
Oracle® Cloud
Oracle Visual Builder Page Model Guide

Release 24.04
F93841-01
March 2024

Oracle Cloud Oracle Visual Builder Page Model Guide, Release 24.04

F93841-01

Copyright © 2023, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

Related Resources vii

Conventions viii

1 Understand the Page Model

Variables 1-1

Object Variables 1-1

Array Variables 1-2

Metadata Variables 1-2

Built-in Variables 1-3

Types 1-6

Built-in Extended Types 1-8

Service Data Provider 1-9

ServiceDataProviderFactory 1-44

Multi-Service Data Provider 1-45

MultiServiceDataProviderFactory 1-64

Array Data Provider 2 1-65

Array Data Provider (Legacy) 1-72

Custom Extended Types 1-78

InstanceFactory Types 1-83

JET Dynamic UI Variable Types 1-87

Default Values 1-90

Expressions in Default Values 1-91

Input Variables 1-91

Persisted Variables 1-92

rateLimit Variable Property 1-93

Constants 1-93

JavaScript Action Chains 1-95

JavaScript Actions 1-95

iii

Assign Variable 1-95

Call Action Chain 1-95

Call Component 1-96

Call Function 1-97

Call REST 1-97

Call Variable 1-104

Code 1-104

Fire Data Provider Event 1-104

Fire Event 1-109

Fire Notification 1-110

For Each 1-111

Get Dirty Data Status 1-112

Get Location 1-113

If 1-115

Login 1-115

Logout 1-115

Navigate Back 1-116

Navigate To Application 1-116

Navigate To Flow 1-117

Navigate To Page 1-118

Open URL 1-119

Reset Dirty Data Status 1-120

Reset Variables 1-120

Return 1-121

Run in Parallel 1-121

Scan Barcode 1-123

Share 1-124

Switch 1-124

Try-Catch-Finally 1-125

JSON Action Chains 1-125

JSON Actions 1-125

Assign Variables Action 1-125

Call Action Chain Action 1-129

Call Component Action 1-129

Call Function Action 1-130

Call REST Action 1-131

Call Variable Method Action 1-137

EditorUrl Action 1-138

Fire Event Action 1-139

Fire Data Provider Event Action 1-140

Fire Notification Event Action 1-144

iv

ForEach Action 1-144

Get Location Action 1-146

If Action 1-148

Login Action 1-149

Logout Action 1-149

Navigate Action 1-150

Navigate Back Action 1-153

Open URL Action 1-153

Reset Variables Action 1-155

Return Action 1-155

Run in Parallel / Fork Action 1-156

Scan Barcode Action 1-157

Share Action 1-159

Switch Action 1-159

Take Photo Action 1-160

Transform Chart Data Action (Deprecated) 1-162

Web Share Action 1-166

Action Chain Properties 1-167

Variable References in Action Chains 1-168

Action Chain Variables 1-169

Action Results 1-169

Flow 1-170

Flow Properties 1-171

Using Flows to Create Single-Page Applications 1-172

Represent the Flow State in the URL 1-173

Navigating Between Flows and Pages 1-173

Flow Lifecycle 1-173

Load Flow Resources 1-174

Use Flows Not in the Flows Folder 1-174

Shell Flow 1-174

Fragments 1-175

Define a Fragment Component 1-176

Fragment Scopes and Namespaces 1-178

Define Fragment Input Parameters 1-178

Write Back a Fragment Variable Value to the Parent Container 1-181

Deferred Rendering of a Fragment 1-182

Fragment Events 1-182

Referencing Fragments in Extensions 1-185

Extending a Fragment 1-189

Fragment Patterns 1-191

Components 1-193

v

HTML Source 1-193

VB Switcher Component 1-194

VB Switcher Navigation 1-194

VB Switcher Usage and Properties 1-195

VB Switcher Methods 1-195

VB Switcher Events 1-196

VB Switcher Examples 1-197

Imports 1-198

Import Custom Components 1-198

Import Custom Modules 1-199

Import Modules Using requireJS Path Mapping 1-199

Import Modules Using a Global Functions Resource Path 1-201

Import Custom CSS 1-212

Security 1-214

Security Configuration 1-214

Security Provider 1-215

User Information 1-216

Error Handling 1-216

Translations 1-217

Helper Utilities 1-220

REST Helper 1-220

Module Function Event Builder 1-223

Events 1-224

Declared Events 1-225

Lifecycle (Page and Flow) Events 1-226

Component Events 1-229

Fragment Events 1-231

Custom Events 1-232

System Events 1-233

Event Behavior 1-233

Variable ‘onValueChanged’ Events 1-235

Transforms - vbPrepare Request Transform 1-236

vbPrepare Request Transform Examples 1-237

Declarative RequireJS Path Mapping 1-242

vi

Preface

Oracle Visual Builder Page Model Reference describes the structure and components used in
the Oracle Visual Builder page model.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
Oracle Visual Builder Page Model Reference is intended for users who want to understand
the structure and components used in visual application pages and application extensions.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://support.oracle.com/portal/ or visit Oracle
Accessibility Learning and Support if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Resources
For more information, see these Oracle resources:

vii

https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

• Oracle Public Cloud

http://cloud.oracle.com
• Anatomy of Visual Applications in Building Responsive Applications with Visual

Builder Studio

• What Is Oracle Visual Builder Studio? in Using Visual Builder Studio

Conventions
The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

http://cloud.oracle.com

1
Understand the Page Model

The page model consists of a JSON file. To work with the page model by hand, you should
understand the structure and components of this JSON.

Variables
Variables are the basic blocks of state management. Components and expressions in
applications are bound to variables, and the variables and their structure must be defined to
ensure that the design time and runtime work properly.

A variable must have a name and a type. Variables are in the variables namespace.

A variable can send an event when it changes. To add an event handler to a value change
event, specify it in the 'onValueChanged' property of the variable. For details, see Variable
‘onValueChanged’ Events. See rateLimit Variable Property for information on setting a
timeout value for the 'onValueChanged' property.

Object Variables
Variables may also be objects that contain properties.

In this case, the type of the variable should be an object that defines what properties are
allowed in that object.

The following variable in JavaScript:

let nameOfVariable = {
 foo: "someString",
 bar: 10
}

could be defined like this:

"nameOfVariable": {
 "type": {
 "foo": "string",
 "bar": "number"
 }
}

Example 1-1 An Object Containing Another Object

This JavaScript object

let otherObject = {
 foo: {
 name: "myName"
 },
 bar: 10
}

can be described by the following structure:

1-1

"otherObject": {
 "type": {
 "foo": {
 "name": "string",
 },
 "bar": "number"
 }
}

Array Variables
Variables can represent arrays.

Arrays are defined the same way as objects. However, in this case, the object type is
inside an array.

Arrays can have nested objects or arrays as well, and object types can also contain
nested arrays.

Example 1-2 An Array Represented by a Variable

A JavaScript array

let myArray = [
 {
 foo: "someString",
 bar: 10
 },
 {
 foo: "someOtherString",
 bar: 11
 }
]

can be represented like this:

"nameOfVariable": {
 "type": [
 {
 "foo": "string",
 "bar": "number"
 }
]
}

Example 1-3 An Array of Strings

"nameOfVariable": {
 "type": "string[]"
}

Metadata Variables
Metadata variables are variables intended to represent metadata in specific cases.
They are declared in a different "metadata" namespace (regular variables are in the
"variables" namespace/declaration), and have slightly different behavior than regular
variables. Metadata variables:

• do not have a "persisted" property

Chapter 1
Variables

1-2

• do not have an "input" property (and cannot be used on a URL for navigation input, for
example).

• are initialized after "variables" variables, and as such, "variables" declarations cannot
have expressions dependent on their values.

• only specific types are supported; these are unique to "metadata" variables.

For a description of the "metadata" declarations used to provide metadata to JET Dynamic UI
Components, see JET Dynamic UI Variable Types.

Built-in Variables
There are several built-in variables available.

currentPage

To access some of the current page's metadata, such as ID and title, there is a built-in
variable named currentPage on the application object. The currentPage
variable automatically updates as the current page changes during navigation. This can be
used to update a navigation component with the currently selected page.

Name Description

$application.currentPage.id The path of the current page. The path describes the
location of the page in the flow hierarchy.

$application.currentPage.path The path of the current page for the application. The
path describes the location of the page in the flow
hierarchy.

$application.currentPage.title The title of the current page. The title is formed by
prepending all the titles of the shells in the flow hierarchy
to the current page.

$flow.currentPage The id of the current page for this flow.

currentFlow

If there is a routerFlow in the page, the $page.currentFlow variable can be used to
retrieve the id of this flow.

Name Description

$page.currentFlow The id of the current flow.

current App UI

The current following App UI variables are available on the global object when using App UIs.

Name Description

$global.currentAppUi.id The id of the App UI

$global.currentAppUi.urlId The id of the App UI as shown in the URL

$global.currentAppUi.displayName The display name for the App UI

$global.currentAppUi.description The description of the App UI

$global.currentAppUi.defaultPage The default page of the App UI (if there is one)

$global.currentAppUi.defaultFlow The default flow of the App UI (if there is one)

Chapter 1
Variables

1-3

Name Description

$global.currentAppUi.applicationStripe The stripe of the custom App UI

$global.currentAppUi.pillarTheme The pillar theme to use for the App UI

$global.currentAppUi.pillarThemeMode The pillar theme mode to use for the App UI

$global.currentAppUi.icon The icon of the custom App UI

$global.currentAppUi.usage (This variable is reserved for Oracle Cloud
Applications)

$global.currentAppUi.menuDisplayName The name of the custom App UI

$global.currentAppUi.extensible (Boolean) If this App UI can be extended

deployment

Use the deployment variable to distinguish between web, mobile, and progressive web
applications that have been deployed from VB Studio.

Name Description

$application.deployment.appType Deprecated. The variable is always set to web.

$application.deployment.pwa = 'enabled' ||
'disabled'

Used to indicate if application is configured as a
progressive web applications (PWA).

For a web application, $application.deployment.pwa is always 'disabled',
regardless of whether the web application is running in the Designer or deployed.

For a PWA, the value of $application.deployment.pwa is set to 'disabled' when the
application is in the VB Studio Designer and $application.deployment.pwa is set to
'enabled' when the application is deployed.

path

The path variable is used to build the path to a resource, such as an image located in
a folder in the application or in a flow.

Name Description

$application.path The path needed to retrieve a resource located in the
application folder.

$flow.path The path needed to retrieve a resource in the flow folder.

$extension.path The path needed to retrieve a resource in the current
extension.

user

The user variable is used to access information about the current user. It is based on
the User Info returned by the Security Provider. It is possible to modify the set of user
information by changing the implementation of the Security Provider. See Security.

Name Description

$application.user.userId The user id <string>.

$application.user.fullName The user full name <string>.

Chapter 1
Variables

1-4

Name Description

$application.user.email The user email <string>.

$application.user.username The user name <string>.

$application.user.roles The user roles (array of strings).

$application.user.roles.roleName Returns true if roleName is a role of this user.

$application.user.permissions User permissions (array of strings).

$application.user.permissions.permName Returns true if permName is a permission of this user.

$application.user.isAuthenticated Returns true if this user is authenticated.

translations

This is not a variable, but an API available for getting localized strings
using $<container>.translations.<bundlename>.key,
or $container.<translations>.format(<bundlename>,<key>,args...).

This API exists for $application, $flow, and $page, but is only useful if you have defined
translation bundles. If translation values are needed in JavaScript function modules, they
must be passed as arguments to the function.

responsive

This is not directly a variable, but contains several Knockout Observables that represent JET
Media Queries. The following are available, and are accessible
via $application.responsive.XXX (for example, $application.responsive.smUp): smUp,
mdUp, lgUp, xlUp, smOnly, mdOnly, lgOnly.

info

Some information from the application and page descriptor can be retrieved using the info
keyword.

Name Description

$application.info.id The application id defined in app-flow.json
$application.info.description The application description defined in app-

flow.json
$flow.info.id The flow id defined in flow-id-flow.json
$flow.info.description The flow description defined in flow-id-

flow.json
$page.info.title The page title defined in page-id-page.json
$page.info.description The page description defined in page-id-

page.json
$fragment.info.id This is the id set on the oj-vb-fragment component or

the system generated stable id (if an id is not set on the
component).

The fragment id defined in fragment-id-
fragment.json

$fragment.info.title The fragment title defined in fragment-id-
fragment.json.

Chapter 1
Variables

1-5

Name Description

$fragment.info.description The fragment description defined in fragment-id-
fragment.json.

$layout.info.id The layout id.

components

This is not a variable, but contains utility methods for finding JET components on a
page. These methods return an element that is a JET component. If no element is
found, or if the element is not part of a JET component, these methods will return
null.

Note:

These methods are not for finding general elements To find elements on the
page, use methods such as document.getElementById and
document.querySelector.

Name Description

$page.components.byId('myCard') (deprecated) Use document.getElementById, which returns a JET
Component or null.

$page.components.bySelector('#myCompId')
(deprecated)

Use document.querySelector, which returns a JET
Component or null.

Types
Types define structure in much the same way as variables.

Types can be defined at the application, flow, and page level, and can be referenced
by variables.

Types can be defined once at the application level in the application model. This can
help you to avoid using the same structure repeatedly in different variables.

Example 1-4 Using Types in the Application Model

types: {
 "myType": {
 "foo": "string",
 "bar": "number"
 }
}

Example 1-5 Referencing Types in a Variable

To reference types in a variable, prefix the type with 'application:', for example:

"nameOfVariable": {
 "type": "application:myType"
}

Chapter 1
Variables

1-6

Page

A page can access a type defined in itself, or the parent flow, or the application.

Definition Result

"nameOfVariable": {
 "type": "myType"
}

Uses the type named myType defined in the page.

"nameOfVariable": {
 "type": "page:myType"
}

Uses the type named myType defined in the page
(same as no prefix).

"nameOfVariable": {
 "type": "flow:myType"
}

Uses the type named myType defined in the flow
containing this page.

"nameOfVariable": {
 "type": "application:myType"
}

Uses the type named myType defined in the
application.

Flow

A flow can access a type defined in itself, or the application.

Definition Result

"nameOfVariable": {
 "type": "myType"
}

Uses the type named myType defined in the flow.

"nameOfVariable": {
 "type": "flow:myType"
}

Uses the type named myType defined in the flow (same
as no prefix).

"nameOfVariable": {
 "type": "application:myType"
}

Uses the type named myType defined in the
application.

Chapter 1
Variables

1-7

Application

An application can access a type defined in itself.

Definition Result

"nameOfVariable": {
 "type": "myType"
}

Uses the type named myType defined in the
application.

"nameOfVariable": {
 "type": "application:myType"
}

Uses the type named myType defined in the application
(same as no prefix).

Type References

An existing type can be used inside a type definition.

"types": {
 "region": {
 "facility": {
 "id": "string",
 "name": "string",
 "detail": "string"
 },
 "address": "flow:address", <-- Use address defined in the parent
flow
 "facilities": "facility[]" <-- Use facility defined above
 }
}

Built-in Extended Types
VB provides a few built-in 'extended' types that extend from some base types provided
by JET (for example, JET ArrayDataProvider) or implement an interface (JET
DataProvider), and, most importantly, that use the VB Extended Type mechanism so
that these types are VB aware. These VB types are generally used with a VB variable.

Authors can also use the same Extended Type mechanism to write Custom Extended
Types.

VB provides these built-in extended types:

• Service Data Provider
This built-in extended type represents a data provider that fetches data from a
service endpoint and that can be bound to listView, table and other collection
components that can bind to a DataProvider implementation. It encapsulates
various capabilities such as filtering, sorting, pagination, and fetch and allows
externalizing fetches to an actionChain.

• Multi-Service Data Provider

Chapter 1
Variables

1-8

JET components that bind to data providers like oj-combobox-one / oj-select-single (or
the -many variants) often use different 'fetch' capabilities. Example, a oj-select-single
component calls fetchFirst() (on the DataProvider implementation) to populate its options,
in addition to fetchByKeys() to fetch data for selected value and fetchByOffset. This built-
in extended type is a dataProvider implementation that combines multiple
ServiceDataProvider variables, each providing a unique fetch capability.

• Array Data Provider 2
This extended builtin type is a data provider implementation where the data is available
as an array. Generally with vb/ArrayDataProvider2 (similar to vb/ArrayDataProvider) all
the data is set once, the data itself can fetched from a backend service (say a list of
countries) as it is assumed that array once created is static, i.e. data changes
infrequently or has limited/infrequent adds/updates and removes done to it.

• Array Data Provider (Legacy)
This extended type uses the JET oj.ArrayDataProvider implementation, which is based
on the DataProvider interface, and whose data is a plain array. The properties on the
variable of type vb/ArrayDataProvider generally mirror the JET ADP's properties.

Service Data Provider
Service Data Provider represents a data provider that provides data by fetching it from a
service or endpoint and that can be bound to components. It also allows externalizing fetches
through an action chain.

The Service Data Provider can be used to fetch collections of data either implicitly using a
configured endpoint, or externally by delegating to an action chain. Additionally, when Service
Data Provider uses an Oracle Cloud Applications service, the built-in business object REST
API transforms associated with the service automatically enable capabilities such as sorting,
filtering, and pagination of the data. When used with endpoints not part of an Oracle Cloud
Applications service, it's important for service authors to provide a custom transforms
implementation that supports these capabilities. (It's worth noting that some functionality is
controlled by the type of endpoint. For example, pagination properties such as limit and
offset are available on a Get Many endpoint, but not a Get One endpoint.)

A variable that uses this built-in type can be bound to collection components like listView,
table, combobox/select, chart, and other JET components that accept a data provider.

When the properties of the Service Data Provider variable change, it listens to the variable
onValueChanged event, and notifies all its subscribers (such as components) to refresh (by
raising a data provider event). Currently, UI components are the only listeners of this event.

Service Data Provider Properties
ServiceDataProvider (SDP) exposes properties that a variable of this type can use to
configure. All properties are directly accessible through the variable. Expressions like
{{ $page.variables.incidentListTableSource.filterCriterion }} can be used where
expressions are supported, including component (markup) attributes.

endpoint

A string that is the REST endpoint in the format 'serviceName/endpointName'. The endpoint
is typically a GET endpoint that returns a collection, and is defined in the service model.

fetchChainId

A string that is the 'id' of the actionChain to use to fetch the results. See Implicit and
Externalized Fetches for more information.

Chapter 1
Variables

1-9

headers

An object of the names of one or more header properties, and the corresponding
values. Any headers specified here are also set on the externalized REST action by
the design time. Alternatively, if a fetchChainId is not specified, headers are passed
through to the internal REST calling mechanism by the ServiceDataProvider.

idAttribute

Supports composite keys, using multiple properties. It is a string or array that is the
field or fields in the response data for each row, that represents the 'id', or key, field.
Deprecated; use keyAttributes instead.

keyAttributes

A string or array, that is the field or fields in the response data for each row, that
represent(s) the 'id' (or key) field. Can be:

• A property name - the key, in various contexts, will also be a string.

• An array of property names - the key will also be an array, of values.

• @value, use all properties - the key will also be an array, of values.

• @index, use the index as the key - the key will be an integer.

itemsPath

A string that is the path to the root of the actual collection in the response. Example
'result' if the response returned from the endpoint looks like {count: 10,
result: [...]}
capabilities

An object that defines the capabilities supported by the ServiceDataProvider and the
endpoint it uses. The capabilities object is defined by the JET DataProvider API.

This property serves as a hint for UI components bound to an SDP variable, to know
about the capabilities the endpoint supports and use the correct fetch / sort / filter
behaviors.

A variable of type vb/ServiceDataProvider generally defaults to a 'fetchFirst'
capability if no capability is specified. This means that the endpoint associated to the
SDP is assumed to support a fetchFirst behavior. The same endpoint can support
other 'fetch' capabilities as well.

For example, with business object REST API GETAll endpoints, the same endpoint
can provide fetchFirst / fetchByKeys ('lookup') and fetchByOffset ('randomAccess')
behaviors.

With third-party services it's important for authors to carefully consider the behaviors
their endpoint supports before configuring the SDP property. For example if the third-
party service endpoint provides optimal 'lookup' based fetchByKeys, and a
'randomAccess' based fetchByOffset, it's important that the author implements the
appropriate transforms functions to support these capabilities. Refer to the section on
Request Transformation Function, particularly the 'paginate' and 'fetchByKeys' types
for details.

If the same endpoint cannot be used to provide the other fetch behaviors then it might
be required to use a Multi-Service Data Provider. In all other cases SDP will fallback to

Chapter 1
Variables

1-10

using the fetchFirst behavior to provide sub-optimal implementations of fetchByKeys and
fetchByOffset behavior.

Key /
Type

sub-key Values Example Description

fetchFirs
t
(optional
) / object

impleme
ntation

"iterat
ion"

fetchFirst is not a capability supported
by the JET DataProvider contract but is
a new capability that SDP introduces.

Why this is needed?

SDP variables created prior to this
enhancement will always assume the
'fetchFirst' capability, for backwards
compatibility. New SDP variables
created in DT 'may' choose to set this
property to correctly reflect the
capability the endpoint supports.

fetchByK
eys
(optional
) / object

impleme
ntation

"lookup
"

"iterat
ion"

getCustomers endpoint
supports a lookup based
fetchByKeys.

"customersSDP": {
 "type": "vb/
ServiceDataProvider",
 "defaultValue": {
 "endpoint":
"demo-data-service/
getCustomers",
 "keyAttributes":
"id",
 "itemsPath":
"result",
 "capabilities": {
 "fetchByKeys":
{

"implementation":
"lookup"
 }
 }
 }
},

(see JET DataProvider API)
the "lookup" based implementation
indicates the endpoint supports fetching
key(s) data using a single request.

• For business object REST API
services, most GETAll endpoints
that provide a fetchFirst capability
also support querying for a key. So
the default business object REST
API transforms uses the fetchFirst
endpoint to query for the key(s) and
this property need not be set. In
rare cases an entirely different
endpoint might be required to fetch
key data, in which case a Multi
Service Data Provider might be
needed.

• For all other types of services,
authors must ensure a lookup
based 'fetchByKeys' transforms
function is provided. If not an
"iteration" based implementation is
used.

when a "lookup" based implementation
is not provided, SDP falls back to an
"iteration" based implementation. This is
non-performant because it uses
fetchFirst / iteration to iterate over rows
until the requested key(s) are located,
before returning the requested key data
in the form - FetchByKeysResults.

Chapter 1
Variables

1-11

Key /
Type

sub-key Values Example Description

multiKey
Lookup

"yes"

"no" "capabilities" : {
 "fetchByKeys": {

"implementation":
"lookup",

"multiKeyLookup":
"no"
 }
}

Tells SDP whether endpoint can fetch
multiple or a single key at a time.
defaults to 'yes'. only available when
implementation is 'lookup'. This is
automatically supported for business
object REST API services that use the
provided business object REST API
transforms.

• when fetchByKeys() is called with
more than one key and the
capability only supports lookup by a
single key, then as an optimization
SDP makes multiple fetch calls
against the endpoint, one per key
and assembles the results

fetchBy
Offset
(optional
) / object

impleme
ntation

"iterat
ion"

"random
Access"

getIncidents endpoint
supports a lookup based
fetchByOffset.

"incidentsSDP": {
 "type": "vb/
ServiceDataProvider",
 "defaultValue": {
 "endpoint":
"demo-data-service/
getIncidents",
 "keyAttributes":
"id",
 "itemsPath":
"result",
 "capabilities": {

"fetchByOffset": {

"implementation":
"randomAccess"
 }
 }
 }
}

the "randomAccess" based
implementation requires an endpoint
that supports random access of
requested page from an offset.

• For business object REST API
services, most GETAll endpoints
support querying from a specified
offset, and so the default business
object REST API transforms uses
this implementation automatically.

• For all other types of services,
authors must ensure a
"randomAccess" based (paginate)
transforms function is provided. If
not an "iteration" based
implementation is used.

when a "randomAccess" based
implementation is not provided, SDP
falls back to an "iteration" based
implementation. This is non-performant
because it uses fetchFirst / iteration to
iterate over pages until the desired
offset is reached.

Chapter 1
Variables

1-12

Key /
Type

sub-key Values Example Description

filter /
object

operator
s

array of
supporte
d
operator
s

"capabilities" : {
 "filter": {
 "operators":
["$eq", "$or"]
 }
}

a map of supported filter operators.
Note: VB does not support Set types so
use Array for operators

This doc does not go into the details of
wiring up the 'filter' and 'sort'
capabilities, but when these are set the
getCapability() method on the
DataProvider will use the information
defined here.

For more on filter operators, see the
JET documentation:
oj.FilterCapability.html#operators

It's a combination of attribute and
compound operators.

• For list of attribute operators -
oj.AttributeFilterDef.html#op

• For list of component operators -
oj.CompoundFilterDef.html#op

textFilter any
value "capabilities" : {

 "filter": {
 "textFilter":
true
 }
}

any truthy value can be set for textFilter.
By default SDP sets this to true.

This value tells the consumer of the
SDP that text filtering is enabled.

For business object REST API
endpoints, text filtering works by default
with some minimal configuration, but the
service author is expected to write a
filter transforms function for any
complex text filtering. See Write a Filter
Transforms Function for Text Filtering
for details.

For 3rd party endpoints the service
author must write a filter transforms
function that handles the text filter, or
they can turn off the capability entirely.

sort /
object "capabilities" : {

 "sort": {
 "attributes":
"single"
 }
}

array of supported sort operators.
For more on sort capabilities, see
oj.SortCapability in the JET
documentation.

responseType

The type of the response that is returned by the ServiceDataProvider. This can be an object
or array. When provided it is used for two purposes:

1. To determine the fields to fetch (aka select fields) from the endpoint. A transforms author
will be provided these fields via the 'select' transforms function, if they wish to edit it, but
ultimately the final response is shaped by the ServiceDataProvider based on the
responseType set on it (see point 2 below).

Chapter 1
Variables

1-13

a. When using an Oracle Cloud Application-based endpoint with
ServiceDataProvider, the built-in business object REST API transforms are
loaded automatically (vb/BusinessObjectsTransform for Business Objects or
business object REST API services), and the select transforms function
creates a 'fields' query parameter with the desired fields, both scalar and
objects (and recursively includes the object's fields, as well). This will both
include and expand fields.

2. To automatically shape the response (from the fetch call) to match the
responseType. Shaping a response to match the responseType usually means
that missing data is 'fixed up'. This is done to ensure that binding expressions
used in components work without issues.

a. For example, an expression like {{ $current.objectVar.propA }} will fail if
objectVar is missing.

Note:

Auto-shaping of response data is based on rules determined by the
Visual Builder type system. If authors do not want the automatic
shaping of data performed by ServiceDataProvider to introduce
unexpected behavior, they must either ensure that the response data
is 'complete', or they need to wrap binding expressions to guard
against missing data. Response data can be made 'complete' either
on the server-side, or the client can use a 'body' response
transforms function to fix up incomplete data based on business
rules.

Some additional things to consider:

When ServiceDataProvider externalizes data fetch

When author chooses to externalize the ServiceDataProvider fetch, the design-time
often configures a chain with a RestAction, with most properties from the
ServiceDataProvider on the action (RestAction and ServiceDataProvider configuration
share similar properties). It also adds a 'hookHandler' property. There are certain
properties that are best set on the ServiceDataProvider and not on the RestAction.
Refer to the Externalized Fetch section for a list of properties that must be configured
on the ServiceDataProvider variable.

It is recommended that 'responseType' always be configured on the
ServiceDataProvider so that the 'select fields' are requested with the fetch call, and
auto shaping of the response does not yield unexpected results (see note). The former
is always determined by ServiceDataProvider.

Note:

For external fetches, if the RESTAction also has 'responseType' set, then it
gets applied first to the response. Not only is this redundant and not
performant, it's also problematic if the responseType on RestAction were to
auto-shape the response to have fewer attributes than what the 'select fields'
requested.

When ServiceDataProvider is used with dynamic components

Chapter 1
Variables

1-14

Another reason for recommending that 'responseType' always be configured on the
ServiceDataProvider is to address dynamic UI cases, where the responseType is not known
at design-time, and 'select fields' are only provided at runtime (see note). In fact the
responseType is often set to a wildcard type ('any' / 'any[]').

Note:

Dynamic collection components determine the list of attributes to fetch only at
runtime. And this is provided via a fetchFirst() call to ServiceDataProvider (using the
'attributes' parameter) and not configured using the 'responseType' property (see
JET FetchListParameters). When 'attributes' are provided, 'responseType' is
ignored. There is also no default auto-shaping done when attributes are provided.

body

An object that represents the body for a fetch request, where the request is made to a POST
based endpoint. Another example is where ElasticSearch based endpoints use a POST
method to fetch search results, where the search criteria are set using the body.

uriParameters

An object that defines one or more properties that are parameters on the endpoint URL. For
example, the FixitFast service has an endpoint to retrieve all incidents for a technician using
the URL http://.../incidents?technician={technician}. Here 'technician' is a query
parameter that will be defined under uriParameters like this:

"uriParameters": {
 "technician": "{{ $page.variables.appUser.name }}"
},

The uriParameters are used to perform a simple string replacement if the URL includes
parameters that must be substituted before it's resolved. Otherwise the parameters are
appended to the URL. The uriParameters are also passed to the query transform function
(details below), so page authors can use the value of the above property to tweak the URI
further if needed.

pagingCriteria

An object that defines the paging defaults if needed. Generally a paging component (like
listView or table) will provide the data provider with size or offset or both. If the component
does not provide either size or offset, the ServiceDataProvider will use the values set on this
property as defaults. The pagingCriteria are then passed to the paginate transform function
(see below). Supports the following properties.

• size: number of rows to fetch by default, when no size is provided by caller.

• offset: the offset to start the fetch from. Defaults to 0.

• maxSize: the default maximum number of rows to fetch when the caller (usually a
component) requests that all rows be fetched. Some JET components, like oj-chart, often
request all rows by setting { size: -1 }. This property can be used to control the
maximum number of rows to fetch, when it may not be performant to ask the service
endpoint to return all rows. If this property is not set, then the size: -1 property is
passed through to the paginate transforms, and it may be necessary for transforms
authors to handle -1 as the size.

Chapter 1
Variables

1-15

https://www.oracle.com/webfolder/technetwork/jet/jsdocs/FetchListParameters.html

• iterationLimit: the upper limit of the number of rows that can be fetched during
iteration cycles. This is only used when size isn't provided and continuous
iteration of rows is required. An example is when a list of values component tries
to fetch labels for selected keys and the underlying multiServiceDataProvider is
not configured with a 'lookup' based fetchByKeys capability. So the
ServiceDataProvider reverts to using an optimized 'iteration' based implementation
that is based on the fetchFirst capability. When this happens, there could be
numerous fetch requests hitting the endpoint. If the service or endpoint would like
to limit this, it's important to set this value. This also gets used with the optimized
fetchByOffset capability for its optimized iteration based implementation.

Page authors need to understand how the above properties are used by the
ServiceDataProvider during a fetch call:

1. Generally, the page size used by a fetch can be defaulted using
the pagingCriteria.size. This is only used when a component does not explicitly
provide a size. The same is true for an offset.

2. When the size is provided by the caller (for example, components), this overrides
the default pagingCriteria.size set on the ServiceDataProvider.

Note:

When components do ask for a specific number of rows, and the
ServiceDataProvider returns more rows than were explicitly requested,
some components can get in an indeterminate state. In such cases, to
control the fetchSize, it's better to set this property on the component.
Specifically, oj-list-view has a scrollPolicyOptions.fetchSize.

3. Some components do not support a fetchSize property. If this is the case, you can
force the fetch to be a different value from what the component requested by
writing a paginate transform function where the size can be tweaked. But you
might then encounter the indeterminate state described in #2.

4. It is generally not recommended that you set endpoint-specific size and offset
parameters using the uriParameters property directly (for example, the business
object REST API supports 'limit' and 'offset' query parameters that are the
equivalent of the pagingCriteria.size and offset). If you do, you are on your own to
write a business object REST API transform that can merge/use the value set both
in the uriParameters and pagingCriteria properties. And you are also likely run into
the caveats explained in #3.

filterCriterion

An object representing a single attribute filter criterion with the properties { op,
attribute, value }, where 'op' is one of the supported JET attribute operators, and
'attribute' and 'value are the name and value of the attribute respectively. It may also
represent a compound filter criterion {op, criteria}, where 'op' is a compound
operator, and ‘criteria’ is an array of attributes or compound criterion.

Most complex filter expressions can be expressed using the JET filterCriterion
structure. Sometimes you may need to externalize fetches to build your filter criteria for
the REST action.

Chapter 1
Variables

1-16

Note:

The business object REST API transforms shipped with Visual Builder support all
attribute operators except $regex. They can transform a simple attribute filter or a
compound filter that is an array of attribute filter criterion.

// attribute criterion
{
 "op": "$eq",
 "attribute": "empName",
 "value": "Lucy"
}

// In the business object REST API, the above criterion will become the
following query parameter:
// "q=empName = 'Lucy'"

// compound criterion
{
 "op": "$or",
 "criteria": [
 {
 "op": "$gt",
 "attribute": "hireDate",
 "value": "2015-01-01"
 },
 {
 "op": "$le",
 "attribute": "hireDate",
 "value": "2018-01-01"
 }
]
}

// In the business object REST API, the above criterion will become the
following query parameter:
// "q=hireDate > '2015-01-01' or hireDate <= '2018-01-01'"

Complex grouped criteria can be expressed in JSON using the filterCriterion API, but a
transform function that can handle such grouped (or nested) criteria will need to be written by
page authors for the business object REST API or for other external REST services, in order
to build the appropriate query parameter.

{
 "op": "$and",
 "criteria": [
 {
 "op": "$sw",
 "attribute": "project",
 "value": "BUFF"
 },

Chapter 1
Variables

1-17

 {
 "op": "$or",
 "criteria: [
 {
 "op": "$ge",
 "attribute": "label",
 "value": "foo"
 },
 {
 "op": "$le",
 "attribute": "label",
 "value": "bar"
 }
]
 }
]
}

// In the business object REST API, the above criterion will become
the following query parameter:
// "q=((project LIKE 'BUFF%') and ((label >= 'foo) or (label <=
'bar')))"

sortCriteria

An array of objects, where each object is an atomic sort expression of the form shown
here. If you have more complex structures for representing sortCriteria, you can use
the externalized fetch option to build sort criteria and provide it to the REST action.
See Implicit and Externalized Fetches for details.

[{
 "attribute": "<name of the field>",
 "direction": "<'ascending' (default) or 'descending'>"
}]

When using multiple attributes for the sortCriteria, you specify them separated by
commas:

[
 {
 "attribute": "col2",
 "direction": "ascending"
 },
 {
 "attribute": "col3",
 "direction": "ascending"
 }
]

mergeTransformOptions

This property allows a page author to set a callback to fix up or merge the final
transforms options that are passed to the transform functions configured on the
ServiceDataProvider. Let's say a sample endpoint, GET /customers, supports

Chapter 1
Variables

1-18

an 'ids' query parameter that can used to query customers by specific keys. For example:

/customers?ids=cus-101,cus-103

A component like oj-select-many might call the ServiceDataProvider requesting the customer
data for specific keys by calling fetchByKeys() with these keys: ['cus-101', 'cus-103'].

The ServiceDataProvider does not support a declarative way to automatically map these
keys programmatically to the 'ids' query parameter on the URL. Therefore, it might be
necessary for the page author to use this property to set a function callback that will fix up the
query transforms option. For details on writing this function, see Merge Transform Options
Function.

transformsContext

A context object passed to the transform functions for both request and response. For
fetchFirst calls, the context will be available for all iterations using the same iterator. Authors
can manage this object as they wish. If this property is not set, an empty Object is provided
by default to all transform functions. When a fetchMetadata property is provided as part of a
fetch*() call, then this property is automatically set on the transformsContext Object and
made available to transform functions.

• fetchMetadata
For Elastic searches where the query can be arbitrarily complex, callers can send extra
search metadata via the fetch call. This parameter can be used to tweak the body that is
used as POST-body in the query.

Note:

This is a Preview API and subject to change.

• textFilterAttributes
See Write a Filter Transforms Function for Text Filtering for details on this property.

totalSize

See getTotalSize

transforms

An object that has two properties for specifying 'request' and 'response' transform
functions (callbacks).

Request transformation (or transform) functions are generally specified on the service (or
endpoint) definition as it applies to all usages of the service. The transform functions
specified here are only applicable for the current usage of the service or endpoint.

Request transform functions are primarily used to transform the URL or Request
configuration before a request is sent to the endpoint.

Response functions can be used to process the response and return any additional state
along with the response. Additional state is saved as internal state on the data source
variable.

At design time, the page author will need to know whether the endpoint supports paging,
sorting, filtering (or QBE), and the format/syntax for specifying these. Using the transform

Chapter 1
Variables

1-19

functions, the page author can tweak the Request to build a URL containing the
paging, sorting, filtering params, and additional endpoint specific query params.

• request: An object whose properties refer to the type of the request transform
functions, and the value the actual function. The following types are supported.
See Request Transformation Function for details.

– paginate: a paginate function that implements code to transform the request
for pagination (or iterating through record sets) specific to the endpoint.

– sort: a sort function that implements code to transform the request for sorting,
specific to the endpoint.

– filter: a filter function. Note: Refer to the next section for details on how to use
the transform functions.

– query: a query function, to pre-process query parameters available through
the uriParameters property.

– select: a select (fields) function used to build the list of fields to fetch, if the
endpoint supports it.

– body: a body transform function that allows page authors to tweak the body if
needed before the fetch call is made.

– fetchByKeys: transforms function that allows a page author to take a key or
Set of keys passed in via the options, and update the request to fetch
requested keys.

• response: An object whose properties also refer to the type of the response
transform function. See Response Transformation Functions for details.

– paginate: This transform function is called immediately after the REST layer
receives a response. It is called with the response so this function can process
it and return an object with a group of properties set. The returned object is the
primary way ServiceDataProvider obtains information about the paging state
of the request:

* totalSize: <optional> used to inform SDP what the totalSize of the result
is.

* hasMore: <generally requiredc> A boolean that indicates whether there are
more records to fetch. Example in business object REST API usecases
this would map to the hasMore boolean property commonly returned in the
response. See explanation below for behavior of SDP when hasMore is
not set.

* pagingState: <optional> This can be used to store any paging state
specific to the paging capability supported by the endpoint. In 1.0.0, this
property can be used in the response paginate transform function, to set
additional paging state. Which will then be passed 'as is' to the request
paginate transform function, for the next fetch call.

– body: This transform function is called immediately after the REST layer
receives a response. It is a hook for authors to transform the response body,
and is not guaranteed to be called in any specific order.

The way this works is an iterating component will get the AsyncIterator from the
dataProvider (like ServiceDataProvider) and keep iterating until there is no more
data to fetch, or until the component viewPort is filled, or until its current
scrollPosition is reached (this might be needed when a selected row is several

Chapter 1
Variables

1-20

pages down), whichever comes first. So it's extremely important for SDP to have the
above information, to know when to stop iterating.

Missing 'hasMore' property in the paginate

In the event that service implementors may not have configured a paginate transform, we
provide the following fallback behavior. If the first fetch request from by the SDP's
AsyncIterator, has no 'hasMore' through the paginate response, SDP assumes there are no
more records to fetch and iterator is marked as done. This behavior at least allows
components to render some data without causing repetitive fetches. Of course this means
scrolling through component will not fetch next set, if the endpoint did indeed have more rows
to fetch.

Implicit and Externalized Fetches
When a ServiceDataProvider is configured with properties described in the Service Data
Provider Properties section, it will, for the most part, manage fetching data and notifying
components implicitly. The exception is the 'fetchChainId'.

Implicit Fetch

A typical configuration for an implicitly fetching ServiceDataProvider would look like this:

"incidentListDataProviderImplicit": {
 "type": "vb/ServiceDataProvider",
 "description": "configuration for implicit fetches",
 "input": "none",
 "defaultValue": {
 "endpoint": "ifixitfast-service/getIncidents",
 "headers": {},
 "keyAttributes": "id",
 "itemsPath": "result",
 "uriParameters": {
 "technician": "{{ $application.user.userId }}"
 }
 }
}

It is important to note that a ServiceDataProvider variable does not cache its data, just its
configuration. The data is also not persisted to history, session or localStorage.

Since the data can be arbitrarily large data sets, it is recommended that page authors use
other means to cache data on the client, such as the JET offline toolkit cache. This applies to
externalized fetches as well.

Externalized Fetch via an Action Chain

When a 'fetchChainId' property is present, the ServiceDataProvider delegates the fetch to the
action chain. A typical configuration for a ServiceDataProvider variable (supporting a
fetchFirst capability) that externalizes REST will look like the code below. These are the only
properties that are allowed to be configured (or that are relevant):

• capabilities: when this property isn't set, the 'fetchFirst' fetch capability is assumed.

• fetchChainId

• idAttribute (deprecated) or keyAttributes

• itemsPath

Chapter 1
Variables

1-21

• mergeTransformOptions: this property is defined on the ServiceDataProvider
variable, because merging transform options only applies when an action chain
(with a REST action) is called in the context of a data provider fetch call.

• transformsContext: Unlike most transforms-related properties, this property can
only be defined on the SDP configuration. Most transforms-related properties can
be defined on the REST action (requestTransformationOptions,
requestTransformFunctions, responseTransformationFunctions).

• responseType

"variables": {
 "incidentListTableSource": {
 "type": "vb/ServiceDataProvider",
 "input": "none",
 "persisted": "session",
 "defaultValue": {
 "fetchChainId": "fetchIncidentListChain",
 "keyAttributes": "id",
 "itemsPath": "result",
 "responseType": "application:incidentsResponse"
 }
 }
},
"chains": {
 "fetchIncidentListChain": {
 ...
 },
}

The type definition of "application:incidentsResponse" used by the
'responseType' property can be seen in this example. This structure is similar to the
one returned from a REST response. Note that itemsPath is always located within the
'body' property of the response that is returned.

For example, the app-flow.json file for the ServiceDataProvider configuration
shown above could look like this:

"incidentsResponse": {
 "type": {
 "status": "string",
 "headers": "object",
 "body": {
 "result": "application:incidentSummary[]"
 }
 }
},
"incidentSummary": {
 "type": {
 "id": "string",
 "problem": "string",
 "priority": "string",
 "status": "string",
 "customer": "application:customer"

Chapter 1
Variables

1-22

 }
},

A sample return value from the action chain would look like this:

{
 "status": "200",
 "headers": {},
 "body": {
 "result": [
 {
 "id": "incident_1",
 "problem": "heater broken",
 "priority": "high",
 "status": "open",
 "customer": {}
 }
]
 }
}

Generally, users externalize fetches to ensure full control over how the request and response
are processed.

For example, users can connect custom sort and filter query parameters either in the service
endpoint or in the REST action. This is the preferred configuration approach. If, however,
properties like sortCriteria, filterCriterion, transforms, and so on, are defined on the
ServiceDataProvider, they will be ignored, and those configured on the REST action will be
used when building the request. It's important to note that sortCriteria / filterCriterion passed
in by the component / caller will always get used and (attempted to be) merged with the ones
configured on RestAction. See Merge Transform Options Function property.

In the example below, the action chain 'fetchIncidentListChain' defined in
the fetchChainId property of the ServiceDataProvider variable above has a typical chain
configuration, one of which is a RestAction.

1. The 'hookHandler' property under configuration chain variable will be automatically
generated at design time and is always set to vb/RestHookHandler. SDP implements a
custom hookHandler that extends from this class.

2. If the REST response returns a structure that is exactly what the ServiceDataProvider
expects, this can be returned directly (as in the example below). But if the REST
response is different from the expected responseType, then an action that maps the
REST response to the structure defined by 'responseType' on the SDP needs to be
configured.

3. The last action in the chain will always be a ReturnAction whose payload resembles the
REST response whose body resembles 'responseType'. The incidentsResponse
response variable in the chain is provided for clarity but is not used by the chain.

4. If more fields are returned than what the responseType has, SDP will attempt to auto-
map the result to the response type.

Chapter 1
Variables

1-23

5. It's important to not set the 'returnType' property when a ReturnAction is already
present in the chain for SDP, because this additionally coerces the response
returned to the caller.

"chains": {
 "fetchIncidentListChain": {
 "variables": {
 "configuration": {
 "type": {
 "hookHandler": "vb/RestHookHandler"
 },
 "description": "the configuration for the rest action",
 "input": "fromCaller",
 "required": true
 },
 "response": {
 "type": "application:incidentsResponse"
 }
 },
 "root": "fetchIncidentList",
 "actions": {
 "fetchIncidentList": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/getIncidents",
 "uriParams": {
 "technician": "{{ $application.user.userId }}"
 },
 "hookHandler": "{{ $variables.configuration.hookHandler }}",
 "requestTransformOptions": {
 "sort": "{{ $page.variables.sortExpression }}",
 "filter": "{{ $page.variables.filterAtomicExpression }}"
 },
 "requestTransformFunctions": {
 "paginate": "{{ $page.functions.paginate }}",
 "query": "{{ $page.functions.query }}",
 "filter": "{{ $page.functions.filter }}",
 "sort": "{{ $page.functions.sort }}"
 },
 "responseTransformFunctions": {
 "paginate": "{{ $page.functions.paginateResponse }}"
 }
 },
 "outcomes": {
 "success": "returnSuccessResponse",
 "failure": "returnFailureResponse"
 }
 },
 "returnSuccessResponse": {
 "module": "vb/action/builtin/returnAction",
 "parameters": {
 "outcome": "success",
 "payload": "{{ $chain.results.fetchIncidentList }}"
 }
 },

Chapter 1
Variables

1-24

 "returnFailureResponse": {
 "module": "vb/action/builtin/returnAction",
 "parameters": {
 "outcome": "failure",
 "payload": "{{ $chain.results.fetchIncidentList }}"
 }
 }
 }
 }
}

Merge Transform Options Function
mergeTransformOptions function signature:

A page author can use the mergeTransformOptions function callback on the
ServiceDataProvider fetch to fix up the transforms options that will be passed to the transform
functions, if and when needed. The function will be passed two
parameters: 'configuration' and 'transformOptions'.

The configuration object will contain one set of { capability, context,
externalContext, fetchParameters } set as a request is servicing one fetch capability.

