
Oracle® Cloud
Accessing Business Objects Using REST
APIs

E92922-04
August 2022

Oracle Cloud Accessing Business Objects Using REST APIs,

E92922-04

Copyright © 2018, 2022, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Resources vi

Conventions vii

Part I Getting Started

1 Introduction to Accessing Business Objects

About Accessing Business Objects 1-1

Use Cases and Examples 1-1

About the Resource Samples in This Guide 1-2

Understanding the REST API Framework 1-2

Understanding Business Objects as REST API JSON Objects 1-3

Understanding Framework Support for Query Syntax 1-4

Testing the REST API 1-7

2 Working with the Resource Catalog

About the REST API Catalog Describe 2-1

Retrieving the Resource Catalog Describe 2-2

Retrieving a Resource Describe 2-4

Describing a Resource Collection 2-4

Describing a Nested Resource 2-10

3 Working with REST API Framework Versions

About REST API Framework Versions 3-1

Understanding REST API Framework Version Support 3-2

iii

Using the Request Header to Specify the REST API Framework Version 3-6

Part II Tasks

4 CRUD Tasks

Retrieving Business Objects 4-1

Fetching a Business Object 4-1

Fetching a Business Object with a Subset of Items 4-3

Fetching a Business Object Item 4-11

Paging a Business Object 4-12

Sorting a Business Object 4-15

Fetching a Child Business Object 4-18

Fetching Data Only for a Business Object 4-23

Filtering a Business Object with a Query Parameter 4-25

Creating Business Object Items 4-30

Creating a Business Object Item 4-30

Creating an Item of a Child Business Object 4-31

Updating a Business Object Item 4-33

Deleting a Business Object Item 4-34

5 Data Consistency Tasks

About Data Consistency 5-1

Checking for Data Consistency When Updating Business Object Items 5-3

Checking for Data Consistency When Retrieving Business Object Items 5-6

6 Advanced Tasks

Returning the Estimated Count of Business Object Items 6-1

Making Batch Requests 6-2

Working with Error Responses 6-5

Understanding the Exception Payload Error Response 6-6

Obtaining an Exception Payload Error Response 6-7

Obtaining the Standard Error Message Response 6-11

Enable Polling for Endpoint Requests 6-12

Part III Reference

iv

A Links and Relations

Describe links Object Structure A-1

rel Attribute Values A-1

href Attribute Value A-2

cardinality Attribute Values A-2

B Framework Versions

C Media Types

D Data Types

E Status Codes

F Response Headers

G Endpoints

GET Method Endpoints G-1

POST Method Endpoints G-12

PATCH Method Endpoints G-13

DELETE Method Endpoints G-13

v

Preface

Accessing Business Objects Using REST APIs describes the supported HTTP
methods, HTTP headers, request URL parameters, media types, and other concepts
of the REST APIs and the use cases that they support for making REST API calls in
web applications created using visual development tools offered by Oracle.

Audience
This document is intended for developers who want to create and publish modern
enterprise web applications using visual development tools, including using REST
APIs generated by Oracle tooling to access the data of business objects exposed in
the web application.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Resources
For more information, see these Oracle resources:

• Oracle Public Cloud

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

http://cloud.oracle.com
• About Oracle Cloud in Getting Started with Oracle Cloud

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including options that
you select.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates language and syntax elements, directory and file
names, URLs, text that appears on the screen, or text that you enter.

Preface

vii

http://cloud.oracle.com

Part I
Getting Started

To interact with business objects using REST APIs you should be familiar with how to access
the resources backing the business objects.

Topics

• Introduction to Accessing Business Objects

• Working with the Resource Catalog

• Working with REST API Framework Versions

1
Introduction to Accessing Business Objects

You can use REST APIs that rely on HTTP requests and responses as the interface to
access the business objects of your domain.

Topics

• About Accessing Business Objects

• Understanding the REST API Framework

• Understanding Business Objects as REST API JSON Objects

• Understanding Framework Support for Query Syntax

• Testing the REST API

About Accessing Business Objects
You can access business objects by making REST API calls enabled by the Oracle Business
Object REST API framework.

In web applications, REST resources acted on by REST APIs are backed by business
objects exposed in the visual development tool. For example, web application developers
working with Oracle Visual Builder can decide on the set of attributes to expose on the
business objects and the actions to make available (both standard CRUD operations and
custom methods).

The design-time choices that you make when creating business objects allow the tooling to
generate metadata that it uses to define REST resources and REST APIs. The data used by
the web application is shaped by the resource's backing business object, with the parent-child
relationships intact. Using these REST APIs exposed by the tooling, you may interact with
business objects to access its data. As a result, your application may invoke CRUD
operations to interact with the REST resources and business objects.

Use Cases and Examples
As a web application developer, working in an Oracle visual development tool like Oracle
Visual Builder, you can generate REST API endpoints to manage and interact with the
business objects of the application.

Here are the types of things that you can do using REST APIs to access the data of business
objects:

• Get a description of the REST resource, including the resource collection attributes and
available actions.

• Interact with the REST resource using standard HTTP request methods, including GET,
POST, PATCH, and DELETE.

• Allow the server to decide whether to create or update depending on whether the record
exists or not.

1-1

• Specify a framework version in a request to interact with the old format when the
REST API Framework has made backward incompatible changes.

• Perform advanced queries and sorting on a resource collection and shape the
returned payload using URL parameters.

• Use ETag for change detection and optimistic concurrency control.

To understand how certain design time features used to create web applications
support the availability of these REST API capabilities, consult the Oracle
documentation for your visual development tool.

About the Resource Samples in This Guide
This guide describes typical use cases for interacting with and manipulating business
objects. All samples are based on DEPARTMENTS, EMPLOYEES, JOBHISTORY,
and JOBS tables in the Oracle HR schema. This figure depicts the business objects
generated from these tables in the web application.

Figure 1-1 Business Objects Used with REST APIs in this Guide

Understanding the REST API Framework
The Oracle Business Object REST API supports access to business objects. The
Oracle Business Object REST API supports the exchange of information between the
web application and server at runtime.

The Oracle Business Object REST API is an Oracle framework that allows web
application developers to expose a REST API based on the REST architectural style.
The framework itself does not constitute a Web API, but supports creating and
interacting with the business objects. The REST API framework determines the
functionality to interact with business objects created by web application developers.

In the web application, REST resources acted on by REST APIs are backed by
business objects exposed in the web application. When you work in an Oracle visual
development tool, like Oracle Visual Builder, you can decide on the set of attributes to
expose from business objects and the actions to make available (both standard CRUD
operations and custom object functions defined by the web application).

Chapter 1
Understanding the REST API Framework

1-2

The design-time choices that you make are captured as metadata by the tooling, which the
tooling uses to generate REST resource definitions. You may interact with these resource
definitions through the REST API, supported by the REST API framework. For example, you
may invoke CRUD operations to interact with the REST resources and business objects,
where the data is shaped by the resource's backing business object, with the parent-child
relationships intact.

Oracle releases may introduce new REST API framework functionality to support additional
business object interaction use cases. To allow you to manage the level of functionality
exposed to customers in your production applications, Oracle defines numeric versions of the
framework that refer to a specific level of the REST API framework functionality. As Oracle
introduces new Oracle Business Object REST API framework versions, you may opt into the
new version to gain the new functionality, or you may decide not to opt in and instead
preserve the level of functionality supported by the current REST API framework version.

Understanding Business Objects as REST API JSON Objects
REST APIs represent the business object as a JSON-encoded resource collection.

REST resource collections are synonymous with business objects created by web application
developers. For example:

• A Department resource collection is based on a Department business object.

• An Employee resource collection is based on an Employee business object.

The payload returned by REST APIs contains one or more resource collections, comprised of
the resource items queried by the REST API and the individual items of the business object.
The resource collections preserve the relationship of master-detail coordinating business
objects.

As the table below shows, the resource collection is the REST API payload representation of
all items of a particular business object. The resource items are the rows and attributes of the
payload item object, which represent the items of the business object.

Note:

The format of resource collections and contained items are defined by specific
REST API media types as JSON-encoded entities. For more details, see Media
Types.

Table 1-1 JSON Objects and Business Object Representation

JSON Object Business Object

resource collection A business object comprised of one or more items. Department,
Employee are examples of resource collections that represent
Department and Employee business objects.

resource item An item of a business object. The specific department 10 or
employee 1012 are examples of resource items that represent items
of the Department and Employee business object.

Chapter 1
Understanding Business Objects as REST API JSON Objects

1-3

Understanding Framework Support for Query Syntax
REST API calls can make use of a query expression syntax to query business objects.

Beginning with Oracle Business Object REST API framework version 2, REST API
calls can make use of an expanded query expression syntax to query business
objects. Note that version 2 and later will interpret the q query parameter value
differently than framework version 1, and therefore opting into framework version 2 or
later introduces a backward incompatible change to web applications that rely on
framework version 1.

When you decide to opt into framework version 2 (or later), REST APIs calls will
process fetch requests for the q query parameter using the expanded expression
syntax, whereas requests using the version 1 “query-by-example” syntax will become
invalid and will return an error. If you do not opt into framework version 2 or later, the
default for your release version will be framework version 1. Alternatively, you may
preserve the base functionality by creating a new release version identifier that you
associate with framework version 2, while leaving the existing release identifier defined
in the web application as framework version 1.

In version 1, filtering business object collections using query parameters is limited to a
query-by-example syntax, which separates expressions using a semi-colon, as
follows:

GET <base_url>/Department?q=Dname SA*;Loc BOSTON

Whereas, starting in version 2, a new advanced query syntax supports filtering
business object collections using rowmatch expressions, as follows:

GET <base_url>/Department?q=Dname like 'SA*' or Loc = 'BOSTON'

Such expressions include the case-insensitive name of a resource item, followed by
an operator and one or more operand values (depending on the operator used). The
filter can be as simple as a single expression, or it can combine expressions using the
and and or conjunctions with matching sets of parentheses for grouping.

Benefits of the Advanced Query Syntax Offered in Framework Version 2 and
Later

The advantages of rowmatch expression include the following.

• They may use supported operators:

DepartmentNumber = 20

DepartmentNumber <> 20

DepartmentNumber <= 20

DepartmentNumber < 20

DepartmentNumber >= 20

DepartmentNumber >20

DepartmentNumber between 20 and 40

DepartmentNumber not between 20 and 40

DepartmentNumber in (20, 30, 40)

Chapter 1
Understanding Framework Support for Query Syntax

1-4

DepartmentName like '%S%'

DepartmentName like 'RE%'

DepartmentName not like 'RE%'

Location is null

Location is not null

• They may involve multiple attributes:

DepartmentNumber = 10 or DepartmentName like 'RESEARCH'

DepartmentNumber > 10 and DepartmentNumber < 40

DepartmentNumber < 20 or DepartmentNumber > 30

(DepartmentNumber = 10 or DepartmentNumber = 30) and (DepartmentName like
'SALES')

DepartmentNumber BETWEEN 20 and 40) and (Location like 'DAL%')

(DepartmentNumber > 0 and DepartmentNumber < 100) and (DepartmentName <>
'SALES') and (Location not like 'NEW%')

(DepartmentNumber = 10 or DepartmentNumber = 30) and (DepartmentName =
'ACCOUNTING' or DepartmentName = 'SALES')

(DepartmentNumber = 10 and DepartmentName like 'ACC%') or (DepartmentNumber =
20 and DepartmentName like 'RES%')

DepartmentName='ACCOUNTING' or (DepartmentName like 'R%' and Location like
'%ALLA%')

(DepartmentName like 'R%' and Loc like '%ALLA%') or
DepartmentName='ACCOUNTING'

(DepartmentName like 'R%' or Loc like '%ALLA%') or DepartmentName='ACCOUNTING'

(DepartmentNumber between 20 and 40) and DepartmentNumber is not null

• They may involve attributes of nested child resources:

Deptno > 5 and Emps.Job = 'MANAGER'

Emps.Job = 'MANAGER' and Deptno > 5

Deptno > 5 and (Emps.Job = 'MANAGER')

(Emps.Job = 'MANAGER') and Deptno > 5

(Deptno > 5) and (Emps.Job = 'MANAGER')

(Deptno = 10 and Emps.Job = 'PRESIDENT') or (Deptno = 20 and Emps.Job =
'MANAGER')

Deptno > 5 and Emps.Job = 'MANAGER' and Emps.Sal >= 2500

Deptno > 5 and (Emps.Job = 'ANALYST' or Emps.Sal >= 4000)

(Deptno > 5 and Emps.Job = 'ANALYST') or Emps.Sal >= 4000

Emps.Job = 'ANALYST' or Emps.Job = 'SALESMAN'

Deptno > 5 and (Emps.Job = 'ANALYST' or Emps.Job = 'SALESMAN')

Deptno > 5 and Emps.Job = 'MANAGER' and Emps.DirectReports.Sal >= 2000

Deptno > 5 and (Emps.Job = 'MANAGER' or Emps.DirectReports.Sal >= 2000)

Chapter 1
Understanding Framework Support for Query Syntax

1-5

Deptno > 10 and (Emps.Job = 'MANAGER' and (Loc = 'NEW YORK' or
Emps.Mgr=7698))

Deptno > 10 and (Emps.Job = 'MANAGER' or (Loc = 'NEW YORK' or
Emps.Mgr=7698))

Deptno > 10 and (Emps.Job = 'MANAGER' or (Loc = 'NEW YORK' or
Emps.Mgr=7698)) or Deptno = 40

Deptno > 10 and (Emps.Job = 'MANAGER' or (Loc = 'NEW YORK' or
Emps.Mgr=7698)) or (Deptno = 40)

Deptno > 10 and (Emps.Job = 'MANAGER' or (Emps.DirectReports.Sal > 2000
and (Emps.DirectReports.Comm = 500 or Emps.DirectReports.Deptno > 10)))

Deptno > 10 and (Emps.Job = 'MANAGER' and (Emps.DirectReports.Sal >= 2000
and (Emps.DirectReports.Comm = 500 or Emps.DirectReports.Deptno > 10)))

• They may involve the UPPER function:

UPPER(DepartmentName) = 'RESEARCH'

UPPER(DepartmentName) = UPPER('research')

UPPER(DepartmentName) like 'RES%' and UPPER(Location) like 'DAL%'

UPPER(DepartmentName) like UPPER('research')

Overview of the Advanced Query Syntax Offered in Framework Version 2 and
Later

The following are specific expression use case examples.

• To test whether a value is null you must use the is null or the is not null
keywords:

AssignedToId is null
AssignedToId is not null

• For equality use the = sign, and for inequality use either the != or the <> operators.

AssignedToId = 100000000089003
Priority != 1
Priority <> 1
ActivityType != 'RS'
ActivityType <> 'RS'

• For relational comparisons, use the familiar <, <=, >, or <> operators, along with
between or not between.

Priority <= 2
Priority < 3
Priority <> 1
Priority > 1
Priority >= 1
TotalLoggedHours >= 12.75
Priority between 2 and 4

Chapter 1
Understanding Framework Support for Query Syntax

1-6

Priority not between 2 and 4
• For string matching, you can use the like operator, employing the percent sign % as the

wildcard character to obtain "starts with", "contains", or "ends with" style filtering,
depending on where you place your wildcard(s):

RecordName like 'TT-%'
RecordName like '%-TT'
RecordName like '%-TT-%'

• To test whether a field's value is in a list of possibilities, you can use the in operator:

ActivityType in ('OC','IC','RS')
• You can combine expressions using the conjunctions and and or along with matching

sets of parentheses for grouping to create more complex filters like:

(AssignedToId is null) or ((Priority <= 2) and (RecordName like 'TT-99%'))
(AssignedToId is not null) and ((Priority <= 2) or (RecordName like
'TT-99%'))
When using the between or in clauses, you must surround them by parentheses when
you join them with other clauses using and or or conjunctions.

Testing the REST API
You can test REST APIs to make requests and interact with the business objects outside of
your web application development tool.

You use the visual development tool to create the web application and the business objects
that your application interacts with. You use the endpoints generated by the development tool
to test the REST APIs to access the business objects.

For example, you can use any of the following techniques to test the REST APIs:

• In a 3rd party tool that you display in a browser

• In the cURL command line tool from a command window

• In a web browser (typically limited to GET requests)

Testing the REST APIs requires knowledge of the REST API URI syntax. For details about
URI syntax, consult the Oracle documentation for your visual development tool.

Chapter 1
Testing the REST API

1-7

2
Working with the Resource Catalog

You can retrieve a description of resources, including the resource collection attributes and
available actions, using by a specific media type and describe action.

Topics

• About the REST API Catalog Describe

• Retrieving the Resource Catalog Describe

• Retrieving a Resource Describe

About the REST API Catalog Describe
REST APIs support retrieving a describe for all the available resources in the resource
catalog, it returns JSON objects that contain the attributes, actions, and links defined in the
REST resource definitions for the business object.

The describe for the REST API resource catalog allows you to identify the shape and actions
allowed on a REST API defined for the service endpoint. By default the catalog describe
request returns a JSON object that contains the information needed to understand all
available resources.

REST APIs support the following catalog describe use cases:

• Retrieve a resource catalog describe, where the describe details will be limited to
resource titles and links only and children, or nested resources, will be excluded.

• Retrieve a resource catalog describe but optionally exclude or include children resources
nested within a parent resource and optionally exclude or include all resource
annotations.

