
Oracle® Cloud
Administering Oracle Cloud Identity Management

Release 17.2

E59052-15

May 2017

Documentation for Oracle Cloud account administrators,
security administrators, and identity domain administrators
that explains how to configure Federation SSO and how to
provision OAuth resources and clients using the self-service
user interface (UI) and how to protect Oracle Cloud services
using two-legged OAuth, service-to-service authorization.

Oracle Cloud Administering Oracle Cloud Identity Management, Release 17.2

E59052-15

Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... v

Audience .. v

Scope of the Guide.. v

Related Resources ... v

Conventions.. vi

1 Managing Oracle Single Sign-On

Overview of SSO Configuration Tasks.. 1-1

Exploring the SSO Configuration Page in My Services .. 1-2

Configuring Oracle Cloud as the Service Provider ... 1-3

Configuring an Identity Provider... 1-5

Testing SSO.. 1-6

Problems Identified by Testing SSO .. 1-6

Enabling SSO ... 1-7

Enabling Sign In With Identity Domain Credentials .. 1-7

Removing Users .. 1-8

Updating SSO Metadata .. 1-8

Troubleshooting SSO.. 1-9

2 Managing OAuth Resources and Clients

Exploring the OAuth Administration Page in My Services ... 2-2

How Do I Set Up OAuth in Oracle Cloud?... 2-4

How Do I Administer OAuth in Oracle Cloud? .. 2-5

Registering New Resources in Oracle Cloud.. 2-6

Overview of Managing OAuth Resources .. 2-7

Viewing OAuth Resources .. 2-7

Updating OAuth Resources .. 2-8

Deleting OAuth Resources .. 2-9

Overview of OAuth Client Configuration Tasks ... 2-10

Overview of Registering OAuth Clients ... 2-10

Registering Client Information in OAuth ... 2-11

Registering an Untrusted OAuth Client.. 2-11

iii

Registering a Trusted OAuth Client .. 2-12

Importing an OAuth Certificate from a Key Pair .. 2-14

Extracting a Certificate by Using openssl ... 2-15

Extracting a Certificate by Using the Certificate Import and Certificate Export Wizards........... 2-15

Associating a Certificate with an OAuth Client... 2-16

Overview of Managing OAuth Clients ... 2-16

Viewing OAuth Clients ... 2-17

Updating OAuth Clients.. 2-19

Managing Client Certificates... 2-20

Deleting OAuth Clients ... 2-21

Troubleshooting OAuth... 2-22

3 Securing Authorizations in Oracle Cloud

How Do I Use Authorization Grants? ... 3-1

Resource Owner Password Credentials Workflow ... 3-3

Step-by-Step Workflow of the Resource Owner Password Credentials Grant 3-3

Using REST API Calls for the Resource Owner Password Credentials Grant 3-4

Obtaining an Access Token by Using the User Credentials Without a Client Assertion 3-4

Obtaining an Access Token by Using the User Credentials and a JWT Client Assertion 3-7

Client Credentials Grant Workflow... 3-9

Step-by-Step Workflow of the Client Credentials Grant .. 3-10

Using REST API Calls for the Client Credentials Grant ... 3-11

Obtaining an Access Token by Using a Client Authorization Header................................... 3-11

Obtaining an Access Token by Using a Self-Signed Client Assertion.................................... 3-13

User Assertion Workflow .. 3-16

Using REST API Calls for the User Assertion Grant ... 3-17

Obtaining an Access Token by Using a Self-Signed User Assertion and the Client

Credentials ... 3-18

Obtaining an Access Token by Using a Self-Signed User Assertion and a Client Assertion

... 3-20

Successful Authorization... 3-23

Authorization Error.. 3-26

iv

Preface

Oracle ® Cloud Administering Oracle Cloud Identity Management explains how to
provision Oracle Single Sign-On (SSO)and configure various OAuth resources and
clients using the self-service user interface.

Topics:

• Audience

• Scope of the Guide

• Related Resources

• Conventions

Audience
This guide is intended for Oracle Cloud account administrators and customers buying
Oracle Cloud services, who want to configure SSO and Identity Federation using
Security Assertion Markup Language (SAML), and manage various OAuth resources
and clients..

Scope of the Guide
The tasks explained in the guide include:

• Single Sign-On (SSO)

• OAuth resource management

• OAuth client management

Shared Identity Management (SIM) uses SAML to function as a SAML service
provider to Oracle Fusion Applications SAML identity provider. This is done through
Oracle Public Cloud support. In addition, SIM operates as a SAML service provider to
federate with a SAML identity provider, such as Oracle Fusion Applications, Oracle
Access Management, Microsoft Active Directory Federation Services (ADFS), and
Shibboleth.

Related Resources
For additional documentation related to your Oracle Cloud service, visit the Oracle
Cloud website at:

http://cloud.oracle.com

v

http://cloud.oracle.com

Open the Support menu at the top of the page and select Documentation to access the
Oracle Cloud Documentation home page. Search or browse the library for
documentation specific to your application, infrastructure, or platform cloud service.

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

1
Managing Oracle Single Sign-On

By implementing Oracle Single Sign-On, your users can access multiple Oracle Cloud
services using one set of credentials. Also, logging out of one service logs a user out of
all other services.

As administrator, you configure SSO because you want to use identity federation
between Oracle Cloud as service provider and an external identity provider. This task
requires you to configure Oracle Cloud as service provider, prepare your identity
provider, test your SSO configuration, and finally, enable SSO.

Topics:

• Overview of SSO Configuration Tasks

• Exploring the SSO Configuration Page in My Services

• Configuring Oracle Cloud as the Service Provider

• Configuring an Identity Provider

• Testing SSO

• Problems Identified by Testing SSO

• Enabling SSO

• Enabling Sign In With Identity Domain Credentials

• Removing Users

• Updating SSO Metadata

• Troubleshooting SSO

Note: To learn more about the concepts of Oracle Single Sign-On, see About
SSO in Understanding Identity Concepts.

Overview of SSO Configuration Tasks
As administrator, you enable SSO so your users can use their company credentials to
log in to all applications, including Oracle Cloud applications. This requires you to
configure SAML 2.0 between Oracle Cloud and the identity provider.

The following table shows you the steps that you must follow when configuring SSO
on the SSO Configuration page from My Services in Oracle Cloud:

Managing Oracle Single Sign-On 1-1

Task Description Additional Information

Configure Oracle Cloud as a service
provider.

Go to the Users page and then
click the SSO Configuration tab to
configure Oracle Cloud as the
service provider.

Configuring Oracle Cloud as the
Service Provider

Configure an identity provider. After you configure Oracle Cloud
as a service provider, you
configure your identity provider.

Configuring an Identity Provider

Test Single Sign-On. Test your SSO configuration before
enabling SSO.

Testing Single Sign-On

Identify problems by testing SSO. Testing SSO can identify a number
of problems that you must fix
before you can enable SSO.

Problems Identified by Testing SSO

Enable SSO. You must enable SSO before you
can use it.

Enabling SSO

Enable sign in with identity domain
credentials.

If you want users (such as identity
domain administrators) to log in
using their identity domain
credentials, you must enable this
option,

Enabling Sign In With Identity
Domain Credentials

Remove users. After you enable SSO, ensure that
users do not have credentials in
Oracle Cloud.

Removing Users

Update SSO metadata. At some point, after you’ve
enabled SSO in production, you
might need to update the SSO
metadata.

Updating SSO Metadata

Troubleshoot SSO. If you can’t resolve a configuration
problem by testing SSO, then you
must troubleshoot the
configuration.

Troubleshooting SSO

Exploring the SSO Configuration Page in My Services
The SSO Configuration page in My Services helps Oracle Cloud account
administrators and customers buying Oracle Cloud services to configure SSO between
your identity provider and with Oracle Cloud as the service provider.

What You Can Do from the SSO Configuration Page

The following table describes what you can do from the SSO Configuration page:

Exploring the SSO Configuration Page in My Services

1-2 Oracle Cloud Administering Oracle Cloud Identity Management

Tool Description

Click Remove Users to remove users that you added in
Oracle Cloud before enabling SSO. To learn more about
why you should remove these users, see Removing Users.

Click Configure SSO to start a set of tasks to configure an
identity provider, service provider, and SSO.

To learn more about the configuration steps and the tasks
that you must perform, see Managing Oracle Single Sign-
On.

The Configure an Identity Provider with Oracle Cloud -
Tutorial Series guides you through the configuration steps
for different identity providers.

What You Can See from the SSO Configuration Page

The SSO Configuration page displays the following information:

Field Description

You can see the status of the SSO configuration when you
access the SSO Configuration page. Before configuring SSO,
it shows that SSO is Not Configured.

You can start configuring SSO between Oracle Cloud and
your identity provider.

Configuring Oracle Cloud as the Service Provider
To configure SSO, start with configuring Oracle Cloud as service provider.

To configure SAML 2.0 SSO between Oracle Cloud as service provider and the identity
provider:

1. Go to the My Services dashboard page and click Users. Then click the SSO
Configuration tab.

2. Click Configure SSO.

The Configure SSO page is displayed.

3. Select whether to import identity provider metadata or enter provider the metadata
manually. Your choice depends on whether your identity provider can export
metadata.

4. The next step depends on the selection that you made in Step 3.

a. If your Identity Provider can export metadata, then you can import the
metadata into Oracle Cloud. Select Import Identity Provider metadata. Click
Choose File and upload the identity provider metadata file (such as
idp_metadata.xml).

Configuring Oracle Cloud as the Service Provider

Managing Oracle Single Sign-On 1-3

https://apexapps.oracle.com/pls/apex/f?p=44785:24:0:::24:P24_CONTENT_ID,P24_PREV_PAGE:11333,1
https://apexapps.oracle.com/pls/apex/f?p=44785:24:0:::24:P24_CONTENT_ID,P24_PREV_PAGE:11333,1

b. For the SSO Protocol field, HTTP POST is recommended and is the default.
The SSO Protocol field value refers to the SAML binding that’s used. SAML
bindings define how the SAML protocols map to the type of transport used.
Oracle Cloud supports HTTP POST and HTTP Artifact. The HTTP POST
binding defines how SAML protocol messages can be transported with the
base64-encoded content of a form control within an HTML form. The HTTP
Artifact binding defines how a reference (or artifact) to a SAML request or
response is transported over HTTP; the artifact (a small representation of a
complete SAML assertion) can be embedded in a URL as a query string
parameter, or it can be placed in a hidden form control.

c. Select the User Identifier field. The user identifier is the Oracle LDAP directory
attribute that’s used to map the user information contained in the incoming SSO
SAML assertion to an Oracle Cloud user. It’s either the user's email address or
the user ID. Select User's Email Address.

d. Select the contained in field. If the User Identifier is the user's email address,
then the contained in field must be NameID.

Note:

If the User Identifier value is the user ID, then the contained in field must be
the SAML attribute and you must specify the name of the SAML attribute for
the contained in field such as SamAccountName in the case of Microsoft
Active Directory Federation Services.

e. Click Save.

f. If your identity provider can’t export metadata, then you must enter metadata
information manually, which means you must also provide the Issuer ID and
SSO Service URL (this is the SAML assertion consumer URL), and indicate
whether Global logout should be enabled. You must also load your identity
provider’s signing certificate and encryption certificate.

Configuring Oracle Cloud as the Service Provider

1-4 Oracle Cloud Administering Oracle Cloud Identity Management

Configuring an Identity Provider
After you configure Oracle Cloud as a service provider, configure your identity
provider in the Configure your Identity Provider Information section of the SSO
Configuration page.

1. Go to the Users page and click the SSO Configuration tab. Then scroll down to the
Configure your Identity Provider Information section.

2. What you need to configure the identity provider depends on one of the following:

• If your identity provider can import metadata, export the metadata from the
Service Provider to import into the Identity Provider by doing the following:

a. In the Configure your Identity Provider Information section click Export
Metadata, then select Provider Metadata.

b. Save the metadata to a local file as SP_metadat.xml.

• If your identity provider can’t import metadata, then copy and paste the
provider ID and URLs into a SAML 2.0 file to be used by the identity provider.
Download the certificates from the service provider.

3. Configure your identity provider, using its configuration interface. The
configuration steps are specific to each identity provider.

Configuring an Identity Provider

Managing Oracle Single Sign-On 1-5

Testing SSO
Test SSO to identify any SSO configuration problems.

Go to the Users page and then click the SSO Configuration tab.

1. On the SSO Configuration page in the Test your SSO section, click Test.

The Initiate Federation SSO page appears.

2. Click Start SSO.

Clicking Start SSO triggers a Federation SSO workflow. You’re redirected to the
identity provider’s login page and challenged for authentication.

3. Log in as an administrator. After the Federation SSO is performed, the result is
displayed in the Test SSO page.

4. The next step depends on whether the test is successful:

• If the test is successful, then proceed to Enabling SSO.

• If the test is unsuccessful, then view the test results to determine the cause. See
Problems Identified by Testing SSO

Problems Identified by Testing SSO
The Test SSO feature can identify various problems.

The Assertion Couldn’t be Mapped to an Oracle Cloud User

This may occur for the following reasons:

• The SIM user corresponding to the identity provider user doesn't exist.

• Oracle Cloud was incorrectly configured to map the incoming SSO assertion.

An Error Occurs When Oracle Cloud Consumes the SAML Assertion

To resolve this problem:

• Ensure that the Oracle Cloud federation server has the latest identity provider
metadata and signing certificate.

• If the identity provider encrypts the assertion, ensure that the identity provider
has the correct Oracle Cloud encryption certificate.

After Logging Out, the User is Automatically Logged in Again

This typically occurs when Oracle Cloud is wired with the identity provider using
HTTP basic authentication or with Microsoft Active Directory Federation Services
identity provider using Windows Integrated Authentication as the challenge
mechanism. Upon logging out and performing the SAML 2.0 logout protocol, the user
is automatically logged in again. The identity provider can’t log the user out because:

• The browser caches the HTTP basic authentication credentials and thus the
identity provider can’t log the browser out.

Testing SSO

1-6 Oracle Cloud Administering Oracle Cloud Identity Management

• The Windows Desktop machine where the user is signed in automatically signs in
the browser with Microsoft Active Directory Federation Services identity
provider, so the identity provider can’t log the browser out.

To resolve this problem, change the authentication mechanism at the identity
provider.

The Identity Metadata Fails to Be Uploaded from the Console.

To resolve this problem:

• Ensure that the metadata wasn’t modified.

• When downloading the metadata from the identity provider, save it using the File
—> Save As command. That is, don’t copy and paste the contents of the browser,
because this action modifies the contents of the metadata.

SSO Fails Because the Assertion Isn’t Signed.

The Oracle Cloud federation server requires the SAML assertion to be signed. Ensure
that the assertion is signed and contains a digital signature element, even if the SSO
response is signed.

Problems that Can’t Be Resolved

If you can’t resolve the problem using the Test feature, proceed to Troubleshooting
SSO.

Enabling SSO
Until you specifically enable SSO, you can’t use it. After SSO is enabled, you should be
able to authenticate through the identity provider, after selecting Sign in using your
company ID on the Sign In to Oracle Cloud page.

Go to the Users page and then click the SSO Configuration tab. If the status in the
Enable SSO section is SSO is Not Enabled, and you tested SSO successfully, and you
want to enable SSO, then click Enable SSO to enable SSO for all Oracle Cloud
services. Until you do this, SSO isn’t enabled.

After you enabled SSO, you can disable it from the Enable SSO section of the SSO
Configuration page.

Enabling Sign In With Identity Domain Credentials
After SSO is enabled, users typically sign in using their identity provider credentials. If
you want your users to be able to sign in with their identity domain (Oracle Cloud)
credentials, you need to enable this option.