For the configuration object, this table describes configuration parameters for the
fetchByKeys capability.

Sub-property Sub-property Value Description

capability - fetchByKeys A hint that supplies the
author the fetch capability.

context • idAttribute
• itemsPath
• uriParameters
• filterCriterion
• sortCriteria
• pagingCriteria
• responseType
• capabilities

– fetchByKeys
– keys
– ...

- Provides a snapshot of
the ServiceDataProvider
variable at the time the
fetchByKeys() call is
made.

For external chains, the
state may not include all
properties listed here.

externalContext If the fetch was
externalized then the
context setup on the
RestAction

fetchParameters keys - The original parameters
passed in via the
fetchByKeys call.

This table describes configuration parameters for the fetchByOffset capability.

Chapter 1
Variables

1-25

Prop
erty

Sub-property Value Description

capa
bility

- fetchByOffset A hint telling the author the
fetch capability for the
current request.

conte
xt

• idAttribute
• itemsPath
• uriParameters
• filterCriterion
• sortCriteria
• pagingCriteria
• responseType
• capabilities

– fetchByKeys
– keys
– ...

A snapshot of the value of
the ServiceDataProvider
variable at the time the
fetchByOffset() call was
made.

exter
nalC
ontex
t

If the fetch was externalized
then the context setup on
the RestAction

fetch
Para
mete
rs

• filterCriterion
• size
• offset
• sortCriteria

- The original parameters
passed in via the
fetchByOffset call.

This table describes configuration parameters for the fetchFirst capability.

Prop
erty

Sub-property Value Description

capa
bility

- fetchFirst A hint telling that the
request is a fetchFirst
capability.

value • idAttribute
• itemsPath
• uriParameters
• filterCriterion
• sortCriteria
• pagingCriteria
• responseType
• capabilities

– fetchByKeys
– keys
– ...

- A snapshot of the value of
the ServiceDataProvider
variable at the time the
fetchFirst() call was made.

exter
nalC
ontex
t

If the fetch was externalized
then the context setup on
the RestAction

fetch
Para
mete
rs

• filterCriterion
• size
• sortCriteria

- -

Chapter 1
Variables

1-26

This table describes the properties for the transformOptions parameter.

Property Description

• query
• filter
• paginate
• sort
• select

These are the properties when the ServiceDataProvider
is configured for implicit fetch.

When the ServiceDataProvider is configured to use an
external fetch chain, the options configured on the
RestAction 'requestTransformOptions' property will be
made available here.

A sample endpoint, GET /customers, supports an 'ids' query parameter that can used to
query customers by specific keys. For example: customers?ids=cus-101,cus-103.

For this to work, there is currently no easy way at design time to map the keys provided by
the component programmatically to the 'ids' query parameter on the URL. It might be
necessary for page authors to use this property to wire up a function that will merge the
transforms option.

This should be configured as follows:

1. Configuring 'mergeTransformOptions' property

• The ServiceDataProvider variable below defines a fetchByKeys capability.

• The 'mergeTransformOptions' property is configured to point to a page function.

"customerSingleSDP_External": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "demo-data-service/getCustomers",
 "keyAttributes": "id",
 "itemsPath": "result",
 "capabilities": {
 "fetchByKeys": {
 "implementation": "lookup"
 }
 }

 "mergeTransformOptions":
 "{{ $page.functions.processOptionsForGetCustomers }}"
 }
}

2. Implementing the function

• The page author uses the function to fix up the 'query' transform options that will be
passed to the query transform function.

• The page function "{{ $page.functions.processOptionsForGetCustomers}}" will
look like the following:

/**
 * fix up the query transform options.
 * When the fetchByKeys capability is set, the 'keys' provided via the
fetch call
 * can be be looked up via the configuration.fetchParameters. This can be
 * set/merged onto the 'query' transform options (1). This allows the

Chapter 1
Variables

1-27

transform
 * function to then use the keys to build the final 'ids=' query
param on the url.
 * See queryCustomersByIds method.
 *
 * Note: (1) this is needed because there is no way through DT
configuration
 * to define a mapping of 'keys' that are provided via a fetch
call, to the 'ids'
 * query parameter.
 *
 * @param configuration a map of 3 key values. The keys are
 * - fetchParameters: parameters passed to a fetch call
 * - capability: 'fetchByKeys' | 'fetchFirst' | 'fetchByOffset'
 * - context: the context of the SDP when the fetch was initiated.
 *
 * @param transformOptions a map of key values, where the keys are
the names of
 * the transform functions.
 * @returns {*}
 */
PageModule.prototype.processOptionsForGetCustomers =
 function (configuration, transformOptions) {
 var c = configuration;
 var to = transformOptions;
 var fbkCap = !!(c && c.capability === 'fetchByKeys');
 var keysToFetch = fbkCap ? (c && c.fetchParameters &&
c.fetchParameters.keys) : null;

 if (fbkCap && keysToFetch && keysToFetch.length > 0) {
 // join keys
 var keysToFetchStr = keysToFetch.join(',');
 to = to || {};
 to.query = to.query || {};
 // ignore ids set on the query options and instead use ones
passed in by
 // fetchByKeys call
 to.query.ids = keysToFetchStr;
 }

 return to;
};

3. • A query transform function is not needed in the above example because the
query parameters are automatically appended to the final request URL if no
additional transformation of the query options to the query parameter is
needed.

• A query transform function might be needed in more complex use cases.

Request Transformation Function
A request transformation (or transform) function is generally specified on the service
endpoint. It can also be specified on the ServiceDataProvider variable, which overrides
the endpoint one.

Chapter 1
Variables

1-28

A request transform function is called right before a request is made to the server/endpoint. It
provides a chance for page authors to transform the options (paginate, filter, sort, and so on)
and build the final (request) configuration. The ServiceDataProvider supports a predefined list
of request transform function types, described in this section. Note that there are no
guarantees of the order in which transform functions are called.

A request transformation function has the following signature: function (configuration,
options) { return configuration }. The parameters to the function are:

• configuration: An object that has the following properties:

– url: Full URL of the request.

– parameters: Path and query parameters. These are not writable.

– initConfig: Map of another configuration passed into the request. The 'initConfig'
exactly matches the 'init' parameter of the request.

• options: An object that is relevant to the type of transformation function. For a filter
function, for example, this would be the filterCriterion.

• context: A context object that is passed to every transform function to store or retrieve
any contextual information for the current request lifecycle.

If transformations are needed for a specific data provider instance, these functions can be
defined on the ServiceDataProvider variable under the 'transforms' property. For externalized
fetch cases, the RestAction properties can be used for configuring transformations.

Types of Request Transform Functions

paginate

The 'pagingCriteria' is passed in as the 'options' parameter to the paginate function. The
pagingCriteria is often based on the current paging/scrolled state of the component.

• For implicit fetches, the pagingCriteria provided to the 'paginate' transform function can
be used to construct a URL with the right paging query.

• For externalized fetches, the pagingCriteria is always set on the REST instance through
the hook handler. This means that if the RestAction has a
responseTransformFunctions.paginate transform function property configured, then it
can expect the pagingCriteria to be provided to it.

For offset-based paging:

• size: Specifies how many items should be returned.

• offset: Specifies which item the response should begin from.

• The default value for the pagingCriteria can be set on the configuration, but generally a
component that is bound to the ServiceDataProvider variable will provide the values,
where offset and size will be based on the configuration set in the component.

// Variable Configuration
"incidentListTableSource": {
 "type": "vb/ServiceDataProvider", // variable of type vb/
ServiceDataProvider
 "input": "none",
 "defaultValue": {
 "pagingCriteria": { // default size
 "size": 10
 },

Chapter 1
Variables

1-29

 "transforms": { // transform function for
paginate
 "request": {
 "paginate": "{{ $page.functions.paginate }}"
 }
 }
}

// paginate Transform Function
// Transform function appends limit and offset parameters to the URL
PageModule.prototype.paginate = function (configuration, options,
context) {
 const c = configuration;
 let newUrl = c.url;
 newUrl = `${newUrl}&limit=${options.size}&offset=$
{options.offset}`;
 c.url = newUrl;
 return c;
};

filter

For this transform function, the 'filterCriterion' property is passed in as the 'options'
parameter. The filterCriterion JSON property is an object representing a attribute
criterion or a compound criterion. This example defines a simple structure for filter
criteria that is a single criterion:

// Variable Configuration
"incidentListTableSource": {
 "type": "vb/ServiceDataProvider",
 "input": "none",
 "defaultValue": {
 "filterCriterion": { // filterCriterion
property defaultValue
 "attribute": "",
 "op": "eq",
 "value": ""
 },
 "transforms": {
 "request": {
 "filter": "{{ $page.functions.filter }}" // transform
function for filter
 }
 }
 }
}

Here's a sample filter transform function that converts the filterCriterion property to a
query parameter appropriate to the endpoint:

/**
 * Filter Transform Function Implementation

Chapter 1
Variables

1-30

 * @param configuration
 * @param options the JSON payload that defines the filterCriterion
 * @param context an object to store/retrieve any contextual information for
the
 * current request lifecycle
 * @returns {object} configuration object. the url looks like ?filter=foo eq
'bar'
 */

PageModule.prototype.filter = function (configuration, options, context) {
 const c = configuration;
 const filterCriterion = options;

 function jetFilterOpToScim(fop) {
 switch (fop) {
 case '$eq':
 return 'eq';
 case '$ne':
 return 'ne';
 case '$co':
 return 'co';
 default:
 console.warn('unable to interpret the op ' + fop);
 return null;
 }
 }

 function isEmpty(val) {
 return (val === undefined || val === null || val === '');
 }

 if (typeof filterCriterion === 'object' &&
Object.keys(filterCriterion).length > 0) {
 if (filterCriterion.op && filterCriterion.attribute &&
 !isEmpty(filterCriterion.value)) {
 const atomicExpr = {};
 atomicExpr.op = jetFilterOpToScim(filterCriterion.op);
 atomicExpr.attribute = filterCriterion.attribute;
 atomicExpr.value = filterCriterion.value;

 if (atomicExpr.op && atomicExpr.attribute) {
 c.url = URI(c.url).addQuery({
 filter: `${atomicExpr.attribute} ${atomicExpr.op} $
{atomicExpr.value}`,
 }).toString();
 }
 }
 }

 return c;
};

Chapter 1
Variables

1-31

Write a Filter Transforms Function for Text Filtering

If your SDP binds to a business object REST API endpoint, you have the following
options to get text filtering to work:

• Option 1: Configure the SDP to include a vb-textFilterAttributes property where the
attributes to apply the text filter is specified. The built-in business object REST API
transforms look for this property and automatically build a filter criterion using the
text and turns it into a 'q' param.

"transformsContext": {
 "vb-textFilterAttributes": ["lastName"]
}

For the above configuration example, if a user enters text 'foo' in select-single, the
SDP generates q=lastName LIKE 'foo%'
By default, the operator used is 'startsWith' as this is considered to be more
optimized for db queries than 'contains'.

• Option 2: If Option 1 doesn't meet your needs, then you can write a custom filter
transform that massages the text filter and turns it into a regular filterCriterion.

If you use option 2, you could do something similar to the following example. In this
example, resourcesListSDP uses the getall_resources endpoint. The (request) filter
transforms property is a callback that is defined in the PageModule.

"resourcesListSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "crmRestApi11_12_0_0/getall_resources",
 "keyAttributes": "PartyNumber",
 "itemsPath": "items",
 "responseType": "page:getallResourcesResponse",
 "transformsContext": {
 "vb-textFilterAttributes": ["PartyName"]
 },
 "transforms": {
 "request": {
 "filter": "{{ $functions.processFilter }}"
 }
 }
 }
}

It's important to note that the transformsContext object is an argument to every
transforms function, so transforms authors can read the attributes and build the query
that way.

The transforms function below takes the text value provided by the component and
turns into an attribute filter criterion using the attributes passed in:

define(['vb/BusinessObjectsTransforms'], function(BOTransforms) {
 'use strict';

Chapter 1
Variables

1-32

 var PageModule = function PageModule() {};

 /**
 * The filter transform parses the text filter that may be part of the
options and replaces
 * it with an appropriate attribute filter criterion using the
textFilterAttrs.
 *
 * Note: select-single provides a text filter in the form { text:
'someTextToSearch' }.
 *
 * The processing of the resulting filterCriterion is delegated to the
Business Object REST API
 * transforms module, which takes the filterCriterion and turns it into
the 'q' param.
 * @param textFilterAttrs
 * @return a transforms func that is called later with the options
 */
 PageModule.prototype.processFilter = function(config, options,
transformsContext) {
 const c = configuration;
 let o = options;
 let textValue;
 let isCompound;
 const tc = transformsContext;
 const textFilterAttributes = tc && tc['vb-textFilterAttributes];

 textValue = o && o.text;

 // build your regular filtercriterion and delegate to VB BO REST API
filter transforms

 return BOTransforms.request.filter(configuration, o);
 }
 return PageModule;
});

Note:

Page authors are discouraged from configuring the SDP with the 'q' parameter
directly, for example by setting a 'q' parameter in the uriParameters property. It is
recommended that authors always use filterCriterion property to define 'q' criteria.
This is especially important when using text filtering because the components
always provide a filterCriterion which is appended to any configured filterCriterion
on the SDP It becomes especially difficult for VB to reconcile the 'q' defined in
uriParameters with the filterCriterion and authors are on their own to merge the two.

It's also important to note that select-single calls fetchByKeys very often to locate
the record(s) pertaining to the select keys. For this reason, a new fetchByKeys
transforms function has been added. Refer to the fetchByKeys transforms function
for details.

Chapter 1
Variables

1-33

sort

For this transform function, the 'sortCriteria' is passed in as the 'options' parameter. If
page authors have complex sort expressions that cannot be expressed as a simple
array, they can externalize the fetch to configure their own sort criteria and build a
request using that.

// Variable Configuration
"incidentListTableSource": {
 "type": "vb/ServiceDataProvider",
 "input": "none",
 "defaultValue": {
 "sortCriteria": [// sortCriteria
property default value
 {
 "direction": "ascending"
 }
],

 "transforms": {
 "request": {
 "sort": "{{ $page.functions.sort }}" // transform function
for sort
 }
 }
 }
}

/**
 * Sort Transform Function Implementation
 * @param configuration
 * @param options the JSON payload that defines the sortCriteria
 * @param context an object to store/retrieve any contextual
information for the
 * current request lifecycle.
 * @returns {object} configuration object. the url looks like ?
orderBy=foo:asc
 */
PageModule.prototype.sort = function (configuration, options, context)
{
 const c = configuration;

 if (options && Array.isArray(options) && options.length > 0) {
 const firstItem = options[0];
 if (firstItem.name) {
 const dir = firstItem.direction
=== 'descending' ? 'desc' : 'asc'
 let newUrl = c.url;
 newUrl = `${newUrl}&orderBy=${firstItem.attribute}:${dir}`;
 c.url = newUrl;
 }
 }
 return c;
};

Chapter 1
Variables

1-34

query

For this transform function, the 'uriParameters' property is passed in as options. Normally
uriParameters are appended to the URL automatically, but there may be cases where the
user would want to adjust the query parameters. For example, suppose the endpoint GET /
incidents supports a query parameter called "search", which does a semantic search. If a
specific transform needs to happen before the endpoint us cakked, then the transform
function could be used for that.

// Variable Configuration
"incidentListTableSource": {
 "type": "vb/ServiceDataProvider",
 "input": "none",
 "defaultValue": {
 "uriParameters":
 {
 "technician": "hcr",
 "search": "{{ $page.variables.searchBoxValue }}"// search query
parameter
 // bound to some UI
field
 }
],

 "transforms": {
 "request": {
 "query": "{{ $page.functions.query }}" // transform function
for query
 }
 }
 }
}

/**
 * query Transform Function Implementation
 */
PageModule.prototype.query = function (configuration, options, context) {
 const c = configuration;
 if (options && options.search) {
 let newUrl = c.url;
 newUrl = `${newUrl}&search=${options.search} faq`; // appends 'faq' to
the
 // search term
 c.url = newUrl;
 }
 return c;
 // configuration, options};
};

select

This transform typically uses the 'responseType' to construct a query parameter to select and
expand the fields returned from the service. The built-in vb/BusinessObjectsTransforms

Chapter 1
Variables

1-35

creates a 'fields' query parameter, such that the response will include all fields in the
responseType structure, including expanded fields. For example:

/**
 * select transform function.
 * Example:
 *
 * Employee
 * - firstName
 * - lastName
 * - department
 * - items[]
 * - departmentName
 * - location
 * - items[]
 * - locationName
 *
 * would result in this 'fields' query parameter:
 *
 *
fields=firstName,lastName;department:departmentName;department.location
:locationName
 *
 * @param configuration
 * @param options
 * @param context a transforms context object that can be used by
authors of transform
 * functions to store contextual information for the duration of the
request.
 */
PageModule.prototype.select = function(configuration, options,
context) {
 // the options should contain a 'type' object, to override
 var c = configuration;

 // do nothing if it's not a GET
 if (c.endpointDefinition && c.endpointDefinition.method !== 'GET') {
 return c;
 }

 // do nothing if there's already a '?fields='
 if(queryParamExists(c.url, 'fields')) {
 return c;
 }

 // if there's an 'items', use its type; otherwise, use the whole type
 vartypeToInspect = (options && options.type && (options.type.items
|| options.type));
 if(typeToInspect && typeoftypeToInspect === 'object') {
 var fields; // just an example; query parameter construction is
left to the
 // developer

 if(fields) {
 c.url = appendToUrl(c.url, 'fields', fields);

Chapter 1
Variables

1-36

 }
 }
 return c;
}

function appendToUrl(url, name, value) {
 // skip undefined and null
 if (value !== undefined && value !== null) {
 var sep = url.indexOf('?') >= 0 ? '&' : '?';
 return url + sep + name + '=' + value;
 }
 return url;
}

function queryParamExists(url, name) {
 const q = url.indexOf('?');
 if (q >= 0) {
 return (url.indexOf(`?${name}`) === q) || (url.indexOf(`&${name}`) > q);
 }
 return false;
}

body

This transform is used to build or tweak the body for the fetch request. With some endpoints,
especially those involving ElasticSearch, the search is made with a complex search criteria
set on the body that can be tweaked here.

This transform function is the only function that is guaranteed to be called after all other
request transform functions, (filter, sort, paginate, and so on). The reason is that any of the
other transform functions can set info into the 'transformsContext' parameter, as a way to
update the body. It's entirely left to the discretion of the transforms author how to use the
'transformsContext' property and the 'fetchMetadata' parameter provided via the fetch call.
Currently, the built-in business object REST API transforms implementation does not use
either.

/**
 * If a body is specified then we look for 'search' and 'technician' in the
post body.
 * All other keys are ignored.
 * @param configuration
 * @param options
 * @param context transforms context
 */
function bodyRequest(configuration, options, transformsContext) {
 const c = configuration;
 if (options && typeof options === 'object' && Object.keys(options).length
> 0) {
 c.initConfig.body = c.initConfig.body || {};
 // update body
 }
 return c;
}

fetchByKeys

Chapter 1
Variables

1-37

A fetchByKeys transforms function allows the page author to take a key or Set of keys
passed in via the options and tweak the URL, to fetch the data for the requested keys.

When the consumer of the SDP calls the fetchByKeys() method, if the transforms
author has provided a 'fetchByKeys' transforms implementation then it gets called over
the other transforms. If no fetchByKeys transforms function is provided then the default
transforms will get called.

The built-in business object REST API transforms already provides a fetchByKeys
transforms function implementation that appends the keys to the URL. This should
suffice for most common cases and should result in at most one fetch request to the
server. For third-party REST endpoints, the author can provide a custom fetchByKeys
transforms implementation.

Example: For a sample third-party endpoint, the key is appended to the URL as a
query param 'id=<key>'

define(['ojs/ojcore', 'urijs/URI'], function (oj, URI) {

 PageModule.prototype.fetchByKeysTransformsFunc = function
(configuration, transformOptions){
 var c = configuration;
 var to = transformOptions || {};
 var fetchByKeys = !!(c && c.capability === 'fetchByKeys'); // this
tells us that the current fetch call is a fetchByKeys

 if (fetchByKeys) {
 var keysArr = Array.from(c.fetchParameters.keys);
 var key = keysArr[0]; // grab the key provided by caller
 if (key) {
 c.url = URI(c.url).addQuery({
 id: key,
 }).toString();
 }
 }
 return c;
 };
});

Response Transformation Functions
Response transformation (transform) functions are called right after a request returns
successfully. They provide a hook for page authors to transform the response further
for the consumption of the ServiceDataProvider or user interface.

The ServiceDataProvider supports a predefined list of response transformation
function types, described in this section. Note that there are no guarantees of the order
in which transform functions are called.

A response transformation function has the following signature: function (result). It
can be defined on the service endpoint, but can also be overridden on the variable.
The parameter to this function is:

• result: an object that has the following properties:

Chapter 1
Variables

1-38

– response: the response object, an implementation of the Response interface of the
Fetch web API.

– body: The (response) body that corresponds to the requested content type.

Types of Response Transform Functions

paginate

The paginate response transform function is called with the response so this function can
process it and return an object with the following properties set. The returned object is the
primary way ServiceDataProvider obtains information about the paging state of the request:

• totalSize: Optional. Used to inform ServiceDataProvider what the totalSize of the result is
(the total count of the records in the backend service/endpoint).

• hasMore: Usually required, because with the JET DataProvider API, the paginate
response transform function is relied upon to inform the ServiceDataProvider when to
stop requesting to fetch more data. It is a boolean that indicates whether there are more
records to fetch. For example, in business object REST API use cases, this would map to
the hasMore boolean property commonly returned in the response.

An iterating component such as ServiceDataProvider requires this information in order to
know when to stop iterating when fetching data. The reason for this requirement is that
an iterating component will get the AsyncIterator from the dataProvider and continue
iterating until there is no more data to fetch, until the component viewPort is filled, or until
its current scrollPosition is reached, whichever comes first.

• pagingState: Optional. This can be used to store any paging state specific to the paging
capability supported by the endpoint. This property can be used in the response paginate
transform function to set an additional paging state. This will then be passed as is to the
request paginate transform function for the next fetch call.

// Variable Configuration
"transforms": {
 "response": {
 "paginate": " {{ $page.functions.paginateResponse }}"
 }
}

// paginate() Response Transform Function
PageModule.prototype.paginateResponse = function (result, context) {
 const ps = {}; const tr = {};

 if (result.body) {
 const rb = result.body;
 if (rb.totalCount) {
 tr.totalSize = rb.totalCount;
 }
 if (rb.totalCount > 0) {
 tr.hasMore = !!rb.hasMore;
 } else {
 tr.hasMore = false;
 }
 }

Chapter 1
Variables

1-39

 return tr;
};

body

This transform function is called last, after all the other response transforms have been
called. It is a hook for authors to transform the response body, or build an entirely new
one, that the ServiceDataProvider or component expects.

Here is an example of a body transform function in the SDP configuration:

"transforms": {
 "response": {
 "body": " {{ $page.functions.bodyResponse }}"
 }
}

And here is an example of a body transform function:

/**
 * Called after response returns from a fetch call, this is a good
place to post-process
 * response, fix up data and extract other info (like aggregations)
and return a transformed result.
 * The object returned must have the body that SDP is configured for,
in addition to any data
 * that might be needed.
 *
 * @param configuration - a Map containing the following properties
 * - headers: response header
 * - body: body of the response
 * - fetchConfiguration: the configuration that triggered this fetch
call. If fetch was initiated by SDP this includes
 * fetch capability, context, externalContext and fetchParameters
property. Refer to the docs for the
 * mergeTransformsOptions func callback for details.
 *
 * @param transformsContext transforms context
 *
 * @returns {{}}
 *
/PageModule.prototype.bodyResponse(configuration, transformsContext) {
 var tr = {};
 if (configuration.body) {
 // fix up result.body from REST if needed and set the new body in
tr
 tr = configuration.body;
 }
 // you can also store additional data - example aggregations for
Elastic endpoint responses.
 tr.aggregations = { foo: 4 };
 return tr;
}

Chapter 1
Variables

1-40

Methods
ServiceDataProvider implements most methods from oj.DataProvider, except for the
isEmpty method.

Most ServiceDataProvider methods, such as fetchFirst, fetchByKeys, fetchByOffset,
containsKeys, and getCapabilities, are called by the component that interfaces with the
DataProvider implementation and will rarely need to be used directly. The getTotalSize
method is an exception to this general rule.

getTotalSize method

The getTotalSize method returns a Promise that resolves to the total size of data available on
the service endpoint. If a positive number is not set in the response transforms, a size of -1 is
returned. Generally the returned value is the canonical size of the (endpoint) fetch when no
search criteria is applied. In other words, this value is meant to be the same every time a
fetch is called against the endpoint.

Because page authors often want the convenience of binding the totalSize on the page, vb/
ServiceDataProvider supports a totalSize property that is a number. This can be used instead
of the getTotalSize method, which is used by JavaScript callers.

For example, a page author can use the totalSize property of the ServiceDataProvider in
markup as follows:

<oj-bind-text id="totalIncRows"
 value="[[$variables.incidentListDataProvider.totalSize]]"></oj-bind-text>

Features and Capabilities

Page authors generally need not be concerned with this, but it's generally useful to
understand the features and capabilities that SDP supports. For details refer to JET
DataProvider#getCapability.

At design time, a page author may need to know what features and capabilities the endpoint
supports, and they may need to configure the correct properties and transforms.

Events
At design time, a page author may need to know what features and capabilities the endpoint
supports, and they may need to configure the correct properties and transforms.

Events

The events raised by the data provider are defined by contract for oj.DataProvider. These
events are fired at appropriate times to notify UI components. Page authors may need to
force the variable to fire some of the DataProvider events, including 'add', 'remove', 'refresh',
and 'update'.

vbDataProviderNotification Event Listener

Page authors can register an event listener of this type in order to be notified of catastrophic
errors that may occur when something goes wrong during an implicit fetch. For an
externalized fetch, where the fetch is externalized to a action chain, the current mechanism of
handling failure outcomes can continue to be used.

Chapter 1
Variables

1-41

For example, on the page, the listeners property can have this definition:

"vbDataProviderNotification": {
 "chains": [
 {
 "chainId": "someChainX"
 }
]
}

The event payload available to the listener is an object that has the following
properties:

• severity: a string

• detail: any details of the error, such as REST failure details

• capability: an object with the capabilities configured on the ServiceDataProvider

• fetchParameters: an object with the parameters passed to the fetch

• context: an object representing the state of the ServiceDataProvider at the time
the fetch was initiated

• id: uniqueId, a string, the id of the ServiceDataProvider instance

• key: since the event can be fired multiple times, this identifies the event instance

Page authors can use this to display an error message.

Example 1-6 Firing a DataProvider event by using a fireDataProviderEvent
action

A page is configured to have a master list and detail form showing the details of the
current selected row on the list. Suppose that the form is wired to PATCH to a different
endpoint than the one configured on the list. When the user updates the form data, it's
desirable for the same actionChain to also raise the 'update' event on the
ServiceDataProvider so it can show the changes to the current row. To configure the
page:

<!-- list view bound to page variable incidentListTableSource -->
<oj-list-view id="listview"
 data="{{$variables.incidentListTableSource}}"
...
</oj-list-view>

<!-- form UI fields bound to page variable currentIncident -->
<div class="oj-form-layout"
 <div class="oj-form"
 <div class="oj-flex"
 <div class="oj-flex-item"
 <oj-label for="problem"Problem</oj-label>
 </div>
 <div class="oj-flex-item"
 <oj-input-text id="problem"
 value="{{$variables.currentIncident.problem}}"
 required=true</oj-input-text>
 </div>
 </div>

Chapter 1
Variables

1-42

...

<!-- Save button bound to componentEvent handler 'saveIncident' -->
<oj-button href="#" id='saveButton'
 label='Save'
 on-dom-click='[[$componentEvents.saveIncident]]'</oj-button>

// saveIncident calls the actionChain 'saveIncidentChain', which
// (1) defines 2 variables - incidentId and incidentPayload
// (2) then calls a REST action to put/patch payload
// (3) then it takes the result from (2) and assigns to incidentsResponse
chain
// variable,
// (4) calls an actionChain to fire a data provider event to refresh the SDP
page
// variable
// (5) an update event payload passed to the action chain
"saveIncidentChain": {
 "variables": { // (1)
 "incidentId": {
 "type": "string",
 "description": "the ID of the incident to update",
 "input": "fromCaller",
 "required": true
 },
 "incidentPayload": {
 "type": "object",
 "description": "the payload of the incident data",
 "input": "fromCaller",
 "required": true
 },
 "incidentsResponse": {
 "type": "application:incidentsResponse"
 }
 },
 "root": {
 "id": "saveIncidentToRest", // (2)
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/putIncident",
 "uriParams": {
 "id": "{{ $variables.incidentId }}"
 },
 "body": "{{ $variables.incidentPayload }}"
 },
 "outcomes": {
 "success": "assignVariables_incidentsResponse"
 }
 },
 "assignVariables_incidentsResponse": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$variables.incidentsResponse.result": {
 "source": "{{ $chain.results.saveIncidentToRest.body }}" // (3)

Chapter 1
Variables

1-43

 }
 },
 "outcomes": {
 "success": "updateIncidentList"
 }
 },
 "updateIncidentList": {
 "module": "vb/action/builtin/callChainAction",
 "parameters": {
 "id": "fireDataProviderMutationEventActionChain", // (4)
 "params": {
 "payload": {
 "update": { // (5)
 "data": "{{ $variables.incidentsResponse }}"
 }
 }
 }
 }
 }
}

"fireDataProviderMutationEventActionChain": {
 "variables": {
 "payload": {
 "type": "application:dataProviderMutationEventDetail",
 "input": "fromCaller"
 }
 },
 "root": "fireEventOnDataProvider",
 "actions": {
 "fireEventOnDataProvider": {
 "module": "vb/action/builtin/fireDataProviderEventAction",
 "parameters": {
 "target": "{{ $page.variables.incidentListDataProvider }}", //
SDP variable
 // on which the
event is fired
 "add": "{{ $variables.payload.add }}",
 "remove": "{{ $variables.payload.remove }}",
 "update": "{{ $variables.payload.update }}" // has the updated
record details
 }
 }
 }
},

ServiceDataProviderFactory
Some times it's desirable to create a standalone VB type instance programmatically by
passing an initial state. Here the instance is not backed by a variable, that is, its state
is not stored in redux. Instead the instance and/or the caller manages its state
essentially.For such cases VB publishes a contract for a TypeFactory that any type
author can implement. See Custom Extended Types.

Chapter 1
Variables

1-44

The TypeFactory contract is provided in the vb/types/factories/typeFactory.js. VB
provides TypeFactory implementations for creating a ServiceDataProvider instance. Refer to
the ServiceDataProviderFactory for details. (vb/types/factories/
serviceDataProviderFactory.js)

Methods

createInstance

Returns an instance of the ServiceDataProvider. Refer to the JSDocs for the parameters
supported on this method. The instance returned supports all methods from the DataProvider
contract.

• options, object used to instantiate the ServiceDataProvider with, usually contains these
properties

– dataProviderOptions, its initial or 'default' state.

* state properties are same as what a regular ServiceDataProvider variable takes

– serviceOptions, optional configuration needed by the RestHelper to locate the
endpoint details. This can be skipped if the dataProviderOptions includes an
'endpoint' property

* properties:

* url <string>
* operationRef <string>

caller can create an instance as follows:

ServiceDataProviderFactory.createInstance({ dataProviderOptions: { endpoint:
"foo/getBars", responseType: "barType[]", keyAttributes: "id"} })
 .then((sdpInstance) => {
 const iter = sdpInstance.fetchFirst();
 iter.next().then((results) => {
 // process results
 });
 });

Multi-Service Data Provider
The vb/MultiServiceDataProvider built-in type is a data provider implementation that
combines multiple vb/ServiceDataProvider variables, each providing a unique fetch capability.

Often components that bind to data providers, like oj-combobox-one and oj-select-single (or
the -many variants), require or use different 'fetch' capabilities on the data provider
implementation.

For example, an oj-select-single component might call fetchFirst() (on the DataProvider
implementation) to populate its options, and then call fetchByKeys() to fetch data for selected
value, and fetchByOffset() to fetch items from an offset. Often the endpoint configured on a
ServiceDataProvider may provide multiple capabilities - for example, most GETAll endpoints
for business object REST API services also allow fetching data for specific keys, and from an
offset, on the same endpoint. However, on rare occasions authors might require different
endpoints to support different fetch capabilities. A MultiServiceDataProvider can be used for
this purpose.

Chapter 1
Variables

1-45

Design Time Assumptions

At design time, a service author can identify different endpoints that provide the
fetchByKeys and fetchByOffset capabilities, in addition to the current fetch all
(fetchFirst capability). When there are different endpoints a page author must pick
different endpoints for each (fetch) capability when configuring a variable of a type vb/
MultiServiceDataProvider. It is common for the same REST endpoint to support
multiple capabilities.

• for fetchByKeys

– For example, the same endpoint can fetch all territories and a set of territories
that match a set of territory codes (fetchByKeys): GET /fndTerritories?
and /fndTerritories?q=TerritoryCode in ('US', 'AE')

– the same endpoint can be used to fetch all customers, or to fetch customers
by specific keys using the same endpoint but different query parameters:
GET /customers and GET /customers?ids=cus-101,cus-103.

• for fetchByOffest

– an Oracle Cloud application endpoint can fetch all territories, and territories at
a given offset - GET /fndTerritories and /fndTerritories?
offset=50&size=10

Properties

A variable of the built-in type vb/MultiServiceDataProvider can be configured with the
dataProviders property using the following sub-properties.

Chapter 1
Variables

1-46

dataProviders Sub-
property

Type Example Description

fetchFirst "vb/
ServiceDataProvider" {

 "variables": {

"activitiesMultiS
DP": {
 "type":
"vb/
MultiServiceDataP
rovider",

"defaultValue": {

"dataProviders":
{

"fetchFirst":
"{{ $variables.li
stSDP }}"
 }
 }
 }
 }
}

A
MultiServiceDataProvid
er is needed only when
more than one fetch
capability needs to be
configured.

Chapter 1
Variables

1-47

dataProviders Sub-
property

Type Example Description

fetchByKeys "vb/
ServiceDataProvider" {

 "variables": {

"activitiesMultiS
DP": {
 "type":
"vb/
MultiServiceDataP
rovider",

"defaultValue": {

"dataProviders":
{

"fetchFirst":
"{{ $variables.li
stSDP }}"

"fetchByKeys":
"{{ $variables.de
tailSDP }}"

 }
 }
 }
 }
}

A reference to the vb/
ServiceDataProvider
variable.

Chapter 1
Variables

1-48

dataProviders Sub-
property

Type Example Description

fetchByOffset "vb/
ServiceDataProvider" {

 "variables": {

"activitiesMultiS
DP": {
 "type":
"vb/
MultiServiceDataP
rovider",

"defaultValue": {

"dataProviders":
{

"fetchFirst":
"{{ $variables.li
stSDP }}"

"fetchByOffset":
"{{ $variables.li
stSDP }}"
 }
 }
 }
 }
}

A reference to the vb/
ServiceDataProvider
variable.

Behavior

• A variable of type vb/MultiServiceDataProvider must have at least one fetch capability
defined. Otherwise an error is flagged.

• When a fetchFirst capability is not defined, a no-op fetchFirst capability is used. The JET
DataProvider contract requires a fetchFirst implementation to be provided.

• All fetch capabilities must point to a variable of type vb/ServiceDataProvider.

• A MultiServiceDataProvider cannot reference another MultiServiceDataProvider variable.

Usage

Here are some of the common ways service endpoints might provide their fetch capabilities.

Usage: When a service provides unique endpoints for different fetch capabilities

When a service has unique endpoints for each fetch capability, we will require one variable of
type 'vb/ServiceDataProvider' per fetch API, and a variable of type 'vb/
MultiServiceDataProvider' variable that combines the individual ServiceDataProvider
variables together. The list-of-values component will then bind to a variable of type vb/
MultiServiceDataProvider.

Chapter 1
Variables

1-49

Let's consider this third-party REST API that is used to get information about countries.

• fetchFirst capability: to get a list of all countries and their info, where the
alpha3Code is the primary key

– service/endpoint: rest-service/getAllCountries

– GET https://restcountries.eu/rest/v2/all
• fetchByKeys capability (with multi key lookup): to get a list of countries by their

three-letter alpha code

– service/endpoint: rest-service/getCountriesByCodes

– GET https://restcountries.eu/rest/v2/alpha?codes=usa;mex
In order for the list-of-values component to use the above endpoints, the design time
will need to create three variables:

• One vb/MultiServiceDataProvider variable that references two
ServiceDataProvider variables, one for each fetch capability

• Two vb/ServiceDataProvider variables

vb/MultiServiceDataProvider Configuration

At design time, a variable using this type will be created that looks like this:

1 {
2 "variables": {
3 "countriesMultiSDP": {
4 "type": "vb/MultiServiceDataProvider",
5 "defaultValue": {
6 "dataProviders": {
7 "fetchFirst": "{{ $page.variables.allCountriesSDP }}
8 "fetchByKeys": "{{ $page.variables.countriesByCodesSDP }}"
9 }
10 }
11 }
12 }
13 }

• Line 3: countriesMultiSDP is a variable of type vb/MultiServiceDataProvider. This
defines two properties: 'fetchFirst' and 'fetchByKeys'.

• Line 7: The fetchFirst property allows the MultiServiceDataProvider to call
fetchFirst() on the referenced ServiceDataProvider variable.

• Line 8: The fetchByKeys property allows the MultiServiceDataProvider to call
fetchByKeys() on the referenced ServiceDataProvider variable.

vb/ServiceDataProvider Variables Configuration

For the above use case, the referenced ServiceDataProvider variables will be
configured as follows:

Chapter 1
Variables

1-50

Configuration Description

1 {
2 "variables": {
3 "allCountriesSDP": {
4 "type": "vb/
ServiceDataProvider",
5 "defaultValue": {
6 "endpoint": "rest-service/
getAllCountries",
7
 "keyAttributes": "alpha3Code"
8 }
9 },
10 "countriesByCodesSDP": {...}
11 }
12 }

Line 3: defines the ServiceDataProvider variable
with a fetchFirst capability.

• When a capabilities property is not specified,
it's assumed that the ServiceDataProvider
supports a fetchFirst capability.

• When a capabilities property is present but no
fetch capability is defined (that is, only the
filter and sort capabilities are defined),
fetchFirst is assumed.

Line 6: defines the endpoint to use the
getAllCountries operation to fetch all countries.

Chapter 1
Variables

1-51

Configuration Description

1 {
2 "variables": {
3 "allCountriesSDP": {
4 "countriesByCodesSDP": {
5 "type": "vb/
ServiceDataProvider",
6 "defaultValue": {
7 "endpoint": "rest-service/
getCountriesByCodes",
8
 "keyAttributes": "alpha3Code"
,
9 "capabilities": {
10 "fetchByKeys": {
11
 "implementation": "lookup
",
12
 "multiKeyLookup" : 'no'
13 }
14 },
15
 "mergeTransformOptions": "{{
$functions.fixupTransformOptions }}"
16 }
17 }
18 }

Line 4: defines the ServiceDataProvider variable
that supports a fetchByKeys capability.

Line 7: uses the getCountriesByCodes operation
to fetch a list of countries by their codes.

Line 9: a 'capabilities' property is added to
ServiceDataProvider that has
a 'fetchByKeys' property object. See next section
for details.

• 'implementation' property is set
to "lookup"

• 'multiKeyLookup' property set to "no"

Line 15: the 'mergeTransformOptions' property
is set to a page function.

• this is needed so page author can map the
keys set programmatically to be turned into
the query parameters '?codes='

Note:

 Normally fetchByKeys() is called
by a JET component
programmatically with one or more
keys.

• When keys are provided programmatically,
ServiceDataProvider will use a best-guess
heuristic to map keys to the appropriate
transform options. But when this is not easily
decipherable by ServiceDataProvider, page
authors can use
a 'mergeTransformOptions' property that
maps to a function, to fix up the list of the
'query' options. This function will be passed in
all the info it needs to merge the final
transform options.

Note:

 In this example the keys need to
map to the codes uriParameters,
and such a mapping cannot be
represented in the page model
using an expression.

• When no keys are provided,
ServiceDataProvider will throw an error.

Chapter 1
Variables

1-52

Configuration Description

1 /**
2 * fix up the query transform
options.
3 * When the fetchByKeys
capability is set, the 'keys'
provided via the fetch call
4 * can be be looked up via
configuration.fetchParameters.
5 * This can be used to set a
'codes' property on the 'query'
transform options
6 * whose value is the keys
provided via a fetch call.
7 *
8 * @param configuration a map of
3 key values, The keys are
9 * - fetchParameters:
parameters passed to a fetch call
10 * - capability: 'fetchByKeys'
| 'fetchFirst' | 'fetchByOffset'
11 * - context: the context of
the SDP when the fetch was initiated.
12 *
13 * @param transformOptions a map
of key values, where the keys are the
14 * names of the transform
functions.
15 * @returns {*}
16 */
17
PageModule.prototype.fixupTransformOp
tions =
18 function (configuration,
transformOptions) {
19 var c = configuration;
20 var to = transformOptions;
21 var fbkCap = !!(c &&
c.capability === 'fetchByKeys');
22 var keysToFetch = fbkCap ?
23 (c &&
c.fetchParameters &&
c.fetchParameters.keys) : null
24
25 if (fbkCap && keysToFetch &&
keysToFetch.length > 0) {
26 // join keys
27 var keysToFetchStr =
keysToFetch.join(';');
28 to = to || {};
29 to.query = to.query || {};

Line 17: function that fixes up the transform
options that will be sent to the transform functions.

Line 33: set a new 'codes' query parameter,
whose value is a ';' separated list of country alpha
codes.

Chapter 1
Variables

1-53

Configuration Description

30
31 // ignore codes set on the
query options and instead use ones
passed in
32 // by fetchByKeys call
33 to.query.codes =
keysToFetchStr;
34 }
35
36 return to;
37 };

Configuring a JET Combo/Select at Design Time

To configure a list-of-values field that uses the above, the design time needs to create
three variables:

• One vb/MultiServiceDataProvider variable

• Two vb/ServiceDataProvider variables

The MultiServiceDataProvider variables are bound to the combo/select components as
follows.

• Line 2 points to a variable of type vb/MultiServiceDataProvider.

1 <oj-combobox-one
id="so11" value="{{ $variables.selectedActivities }}"
2 options="[[$variables.countriesMultiSDP]]"
3 options-keys.label='[["name"]]'
4 options-keys.value='[["alpha3Code"]]'
5 </oj-combobox-one>

A distinct vb/ServiceDataProvider variable is needed for each unique service/endpoint.
Often authors want to provide different default filterCriterion, sortCriteria or uriParams,
or even write different transforms for each capability. Isolating each capability to a
unique ServiceDataProvider variable allows for this separation.

Any individual vb/ServiceDataProvider variables might externalize its fetch, or allow an
actionChain to assign values to its properties directly via expressions. They can also
allow a fireDataProviderEventAction to reference the Service Data Provider variable
directly. First class variables are the easiest way to give page authors access.

Usage: When a service provides unique endpoints for different fetch
capabilities, but the fetchByKeys endpoint only supports a single-key-based
lookup

In this use case, the service supports a fetchFirst capability that fetches all rows, and a
fetchByKeys capability that returns a single row by its key. There is no endpoint that
can return rows by multiple keys.

To understand this usecase further let's take the example of the sample ifixitfast
service - and the incidents endpoints that is used to get information about incidents.

Chapter 1
Variables

1-54

• fetchFirst capability: to get a list of all incidents for the selected technician,

– service/endpoint: fixitfast-service/getIncidents
– GET https://.../ifixitfaster/api/incidents?technician=hcr

• fetchByKeys capability (with single key lookup): to get a single incident it its 'id'

– service/endpoint: fixitfast-service/getIncident
– GET https://.../ifixitfaster/api/incidents/inc-101

In order for the list-of-values component to use the above endpoints, the design time will
need to create three variables:

• One vb/MultiServiceDataProvider variable that references two ServiceDataProvider
variables, one for each fetch capability

• Two vb/ServiceDataProvider variables

vb/MultiServiceDataProvider Variable Configuration

The configuration for the vb/MultiServiceDataProvider variable is similar to the previous
examples.

1 {
2 "variables": {
3 "countriesMultiSDP": {
4 "type": "vb/MultiServiceDataProvider",
5 "defaultValue": {
6 "dataProviders": {
7 "fetchFirst": "{{ $page.variables.allIncidentsSDP }}"
8 "fetchByKeys": "{{ $page.variables.incidentBySingleKeySDP }}"
9 }
10 }
11 }
12 }
13 }

vb/ServiceDataProvider Variables Configuration

For the previous use case, the referenced ServiceDataProvider variables will be configured
as follows.

Chapter 1
Variables

1-55

Configuration Description

some-page.json

1 {
2 "variables": {
3 "allIncidentsSDP": {
4 "type": "vb/
ServiceDataProvider",
5 "defaultValue": {
6
"endpoint": "fixitfast-service/
getAllIncidents",
7
"keyAttributes": "id",
8
"itemsPath": "result",
9 "uriParameters": {
10
"technician": "{{ $application.use
r.userId }}"
11 }
12 }
13 },
14
"incidentBySingleKeySDP": {...}
15 }
16 }

• Line 3: defines the ServiceDataProvider
variable with the fetchFirst capability.

• Line 6: defines the endpoint that uses the
getAllIncidents operation to fetch all
incidents.

Chapter 1
Variables

1-56

Configuration Description

1 {
2 "variables": {
3 "allIncidentsSDP": {...},
4 "incidentBySingleKeySDP": {
5 "type": "vb/
ServiceDataProvider",
6 "defaultValue": {
7 "endpoint": "fixitfast-
service/getIncident",
8 "keyAttributes": "id",
9 "uriParameters": {
10 "id":
"{{ $variables.incidentId }}"
11 }
12 "capabilities": {
13 "fetchByKeys": {
14 "implementation":
"lookup",
15 "multiKeyLookup" :
'no'
16 }
17 }
18 }
19 }
20 }

Line 4: defines the ServiceDataProvider
variable with the fetchByKeys capability. The
ServiceDataProvider variable is configured for
an implicit fetch.

