FUSE-DFS
2.8 only.

Chapter 3
Storing Oracle Tablespaces in HDFS

3-17

2. In SQL, use CREATE TABLESPACE to create the tablespace. Store it in a local .dbf
file. After this file is populated, you will move it to the Hadoop cluster. A single,
bigfile tablespace is recommended.

For example:

SQL> CREATE TABLESPACE movie_cold_hdfs DATAFILE '/u01/app/oracle/
oradata/cdb/orcl/movie_cold_hdfs1.dbf' SIZE 100M reuse AUTOEXTEND ON
nologging;

3. Use ALTER TABLE with the MOVE clause to move objects in the tablespace.

For example:

SQL> ALTER TABLE movie_fact MOVE PARTITION 2010_JAN TABLESPACE
movie_cold_hdfs ONLINE UPDATE INDEXES;

You should check the current status of the objects to confirm the change. In this
case, check which tablespace the partition belongs to.

SQL> SELECT table_name, partition_name, tablespace_name FROM
user_tab_partitions WHERE table_name='MOVIE_FACT';

4. Make the tablespace read only and take it offline.

SQL> ALTER TABLESPACE movie_cold_hdfs READ ONLY;
SQL> ALTER TABLESPACE movie_cold_hdfs OFFLINE;

5. Copy the datafile to HDFS and then change the file permissions to read only.

hadoop fs -put /u01/app/oracle/oradata/cdb/orcl/movie_cold_hdfs1.dbf /
user/oracle/tablespaces/
hadoop fs –chmod 440 /user/oracle/tablespaces/movie_cold_hdfs1.dbf

As a general security practice for Oracle Big Data SQL , apply appropriate HDFS
file permissions to prevent unauthorized read/write access.

You may need to source $ORACLE_HOME/bigdatasql/
hadoop_<clustername>.env before running hadoop fs commands.

As an alternative, you could use the LINUX cp command to copy the files to
FUSE.

6. Rename the datafiles, using ALTER TABLESPACE with the RENAME DATAFILE
clause.

Chapter 3
Storing Oracle Tablespaces in HDFS

3-18

Important:

Note the “hdfs:” prefix to the file path in the SQL example below. This is
the keyword that tells Smart Scan that it should scan the file. Smart Scan
also requires that the file is read only. The cluster name is optional.
Also, before running the SQL statement below, the
directory $ORACLE_HOME/dbs/hdfs:<clustername>/user/
oracle/tablespaces should include the soft link
movie_cold_hdfs1.dbf, pointing to /mnt/fuse-<clustername>-
hdfs/user/oracle/tablespaces/movie_cold_hdfs1.dbf.

SQL> ALTER TABLESPACE movie_cold_hdfs RENAME DATAFILE '/u01/app/oracle/
oradata/cdb/orcl/movie_cold_hdfs1.dbf' TO 'hdfs:<clustername>/user/
oracle/tablespaces/movie_cold_hdfs1.dbf';

When you rename the datafile, only the pointer in the database control file
changes. This procedure does not physically rename the datafile.

The tablespace must exist on a single cluster. If there are multiple datafiles, these
must point to the same cluster.

7. Bring the tablespace back online and test it.

SQL> ALTER TABLESPACE movie_cold_hdfs ONLINE;
SQL> SELECT avg(rating) FROM movie_fact;

Below is the complete code example. In this case we move three partitions from local
Oracle Database storage to the tablespace in HDFS.

mount hdfs
select * from dba_tablespaces;

CREATE TABLESPACE movie_cold_hdfs DATAFILE '/u01/app/oracle/oradata/cdb/
orcl/movie_cold_hdfs1.dbf' SIZE 100M reuse AUTOEXTEND ON nologging;

ALTER TABLE movie_fact
MOVE PARTITION 2010_JAN TABLESPACE movie_cold_hdfs ONLINE UPDATE INDEXES;
ALTER TABLE movie_fact
MOVE PARTITION 2010_FEB TABLESPACE movie_cold_hdfs ONLINE UPDATE INDEXES;
ALTER TABLE movie_fact
MOVE PARTITION 2010_MAR TABLESPACE movie_cold_hdfs ONLINE UPDATE INDEXES;

-- Check for the changes
SELECT table_name, partition_name, tablespace_name FROM
user_tab_partitions WHERE table_name='MOVIE_FACT';

ALTER TABLESPACE movie_cold_hdfs READ ONLY;
ALTER TABLESPACE movie_cold_hdfs OFFLINE;

hadoop fs -put /u01/app/oracle/oradata/cdb/orcl/movie_cold_hdfs1.dbf /user/
oracle/tablespaces/
hadoop fs –chmod 444 /user/oracle/tablespaces/ movie_cold_hdfs1.dbf

Chapter 3
Storing Oracle Tablespaces in HDFS

3-19

ALTER TABLESPACE movie_cold_hdfs RENAME DATAFILE '/u01/app/oracle/
oradata/cdb/orcl/movie_cold_hdfs1.dbf' TO 'hdfs:hadoop_cl_1/user/oracle/
tablespaces/movie_cold_hdfs1.dbf';
ALTER TABLESPACE movie_cold_hdfs ONLINE;

-- Test
select avg(rating) from movie_fact;

3.2.4 Smart Scan for TableSpaces in HDFS
Smart Scan is an Oracle performance optimization that moves processing to the
location where the data resides. In Big Data SQL, Smart Scan searches for datafiles
whose path includes the “hdfs:” prefix. This prefix is the key that indicates the datafile
is eligible for scanning.

After you have moved your tablespace data to HDFS and the tablespace and have
prefixed the datafile path with the "hdfs:" tag, then queries that access the data in
these files will leverage Big Data SQL Smart Scan by default. All of the Big Data SQL
Smart Scan performance optimizations will apply. This greatly reduces the amount of
data that moves from the storage tier to the database tier. These performance
optimizations include:

• The massively parallel processing power of the Hadoop cluster is employed to
filter data at its source.

• Storage Indexes can be leveraged to reduce the amount of data that is scanned.

• Data mining scoring can be off-loaded.

• Encrypted data scans can be off-loaded.

Disabling or Enabling Smart Scan

The initialization parameter _CELL_OFFLOAD_HYBRID_PROCESSING determines whether
Smart Scan for HDFS is enabled or disabled. It is enabled by default.

To disable Smart Scan for tablespaces in HDFS do the following.

1. Set the parameter to FALSE in init or in a parameter file:

 _CELL_OFFLOAD_HYBRID_PROCESSING=FALSE

The underscore prefix is required in this parameter name.

2. Restart the Oracle Database instance.

You can also make this change dynamically using the ALTER SYSTEM directive in SQL.
This does not require a restart.

SQL> alter system set _cell_offload_hybrid_processing=false;

One reason to turn off Smart Scan is if you need to move the Oracle tablespace
datafiles out of HDFS and back to their original locations.

Chapter 3
Storing Oracle Tablespaces in HDFS

3-20

You can re-enable Smart Scan by resetting _CELL_OFFLOAD_HYBRID_PROCESSING to
TRUE.

Note:

When _CELL_OFFLOAD_HYBRID_PROCESSING is set to FALSE, Smart Scan is
disabled for Oracle tablespaces residing in HDFS.

Chapter 3
Storing Oracle Tablespaces in HDFS

3-21

4
Working With Query Server

Learn how to manage Query Server with Oracle Big Data SQL.

4.1 About Oracle Big Data SQL Query Server
Oracle Big Data SQL Query Server is an Oracle Database instance that you can
optionally install as a component of Oracle Big Data SQL on an edge node in your
Hadoop cluster. You use Query Server to primarily query data stored in the cluster (in
HDFS and Hive formats) using Oracle external tables. This enables you to take
advantage of the full SQL capabilities provided by the Oracle Database.

You can define external tables using the ORACLE_HDFS and ORACLE_HIVE or
ORACLE_BIGDATA access drivers or have the Query Server automatically define external
tables based on the metadata in the Hive metastore. In the latter case, Hive databases
map to Oracle Database schemas – and the corresponding Hive tables are defined as
Oracle external tables in those schemas. All data authorization is based on
authorization rules in Hadoop such as Apache Sentry or HDFS Access Controls Lists
(ACLs).

Once installed, Query Server provides an Oracle Database deployment that is
automatically configured to query data in your Hadoop cluster using SQL. Restarting
the Query Server restores the database to a “clean” state, eliminating management
overhead. A restart preserves external tables (ORACLE_HIVE, ORACLE_HDFS, and
ORACLE_BIGDATA types), associated statistics, user defined views, and credentials.
A restart deletes regular tables containing user data.

If your solution requires High Availability (HA), advanced Oracle security policies, or
combining data in Oracle Database with data in Hadoop, then you should install a full-
blown Oracle Database with Big Data SQL. Oracle supports using both Query Server
and a Big Data SQL enabled Oracle Database for a single Hadoop deployment.

To install Query Server, you must specify an existing edge node in your Hadoop
cluster in the bds-config.json configuration file. You use the same configuration
file to specify a list of Hive databases. Query Server automatically creates Oracle
external tables corresponding to the tables in the Hive metastore database(s) so that
they are ready for querying after a successful installation. The set of external tables in
the Query Server can be automatically kept up-to-date with the corresponding Hive
metastore tables by running either the Restart this Big Data SQL Query Server or
the Synchronize Hive Databases commands in Cloudera Manager or Apache Ambari
cluster management software. You can also use the
dbms_bdsqs.sync_hive_databases PL/SQL API package procedure.

4-1

See Also:

See Introduction in the Oracle Big Data SQL Installation Guide, which
describes how to install and configure the software on the two sides of an
Oracle Big Data SQL configuration.

See Storing Oracle Tablespaces in HDFS for instructions on how to set up
data files for smart scanning.

4.2 Important Terms and Concepts
Introduction to edge nodes, edge database, cell nodes, and Hadoop cluster
integration.

These terms are key to understanding Query Server.

About Edge Nodes

An edge node in a Hadoop cluster is the interface between the Hadoop cluster and the
outside network. Typically, edge nodes are used to run client applications and Hadoop
cluster administration tools such as Cloudera Manager and Apache Ambari. Edge
nodes can act as a data gateway, by providing HDFS access through NFS or HttpFS,
or by running REST servers.

About Cell Nodes

The BDS cells run on the DataNodes, and allows for parts of query processing to be
pushed down to the Hadoop cluster DataNodes where the data resides. This ensures
both load distribution and reduction in the volume of data that needs to be sent to the
database for processing. This can result in significant performance improvements on
Big Data workloads.

Hadoop Cluster Integration

Oracle Big Data SQL includes the following three service roles that can you can
manage in either Cloudera Manager or Apache Ambari:

• Big Data SQL Query Server: Enables you to run SQL queries against the
Hadoop cluster. Applications connect to this server using JDBC or SQL*Net.

• Big Data SQL Agent: Manages the Big Data SQL installation and is also used by
the Copy to Hadoop feature.

• Big Data SQL Server: Also known as Big Data SQL Cells, allows for parts of
query processing to get pushed-down to the Hadoop cluster DataNodes where the
data resides.

4.3 Query Server Features
Big Data SQL Query Server provides automatic installation and configuration,
integration with Hadoop cluster managers, and automatic integration of cluster
metadata:

Chapter 4
Important Terms and Concepts

4-2

• Automatic installation and configuration: Oracle Big Data SQL installer
automatically installs and configures Query Server, if you specify an existing target
edge node in the Hadoop cluster in the bds-config.json configuration file. To
specify the edge node where to install Query Server, you add the edgedb
parameter and the node and enabled attributes to the bds-config.json
configuration file to as shown in the following example where
<edgenode_host_name> is the name of your edge node:

"edgedb": {
 "node" : "dbnode.domain.com",
 "enabled" : "true",
 "sync_hive_db_list" : "my_hive_db_1,my_hive_db2"
 }

Note:

If the bds-config.json configuration file does not include the edgedb
subsection, then Query Server is not installed.

See Also:

The bds-config.json Configuration Example in the installation guide
shows a fully-populated bds-config.json file. The example includes
all available configuration parameters.

• Integration with Hadoop cluster managers: You can monitor and manage
Query Server as a service using Cloudera Manager or Apache Ambari Hadoop
cluster management tools.

• Synchronization with Hive: When you start the Oracle Big Data service, Query
Server automatically refreshes its metadata from the Hive metastore. After the
initial refresh, users can synchronize the Query Server with the latest metadata in
the Hive metastore.

4.4 Specifying the Hive Databases to Synchronize With
Query Server

Before you can synchronize Query Server with the desired Hive databases in the
metastore, you have to specify the list of Hive databases.

Use either of these methods:

• During installation, specify the sync_hive_db_list parameter in the bds-
config.json configuration file.

• After installation, you can update the sync_hive_db_list configuration parameter
in Cloudera Manager or Apache Ambari.

After installing Query Server, it automatically creates schemas and external tables
based on the Hive metastore databases list that you specified. Every subsequent
Query Server restart will perform a delta synchronization.

Chapter 4
Specifying the Hive Databases to Synchronize With Query Server

4-3

4.4.1 Specifying the Hive Databases in the bds-config.json
Configuration File

You can provide the initial list of Hive databases to synchronize with Query Server as
part of the installation process using the bds-config.json configuration file.

In the configuration file, include the sync_hive_db_list configuration parameter
followed by a list of the Hive databases. The following example specifies two Hive
databases for the sync_hive_db_list configuration parameter: htdb0 and htdb1. Only
these two databases will be synchronized with Query Server, even if the Hive
metastore contains other databases.

"edgedb": {
 "node": "<edgenode_host_name>",
 "enabled": "true",
 "sync_hive_db_list": "htdb0,htdb1"
 . . .
 }

To synchronize all Hive databases in the metastore with Query Server, use the "*"
wildcard character as follows:

"edgedb": {
 "node": "EdgeNode_Host_Name",
 "enabled": "true"
 "sync_hive_db_list": "*"
 . . .
 }

If the bds-config.json configuration file does not contain the sync_hive_db_list
configuration parameter, then no synchronization will take place between the Hive
databases and Query Server. In that case, you must specify the Hive databases using
the sync_hive_db_list configuration parameter in Cloudera Manager or Apache
Ambari.

Note:

Query Server is not intended to store internal data in Oracle tables.
Whenever the Query Server is re-started, it is "reset" to its initial and clean
state. This eliminates typical database maintenance such as storage
management, database configuration, and so on. The goal of Query Server
is to provide a SQL front-end for data in Hadoop, Object Store, Kafka, and
NoSQL databases and not a general-purpose RDBMS.

Chapter 4
Specifying the Hive Databases to Synchronize With Query Server

4-4

4.4.2 Updating the Hive Databases With the sync_hive_db_list
Configuration Parameter

You can update the list of the Hive databases to synchronize with Query Server by
using Cloudera Manager.

You can update the list of the Hive databases to synchronize with Query Server by
using the sync_hive_db_list configuration parameter in Cloudera Manager as
follows:

1. Login to Cloudera Manager by using your login credentials.

2. In Cloudera Manager, use the Search field to search for the Synchronized Hive
Databases configuration parameter. Enter /Synchronized Hive Databases (or
enter part of the name until it is displayed in the list) in the Search field, and then
press Enter.

3. Click the Big Data SQL: Synchronized Hive Databases parameter.

4. In the Synchronized Hive Databases text box, enter the names of the Hive
databases separated by commas, such as htdb0,htdb1, and then click Save
Changes. Only these two Hive databases will be synchronized with Query Server.

To synchronize all Hive databases in the metastore with Query Server, enter the
"*" wildcard character in the Synchronized Hive Databases text box, and then
click Save Changes .

4.5 Synchronizing Query Server With Hive
You can synchronize the Query Server with the Hive databases that you specified by
using Cloudera Manager, Apache Ambari, or the dbms_bdsqs.sync_hive_databases
PL/SQL API.

You can synchronize Query Server with the Hive databases in the metastore using
one of the following methods:

• Execute the Restart this Big Data SQL Query Server command in Cloudera
Manager or Apache Ambari.

• Execute the Synchronize Hive Databases command in Cloudera Manager or
Apache Ambari.

• Invoke the dbms_bdsqs.sync_hive_databases PL/SQL API locally on the edge
node.

You must specify the Hive databases to use in the synchronization either by using the
bds-config.json configuration file or by using the sync_hive_db_list configuration
parameter in Cloudera Manager.
Note that the dbms_bdsqs.sync_hive_databases PL/SQL API will only refresh the Hive
table definitions for the Hive databases that have already been synchronized through
the other two methods.

Chapter 4
Synchronizing Query Server With Hive

4-5

4.5.1 Restarting Query Server Manually by Using Cloudera Manager
You can synchronize Query Server with the Hive databases that you specified by
restarting Query Server in Cloudera Manager or Apache Ambari.

You can use Cloudera Manager or Apache Ambari to manage Query Server such as
starting, stopping, and restarting it. When you restart or start Query Server, it
synchronizes the metadata with the Hive databases that you specified. Any changes in
the Hive databases in the metatore such as dropping or adding tables will be reflected
in Query Server. For example, you can restart Query Server in Cloudera Manager as
follows:

You must specify the Hive databases to use in the synchronization either by using the
bds-config.json configuration file or by using the sync_hive_db_list configuration
parameter in Cloudera Manager.

1. Login to Cloudera Manager using your login credentials.

2. In the list of available services, click the Big Data SQL link to display the Big Data
SQL details page.

3. From the Status Summary section, click the Big Data SQL Query Server link to
display the Big Data SQL Query Server details page.

4. From the Actions drop-down list, select Restart this Big Data SQL Query
Server.

A dialog box is displayed. Click Restart this Big Data SQL Query Server.
Another dialog box is displayed to monitor the status of the synchronization job.

4.5.2 Synchronizing Query Server Manually by Using Cloudera
Manager

You can use Cloudera Manager or Apache Ambari to manually synchronize Query
Server with the Hive databases that you specified.

After the sychronization, any changes in the Hive databases in the metastore such as
dropped or added tables will be reflected in Query Server. For example, you can
synchronize Query Server in Cloudera Manager as follows:

1. Login to Cloudera Manager by using your login credentials.

2. In the list of available services, click the Big Data SQL link to display the Big Data
SQL details page.

3. From the Status Summary section, click the Big Data SQL Query Server link to
display the Big Data SQL Query Server details page.

4. From the Actions drop-down list, select Synchronize Hive Databases.

A dialog box is displayed. Click Synchronize Hive Databases. Another dialog box
is displayed to monitor the status of the synchronization job.

You must specify the Hive databases to use in the synchronization either by using the
bds-config.json configuration file or by using the sync_hive_db_list configuration
parameter in Cloudera Manager.

Chapter 4
Synchronizing Query Server With Hive

4-6

4.5.3 Synchronizing Query Server Manually by Using the PL/SQL API
You can synchronize Query Server with the Hive databases that you specified by
using the PL/SQL API.

To do so, invoke the dbms_bdsqs.sync_hive_databases PL/SQL API locally on the
edge node where the Query Server is installed.

The procedure contains no parameters. It synchronizes all of the Hive databases that
are already in Query Server. The API will refresh the Query Server with only the Hive
databases listed in the sync_hive_db_list configuration parameter. Each successive
synchronization (also known as a refresh) will process changes since the last Query
Server metadata refresh.

A synchronization captures any tables that were added or dropped in the Hive
metastore since the last refresh. This also includes any tables whose schemas might
have changed.

4.5.4 Enabling Query Server Full Synchronization
You can specify whether Query Server performs a delta (default) or a full
synchronization.

During the Query Server installation process, the Oracle schemas and the appropriate
external tables are created based on the Hive databases list that you can specify
either in the bds-config.json configuration file or the sync_hive_db_list
configuration parameter. In that case, Query Server performs a full synchronization. By
default, Query Server performs a delta synchronization during subsequent restarts or
synchronizations.

You can control whether Query Server performs a full or a delta synchronization by
using the Enable full synchronization configuration parameter in Cloudera Manager
or Apache Ambari. This configuration parameter is de-selected by default. To enable
Query Server to perform a full synchronization, select this checkbox in Cloudera
Manager or Apache Ambari. For example, you can use Cloudera Manager to enable
Query Server to perform a full synchronization during a restart or a manual
synchronization as follows:

1. Login to Cloudera Manager by using your login credentials.

2. In Cloudera Manager, use the Search field to search for the Enable full
synchronization configuration parameter. Enter / Enable full synchronization
(or enter part of the name until it is displayed in the list) in the Search field, and
then press Enter.

3. Click Big Data SQL: Enable full synchronization. The checkbox is de-selected
by default. This indicates that Query Sever will perform a delta synchronization.

4. To enable full synchronization, select the checkbox, and then click Save
Changes.

A full synchronization drops all of the existing schemas and external tables from Query
Server, and then re-creates new schemas and new external tables based on the Hive
databases list that you specified in the sync_hive_db_list configuration parameter.

By default, Query Server performs a delta synchronization between the Hive
databases in the metastore that you specify and Query Server. Any changes in the

Chapter 4
Synchronizing Query Server With Hive

4-7

Hive databases such as dropping or adding tables will be reflected in Query Server.
However, When you start Query Server for the very first time, it will create Oracle
Schemas based on the Hive databases that you specify either in the bds-
config.json configuration file or in sync_hive_db_list configuration parameter in
Cloudera Manager or Apache Ambari.