After you enable SSO, you have the option to allow users to sign in with their identity
domain credentials as well. This option is disabled by default because typically, as
administrator you want to force users to log in using their identity provider
credentials.

To enable the option for users to sign in with their identity domain credentials:

1. Go to the Users page and then click the SSO Configuration tab.

2. Go to the Enable Sign In to Oracle Cloud Services with Identity Domain
credentials section. Click Enable.

Enabling SSO

Managing Oracle Single Sign-On 1-7

3. A confirmation window appears informing you that after enabling, users that do
have credentials in their identity domains (for example identity domain
administrators), will be able to sign in to Oracle Cloud services using either their
identity provider or identity domain credentials.

Note: You can’t enable signing in with identity domain credentials, if SSO
was auto-configured for your system. The Enable Sign In to Oracle Cloud
Services with Identity Domain credentials button is disabled in this case.

After you enabled sign in to Oracle Cloud with identity domain credentials, you can
disable it from the Enable Sign In to Oracle Cloud Services with Identity Domain
credentials section of the page. This is necessary, if you want to force users to sign in
only with their identity provider credentials.

Removing Users
Remove all users without the identity domain administrator role after you enable SSO.

After you enable SSO, only users that have the identity domain administrator role or
were created before SSO was enabled, have credentials in Oracle Cloud. To avoid
maintaining credentials in two places after enabling SSO, you typically delete the
existing users and then reimport them. This step ensures that the users don’t have
credentials in Oracle Cloud and can access Oracle Cloud applications only with their
company credentials.

To delete all users that don’t have the identity domain administrator role assigned:

1. Go to the Users page and then click the SSO Configuration tab.

2. Click Remove Users.

3. A window appears confirming that all users without the identity domain
administrator role will be removed, and that this operation can’t be undone.

4. Click Remove Users to remove all users who don’t have the identity domain
administrator role assigned.

5. A window displays the progress of the removal process, and then the number of
users removed.

Updating SSO Metadata
After you’ve enabled SSO in production, you might want to update the SSO metadata.

Reasons for updating the metadata include:

• The identity provider or service provider certificate has expired.

• The identity provider or provider key has been compromised.

• The identity provider URL endpoints need to be updated.

If any of these reasons applies, then:

1. Schedule an update of the SSO metadata in advance, because it requires an outage.

2. Disable SSO using Disable SSO.

Removing Users

1-8 Oracle Cloud Administering Oracle Cloud Identity Management

3. Update the identity provider or service provider metadata as needed.

4. Test the configuration, as described in Testing SSO.

5. After testing shows that SSO is working correctly, reenable SSO by clicking Enable
SSO as described in Enabling SSO.

Troubleshooting SSO
If you can’t resolve a configuration problem by using the Test feature, then
troubleshoot the configuration by following these steps.

1. Review the Known Issues guide for any similar problem.

2. Review any changes made on the identity provider and Oracle Cloud service
provider before the problem in the SSO workflow.

3. Capture an HTTP trace of the SSO workflow, using a tool such as Fiddler Web
Debugging Tool.

4. Review the workflow to determine the point where the SSO workflow terminated
and which identity-related components are involved: identity provider, service
provider, web tier, gateways, proxies, and firewalls.

5. Review the protocol messages and component logs to identify exceptions.

6. Go to MyOracle Support to review known issues and find out if your problem
exists there.

7. If you’ve performed all troubleshooting steps and you’re confident that the
problem is due to Oracle Cloud, then contact Oracle Support Services. Be ready to
provide all your information, including a Fiddler trace, identity provider metadata,
and identity provider logs.

Troubleshooting SSO

Managing Oracle Single Sign-On 1-9

Troubleshooting SSO

1-10 Administering Oracle Cloud Identity Management

2
Managing OAuth Resources and Clients

OAuth 2.0 is an authorization framework that enables an application or service to
obtain limited access to a protected HTTP resource. In OAuth, the applications are
called clients; they access protected resources by presenting an access token to the
HTTP resource. As an administrator, you configure OAuth resources and clients and
administer them.

Topics:

• Exploring the OAuth Administration Page

• How Do I Set Up OAuth in Oracle Cloud?

• How Do I Administer OAuth in Oracle Cloud?

• Registering New Resources in Oracle Cloud

• Overview of Managing OAuth Resources

• Viewing OAuth Resources

• Updating OAuth Resources

• Deleting OAuth Resources

• Overview of OAuth Configuration Tasks

• Overview of Registering OAuth Clients

• Registering Client Information In OAuth

• Registering an Untrusted OAuth Client

• Registering a Trusted OAuth Client

• Importing an OAuth Certificate from a Key Pair

• Extracting a Certificate by Using openssl

• Extracting a Certificate by Using the Certificate Import and Certificate Export
Wizards

• Overview of Managing OAuth Clients

• Viewing OAuth Clients

• Updating OAuth Clients

• Deleting OAuth Clients

Managing OAuth Resources and Clients 2-1

• Managing Client Certificates

• Troubleshooting OAuth

Exploring the OAuth Administration Page in My Services
The OAuth Administration page in My Services helps Oracle Cloud account
administrators and customers buying Oracle Cloud services to configure OAuth
clients and resources. You can register new OAuth clients and resources, grant/revoke
API access, and manage the settings of resources and clients

What You Can Do from the OAuth Administration Page

The following table describes what you can do from the OAuth Administration page.

Tool Description

Register a new OAuth resource.

Register resources by importing data from a file.

Enter the name of a resource (or a part of the
name), and then search for OAuth resources.

Register a new OAuth client.

Show all registered OAuth clients.

Enter the name of a client (or a part of the name),
and then search for OAuth clients.

Create a key pair for the OAuth client certificate.

Download OAuth client certificates.

Exploring the OAuth Administration Page in My Services

2-2 Oracle Cloud Administering Oracle Cloud Identity Management

What You Can See from the OAuth Administration Page

The OAuth Administration page displays the following information:

Field Description

Register a new OAuth resource.

Register resources by importing data from a file.

View the various options to edit an existing OAuth
resource:
• Select Modify to change the properties of the

resource.
• Select Remove to delete the OAuth resource.

Enter the name of a resource (or a part of the name),
and then search for OAuth resources.

Register a new OAuth client.

Show all registered OAuth clients.

Show all OAuth clients that are trusted.

Show all OAuth clients that are untrusted.

Show all OAuth clients that are user-defined

Show all OAuth Clients that are created by the
infrastructure.

Exploring the OAuth Administration Page in My Services

Managing OAuth Resources and Clients 2-3

Field Description

Enter the name of a client (or a part of the name), and
then search for OAuth clients.

Shows the secret of the OAuth client.

View the various options to edit an existing OAuth
client:
• Select Modify to change the client properties.
• Select Import Certificate to import a new

certificate for the OAuth client.
• Select Export Certificate to export the existing

client certificate.
• Select Remove to delete the client.

Create a key pair for the OAuth client certificate.

View a list of the various client certificate that you can
download. Select the appropriate option to save the
certificate locally.

How Do I Set Up OAuth in Oracle Cloud?
You’re an administrator at a company that has purchased some Oracle Cloud services.
You want to configure OAuth to secure access to those services. As an administrator,
you are responsible for setting up OAuth. During set up, you need to configure OAuth
clients and resources in Oracle Cloud.

You have the following responsibilities as an administrator:

• Configure and manage OAuth resources.

• Configure and manage OAuth clients.

• Ensure that the communication between different services (on-premises and
cloud) is secure.

The following table describes the steps to follow when setting up OAuth using the
OAuth Administration page from My Services in Oracle Cloud:

How Do I Set Up OAuth in Oracle Cloud?

2-4 Oracle Cloud Administering Oracle Cloud Identity Management

Task Description Additional Information

Register an OAuth resource. Go to the OAuth Administration
page to register a new OAuth
resource.

Registering New Resources in Oracle
Cloud

Register a trusted OAuth client. After you register an OAuth
resource, configure and register an
OAuth client.

Decide whether you want the
OAuth client to be trusted or
untrusted.

To register a new trusted OAuth
client, go to the OAuth
Administration page.

Registering a Trusted OAuth Client

Register an untrusted OAuth client. After you register an OAuth
resource, you can configure and
register either a trusted or an
untrusted OAuth client.

To register a new untrusted OAuth
client, go to the OAuth
Administration page.

Registering an Untrusted OAuth
Client

Note: To learn the difference between trusted and untrusted OAuth clients,
see OAuth Client Types and Digital Signatures in Understanding Identity
Concepts.

How Do I Administer OAuth in Oracle Cloud?
As an administrator, you’re responsible for managing OAuth clients and resources in
Oracle Cloud.

Administering OAuth in Oracle Cloud: Task Flow

An OAuth client and an OAuth resource can be managed in different ways. You may
need to get information about an existing client or resource. You can search for an
OAuth client or a resource to get this information. As an administrator, you’re
required to modify the configuration of an OAuth client or a resource. If security is
compromised, then you may even need to remove the OAuth client. Similarly, a
protected OAuth resource can also be removed from Oracle Cloud.

This section describes the high-level tasks for administering OAuth in Oracle Cloud.
Both OAuth clients and resources can be administered in Oracle Cloud.

OAuth clients and resources can be managed by using the OAuth Administration
page.

To manage existing OAuth resources:

• Search: See Viewing OAuth Resources.

• Update: See Updating OAuth Resources.

• Delete (Remove): See Deleting OAuth Resources

How Do I Administer OAuth in Oracle Cloud?

Managing OAuth Resources and Clients 2-5

To manage existing OAuth clients (both trusted and untrusted):

• Search: See Viewing OAuth Clients.

• Update: See Updating OAuth Clients

• Delete (Remove): See Deleting OAuth Clients

To modify the certificates of both trusted and untrusted OAuth clients, see Managing
Client Certificates

Registering New Resources in Oracle Cloud
From the OAuth Administration page, you can register a new resource in Oracle
Cloud. A resource is a protected service in Oracle Cloud. When you register a new
resource, you define some parameters and these parameters are used in authorizing
the client request to those services,

To register new resources in Oracle Cloud using the UI:

1. Log in to the user’s identity domain in Oracle Cloud and click Users.

2. Click the OAuth Administration tab.

You can see the list of existing resources.

3. To register multiple resources at one time by using the data from a comma-
separated values (CSV) file, click Import.

4. To register a new resource, click Register. To register the resource (the * indicates
mandatory fields), enter the following information in these fields :

a. Name: Enter the name of the OAuth resource. If another resource in the same
application already uses this name, then an error is thrown.

b. Application: Enter the name of the application, which is the service name. The
resource is part of the application.

c. Description: Enter a description of the OAuth resource. A description is
optional. If this field is left blank, the description value defaults to the name of
the resource.

Registering New Resources in Oracle Cloud

2-6 Oracle Cloud Administering Oracle Cloud Identity Management

d. API Path: Enter a valid path for the API. The API path should be an absolute
path that points to the URL of the resource. When registering a resource from
the UI, you can provide only one API path for the resource.

5. Click Register.

Populating the Audience Attribute for the New OAuth Resource:

When a resource is registered with OAuth, information about the API path is stored in
the Audience attribute for the resource. When a client application requests an access
token to access a protected service, OAuth uses this audience information to validate
the API information provided in the access token request.

Overview of Managing OAuth Resources
You can search for an existing OAuth resource, modify its properties, and remove an
OAuth resource, if necessary.

Task Description Additional Information

View OAuth resources. View an existing OAuth resource
from the OAuth Administration
page.

Viewing OAuth Resources

Modify OAuth resources. Change the properties of an OAuth
resource by using the OAuth
Administration page.

Updating OAuth Resources

Delete OAuth Resources. Remove OAuth resources by using
the OAuth Administration page.

Deleting OAuth Resources

Viewing OAuth Resources
An existing OAuth resource can be viewed at any time from the OAuth
Administration page.

1. Log in to the user’s identity domain and click Users.

Overview of Managing OAuth Resources

Managing OAuth Resources and Clients 2-7

2. Click the OAuth Administration tab.

A list of all resources appears, including the resource name, application name,
resource description, resource identifier, and API path.

3. To search for a resource, entering the name (partial name or full name) in the
Search field.

All resources whose names match the pattern text that you enter in the Search field
appear. The following example uses, res2 as search pattern in the Search field. As a
result, only one resource appears (test_res2) because only one resource has res2 in
its name.

Updating OAuth Resources
The properties of an existing OAuth resource can be modified.

To change properties of an existing OAuth resource using the UI:

1. Log in to the user’s identity domain in Oracle Cloud and click Users.

2. Click the OAuth Administration tab. The list of resources appears.

3. Click the Action menu icon to the right of the resource that you want to update. A
menu is displayed with two options: Modify and Remove.

Updating OAuth Resources

2-8 Oracle Cloud Administering Oracle Cloud Identity Management

4. To change the properties of the resource such as the resource’s description and the
API path, click Modify. The name of the resource and the name of the application
can’t be modified.

5. Click Save.

Deleting OAuth Resources
An existing OAuth resource can be removed at any time.

To delete a resource using the OAuth Administration page:

1. Log in to the user’s identity domain in Oracle Cloud and click Users.

2. Click the OAuth Administration tab. The list of resources appears.

3. Click the Action menu icon to the right of the resource that you want to delete.
Select Remove.

Deleting OAuth Resources

Managing OAuth Resources and Clients 2-9

4. The Remove Resource confirmation window appears. Click Remove to delete the
resource.

Overview of OAuth Client Configuration Tasks
As an administrator, you configure and administer OAuth clients for Oracle Cloud.

These configuration and administration tasks consist of the following:

1. Registering trusted and untrusted OAuth clients using the OAuth administration
UI.

2. Importing an OAuth certificate for an OAuth client.

3. Testing the OAuth client registration to ensure that the client is registered
successfully.

4. Viewing OAuth clients from the OAuth administration UI in My Services.

5. Updating OAuth configuration settings and properties by using the OAuth
administration UI.

6. Managing client certificates by using the OAuth Administration UI.

7. Testing the OAuth configuration.

8. Troubleshooting problems that may occur if OAuth isn’t working properly.

Overview of Registering OAuth Clients
An OAuth client can be confidential or public. A confidential client is an application
that’s capable of keeping a client password confidential to the world, whereas a public
client doesn’t keep a client password confidential. A confidential client can be trusted
or untrusted. OAuth clients, either trusted or untrusted, can be registered using the
OAuth Administration page.

Task Description Additional Information

Register an untrusted
OAuth client.

Register a new untrusted client in
the Register Client section of the
OAuth Administration page in
My Services.

Registering an Untrusted OAuth Client

Register a trusted OAuth
client.

Register a new trusted client in
the Register Client section of the
OAuth Administration page in
My Services.

Registering a Trusted OAuth Client

Overview of OAuth Client Configuration Tasks

2-10 Oracle Cloud Administering Oracle Cloud Identity Management

Task Description Additional Information

Import an OAuth
certificate from a key pair.

Associate a certificate with an
OAuth client. The OAuth
Administration page provides a
helper function to generate and
download a key pair.

Importing an OAuth Certificate from a Key
Pair

Extract a certificate by
using openssl.

On a Linux or UNIX system, use
the openssl command to extract
the certificate from the key pair
that you downloaded from the
OAuth Administration page.

Extracting a Certificate by Using openssl

Extract a certificate by
using the Certificate
Import and Certificate
Export wizards.

Use the Windows Certificate
Import and Certificate Export
wizards to extract a certificate
from the generated key pair that
you downloaded from the OAuth
Administration page.

Extracting a Certificate by Using the Certificate
Import and Certificate Export Wizards

Registering Client Information in OAuth
When an OAuth client is registered in OAuth, the client information is stored in the
client profile.