Line 7: uses the getIncident operation to fetch
a single incident by its id.

Line 9: maps the 'id' key in
the 'uriParameters'.

• At runtime the 'id' key value is substituted
in the path parameter of the URL.

• For example, if the 'id' value
is "inc-101", the request URL goes
from https://.../incidents/{id}
→ http://.../incidents/inc-101

Line 12: a new 'capabilities' property is
added to ServiceDataProvider that has
a 'fetchByKeys' key object.

• The 'implementation' property is set
to "lookup".

• The 'multiKeyLookup' property is set
to "no", as the endpoint only supports
lookup using a single key at a time.

Notice that
a 'mergeTransformOptions' property is not
set.

• This is because Service Data Provider
uses a simple heuristic to map the 'keys'
provided programmatically to the 'id' sub-
property of the 'uriParameters'.

– It can do this because
ServiceDataProvider sees that the
keyAttributes value "id" is the same
attribute key set
on 'uriParameters'.

– Also, this is only possible when
ServiceDataProvider is configured to
use implicit fetch (that is, it does not
use an external action chain to do a
fetch).

• In some cases the ServiceDataProvider
cannot easily decipher the mapping (as
seen in the previous example), and this is
when page authors can use
a 'mergeTransformOptions' property to
map the keys to the right transform
options.

• When multiple keys are provided by the
caller, ServiceDataProvider as an
optimization calls the single endpoint a
single key at a time, assembles the result,
and returns this to caller.

Chapter 1
Variables

1-57

Configuration Description

1 {
2 "variables": {
3 "allIncidentsSDP": {...},
4
"incidentBySingleKeySDP_External":
 {
5 "type": "vb/
ServiceDataProvider",
6 "defaultValue": {
7 "fetchChainId":
"fetchSingleIncidentChain",
8 "keyAttributes": "id",
9
"mergeTransformOptions":
"{{ $page.functions.fixupTransform
Options }}",
10 "capabilities": {
11 "fetchByKeys": {
12 "implementation":
"lookup",
13 "multiKeyLookup":
"no"
14 }
15 }
16 }
17 },
18 "chains": {}
19 }

Line 4: defines the ServiceDataProvider
variable with a fetchByKeys capability.

• The Service Data Provider variable uses
an action chain to fetch data. See the next
section for the action chain configuration.

Line 9: sets a mergeTransformOptions
function.

• This function is used by the page author
to fix up the 'query' transform options to
use the key passed in via the fetch call.

Chapter 1
Variables

1-58

Configuration Description

/**
 * Process the transform options.
 * When ServiceDataProvider uses
external fetch chain, it doesn't
 * have all the information to
build the final transform options
 * to use with the transform
functions. In such cases the page
 * author can use this method to
build the final list of options.
 * Replaces id set via
configuration with the value
passed in by caller.
 *
 * @param configuration an Object
with the following properties
 * - capability: 'fetchByKeys'
| 'fetchFirst' | 'fetchByOffset'
 * - fetchParameters:
parameters passed to the fetch
call
 * - context: the context of
the Service Data Provider
variable at
 * the time the
fetch call was made
 *
 * @param transformOptions a map
of key values, where the keys are
the
 * names of the transform
functions.
 *
 * @returns {*} the
transformOptions either the same
one passed in or
 * the final fixed up transform
options
 */
PageModule.prototype.fixupTransfor
mOptions = function
(configuration, transformOptions)
{
 var c = configuration;
 var to = transformOptions || {};
 var fetchByKeys = !!(c &&
c.capability === 'fetchByKeys');

 if (fetchByKeys) {
 var key =

mergeTransformOptions function

Chapter 1
Variables

1-59

Configuration Description

c.fetchParameters.keys[0];
 if (key &&
 (!to.query || (to.query
&& to.query.id !==
c.fetchParameters.keys[0]))) {
 to.query = to.query || {};
 to.query.id = key;
 }
 }
 return to;
};

Chapter 1
Variables

1-60

Configuration Description

1 {
2 "variables": {},
3 "chains": {
4
"fetchSingleIncidentChain": {
5 "variables": {
6 "configuration": {
7 "type": {
8 "hookHandler": "vb/
RestHookHandler"
9 },
10 "description": "the
configuration for the rest
action",
11 "input":
"fromCaller",
12 "required": true
13 },
14 "uriParameters": {
15 "type": "object",
16 "defaultValue": {
17 "id":
"{{ $page.variables.incidentId }}"
18 }
19 }
20 },
21 "root":
"fetchSingleIncidentAction",
22 "actions": {
23
"fetchSingleIncidentAction": {
24 "module": "vb/action/
builtin/restAction",
25 "parameters": {
26 "endpoint":
"fixitfast-service/getIncident",
27 "hookHandler":
"{{ $variables.configuration.hookH
andler }}",
28 "uriParams":
"{{ $variables.uriParameters }}",
29 "responseType":
"flow:incident",
30
"requestTransformFunctions": {
31 "query":
"{{ $page.functions.queryIncidentB
yId }}"
32 }
33 },

The external fetch action chain is configured
as follows.

Line 4: the action chain used by the
ServiceDataProvider.

Line 23: the RestAction, the chain calls to fetch
a single incident by id.

Line 28: the 'uriParams' property of the
RestAction is set to the page variable
"incidentId".

• The value of the "incidentId" variable
might be different from what the caller
passes in.

• The mergeTransformOptions function
above builds the query options containing
the final id value.

Line 31: the requestTransformFunction.query
maps to a query transform function that
substitutes the endpoint URL with the final id
value.

Chapter 1
Variables

1-61

Configuration Description

34 "outcomes": {
35 "success":
"returnIncidentResponse",
36 "failure":
"returnFailureResponse"
37 }
38 },
39 }
40 }
41 }
42 }

/**
 * query transform function that
takes the id provided in the
options
 * and expands the URL.
 * @param configuration
 * @param options
 * @returns {*}
 */
PageModule.prototype.queryIncident
ById = function (configuration,
options) {
 const c = configuration;
 if (options && options.id) {
 var result =
URI.expand(c.endpointDefinition.ur
l, { id: options.id });
 var newUrl =
result.toString();
 if (newUrl !== c.url) {
 console.log(`typesDemo
sample: replacing ${c.url} with $
{newUrl}`);
 }
 c.url = newUrl;
 }
 return c;
};

Query transform function

Usage: When the same endpoint supports multiple fetch capabilities

Most list-of-value objects fall into this category. For example, to fetch both a list of
territories and to fetch a subset of territories by their ids, the same endpoint is used:

• fetchFirst capability:

– service/endpoint: fa-crm-service/getTerritories

Chapter 1
Variables

1-62

– GET /fndTerritories?finder=EnabledFlagFinder;BindEnabledFlag=Y

• fetchByKeys capability:

– GET /fndTerritories?
finder=EnabledFlagFinder;BindEnabledFlag=Y&q=TerritoryCode IN ('AE', 'AD',
'US')

In this case, a single ServiceDataProvider variable of type vb/ServiceDataProvider that
multiplexes different fetch capabilities is the recommended approach. The
ServiceDataProvider variable can then be used to bind to the list-of-values component.

Note:

It is recommended that service authors ensure that the service is configured to use
the default business object REST API transforms.

vb/ServiceDataProvider Variables Configuration

The data returned by the service endpoint will look something like this:

{
 "items": [
 {
 "TerritoryCode": "AE",
 "AlternateTerritoryCode": "ar-AE",
 "TerritoryShortName": "United Arab Emirates",
 "CurrencyCode": "AED"
 },
 ...
],
 "count": 25,
 "hasMore": false,
 "limit": 25,
 "offset": 0,
}

The ServiceDataProvider variables for the fetchFirst and fetchByKeys capabilities will be
configured as follows

Chapter 1
Variables

1-63

sample-page.html Description

"territoriesSDPVar": {
 "type": "vb/
ServiceDataProvider",
 "defaultValue: {
 "endpoint": "fa-crm-service/
getTerritories",
 "keyAttributes":
"TerritoryCode",
 "itemsPath": "items",
 "uriParameters": {
 "finder":
"EnabledFlagFinder;BindEnabledFlag
=Y"
 }
 }
}

A finder query parameter is applied to all
queries going against the endpoint.

When no capabilities are set, the
ServiceDataProvider variable is assumed to
support a fetchFirst capability

Configuring a JET Select-Single in Design Time

• Line 1: the value is bound to a variable that is an array of selected TerritoryCode
keys.

• Line 2: the data attribute is bound to the ServiceDataProvider variable.

1 <oj-select-single id="so11"
value="{{ $variables.selectedTerritories }}"
2 data="[[$variables.territoriesSDPVar]]"
3 item-text='[["TerritoryShortName"]]'
4 </oj-select-single>

Usage: When a service provides a fetchByKeys capability, and
DataProvider.containsKeys is called

The containsKeys() method can be called by components bound to a
ServiceDataProvider variable that supports the 'fetchByKeys' capability. The default
implementation of containsKeys() will call fetchByKeys() and return a
oj.ContainsKeysResult object, as defined by the JET DataProvider contract. This
implementation addresses the most common usecase.

MultiServiceDataProviderFactory
Some times it's desirable to create a standalone VB type instance programmatically by
passing an initial state. In this case, the instance is not backed by a variable, that is, its
state is not stored in redux. Instead the instance and/or the caller manages its state
essentially. For such cases VB publishes a contract for a TypeFactory that any type
author can use. See Custom Extended Types.

The TypeFactory contract is provided in the vb/types/factories/typeFactory.js. VB
provides TypeFactory implementations for creating a ServiceDataProvider instance.

Chapter 1
Variables

1-64

Refer to the MultiServiceDataProviderFactory for details. (vb/types/factories/
multiServiceDataProviderFactory.js)

Methods

createInstance

Returns an instance of the MultiServiceDataProvider. Refer to the JSDocs for the parameters
supported on this method. The instance returned supports all methods from the DataProvider
contract.

• options. The object used to instantiate the ServiceDataProvider usually contains these
properties:

– dataProviderOptions. This is its initial or 'default' state.

* state properties are similar to the properties of a regular
MultiServiceDataProvider variable

• serviceOptions. This optional configuration is needed by the RestHelper to locate the
endpoint details.

• – vbContext. This optional configuration is needed by the RestHelpers to locate the
service of an endpoint. Typically this object should be obtained from a Visual Builder
API or via a callback mechanism.
If not available, clients should pass in an object with a string property 'extensionId'.
The property's value is the id of the extension executing this code (for example, the id
of the extension that contains the action chain using the MultiServiceDataProvider).

Here is an example of how a caller can create an instance

Example 1-7 Create SDP

// create SDP
ServiceDataProviderFactory.createInstance({ dataProviderOptions: { endpoint:
"foo/getBars", responseType: "barType[]", keyAttributes: "id"} })
 .then((sdpInstance) => {
 // use SDP to create MDP instance
 MultiDataProviderFactory.createInstance({ dataProviderOptions:
{ dataProviders: { fetchFirst: sdpInstance } } })
 .then((mdpInstance) => {
 const iter = mdpInstance.fetchFirst();
 iter.next().then((results) => {
 // process results
 });
 });
 });

Array Data Provider 2
Like the legacy Array Data Provider, the built-in Array Data Provider 2 can be bound to
collection components.

Like ArrayDataProvider, this built-in type is a data provider implementation where the data is
available as an array. All the data is set once, and the data itself can fetched from a backend
service (say a list of countries), but it is assumed that array once created is static, that is,
data changes infrequently or has limited and infrequent adds, updates and removes done to
it.

Chapter 1
Variables

1-65

The vb/ArrayDataProvider2 can be bound to collection components such as listView
and table components. Operations on the data, such as sorts, adds, removes, and
updates, are managed by the vb/ArrayDataProvider2 itself. This is different from the
vb/ServiceDataProvider, where all operations generally are processed in the back end
via REST calls.

ArrayDataProvider2 behaves differently from the legacy ArrayDataProvider in the
following ways:

• Writes to individual properties of the ArrayDataProvider2.data are NOT allowed,
and users will see an error when this occurs. Usually this happens when
components use writable binding expressions that write directly to properties
within individual data (array) items.

• ArrayDataProvider2 SUPPORTS using the fireDataProviderEventAction to mutate
data, in addition to the assignVariablesAction.

• ArrayDataProvider2 tracks mutations to data made using
fireDataProviderEventAction and notifies listeners (that is, components) of just the
changes. This has the benefit of only updating the necessary parts of the UI.

A variable of this type is generally defined on the page, using the built-in type vb/
ArrayDataProvider2.

{

 "variables": {
 "productListADPA": {
 "type": "vb/ArrayDataProvider2",
 "defaultValue": {
 "itemType": "application:productSummary",
 "keyAttributes": "id"
 }
 }
 }
 ...

ArrayDataProvider2 has several properties available.

data

The static array of data that the ArrayDataProvider2 wraps. The data property is set
once when the page loads. The implicitSort criteria that the data is pre-sorted with is
also set once the page loads.

keyAttributes

A string or array of string field names that represent the primary key for each row. Can
be one of:

• a field name - the key value is a primitive or whatever the field value represents.

• an array of field names - the key will also be an array of values. For example, for
keyAttributes: ['id'], when data is [{id: 'ie', name: "IE"}, {id: 'chrome', name:
"Chrome"}], the corresponding keys will be [['ie'], ['chrome']]

• @value, use all properties - the key will also be an array of all values.

• @index, use the index as the key - the key will be an integer.

Chapter 1
Variables

1-66

implicitSort

The implicit sort criteria by which the data is pre-sorted. This is an array of objects, where
each object is an atomic sort expression of the form:

{
 "attribute": "<name of the field>",
 "direction": "<'ascending' (default) or 'descending'>"
}

itemType

The type of each item in the data array. This is usually a string that points to an application
type or to a definition.

sortComparators

An optional object with a 'comparators' property that is either an array of arrays where each
inner array has 2 items - name of the attribute that the sortCriteria applies to, and a
comparator function callback that is used by ADP to sort the attribute (column), or is a Map of
attribute to comparator function. This API is similar to the JET SortComparator API.

Here are some examples of configuration for array or arrays.

"sortComparators": {
 "comparators": [
 [
 "Category", "{{ $page.functions.alphaSort }}"
],
 [
 "Product", "{{ $page.functions.alphaSort }}"
]
]
}

Using a Map:

sortComparators: {
 comparators: "{{ new Map([['name', $page.functions.alphaSort]]) }}",
}

The comparator function will look like this:

var alphaSort = function (a, b) {
 return a.localeCompare(b);
}

textFilterAttributes

An array of attributes to filter on. See the JET documentation for ArrayDataProvider
textFilterAttributes.

"customerListADP": {
 "type": "vb/ArrayDataProvider2",

Chapter 1
Variables

1-67

 "defaultValue": {
 "keyAttributes": "id",
 "itemType": "flow:customer",
 "textFilterAttributes": [
 "lastName", "firstName"
]
 }
}

Features and Capabilities

ArrayDataProvider2 supports the same capabilities as the legacy ArrayDataProvider:

sort

• {capabilityName: 'full', attributes: 'multiple} means the endpoint has
support for sorting results by one or more fields.

• null means the endpoint has no support for sorting.

Data Mutation and Refresh Events

vb/ArrayDataProvider2 notifies components when the underlying data mutates or is
changed in a way that requires a refresh. The events currently supported by any
iterating data providers are the 'mutate' ('add', 'remove' and 'update') event and
'refresh'. See Assigning Data for details.

Variable Events

All variables including vb/ArrayDataProvider2 raise the variable onValueChanged
event when any of its properties change. ArrayDataProvider2 in particular will detect
which of its data has changed, and will automatically notify subscribers of just the
change (these are typically components that are bound to the ArrayDataProvider2
variable and have registered a listener).

Assigning Data

The data property of the vb/ArrayDataProvider2 variable is set once, when the page or
component loads. The implicitSort criteria that the data is pre-sorted with is also set
once the page or component loads.

After the initial load, a page author can mutate the data either by directly manipulating
the data array using the 'assignVariablesAction' action or by using the
'fireDataProviderEventAction'.

Using a fireDataProviderEventAction, authors can mutate data property, and also
notify components in one shot. When the mutation events 'add', 'remove' and 'update'
are called the vb/ArrayDataProvider2 implementation will automatically mutate the
underlying data, so users are not required to mutate the ArrayDataProvider2.data prior
to raising this event, say, using an assignVariablesAction. This is a convenience
offered only by the vb/ArrayDataProvider2 implementation, not by vb/
ArrayDataProvider. See Fire Data Provider Event Action for details.

Often the mutation to the data is triggered by the UI or some other app logic, which
might require the use of assignVariablesAction. This is another way to update the
ArrayDataProvider2.data, in which case It's not required to use the
fireDataProviderEventAction. See Assign Variables Action for details.

Chapter 1
Variables

1-68

Note:

ADP data in a JSON file needs to be assigned a valid JSON value. ADP data that is
assigned a value from the result of a previous action (for example, a call module
action or REST action), must also be valid JSON. When a non-JSON value (such
as JavaScript values like NaN or Infinity) is provided, you should choose the correct
JSON value that should be used and then replace it. For example, the JavaScript
value "NaN" can be replace by "0", which is an accepted JSON value.

Example 1-8 Where the data is literally inlined

In this example, the ArrayDataProvider2 variable productsADPB has its initial data inlined.

"variables": {
 "productsADPB": {
 "type": "vb/ArrayDataProvider2",
 "description": "mutations are done on 'data' property using
assignVariables",
 "defaultValue": {
 "itemType": "ProductType",
 "keyAttributes": "id",
 "data": [{
 "Amount": 30,
 "CurrencyCode": "USD",
 "Quantity": 3,
 "RegisteredPrice": 30,
 "Type": "Literal",
 "Product": "Product-Literal",
 "id": 30
 }]
 }
 }
}

To remove an item from the above ArrayDataProvider2 data you can use an
assignVariablesAction.

• Line 16: filters the data array of productsADPB by removing the item with the matching
key

1 "removeProductsADPB": {
2 "root": "removeFromProductsADPB",
3 "description": "",
4 "variables": {
5 "key": {
6 "type": "number",
7 "required": true,
8 "input": "fromCaller"
9 }
10 },
11 "actions": {
12 "removeFromProductsADPB": {

Chapter 1
Variables

1-69

13 "module": "vb/action/builtin/assignVariablesAction",
14 "description": "splice returns the removed item, so filter is
used instead, which mutates and returns the original array",
15 "parameters": {
16 "$page.variables.productsADPB.data": {
17 "source":
"{{ $page.variables.productsADPB.data.filter((p) => p.id !
== $chain.variables.key) }}",
18 "reset": "empty",
19 "auto": "always"
20 }
21 }
22 }
23 }
24 }

When the data is inlined or is assigned from a vbEnter action chain, you can add or
update items to the array using the assignVariablesAction.

• Line 1: shows an example action where the product is updated directly

• Line 12: shows an example action where the new product is added to the tail end
of the data array

1 "updateProductsADPB": {
2 "module": "vb/action/builtin/assignVariablesAction",
3 "description": "directly updating ADP2.data item is possible when
data has no expression",
4 "parameters": {
5
"$page.variables.productsADPB.data[$page.variables.productsADPB.data.fi
ndIndex(p => p.id === $chain.variables.key)]": {
6 "source": "{{ $chain.variables.product }}",
7 "auto": "always",
8 "reset": "empty"
9 }
10 }
11 }
12 "addToProductsADPBTail": {
13 "module": "vb/action/builtin/assignVariablesAction",
14 "parameters": {
15
"$page.variables.productsADPB.data[$page.variables.productsADPB.data.le
ngth]": {
16 "source": "{{ $chain.results.generateNewProduct }}"
17 }
18 }
19 }

Chapter 1
Variables

1-70

Example 1-9 Where the productsADPC is updated via a fireDataProviderEventAction

In this example, productsADPC has its data coming from another variable.

"productsADPC": {
 "type": "vb/ArrayDataProvider2",
 "description": "mutations on data can be done on the referenced 'products'
or on "
 + "the 'data' property directly. The latter will disconnect the
reference",
 "defaultValue": {
 "data": "{{ $page.variables.products }}",
 "itemType": "ProductType",
 "keyAttributes": "id"
 }
}

To update a specific product, you can use the fireDataProviderEventAction to set the target,
data and keys properties.

• Line 28: set the event payload using the fireDataProviderEventAction

1 "updateProductsADPC": {
2 "root": "updateProduct",
3 "description": "updates productsADPC using data provider mutation
event",
4 "variables": {
5 "product": {
6 "type": "page:ProductType",
7 "required": false,
8 "input": "fromCaller"
9 }
10 },
11 "actions": {
12 "updateProduct": {
13 "module": "vb/action/builtin/assignVariablesAction",
14 "parameters": {
15 "$chain.variables.product": {
16 "source": {
17 "Amount": "{{ $chain.variables.product.Amount *
(1+Math.floor(Math.random() * Math.floor(5))) }}",
18 "Quantity": "{{ $chain.variables.product.Quantity *
(1+Math.floor(Math.random() * Math.floor(5))) }}"
19 },
20 "reset": "none",
21 "auto": "always"
22 }
23 },
24 "outcomes": {
25 "success": "fireEventProductsADPC"
26 }
27 },
28 "fireEventProductsADPC": {
29 "module": "vb/action/builtin/fireDataProviderEventAction",
30 "parameters": {

Chapter 1
Variables

1-71

31 "target": "{{ $page.variables.productsADPC }}",
32 "update": {
33 "keys": "{{ [$chain.variables.product.id] }}",
34 "data": "{{ [$chain.variables.product] }}"
35 }
36 }
37 }
38 }
39 },

Array Data Provider (Legacy)
The built-in legacy array data provider could be bound to collection components in
previous versions. It should not be used in new applications.

This legacy built-in type is a data provider implementation based on the JET
oj.ArrayDataProvider implementation, where the data is static. A static source of data
can be fetched from a backend service, but it is assumed that it does not change
frequently and only allows infrequent adds/updates and removes. This data provider
can be bound to collection components such as listView and table components.
Operations on the data, such as sorts, adds, removes, or updates are managed by the
vb/ArrayDataProvider itself. This is different from the vb/ServiceDataProvider, where
all operations generally are processed in the back end via REST calls.

New applications should use vb/ArrayDataProvider2.

The ArrayDataProvider behaves as follows:

• Writes to individual properties of the ArrayDataProvider.data are allowed. Usually
this happens when components use writable binding expressions that write directly
to properties within individual data (array) items.

Note:

It's important to remember that when you use a writable binding
expression, the component writes the new value to the bound ADP.data
property. This causes the ADP variable to change and the table or
listview component bound to the ADP variable to refresh. If this behavior
is not desired, use vb/ArrayDataProvider2 and the proper editable table /
list-view patterns. (The recommended patterns are documented in the
Oracle blogs.)

• ArrayDataProvider does not support using the fireDataProviderEventAction to
mutate data. Instead, use the assignVariablesAction.

A variable of this type is generally defined on the page, using the built-in type vb/
ArrayDataProvider.

{

 "variables": {
 "productListADPD": {
 "type": "vb/ArrayDataProvider",
 "defaultValue": {

Chapter 1
Variables

1-72

 "itemType": "application:productSummary"
 }
 }
 }
 ...

The ArrayDataProvider has several properties available.

data

The static array of data that the ArrayData Provider wraps. The data property is set once
when the page or component loads. The implicitSort criteria that the data is pre-sorted with is
also set once the page or component loads.

idAttribute

A string or array of string field names that represent the primary key for each row.
Deprecated: use keyAttributes instead.

keyAttributes

A string or array of string field names that represent the primary key for each row.

• a field name - the key value is a primitive or whatever the field value represents.

• an array of field names - the key will also be an array of values.

• @value, use all properties - the key will also be an array of all values.

• @index, use the index as the key - the key will be an integer.

implicitSort

The implicit sort criteria by which the data is pre-sorted. This is an array of objects, where
each object is an atomic sort expression of the form:

{
 "attribute": "<name of the field>",
 "direction": "<'ascending' (default) or 'descending'>"
}

itemType

The type of each item in the data array. This is usually a string that points to an application
type or to a definition.

Features and Capabilities

The ArrayDataProvider provides a sort feature:

• {capabilityName: 'full', attributes: 'multiple} means the endpoint has support
for sorting results by one or more fields.

• null means the endpoint has no support for sorting.

Data Mutation and Refresh Events

vb/ArrayDataProvider notifies components when the underlying data mutates or is changed in
a way that requires a refresh. The only way to mutate ArrayDataProvider data is via the
'assignVariablesAction' event. The 'fireDataProviderEventAction' is a no-op when it comes to
updating the data property but can be used to notify just the listeners of the

Chapter 1
Variables

1-73

ArrayDataProvider (components) of the change. But the latter is not needed when
assignVariablesAction is used, because it does both.

Variable Events

All variables including vb/ArrayDataProvider raise the variable onValueChanged event
when any of its properties change. ArrayDataProvider in particular will detect which of
its data has changed, and will automatically notify subscribers of just the change
(these are typically components that are bound to the ArrayDataProvider variable and
have registered a listener).

Assigning Data

The data property of the vb/ArrayDataProvider variable is set once, when the page or
component loads. The implicitSort criteria that the data is pre-sorted with is also set
once the page or component loads.

After the initial load, a page author can mutate the data by directly manipulating the
data array using the assignVariablesAction action. Typically, the mutation to the data is
triggered by the UI or some other application logic. In either circumstance, the
ArrayDataProvider data needs to be manually updated. When the data property
mutates, ArrayDataProvider automatically detects the change and notifies all listeners/
components of the change, so that they can re-render. If the data is mutated directly,
it's not required to use the fireDataProviderEvent action with the ArrayDataProvider.

Example 1-10 Where the data refers to a constant

Here the ArrayDataProvider variable productADPE gets its initial data from a constant,
productsConstant. The ArrayDataProvider data array is initialized with one item.

"constants": {
 "productsConstant": {
 "type": "ProductType[]",
 "defaultValue": [{
 "Amount": 10,
 "CurrencyCode": "USD",
 "Quantity": 1,
 "RegisteredPrice": 10,
 "Type": "Constant",
 "Product": "Product-C1",
 "id": 10
 }]
 }
},
"productsADPE": {
 "type": "vb/ArrayDataProvider",
 "description": "mutations on data have to be done directly to the
'data' property",
 "defaultValue": {
 "data": "{{ $page.constants.productsConstant }}",
 "itemType": "ProductType",
 "keyAttributes": "id"
 }
},

In order to add a new item to the above ArrayDataProvider data you can use an
assignVariablesAction:

Chapter 1
Variables

1-74

• Line 12: action that generates a new product item

• Line 22: assigns a new array with the new item appended to the existing data

It is currently not possible to add to a specific index of the array using assignVariablesAction,
when the array references a constants expression.

 1 "addProductsADPE": {
 2 "description": "adds the generated product to the end",
 3 "variables": {
 4 "detail": {
 5 "required": true,
 6 "type": "any",
 7 "input": "fromCaller"
 8 }
 9 },
10 "root": "generateNewProduct",
11 "actions": {
12 "generateNewProduct": {
13 "module": "vb/action/builtin/callModuleFunctionAction",
14 "parameters": {
15 "module": "{{ $page.functions }}",
16 "functionName": "generateNewProduct"
17 },
18 "outcomes": {
19 "success": "assignToADPData"
20 }
21 },
22 "assignToADPData": {
23 "module": "vb/action/builtin/assignVariablesAction",
24 "parameters": {
25 "$page.variables.productsADPE.data": {
26 "source":
"{{ $page.variables.productsADPE.data.concat([$chain.results.generateNewProdu
ct]) }}",
27 "reset": "empty"
28 }
29 }
30 }
31 }
32 }

Example 1-11 Where the data refers to another variable

In this example the ArrayDataProvider variable productADPF gets its initial data from the
variable products. The ArrayDataProvider data array is initialized with one item.

"variables": {
 "products": {
 "type": "ProductType[]",
 "defaultValue": [{
 "Amount": 20,
 "CurrencyCode": "USD",
 "Quantity": 2,
 "RegisteredPrice": 20,

Chapter 1
Variables

1-75

 "Type": "Variable",
 "Product": "Product-V1",
 "id": 20
 }]
 },
 "productsADPF": {
 "type": "vb/ArrayDataProvider",
 "description": "mutations on data can be done on the referenced
'products' or "
 + "on the 'data' property directly. The latter will disconnect
the reference",
 "defaultValue": {
 "data": "{{ $page.variables.products }}",
 "itemType": "ProductType",
 "keyAttributes": "id"
 }
 },

In order to update an item of the above ArrayDataProvider data, you can use an
assignVariablesAction:

• Line 5: the action chain gets the updated product item

• Line 22: assign a new array to productsADPF with the updated product

 1 "updateProductsADPF": {
 2 "root": "assignToADPData",
 3 "description": "",
 4 "variables": {
 5 "updatedProduct": {
 6 "type": "page:ProductType",
 7 "required": true,
 8 "input": "fromCaller"
 9 },
10 "key": {
11 "type": "number",
12 "required": true,
13 "input": "fromCaller"
14 }
15 },
16 "actions": {
17 "assignToADPData": {
18 "module": "vb/action/builtin/assignVariablesAction",
19 "description": "assigning to specific item in ADP.data is not
possible, so we replace entire array",
20 "parameters": {
21 "$page.variables.productsADPF.data": {
22 "source": "{{ $page.variables.productsADPF.data.map(p =>
(p.id === $chain.variables.key ? $chain.variables.updatedProduct :
p)) }}",
23 "reset": "empty"
24 }
25 }
26 }

Chapter 1
Variables

1-76

27 }
28}

Example 1-12 Where the data is literally inlined

In this example the ArrayDataProvider variable productADPG has its initial data inlined.

"variables": {
 "productsADPG": {
 "type": "vb/ArrayDataProvider",
 "description": "any mutations are done on 'data' property directly",
 "defaultValue": {
 "itemType": "ProductType",
 "keyAttributes": "id",
 "data": [{
 "Amount": 30,
 "CurrencyCode": "USD",
 "Quantity": 3,
 "RegisteredPrice": 30,
 "Type": "Literal",
 "Product": "Product-Literal",
 "id": 30
 }]
 }
 }
}

In order to remove an item from the above ArrayDataProvider data you can use an
assignVariablesAction. Line 16 filters the data array of productsADPG by removing the item
with the matching key.

 1 "removeProductsADPG": {
 2 "root": "removeFromProductsADPG",
 3 "description": "",
 4 "variables": {
 5 "key": {
 6 "type": "number",
 7 "required": true,
 8 "input": "fromCaller"
 9 }
10 },
11 "actions": {
12 "removeFromProductsADPG": {
13 "module": "vb/action/builtin/assignVariablesAction",
14 "description": "splice returns the removed item, so filter is used
instead, which mutates and returns the original array",
15 "parameters": {
16 "$page.variables.productsADPG.data": {
17 "source": "{{ $page.variables.productsADPG.data.filter((p) =>
p.id !== $chain.variables.key) }}",
18 "reset": "empty",
19 "auto": "always"
20 }
21 }

Chapter 1
Variables

1-77

22 }
23 }
24 }

When the data property is a literal value, to add or update items to the array it is
possible to assign to a specific item of the array:

• Line 1: shows an example action where the product is updated directly

• Line 12: shows an example action where the new product is added to the tail end
of the data array

 1 "updateProductsADPG": {
 2 "module": "vb/action/builtin/assignVariablesAction",
 3 "description": "directly updating ADP.data item is possible when
data has no expression",
 4 "parameters": {
 5
"$page.variables.productsADPG.data[$page.variables.productsADP3.data.fi
ndIndex(p => p.id === $chain.variables.key)]": {
 6 "source": "{{ $chain.variables.product }}",
 7 "auto": "always",
 8 "reset": "empty"
 9 }
10 }
11 }
12 "addToProductsADPGTail": {
13 "module": "vb/action/builtin/assignVariablesAction",
14 "parameters": {
15
"$page.variables.productsADPG.data[$page.variables.productsADPG.data.le
ngth]": {
16 "source": "{{ $chain.results.generateNewProduct }}"
17 }
18 }
19 }

Custom Extended Types
Page authors can implement a Visual Builder type class using either the Extended
Type mechanism (that extends from the vb/types/extendedType class module) or use
the Instance Factory mechanism. The latter is much simpler to use since authors can
simply plug their type into a Visual Builder variable without writing any extra JavaScript
code (which was needed with the Extended Type system).

At runtime the instance of the custom type class can automatically make use of the
redux framework to store its 'value' (state). Visual Builder variables generally have a
type that points to a class or a type definition or can be a JavaScript primitive or an
object. The Visual Builder runtime discovers built-in types and custom types by
detecting a forward slash in the type name (for example, my/ComicStripType). The
type is assumed to be a require path to a type module and loads it.

Chapter 1
Variables

1-78

An example:

"myVariable": {
 "type": "my/ComicStripType",
 "defaultValue": {}
}

Reserved Properties

value

The state of an extended type is generally referred to as its value and its default value can be
specified using the 'defaultValue' property of a variable. For example, the comicStripType
specifies its default value, an Object, by providing defaults for 'name', 'publicationType' etc.
Also note that charactersADP is a reference to a variable of type vb/ArrayDataProvider2.

The type of the value is defined via the 'getTypeDefinition' function (see below). In this
example, this would be the properties in the defaultValue object: name, publicationType,
publications, etc.

In order to make the value accessible in expressions via
'<$scope>.variables.comicStripVar.value' where $scope is $page/$flow etc., and
'comicStripVar' is the type instance of the custom type that is created, 'value' is a special
property defined on the extended type instance and for this reason, will overlay any local
'value' property defined in your implementation. For this reason, take care not to use this
property internally! Property accessors to read (see getValue() method) and write (see
setValue() method) the value are provided.

"comicStripVar": {
 "type": "vb/sample/types/comicStripType",
 "defaultValue": {
 "name": "flowPage-Calvin & Hobbes",
 "publicationType": "flowPagePublicationType",
 "publications": [
 {
 "publication": "Universal Press Syndicate",
 "volumes": 24,
 "author": "Bill Watterson",
 "title": "The Doghouse",
 "year": 1987,
 "launchDate": "1985-11-18T08:00:00.000Z"
 },
 {
 "publication": "United Feature Syndicate",
 "volumes": 250,
 "author": "Bill Watterson",
 "title": "Calvin and Hobbes",
 "year": 1990,
 "launchDate": "1990-06-01T08:00:00.000Z"
 }
],
 "charactersADP": "{{ $variables.flow1SecondComicCharactersAdpVar }}"
 }
}

Chapter 1
Variables

1-79

internalState

In addition to 'value', extended type instances are provided an 'internalState' property.
Custom types can externalize their internal state so that it can be captured in redux by
using this 'internalState' property. More specifically they can use property accessors to
read (see getInternalState() method) and write (see setInternalState() method)
the internal state are provided.

Methods

getTypeDefinition

As stated before, the type definition for the value of an extended type must be
provided via the 'getTypeDefinition' function. This method is called at the time the
type instance is created. The example below returns the type definition of the state
(value) of comicStripType. name, publicationType, publications and charactersADP
represent its state.

class ComicStripExtendedType extends ExtendedType {
 getTypeDefinition(variableDef, scopeResolver) {
 let publicationsDef = 'any';
 if (variableDef.defaultValue &&
variableDef.defaultValue.publicationType) {
 // responseType is specified in the defaultValue
 const { publicationType } = variableDef.defaultValue;

 if (typeof publicationType === 'string') {
 publicationsDef = `${publicationType}[]`;
 }
 }
 return {
 type: {
 name: 'string',
 publicationType: 'string',
 publications: TypeUtils.getType(`${this.getId()}:$
{publicationsDef}`,
 { type: publicationsDef }, scopeResolver),
 charactersADP: 'vb/ArrayDataProvider2',
 },
 resolved: true, // because we are pre-resolving type references
 };
 }
}

hoistValueObjectProperties
As a convenience, if the type of this variable as defined in 'getTypeDefinition' is
'object', all root properties of the values will be hoisted to the root variable type
instance. This allows these properties to be accessible via expressions like
'$scope.variables.theInstance.property'. If this is not desired, return false from
'hoistValueObjectProperties'.

init / activate / dispose (lifecycle methods)
A Visual Builder variable goes through various lifecycle stages. Extended type
instances will be notified of these stages via the init, activate and dispose methods.

• activate

Chapter 1
Variables

1-80

The 'activate' method is called when this and other variables in the current scope have
been created and its initial (default) values determined. This method is called right before
the 'vbEnter' event and the value of the variable, and can be a good time for types to do
other setup using the resolved value. It is important to note that at the time 'activate' is
called, any value assigned, to the extended type variable or the variables it depends on,
in the vbEnter action chains will not be available.

• dispose
The 'dispose' method is called when the current scope is being torn down and all
variables, including this variable is being disposed. This would be a good time to cleanup
state for the extended type. It is important to note that any outstanding async tasks that
are pending, would be the responsibility of the extended type to wind down gracefully.

handlePropertyValueChanged
When the value of an extended type variable changes (say via assignVariablesAction) it will
be notified of the change via this method.

invokeEvent
Additionally, custom type implementations have the ability to fire a custom event using
'invokeEvent', providing a name, payload. For example, 'comicStripUpdate' is an event fired
by the ComicStripType in the sample provided below.

getType
Custom extended types can retrieve the exploded type structure given a type definition, using
the 'getType' method.

Sample Extended Type - ComicStripType

Implementation

'use strict';
 define(['vb/types/extendedType', 'vb/types/typeUtils'], (ExtendedType,
TypeUtils) => {
 class ComicStripType extends ExtendedType {
 getTypeDefinition(variableDef, scopeResolver) {
 let publicationsDef = 'any';
 if (variableDef.defaultValue &&
variableDef.defaultValue.publicationType) {
 const { publicationType } = variableDef.defaultValue;
 if (typeof publicationType === 'string') {
 publicationsDef = `${publicationType}[]`;
 }
 }
 return {
 type: {
 name: 'string',
 publicationType: 'string',
 publications: TypeUtils.getType(`${this.getId()}:$
{publicationsDef}`,
 { type: publicationsDef }, scopeResolver),
 charactersADP: 'vb/ArrayDataProvider2',
 },
 resolved: true, // because we are pre-resolving type references
 };
 }

 activate() {

Chapter 1
Variables

1-81

 console.log('activate called on variable', this.id);
 const value = this.getValue();
 const { name } = value;
 const { publicationType } = value;
 const { publications } = value;
 const { charactersADP } = value;
 let charactersADPVValue;
 if (charactersADP) {
 charactersADPVValue = charactersADP.getValue();
 }

 const initialValue = {
 name, publications, publicationType, charactersADPVValue,
 };

 this.setInternalState('opStatus', 'not-started');
 console.log('initial evaluated value for variable', this.id,
'is', finalValue);
 }

 handlePropertyVariableChangeEvent(e) {
 if (e.name.endsWith('value')) {
 if (e.diff) {
 if (e.diff.publications) {
 // process value change here
 }
 }
 }
 }

 /**
 * a sample method provided by this type that fakes a async op and
updates the internalState
 * @returns {Promise<T>}
 */
 callAsyncMethod() {
 this.setInternalState('opStatus', 'started');
 return Promise.resolve().then(() => {
 // call some other async method; set some internalState and
fire an event
 callAnotherAsyncMethod().then((res) => {
 const result = res;
 this.setInternalState('opStatus', 'completed');
 this.invokeEvent('comicStripUpdate', { status: 'success',
result });
 });
 });
 }
 }

 return ComicStripType;
});

Chapter 1
Variables

1-82

InstanceFactory Types
vb/InstanceFactory

With an InstanceFactory type, authors can declaratively plug in any JET type or a custom
type, and use it with a special Visual Builder variable (instance factory variable). The
InstanceFactory type:

• Supports creating immutable, or re-creatable (type) classes.

• Many constructs in JET are immutable classes that are then assigned to component
properties. As a framework, Visual Builder facilitates the (re)creation of these classes,
and reassignment when the configuration of these classes change .

• The vb/InstanceFactory variable takes in the JS (type) class, as well as the parameters
to the constructor. When bound, this variable provides an 'instance' of the class (along
with the 'constructorParams').

• When the constructor parameters change, the InstanceFactory variable will automatically
create a new instance of the class.

• Like regular variables, a VB 'valueChanged' event is fired when an InstanceFactory
variable changes. The event payload will have the old and new values containing the two
properties constructorParams and instance.

• The 'constructorParams' of the variable alone will be serialized and persisted, not the
instance. If the constructorParams includes a property that references another
InstanceFactory variable, then that variable needs to be marked 'persisted', if author
wants to persist the full tree. It's preferable that authors always update the
'constructorParams', so the instance is created automatically. If the instance is updated
separately from constructorParams, the persisted state may not accurately reflect the
correct state.

Associate a type with a variable to create an instance of that type

This example shows how you can do this.

Code Description

1 "variables": {
2 "customersADP": {
3 "type" : "ojs/
ojarraydataprovider",
4 "constructorParams": []
5 }
6 },
7 "types": {
8 "ojs/ojarraydataprovider": {
9 ...
10 "constructorType": "vb/
InstanceFactory"
11 }
12 }

• Line 3: use the JET array data provider type
ojs/ojarraydataprovider. This module is
automatically loaded when the variable is
created, because a require mapping for ojs
already exists.
– you must use a '/' in its name

• Line 8: types declaration for ojs/
ojarraydataprovider

• Line 10: indicates that instance of JET ADP is
created using a vb/InstanceFactory.
– An author can use the short convention,

in which case the type name is assumed
to be the require JS module, Or use the
longer convention "vb/
InstanceFactory<ojs/
ojarraydataprovider>", if the
typename is different than the actual
require path.

Chapter 1
Variables

1-83

Specify an array of params using the 'constructorParams' property

In this example, a JET ADP takes a data array as its first param and an options Object
as its second param.

Code Description

1 "customersADP": {
2 "type" : "ojs/
ojarraydataprovider",
3 "constructorParams": [
4
"{{ $page.variables.customersData
}}",
5 {
6 "keyAttributes": "id",
7 "textFilterAttributes": [
8 "lastName",
9 "firstName"
10]
11 }
12]
13 }

• Line 4: customersData is the data array
• Line 5: options object

Create an instance of the type, when the variable 'customersADP' is created

The variable has two properties that are stored in redux.

instance

This holds the constructed ADP instance.

A component that wants an ADP instance can use it this way.

<oj-select-single id="ss11"
 value="{{ $variables.customerId }}"

 data="[[$variables.customersADP.instance]]"

 item-text='[[$page.functions.getItemText]]'>
</oj-select-single>

constructorParams

• the array of params passed to the constructor of the type

• the constructorParams can be used in EL expressions as well for readonly
expressions

• $variables.customersADP.constructorParams

Chapter 1
Variables

1-84

Note:

The properties defined on the instance can be mutated directly, and will be reflected
on the instance stored in redux.

The methods available on the instance can be called directly.

The properties and methods supported on the instance are assumed to be declared
by the type author using typescript or at design-time. This information is not relevant
for runtime purposes.

To change the 'constructorParams'

Variable properties can be changed in several ways.

Using assignVariables action

For an InstanceFactory variable that is defined like this:

"incidentsList": {
 "type": "vb/ServiceDataProvider2",
 "constructorParams": [
 {
 "endpoint": "demo-data-service/getIncidents",
 "keyAttributes": "id",
 "itemsPath": "result",
 "uriParameters": "{{ $variables[\"technicianURIParams\"] }}"
 }
]
},
"incidentsListView": {
 "type": "ojs/ojlistdataproviderview",
 "constructorParams": [
 "{{ $page.variables.incidentsList.instance }}", // SDP2
 {
 "sortCriteria": [
 {
 "attribute": "priority",
 "direction": "ascending"
 }
]
 }
]
}

The assignVariablesAction below adds a filterCriterion property on the constructorParams of
the JET ListDataProviderView variable. This assignment will cause the variable to create a
new instance based on the new values.

"setFilterCriterion": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$page.variables.incidentsListView.constructorParams[1]": {

Chapter 1
Variables

1-85

 "source": {
 "op": "$eq",
 "attribute": "status",
 "value": "accepted"
 },
 "mapping": {
 "$target.filterCriterion": {
 "source": "$source",
 "reset": "empty"
 }
 },
 "reset": "none"
 }
 }
}

Using resetVariables action

For an InstanceFactory variables that is defined like above, the resetVariablesAction
looks like below to reset the view variable.

"resetVariables": {
 "module": "vb/action/builtin/resetVariablesAction",
 "parameters": {
 "variables": [
 "$page.variables.incidentsListView"
]
 }
}

Using component writeback via EL bindings

Note:

This option is not supported.

Call methods on the instance using an action

You can use 'callVariableMethodAction' to call any method, including async methods.
It's important to remember that because actions in a chain are intrinsically
synchronous, a method that returns a Promise waits for the Promise to resolve before
executing the next action.

"callGetCapabilityChain": {
 "root": "getCapabilityOnLDPV",
 "actions": {
 "getCapabilityOnLDPV": {
 "module": "vb/action/builtin/callVariableMethodAction",
 "parameters": {
 "variable": "$page.variables.incidentsListView",
 "method": "getCapability",
 "params": [

Chapter 1
Variables

1-86

 "sort"
]
 }
 }
 }
}

Update the instance and constructorParams together

You can use the assignVariablesAction and a built-in function to update the instance and
constructorParams together.

In the following example, Line 6 uses a built-in utils called 'assignmentUtils' that provides an
assignValue method. This allows authors to provide both the updated instance, and the
associated constructorParams.

1 "assignInstanceAndCPToListViewVar": {
2 "module": "vb/action/builtin/assignVariablesAction",
3 "description": "update variable instance and constructorParams
declaratively",
4 "parameters": {
5 "$page.variables.incidentsListView": {
6 "module": "{{ $application.builtinUtils.assignmentUtils }}",
7 "functionName": "assignValue",
8 "params": [
9 {
10 "instance":
"{{ $chain.results.setFilterCriterion_priorityLow.instance }}",
11 "constructorParams":
"{{ $chain.results.setFilterCriterion_priorityLow.constructorParams }}"
12 }
13]
14 }
15 }
16 }

JET Dynamic UI Variable Types
These 'specific' variable types, specific to each JET metadata provider type, hide the 'factory'
detail from the declaration.