The first time the Query Server synchronizes with Hive the process will be slower than
usual. This is because it is importing all of the tables for the specified databases
(configured in Cloudera Manager or Apache Ambari) in the Hadoop cluster.
Subsequent refreshes should be much faster as it would only refresh the changes that
were made to the Hive Metadata such as additions of new tables. During a delta
import, the Query Server will also gather new statistics for tables that have been
added/modified.

4.6 Query Server Restarts and Metadata Persistence
You can refresh the Query Server metadata using Cloudera Manager, Apache Ambari,
or a PL/SQL API.

The following key metadata can be saved so that they can be restored after a Query
Server restart:

• Table statistics
Gathering statistics can be an expensive operation. Table Statistics are gathered
automatically after each metadata synchronization. Subsequent statistics
gathering may be captured using the following PL/SQL package procedure and
parameters:

DBMS_STATS.GATHER_TABLE_STATS (ownname => <schema>,
tabname => <table-name>, estimate_percent =>
dbms_stats.auto_sample_size);

Note:

Make sure you use the estimate_percent=>
dbms_stats.auto_sample_size parameter.

• Hive external tables that use the ORACLE_HIVE access driver.

• HDFS external tables that use the ORACLE_HDFS access driver.

• User-defined views.

4.7 Query Server Security
You can connect to Query Server using the single-user or multi-user modes.

Query Server users connect to a pluggable database called BDSQLUSR. There are
two ways to connect to the database, depending on whether the cluster is secure (by
means of Kerberos) or non-secure.

Chapter 4
Query Server Restarts and Metadata Persistence

4-8

Connecting to the Query Server Database

To query data in the Hadoop cluster, users can connect to the Query Server if it is
installed. During the Big Data SQL installation, the Big Data SQL installer creates and
installs the BDSQLUSR Query Server database on the edge node that you specified. In
addition, the installer also installs everything else that you need on that edge node to
enable you to query data in the Hadoop cluster.

Query Server users can connect to the Query Server database using the single-user
or multi-user modes.

Connecting to Query Server in a Single-User Mode

Query Server supports a single-user model for non-secured Hadoop clusters. With this
model, all users connect to the BDSQLUSR Query Server database as user BDSQL with a
password that the administrator chooses during the Query Server installation.

Queries run on the cluster with the oracle user permissions. This means that the
oracle user must be authorized to access the underlying Hadoop data – either by
using Sentry privileges and/or HDFS authorizations. For example, you can connect to
the Query Server database using SQL*Plus as follows:

sqlplus BDSQL/<bdsql_password>@BDSQLUSR

Note:

Substitute <bdsql_password> in the above command with the actual BDSQL
password that the administrator specified during the Oracle Big Data SQL
installation.

Changing the BDSQL User Password

When installing Oracle Big Data SQL Query Server on a non-secure cluster, you can
change the password of the BDSQL user with ALTER USER as follows:

sqlplus / as sysdba
sql> alter user <user> identified by '<newpassword>' replace
'<currentpassword>';

You can also change the password for the current session only:

su - oracle
sqlplus / as sysdba
sql> alter session set container=bdsqlusr;
sql> alter user bdsql identified by "<new_password>";

Chapter 4
Query Server Security

4-9

Note:

Substitute <new_password> with the new password. The new password must
conform to the required Oracle secure password guidelines. See Choosing a
Secure Password for information about choosing your new password.

Note that on a Kerberos-secured cluster, the user BDSQL is disabled.

Connecting to Query Server in a Multi-User Mode

Query Server supports Kerberos-enabled Hadoop clusters. You use this mode when
there are multiple externally identified user accounts, corresponding to Kerberos
principals. Connected users’ identities (Kerberos principals) will be used for
authorization on the Hadoop cluster when the impersonation_enabled parameter is
set to true in the bds-config.json configuration file. If this parameter is set to false,
then authorization on the Hadoop cluster will be performed as user oracle. Sentry is
used on Cloudera clusters. HDFS authorization is used for Hortonworks clusters.
(Oracle Big Data SQL does not yet make use of Apache Ranger on Hortonworks
HDP.)

Note:

See The Multi-User Authorization Model to learn how to use Hadoop Secure
Impersonation to direct the oracle account to execute tasks on behalf of
other designated users.

Hadoop queries executing on the cluster on behalf of a user will appear to the Hadoop
nodes as the authenticated user and will have the corresponding permissions. The
same is true for Hive queries and for statistics gathering operations. Before you can
connect to Query Server, you must be authenticated with Kerberos using kinit. When
you install or reconfigure Big Data Query Server on a secure cluster, Jaguar collects
all principals from the Key Distribution Center (KDC) running on nodes where Hadoop
DataNodes are also installed. For each principal, an externally identified user will be
created on Big Data SQL Query Server. This install-time behavior is controlled by the
syncPrincipals parameter in the bds-config.json configuration file. This operation
can also be invoked by running the following command (notice that the spelling of the
Jaguar operation is different):

jaguar sync_principals

You can also use the DBMS_BDSQS_ADMIN package which contains procedures to add
and drop Query Server users. These Query Servers users are the same Kerberos
principals that will be accessing your Hadoop cluster.

DBMS_BDSQS_ADMIN.ADD_KERBEROS_PRINCIPALS(principal_list varchar2,
op_semantics varchar2 DEFAULT 'STOP_ON_FIRST_ERROR')

DBMS_BDSQS_ADMIN.DROP_KERBEROS_PRINCIPALS(principal_list varchar2,
op_semantics varchar2 DEFAULT 'STOP_ON_FIRST_ERROR')

Chapter 4
Query Server Security

4-10

https://www.oracle.com/technetwork/database/security/secure-passwords-082531.html
https://www.oracle.com/technetwork/database/security/secure-passwords-082531.html

Note:

Before you can run the procedures in the DBMS_BDSQS_ADMIN package, you
must connect to Oracle Big Data SQL Query Server as user sys using OS
authentication. For example, you can login to SQL*Plus as OS user oracle.
See Oracle Big Data SQL Reference

Users in a multi-user mode can then connect to SQL*Plus without providing a
password as follows:

[user_name@cluster_name ~]$ kinit user_name
Password for user_name@cluster_name.US.ORACLE.COM:
[user_name@cluster_name ~]$ sqlplus /@BDSQLUSR

SQL*Plus: Release 18.0.0.0.0 - Production on Tue Oct 2 13:54:39 2018
Version 18.3.0.0.0

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Last Successful login time: Tue Oct 02 2018 13:54:20 -05:00

Connected to:
Oracle Database 18c Enterprise Edition Release 18.0.0.0.0 - Production
Version 18.3.0.0.0

SQL>

Note:

In the above example, user_name and cluster_name reflects your actual
username and cluster name.

Chapter 4
Query Server Security

4-11

5
Oracle Big Data SQL Reference

Find reference information for Oracle Big Data SQL here:

• CREATE TABLE ACCESS PARAMETERS Clause

• Static Data Dictionary Views for Hive

• DBMS_BDSQL PL/SQL Package

• DBMS_BDSQS_ADMIN PL/SQL Package

• DBMS_HADOOP PL/SQL Package

5.1.1 CREATE TABLE ACCESS PARAMETERS Clause
This section describes the properties that you use when creating an external table that
uses the ORACLE_HDFS or ORACLE_HIVE access drivers. In a CREATE TABLE
ORGANIZATION EXTERNAL statement, specify the parameters in the
opaque_format_spec clause of ACCESS PARAMETERS.

This section contains the following topics:

• Syntax Rules for Specifying Properties

• ORACLE_HDFS Access Parameters

• ORACLE_HIVE Access Parameters

• Full List of Access Parameters for ORACLE_HDFS and ORACLE_HIVE

• ORACLE_BIGDATA Access Parameters

5.1.1.1 Syntax Rules for Specifying Properties
The properties are set using keyword-value pairs in the SQL CREATE TABLE ACCESS
PARAMETERS clause and in the configuration files.

The syntax must obey these rules:

• The format of each keyword-value pair is a keyword, a colon or equal sign, and a
value. The following are valid keyword-value pairs:

keyword=value
keyword:value

The value is everything from the first non-whitespace character after the separator
to the end of the line. Whitespace between the separator and the value is ignored.
Trailing whitespace for the value is retained.

• A property definition can be on one line or multiple lines.

• A line terminator is a line feed, a carriage return, or a carriage return followed by
line feeds.

5-1

• When a property definition spans multiple lines, then precede the line terminators
with a backslash (escape character), except on the last line. In this example, the
value of the Keyword1 property is Value part 1 Value part 2 Value part 3.

Keyword1= Value part 1 \
 Value part 2 \
 Value part 3

• You can create a logical line by stripping each physical line of leading whitespace
and concatenating the lines. The parser extracts the property names and values
from the logical line.

• You can embed special characters in a property name or property value by
preceding a character with a backslash (escape character), indicating the
substitution. Table 5-1 describes the special characters.

Table 5-1 Special Characters in Properties

Escape Sequence Character

\b Backspace (\u0008)

\t Horizontal tab (\u0009)

\n Line feed (\u000a)

\f Form feed (\u000c)

\r Carriage return (\u000d)

\" Double quote (\u0022)

\' Single quote (\u0027)

\\ Backslash (\u005c)

When multiple backslashes are at the end of the line, the parser
continues the value to the next line only for an odd number of
backslashes.

\uxxxx 2-byte, big-endian, Unicode code point.

When a character requires two code points (4 bytes), the parser expects
\u for the second code point.

5.1.1.2 ORACLE_HDFS Access Parameters
The access parameters for the ORACLE_HDFS access driver provide the metadata
needed to locate the data in HDFS and generate a Hive table over it.

5.1.1.2.1 Default Parameter Settings for ORACLE_HDFS
Describes default parameter settings for ORACLE_HDFS.

If you omit all access parameters from the CREATE TABLE statement, then ORACLE_HDFS
uses the following default values:

com.oracle.bigdata.rowformat=DELIMITED
com.oracle.bigdata.fileformat=TEXTFILE
com.oracle.bigdata.overflow={"action":"error"}
com.oracle.bigdata.erroropt={"action":"setnull"}

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-2

5.1.1.2.2 Optional Parameter Settings for ORACLE_HDFS
ORACLE_HDFS supports the following optional com.oracle.bigdata parameters, which
you can specify in the opaque_format_spec clause:

• com.oracle.bigdata.colmap

• com.oracle.bigdata.erroropt

• com.oracle.bigdata.fields

• com.oracle.bigdata.fileformat

• com.oracle.bigdata.log.exec

• com.oracle.bigdata.log.qc

• com.oracle.bigdata.overflow

• com.oracle.bigdata.rowformat

Example 5-1 shows a CREATE TABLE statement in which multiple access parameters
are set.

Example 5-1 Setting Multiple Access Parameters for ORACLE_HDFS

CREATE TABLE ORDER (CUST_NUM VARCHAR2(10),
 ORDER_NUM VARCHAR2(20),
 ORDER_DATE DATE,
 ITEM_CNT NUMBER,
 DESCRIPTION VARCHAR2(100),
 ORDER_TOTAL (NUMBER8,2)) ORGANIZATION EXTERNAL
 (TYPE ORACLE_HDFS
 ACCESS PARAMETERS (
 com.oracle.bigdata.fields: (CUST_NUM, \
 ORDER_NUM, \
 ORDER_DATE, \
 ORDER_LINE_ITEM_COUNT, \
 DESCRIPTION, \
 ORDER_TOTAL)
 com.oracle.bigdata.colMap: {"col":"item_cnt", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"TRUNCATE", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.errorOpt: [{"action":"replace", \
 "value":"INVALID NUM", \
 "col":["CUST_NUM","ORDER_NUM"]} , \
 {"action":"reject", \
 "col":"ORDER_TOTAL}]
)
 LOCATION ("hdfs:/usr/cust/summary/*"));

5.1.1.3 ORACLE_HIVE Access Parameters
ORACLE_HIVE retrieves metadata about external data sources from the Hive catalog.

The default mapping of Hive data to columns in the external table are usually
appropriate. However, some circumstances require special parameter settings, or you
might want to override the default values for reasons of your own.

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-3

5.1.1.3.1 Default Parameter Settings for ORACLE_HIVE
Describes the default parameter settings for ORACLE_HIVE.

If you omit all access parameters from the CREATE TABLE statement, then ORACLE_HIVE
uses the following default values:

com.oracle.bigdata.tablename=name of external table
com.oracle.bigdata.overflow={"action":"error"}
com.oracle.bigdata.erroropt={"action":"setnull"}

5.1.1.3.2 Optional Parameter Values for ORACLE_HIVE
ORACLE_HIVE supports the following optional com.oracle.bigdata parameters, which
you can specify in the opaque_format_spec clause:

• com.oracle.bigdata.colmap

• com.oracle.bigdata.erroropt

• com.oracle.bigdata.log.exec

• com.oracle.bigdata.log.qc

• com.oracle.bigdata.overflow

• com.oracle.bigdata.tablename

Example 5-2 shows a CREATE TABLE statement in which multiple access parameters
are set.

Example 5-2 Setting Multiple Access Parameters for ORACLE_HIVE

CREATE TABLE ORDER (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_date DATE,
 item_cnt NUMBER,
 description VARCHAR2(100),
 order_total (NUMBER8,2)) ORGANIZATION EXTERNAL
(TYPE oracle_hive
 ACCESS PARAMETERS (
 com.oracle.bigdata.tableName: order_db.order_summary
 com.oracle.bigdata.colMap: {"col":"ITEM_CNT", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"ERROR", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.errorOpt: [{"action":"replace", \
 "value":"INV_NUM" , \
 "col":["CUST_NUM","ORDER_NUM"]} ,\
 {"action":"reject", \
 "col":"ORDER_TOTAL}]
));

5.1.1.4 Full List of Access Parameters for ORACLE_HDFS and
ORACLE_HIVE

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-4

5.1.1.4.1 com.oracle.bigdata.buffersize
Sets the buffer size in kilobytes for large record reads. Set this value if you need to
read records that are greater than the default buffer size.

Default Value

1000 KB

Syntax

com.oracle.bigdata.buffersize: n

Example

The following example sets the buffer size to 100 MB:

com.oracle.bigdata.buffersize: 100000

5.1.1.4.2 com.oracle.bigdata.datamode
Specifies the method that SmartScan uses to scan a Hadoop data source. The
method can make a significant difference in performance.

Default Value

automatic

Syntax

A JSON document with the keyword-value pairs shown in the following diagram:

datamode:

com.oracle.bigdata.datamode
=

:

c

java

automatic

Semantics

automatic

Automatically selects the appropriate mode, based on the metadata. It selects c mode
if possible, or java mode if the data contains formats that are not supported by c
mode.

c

Uses Java to read the file buffers, but C code to process the data and convert it to
Oracle format. Specify this mode for delimited data.

If the data contains formats that the C code does not support, then it returns an error.

java

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-5

Uses the Java SerDes and InputFormats to process the data and convert it to Oracle
format. Specify this mode for Parquet, RCFile, and other data formats that require a
SerDe.

5.1.1.4.3 com.oracle.bigdata.colmap
Maps a column in the source data to a column in the Oracle external table. You can
define one or multiple pairs of column mappings. Use this property when the source
field names exceed the maximum length of Oracle column names, or when you want
to use different column names in the external table.

Default Value

A column in the external table with the same name as the Hive column

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

colmap:

com.oracle.bigdata.colmap
=

:

colmap_entry

[colmap_entry

,

]

colmap_entry:

{ "col" : name , "field" : name }

Semantics

"col":name

"col": The keyword must be lowercase and enclosed in quotation marks.

name: The name of a column in the Oracle external table. It is case sensitive and must
be enclosed in quotation marks.

"field":name

"field": The keyword must be lowercase and enclosed in quotation marks.

name: The name of a field in the data source. It is not case sensitive, but it must be
enclosed in quotation marks. See Syntax Rules for Specifying Properties.

Examples

This example maps a Hive column named ORDER_LINE_ITEM_COUNT to an Oracle
column named ITEM_CNT:

com.oracle.bigdata.colMap={"col":"ITEM_CNT", \
 "field":"order_line_item_count"}

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-6

The following example shows the mapping of multiple columns.

com.oracle.bigdata.colmap:[{"col":"KOL1", "field":"PROJECT_NAME"},
{ "col":"KOL2","field":"wsdl_name"},{"col":"KOL3", "field":"method"}]

5.1.1.4.4 com.oracle.bigdata.erroropt
Describes how to handle errors that occur while the value of a column is calculated.

Default Value

{"action":"setnull"}

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

erroropt:

com.oracle.bigdata.erroropt
=

:

error_element

[error_element

,

]

error_element:

{ "action" :

"reject"

"setnull"

"replace" , "value" : string

, "col" :

name

[name

,

]

}

Semantics

The "action", "reject", "setnull", "replace", "value", and "col" keywords must
be lowercase and enclosed in quotation marks. See Syntax Rules for Specifying
Properties.

"action":value

value: One of these keywords:

• "reject": Does not load any rows.

• "setnull": Sets the column to NULL.

• "replace": Sets the column to the specified value.

"value":string

string: Replaces a bad value in the external table. It must be enclosed in quotation
marks.

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-7

"col":name

name: Identifies a column in an external table. The column name is case sensitive,
must be enclosed in quotation marks, and can be listed only once.

Example

This example sets the value of the CUST_NUM or ORDER_NUM columns to INVALID if the
Hive value causes an error. For any other columns, an error just causes the Hive value
to be rejected.

com.oracle.bigdata.errorOpt: {"action":"replace",\
 "value":"INVALID", \
 "col":["CUST_NUM","ORDER_NUM"]

5.1.1.4.5 com.oracle.bigdata.fields
Lists the field names and data types of the data source.

Default Value

Not defined

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

fields:

com.oracle.bigdata.fields
=

:
(field_name data_type

COMMENT col_comment

,

)

data_type:

primitive_type

ARRAY < data_type >

MAP < primitive_type , data_type >

STRUCT < field_name data_type

COMMENT col_comment

,

>

UNIONTYPE < data_type

,

>

primitive_type:

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-8

TINYINT

SMALLINT

INT

BIGINT

BOOLEAN

FLOAT

DOUBLE

STRING

BINARY

TIMESTAMP

DECIMAL

Semantics

The syntax is the same as a field list for a Hive table. If you split the field list across
multiple lines, you must use a backslash to escape the new line characters.

field_name

The name of the Hive field. Use only alphanumeric characters and underscores (_).
The maximum length is 128 characters. Field names are case-insensitive.

data_type

The data type of the Hive field. Optional; the default is STRING. The character set must
be UTF8.

The data type can be complex or primitive:

Hive Complex Data Types

• ARRAY: Indexable list

• MAP: Key-value tuples

• STRUCT: List of elements

• UNIONTYPE: Multiple data types

Hive Primitive Data Types

• INT: 4 byte integer

• BIGINT: 8 byte integer

• SMALLINT: 2 byte integer

• TINYINT: 1 byte integer

• BOOLEAN: TRUE or FALSE

• FLOAT: single precision

• DOUBLE: double precision

• STRING: character sequence

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-9

See Also:

"Data Types" in the Apache Hive Language Manual at

https://cwiki.apache.org/confluence/display/Hive/LanguageManual
+Types

COMMENT col_comment

A string literal enclosed in single quotation marks, which is stored as metadata for the
Hive table (comment property of TBLPROPERTIES).

5.1.1.4.6 com.oracle.bigdata.fileformat
Describes the row format of the data source, based on the ROW FORMAT clause for a
Hive table generated by ORACLE_HDFS.

Default Value

TEXTFILE

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram.

fileformat:

com.oracle.bigdata.fileformat
=

:

SEQUENCEFILE

TEXTFILE

RCFILE

ORC

PARQUET

INPUTFORMAT input_class OUTPUTFORMAT output_class

Semantics

ORC

Optimized row columnar file format

PARQUET

Column-oriented, binary file format

RCFILE

Record columnar file format

SEQUENCEFILE

Compressed file format

TEXTFILE

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-10

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types

Plain text file format

INPUTFORMAT

Identifies a Java class that can extract records from the data file.

OUTPUTFORMAT

Identifies a Java class that can format the output records in the desired format

5.1.1.4.7 com.oracle.bigdata.log.exec
Specifies how the access driver generates log files generated by the C code for a
query, when it is running as parallel processes on CDH.

The access driver does not create or write log files when executing on a Hadoop
cluster node; the parallel query processes write them. The log files from the Java code
are controlled by log4j properties, which are specified in the configuration file or the
access parameters. See "bigdata-log4j.properties".

Default Value

Not defined (no logging)

Syntax

[directory_object:]file_name_template

Semantics

directory_object

The Oracle directory object for the HDFS path on the Hadoop cluster where the log file
is created.

file_name_template

A string used to generate file names. Table 5-1 describes the optional variables that
you can use in the template.

Table 5-2 Variables for com.oracle.bigdata.log.exec

Variable Value

%p Operating system process identifier (PID)

%a A number that uniquely identifies the process.