To retrieve the catalog describe of all the available, parent resources in the application, you
append /describe to the base URL with the query parameter metadataMode set to minimal:

http://<base_url>/describe?metadataMode=minimal

Additionally, you can append URL query parameters on the request for a minimal catalog
describe to retrieve specific details in the describe. For example, the following URL with
appended query parameters retrieves a minimal catalog describe with all available children
resources nested within their parent resources included.

http://<base_url>/describe?metadataMode=minimal&includeChildren=true

The following table identifies the URL query parameters the may be used with the catalog
describe request. These query parameters let you control the amount of detail retrieved in the
describe.

2-1

Table 2-1 Optional URL Query Parameters for Catalog Describe Requests

URL Query
Parameter

Values Description

includeChildre
n

true, false
(default)

Use to include all available children resources nested
within a parent resource describe. You can append
&includeChildren=true on the describe request.

For a resource catalog describe example, see Retrieving
the Resource Catalog Describe.

showAnnotation
s

true, false
(default)

To include resource annotations in the catalog describe,
you can append &showAnnotations=true on the
describe request.

Note that annotations must be defined by the web
developer and may not be present on the resource.

Retrieving the Resource Catalog Describe
REST APIs support describing all available resources while retrieving a reduced
amount of information for the application end point using a GET method. The reduced
or minimal catalog describe helps improve the readability of the describe by limiting
the resource information to resource titles, links, and available annotations.

To examine the minimal describe for all available resources in the resource catalog:

1. Execute the minimal resource catalog describe and locate the names of the
resources in the describe. Note that nested resources or children resources are
not shown by default.

2. Examine these resource objects links.

For example, the minimal describe for a service with a Department resource returns
the following objects:

{
 "Resources" : {
 "Department" : {
 Department,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 },
 ...
 }
}

By default children resources are not included in the minimal describe. Use the
includeChildren query parameter to retrieve the minimal catalog describe with all
available children resources nested within the parent resources. For example, to view
children resources in the minimal describe, you can use a request like the following:

<base_url>/describe?metadataMode=minimal&includeChildren=true

Chapter 2
Retrieving the Resource Catalog Describe

2-2

The minimal describe with the includeChildren query parameter set to true for a
Department resource that includes a child resource Employee returns the following objects:

{
 "Resources" : {
 "Department" : {
 Department,
 "children" : {
 "Employee" : {
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/{id}/child/Employee/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 }
 },
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 },
 ...
 }
}

The following sample retrieves a minimal resource catalog describe, including children
resources, where the Employee resource is nested within the Department resource.

Request

• URL

<base_url>/describe?metadataMode=minimal&includeChildren=true
• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.description+json
• Payload

{
 "Resources" : {
 "Department" : {
 "children" : {
 "Employee" : {

Chapter 2
Retrieving the Resource Catalog Describe

2-3

 "links" : [
 {
 "rel" : "self",
 "href" : "<base_url>/Department/{id}/child/Employee/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 }
 },
 "links" : [
 {
 "rel" : "self",
 "href" : "<base_url>/Department/describe",
 "name" : "self",
 "kind" : "describe"
 }
]
 }
 }
}

Retrieving a Resource Describe
REST APIs support retrieving a describe for a single resource, all the available
resources, or only the nested resources. The describe returns a JSON object that
contains the attributes, actions, and links defined in the REST resource definition.

The describe for the resource allows you to identify the shape and actions allowed on
the business object. It returns a JSON object that contains the attributes, actions, and
links defined in the REST resource definition.

The Oracle Business Object REST API framework supports the following describe use
cases for the service end point:

• Describe a single resource collection.

• Describe a nested resource in a parent-child relationship.

• Describe two or more named resource collections.

• Describe all available resources (resource catalog). For details, see About the
REST API Catalog Describe.

To retrieve the describe, invoke an HTTP GET with /describe appended to the
resource URL.

For example, the following URL returns the describe for the Department resource:

<base_url>/Department/describe

Describing a Resource Collection
REST APIs support describing resource collections.

To examine a resource collection:

1. Execute the resource collection describe and locate the names of the resources in
the describe.

2. Examine these resource objects to understand the shape of each resource:

Chapter 2
Retrieving a Resource Describe

2-4

• attributes specifies the list of available resource collection attributes.

• collection specifies the shape of the collection and specifies links and available
actions (including media types).

• item specifies the shape of the items of the collection and itself specifies links and
available actions.

• children specifies any nested resources (and itself contains attributes,
collection, and item objects).

For example, the describe for the Department resource returns the following objects:

{
 "Resources" : {
 "Department" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }],
 "collection" : {
 ...
 }],
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "item" : {
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "children" : {
 "Employee"
 ...
 }],
 ...
 "links" : [{
 }]
 }
}

The following sample describes the Department resource.

Request

• URL

<base_url>/Department/describe
• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

Chapter 2
Retrieving a Resource Describe

2-5

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.description+json
• Payload

{
 "Resources" : {
 "Department" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "DepartmentName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 30
 }, {
 "name" : "RelState",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true
 }],
 "collection" : {
 "rangeSize" : 25,
 }],
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "testImpl",
 "parameters" : [{
 "name" : "testid",
 "type" : "string",
 "mandatory" : false
 }],
 "resultType" : "string",

Chapter 2
Retrieving a Resource Describe

2-6

 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "child",
 "href" : "<base_url>/Department/{id}/child/Employee",
 "name" : "Employee",
 "kind" : "collection",
 "cardinality" : {
 "value" : "1 to *",
 "sourceAttributes" : "DepartmentId",
 "destinationAttributes" : "DepartmentId"
 }
 }, {
 "rel" : "self",
 "href" : "<base_url>/Department/{id}",
 "name" : "self",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }]
 },
 "children" : {
 "Employee" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,

Chapter 2
Retrieving a Resource Describe

2-7

 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10"
 }, {
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }],
 "collection" : {
 "rangeSize" : 0,
 }, {
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/{id}/child/Employee",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",

Chapter 2
Retrieving a Resource Describe

2-8

 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }]
 },
 "item" : {
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/{id}/child/Employee/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "<base_url>/Department/{id}",
 "name" : "parent",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "multiplySalary",
 "parameters" : [{
 "name" : "multiplicand",
 "type" : "number",
 "mandatory" : false
 }],
 "resultType" : "number",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/{id}/child/Employee/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 }
 },
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 }

Chapter 2
Retrieving a Resource Describe

2-9

 }
}

Describing a Nested Resource
REST APIs support describing a nested resource that results from related business
objects.

To examine nested resources in the resource catalog:

1. Execute the nested resource describe and locate the names of the resources in
the describe. The children attribute identifies nested resources.

2. Examine these resource objects to understand the shape of each resource:

• attributes specifies the list of available resource collection attributes.

• collection specifies the shape of the collection and specifies links and
available actions (including media types).

• item specifies the shape of the items of the collection and itself specifies
links and available actions.

• children specifies the nested resources (and itself contains attributes,
collection, and item objects).

For example, the describe for the nested resources Department and Employee returns
the following objects:

{
 "Resources" : {
 "Employee" : {
 "discrColumnType" : false,
 "attributes" : [{
 ...
 }],
 "collection" : {
 ...
 }],
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "item" : {
 "links" : [{
 }]
 "actions" : [{
 }]
 },
 "children" : {
 "Department"
 ...
 }],
 ...
 "links" : [{
 }]
 }
}

Chapter 2
Retrieving a Resource Describe

2-10

The following sample (URL1) describes the Employee resource which can be found in the
context of a Department resource item.

Note: To recursively include all children of the resource item on the requested describe,
provide the query parameter ?includeChildren=true on the describe URL.

Requests

• URL 1

<base_url>/Department/10/child/Employee/describe
• HTTP Method

GET

• Content-Type

none

• Payload

none

Responses

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.description+json
• Payload 1

{
 "Resources" : {
 "Employee" : {
 "discrColumnType" : false,
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }, {
 "name" : "FirstName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 20
 }, {
 "name" : "LastName",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "Email",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,

Chapter 2
Retrieving a Resource Describe

2-11

 "queryable" : true,
 "precision" : 25
 }, {
 "name" : "JobId",
 "type" : "string",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 10,
 "controlType" : "choice",
 "maxLength" : "10"
 }, {
 "name" : "DepartmentId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 4
 }, {
 "name" : "Salary",
 "type" : "number",
 "updatable" : true,
 "mandatory" : false,
 "queryable" : true,
 "precision" : 8,
 "scale" : 2
 }],
 "collection" : {
 "rangeSize" : 25,
 }, {
 "name" : "PrimaryKey",
 "attributes" : [{
 "name" : "EmployeeId",
 "type" : "integer",
 "updatable" : true,
 "mandatory" : true,
 "queryable" : true,
 "precision" : 6
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "self",
 "kind" : "collection"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourcecollection+json"]
 }, {
 "name" : "create",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }]
 },
 "item" : {
 "links" : [{

Chapter 2
Retrieving a Resource Describe

2-12

 "rel" : "self",
 "href" : "<base_url>/Department/10/child/Employee/{id}",
 "name" : "self",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "<base_url>/Department/10",
 "name" : "parent",
 "kind" : "item"
 }],
 "actions" : [{
 "name" : "get",
 "method" : "GET",
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "update",
 "method" : "PATCH",
 "requestType" : ["application/vnd.oracle.adf.resourceitem+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.resourceitem+json"]
 }, {
 "name" : "delete",
 "method" : "DELETE"
 }, {
 "name" : "multiplySalary",
 "parameters" : [{
 "name" : "multiplicand",
 "type" : "number",
 "mandatory" : false
 }],
 "resultType" : "number",
 "method" : "POST",
 "requestType" : ["application/vnd.oracle.adf.action+json"],
 "responseType" : ["application/json", "application/
vnd.oracle.adf.actionresult+json"]
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10/child/Employee/describe",
 "name" : "self",
 "kind" : "describe"
 }]
 }
 }
}

Chapter 2
Retrieving a Resource Describe

2-13

3
Working with REST API Framework Versions

You can specify a Oracle Business Object REST API framework version to make REST API
calls when you want to opt into the features that the framework version defines.

Topics

• About REST API Framework Versions

• Understanding REST API Framework Version Support

• Using the Request Header to Specify the REST API Framework Version

About REST API Framework Versions
You may utilize a new feature or enhancement that is introduced in a version of the Oracle
Business Object REST API framework if your application opts into the framework version
within the visual development tool. A framework version refers to a specific version of the
REST API framework that calls to REST APIs will use. Depending on the version,
functionality for accessing business objects will vary.

It is important that you know the framework version enabled in your web application since you
may need to pass a different payload format to utilize a new feature or enhancement. The
framework version used to make calls is under your control so that you may opt into the
functionality when you are ready.

These are the way the tooling allows you to specify the framework version to make calls:

• Specify the default framework version to be used.

• Specify the framework version using a custom request header when making the call.

You may pass the custom header REST-Framework-Version on the REST API request to
specify the framework version to use to execute the request. The REST API framework
version passed in the version header overrides the default framework declaration defined by
the web application developer.

When your REST API call passes no version header, the calls use the default that you
defined in the application. When you did not define the default framework version and do not
pass a version header, then the version of the REST API framework is determined by the
default setting enabled by the tooling.

For the root resource /context, the default REST API framework version for the latest
release will be used.

You may want to find out the default framework version for a particular release. To support
this use case, REST APIs will return the default framework version in the resource version
describe, as the following sample shows. Note that you may override the default framework
version with another framework version identifier by specifying the value in the REST-
Framework-Version header. The allowedFrameworkVersions property lists the values of the
available framework versions.

3-1

{
 "items" : [
 {
 "version" : "18.2",
 "isLatest" : true,
 "adf:extension" : {
 "defaultFrameworkVersion" : "2",
 "allowedFrameworkVersions" : ["1","2","3","4","5","6","7"]
 },
 "links" : [
 ...

For details about the REST API framework functionality supported in each framework
version, see Understanding REST API Framework Version Support.

Understanding REST API Framework Version Support
You can specify a Oracle Business Object REST API framework version for your web
application to opt into new functionality offered by a later version of the REST API
framework. Currently, Oracle offers the following framework versions.

Note:

Each REST API framework version after version 1 introduces functionality
that the previous framework versions does not support. Thus, when you
choose to opt into a later framework version, the REST API may introduce
backward incompatible changes on the web application consuming the
REST API. This topic explains the changes for each framework version.

Framework Version 1

Note that the query-by-example resource query syntax supported in the base
framework version (version 1) is not compatible with later versions of the REST API
framework. Beginning with version 2 of the REST API framework, a more advanced
query syntax is offered instead.

Framework Version 2

The purpose of this new version is to introduce an expanded query expression syntax
for making REST API calls. Version 2 of the REST API framework will interpret the q
query parameter value differently than the way framework version 1 does, and
therefore introduces a backward incompatible change to web applications that rely on
framework version 1. Only when framework version 2 (or later) is specified for the
request will the REST API support the use of the expanded expression syntax to
process the request.

In version 1, filtering resource collections using the q query parameter is limited to a
query-by-example syntax, as follows.

GET /rest/19.0/Departments?q=Dname SA*;Loc BOSTON

Whereas, starting in version 2, the new advanced query syntax supports filtering
resource collections using rowmatch query expressions, as follows.

GET /rest/19.1/Departments?q=Dname like 'SA*' or Loc = 'BOSTON'

Chapter 3
Understanding REST API Framework Version Support

3-2

For an explanation of the enhanced query syntax offered by rowmatch expressions, see
Understanding Framework Support for Query Syntax.

Framework Version 3

The purpose of this version is to add support for retrieving nested child resources with
payload attributes that may be used by the web application to determine whether more
resource items would be returned in a subsequent REST API request. To support this
functionality, the payload structure in framework version 3 now represents nested child
resource as a resource collection, instead of an array of items, as was true in version 1 and
2. Therefore, version 3 introduces a backward incompatible change to web applications that
rely on framework version 1 or version 2. If you decide to opt into version 3, you will expose
functionality that allows GET operations to use the ?expand and ?fields query parameter to
return a nested child resource as a resource collection with the hasMore attribute. In affect,
this change supports pagination of nested child resource that would otherwise require more
than one request to fetch.

When you want to add support for framework version 3 to your application, the same
guidelines described for framework version 2 (see above section) apply for preserving the
existing level of functionality in the web application.

For an example of the new payload structure for nested child resources introduced in version
3, see Fetching a Child Business Object and Fetching a Business Object with a Subset of
Items. For details about paginating a resource collection using the hasMore attribute, see
Paging a Business Object.

Framework Version 4

Version 4 is the default version that the REST APIs will use to process requests for web
applications when no other version is specified.

In addition to HTTP status codes and error messages, it is possible to obtain exception
details in the response when your request is enabled to use REST API framework version 4
and the request is made for either application/vnd.oracle.adf.error+json or
application/json media types. With framework version 4, the response will be in the form
an exception detail payload which provides the following benefits to the web application:

• If multiple errors occur in a single request, the details of each error are presented in a
hierarchical structure.

• An application-specific error code may be present that identifies the exception
corresponding to each error.

• An error path may be present that identifies the location of each error in the request
payload structure.

Note:

The exception detail may or may not present certain details, such as the
application-specific error code and the request payload’s error path.

Chapter 3
Understanding REST API Framework Version Support

3-3

For example, compare the error response for a POST submitted with a payload that
contains the following incorrectly formatted date field when framework version 3 (or
earlier) is enable and when framework version 4 (or later) is enabled.

{ "EmpNum" : 5027,
 "EmpName" : "John",
 "EmpHireDate" : "not a date"
}

Standard Error Response

Without framework version 4, no response payload is generated and instead only a
single error message that does not reference the request payload will be returned in
the response.

"An instance of type oracle.jbo.domain.Date cannot be created from string
not a date. The string value must be in format YYYY-MM-
DDTHH:MI:SS.sss+hh:mm."
Exception Payload Error Response

With framework version 4 (or later) enabled, the following exception detail payload is
generated for the response. The payload includes the usual HTTP status code and
formats the details of one or more exceptions in an array structure.

{ "title" : "Bad Request",
 "status" : "400",
 "o:errorDetails" : [{
 "detail" : "An instance of type oracle.jbo.domain.Date cannot be
created from string not a date.
 The string value must be in format YYYY-MM-
DDTHH:MI:SS.sss+hh:mm.",
 "o:errorCode" : "26099",
 "o:errorPath" : "/EmpHireDate"
 }]
 }

Framework Version 5

Framework version 5 is not supported for users of visual development tools provided
by Oracle Cloud services.

Framework Version 6

The purpose of this framework version is to easily differentiate between the resource
fields and item information like links and headers. A new element @context is
introduced in this version and all the information for an item is moved under @context.
The changeIndicator value is moved to ETag, which is under headers. A new context
information key is included under @context that contains the unique identifier of the
specific resource item as a string.

The new payload for a resource item in a response payload and collection response
payload will be similar to the one below:

{
 "field1": "value1",
 "field2": "value2",

Chapter 3
Understanding REST API Framework Version Support

3-4

 ...
 "@context" : {
 "key" : "AB8765BCD",
 "headers" : {
 "ETag" : "ACED00057372001..."
 },
 "links": [
 {
 "rel": "self",
 "href": "https://<baseurl>/accounts/CDRM_53640",
 "name": "accounts",
 "kind": "item"
 },
 { // other links }}
]
 }
}

Framework Version 7

The enhancements provided by framework version 7 are not supported for users of visual
development tools provided by Oracle Cloud services.