Note:

The (requireJS) prefix 'oj-dynamic' must be mapped to the root of the components/
providers. Typically, this would be done using the declarative "requirejs" syntax in
app-flow.json.

There is no "options" property; all properties are top-level "defaultValue" properties.

Chapter 1
Variables

1-87

Binding Syntax

The binding for these variables is different than typical Visual Builder variables; each of
these variables expose the JET metadata provider as a 'provider' property of the
variable.

For example, see the "metadata" attribute below:

<oj-dynamic-form id="myForm" class="oj-flex-item oj-sm-12 oj-md-12"
 value="{{$page.variables.formData}}"
 metadata="[[$page.metadata.activities.provider]]">

vb/DynamicLayoutMetadataProviderDescriptor

The following parameters are mutually exclusive:

Parameter Description

endpoint A standard Visual Builder endpoint ID, in the
form of <service ID> / <operationID>, in an
OpenAPI3 document with appropriate JSON
Schema type information.

path A path to a JSON file, which contains a (JET-
defined) JSON descriptor for the data.

"metadata": {
 "employee": {
 "type": "vb/DynamicLayoutMetadataProviderDescriptor",
 "defaultValue": {
 "endpoint": "sales/getAllSales"
 }
 },
 "department": {
 "type": "vb/DynamicLayoutMetadataProviderDescriptor",
 "defaultValue": {
 "path": "dynamicLayouts/some/path",
 "operationId": "get_Chickens",
 }
 }
}

vb/ContainerMetadataProviderDescriptor

There is no defaultValue.

"metadata": {
 "myContainerLayoutVar": {
 "type": "vb/ContainerMetadataProviderDescriptor"
 },

vb/HeterogeneousMetadataProviderDescriptor

Chapter 1
Variables

1-88

Parameter Description

discriminator The field in the data that contains the options that
can be used to determine which metadata
provider to use for each new provider.

"metadata": {
 "incidentsProvider": {
 "type": "vb/HeterogeneousMetadataProviderDescriptor",
 "defaultValue": {
 "discriminator": "discriminatorField"
 }
 }
},

vb/ServiceMetadataProviderDescriptor

Parameter Description

endpoint A standard VB endpoint ID, in the form of <service
ID> / <operationID>, in an OpenAPI3 document
with appropriate JSON Schema type information.

"metadata": {
 "employee": {
 "type": "vb/ServiceMetadataProviderDescriptor",
 "defaultValue": {
 "endpoint": "sales/getAllSales"
 }
 }
}

vb/JsonMetadataProviderDescriptor

Requires that 'oj-dynamic' prefix be (requireJS) mapped to the root of the Dynamic UI
Components.

The following parameters are mutually exclusive:

• path - path to a JSON file

• data - a (JS) object

"metadata": {
 "employee": {
 "type": "vb/JsonMetadataProviderDescriptor",
 "defaultValue": {
 "path": "path/to/some.json"
 }
 }
}

Chapter 1
Variables

1-89

Default Values
Variables (but not types) may have default values.

To specify a default value:

"nameOfVariable": {
 "type": "string",
 "defaultValue": "someString"
},
"someOtherVariable": {
 "type": "boolean",
 "defaultValue": true"
},
"yetAnotherVariable": {
 "type": "number",
 "defaultValue": 10
}

Example 1-13 Object Variables

Object variables can also have default values:

"nameOfVariable": {
 "type": {
 "foo": "string",
 "bar": "number"
 },
 "defaultValue": {
 foo: "myDefaultFoo"
 }
}

Example 1-14 Object Variables That Reference An Application Type

Object variables that reference an application type can also have a default value for
their properties:

"nameOfVariable": {
 "type": "application:myType",
 "defaultValue": {
 "foo": "myDefaultValue"
 }
}

Example 1-15 Arrays

Arrays can also have a default value for their properties:

"nameOfVariable": {
 "type": "application:myArrType",
 "defaultValue": [
 {
 "foo": "myDefaultValue"
 }
]
}

The following table shows how a variable is initialized, based on its type, when no
default value is provided.

Chapter 1
Variables

1-90

Type Initial Value

String Undefined

Number Undefined

Boolean Undefined

Any Undefined

Object { }

Array []

Custom type An empty object with all properties initialized according
to this table

Expressions in Default Values
Default values may contain expressions.

When a default value contains an expression, note that expressions can also use other
variables. You can reference a variable with the following syntax:

Scope Variable Syntax

Application $application.variables.<variableName>

Page $page.variables.<variableName>

Action Chain $chain.variables.<variableName>

Expressions must be wrapped in expression syntax :{{ expr }}. and the expression must be
the entire value. Expressions can also call external functions via the page function module.

To reference another variable in a default value, you can do the following:

"nameOfVariable": {
 "type": "application:myType",
 "defaultValue": {
 "foo": "{{ $application.variables.someOtherVariable }}"
 }
}

Since these are expressions, you can also add simple Javascript code to the values:

"myOtherVariable": {
 "type": {
 "someBoolProperty": "boolean"
 },
 "defaultValue": {
 "someBoolProperty": {{ $application.variables.someOtherVariable === true }}"
 }
}

Input Variables
Variables can also be inputs to the page.

There are two types of input. The first consists of inputs that come from the URL. The second
type consists of inputs that are passed internally by the framework. To mark a variable as an
input, you can use the following properties:

Chapter 1
Variables

1-91

"nameOfVariable": {
 "type": "string",
 "input" "fromCaller/fromUrl"
 "required": true
}

Here the input is either "fromCaller" or "fromUrl". If it is "fromCaller", it will be passed
internally using the params property of the navigate action. If it is "fromURL", it will be
passed via the URL request parameter of the same name, like ?myVar=someValue. If
the "required" property is true, the variable value will be required to be passed during a
navigation or page load.

The implicit object $parameters is used to retrieve the input parameter values inside
the vbBeforeEnter event handler. Input variables do not exist until the vbEnter event.

In this example, the input regionName is retrieved using $parameters.regionName in
the vbBeforeEnter handler and using $page.variables.regionName in
the vbEnter handler.

"eventListeners": {
 "vbBeforeEnter": {
 "chains": [
 {
 "chainId": "checkForRegionName",
 "parameters": {
 "regionName": "{{ $parameters.regionName }}"
 }
 }
],
 },
 "vbEnter": {
 "chains": [
 {
 "chainId": "initializeVariables",
 "parameters": {
 "regionName": "{{ $page.variables.regionName }}",
 "facilityId": "{{ $page.variables.facilityId }}"
 }
 }
]
 }
},

Persisted Variables
The value of a variable can be persisted on the history, for the current session or
across sessions.

If you set "persisted" to "history", the variable value is stored in the browser history.
When navigating back to a page in the browser history using the browser back button
or when refreshing the page, the value of the variable is restored to its value at the
time the application navigated away from this page.

If you set "persisted" to "session", the variable is stored in the browser session storage
as long as the browser is open. To store a variable across sessions, use "device"
instead of "session".

Chapter 1
Variables

1-92

If you set "persisted" to "device", the variable is stored in the browser local storage, so it is
persisted on the device where the application is running even if the browser is closed.

To remove a variable from storage, set its value to null.

Example 1-16 Using a Persisted Variable

"variables": {
 "sessionToken": {
 "type": "string",
 "persisted": "session"
 }
}

rateLimit Variable Property
A variable can set a rateLimit property that limits how often the onValueChanged event is
fired.

Specify the rateLimit property, with a timeout property in milliseconds, to limit how often the
onValueChanged event is fired on that variable. For example:

"pageVar": {
 "type": "string",
 "onValueChanged": {...},
 "rateLimit": {
 "timeout": 1000 // in milliseconds
 }
}

The default is to wait for the timeout to expire after all changes stop before firing the change
event.

Constants
Constants are scoped like variables, but their values can't be changed through assignment.

Constants have the following properties and restrictions:

• The scope of a constant can be page, flow, application, or action chain. The value of a
constant is defined declaratively in the descriptor using the constants property.

• The value of a constant can be an expression. The expression can refer to previously-
defined constants and variables in the current scope or application/flow.

• Constants are evaluated first, so expressions in variables can refer to constants.

• The name of a constant cannot be used by a variable in the same scope.

• Constants can be used in action chains.

• A constant can be an input parameter to a page or action chain.

• A constant cannot be of a built-in type.

• A constant holds a value that is immutable (contrary to JavaScript). For instance, in the
case where the content is an object, this means the object's contents (for example, its
properties) cannot be altered.

Chapter 1
Constants

1-93

• Constants do not dispatch change events, since their values never change.

"constants": {
 "myConstant": {
 "type": "string",
 "description": "A useful constant",
 "defaultValue": "This string"
 }
}

Type

Constant type is the same as for variable except it cannot be a built-in type.

Default Value

Static Default Value. Constants hold a value that is immutable (unlike JavaScript).
For instance, in the case where the content is an object, this means the object's
contents (for example, its properties) cannot be altered. The value of a constant can
be overridden in an extension during initialization, but once the value is set, it cannot
be changed. (discussed below).

Dynamic Default Value. A constant's default value can be an expression that contains
variables. In this this case, the constant will change when the variable value changes.
That change triggers a valueChange event that can be listened to using the
onValueChanged property:

"constants": {
 "fullName": {
 "defaultValue": "{{ $variables.firstName + ' '
+ $variables.lastName }}",
 "onValueChanged": {
 "chains": [
 {
 "chainId": "fullNameChanged"
 }
]
 }
 }
}

Input

Constant input is the same as for variable.

Extension

Like variables, constants can be accessed by downstream or dependent extensions if
they are defined in the interface section of the base container.

"interface": {
 "constants": {
 "extendableConstant": {
 "type": "string",
 "description": "A constant visible to extensions",
 "defaultValue": "A string"

Chapter 1
Constants

1-94

 }
 }
}

Additionally, when extending a container with an interface constant, the (base) value of the
constant can be changed on the extending container, using the defaultValue property, in the
extensions section:

"extensions": {
 "constants": {
 "extendableConstant": {
 "defaultValue": "Value from the extension"
 }
 }
}

Note that the onValueChanged can also be overwritten. In that case, the chain(s) defined in
the extension will be invoked instead the one(s) in the base object.

JavaScript Action Chains
A JavaScript action chain is a sequence of actions started by an event. When a given event
occurs in a page, the event listener listening for that event kicks off the action chain.

For information about JavaScript action chains, see Work with JavaScript Action Chains in
one of these guides:

• Developing Applications with Oracle Visual Builder

JavaScript Actions
This section lists the built-in JavaScript actions that are available in Visual Builder for creating
JavaScript action chains.

Assign Variable
This action is only relevant to the Design view, where you can add the action to the canvas
and use the Properties pane to visually select a variable and a value to assign to it.

In Code view, the syntax for specifying a variable and its value is:

$<scope>.variables.someVar = value;

For example:

 $page.variables.fullName = $page.variables.firstName + ' '
+ $page.variables.lastName;

Call Action Chain
This action is used to start an action chain that has been defined in the same page, flow, or
application.

Chapter 1
JavaScript Action Chains

1-95

Note:

You can call a JSON action chain from a JavaScript action chain using this
action; however, you can't call a JavaScript action chain from a JSON action
chain.

To call an action chain, you need to pass the following parameters:

Parameter
Name

Description

chain The name of the action chain to call. No prefix is required for page level
action chains, but application level ones need to be prefixed with
application: and flow level ones with flow:.

params An expression that maps to an array of parameters.

Here's an example of a call to an action chain with 2 input parameters:

const callChainResult = await Actions.callChain(context, {
 chain: 'MyActionChainToCall',
 params: {
 ip1: $application.variables.var1,
 ip2: $application.variables.var2
 },
});

Return Values

The call returns a result if the called action chain returns a result.

Call Component
A Call Component action provides a declarative way to call methods on JET
components.

Here are details about this action's parameters:

Parameter
Name

Description

selector The component on the page that is to be called. A component must have its
ID parameter specified for it to show up in the drop-down list. You can also
use the DOM method document.getElementById to locate a JET
element/component.

method The name of the component method to call.

params Array of parameters to pass to the method, if it takes arguments. Primitives,
objects, and array parameters are passed by value and not by reference.
Instances are still sent as references.

Here's an example of a call to the Call Component action:

 const callTableComponentRefreshRowResult = await
Actions.callComponentMethod(context, {

Chapter 1
JavaScript Action Chains

1-96

 selector: '#tableComponent',
 method: 'refreshRow',
 params: $page.variables.rowID,
 });

Call Function
This action is used to call a function defined for the current flow, page, or application (web
app). For extensions, it's used to call a function defined for the current flow, page, App UI, or
extension. These functions are referred to as module functions, and they're created and
edited using the JavaScript editor for a particular scope.

Example
Suppose this function is defined for a page:

PageModule.prototype.sum = function (num1, num2) {
 return num1 + num2;};
};

You can call the function and assign its result, like this:

const sumResult
= $page.functions.sum($page.variables.firstNum_pv, $page.variables.secondNum_
pv);

Return Values

The result payload is equivalent to whatever the function returns (which may be undefined if
there is no return). If the function returns a promise, the result payload will be whatever is
resolved in the promise.

Call REST
The call REST action is used to make a REST call in conjunction with the service definitions.

Internally, this action uses the REST Helper, which is a public utility. Its parameters are as
follows.

Parameter Name Description

endpoint The endpoint ID as defined in the service configuration.

uriParams A key/value pair map that will be used to override path and query
parameters as defined in the service endpoint.

body A structured object that will be sent as the body.

requestType The content-type of the request, either 'json', 'form', or 'url'.

Note:

Note that this is deprecated. Instead, use
'contentType' and 'fileContentType'.

Chapter 1
JavaScript Action Chains

1-97

Parameter Name Description

headers An object; each property name is a header name and value that will be sent
with the request.

contentType An optional string value with an actual MIME type, which will be used for the
"content-type" header. When used with "fileContentType", this is also used
as the type for the File blob.

responseType If set, the specified type is used to do two things at run-time:
• Generate a fields parameter for the REST URI to limit the attributes

fetched;
• Automatically map the fetched response to the response type (when

used with the built-in vb/BusinessObjectsTransform). This applies to
standard action chains.

See the definition for "responseType" in Service Data Provider Properties for
details on how the assigned type is used in that context.

filePath An optional path to a file to send with the request. If "contentType" is set, that
is used as the type for the File contents. If “contentType” is not set, a lookup
of common file extensions will be used.

filePartName Optional, used with filePath to allow override of the default name ("file") for
the FormData part.

fileContentType An optional string, used in combination with "contentType", "multipart/form-
data", and "filePath".

hookHandler Used primarily by vb/ServiceDataProvider when externalizing data fetches.
See Service Data Provider for details.

requestTransformOption
s

A map of values to pass to the corresponding transform, as the "options"
parameter.

requestTransformFuncti
ons

A map of named transform functions, called before making the request,
where the function is: fn(configuration, options)

responseTransformFunc
tions

A map of named transform functions, called before making the response,
where the function is: fn(configuration, options)

responseBodyFormat A string that allows an override of the standard Rest behavior, which
normally looks for a “content-type” header to determine how to read and
parse the response. Possible values are "text", "json", "blob", "arrayBuffer",
"base64", "base64Url", and "formData".

responseFields This is an "advanced" field, for use specifically with JET Dynamic Forms.
The value would typically be a variable that is bound to the <oj-dynamic-
form> "rendered-fields" attribute. This is how a calculated layout can tell the
Rest Action call which fields to fetch.
Note: The vb/BusinessObjectsTransform transform is necessary to create a
query from this value.

Note: When "responseFields" is provided, "responseType" is ignored.

Using multipart/form Data

If you have set "contentType" to "multipart/form-data", the Call REST action interprets
your request "body" object as the form parts. Each property of the body object is a
form part, which is a key-value pair with its own content type and disposition.

If "filePath" is also set, it is added as an additional part using the lookup of common file
extension types.

If "filePath" is also set, it is added as an additional part using the sample simple file
extension type association. The name of this part is "file", or can be specified using
"filePartName".

Chapter 1
JavaScript Action Chains

1-98

You may optionally override the file type by using "fileContentType" for the file part.

For more about working with the multipart/form-data format, refer to this Oracle blog,
Consuming REST APIs in VB - multipart/form-data.

Parameters Typically Required per Endpoint Type

These are the typically required parameters for each endpoint type:

• POST:

– body parameter is set to the variable containing the new record's data.

– uriParams parameter is used to provide any required input parameters.

Here's an example POST endpoint call:

 const callRestCreateIncident = await Actions.callRest(context, {
 endpoint: 'fixitfast/putIncident',
 body: $page.variables.incidentPayload ,
 uriParams: {
 id: $page.constants.incidentId,
 },
 });

• GET:

– uriParams parameter is used to provide any required input parameters, such as an
ID input parameter to get a single record.
Here's an example of a GET endpoint call to get a single record. The empIDToGet_ip
variable is an input parameter that passes the record's ID to the action chain that
contains this Call REST call:

 const getEmployeeResult = await Actions.callRest(context, {
 endpoint: 'businessObjects/get_Employee',
 uriParams: {
 'Employee_Id': empIDToGet_ip,
 },
 });

• DELETE:

– uriParams parameter is used to provide the ID of the record to delete.
Here's an example of a DELETE endpoint call to delete a record. The
empIDToDelete_ip variable is an input parameter that passes the record's ID to the
action chain that contains this Call REST call:

 const callRestBusinessObjectsDeleteEmployeeResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/delete_Employee',
 uriParams: {
 'Employee_Id': empIDToDelete_ip,
 },
 });

• PATCH:

– body parameter is set to the variable containing the record with the updated data.

Chapter 1
JavaScript Action Chains

1-99

https://blogs.oracle.com/vbcs/post/consuming-rest-apis-in-vb-multipart-form-data

– uriParams parameter is used to provide the ID of the record to update.

Here's an example PATCH endpoint call:

 const updateEmployeeResult = await Actions.callRest(context, {
 endpoint: 'businessObjects/update_Employee',
 uriParams: {
 'Employee_Id': $page.variables.empID_pv,
 },
 body: $page.variables.EmpUpdatedData_pv,
 });

Service Definitions

If your service connection details are static, the details, such as the server, path, and
schema of the request and response, are stored in the openapi3.json file for the
service connection.

To view or edit a service's definition, select the service connection in the Services
pane, then open the Source tab. The editor uses the OpenAPI3 specification and
JSON format.

Transforms

The requestTransformOptions, requestTransformFunctions, and
responseTransformFunctions can be used to modify the request and response. Some
built-in service endpoints have built-in transform functions for 'sort', 'filter', 'paginate',
and 'select', so options for these transform functions can be defined using the same
name via the requestTransformOptions property. For third party services, the options
set are based on the type of transform functions supported.

Chapter 1
JavaScript Action Chains

1-100

When using the Rest Action the transform names have no semantic meaning, and all request
and response transforms are called.

Request and response transform functions have the following signatures.

Transform Type Parameters Return Value

Request
/**
 * configuration: {
 * url:
 * initConfig: {
 * method: // string
with http method
 * body: // request
body, if any
 * credentials: //
string see (fetch) Request
 * headers: // object,
map of strings
 * }
 * },
 *
 * options: provided by the
application
 *
 * context: an empty object,
which exists for the
 * lifetime of one REST
call, a set of
 * transforms share this.
 **/

mytransform(configuration,
options, context)

Configuration object; see "Parameters".

Typically, returns the same object
passed in, or a modified one.

Chapter 1
JavaScript Action Chains

1-101

Transform Type Parameters Return Value

Response
/**
 * response: { body,
headers }
 *
 * context: an empty object,
see "Request transforms"
 *
 */
myresponsetransform(response,
 context);

The return value is application-defined.
The value is returned as the
'transformResults' of the REST call
result:

/**
 * {
 * response: The (fetch)
Response object. Note that
the body has already
 * been read, so the
functions (ex. json())
cannot be called.
 *
 * body: the result of the
json()/text()/etc.
 *
 * transformResults: a map
of return values from
Response Transforms
 * }
 */

Example 1-17 A Simple Transform Function

One request transform function and one response transform function for a third party
service or endpoint might look like this example. Here, the transform functions are
defined in the page module and are configured on the RestAction directly. More
commonly, transform functions are defined in the service definition and do not need to
be mapped on the RestAction.

"fetchIncidentList": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/getIncidents",
 "requestTransformOptions": {
 "sort": "{{ $page.variables.sortExpression }}",
 },
 "requestTransformFunctions": {
 "sort": "{{ $page.functions.sort }}"
 },
 "responseTransformFunctions": {
 "paginate": "{{ $page.functions.paginateResponse }}"
 }
 },
 "outcomes": {
 "success": "returnSuccessResponse",
 "failure": "returnFailureResponse"
 }
},

The corresponding module functions would be:

Chapter 1
JavaScript Action Chains

1-102

PageModule.prototype.sort = function (configuration, options) {
 /// some code here to modify 'configuration'
 return configuration;
}

PageModule.prototype.paginateResponse = function (configuration) {
 /// some code here to modify 'configuration'
 return configuration;
}

Error Handling and Return Values

If the underlying REST API request returns a status code, the error object is returned for you
to handle the error yourself, otherwise an auto-generated error notification is shown.

The object returned by the Call REST action returns these results:

Result Relevant Properties of Returned Object Returned Object

Success If the returned object’s ok property is set to true,
indicating success, these are the object’s relevant
properties:

• body: object with results from the call (scalar,
object, array, etc.)

• headers: Headers object
• ok: boolean, set to true
• status: number, set to 200
• statusText: string, set to "OK"

{
 body {},
 error: null,
 headers: Headers
{},
 message: {summary:
‘ ’},
 ok: true,
 status: 200
 statusText: "OK",
}

*If a single record is returned,
it is contained in the body{}
object; if multiple records are
returned, they are contained
in the body{} object’s
results parameter.

Error If the returned object’s ok property is set to false,
indicating failure, these are the object’s relevant
properties:

• error: error object or null
• message: object with error summary
• ok: boolean, set to false
• status: number
• statusText: string showing type of error

{
 body: null,
 error: null,
 headers: Headers
{},
 message: {summary:
‘<error summary>’},
 ok: false,
 status: <status
number>,
 statusText:
‘<error type>’
}

For details about working with business objects, refer to Accessing Business Objects Using
REST APIs.

Chapter 1
JavaScript Action Chains

1-103

https://developer.mozilla.org/en-US/docs/Web/API/Response/headers
https://docs.oracle.com/en/cloud/paas/app-builder-cloud/consume-rest/
https://docs.oracle.com/en/cloud/paas/app-builder-cloud/consume-rest/

Call Variable
This action is used to call a method of an InstanceFactory variable that has been
defined in the current scope (flow, page, or application). Using this action with any
other type results in an error.

You can call any method on the current instance associated with the InstanceFactory
variable, including asynchronous ones. However, since actions are by design
synchronous, this action will wait for the asynchronous call to resolve before
proceeding to the next action in the chain.

Here's an example of a call to an InstanceFactory variable's method:

const getRangeResult
= $page.variables.myBook.instance.getRange($page.variables.range);

Return Values

The result payload is equivalent to whatever the function returns (which may be
undefined if there is no return). If the function returns a promise, the result payload will
be whatever is resolved in the promise.

Code
In the Design editor, the Code action is used to add JavaScript code to an action
chain. To do so, add the Code action from the Action pallet to the action chain and
enter the code in the Properties pane.

In the Code editor, you can use this action to create a local function.

Fire Data Provider Event
The Fire Data Provider Event action causes the DataProvider specified via the target
parameter to dispatch an oj.DataProvider event as a way to notify all listeners
registered on that DataProvider to react to changes to the underlying data. For
example, a component using a particular ServiceDataProvider may need to render
new data because new data has been added to the endpoint used by the
ServiceDataProvider.

The action can be called either with a mutation or a refresh event. The refresh event is
used to re-fetch and re-render all data, and the mutation event is used to specify which
changes to show.

Note:

This action is not necessary for a VB Array Data Provider variable, since the
data array of an ADP variable, exposed via the data property, can be
updated directly using the Assign Variable action. Assigning the data array is
automatically detected by Visual Builder, and all listeners are notified of this
change. Users will be warned of this when the fireDataProviderEvent is used
with an ADP, prior to mutating the data property directly.

Chapter 1
JavaScript Action Chains

1-104

A mutation event can include multiple mutation operations (add, update, remove) as long as
the ID values between operations do not intersect. This behavior is enforced by JET
components. For example, you cannot add a record and remove it in the same event,
because the order of operations cannot be guaranteed.

This table provides details about the parameters for the Fire Data Provider Event action. For
further details, see DataProviderOperationEventDetail in Oracle JET API Reference.

Name Type Description

target string Target of the event, usually a variable of type vb/SDP.
Example:

target: $page.variables.employeeSDP

refresh null Indicates a data provider refresh event needs to be dispatched to the data
provider identified by the target. A null value is specified because the refresh
event does not require a payload.
Example:

 await Actions.fireDataProviderEvent(context, {
 target: $page.variables.employeeListSDP,
 refresh: null,
 });

For further details, see DataProviderRefreshEventDetail in Oracle JET API
Reference.

Chapter 1
JavaScript Action Chains

1-105

https://docs.oracle.com/en/middleware/developer-tools/jet/13/reference-api/DataProviderOperationEventDetail.html
https://docs.oracle.com/en/middleware/developer-tools/jet/13/reference-api/DataProviderRefreshEventDetail.html

Name Type Description

add object The following properties may be present in the payload:
• data: Array<Object>; required. Passes the added records from the add

operation’s returned result. If you are using an SDP variable, the structure of
the data passed to this parameter must match the structure specified by the
itemsPath parameter of the SDP variable’s definition:

The SDP's itemsPath property specifies where the added records are in the
response payload, relative to the root of the response. Here are three
different structures for an add operation's response and the corresponding
itemsPath specification:

1. Added records (just one in this example) are provided as an array, at the
root of the response:

[
 {
 "id": 149,
 "firstName": "Qinqin",
 "lastName": "Han"
 }
]

The itemsPath specification for this case is: "itemsPath": ""
Here's an example of the data parameter for the Fire Data Provider
Event action for this case:

 //Add new employee record
 const callRestCreateEmployeeResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/create_Employee',
 body: $page.variables.newEmpData,
 });

 const fireDPEResult = await
Actions.fireDataProviderEvent(context, {
 target: $page.variables.employeeListSDP,
 add: {
 data: [callRestCreateEmployeeResult.body],
 keys:

Chapter 1
JavaScript Action Chains

1-106

Name Type Description

[callRestCreateEmployeeResult.body.id],
 metadata: [{key:
callRestCreateEmployeeResult.body.id,}],
 },
 });

2. Added records (just one in this example) are provided in an array, which
is in an object's property, such as this object's items property:

{
 "items": [
 {
 "id": 149,
 "firstName": "Qinqin",
 "lastName": "Han"
 }
],
 "count": 1,
 "hasMore": false,
 "offset": 0
}

The itemsPath specification for this case is: "itemsPath": "items"
Here's an example of the data parameter for the Fire Data Provider
Event action, for this case:

 //Add new employee record
 const callRestCreateEmployeeResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/create_Employee',
 body: $page.variables.newEmpData,
 });

 const fireDPEResult = await
Actions.fireDataProviderEvent(context, {
 target: $page.variables.employeeListSDP,
 add: {
 data: {items:
[callRestCreateEmployeeResult.body]},
 keys:
[callRestCreateEmployeeResult.body.id],
 metadata: [{key:
callRestCreateEmployeeResult.body.id,}],
 },
 });

Chapter 1
JavaScript Action Chains

1-107

Name Type Description

3. Added records (just one in this example) are provided as an array in a
nested structure that matches the itemsPath property. In this example,
the added records are in the bar property of this object's foo property:

{
 "foo" : {
 "bar" : [
 {
 "id": 149,
 "firstName": "Qinqin",
 "lastName": "Han"
 }
]
 }
}

The itemsPath specification for this case is: "itemsPath":
"foo.bar"
Here's an example of the data parameter for the Fire Data Provider
Event action code for this case:

 //Add new employee record
 const callRestCreateEmployeeResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/create_Employee',
 body: $page.variables.newEmpData,
 });

 const fireDPEResult = await
Actions.fireDataProviderEvent(context, {
 target: $page.variables.employeeListSDP,
 add: {
 data: {foo: {bar:
[callRestCreateEmployeeResult.body]}},
 keys:
[callRestCreateEmployeeResult.body.id],
 metadata: [{key:
callRestCreateEmployeeResult.body.id,}],
 },
 });

• keys: Set<*>; required for optimal performance. Ensure that the
keyAttributes parameter is set for the SDP variable. Here's an example
value for this parameter:

keys: [callRestCreateEmployeeResult.body.id],

Chapter 1
JavaScript Action Chains

1-108

Name Type Description

• metadata: Array.<ItemMetadata.<KeyValue>>; required for optimal
performance. Passes the key values of the added records. Here's an
example value for this parameter:

metadata: [{key: callRestCreateEmployeeResult.body.id,}],
• addBeforeKeys: Array<keys>; optional. Array of keys for items located

after the items involved in the operation. They are relative to the data array,
after the operation was completed, and not to the original array. If null and the
index is not specified, then insert at the end.

• indexes: Array<number>; optional. Indexes of items involved in the
operation, relative to after the operation completes and not to the original
dataset. Indices are with respect to the DataProvider with only its implicit sort
applied.

For further details, see DataProviderAddOperationEventDetail in Oracle JET
API Reference.

remove Only the keys parameter is required to identify the records. For details about the
keys parameter, refer to the add event above.
Example:

await Actions.fireDataProviderEvent(context, {
 target: $page.variables.employeeSDP,
 remove: {
 keys: [$page.variables.productId],
 },
 });

For further details, see DataProviderMutationEventDetail in Oracle JET API
Reference.

update The update event's payload is similar to that of the add event, except
addBeforeKeys is not present.
Example:

await Actions.fireDataProviderEvent(context, {
 target: $page.variables.employeeSDP,
 update: {
 data: {items: [callRestUpdateEmployeeResult.body]},
 keys: [callRestCreateEmployeeResult.body.id],
 metadata: [{key: callRestCreateEmployeeResult.body.id,}],
 },
 });

For further details, see DataProviderMutationEventDetail in Oracle JET API
Reference.

Fire Event
This action allows you to fire a custom event that has been defined in your application, flow,
page or fragment, using the Events tab. A custom event can carry a payload that you define
when you create the event, and the payload is passed to the event using the Fire Event
action.

Here's a quick overview of how a custom event and the Fire Event action are used:

1. Create a custom event, defining parameters if required.

Chapter 1
JavaScript Action Chains

1-109

https://docs.oracle.com/en/middleware/developer-tools/jet/13/reference-api/DataProviderAddOperationEventDetail.html
https://docs.oracle.com/en/middleware/developer-tools/jet/13/reference-api/DataProviderMutationEventDetail.html
https://docs.oracle.com/en/middleware/developer-tools/jet/13/reference-api/DataProviderMutationEventDetail.html

2. Create an event listener, which can start more than one action chain:

a. Assign it the custom event

b. Create a new action chain for the event, which is launched when the event is
triggered. Create the action chain through the Event Listener tab, because if
the listener's custom event has input parameters, the action chain is created
with an event input parameter. This event object will contain the custom
event's input parameters (example: event.param1, event.param2...), and the
event object is automatically passed to the new action chain..

3. In the action chain that will trigger the event, use the Fire Event action to trigger
the custom event, providing any parameters defined for the event.

This table describes the parameters for the Fire Event action:

Parameter
Name

Description

event Name of custom event, defined in your application, that you want to invoke.

payload Event's payload; source can be a page variable, a specific value or an
expression.

Here's an example of a call to the Fire Event action:

const fireApplicationEventNavigateToItemResult = await
Actions.fireEvent(context, {
 event: 'application:customEventToFire,
 payload: {
 item: $application.variables.varForCustomEvent,
 },
});

Fire Notification
This action is used to fire a "vbNotification" event to display a message to the user in
the browser.

There are four types of notifications: Info, Error, Warning, and Confirmation. They
display a summary and a message underneath:

Chapter 1
JavaScript Action Chains

1-110

"vbNotification" events are just like custom events, except that they have a defined name and
a suggested use. Notifications are generally intended to help implement a flexible message
display, but the specific use can be defined by the application. See Custom Events for details.

Here are details about this action's parameters:

Parameter Name Description

summary Summary/title to display in large, bold letters for notification.

message Message to display in notification.

displayMode Display mode: persist or transient

type Notification type: info, error, warning, or confirmation

Here's an example of a call to the Fire Notification action:

 await Actions.fireNotificationEvent(context, {
 message: $page.variables.message,
 summary: $page.variables.summary,
 displayMode: 'persist',
 type: 'error',
 });

For Each
This action lets you execute one or more actions for each item in an array.

Here are details about this action's parameters:

Chapter 1
JavaScript Action Chains

1-111

Parameter Name Description

items An expression that evaluates to the array that is to be looped.

item The default alias for the current item in the array; can be changed
as desired.

index The default alias for the index position; can be changed as
desired.

mode Defines whether the actions are run serially (default) or in parallel.
Regardless of the mode, the For Each action does not complete
until the actions for each item in the items array are complete.

The "mode" parameter allows for serial or parallel action. The default is serial, for
which each "actionId" call is only made for an item when any previous item's "actionId"
call finished (meaning, any Promise returned from the last action resolves). Using
"parallel" means that each "actionId" call does not wait for the previous call to finish
(useful for Rest Action calls, etc). Using either mode, the For Each action does not
finish until all Promises returned from the "actionId" chain resolve (if no Promise is
returned, it is considered resolved on return).

The following table describes additional properties injected into the available contexts
that the called action ('callee') can reference in its parameter expressions:

Parameter Name Description

$current.data The current array item.

$current.index The current array index.

alias.data An alternate syntax for $current.data, which allows a reference
to $current from nested contexts.

alias.index An alternate syntax for $current.index, which allows a
reference to $current from nested contexts.

Return Values

On success, an array is returned with each element containing the return value from
the last action in the loop, from each iteration. For instance, if the loop contains two
actions that return results, actionA → actionB, and the loop iterates 5 times, the
returned array will have 5 elements, each corresponding to an iteration and containing
actionB's result from that iteration.

Get Dirty Data Status
The Get Dirty Data Status action is used to check if any of the values have changed
for the tracked variables within a particular scope (application, page, fragment, layout,
flow), within any contained pages, fragments, layouts, or flows, or within any
extensions of them. If the value of one of the tracked values changes, the Dirty Data
status for the variable's scope changes from 'notDirty' to 'dirty'. The Dirty Data
status is returned for the scope that this action is used in.

This action has no parameters to set. Also, this functionality works with all of the data
types, except Service Data Providers (SDPs). Currently, you'll have to handle the
tracking of value changes for SDPs.

Chapter 1
JavaScript Action Chains

1-112

To set a variable to be tracked for value changes, go to the relevant Variables tab, select the
variable, and in the Properties pane, set its Dirty Data Behavior property to 'Track'.

To reset the scope's Dirty Data status back to 'notDirty', use the Rest Dirty Status action.

Here's a sample action chain that uses this action, which is started by a vbBeforeExit event
listener for the page:

 async run(context) {
 const { $page, $flow, $application } = context;

 const getDirtyDataStatusResult = await
Actions.getDirtyDataStatus(context, {
 });

 if (getDirtyDataStatusResult.status === 'dirty') {
 // Warn the user if there are unsaved changes
 await Actions.fireNotificationEvent(context, {
 summary: 'You have unsaved changed. Please Save or Cancel',
 displayMode: 'transient',
 type: 'error',
 });

 // Stay on the page
 return { cancelled: true };
 }

 /* Navigation from this page can be canceled by returning an object
with the property cancelled set to true.
 This is useful when the page state is dirty and navigation should
not be allowed before saving.*/
 return { cancelled: false };
 }

Get Location
The Get Location action provides a declarative access to geographical location information
associated with the hosting device. This action requires the user's consent. As a best
practice, it should only be fired on a user gesture, so as to associate the permission prompt
with the action they just initiated.

Here are details about this action's parameters:

Parameter Name Description

maximumAge A positive long value indicating the maximum age in milliseconds of a
possible cached position that is acceptable to return. If set to 0, it
means that the device cannot use a cached position and must attempt
to retrieve the real current position. If set to Infinity, the device must
return a cached position regardless of its age.

timeout A positive long value representing the maximum length of time, in
milliseconds, that the device is allowed to take in order to return a
position. The default value is Infinity, meaning that
getCurrentPosition() won't return until the position is
available.

Chapter 1
JavaScript Action Chains

1-113

Parameter Name Description

enableHighAccuracy A boolean that indicates the application would like to receive the best
possible results. If true, and if the device is able to provide a more
accurate position, it will do so. This can result in slower response times
or increased power consumption. If false (the default value), the device
can save resources by responding more quickly or using less power.
On mobile devices, enableHighAccuracy should be set to true in order
to use GPS sensors.

If the geolocation API is supported in the browser, geolocationAction returns a JSON
Position object that represents the position of the device at a given time.

Return Type Description Example

Object The Position interface represents the
position of the concerned device at a
given time. The position, represented
by a Coordinates object,
comprehends the 2D position of the
device, on a spheroid representing
the Earth, but also its altitude and its
speed.
• Position.coords returns a

Coordinates object defining the
current location.

• Position.timestamp returns a
DOM timestamp representing
the time at which the location
was retrieved.

Latitude and longitude can be
accessed from the Position's
coordinates as follows:

[[results.getCurrentLocation.co
ords.latitude]]

[[results.getCurrentLocation.co
ords.longitude]]

where getCurrentLocation is a
geolocationAction.

If geolocation is not supported by the browser, or a parameter with a wrong type is
detected, an error is returned by results.getCurrentLocation.error. If a
PositionError occurs when obtaining geolocation, a PositionError.code payload is
returned. Possible PositionError.code values are:

• PositionError.PERMISSION_DENIED

• PositionError.POSITION_UNAVAILABLE

• PositionError.TIMEOUT

For every failure, a descriptive error message can be obtained from the action chain,
such as [[results.getCurrentLocation.error.message]].

Here's an example of using the Get Location action:

 const getLocationResult = await Actions.geolocation(context, {
 timeout: 0,
 maximumAge: Infinity,
 });

 if (getLocationResult.getCurrentLocation.error != null) {
 await Actions.assignVariable(context, {
 variable: '$page.variables.coords_pv',
 value: getLocationResult.coords,
 });
 } else {

Chapter 1
JavaScript Action Chains

1-114

 await Actions.fireNotificationEvent(context, {
 message: getLocationResult.getCurrentLocation.error.message,
 summary: 'Error',
 });
 }

If
The If action is used to add conditions.

Login
This action launches the login process as defined in the Security Provider implementation.

It invokes the handleLogin function on the Security Provider with the returnPath argument.

This table describes the parameters for the Login action:

Parameter Name Description

returnPath The path of the page to go to after a successful login. If not defined,
uses the default page of the application.

The behavior of the default implementation of the Security Provider handleLogin function is:

• Navigate to the login URL specified by the Security Provider configuration.

• If returnPath is not defined, use the default page of the application.

• Convert the page returnPath to a URL path and add it to the login URL.

Here's an example of a call to the Login action:

await Actions.login(context, {
 returnPath: '/loginpage',
 });

Logout
This action launches the logout process as defined in the Security Provider implementation.

It invokes the handleLogout function on the Security Provider with the logoutUrl argument.

This table describes the parameters for the Logout action:

Parameter Name Description

logoutUrl The URL to navigate to in order to logout. If not defined, uses the logout URL of
the Security Provider configuration.

The behavior of the default implementation of the Security Provider handleLogout function is:

• Navigate to the URL defined by the logoutURL parameter.

• If the logoutUrl parameter is not defined, use the logout URL of the Security Provider
configuration.

Chapter 1
JavaScript Action Chains

1-115

• After the user is logged out, the application continues to the default page of the
application.

Here's an example of a call to the Logout action:

await Actions.logout(context, {
 logoutUrl: $page.variables.logoutURL_pv,
});

Navigate Back
The Navigate Back action is used to return to the previous page in a browser's history.

This table describes the parameters for the Navigate Back action:

Parameter
Name

Description

params A key/value pair map that will be used to pass parameters to the page.

Here's an example of a call to the Navigate Back action, in which two parameters are
passed:

 await Actions.navigateBack(context, {params: {
 inParam: $page.variables.var1,
 inParm1: $page.variables.var2,
 },
 });

Navigate To Application
The Navigate To Application action is used to navigate to a navigable page or flow in a
specified App UI, and if required, to pass parameters to the page or flow. For a page or
flow to be navigable, meaning you can navigate to it from a different App UI, that page
or flow must be set as navigable, as will be explained for this action's flow and page
parameter.

This table describes the parameters for the Navigate To Application action:

Parameter
Name

Description

application The application (App UI) to navigate to.

history Set the effect on the browser history. Allowed values are: replace, skip
and push. If set to replace, the current browser history entry is replaced,
meaning that the Back button won't go back to that URL. If the value is set
to skip, the URL is not modified. Default is push.

Chapter 1
JavaScript Action Chains

1-116

Parameter
Name

Description

flow The flow within the selected App UI to navigate to. Only flows that have their
"Let other App UIs navigate to this flow" setting enabled are available in the
dropdown list.

page The page within the selected flow to navigate to. Only pages that have their
"Let other App UIs navigate to this page" setting enabled on their Settings
tab can be navigated to

params An object with the parameters to pass to the application, if required.

Here's an example of a call to the Navigate To Application action, in which an input parameter
is passed to the application:

 const navToEmployeeAppResult = await
Actions.navigateToApplication(context, {
 application: 'employee-app',
 history: 'replace',
 flow: 'empflow',
 page: 'empflow-main',
 params: {
 empID: empID,
 },
 }, { id: 'navToEmpApp' });

Navigate to the Same Application with Different Input Parameters
Navigating to the same application but with different input parameters is considered a valid
navigation, and since the input parameters change, the onValueChanged event is triggered.

The navigation is pushed to the browser history, so pressing the browser's Back button
restores the previous values of the input parameters.

Navigate To Flow
For base apps (web apps), this action is used to navigate to a flow in the current application,
and if necessary, to pass parameters to the flow.

For App UIs, this action is used to navigate to a flow in the current App UI, and if necessary,
to pass parameters to the flow. To navigate to a flow in a different App UI, use the Navigate to
Application action.

Chapter 1
JavaScript Action Chains

1-117

This table describes the parameters for the Navigate To Flow action:

Parameter
Name

Description

target Specifies if the flow is for the current or parent page.

flow Flow within the current App UI to navigate to.

page Page within the flow to navigate to.

params An object with the parameters to pass to the flow, if required.

history Define the effect on the browser history. Allowed value are 'replace', 'skip' or
'push'. If the value is 'replace', the current browser history entry is replaced,
meaning that back button will not go back to it. If the value is 'skip', the URL
is not modified. Default is 'push'.

Here's an example of a call to the Navigate To Flow action, in which two input
parameters are passed to the flow:

 const navFlowResult = await Actions.navigateToFlow(context, {
 target: 'parent',
 flow: 'main',
 params: {
 inParam: $page.variables.var1,
 inParm1: $page.variables.var2,
 },
 page: 'main-start',
 history: 'push',
 });

Navigate To Page
For base apps (web apps), this action is used to navigate to a page in the current
application, and if necessary, to pass parameters to the page.

For App UIs, this action is used to navigate to a page in the current App UI, and if
necessary, to pass parameters to the page. To navigate to a page in a different App UI,
use the Navigate to Application action..

This table describes the parameters for the Navigate To Page action:

Parameter
Name

Description

page The page within the current application (web apps) or App UI to navigate to.

params An object with the parameters to pass to the page, if required.

history Define the effect on the browser history. Allowed value are 'replace', 'skip' or
'push'. If the value is 'replace', the current browser history entry is replaced,
meaning that back button will not go back to it. If the value is 'skip', the URL
is not modified. Default is 'push'.

Here's an example of a call to the Navigate To Page action, in which an input
parameter is passed to the page:

 const navigateResult = await Actions.navigateToPage(context, {
 page: 'main-display-results',

Chapter 1
JavaScript Action Chains

1-118

 params: {
 calResults: $page.variables.calculationResults,
 },
 history: 'push',
 });

Navigate to the Same Page with Different Input Parameters
Navigating to the same page but with different input parameters is considered a valid
navigation, and since the input parameters change, the onValueChanged event is triggered.

The navigation is pushed to the browser history, so pressing the browser's Back button
restores the previous values of the input parameters.

Open URL
The Open URL action is used to navigate to an external URL. In a web app, this action opens
the specified URL in the current window or in a new window using the window.open() API. In
a native mobile app, this action can open local file attachments as well as remote resources.

In a native mobile app, this action supports opening local file attachments as well as remote
resources. Allowed file types for the url parameter are:

• .pdf
• .doc
• .txt
• .text
• .ppt
• .rtf
• .xls
• .mp3
• .mp4
• .csv
The very first time, the user gets an option to select which application to use for opening a
given file type. If no application is available to open such a file, this action fails with the
appropriate error. After a file is first opened, it will always be opened with the same
application across all Visual Builder installed apps on the device.

If the specified file is not local or if the file extension is not recognized, this action will use
Cordova's plugin cordova-plugin-inappbrowser to open the specified URL.

This table describes the parameters for the Open URL action:

Parameter Name Description

url The URL to navigate to.

params A key/value pair map that will be used as query parameters to the URL

hash The hash entry to append to the URL.

history Defines the effect on the browser history. Allowed values are 'replace' or 'push'. If
the value is 'replace', the current browser history entry is replaced, meaning that
the back button will not go back to it. Default is 'push'.

Chapter 1
JavaScript Action Chains

1-119

Parameter Name Description

windowName A name identifying the window as defined in the window.open() API (optional).
If not defined, the URL opens in the current window. Otherwise, refer to the
window.open() API documentation. In a mobile app, there are 3 possible
values: _self, _blank, or _system. The default is _self. Refer to the
documentation for cordova-plugin-inappbrowser. For local file types, this
parameter is ignored.

Once on the URL location, the browser back button will re-enter the last page, if you
specified a value for the windowName parameter that opens the URL in the current
window. The page input parameters will be remembered, even if their type
is 'fromCaller'.

