
Oracle® Cloud
Using Caches in Oracle Application Container
Cloud Service

E83061-16
October 2018

Oracle Cloud Using Caches in Oracle Application Container Cloud Service,

E83061-16

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Rebecca Parks

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience iv

Documentation Accessibility iv

Related Resources iv

Conventions iv

1 Getting Started with Caches

About Caches in Oracle Application Container Cloud Service 1-1

Typical Workflow for Creating and Using Caches 1-2

Access Caches in Oracle Application Container Cloud Service 1-2

2 Creating and Managing Caches

Explore the Cache Services Page 2-1

Create a Cache Service 2-2

Explore the Cache Service Overview Page 2-2

3 Using Caching APIs in Applications

The Cache URL Environment Variable 3-1

Use the Java API for Caching 3-2

Use the REST API in Applications 3-3

Handle Connection Exceptions with Retries 3-3

4 Referencing Caches in Deployed Applications

Reference a Cache During Application Deployment 4-1

Reference a Cache After Application Deployment 4-1

iii

Preface

Using Caches in Oracle Application Container Cloud Service describes how to create
caches and use them in applications.

Topics:

• Audience

• Documentation Accessibility

• Related Resources

• Conventions

Audience
Using Caches in Oracle Application Container Cloud Service is intended for Oracle
Cloud account administrators who are responsible for managing caches and
developers who need to use them in applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Resources
See these Oracle resources:

• Oracle Public Cloud

Conventions
The following text conventions are used in this document:

Preface

iv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://cloud.oracle.com

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

v

1
Getting Started with Caches

This guide tells you what you need to know to use caches in Oracle Application
Container Cloud Service applications.

Topics:

• About Caches in Oracle Application Container Cloud Service

• Typical Workflow for Creating and Using Caches

• Access Caches in Oracle Application Container Cloud Service

About Caches in Oracle Application Container Cloud
Service

Oracle Application Container Cloud Service features clustered, scalable, in-memory
caching with data backup.

You specify the data capacity of a cache service. The topology is determined and
provisioned automatically. You can add capacity by adding instances.

Data is replicated among cluster members in the cache service so nothing is lost
should a member fail. If a member fails, data is redistributed among the remaining
members to ensure resiliency.

Common use cases for caches are:

• Reducing how often a data source is accessed, which results in better
performance and scalability for applications.

• Sharing state information among multiple applications, which can be of different
types.

Cache services, caches, and applications reference each other according to the
following rules:

• One cache service can have multiple caches within it.

• One application can use multiple caches but only one cache service.

• Multiple applications can use the same cache service and caches.

The following diagram shows how each application can access multiple caches within
one cache service, and how multiple applications can access the same cache service
and share any caches within it.

1-1

Typical Workflow for Creating and Using Caches
To start using caches in Oracle Application Container Cloud Service, refer to the
following tasks as a guide.

Task Description More Information

Learn about and use
Oracle Application
Container Cloud
Service.

Before using caches, make sure
you are familiar with other
features of the service.

Typical Workflow for Administering
Applications in Using Oracle
Application Container Cloud Service
and Typical Workflow for Developing
Applications in Developing for Oracle
Application Container Cloud Service

Access the Application
Caches web user
interface.

This is separate from the web
user interface for applications.

Access Caches in Oracle Application
Container Cloud Service

Create a cache
service.

Create a cache service that
applications can access.

Create a Cache Service or REST
API for Managing Application
Caches

Reference the cache
URL in your
application code.

Make sure your application
reads the
CACHING_INTERNAL_CACHE_URL
environment variable at runtime.

The Cache URL Environment
Variable

Use a Caching API in
your application code.

You can use the Java API in a
Java application. You can call
the REST API from any
language.

Use the Java API for Caching.

Reference a cache
service when you
deploy your
application.

You can choose from a list of
available cache services during
deployment.

Reference a Cache During
Application Deployment

Access Caches in Oracle Application Container Cloud
Service

You access the Caching Service Console through the Oracle Application Container
Cloud Service menu.

1. Open the service console for Oracle Application Container Cloud Service.

2. Click Application Cache.

The Cache Services page of the Caching Service console appears. See Explore
the Cache Services Page.

Chapter 1
Typical Workflow for Creating and Using Caches

1-2

2
Creating and Managing Caches

This section describes how to create and manage caches in Oracle Application
Container Cloud Service.

Topics:

• Explore the Cache Services Page

• Create a Cache Service

• Explore the Cache Service Overview Page

Explore the Cache Services Page
The Cache Services page lists cache services and lets you create, scale, restart, and
delete them.

The following table describes the key information on the Cache Services page.

Element Description

Search by
service name

Filters the cache service list by name.