The client information includes the client name and its attributes. An OAuth client
created by an identity domain administrator is a user-managed OAuth client. If Oracle
Cloud (Service Deployment Integration team) creates the OAuth client using a script,
then it is a tenant-managed OAuth client. The attributes of the client stored in the
client profile include whether it is tenant-managed or user-managed. The client profile
also includes whether the OAuth client is trusted or untrusted. In addition to these
attributes, the API path information of the client is stored in the Audience attribute.

Registering an Untrusted OAuth Client
To register a new client, from My Service, go to the OAuth Administration page, and
then to the Register Client section.

An OAuth client can be trusted or untrusted. By default, any new OAuth client
created in Oracle Cloud is a confidential client (that is, the OAuth client’s credentials
are never exposed directly). To create an untrusted client:

1. Click Register. The Register Client dialog box appears. The * indicates mandatory
fields.

2. In the Name field, specify the name of the client.

3. In the Description field, provide explanatory information about the OAuth client.

4. In the Accessible Resources field, select the API resources to which this client
should have access. This corresponds with the registered resources at the bottom of
the OAuth Configuration page. This is a mandatory field. Select at least one of the
listed APIs. If a single API path has more than one scope defined, the scopes are
listed below the API path. One or more scopes can be selected for a given API path.

5. Leave the Trusted check box empty because this client is an untrusted client.

Registering Client Information in OAuth

Managing OAuth Resources and Clients 2-11

6. To upload a client certificate for an untrusted client, click Browse next to Load
Certificate. This isn’t mandatory.

7. To register the untrusted OAuth client, click Register.

To learn more about the different fields in a client profile for an OAuth client, see
Registering Client Information in OAuth.

A portion of the client profile for the untrusted client previously registered is in the
following example. The isTrusted flag has a value of FALSE.

<tenant>dom1</tenant>

<name>test_client_1</name>

<description>Sample untrusted client</description>

<isDisabled>false</isDisabled>

<appId>948bb730-a101-43b9-9497-d3ca33eb8d7f</appId>

<appSecret>948bb730-a101-43b9-9497-d3ca33eb8d7f</appSecret>

<clientType>CONFIDENTIAL_CLIENT</clientType>

<clientMetadata>

<isTrusted>FALSE</isTrusted>

<isTenantManaged>true</isTenantManaged>

</clientMetadata>

<activityData> <createdOn>06/05/2015 02:23:18 </createdOn> </
activityData>

<audiences>http://www.example.com</audiences>

Registering a Trusted OAuth Client
To register a new trusted client from My Services, go to the OAuth Administration
page, and then to the Register Client section.

Registering a Trusted OAuth Client

2-12 Oracle Cloud Administering Oracle Cloud Identity Management

An OAuth client can be trusted or untrusted. To create a trusted OAuth client:

1. Click Register. The Register Client dialog box appears. The * indicates mandatory
fields.

2. In the Name field, specify the name of the client.

3. In the Description field, provide explanatory information about the OAuth client.

4. In the Accessible Resources field, select the API resources to which this client
should have access. This corresponds with the registered resources at the bottom of
the OAuth Configuration page. This is a mandatory field. Select at least one of the
listed APIs. If a single API path has more than one scope defined, then the scopes
are listed below the API path. You can select one or more scopes for a given API
path.

5. To indicate that the client is trusted, select the Trusted check box. For a trusted
client, you must generate and upload a client certificate, as described in Importing
an OAuth Certificate from a Key Pair. The signing algorithm must be RS256:
RSASSA-PKCS-v1_5 using the SHA-256 hash algorithm.

6. Click Register.

To learn more about the different fields in a client profile for an OAuth client, see
Registering Client Information in OAuth.

A portion of the prior client profile for the trusted client registered follows. The
isTrusted flag has a value of TRUE.

<tenant>dom1</tenant>

<name>test_client_2</name>

<description>Sample trusted client</description>

<isDisabled>false</isDisabled>

Registering a Trusted OAuth Client

Managing OAuth Resources and Clients 2-13

<appId>948bb730-c201-43b9-9497-r54a33eb8d7f</appId>

<appSecret>948bb730-a101-43b9-9497-d3ca33eb8d7f</appSecret>

<clientType>CONFIDENTIAL_CLIENT</clientType>

<clientMetadata>

<isTrusted>TRUE</isTrusted>

<isTenantManaged>true</isTenantManaged>

</clientMetadata>

<activityData> <createdOn>06/05/2015 02:23:18 </createdOn> </
activityData>

<audiences>http://www.test.com/, http://www.example.com/</
audiences>

Importing an OAuth Certificate from a Key Pair
Import and associate an OAuth certificate with an OAuth client. This is mandatory for
trusted clients and optional for untrusted clients.

The OAuth Administration page provides a helper function to generate and download
a key pair, which contains a private key and the corresponding certificate. The key
pair file is in the PKCS#12 format. PKCS #12 is one of the standards called Public-Key
Cryptography Standards (PKCS) published by RSA Laboratories. The file name
extension is usually .p12, but may have the older .pfx extension. You don’t have to
use the helper function. You can generate the key pair by other means. (Some
applications and operating systems include key pair generators.) If you’ve a certificate
from another signing authority, there is no need to generate a key pair.

1. From the OAuth Administration page, go to the Manage Certificates section, and
then click Create Key Pair.

The Generate Key Pair dialog box appears.

2. Enter the appropriate information in the Subject DN and Key Store Password
fields.

3. Click Generate.

4. After downloading the generated key pair, extract the private key and the
corresponding certificate by using a tool such as the openssl command-line tool
on Linux or UNIX, or the Certificate Import and Certificate Export wizards on
Windows. For more information, see Extracting a Certificate by Using openssl and
Extracting a Certificate by Using the Certificate Import and Certificate Export
Wizards. The extracted file is a DER-encoded certificate. Distinguished Encoding
Rules (DER) define a set of rules for encoding. The certificate file has the
extension .cer.

5. Extract the certificate from the key pair.

The Import Certificate dialog box appears.

6. To associate the certificate with a specific client, see Associating a Certificate with
an OAuth Client.

Importing an OAuth Certificate from a Key Pair

2-14 Oracle Cloud Administering Oracle Cloud Identity Management

Store the PKCS#12 format key pair securely and don’t share it. The OAuth client uses
this key pair to sign OAuth protocol messages sent to the OAuth service in Oracle
Cloud.

Extracting a Certificate by Using openssl
On a Linux or UNIX system, you can use the openssl command to extract the
certificate from a key pair that you downloaded from the OAuth Configuration page.

To extract the certificate, use these commands, where cer is the file name that you
want to use:

1. openssl pkcs12 -in store.p12 -out cer.pem

This extracts the certificate in a .pem format.

2. openssl x509 -outform der -in cer.pem -out cer.der

This formats the certificate in a .der format.

You can then associate cer.der with a client.

You can also extract the private key by using the command:

openssl pkcs12 -in store.p12 -out pKey.pem -nodes -nocerts

For more information, see the OpenSSL documentation.

Extracting a Certificate by Using the Certificate Import and Certificate
Export Wizards

You can use the Windows Certificate Import and Certificate Export wizards to extract
a certificate from the generated key pair that you downloaded from the OAuth
Administration page.

To import the key pair and export the certificate, follow these steps:

1. Open the Certificate Import Wizard on your computer. You might be able to open
it by double-clicking the key pair file. If not, follow these steps:

a. In Internet Explorer, click Tools, and then select Internet Options.

b. Click the Content tab. Click Certificates.

c. Click Import. The Certificate Import Wizard opens.

2. Enter or browse to the file path and click Next. When prompted, enter the
password for the private key. This was specified while generating the key pair
earlier.

3. Select the Automatically select the certificate store based on the type of certificate
check box.

4. Click Next.

5. Click Finish. A dialog box appears indicating that the key pair was imported into
Internet Explorer successfully.

6. In Internet Explorer, click Tools, and then select Internet Options.

Extracting a Certificate by Using openssl

Managing OAuth Resources and Clients 2-15

https://www.openssl.org/docs

7. Click the Content tab, and then click Certificates.

8. Click the Personal tab, and then select the certificate that you just imported.

9. Click Export. The Certificate Export Wizard opens.

10. Click Next.

11. Select the No, do not export the private key check box.

12. Click Next.

13. Select the DER encoded binary X.509 (CER) check box.

14. Click Next.

15. Specify a file path, and then click Save.

16. Click Next.

17. To export the file to your local file system, click Finish. A dialog box appears
indicating that the export was successful.

After completing all steps, you can associate the DER-encoded file with an OAuth
client. For more information, see Associating a Certificate with an OAuth Client.

Associating a Certificate with an OAuth Client
Associate an OAuth certificate with an OAuth client. This is mandatory for trusted
clients and optional for untrusted clients

To associate an OAuth certificate with a specific OAuth client:

1. From the My Services page, go to the OAuth Administration page, and then to the
Register Client section.

2. To associate the certificate with a specific client, click the Action menu for that
client, and then select Import Certificate.

3. To select the certificate file, click Browse, and then click Import.

A success message is displayed.

Overview of Managing OAuth Clients
An existing OAuth client (trusted or untrusted) can be viewed, the properties of the
client can be modified, certificates associated with the client can be managed, and the
client can be removed.

Task Description Additional Information

View OAuth clients. An existing OAuth client can be
viewed from the OAuth
Administration page.

Viewing OAuth Clients

Modify OAuth clients. The properties of an OAuth client
can be changed using the OAuth
Administration page.

Updating OAuth Clients

Associating a Certificate with an OAuth Client

2-16 Oracle Cloud Administering Oracle Cloud Identity Management

Task Description Additional Information

Manage client certificates. Client certificates can be managed
from the OAuth Administration
page. You can access the root
certificate and the OAuth
certificate.

Managing Client Certificates

Delete an OAuth client. An OAuth client can be removed
by using the OAuth
Administration page.

Deleting OAuth Clients

Viewing OAuth Clients
View OAuth clients on the OAuth Administration page in My Services.

The OAuth Administration page in My Services lists registered clients. You can view
information about clients in the Register Client section of the page.

• Trusted clients are indicated with the label Trusted.

• The first column of the list indicates the client name.

• The second column lists the ID, type (confidential trusted or untrusted), and
modification information.

• Clicking Show Secret displays the client secret string. The client secret is used to
authenticate the identity of the client to the service API when the client requests to
access a user's account, and must be kept private between the client and the API.
Think of the secret string as a passphrase that proves to the authentication server
that the client is authorized to make a request on behalf of the user.

Viewing OAuth Clients

Managing OAuth Resources and Clients 2-17

Search for a Specific OAuth Client Type

• View All Trusted Clients: From the drop-down menu, select Show: Trusted
Clients. All trusted clients (which are confidential by default) are listed. A trusted
client has the Confidential (Trusted) client type.

• View All Untrusted Clients: From the drop-down menu, select Show: Untrusted
Clients. All untrusted clients (which are confidential by default) are listed below
An untrusted client has the Confidential client type.

• View All User-Defined Clients: From the drop-down menu, select Show: User
Defined Clients. A user-defined client is one that’s created by an identity domain
administrator. All user-defined clients, trusted and untrusted, appear.

• View All Infrastructure Clients: From the drop-down menu, select Show:
Infrastructure Clients. An infrastructure client is one that’s automatically created
by the Service Deployment Integration (SDI) team (using a script). No
infrastructure clients are available in the example.

Viewing OAuth Clients

2-18 Oracle Cloud Administering Oracle Cloud Identity Management

Updating OAuth Clients
Modify the properties of an OAuth client on the Modify Clients page.

The properties of an OAuth client such as the description, can be modified. A
previously untrusted OAuth client can be changed to be a trusted OAuth client, so
that the client can now obtain a user token and propagate an end-user identity. APIs
can be granted to or revoked from existing clients. The client certificates can be
reloaded.

Modifying Properties of an Untrusted OAuth Client

You can modify the following client properties of an existing untrusted client:

• Edit the description. The client name can’t be changed.

• Add new resources or remove existing resources.

• Change the untrusted client to a trusted client by selecting the Trusted check box.
To change the client from untrusted to trusted, you must upload a certificate.

• Upload a new certificate or use an existing certificate.

Modifying Properties of a Trusted OAuth Client

You can modify the following properties of an existing trusted client:

Updating OAuth Clients

Managing OAuth Resources and Clients 2-19

• Edit the description. The client name cannot be changed.

• Add new resources or remove existing resources.

• Update the client's public key (reload the client certificate).

• Change the trusted client to an untrusted client by clearing the Trusted check box.

• Upload a new certificate.

Overwriting the Client Profile:

The existing client profile is overwritten based on the changes made to the client. If the
api_path is changed (added or removed), then the corresponding Audience
attribute of the client changes.

Managing Client Certificates
Trusted and untrusted OAuth clients can use certificates. Client certificates can be
managed from the UI console.

You can fetch a root certificate authority or an OAuth signing certificate from the
OAuth Administration page.

Download Existing Certificates

To download an OAuth signing certificate or a root certificate authority:

Managing Client Certificates

2-20 Oracle Cloud Administering Oracle Cloud Identity Management

1. Log in to the user’s identity domain in Oracle Cloud, and then click Users.

2. Go to the OAuth Administration page.

3. In the Manage Certificates section, click Download.

4. To save the OAuth signing certificate to a local folder, click OAuth Signing
Certificate.

5. To save the root certificate authority to a local folder, click Root CA Certificate.

Deleting OAuth Clients
An OAuth client can be deleted at any time.

If either of the following is true, then you must delete an OAuth client and register a
new one :

• The client's credentials (password) have been compromised.

• You want to change certain attributes of the client that can’t be edited through the
UI. Examples of such attributes include the client identifier and the client
password.

When an OAuth client is removed, the tokens supplied earlier for the client can no
longer be validated. Also, no new access tokens are provided for the client. Persistent
expired tokens are removed from the database periodically.

1. To delete a client, click the Action menu icon to the right of the client that you want
to remove. Select Remove.

2. The Remove Client confirmation dialog box appears. To delete the client, click
Remove.

Deleting OAuth Clients

Managing OAuth Resources and Clients 2-21

Troubleshooting OAuth
If OAuth isn’t working properly, you must troubleshoot it.

Before contacting Oracle Support:

1. Capture the protocol message requests and responses by using a proxy or logging
the messages.

2. To identify exceptions or deviations, review the protocol messages .

3. Ensure that the credentials being used are valid and that the OAuth client hasn’t
been disabled.

4. Access the MyOracle Support knowledge base to review known problems and
determine whether the problem that you’re having has been experienced by
others.

5. If you’ve performed all these troubleshooting steps and you believe that the
problem is because of Oracle Cloud, then contact Oracle Support Services. Be
ready to provide all your information, including diagnostic data such as protocol
message logs.

Troubleshooting OAuth

2-22 Oracle Cloud Administering Oracle Cloud Identity Management

3
Securing Authorizations in Oracle Cloud

This chapter describes when and how to use authorization grants. An authorization
grant is a credential representing the resource owner's authorization (to access its
protected resources) used by the client to obtain an access token. The OAuth 2.0 core
specification describes different authorization grants. Oracle Cloud supports the
following grant types: resource owner password credentials, client credentials, and
user assertion.

OAuth Endpoints

OAuth endpoints are the URLs you use to make OAuth authentication requests. The
OAuth server exposes a token endpoint that you use to obtain an access token. The
format of the OAuth token endpoint URL is https://<idm-domain>.identity.<data-
center>.oraclecloud.com/oauth/tokens. For example, if the tenant is tenant1, the data
center is Chicago, and the data center code is us2, then the OAuth token endpoint URL
is: https://tenant1.identity.us2.oraclecloud.com/oauth/tokens.