Here's an example of a call to the Open URL action, in which one parameter is
passed:

 await Actions.openUrl(context, {
 url: $page.variables.urlToOpen_pv,
 params: {
 inParam: $page.variables.itemID,
 },
 hash: $page.variables.hashPart_pv,
 history: 'push',
 windowName: '_self',
 });

Reset Dirty Data Status
The Reset Dirty Data Status action is used to reset the Dirty Data status of the scope
(application, fragment, flow, page) that the action is used in to 'notDirty'. The Dirty
Data status of a scope changes from 'notDirty' to 'dirty' when one of its tracked
variables has its value changed.

This action takes no parameters, and it is used with the Get Dirty Data Status action.

Here's an example of a call to this action:

 await Actions.resetDirtyDataStatus(context, { });

Reset Variables
The Reset Variables action is used to reset variables to their default values, as defined
in their variable definitions.

This table describes the parameters for the Reset Variables action:

Chapter 1
JavaScript Action Chains

1-120

Parameter Name Description

variables An array of variables. Here is an example:

["$page.variables.var1", "$page.variables.var2"]

Note:

If a single variable expression is provided instead of
an array, it is implicitly treated as an array of one
variable.

Each expression in the array has to resolve to a variable or variable property, and
variables must be prefixed with their scope:
• $application.variables
• $page.variables
• $chain.variables
Each expression should be followed by a variable name or a path to a variable
property. For example:

• $application.variables.a
• $page.variables.a.b
• $variables.a.b.c (which is shorthand for $chain.variables.a.b.c)

Here's an example of a call to the Reset Variables action, in which two variables are to be
reset:

 await Actions.resetVariables(context, {
 variables: [
 '$page.variables.firstNum_pv',
 '$page.variables.secondNum_pv',
],
 }, { id: 'resetFirstAndSecondNum' });

Return
The Return action is used to return a payload for an action chain and to return control back to
where the action chain was called. For instance, action chain A can call action chain B, which
returns a value, then action chain A can use that returned value for further processing.

The Return action can also be used to exit an action chain early due to an exception, such as
an invalid value, or some other condition. If no value is returned by the Return action, the
value of undefined is returned by default.

For the Run In Parallel action, which uses aysc() functions to run blocks of code in parallel,
the Return action can be used to return a value for a block of code. For further details, see
Run in Parallel.

Run in Parallel
The Run in Parallel action is used to run multiple action chains in parallel, and it can also be
used to wait for their results to produce a combined result.

Chapter 1
JavaScript Action Chains

1-121

The actions to run for each sequence are placed within an asyn() method, and the
value returned by the asyn() method is put into the array returned by the Run in
Parallel action. The first element of the returned array contains the result from the first
asyn() method, the second element contains the result from the second asyn()
method, and so on.

Here's an example of the Run in Parallel action, which returns its results in an array
named empInfo. In parallel, the action makes REST calls to get an employee's office
location, department, and team. The employee's information is then displayed:

async run(context, { office_ip = 1, department_ip = '1', team_ip =
2 }) {
 const { $application, $flow, $page } = context;

 const empInfo = await Promise.all([
 async () => {

 const callRestGetOfficesResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/get_Offices',
 uriParams: {
 'Offices_Id': office_ip,
 },
 });

 return callRestGetOfficesResult.body.location;
 },
 async () => {

 const callRestGetDepartmentResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/get_Department',
 uriParams: {
 Department_Id: department_ip,
 },
 });

 return callRestGetDepartmentResult.body.name;
 },
 async () => {
 const callRestBusinessObjectsGetTeamResult = await
Actions.callRest(context, {
 endpoint: 'businessObjects/get_Team',
 uriParams: {
 'Team_Id': team_ip,
 },
 });

 return callRestBusinessObjectsGetTeamResult.body.name;
 },
].map(sequence => sequence()));

 await Actions.fireNotificationEvent(context, {
 summary: 'Employee Info',
 message: 'LOCATION: ' + empInfo[0] + ' DEPARTMENT: ' +

Chapter 1
JavaScript Action Chains

1-122

empInfo[1] + ' TEAM: '+ empInfo[2],
 });
 }

Return Values

This action returns an array (empInfo) with the first element (index 0) containing the value
returned from the first asyn() method, the second element containing the value from the
second asyn() method, and the third element containing the value from the third asyn()
method.

Scan Barcode
Use the Scan Barcode action in your mobile application to scan QR codes and barcodes for
details such as URLs, Wi-Fi connections, and contact information.

The parameters for this action are:

Parameter Name Description

image An image object, which can be a CanvasImageSource, Blob, ImageData, or
an element

formats Optional: A series of barcode formats to search for, for example, one or more
of the following:
['aztec', 'code_128', 'code_39', 'code_93',
'codabar', 'data_matrix', 'ean_13', 'ean_8', itf',
'pdf417', 'qr_code', 'upc_a', 'upc_e']
Note that all formats may not be supported on all platforms.

If formats is not specified, the browser will search all supported formats,
so limiting the search to a particular subset of supported formats may
provide better performance.

convertBlob Optional: A boolean that enables you to automatically convert a Blob to an
ImageBitmap when using the Scan Barcode action to process the outcome
of the Take Photo action. If true, the Blob object is converted as an
ImageBitmap before being passed to the Scan Barcode action. If false
(default), the Blob object is left as is. You'll need to manually do the
conversion, for example, by adding a function to your application and calling
the function using the callModuleFunctionAction in your action
chain.

Here's an example of a call to the Scan Barcode action, in which a bitmap returned by a
module function is used for the Image parameter:

 const scanCreateImageBitmapResultResult = await
Actions.barcode(context, {
 image: createImageBitmapResult,
 formats: [
 'qr_code',
],
 });

Chapter 1
JavaScript Action Chains

1-123

Return Values

On success, a DetectedBarcode object is returned using the auto-generated variable
shown by the Store Results In parameter. If the browser does not support the Shape
Detection API or if a specified format is not supported, an exception is thrown.

Share
The Share action is used to invoke the native sharing capabilities of the host platform
in order to share content with other applications, such as Facebook, Twitter, Slack,
SMS and so on.

Invoke this action following a user gesture, such as a button click. Also, we
recommend that the Share action's UI only be shown if navigator.share is supported
by the given browser, as in this HTML code:

<oj-button disabled="[[!navigator.share]]">Share</oj-button>

This table describes the parameters for the Share action:

Parameter
Name

Description

title Represents the title of the document being shared. This value may be
ignored by the target.

text Text that forms the body of the message being shared. Can be specified
with or without a URL.

url URL string that refers to the resource being shared. Any URL can be
shared, not just URLs under website's current scope.

Here's an example of a call to the Share action:

 await Actions.webShare(context, {
 title: document.querySelector('h1').textContent,
 text: 'Check out this cool new app!',
 url: document.querySelector('link[rel=canonical]') &&
document.querySelector('link[rel=canonical]').href ||
window.location.href,
 });

Switch
Use the Switch action to select the actions to execute for a specific case value. If a
case value is not matched, the "default" case is executed.

Here's an example of a Switch code block that returns a language's three letter code:

 switch (language) {
 case 'English':
 return 'eng';
 break;
 case 'Chinese':
 return 'chn';

Chapter 1
JavaScript Action Chains

1-124

https://wicg.github.io/shape-detection-api/#api

 break;
 case 'Spanish':
 return 'spn';
 break;
 default:
 return 'error';
 break;
 }

Try-Catch-Finally
This action is used to add Try, Catch, and Finally blocks in order to gracefully handle errors
and avoid program crashes.

JSON Action Chains
A JSON action chain is a sequence of actions started by an event. When a given event
occurs in a page, the event listener listening for that event kicks off the action chain. Each
JSON action chain is contained within its own JSON file, which is created and edited using
the Action Chain editor.

JSON Actions
A list of built-in actions, JSON based, available in Visual Builder for applications

Note:

Action definitions minimally have a "module" property that specifies the action
implementation. Actions can also have an optional "label" property, which is user-
friendly.

Assign Variables Action
This action is used to assign values to a set of variables.

This action has two forms. The first is metadata-driven, where you can specify how
assignment should be performed by using metadata. The second supports calling out to a
custom assign variable function. This custom assign variable function can perform a
transformation on the source value before assignment.

"myActionChain": {
 "root": "myAssignVariableAction",
 "actions": {
 "myAssignVariableAction": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters: {
 "$page.variables.target1": { "source": "{{ $page.variables.source1 }}" },
 "$page.variables.target2": { "source": "{{ $page.variables.source2 }}" }
 }
 }
 }
}

Chapter 1
JSON Action Chains

1-125

Metadata-Driven Variable Assignment
This action is used to assign values to a set of variables using metadata.

Metadata-driven variable assignment lets you use metadata to specify how
assignment should be performed.

This form takes a map of target expression and assignment metadata pairs. For
example, if the target expression is a structure, it has to resolve to a variable or to a
variable's property. The target expression has to be prefixed with one of the following:

• $application.variables
• $page.variables
• $chain.variables
• $variables
This should be followed by a variable name or a path to a variable property, such as
the following:

• $application.variables.a
• $page.variables.a.b
• $variables.a.b.c
Note that $variables.a.b.c is a shortened form of $chain.variables.a.b.c.

The expression can be arbitrarily complex as long as it is a valid JavaScript expression
and satisfies the above constraints.

The assignment metadata has the following format:

{
 "source": "some expression",
 "reset": "none", // default to " toDefault"
 "auto": "always", // default to "ifNoMappings"
 "mapping": { ... }
}

The "source" expression can be an arbitrary expression that evaluates to a primitive
value, an object or an array.

The "reset" option can be one of the following:

• "toDefault" - reset the target to its default value before assignment. This is the
default.

• "empty" - clear the target before assignment. If the target has an object type, the
target will be reset to an empty object of that type. If the target is an array, the
target will be reset to an empty array.

• "none" - overwrite the existing target value

The "auto" option controls whether to auto-assign all properties from the source to the
corresponding properties of the target. It can be set to one of the following:

• "always" - auto-assignment will always be performed first before any mapping is
applied.

Chapter 1
JSON Action Chains

1-126

• "ifNoMapping": auto-assignment will only be performed if no mapping is provided. This is
the default.

The "mapping" is a piece of metadata used to provide fine-grained control over what gets
assigned from the source to the target. When no "mapping" is used to control the assignment,
there are two possible schemes for assignment depending on the target type, auto and direct.

Auto Assign Source to Target
If the target has a concrete type, the assign action will auto-assign the source to the target. If
the target type is an object type, auto-assignment will recursively assign each property in the
source object to the corresponding property in the target object based on the target type. If
the target is an array, the source will be treated as an array if it is not one already. For each
item of the source array, an empty item will be created using the target's array item type and
appended to the target array. The source item is then auto-assigned to the target item.
If the target property is an object and the source property is a primitive or vice versa, no
assignment will be made. For primitive types, the source value will be coerced into the target
type before assignment. For boolean type, the coercion will be based on whether the source
value is truthy except for "false" (case-insensitive) and "0" which will be coerced to false.

Direct Assign Source to Target
If the target has a wildcard type, e.g., any, any[], object or object[], direct assignment will be
performed. The behavior may differ depending on the wildcard type:

• any - the source value is directly assigned to the target

• any[] - the source value is turned into an array if not one already and then directly
assigned to the target

• object - same as any except the source value has to be an object. Otherwise, no
assignment is performed.

• object[] - same as any[] except the items in the source array have to be objects.
Otherwise, no assignment is performed.

Example: Metadata-driven assignment takes a map of target expression and assignment
metadata pairs.

"myActionChain": {
 "root": "myAssignVariableAction",
 "actions": {
 "myAssignVariableAction": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters: {
 "$page.variables.target1": { "source": "{{ $page.variables.source1 }}" },
 "$page.variables.target2": { "source": "{{ $page.variables.source2 }}" }
 }
 }
 }
}

Example

"$page.variables.target": {
 "source": "{{ $page.variables.source }}",
 "mapping": {
 "$target.a": "$source.b",
 "$target.b.c": "$source.c.b"
 }
}

Example

Chapter 1
JSON Action Chains

1-127

"$page.variables.target": {
 "source": "{{ $page.variables.source }}",
 "mapping": {
 "$target.a": "$source.b",
 "$target.b": {
 "source": "$source.c"
 "mapping": {
 "$target.c": "$source.b"
 }
 }
 }
}

Assign Variables With a Custom Function
This action uses a custom function to assign values to a set of variables.

A custom assign variable function can perform a transformation on the source value
before assignment.

The AssignVariablesAction will first look up the function referenced by "functionName"
from the page's functions module and call it with the current available scopes. It will
then assign the return value of the function call to the target variable. The custom
function should have the following signature:

PageModule.prototype.myAssignVariableFunction = function (helper,
targetDefaultValue)

The "targetDefaultValue" is the default value for the target which can be used to
emulate the "toDefault" reset option.

The "helper" is an utility object that can be used to retrieve values for variables within
the current scope and perform auto-assignment. It has the following interface:

class AssignmentHelper {
 /**
 * Gets a variable from a scope by its string representation, e.g.,
 * helper.get("$page.variables.myVar")
 */
 get(expr);

 /**
 * Assigns properties from one or more sources to the target if and
 * only if the property already exists on the target. The sources
 * are processed in the order they are defined.
 *
 * If target is null, any empty target value will be created based
 * on the target's type. If the target is not null, it will be cloned
 * and the sources will be assigned into the clone. In either case,
 * this value will be returned as the result.
 */
 pick(target, ...sources) {
}

Example: an assign variable function that resets the target value to its default value
and auto-assign the source to the target:

PageModule.prototype.myAssignVariableFunction = function (helper,
targetDefaultValue) {
 var source = helper.get("$page.variables.source");
 var result = helper.pick(targetDefaultValue, source);

Chapter 1
JSON Action Chains

1-128

 return result;
}

Call Action Chain Action
The action module for this action is "vb/action/builtin/callChainAction".

Note:

You can call a JSON action chain from a JavaScript action chain using this action;
however, you can't call a JavaScript action chain from a JSON action chain.

To call an action chain, you need to pass the following parameters:

Parameter Name Description

id The ID of the action chain to call. Action chains
need to be prefixed with application: for an
application chain and flow: for a flow chain.

params An expression that maps to an array of
parameters.

The outcome and result will be the outcome and result of the last action executed in the
called action chain.

Call Component Action
The action module for this action is "vb/action/builtin/callComponentMethodAction". This
provides a declarative way to call methods on JET components.

Parameters

Parameter Name Description

component The component on the page. Use the DOM method
document.getElementById to locate a JET element/component.
The following deprecated utility methods are provided in the $page scope to get
JET components, but will be removed in a future release:

$page.components.byId('myCard')

$page.components.bySelector('#myCompId')

Note:

These two methods will return null if no element is
found, or if the element is not part of a JET
component.

method The name of the component method to call.

Chapter 1
JSON Action Chains

1-129

Parameter Name Description

params Array of parameters to pass to the method, if it takes arguments. Primitives,
objects, and array parameters are passed by value and not by reference.
Instances are still sent as references.

For this sample composite component, the 'flipCard' method takes two parameters:
'model', which is unused (null below), and 'event', which we construct with a 'type'
property:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "flipCardMethodCall": {
 "label": "Flip the Card",
 "module": "vb/action/builtin/callComponentMethodAction",
 "parameters": {
 "component": "{{ document.getElementById('myCard') }}",
 "method": "flipCard",
 "params": ["{{ null }}", { "type": "click" }]
 }
 }
 }
}

Call Function Action
The action module for this action is "vb/action/builtin/callModuleFunctionAction".

To call a module function, you need to pass the following parameters.

Parameter Name Description

module The module to call the function on. This could
be "$page.functions",
"$application.functions", or
"$flow.functions".

functionName The name of the function to call.

params An array of parameters. Note that a single
parameter must still be passed as a single
item array.

The outcome is either 'success' if the function call was successful, or 'error' otherwise.
The result payload is equivalent to whatever the function returns (which may be
undefined if there is no return). If the function returns a promise, the result payload will
be whatever is resolved in the promise.

Suppose there is a function defined in the page functions module as follows:

PageModule.prototype.sum = function(one, two) {
 return one + two;
}

You can call that function with the following action:

"myActionChain": {
 "root": "mySumAction",
 "actions": {

Chapter 1
JSON Action Chains

1-130

 "myAction": {
 "label": "call my sum function",
 "module": "vb/action/builtin/callModuleFunctionAction",
 "parameters": {
 "module": "{{$page.functions}}",
 "functionName": "sum",
 "params": ["3", "4"]
 }
 }
 }
}

After this action call, $chain.results.mySumAction should be set to 7.

Call REST Action
The action module for this action is "vb/action/builtin/restAction".

The call REST action is used to make a REST call in conjunction with the service definitions.

Internally, this action uses the Rest Helper, which is a public utility. Its parameters are as
follows.

Parameter Name Description

endpoint The endpoint ID as defined in the service
configuration.

uriParams A key/value pair map that will be used to override
path and query parameters as defined in the
service endpoint.

body A structured object that will be sent as the body.

requestType The content-type of the request, either 'json',
'form', or 'url'.

Note:

Note that this is
deprecated. Instead,
use 'contentType'
and
'fileContentType'.

headers An object; each property name is a header name
and value that will be sent with the request.

contentType An optional string value with an actual MIME type,
which will be used for the "content-type" header.
When used with "fileContentType", this is also
used as the type for the File blob.

Chapter 1
JSON Action Chains

1-131

Parameter Name Description

responseType If set, the specified type is used to do two things at
run-time:
• Generate a fields parameter for the REST

URI to limit the attributes fetched;
• Automatically map the fetched response to

the response type (when used with the built-in
vb/BusinessObjectsTransform). This applies
to standard action chains.

See the definition for "responseType" in Service
Data Provider Properties for details on how the
assigned type is used in that context.

filePath An optional path to a file to send with the request.
If "contentType" is set, that is used as the type for
the File contents. If “contentType” is not set, a
lookup of common file extensions will be used.

filePartName Optional, used with filePath to allow override of the
default name ("file") for the FormData part.

fileContentType An optional string, used in combination with
"contentType", "multipart/form-data", and
"filePath".

hookHandler Used primarily by vb/ServiceDataProvider when
externalizing data fetches. See Service Data
ProviderServiceDataProvider for details.

requestTransformOptions A map of values to pass to the corresponding
transform, as the "options" parameter.

requestTransformFunctions A map of named transform functions, called before
making the request, where the function
is: fn(configuration, options)

responseTransformFunctions A map of named transform functions, called before
making the response, where the function
is: fn(configuration, options)

responseBodyFormat A string that allows an override of the standard
Rest behavior, which normally looks for a “content-
type” header to determine how to read and parse
the response. Possible values are "text", "json",
"blob", "arrayBuffer", "base64", "base64Url", and
"formData".

responseFields This is an "advanced" field, for use specifically with
JET Dynamic Forms. The value would typically be
a variable that is bound to the <oj-dynamic-
form> "rendered-fields" attribute. This is how a
calculated layout can tell the Rest Action call
which fields to fetch.
Note: the vb/BusinessObjectsTransform transform
is necessary to create a query from this value.

Note: When "responseFields" is provided,
"responseType" is ignored.

Using multipart/form Data

If you have set "contentType" to "multipart/form-data", the Action will interpret your
request "body" object as the form parts. Each property of the body object will be a form
part. If "filePath" is also set, it will be added as an additional part using the lookup of
common file extension types.

Chapter 1
JSON Action Chains

1-132

If "filePath" is also set, it will be added as an additional part using the sample simple file
extension type association. The name of this part will be "file", or can be specified using
"filePartName".

You may optionally override the file type by using "fileContentType" for the file part.

Defining Services

In order to use a REST API, it should be first defined.

In this example, the following endpoint is registered for the 'foo' service:

{
 "openapi": "3.0",
 "info": {
 "version": "1.1",
 "title": "ifixitfast",
 "description": "FIF",
 },
 "host": "exampledomain.com",
 "basePath": "/services/root",
 "schemes": [
 "http"
],
 "paths": {
 "/foo/{id}": {
 "get": {
 "summary": "get a specific Foo object",
 "operationId": "getBar",
 "parameters": [
 {
 "name": "id",
 "in": "path",
 "required": true,
 "type": "string"
 }
],
 "responses": {
 "200": {
 "description": "",
 "schema": {}
 }
 }
 }
 }
 }
}

You can invoke that endpoint with the following, passing in a value for the 'id' path parameter
from a page parameter:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "foo/getBar",
 "uriParams": {
 "id": "{{ $page.variables.myId }}"
 }

Chapter 1
JSON Action Chains

1-133

 }
 }
 }
}

Declaring Services in the Application

Service definitions are referenced in declarations in the application or in flows. The
service name and path are defined by a "services" section in an app-flow.json or xxx-
flow.json model. Service declarations support two syntaxes: a string (path), or an
object with "path" and "headers":

"services": {
 "fooService": "./demo-data-service.json",
 "barService": {
 "path": "./service-def.json",
 "headers": {
 "Accept": "application/vnd.oracle.openapi3+json"
 }
 }
}

Transforms

The requestTransformOptions, requestTransformFunctions, and
responseTransformFunctions can be used to modify the request and response. Some
built-in service endpoints have built-in transform functions for 'sort', 'filter', 'paginate',
and 'select', so options for these transform functions can be defined using the same
name via the requestTransformOptions property. For third party services, the options
set are based on the type of transform functions supported.

When using the Rest Action the transform names have no semantic meaning, and all
request and response transforms are called.

Request and response transform functions have the following signatures.

Chapter 1
JSON Action Chains

1-134

Transform
Type

Parameters Return Value

Request
/**
 * configuration: {
 * url:
 * initConfig: {
 * method: // string with
http method
 * body: // request body, if
any
 * credentials: // string
see (fetch) Request
 * headers: // object, map
of strings
 * }
 * },
 *
 * options: provided by the
application
 *
 * context: an empty object,
which exists for the
 * lifetime of one REST call,
a set of
 * transforms share this.
 **/

mytransform(configuration,
options, context)

Configuration object; see "Parameters".

Typically, returns the same object
passed in, or a modified one.

Chapter 1
JSON Action Chains

1-135

Transform
Type

Parameters Return Value

Response
/**
 * response: { body, headers }
 *
 * context: an empty object, see
"Request transforms"
 *
 */
myresponsetransform(response,
context);

The return value is application-defined.
The value is returned as the
'transformResults' of the REST call
result:

/**
 * {
 * response: The (fetch)
Response object. Note that
the body has already
 * been read, so the
functions (ex. json())
cannot be called.
 *
 * body: the result of the
json()/text()/etc.
 *
 * transformResults: a map
of return values from
Response Transforms
 * }
 */

Example 1-18 A Simple Transform Function

One request transform function and one response transform function for a third party
service or endpoint might look like this example. Here, the transform functions are
defined in the page module and are configured on the RestAction directly. More
commonly, transform functions are defined in the service definition and do not need to
be mapped on the RestAction.

"fetchIncidentList": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/getIncidents",
 "requestTransformOptions": {
 "sort": "{{ $page.variables.sortExpression }}",
 },
 "requestTransformFunctions": {
 "sort": "{{ $page.functions.sort }}"
 },
 "responseTransformFunctions": {
 "paginate": "{{ $page.functions.paginateResponse }}"
 }
 },
 "outcomes": {
 "success": "returnSuccessResponse",
 "failure": "returnFailureResponse"
 }
},

The corresponding module functions would be:

Chapter 1
JSON Action Chains

1-136

PageModule.prototype.sort = function (configuration, options) {
 /// some code here to modify 'configuration'
 return configuration;
}

PageModule.prototype.paginateResponse = function (configuration) {
 /// some code here to modify 'configuration'
 return configuration;
}

Outcomes

The Call REST action has the following outcomes.

Outcome Description Result Payload

success If the response code is within the 200 range
(or 'ok' in fetch API terms).

• status: number
• headers: Headers object
• body: the result of the call (scalar, obejct,

array, etc).

{
 status: <responseCode>,
 headers: <responseHeaders>,
 body: <result body>
}

failure If the response code is outside of the 200
range (an error response).

• message

– summary: string
• error: Error object, or null
• payload

– status: number
– headers: Headers object
– body: the result of the call (scalar,

obejct, array, etc).

{
 message: {
 summary: <rt message>
 },
 error: <Error, or null>,
 payload: {
 status: <responseCode>,
 headers:
<responseHeaders>,
 body: <result body>
 }
}

Call Variable Method Action
The action module for this action is vb/action/builtin/callVariableMethodAction. This
action is used to call a method on a variable of InstanceFactory type only. Using it with any
other variable will report an error.

Here is an example.

"callGetCapabilityChain": {
 "root": "getCapabilityOnLDPV",
 "actions": {
 "getCapabilityOnLDPV": {
 "module": "vb/action/builtin/callVariableMethodAction",
 "parameters": {
 "variable": "$page.variables.incidentsListView",
 "method": "getCapability",
 "params": [

Chapter 1
JSON Action Chains

1-137

https://developer.mozilla.org/en-US/docs/Web/API/Response/headers
https://developer.mozilla.org/en-US/docs/Web/API/Response/headers

 "sort"
]
 }
 }
 }
}

Where incidentsListView is an InstanceFactory variable defined like this:

"incidentsListLDPV": {
 "type": "ojs/ojlistdataproviderview",
 "constructorParams": [
 "{{ $page.variables.incidentsList.instance }}",
 {
 "sortCriteria": [
 {
 "attribute": "priority",
 "direction": "ascending"
 }
]
 }
],
 "persisted": "session"
}

To call a variable method, we need to pass the following parameters:

Parameter Name Description

variable The variable path

method The name of the method to call

params (optional) An array of parameters. Note that a single parameter
must still be passed as a single item array.

The outcome is either 'success' if the function call was successful, or a 'failure'
outcome. An error is thrown for configuration errors.

The result payload is equivalent to whatever the function returns (which may be
undefined if there is no return). If the function returns a promise, the result payload will
be whatever is resolved in the promise.

EditorUrl Action
This action is used to build the URL of the Visual Builder editor from an application at
runtime. It gathers multiple pieces of information and returns a URL with request
parameters representing various contextual info needed by the editor.

The action module for this action is vb/action/builtin/editorUrlAction.

Note:

This action should not be used for mobile applications.

Chapter 1
JSON Action Chains

1-138

The base URL pointing to the editor location is either passed as an argument to the action or
has to be defined in the EDITOR_URL property of the vbInitConfig global object. If this
value is not available, the action will abort with an error. Depending if the dynamicLayout
request parameter is defined, the editor will either edit the current page or the ruleset of a
specific dynamic component.

Here is an example of editorUrlAction usage:

"openEditor": {
 "variables": {
 "componentId": {
 "type": "string",
 "input": "fromCaller",
 "required": true
 }
 },
 "root": "editorUrl",
 "actions": {
 "editorUrl": {
 "module": "vb/action/builtin/editorUrlAction",
 "parameters": {
 "componentId": "{{ $variables.componentId }}"
 },
 "outcomes": {
 "success": "openEditor"
 }
 },
 "openEditor": {
 "module": "vb/action/builtin/openUrlAction",
 "parameters": {
 "url": "{{ $chain.results.editorUrl }}",
 "windowName": "VB_EDITOR"
 }
 }
 }
}

Parameter Description

editorUrl URL of the VB Extension editor (optional). If not
defined, use the value of
vbInitConfig.EDITOR_URL.

componentId The id of the component to use to retrieve the
dynamic layout. (optional)

Fire Event Action
The action module for this action is "vb/action/builtin/fireCustomEventAction".

This action allows you to fire application-defined events.

"actions": {
 "fireEvent": {
 "module": "vb/action/builtin/fireCustomEventAction",
 "parameters": {
 "name": "application:customEventToFire",

Chapter 1
JSON Action Chains

1-139

 "payload": "{{ $variables.payload }}"
 }
 }
}

Fire Data Provider Event Action
The action module for this action is "vb/action/builtin/fireDataProviderEventAction".

This causes the DataProvider specified via the 'target' parameter to dispatch an
oj.DataProvider event as a way to notify all listeners registered on that DataProvider to
react to changes to the underlying data. For example, a component using a particular
ServiceDataProvider may need to render new data because new data has been added
to the endpoint used by the ServiceDataProvider.

The action can be called either with a mutation event or a refresh but not both.
Generally a mutation event is raised when items have been added, updated, or
removed from the data that the ServiceDataProvider represents.

Note:

This action can be used with a vb/ArrayDataProvider2. It does not need to be
used with a legacy vb/ArrayDataProvider because the 'data' is already
exposed as a property on the variable. This allows page authors to directly
mutate the data array using the assignVariables action. This assignment is
automatically detected by Visual Builder, and all listeners of this change are
notified, removing the need to use a fireDataProviderEventAction. Users will
be warned when the fireDataProviderEventAction is used with a legacy
ArrayDataProvider, prior to mutating the 'data' property directly.

A mutation event can include multiple mutation operations (add, update, remove) as
long as the id values between operations do not intersect. This behavior is enforced by
JET components. For example, you cannot add a record and remove it in the same
event, because the order of operations cannot be guaranteed.

The action can return either success or failure. Success returns null, while failure
returns the error string.

Table 1-1 Parameters

Name Type Description Example

target string Target of the event, usually a
variable of type vb/SDP or vb/ADP.

target: "{{ $page.variab
les.incidentList }}"

refresh null Indicates a data provider refresh
event needs to be dispatched to the
data provider identified by the
target. A null value is specified
because the refresh event does not
require a payload.

refresh: null

Chapter 1
JSON Action Chains

1-140

Table 1-1 (Cont.) Parameters

Name Type Description Example

add object The following properties may be
present in the payload:
• data: Array<Object>; the

results of the 'add' operation.
Note there can be more than
one rows added. If data alone
is present in the payload, and
the target has a keyAttributes
property specified, then the
'keys' are built for you. The
structure of the data returned
must be similar to the
responseType specified on the
target variable of type vb/
ServiceDataProvider
(respecting the "itemsPath", if
any), or the itemType specified
on the vb/ArrayDataProvider

• keys: optional Set<*>. the
keys for the rows that were
added. If a
ServiceDataProvider variable
is configured with a
keyAttributes property, this can
be determined by the
ServiceDataProvider itself from
the data, if data is present.

• metadata: optional Array<Ite
mMetadata<Object>>. Since
the ServiceDataProvider
variable is configured with
'keyAttributes', this can be
determined by the
ServiceDataProvider itself.

• addBeforeKeys: Optional
Array of keys for items located
after the items involved in the
operation. They are relative to
the data array, after the
operation was completed and
not the original array. If null
and index are not specified,
then insert at the end.

• afterKeys: Deprecated: use
addBeforeKeys instead.
Optional Set<*>; a Set that is
the keys of items located after
the items involved in the
operation. If null and index not
specified then insert at the
end.

• indexes: optional Array<numb
er>, identifying insertion point.

"add": {
 "data":
"{{ $chain.results.saveP
roduct.body }}",
"indexes": [0]
}

An example with
ServiceDataProvider, where
"itemsPath": "items":

"updateList": {
 "module": "vb/action/
builtin/
fireDataProviderEventAct
ion",
 "parameters": {
 "target":
"{{ $page.variables.pers
onList }}",
 "add": {
 "data": {
 "items":
"{{ [$chain.results.crea
tePersonPost.body] }}"
 }
 }
 }
}

Chapter 1
JSON Action Chains

1-141

Table 1-1 (Cont.) Parameters

Name Type Description Example

remove The payload for the remove event is
similar to add above except
'afterKeys'/'addBeforeKeys' are not
present.

"remove": {
 "keys":
"{{ [$page.variables.pr
oductId] }}"
}

update Same as remove. "update": {
 "data":
"{{ $page.variables.curr
entIncidentResponse }}"
}

The action can return two outcomes:

• The name of the outcome can be 'success' or 'failure'.

• The result of a failure outcome is the error string, and the result of a success
outcome is null.

Example 1-19 Example 1

Configuring a refresh event to be dispatched to a ServiceDataProvider:

(1) activityListDataProvider is the name of the
page variable that is of type vb/ServiceDataProvider
(2) refresh has a null value

"fireDataProviderRefreshEventActionChain": {
 "variables": {
 "payload": {
 "type": {
 "target": "activityListDataProvider" // (1)
 }
 }
 },
 "root": "fireEventOnDataProvider",
 "actions": {
 "fireEventOnDataProvider": {
 "module": "vb/action/builtin/fireDataProviderEventAction",
 "parameters": {
 "target": "{{ $page.variables[$variables.payload.target] }}",
 "refresh": null // (2)
 }
 }
 }
},

Example 1-20 Example 2

Configuring a remove event to be dispatched to a ServiceDataProvider:

(1) deleteProductChain deletes a product and ends up calling
another chain that fires a remove event on the ServiceDataProvider
(2) deletes the product from the backend service via a RestAction
(3) calls fireDataProviderEventAction

Chapter 1
JSON Action Chains

1-142

(4) on a variable of type vb/ServiceDataProvider
(5) with a remove payload

"variables": {
 "productListSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "keyAttributes": "id",
 "responseType": "application:productSummary[]"
 }
 },
}
"chains": {
 "deleteProductChain": { // (1)
 "variables": {
 "productId": {
 "type": "string",
 "description": "delete a single product",
 "input": "fromCaller",
 "required": true
 }
 },
 "root": "deleteProduct",
 "actions": {
 "deleteProduct": { // (2)
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/deleteProduct",
 "uriParams": {
 "productId": "{{ $page.variables.productId }}"
 }
 },
 "outcomes": {
 "success": "refreshProductList"
 }
 },
 "refreshProductList": {
 "module": "vb/action/builtin/callChainAction",
 "parameters": {
 "id": "fireDataProviderMutationEventActionChain",
 "params": {
 "payload": {
 "remove": {
 "keys": "{{ [$page.variables.productId] }}"
 }
 }
 }
 }
 }
 }
 },
 "fireDataProviderMutationEventActionChain": {
 "variables": {
 "payload": {
 "type": "application:dataProviderMutationEventDetail",
 "input": "fromCaller"
 }
 },
 "root": "fireEventOnDataProvider",
 "actions": {
 "fireEventOnDataProvider": {

Chapter 1
JSON Action Chains

1-143

 "module": "vb/action/builtin/fireDataProviderEventAction", //
(3) // (2)
 "parameters": {
 "target": "{{ $page.variables.productListSDP }}", // (4)
 "remove": "{{ $variables.payload.remove }}" // (5)
 }
 }
 }
 }
},

Fire Notification Event Action
The action module for this action is "vb/action/builtin/fireNotificationEventAction". This
action is used to fire "vbNotification" events.

"vbNotification" events are just like custom events, except that they have a defined
name and a suggested use. Notifications are generally intended to help implement a
flexible message display, but the specific use can be defined by the application. See
Custom Events for details.

"actions": {
 "fireNotification": {
 "module": "vb/action/builtin/fireNotificationEventAction",
 "parameters": {
 "summary": "[[$page.variables.summary]]",
 "message": "[[$page.variables.message]]",
 "displayMode": "persist",
 "type": "info"
 }
 }
}

ForEach Action
This action lets you execute another action for each item in an array.

The ForEach action takes an 'items' and 'actionId', and adds a $current context
variable for the called action, or 'Callee', in order to access the current item. The
parameters are as follows:

Parameter Name Description

as An optional alias for $current. Used to name the
context so that it can be referenced in nested Callees.

actionId An ID in the current action chain.

items An expression that evaluates to an array.

mode "serial" (default) or "parallel".

The "mode" parameter allows for serial or parallel action. Prior to this parameter, the
behavior was "serial"; each "actionId" call was made for an item only when any
previous item's "actionId" call finished (meaning, any Promise returned from the last
action resolves). Using "parallel" means that each "actionId" call does not wait for the
previous call to finish (useful for Rest Action calls, etc).Using either mode, the ForEach

Chapter 1
JSON Action Chains

1-144

action does not finish until all Promises returned from the "actionId" chain resolve (if no
Promise is returned, it is considered resolved on return).

The following table describes additional properties injected into the available contexts that the
called action ('callee') can reference in its parameter expressions:

Parameter Name Description

$current.data The current array item.

$current.index The current array index.

alias.data An alternate syntax for $current.data, which allows a
reference to $current from nested contexts.

alias.index An alternate syntax for $current.index, which allows
a reference to $current from nested contexts.

The outcome of the action is either:

• "success", with an array containing the return value of the last action's results; in other
words, an array of the return of the "sub-chain" ("chainlet"?) called for each item in the
loop,

• or "failure" if there is some exception/error.

Note: Except for the return value for the last action, the results of each Action are not
accessible outside of the sub-chain; for example, if the sub-chain is "actionA" → "actionB",
the result of the ForEach will contain an array of "actionB" return values, and not "actionA"'s.

ForEach "as" Alias

By default, the ForEach Action ID in the declaration will be used for the alias to $current.

Note that if an action has an "as" alias, then the value will be used as the alias instead. For
example, for as="foo", you can also create expressions that reference "foo.data" and
"foo.index".

Example 1-21 Example 1

In this example, $current.data and forEachCurrent.data are equivalent.

actions: {
 "forEach": {
 "module": "vb/action/builtin/forEachAction",
 "parameters": {
 "items": "{{ $variables.testArray }}",
 "actionId": "someAction",
 "as": "forEachCurrent",
 },
 },
 "someAction": {
 "module": "someRandomAction",
 "parameters": {
 "outcome": "{{ $current.data.foo }}",
 "payload": {
 "text": "{{ forEachCurrent.data.bar }}",
 "index": "{{ $current.index }}' }"
 }
 }
 }
}

Chapter 1
JSON Action Chains

1-145

Example 1-22 Example 2

This example demonstrates the use of “as”.

"actions": {
 "forEachOuter": {
 "label: 'the outer-most action, a ForEach',
 "module": "vb/action/builtin/forEachAction",
 "parameters": {
 "items": ["a", "b"],
 "actionId": "forEachInner"
 }
 },
 "forEachInner": {
 "label": "the inner-most action, a ForEach, called by a ForEach",
 "module": "vb/action/builtin/forEachAction",
 "as": "inner",
 "parameters": {
 "items": [1, 2],
 "actionId": "someAction",
 }
 },
 "someAction": {
 "label": "a custom action",
 "module": "countToTwoAction",
 "parameters": {
 "someParam": "{{ forEachOuter.data }}",
 "anotherParam": "{{ inner.data }}"
 }
 }
}

Get Location Action
The action module for this action is "vb/action/builtin/geolocationAction".

This action provides a declarative access to geographical location information
associated with the hosting device. This action requires the user's consent. As a best
practice, it should only be fired on a user gesture. Doing so will allow users to more
easily associate the system permission prompt for access with the action they just
initiated.

Parameter Name Description

maximumAge A positive long value indicating the maximum
age in milliseconds of a possible cached
position that is acceptable to return. If set to 0,
it means that the device cannot use a cached
position and must attempt to retrieve the real
current position. If set to Infinity, the device
must return a cached position regardless of its
age.

timeout A positive long value representing the
maximum length of time, in milliseconds, that
the device is allowed to take in order to return
a position. The default value is Infinity,
meaning that getCurrentPosition()
won't return until the position is available.

Chapter 1
JSON Action Chains

1-146

Parameter Name Description

enableHighAccuracy A boolean that indicates the application would
like to receive the best possible results. If true,
and if the device is able to provide a more
accurate position, it will do so. This can result
in slower response times or increased power
consumption. If false (the default value), the
device can save resources by responding
more quickly or using less power. On mobile
devices, enableHighAccuracy should be set
to true in order to use GPS sensors.

If the geolocation API is supported in the browser, geolocationAction returns a JSON Position
object that represents the position of the device at a given time.

Return Type Description Example

Object The Position interface represents
the position of the concerned
device at a given time. The
position, represented by a
Coordinates object,
comprehends the 2D position of
the device, on a spheroid
representing the Earth, but also
its altitude and its speed.
• Position.coords returns a

Coordinates object defining
the current location.

• Position.timestamp returns a
DOM timestamp
representing the time at
which the location was
retrieved.

Latitude and longitude can be
accessed from the Position's
coordinates as follows:

[[$chain.results.getCurrentL
ocation.coords.latitude]]

[[$chain.results.getCurrentL
ocation.coords.longitude]]

where getCurrentLocation is a
geolocationAction.

If geolocation is not supported by the browser, or a parameter with a wrong type is detected,
a failure outcome is returned. If a PositionError occurs when obtaining geolocation, a failure
outcome with a PositionError.code payload is returned. Possible PositionError.code values
are:

• PositionError.PERMISSION_DENIED

• PositionError.POSITION_UNAVAILABLE

• PositionError.TIMEOUT

For every failure, a descriptive error message can be obtained from the action chain, such as
[[$chain.results.getCurrentLocation.error.message]].

An example of using the geolocation action:

"chains": {
 "getCurrentLocation": {
 "root": "geolocation1",
 "description": "",
 "actions": {
 "geolocation1": {
 "module": "vb/action/builtin/geolocationAction",

Chapter 1
JSON Action Chains

1-147

 "parameters": {
 "timeout": 50000,
 "maximumAge": "{{Infinity}}"
 },
 "outcomes": {
 "failure": "fireNotification1",
 "success": "assignVariables1"
 }
 },
 "fireNotification1": {
 "module": "vb/action/builtin/fireNotificationEventAction",
 "parameters": {
 "summary": "[[$chain.results.geolocation1.error.message]]",
 "type": "error",
 "displayMode": "persist"
 }
 },
 "assignVariables1": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$page.variables.coords": {
 "source": "{{ $chain.results.geolocation1.coords }}",
 "auto": "always"
 }
 }
 }
 }
 }
},

If Action
The action module for this action is "vb/action/builtin/ifAction".

This action will evaluate an expression and return a 'true' outcome if the expression
evaluates to true, and a 'false' outcome otherwise.

Parameter Name Description

condition The expression to evaluate.

For example:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/ifAction",
 "parameters": {
 "condition": "{{ $chain.results.myRestAction.code === 404 }}"
 },
 "outcomes": {
 "true": "...",
 "false": "..."
 }
 }
 }
}

Chapter 1
JSON Action Chains

1-148

Login Action
This action launches the login process as defined in the Security Provider implementation.

The action module for this action is "vb/action/builtin/loginAction". It invokes
the handleLogin function on the Security Provider with the returnPath argument.

Parameter Name Description

returnPath The path of the page or flow to go to when login is
successful.

The behavior of the default implementation of the Security Provider handleLogin function is:

• Navigate to the login URL specified by the Security Provider configuration.

• If returnPath is not defined, use the default page of the application.

• Convert the page returnPath to a URL path and add it to the login URL.

Example 1-23 Example

An example of a chain using the loginAction:

"signInChain": {
 "root": "signInAction",
 "actions": {
 "signInAction": {
 "module": "vb/action/builtin/loginAction"
 }
 }
}

Logout Action
This action launches the logout process as defined in the Security Provider implementation.

The action module for this action is "vb/action/builtin/logoutAction". It invokes
the handleLogout function on the Security Provider with the logoutUrl argument.

Parameter Name Description

logoutUrl The URL to navigate to in order to log out.

The behavior of the default implementation of the Security Provider handleLogout function is:

• Navigate to the URL defined by the logoutURL parameter.

• If the logoutUrl parameter is not defined, uses the logout Url of the Security Provider
configuration.

• After the user is logged out, the application continues to the default page of the
application.

Example 1-24 Example

An example of a chain using the logoutAction:

"logoutChain": {
 "root": "logout",
 "actions": {

Chapter 1
JSON Action Chains

1-149

 "logout": {
 "module": "vb/action/builtin/logoutAction"
 }
 }
}

Navigate Action
The action module for this action is "vb/action/builtin/navigateAction".

This action will navigate the user to a page and also pass any parameters to activate
that page. Parameters for this action are:

Parameter
Name

Description

page The path to the destination page. The path can be a single page ID, or a
path starting with a page ID. It can be an absolute path starting at the
application or relative to the current page. When used with 'flow' , the path
cannot be absolute; it navigates to the page relative to the flow.

flow ID of the destination flow, used to change the content of the flow displayed
in the current page. When used with 'page', navigates to the page in that
flow.

target Target of the destination flow, used with 'flow' to change the content of the
parent flow instead of the nested flow. Values are 'parent' or 'self' (default).

params A key/value pair map that will be used to pass parameters to a
page (optional)

history Defines the effect on the browser history. Values
are 'replace', 'skip' or 'push'. If the value is 'replace', the current browser
history entry is replaced, meaning that the back button will not go back to it.
If the value is 'skip', the URL is not modified. (optional and default is 'push')

Page input parameters are page variables with the Input Parameter enabled. You can
use the Navigate action to set the value for these input parameters. But if a page
parameter was a path to a deeply nested page, like /shell/main/other, you'll see
a list of all input parameters from each page/flow in the path (that is, input parameters
for the shell page, the main flow, as well as other pages). Name collisions across
flows/pages are not accounted for—something you'll need to keep in mind when
defining input parameters.

Here's an example of the navigate action:

"myActionChain": {
 "root": "navigate",
 "actions": {
 "navigate": {
 "module": "vb/action/builtin/navigateAction",
 "parameters": {
 "page": "myOtherPage",
 "params": {
 "id": "{{ $page.variables.myId }}"
 }
 }
 }
 }
 }

Chapter 1
JSON Action Chains

1-150

This returns the outcome 'success' if there was no error during navigation. If navigation
completed successfully, returns the action result true, otherwise false. Returns the outcome
fail with the error in the payload if there was an error.

Navigating to the same page

Navigating to the same page with different input params is considered as a valid navigation.
Since the current page is not changing, only the page input variable value will change and the
onValueChanged event will be triggered. When navigating to the same page, the events
vbBeforeEnter, vbEnter, vbBeforeExit, and vbExit are not triggered because the page
never transitioned to an enter or exit state.

The navigation is pushed into the browser history, so pressing the browser's Back button will
restore the previous values of the input variables.

Example 1-25 Page or flow descriptor with navigation fromExternal property set to
enabled

"navigation": {
 "fromExternal": "enabled"
}

Navigation with the page parameter

The 'page' parameter is the ID of a sibling page or a path starting with a sibling page's ID (like
pageId/flowId/...). It cannot be or start with a flow ID.