Framework Version 8

Framework version 8 enhances support for ClobDomain fields, multi-select LOV fields, and
primary key values in queries.

• ClobDomain fields used in REST GET/POST/PATCH requests now make use of string
values without the need for base64 encoding/decoding. Earlier framework versions rely
on base64 encoding of ClobDomain fields and therefore require base64 decoding to
return a text value.

• Multi-select LOV fields are now represented in the describe as array type, and request
and response will have array values for multi-select LOV fields. Earlier framework
versions return multi-select LOV fields as one string with comma-separated values.
Starting with framework version 8, when creating or updating (POST/PATCH) multi-select
LOV fields, the payload expects an array of values.

• Several changes were made to support special use cases when working with primary key
values. Specifically, framework version 8 and above supports encoding key values in
REST queries to enable the use of special characters and composite values in the URL
path.

1. In the case of a simple key, where the primary key has only one string/number
attribute, framework version 8 and above allows special characters in key values and
these values should be encoded in the URL path.

Where OrderName is a key attribute with a value that contains a slash:

"Sales/Marketing"
With framework version 8 or above, you can encode the value so the URL path looks like:

/orders/Sales%252FMarketing
2. In the case of a composite primary key, framework version 8 and above allows
concatenation of the key values in a comma separated list and these values should be
encoded in the URL path.

Where OrderItem is a key attribute with the composite key value:

"Sales/Marketing", LineItemId: 1, Status: "New"

Chapter 3
Understanding REST API Framework Version Support

3-5

With framework version 8 or above, you can encode the value so the URL path
looks like:

/orders/Sales%2FMarketing/child/items/Sales%252FMarketing%2C1%2CNew
Or, where the composite contains a null value:

"Sales/Marketing", LineItemId: 2, Status: null"
The URL path looks like this:

/orders/Sales%2FMarketing/child/items/Sales%252FMarketing%2C2%2C
Framework Version 9

Framework version 9 enhances support for high-precision numeric fields, accessors in
a URL, and queries using a LIKE operator:

• High-precision view attributes rely on deserialization by JavaScript clients to
represent values. With deserialization, some loss of precision is possible for
values greater than 15 digits. To avoid a potential loss of precision, starting with
framework version 9, high-precision numeric values are converted to JSON string
type. The REST client needs to convert the value from string type to a big integer
or big decimal before any numeric computation is performed. If numeric
computation is not required, then treat these values as strings.

• Nested child resources may be accessed using accessor dot notation in the ?
field and ?expand query parameters of the REST URL. Starting with framework
version 9, the REST client will return 400 Bad Request when an accessor is
referenced in the URL and that accessor has not been previously exposed by the
REST resource developer as a view link accessor.

• Starting with framework version 9, ?q queries that involve a LIKE operator, may
use a \ (backslash) character as an escape character to support queries for these
wildcard characters % (percent), * (asterisk), _ (underscore), and ? (question mark)
and also for the \ (backslash) character. For example:

?q=Dname like '%\%%' - query for Dname containing %

?q=Dname like '%*%' - query for Dname containing *

?q=Dname like '%_%' - query for Dname containing _

?q=Dname like '%\?%' - query for Dname containing ?

?q=Dname like '%\\%' - query for Dname containing \

Using the Request Header to Specify the REST API
Framework Version

REST APIs support executing individual requests on the service endpoint using a
custom header to affect the processing of the payload with the functionality specific to
a particular Oracle Business Object REST API framework version. The framework
version specified by the custom header overrides the default framework version
declaration that may exist in the client application.

Chapter 3
Using the Request Header to Specify the REST API Framework Version

3-6

Note:

A framework version refers to a specific version of the Oracle Business Object
REST API framework. For details about the REST API framework functionality
supported in each framework version, see Understanding REST API Framework
Version Support.

To process a request using a specific REST API framework version, the request must pass
the custom header REST-Framework-Version with the framework version number specified.
For example, the following header specifies framework version 2 will be used to process the
request that passes this version header.

 REST-Framework-Version: 2

If the custom header is omitted on the request, then REST APIs will use the application’s
default framework version, as defined in the web application. When the application does not
define a default framework version and the request omits the version header, then the base
version (version 1) of the REST API framework is assumed.

Chapter 3
Using the Request Header to Specify the REST API Framework Version

3-7

Part II
Tasks

To use the REST API you should be familiar with the use cases that the REST API supports.

Topics

• CRUD Tasks

• Data Consistency Tasks

• Advanced Tasks

4
CRUD Tasks

You can access business object using standard HTTP request methods, including GET,
POST, PATCH, and DELETE.

Topics

• Retrieving Business Objects

• Creating Business Object Items

• Updating a Business Object Item

• Deleting a Business Object Item

Retrieving Business Objects
REST APIs support the GET method on REST resources to retrieve a resource or nested
resource, page a resource, filter a resource collection with a query, or sort a resource
collection.

REST APIs support the following GET method use cases:

• Fetching a resource collection payload.

• Fetching a resource collection payload with a subset of resource items.

• Fetching a resource item payload.

• Fetching a paged resource collection.

• Fetching a sorted resource collection.

• Fetching a nested child resource item payload.

• Fetching data only in a resource item payload.

• Filtering a resource item payload with query parameters.

Fetching a Business Object
REST APIs support fetching a resource collection without filtering items.

The following sample fetches the Department resource collection and all five items of the
collection.

Request

• URL

<base_url>/Department
• HTTP Method

GET

• Content-Type

4-1

none

• Payload

none

Response

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourcecollection+json
• Payload

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 20,
 "DepartmentName" : "Marketing",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/20",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/20/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 30,
 "DepartmentName" : "Purchasing",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/30",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/30/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 40,
 "DepartmentName" : "Human Resources",

Chapter 4
Retrieving Business Objects

4-2

 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/40",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/40/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/50/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }],
 "count" : 5,
 "hasMore" : false,
 "limit" : 5,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"
 }]
}

Fetching a Business Object with a Subset of Items
REST APIs support fetching a resource collection with a subset of items.

The payload structure of nested child resource differs depending on the REST API framework
version that has been registered for the request. For details about the REST API framework
versions, see Understanding REST API Framework Version Support.

The following samples are based on different versions of the REST API framework, which
reflect the response payload structure change supported in REST API framework version 3
(and later). In both framework scenarios, the samples fetch the Employee resource as a child
of the Department resource.

REST API Framework Version 3 (and later)

Starting with version 3 of the REST API framework, the REST API returns a nested child
resource in the response payload as a resource collection, instead of as an array of resource
items. This functionality, available in framework version 3 (and later), allows web applications
to make a request for additional records after determining how many items were left
unfetched in the initial request. The attributes hasMore and count on the child resource
indicate whether more items may be returned from the resource collection. For details about

Chapter 4
Retrieving Business Objects

4-3

using the pagination attributes from the response payload when you opt into REST
API framework version 3, see Paging a Business Object.

The following sample illustrates functionality for REST API framework version 3 (and
later). The response payload represents the nested child resource as a resource
collection, where the collection object includes the hasMore and count attributes. A link
is provided should it be necessary to query the child resource for additional resource
items. In this sample, the response payload shows the hasMore attribute is false,
suggesting that no items remain unfetched on the Employee child resource for either
department 10 or department 20.

Request Made With Framework Version 3

• URL

<base_url>/Department?
fields=DepartmentId;Employee:FirstName&onlyData=true

• HTTP Method

GET

• Query Parameters

fields
This parameter filters resource attributes so that only the specified attributes are
returned. The parameter value is a comma-separated list of attribute names when
filtering a single resource collection. Example: ?fields=FirstName,LastName.
When filtering multiple resources, the resource names are followed by a colon and
the comma-separated attribute names list with a semi-colon separating each
resource filter list. Example: ?
fields=Employee:FirstName;Employee.JobHistory:JobId. Note that dot notation
allows access to nested resources. This parameter cannot be combined with
expand query parameter. If both are provided, only fields will be considered.

onlyData
This parameter filters the resource item payload to contain only data (no links
section, for example).

• Content-Type

none

• Payload

none

Response Made With Framework Version 3

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourcecollection+json
• Payload

{
 "items" : [{
 "DepartmentId" : 10,
 "Employee" : {

Chapter 4
Retrieving Business Objects

4-4

 "items" : [{
 {
 "FirstName" : "Jennifer"
 }
 }],
 "count" : 1,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 },]
 }, {
 "DepartmentId" : 20,
 "Employee" : {
 "items" : [{
 {
 "FirstName" : "Michael"
 },
 {
 "FirstName" : "Pat"
 }
 }],
 "count" : 2,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/20/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 },]
 }, {
 ...
],
 "count" : 25,
 "hasMore" : true,
 "limit" : 25,
 "offset" : 0,
 "links" : [
 {
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"
 }
]

REST API Framework Version 1 or Version 2

Version 1 and version 2 of the REST API framework return the nested child resource
expanded in the response payload as an array of resource items. If the resource collection
being fetched is large, several requests will be required to fetch all items.

The following samples fetch the attribute values of the Department and Employee collections.
The query parameter fields ensures the response payload contains only the specified

Chapter 4
Retrieving Business Objects

4-5

attributes. Note that a GET request may return no values for any resource in the URL
that does not specify an attribute value.

The first request (URL 1) fetches the items for employee 101. The query parameter
fields ensures the response payload contains only the specified attributes:
FirstName, LastName, and Email.

The second request (URL 2) fetches the department DepartmentId and the FirstName
item for employees of each department. The query parameter onlyData filters the
response to hide child links.

The third request (URL 3) fetches the department DepartmentId, the FirstName item
for employees of each department, and the JobId history for each employee. The
query parameter onlyData again filters the response to hide child links.

Request 1 Made With Framework Version 1 or 2

• URL 1

<base_url>/Employee/101?fields=FirstName,LastName,Email
• HTTP Method

GET

• Query Parameters

fields
This parameter filters resource attributes so that only the specified attributes are
returned. The parameter value is a comma-separated list of attribute names when
filtering a single resource collection. Example: ?fields=FirstName,LastName.
When filtering multiple resources, the resource names are followed by a colon and
the comma-separated attribute names list with a semi-colon separating each
resource filter list. Example: ?
fields=Employee:FirstName;Employee.JobHistory:JobId. Note that dot notation
allows access to nested resources. This parameter cannot be combined with
expand query parameter. If both are provided, only fields will be considered.

• Content-Type

none

• Payload

none

Response 1 From Framework Version 1 or 2

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Payload 1

{
 "FirstName" : "Neena",
 "LastName" : "Smith",
 "Email" : "NSMITH",
 "links" : [{
 "rel" : "self",

Chapter 4
Retrieving Business Objects

4-6

 "href" : "<base_url>/Employee/101",
 "name" : "Employee",
 "kind" : "item"
 }]
}

Request 2 Made With Framework Version 1 or 2

• URL 2

<base_url>/Department?fields=DepartmentId;Employee:FirstName&onlyData=true
• HTTP Method

GET

• Query Parameters

fields
This parameter filters resource attributes so that only the specified attributes are
returned. The parameter value is a comma-separated list of attribute names when
filtering a single resource collection. Example: ?fields=FirstName,LastName. When
filtering multiple resources, the resource names are followed by a colon and the comma-
separated attribute names list with a semi-colon separating each resource filter list.
Example: ?fields=Employee:FirstName;Employee.JobHistory:JobId. Note that dot
notation allows access to nested resources. This parameter cannot be combined with
expand query parameter. If both are provided, only fields will be considered.

onlyData
This parameter filters the resource item payload to contain only data (no links section, for
example).

• Content-Type

none

• Payload

none

Response 2 From Framework Version 1 or 2

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourcecollection+json
• Payload 2

{
 "items" : [

 {
 "DepartmentId" : 10,
 "Employee" : [
 {
 "FirstName" : "Jennifer"
 }
]
 },
 {
 "DepartmentId" : 20,

Chapter 4
Retrieving Business Objects

4-7

 "Employee" : [
 {
 "FirstName" : "Michael"
 },
 {
 "FirstName" : "Pat"
 }
]
 },
 {
 "DepartmentId" : 30,
 "Employee" : [
 {
 "FirstName" : "Den"
 },
 {
 "FirstName" : "Alexander"
 },
 {
 "FirstName" : "Shelli"
 },
 {
 "FirstName" : "Sigal"
 },
 {
 "FirstName" : "Guy"
 },
 {
 "FirstName" : "Karen"
 }
]
 },
 {
 "DepartmentId" : 40,
 "Employee" : [
 {
 "FirstName" : "Susan"
 }
]
 },
 ...
],
 "count" : 25,
 "hasMore" : true,
 "limit" : 25,
 "offset" : 0,
 "links" : [
 {
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"
 }
]

Request 3 Made With Framework Version 1 or 2

• URL 3

<base_url>/Department?
fields=DepartmentId;Employee:FirstName;Employee.JobHistory:JobId&onlyD
ata=true

Chapter 4
Retrieving Business Objects

4-8

• HTTP Method

GET

• Query Parameters

fields
This parameter filters resource attributes so that only the specified attributes are
returned. The parameter value is a comma-separated list of attribute names when
filtering a single resource collection. Example: ?fields=FirstName,LastName. When
filtering multiple resources, the resource names are followed by a colon and the comma-
separated attribute names list with a semi-colon separating each resource filter list.
Example: ?fields=Employee:FirstName;Employee.JobHistory:JobId. Note that dot
notation allows access to nested resources. This parameter cannot be combined with
expand query parameter. If both are provided, only fields will be considered.

onlyData
This parameter filters the resource item payload to contain only data (no links section, for
example).

• Content-Type

none

• Payload

none

Response 3 From Framework Version 1 or 2

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourcecollection+json
• Payload 3

{
 "items" : [

 {
 "DepartmentId" : 10,
 "Employee\" : [
 {
 "FirstName" : "Jennifer",
 "JobHistory" : [
 {
 "JobId" : "AD_ASST"
 },
 {
 "JobId" : "AC_ACCOUNT"
 }
]
 }
]
 },
 {
 "DepartmentId" : 20,
 "Employee" : [
 {

Chapter 4
Retrieving Business Objects

4-9

 "FirstName" : "Michael",
 "JobHistory" : [
 {
 "JobId" : "MK_REP"
 }
]
 },
 {
 "FirstName" : "Pat",
 "JobHistory" : [
 {
 "JobId" : "AD_ASST"
 },
 {
 "JobId" : "AC_ACCOUNT"
 }
]
 }
]
 },
 {
 "DepartmentId" : 30,
 "Employee" : [
 {
 "FirstName" : "Den",
 "JobHistory" : [
 {
 "JobId" : "ST_CLERK"
 }
]
 },
 {
 "FirstName" : "Alexander",
 "JobHistory" : [
 {
 "JobId" : "AD_ASST"
 },
 {
 "JobId" : "AC_ACCOUNT"
 }
]
 },
 {
 "FirstName" : "Shelli",
 "JobHistory" : [
 {
 "JobId" : "AD_ASST"
 },
 {
 "JobId" : "AC_ACCOUNT"
 }
]

]
 ...
],
 "count" : 25,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [

Chapter 4
Retrieving Business Objects

4-10

 {
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"
 }
]
}

Fetching a Business Object Item
REST APIs support fetching a resource item.

The following sample fetches Department resource item 50. The response includes a link to
the nested child Employee resource.

Request

• URL

<base_url>/Department/50
• HTTP Method

GET

• Content-Type

none

• Payload

none

Response

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Payload

{
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/50/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

Chapter 4
Retrieving Business Objects

4-11

Paging a Business Object
REST APIs support retrieving resource collections with pagination to display the
resource items in sets. Paging is performed using the following URI query parameters:

• limit restricts the number of resources returned inside the resource collection. If
the limit exceeds the resource count, then the framework will return all available
resources. The value is the maximum number of resources to be returned.

• offset defines a zero-based index into the collection (where 0 is the first position).
The index identifies the starting position of the resource collection. If offset
exceeds the resource count, then no resources are returned.

In the following sample, where a Department resource collection has five items, the
first request (URL1) retrieves two items (at index 0 and 1), and because offset is
omitted, the starting position of the response is the first item. To display another set of
resource items, a second request (URL2) may be made with an offset of 2 to
correspond to the third item and a limit of 2 to retrieve only two more items (at index
2 and 3), and the last request (URL3) with an offset of 4 returns the last item of the
five item resource collection (at index 4).

Each time a new set of resource items is retrieved, the hasMore attribute of the
response indicates whether more items may be returned from the collection. In this
example, because the collection contains only five items, the response for URL3
shows hasMore set to false, indicating that the last set of items had been retrieved.

Note that when the limit parameter is omitted from the paging URL, the REST API
assumes a limit of 25 (as determined by the default RangeSize value on the business
object definition). In this case, up to twenty-five items will be returned with each
request. For this reason, it is a best practice when paging through a collection to
always include the limit query parameter to ensure only the desired number of
resource items are returned and not more.

Requests

• URL 1

<base_url>/Department?limit=2
• URL 2

<base_url>/Department?offset=2&limit=2
• URL 3

<base_url>/Department?offset=4&limit=2
• HTTP Method

GET

• Query Parameters

limit
This parameter is an integer value that restricts the number of resource returned
inside the resource collection. If the limit exceeds the resource total results, then
the available resources will be returned.

offset

Chapter 4
Retrieving Business Objects

4-12

This parameter is an integer value that defines the starting position of the resource
collection. The default (0) specifies the first position. If the offset exceeds the resource
count, then no resources are returned.