Topics:

• How Do I Use Authorization Grants

• Resource Owner Password Credentials Workflow

• Step by Step Workflow of the Resource Owner Password Credentials Grant

• Using REST API Calls for the Resource Owner Password Credentials Grant

• Client Credentials Workflow

• Step by Step Workflow of the Client Credentials Grant

• Using REST API Calls for the Client Credentials Grant

• User Assertion Workflow

• Using REST API Calls for the User Assertion Grant

• Successful Authorization

• Authorization Error

How Do I Use Authorization Grants?
In Oracle Cloud, an OAuth client makes a Representational State Transfer (REST) API
call to access a protected service. As an administrator, when you secure cloud services,
follow the guidelines to decide which type of authorization grant is suitable. An
authorization grant is a credential representing the resource owner's authorization to

Securing Authorizations in Oracle Cloud 3-1

access its protected resource. The authorization grant is used by the OAuth client to
obtain an access token.

Oracle Cloud supports the following grant types:

• Resource owner password credentials grant

• Client credentials grant

• User assertion grant

Guidelines to Choose an OAuth Workflow

Use the following guidelines to determine which workflow or grant type to use:

Use the resource owner password credentials workflow when:

• The OAuth clients are confidential clients.

• The resource owner has a trust relationship with the client.

• The client application doesn’t need to store the credentials of the resource owner
within the application or on the device.

Using the resource owner password credentials workflow, there are two ways to
request an access token:

• By sending a simple client header in the token request in addition to the user’s
credentials. If you don’t want to use a client assertion, but just the user’s
credentials with a basic client header, then see Obtain an Access Token by Using
the User Credentials Without a Client Assertion.

• By using a client assertion in addition to the user’s credentials. To use the client
token and the user’s credentials to request an access token, see Obtain an Access
Token by Using the User Credentials and a JWT Client Assertion.

Using the client credential workflow, there are two ways to request an access token:

• By using a simple client header. If you want to use a simple client header, then see
Obtain an Access Token by Using the Client Authorization Header.

• By using a client assertion. After you’ve a self-assigned client assertion, see Obtain
an Access Token by Using a Self-Signed Client Assertion to request an access
token.

Use the user assertion workflow when:

• The OAuth clients are confidential clients.

• The user’s credentials should never be accessible to the client application.

• The OAuth clients are trusted to assert a user identity on behalf of the user.

Using the user assertion workflow, there are two ways to request an access token:

• By using a user assertion with a simple client header. If you want to use a simple
client header with a self-signed user assertion, then see Obtain an Access Token
by Using a Self-Signed User Assertion and the Client Credentials to request an
access token.

• By using a user assertion with a client assertion. If you do not have a user token,
you first need to build one. If you want to use a client assertion, but don’t have a

How Do I Use Authorization Grants?

3-2 Oracle Cloud Administering Oracle Cloud Identity Management

client token yet, then build your own assertion. After you have a client token and
a self-assigned user assertion, see Obtain an Access Token by Using a Self-Signed
User Assertion and a Client Assertion to request an access token.

Resource Owner Password Credentials Workflow
When using the resource owner password credentials grant, the user provides the
credentials (user name and password) directly to the application. The application then
uses the credentials to obtain an access token from the OAuth token service.

The resource owner password credentials grant is a grant workflow where the client
application, together with its client identifier and secret, sends the user name and
password in exchange for an access token. Instead of the user having to log in and
approve the authorization request in a web interface, the user can enter the user name
and password in the client application UI directly. This workflow has different
security properties than other OAuth workflows. The primary difference is that the
user’s password is accessible to the application. This requires a strong trust of the
application by the user.

Security Properties

If the resource owner password credentials workflow is used, the application needs
access to the user’s credentials only once, on first use, when the credentials are
exchanged for an access token. This means that there is no requirement for the
application to store these credentials within the application or on the device, and
revoking access is easy as well.

Key Characteristics of the Resource Owner Password Credentials Grant

The resource owner password credentials grant:

• Is used with confidential clients.

• Uses the user name and password of the resource owner.

• Isn’t redirection-based; it takes a request only from the client application to the
authorization server, and the user isn’t redirected between interfaces to authorize
the request.

Step-by-Step Workflow of the Resource Owner Password Credentials
Grant

The resource owner password credentials grant workflow allows for the exchanging of
the user name and password of a user for an access token.

When using the resource owner password credentials grant, the user provides the
credentials (user name and password) directly to the application. The application then
uses the credentials to obtain an access token from the service.

Workflow of Resource Owner Password Credentials Grant

1. Obtain user credentials: The user provides the credentials to the application. The
user credentials are the resource owner’s user name and password.

2. Request an access token: The user credentials are exchanged for an access token.
The client application makes a request to the authorization server and includes the
user's credentials and either the client credentials or a client assertion. The client
application can use an already-generated client assertion or build a new assertion.

Resource Owner Password Credentials Workflow

Securing Authorizations in Oracle Cloud 3-3

Obtain an access token by using different scenarios in the resource owner
password credentials workflow:

• Obtaining an Access Token by Using the User Credentials Without a Client
Assertion

• Obtaining an Access Token by Using User Credentials and JWT Client
Assertion

3. Receive an access token from the authorization server: The authorization server
authenticates the client based on the client identifier and secret, determines
whether it’s authorized for making this request, and verifies that the resource
owner credentials and other parameters are supplied. If everything is verified
successfully, then the authorization server returns an access token in the response.
This is described in Successful Authorization.

If the authorization request fails for any reason, then the authorization server
returns a response containing the information about the error. This is described in
Authorization Error.

4. Use the access token to make a service request: The OAuth client makes a REST
API call to the resource server using the access token to access the protected
resource.

5. Send a response: The resource server sends a response to the service request.

6. Grant access to the resource: The enduser or service gets access to the protected
resource.

Using REST API Calls for the Resource Owner Password Credentials
Grant

Get an access token by using different scenarios in the resource owner password
credentials workflow. These scenarios include using the user’s credentials with either
the client credentials or a client assertion.

Task Description Additional Information

Obtain an access token by
using the user’s
credentials and the client
credentials.

Get the access token by providing
the resource owner’s user name
and password and the client
credentials.

Obtaining an Access Token by Using the User
Credentials Without a Client Assertion

Obtain an access token by
using the user’s
credentials and a client
assertion.

Get the access token by providing
the resource owner’s user name
and password and a client
assertion.

Obtaining an Access Token by Using the User
Credentials and a JWT Client Assertion

Obtaining an Access Token by Using the User Credentials Without a Client Assertion
Using the resource owner password credentials workflow, the OAuth client can obtain
an access token by providing the user’s credentials (that is the user name and
password).

This workflow has a resource owner request that uses the user identifier and
password of the resource owner.

Using REST API Calls for the Resource Owner Password Credentials Grant

3-4 Oracle Cloud Administering Oracle Cloud Identity Management

Obtaining an Access Token by Using the User Credentials

The resource owner password credentials grant workflow, allows you to obtain an
access token by using the user’s credentials.

Parameters used in the access token request:

• X-USER-IDENTITY-DOMAIN-NAME: The name of the identity domain.

• Authorization: Basic: The basic authorization header. The client identifier and
client secret of the client application is base64–encoded and sent in the header. For
example, the Authorization header has the value of
base64encoded(client_id:client_secret).

• Content-Type: The type of content that’s sent in the request. It’s a URL-encoded
application.

• Request: The type of request that’s sent. Here, it’s a POST request to obtain an
access token. This is followed by the authorization server URL which provides
tokens.

• grant_type: The grant type used to obtain the token. In the example that follows,
it’s resource owner password credentials grant. The value of password is given
for this grant type.

• username: The name of the user.

• password: The name of the password.

• scope: The limit of a particular scope for an access token.

The client identifier and client secret of the client application is base64–encoded and
sent in the header. This is sent along with the user’s credentials to obtain an access
token.

To obtain an access token that contains the user and client credentials, use the
following cURL command:

curl -i -H 'X-USER-IDENTITY-DOMAIN-NAME: OAuthTestTenant125'
-H 'Authorization: Basic
MzAzYTI0OTItZDY0Zi00ZTA0LWI3OGYtYjQzMzAwNDczMTJiOll5Sk5NSkdFc0ZqUkxWZVZsdVMz'
-H 'Content-Type: application/x-www-form-urlencoded;charset=UTF-8'
--request POST https://<idm-domain>.identity.<data-center>.oraclecloud.com/oauth/
tokens
-d 'grant_type=password
&username=tenantAdminUser
&password=Fusionapps1
&scope=http://www.example.com'

The output of the cURL command is:

{
"expires_in":3600,
"token_type":"Bearer",
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsIng1dCI6Ild3cmVwdTJkYXNhSXBHUi1Bb
FZwSGtVQjZKZyIsIm
tpZCI6Ik9BdXRoVGVzdFRlbmFudDEyNS5jZXJ0In0.eyJzdWIiOiJ0ZW5hbnRBZG1pblVzZXIiLCJvcmFjbGU
ub2F1dGgudXNlcl9v
cmlnaW5faWRfdHlwZSI6IkxEQVBfVUlEIiwib3JhY2xlLm9hdXRoLnVzZXJfb3JpZ2luX2lkIjoidGVuYW50Q
WRtaW5Vc2VyIiwiaX
NzIjoiT0F1dGhUZXN0VGVuYW50MTI1Iiwib3JhY2xlLm9hdXRoLnN2Y19wX24iOiJPQXV0aFRlc3RUZW5hbnQ

Using REST API Calls for the Resource Owner Password Credentials Grant

Securing Authorizations in Oracle Cloud 3-5

xMjVTZXJ2aWNlUHJv
ZmlsZSIsImlhdCI6MTQyNTQyMzYxOTAwMCwib3JhY2xlLm9hdXRoLnBybi5pZF90eXBlIjoiTERBUF9VSUQiL
CJvcmFjbGUub2F1dG
gudGtfY29udGV4dCI6InJlc291cmNlX2FjY2Vzc190ayIsImV4cCI6MTQyNTQyNzIxOTAwMCwiYXVkIjpbImh
0dHA6Ly93d3cuZXhh
bXBsZS5jb20iXSwicHJuIjoidGVuYW50QWRtaW5Vc2VyIiwianRpIjoiZmE0NmNjNzktOTFhYi00NTUzLTk2Z
DQtYTRhZWYxYzhmZm
M3Iiwib3JhY2xlLm9hdXRoLmNsaWVudF9vcmlnaW5faWQiOiIzMDNhMjQ5Mi1kNjRmLTRlMDQtYjc4Zi1iNDM
zMDA0NzMxMmIiLCJv
cmFjbGUub2F1dGguc2NvcGUiOiJodHRwOi8vd3d3LmV4YW1wbGUuY29tIiwidXNlci50ZW5hbnQubmFtZSI6I
k9BdXRoVGVzdFRlbm
FudDEyNSIsIm9yYWNsZS5vYXV0aC5pZF9kX2lkIjoiMTM0NjM2NzUxMzgzMDI1NjYifQ.XP4cprA98Zx_k2Ua
Gx5bYn_GDVJkzfvYo
BnXLZVWYdMB_Sgkf8sS2i-lOHFuMqqwFvpYu4EccppQ8nWZYoMIJ_ZBnA3kvwosn1j-
_DGYr2aukuBrlM53mfkQlQ0kwd_zrVfJNVH
jaaw3grs0rX52NCRwWhxgE30OOahjj4ErWE64L9tDE0kz7YyKFAcPp6tPgQFO8eikVnlhgJAgexq5vABXa_QS
FyRhcsmk0kyNi9FtX
AKu4GEh_e0waQ9KGjeqzgwCSfRzriJ9otZjofbXca6dZpCxEWhfL06VHFiW-33GQpenpYCA-
x8XWmQtUR6c_jkE6TlMPp7AzR32Qud
nAA"}

The JavaScript Object Notation web token (JWT) obtained can be decoded and the
claims in the access token can be viewed as follows:

Access Token:

{
 alg: "RS256",
 typ: "JWT",
 x5t: "Wwrepu2dasaIpGR-AlVpHkUB6Jg",
 kid: "OAuthTestTenant125.cert"
}.
{
 sub: "tenantAdminUser",
 oracle.oauth.user_origin_id_type: "LDAP_UID",
 oracle.oauth.user_origin_id: "tenantAdminUser",
 iss: "OAuthTestTenant125",
 oracle.oauth.svc_p_n: "OAuthTestTenant125ServiceProfile",
 iat: 1425423619000,
 oracle.oauth.prn.id_type: "LDAP_UID",
 oracle.oauth.tk_context: "resource_access_tk",
 exp: 1425427219000,
 aud: [
 "http://www.example.com"
],
 prn: "tenantAdminUser",
 jti: "fa46cc79-91ab-4553-96d4-a4aef1c8ffc7",
 oracle.oauth.client_origin_id: "303a2492-d64f-4e04-b78f-b4330047312b",
 oracle.oauth.scope: "http://www.example.com",
 user.tenant.name: "OAuthTestTenant125",
 oracle.oauth.id_d_id: "13463675138302566"
}.
[signature]

Audience and scope claims in the output:

The audience claim in an access token always contains the API path of the resource.
The oracle.oauth.scope claim contains the valid API path with the scope in the
response. In the example above, the incoming request has a scope of http://
www.example.com. The client audience configuration also has a value of http://
www.example.com. The OAuth token service validates the incoming request scope

Using REST API Calls for the Resource Owner Password Credentials Grant

3-6 Oracle Cloud Administering Oracle Cloud Identity Management

with the value in the client audience configuration values. If this is a valid request,
then the OAuth token service sends a valid access token response. In this case, both
the audience claim and scope have the same value of http://www.example.com.

Obtaining an Access Token by Using the User Credentials and a JWT Client Assertion
The OAuth client can request an access token by providing the user’s credentials (that
is, the user name and password) and a JSON web token (JWT) client assertion.

This workflow has a resource owner request that uses the user identifier and
password of the resource owner, and a JWT client assertion generated by a third party.
When using the resource owner password credentials grant workflow, you can obtain
an access token by providing the user’s credentials and a client assertion. See Step-by-
Step Workflow of the Client Credentials Grant to identify the claims that need to be
part of the client assertion.

Parameters used in the access token request:

• X-USER-IDENTITY-DOMAIN-NAME: The name of the identity domain.

• Content-Type: The type of content that’s sent in the request. It’s a URL-encoded
application.

• Request: The type of request that’s sent. The example uses a POST request to
obtain an access token. This is followed by the authorization server URL, which
provides tokens.

• grant_type: The grant type used to obtain the token. In the example that follows,
the grant type is resource owner password credentials grant. The value of
password is given for this grant type.

• username: The name of the user.

• password: The name of the password.

• client_assertion_type: The type of client assertion. In Oracle Cloud, it is
jwt_bearer.

• client_assertion: The value of the client token obtained.

• scope: The limit of a particular scope for an access token.

The client credentials are available in the form of an already-generated JWT client
assertion. This is sent along with the user’s credentials to obtain an access token.