Example 1-26 Navigate to a sibling of the current page

To navigate to page other, a sibling of the current page:

"parameters": {
 "page": "other"
}

Example 1-27 Navigate to a sibling page and change content of the nested flow

To navigate to flow main, which is defined under the sibling page other:

"parameters": {
 "page": "other/main"
}

Example 1-28 Navigate to the root application

To navigate to the root of the application:

"parameters": {
 "page": "/"
}

Chapter 1
JSON Action Chains

1-151

Example 1-29 Navigate to the current flow's default page

To navigate to the current flow's default page:

"parameters": {
 "page": ""
}

Example 1-30 Navigate to a deeply nested page relative to the application root

To navigate to a deeply nested page relative to the root of the application:

"parameters": {
 "page": "/shell/main/other"
}

Navigation with the flow parameter

The 'flow' parameter can only be the ID of a flow defined below the current page or an
empty string.

Example 1-31 Navigate to a specific flow

To change the content of the flow displayed in the current page to the flow main:

"parameters": {
 "flow": "main"
}

Example 1-32 Navigate to a page in a specific flow

To change the content of the flow displayed in the current page to the flow main and
navigate to the page other or the flow main:

"parameters": {
 "flow": "main",
 "page": "other"
}

Example 1-33 Navigate to the current page's default flow

To navigate to the current page's default flow:

"parameters": {
 "flow": ""
}

Example 1-34 Navigate the parent flow to a specific flow

To change the parent flow to the flow main:

"parameters": {
 "target": "parent",

Chapter 1
JSON Action Chains

1-152

 "flow": "main"
}

Example 1-35 Navigate the parent flow to the default flow

To change the parent flow to the default flow:

"parameters": {
 "target": "parent",
 "flow": ""
}

Example 1-36 Navigate to any page in a sibling flow

To change the parent flow to the flow main and navigate to page other in the flow main
(note that page can be a path):

"parameters": {
 "target": "parent",
 "flow": "main",
 "page": "other"
}

Navigate Back Action
The action module for this action is "vb/action/builtin/navigateBackAction".

This action will go back one step in browser history. It has a single 'success' outcome and can
return a payload by specifying values for the input parameters.

Parameter Name Description

params An optional key/value pair map that will be used to pass
parameters to a page.

When a parameter is not specified, the original value of the input parameter on the
destination page is used. When a parameter is specified, it has precedence over fromUrl
parameters.

Open URL Action
The action module for this action is "vb/action/builtin/openUrlAction".

In a web app, this action opens the specified URL in the current window or in a new window
using the window.open() API.

In a native mobile app, this action supports opening local file attachments as well as remote
resources. Allowed file types for the url parameter are as follows:

• .pdf
• .doc
• .txt
• .text

Chapter 1
JSON Action Chains

1-153

• .ppt
• .rtf
• .xls
• .mp3
• .mp4
• .csv
The very first time, the user will get an option to select which application to use for
opening a given file type. If no application is available to open such a file, this action
will fail with the appropriate error. Once the given file has been opened once, it will
always be opened with the same application across all Visual Builder installed apps on
the device.

If the specified file is not local or if the file extension is not recognized, this action will
use Cordova's plugin cordova-plugin-inappbrowser to open the specified URL.

Parameter Name Description

url The url to navigate to (required)

params A key/value pair map that will be used as
query parameters to the url (optional)

hash The hash entry to append to the
URL. (optional)

history Defines the effect on the browser history.
Allowed values are 'replace' or 'push'. If the
value is 'replace', the current browser history
entry is replaced, meaning that the back
button will not go back to it. (optional, and
default is 'push')

windowName A name identifying the window as defined in
the window.open() API (optional). If not
defined, the URL opens in the current window.
Otherwise, refer to the window.open() API
documentation. In a mobile app, there are 3
possible values: _self, _blank, or _system.
The default is _self. Refer to the
documentation for cordova-plugin-
inappbrowser. For local file types, this
parameter is ignored.

Once on the URL location, the browser back button will re-enter the last page if you
specified a value for the windowName parameter that opens the URL in the current
window and the page input parameters will be remembered, even if their type
is 'fromCaller'.

Example 1-37 Open a new window in the browser with the given URL

To open a URL:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/openUrlAction",
 "parameters": {

Chapter 1
JSON Action Chains

1-154

 "url": "http://www.example.com",
 "params": {
 "id": "{{ $page.variables.myId }}"
 },
 "windowName": "myOtherWindow"
 }
 }
 }
}

Reset Variables Action
Use this action to reset variables to their default values defined in their variable definitions.

The action module for this action is vb/action/builtin/resetVariablesAction.

Parameter Name Description

variables An array of variables. Here is an example.

["$page.variables.var1",
"$page.variables.var2"]

Note:

If a single variable
expression is
provided instead of
an array, it will be
implicitly treated as
an array of one
variable.

Each expression in the array has to resolve to a
variable or variable property. It has to be prefixed
with one of the following:
• $application.variables
• $page.variables
• $chain.variables
Each expression should be followed by a variable
name or a path to a variable property. For
example:

• $application.variables.a
• $page.variables.a.b
• $variables.a.b.c (which is shorthand

for $chain.variables.a.b.c)

Return Action
The action module for this action is "vb/action/builtin/returnAction".

This action (which should be the terminal action of a chain) allows you to control the outcome
and payload of that chain when necessary. Parameters for this action are as follows:

Chapter 1
JSON Action Chains

1-155

Parameter Name Description

payload The payload to return from this action. Useful
in a 'callChainAction" to control the resulting
payload from calling that action chain. This can
be an expression.

outcome The outcome to return from this action. Useful
in a 'callChainAction" to control the resulting
outcome from calling that action chain. This
can be an expression.

An example that uses the return action on a chain that makes a REST call, but returns
a simpler value:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "someRestCall": {
 "module": "vb/action/builtin/callRestAction",
 "parameters": {...},
 "outcomes": {
 "success": "myReturnAction"
 }
 }
 "myReturnAction": {
 "module": "vb/action/builtin/returnAction",
 "parameters": {
 "outcome": "success",
 "payload":
"{{ $chain.results.someRestCall.body.somewhere.inthe.payload.isa.string }}"
 }
 }
 }
}

This will return a simple string on a successful REST call if this action chain was called
via the 'callChainAction'.

Run in Parallel / Fork Action
The action module for this action is "vb/action/builtin/forkAction".

This action allows multiple action chain paths to run in parallel, then wait for their
responses and produce a combined result. Normally, if you do not care what your
action chains return, you can chain multiple action chains on the event handler. If you
want to wait for the result, and take action once everything is complete, you can use
this action instead.

A fork action has an arbitrary set of actions whose action sub-chains will run in
parallel. A special outcome, 'join', will be followed once all the sub-chains complete
processing. The outcome of the fork action is always 'join', and the result is a mapping
from the outcome id's of the sub-chains to their outcome/result payload.

This action takes one parameter, "actions", which is a map of an action alias, to an
Action ID in the chain. The alias is the property name used in the results of the Fork
action results (an alias allows the same Action to be called multiple times in the same
Fork Action).

Chapter 1
JSON Action Chains

1-156

Example 1-38 Example

To make two REST calls, then do some assignments only after they both complete:

"myActionChains": {
 "root": "myAction",
 "actions": {
 "myForkAction": {
 "module": "vb/action/builtin/forkAction",
 "parameters": {
 "orcl": "orcl",
 "crm": "crm",
 },
 "outcomes": {
 "join": "join"
 },
 "orcl": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "stock/get-stock-quote",
 "uriParams": { "stock": "ORCL" }
 }
 }
 "crm": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "stock/get-stock-quote",
 "uriParams": { "stock": "CRM" }
 }
 },
 "join": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$page.variables.orcl": { "source": "{{ ''
+ $chain.results.getAllStockQuotes.orcl.result.body }}" },
 "$page.variables.crm": { "source": "{{ ''
+ $chain.results.getAllStockQuotes.crm.result.body }}" }
 }
 }
 }
}

Scan Barcode Action
Use this action in your mobile application to scan QR codes and barcodes for details such as
URLs, Wi-Fi connections, and contact information.

The action module for this action is vb/action/builtin/barcodeAction. Parameters
for this action are:

Parameter Name Description

image An image object, which can be a CanvasImageSource, Blob, ImageData, or
an element

Chapter 1
JSON Action Chains

1-157

Parameter Name Description

formats Optional: A series of barcode formats to search for, for example, one or more
of the following:
['aztec', 'code_128', 'code_39', 'code_93',
'codabar', 'data_matrix', 'ean_13', 'ean_8', itf',
'pdf417', 'qr_code', 'upc_a', 'upc_e']
Note that all formats may not be supported on all platforms.

If formats is not specified, the browser will search all supported formats,
so limiting the search to a particular subset of supported formats may
provide better performance.

convertBlob Optional: A boolean that enables you to automatically convert a Blob to an
ImageBitmap when using the Scan Barcode action to process the outcome
of the Take Photo action. If true, the Blob object is converted as an
ImageBitmap before being passed to the Scan Barcode action. If false
(default), the Blob object is left as is. You'll need to manually do the
conversion, for example, by adding a function to your application and calling
the function using the callModuleFunctionAction in your action
chain.

Here's an example of the barcodeAction's metadata used to read QR code from an
HTML image element:

"fromImage": {
 "module": "vb/action/builtin/barcodeAction",
 "parameters": {
 "image": "[document.querySelector('#qrcode')]",
 "formats": "[[['qr_code']]]"
 },
 "outcomes": {
 "failure": "showError",
 "success": "openUrl"
 }
 }

Here's another example, using the barcodeAction to process the outcome of the
Take Photo action as a QR code:

"qrCodeFromFile": {
 "module": "vb/action/builtin/barcodeAction",
 "parameters": {
 "image": "[[$chain.results.takePhoto.file]]",
 "formats": "[[['qr_code']]]",
 "convertBlob": true
 },
 "outcomes": {
 "failure": "showError",
 "success": "openUrl"
 }
 }

A success outcome will include the DetectedBarcode object as a result.
DetectedBarcode (https://wicg.github.io/shape-detection-api/#detectedbarcode) has a

Chapter 1
JSON Action Chains

1-158

https://wicg.github.io/shape-detection-api/#detectedbarcode

rawValue property that corresponds to the decoded string. A failure outcome will be
returned if the browser does not support Shape Detection API, or if a specified format is not
supported.

Share Action
Use this action in mobile applications to invoke the native sharing capabilities of the host
platform and share content with other applications, such as Facebook, Twitter, Slack, SMS
and so on.

The action module for this action is "vb/action/builtin/webShareAction".

Invoke this action following a user gesture, such as a button click. Also, we recommend that
the share UI should only be shown if navigator.share is supported in the given browser, as
in this HTML code:

<oj-button disabled="[[!navigator.share]]">Share</oj-button>

Parameter Name Description

title Optional. Represents the title of the document
being shared. This value may be ignored by the
target.

text Optional. Text that forms the body of the message
being shared. Can be specified with or without a
URL.

url Optional. URL string that refers to the resource
being shared. Any URL can be shared, not just
URLs under website's current scope.

Although all parameters are individually optional, you must specify at least one parameter.

Example:

"share": {
 "module": "vb/action/builtin/webShareAction",
 "parameters": {
 "text": "Check out this cool new app!",
 "title": "[[document.querySelector('h1').textContent]]",
 "url": "[[document.querySelector('link[rel=canonical]') &&
document.querySelector('link[rel=canonical]').href || window.location.href]]",
 },
 "outcomes": {
 "failure": "handleShareError"
 }
}

A success outcome is returned when the user completes a share action. A failure outcome is
returned when the browser does not support the Web Share API or a parameter error is
detected.

Switch Action
The action module for this action is "vb/action/builtin/switchAction".

Chapter 1
JSON Action Chains

1-159

This action will evaluate an expression and create an outcome with that value as the
outcome name. An outcome of "default" is used when the expression does not
evaluate to a usable string.

Parameter Name Description

caseValue This value is used as the outcome value. If null
or undefined, the outcome is "default".

possibleValues Optional. Array of strings, representing the
allowed outcomes. If caseValue evaluates to
something not in this array, the outcome is
"default".

Example:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/switchAction",
 "parameters": {
 "caseValue": "{{ $chain.variables.myCase }}",
 "possibleValues": ["case1", "case2"]
 },
 "outcomes": {
 "case1": "...",
 "case2": "...",
 "default": "..."
 }
 }
 }
}

Take Photo Action
The action module for this action is vb/action/builtin/takePhotoAction. Use
this action in a mobile application to take photos or choose images from the system's
image library. The takePhotoAction is deprecated for web applications. Use the
JET file upload component, or the camera component in the Components palette
which uses the JET file upload component.

The behavior of this action depends on the type of application that you use it in:

• iOS application: Prompts user with multiple options, such as Camera, Browse, or
Like

• Android application: Prompts user with options, such as Camera, Browse, or
Cancel

• Progressive web apps on Android and iOS: Prompts user with multiple options,
such as Camera, Browse, or Like

Chapter 1
JSON Action Chains

1-160

Parameter Name Description

mediaType Set to image by default. The video type is also
supported.

Clear the image input value from the Media Type drop-
down list if you want your mobile application to use the
deprecated Take Photo action implementation from
pre-19.1.3 releases. The pre-19.1.3 Take Photo action
can only be used in Android and iOS applications.

If mediaType is set to video:

• For iOS Native apps, options to record video using the Camera or to select video files will
be provided.

• For Android Native apps, only file selection is allowed. Recording using the Camera is not
supported.

• For PWA apps on iOS and Android, options to record video using the Camera or to select
video files will be provided.

Example 1-39 Example

The outcome of this action is a binary data object (blob) duck-typed as File. The outcome
name is file.

// To use the outcome file in images, use the URL.createObjectURL and
URL.revokeObjectURL
// methods, as in the following example
const blobURL = URL.createObjectURL(fileBlob);

// Release the BLOB after it loads.
document.getElementById("img-712450837-1").onload = function () {
 URL.revokeObjectURL(blobURL);
};

// Set the image source to the BLOB URL
document.getElementById("img-712450837-1").src = blobURL;

// To upload the selected/captured image or video, use restAction and set
the body of
// restAction to the outcome file of takePhotoAction.
"takePhoto1": {
 "module": "vb/action/builtin/takePhotoAction",
 "parameters": {
 "mediaType": "image"
 },
 "outcomes": {
 "success": "callTakePhotoSuccess",
 "failure": "callTakePhotoFailed"
 }
},
"callRestEndpoint1": {
 "module": "vb/action/builtin/restAction",

Chapter 1
JSON Action Chains

1-161

 "parameters": {
 "endpoint": "OracleCom/postUpload",
 "body": "{{ $chain.results.takePhoto1.file }}", // <- File is
set as body of restAction
 "contentType": "image/jpeg"
 },
 "outcomes": {
 "success": "callUploadSuccess",
 "failure": "callUploadFailed"
 }
},
"callUploadFailed": {
 "module": "vb/action/builtin/callModuleFunctionAction",
 "parameters": {
 "module": "{{$page.functions}}",
 "functionName": "uploadFailed",
 "params": [
 "{{ $chain.results.callRestEndpoint1.body }}"
]
 }
},
"callUploadSuccess": {
 "module": "vb/action/builtin/callModuleFunctionAction",
 "parameters": {
 "module": "{{$page.functions}}",
 "functionName": "uploadSuccess",
 "params": [
 "{{ $chain.results.callRestEndpoint1.body }}"
]
 }
},

Transform Chart Data Action (Deprecated)
The action module for this action is vb/action/builtin/
transformChartDataAction. The transformChartDataAction is deprecated.
Data should be set directly on the chart instead.

Transforms a JSON array with a particular structure into a JSON object containing
(array) properties that JET chart component expects.

Page Authors can use this action to take the response from a REST action, turn into a
format that this action expects, and use the result returned by this action to assign to a
variable bound to the chart component.

The action supports the following parameter.

Chapter 1
JSON Action Chains

1-162

Parame
ter
Name

Type Description Example

source Array<O
bject>

An array of objects, or data points,
where each data point has one of the
two structures below. The first is used
with charts that show groups of data for
one or more series, such as bar and
pie. The second is used with charts that
show three dimensions of data, such as
bubble.

// Structure 1
{
 group: '<group-name>',
 series: '<series-name>',
 value: '<value-number>'
}

// Structure 2
{
 group: '<group-name>',
 series: '<series-name>',
 valueX: '<valueX-number>',
 valueY: '<valueY-number>',
 valueZ: '<valueZ-number>'
}

// JSON for Structure 1
[{
 group: 'bob',
 series: 'Feb',
 value: 5
}, {
 group: 'joe',
 series: 'Feb',
 value: 2
}]

// JSON for Structure 2
[{
 group: 'bob',
 series: 'Feb',
 valueX: 5,
 valueY: 1,
 valueZ: 3
}, {
 group: 'joe',
 series: 'Feb',
 valueX: 6,
 valueY: 2,
 valueZ: 4
}]

The action returns a JSON object with the following properties.

Chapter 1
JSON Action Chains

1-163

Return
Type

Description Example

Object The Object has two properties.
The properties differ based on
the structure that's passed in.
• groups: {Array} of one or

more group names
• series: {Array} of objects

where each object has 2
properties: name and items
– name: {String} name of

the series
– items:

* {Array} of numbers
when the input
resembles the
Structure 1 above;
or

* {Array} of objects,
when the input
resembles the
second structure
above, with each
object containing
the following
properties:
* x: {Number}
* y: {Number}
* z: {Number}

// Return Value for Structure 1
{
 groups: ['bob', 'joe'],
 series: [{
 name: 'Feb',
 items: [5, 2]
 }]
}

// Return Value for Structure 2
{
 groups: ['bob', 'joe'],
 series: [{
 name: 'Feb',
 items: [{
 x: 5,
 y: 1,
 z: 3
 }, {
 x: 6,
 y: 2,
 z: 4
 }]
 }]

}

The example below shows a chain called "fetchTechnicianStatsChain" with four
actions chained together to take a REST response and turn the JSON response into a
form that can be used by a Chart UI component. The four actions are:

1. Use a Call REST endpoint action to fetch technician stats.

2. Use an Assign Variables action to map the response from (1) to a form that the
Transform Chart Data action expects. If the REST response is so deeply nested
that a simple transformation of source to target using an Assign Variables action is
not possible, page authors can use a page function (using a Call Function action)
to transform the data into a form that the Transform Chart Data action expects.

3. Use a Transform Chart Data action to take the response from (2) and turn it into a
form that a Chart component can consume.

4. Use an Assign Variables action to store the return value from (3) in a page
variable.

Chapter 1
JSON Action Chains

1-164

"actions": {
 "fetchTechnicianStatsChain": {
 "variables": {
 "flattenedArray": {
 "type": [
 {
 "group": "string",
 "series": "string",
 "value": "string"
 }
],
 "description": "array of data points",
 "input": "none"
 }
 },
 "root": "fetchTechnicianStats",
 "actions": {
 "fetchTechnicianStats": { // (1)
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "ifixitfast-service/getTechnicianStats",
 "uriParams": {
 "technician": "{{ $page.variables.technician }}"
 }
 },
 "outcomes": {
 "success": "flattenDataForBar"
 }
 },
 "flattenDataForBar": { // (2)
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$chain.variables.flattenedArray": {
 "source":
"{{ $chain.results.fetchTechnicianStats.body.metrics }}",
 "reset": "toDefault",
 "mapping": {
 "$target.group": "$source.technician",
 "$target.series": "$source.month",
 "$target.value": "$source.incidentCount"
 }
 }
 },
 "outcomes": {
 "success": "transformToBarChartData"
 }
 },
 "transformToBarChartData": { // (3)
 "module": "vb/action/builtin/transformChartDataAction",
 "parameters": {
 "source": "{{ $chain.variables.flattenedArray }}"
 },
 "outcomes": {
 "success": "assignToPageVariable"
 }
 },
 "assignToPageVariable": { // (4)
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$page.variables.incidentChartDS": {
 "source": "{{ $chain.results.transformToBarChartData }}",

Chapter 1
JSON Action Chains

1-165

 "reset": "toDefault"
 }
 }
 }
 }
 }
}

Web Share Action
The action module for this action is "vb/action/builtin/webShareAction".

The Web Share action allows mobile and web applications to share content with other
applications, such as Facebook, Twitter, Slack, and SMS, by invoking the native
sharing capabilities of the host platform.

Note:

Web apps require the web browser running the app to support the Web
Share action. Currently, not all browsers support this native feature.

This action should only be invoked following a user gesture (such as a button click). It
is a good idea to only enable share UI based of feature detection:

<oj-button disabled="[[!navigator.share]]">Share</oj-button>

Web Share action parameters correspond to Web Share API options:

The action supports the following parameters.

Parameter Name Description

title Title of the document being shared. May be ignored by the handler/
target.

text An arbitrary text that forms the body of the message being shared.

url A URL string referring to a resource being shared.

All parameters are individually optional, but at least one parameter has to be specified.
Any url can be shared, not just urls under website's current scope. Text can be shared
with or without a url.

The example below illustrates an action's parameters one would specify to share the
current page's title and url:

"share": {
 "module": "vb/action/builtin/webShareAction",
 "parameters": {
 "text": "Check out this cool new app!",
 "title": "[[document.querySelector('h1').textContent]]",
 "url": "[[document.querySelector('link[rel=canonical]') &&
document.querySelector('link[rel=canonical]').href ||
window.location.href]]", },
 "outcomes": {
 "failure": "handleShareError"

Chapter 1
JSON Action Chains

1-166

https://developer.mozilla.org/en-US/docs/Web/API/Navigator/share

 }
}

A success outcome is returned once user has completed a share action. A failure outcome is
returned when browser does not support Web Share API or a parameter error is detected.

Action Chain Properties
An action chain has two properties: the set of variables it can use, and the root action.

Action chains are defined under the 'chains' property of the page model. An action chain
always has a root action. This root action will always be called when the action chain is
invoked.

This action chain will call the 'myAction' action:

"chains": {
 "myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "label": "My action!",
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "key": "value"
 }
 }
 }
 }
}

Each action has an outcome. Usually, an action supports the "success" or "error" outcomes.
Some actions may also support other outcomes. Actions can be chained by connecting an
additional action to a previous action's outcome.

To perform another action if the previous action succeeds, and handle error cases if it does
not succeed, you could do the following:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "key": "value"
 },
 "outcomes": {
 "success": "mySuccessAction",
 "error": "myErrorAction"
 }
 },
 "mySuccessAction": {
 "module": "vb/action/builtin/someAction"
 },
 "myErrorAction": {
 "module": "vb/action/builtin/someAction"
 }
 }
}

Chapter 1
JSON Action Chains

1-167

Variable References in Action Chains
Variables can be referenced for the parameter values of an action.

The runtime will automatically evaluate parameter values as expressions. Similar to
the default value syntax of variables, variables can be referenced directly into an
action parameter's value:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "label": "some action",
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "key": "{{ $page.variables.myVariable }}"
 }
 }
 }
}

Simple JavaScript code can be added to the values:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "label": "some action",
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "key": "{{ $page.variables.myVariable === 'yellow' }}"
 }
 }
 }
}

Non-expressions are entered in JSON:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "myString": "somestaticvalue",
 "myNumber": 1
 "myBoolean": true
 }
 }
 }
}

Map and array values are also expressed in JSON:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction",
 "parameters": {

Chapter 1
JSON Action Chains

1-168

 "key": {
 "key1": "static value",
 "key2": "{{ $page.variables.something }}"
 }
 }
 }
 }
}

Action Chain Variables
An action chain can also have variables. These are defined and used in the same way as
page parameters.

Unlike page parameters, input variables only support the 'fromCaller' or 'none' type. Input
variables must be specified by event handlers calling into action chains.

"myActionChain": {
 "variables": {
 "id": {
 "type": "string",
 "description": "the ID of something to update",
 "input": "fromCaller",
 "required": true
 }
 },
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction"
 }
 }
}

Action chain variables can be assigned to or read from using the
syntax $chain.variables.varName and are only accessible within an action chain. They can
also be referenced by the shorthand $variables.varName within the chain.

Action Results
Actions in an action chain can return a result that can be used by subsequent actions in the
chain.

After an action implementation is run, it may return a result. The type of these results are
specific to an implementation of an action. This result will be stored in a special
variable, $chain.results. The results of a previous action are contained
within $chain.results.<actionId>.

Example 1-40 Accessing a Previous Action`s Results

To access a previous action's results:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {

Chapter 1
JSON Action Chains

1-169

 "module": "vb/action/builtin/someAction",
 "outcomes": {
 "success": "someOtherAction"
 }
 },
 "someOtherAction": {
 "module": "vb/action/builtin/someAction",
 "parameters": {
 "myKey": "{{ $chain.results.myAction }}"
 }
 }
 }
}

Example 1-41 Action Chain Return Type and Outcomes

You can specify a return type and an array of outcomes. If a return type is specified,
the result of the final outcome will be auto-mapped into the return type. If "outcomes" is
specified, the name of the final outcome must match one of the possible outcomes.
Otherwise, the action chain will fail. Here is an example:

"myActionChain": {
 "root": "myAction",
 "actions": {
 "myAction": {
 "module": "vb/action/builtin/someAction"
 }
 },
 "returnType": "application:someType",
 "outcomes": ["success", "failure"]
}

Action "failure" Outcomes

Actions return a standard object shape when returning a "failure" outcome. The result
will be an object with the following properties:

• "message": may contain one optional "summary" string property

• "error": may contain an Error object

• "payload": may contain any Action-specific additional information about the failure

Flow
A flow is a way to organize your application in independent and shareable units of
work that are building blocks for a single-page application.

The structure of a flow is the same as the structure of an application. A flow has a
descriptor (<name>-flow.json) and a functions module file (<name>-flow.js), and
contains pages and possibly other flows. The id of a flow is the name of the folder that
contain the flow structure.

The following example shows an application that contains two flows: main and other.

app-flow.[json|js]
 pages/
 app-page.[json|js|html]
 flows/

Chapter 1
Flow

1-170

 main/
 main-flow.[json|js]
 pages/
 start-page.[json|js|html]
 flows/
 ...
 other/
 other-flow.[json|js]
 pages/
 start-page.[json|js|html]

Flow Properties
A flow can define a default page, variables, chains, functions, listeners and types.

Here is an example of the descriptor for the flow other:

{
 "flowModelVersion": "18.1.5",
 "id": "other",
 "description": "Flow other",
 "defaultPage": "start",
 "types": {}
 "variables": {},
 "chains": {},
 "eventListeners": {}
}

All pages of a flow can access variables, chains, functions, listeners and types defined in the
flow. Defining these elements in the flow allows you to share definition and objects that are
used across multiple pages in the flow.

Property Description

defaultPage The defaultPage property is used to define
which page should be the current page of a flow,
when the default page is not specified by the
navigation.

In the example application above with the flows
main and other, the path app/other will
navigate to the flow other, and display the flow's
default page.

In the descriptor for the flow other above, the
defaultPage property defines start as the
flow's default page.

types Pages can address a flow type using the
"flow:typeName" syntax, where typeName is a
type defined in the flow.

variables Flow variables can be addressed in any
expression in the page using $flow.

chains In a callChainAction, pages can address a flow
chain using the "flow:chainId" syntax.

Chapter 1
Flow

1-171

Using Flows to Create Single-Page Applications
You use the <oj-vb-content> component to nest flows into a page. By nesting a flow
into a page, the page can display multiple pages within a single page in your
application (single-page application). The <oj-vb-content> component has the same
API as the JET <oj-module> element. The following example shows how to nest a flow
in a page:

<oj-vb-content config="[[vbRouterFlow]]"></oj-vb-content>

The content of the current page of the current flow is displayed in the page at the
location of this component tag in the view (HTML). The currentFlow and currentPage
are managed by Visual Builder using a hierarchy of routers. When navigating in the
application, the router changes the value of the currentPage of a flow, or the
currentFlow of a page, and this determines the content of the oj-vb-content
element. The router also manages the URL to reflect the currentFlow and the
currentPage.

For example, when navigating using the path app/flow-a, the current flow for page
app is flow-a, and the content of the default page of flow-a is inserted at the location
of the oj-vb-content tag.

Nesting content at a specific locations in the page allows you to build page templates
or shells.

Note:

A flow should only be nested in page. Nesting a flow in a dialog will not work
properly.

Using the page routerFlow property

When the navigation does not specify which flow to use, the routerFlow property of
the page descriptor is used to determine the default router flow.

In the following example, when navigating to page app, the flow main will be used as
the current flow. It will be the flow displayed in page app when no flow is specified in
the navigation. The following example shows the routerFlow property in a page
descriptor:

{
 "pageModelVersion": "18.1.5",
 "description": "Application Page",
 "routerFlow": "main",
 "variables": {
 ...
}

Chapter 1
Flow

1-172

Represent the Flow State in the URL
There are two strategies for the router to represent the state in the URL: query and path.

• query (default): the current page path is stored in the URL using a query parameter like
this:

http://myApp/?page=app&app=main

• path: the current page path is stored in the URL using a path segment like this:

http://myApp/vp/app/main

Notice the marker vp added to the URL. It is needed in order for Visual Builder to
recognize where the path to the current page starts.

To change the strategy, use the routerStrategy property in app-flow.json:

{
 "applicationModelVersion": "18.1.5",
 "id": "flowDemo",
 ...
 "routerStrategy": "path"
}

When using the path router strategy, the server where the application is deployed needs to
be able to handle these URLs in a special way to ensure that browser refreshes and
bookmarks work properly.

Navigating Between Flows and Pages
Flows and pages are loaded on demand at the time the application navigates to them. All
pages located in the pages/ folder are contained by this flow and it is possible to navigate
from one page to an other page using the navigateToPageAction using the path <pageId>. It
is also possible to navigate between flows within the same page, in this case the path to use
is <pageId>/<flowId>, or just <flowId>.

Flow Lifecycle
While navigating between flows, for example from flow-a to flow-b, the current flow for a
page changes from flow-a to flow-b. When this change happens, two events notifying the
change are dispatched: 1) flow-b is entered, then 2) flow-a is exited.

The following table describes the two flow events:

Name Description

vbEnter Dispatched when entering a flow after all the flow
scoped variables have been added and initialized.

vbExit Dispatched when exiting a flow before disposing of
flow resources.

Chapter 1
Flow

1-173

Load Flow Resources
Two built-in variables are used to address local resources (for example,
images): $application.path and $flow.path.

Each variable is used to build a path relative to the location of the flow:

<!-- Display an image located in the resource folder in this
application -->
<img alt="photo" :src="[[$application.path + 'resources/images/
tools.png']]"/>

<!-- Display an image located in the resource folder in this flow -->

Use Flows Not in the Flows Folder
A flow's id is the folder name in the flows folder. For example, if the flows folder
contains a folder named main, the flow's id would be main. If you want to use a flow
located in another location, you can use the flows property in the flow descriptor. The
flows property is a map of paths keyed by the id given to the flow:

app-flow.json
{
 "id": "Main Application"
 ...
 "flows": {
 "crm": "some-nested-path/flows/crm",
 "flow2": "/flows/flow2",
 "flow3": "http://host:port/special/location/of/myFlow"
 }
}

The path is relative to the current flow location. If the path starts with /, the path is
absolute, meaning that it is relative to the application directory (the directory where
app-flow.json is located). You can also use a URL for the path. When the path is a
URL, the flow will be loaded from the URL.

Shell Flow
A shell flow is a special flow with only one page. The purpose of a shell flow is to
define the shell page of an application, or of another flow. To make an application use
a shell flow, you enter the id of the shell flow for the defaultPage property of the
application. When you do this, the application will use the default page of the shell flow
as the default page of the application:

{
 "applicationModelVersion": "18.2.3",
 "id": "flowDemo",
 "description": "An Application to demonstrate the use of flow",
 "defaultPage": "shellFlowId",

Chapter 1
Flow

1-174

 ...
}

When using a flow for the default page, the flow id is not included in the URL. The flow id is
hidden from the URL and from the path used for navigation.

Note:

Shell flows have the following limitations:

• Only one page can be defined in a shell flow.

• The page cannot make reference to artifacts such as variables or types defined
in the shell flow metadata.

Defining the default flow of a shell

The default flow of a shell page is defined using the routerFlow property. The default flow
can be defined externally by specifying a path in the defaultPage entry. This is so that the
same shell flow can be re-used for multiple applications:

{
 "applicationModelVersion": "18.2.3",
 "id": "flowDemo",
 "description": "An Application to demonstrate the use of flow",
 "defaultPage": "shellFlow/crmFlow",
 ...
}

In the example above, the flow with the id "crmFlow" will be used as the default flow of the
shell page.

Fragments
Fragments encapsulate a reusable piece of UI, model and code (HTML, JSON and
JavaScript) that can be shared across pages in an application.

Fragments can be added and reused in pages and other fragments in applications,
extensions and app UIs. A fragment can also be used multiple times in the same page, for
example, providing different sets of input parameters to the same fragment, as shown here:

<oj-vb-fragment id="editProd1" name="edit-product">
 <oj-vb-fragment-param name="products"
 value="[[$page.variables.productListDynamic]]"></oj-vb-
fragment-param>
</oj-vb-fragment>

<oj-vb-fragment id="editProd2" name="edit-product">
 <oj-vb-fragment-param name="products"
 value="[[$page.variables.productListStatic]]"></oj-vb-

Chapter 1
Fragments

1-175

fragment-param>
</oj-vb-fragment>

A fragment can also be 'nested' in another fragment. However, when looking at the
structure of applications and extensions, every fragment in a page, no matter how
deeply it's 'nested', is an independent unit that encapsulates its state and 'logic, and is
not 'aware' of its container.

Define a Fragment Component
To include a fragment in a page or other component, you use the <oj-vb-fragment>
component, specifying the name of the fragment.

A fragment with the name "incident-list-fragment" could be written like this:

<oj-vb-fragment id="incLF1" name="incident-list-fragment"></oj-vb-
fragment>

When the component above is rendered, it starts loading the fragment identified by the
'name'. The fragment instance created for the page is identified by the 'id'. The
component can have the following properties:

Property Name Description

id Optional.
A <string> unique to the container where the fragment is included.

A fragment id must be unique, whether it's generated automatically or set
by the author. This id is accessible within the fragment scope
using $fragment.info.id. This can be used within expressions set on
the 'id' property of components, and even the id of a "nested" fragment.

Note:

The id property need not be set on the oj-vb-
fragment component. When an id is not
provided a system generated unique id will be
used. Though unique for the container
consuming the fragment, this id is not
considered "stable" and cannot be used for
persisting variable values. If you want to
persist variable values in a fragment, you'll
need to provide an id, ensuring that it is both
unique and stable, particularly when
fragments are used inside of stamping
components.

name Required.
A <string> name of fragment to load. The component loads the physical
fragment artifacts using the 'name' property. This needs to be statically
defined and cannot be an expression.

Chapter 1
Fragments

1-176

Property Name Description

bridge Required within a VDOM. Also works within a component.
This property allows the fragment to discover the current context and
establish a bridge between the component and Visual Builder eco-system.
It's value is always "vbBridge".

The example below shows the 'bridge' property configured on an oj-vb-
fragment. The same configuration can be used with oj-dynamic-form
component as well.

<oj-vb-fragment id="incLL" name="incidentsListLayout"
bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="userId"
value="[[$page.variables.technician.id
]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="filterCriterion"
value="[[$page.variables.filterCriterion
]]"></oj-vb-fragment-param>
 </oj-vb-fragment>

- oj-vb-fragment-
param (sub-
component)

For each input parameter a fragment defines via the 'input' property on a
variable, this sub-component can be used to provide the values for the input
parameters. Parameters marked as "required" in the fragment must be
provided.

• name: string, name of param

• value: any, value of the input param

A fragment model (the descriptor JSON) can tag its variables with these
properties to declare the input parameters (see Define Fragment Input
Parameters below):

• input ("fromCaller"),

• required, that can be true (if the caller has to pass a value) or false,
and

• writeback, that can be set to true to allow the fragment variable value
to be automatically written back to the input parameter variable.

Example 1-42 Include fragments in a page or another fragment

In this example of fragments in a page, the tab bar (oj-tab-bar) selection drives the
fragment that is to be loaded.

Chapter 1
Fragments

1-177

incidentsShell-page.html Notes

1 <oj-tab-bar
selection="{{ $variables.incidentsLayout }}">
2
3 <li id="list">List
4 <li id="map">Map
5 <li id="schedule">Schedule/li>
6
7 </oj-tab-bar>
8 <oj-switcher
value="[[$variables.incidentsLayout]]">
9 <div slot="list">
10 <oj-vb-fragment id="incLL"
name="incidentsListLayout"></oj-vb-fragment>
11 </div>
12 <oj-defer slot="map">
13 <oj-vb-fragment id="incML"
name="incidentsMapLayout"></oj-vb-fragment>
14 </oj-defer>
15 <oj-defer slot="schedule">
16 <oj-vb-fragment id="incSL"
name="incidentsScheduleLayout"></oj-vb-fragment>
17 </oj-defer>
18 </oj-switcher>

Line 10, 13, 16: <oj-vb-
fragment> uses the
'name' property to specify a
static fragment to load. The
'id' property is expected to
be unique to the current
page.

Lines 13, 16: component is
wrapped in an oj-defer
(see Deferred Rendering of
a Fragment).

Fragment Scopes and Namespaces
As a fragment is designed to be scope-agnostic, it is unaware of the parent container
scope and associated properties. This means that the fragment cannot access its
parent's scopes (such as $page or $flow), call its chains, and so on. However, a
fragment can access some scopes: $global (unified app in extensions), $application
(for the older style of apps), and $extension (in extensions).

Within a fragment, there is a new local $fragment scope can be used within the
fragment (this can be particularly useful when writing expressions):

• $variables / $fragment.variables can be used to refer to the local variable in a
fragment. $fragment.variables is needed for action chains.

Namespaces

Namespaces are used when referencing types in other scopes. The namespaces are
similar to the scopes: global: / application: (for base apps), and fragment: for local
scope.

Define Fragment Input Parameters
A fragment can define parameters that are required or optional. Callers must provide a
value for each of the required input parameters, and may provide values for optional
ones. Additionally, parameters that are marked for 'writeback' will cause the fragment

Chapter 1
Fragments

1-178

to automatically writeback the changed/updated value in its variable to the source variable,
that was set via the <oj-vb-fragment-param> tag. For details, see Write Back a Fragment
Variable Value to the Parent Container.

Input parameters can be reapplied on a fragment after the fragment is loaded. When input
parameter values change "mid-cycle", the fragment receives this value automatically, so the
fragment can react to the change, as determined by the fragment author. This can be useful,
for example, when the input parameter is an expression involving a page variable, and the
variable's value changes.

Once a fragment is loaded using input parameters provided by the outer page, if the page
variable's value changes, the updated value is automatically picked up by the fragment
parameters. This means that the 'live' behavior of variables, where the value change of a 'live'
variable triggers changes in other variables, will also automatically update the input
parameters that use the same variable.

The following special properties can be applied to fragment variables to determine behavior:

Property Description

"input": "fromCaller" Identifies the variable or constant as a fragment
input parameter, which the caller of a fragment can
provide.

"required": true Identifies that the variable must be provided by the
caller.

"writeback": true Identifies that the variable's value will be
automatically written back to the input parameter
variable.

Example 1-43 Fragment where the userId and fragFilterCriterion variables are set as
required and fromCaller.

The incidentsSDP variable can use the input param values to initialize its state.

A page that loads a fragment can provide the parameters like this:

incidentShell-page

<oj-vb-fragment id="incLL" name="incidentsListLayout">

 <oj-vb-fragment-param name="userId"
value="[[$page.variables.technician.id]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="fragFilterCriterion"
value="[[$page.variables.filterCriterion]]"></oj-vb-fragment-param>

</oj-vb-fragment>

The page JSON defines the variables above like this:

incidentsShell-page

"technician": {
 "type": "object",
 "defaultValue": {
 "id": "rosie",
 "name": "Rosie Riveter"
 }

Chapter 1
Fragments

1-179

},
"filterCriterion": {
 "type": "object",
 "defaultValue": {
 "op": "$ne",
 "attribute": "status",
 "value": "closed"
 }
}

In the 'incidentShell-page', the page variables userId and filterCriterion are
passed in as parameters to the fragment ("incidentsListLayout-fragment"). In this
example, when the filterCriterion page variable changes, it updates the fragment
parameters, which in this example is the fragFilterCriterion fragment variable. As
a local SDP variable on the fragment references fragFilterCriterion, a re-fetch is
triggered by the SDP using the new criteria.

incidentsListLayout-fragment

"userId": {
 "type": "string",
 "input": "fromCaller",
 "required": true
},
"fragFilterCriterion": {
 "type": "object",
 "input": "fromCaller",
 "required": true
},
"incidentsSDP": {
 "type": "vb/ServiceDataProvider",
 "defaultValue": {
 "endpoint": "ifixitfast-service/getIncidents",
 "keyAttributes": "id",
 "uriParameters": {
 "technician": "{{ $variables.userId }}"
 },
 "filterCriterion": "{{ $variables.fragFilterCriterion }}"
 }
}

Example 1-44 Fragment where a list-view of incidents is bound to an SDP
variable

In this example, the fragment defines an SDP variable as required by the caller using
the (input: fromCaller) property.

Chapter 1
Fragments

1-180

Note:

Though this is unusual, the caller can pass a reference to the SDP variable defined
by the outer page to a fragment. The reference the fragment variable holds can be
used only for the purposes of rendering. Using an action that mutates the state of
the variable (such as assignVariables or resetVariables) is not allowed, and will
throw errors. Use with extreme caution.

incidentsListLayout-fragment

{
 "variables": {
 "incidentsSDP": {
 "type": "vb/ServiceDataProvider",
 "input": "fromCaller",
 "required": true
 }
 }
}

The page that loads the fragment above will provide the input parameters using the oj-vb-
fragment-param sub-component:

incidentsShell-page

<oj-vb-fragment id="incLL" name="incidentsListLayout">

 <oj-vb-fragment-param name="incidentsSDP"
value="[[$page.variables.incidentsSDP]]">
 </oj-vb-fragment-param>

 </oj-vb-fragment>

Write Back a Fragment Variable Value to the Parent Container
A fragment variable whose value is provided by the caller ("input": "fromCaller" property),
can additionally be marked as supporting "writeback" ("writeback":true). This allows the
fragment variable value to be automatically set / written back to the input parameter variable
of the page. You can set the writeback property on fragment variables with the following
types: primitive, array and object. If an input parameter value is already passed in by
reference (for example, an SDP or $dynamicLayoutContext), the fragment variable receiving
the reference doesn't need to be configured with the writeback property.

Example 1-45 Define the 'incidentId' interface variable in a fragment

In this example, a page uses the fragment below to provide a value for the variable via
parameter.

"incidentId": {
 "type": "string",
 "description": "extensions can update the value",
 "input": "fromCaller",

Chapter 1
Fragments

1-181

 "writeback": true
}

When the fragment variable value changes, the value is automatically written back into
the outer variable selectedIncidentId.

<oj-vb-fragment id="incs-list1" name="incidents-list">
 <oj-vb-fragment-param name="incidentId"
 value="{{ $page.variables.selectedIncidentId }}"></oj-vb-fragment-
param>
</oj-vb-fragment>

Note:

The expression is wrapped in {{ }}. This is required for the web component
framework to enable writeback.

As an alternative to the configuration above, the other recommended way for a page to
be notified of updates to a fragment variable is for the fragment to fire a custom event
(with the propagationBehavior property set to "container") that 'emits' the event to
the page, which has a listener to handle the event. See Custom Fragment Events for
details.

Deferred Rendering of a Fragment
The default behavior of a fragment is for it to load/run immediately when it's
encountered by the page rendering it. By wrapping a fragment in the <oj-defer>
component, you can control when a fragment loads and renders in a page. The
fragment can be hidden until loaded by a trigger. The trigger to load a fragment can
either be a configurable or it can be determined by the framework. Configurable
triggers that can be used to load a fragment include button clicks, tab selection, dialog
open, and oj-bind-if components. In this case, UI events or the application state drives
the fragment that is loaded.

Deferring the rendering of a fragment can improve performance, so that, for example,
an action chain for a hidden fragment is delayed until the fragment is actually loaded.
For examples on using oj-defer, see Deferred Rendering in the JET Developer
Cookbook.

For examples of using <oj-defer> with <oj-vb-fragment>, see Fragment Patterns
below.

Fragment Events
Fragments support several lifecycle events defined by the system. In addition,
fragments also support custom events that can be handled by listeners defined in the
fragment, and further propagated to the listener bound on the fragment container.

Lifecycle Events

When the lifecycle event is raised, the framework calls the event listener with the
name of the event. Fragments can fire these events when the fragment artifacts load,

Chapter 1
Fragments

1-182

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=deferredRendering&demo=deferredCollapsible

when the fragment state is activated, or when the fragment is disposed. Other lifecycle
events are currently not supported by fragments.

Table 1-2 Fragment Event Parameters

Name Description Returns

vbBeforeEnter Dispatched when the fragment
artifacts load. Three variable
scopes are available:

• $application: All application
variables

• $extension: All extension
variables

• $fragment: All local variables
in the fragment

None

vbEnter Dispatched when the fragment
state is activated. Variable
scopes available:

• $application: All application
variables

• $extension: All extension
variables

• $fragment: All local variables
in the fragment

None

vbExit Dispatched when the fragment is
disposed (generally by
navigating away from a page or
the page is disposed).

None

Framework Events

vbNotificationEvent is an example of a framework event that raises a notification for further
processing by a parent container and to display the notification message. This is a special
event that is automatically bubbled up to the parent container(s) without any need for binding
the event on the fragment component. Other specialized types of notification events, such as
SDP vbDataProviderNotification events, also have the same behavior.

Component Events

The behavior and usage of component events in fragments is similar to that in other
components. See Component Events.

Custom Events

Custom events can be declared in fragments under the "events" property. There are two
types of custom events in fragments:

Event Type Description

Events that can be handled by the same fragment
and its extensions

This type of event is similar to other Visual Builder
custom events, and is handled similarly. For
details, see Custom Events.

Events that 'emit' a custom event to the fragment
container

This type is expressly used for the purpose of
propagating to the outer container component (the
oj-vb-fragment component). For details, see below.

Chapter 1
Fragments

1-183

Event that 'emits' a custom event to the fragment container

By setting the "propagationBehavior" property of a custom event to "container", the
event will 'emit to the container" when fired, allowing the fragment's parent container
(oj-vb-fragment) to listen to the custom event.