• Content-Type

none

• Payload

none

Responses

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourcecollection+json
• Payload 1

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 20,
 "DepartmentName" : "Marketing",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/20",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/20/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }],
 "count" : 2,
 "hasMore" : true,
 "limit" : 2,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"

Chapter 4
Retrieving Business Objects

4-13

 }]
}

• Payload 2

{
 "items" : [{
 "DepartmentId" : 30,
 "DepartmentName" : "Purchasing",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/30",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/30/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 40,
 "DepartmentName" : "Human Resources",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/40",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/40/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }],
 "count" : 2,
 "hasMore" : true,
 "limit" : 2,
 "offset" : 2,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"
 }]
}

• Payload 3

{
 "items" : [{
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/50/child/Employee",
 "name" : "Employee",
 "kind" : "collection"

Chapter 4
Retrieving Business Objects

4-14

 }]
 }],
 "count" : 1
 "hasMore" : false,
 "limit" : 2
 "offset" : 4,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department,
 "kind" : "collection"
 }]
}

Sorting a Business Object
REST APIs support sorting the fetched resource items.

Sorting is performed using the orderBy query string parameter in combination with one or
more attribute names. The following optional sort order flags may be associated with each
attribute:

• asc sorts in ascending order. (Default)

• desc sorts in descending order.

The orderBy query string parameter format is:

<orderBy_attribute1_name>:<(asc/desc)>, <orderBy_attribute2_name>:<(asc/desc)>
Example: attribute1:desc,attribute2
The following sample (URL1) fetches the Department collection sorted by the
DepartmentName attribute. The second sample (URL2) fetches the child Employee collection
sorted by the salary attribute. Since the sort order flag is not specified for either request
sample, the response is ascending order.

Request

• URL 1

<base_url>/Department?orderBy=DepartmentName
• URL 2

<base_url>/Department/50/child/Employee?orderBy=Salary
• HTTP Method

GET

• Query Parameter

orderBy
This parameter orders a resource collection based on the specified attributes. The
parameter value is a comma-separated string of attribute names, each optionally followed
by a colon and asc or desc. Specify asc for ascending and desc for descending. The
default value is asc. For example, ?orderBy=attr1:asc,attr2:desc.

• Content-Type

none

Chapter 4
Retrieving Business Objects

4-15

• Payload

none

Response

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Payload 1

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 40,
 "DepartmentName" : "Human Resources",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/40",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/40/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 20,
 "DepartmentName" : "Marketing",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/20",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/20/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 30,
 "DepartmentName" : "Purchasing",
 "links" : [{
 "rel" : "self",

Chapter 4
Retrieving Business Objects

4-16

 "href" : "<base_url>/Department/30",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/30/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/50/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }],
 "count" : 5,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"
 }]
}

• Payload 2

{
 "items" : [{
 "EmployeeId" : 132,
 "FirstName" : "TJ",
 "LastName" : "Olson",
 "Email" : "TJOLSON",
 "JobId" : "ST_CLERK",
 "DepartmentId" : 50,
 "Salary" : 2100,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Employee/132",
 "name" : "Employee",
 "kind" : "item"
 }]
 }, {
 "EmployeeId" : 136,
 "FirstName" : "Hazel",
 "LastName" : "Philtanker",
 "Email" : "HPHILTAN",
 "JobId" : "ST_CLERK",
 "DepartmentId" : 50,
 "Salary" : 3100,
 "links" : [{

Chapter 4
Retrieving Business Objects

4-17

 "rel" : "self",
 "href" : "<base_url>/Employee/136",
 "name" : "Employee",
 "kind" : "item"
 }]
 }],
 "count" : 2,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

Fetching a Child Business Object
REST APIs support retrieving a nested child resource collection.

The payload structure of a nested child resource collection differs depending on the
Oracle Business Object REST API framework version that has been registered for the
web application. For details about the Oracle Business Object REST API framework
versions, see Working with REST API Framework Versions.

The following samples are based on two different versions of the Employee resource.
The URL samples showing resource 1.0 reflect a response payload structure
supported by REST API framework versions 1 and 2. While the URL samples showing
resource 2.0, reflect the response payload structure supported in REST API
framework version 3 (and later). In both framework scenarios, the samples fetch the
Employee resource nested within the Department resource.

REST API Framework Version 3 (and later)

Starting with version 3 of the REST API framework, the REST API returns a nested
child resource in the response payload as a resource collection, instead of as an array
of resource items. This functionality, available in framework version 3 (and later),
allows web applications to make a request for additional records after determining how
many items were left unfetched in the initial request. The attributes hasMore and count
on the nested resource indicate whether more items may be returned from the
resource collection. For details about using the pagination attributes from the response
payload when you opt into REST API framework version 3, see Paging a Business
Object.

The following sample illustrates functionality for REST API framework version 3 (and
later). The response payload represents the nested child resource as a resource
collection, where the collection object includes the hasMore and count attributes. A link
is provided should it be necessary to query the nested resource for additional resource
items. In this sample, items of the Employee nested resource are fetched with a count
of 3 in the payload. The response payload shows the hasMore attribute is false,
suggesting that no items remain unfetched.

Request Made With Framework Version 3

• URL

<base_url>/Department/50?expand=Employee

Chapter 4
Retrieving Business Objects

4-18

• HTTP Method

GET

• Query Parameter

expand
When this parameter is provided in combination with REST API framework version 2 or
later, the specified children are included in the resource payload (instead of just a link).
The value of this query parameter is all or <accessor1>,<accessor2>,... When all is
specified, only the top-level children will be included in the resource payload. More than
one child can be specified using comma as a separator. Example: ?
expand=Employee,Localization. Nested children can also be provided following the
format "Child.NestedChild" (Example: ?expand=Employee.Manager). If a nested child is
provided (Example: Employee.Manager), the missing children will be processed implicitly.
For example, ?expand=Employee.Manager is the same as ?
expand=Employee,Employee.Manager (which will expand Employee and Manager).

Note the expand parameter cannot be combined with the fields parameter. If both
parameters are provided, only fields will be considered.

• Content-Type

none

• Payload

none

Response From Framework Version 3

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Payload

{
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "Employee" : {
 "items" : [{
 "EmployeeId" : 120,
 "FirstName" : "Matthew",
 "LastName" : "Weiss",
 "Email" : "MWEISS",
 "JobId" : "ST_MAN",
 "DepartmentId" : 50,
 "Salary" : 8000,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50/child/Employee/120",
 "name" : "Employee",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "<base_url>/Department/50",
 "name" : "Department",
 "kind" : "item"

Chapter 4
Retrieving Business Objects

4-19

 }]
 }, {
 "EmployeeId" : 121,
 "FirstName" : "Adam",
 "LastName" : "Fripp",
 "Email" : "AFRIPP",
 "JobId" : "ST_MAN",
 "DepartmentId" : 50,
 "Salary" : 8200,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50/child/Employee/121",
 "name" : "Employee",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "<base_url>/Department/50",
 "name" : "Department",
 "kind" : "item"
 }]
 }, {
 ...
 }]
 }],
 "count" : 3,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 },
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50",
 "name" : "Department",
 "kind" : "item"
 }]
}

REST API Framework Version 1 or Version 2

Version 1 and version 2 of the REST API framework return the nested child resource
expanded in the response payload as an array of resource items. If the resource
collection being fetched is large, you may have to make several requests since the
array of resource items has a limit.

The following samples illustrate functionality for REST API framework version 1 and
version 2.

The first request sample (URL 1) retrieves a single child resource item identified by
employee 120. The URL parameter child identifies the relationship of the requested
resource Employee.

The second request (URL 2) shows the use of the query parameter expand to ensure
that all nested Employee resource items will be returned with Department resource
collection 50.

Chapter 4
Retrieving Business Objects

4-20

The third request (URL 3) shows the use of accessor dot notation (for example,
Employee.JobHistory) in combination with the query parameter expand to ensure that all
nested JobHistory resource items will be returned with the Employee resource items for the
Department resource collection 80.

Request Made With Framework Version 1 or Version 2

• URL 1

<base_url>/Department/50/child/Employee/120
• URL 2

<base_url>/Department/50?expand=Employee
• URL 3

<base_url>/Department/80?expand=Employee.JobHistory&onlyData=true
• HTTP Method

GET

• Query Parameter

expand
When this parameter is provided in combination with REST API framework version 1, the
specified children are included as links in the resource payload. The value of this query
parameter is all or <accessor1>,<accessor2>,... More than one child can be specified
using comma as a separator. Example: ?expand=Employee,Localization. Nested
children can also be provided following the format "Child.NestedChild" (Example: ?
expand=Employee.Manager). If a nested child is provided (Example: Employee.Manager),
the missing children will be processed implicitly. For example, ?
expand=Employee.Manager is the same as ?expand=Employee,Employee.Manager (which
will expand Employee and Manager).

• Content-Type

none

• Payload

none

Response From Framework Version 1 or Version 2

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Payload 1

{
 "EmployeeId" : 120,
 "FirstName" : "Matthew",
 "LastName" : "Weiss",
 "Email" : "MWEISS",
 "JobId" : "ST_MAN",
 "DepartmentId" : 50,
 "Salary" : 8000,
 "links" : [{

Chapter 4
Retrieving Business Objects

4-21

 "rel" : "self",
 "href" : "<base_url>/Department/50/child/Employee/120",
 "name" : "Employee",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "<base_url>/Department/50",
 "name" : "Department",
 "kind" : "item"
 }]
}

• Payload 2

{
 "DepartmentId" : 50,
 "DepartmentName" : "Shipping",
 "Employee" : [{
 "EmployeeId" : 120,
 "FirstName" : "Matthew",
 "LastName" : "Weiss",
 "Email" : "MWEISS",
 "JobId" : "ST_MAN",
 "DepartmentId" : 50,
 "Salary" : 8000,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50/child/Employee/120",
 "name" : "Employee",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "<base_url>/Department/50",
 "name" : "Department",
 "kind" : "item"
 }]
 }, {
 "EmployeeId" : 121,
 "FirstName" : "Adam",
 "LastName" : "Fripp",
 "Email" : "AFRIPP",
 "JobId" : "ST_MAN",
 "DepartmentId" : 50,
 "Salary" : 8200,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50/child/Employee/121",
 "name" : "Employee",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "<base_url>/Department/50",
 "name" : "Department",
 "kind" : "item"
 }]
 }, {
 ...
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/50",

Chapter 4
Retrieving Business Objects

4-22

 "name" : "Department",
 "kind" : "item"
 }]
}

• Payload 3

{
 "DepartmentId" : 80,
 "DepartmentName" : "Sales",
 "RelState" : null,
 "Employee" : [
 ...
 {
 "EmployeeId" : 176,
 "FirstName" : "Jonathon",
 "LastName" : "Taylor",
 "Email" : "JTAYLOR",
 "JobId" : "SA_REP",
 "DepartmentId" : 80,
 "Salary" : 8600,
 "CommissionPct" : 0.2,
 "JobHistory" : [
 {
 "EmployeeId" : 176,
 "StartDate" : "2011-03-24",
 "EndDate" : "2012-12-31",
 "JobId" : "SA_REP",
 "DepartmentId" : 80
 },
 {
 "EmployeeId" : 176,
 "StartDate" : "2013-01-01",
 "EndDate" : "2015-03-31",
 "JobId" : "SA_MAN",
 "DepartmentId" : 80
 }
]
 },
 ...
]
}

Fetching Data Only for a Business Object
REST APIs support retrieving only the data of a resource collection.

The following sample fetches the values of the Employee resource collection attributes. The
query parameter onlyData ensures the resource is filtered to contain only data in the
response payload and no links.

Request

• URL

<base_url>/Employee?onlyData=true
• HTTP Method

GET

• Query Parameter

Chapter 4
Retrieving Business Objects

4-23

onlyData
This parameter filters the resource item payload to contain only data (no links
section, for example).

• Content-Type

none

• Payload

none

Response

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Payload

{
 "items" : [{
 "EmployeeId" : 101,
 "FirstName" : "Neena",
 "LastName" : "Smith",
 "Email" : "NSMITH",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 2000
 }, {
 "EmployeeId" : 102,
 "FirstName" : "Lex",
 "LastName" : "De Haan",
 "Email" : "LDEHAAN",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 3000
 }, {
 "EmployeeId" : 103,
 "FirstName" : "Alexander",
 "LastName" : "Hunold",
 "Email" : "AHUNOLD",
 "JobId" : "IT_PROG",
 "DepartmentId" : 60,
 "Salary" : 4000
 }, {
 "EmployeeId" : 104,
 "FirstName" : "Bruce",
 "LastName" : "Ernst",
 "Email" : "BERNST",
 "JobId" : "IT_PROG",
 "DepartmentId" : 60,
 "Salary" : 5000
 }, {
 "EmployeeId" : 105,
 "FirstName" : "David",
 "LastName" : "Austin",
 "Email" : "DAUSTIN",
 "JobId" : "IT_PROG",
 "DepartmentId" : 60,

Chapter 4
Retrieving Business Objects

4-24

 "Salary" : 6000
 }],
 "count" : 5,
 "hasMore" : true,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

Filtering a Business Object with a Query Parameter
REST APIs support fetching a resource collection using query expression syntax to filter
resource items.

The resource collection may be queried using expressions that differ in syntax depending on
the REST API framework version that has been registered for the web application. For details
about the REST API framework versions, see Understanding REST API Framework Version
Support.

The following samples are based on two different versions of the Department resource. The
URL sample showing resource 1.0 reflects the query-by-example query parameter syntax
supported only by version 1 of the REST API framework. While the URL sample showing
resource 2.0, reflects the rowmatch query parameter syntax supported in REST API
framework version 2 (and later). In both framework scenarios, the samples fetch a filtered set
of resource items of the Department resource.

Note:

For a REST API request, reserved characters that appear in a query parameter
value should be encoded. For example, the + character in a timestamp value must
be encoded as %2B. Additionally, resource and resource items names used in query
parameter operations are case sensitive.

REST API Framework Version 2 (and later)

Starting with version 2 of the REST API framework, web applications may use an advanced
query syntax, also known as rowmatch expressions, to fetch resources. For a complete
description of the query syntax available in version 2 (and later), Understanding Framework
Support for Query Syntax.

The following sample fetches all departments with at least one employee whose salary is
equal to 10000. This is an example of fetching a parent resource collection (Department) and
filtering it by a child resource collection attribute (Employee.Salary).

Request Example 1 Made With Framework Version 2

• URL

<base_url>/Department?q=Employee.Salary = 10000
• HTTP Method

Chapter 4
Retrieving Business Objects

4-25

GET

• Query Parameter

q
This parameter filters the resource collection based on one or more attribute value
expressions. Starting with REST API framework version 2, complex filters may
combine expressions using the and and or conjunctions with matching sets of
parentheses for grouping. For example, ?q=(Deptno>=10 and <= 30) and (Loc!
=NY).

• Content-Type

none

• Payload

none

Response Example 1 From Framework Version 2

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourcecollection+json
• Payload

{
 "items" : [{
 "DepartmentId" : 70,
 "DepartmentName" : "Public Relations",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/70",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/70/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 80,
 "DepartmentName" : "Sales",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/820",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/80/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }],
 "count" : 2,
 "hasMore" : false,
 "limit" : 25,

Chapter 4
Retrieving Business Objects

4-26

 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"
 }]
}

The following sample fetches all departments with the numeric ID of 10 or a department name
that begins with the letter "H".

Request Example 2 Made With Framework Version 2

• URL

<base_url>/Department?q=DepartmentId = 10 or DepartmentName like 'H*'
• HTTP Method

GET

• Query Parameter

q
This parameter filters the resource collection based on one or more attribute value
expressions. Starting with REST API framework version 2, complex filters may combine
expressions using the and and or conjunctions with matching sets of parentheses for
grouping. For example, ?q=(Deptno>=10 and <= 30) and (Loc!=NY).

• Content-Type

none

• Payload

none

Response Example 2 From Framework Version 2

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourcecollection+json
• Payload

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {

Chapter 4
Retrieving Business Objects

4-27

 "DepartmentId" : 40,
 "DepartmentName" : "Human Resources",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/40",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/40/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }],
 "count" : 2,
 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"
 }]
}

REST API Framework Version 1

Version 1 of the REST API framework supports a query-by-example syntax. No
application configuration changes are required to use this syntax that is supported only
in versions 1. For a description of the query syntax available in version 1 of the REST
API framework, see GET Method Endpoints.

Note:

In version 1 of the ADF REST framework, when you create a query with a
string matching filter parameter and the string to match contains a query
syntax reserved word (such as AND or OR), then the quoted string must be
delimited by a space character to separate it from other parameters in the
query expression. For example, the following query attempts to filter on the
quoted string ‘Accounting and Finance’. Since the string contains the
reserved word AND, the string matching filter parameter requires a space
before and after the single quotes to be viable in version 1.

?q=DepartmentName= 'Accounting and Finance'
&fields=DepartmentName,Location
Note that starting in framework version 2, the use of a space character is no
longer required to delimit a string matching filter that contains a reserved
word.

The following sample fetches departments assigned a DepartmentId value less than
30.