To obtain an access token, use the following cURL command:

curl -i -H 'X-USER-IDENTITY-DOMAIN-NAME: OAuthTestTenant125'
-H 'Authorization: Basic
MzAzYTI0OTItZDY0Zi00ZTA0LWI3OGYtYjQzMzAwNDczMTJiOll5Sk5NSkdFc0ZqUkxWZVZsdVMz'
-H 'Content-Type: application/x-www-form-urlencoded;charset=UTF-8'
--request POST https://<idm-domain>.identity.<data-center>.oraclecloud.com/oauth/
tokens
-d 'grant_type=password
&username=tenantAdminUser
&password=Fusionapps1
&client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-
bearer
&client_assertion=eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsIng1dCI6Ild3cmVwdTJkYXNhSXBHUi1
BbFZwSGtVQjZK
ZyIsImtpZCI6Ik9BdXRoVGVzdFRlbmFudDEyNS5jZXJ0In0.eyJvcmFjbGUub2F1dGgudGtfY29udGV4dCI6I

Using REST API Calls for the Resource Owner Password Credentials Grant

Securing Authorizations in Oracle Cloud 3-7

mNsaWVudF9hc3Nlc
nRpb24iLCJleHAiOjE0MjYwMzI4MzgwMDAsInN1YiI6IjMwM2EyNDkyLWQ2NGYtNGUwNC1iNzhmLWI0MzMwMD
Q3MzEyYiIsImlzcy
I6Ik9BdXRoVGVzdFRlbmFudDEyNSIsInBybiI6IjMwM2EyNDkyLWQ2NGYtNGUwNC1iNzhmLWI0MzMwMDQ3MzE
yYiIsImp0aSI6IjY
yNzZhYTI0LTUxNjQtNGEwZC1iYzQxLTlmMzVjMGU1ZjgxZiIsIm9yYWNsZS5vYXV0aC5zdmNfcF9uIjoiT0F1
dGhUZXN0VGVuYW50
MTI1U2VydmljZVByb2ZpbGUiLCJpYXQiOjE0MjU0MjgwMzgwMDAsIm9yYWNsZS5vYXV0aC5pZF9kX2lkIjoiM
TM0NjM2NzUxMzgzM
DI1NjYiLCJ1c2VyLnRlbmFudC5uYW1lIjoiT0F1dGhUZXN0VGVuYW50MTI1Iiwib3JhY2xlLm9hdXRoLnBybi
5pZF90eXBlIjoiQ2
xpZW50SUQifQ.OCHS9FhKJEXpIg3IvE6qWdTz3tRY449LZoBAcc3yDoaMbjS4CZxDDuKx6MUBpHmkmVoHRZSm
krILOzel51sT_kjE
HfNtzwMCIs2re_JcSfGkvnzv0aCV1r_V5dvmmZulhGaOUTu9nkEFzCq-JNa23eO_dEq8jfP7-
Y7H2KGMvuC5lHGGQViw1ega-4mFu
ZBJlSvzEqDcYIPde0m8gSUF--IFuiovgGTKCe97-0MF34za6SZ0HJv9p3WesvCS8YV1bcWVwTGEXCZ3qA1mA-
IOKvaMZNOxM_D9tT
5KVCub-i-H6r0uHpkovOCzunffcuL4cOg5ptrFv-abn-JP47eNag
&scope=http://www.example.com'

The output of the cURL command is:

{
"expires_in":3600,
"token_type":"Bearer",
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsIng1dCI6Ild3cmVwdTJkYXNhSXBHUi1Bb
FZwSGtVQjZKZyIs
ImtpZCI6Ik9BdXRoVGVzdFRlbmFudDEyNS5jZXJ0In0.eyJzdWIiOiJ0ZW5hbnRBZG1pblVzZXIiLCJvcmFjb
GUub2F1dGgudXNl
cl9vcmlnaW5faWRfdHlwZSI6IkxEQVBfVUlEIiwib3JhY2xlLm9hdXRoLnVzZXJfb3JpZ2luX2lkIjoidGVuY
W50QWRtaW5Vc2Vy
IiwiaXNzIjoiT0F1dGhUZXN0VGVuYW50MTI1Iiwib3JhY2xlLm9hdXRoLnN2Y19wX24iOiJPQXV0aFRlc3RUZ
W5hbnQxMjVTZXJ2
aWNlUHJvZmlsZSIsImlhdCI6MTQyNTQyODA2ODAwMCwib3JhY2xlLm9hdXRoLnBybi5pZF90eXBlIjoiTERBU
F9VSUQiLCJvcmFj
bGUub2F1dGgudGtfY29udGV4dCI6InJlc291cmNlX2FjY2Vzc190ayIsImV4cCI6MTQyNTQzMTY2ODAwMCwiY
XVkIjpbImh0dHA6
Ly93d3cuZXhhbXBsZS5jb20iXSwicHJuIjoidGVuYW50QWRtaW5Vc2VyIiwianRpIjoiMGZmNTM4NzQtZTJhY
S00OTYwLTg0NTU
tZWUzZjQ2N2ZjNDEzIiwib3JhY2xlLm9hdXRoLmNsaWVudF9vcmlnaW5faWQiOiIzMDNhMjQ5Mi1kNjRmLTRl
MDQtYjc4Zi1iNDM
zMDA0NzMxMmIiLCJvcmFjbGUub2F1dGguc2NvcGUiOiJodHRwOi8vd3d3LmV4YW1wbGUuY29tIiwidXNlci50
ZW5hbnQubmFtZSI
6Ik9BdXRoVGVzdFRlbmFudDEyNSIsIm9yYWNsZS5vYXV0aC5pZF9kX2lkIjoiMTM0NjM2NzUxMzgzMDI1NjYi
fQ.q9yLvZ9RTX1d
fJ-B8bcR6sQHKylSuXol02tOTbCmuRKgb9Ej5QxjPea35_Y0bMlOiRaUPk-
elE0tpx7m4b7tLsCHDYo2YtRWkOrKbSPWyVulPsXA
rTvtiy3qz5UX4mLhXXbWRwxUfNuUmUTen7hhqigJzxk_V3_BO85OT57aQBCp4QYBJ7HOmCeVjR4McyufTZEsR
L8v_D9CP85IxF9G
MrxZzLD8-
VTprmcirgAOlwdDUlWRMUtBwAmui5jfMJK0K0tkC8ABaUqPA58Af_HjUCT8wn0qY_b1mJH0tq0Is5i_n9tJ3f
DjxcQB
5yoAGMBp2CQgb4b1Hh7BWo5TY8HneA"
}

The JSON web token (JWT) obtained can be decoded and the claims in the access
token can be viewed as follows:

Access token:

Using REST API Calls for the Resource Owner Password Credentials Grant

3-8 Oracle Cloud Administering Oracle Cloud Identity Management

{
 alg: "RS256",
 typ: "JWT",
 x5t: "Wwrepu2dasaIpGR-AlVpHkUB6Jg",
 kid: "OAuthTestTenant125.cert"
}.
{
 sub: "tenantAdminUser",
 oracle.oauth.user_origin_id_type: "LDAP_UID",
 oracle.oauth.user_origin_id: "tenantAdminUser",
 iss: "OAuthTestTenant125",
 oracle.oauth.svc_p_n: "OAuthTestTenant125ServiceProfile",
 iat: 1425423619000,
 oracle.oauth.prn.id_type: "LDAP_UID",
 oracle.oauth.tk_context: "resource_access_tk",
 exp: 1425427219000,
 aud: [
 "http://www.example.com"
],
 prn: "tenantAdminUser",
 jti: "fa46cc79-91ab-4553-96d4-a4aef1c8ffc7",
 oracle.oauth.client_origin_id: "303a2492-d64f-4e04-b78f-b4330047312b",
 oracle.oauth.scope: "http://www.example.com",
 user.tenant.name: "OAuthTestTenant125",
 oracle.oauth.id_d_id: "13463675138302566"
}.
[signature]

Audience and scope claims in the output:

The audience claim in an access token contains the API path of the resource. The
oracle.oauth.scope claim contains the valid API path with the scope in the
response. In the prior example, the incoming request has a scope of http://
www.example.com. The client audience configuration also has a value of http://
www.example.com::*. The OAuth token service validates the incoming request
scope with the value in the client audience configuration values. Because this is a valid
request, the OAuth token service sends a valid access token in the response. In this
case, the audience claim has a value of http://www.example.com and the scope
has a value of http://www.example.com.

Client Credentials Grant Workflow
Use the client credentials grant when the client itself owns the data and doesn’t need
delegated access from a resource owner, or the delegated access has already been
granted to the application outside of a typical OAuth workflow.

The client credentials grant provides a specific grant flow in which the resource owner
(that is, the user) is not involved. When using this grant, the client application requests
an access token only with its own credentials (the identifier and secret) or an assertion,
and uses the access token on behalf of the client application itself. This grant flow is
best-suited when a service provider wants to provide some API methods that are to be
used by the client application in general, instead of methods that apply to a certain
resource owner, for example, API methods for maintenance. This way of using an API
is also referred to as userless access.

Security Properties

Depending on the use case for which you want to use the client credentials grant flow,
a single set of credentials for a client could provide access to a large amount of data.
The more data a single set of credentials has access to, the greater the risk if the

Client Credentials Grant Workflow

Securing Authorizations in Oracle Cloud 3-9

credentials become compromised. It’s critical that the credentials used to authenticate
the client are kept confidential. Ideally, these credentials would also be rotated
regularly.

Key Characteristics of the Client Credentials Grant Type

• It’s used by confidential clients.

• The flow is not redirection-based.

• It’s useful in cases where the client application communicates with the service
provider directly and not on behalf of a resource owner.

• The resource owner isn’t part of the flow.

Step-by-Step Workflow of the Client Credentials Grant
The client credentials grant workflow relies on the client being able to properly
authenticate with the authorization server and the client’s authentication credentials
remaining confidential.

When using the client credentials grant workflow, only the client details are used for
authentication and there is no resource owner.

Workflow of the Client Credentials Grant

1. Request an access token: The client credentials are exchanged for an access token.
The client application makes a request to the authorization server, including the
HTTP basic authentication header and optionally a client assertion. The client
application can use an already-generated client assertion or build a new assertion.
The client assertion is a standard JSON web token (JWT), to be signed by a trusted
or confidential client using its private key. Verify that the following claims are
part of the client assertion:

Header

{
"alg": "RS256",
"typ": "JWT",
"x5t": "<X5t of the certificate>"
}

Body

{
"exp": <Expiry Time in seconds>,
"sub": "<clientId>",
"aud": ["oauth.idm.oracle.com"],
"iss": "<clientId>",
"oracle.oauth.sub.id_type": "ClientID",
"prn": "<clientId>",
"jti": "<Globally Unique Id representing the token>",
"iat": <Issued at Time in seconds>,
"user.tenant.name": "<tenantname>",
"oracle.oauth.prn.id_type": "ClientID"
}

Obtain an access token by using different scenarios in the client credentials
workflow:

• Obtaining an Access Token Using the Client Authorization Header

Step-by-Step Workflow of the Client Credentials Grant

3-10 Oracle Cloud Administering Oracle Cloud Identity Management

• Obtaining an Access Token Using a Self-Signed Client Assertion

2. Receive an access token from the authorization server: The authorization server
authenticates the client based on the authorization header or assertion sent and
makes a response. If the client is authenticated and the parameters supplied are
valid, then the client gets an access token as the response. This is described in
Successful Authorization

If the authorization request fails for any reason, then the authorization server
returns a response containing information about the error. This is described in
Authorization Error

3. Use the access token to make a service request: The OAuth client makes a REST
API call to the resource server using the access token to access the protected
resource.

4. Send a response: The OAuth resource server sends a response to the service
request.

5. Grant access to the resource: The client (enduser) or service gets access to the
protected resource.

Using REST API Calls for the Client Credentials Grant
Get an access token by using the client authorization header, or a self-signed client
assertion.

Task Description Additional Information

Obtain an access token by
using a client
authorization header.

The client application sends an
authorization basic header to
obtain the access token.

Obtaining an Access Token by Using a Client
Authorization Header

Obtain an access token by
using a self-signed client
assertion.

The client application uses a self-
signed client assertion as part of
the request to obtain the access
token.

Obtaining an Access Token by Using a Self-
Signed Client Assertion

Obtaining an Access Token by Using a Client Authorization Header
The client credentials workflow allows the client application to obtain an access token
by using the basic authorization header.

In Oracle Cloud, all OAuth clients are confidential by default and so their credentials
(client_id and password) are never exposed. The client_id and password
credentials are encoded and sent in the basic authorization header. The format used to
obtain the header value is base64encoded(client_id:password).

Parameters used in the access token request:

• X-USER-IDENTITY-DOMAIN-NAME: The name of the identity domain.

• Authorization: Basic: The basic authorization header. The client identifier and
client secret of the client application are base64–encoded and sent in the header.
For example, the authorization header has the value of
base64encoded(client_id:password).

• Content-Type: The type of content that’s sent in the request. It is a URL-encoded
application.

Using REST API Calls for the Client Credentials Grant

Securing Authorizations in Oracle Cloud 3-11

• Request: The type of request that’s sent. In the example that follows, a POST
request is used to obtain an access token. This is followed by the authorization
server URL, which provides tokens.

• grant_type: The grant type used to obtain the token. In the example that follows,
the grant type is client credentials. The value of client_credentials is given
for this grant type.

• scope: The limit of a particular scope for an access token.

The client identifier and password are encoded and sent in the basic authorization
header. This is sent to obtain an access token.

To obtain an access token by providing the client credentials, use the following cURL
command :

curl -i -H 'X-USER-IDENTITY-DOMAIN-NAME: OAuthTestTenant125'
-H 'Authorization: Basic
MzAzYTI0OTItZDY0Zi00ZTA0LWI3OGYtYjQzMzAwNDczMTJiOll5Sk5NSkdFc0ZqUkxWZVZsdVMz'
-H 'Content-Type: application/x-www-form-urlencoded;charset=UTF-8'
--request POST https://<idm-domain>.identity.<data-center>.oraclecloud.com/oauth/
tokens
-d 'grant_type=client_credentials
&scope=http://www.example.com'

The output of the cURL command is:

{
"expires_in":3600,
"token_type":"Bearer",
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsIng1dCI6Ild3cmVwdTJkYXNhSXBHUi1Bb
FZwSGtVQjZKZyIsImtp
ZCI6Ik9BdXRoVGVzdFRlbmFudDEyNS5jZXJ0In0.eyJzdWIiOiIzMDNhMjQ5Mi1kNjRmLTRlMDQtYjc4Zi1iN
DMzMDA0NzMxMmIiLCJp
c3MiOiJPQXV0aFRlc3RUZW5hbnQxMjUiLCJvcmFjbGUub2F1dGguc3ZjX3BfbiI6Ik9BdXRoVGVzdFRlbmFud
DEyNVNlcnZpY2VQcm9m
aWxlIiwiaWF0IjoxNDI1NDIyMDk0MDAwLCJvcmFjbGUub2F1dGgucHJuLmlkX3R5cGUiOiJDbGllbnRJRCIsI
mV4cCI6MTQyNTQyNTY5
NDAwMCwib3JhY2xlLm9hdXRoLnRrX2NvbnRleHQiOiJyZXNvdXJjZV9hY2Nlc3NfdGsiLCJhdWQiOlsiaHR0c
DovL3d3dy5leGFtcGxl
LmNvbSJdLCJwcm4iOiIzMDNhMjQ5Mi1kNjRmLTRlMDQtYjc4Zi1iNDMzMDA0NzMxMmIiLCJqdGkiOiJlODE0N
jgyOC1kNWIyLTQxNjkt
ODU3Ny03MTJmODM2YjcyNDEiLCJvcmFjbGUub2F1dGguY2xpZW50X29yaWdpbl9pZCI6IjMwM2EyNDkyLWQ2N
GYtNGUwNC1iNzhmLWI0
MzMwMDQ3MzEyYiIsIm9yYWNsZS5vYXV0aC5zY29wZSI6Imh0dHA6Ly93d3cuZXhhbXBsZS5jb20iLCJ1c2VyL
nRlbmFudC5uYW1lIjoi
T0F1dGhUZXN0VGVuYW50MTI1Iiwib3JhY2xlLm9hdXRoLmlkX2RfaWQiOiIxMzQ2MzY3NTEzODMwMjU2NiJ9.
hM6nwuhj8h7L7vK6ozc
mm-xcyVoFbCkLln8oZZPPlIpf7o-Bahj3J5vcgqTuBl89pVGR-ly6m2AH-
v0yOdWD2Qfo8pnU14B3o01Z7U_vkxu_pc_3qz5P5Jk0rDm
xNT3iVeNK2rht41aXdQBiXJkGOAkUXpI6_MzK5kkY0zHm7PnybkipTfmUy8jEyRhwYvBGFsWvTGp5nIUP6zrm
TfxAb2q-hgFFV1HIGqm
7uGXZA1c7svXttkwEuajV3bWkaaFUe8YGuiokR-
nraoOvs18WpY08eSoiBPu8eTdp_ff6WWpjmMRe4YHvYNWmkbVxP3XD1sRtClLsgb6
eSqVwIK4HFQ"
}