For example, if you want to use a fragment event to call an action chain to perform
some business logic, or to save data to a REST backend, you would fire a custom
event that 'emits to the container' so that a listener on the parent can handle the event
and trigger the action chain.

Property Description

propagationBehavior When this property is set to container, the
fragment component (oj-vb-fragment) can
listen to the fragment event, but fragment
listeners cannot listen to the event.

When this property is not set, the default value
is "self", implying the event can only be
handled by the fragment listeners.

Note:

This property is
only supported
by fragment
events.

Example 1-46 A fragment event that is listenable by the parent container

The following code describes a "saveincident" event, where the propagationBehavior
is set to "container" .

{
 "description": "An incident form fragment",
 "title": "Incidents Form Fragment",
 "events": {
 "saveincident": {
 "description": "fired when an incident has to be saved. The
mutated incident data provided in payload",
 "propagationBehavior": "container",
 "payloadType": {
 "data": {
 "id": "string",
 "problem": "string",
 "priority": "string",
 "status": "string",
 "customer": {
 "id": "string"
 }
 }
 }
 }

Chapter 1
Fragments

1-184

 }
...
}

This allows the oj-vb-fragment component that loads the fragment to bind an event listener
to the same event, as shown below:

<oj-vb-fragment name="incident-form"
id="[[$page.functions.fragmentUniqueId]]" bridge="[[vbBridge]]"
 on-saveincident="[[$page.listeners.saveIncident]]">

 <oj-vb-fragment-param name="currentIncident"
 value="[[$page.variables.currentIncident]]"></oj-vb-fragment-param>
</oj-vb-fragment>

WARNING:

Note the 'on-saveincident' attribute. It is important that the event name be
lowercase or camelCase with no hyphens as defined by Web Component DOM
event naming conventions.

Referencing Fragments in Extensions
In an extension, you can reference fragments in the same extension as well as fragments
defined in dependent extensions. When an extension references a fragment defined in a
dependent extension, the dependent extension name is prepended to the fragment name.

To reference a fragment defined in a dependent extension, the fragment's JSON descriptor
must include the "referenceable": "extension" property.

{
 "description": "A product list fragment",
 "title": "Product List Fragment",
 "referenceable": "extension",
...
}

In an extension, you can reference fragments:

• In a page in your extension's App UI,

• In a section template that extends a dynamic container,

• In a field or form template for your extension's dynamic tables and forms,

• In a field or form template that extends a dynamic form or table in a dependent extension.

Here's an example of a page in an extension referencing a fragment in a dependent
extension (in this example, extA is the name of the dependent extension):

<oj-dialog id="newProductDialogDynamic" title="New Product" initial-
visibility="hide">
 <div slot="body" style="border:2px">

Chapter 1
Fragments

1-185

 <oj-defer>
 <oj-vb-fragment id="createProd1" name="extA:create-product">
 </oj-vb-fragment>
 </oj-defer>
 </div>
</oj-dialog>

Example 1-47 Reference a fragment in a page

In this example, the fragment products-list is defined in a dependent extension
(extA). A page defined in an App UI of an extension can include the products-list
fragment using a prefix before the fragment name: extA:products-list).

<oj-vb-fragment id="prod-list" name="extA:products-list"
bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="catalog" value="[['US']]"></oj-vb-
fragment-param>
</oj-vb-fragment>

To bind an event fired by the fragment onto a listener in the calling page of the
extension, the event in the fragment must be part of the interface. It must also have
the 'propagationBehavior' set to 'container'. For details, see Custom Fragment
Events.

This example shows the 'saveproduct' event declared by the fragment 'products-list':

"interface": {
 "events": {
 "saveproduct": {
 "description": "fired when a product has been created. The
mutated product is fixed up in a local array and returned",
 "propagationBehavior": "container",
 "payloadType": {
 "data": [
 {
 "id": "string",
 "name": "string",
 "unitPrice": "number",
 "productCategory": "string"
 }
],
 "message": "string"
 }
 }
 }
}

A page in the extension that references the above fragment from the dependent
extension can bind the event to a listener on the page using the on-<eventname>
attribute:

<oj-vb-fragment id="prods" name="extA:products-list"
bridge="[[vbBridge]]"

Chapter 1
Fragments

1-186

 on-saveproduct="[[$page.listeners.onSaveProduct]]">

</oj-vb-fragment>

WARNING:

It is important that the event name be lowercase or camelCase with no hyphens as
defined by Web Component DOM event naming conventions.

Example 1-48 Reference a fragment in a dynamic container template

Generally, the only artifacts in a fragment that can be extended are its model and the
JavaScript code. However, if a page in a dependent extension contains a dynamic container,
an extension could override the dynamic container's section template(s) to then reference a
fragment defined in the dependent extension.

In the following example, the section template references the fragment 'incidents-list' in a
dependent extension (using the dependent extension's name as the prefix before the
fragment name: extA:incidents-list).

<!-- dynamic container section template -->
<template id='tmplExtB'>
 <oj-vb-fragment id="incs-list" name="extA:incidents-list"
bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="technicianId"
value="[[$application.user.userId]]"></oj-vb-fragment-param>
 </oj-vb-fragment>
</template>

It's important to note that the fragment 'incidents-list' must be marked as 'referenceable' so
that a dependent extension can use it.

{
 "description": "A incidents list layout fragment",
 "title": "Incidents List Fragment",
 "referenceable": "extension",
...
}

To bind an event fired by a referenced fragment to a listener in the calling page template, the
event in the fragment must be part of the interface. It must also have the
'propagationBehavior' set to 'container'. For details, see Custom Fragment Events.

"interface": {
 "events": {
 "updatedincidentmessage": {
 "description": "fired when an incident has been updated. The mutated
incident data is provided in payload",
 "propagationBehavior": "container",
 "payloadType": {
 "data": {
 "id": "string",

Chapter 1
Fragments

1-187

 "problem": "string",
 "priority": "string",
 "status": "string",
 "customer": {
 "id": "string"
 }
 }
 }
 }
 }
 }
}

The template in the extension (that references the fragment) can bind the event to a
listener using the "on-<eventname>" attribute.

<oj-vb-fragment id="incs-list" name="extA:incidents-list"
bridge="[[vbBridge]]"
 on-
updatedincidentmessage="[[$listeners.updateMessageBarWithUpdatedIncide
nt]]">
</oj-vb-fragment>

WARNING:

It is important that the event name be lowercase or camelCase with no
hyphens as defined by Web Component DOM event naming conventions.

Example 1-49 Reference a fragment in a dynamic layout form template

A fragment can be referenced from field and form templates used in dynamic forms.
When doing so, it's important to pass the context property setup by the layout
component ($dynamicLayoutContext) to the fragment as a parameter. This context is
an umbrella property that contains all other dynamic component-related context
variables, such as $value and $metadata.

In the following example of a form template, the form is rendered using the fragment
dynamic-form-template-employee:

<template id="formTemplateSimple">
 <oj-vb-fragment id="formTemplateSimple_EmpFrag" name="dynamic-form-
template-employee" bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="$dynamicLayoutContext"
 value="[[$dynamicLayoutContext]]"></oj-
vb-fragment-param>
 </oj-vb-fragment>
</template>

The fragment dynamic-form-template-employee stores the layout property in a
variable defined in the fragment. Within the fragment markup (HTML), it can be used in
an expression like $variables.dynamicLayoutContext.fields... (or whichever sub-

Chapter 1
Fragments

1-188

properties you may need in your template markup) to access sub-properties of the layout
context:

<oj-input-text :id="[[$fragment.info.id + '-empname']]"
 label-hint="Employee Name"
 value="{{ $variables.dynamicLayoutContext.fields.firstName.value }}"></oj-
input-text>

$dynamicLayoutContext

The $dynamicLayoutContext context property needs to be configured when a fragment is
used in form or field templates in layout components. The $dynamicLayoutContext allows:

• To write back to 'dynamic layout managed' objects.
Some fragments are intended to be used both within form templates and field templates.

Particularly when used within a field template, it can be very desirable to be able to not
only read a value provided by the dynamic component field, but also to write back to the
same. The $dynamicLayoutContext property enables this without requiring you to
configure a fragment event to notify the parent of the changed value.

Using $dynamicLayoutContext, you can pass this context property provided by the layout
component into the fragment as a reference (using an input parameter as shown in the
example above). You can then bind the input component / 'value' property in the fragment
to read and write to this variable. By doing this, any changes in the input value is
automatically known by the parent layout.

• To consolidate context properties in one basket.
Before fragments were used in layout component templates, authors would have used
any number of the context properties (like $fields, $value etc.) that the parent layout
exposed, and bind those to the components they use in the templates. But after adding
support for fragments inside templates, a new container boundary is introduced, so these
context properties are now no longer available/bindable directly by the components inside
the fragment. In order to expose these context properties to fragment components, this
top-level context property was introduced.

Extending a Fragment
When extending a fragment, an extension can override the fragment's metadata (JSON) and
JavaScript. For example, to extend the fragment my-example-fragment, the fragment artifacts
in the extension would be myexample-fragment-x.json and my-example-fragment-x.js.

When you extend a fragment, the fragment overrides are picked up automatically.

For example, an extension extA might define a fragment dynamic-form-employee using the
following HTML and model (omitting the JavaScript for this example):

dynamic-form-employee-fragment.html

<oj-dynamic-form :id="[[$fragment.info.id + 'oj-dynamic-form-1']]"
 metadata="[[$fragment.metadata.employeeByIdMetadata.provider]]"
 layout="{{ $constants.layoutName }}"
 value="{{ $fragment.variables.getEmployeeById }}"
 value-loading="[[$variables.getEmployeeByIdDetailFormLoadingStatus]]"
 rendered-fields="{{ $variables.getEmployeeByIdDetailFormRenderedFields }}"
</oj-dynamic-form>

Chapter 1
Fragments

1-189

dynamic-form-employee-fragment.json

{
 "fragmentModelVersion": "22.01.0",
 "description": "Fragment that loads a dynamic form",
 "title": "Fragment Dynamic Form Employee",
 "referenceable": "extension",
 "types": {
 "getEmployeeByIdResponse": "object"
 },
 "interface": {
 "constants": {
 "layoutName": {
 "type": "string",
 "mode": "readWrite",
 "defaultValue": ""
 }
 }
 },
 "metadata": {
 "employeeByIdMetadata": {
 "type": "vb/DynamicLayoutMetadataProviderDescriptor",
 "defaultValue": {
 "endpoint": "employees/getEmployeeById"
 }
 }
 },
 "variables": {
 "getEmployeeById": {
 "type": "fragment:getEmployeeByIdResponse"
 },
 "getEmployeeByIdDetailFormLoadingStatus": {
 "type": "string",
 "defaultValue": "pending"
 },
 "getEmployeeByIdDetailFormRenderedFields": {
 "type": "any[]"
 }
 }
...
}

A downstream extension (extB) could extend the fragment in extA above, for example,
by overriding the constant layoutName in order to load a different layout template from
the extension layout. The fragment artifacts in extB might look like the following (in this
example, the JavaScript code is not included because there are no meaningful
changes). The layoutName constant in the extension redefines the layout to be one
defined in its extended layout (extB/formlayout_extended).

dynamic-form-employee-fragment-x.json

{
 "fragmentModelVersion": "22.01.0",
 "title": "Dynamic form employee fragment extension",

Chapter 1
Fragments

1-190

 "description": "A fragment extension for dynamic-form-employee-fragment",
 "extensions": {
 "constants": {
 "layoutName": {
 "description": "layout name override; layout provider loaded in base
fragment",
 "defaultValue": "extB/formlayout_extended"
 }
 }
 },
 "variables": {},
 "chains": {},
 "eventListeners": {},
 "imports": {}
}

Fragment Patterns
Example 1-50 Tab Bar containing three tabs, and all tabs except the first one are
hidden

In this example, when the page loads, only the 'list' tab item fragment is loaded and rendered.
The 'map' and 'schedule' tab items are hidden, and the fragment and associated artifacts are
not loaded, and the components inside those fragments are not rendered.

1. The <oj-vb-fragment> component is used to isolate the content of each tab item

2. In the switcher associated with the tab bar, the <oj-defer> slot is used to hide tabs. The
fragments are loaded and rendered when their tabs become visible.

3. For details on configuring the component, see Deferred Rendering in the JET Developer
Cookbook.

<oj-tab-bar selection="{{ $variables.incidentsLayout }}">

 <li id="list">List
 <li id="map">Map
 <li id="schedule">Schedule/li>

</oj-tab-bar>
<oj-switcher value="[[$variables.incidentsLayout]]">
 <div slot="list">
 <oj-vb-fragment id="incLL" name="incidentsListLayout"></oj-vb-fragment>
 </div>

 <oj-defer slot="map">
 <oj-vb-fragment id="incML" name="incidentsMapLayout"></oj-vb-fragment>
 </oj-defer>

 <oj-defer slot="schedule">
 <oj-vb-fragment id="incSL" name="incidentsScheduleLayout"></oj-vb-
fragment>
 </oj-defer>
</oj-switcher>

Chapter 1
Fragments

1-191

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=deferredRendering&demo=deferredSwitcher

Example 1-51 Content inside a dialog is hidden initially, and loaded when the
user opens the dialog

1. The <oj-vb-fragment> component is used to isolate the content of the dialog.

2. In the dialog 'body' slot, <oj-defer> is used to wrap the oj-vb-fragment. When the
dialog is opened, the input parameters are passed to the fragment component, and the
fragment is loaded and rendered.

3. If the fragment fires an event, binding the event to a listener on the page enables
the page to listen to it. The "saveproduct" event has the "propagationBehavior":
"container" property, so the fragment component on the page can listen to it, and
then call the 'onSaveProduct' listener on the page.

4. For details on configuring the component see Deferred Rendering in the JET
Developer Cookbook.

Note:

It's best to have all the content of the dialog within the fragment and the
'body' slot, rather than splitting it, for example, having the buttons in the
footer and having the content within the <oj-defer>.

<oj-dialog id="newProductDialog" title="New Product" initial-
visibility="hide">
 <div slot="body">
 <oj-defer>
 <oj-vb-fragment id="createProd1" name="create-product"
 on-
saveproduct="[[$page.listeners.onSaveProduct]]"
 on-
cancelproduct="[[$page.listeners.onCancelProduct]]">
 <oj-vb-fragment-param name="products"

value="[[$page.variables.productList]]"></oj-vb-fragment-param>
 </oj-vb-fragment>
 </oj-defer>
 </div>
</oj-dialog>

The event is declared in the fragment:

"saveproduct": {
 "description": "fired when a product has been created. The mutated
product is returned in
 payload",
 "behavior": "notify",
 "payloadType": {
 "data": [
 {
 "id": "string",
 "name": "string",
 "unitPrice": "number",

Chapter 1
Fragments

1-192

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=deferredRendering&demo=deferredSwitcher

 "inventory": "number",
 "productCategory": "string"
 }
]
 },
 "propagationBehavior": "container"
}

Example 1-52 A single fragment used to display different content

It's possible to reuse a fragment in multiple places in the page. To use the same fragment in
two different parts of the page, use a different unique id on each oj-vb-fragment component.

In the example below, the 'edit-product' fragment is used by two components, and each
fragment has a unique id. The parameters and event configurations are also different.

<oj-bind-if test="[[$page.variables.productIdDynamic]]">
 <oj-vb-fragment id="editProd1" name="edit-product"
 on-saveproduct="[[$page.listeners.onEditProductDynamic]]">

 <oj-vb-fragment-param name="products"

value="[[$page.variables.productListDynamic]]"></oj-vb-fragment-param>
 </oj-vb-fragment>
<oj-bind-if>

<!-- fragment used for static case -->
<oj-bind-if test="[[$page.variables.productIdStatic]]">
 <oj-vb-fragment id="editProd2" name="edit-product"
 on-saveproduct="[[$page.listeners.onEditProductStatic]]">
 <oj-vb-fragment-param name="products"

value="[[$page.variables.productListStatic]]"></oj-vb-fragment-param>
 </oj-vb-fragment>
<oj-bind-if>

Components
Components are written as an HTML file, using standard HTML syntax.

HTML Source
Components are written as standard HTML files.

The HTML file for a page is located as a peer to the page model, as name-page.html. This
HTML source can be edited as a normal JET page.

There are currently two kinds of expressions, write-back and no write-back. This can be seen
in the component properties.

<oj-input-text maxlength='30' placeholder="[[$variables.searchText]]"
 value="{{$variables.searchVariable}}"</oj-input-text>

Chapter 1
Components

1-193

VB Switcher Component
The VB switcher web component that is used to display the content of one of many VB
flows in a VB page, and to quickly switch which one is displayed.

An API is provided to select which flow to render and to add or remove flows from an
array of available flows.

The following features are supported:

• the view and viewModel is persisted when switching flows

• navigation within a switcher element is allowed

• record the transition in the browser history

DOM and viewModel caching

In order to provide a quick switching between flows, support pages with iframe and to
preserve the selection and scrolling position, the content of the flow is preserved when
switching to an other flow. This is done by by showing and hiding the DOM nodes. The
resources taken by a switcher element are only released when the element is removed
from the ArrayDataProvider.

Note:

Memory usage

Be aware that having a large amount of flows open in the switcher can result
in a large memory usage in the browser.

VB Switcher Navigation
Page navigation inside a switcher element or when switching elements does not
update the URL but the change is recorded in the browser history. As a result, the
bookmarked page will not restore the current state of the switcher.

Navigation within a switcher element

It is possible to navigate to a different page inside a switcher element. When
navigation occur, the URL is not updated but the navigation is recorded in the browser
history. Using the browser's back button restores the previous page of the current
switcher element. Navigation should be done using the navigateAction.

A switcher element can navigate to a different flow in the current App UI, open a
different App UI, or navigate to an App UI.

Switching between elements

When switching between elements, the transition is recorded in the browser history.
Using the back button restores the previously displayed element. This behavior can be
altered using vbBeforePopState.

When switching between elements, the page lifecycle events are not dispatched
because the page does not enter or exit. vbBeforeExit and vbExit are dispatched
only after an element of the switcher is deleted.

Chapter 1
Components

1-194

VB Switcher Usage and Properties
The VB switcher is a web component that can only be used in a Visual Builder page. Usage
consists of specifying an array of switcher elements, and which one is current.

Limitations

• Only one switcher component can be present in a page.

• When the switcher component is present in a page, no other flow can be displayed in that
page (no oj-vb-content component).

• Only flows marked with the embeddable = "enabled" property, or flows where the default
page is marked with the embeddable property, can be embedded in a switcher.

Properties

Name (Type) Description

data
(ArrayDataProvider)

An ArrayDataProvider, where each element of the element array is a
switcher element. For adding elements dynamically, it should be an
ArrayDataProvider that supports mutation, like the JET
MutableArrayDataProvider or the VB ArrayDataProvider2. Either flow or
application property is required for the element to be valid.

data.id (String) The id of the switcher element (required)

data.application (String) The id of the App UI. (optional, if not specified, the flow property is used with
the current App UI)

data.flow (String) The id of the flow

data.page (String) The id of the page of the flow to display if different than the default page
(optional)

data.params (String) An object, where the properties are page or flow input variable names
(optional)

currentItem The id of the flow element to display. If the value is null, no switcher element
is displayed. The value can be set to change which switcher element is
displayed. If the id does not match an element of the data array, an error is
thrown.

bridge (Object) A reference to the internal property vbBridge, which is already available in
the VB page model. The value is always "[[vbBridge]]"

VB Switcher Methods
closeItem

Dispatch the vbBeforeExit event to all the containers of a switcher element the same way it
is displayed when navigating. Returns a promise with the result of the event. This allows a
page to veto the closing of a switcher element, for example, when dirty data is detected.

Name (Type) Description

id (String) The item to close.

<return> (Promise) A Promise that resolves to a boolean. If the result is false, the application
should not remove switcher element from the array. It is recommended to
invoke this function in the listener of the ojBeforeRemove event of the
tabBar component so that the array of switcher elements is not affected.

Chapter 1
Components

1-195

navigate

Navigate the content of the current switcher element from a page containing the
switcher component.

The parameters and the return value are the same as the navigate action.

Name (Type) Description

options (Object) The navigate options is an object with the same properties as the
navigate action.

options.page (String) The path to the destination page. The path can be absolute, starting at
the application, or it can be relative to the current page. When used in
combination with a flow or application, the path cannot be absolute,
and it navigates to the page relative to the flow or App UI.

options.flow (String) The id of the destination flow. Change the content of the flow displayed
in the current page. When used in combination with a page, navigates
to the page in that flow.

options.application
(String)

The id of the destination App UI. Change which App UI is displayed in
the host application. When used in combination with a page and flow,
navigates to the page in that App UI.

options.target (String) The target of the destination flow. The valid values are "parent" or "self"
(default). This is used in combination with a flow to change the content
of the parent flow instead of the nested flow.

options.history (String) Defines the effect of the navigation on the browser history. The allowed
values are "replace", "skip" and "push" (default). If the value is
"replace", the current browser history entry is replaced, meaning that
the browser's Back button will not go back to it. If the value is "skip",
the URL is left unchanged.

options.params
(String)

A key/value pair map that will be used to pass input parameters to a
page (optional).

<return> (Promise) A Promise that resolves to an object with the boolean property
navigated, indicating if the navigation succeeded.

VB Switcher Events
vbBeforePopState

This event is dispatched when the browser history changes (Back and Forward
buttons), and it is used for two purposes:

1. To be notified when a change to the switcher current item will be made due to a
browser Back or Forward button.

2. Cancel the default handling by setting preventDefault to "true".

Properties

All of the event payloads listed below can be found under event.detail.

Name (Type) Description

item (String) The potential new current item.

previousItem (String) The previous item.

pagePath (String) The path of the potential page to be display.

Chapter 1
Components

1-196

Name (Type) Description

previousPagePath
(String)

The path of the previous page displayed.

VB Switcher Examples
Example 1-53 Switcher elements ADP declaration using JET
ojmutablearraydataprovider

"switcherArray": {
 "type": "object[]",
 "defaultValue": [
 {
 "flow": "aaa",
 "name": "Flow aaa",
 "id": "a"
 }
]
},
"switcherMutableArrayDP": {
 "type": "ojs/ojmutablearraydataprovider",
 "constructorParams": [
 "{{ $variables.switcherArray }}",
 {
 "keyAttributes": "id"
 }
]
},

Example 1-54 Switcher elements ADP using vb/ArrayDataProvider2

"switcherArray": {
 "type": "object[]",
 "defaultValue": [
 {
 "flow": "aaa",
 "name": "Flow aaa",
 "id": "a"
 }
]
},
"switcherADP": {
 "type": "vb/ArrayDataProvider2",
 "defaultValue" : {
 "keyAttributes": "id",
 "data": "{{ $variables.switcherArray }}",
 "itemType": "object"
 }
}

Chapter 1
Components

1-197

Example 1-55 How to mark a page or a flow to be embeddable

{
 "title": "Start Page",
 "description": "Landing page of the flow",
 ...
 "navigation": {
 "embeddable": "enabled"
 }
}

Example 1-56 Usage in page HTML

<oj-vb-switcher
 data="[[$variables.switcherADP]]"
 current-item="{{ $variables.selectedItem }}"
 bridge="[[vbBridge]]"
 on-vb-before-pop-state="[[$listeners.beforePopstate]]">
</oj-vb-switcher>

Example 1-57 Entry in imports section of the page definition to load the
component

"imports": {
 ...
 "components": {
 "oj-vb-switcher": {
 "path": "vb/components/oj-vb-switcher/loader"
 }
 }
}

Imports
The sections below discuss how to import components, CSS, and modules.

Import Custom Components
JET Custom Components can be loaded using the "imports" section in a shell or
page.

The "components" section contains a map of component IDs to objects which contain a
(requireJS) path to the JET Custom Components loader javascript. The ID should
match the component tag.

Example 1-58 Example:

"imports": {
 "components": {
 "demo-card": {
 "path": "resources/components/democard/loader"
 }

Chapter 1
Imports

1-198

 }
}

Import Custom Modules
You can load custom modules inside the "imports" section in an application, flow, page, and
other containers. The "modules" section contains a map of module objects, which in turn
contain a 'path' to the module JavaScript loader.

The path property can be a requireJS path to the JavaScript, or it can be a path scheme that
resolves to a requireJS path to the JavaScript module loader.

Import Modules Using requireJS Path Mapping
The example below shows how to import two modules in a page.json using requireJS path
mapping.

{
 "imports": {
 "modules" : {
 "converterUtils": {
 "path": "ojs/ojconverterutils-i18n"
 },

 "arrayUtils": {
 "path": "faCommon/arrayUtils"
 }
 }
 }
}

• "converterUtils" specifies a path to a JET module using the implicit requireJS mapping
('ojs') that is set up for JET modules in VB.

• "arrayUtils", on the other hand, uses a requireJS path 'faCommon' that is a requireJS
path mapping defined in the application metadata. See Declarative RequireJS Path
Mapping.

Each module defined in the section is available through an un-scoped "$imports" built-in
variable.

The built-in "$imports" context property is un-scoped and limited to the current container to
avoid performance issues and module conflicts at different context (for
example, $page, $flow, $application).

<div>
 <oj-bind-text
 value="[['Last Updated on - '
+ $imports.converterUtils.IntlConverterUtils.dateToLocalIso(new Date())]]">

 </oj-bind-text>
</div>

Chapter 1
Imports

1-199

In a page.json action chain, the assignVariablesAction uses the external module
imported as "arrayUtils", to call a filter method, as shown here:

{
 "removeTab": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$page.variables.switcherArray": {
 "module": "{{ $imports.arrayUtils }}",
 "functionName": "filter",
 "params": [
 {
 "array": "{{ $page.variables.switcherArray }}",
 "callback": "{{ function (p) { return p.id !
== $variables.itemToRemove } }}"
 }
]
 }
 }
 }
}

where the arrayUtils method 'filter' might look like this:

class ArrayUtils {
 /**
 * Returns a new array with all elements that pass the test
implemented by the provided function.
 * @param helper assignment helper
 * @param defaultValue the default value of the variable
 * @param {Object} params properties are
 * @param {Array} params.array - the array being filtered
 * @params {Function} params.callback - function used as callback to
filter values.
 * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Array/filter
 * @return {Array} filtered array or the array1 if args invalid
 */
 static filter(helper, defaultValue, params) {
 const array1 = params.array1;
 const callback = params.callback;
 if (Array.isArray(array1) && callback && typeof callback ===
'function') {
 return array1.filter(callback);
 }

 console.warn('invalid params provided for the filter method',
params);
 return array1;
 }
}

Chapter 1
Imports

1-200

Import Modules Using a Global Functions Resource Path
While a JavaScript resource defined within a Visual Builder application can be imported into a
container using existing conventions, it is often the case that an extension may want to share
it for reuse by downstream extensions.

A downstream extension that extends from an upstream extension can also define its own
global functions. Global functions can be defined at each extension level.

For example, a top level extension might have a set of JS modules that are used by layout
business rules associated to layout artifacts. Rather than copy the code for the utility
resource JavaScript in every downstream extension that requires the same logic, using the
'global functions' feature, an extension can define the resource and declare the rules for its
usage in a functions.json metadata, . This allows a dependent downstream extension to
import the JS module and use it with minimal effort.

As stated, global functions for use within the extension (and its App UIs), or across
extensions, must first be declared in a functions.json metadata, along with level of access
afforded to downstream extensions to the methods the JS module provides.

Note:

The term 'global function' refers to its usage as a globally available module, and
must not be confused with a context, such as $global.

Define Global Functions
Global functions JavaScript modules must be defined under resources/functions for an
extension, and the metadata for each JavaScript resource to be declared in resources/
functions/functions.json.

Note:

Global functions can only be defined for an extension. They cannot be defined
under an App UI or other resources folders, including in a unified app.

For example, ext-layout, is an extension that defines two JavaScript files that are shared by
all containers, like page, fragment or dynamic layout artifacts, in the current extension. The
files - dateUtils.js and standardUtils.js are located under ext-layout/ui/self/
resources/functions.

The JavaScript files are meant to be utilities style classes so that when the module is loaded
(using requireJS) it returns a map of function names to function callbacks.

Example 1-59 Global function JS module

The resources/functions folder contains a functions.json, a configuration file that defines
the list of JavaScript modules (in the 'files' section).

Chapter 1
Imports

1-201

In this example, the standardUtils.js, defined in the location above, defines several
static methods, and returns the methods that are allowed for general use:

'use strict';

define([], () => {
 class StandardFunctions {
 static join(arr = []) {
 if (arr.length === 0) {
 return '';
 }
 const newArr = (arr.slice(1, arr.length).map((o) => (${o})));
 return [arr[0]].concat(newArr).join(' ');
 }

 /**
 * Returns true if the field provided as parameter #1 contains the
characters provided as parameter #2, else
 * returns false.
 * @param {string} field
 * @param {string} characters
 * @returns {boolean}
 */
 static contains(field = '', characters) {
 return field.indexOf(characters) >= 0;
 }

 /**
 * Returns a string converted from a decimal.
 * @param {number} field
 * @returns {string}
 */
 static convertNumberToString(field) {
 return field.toString();
 }

 /**
 * Convert string to number
 * @param {string} field
 * @return {number}
 */
 static convertStringToNumber(field) {
 return parseInt(field, 10);
 }

 /**
 * Returns the number of characters in a string.
 * @param {string} field
 * @return {number}
 */
 static lengthOfString(field = '') {
 return field.length;
 }
 }

Chapter 1
Imports

1-202

 return {
 contains: StandardFunctions.contains,
 convertNumberToString: StandardFunctions.convertNumberToString,
 convertStringToNumber: StandardFunctions.convertStringToNumber,
 join: StandardFunctions.join,
 lengthOfString: StandardFunctions.lengthOfString,
 };
});

Declaring global functions in functions.json metadata

In the sample above, the standardUtils JavaScript module exports an Object with five
properties mapped to the function callback. These methods can be declared in the metadata,
and then exposed to the current extension and downstream extensions using the
functions.json metadata configuration.

{
 "files": {
 "utils": {
 "path": "standardUtils",
 "label": "Standard Utility Functions",

 "referenceable": "extension",

 "functions": {
 "contains": {
 "params": {
 "field": {
 "label": "field",
 "description": "",
 "type": "string"
 },
 "characters": {
 "label": "characters",
 "description": "",
 "type": "string"
 }
 },
 "return": "boolean"
 },
 "convertNumberToString": {
 "referenceable": "self"
 },
 "convertStringToNumber": {
 "referenceable": "self"
 },
 "join": {},
 "lengthOfString": {}
 }
 },
 "dateLocalUtils": {
 "path": "date/dateUtils",
 "label": "Date Utility Functions",

 "referenceable": "self",

Chapter 1
Imports

1-203

 "functions": {
 "dateToIsoString": {
 "referenceable": "extension"
 }
 }
 }
 }
}

Note:

The metadata in the sample JSON above is edited to show the relevant
details. It is not a complete configuration.

The "files" section includes one or more JavaScript files. "utils" is an alias to the
JavaScript file "standardUtils.js", defined under the "path" property (the .js
extension can be dropped because it is a requireJS module).

The "referenceable": "extensible" declares that the file is accessible to
downstream dependent extensions. The file alias "dateLocalUtils", with the path
"date/dateUtils", is set to "referenceable": "self", which means it is only
accessible to artifacts in the current extension.

The "functions" section can be used to list functions that are available to callers. The
function name can be used in expressions, if present (see below). Additionally,
function metadata can define whether it can be referenced from the current extension
or a dependent downstream extension. While a function can be less permissive about
its access, it cannot supersede the access set on the file.

For example, the file "utils" allows access to all dependent extensions (it is set to
"referenceable": "extension"), whereas the method "convertNumberToString"
within "utils" only allows access to the current extension (it is set to
"referenceable": "self") . This is allowed because a function can be less
permissive. This means a dependent extension that imports this module, will not be
able to call the "convertNumberToString" function (it will result in a log error).

Another example, is where the file "dateLocalUtils" that defines a function
"dateToIsoString", which expands its access beyond what the file allows. This is not
allowed and ignored. The function can only be called by artifacts in the current
extension.

When a function does not define "referenceable", access is set on the file. The
default access for a file is "self".

Use Global Functions in a Container
Global functions must be imported into a page (or any Visual Builder container) using
the imports section of the container metadata (and its modules property) before the
global functions can be used.

Chapter 1
Imports

1-204

For example, a layout.json, defined in the same extension (ext-layout) where the functions
metadata is defined, can specify the modules in its imports like this:

{
 "imports": {
 "modules": {
 "utils": {
 "path": "self:$functions/utils"
 },
 "dateUtils": {
 "path": "self:$functions/dateLocalUtils"
 },
 "commonUtils": {
 "path": "ext-common:$functions/utils"
 }
 }
 }
}

The path property uses a scheme for locating the JavaScript resource, particularly functions,
using a convention with three elements:

{extId}:{resourceType}/{resourceAlias}

The path resolves to the actual require path to the JavaScript module loader.

Element Description

{extId} Refers to the extension the resource belongs to. 'self' means the current
extension. Any other extension will be identified by its id.

• 'self: - a reserved word, is required to refer to extension level resources.
– Example: "self:$functions/dateLocalUtils" refers to the current

extension functions. The namespace 'self:' is required to refer to
extension resources.

• 'ext-common' - refers to the name of an upstream extension that the
current extension depends on. 'utils' is the resource alias defined there

{resourceType} Uses a special keyword for the /functions resources (for example,
"$functions").

• self:$functions resolves to an actual resource path ('ext-layout/ui/
self/resources/functions')

• ext-common:$functions resolves to an actual resource path ('ext-
common/ui/self/resources/functions')

{resourceAlias} For global functions, resourceAlias is the alias of the JavaScript defined in
functions.json.

• self:$functions/dateLocalUtils' resolves to ext-layout/ui/self/
resources/functions/date/dateUtils.js', where 'dateLocalUtils'
is the alias defined in functions.json.

• ext-common:$functions/commonUtils resolves to ext-common/ui/
self/resources/functions/utils/common.js, where 'commonUtils' is
the alias for the resource located under 'utils/common.js', that is defined
in functions.json.

Chapter 1
Imports

1-205

Here is an example of how functions.json, defined under ext-common/ui/self/
resources/functions, might look:

{
 "commonUtils": {
 "path": "utils/common",

 "label": "Common Utility Functions",
 "referenceable": "extension",
 "functions": {
 "titleCase": {}
 }
 }
}

Note:

For "ext-layout" to import global functions from "ext-common", it must have a
dependency on the "ext-common" (see below).

Reference Global Functions in an Expression
For the layout that defines the above modules, the following expressions can be used
to call the methods exposed by a particular global functions module:

• $layout.modules.commonUtils.titleCase()
• $layout.modules.dateLocalUtils.dateToIsoString()
Where titleCase and dateToIsoString are the function names defined in
functions.json in the extension.

Note:

$modules is the shortened form for use in the current container.

Note:

Any container that imports modules can expect $modules to be available (for
example, $page.modules, $fragment. modules).

An action chain JavaScript can provide $modules as part of the context:

class MyChain extends ActionChain {

 async run(context, params) {
 context.$layout.modules.dateUtils.today();

 const result = context.$application.modules.appUtils.update(); //

Chapter 1
Imports

1-206

can also call modules in parent scopes

 await Actions.assignVariable(context,
 {
 variable: '$layout.variables.someValue',
 value: result / 2,
 });
 }
}

Examples of Accessing Global Functions in Extensions
The following examples describe the level of access available to global functions from
extension artifacts.

Example 1-60 extA is a top level extension that defines a functions JavaScript
extAUtils.js

extA defines its own functions files, under ui/self/resources. Additionally, it also defines
functions under an App UI (appUi-A) and under appUi-A/pages.

• extA has no dependencies on other extensions

• extA defines a public extAUtils.js that can be accessed by downstream extensions.

– Additionally, UI artifacts such as some-page.json can access the extAUtils.

extA/
 ui/
 self/
 resources/
 functions/
 extAUtils.js
 functions.json // { extAUtils: { referenceable: "extension" } }

 applications/
 appUIA/
 .../
 some-page.json

 manifest.json // { dependencies: [] }

In the example above, some-page.json can have an imports section like this:

{
 "imports": {
 "modules": {
 "AUtils": {
 "path": "self:$functions/extAUtils"
 }
 }
 }
}

Chapter 1
Imports

1-207

The imported module in the example above can be accessed using the expression
({{ $page.modules.AUtils.someMethod() }}).

Example 1-61 extA1 depends on extA and defines functions (both private and
public)

• extA1 has a dependency on extA

• extA1 defines a private a1PrivateUtils.js that can be imported only by extA1
containers.

– For example, a1-form-fragment.json can import the private module.

• It also defines a public extA1Utils.js that can be imported by containers in the
current and downstream extensions.

extA1/
 ui/
 self/
 resources/
 functions/
 private/
 a1PrivateUtils.js
 public/
 extA1Utils.js
 functions.json

 fragments/
 a1-form/
 a1-form-fragment.json
 a1-form-fragment.js
 a1-form-fragment.html

 manifest.json // { dependencies: [extA] }

In the example above, a1-form-fragment.json can import the private module and
have an imports section. If a module is not declared here, it's not automatically
available. For example, 'extA1Utils' is not defined here, so it cannot be used.

{
 "imports": {
 "modules": {
 "A1PrivateUtils": {
 "path": "self:$functions/a1PrivateUtils"
 },
 "extAUtils": {
 "path": "extA:$functions/extAUtils"
 }
 }
 }
}

Chapter 1
Imports

1-208

Some fragment markup can call a method exposed on the private utils:

<oj-bind-text
text="{{ $modules.A1PrivateUtils.titleCase($variables.name)) }}"/>

<oj-bind-text text="{{ $modules.extAUtils.region($variables.code) }}"/>

Because extA1 depends on extA, it can also refer to public functions from extA.

Example 1-62 extB depends on extA and extA1 and defines a functions JS
extBUtils.js

• extB defines a layout 'buttons'

• extB defines its own global functions (extBUtils)

• extB also extends the fragment 'a1-form-fragment' from extA1

extB/
 dynamicLayouts/
 self/
 buttons/
 layout.json

 ui/
 self/
 resources/
 functions/
 extBUtils.js
 functions.json
 js/

 ext-A1/

 fragments/
 a1-form/
 a1-form-fragment-x.json
 a1-form-fragment-x.js

 manifest.json // dependencies: [extA, extA1]

buttons/layout.json references the fragment from extA1. It can call the public extAUtils and
extA1Utils, in addition to the global functions extBUtils. This could be defined in layout.json:

{
 "imports": {
 "modules": {
 "extA1Utils": {
 "path": "extA1:$functions/extA1Utils"
 },
 "BUtils": {
 "path": "self:$functions/extBUtils"
 }

Chapter 1
Imports

1-209

 }
 }
}

The layout.html could define a template that uses a fragment from extA1. The
fragment, because it's defined by extA1, can internally call a 'functions' module that is
private to extA1.

<template id="formTemplateSimple">

 <oj-vb-fragment name="extA1:a1-form"
 bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="dynamicLayoutContext"
 value="[[$dynamicLayoutContext]]"></oj-
vb-fragment-param>

 <oj-vb-fragment-param name="foo"
value="[[$modules.BUtils.titleCase($layout.variables.lucy)]]">
 </oj-vb-fragment-param>

 </oj-vb-fragment>

</template>

extB also extends the fragment from extA1. This means the fragment-x will need to
explicitly define all imports it needs from the current extension and any of its upstream
extensions. The use of $base is not recommended for accessing imports of the base
container, because the exact list of imports that are accessible by the extended artifact
cannot be easily determined, nor can it be complete. For example, the a1-form-
fragment.json from extA1 did not import extA1Utils. Likewise, it imports local
resources that should be hidden for the current extension.

It is recommended that authors explicitly import the modules they need. A sample
imports on a1-form-fragment-x.json might look like this:

{
 "imports": {
 "modules": {
 "extA1Utils": {
 "path": "extA1:$functions/extA1Utils"
 }
 }
 }
}

Example 1-63 extZ extends layout from extB and also depends on extA1

• extZ extends the 'buttons' layout from extB and also defines its own 'zippers'
layout.

• extZ also overrides some pages from the unified app.

Chapter 1
Imports

1-210

• extZ also defines its own functions, in addition to having a 'functions' folder at the App UI
level (resources/functions) folder under appUiZ (see the example below).

– While there appears to be a functions.json defined at the App UI resources level,
these cannot be imported into the App UI using the $functions scheme. These files
can be imported into the App UI pages using the current schemes for importing such
files.

extZ/
 dynamicLayouts/
 extB/
 buttons/
 layout-x.json

 self/
 zippers/
 layout.json

 ui/
 self/
 applications/
 appUiZ/
 app.json
 pages/
 shell-page.html
 shell-page.json

 resources/
 functions/
 appUiZtils.js
 functions.json

 resources/
 functions/
 extZUtils.js
 functions.json

 base/
 pages/
 root/
 first-page-x.json
 app-flow-x.json

 manifest.json // dependencies: [extB, extA1]

The following sections detail the level of access for functions and the $modules usage in the
various Visual Builder containers.

Functions Access and $modules Usage in extZ/dynamicLayouts/extB/buttons/layout-x

When layout-x is an extension of a layout from extB, it should be possible to import extB's
functions, as well as the dependency extension (extA1).

extA is not specified in the dependencies list, so its functions cannot be imported.

Chapter 1
Imports

1-211

Note:

An extension must explicitly import the resources it needs, and not
use $base to access the imports set up by the artifact it extends.

extZ defines its own functions, so layout-x can import any of these.

{
 "imports": {
 "modules": {
 "extBUtils": {
 "path": "extB:$functions/extBUtils"
 },
 "extA1Utils": {
 "path": "extA1:$functions/extA1Utils"
 },
 "ZUtils": {
 "path": "self:$functions/extZUtils"
 }
 }
 }
}

Functions Access and $modules Usage in extZ/dynamicLayouts/self/zippers/
layout-x

The files allowed in the previous section are also allowed here.

Functions Access and $modules Usage in extZ/ui/self/applications/appUiZ/
pages/shell-page

The files allowed in the previous section are also allowed here.

Functions Access and $modules Usage in extZ/ui/base/pages/app-flow-x.json

The files allowed in the previous section are also allowed here.

Import Custom CSS
You can load custom CSS through require-css('css![module-path]') inside the imports
section in an application, flow, page, and other containers.

The "css" section contains an array for strings for each CSS import. Each string is a
(requireJS) 'path' to the CSS to be loaded. The requireJS path can be an absolute
path with respect the application, a relative path with respective to the current context
(application, flow or page) or an external URL (for example, a CDN path) that can be
accessed by the application. Using custom CSS loading through metadata gives the
flexibility to load CSS through require-css vs hardcoding it in the HTML markup.

The CSS resources are typically defined at the extension level and App UI level, and
can be imported using the conventions mentioned below.

Chapter 1
Imports

1-212

In the following application structure, ext-A depends on ext-B, and extends a layout
"incidents" defined in ext-B. extA defines its own CSS files, under ui/self/resources.
Additionally, it also defines an App UI (appUi-A) with its own CSS resource.

ext-A/
 dynamicLayouts/
 self/
 orders/
 layout.json
 ext-B/
 incidents/
 layout-x.json

 ui/
 self/
 applications/
 appUi-A/
 app.json
 pages/
 shell-page.json
 resources/
 css/
 shell-2.css

 resources/
 css/
 app.css
 shell.css

 resources/
 css/
 ext.css

 base/
 pages/
 root/
 first-page-x.json
 app-flow-x.json

Example 1-64 Import CSS in shell-page.json

{
 "imports": {
 "css" : [
 "self:/resources/css/ext.css", // starts from the extension
 "/resources/css/shell.css", // starts from the App UI
 "resources/css/shell-2.css", // not supported, will throw an error
 "https://static.oracle.com/cdn/fnd/gallery/2007.0.0/some.css" // same
]
 }
}

In the example above:

Chapter 1
Imports

1-213

• If the path starts with self:/, the path starts at the root of the current extension
(for example, ext-A/ui/self/resources).

• If the path is absolute, the path starts at the root of the current App UI (appUi-A),
equivalent to the path starting with extA/ui/self/applications/appUi-A/
resources.

• If the path is relative, throw an error because a relative path is not supported.

• If the path is a URL, use that URL.

Example 1-65 Import CSS in app.json

{
 "imports": {
 "css" : [
 "self:/resources/css/ext.css",
 "/resources/css/app.css"
]
 }
}

The app.json has access to both the extension level resources (self:/) and the App
UI ones (starting with /resources).

Example 1-66 Import CSS in layout-x, app-flow-x, flow-x, page-x

{
 "imports": {
 "css" : [
 "self:/resources/css/ext.css"
]
 }
}

Extension artifacts can only access resources defined at the current extension level.

Security
The security entry provides certain access limits.

The security entry provides a way to limit access to UI level artifacts, such as pages,
flows, or applications. These artifacts can require either a specific role or a specific
permission in order to enter and display the resource. If the user does not have the
correct role or permission, the runtime will refuse entry into that UI artifact. Currently
the application, flows, and individual pages can be protected in this manner.

Security Configuration
The security configuration is managed in several resources.

The configuration for security resides in the model for each of these resources: app-
flow.json, name-flow.json, name-page.json. If requiresAuthentication is
false, specifying roles or permissions results in an error. By default an artifact inherits
the requiresAuthentication property from its parent. If this is not present in the

Chapter 1
Security

1-214

application configuration, it defaults to true. This means that if no security section is defined in
any of the artifacts, the application will require authentication when starting.

The configuration follows the format seen in this example:

"security": {
 "access": {
 "requiresAuthentication": true/false,
 "roles": ["role1", "role2"],
 "permissions": ["perm1", "perm2"]
 }
}

When an anonymous user navigates to an artifact (page, flow or application) and the artifact
is secure, the user is prompted to login, and is then redirected to the artifact. This
functionality is provided by the default implementation of the Security Provider.

Security Provider
Security for an application is enabled using a pluggable mechanism called Security
Providers.

In the application model, app-flow.json, you can specify a "userConfig" element. The
userConfig element selects which Security Provider to use and how to configure it:

Example of an entry in app-flow.json to specify the Security Provider

"userConfig": {
 "type": "vb/DefaultSecurityProvider",
 "configuration": {
 "url": "url to some security api"
 }
}

A Security Provider takes a configuration object with a url. The url property should point to a
REST API. It must be possible to retrieve the current Security Provider configuration via this
REST API. The configuration contains user information and configuration information such
as loginUrl and logoutUrl.