%% A percent sign (%)

Example

The following example generates log file names that include the PID and a unique
number, such as xtlogp_hive14_3413_57:

com.oracle.bigdata.log.exec= xtlogp_hive14_%p_%a

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-11

5.1.1.4.8 com.oracle.bigdata.log.qc
Specifies how the access driver generates log files for a query.

Default Value

Not defined (no logging)

Syntax

[directory_object:]file_name_template

Semantics

directory_object

Name of an Oracle directory object that points to the path where the log files are
written. If this value is omitted, then the logs are written to the default directory for the
external table.

file_name_template

A string used to generate file names. Table 5-3 describes the optional variables that
you can use in the string.

Table 5-3 Variables for com.oracle.bigdata.log.qc

Variable Value

%p Operating system process identifier (PID)

%% A percent sign (%)

Example

This example creates log file names that include the PID and a percent sign, such as
xtlogp_hive213459_%:

com.oracle.bigdata.log.qc= xtlogp_hive21%p_%%

5.1.1.4.9 com.oracle.bigdata.overflow
Describes how to handle string data that is too long for the columns in the external
table. The data source can be character or binary. For Hive, the data source can also
be STRUCT, UNIONTYPES, MAP, or ARRAY.

Default Value

{"action":"error"}

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

overflow ::=

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-12

com.oracle.bigdata.overflow
=

:

overflow_element

[overflow_element

,

]

overflow_element ::=

{ "action" :

"truncate"

"error"

, "col" :

name

[name

,

]

}

Semantics

The "action", "truncate", "error", and "col" tags must be lowercase and enclosed
in quotation marks. See Syntax Rules for Specifying Properties.

"action":value

The value of "action" can be one of the following keywords:

• truncate: Shortens the data to fit the column.

• error: Throws an error. The com.oracle.bigdata.erroropt property controls the result of
the error.

"col":name

name: Identifies a column in the external table. The name is case sensitive and must be
enclosed in quotation marks.

Example

This example truncates the source data for the DESCRIPTION column, if it exceeds the
column width:

com.oracle.bigdata.overflow={"action":"truncate", \
 "col":"DESCRIPTION"}

5.1.1.4.10 com.oracle.bigdata.rowformat
Provides the information the access driver needs to extract fields from the records in a
file.

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-13

Important:

The com.oracle.bigdata.rowformat is unrelated to the access parameter
syntax of traditional external tables that use "type ORACLE_LOADER."
There are keywords such as FIELDS, TERMINATED, and others that appear in
both clauses, but the commonality in naming is coincidental and does not
imply common functionality. The com.oracle.bigdata.rowformat access
parameter is passed without change to the default Hive serde. The Hive
serde to extract columns from rows is deliberately limited. Complex cases
are handled by specialized serdes.

Default Value

DELIMITED

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram.

rowformat:

DELIMITED

FIELDS TERMINATED BY char

ESCAPED BY char

COLLECTION ITEMS TERMINATED BY char

MAP KEYS TERMINATED BY char

LINES TERMINATED BY char

NULL DEFINED AS char

SERDE serde_name

WITH SERDEPROPERTIES (prop_list)

Semantics

DELIMITED

Describes the characters used to delimit the fields in a record:

• FIELDS TERMINATED BY: The character that delimits every field in the record. The
optional ESCAPED BY character precedes the delimit character when it appears
within a field value.

• COLLECTION ITEMS TERMINATED BY: The character that marks the end of an array
element. Used when a column is a collection or a nested record. In this case the
resulting value will be a JSON array.

• MAP KEYS TERMINATED BY: The character that marks the end of an entry in a MAP
field. Used when a column is a collection or a nested record. The resulting value is
a JSON object.

• LINES TERMINATED BY: The character that marks the end of a record.

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-14

• NULL DEFINED AS: The character that indicates a null value.

SERDE

Identifies a SerDe that can parse the data and any properties of the SerDe that the
access driver might need.

Example

This example specifies a SerDe for an Avro container file:

com.oracle.bigdata.rowformat:
 SERDE'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

The next example specifies a SerDe for a file containing regular expressions:

com.oracle.bigdata.rowformat=\
 SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' \
 WITH SERDEPROPERTIES \
 ("input.regex" = "(\\\\d{6}) (\\\\d{5}) (.{29}) .*")

5.1.1.4.11 com.oracle.bigdata.tablename
The Hive parameter com.oracle.bigdata.tablename identifies the Hive table that
contains the source data.

Default Value

DEFAULT.external_table_name

Syntax

[hive_database_name.]table_name

Semantics

The maximum length of hive_database_name and table_name is 128 UTF-8
characters (512 bytes).

hive_database_name: The Hive database where the source data resides. DEFAULT is
the name of the initial Hive database.

table_name: The Hive table with the data. If you omit table_name, then ORACLE_HIVE
searches for a Hive table with the same name as the external table. Table names are
case-insensitive.

Example

This setting indicates that the source data is in a table named ORDER_SUMMARY in the
Hive ORDER_DB database:

com.oracle.bigdata.tablename ORDER_DB.ORDER_SUMMARY

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-15

5.1.1.5 ORACLE_BIGDATA Access Parameters
There is a set of access parameters that are common to all file formats. There are also
parameters that are unique to a specific file format.

Note:

In Oracle Big Data SQL 4.0, ORACLE_BIGDATA supports the return of scalar
fields from Parquet files. More complex data types are not supported at this
time.

The following parameters are common to all file formats accessed through
ORACLE_BIGDATA.

Table 5-4 Common Access Parameters

Common Access
Parameter

Description

com.oracle.bigdata.cr
edential

Specifies the credential object to use when accessing data files in an
object store.

This access parameter is required for object store access only. It is not
needed for access to files through a directory object.

The name specified for the credential must be the name of a credential
object in the same schema as the owner of the table. Granting a user
SELECT or READ access to this table means that credential will be
used to access the table.

Use DBMS_CREDENTIAL.CREATE_CREDENTIAL in the
DBMS_CREDENTIAL PL/SQL package to create the credential object:

exec dbms_credential.create_credential(credential_name
=> '"MY_CRED"',username =>’<username>', password =>
'<password>');

In the CREATE TABLE statement, set the value of the credential
parameter to the name of the credential object.

com.oracle.bigdata.credential=MY_CRED

com.oracle.bigdata.fil
eformat

Specifies the format of the file. The value of this parameter identifies the
reader that will process the file. Each reader can support additional
access parameters that may or may not be supported by other readers.
Valid values: PARQUET, TEXTFILE,AVRO

Default: PARQUET

com.oracle.bigdata.lo
g.opt

Specifies whether log messages should be written to a log file. When
none is specified, then no logfile is created. If the value is normal, then
log file is created when the file reader decides to write a message. It is
up to the file reader to decide what is written to the log file.
Valid values: normal, none.

Default: none.

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-16

Table 5-4 (Cont.) Common Access Parameters

Common Access
Parameter

Description

com.oracle.bigdata.lo
g.qc

Specifies the name of the log file created by the parallel query
coordinator. This parameter is used only when
com.oracle.bigdata.log.opt is set to normal. The valid values are
the same as specified for com.oracle.bigdata.log.qc in
ORACLE_HIVE and ORACLE_HDFS.

com.oracle.bigdata.lo
g.exec

Specifies the name of the log file created during query execution. This
value is used (and is required) only when
com.oracle.bigdata.log.opt is set to normal. The valid values are
the same as specified for com.oracle.bigdata.log.exec in
ORACLE_HIVE and ORACLE_HDFS.
Valid values: normal, none.

Default: none.

Table 5-5 Parquet-Specific Access Parameters

Parquet-Specific Access Parameter Description

com.oracle.bigdata.prq.egranminfsize This value is the number of megabytes in a
granule for a Parquet file. This number is used
to split a large Parquet file into granules, each
of which can be processed in parallel.
Normally, a user would not need to specify this
parameter.
Valid values: 2048 to 9999999999

Default: 2048

The text file format is similar to the hive text file format. It reads text data from
delimited files. By default, it assumes the records are terminated by a newline and the
fields in the file are separated by commas. Also, by default, it assumes the order of the
fields in the file match the order of the columns in the external table.

Table 5-6 Text-Specific Access Parameters

Textfile-Specific Access Parameter Description

com.oracle.bigdata.buffersize Specifies the size of the I/O buffer used for
reading the file. The value is the size of the
buffer in kilobytes. Note that the buffer size is
also the largest size that a record can be. If a
format reader encounters a record larger than
this value, it will return an error.
Default: 1024

Chapter 5
CREATE TABLE ACCESS PARAMETERS Clause

5-17

Table 5-6 (Cont.) Text-Specific Access Parameters

Textfile-Specific Access Parameter Description

com.oracle.bigdata.compressiontype Specifies the type of compression used for a
data file on an object store. If this parameter is
specified than the code tries to decompress
the data on the object store according to the
compression scheme specified.
Valid values: gzip,bzip2 , zlip, detect

Default: detect

If detect is specified, the format reader tries
to determine which if the supported
compression methods was used to compress
the file.

com.oracle.bigdata.fields Specifies the order of fields in the data file.
The values is the same as for
com.oracle.bigdata.fields in
ORACLE_HDFS with one exception – in this
case, the data type is optional. Because the
data file is text, the text file reader ignores the
data types for the fields and assumes all fields
are text. Since the data type is optional, this
parameter can be a list of field names.

com.oracle.bigdata.csv.rowformat.lines.termin
ator

Specifies the character used to indicate the
end of a record.
The character value must be wrapped in
single-quotes, as in ‘\n’

Default: newline character

com.oracle.bigdata.csv.rowformat.nulldefineda
s

Specifies the character used to indicate the
value of a field is NULL. If the parameter is not
specified, then there is no value.

com.oracle.bigdata.csv.rowformat.fields.termin
ator

Specifies the character used to separate the
field values. The character value must be
wrapped in single-quotes, as in ‘|’
Default: ‘,’

com.oracle.bigdata.csv.rowformat.fields.escap
edby

Specifies the character used to escape any
embedded field terminators or line terminators
in the value for fields. The character value
must be wrapped in single-quotes, as in ‘\’.

5.1.2 Static Data Dictionary Views for Hive
The Oracle Database catalog contains several static data dictionary views for Hive
tables. You can query these data dictionary views to discover information about the
Hive tables that you can access.

For you to access any Hive databases from Oracle Database, you must have read
privileges on the ORACLE_BIGDATA_CONFIG directory object.

• ALL_HIVE_DATABASES

• ALL_HIVE_TABLES

• ALL_HIVE_COLUMNS

Chapter 5
Static Data Dictionary Views for Hive

5-18

• DBA_HIVE_DATABASES

• DBA_HIVE_TABLES

• DBA_HIVE_COLUMNS

• USER_HIVE_DATABASES

• USER_HIVE_TABLES

• USER_HIVE_COLUMNS

5.1.2.1 ALL_HIVE_DATABASES
ALL_HIVE_DATABASES describes all databases in the Hive metastore accessible to the
current user.

Related Views

• DBA_HIVE_DATABASES describes all the databases in the Hive metastore.

• USER_HIVE_DATABASES describes the databases in the Hive metastore owned by
the current user.

Column Datatype NULL Description

CLUSTER_ID VARCHAR2(4000) NOT NULL Hadoop cluster where the Hive
metastore is located

DATABASE_NAME VARCHAR2(4000) NOT NULL Hive database name

DESCRIPTION VARCHAR2(4000) Hive database description

DB_LOCATION VARCHAR2(4000) NOT NULL

HIVE_URI VARCHAR2(4000) Hive database URI

See Also:

• "DBA_HIVE_DATABASES"

• "USER_HIVE_DATABASES"

5.1.2.2 ALL_HIVE_TABLES
ALL_HIVE_TABLES describes all tables in the Hive metastore accessible to the current
user.

The Oracle Big Data SQL configuration must identify the default Hive database for the
current user. The current user must also have READ privileges on the
ORA_BIGSQL_CONFIG database directory. See "About the bigdata_config Directory".

Related Views

• DBA_HIVE_TABLES describes all tables in the Hive metastore.

• USER_HIVE_TABLES describes the tables in the database owned by the current user
in the Hive metastore.

Chapter 5
Static Data Dictionary Views for Hive

5-19

Column Datatype NULL Description

CLUSTER_ID VARCHAR2(4000) NOT NULL Hadoop cluster where the Hive metastore
is located

DATABASE_NAME VARCHAR2(4000) NOT NULL Name of the Hive database

TABLE_NAME VARCHAR2(4000) NOT NULL Name of the Hive table

LOCATION VARCHAR2(4000)

NO_OF_COLS NUMBER Number of columns in the Hive table

CREATION_TIME DATE Time when the table was created

LAST_ACCESSED_TIME DATE Time of most recent access

OWNER VARCHAR2(4000) Owner of the Hive table

TABLE_TYPE VARCHAR2(4000) NOT NULL Type of Hive table, such as external or
managed

PARTITIONED VARCHAR2(4000) Whether the table is partitioned (YES) or
not (NO)

NO_OF_PART_KEYS NUMBER Number of partitions

INPUT_FORMAT VARCHAR2(4000) Input format

OUTPUT_FORMAT VARCHAR2(4000) Output format

SERIALIZATION VARCHAR2(4000) SerDe serialization information

COMPRESSED NUMBER Whether the table is compressed (YES) or
not (NO)

HIVE_URI VARCHAR2(4000) Hive database URI

See Also:

• "DBA_HIVE_TABLES"

• "USER_HIVE_TABLES"

5.1.2.3 ALL_HIVE_COLUMNS
ALL_HIVE_COLUMNS describes the columns of all Hive tables accessible to the current
user.

The Oracle Big Data SQL configuration must identify the default Hive database for the
current user. The current user must also have READ privileges on the
ORA_BIGSQL_CONFIG database directory. See "About the bigdata_config Directory".

Related Views

• DBA_HIVE_COLUMNS describes the columns of all tables in the Hive metastore.

• USER_HIVE_COLUMNS describes the columns of the tables in the Hive database
owned by the current user.

Chapter 5
Static Data Dictionary Views for Hive

5-20

Column Datatype NULL Description

CLUSTER_ID VARCHAR2(4000) NOT NULL Hadoop cluster where the Hive metastore
is located

DATABASE_NAME VARCHAR2(4000) NOT NULL Name of the Hive database; if blank, then
the default database

TABLE_NAME VARCHAR2(4000) NOT NULL Name of the Hive table

COLUMN_NAME VARCHAR2(4000) NOT NULL Name of the Hive column

HIVE_COLUMN_TYPE VARCHAR2(4000) NOT NULL Data type of the Hive column

ORACLE_COLUMN_TYPE VARCHAR2(4000) NOT NULL Oracle data type equivalent to Hive data
type

LOCATION VARCHAR2(4000)

OWNER VARCHAR2(4000) Owner of the Hive table

CREATION_TIME DATE Time when the table was created

HIVE_URI VARCHAR2(4000) Hive database URI

See Also:

• "DBA_HIVE_COLUMNS"

• "USER_HIVE_COLUMNS"

5.1.2.4 DBA_HIVE_DATABASES
DBA_HIVE_DATABASES describes all the databases in the Hive metastore. Its columns
are the same as those in ALL_HIVE_DATABASES.

See Also:

"ALL_HIVE_DATABASES"

5.1.2.5 DBA_HIVE_TABLES
DBA_HIVE_TABLES describes all tables in the Hive metastore. Its columns are the same
as those in ALL_HIVE_TABLES.

The Oracle Big Data SQL configuration must identify the default Hive database for the
current user. See "About the bigdata_config Directory".

See Also:

"ALL_HIVE_TABLES"

Chapter 5
Static Data Dictionary Views for Hive

5-21

5.1.2.6 DBA_HIVE_COLUMNS
DBA_HIVE_COLUMNS describes the columns of all tables in the Hive metastore. Its
columns are the same as those in ALL_HIVE_COLUMNS.

See Also:

"ALL_HIVE_COLUMNS"

5.1.2.7 USER_HIVE_DATABASES
USER_HIVE_DATABASES describes the databases in the Hive metastore owned by the
current user. Its columns (except for OWNER) are the same as those in
ALL_HIVE_DATABASES.

See Also:

"ALL_HIVE_DATABASES"

5.1.2.8 USER_HIVE_TABLES
USER_HIVE_TABLES describes the tables in the database owned by the current user in
the Hive metastore. Its columns (except for OWNER) are the same as those in
ALL_HIVE_TABLES.

The Oracle Big Data SQL configuration must identify the default Hive database for the
current user. The current user must also have READ privileges on the
ORA_BIGSQL_CONFIG database directory. See "About the bigdata_config Directory".

See Also:

"ALL_HIVE_TABLES"

5.1.2.9 USER_HIVE_COLUMNS
USER_HIVE_COLUMNS describes the columns of the tables in the Hive database owned
by the current user. Its columns (except for OWNER) are the same as those in
ALL_HIVE_COLUMNS.

The Oracle Big Data SQL configuration must identify the default Hive database for the
current user. The current user must also have READ privileges on the
ORA_BIGSQL_CONFIG database directory. See "About the bigdata_config Directory".

Chapter 5
Static Data Dictionary Views for Hive

5-22

See Also:

"ALL_HIVE_COLUMNS"

5.1.3 DBMS_BDSQL PL/SQL Package
The DBMS_BDSQL PL/SQL package contains procedures to add and remove a user
map.

This appendix contains the following sections:

• ADD_USER_MAP

• REMOVE_USER_MAP

• Multi-User Authorization Security Table

In previous releases of Oracle Big Data SQL, all queries against Hadoop and Hive
data are executed as the oracle user and there is no option to change users. Although
oracle is still the underlying user in all cases, you can now use Multi-User
Authorization (based on Hadoop Secure Impersonation) to direct the oracle account to
execute tasks on behalf of other designated users. This enables HDFS data access
based on the user that is currently executing the query, rather than the singular oracle
user.

The DBMS_BDSQL package enables you to provide rules for identifying the currently
connected user and to map the connected user to the user that is impersonated.
Because there are numerous ways in which users can connect to Oracle Database,
this user may be a database user, a user sourced from LDAP, from Kerberos, and so
forth. Authorization rules on the files apply for that user and audits will reflect that user
as well.

Note:

Grant the new BDSQL_ADMIN role to designated administrators in order to
allow them to invoke these procedures.

5.1.3.1 ADD_USER_MAP
Use the ADD_USER_MAP procedure to specify the rules for identifying the actual user
who is running the query.

At query execution time, the database performs a lookup on the BDSQL_USER_MAP
table to determine the current database user (current_database_user). It then uses
the syscontext_namespace and syscontext_parm_hadoop_user parameters to identify
the actual user.

Syntax

procedure ADD_USER_MAP (
 cluster_name IN VARCHAR2 DEFAULT '[DEFAULT]',
 current_database_user IN VARCHAR2 NOT NULL,

Chapter 5
DBMS_BDSQL PL/SQL Package

5-23

 syscontext_namespace IN VARCHAR2 DEFAULT NULL,
 syscontext_parm_hadoop_user IN VARCHAR2 NOT NULL
);

Table 5-7 ADD_USER_MAP Parameters

Parameter Description

cluster_name The name of the Hadoop cluster where the
map will be applied. [DEFAULT] as cluster
name designates the default cluster.

current_database_user The current effective database user. This is
what Oracle uses to check for authority. A
value of '*' indicates that this row to be used if
no other rows fit the criteria. There is no
default and the value may not be NULL.

syscontext_namespace Note that for the Oracle USERENV namespace,
the only allowed values are GLOBAL_UID,
CLIENT_IDENTIFIER, and
AUTHENTICATED_IDENTITY.
 If your Oracle Database installation uses
Kerberos credentials, SSL, Active Directory, or
LDAP for authentication, it is likely that your
Hadoop system uses the same authentication
framework. In that case,
AUTHENTICATED_IDENTITY must be
specified. This identifier only includes the
username. The domain segment of the
credential is truncated, as is the cluster name
if included. For example, the username
dirkrb will be used for authorization on the
Hadoop cluster as the authenticated identity of
dirkrb@HQ.TEST1.DBSEC2008.COM.

syscontext_parm_hadoop_user The Hadoop user that will impersonate the
current database user.

Chapter 5
DBMS_BDSQL PL/SQL Package

5-24

Note:

The values for current_database_user and syscontext_parm_hadoop_user
can be the single asterisk character (*) or any string that meets the
requirements of Oracle simple_sql_name assertion:

• The name must begin with an alphabetic character. It may contain
alphanumeric characters as well as the characters _, $, and # in the
second and subsequent character positions.

• Quoted SQL names are also allowed.

• Quoted names must be enclosed in double quotes.

• Quoted names allow any characters between the quotes.

• Quotes inside the name are represented by two quote characters in a
row, for example, "a name with "" inside" is a valid quoted name.

• The input parameter may have any number of leading and/or trailing
white space characters.

5.1.3.2 REMOVE_USER_MAP
Use REMOVE_USER_MAP to remove a row from BDSQL_USER_MAP table. This
disassociates a specific Oracle Database user from specific Hadoop user.

Syntax

procedure REMOVE_USER_MAP (
 cluster_name IN VARCHAR2 DEFAULT '[DEFAULT]',
 current_database_user IN VARCHAR2 NOT NULL
);

See Also:

The reference page for ADD_USER_MAP describes the cluster_name and
current_database_user parameters.