The JSON web token (JWT) obtained can be decoded and the claims in the access
token can be viewed as follows:

Access token:

Using REST API Calls for the Client Credentials Grant

3-12 Oracle Cloud Administering Oracle Cloud Identity Management

{
 alg: "RS256",
 typ: "JWT",
 x5t: "Wwrepu2dasaIpGR-AlVpHkUB6Jg",
 kid: "OAuthTestTenant125.cert"
}.
{
 sub: "303a2492-d64f-4e04-b78f-b4330047312b",
 iss: "OAuthTestTenant125",
 oracle.oauth.svc_p_n: "OAuthTestTenant125ServiceProfile",
 iat: 1425422094000,
 oracle.oauth.prn.id_type: "ClientID",
 exp: 1425425694000,
 oracle.oauth.tk_context: "resource_access_tk",
 aud: [
 "http://www.example.com"
],
 prn: "303a2492-d64f-4e04-b78f-b4330047312b",
 jti: "e8146828-d5b2-4169-8577-712f836b7241",
 oracle.oauth.client_origin_id: "303a2492-d64f-4e04-b78f-b4330047312b",
 oracle.oauth.scope: "http://www.example.com",
 user.tenant.name: "OAuthTestTenant125",
 oracle.oauth.id_d_id: "13463675138302566"
}.
[signature]

Audience and scope claims in the output:

The audience claim in an access token always contains the API path of the resource.
The oracle.oauth.scope claim contains the valid API path with the scope in the
response. In the prior example, the incoming request has a scope of http://
www.example.com. The client audience configuration also has a value of http://
www.example.com. The OAuth token service validates the incoming request scope
with the value found in the client audience configuration. Because this is a valid
request, the OAuth token service sends a valid access token in the response. In this
case, the audience claim and the scope have the same value of http://
www.example.com.

Obtaining an Access Token by Using a Self-Signed Client Assertion
The client application uses a self-signed client assertion as part of the request to obtain
the access token.

Instead of sending the client credentials, send the client assertion as part of the request
for greater security. In Oracle Cloud, all OAuth clients are confidential by default and
so their credentials (client_id and password) are never exposed directly. A client
assertion is generated before requesting an access token. See Step-by-Step Workflow of
the Client Credentials Grant to identify the claims that need to be part of the client
assertion.

In the client credentials workflow, you obtain an access token by using a client
assertion.

Parameters used in the access token request:

• X-USER-IDENTITY-DOMAIN-NAME: The name of the identity domain.

• Content-Type: The type of content that’s sent in the request. It is a URL-encoded
application.

Using REST API Calls for the Client Credentials Grant

Securing Authorizations in Oracle Cloud 3-13

• Request: The type of request that’s sent. In the example that follows, a POST
request is used to obtain an access token. This is followed by the authorization
server URL, which provides tokens.

• grant_type: The grant type used to obtain the token. In the example that follows,
the grant type is client credentials. The value of client_credentials is given
for this grant type.

• scope: The limit of a particular scope for an access token.

• client_assertion_type: This specifies the type of client assertion that’s passed. In
Oracle Cloud, it’s jwt_bearer.

• client_assertion: The value of the client token obtained.

The client credentials are available in the form of a self-signed JSON web token (JWT)
client assertion. This is sent to obtain an access token.

To obtain an access token by using a client assertion, use the following cURL
command:

curl -i -H 'X-USER-IDENTITY-DOMAIN-NAME: OAuthTestTenant150'
-H 'Content-Type: application/x-www-form-urlencoded;charset=UTF-8'
--request POST https://<idm-domain>.identity.<data-center>.oraclecloud.com/oauth/
tokens
-d 'grant_type=client_credentials
&client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-
bearer
&client_assertion=eyJ4NXQiOiJyb2NFQ2NaVDlheG5FdWpQMVVPQVo3ZGNyTmMiLCJraWQiOiJJX0FNX0d
PT0
QiLCJ0eXAiOiJKV1QiLCJhbGciOiJSUzUxMiJ9.eyJzdWIiOiJhNWQ1MzllYy05MDZmLTQzZDYtOGQ3Ny1hOD
YzYjh
kMzdjZTQiLCJpc3MiOiJJX0FNX0dPT0QiLCJvcmFjbGUub2ljLnRva2VuLnR5cGUiOiJDTElFTlRUT0tFTiIs
ImV4c
CI6NDU3OTI2NjA3NywicHJuIjoiYTVkNTM5ZWMtOTA2Zi00M2Q2LThkNzctYTg2M2I4ZDM3Y2U0IiwiaWF0Ij
oxNDI
1NjY2MDc3LCJvcmFjbGUub2ljLnRva2VuLnVzZXJfZG4iOiJ1aWQ9YTVkNTM5ZWMtOTA2Zi00M2Q2LThkNzct
YTg2M
2I4ZDM3Y2U0LCBjbj10ZXN0ZXIgdGVzdGVyLCBvdT10ZXN0LCBvPW9yYWNsZSwgc3Q9Y2FsaWZvcm5pYSwgYz
11cyJ
9.MHC9Cof6uaZGMbrKAbmdn36b-
nHkI6HWq7A9ygba3VA3hsHRM3_hqZY_qXM1A9H585SVhipmi0RR9TNTINWstj2h
H6Z9WbATX6qJynSbyv8K7vb35dK2-awaGON9oTi2aPdApFkTiaX9r0-lvZSwVMbwx6ZPSIHSuxFMWvrpL58
&scope=http://www.example.com'

The output of the cURL command is:

{
"expires_in":3600,
"token_type":"Bearer",
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsIng1dCI6ImtoNlhyVE42V2p6dmhIOExrN
nNLaWVpUD
VodyIsImtpZCI6Ik9BdXRoVGVzdFRlbmFudDE1MC5jZXJ0In0.eyJzdWIiOiJhNWQ1MzllYy05MDZmLTQzZDY
tOGQ3Ny1h
ODYzYjhkMzdjZTQiLCJpc3MiOiJPQXV0aFRlc3RUZW5hbnQxNTAiLCJvcmFjbGUub2F1dGguc3ZjX3BfbiI6I
k9BdXRoVG
VzdFRlbmFudDE1MFNlcnZpY2VQcm9maWxlIiwiaWF0IjoxNDI1NjY2NTk4MDAwLCJvcmFjbGUub2F1dGgucHJ
uLmlkX3R5
cGUiOiJDbGllbnRJRCIsImV4cCI6MTQyNTY3MDE5ODAwMCwib3JhY2xlLm9hdXRoLnRrX2NvbnRleHQiOiJyZ
XNvdXJjZV
9hY2Nlc3NfdGsiLCJhdWQiOlsiaHR0cDovL3d3dy5leGFtcGxlLmNvbSJdLCJwcm4iOiJhNWQ1MzllYy05MDZ

Using REST API Calls for the Client Credentials Grant

3-14 Oracle Cloud Administering Oracle Cloud Identity Management

mLTQzZDYt
OGQ3Ny1hODYzYjhkMzdjZTQiLCJqdGkiOiJmOTA3MTFlOS0xOTgxLTQ4YzItOGMwOS1kOTE1MzRjMGRiY2EiL
CJvcmFjbG
Uub2F1dGguY2xpZW50X29yaWdpbl9pZCI6ImE1ZDUzOWVjLTkwNmYtNDNkNi04ZDc3LWE4NjNiOGQzN2NlNCI
sIm9yYWNs
ZS5vYXV0aC5zY29wZSI6Imh0dHA6Ly93d3cuZXhhbXBsZS5jb20iLCJ1c2VyLnRlbmFudC5uYW1lIjoiT0F1d
GhUZXN0VG
VuYW50MTUwIiwib3JhY2xlLm9hdXRoLmlkX2RfaWQiOiIzMDE2NzQ1NTk1MzQ0NzA4MSJ9.I8u207Vmvt3qiP
I8tBeU2-t
liGgyiXHLzJJ1sY_jvv-8B_irYjkMBjyC12RzLb2-
S0fpcZwuycCEjI4TCfkvfe6qBWdyEJHBxF1ioaKUhOs7oXgNxYcmo
8ZkkcwjdAg9nR4hRZ9lFZcYZOuHcSXxP2qsbnodrTxa6DLihj7cbyTql0i0d3wZjPMq9MPU3OyM6mtPDqltNT
KVU56r-X9
w23-MDguQGLSLFbbxpv6XgEo3eS6j1sfXfZZ9kPLwW-rSITOuqnmdq90IUsSh8Y4_wAg-
IrClftA9iRZ6D7z46t5-koXSY
U_oh6FwHJA0nhU-wt1z4UnD3HB60xKhEX8F8A"
}

The JWT obtained can be decoded, and the claims in the access token can be viewed as
follows:

Access token:

 {
 alg: "RS256",
 typ: "JWT",
 x5t: "kh6XrTN6WjzvhH8Lk6sKieiP5hw",
 kid: "OAuthTestTenant150.cert"
}.
{
 sub: "a5d539ec-906f-43d6-8d77-a863b8d37ce4",
 iss: "OAuthTestTenant150",
 oracle.oauth.svc_p_n: "OAuthTestTenant150ServiceProfile",
 iat: 1425666598000,
 oracle.oauth.prn.id_type: "ClientID",
 exp: 1425670198000,
 oracle.oauth.tk_context: "resource_access_tk",
 aud: [
 "http://www.example.com"
],
 prn: "a5d539ec-906f-43d6-8d77-a863b8d37ce4",
 jti: "f90711e9-1981-48c2-8c09-d91534c0dbca",
 oracle.oauth.client_origin_id: "a5d539ec-906f-43d6-8d77-a863b8d37ce4",
 oracle.oauth.scope: "http://www.example.com",
 user.tenant.name: "OAuthTestTenant150",
 oracle.oauth.id_d_id: "30167455953447081"
}.
[signature]

Audience and scope claims in the output:

The audience claim in an access token contains the API path of the resource. The
oracle.oauth.scope claim contains the valid API path with the scope in the
response. In the prior example, the incoming request has a scope of http://
www.example.com. The client audience configuration has a value of http://
www.example.com::*. The OAuth token service validates the incoming request
scope with the value found in the client audience configuration. Because this is a valid
request, the OAuth token service sends a valid access token in the response. In this
case, the audience claim has a value of http://www.example.com, and the scope
has a value of http://www.example.com.

Using REST API Calls for the Client Credentials Grant

Securing Authorizations in Oracle Cloud 3-15

User Assertion Workflow
In this workflow the user provides the user assertion to obtain an access token from
the OAuth token service.

The user assertion grant describes a flow where the client application, together with its
client identifier and password, sends the user assertion in exchange for an access
token. This flow has different security properties than the other OAuth flows. The
primary difference is that the user’s credentials are never accessible to the application.

Key Characteristics of the User Assertion Workflow

The user assertion workflow:

• It’s used with confidential clients.

• It uses the assertion of the Resource Owner.

• It isn’t redirection-based; it takes a request only from the client application to the
authorization server, and the user is not redirected between interfaces to authorize
the request.

Workflow of the User Assertion Grant

1. Obtain user assertion: The user provides the assertion. The client application can
use an already-generated user assertion or build a new assertion. The user
assertion is a standard JSON web token (JWT), to be signed by a trusted client
using its private key. Verify that the following claims are part of the user
assertion:

Header

{
"alg": "RS256",
"typ": "JWT",
"x5t": "<X5t of the certificate>"
}

Body

{
"exp": <Expiry Time in seconds>,
"sub": "<username like john.doe@example.com>",
"aud": ["oauth.idm.oracle.com"],
"iss": "<clientid>",
"oracle.oauth.sub.id_type": "LDAP_UID",
"prn": "<username like john.doe@example.com>",
"jti": "<Globally Unique Id representing the token>",
"iat": <Issued at Time in seconds>,
"user.tenant.name": "<tenantname>",
"oracle.oauth.prn.id_type": "LDAP_UID"
}

2. Request an access token: The user assertion is exchanged for an access token. The
client application makes a request to the authorization server, including the user’s
assertion and either the client’s credentials or the client assertion. The client
application can use an already generated client assertion or build a new assertion.

User Assertion Workflow

3-16 Oracle Cloud Administering Oracle Cloud Identity Management

Note:

In the regular flow the access token's expiry claim is obtained from the
configuration and the expiry time of the access token is by default 1 hour.
However, in case of using the self-signed user assertion and client credentials
flow, the expiry time of the access token can be modified to a value up to 90
days. The OAuth Server looks for the exp claim in the user assertion to
determine the expiry claim of the resulting access token.

Obtain an access token by using different scenarios in the user assertion
workflow:

• Obtaining an Access Token by Using a Self-Signed User Assertion and the
Client Credentials

• Obtaining an Access Token by Using a Self-Signed User Assertion and a
Client Assertion

3. Receive an access token from the authorization server: The authorization server
authenticates the client based on the client identifier and secret, determines
whether it is authorized for making this request, and verifies the user’s assertion
and other parameters that are supplied. If everything is verified successfully, then
the authorization server returns an access token in response. This is described in
Successful Authorization.

If the authorization request fails for any reason, then the authorization server
returns a response containing information about the error. This is described in
Authorization Error.

4. Use the access token to make a service request: The OAuth client makes a REST
API call to the resource server using the access token to access the protected
resource.

5. Send a response: The OAuth resource server sends a response to the client
application that made the request.

6. Grant access to the resource: The enduser or service gets access to the protected
resource.

Using REST API Calls for the User Assertion Grant
In the user assertion flow, the user provides the user assertion to obtain an access
token from the OAuth Service. In addition to the user assertion, the client provides an
Authorization header, a self-signed client assertion, or a third-party generated client
assertion in the access token request.

The table displays the different options to obtain an access token.

Task Description Additional Information

Obtain an access token by
using a self-signed user
assertion and the client
credentials.

The OAuth client can request an
access token by providing a self-
signed user assertion and the
client credentials.

Obtaining an Access Token by Using a Self-
Signed User Assertion and the Client
Credentials

Using REST API Calls for the User Assertion Grant

Securing Authorizations in Oracle Cloud 3-17

Task Description Additional Information

Obtain an access token by
using a self-signed user
assertion and a client
assertion.

The OAuth client can request an
access token by providing a self-
signed user assertion and a client
assertion.

Obtaining an Access Token by Using a Self-
Signed User Assertion and a Client Assertion

Obtaining an Access Token by Using a Self-Signed User Assertion and the Client
Credentials

The OAuth client can request an access token by providing the user assertion and
client credentials.

This workflow describes an access token request that uses the self-signed user
assertion and a basic client authorization header. This is a more secure workflow than
when the resource owner’s credentials (user name and password) are exposed.

The user assertion grant workflow allows you to obtain an access token by using a
user assertion and the client credentials that are supplied in the form of a basic
authorization header. See User Assertion Workflow to identify the claims that need to
be part of the user assertion.