A Security Provider performs the following functions.

Function Description

fetchCurrentUser(config) Fetch the configuration from the url and initialize
the userInfo property as well as the
loginUrl and logoutUrl properties.

static getUserInfoType() Return an object describing the type of the user info.

isAccessAllowed(type, path, accessInfo Check if the current user can access a resource with the
given access info. If the user is not authenticated, this
method returns false. Otherwise, if the user role is one of
the roles in accessInfo, or if the user permission is one
of the permissions in accessInfo, then the method
returns true.

Chapter 1
Security

1-215

Function Description

handleLoadError(error, returnPath) This function is called by the client when an error occurs
while loading a page. It attempts to handle the load error
for a Visual Builder artifact, and returns true if it does.

handleLogin(returnPath) Handle the user login process. Redirects to the login
page using the login URL given by the security provider
configuration. If defined, the returnPath is added to the
login URL using the query parameter name. This is
defined in the 'returnPathQueryParam' property of the
SecurityProvider class.

handleLogout(logoutUrl) Handle the user logout process. The default
implementation navigates to the URL defined by the
logoutUrl argument. If the logoutUrl argument is not
defined, it uses the logoutUrl of the SecurityProvider
configuration.

User Information
The userInfo contains the user information fetched by the Security Provider.

For the default implementation, the userInfo has the following type:

{
 "userId": "string",
 "fullName": "string",
 "email": "string",
 "roles": "string[]",
 "permissions": "string[]",
 "isAuthenticated": "boolean"
}

The userInfo is made available to the application with the help of
the $application.user built in variable. This allows content in the page to be
rendered conditionally.

Example 1-67 Example of conditional content rendering

<!-- Render 'I am a manager' if manager is a role of the current user -->
<oj-bind-if test='[[!$application.user.roles.manager]]'>
 I am a manager
</oj-bind-if>

<!-- Render the 'Sign In' button if the current user is not authenticated -->
<oj-bind-if test='[[!$application.user.isAuthenticated]]'>
 <oj-button id='signIn' on-oj-action='[[$listeners.onSignIn]]'Sign In</oj-
button>
</oj-bind-if>

Error Handling
Support for unauthorized error handling is provided by several functions.

When loading an artifact returns an error, the function handleLoadError is called with
an error object that has a statusCode property. If the artifact is secure and the roles
and permissions of the current user do not match the ones required by the artifact, the

Chapter 1
Security

1-216

error statusCode is 403. The default implementation of the handleLoadError will check if the
user is authenticated, and if not, will call the handleLogin function. This redirects to the
loginUrl provided by the Security Provider configuration.

The default implementation of the Security Provider handles status 401 and 403 errors. Other
security schemes will need to implement their own security provider and specify it in the
UserConfig section of the application descriptor. To implement your own security provider:

1. Create your own class extending vb/types/securityProvider and override any method
necessary.

2. If the user information is different, make sure to match the content of the userInfo
property and the type information returned by getUserInfoType(), since this determines
what information is exposed in the $application.user variable.

3. Enter your new type in the "type" section of the userConfig in app-flow.json as well as the
URL to retrieve the Security Provider configuration.

Example 1-68 Example of a custom Security Provider

define(['vb/types/securityProvider'],
(SecurityProvider) => {
 class TestSecurityProvider extends SecurityProvider {
 handleLogin(returnPath) {
 // implement your own login mechanism here
 }
 }

 return TestSecurityProvider;
});

Translations
The Translations API makes it possible to get localized strings
using $container.translations.

Translation bundles may now be defined declaratively in Application, Flow, or Page
containers. The properties of the "translations" object are the names of the bundle, and the
value must contain a "path" property that is the path to the bundle.

When you declare a bundle at the Application level, an optional "merge" property allows you
to specify an existing bundle path, which this bundle should merge with and override. This
allows overriding existing bundles in JET, or JET CCs, with Application-level
bundles. Expressions for "merge" are supported, but they cannot reference Application
artifacts, as this evaluation happens before the creation of the Application.

The following paths are supported for "path":

• container relative: a path fragment prefixed by "./" (dot-slash) will be appended to the
declaring container's (flow, page) path. Note that flows and pages are not allowed to
reach outside of its container (the path cannot reference parent folders). This means that
"../" is not allowed anywhere in the path. See the note about Using "merge" below.

• application relative: a path fragment without a "./" prefix will be relative to the application
root. This is discouraged for Flows or Pages, except where a RequireJS path mapping is
being used.

• absolute: paths that contain a host are used as-is.

Chapter 1
Translations

1-217

The bundle must be in a folder named nls : the path can be any depth, but the last
folder in the path must be nls, such that the root bundle is in the nls/ folder.

Translation bundles have the standard JET bundle format. String resolution uses the
JET oj.Config.getLocale() to get the current locale for the context.

Caution:

Using "merge"
When using "merge", take care to use requireJS mapped references
consistently. A common failure is when the "merge" property does not use a
requireJS mapping, but the defining path to the bundle does use a mapping.
For example,when a CCA is loaded using a requireJS path ("mapped/foo/
loader") and it references the bundle using a relative path ("./resources/nls/
strings"), the app flow MUST also use the mapping: ("merge": "mapped/foo/
resources/nls/strings").

When a dot (".") is used as a prefix in the bundle paths, be aware that
"merge" will not work. Internally, Visual Builder 'normalizes' bundle paths,
so the actual paths used to define the bundle do not have a "dot" prefix.

For example, the declaration below defines a bundle, and then overrides it;
note the use of the "dot" prefix everywhere except the "merge". If "merge" is
used in a a declaration in app-flow.json, which is typical, the "dot" prefix on
the "path" properties are optional.

"translations": {
 "translations" : {
 "app" : {
 "path" : "./resources/strings/app/nls/app-strings"
 },
 "appoverride" : {
 "merge": "resources/strings/app/nls/app-strings",
 "path" : "./resources/strings/override/nls/override-
strings"
 }
 },

Example 1-69 Bundles

Two bundles, translations.js and moreTranslations.js, are defined in a
Page model JSON, named "app" and "anotherBundle":

"translations": {
 "app": {
 "path": "./resources/nls/translations"
 },
 "anotherBundle": {
 "path": "./resources/nls/moreTranslations"
 }
},

The corresponding expression syntax would be as follows, with one expression per
bundle:

Chapter 1
Translations

1-218

<h4><oj-bind-text value="[[$page.translations.anotherBundle.description]]"</oj-bind-
text></h4>

 <oj-bind-text value="[[$page.translations.format('app', 'info.instructions',
{ pageName: 'index.html' })]]"</oj-bind-text>

Example 1-70 Overriding both JET strings and a component's strings

{
 "id": "demoCardDemo",
 "description": "Custom Component, Demo Card, with methods",
 "defaultPage": "shell",
 "translations": {
 "main": {
 "path": "resources/nls/translations",
 "merge": "ojtranslations/nls/ojtranslations"
 },
 "dcoverride": {
 "path": "resources/nls/demo-card-overrides",
 "merge": "resources/components/democard/resources/nls/demo-card-translations"
 }
 },

Expression Language

Similar to variable references and other references, the objectcan be prefixed with the
container (for example, application in the example below), or you can omit the container, in
which case the current container is assumed.

<oj-bind-text
 value="[[$translations.format('myPageBundle', 'info.instructions',
{ pageName: 'index.html' })
]]">
</oj-bind-text>
<!-- or -->
<oj-bind-text
 value="[[$application.translations.format('myPageBundle',
'info.instructions', { pageName:
 'index.html' })]]">
</oj-bind-text>

In the example above, the format() function allows both named and positional replacement.

<oj-bind-text
 value="[[$page.translations.shell.shell_header_title]]">
</oj-bind-text>

Strings can be referenced directly, using $translations.<bundle>.<string id>.

Existing Applications That Use Translations

Applications that used translations prior to 18.2.3 must manually migrate their translations.
Translations previously used the JET configuration, and therefore had one bundle for the
entire app. You have several options:

Chapter 1
Translations

1-219

• Declare the bundle. You can choose to break the bundle up logically, but the
simplest migration would be to use the exact example above in app-flow.json,
which uses the path for the existing bundle provided for new apps.

• Change the expression syntax to the new syntax. Assuming you declared your
single bundle in the same manner as the Bundles example, named "app":

– For just the translated string, change $application.translations.get(key)
to $application.translations.app.key

– For Strings that require replacement,
change $application.translations.get(key, arguments)
to $application.translations.format('app', key, arguments)

Specifying the Locale

By default, VB defers to JET to determine the current locale for the client. This is
typically done by first looking at the <html> tag 'lang' attribute, and then falling back to
some browser settings.

There is a "localization" declaration section in the Application model (app-
flow.json) that contains a "locale" property, which allows the developer to specify an
alternate locale. This configures the JET ojL10n plugin to use this locale.

Expressions may be used, but the application is not created at this point, and therefore
no application functions or variables are available. Instead, the developer must provide
the necessary JavaScript. The developer should also set the 'lang' attribute on the
<html> tag, so that JET, and anything that uses JET, will also use this locale.

Example 1-71 Locale Example

{
 "id": "demoCardDemo",
 "description": "Custom Component, Demo Card, with methods",
 "defaultPage": "shell",
 "services": {},
 "translations": {
 "main": {
 "path": "resources/nls/translations",
 },
 },
 "localization": {
 "locale": "{{ determineLocale() }}"
 },
 "types": {}
}

Helper Utilities
The run time provides public JavaScript helpers to help with implementing some
features in JavaScript when a lower level of control is desired or needed.

These can be imported in your Javascript module functions.

REST Helper
The REST helper utility allows calling REST endpoints, which are defined in the
service definitions.

Chapter 1
Helper Utilities

1-220

The Visual Builder runtime uses this helper internally.

The REST helper looks at the content-type header, if available, to try to determine how to
read and parse the response. If no content-type is available, text is assumed.

Table 1-3 REST helper content types

Content type Response method

contains "json" Response.json()

starts with "image/" Response.blob()

application/octet-stream Response.blob()

This behavior can be overridden using the responseBodyFormat() method.

The following is an example of how to use of the REST helper:

define(['vb/helpers/rest'], (Rest) => {
...
var rest = Rest.get('myservice/myendpoint').parameters(myparameters);
var promise = rest.fetch();

The following example shows how to use the REST helper with an extension, with the second
parameter used to define the scope:

define(['vb/helpers/rest'], (Rest) => {
...
var rest = Rest.get('serviceExtensionId:serviceId/endpointId',
{extensionId:myExtensionId})
var promise = rest.fetch();

Table 1-4 REST helper methods

Method Parameters Return Value Description

static get(endpointId) endpointId: serverID/
operationID, same as
RestAction,
ServiceDataProvider

Instance of REST object Factory method

initConfiguration(initConf
ig)

initConfig: the initConfig
of the fetch() Request
object

REST helper, to allow
chaining of method calls

See the Request Web
API

parameters(parameters
Map)

parametersMap: object
of key/value pairs, same
as RestAction
'uriParams'

REST helper Set the parameter for
the call. Parameters
defined as path
parameters for the
endpoint will be inserted
in the URL as
appropriate; the rest will
be appended as query
parameters.

requestTransformationF
unctions
(transformationFunction
Map)

transformationFunction
Map: map of functions.

REST helper See Call REST Action

Chapter 1
Helper Utilities

1-221

Table 1-4 (Cont.) REST helper methods

Method Parameters Return Value Description

requestTransformationO
ptions
(transformationOptionM
ap)

transformationOptionMa
p: map of request
transform parameters

REST helper See Call REST Action

responseTransformation
Functions
(transformationFunction
Map)

transformationFunction
Map: map of functions.

REST helper See Call REST Action

body(body) body: actual payload to
send with the request

REST helper -

hookHandler(handler) handler: should extend
RestHookHandler, and
may override the
following:

handlePreFetchHook(r
est)
handleRequestHook(re
quest)
 -
returns request
handleResponseHook(r
esponse)
 -
returns response
handlePostFetchHook(
result)
handlePostFetchError
Hook(result)

REST helper Allows installation of
callbacks for various
phases of the REST
call, which may
configure the REST
helpers, modify the
request and response,
or do special processing
based on the result or
result error.

define(['vb/helpers/
rest', 'vb/helpers/
rest'],
(Rest,
RestHookHandler) =>
{
 class MyHandler
extends
RestHookHandler {

responseBodyFormat(fo
rmat)

format: one of: text,
json, blob, arrayBuffer,
base64, or base64Url.
The response body type
is the same as the
corresponding method
for Response (except
base64, which returns
just the encoded portion
of the base64 URL).

REST helper Overrides the default
behavior, which looks at
the "content-type"
header to determine
how to read (and parse)
the response.

fetch() - Promise Performs the configured
fetch() call

toUrl()

toRelativeUrl()

- Promise Utility methods for
building requests and
responses that require
the endpoint path.
Resolves with the full (or
relative) path of the
endpoint, or empty
string if the endpoint is
not found.

Chapter 1
Helper Utilities

1-222

The REST helper fetch() call returns a Promise that resolves with an object that contains the
following properties:

Table 1-5 fetch() call return value

Property Description

response The Response object from the native fetch() call,
or the return from a HookHandler's
handleResponseHook, if one is being used.

body The body of the response object; the helper will
attempt to call the appropriate Response method
(json(), blob(), arrayBuffer(), etc) based on
responseBodyFormat() and Content-Type.

Module Function Event Builder
Within the context of module functions including main-page.js and app-flow.js, there is
an event helper available to allow raising custom events, similar to the Fire Custom Event
Action.

The helper is made available to the module function through a context passed to the Module
classes constructor, and has two methods available.

Table 1-6 Module function event helper methods

Method Description

fireCustomEvent(name, payload) See Fire Custom Event Action.

fireNotificationEvent(options) See Fire Notification Event Action.

Example 1-72 Usage in a module function

'use strict';

define(function () {
 function MainPageModule(context) {
 this.eventHelper = context.getEventHelper();
 }

 MainPageModule.prototype.fireCustom = function (name, payload) {
 return this.eventHelper.fireCustomEvent(name, payload);
 }

 MainPageModule.prototype.fireNotification = function (subject, message) {
 return this.eventHelper.fireNotificationEvent({ subject, message, type:
'info' });
 }

 return MainPageModule;
});

Chapter 1
Helper Utilities

1-223

Events
There are several types of events, all of which the application can react to, using the
event listener syntax.

There are several types of events in the runtime: page events, flow events, system
events, custom or developer-defined system events, component (DOM) events, and
variable events. Event types are all handled by executing action chains.

The application reacts to events through event listeners, which declaratively specify
action chains to execute when the event occurs.

Event Listener Syntax

An event listener is an object with the following properties:

• "chains": an array of action chains to execute; includes "chainId" and optional
"parameters".

• "stopPropagation": optional, used only by custom and component events. An
expression that is evaluated immediately; if true, the event will not propagate to
the current hander's container's parent.

• "preventDefault": optional, used only by component events. Like
"stopPropagation", it is evaluated immediately. If true, The default (DOM) handling
is not executed.

The "chainId" refers to an action chain to trigger when this variable changes. Optional
parameters can be sent to the action chain in response to the event (see the next
section for more details). To gain access to the old or new values, these are exposed
in the $event implicit object, where $event.value is the new value and $event.oldValue
is the old value.

The following example defines three event listeners; one for the vbNotification built-in
event, a custom event listener, and a component listener. The syntax for all three is the
same, though how they are invoked is different:

• The built-in vbNotification event is called when that event is fired by the system.
No explicit wiring of the listener is required. The name identifies which action
should invoke this listener.

• The custom myCustomEventOne, is called when the application explicitly fires that
event. As with vbNotification, no explicit wiring of the listener is required.

• onButtonClicked is a component event, and is explicitly bound to a component
action.

"eventListeners": {
 "vbNotification":
 "chains": [
 {
 "chainId": "application:logEventPayloadChain",
 "parameters": {
 "message": "{{ $event.message }}"
 "type": "{{ $event.type }}"
 }
 }
]

Chapter 1
Events

1-224

 },
 "myCustomEventOne": {
 "stopPropagation": "{{ $event.type === 'error' }}",
 "chains": [
 {
 "chainId": "application:fireEventChain",
 "parameters": {
 "name": "customEventOne",
 "payload": {
 "value1": "some value",
 "value2": 3
 }
 }
 }
]
 },
 "onButtonClicked": {
 "chains": [
 {
 "chainId": "application:logEventPayloadChain",
 "parameters": {
 "eventPayload": "{{ $event }}"
 }
 }
],
 }

The following HTML example shows explicit component event binding:

<oj-button href="#" id='myButton'
 disabled="[[true]]"
 chroming='half'
 on-click='[[$listeners.onButtonClicked]]'>My Button!!!</oj-button>

Declared Events
Declared events are events that are explicitly defined in the application model, to define a
specific contract and type for the event.

Events can be declared at the Application, Flow, or Page level. References to events use
prefixes, just like variables and chains.

Events may also be declared in Layouts; when used within the Layout, they behave like
other Visual Builder events. But to be able to listen to a Layout event outside of the Layout,
you must use the the "dynamicComponent" behavior (below).

Events have a "payloadType" which declares the type of the event payload. This type is
limited to simple scalar types, or objects and arrays composed of scalar types; you cannot
define a "payloadType" that references other type definitions.

Example 1-73 Declaration

"events": {
 "myPageEvent": {
 "payloadType": {

Chapter 1
Events

1-225

 "message": "string",
 "code": "number"
 }
 }
},

Example 1-74 Event Listener

The "page:" prefix is required only when listening outside the page, but is always
recommended for clarity).

"eventListeners": {
 "page:myPageEvent": {
 "chains": [
 {
 "chainId": "handleEvent",
 "parameters": {
 "payload": "{{ $event }}"
 }
 }
]
 },

Lifecycle (Page and Flow) Events
Lifecycle events are defined by the system to indicate to a container (page, flow, or
application) a change in its lifecycle. Event listeners are defined in a page or flow
descriptor. When an event is raised, the framework calls the event listener with the
name of the event defined in the descriptor.

Event listeners are defined in the page module under the “eventListeners“ property of
the container model. Like all event types, a single event can have multiple event
listeners. Event listeners call action chains and can pass parameters and return a
payload.

The order of execution during navigation from page source to page target is:

1. vbBeforeExit is dispatched to the source page.

2. vbBeforeEnter is dispatched to the target page.

3. vbExit is dispatched to the source page.

4. vbEnter is dispatched to the target page.

Chapter 1
Events

1-226

Table 1-7 Lifecycle Events

Name Container Description Return

vbBeforeEnte
r

Page Dispatched to a page before navigating to it. At the
point the event is dispatched, the previous page state
still exists. Since the target page is not yet initialized,
page variables are not available, but input parameters
can be accessed using $parameters.

Navigation to the page can be canceled by returning an
object with the property cancelled set to true.
This is useful for redirecting to another page.

{cancelled:
boolean}

vbEnter Page, Flow,
Application

Dispatched after all page-scoped variables have been
added and initialized to their default values, values from
URL, or persisted values. This is a point where
additional initialization work for the page (for example,
data fetches) can be done. This event is "non-stopping"
for a page, but can be stopped for other containers like
application or flow. In other words, for application or
flow, the processing of the web application will only
continue after the chains called by the event ends.

None

vbBeforeExit Page Dispatched to a page before exiting it. Navigation away
from a page can be canceled by returning an object
with the property cancelled set to true. This is
useful when the page has dirty data and leaving the
page should not be allowed before saving.

This event is dispatched to all pages in the current
container hierarchy, starting with the leaf page (deepest
nested page) and ending with the shell page (top level).

When navigation is triggered by browser history
(forward or back button), the payload is an object with
the following properties:
• origin: (String) Specify what triggered the

vbBeforeExit event. The only valid value is
popState

• direction: (String) Specify if vbBeforeExit was
triggered by navigating backward or forward in
the browser history

• steps: (Number) Specify how many steps
navigation goes backward or forward in the history
stack

• canBeCanceled: (Boolean) Whether navigation in
the browser can be canceled by returning the
object { cancelled: true } to the vbBeforeExit
event.

{cancelled:
boolean}

vbExit Page, Flow Dispatched when exiting the container (page or flow).
This event can be used to clean up resources before
leaving the page.

None

Chapter 1
Events

1-227

Table 1-7 (Cont.) Lifecycle Events

Name Container Description Return

vbBeforeAppI
nstallPrompt

Page, Flow,
Application

Dispatched when a PWA receives a
BeforeInstallPromptEvent from the browser. The event
will be dispatched after vbBeforeEnter, but there is no
guarantee that it will be dispatched after vbEnter. The
vbBeforeAppInstallPrompt event can be used to display
a native application install prompt by calling
event.getInstallPromptEvent().prompt(
). Currently, this is only supported in Chrome. For
PWAs, the event will be handled automatically by the
root page.

{ getInstallPro
mptEvent() }

vbAfterNaviga
te

Page Dispatched from the current page after navigation to
this page is complete. The payload is an object with
these properties:
• currentPage: the path of the current page

• previousPage: the path of the previous page

None

vbDataProvid
erNotification

Dispatched when a Data Provider's implicit fetch fails
with an error. The event has the following payload:

{
 severity: 'string', // severity level
 detail: 'any', // details of the error,
this could have the Rest failure details
 capability: 'object', // object with
the capabilities configured on the SDP
 fetchParameters: 'object', // object
with the parameters passed to the fetch
 context: 'object', // object
representing the state of the SDP at the
time fetch was initiated
 id: 'string', // uniqueId of the SDP
instance
 key: 'string', // since the event can
be fired multiple times, this identifies
the event instance
},

None

vbResourceC
hanged

Dispatched when an application has been updated.
This event allows the application to notify the user that
they need to refresh to view the updated application. A
default handler resourceChangedHandler is added in
the application template.

{
 error: {
 detail: 'string',
 },
}

None

Chapter 1
Events

1-228

Table 1-7 (Cont.) Lifecycle Events

Name Container Description Return

vbNewConten
tAvailable

Dispatched when an updated Web PWA service worker
has been activated. The event will be dispatched after
vbEnter. A typical example of how an application can
respond to a vbNewContentAvailable event is to open a
dialog prompting the user to reload the page.

None

Component Events
Component events (also known as DOM events) are similar to page events, except that they
are fired by components on a page (or other container).

A component event listener can have any name, and is generally associated to a component
event property via the binding expression on the component markup. Component event
listeners are defined in the Page (or container) module under the eventListeners property,
much like other Visual Builder events. For example, an event listener for the
selectionChange event for the <oj-tab-bar> component can be defined within the
eventListeners section as:

"eventListeners": {
 "onSelectionChange": {
 "chains": [
 {
 "chainId": "respondToChange",
 "parameters": {
 "text": "{{ $event.detail.value }}"
 }
 }
]
 }
}

Component event listeners are called in the same way as page lifecycle event listeners.
There can be more than one listener. When there is more than one, they run in parallel.

To reference an event listener from a component, you can use
the $listeners.eventListenerName implicit object. For example:

<oj-select-single ... on-selection-change="[[$listeners.onSelectionChange]]"

Component Event Objects

Within the context of component event listeners, there are three implicit objects.

• $event: The event payload sent by the component.

• $current: This represents the second parameter passed to the handler, if any. For JET,
this can be either the $current binding variable, or the $data variable if $current does
not exist in the component context.

Chapter 1
Events

1-229

• $bindingContext: represents the third parameter passed, if any. For JET, this is
the (Knockout) view model, and it will therefore contain the $current or $data
variable as a property.

These variables do not exist outside the listener context. In other words, you can
reference these in the listener declaration, but you cannot reference them in the called
action chain; any values needed in these variables must be passed explicitly to the
action chain as arguments (chain variables).

These three variables represent the arguments passed to the listener, and are not
directly tied to specific JET values. Their meaning could be different depending on the
context.

For example, if using an event listener within an <oj-list-item> item, the value
of $current could be different whether you are using the item.renderer attribute or
the itemTemplate slot to display the item.

• Within an item.renderer script, JET does not define $current, so instead
passes $data as the second argument, so the Visual Builder $current is JET/
Knockout $data. In some JET contexts, like anitem.renderer script, you will also
need to prefix Visual Builder listeners with (Knockout) $parent in the HTML.

• Within an itemTemplate slot, JET defines $current, and passes that, so Visual
Builder $current is JET $current.

To determine whether JET $current exists for your use case., refer to the JET
documentation for the component to which you are adding a listener.

Additionally, the developer could decide to pass their own custom object for the
parameters. In the example below, the listener is wrapped, so Visual Builder $current
is "some string", and Visual Builder $bindingContext is undefined.

<oj-button on-click="{{ function(event, current, bindingContext)
{ $page.listeners.someListener(event, "some string") } }}">
 Click Me!
</oj-button>

Component Event Listener "preventDefault" Property

Component event listeners have an additional preventDefault property, which can be
used to prevent the normal DOM event handling from being executed.

This example uses an expression to check the payload of the event to stop
propagation:

"eventListeners": {
 "customEventTwo": {
 "chains": [
 {
 "actionsId": "handleEventInMod2PageChain",
 "parameters": {
 "eventPayload": "{{ $event }}"
 },
 }
],

Chapter 1
Events

1-230

 "preventDefault": "{{ $event.type === 'info' }}"
 }

Component Event Listener "asyncBehavior" Property

Some components such as the JET table support events that accept async event listeners,
where the event accepts a Promise. This allows the component that fired the event to cancel
it asynchronously, if needed. The Promise provided by Visual Builder event listeners can also
be resolved or rejected within Visual Builder based on the action chain's behavior.

To opt in to the async behavior for a component event, the eventListeners property
asyncBehavior must be set to "enabled". The default value for this property is "disabled".
Before implementing action chain logic, refer to the component docs to make sure you
understand the implications of enabling async behavior.

Here's an example of enabling async behavior for a table component's ojBeforeRowEditEnd
event, with the asyncBehavior property set to "enabled" within the eventListeners property:

{
 "eventListeners": {
 "tableBeforeRowEdit": {
 "asyncBehavior": "enabled",
 "chains": [
 {
 "chainId": "beforeRowEditChain",
 "parameters": {
 "rowIndex": "{{$event.detail.rowContext.status.rowIndex}}"
 }
 }
]
 }
 }
}

The table component bound to the ojBeforeRowEditEnd event in the preceding example can
be configured as:

<oj-table scroll-policy="loadMoreOnScroll"
 id="oj-table-1"
 class="oj-flex-item oj-sm-12 oj-md-12"
 edit-mode="rowEdit"
 selection-mode='{"row": "single"}'
 data="{{ $page.variables.productsADP }}"
 scroll-policy-options.fetch-size="3"
 columns="{{ $page.functions.columnsArray }}"

 on-oj-before-row-edit="[[$listeners.table1BeforeRowEdit]]">
 ...
</oj-table>

Fragment Events
See Fragment Events.

Chapter 1
Events

1-231

Custom Events
Custom events are similar to page events, except that they are not limited to lifecycles.
Their event listeners can be defined in a page, flow, or application.

An event name is defined by the user, and is explicitly fired by the application, using
the event Actions provided, in the context of a page.

Custom event listeners are defined in the page or flow under
the eventListeners property.

One difference between custom events and page events is that they 'bubble' up the
containment hierarchy. Any event listeners in a given flow or page for the event are
executed before looking for listeners in the container's parent. The order of container
processing is:

• The page from where the event is fired.

• The flow containing the page.

• The page containing the flow.

• Recursively up the containment, ending with the application.

Custom and system event behavior can be modified using the stopPropagation
property, which prevents the event from bubbling to this event listener's container's
parents.

Example 1-75 stopPropagation Example

"eventListeners": {
 "customEventTwo": {
 "stopPropagation": "{{ $event.type === 'info' }}"
 "chains": [
 {
 "actionsId": "handleEventInMod2PageChain",
 "parameters": {
 "eventPayload": "{{ $event }}"
 }
 }
],
 }...

vbNotification Events

The vbNotification event is a built-in custom event, rather than a page, flow, or
application event, as it is an event only explicitly fired by the application using the
action 'vb/action/builtin/fireNotificationEventAction' (see Fire Notification Event Action)

The payload is an object with these properties:

• "summary": a short summary, subject, or title

• "message": any text meaningful to the application

• "displayMode": "persist" or "transient"

• "type": "error", "warning", "info", or "confirmation"

• "key": an optional GUID, which may be useful for the UI. If not provided, one is
generated and provided in the payload.

Chapter 1
Events

1-232

System Events
System events are identical to custom and page events, except that the framework defines
the event.

An event name is defined by the user, and is explicitly fired by the application, using the event
Actions provided, in the context of a page.

System event listeners are defined in the page, shell, or flow under
the eventListeners property.

System events also propagate or bubble up the page's container hierarchy, executing any
listeners. Event bubbling can be stopped.

One difference between system events and page events is that they 'bubble' up the
containment hierarchy. Any event listeners in a given flow or page for the event are executed
before looking for listeners in the container's parent. The order of container processing is:

• The page from where the event is fired.

• The flow containing the page.

• The page containing the flow.

• Recursively up the containment, ending with the application.

Custom and system event behavior can be modified using the stopPropagation property,
which prevents the event from bubbling to this event listener's container's parents.

Example 1-76 stopPropagation Example

"eventListeners": {
 "customEventTwo": {
 "stopPropagation": "{{ $event.type === 'info' }}"
 "chains": [
 {
 "actionsId": "handleEventInMod2PageChain",
 "parameters": {
 "eventPayload": "{{ $event }}"
 }
 }
],
 }...

Event Behavior
Event behavior refers to how the listeners are called in relation to each other, whether the
result for the listeners is available, and what form the result would take.

Event behavior is meaningful for base applications, as well as extensions, and is not specific
to events defined in the "interface".

Event Behavior Types

The event behavior does not define the order in which the listener chains are called; event
behaviors define whether they are called serially or in parallel, whether the Action that raised
the event waits for listener resolution, and what the "result" of the listener invocation looks
like.

For event behavior, "serially" means:

Chapter 1
Events

1-233

• All event listener chains for a single event listener (in a container) are called
sequentially, in declared order. This means that a listener action chain is not called
until any previous actions in the chain have finished.

• The event listeners for the next container's listeners are not called until the listener
action chains for any previous container's event listeners have finished.

The following table describes the event behavior types.

Event Behavior Description

Notify Parallel - The event is triggered but the application does not wait for the
extension to process it.

Chain results are not available to the Action (or helper) that fired the event
(because the listeners are called without waiting).

This is the default behavior.

NotifyAndWait Serial - Each action chain listener must complete (and resolve any returned
Promise, if any) before another event listener action chain is called.

Chain results are not available to the Action (or helper) that fired the event.

CheckForCancel Serial - Each action chain listener must complete (and resolve any returned
Promise, if any) before another event listener action chain is called.

If any of the listener Chains returns a "success" with a payload of
{ "stopPropagation": true }, the application will stop calling event
listeners.

When calling listeners defined in both extensions and the base application,
the listeners in the "closest" extension are called first. In other words,
extensions of extensions are called before extensions of the base. This
allows higher-priority extensions to cancel listening before the lower-priority
extensions (or base) receive the event.

Chain results are not available to the Action (or helper) that fired the event.

Transform Deprecated. Replaced by TransformPayload.

Chapter 1
Events

1-234

Event Behavior Description

TransformPayload Serial - Each action chain listener must complete (and resolve any returned
Promise, if any) before another event listener action chain is called.

The "eventListener" will have access to a new context variable, $previous,
which is a peer of \$event. This will be the result of the previous listener
invocation's chain result, or undefined for the first invocation.

The "eventListener" for a "transform" event can also have a "returnType"
declaration, analogous to the "payloadType", but corresponding to the
\$previous value. If the event declaration has a "returnType", $previous
should match the type, otherwise, it will be coerced to the type.

When calling listeners defined in both extensions and the base application,
the listeners in the "base" are called first. In other words, the base fires an
event with a value, and the extensions may optionally modify that value.
(This convention is the opposite order of the "cancel" behavior).

The final result, "returnType", when all the listeners have been called, will
be returned as the result of the fireCustomEventAction that initially raised
the event.

If the application wishes to use the "transform" mode, the convention it
should follow is:

• For any listeners for an event with a "transform" behavior that
references more than one Chain, the Chains are called in array order.

• All listeners for an event with a "transform" behavior should pass
the $previous as an argument to their Chain (and this will typically be
wired by the design time).

• All listeners for an event with a "transform" behavior should define a
"returnType", which matches the "returnType" for the event declaration.

• The Chain variable argument that corresponds to $previous should
have an argument that matches the "returnType" of the event, and the
Chain should also have a "returnType" that matches the listener's
"returnType" (note that " payloadType" and "returnType" cannot
currently reference defined Types).

• The Chain should have a "returnType" defined, that matches the
"returnType" of the event.

The design time can add parameters for the listener, and the inputs for the
Chain, to provide \$previous, in the same way it currently provides
the $event.

Variable ‘onValueChanged’ Events
Specific to variables, the 'onValueChanged' event is raised by the framework when a
variable’s value changes.

To add an event listener to an event, specify it in the 'onValueChanged' property of the
variable. Event listeners can only be added to the root variable, not to any sub-objects of the
variable structure. It uses the same syntax as other event listeners.

"variables" : {
 "incidentId": {
 "type": "string",
 "input": "fromCaller",
 "required": true,
 "onValueChanged": {
 "chains": [

Chapter 1
Events

1-235

 {
 "chainId": "fetchIncidentChain",
 "parameters": {
 "incidentId": "{{ $event.value }}"
 }
 }
]
 }
 }
},

Old and new variable values are available in the $event implicit object.

• $event.oldValue provides the variable’s old value.

• $event.value provides the variable’s new value.

• $event.diff can be used for complex types, where it is necessary to know the
properties within the variable that changed.

See the Variables section for details on variables.

Optional parameters can be sent to the action chain in response to the event. See the
JSON Action Chains section for more information.

Multiple event listeners can be added for the same event (note that 'chains' is an array
property). In this case, the event listeners will be run in parallel with respect to each
other.

Transforms - vbPrepare Request Transform
In order to fetch the data required by the application, clients are expected to use the
VB RestHelper directly or, for example, via a RestAction or ServiceDataProvider.
Regardless of the invocation mechanism, there are two main pieces of information that
are usually provided for the request to happen: the identifier of the endpoint and, if
relevant, the values of the endpoint "parameters" (such as server variables, path
parameters, query parameters, and header parameters).

The vbPrepare request transform provides a hook that clients can use to
programmatically modify the parameters, which can effectively change the URL of of
the request issued by Visual Builder.

Signature

The vbPrepare transform can be declared as follows:

Request.prototype.vbPrepare = function(configuration, options,
transformsContext) {
 // Clients can manipulate the parameters of the fetch via the
'options.parameters' object.
}

This transform is invoked before any other transform. Its arguments are also slightly
different from the other transforms:

Chapter 1
Transforms - vbPrepare Request Transform

1-236

• The configuration parameter provides the information about the endpoint being
fetched, including the endpoint identifier, the OpenAPI path for the endpoint, and the
server details (including URL templates and server variables).

• The options parameter has a property parameters that exposes the object holding the
parameters passed to the RestHelper. The value of parameters is a "live" object: in other
words, changing the properties of options.parameters actually modifies the values used
by the RestHelper.

• The transformsContext is an object that is set at the RestHelper, which is then passed
to all transforms.

vbPrepare Request Transform Examples
The examples below illustrate the arguments passed to the vbPrepare transform, as well as
the effect its code has on the fetch performed by the RestHelper.

The 'store' service

The examples below use a service store, defined as follows:

• The service is located on an extension extA, and is exposed to extensions that depend
on extA.

• The server of the service refers to the backend storeapi, and has a server variable
storeId:

"servers": [
 {
 "url": "vb-catalog://backends/extA:storeapi/{storeId}",
 "variables": {
 "storeId": {
 "default": "001"
 }
 }
 }
],

• The backend storeapi is defined in the catalog.json artifact of extA, and also has a
server variable:

"backends" {
 "storeapi": {
 "extensionAccess": true,
 "transforms": {
 "path": "./storeapi.js"
 },
 "servers": [{
 "url": "https://www.mystore.com/{version}",
 "variables": {
 "version": {
 "default": "1.0"
 }
 }
 }]

Chapter 1
Transforms - vbPrepare Request Transform

1-237

 }
}

• The service has an operation listProduct with both a "path" and a "query"
parameter:

"/products/{productId}": {
 "get": {
 "operationId": "listProduct",
 "description": "List a product",
 "parameters": [
 {
 "name": "productId",
 "in": "path",
 "description": "The ID of product.",
 "required": true,
 "schema": {
 "type": "string"
 }
 },
 {
 "name": "manufactureModel",
 "in": "query",
 "description": "Whether or not to use the manufacture's
model.",
 "required": false,
 "schema": {
 "type": "boolean",
 "default": false
 }
 }
],
 "responses": {
 ...
 }
 }
}

Transform Script

As indicated above, the transform script storeapi.js is provided by the storeapi
backend, so that's the artifact that must contain the vbPrepare transform method.

If the service store itself had a transform script, the method for vbPrepare should be
declared there.

Example 1-77 RestAction

Assume that the following RestAction is defined in an action chain.

"getProduct": {
 "module": "vb/action/builtin/restAction",
 "parameters": {
 "endpoint": "extA:store/listProduct",
 "uriParams": {
 "productId": "[[$chain.variables.productId]]"

Chapter 1
Transforms - vbPrepare Request Transform

1-238

 }
 },

The getProduct action provides only the value for the productId path parameter, which is
required. The data fetch fails if the path is not specified.

The vbPrepare transform could be implemented in storeapi.js like this (this example uses the
traditional, "function-prototype" design for transforms):

define([], function () {
 var Request = function () {};

 Request.prototype.vbPrepare = function(configuration, options) {
 /*
 * configuration = {
 * endpointId: 'extA:store/listProduct',
 * endpointPath: '/products/{productId}',
 * serverUrlTemplates: [
 * {
 * // The url of the server of the store service.
 * template: 'vb-catalog://backends/extA:storeapi/{storeId}',
 *
 * // The value that VB would use for the 'storeId' server
variable,
 * // which in this case is the default value provided by the
 * // OpenAPI definition.
 * variables: {
 * storeId: '001',
 * },
 * },
 * {
 * // The url of the server of the storeapi backend.
 * template: 'https://www.mystore.com/{version}',
 *
 * // The value that VB would use for the 'version' server
variable,
 * // which in this case is the default value provided by the
 * // OpenAPI definition.
 * variables: {
 * version: '1.0',
 * },
 * },
 *],
 * }
 */

 /*
 * options = {
 * // The resolved uriParams specified by the RestAction.
 * parameters: {
 * productId: 'tv001',
 * },
 * }
 */

Chapter 1
Transforms - vbPrepare Request Transform

1-239

 // Changing both the 'productId' path parameter and the 'version'
server variable.
 options.parameters.productId = 'notebook003';
 options.parameters['server:version'] = '2.1';

 // Adding a query parameter that is not specified in the OpenAPI
definition.
 options.parameters.internalSKU = true;
 };

 var Response = function() {};

 return {
 request: Request,
 response: Response
 };
});

With the transform above, the request URL that is fetched is https://
www.mystore.com/2.1/001/products/notebook003?internalSKU=true.

Example 1-78 RestHelper

Assume that the following code is defined in a script located in extension extB that
depends on extA.

const restHelper = RestHelper.get('extA:store/listProduct',
{ extensionId: 'extB' });

restHelper.parameters({
 'server:storeId': 'To-001',
 manufactureModel: true,
 productId: 'tv001',
});

restHelper.transformsContext({
 myValue: 123,
});

return restHelper.fetch;

Also, assume that the web application defines the following value on the index.html
artifact:

<script type="text/javascript">
 window.vbInitParams = {
 'services.catalog.common.version': 'untested',
 };
</script>

Chapter 1
Transforms - vbPrepare Request Transform

1-240

The vbPrepare transform could be implemented in storeapi.js like this (this examples uses an
alternative, simpler design for transforms):

'use strict';

define([], () => ({
 request: {
 vbPrepare: (configuration, options, transformsContext) => {
 /*
 * configuration = {
 * endpointId: 'extA:store/listProduct',
 * endpointPath: '/products/{productId}',
 * serverUrlTemplates: [
 * {
 * // The url of the server of the store service.
 * template: 'vb-catalog://backends/extA:storeapi/{storeId}',
 *
 * // The value that VB would use for the 'storeId' server
variable,
 * // which in this case is provided via the
'RestHelper.parameter'
 * variables: {
 * storeId: 'To-001',
 * }
 * },
 * {
 * // The url of the server of the storeapi backend.
 * template: 'https://www.mystore.com/{version}',
 *
 * // The value that VB would use for the 'version' server
variable,
 * // which in this case is provided via the 'vbInitParams' from
index.html.
 * variables: {
 * version: 'untested',
 * }
 * },
 *],
 * }
 */

 /*
 * options = {
 * // The parameters set via 'RestHelper.parameters'.
 * parameters: {
 * 'server:storeId': 'To-001',
 * manufactureModel: true,
 * productId: 'tv001',
 * },
 * }
 */

 /*
 * // The value set via 'RestHelper.transformsContext'
 * transformsContext = {

Chapter 1
Transforms - vbPrepare Request Transform

1-241

 * myValue: 123,
 * }
 */

 // Not setting the 'manufactureModel' query parameter to use the
server's
 // default value.
 delete options.parameters.manufactureModel;
 },
 },
}));

With the transform above, the request URL that is fetched is https://
www.mystore.com/untested/To-001/products/tv001.

Declarative RequireJS Path Mapping
The application model now supports declarative requireJS path mapping, using the
"requirejs" property.

String values and expressions are supported. Expressions use the normal 'double-
brace' convention to indicate it should be evaluated. Expressions cannot make
references to application artifacts because evaluation happens before the application
is created, but can use Declarative Initialization Parameters.

The "map","paths" and "bundles" sections of the requireJS.config object definition
are currently supported:

{
 "applicationModelVersion": "19.3.1",
 "id": "myApp",
 "description": "Big Box FixitFast Technician App",
 "defaultPage": "shell",
 "requirejs": {
 "paths": {
 "myPathPrefix": "some/other/path/prefix",
 "expPrefix": "{{ $initParams.myPrefix + '/somepath' }}"
 }
 },

For more details, see:

• http://requirejs.org/docs/api.html#config-paths

• http://requirejs.org/docs/api.html#config-map

Chapter 1
Declarative RequireJS Path Mapping

1-242

http://requirejs.org/docs/api.html#config-paths
http://requirejs.org/docs/api.html#config-map

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Understand the Page Model
	Variables
	Object Variables
	Array Variables
	Metadata Variables
	Built-in Variables
	Types
	Built-in Extended Types
	Service Data Provider
	Service Data Provider Properties
	Implicit and Externalized Fetches
	Merge Transform Options Function
	Request Transformation Function
	Response Transformation Functions
	Methods
	Events

	ServiceDataProviderFactory
	Multi-Service Data Provider
	MultiServiceDataProviderFactory
	Array Data Provider 2
	Array Data Provider (Legacy)

	Custom Extended Types
	InstanceFactory Types
	JET Dynamic UI Variable Types
	Default Values
	Expressions in Default Values
	Input Variables
	Persisted Variables
	rateLimit Variable Property

	Constants
	JavaScript Action Chains
	JavaScript Actions
	Assign Variable
	Call Action Chain
	Call Component
	Call Function
	Call REST
	Call Variable
	Code
	Fire Data Provider Event
	Fire Event
	Fire Notification
	For Each
	Get Dirty Data Status
	Get Location
	If
	Login
	Logout
	Navigate Back
	Navigate To Application
	Navigate To Flow
	Navigate To Page
	Open URL
	Reset Dirty Data Status
	Reset Variables
	Return
	Run in Parallel
	Scan Barcode
	Share
	Switch
	Try-Catch-Finally

	JSON Action Chains
	JSON Actions
	Assign Variables Action
	Metadata-Driven Variable Assignment
	Assign Variables With a Custom Function

	Call Action Chain Action
	Call Component Action
	Call Function Action
	Call REST Action
	Call Variable Method Action
	EditorUrl Action
	Fire Event Action
	Fire Data Provider Event Action
	Fire Notification Event Action
	ForEach Action
	Get Location Action
	If Action
	Login Action
	Logout Action
	Navigate Action
	Navigate Back Action
	Open URL Action
	Reset Variables Action
	Return Action
	Run in Parallel / Fork Action
	Scan Barcode Action
	Share Action
	Switch Action
	Take Photo Action
	Transform Chart Data Action (Deprecated)
	Web Share Action

	Action Chain Properties
	Variable References in Action Chains
	Action Chain Variables
	Action Results

	Flow
	Flow Properties
	Using Flows to Create Single-Page Applications
	Represent the Flow State in the URL
	Navigating Between Flows and Pages
	Flow Lifecycle
	Load Flow Resources
	Use Flows Not in the Flows Folder
	Shell Flow

	Fragments
	Define a Fragment Component
	Fragment Scopes and Namespaces
	Define Fragment Input Parameters
	Write Back a Fragment Variable Value to the Parent Container
	Deferred Rendering of a Fragment

	Fragment Events
	Referencing Fragments in Extensions
	Extending a Fragment
	Fragment Patterns

	Components
	HTML Source
	VB Switcher Component
	VB Switcher Navigation
	VB Switcher Usage and Properties
	VB Switcher Methods
	VB Switcher Events
	VB Switcher Examples

	Imports
	Import Custom Components
	Import Custom Modules
	Import Modules Using requireJS Path Mapping
	Import Modules Using a Global Functions Resource Path
	Define Global Functions
	Use Global Functions in a Container
	Reference Global Functions in an Expression
	Examples of Accessing Global Functions in Extensions

	Import Custom CSS

	Security
	Security Configuration
	Security Provider
	User Information
	Error Handling

	Translations
	Helper Utilities
	REST Helper
	Module Function Event Builder

	Events
	Declared Events
	Lifecycle (Page and Flow) Events
	Component Events
	Fragment Events
	Custom Events
	System Events

	Event Behavior
	Variable ‘onValueChanged’ Events

	Transforms - vbPrepare Request Transform
	vbPrepare Request Transform Examples

	Declarative RequireJS Path Mapping