Request Made With Framework Version 1

• URL

Chapter 4
Retrieving Business Objects

4-28

<base_url>/Department?q=DepartmentId<30
• HTTP Method

GET

• Query Parameter

q
This parameter filters the resource collection based on one or more attribute value
expressions. In REST API framework version 1, the value of this query parameter is a list
of semi-colon separated query-by-example expressions. For example, ?q=Deptno=10 and
<=30;Loc!=NY.

• Content-Type

none

• Payload

none

Response From Framework Version 1

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourcecollection+json
• Payload

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 "DepartmentId" : 20,
 "DepartmentName" : "Marketing",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/20",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/20/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }],
 "count" : 2,

Chapter 4
Retrieving Business Objects

4-29

 "hasMore" : false,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"
 }]
}

Creating Business Object Items
REST APIs support the HTTP POST method to create a resource item.

REST APIs support the following creation use cases:

• Creating a resource item in an existing resource collection.

• Creating a child item and parent resource item (where the resource collection of
each item form a child-parent relationship) in one roundtrip.

Creating a Business Object Item
REST APIs support using the HTTP POST method to create a resource item in an
existing resource collection.

The following sample creates a new resource item in the existing Department resource
collection.

Request

• URL

<base_url>/Department
• HTTP Method

POST

• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Payload

{
 "DepartmentId" : 15,
 "DepartmentName" : "NewDept"
}

Response

• HTTP Code

201
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Location

<base_url>/Department/15

Chapter 4
Creating Business Object Items

4-30

• Payload

{
 "DepartmentId" : 15,
 "DepartmentName" : "NewDept",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/15",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/15/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

Creating an Item of a Child Business Object
REST APIs support creating a resource item in the child resource collection of an existing
parent resource collection. Alternatively, REST APIs support creating a child item and the
parent item in one roundtrip. Creating a child resource item and it’s parent resource item will
only succeed when both the child resource item and parent resource item do not exist.

The following samples create resource items using a POST method. The first request sample
(URL1) creates a child resource item identified by employee 999 in the Employee resource
collection nested in existing parent resource item 15 of the Department collection. The second
request (URL2) creates a child resource item identified by employee 99999 in the Employee
resource collection and also creates the parent resource item 17 of the Department collection
in one roundtrip.

Request

• URL 1

<base_url>/Department/15/child/Employee
• URL 2

<base_url>/Department
• HTTP Method

POST

• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Payload 1

{
 "EmployeeId": 999,
 "FirstName": "New",
 "LastName": "Guy",
 "Email": "NGUY",
 "JobId": "SA_REP",
 "DepartmentId": 15,
 "Salary": 9999
}

• Payload 2

Chapter 4
Creating Business Object Items

4-31

{
 "DepartmentId": 17,
 "DepartmentName": "NewerDept",
 "Employee": [
 {
 "EmployeeId": 99999,
 "FirstName": "Newer",
 "LastName": "Guy",
 "Email": "NRGUY",
 "JobId": "SA_MAN",
 "DepartmentId": 17,
 "Salary": 10001
 }
]
}

Response

• HTTP Code

201
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Location

<base_url>/Department/15/child/Employee/999
• Payload 1

{
 "EmployeeId" : 999,
 "FirstName" : "New",
 "LastName" : "Guy",
 "Email" : "NGUY",
 "JobId" : "SA_REP",
 "DepartmentId" : 15,
 "Salary" : 9999,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/15/child/Employee/999",
 "name" : "Employee",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "<base_url>/Department/15",
 "name" : "Department",
 "kind" : "item"
 }]
}

• Location

<base_url>/Department/17
• Payload 2

{
 "DepartmentId" : 17,
 "DepartmentName" : "NewerDept",
 "Employee" : [{
 "EmployeeId" : 99999,
 "FirstName" : "Newer",

Chapter 4
Creating Business Object Items

4-32

 "LastName" : "Guy",
 "Email" : "NRGUY",
 "JobId" : "SA_MAN",
 "DepartmentId" : 17,
 "Salary" : 10001,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/17/child/Employee/99999",
 "name" : "Employee",
 "kind" : "item"
 }, {
 "rel" : "parent",
 "href" : "<base_url>/Department/17",
 "name" : "Department",
 "kind" : "item"
 }]
 }],
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/17",
 "name" : "Department,
 "kind" : "item"
 }]
}

Updating a Business Object Item
REST APIs support the HTTP PATCH method to update the resource item.
Update will only succeed when the row already exists.

The following sample updates department 15, where DepartmentName is changed in the
request payload.

Request

• URL

<base_url>/Department/15
• HTTP Method

PATCH

• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Payload

{
 "DepartmentId" : 15,
 "DepartmentName" : "UpdatedDeptName"
}

Response

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourceitem+json

Chapter 4
Updating a Business Object Item

4-33

• Payload

{
 "DepartmentId" : 15,
 "DepartmentName" : "UpdatedDeptName",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/15",
 "name" : "Department",
 "kind" : "item"
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/15/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

Deleting a Business Object Item
REST APIs support the HTTP DELETE method to delete a resource item.
REST APIs do not currently support deleting the resource collection.

The following sample (URL1) deletes the resource item, employee 99999 in
department 17. The second request URL deletes the resource item, department 17.

Request

• URL 1

<base_url>/Department/17/child/Employee/99999
• URL 2

<base_url>/Department/17
• HTTP Method

DELETE

• Content-Type

none

• Payload

none

Response

• HTTP Code

204
• Content-Type

none

• Payload

none

Chapter 4
Deleting a Business Object Item

4-34

5
Data Consistency Tasks

You can perform data consistency checks while making REST API calls. This capability uses
version history in the database to enable you to manage HTTP payloads according to
updates in the resource itself.

Topics

• About Data Consistency

• Checking for Data Consistency When Retrieving Business Object Items

• Checking for Data Consistency When Updating Business Object Items

About Data Consistency
REST APIs support checking for data consistency when updating or retrieving a resource
item. Data consistency is enforced by the REST API by generating an entity tag (ETag) with
precondition headers so that the resource item matches the server side resource state before
updating or retrieving.

REST APIs support generating an entity tag (ETag) in the response header when the
requested resource item has data consistency check enabled.

When your visual development tool supports entity change indicators (as it is, for example, in
Oracle Visual Builder), the REST API will assign a unique value to indicate the state of each
resource item on the server side. At runtime, when the business object item underlying the
server side resource item changes, the REST API assigns a new state value to the ETag.
The following header shows the ETag returned with a request to retrieve a Department
resource item.

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, must-revalidate
Location:
Content-Length: 1069
Content-Type: application/json
ETag: "ACED00057372037200136261636C6520136261636C65237200136261636C652"
Link: <base_url>/Department/10>;rel="self";kind="item";name="Department"

The web application request can use the ETag value returned in the header response of each
resource item to create subsequent requests that contain precondition headers (If-Match/
If-None-Match). Based on the specified ETag and the precondition, the server will evaluate
the current resource item state and match against the provided ETag. If the precondition is
satisfied, the requested operation is executed; otherwise, a 412 error is returned. The error
payload will contain the current resource item in the server side and the header will also
reflect the current ETag value.

To support testing ETag values, the REST API provides the following precondition header
fields. Usage of these precondition fields forces the REST API to compare a supplied ETag
value against the ETag values of previously requested items.

5-1

• Verify that the client is providing a state (obtained from a previous resource item
response) that matches the current state on the server:

If-Match: "<ETag value from resource item response>"
• Verify that the client is providing a state (obtained from a previous resource item

response) that does not match the current state on the server.

If-None-Match: "<ETag value from resource item response>"
The following are typical use cases when checking for data consistency:

• Check that the business object item matches the server side resource item state
before updating

• Retrieve the business object item using the server side resource item state when
none of the requested items match any previously requested items

While these use cases involve GET and PATCH methods, the precondition header and
ETag value can be used to check that any HTTP method operation will be applied to
the current state of the business object item.

When retrieving a resource collection, an additional custom property changeIndicator
will appear in the response payload of resource with data consistency enabled. This
property contains the current ETag value of each resource item in the requested
collection. The following sample illustrates the changeIndicator property in the links
section of a Department resource collection. The presence of ETag values in the
resource collection payload is a convenience for the web application that can reduce
the number of requests to obtain the ETag from individual resource items.

{
 "items" : [{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "RelState" : 1,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item",
 "properties" : {
 "changeIndicator" :
"ACED0005737200136A6176612E7574696C2E41727261794C69737

47881D21D99C7619D03000149000473697A65787000000001770400000001737200186F721

636C652E6A626F2E646F6D61696E2E4E7564A362286F0200015B0004646174617400025B45
 27870757200025B42ACF317F8060854E00200007870"
 }
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item",
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection",
 }]
 }, {
 "DepartmentId" : 20,

Chapter 5
About Data Consistency

5-2

 "DepartmentName" : "Marketing",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/20",
 "name" : "Department",
 "kind" : "item",
 "properties" : {
 "changeIndicator" :
"ACED0005737200136A6176612E7574696C2E41727261794C6973747881D21D99C7619D0300014900047369
7A65787000000001770400000001737200186F7261636C652E6A626F2E646F6D61696E2E4E756D626572A5B
1371914E0BFDA0200014900096D48617368436F6465787200116F7261636C652E73716C2E4E554D424552E9
0466EE632BE1D5020000787200106F7261636C652E73716C2E446174756D4078F514A362286F0200015B000
4646174617400025B427870757200025B42ACF317F8060854E0020000787000000002C10A0000000078"
 }
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/20/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
 }, {
 ...
 }]
 }],
 "count" : 5,
 "hasMore" : true,
 "limit" : 25,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department",
 "name" : "Department",
 "kind" : "collection"
 }]
}

Checking for Data Consistency When Updating Business Object
Items

REST APIs support checking for data consistency when updating resource items.

To check for data consistency using the ETag header and conditional header fields:

1. Query one or more business object items and, for each returned resource item, obtain
the ETag value from the changeIndicator property in the properties section of the
response. When querying multiple business object items, there will not be a single ETag
response header. Instead, the ETag for each of the items in the response will be in the
properties section.

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, must-revalidate
Location:
Content-Length: 861
Content-Type: application/json
ETag: "responseETag123"
Link: <<base_url>/Department/10>;rel="self";kind="item";name="Department"
Set-Cookie: JSESSIONID=jXvsJ1GpdkFJV5Jh0yk7D72vPZ42t8tLYDg74NRKFQzXdnsjG9vv!
1113104013; path=/; HttpOnly
X-ORACLE-DMS-ECID: 51f1ff4535af720c:-7e156247:148ec9eeb3b:-8000-00000000000001ad

Chapter 5
Checking for Data Consistency When Updating Business Object Items

5-3

X-Powered-By: Servlet/2.5 JSP/2.1

{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item",
 "properties" : {
 "changeIndicator" : "responseETag123"
 }
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

2. Update the business object item, using a PATCH request and check for data
consistency by supplying the following conditional header field:

• If-Match: "<ETag value from resource item response>" to verify that the
state of a requested resource item is current with the previous resource item
response.

The following sample updates the DepartmentName field of department 10 when the
If-Match precondition test is satisfied. In the first request (Request 1), the ETag value
responseETag123 is identical to the ETag of the current department 10 on the server
side, indicating that the state of the resource item is consistent with the server side.
Consequently, the update to DepartmentName is allowed.

In the subsequent request (Request 2), however, the ETag supplied in the If-Match
precondition is unchanged and no longer matches the new ETag value the server has
for department 10 resource item. As a consequence of the stale ETag value used in
the second request, the update fails with an HTTP code 412, indicating the
precondition test failed, and the current ETag value responseETag567 is returned in the
response header. This occurs in production web applications when multiple users
simultaneously access the same business object item. For example, when user 1 and
user 2 both query the same item, the item has, for example, ETag value 1. Then, if
user 1 successfully updates the item with ETag value 1, and user 2 attempts to update
the same item with ETag value 1, the attempt will fail.

Request 1

• URL 1

<base_url>/Department/10
• HTTP Method

PATCH

• Precondition 1

If-Match: "responseETag123"
• Content-Type

application/vnd.oracle.adf.resourceitem+json

Chapter 5
Checking for Data Consistency When Updating Business Object Items

5-4

• Payload 1

{
 "DepartmentName" : "FirstAttempt_NewDepartmentName"
}

Response 1

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• ETag

responseETag567
• Payload 1

{
 "DepartmentId" : 10,
 "DepartmentName" : "FirstAttempt_NewDepartmentName",
 "RelState" : null,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item",
 "properties" : {
 "changeIndicator" : "responseETag567"
 }
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

Request 2

• URL 2

<base_url>/Department/10
• HTTP Method

PATCH

• Precondition 2

If-Match: "staleETag789"
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Payload 2

{
 "DepartmentName" : "SecondAttempt_NewDepartmentName"
}

Response 2

Chapter 5
Checking for Data Consistency When Updating Business Object Items

5-5

• HTTP Code

412 (Precondition failed)

• Content-Type

application/vnd.oracle.adf.resourceitem+json
• ETag

responseETag567
• Payload 2

{
 "DepartmentId" : 10,
 "DepartmentName" : "FirstAttempt_NewDepartmentName",
 "RelState" : null,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item",
 "properties" : {
 "changeIndicator" : "responseETag567"
 }
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

Checking for Data Consistency When Retrieving Business
Object Items

REST APIs support checking for data consistency when retrieving resource items.

To check for data consistency using the ETag header and conditional header fields:

1. Query one or more business object items and, for each returned resource item,
obtain the ETag value from the changeIndicator property in the properties
section of the response. When querying multiple business object items, there will
not be a single ETag response header. Instead, the ETag for each of the items in
the response will be in the properties section.

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, must-revalidate
Location:
Content-Length: 861
Content-Type: application/json
ETag: "responseETag123"
Link: <base_url>/Department/10>;rel="self";kind="item";name="Department"
Set-Cookie: JSESSIONID=jXvsJ1GpdkFJV5Jh0yk7D72vPZ42t8tLYDg74NRKFQzXdnsjG9vv!
1113104013; path=/; HttpOnly
X-ORACLE-DMS-ECID:
51f1ff4535af720c:-7e156247:148ec9eeb3b:-8000-00000000000001ad
X-Powered-By: Servlet/2.5 JSP/2.1

{

Chapter 5
Checking for Data Consistency When Retrieving Business Object Items

5-6

 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item",
 "properties" : {
 "changeIndicator" : "responseETag123"
 }
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

2. Query one or more business object items and check for data consistency by supplying
the following conditional header field:

• If-None-Match: "<ETag value from resource item response>" to verify that the
state of none of the previously requested resource items is current with the resource
item request.

The following sample retrieves department 10 when the If-None-Match precondition test is
satisfied. In the first request (Request 1), the ETag value responseETag123 matches the ETag
of the previously requested Department 10 resource item on the server side, indicating that
the state of the resource item is consistent with the server side. Consequently, the
precondition fails and there is no need to return a newer department 10 resource item. The
request returns with an HTTP code 304, indicating the state on the server has not been
modified.

In the subsequent request (Request 2), however, the ETag unmatchedETagXYZ supplied in the
If-None-Match precondition does not exist on the server. As a consequence, the precondition
succeeds and department 10 is retrieved. The request returns an HTTP code 200, indicating
the state had changed, and the current (unchanged) ETag value responseETag123 is returned
in the response header.

Request 1

• URL 1

<base_url>/Department/10
• HTTP Method

GET

• Precondition 1

If-None-Match: "responseETag123"
• Content-Type

none

• Payload

none

Response 1

• HTTP Code

Chapter 5
Checking for Data Consistency When Retrieving Business Object Items

5-7

304 state not modified

• Content-Type

none

• Payload 1

none

Request 2

• URL 2

<base_url>/Department/10
• HTTP Method

GET

• Precondition 2

If-None-Match: "unmatchedETagXYZ"
• Content-Type

none

• Payload

none

Response 2

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourceitem+json
• ETag

responseETag123
• Payload 2

{
 "DepartmentId" : 10,
 "DepartmentName" : "Administration",
 "RelState" : null,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Department/10",
 "name" : "Department",
 "kind" : "item",
 "properties" : {
 "changeIndicator" : "responseETag123"
 }
 }, {
 "rel" : "child",
 "href" : "<base_url>/Department/10/child/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

Chapter 5
Checking for Data Consistency When Retrieving Business Object Items

5-8

6
Advanced Tasks

You can use REST API to perform advanced operations such as obtaining a count of
resource items in a resource collection, executing custom actions, and executing batch
requests.

Topics

• Returning the Estimated Count of Business Object Items

• Making Batch Requests

• Working with Error Responses

• Enable Polling for Endpoint Requests

Returning the Estimated Count of Business Object Items
REST APIs support retrieving the estimated item count in the resource collection.

The following sample estimates the total records and queries the first two items in the
Employee collection. The query parameter totalResults ensures the response payload
contains the totalResults attribute.

Request

• URL

<base_url>/Employee?totalResults=true&limit=2
• HTTP Method

GET

• Query Parameter

totalResults
This parameter when set to true will include the estimated item count in the response for
the resource collection. Otherwise the count is not included. The default value is false.