5.1.3.3 Multi-User Authorization Security Table
SYS.BDSQL_USER_MAP is the multi-user authorization security table.

Use the procedures ADD_USER_MAP and REMOVE_USER_MAP to update this table.

The primary key is (cluster_name, current_database_user).

Table 5-8 SYS.BDSQL_USER_MAP

Column Datatype Description

cluster_name varchar2 Name of the Hadoop cluster. The default is [DEFAULT].

Chapter 5
DBMS_BDSQL PL/SQL Package

5-25

Table 5-8 (Cont.) SYS.BDSQL_USER_MAP

Column Datatype Description

current_datab
ase_user

varchar2 The current effective database user (no default, not NULL).
Oracle uses this column to check for the authorization rule that
corresponds to the given Oracle Database user. A value of '*' in
a row is a directive to use this row if no other rows fit the criteria.

syscontext_na
mespace

varchar2 This is the optional specification for the Oracle SYS_CONTEXT
namespace. if customer security is set up. Note that for the
Oracle USERENV namespace, the only allowed values are:
‘GLOBAL_UID’,‘CLIENT_IDENTIFIER’,
‘AUTHENTICATED_IDENTITY’.

syscontext_pa
rm_hadoop_use
r

varchar2 This column value has alternate interpretations.
• If syscontext_namespace has a value,

thensyscontext_parm_hadoop_user refers to the
parameter that is specific to syscontext_namespace.

However, when the value is '*' , this is a directive to use the
value of current_database_user for impersonation. The
syscontext_namespace column must be NULL in this
case.

• If syscontext_namespace is NULL, then
syscontext_parm_hadoop_user contains the Hadoop
user who is impersonated prior to HDFS files access.

Here a customer is using Active Directory, Kerberos, SSL, or LDAP for logon
authentication against the database. AUTHENTICATED_IDENTITY is specified in this case
because customer uses the same Active Directory framework for Hadoop user
management.

The example below is similar to running the following SQL query for the currently
connected user:

select sys_context('USERENV', 'AUTHENTICATED_IDENTITY') from dual;

In this example, only the username (without the “@<domain>” segment) is used for
authorization on the Hadoop cluster. There may also be cases where the format of
AUTHENTICATED_IDENTITY is <username>/<cluster>@<domain_name>.

cluster_name current_database_u
ser

syscontext_namesp
ace

syscontext_parm_ha
doop_user

[DEFAULT] * USERENV AUTHENTICATED_ID
ENTITY

In this example, “HRAPP” is an HR Application that always connects to the database
using the HRAPP database user and then programmatically sets the application user
through the DBMS_SESSION.SET_IDENTIFIER procedure. There are number of
“lightweight” users who are designated with CLIENT_IDENTIFIER (as in
sys_context('USERENV', 'CLIENT_IDENTIFIER') [DEFAULT] * USERENV
GLOBAL_UID, which is similar to running select sys_context('USERENV',
'CLIENT_IDENTIFIER') from dual;) .

Chapter 5
DBMS_BDSQL PL/SQL Package

5-26

The current database has other effective users who are enterprise users with logons
managed by Oracle Internet Directory for Enterprise User Security. In these cases, the
GLOBAL_UID is used for Hadoop impersonation.

cluster_name current_database_u
ser

syscontext_namesp
ace

syscontext_parm_ha
doop_user

[DEFAULT] HRAPP USERENV CLIENT_IDENTIFIER

[DEFAULT] * USERENV GLOBAL_UID

In this example, BIAPP is a business intelligence application whose own context is its
username. For customers using the application, their designated ID is used for
Hadoop access. In other words, when the effective current user is 'BIAPP', we use
sys_context('BIVPD','USERID') for the impersonation. For the rest of the users, we
simply designate [DEFAULT] * * in order use their current database username for the
impersonation.

cluster_name current_database_u
ser

syscontext_namesp
ace

syscontext_parm_ha
doop_user

[DEFAULT] BIAPP BIVPD USERID

[DEFAULT] * *

In this example, the Oracle username SCOTT is impersonated by the hdpusr1 Hadoop
user for HDFS access. The user ADAM is impersonated by hdpusr2 for HDFS access.

All other users have more limited access, so we use a syscontext_namespace value of
'lowprivuser” to designate these users.

cluster_name current_database_u
ser

syscontext_namesp
ace

syscontext_parm_ha
doop_user

hadoop_cl_1 SCOTT hdpusr1

hadoop_cl_1 ADAM lowprivuser hdpusr2

hadoop_cl_1 *

5.1.4 DBMS_BDSQS_ADMIN PL/SQL Package
This package contains DBMS_BDSQS_ADMIN.ADD_KERBEROS_PRINCIPALS and
DBMS_BDSQS_ADMIN.DROP_KERBEROS_PRINCIPALS.

These procedures add and drop Query Server users. Query Server users are selected
from the same set of Kerberos principals that have access to the Hadoop cluster.

Errors in the procedure are logged to bdsqs_kerberos_errors$.

Syntax

DBMS_BDSQS_ADMIN.ADD_KERBEROS_PRINCIPALS(principal_list varchar2, op_semantics
 varchar2 DEFAULT 'STOP_ON_FIRST_ERROR')

DBMS_BDSQS_ADMIN.DROP_KERBEROS_PRINCIPALS(principal_list varchar2, op_semantics
 varchar2 DEFAULT 'STOP_ON_FIRST_ERROR')

Chapter 5
DBMS_BDSQS_ADMIN PL/SQL Package

5-27

Table 5-9 Parameters for ADD_KERBEROS_PRINCIPALS and
DROP_KERBEROS_PRINCIPALS

Parameter Description

principal_list The name(s) of the Query Server users that you want add or drop.
These Query Servers users are the same Kerberos principals that
will be accessing your Hadoop cluster. To specify several Kerberos
principals, you can provide a comma-separated list of strings of the
principals enclosed in one single quotes.

op_semantics For the ADD_KERBEROS_PRINCIPALS procedure, the operation
semantics (os) parameter can be one of the following options. All
failed additions can be reviewed in the sys.bdsqs_kerberos_errors$
log table.

• ABSORB_ERRORS: This option will process the successful
additions and continue processing after additions that raise
errors.

• STOP_ON_FIRST_ERROR: This is the default value. This
option will process the successful additions and will stop
processing when the first error is raised. It will not revert any
completed additions prior to the exception. The failed addition
exception is raised to the user.

• UNDO_CHANGES: This option will attempt to rollback (revert)
any changes that had been made as part of the processing. For
example, it will delete all the principals that were added
successfully prior to the exception. The failed exception is raised
to the user. .

For the DROP_KERBEROS_PRINCIPALS procedure, the operation
semantics (os) parameter can be one of the following options. All
failed drops can be reviewed in the sys.bdsqs_kerberos_errors$ log
table.

• – ABSORB_ERRORS: This option will process the successful
drops and continue processing after drops that raise errors.

– STOP_ON_FIRST_ERROR: This is the default value. This
option will process the successful drops and will stop
processing when the first error is raised. It will not revert
any completed drops prior to the exception. The failed drop
exception is raised to the user.

Usage Notes

The schema for bdsqs_kerberos_errors$ is:

 CREATE TABLE sys.bdsqs_kerberos_errors$
 (kerberos_principal VARCHAR2(4000), /* principal name */
 operation VARCHAR2(4), /* ADD, DROP or SYNC*/
 error_code NUMBER, /* Error num emmited during operation */
 error_message VARCHAR2(4000), /* Emitted error message */
 additional_info VARCHAR2(4000) /* Not used yet */
);

The bdsqs_kerberos_errors$ log table will contain the exception logs for the following
situations:

1. When you invoke the add_kerberos_principals or the drop_kerberos_principals
procedures.

Chapter 5
DBMS_BDSQS_ADMIN PL/SQL Package

5-28

2. When you run the jaguar install command on a secure cluster with the
sync_principals parameter set to true in the kerberos section in the bds-config.json
(operation SYNC).

3. When you run the jaguar sync_principals (operation SYNC).

The bdsqs_kerberos_errors$ log table is cleared before invoking any of the above
commands. Querying bdsqs_kerberos_errors$ after a successful invocation of the
procedures should return no results.

These are the fields in a bdsqs_kerberos_errors$ record and the possible values for
field.

bdsqs_kerberos_errors$ Record Field Possible Values

OPERATION ADD, DROP, SYNC or UNDO

ERROR_CODE Numeric code (SQLCODE) of the raised
exception

ERROR_MESSAGE Error message (SQLERRM) of the raised
exception

ADDITIONAL_INFO Additional information pertinent to the raised
exception. Currently not used.

Examples

The following example creates two database users identified externally by the
Kerberos principals: princ1@REALM.COM and princ2@REALM.COM. The default
STOP_ON_FIRST_ERROR parameter is used.

exec dbms_bdsqs_admin.add_kerberos_principals('princ1@REALM.COM,
 princ2@REALM.COM');

The following example creates two database users for the valid princ3@REALM.COM
and princ4@REALM.COM Kerberos principals; however, since princ4 is not a valid
Kerberos principal, it raises an exception, and adds the error log to the
sys.bdsqs_kerberos_errors$ table.

exec dbms_bdsqs_admin.add_kerberos_principals('princ3@REALM.COM, princ4,
princ4@REALM.COM','ABSORB_ERRORS');

The following example creates a database user for princ5@REALM.COM, and it
raises an exception since princ6 is not a valid Kerberos principal name. It also adds
the error log to the sys.bdsqs_kerberos_errors$ table.

exec dbms_bdsqs_admin.add_kerberos_principals('princ5@REALM.COM,
 princ6','STOP_ON_FIRST_ERROR');

The following example does not create any database users because princ8 is not a
valid Kerberos principal name and because the UNDO_CHANGES parameter is used.
Initially, the procedure creates a database user for princ7@REALM.COM; however, it
identifies princ8 as an invalid Kerberos principal name. Since the UNDO_CHANGES
parameter is used, the procedure removes the database user it created for

Chapter 5
DBMS_BDSQS_ADMIN PL/SQL Package

5-29

princ7@REALM.COM, raises an exception, and adds the error log to the
sys.bdsqs_kerberos_errors$ table.

exec dbms_bdsqs_admin.add_kerberos_principals('princ7@REALM.COM,
princ8','UNDO_CHANGES');

5.1.5 DBMS_HADOOP PL/SQL Package
The DBMS_HADOOP package contains a function to generate the CREATE EXTERNAL
TABLE DDL for a Hive table:

• CREATE_EXTDDL_FOR_HIVE

5.1.5.1 CREATE_EXTDDL_FOR_HIVE
This function returns a SQL CREATE TABLE ORGANIZATION EXTERNAL statement for a
Hive table. It uses the ORACLE_HIVE access driver.

Syntax

DBMS_HADOOP.CREATE_EXTDDL_FOR_HIVE (
 cluster_id IN VARCHAR2,
 db_name IN VARCHAR2 := NULL,
 hive_table_name IN VARCHAR2,
 hive_partition IN BOOLEAN,
 table_name IN VARCHAR2 := NULL,
 perform_ddl IN BOOLEAN DEFAULT FALSE,
 text_of_ddl OUT VARCHAR2
);

Parameters

Table 5-10 CREATE_EXTDDL_FOR_HIVE Function Parameters

Parameter Description

cluster_id Hadoop cluster where the Hive metastore is located

db_name Name of the Hive database

hive_table_name Name of the Hive table

hive_partition Whether the table is partitioned (TRUE) or not (FALSE)

table_name Name of the Oracle external table to be created. It cannot
already exist.

perform_ddl Whether to execute the generated CREATE TABLE statement
(TRUE) or just return the text of the command (FALSE).

Do not execute the command automatically if you want to review
or modify it.

text_of_ddl The generated CREATE TABLE ORGANIZATION EXTERNAL
statement.

Chapter 5
DBMS_HADOOP PL/SQL Package

5-30

Usage Notes

The Oracle Database system must be configured for Oracle Big Data SQL. See "About
Oracle Big Data SQL on the Database Server (Oracle Exadata Machine or Other)".

The data type conversions are based on the default mappings between Hive data
types and Oracle data types. See "Hive to Oracle Data Type Conversions".

5.1.5.1.1 Example
The following query returns the CREATE EXTERNAL TABLE DDL for my_hive_table from
the default Hive database. The connection to Hive is established using the
configuration files in the ORACLE_BIGDATA_CONFIG directory, which identify the location
of the HADOOP1 cluster.

DECLARE
 DDLtxt VARCHAR2(4000);
BEGIN
 dbms_hadoop.create_extddl_for_hive(
 CLUSTER_ID=>'hadoop1',
 DB_NAME=>'default',
 HIVE_TABLE_NAME=>'my_hive_table',
 HIVE_PARTITION=>FALSE,
 TABLE_NAME=>'my_xt_oracle',
 PERFORM_DDL=>FALSE,
 TEXT_OF_DDL=>DDLtxt
);
 dbms_output.put_line(DDLtxt);
END;
/

The query returns the text of the following SQL command:

CREATE TABLE my_xt_oracle
(
 c0 VARCHAR2(4000),
 c1 VARCHAR2(4000),
 c2 VARCHAR2(4000),
 c3 VARCHAR2(4000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (
 com.oracle.bigdata.cluster=hadoop1
 com.oracle.bigdata.tablename=default.my_hive_table
)
)
PARALLEL 2 REJECT LIMIT UNLIMITED

Chapter 5
DBMS_HADOOP PL/SQL Package

5-31

Appendices

This appendix includes appendices relevant for Oracle Big Data SQL.

• Manual Steps for Using Copy to Hadoop for Staged Copies

• Using Copy to Hadoop With Direct Copy

• Using mtactl to Manage the MTA extproc

• Diagnostic Tips and Details

• Change History for Previous Releases

• Oracle Big Data SQL Software Accessibility Recommendations

A
Manual Steps for Using Copy to Hadoop
for Staged Copies

To manually copy data from Oracle Database to Hadoop using Copy to Hadoop, take
the following steps:

1. On the Oracle Database server, connect to Oracle Database and generate Data
Pump format files containing the table data and metadata.

See "Generating the Data Pump Files".

2. Copy the files to HDFS on the Hadoop cluster.

See "Copying the Files to HDFS".

3. Connect to Apache Hive and create an external table from the files.

See "Creating a Hive Table".

4. Query this Hive table the same as you would any other Hive table.

A.1 Generating the Data Pump Files
The SQL CREATE TABLE statement has a clause specifically for creating external
tables, in which you specify the ORACLE_DATAPUMP access driver. The information that
you provide in this clause enables the access driver to generate a Data Pump format
file that contains the data and metadata from the Oracle database table.

This section contains the following topics:

• About Data Pump Format Files

• Identifying the Target Directory

• About the CREATE TABLE Syntax

A.1.1 About Data Pump Format Files
Data Pump files are typically used to move data and metadata from one database to
another. Copy to Hadoop uses this file format to copy data from an Oracle database to
HDFS.

To generate Data Pump format files, you create an external table from an existing
Oracle table. An external table in Oracle Database is an object that identifies and
describes the location of data outside of a database. External tables use access
drivers to parse and format the data. For Copy to Hadoop, you use the
ORACLE_DATAPUMP access driver. It copies the data and metadata from internal Oracle
tables and populates the Data Pump format files of the external table.

A-1

A.1.2 Identifying the Target Directory
You must have read and write access to a database directory in Oracle Database.
Only Oracle Database users with the CREATE ANY DIRECTORY system privilege can
create directories.

This example creates a database directory named EXPORTDIR that points to the /
exportdir directory on the Oracle Database server (Oracle Exadata Database
Machine or other):

SQL> CREATE DIRECTORY exportdir AS '/exportdir';

A.1.3 About the CREATE TABLE Syntax
The following is the basic syntax of the CREATE TABLE statement for Data Pump format
files:

CREATE TABLE table_name
 ORGANIZATION EXTERNAL (
 TYPE oracle_datapump
 DEFAULT DIRECTORY database_directory
 LOCATION ('filename1.dmp','filename2.dmp'...)
) PARALLEL n
 AS SELECT * FROM tablename;

DEFAULT DIRECTORY
Identifies the database directory that you created for this purpose. See "Identifying the
Target Directory".

LOCATION
Lists the names of the Data Pump files to be created. The number of names should
match the degree of parallelism (DOP) specified by the PARALLEL clause. Otherwise,
the DOP drops to the number of files.
The number of files and the degree of parallelism affect the performance of Oracle
Database when generating the Data Pump format files. They do not affect querying
performance in Hive.

PARALLEL
Sets the degree of parallelism (DOP). Use the maximum number that your Oracle
DBA permits you to use. By default the DOP is 1, which is serial processing. Larger
numbers enable parallel processing.

AS SELECT
Use the full SQL SELECT syntax for this clause. It is not restricted. The tablename
identifies the Oracle table to be copied to HDFS.

See Also:

For descriptions of these parameters:

• Oracle Database SQL Language Reference

• Oracle Database Utilities

Appendix A
Generating the Data Pump Files

A-2

https://docs.oracle.com/database/121/SQLRF/intro.htm#SQLRF001
https://docs.oracle.com/database/121/SUTIL/GUID-17FAE261-0972-4220-A2E4-44D479F519D4.htm#SUTIL100

A.2 Copying the Files to HDFS
The Oracle Big Data SQL installation installs Hadoop client files on the Oracle
Datatabase server (Oracle Exadata Database Machine or other). The Hadoop client
installation enables you to use Hadoop commands to copy the Data Pump files to
HDFS. You must have write privileges on the HDFS directory.

To copy the dmp files into HDFS, use the hadoop fs -put command. This example
copies the files into the HDFS customers directory owned by the oracle user:

$ hadoop fs -put customers*.dmp /user/oracle/customers

A.3 Creating a Hive Table
To provide access to the data in the Data Pump files, you create a Hive external table
over the Data Pump files. Copy to Hadoop provides SerDes that enable Hive to read
the files. These SerDes are read only, so you cannot use them to write to the files.

See Also:

Apache Hive Language Manual DDL at

https://cwiki.apache.org/confluence/display/Hive/LanguageManual
+DDL#LanguageManualDDL-Create/Drop/TruncateTable

A.3.1 About Hive External Tables
For external tables, Hive loads the table metadata into its metastore. The data remains
in its original location, which you identify in the LOCATION clause. If you drop an
external table using a HiveQL DROP TABLE statement, then only the metadata is
discarded, while the external data remains unchanged. In this respect, Hive handles
external tables in fundamentally the same way as Oracle Database.

External tables support data sources that are shared by multiple programs. In this
case, you use Oracle Database to update the data and then generate a new file. You
can replace the old HDFS files with the updated files, while leaving the Hive metadata
intact.

The following is the basic syntax of a Hive CREATE TABLE statement for creating a Hive
external table for use with a Data Pump format file:

CREATE EXTERNAL TABLE tablename
ROW FORMAT
 SERDE 'oracle.hadoop.hive.datapump.DPSerDe'
STORED AS
 INPUTFORMAT 'oracle.hadoop.hive.datapump.DPInputFormat'
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 'hdfs_directory'

Appendix A
Copying the Files to HDFS

A-3

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable

A.4 Example Using the Sample Schemas
This example shows all steps in the process of creating a Hive table from an Oracle
table using Copy to Hadoop.

A.4.1 About the Sample Data
The Oracle tables are from the Sales History (SH) sample schema. The CUSTOMERS
table provides extensive information about individual customers, including names,
addresses, telephone numbers, birth dates, and credit limits. The COUNTRIES table
provides a list of countries, and identifies regions and subregions.

This query shows a small selection of data in the CUSTOMERS table:

SELECT cust_first_name first_name,
 cust_last_name last_name,
 cust_gender gender,
 cust_year_of_birth birth
FROM customers
ORDER BY cust_city, last_name
FETCH FIRST 10 ROWS ONLY;

The query returns the following rows:

FIRST_NAME LAST_NAME GENDER BIRTH
--------------- -------------------- ------ ----------
Lise Abbey F 1963
Lotus Alden M 1958
Emmanuel Aubrey M 1933
Phil Ball M 1956
Valentina Bardwell F 1965
Lolita Barkley F 1966
Heloise Barnes M 1980
Royden Barrett M 1937
Gilbert Braun M 1984
Portia Capp F 1948

To reproduce this example, install the sample schemas in Oracle Database and
connect as the SH user.

A.4.2 Creating the EXPDIR Database Directory
These SQL statements create a local database directory named EXPDIR and grant
access to the SH user:

SQL> CREATE DIRECTORY expdir AS '/expdir';
Directory created.
SQL> GRANT READ, WRITE ON DIRECTORY expdir TO SH;
Grant succeeded.

A.4.3 Creating Data Pump Format Files for Customer Data
The following examples show how to create the Data Pump files and check their
contents.

Appendix A
Example Using the Sample Schemas

A-4

Copy to Hadoop supports only the syntax shown in the examples. Data pump files
created with the Export utility or Oracle Data Pump are not compatible.

A.4.3.1 CREATE TABLE Example With a Simple SELECT Statement
This example shows a very simple SQL command for creating a Data Pump format file
from the CUSTOMERS table. It selects the entire table and generates a single output file
named customers.dmp in the local /expdir directory.