The client application makes a request to the authorization server that includes the
HTTP basic authorization header. The basic authorization header is
base64encoded(client_id:client_password).

Parameters used in the access token request:

• X-USER-IDENTITY-DOMAIN-NAME: The name of the identity domain.

• Content-Type: The type of content that’s sent in the request. It’s a URL-encoded
application.

• Authorization: Basic: The basic authorization header. The client id and client
secret of the client application are base64–encoded and sent in the header. For
example, the authorization header has a value of
base64encoded(client_id:client_password).

• Request: The type of request that’s sent. In the example that follows, a POST
request is used to obtain an access token. This is followed by the authorization
server URL which provides tokens.

• grant_type: The grant type used to obtain the token. In the example that follows,
the grant type is user assertion grant. The value of jwt-bearer is given for this
grant type.

• scope: The limit of a particular scope for an access token.

• assertion: The value of the user token obtained.

The client identifier and password are encoded and sent in the basic authorization
header. This is sent along with the self-signed user assertion to obtain an access token.

To obtain an access token by using the user assertion and the client credentials, use the
following cURL command:

curl -i -H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
-H 'X-USER-IDENTITY-DOMAIN-NAME: OAuthTestTenant125'

Using REST API Calls for the User Assertion Grant

3-18 Oracle Cloud Administering Oracle Cloud Identity Management

 -H 'Authorization: Basic
YTVkNTM5ZWMtOTA2Zi00M2Q2LThkNzctYTg2M2I4ZDM3Y2U0OlZkT0dVSGZIVHpFUFFNcHhVbHkx'
--request POST https://<idm-domain>.identity.<data-center>.oraclecloud.com/oauth/
tokens
-d 'grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer
&client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-
bearer
&assertion=eyJraWQiOiJPQXV0aFRlc3RUZW5hbnQxNTAuaml0aGVuLWNsaWVudDEwLmNlcnQiLCJ0eXAiOi
JKV1QiLCJhbGciOiJSUzUxM
iJ9.eyJpc3MiOiJJX0FNX0dPT0QiLCJvcmFjbGUub2ljLnRva2VuLnR5cGUiOiJVU0VSVE9LRU4iLCJleHAiO
jQ1Nzk2MTcwMzQ2MTksInBybi
I6InRlbmFudEFkbWluVXNlciIsImlhdCI6MTQyNjAxNzAzNDYxOSwib3JhY2xlLm9pYy50b2tlbi51c2VyX2R
uIjoidWlkPXRlbmFudEFkbWlu
VXNlciwgY249dGVzdGVyIHRlc3Rlciwgb3U9dGVzdCwgbz1vcmFjbGUsIHN0PWNhbGlmb3JuaWEsIGM9dXMif
Q.elcNdSL6rl7RjmBPnS0UVN8
m7bJP7M7LUGLm6I4LXY3-mPSv1IP-Mn8r4GfMx7qCSgcCV16Lm3kBeXl9j-
YUYg1j2O8Z1AmxzQx_P3OvmRokUOv1SlCvW8Z560vrX3o1bhdfn
iFOJYef5pJrgTvri9WhNSTVjcYjJFRAxr7Ysfw
&scope=http://www.example.com'

The output of the cURL command is:

{
"expires_in":3600,
"token_type":"Bearer",
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsIng1dCI6Ild3cmVwdTJkYXNhSXBHUi1Bb
FZwSGtVQjZKZyIsImtpZCI6I
k9BdXRoVGVzdFRlbmFudDEyNS5jZXJ0In0.eyJzdWIiOiJ0ZW5hbnRBZG1pblVzZXIiLCJvcmFjbGUub2F1dG
gudXNlcl9vcmlnaW5faWRfdHl
wZSI6IkxEQVBfVUlEIiwib3JhY2xlLm9hdXRoLnVzZXJfb3JpZ2luX2lkIjoidGVuYW50QWRtaW5Vc2VyIiwi
aXNzIjoiT0F1dGhUZXN0VGVuY
W50MTI1Iiwib3JhY2xlLm9hdXRoLnN2Y19wX24iOiJPQXV0aFRlc3RUZW5hbnQxMjVTZXJ2aWNlUHJvZmlsZS
IsImlhdCI6MTQyNTQyNDMxODA
wMCwib3JhY2xlLm9hdXRoLnBybi5pZF90eXBlIjoiTERBUF9VSUQiLCJvcmFjbGUub2F1dGgudGtfY29udGV4
dCI6InJlc291cmNlX2FjY2Vzc
190ayIsImV4cCI6MTQyNTQyNzkxODAwMCwiYXVkIjpbImh0dHA6Ly93d3cuZXhhbXBsZS5jb20iXSwicHJuIj
oidGVuYW50QWRtaW5Vc2VyIiw
ianRpIjoiZDM4NWNjNzEtOGYxOC00NmE1LTlhZTQtNmFiNmYwODViYWRiIiwib3JhY2xlLm9hdXRoLmNsaWVu
dF9vcmlnaW5faWQiOiIzMDNhM
jQ5Mi1kNjRmLTRlMDQtYjc4Zi1iNDMzMDA0NzMxMmIiLCJvcmFjbGUub2F1dGguc2NvcGUiOiJodHRwOi8vd3
d3LmV4YW1wbGUuY29tIiwidXN
lci50ZW5hbnQubmFtZSI6Ik9BdXRoVGVzdFRlbmFudDEyNSIsIm9yYWNsZS5vYXV0aC5pZF9kX2lkIjoiMTM0
NjM2NzUxMzgzMDI1NjYifQ.DC
2OrybsETGdXJriaVQBhMxobxu6qGL-
r51X6wCUerep9WQgAsCjQrdtFPrFjqDRJEfhgZqPDH5GcCZqIJ9ckFk1WlDVBRsYudRWfgmVKPYwazU1
VUbwtfNkSDWnRJg_pE4ndMo_Ioi_D2LeP4PROgOCRHUUihtgyuKAKZk8f4VxIto4iVuUTxEy-0LU5v54Wnclt
K24LaUwVkqTBa2MgqrMJSdpJ2
91S2-
qeyY0cy9VcaxPyqZAbMRS5OhWyA_y45iqPPoUqAuRcZ9Mu9nhzmY_fewwf2nsJqoLTan4ruB0lLx7DuLs7ZfP
77UCULckkxrfcY8Ahmx_
HjO3LGpuzQ"
}

The JSON web token (JWT) obtained can be decoded, and the claims in the access
token can be viewed as follows:

Access Token:

{
 alg: "RS256",
 typ: "JWT",

Using REST API Calls for the User Assertion Grant

Securing Authorizations in Oracle Cloud 3-19

 x5t: "Wwrepu2dasaIpGR-AlVpHkUB6Jg",
 kid: "OAuthTestTenant125.cert"
}.
{
 sub: "tenantAdminUser",
 oracle.oauth.user_origin_id_type: "LDAP_UID",
 oracle.oauth.user_origin_id: "tenantAdminUser",
 iss: "OAuthTestTenant125",
 oracle.oauth.svc_p_n: "OAuthTestTenant125ServiceProfile",
 iat: 1425424318000,
 oracle.oauth.prn.id_type: "LDAP_UID",
 oracle.oauth.tk_context: "resource_access_tk",
 exp: 1425427918000,
 aud: [
 "http://www.example.com"
],
 prn: "tenantAdminUser",
 jti: "d385cc71-8f18-46a5-9ae4-6ab6f085badb",
 oracle.oauth.client_origin_id: "303a2492-d64f-4e04-b78f-b4330047312b",
 oracle.oauth.scope: "http://www.example.com",
 user.tenant.name: "OAuthTestTenant125",
 oracle.oauth.id_d_id: "13463675138302566"
}.
[signature]

Note:

In the regular flow the access token's expiry claim is obtained from the
configuration and the expiry time of the access token is by default 1 hour.
However for this use case the expiry time of the access token can be modified
to a value up to 90 days. The OAuth Server looks for the exp claim in the user
assertion to determine the expiry claim of the resulting access token. See User
Assertion Workflow to determine the claims a self-signed user assertion
should have.

Audience and scope claims in the output:

The audience claim in an access token contains the API path of the resource. The
oracle.oauth.scope claim contains the valid API path with the scope in the
response. In the prior example, the incoming request has a scope of http://
www.example.com. The client audience configuration has a value of http://
www.example.com::*. The OAuth token service validates the incoming request
scope with the value found in the client audience configuration. Because this is a valid
request, the OAuth token service sends a valid access token in the response. In this
case, the audience claim has a value of http://www.example.com, and the scope
has a value of http://www.example.com.

Obtaining an Access Token by Using a Self-Signed User Assertion and a Client
Assertion

The OAuth client can request an access token by providing the user assertion and the
client assertion.

This workflow has an access token request that uses a user assertion and a JSON web
token (JWT) client assertion that is generated by a third party. This is a more secure
workflow than when the resource owner’s credentials (user name and password) are
exposed.

Using REST API Calls for the User Assertion Grant

3-20 Oracle Cloud Administering Oracle Cloud Identity Management

The user assertion grant workflow allows you to obtain an access token by using a
user assertion and a client assertion. See User Assertion Workflow to identify the
claims that need to be part of the user assertion. See Step-by-Step Workflow of the
Client Credentials Grant to identify the claims that need to be part of the client
assertion.

Parameters used in the access token request:

• X-USER-IDENTITY-DOMAIN-NAME: The name of the identity domain.

• Content-Type: The type of content that’s sent in the request. It is a URL-encoded
application.

• Request: The type of request that’s sent. In the example that follows, a POST
request is used to obtain an access token. This is followed by the URL of the
authorization server, which provides tokens.

• grant_type: The grant type used to obtain the token. In the example that follows,
the grant type is a user assertion. The value of jwt-bearer is given for this grant
type.

• scope: The limit of a particular scope for an access token.

• client_assertion_type: The type of client assertion that’s passed. In Oracle Cloud,
it’s jwt_bearer.

• client_assertion: The value of the client token obtained.

• assertion: The value of the user token obtained.

The client credentials are available in the form of a third-party generated client
assertion. This is sent along with a self-signed user assertion to obtain an access token.

To obtain an access token by using a self-signed user assertion and a client assertion,
use the following cURL command:

curl -i -H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
-H 'X-USER-IDENTITY-DOMAIN-NAME: OAuthTestTenant125'
--request POST https://<idm-domain>.identity.<data-center>.oraclecloud.com/oauth/
tokens
-d 'grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer
&client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-
bearer
&assertion=eyJraWQiOiJPQXV0aFRlc3RUZW5hbnQxNTAuaml0aGVuLWNsaWVudDEwLmNlcnQiLCJ0eXAiOi
JKV1QiLCJhbGciOi
JSUzUxMiJ9.eyJpc3MiOiJJX0FNX0dPT0QiLCJvcmFjbGUub2ljLnRva2VuLnR5cGUiOiJVU0VSVE9LRU4iLC
JleHAiOjQ1Nzk2MTcw
MzQ2MTksInBybiI6InRlbmFudEFkbWluVXNlciIsImlhdCI6MTQyNjAxNzAzNDYxOSwib3JhY2xlLm9pYy50b
2tlbi51c2VyX2RuIjo
idWlkPXRlbmFudEFkbWluVXNlciwgY249dGVzdGVyIHRlc3Rlciwgb3U9dGVzdCwgbz1vcmFjbGUsIHN0PWNh
bGlmb3JuaWEsIGM9dX
MifQ.elcNdSL6rl7RjmBPnS0UVN8m7bJP7M7LUGLm6I4LXY3-mPSv1IP-
Mn8r4GfMx7qCSgcCV16Lm3kBeXl9j-YUYg1j2O8Z1AmxzQ
x_P3OvmRokUOv1SlCvW8Z560vrX3o1bhdfniFOJYef5pJrgTvri9WhNSTVjcYjJFRAxr7Ysfw
&client_assertion=eyJ4NXQiOiJyb2NFQ2NaVDlheG5FdWpQMVVPQVo3ZGNyTmMiLCJraWQiOiJJX0FNX0d
PT0QiLCJ0eXAiOiJ
KV1QiLCJhbGciOiJSUzUxMiJ9.eyJzdWIiOiJhNWQ1MzllYy05MDZmLTQzZDYtOGQ3Ny1hODYzYjhkMzdjZTQ
iLCJpc3MiOiJJX0FNX
0dPT0QiLCJvcmFjbGUub2ljLnRva2VuLnR5cGUiOiJDTElFTlRUT0tFTiIsImV4cCI6NDU3OTUzOTA4MiwicH
JuIjoiYTVkNTM5ZWMt
OTA2Zi00M2Q2LThkNzctYTg2M2I4ZDM3Y2U0IiwiaWF0IjoxNDI1OTM5MDgyLCJvcmFjbGUub2ljLnRva2VuL

Using REST API Calls for the User Assertion Grant

Securing Authorizations in Oracle Cloud 3-21

nVzZXJfZG4iOiJ1aWQ
9YTVkNTM5ZWMtOTA2Zi00M2Q2LThkNzctYTg2M2I4ZDM3Y2U0LCBjbj10ZXN0ZXIgdGVzdGVyLCBvdT10ZXN0
LCBvPW9yYWNsZSwgc3
Q9Y2FsaWZvcm5pYSwgYz11cyJ9.VnFBDNzxyL8pPAjUe2ogCYeqRFIWk3_JVTBREiJnOdY79tSEf78rYDefM2
znABSBW_EVow2fIglS
F_aNrvSslL9Ne4eammR9EELNDk5MvLlJOZQ5mt1ZODh2L8fYbt1nlujxYOE6qrrRNzkrase3wLv2Oe8lTsfgL
89Fzbm5p9A
&scope=http://www.example.com'

The output of the cURL command is:

{
"expires_in":3600,
"token_type":"Bearer",
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsIng1dCI6ImtoNlhyVE42V2p6dmhIOExrN
nNLaWVpUDVodyIsImtp
ZCI6Ik9BdXRoVGVzdFRlbmFudDE1MC5jZXJ0In0.eyJzdWIiOiJ0ZW5hbnRBZG1pblVzZXIiLCJvcmFjbGUub
2F1dGgudXNlcl9vcmln
aW5faWQiOiJ0ZW5hbnRBZG1pblVzZXIiLCJpc3MiOiJPQXV0aFRlc3RUZW5hbnQxNTAiLCJvcmFjbGUub2F1d
Gguc3ZjX3BfbiI6Ik9B
dXRoVGVzdFRlbmFudDE1MFNlcnZpY2VQcm9maWxlIiwiaWF0IjoxNDI2MDIxNjY1MDAwLCJleHAiOjE0MjYwM
jUyNjUwMDAsIm9yYWNs
ZS5vYXV0aC50a19jb250ZXh0IjoicmVzb3VyY2VfYWNjZXNzX3RrIiwiYXVkIjpbImh0dHA6Ly93d3cuZXhhb
XBsZS5jb20iXSwicHJu
IjoidGVuYW50QWRtaW5Vc2VyIiwianRpIjoiZjMzMDQwNmUtZmYzNy00MTUwLTg0N2EtY2Q4MzdjYzM3MDI1I
iwib3JhY2xlLm9hdXRo
LmNsaWVudF9vcmlnaW5faWQiOiJhNWQ1MzllYy05MDZmLTQzZDYtOGQ3Ny1hODYzYjhkMzdjZTQiLCJvcmFjb
GUub2F1dGguc2NvcGUi
OiJodHRwOi8vd3d3LmV4YW1wbGUuY29tIiwidXNlci50ZW5hbnQubmFtZSI6Ik9BdXRoVGVzdFRlbmFudDE1M
CIsIm9yYWNsZS5vYXV0
aC5pZF9kX2lkIjoiMzAxNjc0NTU5NTM0NDcwODEifQ.ZMsXIfjE3PuE_jA-jJXaSjQtXqQZUQ-
nINQ1SW9T9VK8Yhx9ARptk4oYhZ6cQ
p_Wgq9Lw_hxEiOnlJY9blJBPO3f3r_SHUvNhKwPyHsQ9WyqAgOzJkjeUMrD2Z90N3mdRJqFKP7N1rphJbU6rr
D0Ko_nKenwBReX0-mPj
V_-qC4JxvdVsnLHiLFQW0MlFKUTmG2NafA-t14RO63hCxKa09gjIxgWCHnBdD--
YDvLsr3n6lZnKhIZg5IkKHAt2IR7wnIINOanAsvFI
RN36_pAVnGSfV7xAnrybVkyRPK13ltOfdUcvhKSvwqJaTtML8vVOfIO9qUUFjFfb_FkJFoIdA"
}