• Content-Type

none

• Payload

none

Response

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.resourceitem+json

6-1

• Payload

{
 "items" : [{
 "EmployeeId" : 101,
 "FirstName" : "Neena",
 "LastName" : "Smith",
 "Email" : "NSMITH",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 2000,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Employee/NSMITH",
 "name" : "Employee",
 "kind" : "item"
 }]
 }, {
 "EmployeeId" : 102,
 "FirstName" : "Lex",
 "LastName" : "De Haan",
 "Email" : "LDEHAAN",
 "JobId" : "AD_VP",
 "DepartmentId" : 90,
 "Salary" : 3000,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Employee/LDEHAAN",
 "name" : "Employee",
 "kind" : "item"
 }]
 }],
 "totalResults" : 5,
 "count" : 2,
 "hasMore" : true,
 "limit" : 2,
 "offset" : 0,
 "links" : [{
 "rel" : "self",
 "href" : "<base_url>/Employee",
 "name" : "Employee",
 "kind" : "collection"
 }]
}

Making Batch Requests
REST APIs support executing multiple operations in a single roundtrip using a batch
request. The data is committed at the end of the request. However, if one request part
in a batch request fails, then all changes are rolled back and an error response is
returned.

A batch request can consist of a combination of create, update, delete, upsert, and get
requests. The path parameter and the payload needs to be the same as what you use
to invoke the request directly. The get method supports the same URL parameters in
the batch request as a separate HTTP request.

The request URL path must not use encoding of the URI parts, for example, to identify
a multi-part key. Using an encoded path in the request will result in an exception error.

Chapter 6
Making Batch Requests

6-2

The following sample illustrates a successful batch operation that executes operations in four
parts: 1) update employee 101, 2) update employee 102, 3) update employee 103, 4) query
employee 104.

Request

• URL

<base_url>
• HTTP Method

POST

• Content-Type

application/vnd.oracle.adf.batch+json
• Payload

{
 "parts": [{
 "id": "part1",
 "path": "/Employee/101",
 "operation": "update",
 "payload": {
 "Salary": 10000
 }
 }, {
 "id": "part2",
 "path": "/Employee/102",
 "operation": "update",
 "payload": {
 "Salary": 10000
 }
 }, {
 "id": "part3",
 "path": "/Employee/103",
 "operation": "update",
 "payload": {
 "Salary": 10000
 }
 }, {
 "id": "part4",
 "path": "/Employee?q=EmployeeId%3D101",
 "operation": "get"
 }]
}

Response

• HTTP Code

200
• Content-Type

application/vnd.oracle.adf.batch+json
• Payload

{
 "parts": [{
 "id": "part1",
 "path": "<base_url>/Employee/101",
 "operation": "update",

Chapter 6
Making Batch Requests

6-3

 "payload": {
 "EmployeeId": 101,
 "FirstName": "Neena",
 "LastName": "Smith",
 "Email": "NSMITH",
 "JobId": "AD_VP",
 "DepartmentId": 90,
 "Salary": 10000,
 "links": [{
 "rel": "self",
 "href": "<base_url>/Employee/101",
 "name": "Employee",
 "kind": "item"
 }]
 }
 }, {
 "id": "part2",
 "path": "<base_url>/Employee/102",
 "operation": "update",
 "payload": {
 "EmployeeId": 102,
 "FirstName": "Lex",
 "LastName": "De Haan",
 "Email": "LDEHAAN",
 "JobId": "AD_VP",
 "DepartmentId": 90,
 "Salary": 10000,
 "links": [{
 "rel": "self",
 "href": "<base_url>/Employee/102",
 "name": "Employee",
 "kind": "item"
 }]
 }
 }, {
 "id": "part3",
 "path": "<base_url>/Employee/103",
 "operation": "update",
 "payload": {
 "EmployeeId": 103,
 "FirstName": "Alexander",
 "LastName": "Hunold",
 "Email": "AHUNOLD",
 "JobId": "IT_PROG",
 "DepartmentId": 60,
 "Salary": 10000,
 "links": [{
 "rel": "self",
 "href": "<base_url>/Employee/103",
 "name": "Employee",
 "kind": "item"
 }]
 }
 }, {
 "id": "part4",
 "path": "<base_url>/Employee",
 "operation": "get",
 "payload": {
 "EmployeeId": 101,
 "FirstName": "Neena",
 "LastName": "Smith",

Chapter 6
Making Batch Requests

6-4

 "Email": "NSMITH",
 "JobId": "AD_VP",
 "DepartmentId": 90,
 "Salary": 10000,
 "links": [{
 "rel": "self",
 "href": "<base_url>/Employee/101",
 "name": "Employee",
 "kind": "item"
 }]
 }
 }]
}

Working with Error Responses
Error responses can be obtained in the form of a JSON payload in the form of HTTP status
codes and error messages.

In addition to HTTP status codes and error messages, it is possible to obtain exception
details in the response when your request is enabled to use REST API framework version 4
and the request is made for either application/vnd.oracle.adf.error+json or
application/json media types. With framework version 4, the response will be in the form
an exception detail payload which provides the following benefits to the web application:

• If multiple errors occur in a single request, the details of each error are presented in a
hierarchical structure.

• An application-specific error code may be present that identifies the exception
corresponding to each error.

• An error path may be present that identifies the location of each error in the request
payload structure.

Note:

The exception detail may or may not present certain details, such as the
application-specific error code and the request payload’s error path.

For example, compare the error response for a POST submitted with a payload that contains
the following incorrectly formatted date field when framework version 3 (or earlier) is enable
and when framework version 4 (or later) is enabled.

{ "EmpNum" : 5027,
 "EmpName" : "John",
 "EmpHireDate" : "not a date"
}

Standard Error Response, Version 3 and earlier

Without framework version 4, no response payload is generated and instead only a single
error message that does not reference the request payload will be returned in the response.

Chapter 6
Working with Error Responses

6-5

"An instance of type oracle.jbo.domain.Date cannot be created from string
not a date. The string value must be in format YYYY-MM-
DDTHH:MI:SS.sss+hh:mm."
Exception Payload Error Response, Version 4 and later

With framework version 4 enabled, the following exception detail payload is generated
for the response. The payload includes the usual HTTP status code and formats the
details of one or more exceptions in an array structure.

{ "title" : "Bad Request",
 "status" : "400",
 "o:errorDetails" : [{
 "detail" : "An instance of type oracle.jbo.domain.Date cannot be
created from string not a date.
 The string value must be in format YYYY-MM-
DDTHH:MI:SS.sss+hh:mm.",
 "o:errorCode" : "26099",
 "o:errorPath" : "/EmpHireDate"
 }]
 }

Understanding the Exception Payload Error Response
The exception detail payload will be generated for a REST API error response when
the following conditions exist:

• REST API framework version is version 4.

• Either application/vnd.oracle.adf.error+json or application/json is the
media type for the response.

The exception detail payload is a JSON object with the following structure:

{ "title" : "Message as per HTTP status code",
 "status" : "HTTP error code",
 "o:errorDetails" : [
 ...
 {
 "detail" : "Message of detail error",
 "o:errorCode" : "error code"
 "o:errorPath" : "JSON pointer to the location of the error
in the request payload"
 },
 ...
]
}

You opt into the exception payload as the error responses by using framework version
4 and making a request for either the application/vnd.oracle.adf.error+json
media type or application/json media type.

Note that within the exception payload o:errorDetails can vary as per the number
and the types of errors encountered. Additionally, the error code and error path are not

Chapter 6
Working with Error Responses

6-6

guaranteed to be present in the response payload and should not be relied upon by web
applications.

Obtaining an Exception Payload Error Response
REST APIs support obtaining exception details in the response when the request is made
with an appropriate media type.

Starting with version 4 of the REST API framework, web applications may obtain an error
response with a detailed exception payload.

The following sample attempts to create the department object with a new department item.
However, for this example the request fails because the item for the department already
exists.

Notice in the exception payload the o:errorDetails array provides the error path for where
the error occurred in the request object; however, these particular details may not always be
available to web applications.

Request Example 1

• URL

<base_url>/Department
• HTTP Method

POST

• Accept Header

application/vnd.oracle.adf.resourceitem+json,application/json
• Payload

{
 "DeptNum" : 50,
 "DeptName" : "SALES",
}

Response Example 1

• HTTP Code

400
• Content-Type

application/json
• Payload

{
 "title" : "Bad Request",
 "status" : "400",
 "o:errorDetails" : [{
 "detail" : "A department with the same name already exists. Please provide a
different name.",
 "o:errorCode" : "Dept_Rule_0"
 }]
}

The following sample attempts to create the department object with a new department item.
However, for this example the request fails because the employee names entered exceed the
number of characters allowed by the validation rule defined for the EmpName field.

Chapter 6
Working with Error Responses

6-7

Request Example 2

• URL

<base_url>/Department
• HTTP Method

POST

• Accept Header

application/vnd.oracle.adf.resourceitem+json,application/
vnd.oracle.adf.error+json

• Payload

{
 "DeptNum" : 52,
 "DeptName" : "newDept522",
 "Employee" : [{
 "EmpNum" : 501,
 "EmpName" : "MILLERSxxxxxxxxxxxxxxxxx"
 }, {
 "EmpNum" : 502,
 "EmpName" : "JONESPxxxxxxxxxxxxxxxxx"
 }]
}

Response Example 2

• HTTP Code

400
• Content-Type

application/vnd.oracle.adf.error+json
• Payload

{
 "title" : "Bad Request",
 "status" : "400",
 "o:errorDetails" : [{
 "detail" : "Value MILLERSxxxxxxxxxxxxxxxxx for field EmpName exceeds
the maximum length allowed.",
 "o:errorCode" : "27040",
 "o:errorPath" : "/Employee/0/EmpName"
 }, {
 "detail" : "Value JONESPxxxxxxxxxxxxxxxxx for field EmpName exceeds
the maximum length allowed.",
 "o:errorCode" : "27040",
 "o:errorPath" : "/Employee/1/EmpName"
 }]
}

The following sample attempts to perform a batch operation. However, for this
example the batch operation fails for the reasons shown in the exception detail
payload of the error response.

Request Example 3

• URL

<base_url>

Chapter 6
Working with Error Responses

6-8

• HTTP Method

POST

• Content-Type Header

application/vnd.oracle.adf.batch+json
• Payload

{
 "parts": [
 {
 "id": "part1",
 "path": "/Employee",
 "operation": "create",
 "payload" : {
 "EmpNum" : 1299,
 "EmpJob" : "CLERK",
 "EmpMgr" : 7566,
 "EmpHireDate" : null,
 "EmpSal" : 245,
 "EmpComm" : 0,
 "EmpDeptNum" : 30
 }
 },
 {
 "id": "part2",
 "path": "/Employee",
 "operation": "create",
 "payload": {
 "EmpNum" : 7589,
 "EmpName" : "SampleEmpxxxxxxxxxxxxxxxxxx",
 "EmpJob" : "CLERK",
 "EmpMgr" : 7566,
 "EmpHireDate" : null,
 "EmpSal" : 245,
 "EmpComm" : 0,
 "EmpDeptNum" : 30
 }
 },
 {
 "id": "part3",
 "path": "/Department",
 "operation": "create",
 "payload": {
 "DeptNum" : 52,
 "DeptName" : "newDept522",
 "Employee" : [
 {
 "EmpNum" : 7588,
 "EmpName" : "SampleEmpxxxxxxxxxxxxxxxxxx",
 "EmpJob" : "CLERK",
 "EmpMgr" : 7566,
 "EmpHireDate" : null,
 "EmpSal" : 245,
 "EmpComm" : 0,
 "EmpDeptNum" : 30
 }
]
 }
 },
 {

Chapter 6
Working with Error Responses

6-9

 "id": "part4",
 "path": "/Department/10/child/Loc",
 "operation": "get"
 },
 {
 "id": "part5",
 "path": "/Department?invQP=invVal",
 "operation": "get"
 },
 {
 "id": "part6",
 "path": "/Department/54",
 "operation": "delete"
 },
 {
 "id": "part7",
 "path": "/Department/54",
 "operation": "get"
 }
]
}

Response Example 3

• HTTP Code

400
• Content-Type

application/vnd.oracle.adf.error+json
• Payload

{
 "title" : "Bad Request",
 "status" : "400",
 "o:errorDetails" : [{
 "detail" : "URL request parameter invQP cannot be used in this
context.",
 "o:errorCode" : "27520"
 }, {
 "detail" : "Attribute EmpName in Emp is required.",
 "o:errorCode" : "27014",
 "o:errorPath" : "/parts/0"
 }, {
 "detail" : "Value SampleEmpxxxxxxxxxxxxxxxxxx for field EmpName
exceeds the maximum length allowed.",
 "o:errorCode" : "27040",
 "o:errorPath" : "/parts/1/payload/EmpName"
 }, {
 "detail" : "Attribute EmpName in Emp is required.",
 "o:errorCode" : "27014",
 "o:errorPath" : "/parts/1"
 }, {
 "detail" : "Value SampleEmpxxxxxxxxxxxxxxxxxx for field EmpName
exceeds the maximum length allowed.",
 "o:errorCode" : "27040",
 "o:errorPath" : "/parts/2/payload/Employee/0/EmpName"
 }, {
 "detail" : "Attribute EmpName in
AM.Dept_empWorksIn_deptToEmpQA_EmpViewDef is required.",
 "o:errorCode" : "27014",

Chapter 6
Working with Error Responses

6-10

 "o:errorPath" : "/parts/2"
 }, {
 "detail" : "Not Found",
 "o:errorCode" : "11404",
 "o:errorPath" : "/parts/3"
 }]
}

Obtaining the Standard Error Message Response
REST APIs support generating an error message that describes the validation or system
error when the request is made with REST API framework versions 1 through 3 enabled.

Before version 4 of the REST API framework, the error response returns a single error
message and HTTP status code. Version 4 and later allows web applications to obtain an
error response with a detailed exception payload.

The following sample attempts to update the Departments resource with a new department
resource item. However, for this example the update fails because the item for the
department already exists. The response is an error message because REST API framework
version 4 (or later) is not enabled.

Request Example Made With Framework Version 3

• URL

http://server/demo/rest/11.2/Departments
• HTTP Method

POST

• Content-Type

application/vnd.oracle.adf.resourceitem+json
• Accept Header

application/vnd.oracle.adf.resourceitem+json,application/json
• Payload

{
 "DeptNum" : 50,
 "DeptName" : "SALES",
}

Response Example From Framework Version 3

• HTTP Code

400
• Error Response

A department with the same name already exists. Please provide a different
name.

Chapter 6
Working with Error Responses

6-11

Enable Polling for Endpoint Requests
If you run into timeout issues when working with business objects, you might want to
enable polling for long-running endpoint requests.

Polling is useful in many contexts involving long-running processes, where you run the
risk of breaking the client/server connection because of gateway or browser timeouts.
A process can be long running, say, when your application integrates with external
services, perhaps through a trigger that makes API calls to an external service. It can
also involve endpoint requests that import a large volume of data from a file or from
one database (development, staging, or live) to another during your application's
lifecycle. Most data-related endpoint requests, including those to create, query, update,
and delete business object data, are long-running processes that can benefit from
polling.

You can enable polling by adding the vb-poll=true query parameter to an endpoint
request URL. Now when the client makes an endpoint request, the server—instead of
waiting for the request to complete and then return an HTTP response (status 200 or
otherwise)—returns an HTTP response (status 202) with details of a new URL for the
client to poll. This allows the server to continue processing the request in the
background and the client to poll the new URL as and when it wants to find out if the
request is complete and get the response (or error).

To enable polling for long-running endpoint requests:

1. Add the vb-poll=true query parameter to your endpoint request URL, for
example:

POST https://server.example.com/ic/builder/rt/hrapp/1.0/
resources/data/Employee?vb-poll=true

2. When you receive the HTTP response with status 202, look for the Polling-
Location header whose value will be the polling URL.

The client can poll this URL and check the response, which will either contain the
Polling-Location header to indicate that the process is still running, or will be the
final response.

When the long-running process completes, the response remains available for a
limited time period, after which it is removed. The process itself is not affected by
this, but the result is not available beyond this period—two minutes by default. The
client should take this setting into account when determining the frequency of
polling requests.

Chapter 6
Enable Polling for Endpoint Requests

6-12

Part III
Reference

To use REST APIs you should be familiar with relevant details and concepts of the REST
API.

Topics

• Links and Relations

• Framework Versions

• Media Types

• Data Types

• Status Codes

• Response Headers

• Endpoints

A
Links and Relations

Business object relationships are represented in the response as URLs that define the
relationship between the current business object and the business object that the link points
to.

This appendix includes the following sections:

• Describe links Object Structure

• rel Attribute Values

• href Attribute Value

• cardinality Attribute Values

Describe links Object Structure
links is a JSON object where the value is always a URL link and the link name is defined
according to the rel of the link. The links object is generated for each resource collection,
item, and for the resource itself.

Note that URL links in the resource describe will be generated using a template placeholder
value ({id}) when there is not enough information to determine all parts of the URL. For
example, the following child link provides a URL with the placeholder for the value of the
specific Department resource:

"item" : {
 "links" : [{
 "rel" : "child",
 "href" : "<base_url>/Department/{id}/child/Employee",
 "name" : "Employee",
 "kind" : "collection",
 "cardinality" : {
 "value" : "1 to *",
 "sourceAttributes" : "DepartmentId",
 "destinationAttributes" : "DepartmentId"
 }

rel Attribute Values
The rel attribute defines the type of link relationship between the current resource and the
resource which the link points to. Relationships may be specified by any of the values shown
in the table below.