Create Service Creates a new cache service. See Create a Cache Service.

Cache Service
List

Displays the following information about each cache service.

• Name — Click the name to display the cache service overview page.
See Explore the Cache Service Overview Page.

• Version — The cache service version. When Oracle Application
Container Cloud Service is updated, existing caches remain at their
initial version for backward compatibility.

• Created On — Timestamp of cache service creation.
• Memory — Amount of memory capacity allocated for the cache service.

Click to perform the following actions.

• Start — Start the cache service.
• Stop — Stop the cache service.
• Restart — Restart the cache service without data loss.
• Scale Service — Change the memory or number of nodes for the cache

service.
• Delete — Delete the cache service.

Service Create
and Delete
History

Lists the creation and deletion history of all cache services.

2-1

Create a Cache Service
You can create a cache service from the Cache Services page.

See Access Caches in Oracle Application Container Cloud Service and Explore the
Cache Services Page.

1. Open the Cache Services page.

2. Click Create Service.

3. On the Service page of the Create Service wizard, complete the fields described in
this table:

Element Description

Service Name Enter the cache service name.

The service name must start with a letter and must contain letters and
numbers only. Spaces and other special characters are not allowed.

Service
Description

(Optional) Enter a text description of the cache service.

Metering
Frequency

Hourly is the only metering frequency currently supported.

Deployment
Type

Select the deployment type:

• Basic — Only one container is created for the cache service.
• Recommended — Three or more containers are created for the

cache service.

Cache
Capacity [GB]

Enter the amount of data capacity to be allocated for the cache service.

Total Memory
Allocated [GB]

Displays the total memory allocated for the cache service. This is greater
than the cache capacity because the cache service holds multiple
copies of the data.

4. Click Next.

5. Review the information on the Confirm page of the Create Service wizard.

6. Click Create to create the cache service.

Click Cancel to cancel or Previous to go back to the Service page.

Explore the Cache Service Overview Page
The Cache Service Overview page lists information about a single cache service.

The following table describes the key information shown on the Cache Service
Overview page.

Chapter 2
Create a Cache Service

2-2

Element Description

Menu Icon
Click to perform the following actions.

• Start — Start the cache service.
• Stop — Stop the cache service.
• Restart — Restart the cache service without data loss.
• Scale Service — Change the memory or number of nodes for the cache

service.
• View Activity — Display the activity log.

Overview Tab Displays the number of nodes for the cache service.

Service
Overview

Displays the following information about the cache service.

• Status — The cache service status.
• Cache Capacity [GB] — Total amount of memory capacity allocated for

the cache service.
• Deployment Type — Either Basic or Recommended:

– Basic — The cache service has only one container.
– Recommended — The cache service has three or more

containers.
• Version — The cache service version. When Oracle Application

Container Cloud Service is updated, existing caches remain at their
initial version for backward compatibility.

• Cache Host — The host name of the cache service.

Resources Lists the caches within the cache service and the following information
about each.

• Container Name — Name of the cache.
• Container Size — Total amount of memory capacity allocated for the

cache.

Associations Lists applications that use the cache service and the following information
about each.

• Service Name — Name of the application.
• Type — Type of the application.
• Status — Status of the application. Ready means it is running.

In-Progress
Operation
Messages

Lists operations that affect the cache service or applications that use it and
the following information about each. Present only if such an operation is
occurring.

• Service Name — Name of the cache service or application.
• Operation — Name of the operation.
• Operation Status — Status of the operation.
• Start Time — Timestamp of when the operation started.
• End Time — Timestamp of when the operation ended.

Chapter 2
Explore the Cache Service Overview Page

2-3

3
Using Caching APIs in Applications

This section describes how to use the Java and REST APIs for caching applications to
interact with Oracle Application Container Cloud Service caches.

Topics:

• The Cache URL Environment Variable

• Use the Java API for Caching

• Use the REST API in Applications

• Handle Connection Exceptions with Retries

The Cache URL Environment Variable
To access a cache service, your application must be able to read the
CACHING_INTERNAL_CACHE_URL environment variable at runtime.

This variable contains effectively the hostname of the cache service. Your application
uses this variable to construct the URL for communicating with the cache service.

The REST API for caching applications uses port 8080.