CREATE TABLE export_customers
 ORGANIZATION EXTERNAL
 (
 TYPE oracle_datapump
 DEFAULT DIRECTORY expdir
 LOCATION('customers.dmp')
)
AS SELECT * FROM customers;

A.4.3.2 CREATE TABLE Example With a More Complex SQL SELECT
Statement

The next example shows more complexity in the syntax. It joins the CUSTOMERS and
COUNTRIES tables on the COUNTRY_ID columns to provide the country names. It also
limits the rows to customers in the Americas. The command generates two output files
in parallel, named americas1.dmp and americas2.dmp, in the local /expdir directory.

CREATE TABLE export_americas
 ORGANIZATION EXTERNAL
 (
 TYPE oracle_datapump
 DEFAULT DIRECTORY expdir
 LOCATION('americas1.dmp', 'americas2.dmp')
)
 PARALLEL 2
AS SELECT a.cust_first_name first_name,
 a.cust_last_name last_name,
 a.cust_gender gender,
 a.cust_year_of_birth birth,
 a.cust_email email,
 a.cust_postal_code postal_code,
 b.country_name country
FROM customers a,
 countries b
WHERE a.country_id=b.country_id AND
 b.country_region='Americas'
ORDER BY a.country_id, a.cust_postal_code;

A.4.4 Verifying the Contents of the Data Files
You can check the content of the output data files before copying them to Hadoop.
The previous CREATE TABLE statement created an external table named
EXPORT_AMERICAS, which you can describe and query the same as any other table.

The DESCRIBE statement shows the selection of columns and the modified names:

SQL> DESCRIBE export_americas;
 Name Null? Type
 ------------------------- -------- -----------------

Appendix A
Example Using the Sample Schemas

A-5

 FIRST_NAME NOT NULL VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(40)
 GENDER NOT NULL CHAR(1)
 BIRTH NOT NULL NUMBER(4)
 EMAIL VARCHAR2(50)
 POSTAL_CODE NOT NULL VARCHAR2(10)
 COUNTRY NOT NULL VARCHAR2(40)

A SELECT statement like the following shows a sample of the data:

SELECT first_name, last_name, gender, birth, country
 FROM export_americas
 WHERE birth > 1985
 ORDER BY last_name
 FETCH FIRST 5 ROWS ONLY;

FIRST_NAME LAST_NAME GENDER BIRTH COUNTRY
--------------- -------------------- ------ ---------- ------------------------
Opal Aaron M 1990 United States of America
KaKit Abeles M 1986 United States of America
Mitchel Alambarati M 1987 Canada
Jade Anderson M 1986 United States of America
Roderica Austin M 1986 United States of America

A.4.5 Copying the Files into Hadoop
The following commands list the files in the local expdir directory, create a Hadoop
subdirectory named customers, and copy the files to it. The user is connected to the
Hadoop cluster (Oracle Big Data Appliance or other) as the oracle user.

$ cd /expdir
$ ls americas*.dmp
americas1.dmp americas2.dmp
$ hadoop fs -mkdir customers
$ hadoop fs -put *.dmp customers
$ hadoop fs -ls customers
Found 2 items
-rw-r--r-- 1 oracle oracle 798720 2014-10-13 17:04 customers/americas1.dmp
-rw-r--r-- 1 oracle oracle 954368 2014-10-13 17:04 customers/americas2.dmp

A.4.6 Creating a Hive External Table
This HiveQL statement creates an external table using the Copy to Hadoop SerDes.
The LOCATION clause identifies the full path to the Hadoop directory containing the
Data Pump files:

CREATE EXTERNAL TABLE customers
 ROW FORMAT SERDE 'oracle.hadoop.hive.datapump.DPSerDe'
 STORED AS
 INPUTFORMAT 'oracle.hadoop.hive.datapump.DPInputFormat'
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
 LOCATION '/user/oracle/customers';

The DESCRIBE command shows the columns of the CUSTOMERS external table.

hive> DESCRIBE customers;
OK
first_name varchar(20) from deserializer
last_name varchar(40) from deserializer

Appendix A
Example Using the Sample Schemas

A-6

gender char(1) from deserializer
birth int from deserializer
email varchar(50) from deserializer
postal_code varchar(10) from deserializer
country varchar(40) from deserializer

Appendix A
Example Using the Sample Schemas

A-7

B
Using Copy to Hadoop With Direct Copy

Copy to Hadoop with the direct copy option copies data from an Oracle Database table
directly to Oracle Datapump files stored in HDFS.

Copy to Hadoop simplifies the data copy because it does not require intermediate
storage on the database server. The rest of the steps needed to make the data
accessible to the Hadoop ecosystem such as creating Hive external table to access
the copied data and running Hive queries is common to both copy options. (stage and
direct).

The intended audience for this section is power users of Hadoop with specialized
requirements . All other users should use the Oracle Shell for Hadoop Loader (OHSH)
CLI for Copy to Hadoop operations. See Using Oracle Shell for Hadoop Loaders With
Copy to Hadoop.

B.1 Manual Steps for Using Copy to Hadoop for Direct
Copies

Follow these steps.

Getting Started

1. First confirm that Copy to Hadoop is installed and configured.

2. Ensure that the user account has sufficient privileges to copy a database table.
(See Table Access Requirements for Copy to Hadoop.)

3. Make sure that the table contains supported column types. (See Column
Mappings and Data Type Conversions in Copy to Hadoop.)

4. Log in to either a node in the Hadoop cluster or a system set up as a Hadoop
client for the cluster.

5. If you are connecting to a secure cluster then run kinit to authenticate the user.

6. Run the Copy To Hadoop job using direct copy. See “Running the Copy to Hadoop
Job for Direct Copy” below.

7. After the job succeeds, check the jobReport.log file in the _ctoh subdirectory
of the output directory in HDFS. Check that the RowCount listed in the log file is
equal to the number of rows in the database table.

8. Connect to Apache Hive and create an external table from the Data Pump files.
(See Creating a Hive Table.)

Running the Copy to Hadoop Job (Using Direct Copy)

1. Set the environment variables required by Copy to Hadoop.

B-1

Locate the installation directory of Copy to Hadoop and set the CP2HADOOP_HOME
Bash shell variable. For example:

export CP2HADOOP_HOME=”/opt/oracle/orahivedp-3.1.0”

Add the Copy to Hadoop JARs to HADOOP_CLASSPATH. For example:

export HADOOP_CLASSPATH="${CP2HADOOP_HOME}/jlib/*:${HADOOP_CLASSPATH}"

Tip:

When using Copy to Hadoop, you should always
list $CP2HADOOP_HOME/jlib/* first in HADOOP_CLASSPATH. Another way
to avoid JAR conflicts is to define an appropriately ordered
HADOOP_CLASSPATH within a script that uses it.

2. Run the Job.

This is the command syntax:

hadoop jar ${CP2HADOOP_HOME}/jlib/orahivedp.jar
oracle.hadoop.ctoh.CtohDriver \
[-D <configuration-property>=<configuration-value>]+

Example 1: Running the Job on a Secure Cluster Using Oracle Wallet

hadoop jar ${CP2HADOOP_HOME}/jlib/orahivedp.jar
oracle.hadoop.ctoh.CtohDriver \
-D oracle.hadoop.ctoh.connection.tnsEntry=<my-oracle-tns-entry> \
-D oracle.hadoop.ctoh.connection.walletLoc=<local-oracle-wallet-dir> \
-D oracle.hadoop.ctoh.connection.tnsAdmin=<local-oracle-wallet-dir> \
-D oracle.hadoop.ctoh.connection.clusterWalletLoc=<oracle-wallet-dir-on-
hadoop-cluster> \
-D oracle.hadoop.ctoh.connection.clusterTnsAdmin=<oracle-wallet-dir-on-
hadoop-cluster> \
-D mapreduce.output.fileoutputformat.outputdir=<mytab-hdfs-output-dir> \
-D oracle.hadoop.ctoh.splitterType="BLOCK_SPLITTER" \
-D oracle.hadoop.ctoh.table=<dbSchema.dbTable> \
-D oracle.hadoop.ctoh.maxSplits=10

Example 2: Running the Job on A Unsecured Hadoop Cluster (for Demo
Purposes Only)

hadoop jar ${CP2HADOOP_HOME}/jlib/orahivedp.jar
oracle.hadoop.ctoh.CtohDriver \
-D oracle.hadoop.ctoh.jdbc.url="jdbc:oracle:thin:@myhost:1521/myservice" \
-D oracle.hadoop.ctoh.connection.username="myuser" \
-D oracle.hadoop.ctoh.connection.password="mypassword" \
-D mapreduce.output.fileoutputformat.outputdir="mytable_output_dir" \
-D oracle.hadoop.ctoh.splitterType="BLOCK_SPLITTER" \

Appendix B
Manual Steps for Using Copy to Hadoop for Direct Copies

B-2

-D oracle.hadoop.ctoh.table="otherUser.mytable" \
-D oracle.hadoop.ctoh.maxSplits=10

Performance Tuning Tips

You can control the degree of parallelism of the Copy to Hadoop job by specifying the
number of map processes using the oracle.hadoop.ctoh.maxSplits property. The
higher the number of map processes, the higher the parallelism. Note that each
process connects to the database, so this value also determines the number of
simultaneous connections to the database. Typically, a number such as 64 works well.

Required Configuration Properties

See the Copy to Hadoop Property Reference for more information on these and other
properties.

• oracle.hadoop.ctoh.table

• mapreduce.output.fileoutputformat.outputdir

• oracle.hadoop.ctoh.maxSplits

• oracle.hadoop.ctoh.splitterType

Connection Properties for a secure Hadoop cluster using Oracle Wallet:

• oracle.hadoop.ctoh.connection.walletLoc

• oracle.hadoop.ctoh.connection.tnsAdmin

• oracle.hadoop.ctoh.connection.tnsEntry

• The following properties are also required if the Oracle Wallet directory on the
Hadoop cluster is different from the directory on the Hadoop client:

– oracle.hadoop.ctoh.connection.clusterWalletLoc

– oracle.hadoop.ctoh.connection.clusterTnsAdmin

Connection Properties for Unsecured Hadoop clusters (for Demo Purposes
Only):

For demo purposes, use the following properties in place of the properties used with
secured clusters.

• oracle.hadoop.ctoh.connection.username

• oracle.hadoop.ctoh.connection.password

• oracle.hadoop.ctoh.jdbc.url

An Incremental Copy using Copy to Hadoop

To incrementally copy data from the same Oracle table to a pre-existing destination
directory in HDFS, the following additional properties are required. (This configuration
assumes that a Copy To Hadoop job was run initially to copy data from an Oracle
Database table to datapump files in an HDFS directory.)

• oracle.hadoop.ctoh.whereClause

• oracle.hadoop.ctoh.datapump.output

• oracle.hadoop.ctoh.datapump.basename

Appendix B
Manual Steps for Using Copy to Hadoop for Direct Copies

B-3

oracle.hadoop.ctoh.datapump.output specifies a preexisting HDFS location that
contains the datapump files from a previous run of Copy To Hadoop.

oracle.hadoop.ctoh.whereClause identifies the subset of rows to be copied from the
Oracle table for the incremental load.

oracle.hadoop.ctoh.datapump.basename specifies a unique prefix for the datapump
files. This property is used to generate unique datapump file names to prevent file
name collisions during an incremental load.

B.2 Copy to Hadoop Property Reference
This reference describes customer-accessible properties of Copy to Hadoop.

Copy to Hadoop Configuration Property Reference (for Direct Copy)

Property Description

oracle.hadoop.ctoh.home Type: String

Default Value: Value of the CP2HADOOP_HOME
environment variable.

Description: This configuration property is
used to locate jars required for the Copy to
Hadoop job.

oracle.hadoop.ctoh.table Type: String

Default Value: None.

Description: The name of the database table
whose content is copied to Hdoop as
datapump files. It can also be schema
qualified. For example, to specify the table
EMPLOYEE in schema MANAGER, you can
use MANAGER.EMPLOYEE

mapreduce.output.fileoutputformat.outputd
ir

Type: String

Default Value: None.

Description: The name of the output directory
where datapump files are created by the
Hadoop job. The job output logs are also
stored in the_ctoh subdirectory.

oracle.hadoop.ctoh.datapump.output Type: String

Default Value: None.

Description: Specifies the destination
directory for datapump files. If this property is
not specified,the datapump files will live in the
directory specified by the
mapreduce.output.fileoutputformat.ou
tputdir property.

oracle.hadoop.ctoh.datapump.basename Type: String.

Default Value: dppart

Description: The prefix or base-name of
generated data pump files. For example if a
user specifies this property as “dp_tbl”, then
the generated datapump file is dp_tbl-
m-00000.dmp.

Appendix B
Copy to Hadoop Property Reference

B-4

Property Description

oracle.hadoop.ctoh.datapump.extension Type:

Default Value: dmp

Description: The suffix of generated data
pump files. For example if a user specifies this
property as “.dp”, then the generated
datapump file is dppart—m-00000.dp.

oracle.hadoop.ctoh.maxSplits Type: Integer.

Default Value: None.

Description: The number of datapump files
that are created by the Hadoop job. This is
also the number of mappers that will be
produced by the Hadoop job.

oracle.hadoop.ctoh.splitterType Type:

Default Value: None.

Description: The type of splitters that will be
used to split the table data.

• BLOCK_SPLITTER: This splitter divides the
table into block ranges.

• ROW_SPLITTER: The splitter divides the
table into row ranges.

• PARTITION_SPLITTER: If a table is
partitioned, the partition splitter can be
used. When this splitter is specified, the
number of datapump files created by the
Hadoop job is at most equal to the
number of partitions in the table.

oracle.hadoop.ctoh.columns Type:

Default Value: None.

Description: Specifies the subset of columns
to be copied. For example if a user specifies
“NAME,MANAGER” then the data for columns
NAME and MANAGER are copied. If this property
is not specified then all columns are copied
(unless filtered by a WHERE clause).

oracle.hadoop.ctoh.whereClause Type: String.

Default Value: None.

Description: This property is used to copy a
subset of rows. For example, to copy
employees whose ids are less than 1000 and
greater than 500, then specify the following
WHERE clause: EMPLOYEE_ID < 1000 AND
EMPLOYEE_ID > 500.

oracle.hadoop.ctoh.jdbc.url Type: String.

Default Value: None.

Description: The JDBC url to connect to the
database. This property can used for demo
purposes and non-secure clusters. Use Oracle
Wallet with Secure Hadoop clusters in
production environments.

Appendix B
Copy to Hadoop Property Reference

B-5

Property Description

oracle.hadoop.ctoh.connection.username Type: String.

Default Value: None.

Description: The name of the Oracle
Database user. This property can used for
demo purposes and non secure clusters. Use
Oracle Wallet with Secure Hadoop clusters in
production environments.

oracle.hadoop.ctoh.connection.password Type: String.

Default Value: None.

Description: The password of the Oracle
Database user. This property can used for
demo purposes and non secure clusters. Use
Oracle Wallet with Secure Hadoop clusters in
production environments.

oracle.hadoop.ctoh.connection.walletLoc Type: String.

Default Value: None.

Description: Location of the Oracle Wallet
directory on the Hadoop client.

When using an Oracle Wallet, you must also
set the following properties:

• oracle.hadoop.ctoh.connection.tn
sAdmin

• oracle.hadoop.ctoh.connection.tn
sEntry

oracle.hadoop.ctoh.connection.clusterWall
etLoc

Type:

Default Value: Value of
oracle.hadoop.ctoh.connection.wallet
Loc.

Description: Location of the Oracle wallet
directory on the Hadoop cluster. NOTE: This
directory must be visible to all nodes in the
Hadoop cluster. When using this property, you
must also set the following properties:

• oracle.hadoop.ctoh.connection.cl
usterTnsAdmin

• oracle.hadoop.ctoh.connection.tn
sEntry

Appendix B
Copy to Hadoop Property Reference

B-6

Property Description

oracle.hadoop.ctoh.connection.tnsAdmin Type: String.

Default Value: Not Defined.

Description: Location of the directory on the
Hadoop client, containing the SQL*Net
configuration files such as sqlnet.ora and
tnsnames.ora. Set this property so that you
can use TNS entry names in the database
connection strings. When using Oracle Wallet,
this property value can be the same as the
value of the
oracle.hadoop.ctoh.connection.wallet
Loc property.

You must set this property when using an
Oracle Wallet as an external password store.
See
oracle.hadoop.ctoh.connection.wallet
Loc.

oracle.hadoop.ctoh.connection.clusterTns
Admin

Type: String.

Default Value: Value of the property
oracle.hadoop.ctoh.connection.tnsAdm
in.

Description: Location of the directory on the
Hadoop cluster containing SQL*Net
configuration files such as sqlnet.ora and
tnsnames.ora. NOTE: This directory must be
visible to all nodes in the Hadoop cluster.

Set this property so that you can use TNS
entry names in database connection strings.
When using Oracle Wallet, this property value
can be the same as the value of
oracle.hadoop.ctoh.connection.cluste
rWalletLoc.

You must set this property when using an
Oracle Wallet as an external password store
(as Oracle recommends). See
oracle.hadoop.ctoh.connection.cluste
rWalletLoc.

oracle.hadoop.ctoh.connection.tnsEntry Type: String.

Default Value: None.

Description: The TNS entry name defined in
the tnsnames.ora file. Use this property with
oracle.hadoop.ctoh.connection.tnsAdm
in. When using Oracle Wallet, make sure that
the tnsEntry name matches your wallet
credential.

Appendix B
Copy to Hadoop Property Reference

B-7

Property Description

oracle.hadoop.ctoh.cachePath Type: String.

Default Value: $
{mapreduce.output.fileoutputformat.o
utputdir}/../ctohCache

Description: Identifies the full path to an
HDFS directory where cCopy to Hadoop can
create files that are loaded into the
MapReduce distributed cache. The distributed
cache is a facility for caching large,
application-specific files and distributing them
efficiently across the nodes in a cluster.

Appendix B
Copy to Hadoop Property Reference

B-8

C
Using mtactl to Manage the MTA extproc

The multithreaded agent control utility (mtactl) enables Oracle Big Data SQL users to
start, stop, and configure the MTA (Multi-Threaded Agent) extproc in both Oracle
Clusterware Ready Service (CRS) and non-CRS Oracle Database environments.

Note:

In non-CRS environments, customers must run mtactl in order to start the
MTA extproc.

Usage

In this usage description, mta_sid is the SID that a given multithreaded extproc agent
services.

mtactl {start|restart|stop|status|delete|show|bdsql} <mta_sid>
mtactl unset <parameter> <mta_sid>
mtactl set <parameter> <parameter_value> <mta_sid>
mtactl -help
mtactl <command> -help

C-1

Multithreaded Agent Control Utility Commands

Table C-1 mtactl Commands

Comm
and

Full Syntax Description

start mtactl start <mta_sid> Start an MTA extproc for this SID, with
the existing init parameter values
stored in the repository. Use the
default values if the repository does
not exist.

Note:

If you
used
Oracle
Big Data
SQL 3.1,
be aware
that the
behavior
of
restart
and
start
are now
reversed
from
what
they
were in
3.1 –
start
now
uses init
values
from the
repositor
y if
available
.
restart
always
uses the
default
values.

resta
rt

mtactl start <mta_sid> Clean up the repository and restart the
MTA extproc agent for the SID, with
the default values.

stop mtactl stop <mta_sid> Stop the MTA extproc agent that
services the given SID.

Appendix C

C-2

Table C-1 (Cont.) mtactl Commands

Comm
and

Full Syntax Description

statu
s

mtactl status <mta_sid> Display status for the MTA extproc that
services the given SID.

delet
e

mtactl delete <mta_sid> Clean up the repository for the given
SID.

show mtactl show <mta_sid> Display the init parameters for the
MTA extproc that services the given
SID.

bdsql mtactl bdsql <mta_sid> Display additional operations. These
are for setting up the MTA extproc for
use with Oracle Big Data SQL.

set mtactl set <init parameter> <value>
<mta_sid>

Set the init parameters for the MTA
extproc that services the given SID.
Supported parameters are:

max_dispatchers
tcp_dispatchers
max_task_threads
max_sessions
listener_address

unset mtactl unset <init parameter>
<mta_sid>

Unset the init parameters in the
repository for the MTA extproc that
services the given SID.

Examples

$ mtactl start BDSQL_hadoop_cl_1 //note: using existing or default init
parameter values

$ mtactl delete BDSQL_hadoop_cl_1
$ mtactl set max_sessions 200 BDSQL_hadoop_cl_1
$ mtactl set max_dispatchers 5 BDSQL_hadoop_cl_1
$ mtactl set max_task_threads 5 BDSQL_hadoop_cl_1
$ mtactl set listener_address "(ADDRESS=(PROTOCOL=ipc)(KEY=crs))"
BDSQL_hadoop_cl_1
$ mtactl start BDSQL_hadoop_cl_1 (note: use customized parameter values)

$ mtactl restart BDSQL_hadoop_cl_1 //note: using default init parameter
values

Appendix C

C-3

D
Diagnostic Tips and Details

The following is a collection of notes that can be useful for troubleshooting and for
general understanding of Oracle Big Data SQL.