A-1

Table A-1 Link Relationship in the REST Resource Describe

Link Relationship Description

self Always generated for a resource. The href points to the
resource itself or to the resource describe. In the links object,
the link name is self for this rel.

parent Always generated for a nested resource. The href points to
the self link of the parent resource. In the links object, the
link name is parent for this rel.

child Generated when the resource has nested children. The href
points to the nested collection. In the links object, the link
name is the accessor name for this rel.

current Generated in the resource version describe when multiple
resource version identifiers exist. The href points to the most
recent version identifier, as defined by the web application’s
version definition.

predecessor-version Generated in the resource version describe when multiple
resource version identifiers exist. The href points to the
previous version identifier, as defined by the web application’s
version definition.

successor-version Generated in the resource version describe when multiple
resource version identifiers exist. The href points to the next
most recent version identifier, as defined by the web
application’s version definition.

describe Generated in the resource version describe. The href points
to the resource catalog describe for all resources of the same
version.

href Attribute Value
The href attribute defines the URL to the linked resource or resource describe.

cardinality Attribute Values
The cardinality attribute is an optional attribute that defines the cardinality between
the source resource and the destination resource. This attribute will be available only
when the rel attribute value is child and the resource type is
vnd.oracle.adf.description+json. This cardinality attribute has the following
attributes.

• value: The value of the cardinality. Example: "1 to *"

• sourceAttributes: The attribute in the source resource used to link to the
destination resource.

• destinationAttributes: The attribute in the destination resource used to link to
the source resource.

Appendix A
href Attribute Value

A-2

B
Framework Versions

The Oracle Business Object REST API is an Oracle framework that supports accessing
business objects. The REST API framework supports the exchange of information between
the web application and server at runtime.

The Oracle Business Object REST API runtime supports specifying a framework version that
affects the processing of the payload or indicate the default framework version (as configured
by the server) to be used. When you specify a framework version to process requests, it
allows the API to opt into those features when they are ready.

Note:

Each Oracle Business Object REST API framework version introduces functionality
that the previous framework versions do not support. Thus, when you choose to opt
into a later framework version, the REST API of your application may introduce
backward incompatible changes on the service client consuming the REST API. In
the table below, see the Does Not Support column for backward compatibility
issues. See also Understanding REST API Framework Version Support.

The following table explains the changes for each framework version.

Table B-1 Oracle Business Object REST API Framework Versions

REST API Framework Version Supports Does Not Support

1 - Use to process requests for web
applications when no other version
is specified.

Supports query-by-example resource
query syntax

Filtering resource collections using the
q query parameter is limited to a query-
by-example.

n/a

2 - You must specify the version for
the request. Only then the REST
API support the use of expanded
expression syntax to process the
request.

Supports more advanced query syntax
for making REST API calls.

Interprets q query parameter value
differently than Framework version 1.

Supports filtering resource collections
using rowmatch query expressions.

Query-by-example resource query
syntax is not compatible.

Introduces a backward
incompatible change to web
application that rely on Framework
version 1.

B-1

Table B-1 (Cont.) Oracle Business Object REST API Framework Versions

REST API Framework Version Supports Does Not Support

3 - The payload structure represents
nested child resource as a resource
collection, instead of an array of
items as in version 1 and 2.

Supports retrieving nested child
resources with payload attributes that
may be used by the web application to
determine whether more resource items
would be returned in a subsequent
REST API request.

Supports pagination of nested child
resource that would otherwise require
more than one request to fetch.

Exposes functionality that allows GET
operations to use the ?expand and ?
fields query parameter to return a
nested child resource as a resource
collection with the hasMore attribute

Introduces a backward
incompatible change to web
application that rely on Framework
version 1 or 2.

4 – Default Version. Possible to
obtain exception details in the
response when your request is
enabled to use REST API
framework version 4 and the request
is made for either application/
vnd.oracle.adf.error+json or
application/json media types.

Supports the response in the form an
exception detail payload that provides
the following benefits to the web
application:

• Presents the details of each error in
a hierarchical structure if multiple
errors occur in a single request.

• Identifies the exception
corresponding to each error by
including an application specific
error code.

• Presents an error path that
identifies the location of each error
in the request payload structure.

The exception detail may or may
not present certain details, such as
the application-specific error code
and the request payload’s error
path.

5 - Note: Framework version 5 is not
supported for users of visual
development tools provided by
Oracle Cloud services.

n/a n/a

6 - Supports differentiation between
the resource fields and item
information like links and headers.

Non-attribute fields like links and
headers appear within @context field
in the resource item response object.

links field in @context will no longer
have the properties field.

headers -> ETag has the
changeIndicator value.

New field key under @context contains
the unique identifier of the specific
resource item as a string.

n/a

7 - Note: The enhancements
provided by framework version 7 are
not supported for users of visual
development tools provided by
Oracle Cloud services.

n/a n/a

Appendix B

B-2

Table B-1 (Cont.) Oracle Business Object REST API Framework Versions

REST API Framework Version Supports Does Not Support

8 - Supports miscellaneous
enhancements:

• URL paths composed of a
primary key or composite
primary key value may contain
special characters.

• ClobDomain fields may use
string values without base64
encoding/decoding.

• Multi-select LOVs use array
values instead of comma-
separated values.

Use encoded values in the URL path to
specify a key attribute that contains
special characters or to specify a key
attribute that is a composite value.

ClobDomain fields may reference an
enclosure URL (a string) for updates.

The payload to update or create a multi-
select LOV field expects an array of
values.

n/a

9 - Supports miscellaneous
enhancements:

• Permits ?q queries involving the
LIKE operator to contain special
characters by treating \
(backslash) as an escape
character.

• Returns 400 Bad Request
when an accessor is referenced
in the URL that has not been
previously exposed on the
REST resource.

• Permits the use of high-
precision numeric types (integer
values greater than 15 digits)
without the loss of precision by
converting such numeric values
to string type in the describe
and payload.

May use a \ (backslash) character to
escape wildcard characters % (percent),
* (asterisk), _ (underscore), and ?
(question mark) and also for the \
(backslash) character when the query
contains one of these characters.

n/a

Appendix B

B-3

C
Media Types

Media types, also called MIME types or content types, define the allowed resource structure
of the payload exchanged between the client and server. All REST API media types are
based on JSON. Resources accessed in the web application fall under the application type
and json subtype.

REST APIs use one of the media types listed in the table below. The types are defined such
that the media type does not vary with the business object backing the resource. Note that
the value of the accept header depends on the context of the invocation. Links to the JSON
token structure of the REST API media types are provided in the following table.

Note:

As an alternative to specifying the supported media types, request accept headers
passed with the REST API call can specify application/json when a superset of
all supported media types may be accepted in the response.

Table C-1 Media Types Supported by REST APIs

Media Type Invocation Context Description

application/
vnd.oracle.adf.r
esourcecollectio
n+json

GET method Represents the format for all resource collections returned by the
REST API call.

All attributes are automatically generated by the framework. Only
the content of the items attribute is based on the resource
definition.

For an example, see Describing a Resource Collection.

application/
vnd.oracle.adf.r
esourceitem+json

GET method

POST method

PATCH method

Represents the format for all resource items returned by the
REST API call. Also represents the format for a resource item in
a POST or PATCH request payload. Also represents the format
for a resource item in a POST or PATCH request payload.

Only the attribute links is automatically generated by the
framework. All the other attributes are based on the resource
definition.

application/
vnd.oracle.adf.d
escription+json

GET method Describes the resource and its elements.

For an example, see Retrieving the Resource Catalog Describe

application/
vnd.oracle.adf.b
atch+json

POST method Describes a set of operations to be performed, where the
operation consists of a set of parts and each part represents a
request. The batch request is executed in one single transaction.

For an example, see Making Batch Requests.

C-1

Table C-1 (Cont.) Media Types Supported by REST APIs

Media Type Invocation Context Description

application/
vnd.oracle.adf.e
rror+json

any Describes the exception payload error response for a request
made with an error.

To use this media type and obtain the exception details in an
error response payload, the request must be made with REST
API framework version 4 (or later) enabled.

For an example, see Obtaining an Exception Payload Error
Response.

Appendix C

C-2

D
Data Types

REST APIs support data types that are specified by the web application developer when they
create the business object. At runtime, the framework exposes the data type of fetched
resources as the resource describe attribute type.

The following table shows the relationship between the data types supported on business
object fields and the corresponding REST data types that the Oracle Business Object REST
API framework defines.

Table D-1 Data Types Supported by REST APIs

Business Object Field Data Type REST Data Type

Boolean boolean
String string
Number number
Datetime datetime
Date date
Time time
Reference integer
Email string
Percentage string
Phone string
Uri string

D-1

E
Status Codes

REST APIs support HTTP response status codes, where the specific code that is returned
depends on the HTTP method invoked on the request.

REST APIs support the HTTP codes listed in the following table.

Table E-1 HTTP Codes Supported by REST APIs

HTTP Code Description

200 OK Request successfully executed and the response has content.

201 Created Resource successfully created. The response contains the created
resource.

204 No Content Request successfully executed and the response doesn't have content.

304 Not Modified According to the provided ETag, the resource was not modified.

400 Bad Request The request could not be understood by the server due to malformed
syntax.

401 Unauthorized The server is refusing to service the request because the resource of
the request is secured and authentication has not yet been provided.

404 Not Found The requested resource was not found.

406 Not Acceptable The business object identified by the request is only capable of
generating response entities which have content characteristics not
acceptable according to the accept headers sent in the request.

412 Precondition failed The business object state in the server side doesn't match the provided
ETag.

415 Unsupported Media
Type

The server is refusing to service the request because the entity of the
request is in a format not supported by the requested business object
for the requested method.

500 Internal Server
Error

The server encountered an unexpected condition which prevented it
from fulfilling the request.

E-1

F
Response Headers

REST APIs support a variety of HTTP headers.

The REST API supports the HTTP response headers listed in the following table.

Table F-1 HTTP Headers Supported by REST APIs

HTTP Header Name Description

Content-Type Use to specify the content-type of the request/response payload. The REST
API runtime is able to interpret (request/response) the media types, as
described in Media Types.

Accept Use to specify the expected content-type of the response payload. The
REST API runtime is able to interpret (request/response) the media types, as
described in Media Types.

REST-Framework-
Version

Use to specify the version of the REST API framework to use to process the
request. The REST API framework version passed in the version header
overrides the default framework declaration defined by the web application,
as described in About REST API Framework Versions.

Location Use to identify the URI of a newly created business object. The REST API
framework includes the Location header in the response of a POST to
create a new business object. For an example, see Creating a Business
Object Item.

ETag Use to compare the state of the business object in a request with the state of
business object on the server. The REST API framework supports the ETag
generation for business objects that has been configured to use an change-
indicator attribute. See About Data Consistency.

If-Match Use to determine whether the state of the business object in a request is
current with the business object on the server. This header is supported in
order to execute conditional requests. See About Data Consistency.

If-None-Match Use to determine whether the state of the business object in a request does
not match the current state on the server. This header is supported in order
to execute conditional requests. See About Data Consistency.

Upsert-Mode Use Upsert-Mode: true in a request that uses POST to create a business
object item if the item does not exist, or update a business object item if the
item exists. Note that a POST request with Upsert-Mode:false behaves
as a POST without the custom header and performs the CREATE operation
exclusively.

F-1

G
Endpoints

REST APIs support a variety of business object tasks that you can perform using standard
HTTP methods in combination with an endpoint that provides details about the resource that
you want to return.

This appendix contains the following sections:

• GET Method Endpoints

• POST Method Endpoints

• PATCH Method Endpoints

• DELETE Method Endpoints

GET Method Endpoints
REST APIs support the following operations using a GET method with the URI as shown.

• Describe the resource collection, resource item, or resource catalog (when collection and
item are omitted).

<base_path>/[{resourceCollectionPath}|{resourceItemPath}]/describe
• Retrieve the resource collection, optionally using a query string parameter.

<base_path>/{resourceCollectionPath}[?{queryStringParam}
[&{queryStringParam}]]

• Retrieve the resource item, optionally using a query string parameter.

<base_path>/{resourceItemPath}[?{queryStringParam}[&{queryStringParam}]]
Request Parameters

• The GET method supports query string parameters to query, filter, page, and sort the
resource collection. The supported parameters are listed in the following table. All GET
method URI parameters can be combined with any other parameter in the table, except
where noted on the expand and field parameters. Note that query string parameters can
only be used on resource media types. They cannot, for example, be used when
describing the resource.

Note:

The results of the GET method or the query syntax may vary depending on the
REST API framework version used for a client request. The following tables specify
where the framework version is important to note when using query string
parameters. For additional information about framework versions, see Working with
REST API Framework Versions.

G-1

Table G-1 Supported GET Method Query String Parameters Used Only in Resource Collections

GET URI Parameter Value Description

q
Starting in REST API framework
version 2, q supports complex
rowmatch expressions.

In framework version 1, the query
parameter is used in the WHERE
clause and contains one or more
query by example-type expressions,
separated by a semi-colon.
Format: <exp1>;<exp2>
Example: ?q=Deptno>=10 and <=
30;Loc!=NY
Starting in framework version 2, the
query parameter accepts
expressions that identify the specific
rows to retrieve from the resource.
The filter can be as simple as a
single expression, or you can create
more complex filters by combining
expressions using the and and or
conjunctions with matching sets of
parentheses for grouping.
For example, the following
expression uses conjunction to query
the resource using three different
fields:
(AssignedToId is null) or
((Priority <= 2) and
(RecordName like 'TT-99%'))
If a query parameter value has a
special character (like ‘;’, ‘,’, ‘=’ or
similar), then the value (in the
expression) should be enclosed in
quotes to define a literal value. If the
literal value contains quotes, then, in
addition, the quotes need to be
escaped, as defined by the
framework version, to be viable:
• Version 1 syntax encloses the

literal value in double quotes (")
and requires a backslash (\) to
escape double quote characters
contained in the value: ?
q=NickName="\"Billy the
Kid\""

• Version 2, or later, syntax
encloses the literal value in
single quotes (') and requires a
single quote to escape a single
quote character contained in the
value (used as an
apostrophe): ?
q=ListName='Bill''s list'

Additionally, in version 1, if the query
parameter value contains a reserved
word (such as AND or OR), then the
value needs to be enclosed in single

The resource collection will be
queried using the provided
expressions.

Supported operators in framework
version 1 and later:

• = (Equal to)

• > (Greater than)

• < (Less than)

• >= (Greater than or equal to)

• <= (Less than or equal to)

• != (Not equal to) framework
version 1 only

• AND (And)

• OR (Or)

• NOT (Not)

• LIKE (Like)

Supported operators in framework
version 2 and later also include:

• <> (Not equal to)

• BETWEEN (Between)

• NOT BETWEEN (Not between)

• IN (In)

• NOT IN (Not in)

• IS NULL (Null)

• IS NOT NULL (Not Null)

Allowed special characters in
framework version 1:

• " (double quotation mark) to
define a literal value for use
where special characters appear
in the value

• ' (single quotation mark) to
define a literal value for use
where reserved words appear in
the value

• \ (backslash) to define an
escape character to escape a
double quotation mark (") or
single quotation mark/
apostrophe (') character used
within a literal value

• * (asterisk) to define a wildcard
character

Allowed special characters in
framework version 2 and later:

• ' (single quotation mark) to
define a literal value or to define
an escape character to escape a
single quotation mark/

Appendix G
GET Method Endpoints

G-2

Table G-1 (Cont.) Supported GET Method Query String Parameters Used Only in Resource
Collections

GET URI Parameter Value Description

quotes (') and there must be a
space before and after the quoted
string. For example, the string
matching filter ’Accounting and
Finance’ in the following query
parameter expression contains the
reserved word AND, and therefore
requires a space before and after the
single quotation marks to be viable in
version 1 syntax:

?q=DepartmentName=
'Accounting and Finance'
&fields=DepartmentName
Note that starting in framework
version 2, the use of a space
character is no longer required to
delimit a string matching filter that
contains a reserved word.

For version 1, if the value contains
both a special character and a
reserved word, then the value needs
to be enclosed in single quotes ('),
and then enclosed again in double
quotes (") , along with escaping the
double quotes contained within the
value with a backslash (\), and there
needs to be a space before and after
the twice-quoted string. For example:

?q=DepartmentName=
"'\"Accounting\" and
Finance'"
&fields=DepartmentName
For a complete explanation of the
expression format, see
Understanding Framework Support
for Query Syntax.

apostrophe (') character used
within a literal value

• % (percent) to define a wildcard
character

For examples, see Filtering a
Business Object with a Query
Parameter and Understanding
Framework Support for Query
Syntax.

Framework version 9 allows the use
a \ (backslash) character to escape
wildcard characters % (percent), *
(asterisk), _ (underscore), and ?
(question mark) and also for the \
(backslash) character when a query
that involves the LIKE operator
contains one of these characters. For
examples, see Understanding
Framework Support for Query
Syntax.

totalResults boolean

Default: false
The resource collection will include
the estimated row count when
totalResults=true.

For an example, see Returning the
Estimated Count of Business Object
Items.

limit integer This parameter restricts the number
of resource items returned inside the
resource collection. If limit
exceeds the resource item total
result, then the framework will return
the available resources.

For an example, see Paging a
Business Object.

Appendix G
GET Method Endpoints

G-3

Table G-1 (Cont.) Supported GET Method Query String Parameters Used Only in Resource
Collections

GET URI Parameter Value Description

offset integer

Default: 0 (the first position)

Used to define the starting position of
the resource collection. If offset
exceeds the resource count, then no
resources are returned.