The JWT obtained can be decoded, and the claims in the access token can be viewed as
follows:

Access token:

{
 alg: "RS256",
 typ: "JWT",
 x5t: "Wwrepu2dasaIpGR-AlVpHkUB6Jg",
 kid: "OAuthTestTenant125.cert"
}.
{
 sub: "tenantAdminUser",
 oracle.oauth.user_origin_id_type: "LDAP_UID",
 oracle.oauth.user_origin_id: "tenantAdminUser",
 iss: "OAuthTestTenant125",
 oracle.oauth.svc_p_n: "OAuthTestTenant125ServiceProfile",
 iat: 1425424318000,
 oracle.oauth.prn.id_type: "LDAP_UID",
 oracle.oauth.tk_context: "resource_access_tk",
 exp: 1425427918000,
 aud: [

Using REST API Calls for the User Assertion Grant

3-22 Oracle Cloud Administering Oracle Cloud Identity Management

 "http://www.example.com"
],
 prn: "tenantAdminUser",
 jti: "d385cc71-8f18-46a5-9ae4-6ab6f085badb",
 oracle.oauth.client_origin_id: "303a2492-d64f-4e04-b78f-b4330047312b",
 oracle.oauth.scope: "http://www.example.com",
 user.tenant.name: "OAuthTestTenant125",
 oracle.oauth.id_d_id: "13463675138302566"
}.
[signature]

Note:

In the regular flow the access token's expiry claim is obtained from the
configuration and the expiry time of the access token is by default 1 hour. The
OAuth Server looks for the exp claim in the user assertion to determine the
expiry claim of the resulting access token. However, only if you are using a
the self-signed user assertion and client credentials flow, the expiry time of the
access token can be modified to a value up to 90 days.

Audience and scope claims in the output:

The audience claim in an access token contains the API path of the resource. The
oracle.oauth.scope claim contains the valid API path with the scope in the
response. In the prior example, the incoming request has a scope of http://
www.example.com. The client audience configuration has a value of http://
www.example.com::*. The OAuth token service validates the incoming request
scope with the value found in the client audience configuration. Because this is a valid
request, the OAuth token service sends a valid access token in the response. In this
case, the audience claim has a value of http://www.example.com and the scope
has a value of http://www.example.com.

Successful Authorization
During an authorization request, if the validations pass successfully, then the
authorization server sends a response with an access token.

When the authorization server handles the request from the client, the following
occur:

• Validation of the client assertion, also ensuring that the client is authorized to
make the request. This is done by using the client certificate that was imported
when the client was registered with the authorization server.

• Validation of the user, also ensuring that the user is authorized to make the
request. Either the user’s credentials or the user assertion is validated.

• Validation of the audience claim in the client profile in the OAuth service
(information stored when the client is registered) against the scope in the
incoming access token request.

If the validations pass successfully, the authorization server sends a response with an
access token.

Access Token in the Response

In the body of the response, a JSON (or XML or other) object is included, representing
the response, as shown in the following example:

Successful Authorization

Securing Authorizations in Oracle Cloud 3-23

{"expires_in":3600,
"token_type":"Bearer",
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsIng1dCI6Ild3cmVwdTJkYXNhSXBHUi1Bb
FZwSGtVQjZKZyIsImtpZCI6I
k9BdXRoVGVzdFRlbmFudDEyNS5jZXJ0In0.eyJzdWIiOiJ0ZW5hbnRBZG1pblVzZXIiLCJvcmFjbGUub2F1dG
gudXNlcl9vcmlnaW5faWRfdH
lwZSI6IkxEQVBfVUlEIiwib3JhY2xlLm9hdXRoLnVzZXJfb3JpZ2luX2lkIjoidGVuYW50QWRtaW5Vc2VyIiw
iaXNzIjoiT0F1dGhUZXN0VGV
uYW50MTI1Iiwib3JhY2xlLm9hdXRoLnN2Y19wX24iOiJPQXV0aFRlc3RUZW5hbnQxMjVTZXJ2aWNlUHJvZmls
ZSIsImlhdCI6MTQyNTQyNzc1
NjAwMCwib3JhY2xlLm9hdXRoLnBybi5pZF90eXBlIjoiTERBUF9VSUQiLCJvcmFjbGUub2F1dGgudGtfY29ud
GV4dCI6InJlc291cmNlX2FjY
2Vzc190ayIsImV4cCI6MTQyNTQzMTM1NjAwMCwiYXVkIjpbImh0dHA6Ly93d3cuZXhhbXBsZS5jb20iXSwicH
JuIjoidGVuYW50QWRtaW5Vc2
VyIiwianRpIjoiZWM3ZWRhOWUtMTMyMS00MWI0LTg1MTYtMDQzNDRhMDY4MjE4Iiwib3JhY2xlLm9hdXRoLmN
saWVudF9vcmlnaW5faWQiOiI
zMDNhMjQ5Mi1kNjRmLTRlMDQtYjc4Zi1iNDMzMDA0NzMxMmIiLCJvcmFjbGUub2F1dGguc2NvcGUiOiJodHRw
Oi8vd3d3LmV4YW1wbGUuY29t
IiwidXNlci50ZW5hbnQubmFtZSI6Ik9BdXRoVGVzdFRlbmFudDEyNSIsIm9yYWNsZS5vYXV0aC5pZF9kX2lkI
joiMTM0NjM2NzUxMzgzMDI1N
jYifQ.maEhtSbOWqKZPj_Wb6vezEcusm8SHLLBrdqKRjh3aKyga4_vY8cYiug59gF7t9xeVY_wps2mOI6uaAm
8J0Fw0jZo2_NZpS5nXq-PiUN
CTHWiUQkb8GFv8Gd6qGc2M7Y3cBLG5w-
VVRCtRVBUtpTkaTg_VWzS_iygsSIBJjp6KsIqKRtE_DjGtp_E3AaBnfmB19r754NJl3_R8BQ1Wpbj
EL-8zFZzBa-4bTC0DQ58w4ssOOLT3aZWv9UhJ0Ok_pT-ZDcFxFLUGoMnTD-
pms9h4m58mGDtrRi5WBPC8n3RuOrmZBJjzOWAjCC0Tb-ZdR65q
7ewaxX_V6PccCHeIoFPmg"
}

The fields that are a part of the response are:

• expires_in: An optional and recommended parameter that specifies the lifetime of
the access token in seconds. In the prior example, the access token is valid for 1
hour (or 3600 seconds).

• token_type: A mandatory parameter that specifies the type of token that’s
returned in the response. In the prior example, the token_type is Bearer

.

• access_token: A mandatory parameter that has the actual access token as its
value. This is the access token, in JSON web token (JWT) format, that the client
application may store and use later. The token can be decoded to see the various
claims in the access token response.

An example of a decoded JWT:

{
 alg: "RS256",
 typ: "JWT",
 x5t: "Wwrepu2dasaIpGR-AlVpHkUB6Jg",
 kid: "OAuthTestTenant125.cert"
}.
{
 sub: "tenantAdminUser",
 oracle.oauth.user_origin_id_type: "LDAP_UID",
 oracle.oauth.user_origin_id: "tenantAdminUser",
 iss: "OAuthTestTenant125",
 oracle.oauth.svc_p_n: "OAuthTestTenant125ServiceProfile",
 iat: 1425424318000,
 oracle.oauth.prn.id_type: "LDAP_UID",

Successful Authorization

3-24 Oracle Cloud Administering Oracle Cloud Identity Management

 oracle.oauth.tk_context: "resource_access_tk",
 exp: 1425427918000,
 aud: [
 "http://www.example.com"
],
 prn: "tenantAdminUser",
 jti: "d385cc71-8f18-46a5-9ae4-6ab6f085badb",
 oracle.oauth.client_origin_id: "303a2492-d64f-4e04-b78f-b4330047312b",
 oracle.oauth.scope: "http://www.example.com",
 user.tenant.name: "OAuthTestTenant125",
 oracle.oauth.id_d_id: "13463675138302566"
}.
[signature]

Claims in the Access Token

An access token has a header, and standard and custom claims.

Claim Name Type Description Sample

alg Header The algorithm used to sign the token. RS256

typ Header The classification type of the token. The
default value is JWT. This indicates that
this is a JSON web token (JWT).

JWT

x5t Header The X.509 certificate thumbprint (x5t)
header parameter provides a base64url-
encoded SHA-256 thumbprint of the DER
encoding of an X.509 certificate that can
be used to match a certificate.

_hVX9pXq7pUxkk5ry-8vK8

qb8L8

kid Header The key ID (kid) header parameter is a
hint indicating which specific key owned
by the signer should be used to validate
the signature. This allows signers to
signal a change of the key to recipients
explicitly. Omitting this parameter is
equivalent to setting it to an empty
string. The interpretation of the contents
of the kid parameter is unspecified.

oauth_psrtenantx3.cert

sub Standard
Claim

The subject (sub) claim identifies the
principal that’s the subject of the JWT.

MyAdmin@oracle1.com

prn Standard
Claim

The principal (prn) claim identifies the
principal that is the subject of the JWT.

MyAdmin@oracle1.com

iss Standard
Claim

The issuer (iss) claim identifies the
principal that supplied the JWT.

oauth_psrtenantx3

iat Standard
Claim

The issued at (iat) claim identifies the
time at which the JWT was supplied.

1429128747000

exp Standard
Claim

The expiration time (exp) claim identifies
the expiration time on or after which the
JWT must not be accepted for processing.

1429128747000

aud Standard
Claim

The audience (aud) claim identifies the
recipients for which the JWT is intended.

(a list of audiences)

Successful Authorization

Securing Authorizations in Oracle Cloud 3-25

jti Standard
Claim

The JWT ID (jti) claim provides a
unique identifier for the JWT.

0565e04e-3823-404f-

b950-e970ea17f41f

oracle.oauth.s

vc_p_n

Custom Claim IDM OAuth service profile name. oauth_psrtenantx3Servi

ceProfile

oracle.oauth.p

rn.id_type

Custom Claim Principal ID type. For user assertion, the
value is always LDAP_UID.

LDAP_UID

oracle.oauth.s

ub.id_type

Custom Claim Subject ID type. For user assertion, the
value is always LDAP_UID.

LDAP_UID

oracle.oauth.i

d_d_id

Custom Claim IDM OAuth server domain ID. 20625897169639935

oracle.oauth.c

lient_origin_i

d

Custom Claim Subject ID for client used when user
assertion is generated.

4457b326-fe88-4851-

baad-b9488895e808

user.tenant.na

me

Custom Claim User tenancy for the OAuth token
generated by IDM OAuth server.

oauth_psrtenantx3

Authorization Error
If the access code request fails for any reason, or if one of the request parameters is
invalid, then an error occurs.

The authorization server may return a response containing information about the
error. This might be in JSON format (or XML or other) and may have the following
format:

{
 "error":"invalid_request",
 "error_description":"Username parameter missing"
}

Possible Error Values

The error parameter can contain a number of values that describe the nature of the
problem that occurred. These values and descriptions are as follows:

• invalid_request: The request is missing a parameter or value, a parameter is
included multiple times, or a parameter has a malformed name.

• invalid_client: The authentication of the client fails. This can happen if
authentication parameters are missing (for example, the client identifier and
secret) or if the client tries to authenticate using an unsupported method.

• invalid_grant: The grant specified is invalid, expired, or revoked, or supplied to
another client. For example, some services don't allow a new access token to be
requested until the currently issued token expires.

• unauthorized_client: The client was authenticated by the authorization server,
but has no authorization to use the requested grant.

• unsupported_grant_type: The grant that was requested isn’t supported by the
authorization server.

Authorization Error

3-26 Oracle Cloud Administering Oracle Cloud Identity Management

• server_error: The Authorization Server encountered an unexpected condition that
prevented it from fulfilling the request.

• temporarily_unavailable: The authorization server is currently unable to handle
the request because of a temporary overloading or maintenance of the server.

• invalid_scope: The scope specified in the request isn’t valid, is unknown, or is
malformed. If this occurs, then read the developer documentation associated with
the service provider to see which scopes are available and which can be used.

Error Description

Only the error parameter is mandatory. But the optional error_description
parameter may contain a short message explaining the error, for example, indicating a
missing user name.

Authorization Error

Securing Authorizations in Oracle Cloud 3-27

Authorization Error

3-28 Administering Oracle Cloud Identity Management

	Contents
	Preface
	Audience
	Scope of the Guide
	Related Resources
	Conventions

	1 Managing Oracle Single Sign-On
	Overview of SSO Configuration Tasks
	Exploring the SSO Configuration Page in My Services
	Configuring Oracle Cloud as the Service Provider
	Configuring an Identity Provider
	Testing SSO
	Problems Identified by Testing SSO
	Enabling SSO
	Enabling Sign In With Identity Domain Credentials
	Removing Users
	Updating SSO Metadata
	Troubleshooting SSO

	2 Managing OAuth Resources and Clients
	Exploring the OAuth Administration Page in My Services
	How Do I Set Up OAuth in Oracle Cloud?
	How Do I Administer OAuth in Oracle Cloud?
	Registering New Resources in Oracle Cloud
	Overview of Managing OAuth Resources
	Viewing OAuth Resources
	Updating OAuth Resources
	Deleting OAuth Resources
	Overview of OAuth Client Configuration Tasks
	Overview of Registering OAuth Clients
	Registering Client Information in OAuth
	Registering an Untrusted OAuth Client
	Registering a Trusted OAuth Client
	Importing an OAuth Certificate from a Key Pair
	Extracting a Certificate by Using openssl
	Extracting a Certificate by Using the Certificate Import and Certificate Export Wizards
	Associating a Certificate with an OAuth Client
	Overview of Managing OAuth Clients
	Viewing OAuth Clients
	Updating OAuth Clients
	Managing Client Certificates
	Deleting OAuth Clients
	Troubleshooting OAuth

	3 Securing Authorizations in Oracle Cloud
	How Do I Use Authorization Grants?
	Resource Owner Password Credentials Workflow
	Step-by-Step Workflow of the Resource Owner Password Credentials Grant
	Using REST API Calls for the Resource Owner Password Credentials Grant
	Obtaining an Access Token by Using the User Credentials Without a Client Assertion
	Obtaining an Access Token by Using the User Credentials and a JWT Client Assertion

	Client Credentials Grant Workflow
	Step-by-Step Workflow of the Client Credentials Grant
	Using REST API Calls for the Client Credentials Grant
	Obtaining an Access Token by Using a Client Authorization Header
	Obtaining an Access Token by Using a Self-Signed Client Assertion

	User Assertion Workflow
	Using REST API Calls for the User Assertion Grant
	Obtaining an Access Token by Using a Self-Signed User Assertion and the Client Credentials
	Obtaining an Access Token by Using a Self-Signed User Assertion and a Client Assertion

	Successful Authorization
	Authorization Error