D.1 Running Diagnostics with bdschecksw
On the Oracle Database server, you can use the Big Data SQL Diagnostics Collection
tool, bdschecksw, to do a simple sanity test of Oracle Big Data SQL. This script gathers
and analyzes diagnostic information about the Oracle Big Data SQL installation from
both the Oracle Database and the Hadoop cluster sides of the installation. The script is
in $ORACLE_HOME/bin on the database server.

You can run this diagnostic check manually at any time. At installation time, it is also
run by bds-database-install.sh, the database-side installer.

Syntax

bdschecksw Required_Params [Options]

The table below describes the required and optional parameters used with
bdschecksw.

Table D-1 bdschecksw Parameters

Parameter Description Required or
Optional

-h, --help Display command help and
exit.

Optional

-d, --dbhome ORACLE_HOME The path to the Oracle
installation on the Oracle
Database server.

Required only
if the
ORACLE_HOME
environment
variable is not
defined on the
Oracle
Database
server where
bdschecksw
is executed.

D-1

Table D-1 (Cont.) bdschecksw Parameters

Parameter Description Required or
Optional

 -s, --sid=[ORACLE_SID] The SID of the Oracle
Database server.

Required only
if the
ORACLE_SID
environment
variable is not
defined on the
Oracle
Database
server where
bdschecksw
is executed.

 -g, --gihome=Grid_Infrastructure_home
Oracle_Database_node_IP_address

The Grid Infrastructure path
on the Oracle Database
server.

Required only
if the
GI_HOME
environment
variable is not
defined on the
Oracle
Database
server where
bdschecksw
is executed.

 -y, --giuser
Oracle_Database_node_IP_address
Grid_Infrastructure_home

GI_HOME administrator
name or owner (OS user
name) of GI_HOME.

-q, --sqlplus
Oracle_Database_node_IP_address
username

SQLPlus username on the
Oracle Database server.
The user is prompted for
the password.

Required.

-c, --cell DNS short name [...n] The Hadoop cluster cell
nodes. Use DNS short
names (FQDN minus
domain name) with a space
as a delimiter. IP addresses
are not recommended,
because a node may exist
on multiple networks.

Required for
Hortonworks
HDP only.

-u, --uname
Hadoop_cluster_node_username

Credentials to run remote
commands on the Hadoop
cluster from the Oracle
Database server. This is
usually the oracle user.

The
username and
password are
always
required.

Appendix D
Running Diagnostics with bdschecksw

D-2

Table D-1 (Cont.) bdschecksw Parameters

Parameter Description Required or
Optional

-p,--pdb=PDB_CONTAINER The Pluggable Database
container name on the
Oracle Database server.

Required only
if the
Pluggable
Database
(PDB)
container is
configured on
the Oracle
Database
server where
bdschecksw
is executed.

 -k, --key SSH_identity_key_file Path to an SSH (Secure
Shell) key file.

The optional
SSH identity
(or key) file is
used on top of
-u and -p to
selects a file
from which
the identity
(private key)
for public key
authentication
is read.

 -r, --cluster Hadoop_cluster_name Hadoop cluster name. Optional.

-t, --trace Turn on extproc and log4j
tracing during test
execution.

Optional.

 -f, --file=file_path Redirect output to the file. Optional.

 -i, --interactive Enter command line
arguments interactively
(rather than all at once).

Optional.

-x Extensive mode. Optional.
Requires root
privilege.

 -v, --verbose Verbose reporting mode. Optional.
(Recommend
ed for full
details in the
report.)

Exit Status

The bdschecksw script returns one of the following status codes.

Table D-2 Status Codes for bdschecksw

Status Description

0 Success

Appendix D
Running Diagnostics with bdschecksw

D-3

Table D-2 (Cont.) Status Codes for bdschecksw

Status Description

1 Minor problem (for example, no response in
interactive mode).

2 Significant problem (for example, an invalid
command line argument).

Example

$./bdschecksw -d /u03/app/oracle/product/$ORACLE_HOME/dbhome_1 -s orcl -p
pdborcl -g /u03/app/oracle/product/$ORACLE_HOME/grid -q sys -u oracle -v

D.2 How to do a Quick Test
Here is an all-around series of basic checks to ensure that Oracle Big Data SQL is
working.

1. On the Oracle Database server, source the environment using the
hadoop_<hcluster>.env file in $ORACLE_HOME/bigdatasql.

2. If Kerberos is enabled, kinit as the oracle Linux user on the Oracle Database
server. If possible, also kinit on each of the Big Data SQL datanodes as the
oracle user.

Note:

You can run this test without running kinit on the datanodes, but then
offloading in the test will not work. You will eventually need to kinit on
the datanodes in order to verify that offloading is working.

3. Create a text file and add several of lines of random text.

4. Copy the text file into hdfs as /user/oracle/test.txt.

$ hadoop fs -put test.txt /user/oracle/test.txt

5. Define an Oracle external table of type ORACLE_HDFS:

a. CREATE TABLE bds_test (line VARCHAR2(4000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HDFS DEFAULT DIRECTORY DEFAULT_DIR LOCATION ('/
user/oracle/test.txt'))
 REJECT LIMIT UNLIMITED;

b. Select * from bds_test;

c. select n.name, s.value /* , s.inst_id, s.sid */ from v$statname n,
gv$mystat s where n.name like '%XT%' and s.statistic# =
n.statistic#;

6. Define a Hive table:

Appendix D
How to do a Quick Test

D-4

a. Connect to Hive via Hue, the Hive/Beeline command line, or using Oracle SQL
Developer with a Hive JDBC driver.

b. CREATE TABLE bds_test_hive (line string);

c. LOAD DATA INPATH '/user/oracle/test.txt' OVERWRITE INTO TABLE
bds_test_hive;

7. Define an external ORACLE_HIVE table:

CREATE TABLE bds_test_hive (line VARCHAR2(4000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS
 (com.oracle.bigdata.tablename=default.bds_test_hive)
)
 REJECT LIMIT UNLIMITED;

D.3 Oracle Big Data SQL Database Objects
Familiarity with the various Oracle Big Data SQL database objects can be helpful in
troubleshooting.

Table D-3 Database Objects in Big Data SQL

Type Object

Directories • DEFAULT_DIR – points to $ORACLE_HOME/bigdatasql/databases/
<database name>/default_dir.

• ORACLE_BIGDATA_CONFIG – points to $ORACLE_HOME/bigdatasql/
databases/<database name>/bigdata_config.

• ORA_BIGDATA_CL_<hcluster> – expected to have a null value for its
path.

This is a way of limiting access. There always must be a directory
object associated with an external table. Because the directory object is
used for privilege checking, this is a requirement even for Hive/HDFS,
where the files do not reside under the directory.

Database Links
(public)

These allow Big
Data SQL to
reach the MTA
(multi-threaded
agent)

• BDSQL$_DEFAULT_CLUSTER – the connect string’s SID should equal
bds_<dbname>_<hcluster> . And the <hcluster> should be the
default cluster (as defined by bigdata.cluster.default)
in $ORACLE_HOME/bigdatasql/databases/<database name>/
bigdata_config/bigdata.properties.

• BDSQL$_<hcluster> - the connect string’s SID should equal
bds_<dbname>_<hcluster>.

Data Dictionary
Views

• User_hive_tables, all_hive_tables, dba_hive_tables –
queries all Hive tables for all Hive databases for all Hadoop clusters.

• User_hive_databases, all_hive_databases,
dba_hive_databases – queries all Hive databases for all Hadoop
clusters.

• User_hive_columns, all_hive_columns, dba_hive_columns –
queries all hHive tables for all Hive databases for all Hadoop clusters.

• V$cell – the Oracle Big Data SQL server processes running on
datanodes will appear here (if properly detected by the diskmon).

Appendix D
Oracle Big Data SQL Database Objects

D-5

Table D-3 (Cont.) Database Objects in Big Data SQL

Type Object

Functions and
Procedures for
Hive Data
Dictionary

See
cathive.sql,
dbmshadp.sql.

• DBMS_HADOOP

– Create_extddl_for_hive()
• GetHiveTable – pipeline function that returns data back from the

extproc external procedure. Used by the *_hive_[tables/
databases/columns] views and DBMS_HADOOP.

– HiveMetadata – ODCI framework defining the external
procedureGetHiveTable.

– SYS.DBMSHADOOPLIB (libkubsagt12.so) – C library for the
external procedure.

– HiveMetadata.jar – java library called by libkubsagt12.so.

Tables SYS.HIVE_URI$ – security table for non-DBA users.

Statistics • All statistics have %XT% in the name:

– cell XT granules requested for predicate offload
– cell XT granule bytes requested for predicate offload
– cell interconnect bytes returned by XT smart scan
– cell XT granule predicate offload retries
– cell XT granule IO bytes saved by storage index

• Use this query:

select n.name, s.value /* , s.inst_id, s.sid */ from
v$statname n, v$mystat s
where n.name like '%XT%' and s.statistic# =
n.statistic# ;

If needed, also use: grant select any catalog to <dbuser>;

Appendix D
Oracle Big Data SQL Database Objects

D-6

D.4 Other Database-Side Artifacts
This section describes directories, files, and external procedure agents on the
database side that are relevant to Oracle Big Data SQL.

Table D-4 $ORACLE_HOME/bigdatasql Directory

Subdirectory or Filename Description of Contents

clusters directory Contains settings related to all clusters
installed on this ORACLE_HOME. It includes a
subdirectory for each cluster, which contains:
• config directory – configuration files

downloaded for Cloudera Manager or
Ambari.

• fuse directory – settings for the FUSE-
DFS service for the this cluster.

• hadoop, hbase , and hive soft links to
the actual client directories. (For example:
hadoop-2.6.0-
cdh5.12.0,hbase-1.2.0-cdh5.12.0,
hive-1.1.0-cdh5.12.0, although the
versions installed may different for your
system.)

• *.conf – IPsec configuration file.
• *.keytab – Kerberos keytab file for the

database owner.

Appendix D
Other Database-Side Artifacts

D-7

Table D-4 (Cont.) $ORACLE_HOME/bigdatasql Directory

Subdirectory or Filename Description of Contents

databases directory Contains settings related to all databases
running on this ORACLE_HOME. It includes a
subdirectory for each database running on this
ORACLE_HOME. Each database subdirectory
contains a bigdata_config directory, which
includes:
• bigdata.properties – Defines the

location of JAR files. If your Hive tables
use non-standard Java libraries, you may
need to copy those libraries to the
database and update the classpath
entries in this file. Also defines the
Hadoop cluster list and default cluster.
Restart the
extprocbds_<dbname>_<hcluster>
after changing.

• bigdata-log4j.properties - This
controls the logging of the Java pieces,
such as the metadata discovery phase of
querying external tables or the query fetch
phase if the cells are unavailable. Change
log4j.logger.oracle.hadoop.s
ql to INFO to log more. Restart the
extprocbds_<dbname>_<hcluster>
after changing.

• <hcluster> directory – a soft link
to $ORACLE_HOME/bigdatasql/
clusters/<cluster name>/config,
which contains the client configuration
files (like hive-site.xml) copied from
the Hadoop cluster.

Each database subdirectory also includes:

• default_cluster – soft link to
the $ORACLE_HOME/bigdatasql/
clusters/ subdirectory that is the
default cluster for this database.

• default_dir – directory for external
tables associated with this database.

jdk Soft link to the JDK installation. The version
installed by Oracle Big Data SQL is
jdk1.8.0_141, although a different version
may be present.

jlib directory The Oracle Big Data SQL Java JAR directory

Appendix D
Other Database-Side Artifacts

D-8

Table D-4 (Cont.) $ORACLE_HOME/bigdatasql Directory

Subdirectory or Filename Description of Contents

bigdata_config directory • bigdata.properties – Defines the
location of JAR files. If your Hive tables
use non-standard Java libraries, you may
need to copy those libraries to the
database and update the classpath
entries in this file. Also defines the
Hadoop cluster list and default cluster.
Restart the
extprocbds_<dbname>_<hcluster>
after changing.

• bigdata-log4j.properties - This
controls the logging of the Java pieces,
such as the metadata discovery phase of
querying external tables or the query fetch
phase if the cells are unavailable. Change
log4j.logger.oracle.hadoop.s
ql to INFO to log more. Restart the
extprocbds_<dbname>_<hcluster>
after changing.

• <hcluster> directory – a soft link
to $ORACLE_HOME/bigdatasql/
clusters/<cluster name>/config,
which contains the client configuration
files (like hive-site.xml) copied from
the Hadoop cluster.

default_dir directory This directory is usually empty.

log directory Contains Java log files from the two type of
extprocs. Use the PID that is part of the
filename to identify which extproc you are
looking at (only one log file will have the PID of
the currently running extprocbds_
<dbname>_<hcluster> process).

hadoop_<cluster name>.env Sets the Hadoop client environment. There is
one of these .env files for each cluster
installation. You can source this file and then
run hadoop fs commands to quickly test
Hadoop connectivity

orahivedp A soft link to the installed cp2hadoop (Copy to
Hadoop) toolkit. The version of the toolkit
installed by Oracle Big Data SQL 3.2 is
orahivedp-3.2.0.

Appendix D
Other Database-Side Artifacts

D-9

Table D-5 External Procedure Agents

Agent Description

extproc Runs the external procedure code used by the
*_hive_tables, *_hive_databases views
and the DBMS_HADOOP procedure.

$ORACLE_HOME/hs/admin/
extproc.ora configures the extproc. You
can add TRACE_LEVEL=ON to get more trace
(but may need to first comment outSET
EXTPROC_DLLS= to fix the “Error in
assignment statement” message). The C
portion’s log files are
in $ORACLE_HOME/hs/log/
orcl_agt* , but these are usually not
interesting for diagnostic purposes. The JVM
portion’s log files are written
to $ORACLE_HOME/bigdatasql/log
(but you need to set up bigdata-
log4j.properties first).

extprocbds_<dbname>_<hcluster> The BDS Multi-threaded Agent that is used
when querying external tables. This is started/
stopped by Oracle Clusterware which in turn
runs the mtactl utility. This is registered to
Oracle Clusterware when
bds_database_install.sh runs on the
last database server node.

If you don’t have this
extprocbds_<dbname>_<hcluster>
running, then you probably didn’t run
bds_database_install.sh on every
database server in your RAC cluster. The C
portion’s log files are
in $ORACLE_HOME/hs/log (but you need
to edit $ORACLE_HOME/hs/admin/
initbds – add TRACE_LEVEL=ON and then
restart to see logging). The JVM portion’s log
files go into $ORACLE_HOME/
bigdatasql/log (but you need to setup
bigdata-log4j.properties and restart).
This is the recommended way to restart
(although the quicker way is to run kill -9
on the process):

$ crsctl stop resource
bds_<dbname>_<hcluster>
$ crsctl start resource
bds_<dbname>_<hcluster>

Appendix D
Other Database-Side Artifacts

D-10

Note:

Both of External Procedures in the table above make callbacks to the
database, which can be blocked by the use of the Secure External Password
Store feature. If you use Secure External Password Store
(SQLNET.WALLET_OVERRIDE=TRUE), see Document 2126903.1 in My Oracle
Support.

Table D-6 Log Files and Trace Files

Directory or
Filename

Description

$ORACLE_HOME/
bigdatasql/log

Contains log files from Java code run via the
extprocbds_<dbname>_<hcluster> – one shared file with PID
equal to the extprocbds_<dbname>_<hcluster> PID and extproc
(one per session if the session uses *_hive_tables or
DBMS_HADOOP). Tip: This is good diagnostic information.

$ORACLE_HOME/hs
/log

Contains log files from the C code of the extproc processes (one per
session) and the multi-threadedextbds_<dbname>_<hcluster>
process. The exproc is usually not interesting for diagnostic purposes.
The extprocbds_* has a bit more interesting information (but you
need to set TRACE_LEVEL=ON in initbds_*.ora).

Database diag
directory

Contains log files from the database session. These can yield good
information.

• To identify the exact database session log file location:

select value from v$diag_info WHERE name =
'Default Trace File';

• To turn on external table logging:

alter session set
"_xt_trace"="low","compilation","execution";

• To turn on additional logging:

alter session set events 'trace[KCFIS] disk high,
memory high';

Appendix D
Other Database-Side Artifacts

D-11

https://support.oracle.com/epmos/faces/documentdisplay?_afrloop=70424289933567&id=2126903.1&_adf.ctrl-state=axygy6w4a_134
https://support.oracle.com/epmos/faces/documentdisplay?_afrloop=70424289933567&id=2126903.1&_adf.ctrl-state=axygy6w4a_134

Table D-6 (Cont.) Log Files and Trace Files

Directory or
Filename

Description

/u01/oracle/
diag/crs/
<hostname>/crs/
trace/diskmon.trc

Contains diskmon logs and errors. In a commodity Oracle Database
server to commodity Hadoop environment (support in Oracle Big Data
SQL 3.0 and greater), check this trace file for communication errors or
fencing (ENTITY_FENCED). Restart diskmon if needed (use crsctl).
In a commodity-to-commodity environment, you can simply kill the
diskmon process, but do not do that in an Oracle Exadata Database
Machine environment.

If you want to get additional diskmon tracing, you can set environment
parameters before you invoke the crsctl command to start the
cluster. Since the cluster is likely already running, you’ll first have to
shut the cluster down. Then, set the environment and then start it back
up. Here is how you do it in the Oracle Big Data SQL 3.x commodity
database server scenario using Oracle Restart. (Note that the crsctl
commands will be different if using RAC, ASM, and/or Exadata):

crsctl stop has export CELLCLIENT_TRACE_LEVEL="all,4"
export CELLCLIENT_AUTOFLUSH_LEVEL="all,4"
crsctl start has

/etc/oracle/
cell/network-
config/
cellinit.ora

/etc/oracle/
cell/network-
config/
celliniteth.ora

Record the IP address and subnet range for the database server. For
Oracle Big Data SQL on commodity servers, this file also includes
parameters which switch the protocol away from InfiniBand RDS to
TCP/UDP (_skgxp_dynamic_protocol=2). On commodity servers ,
the database server’s diskmon (running out of the Oracle Grid home)
communicates with the BDS processes on the data nodes listening on
TCP port 5042.

Kerberos files: kinit,
klist, etc/
krb5.conf, krb5-
workstation*.rpm

If your Hadoop cluster uses Kerberos, you’ll need to setup Kerberos on
the database and have a mechanism (such as crontab) to keep a valid
Kerberos ticket at all times for the oracle Linux user. You will need a
similar ticket renewal mechanism on the BDS datanodes as well.

The Oracle Big Data SQL installer now provides a directive in the
Jaguar configuration file that will automatically set up a cron job for this
on both the Hadoop cluster and the Oracle Database system. See the
description of the configuration file in the installation guide.

Appendix D
Other Database-Side Artifacts

D-12

D.5 Hadoop Datanode Artifacts
The table below identifies objects on the Hadoop server that can provide helpful
information for troubleshooting Big Data SQL.

Table D-7 Hadoop-side Datanode Artifacts That are Useful for Troubleshooting

Datanode Artifact Description

bdscli command • List quarantine detail
• Drop quarantine all
• List alerthistory
• Drop alerthistory
• List bdsql detail

Log files • /var/log/bigdatasql/DM –
installer log files

• /var/log/bigdatasql/cloudera
or /var/log/bigdatasql/ambari
– Ambari or CM service log files.

• /opt/oracle/bigdatasql/bdcell-
<cell version>/
bigdata.properties

• /opt/oracle/bigdatasql/bdcell-
<cell version>/bigdata-
log4j.properties

– This defaults to logging off. Change
tolog4j.logger.oracle.had
oop.sql=INFO and restart.

• /opt/oracle/bigdatasql/bdcell-
<cell version>/log directory

– bigdata-log4j.log – logs
entries from the JVM pieces of Big
Data SQL (logging defaults to off, so
edit bigdata-
log4j.properties first and
restart). This can be particularly
useful information.

• /var/log/oracle/diag/bdsql/
cell/<hostname>/trace/ – general
cell trace files for the Management
Server, Restart Server, and Monitor
Server. The alert.log file will have
details about quarantine and de-
quarantine events.

• /var/log/oracle/diag/bdsql/
cell/SYS_*/trace/ – Oracle Big
Data SQL offload server trace files for the
C portion. These are not useful for
troubleshooting in most cases.

Other datanode artifacts /opt/oracle/cell/cellsrv/
deploy/config/cellinit.ora –
records the cell’s IP address.

Appendix D
Hadoop Datanode Artifacts

D-13

D.6 Step-by-Step Process for Querying an External Table
This section describes the events that occur during a query of an external table.

1. User issues a SELECT query involving an Oracle Big Data SQL external table.

2. Database sees that one of the objects in the SQL is an External table of type
ORACLE_HIVE

3. Database identifies the cluster name from the com.oracle.bigdata.cluster
parameter on the External table definition else uses the default cluster.

4. Database identifies the Hive table name from the com.oracle.bigdata.tablename
parameter, else assumes the Hive table name is the same as the Oracle table
name.

5. Database knows that the ORACLE_HIVE External table implementation uses an
external procedure which is invoked through the
extprocbds_<dbname>_<hcluster> multi-threaded agent.