For an example, see Paging a
Business Object.

Table G-2 Supported GET Method Query String Parameters Used in Resource Collections and
Resource Items

GET URI Parameter Value Value

fields
Starting in REST API
framework version 3
and later, fields will
return children
resource items as a
resource collection to
support pagination of
the collection.

A simple comma-separated list of resource
item attributes.

Format: <attr1>,<attr2>
Example: ?fields=Dname,DLoc
May be used on child resources.

Format: <accessor>:<att1>,<att2>
Example: ?
fields=Employee:FirstName,LastName
May be used on nested resources using
accessor dot notation.

Format:
<accessor1>.<accessor2>:<Attr1>,<A
ttr2>
Example: ?
fields=Employee.JobHistory:JobId
Or on both resources in the nested
resource.

Format:
<accessor1>:<Attr1>,<Attr2>;<acces
sor1>.<accessor2>:<Attr1>,<Attr2>
Example: ?
fields=Name,Location;Employee:Firs
tName,LastName

This parameter filters the resource item
attributes. Only the specified attributes are
returned.

Note that if a nested resource is queried
using the accessor dot notation
(Employee.JobHistory), then attributes
may be specified on both resources. A
resource in the accessor dot notation
without a specified attribute will return no
resource item attributes.

Note this parameter cannot be combined
with the expand parameter. If both
parameters are provided, only fields will
be considered.

For examples, see Fetching a Business
Object with a Subset of Items.

onlyData boolean

Default: false
This parameter filters the resource response
in order to contain only data (no links
objects, for example).

For an example, see Fetching Data Only for
a Business Object.

Appendix G
GET Method Endpoints

G-4

Table G-2 (Cont.) Supported GET Method Query String Parameters Used in Resource
Collections and Resource Items

GET URI Parameter Value Value

expand
Starting in REST API
framework version 3
and later, expand will
return children
resource items as a
resource collection to
support pagination of
the collection.

Display all children. Format: all
Display one or more child resource using a
comma-separated list of accessors.

Format: <accessor1>,<accessor2>
Example: ?
expand=Employee,Localization
Display nested resources using the
accessor dot notation.

Format: <accessor1>.<accessor2>
Example: ?
expand=Employee.JobHistory

When this parameter is provided, the
specified children are included in the
resource response (instead of the link).

Note the expand parameter cannot be
combined with the fields parameter. If
both parameters are provided, only fields
will be considered.

Note that if a nested resource is queried
using the accessor dot notation
(Employee.JobHistory), then the missing
children will be processed implicitly. For
example, ?expand=Employee.JobHistory
is the same as ?
expand=Employee,Employee.JobHistor
y (which will expand Employee and
JobHistory).

For examples, see Fetching a Child
Business Object.

dependency A set of dependency attributes.

Format:
<attr1>=<val1>,<attr2>=<value2>
Example: dependency=ProductId=2

The dependencies are attributes that are set
before and rolled back after generating the
response. The dependencies attributes are
always set in the resource item in question.

When a child resource collection is
requested and the dependency parameter
is set, the attributes will be set in the parent
resource item before generating the
resource collection response.

orderBy A comma-separated list of order-by
attributes with a sort flag to specify
ascending or descending order.

Format: <orderBy_attr1_name>[:<(asc/
desc)>],
<orderBy_attr2_name>[:<(asc/
desc)>]
Example: ?orderBy=DName:desc,DLoc
Default: ORDERBY attributes defined on the
business object query will be applied.

Sorts a resource collection based on its
attributes. If the asc/desc are not provided
(or an invalid value is provided), asc will be
used as default.

By default, the fetched collection will be
sorted in a case insensitive way.

For an example, see Sorting a Business
Object.

links A comma separated list of <rel_name>,
where <rel_name> is a string representing
the relation type of a link.

Example: self, parent

When a resource item or a resource
collection is requested and the links query
parameter is used, then only those links with
relation types ("rel") matching the values in
the comma-separated parameter value will
be shown in the response.

Note the links parameter cannot be
combined with onlyData when onlyData
has a value of true, as there will be no links
section displayed in the response.

Appendix G
GET Method Endpoints

G-5

Table G-3 Supported GET Method Query String Parameters Used in Resource Catalog Describe

GET URI Parameter Value Value

metadataMode minimal
list

Use to retrieve the resource catalog
describe. The URL parameter ?
metadataMode=minimal is required
to retrieve the describe. It returns the
titles and links of parent resources
(but does not include children
resources).

If you do not want any metadata in
the response but only self links, you
can append ?metadataMode=list
to the describe request.

Optionally, additional parameters
may be appended to the minimal
describe request, to include children
resources and / or resource
annotations, as explained for the
query parameters
showAnnotations and
includeChildren. For example,
you can append ?
metadataMode=minimal&include
Children=true to retrieve a
minimal catalog describe with all
children resources included.

For an example, see Retrieving the
Resource Catalog Describe.

includeChildren true, false (default) Use to include all available children
resources nested within a parent
resource describe. You can append
includeChildren=true on the
describe request.

For a resource catalog describe
example, see Retrieving the
Resource Catalog Describe.

showAnnotations true, false (default) To include resource annotations in
the catalog describe, you can
append showAnnotations=true on
the describe request.

Note that annotations must be
defined by the web application
developer and may not be present on
the resource.

You cannot use this parameter with ?
metadataMode=list.

Query String Operators Supported by REST API Data Types

The following table shows the REST API data types and the valid operators that may
be used in query strings with the query (q) parameter.

Note that the operators BETWEEN, NOT BETWEEN, IN, NOT IN, and the wildcard
character % are available only starting in REST API framework version 2.

Appendix G
GET Method Endpoints

G-6

Table G-4 Operators Supported by Data Types in Query (q) String Parameter

REST API Data Type Supported Operator

integer • = (Equal to)

.../Department?q=Deptno = 20
• <> (Not equal to)

.../Department?q=Deptno <> 20
• < (Less than)

.../Department?q=Deptno < 20
• <= (Less than or equal to)

.../Department?q=Deptno <= 20
• > (Greater than)

.../Department?q=Deptno > 30
• >= (Greater than or equal to)

.../Department?q=Deptno >= 30
• BETWEEN (Between)

.../Department?q=Deptno BETWEEN 10 AND 30
• NOT BETWEEN (Not between)

.../Department?q=Deptno NOT BETWEEN 10 and 30
• IN (In)

.../Department?q=Deptno IN (10, 30)
• NOT IN (Not in)

.../Department?q=Deptno NOT IN (10, 30)
• IS NULL (Is null)

.../Department?q=Deptno IS NULL
• NOT NULL (Not null)

.../Department?q=Deptno NOT NULL

Appendix G
GET Method Endpoints

G-7

Table G-4 (Cont.) Operators Supported by Data Types in Query (q) String Parameter

REST API Data Type Supported Operator

number • = (Equal to)

.../Department?q=Salary = 3120.99
• <> (Not equal to)

.../Department?q=Salary <> 3120.99
• < (Less than)

.../Department?q=Salary < 3120.99
• <= (Less than or equal to)

.../Department?q=Salary <= 3120.99
• > (Greater than)

.../Department?q=Salary > 3120.99
• >= (Greater than or equal to)

.../Department?q=Salary >= 3120.99
• BETWEEN (Between)

.../Department?q=Salary BETWEEN 2000 AND 3120.99
• NOT BETWEEN (Not between)

.../Department?q=Salary NOT BETWEEN 2000 and
3120.99

• IN (In)

.../Department?q=Salary IN (800, 3120.99)
• NOT IN (Not in)

.../Department?q=Salary NOT IN (800, 3120.99)
• IS NULL (Is null)

.../Department?q=Salary IS NULL
• NOT NULL (Not null)

.../Department?q=Salary NOT NULL

Appendix G
GET Method Endpoints

G-8

Table G-4 (Cont.) Operators Supported by Data Types in Query (q) String Parameter

REST API Data Type Supported Operator

string • = (Equal to)

.../Department?q=DeptName = ’SALES’
• <> (Not equal to)

.../Department?q=DeptName <> ’SALES’
• LIKE (Like)

.../Department?q=DeptName LIKE ’SA%’

.../Department?q=DeptName LIKE ’%ES’

.../Department?q=UPPER(DeptName) LIKE UPPER('%e%')
• NOT LIKE (Not like)

.../Departments?q=UPPER(DeptName) NOT LIKE
UPPER('%c%')

• IN (In)

.../Departments?q=DeptName IN ('SALES', 'RESEARCH')
• NOT IN (Not in)

.../Departments?q=DeptName NOT IN ('SALES',
'RESEARCH')

• IS NULL (Is null)

.../Department?q=DeptName IS NULL
• IS NOT NULL (Is not null)

.../Department?q=DeptName IS NOT NULL
date • = (Equal to)

.../Employee?q=HireDate = ’1999-01-01’
• <> (Not equal to)

.../Employee?q=HireDate <> ’1999-01-01’
• < (Less than)

.../Employee?q=HireDate < ’1999-01-01’
• <= (Less than or equal to)

.../Employee?q=HireDate <= ’1999-01-01’
• > (Greater than)

.../Employee?q=HireDate > ’1999-01-01’
• >= (Greater than or equal to)

.../Employee?q=HireDate >= ’1999-01-01’
• BETWEEN (Between)

.../Employee?q=HireDate BETWEEN ’1999-01-01’
AND ’2010-01-01’

• NOT BETWEEN (Not between)

.../Employee?q=HireDate NOT BETWEEN ’1999-01-01’
AND ’2010-01-01’

• IS NULL (Is null)

.../Employee?q=HireDate IS NULL
• NOT NULL (Not null)

.../Employee?q=HireDate NOT NULL

Appendix G
GET Method Endpoints

G-9

Table G-4 (Cont.) Operators Supported by Data Types in Query (q) String Parameter

REST API Data Type Supported Operator

time • = (Equal to)

.../Employee?q=HireTime = '08:30:40'
• <> (Not equal to)

.../Employee?q=HireTime <> ’08:30:40’
• < (Less than)

.../Employee?q=HireTime < ’08:30:40’
• <= (Less than or equal to)

.../Employee?q=HireTime <= ’08:30:40’
• > (Greater than)

.../Employee?q=HireTime > ’08:30:40’
• >= (Greater than or equal to)

.../Employee?q=HireTime >= ’08:30:40’
• BETWEEN (Between)

.../Employee?q=HireTime BETWEEN ’04:30:00’ AND
'08:30:40'

• NOT BETWEEN (Not between)

.../Employee?q=HireTime NOT BETWEEN ’04:30:00’ AND
'08:30:40'

• IS NULL (Is null)

.../Employee?q=HireTime IS NULL
• NOT NULL (Not null)

.../Employee?q=HireTime NOT NULL

Appendix G
GET Method Endpoints

G-10

Table G-4 (Cont.) Operators Supported by Data Types in Query (q) String Parameter

REST API Data Type Supported Operator

datetime

Note: Both UTC and local
datetime formats are
supported. The value returned
is determined by the time
zone configured for the VM.

• = (Equal to)

.../Employee?q=HireDateTime =
'1999-01-01T08:30:40Z'

• <> (Not equal to)

.../Employee?q=HireDateTime
<> ’1999-01-01T08:30:40Z’

• < (Less than)

.../Employee?q=HireDateTime
< ’1999-01-01T08:30:40Z’

• <= (Less than or equal to)

.../Employee?q=HireDateTime
<= ’1999-01-01T08:30:40Z’

• > (Greater than)

.../Employee?q=HireDateTime
> ’1999-01-01T08:30:40Z’

• >= (Greater than or equal to)

.../Employee?q=HireDateTime
>= ’1999-01-01T08:30:40Z’

• BETWEEN (Between)

.../Employee?q=HireDateTime
BETWEEN ’1999-01-01T08:30:40Z’
AND ’1999-12-01T08:30:40Z’

• NOT BETWEEN (Not between)

.../Employee?q=HireDateTime NOT
BETWEEN ’1999-01-01T08:30:40Z’
AND ’1999-12-01T08:30:40Z’

• IS NULL (Is null)

.../Employee?q=HireDateTime IS NULL
• NOT NULL (Not null)

.../Employee?q=HireDateTime NOT NULL
boolean • = ’true’ (true)

.../Employees?q=Active = ’true’
• = ’false’ (false)

.../Employees?q=Active = ’false’
• IS NULL (Is null)

.../Employees?q=Active IS NULL
• NOT NULL (Not null)

.../Employees?q=Active NOT NULL

Media Types Supported

• Request

– None

• Response

Appendix G
GET Method Endpoints

G-11

– application/vnd.oracle.adf.resourcecollection+json: When retrieving a
resource collection.

– application/vnd.oracle.adf.resourceitem+json: When retrieving a
resource item.

– application/vnd.oracle.adf.description+json: When describing a
resource.

Describe Topics

• Retrieving the Resource Catalog Describe

• Retrieving a Resource Describe

Task Topics

• Fetching a Business Object

• Fetching a Business Object with a Subset of Items

• Fetching a Business Object Item

• Paging a Business Object

• Sorting a Business Object

• Fetching Data Only for a Business Object

• Filtering a Business Object with a Query Parameter

• Returning the Estimated Count of Business Object Items

• Checking for Data Consistency When Retrieving Business Object Items

REST API Framework Version Topics

• Working with REST API Framework Versions

POST Method Endpoints
REST APIs support the following tasks using a POST method with the URL as shown.

• Create a resource item.

<base_path>/{resourceCollectionPath}
• Create a parent resource item and create the nested child resource collection in

one roundtrip.

<base_path>/{resourceCollectionPath}
• Update or create a resource item resource item in an existing resource using the

Upsert-Mode header.

<base_path>/{resourceCollectionPath}
• Execute an a batch request.

<base_path>/{version}
Request Parameters

• none

Media Types Supported

Appendix G
POST Method Endpoints

G-12

• Request

– application/vnd.oracle.adf.resourceitem+json: When creating a resource item.

– application/vnd.oracle.adf.resourceitem+json: When updating or creating a
resource item using Upsert.

– application/vnd.oracle.adf.batch+json: When executing a batch request.

• Response

– application/vnd.oracle.adf.resourceitem+json: When creating a resource item.

– application/vnd.oracle.adf.resourceitem+json: When updating or creating a
resource item using Upsert.

– application/vnd.oracle.adf.batch+json: When executing an batch request.

Task Topics

• Creating a Business Object Item

• Creating an Item of a Child Business Object

• Making Batch Requests

PATCH Method Endpoints
REST APIs support the following operation using a PATCH method with the URL as shown.

• Updating a resource item.

<base_path>/{resourceItemPath}
Request Parameters

• none

Media Types Supported

• Request

– application/vnd.oracle.adf.resourceitem+json: The resource item to be
updated.

• Response

– application/vnd.oracle.adf.resourceitem+json: The updated resource item.

Tasks Topics

• Updating a Business Object Item

DELETE Method Endpoints
REST APIs support the following operation using a DELETE method with the URL as shown.

• Deleting a resource item.

<base_path>/{resourceItemPath}
Request Parameters

• none

Appendix G
PATCH Method Endpoints

G-13

Media Types Supported

• Request

– none

• Response

– none

Task Topics

• Deleting a Business Object Item

Appendix G
DELETE Method Endpoints

G-14

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	Part I Getting Started
	1 Introduction to Accessing Business Objects
	About Accessing Business Objects
	Use Cases and Examples
	About the Resource Samples in This Guide

	Understanding the REST API Framework
	Understanding Business Objects as REST API JSON Objects
	Understanding Framework Support for Query Syntax
	Testing the REST API

	2 Working with the Resource Catalog
	About the REST API Catalog Describe
	Retrieving the Resource Catalog Describe
	Retrieving a Resource Describe
	Describing a Resource Collection
	Describing a Nested Resource

	3 Working with REST API Framework Versions
	About REST API Framework Versions
	Understanding REST API Framework Version Support
	Using the Request Header to Specify the REST API Framework Version

	Part II Tasks
	4 CRUD Tasks
	Retrieving Business Objects
	Fetching a Business Object
	Fetching a Business Object with a Subset of Items
	Fetching a Business Object Item
	Paging a Business Object
	Sorting a Business Object
	Fetching a Child Business Object
	Fetching Data Only for a Business Object
	Filtering a Business Object with a Query Parameter

	Creating Business Object Items
	Creating a Business Object Item
	Creating an Item of a Child Business Object

	Updating a Business Object Item
	Deleting a Business Object Item

	5 Data Consistency Tasks
	About Data Consistency
	Checking for Data Consistency When Updating Business Object Items
	Checking for Data Consistency When Retrieving Business Object Items

	6 Advanced Tasks
	Returning the Estimated Count of Business Object Items
	Making Batch Requests
	Working with Error Responses
	Understanding the Exception Payload Error Response
	Obtaining an Exception Payload Error Response
	Obtaining the Standard Error Message Response

	Enable Polling for Endpoint Requests

	Part III Reference
	A Links and Relations
	Describe links Object Structure
	rel Attribute Values
	href Attribute Value
	cardinality Attribute Values

	B Framework Versions
	C Media Types
	D Data Types
	E Status Codes
	F Response Headers
	G Endpoints
	GET Method Endpoints
	POST Method Endpoints
	PATCH Method Endpoints
	DELETE Method Endpoints