Note:

The first phase of the query requires getting the Hive metadata. If you
get an error during this first phase, you’ll likely see an error that begins
as follows. Notice the “OPEN” in ODCIEXTTABLEOPEN)
ORA-29913: error in executing ODCIEXTTABLEOPEN callout

6. Database uses the public database link BDSQL$_DEFAULT_CLUSTER or
BDSQL$_<hcluster> to find the connect string to ask the listener to connect the
database session to a thread of the extprocbds_dbname>_hcluster> multi-
threaded agent

a. extprocbds_<dbname>_<hcluster> was previously started by Oracle
Clusterware and is using configuration information from the $ORACLE_HOME/
bigdatasql/databases/<database name>/bigdata_config directory.

b. extprocbds_<dbname>_<hcluster> has spawned a JVM running Hadoop client
libraries using the above configuration information. The Hadoop client libraries
were copied from the Oracle Big Data Appliance to the Oracle Database
server when you ran the bds-exa-install.sh script.

7. extprocbds_<dbname>_<hcluster> uses its JVM and the Hive metastore client
library to call the Hive metastore (using a URL such as thrift://hostname>:
9083) to get metadata (columns, inputformat, serde, other table properties) for the
Hive table.

a. At this point, if the Hive metastore is protected by Kerberos authentication, the
Hive client libraries running in the extprocbds JVM on the Oracle Database
server will try to send the local Kerberos ticket to the Hive server. This will be
the ticket owned by the oracle Linux user account who is running the
database

8. extprocbds_<dbname>_<hcluster> calls the Hive metastore to get a list of input
paths that hold the data behind the Hive table.

Appendix D
Step-by-Step Process for Querying an External Table

D-14

9. extprocbds_<dbname>_<hcluster> converts the list of input paths into a list of
splits/blocks using Hadoop MapReduce libraries and logic. Then it asks the HDFS
namenode for the location (including replicas) of all of the splits /blocks.

a. Again, if HDFS is protected by Kerberos, the Kerberos ticket from the oracle
Linux user account on the database will be need to be used.

b. If compression is used, at this point the JVM might have to load specific
compression Java or native libraries. If these are non-standard libraries, you
will need to install them on both the Oracle Database server and the Hadoop
side. For instance, LZO compression requires an additional install and
configuration performed on both the database-side on the Hadoop-side.

At this point, the “description” phase is done and the database knows the structure
of the Hive table as well as the location of all of the blocks of data (including
replicas). This information is also known as the metadata payload. We now begin
the “fetch” phase.

10. The database intelligent storage layer, KCFIS (Kernel Cache File Intelligent
Storage), which is also used on Oracle Exadata systems, compares the
hostnames of where the blocks of data are stored to a list of active BDSQL server
hosts being maintained by the Grid’s diskmon process. (You can see diskmon’s
list of BDSQL server hosts in V$CELL).

Note:

The second phase of the query requires fetching the data. If you get an
error during this second phase, you’ll likely see an error that begins as
folllows. Notice the “FETCH” in ODCIEXTTABLEFETCH) :

ORA-29913: error in executing ODCIEXTTABLEFETCH callout

11. Assuming that the list of datanode hostnames matches the list of BDSQL
hostnames, the database sends a list of local blocks (also called Granules) to
each of the BDSQL servers. The database also sends the BDSQL servers
metadata about the table, columns, and structure it is accessing. It does this in
parallel and asynchronously for performance

Note:

The database statistics “cell XT granules requested for predicate offload”
and “cell XT granule bytes requested for predicate offload” are
updated at this point

12. The BDSQL process running on the data nodes checks the SQL_ID against its
local list of quarantined SQL_IDs. If the SQL_ID matches the quarantine list, then
the BDSQL process on the datanode will return an error. However, the user should
not see this error. Instead, the database will first try another cell, then try to do the
work itself. (See Steps 15 and 16).

13. Assuming the SQL_ID is not quarantined by the BDSQL process on the datanode,
the BDSQL process will do its SmartScan work against the list of blocks/granules
sent to it.

Appendix D
Step-by-Step Process for Querying an External Table

D-15

Tip:

See the blog entry Big Data SQL Quick Start. Storage Indexes - Part10
in The Data Warehouse Insider for details about Storage Indexes and
other aspects of SmartScan processing.

a. The BDSQL offload process has previously read its configuration information
from /opt/oracle/bigdatasql/bdcell-<cell version>/
bigdata.properties.

b. The BDSQL process has previously loaded a JVM based on the properties
defined in the above configuration.

c. If the Hive table has special InputFormat or Serde classes, the JVM will load
those classes assuming it can find them based on the classpath defined in the
above configuration. For some common InputFormats (such as delimited text),
Oracle has written C code that can handle those formats faster than regular
Java code.

d. If Kerberos authentication is used, then the BDSQL’s JVM will send its local
Kerberos ticket to the HDFS datanode process. This is the Kerberos ticket
associated with the oracle Linux user on the datanode where BDSQL is
running.

e. If Sentry authorization is used, the oracle Linux user’s Kerberos ticket’s
identity needs to have been granted access to the Hive table and underlying
HDFS data.

f. The BDSQL server will update statistics like “cell XT granule IO bytes saved
by StorageIndex” as it runs.

14. The database kcfis layer will collect results as they are returned from the BDSQL
processes on the datanodes and send the next batch of blocks/granules to the
BDSQL processes.

a. The database will update the “cell interconnect bytes returned by XT
smart scan” statistic as bytes are returned

15. If there are issues with a BDSQL process for a given block, the database will try to
send the work to a different BDSQL process (it will pick a location that has a
replica of the block that failed).

a. The database will update the “cell XT granule predicate offload
retries” statistic.

16. If the database is unable to get the BDSQL processes to successfully offload a
block even after retrying, then the database will “fallback” and have the JVM in the
extprocbds_<db>_<cluster> do the work.

a. This will be slower as the raw data will need to be moved to the database
server for processing.

b. If the Hive table has any special InputFormats or Serdes, the
extprocbds_<db>_<cluster>’s JVM will need to load them based on the
classpath configuration defined on the database’s bigdata.properties
file.

17. The results from the external table data source continue to be collected until all
input paths/blocks/granules are handled.

Appendix D
Step-by-Step Process for Querying an External Table

D-16

https://blogs.oracle.com/datawarehousing/entry/big_data_sql_quick_start9
https://blogs.oracle.com/datawarehousing/

D.7 Step-by-Step for a Hive Data Dictionary Query
This section describes the events that occur in a query over a Hive Data Dictionary.

1. User queries one of the Oracle Big Data SQL data dictionary views, such as
all_hive_tables.

In Oracle Big Data SQL 2.0 and earlier, if this was the user_hive_* view and the
user was not a DBA, then the user needed to be listed in the SYS.HIVE_URI$ table.
Oracle Big Data SQL 3.0 removed the HIVE_URI$ check.

2. The view accesses the GetHiveTable pl/sql pipelined table function.

3. The GetHiveTable function is implemented by the HiveMetadata type which is
implemented as an external procedure using the SYS.DBMSHADOOPLIB library.

4. The Oracle Database spawns a new instance of the “extproc” for this database
session. The extproc reads the $ORACLE_HOME/hs/admin/extproc.ora file
for settings.

You can set TRACE_LEVEL=ON for tracing of the C code. Log file will be written
to $ORACLE_HOME/hs/log.

By default, there may be an error in the extproc.ora, causing an “Error in
assignment statement” message in the log . The statement “SET EXTPROC_DLLS=”
(with no value after the equal sign) is not valid. Comment this line out if you want
to use TRACE_LEVEL=ON .

5. The extproc attaches the libkubsagt.so library (as in SYS.DBMSHADOOPLIB).

6. Libkubsagt12.so initiates a JVM and loads the HiveMetadata.jar.

a. The JVM uses the configuration information in $ORACLE_HOME/
bigdatasql/bigdata_config/ to identify the list of clusters and their Hive
metastore connection information.

b. Logging for the JVM is based on $ORACLE_HOME/bigdatasql/
bigdata_config/bigdata-log4j.properties. Log files will be written
to $ORACLE_HOME/bigdatasql/log . There will be a new log file for each
database session.

7. The Java code in HiveMetadata.jar uses the Hive metastore client libraries to
connect to the Hive metastore to retrieve data about all of the databases and all of
the tables.

a. If the Hive metastore is protected by Kerberos, the JVM will try to send the
Kerberos ticket of the oracle Linux user who is running the database

8. The Java code returns the request data back to the database.

D.8 Key Adminstration Tasks for Oracle Big Data SQL
These are notes about some important administrative tasks.

• Restarting the extprocbds_<db>_<hcluster>:

$ crsctl stop res bds_<dbname>_<hcluster>

Appendix D
Step-by-Step for a Hive Data Dictionary Query

D-17

Quick way, but not the best way: kill the extprocbds_* process and wait for it to
come back

• Restarting the extproc.

This begins a new database session.

• Restarting the Oracle Big Data SQL software on the datanodes:

– Use Cloudera Manager or the Ambari Web UI.

– Quick way, but not the best way: kill the bdsqloflsrv process and wait for it to
come back.

– Command line method on an Oracle Big Data Appliance (logged on as root
on node1):

$ bdacli stop big_data_sql_cluster
$ bdacli start big_data_sql_cluster

• Checking for Oracle Big Data SQL quarantines on a single datanode:

$ bdscli -e list quarantine detail

To check for quarantines on all datanodes:

$ dcli -g cells.lst bdscli -e list quarantine detail

• Clearing Oracle Big Data SQL quarantines on a single datanode:

 $ bdscli -e drop quarantine all

To clear quarantines on all DataNodes:

$ dcli -g cells.lst bdscli -e drop quarantine all

• Checking statistics for proper offloading:

– Use the Sql Monitor hint: /*+ MONITOR*/.

– Query XT statistics. Ensure that “retries” is zero and “bytes returned” is greater
than zero.

• Looking for log files on the datanodes:

1. Clear quarantines on all datanodes

2. Set Log property in /opt/oracle/bigdatasql/bdcell-12.1/bigdata-
log4j.properties on datanodes.

3. Restart bdsqloflsrv on datanodes.

4. Cd to the log file directory: /opt/oracle/bigdatasql/bdcell-12.1/
log.

5. tail -f bigdata-log4j.log

6. Ensure that your query has data on the node you are looking at (i.e. your
query should need to access files with many blocks. If you only touch a small
number of blocks, the result may be that your datanode is not be asked to do
any work)

Appendix D
Key Adminstration Tasks for Oracle Big Data SQL

D-18

7. Make a new database session (to reset XT statistics) and Run query.

Tip:

Use the /*+MONITOR*/ hint if you want to be sure to see it in SQL
Monitor.

You should see new entries in the datanode’s bigdata-log4j.log.

8. On the Oracle Database server, query XT statistics and check that retries=0
and bytes returned>0.

• Looking for log files on the database:

1. Clear quarantines on all data nodes

2. Make a new database session (to reset XT statistics)

3. Find out what instance your session is connected to (in case you got load-
balanced to a different database server than the one you logged on to):

select host_name from v$instance;

4. Log in to that instance’s database server at the Linux level.

5. Set log properties in $ORACLE_HOME/bigdatasql/bigdata-
log4j.properties.

6. Restart extprocbds_<db>_<hcluster> on that instance to pick up the log
property changes

7. Turn on XT tracing:

This command turns on external table logging:

alter session set "_xt_trace"="low","compilation","execution";

This command adds additional tracing:

alter session set events 'trace[KCFIS] disk high, memory high';

8. Run the query.

Tip:

Use the /*+ MONITOR */ hint if you want to be sure to see it in SQL
Monitor.

9. Query XT statistics and see if retries=0 and bytes returned>0.

select n.name, s.value /* , s.inst_id, s.sid */ from v$statname n,
gv$mystat s where n.name like '%XT%' and s.statistic# =
n.statistic# ;

Appendix D
Key Adminstration Tasks for Oracle Big Data SQL

D-19

10. Look at JVM log file: $ORACLE_HOME/bigdatasql. (Look for the one with
the same PID as the extprocbds_* process.)

11. Look at database trace_file:

 select value from v$diag_info WHERE name = 'Default Trace File';

D.9 Additional Java Diagnostics
The following are some additional Java diagnostics.

• You can add JVM properties to the bigdata.properties file as shown below. This
can be good for hard-to-spot low-level Kerberos issues.

java.options=-Dsun.security.krb5.debug=true

• The extproc and extprocbds_<dbname>_<hcluster> processes run the JVMs on
the database and the bdsqloflsrv process runs the JVM on the datanode. You
can see this by running the “jps” command:

$ORACLE_HOME/bigdatasql/jdk*/bin/jps

• If you are very comfortable with your Java skills, you can also use Oracle
JVisualVM or Oracle JConsole to connect to the JVMs.

D.10 Checking for Correct Oracle Big Data SQL Patches
Patch and Datapatch errors can have a number of different causes and effects. One
thing you can do is check to ensure that the expected patches are loaded.

If you see "wrong number or types of arguments in a call to 'FETCH_OPEN' in
the error stack

Here is an example of an error stack that may warrant a query of
DBA_REGISTRY_SQLPATCH to determine if the correct patches are loaded:

ORA-29913: error in executing ODCIEXTTABLEFETCH callout
ORA-29400: data cartridge error
ORA-06550: line 1, column 25:
PLS-00306: wrong number or types of arguments in call to 'FETCH_OPEN'
ORA-06550: line 1, column 14:PL/SQL: Statement ignored

This may indicate one of several problems.

• A Bundle Patch was not applied correctly

• Datapatch did not run and therefore a patch required by the installed version of
Oracle Big Data SQL is not installed

Appendix D
Additional Java Diagnostics

D-20

In this case, run the following query to determine if patches identified as requirements
for this installation in theOracle Big Data SQL Master Compatibility Matrix (Doc ID
2119369.1 in My Oracle Support) have been applied.

select PATCH_ID, PATCH_UID, VERSION, STATUS, DESCRIPTION from
DBA_REGISTRY_SQLPATCH order by BUNDLE_SERIES

For example, for Oracle Big Data SQL 3.0.1 with BP 12.1.0.2.160419 (22806133),
 the query should return these results.

 PATCH_ID PATCH_UID VERSION STATUS
DESCRIPTION

---------- ---------- ------- ---- ------- -- ------------
22806133 19983161 12.1.0.2 SUCCESS DATABASE
BUNDLE PATCH: 12.1.0.2.160419
(22806133)

If the query fails or the correct patch for the installed bundle is not found, see
2335899.2 in My Oracle Support for more information about troubleshooting
Datapatch.

D.11 Debugging SQL.NET Issues
The following suggestions help to solve possible SQL.NET issues.

Misconfiguration of SQL.NET can result in blocked external procedure calls. If
execution of these calls return ORA errors such as "ORA-28579: network error
during callback from external procedure agent," then check the following My
Oracle Support note and confirm that your configuration is correct.

Setting up Oracle Big Data SQL and Oracle Secure External Password Store
(2126903.1)

My Oracle Support note 1598247.1 describes the symptoms of the problem.

Appendix D
Debugging SQL.NET Issues

D-21

https://support.oracle.com/
https://support.oracle.com/epmos/faces/SearchDocDisplay?_adf.ctrl-state=19jefjvn11_69&_afrLoop=498387286546912
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=383362746931473&id=2126903.1&_adf.ctrl-state=16amirr6s5_77
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=383362746931473&id=2126903.1&_adf.ctrl-state=16amirr6s5_77
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=384714255588740&id=1598247.1&_adf.ctrl-state=16amirr6s5_254

E
Change History for Previous Releases

The following are changes in previous releases of the product.

E.1 Changes in Oracle Big Data SQL 3.2
Oracle Big Data SQL Release 3.2 includes major improvements in performance,
secure network connectivity, authentication, and user administration, as well as
installation and configuration.

JSON CLOB Predicate Pushdown

Much improved filtering and parsing of JSON CLOB data in Hadoop enables Oracle
Big Data SQL to push more processing for these large objects down to the Hadoop
cluster. JSON Data can now be filtered on the Oracle Big Data SQL cells in Hadoop
for CLOB columns up to 1 MB, depending on character set of the input document. The
eligible JSON filter expressions for storage layer evaluation include simplified syntax,
JSON_VALUE, and JSON_QUERY. In addition, Oracle Big Data SQL can project up
to 32 KB of CLOB data from select list expression evaluation in Hadoop to Oracle
Database. Processing falls back to Oracle Database only when column sizes exceed
these two values.

Customers can disable or re-enable this functionality to suit their own needs.

In Release 3.2, this enhancement currently applies only to JSON expressions
returning CLOB data. The same support will be provided for other CLOB types (such
as substr and instr) as well as for BLOB data in a future release.

E-1

Note:

The new JSON CLOB predicate pushdown functionality requires Oracle
Database version 12.1.0.2.180417 or greater, as well as the following
patches:

• The April 2018 Proactive DBBP (Database Bundle Patch). This is patch
27486326.

• The one-off patch 27767148.

Install the one-off patch on all database compute nodes.

The one-off patch 26170659, which is required on top of earlier DBBPs,
is not required on top of the April DBBP.

This functionality is not available through the January 2018 and August 2017
Proactive DBBPs

See the Oracle Big Data SQL Master Compatibility Matrix (Doc ID 2119369.1
in My Oracle Support) for the most up-to-date information on software
version and patch requirements.

Support for Querying Kafka Topics

Release 3.2 provides Hive and Oracle Big Data SQL the ability to query Kafka topics
via a new Hive storage handler. You can use this storage handler to create external
Hive tables backed by data residing in Kafka. Oracle Big Data SQL or Hive can then
query the Kafka data through the external tables. The Kafka key, value, offset, topic
name, and partition id are mapped to Hive columns. You can explicitly designate the
offset for each topic/partition pair, otherwise the offset will start from the earliest offset
in the topic and end with the latest offset in the topic for each partition.

Improved Processing of Parquet Files

Oracle has introduced its own Parquet reader for processing data in Parquet format.
This new reader provides significant performance and resource utilization
improvements over the existing Hive Parquet driver. These include:

• More intelligent column processing retrieval. The reader uses “lazy materialization”
to process only columns with rows that satisfy the filter, thereby improving I/O.

• Leveraging of dictionaries during filter predicate processing to improve CPU
usage.

• Streamlined data conversion, which also contributes to more efficient CPU usage.

The Big Data SQL installation enables the Oracle's Parquet reader by default. You
have the option to disable it and revert to the generic Parquet reader.

Multi-User Authorization

In previous releases of Oracle Big Data SQL, all queries against Hadoop and Hive
data are executed as the oracle user and there is no option to change users. Although
oracle is still the underlying user in all cases, Oracle Big Data SQL 3.2 now uses
Hadoop Secure Impersonation to direct the oracle account to execute tasks on behalf
of other designated users. This enables HDFS data access based on the user that is
currently executing the query, rather than the singular oracle user.

Appendix E
Changes in Oracle Big Data SQL 3.2

E-2

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=400361405103392&id=2119369.1&_adf.ctrl-state=j8ryazrl8_77
https://support.oracle.com/

Administrators set up the rules for identifying the query user. They can provide rules
for identifying the currently connected user and mapping the connected user to the
user that is impersonated. Because there are numerous ways in which users can
connect to Oracle Database, this user may be a database user, a user sourced from
LDAP, from Kerberos, or a user from other sources. Authorization rules on the files
apply for that user and HDFS auditing identifies the actual user running the query.

See Also:

Administration for Multi-User Authorization is done through the
DBMS_BDSQL PL/SQL Package.

Authentication Between Oracle Database and Oracle Big Data SQL Cells

This authentication is between Oracle Database and the Big Data SQL cells on the
Hadoop cluster, facilitating secure communication. The Database Authentication
enhancement provides a safeguard against impersonation attacks, in which a rogue
service attempts to connect to the Oracle Big Data offload server process running on a
cluster node.

Kerberos Ticket Renewal Automation

On a Kerberos-secured network you can configure the installation to set up automated
Kerberos ticket renewal for the oracle account used by Oracle Big Data SQL. This is
done for both the Hadoop cluster and Oracle Database sides of the installation. You
must provide the principal name and the path to the keytab file.in the bds-
config.json configuration file. A template is provided in the configuration file:

"kerberos" : {
"principal" : "oracle/mycluster@MY.DOMAIN.COM",
"keytab" : "/home/oracle/security/oracle.keytab"
}

If you provide the Kerberos parameters in the configuration file, then Oracle Big Data
SQL installation sets up cron jobs on both the Hadoop cluster and Oracle Database
servers. These jobs renew the Kerboeros tickets for the principal once per day.

The principal and keytab file must already exist.

Automatic Upgrade

The current release can now be installed over an earlier release with no need to
remove the older software on either the Hadoop or Oracle Database side. The
previous installation is upgraded to the current release level.

Common Installation Bundle for all Platforms

In previous releases, customers needed to unpack the Oracle Big Data SQL
installation bundle and choose the correct package for their Hadoop system (CDH or
HDP). Now the bundle contains a single installation package that works for all
supported Hadoop systems.

Appendix E
Changes in Oracle Big Data SQL 3.2

E-3

Simpler and Faster Installation with the new “Jaguar” Installer

The Jaguar installer replaces setup-bds.sh , the installer in previous releases.
Jaguar includes these changes:

• Automatic Check for Installation Prerequisites on Hadoop Nodes

Jaguar checks for installation readiness on each Hadoop DataNode and reports
any missing prerequisites.

• No Need to Manually Generate the Database-Side Installation Bundle

The database-side installation bundle that previously was manually generated by
the customer can now be generated automatically. You still need to copy the
bundle to the Oracle Database nodes and install it.

• Faster Overall Installation Time on the Hadoop Side

Installation time will vary, but on the Hadoop Side the installation may take
approximately eight minutes if all resources are local, possibly 20 minutes if
Hadoop clients must be downloaded from the Internet, depending on download
speed.

• Prerequisite Apache Services on CDH can now be Installed as Either
Packages or Parcels

Previously on CDH systems, the Oracle Big Data SQL installation required that the
HDFS, YARN, and HIVE components had been installed as parcels. These
components can now be installed on CDH as either packages or parcels. There is
no change for HDP, where they must be installed as stacks.

Note:

On CDH systems, if the Hadooop services required by Oracle Big Data
SQL are installed as packages, be sure that they are installed from
within Cloudera Manager. Otherwise, Cloudera Manager will not be able
to manage these services. This is not an issue with parcels.

• In the CLI, the Jaguar utility Replaces ./setup-bds

The Jaguar utility is now the primary tool for Hadoop-side installation, de-
installation, and configuration changes, as in these examples:

./jaguar install bds-config.json
./jaguar reconfigure bds-config.json
./jaguar uninstall bds-config.json

• The Default Configuration File Name is bds-config.json, but Alternate File
Names are Also Accepted

You can now drop the explicit bds-config.json argument and allow the installer
default to bds-config.json , as in the first example below. You can also specify
an alternate configuration file of any name, though it must adhere to the same
internal format as bds-config.json and should be given the .json file type.

./jaguar install
./jaguar install cluster2-config.json

Appendix E
Changes in Oracle Big Data SQL 3.2

E-4

You can create configurations files with settings that are tailored to the
requirements of each cluster. For example, you may want to apply different
security parameters to Oracle Big Data SQL installations on test and production
clusters.

• Configuration Parameters Have Changed Significantly

Users of previous releases will see that the Jaguar configuration file includes a
number of new parameters. Most of them are “optional” in the sense that they are
not uniformly required, although your particular installation may require some of
them. See the Related Links section below for links to the table of installer
parameters as well as an example of a configuration file that uses all available
parameters.

• New updatenodes Command for Easier Maintenance

Oracle Big Data SQL must be installed on each Hadoop cluster node that is
provisioned with the DataNode role. It has no function on nodes where DataNode
is not present. The new Jaguar utility includes the updatenodes command which
scans the cluster for instances of the DataNode within the cluster. If the DataNode
role has been removed or relocated, or if nodes provisioned with the DataNode
have been added or removed, then the script installs or uninstalls Oracle Big Data
SQL components from nodes as needed.

• An Extra Installation Step is Required to Enable Some Security Features

If you choose to enable Database Authentication between Oracle Database and
Oracle Big Data SQL cells in the Hadoop cluster, or, Hadoop Secure
Impersonation, then an additional “Database Acknowledge” step is required. In this
process, the installation on the database server generates a ZIP file of
configuration information that you must copy back to the Hadoop cluster
management server for processing.

• On the Database Side, Connections to Clusters are no Longer Classified as
Primary and Secondary.

An Oracle Database system can have Oracle Big Data SQL connections to
multiple Hadoop clusters. In previous releases, the first these connections was
considered the primary (and had to be uninstalled last) and the others were
secondary. In the current release, management of multiple installation is simpler
and --uninstall-as-primary and --uninstall-as-secondary parameters of the
database-side installer are obsolete. However there is now a default cluster. The
Important Terms and Concepts section of this guide explains the significance of
the default cluster.

Support for Oracle Tablespaces in HDFS Extended to Include All Non-System
Permanent Tablespaces

Previous releases supported the move of permanent online tablespaces only to HDFS.
This functionality now supports online, read-only, as well as offline permanent
tablespaces.

Important Change in Behavior of the “mtactl start” Command

Oracle Big Data SQL 3.1 introduced the option to install Oracle Big Data SQL on
servers where Oracle Grid Infrastructure is not present. In these environments, you
can use the start subcommand of the mtactl utility (mtactl start) to start the MTA
(Multi-Threaded Agent) extproc.

Appendix E
Changes in Oracle Big Data SQL 3.2

E-5

Note that in the current release, the mtactl start command works differently from the
original Release 3.1 implementation.

• Current behavior: mtactl start starts an MTA extproc using the init parameter
values that are stored in the repository. It uses the default values only if the
repository does not exist.

• Previous behavior (Oracle Big Data SQL 3.1): mtactl start always uses the
default init parameters regardless of whether or not init parameter values are
stored in the repository.

Appendix E
Changes in Oracle Big Data SQL 3.2

E-6

F
Oracle Big Data SQL Software
Accessibility Recommendations

Oracle Big Data SQL includes tools such as bdscli and ohsh that you run from the
command line. This section provides some tips on using screen readers and screen
magnifiers with these tools.

F.1 Tips on Using Screen Readers and Braille Displays
These tips may help you make better use of screen readers and braille displays with
Oracle Big Data SQL.

• Use a character mode based terminal such as Putty or Cygwin. Do not use an X-
Windows-based VNC.

• For screen reader users, we recommend installing "screen" in order to get multiple
session support. The Linux based screen program allows for multiple sessions in
different windows. You can access each session with keyboard based commands,
for example, Ctrl-a. Screen allows you to detach or re-attach to a given window
session. Like VNC, if you get disconnected when running a session, you can re-
attach to and resume that session.

• In the settings of the terminal software, set the cursor type to "block" cursor, not
blinking or flashing.

• The output of the commands can generate a significant amount of information and
might spill off the terminal window, and the virtual window or braille display. For
example, the following command can generate a long alert history output:

bdscli list alerthistory

To display the output one screen-full at a time, pipe the output through the more
command, as in the following:

bdscli list alerthistory | more

You can then use the space bar key to page through the output.

• A few recommended screen reader settings include the following (JAWS is used
here just as an example):

– Set the JAWS cursor to "All". Use the key combination of Insert + s until you
hear "All".

– You may need to turn off virtual cursor. If you are using JAWS, you can do this
using the key combination of Insert + z.

– Use the virtual window to capture text. If you are using JAWS, you can do this
using the key combination of Insert + Alt + w.

F-1

F.2 Tips on Using Screen Magnifiers
• Screen magnifiers can support both character-based terminals and X-Window-

based VNC.

• If you are using the screen reader function of a screen magnifier, then you should
use a character-based terminal as described above.

• If you are using a VNC, decide your preference for a window display, for example,
TWM or ICE. A display setting for ICE can be done with the following:

vncserver -geometry 1600x950 :2

1600x950 specifies the display size, and :2 specifies the VNC display number.

Appendix F
Tips on Using Screen Magnifiers

F-2

Index

A
access drivers, 1-1, A-1
ACCESS PARAMETERS clause

special characters, 5-1
syntax rules, 5-1

ACCESS PARAMETERS Clause
syntax, 5-1

ALL_HIVE_COLUMNS view, 5-20
ALL_HIVE_DATABASES view, 5-19
ALL_HIVE_TABLES view, 2-4, 5-19
array overflows, 5-12

B
bigdata_config directory, 2-35
binary overflows, 5-12

C
catalog views, 5-18
Cell XT, 1-9
character overflows, 5-12
column mapping, 5-6
com.oracle.bigdata.buffersize, 5-5
com.oracle.bigdata.colmap, 5-6
com.oracle.bigdata.datamode, 5-5
com.oracle.bigdata.erroropt, 5-7
com.oracle.bigdata.fields, 5-8
com.oracle.bigdata.fileformat, 5-10
com.oracle.bigdata.log.exec, 5-11
com.oracle.bigdata.log.qc, 5-12
com.oracle.bigdata.overflow, 5-12
com.oracle.bigdata.rowformat, 5-13
com.oracle.bigdata.tablename, 5-15
CREATE TABLE ORGANIZATION EXTERNAL

syntax, 2-1, A-2
CREATE TABLE statement

generating automatically for Hive, 5-30
CREATE_EXTDDL_FOR_HIVE function

syntax, 5-30

D
data dictionary views, 5-18

data mode, 5-5
data source name, 5-15
data type conversion (Big Data SQL), 2-10
data types (HDFS), 5-8
DBA_HIVE_COLUMNS view, 5-22
DBA_HIVE_DATABASES view, 5-21
DBA_HIVE_TABLES view, 5-21
DBMS_HADOOP package, 5-30
DBMS_OUTPUT package, 2-5
delimited text files, 5-13

E
error handling, 5-7
error handling (Big Data SQL), 2-34
external tables

about, 1-1, A-1

F
field extraction, 5-13
field names, 5-8

H
Hadoop log files, 5-5, 5-11
Hive columns, 5-20
Hive data

access from Oracle Database, 2-3
Hive databases, 5-19
Hive table sources, 5-15
Hive tables, 5-19
Hive views, 5-18

L
log files, 5-12

O
Oracle Big Data SQL

access drivers, 1-1
data type conversion, 2-10
general description, 1-1

Index-1

Oracle Big Data SQL (continued)
installation changes on the Oracle Database

server ., 2-35
Oracle Database

access to Hive data, 2-3
Data Modeler, 2-3
DBMS_HADOOP, 2-3
SQL Developer, 2-3
Use in Oracle Big Data SQL, 2-3

Oracle Exadata Machine
Big Data SQL installation changes, 2-35

ORACLE_HDFS access driver, 2-18
ORACLE_HIVE

access parameters, 5-3
ORC files, 5-10
overflow handling, 5-12

P
Parquet files, 5-10
parsing HDFS files, 5-13
PL/SQL packages, 5-30
PUT_LINE function, 2-5

R
RC files, 5-10

row format description, 5-10
row formats, 5-13

S
sequence files, 5-10
SerDe parsing, 5-13
Smart Scan, 1-2
SmartScan mode, 5-5
source name, 5-15
static data dictionary views, 5-18
Statistics, 1-9
struct overflows, 5-12

T
text files, 5-10
text overflows, 5-12

U
union overflows, 5-12
user access from Oracle Database, 2-33
USER_HIVE_COLUMNS view, 5-22
USER_HIVE_DATABASES view, 5-22
USER_HIVE_TABLES view, 5-22

Index

Index-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Backus-Naur Form Syntax
	Changes in Oracle Big Data SQL 4.0

	1 Introducing Oracle Big Data SQL
	1.1 What Is Oracle Big Data SQL?
	1.1.1 About Oracle External Tables
	1.1.2 About the Access Drivers for Oracle Big Data SQL
	1.1.3 About Smart Scan for Big Data Sources
	1.1.4 About Storage Indexes
	1.1.5 About Predicate Push Down
	1.1.6 About Pushdown of Character Large Object (CLOB) Processing
	1.1.7 About Aggregation Offload
	1.1.8 About Oracle Big Data SQL Statistics

	1.2 Installation
	1.3 Security Overview

	2 Using Oracle Big Data SQL for Data Access
	2.1 Creating External Tables
	2.1.1 About the SQL CREATE TABLE Statement
	2.1.1.1 Basic Syntax
	2.1.1.2 About the External Table Clause

	2.1.2 Creating an Oracle External Table for Hive Data
	2.1.2.1 Obtaining Information About a Hive Table
	2.1.2.2 Using the CREATE_EXTDDL_FOR_HIVE Function
	2.1.2.3 Using Oracle SQL Developer to Connect to Hive
	2.1.2.4 Developing a CREATE TABLE Statement for ORACLE_HIVE
	2.1.2.4.1 Using the Default ORACLE_HIVE Settings
	2.1.2.4.2 Overriding the Default ORACLE_HIVE Settings

	2.1.2.5 Hive to Oracle Data Type Conversions

	2.1.3 Creating an Oracle External Table for Oracle NoSQL Database
	2.1.3.1 Creating a Hive External Table for Oracle NoSQL Database
	2.1.3.2 Creating the Oracle Database Table for Oracle NoSQL Data
	2.1.3.3 About Oracle NoSQL to Oracle Database Type Mappings
	2.1.3.4 Example of Accessing Data in Oracle NoSQL Database
	2.1.3.4.1 Creating the Oracle NoSQL Database Example Table
	2.1.3.4.2 Creating the Example Hive Table for vehicleTable
	2.1.3.4.3 Creating the Oracle Table for VEHICLES

	2.1.4 Creating an Oracle External Table for Apache HBase
	2.1.4.1 Creating a Hive External Table for HBase
	2.1.4.2 Creating the Oracle Database Table for HBase

	2.1.5 Creating an Oracle External Table for HDFS Files
	2.1.5.1 Using the Default Access Parameters with ORACLE_HDFS
	2.1.5.2 ORACLE_HDFS LOCATION Clause
	2.1.5.3 Overriding the Default ORACLE_HDFS Settings
	2.1.5.3.1 Accessing a Delimited Text File
	2.1.5.3.2 Accessing Avro Container Files
	2.1.5.3.3 Accessing JSON Data

	2.1.6 Creating an Oracle External Table for Kafka Topics
	2.1.6.1 Using Oracle's Hive Storage Handler for Kafka to Create a Hive External Table for Kafka Topics
	2.1.6.2 Creating an Oracle Big Data SQL Table for Kafka Topics

	2.1.7 Creating an Oracle External Table for Object Store Access
	2.1.7.1 Create Table Example for Object Store Access
	2.1.7.2 Accessing a Local File through an Oracle Directory Object
	2.1.7.3 Parquet to Oracle Data Type Conversions
	2.1.7.4 Avro to Oracle Data Type Conversions
	2.1.7.5 ORACLE_BIGDATA Support for Compressed Files

	2.2 Querying External Tables
	2.2.1 Granting User Access
	2.2.2 About Error Handling
	2.2.3 About the Log Files
	2.2.4 About File Readers
	2.2.4.1 Using the Custom Parquet Reader for Oracle Big Data SQL

	2.3 About Oracle Big Data SQL on the Database Server (Oracle Exadata Machine or Other)
	2.3.1 About the bigdata_config Directory
	2.3.2 Common Configuration Properties
	2.3.2.1 bigdata.properties
	2.3.2.2 bigdata-log4j.properties

	2.3.3 About the Cluster Directory
	2.3.4 About Permissions

	3 Storing Oracle Data in Hadoop
	3.1 Using Copy to Hadoop
	3.1.1 What Is Copy to Hadoop?
	3.1.2 Getting Started Using Copy to Hadoop
	3.1.2.1 Table Access Requirements for Copy to Hadoop

	3.1.3 Using Oracle Shell for Hadoop Loaders With Copy to Hadoop
	3.1.3.1 Introducing Oracle Shell for Hadoop Loaders

	3.1.4 Copy to Hadoop by Example
	3.1.4.1 First Look: Loading an Oracle Table Into Hive and Storing the Data in Hadoop
	3.1.4.2 Working With the Examples in the Copy to Hadoop Product Kit
	3.1.4.2.1 Using Copy to Hadoop With the Default Copy Method
	3.1.4.2.2 Using Copy to Hadoop With the Staged Copy Method

	3.1.5 Querying the Data in Hive
	3.1.6 Column Mappings and Data Type Conversions in Copy to Hadoop
	3.1.6.1 About Column Mappings
	3.1.6.2 About Data Type Conversions

	3.1.7 Working With Spark
	3.1.8 Using Oracle SQL Developer with Copy to Hadoop

	3.2 Storing Oracle Tablespaces in HDFS
	3.2.1 Advantages and Limitations of Tablespaces in HDFS
	3.2.2 About Tablespaces in HDFS and Data Encryption
	3.2.3 Moving Tablespaces to HDFS
	3.2.3.1 Using bds-copy-tbs-to-hdfs
	3.2.3.2 Manually Moving Tablespaces to HDFS

	3.2.4 Smart Scan for TableSpaces in HDFS

	4 Working With Query Server
	4.1 About Oracle Big Data SQL Query Server
	4.2 Important Terms and Concepts
	4.3 Query Server Features
	4.4 Specifying the Hive Databases to Synchronize With Query Server
	4.4.1 Specifying the Hive Databases in the bds-config.json Configuration File
	4.4.2 Updating the Hive Databases With the sync_hive_db_list Configuration Parameter

	4.5 Synchronizing Query Server With Hive
	4.5.1 Restarting Query Server Manually by Using Cloudera Manager
	4.5.2 Synchronizing Query Server Manually by Using Cloudera Manager
	4.5.3 Synchronizing Query Server Manually by Using the PL/SQL API
	4.5.4 Enabling Query Server Full Synchronization

	4.6 Query Server Restarts and Metadata Persistence
	4.7 Query Server Security

	5 Oracle Big Data SQL Reference
	5.1.1 CREATE TABLE ACCESS PARAMETERS Clause
	5.1.1.1 Syntax Rules for Specifying Properties
	5.1.1.2 ORACLE_HDFS Access Parameters
	5.1.1.2.1 Default Parameter Settings for ORACLE_HDFS
	5.1.1.2.2 Optional Parameter Settings for ORACLE_HDFS

	5.1.1.3 ORACLE_HIVE Access Parameters
	5.1.1.3.1 Default Parameter Settings for ORACLE_HIVE
	5.1.1.3.2 Optional Parameter Values for ORACLE_HIVE

	5.1.1.4 Full List of Access Parameters for ORACLE_HDFS and ORACLE_HIVE
	5.1.1.4.1 com.oracle.bigdata.buffersize
	5.1.1.4.2 com.oracle.bigdata.datamode
	5.1.1.4.3 com.oracle.bigdata.colmap
	5.1.1.4.4 com.oracle.bigdata.erroropt
	5.1.1.4.5 com.oracle.bigdata.fields
	5.1.1.4.6 com.oracle.bigdata.fileformat
	5.1.1.4.7 com.oracle.bigdata.log.exec
	5.1.1.4.8 com.oracle.bigdata.log.qc
	5.1.1.4.9 com.oracle.bigdata.overflow
	5.1.1.4.10 com.oracle.bigdata.rowformat
	5.1.1.4.11 com.oracle.bigdata.tablename

	5.1.1.5 ORACLE_BIGDATA Access Parameters

	5.1.2 Static Data Dictionary Views for Hive
	5.1.2.1 ALL_HIVE_DATABASES
	5.1.2.2 ALL_HIVE_TABLES
	5.1.2.3 ALL_HIVE_COLUMNS
	5.1.2.4 DBA_HIVE_DATABASES
	5.1.2.5 DBA_HIVE_TABLES
	5.1.2.6 DBA_HIVE_COLUMNS
	5.1.2.7 USER_HIVE_DATABASES
	5.1.2.8 USER_HIVE_TABLES
	5.1.2.9 USER_HIVE_COLUMNS

	5.1.3 DBMS_BDSQL PL/SQL Package
	5.1.3.1 ADD_USER_MAP
	5.1.3.2 REMOVE_USER_MAP
	5.1.3.3 Multi-User Authorization Security Table

	5.1.4 DBMS_BDSQS_ADMIN PL/SQL Package
	5.1.5 DBMS_HADOOP PL/SQL Package
	5.1.5.1 CREATE_EXTDDL_FOR_HIVE
	5.1.5.1.1 Example

	Appendices
	A Manual Steps for Using Copy to Hadoop for Staged Copies
	A.1 Generating the Data Pump Files
	A.1.1 About Data Pump Format Files
	A.1.2 Identifying the Target Directory
	A.1.3 About the CREATE TABLE Syntax

	A.2 Copying the Files to HDFS
	A.3 Creating a Hive Table
	A.3.1 About Hive External Tables

	A.4 Example Using the Sample Schemas
	A.4.1 About the Sample Data
	A.4.2 Creating the EXPDIR Database Directory
	A.4.3 Creating Data Pump Format Files for Customer Data
	A.4.3.1 CREATE TABLE Example With a Simple SELECT Statement
	A.4.3.2 CREATE TABLE Example With a More Complex SQL SELECT Statement

	A.4.4 Verifying the Contents of the Data Files
	A.4.5 Copying the Files into Hadoop
	A.4.6 Creating a Hive External Table

	B Using Copy to Hadoop With Direct Copy
	B.1 Manual Steps for Using Copy to Hadoop for Direct Copies
	B.2 Copy to Hadoop Property Reference

	C Using mtactl to Manage the MTA extproc
	D Diagnostic Tips and Details
	D.1 Running Diagnostics with bdschecksw
	D.2 How to do a Quick Test
	D.3 Oracle Big Data SQL Database Objects
	D.4 Other Database-Side Artifacts
	D.5 Hadoop Datanode Artifacts
	D.6 Step-by-Step Process for Querying an External Table
	D.7 Step-by-Step for a Hive Data Dictionary Query
	D.8 Key Adminstration Tasks for Oracle Big Data SQL
	D.9 Additional Java Diagnostics
	D.10 Checking for Correct Oracle Big Data SQL Patches
	D.11 Debugging SQL.NET Issues

	E Change History for Previous Releases
	E.1 Changes in Oracle Big Data SQL 3.2

	F Oracle Big Data SQL Software Accessibility Recommendations
	F.1 Tips on Using Screen Readers and Braille Displays
	F.2 Tips on Using Screen Magnifiers

	Index