Example 3-1 Reading the Environment Variable in a Java Application

public static final String CACHEHOST;
public static final String CACHEPORT = "8080";
public static final String CACHEURL;
static {
 CACHEHOST = System.getenv("CACHING_INTERNAL_CACHE_URL");
 if (CACHEHOST == null){
 System.out.println("CACHING_INTERNAL_CACHE_URL not set");
 System.exit(0);
 }
 CACHEURL = "http://" + CACHEHOST + ":" + CACHEPORT + "/ccs/";
}

Example 3-2 Reading the Environment Variable in a Node.js Application

process.on('exit', (code) => {
 console.log('CACHING_INTERNAL_CACHE_URL not set: ${code}');
});
var CCSHOST = process.env.CACHING_INTERNAL_CACHE_URL || process.exit(0);
var baseCCSURL = 'http://' + CCSHOST + ':8080/ccs/';

Example 3-3 Reading the Environment variable in a PHP Application

$cacheService = getenv('CACHING_INTERNAL_CACHE_URL') ?
getenv('CACHING_INTERNAL_CACHE_URL') : '';
if(strlen($cacheService) == 0)
{
 throw new Exception('No cache service found', 500);

3-1

}
$base_url = 'http://'.$cacheService.':8080/ccs/'

Use the Java API for Caching
The Java API for caching enables your Java application to write values to, read values
from, delete values in, and clear the cache. This API is an open source framework with
sources hosted on GitHub and binaries both directly downloadable from and available
through Maven Central.

This section describes the conceptual framework and basic steps for how to use the
Java API for caching. You can download the Java classes and read the Javadoc
pages at Oracle Application Container Cloud Service Java SDK for Caching. Tutorials

that use this API are Creating an Application Using the Java API for Caching on

Oracle Application Container Cloud Service and Creating an Application Using the
Java API for Caching and a Database on Oracle Application Container Cloud Service.

To access a cache, your application must first define a SessionProvider and a Session
object:

1. Create a SessionProvider obejct for a cache service that you previously created.
Provide a URL with the cache service name and the port that supports the desired
transport protocol: 1444 for GRPC or 8080 for REST. When using REST, the
hostname is followed by /ccs. A GRPC example:

SessionProvider sp = new RemoteSessionProvider("http://MyCache:1444");

A REST example:

SessionProvider sp = new RemoteSessionProvider("http://MyCache/ccs:8080");

2. Obtain a Session object from the SessionProvider object using a specific transport.
A GRPC example:

Session cs = sp.createSession(Transport.grpc());

A REST example:

Session cs = sp.createSession(Transport.rest());

3. Obtain a Cache object from the Session object. The cache in this example is named
users, and it stores objects of class User.

Cache<Users> users = cs.getCache("users");

After your application has obtained a Cache object, it can interact with the cache. The
API includes the methods Cache.get(), Cache.put(), Cache.replace(), and
Cache.remove(). For example, the code to put a User object into the users cache with
the user’s ID as the key is as follows:

users.put(user.getId(),user);

Removing an object from a cache can be as simple as calling users.remove(id), but
because caches are not local, the remove operation provides optimization options.
The Cache.remove() method lets you specify, among other things, whether you want
the removed object returned. By default it returns null. To return the removed object,
use the Return.OLD_VALUE option. For example:

User user = users.remove(id, Return.OLD_VALUE);

Chapter 3
Use the Java API for Caching

3-2

https://github.com/oracle/accs-caching-java-sdk
https://apexapps.oracle.com/pls/apex/f?p=44785:112:110893912419585::::P112_CONTENT_ID:19986
https://apexapps.oracle.com/pls/apex/f?p=44785:112:110893912419585::::P112_CONTENT_ID:19986
https://apexapps.oracle.com/pls/apex/f?p=44785:112:110893912419585::::P112_CONTENT_ID:19987
https://apexapps.oracle.com/pls/apex/f?p=44785:112:110893912419585::::P112_CONTENT_ID:19987

Like Cache.remove(), the Cache.replace() method provides optimization options and
returns null by default. For example:

users.replace(id, user);

For full details about these methods, see the Javadoc pages.

Use the REST API in Applications
The REST API for caching applications enables your application to write values to,
read values from, delete values in, and clear the contents of the cache. You can call
this API from any language.

This API is fully described in REST API for Using Caches in Applications. The
following tutorials show examples of applications in various languages:

• Creating a Java Application Using the Caching REST API in Oracle Application
Container Cloud Service

• Creating a Node.js Application Using the Caching REST API in Oracle Application
Container Cloud Service

• Create a Python Application Using the Caching REST API

Handle Connection Exceptions with Retries
Sometimes when a cache service is scaled in, scaled out, or restarted, it can’t accept
connections for a brief time. For a Java application that attempts to connect, a
java.netConnectionException or java.net.UnknownHostException might occur. You can
code a retry mechanism to handle these exceptions.

This retry mechanism should control the number of retries attempted before giving up
and any thread sleep time between attempts.

The following is a simplified example of a retry mechanism written in Java to serve as
a guide. It employs a helper class, RetryOnException.

/**
 * Encapsulates retry-on-exception operations
 */
public class RetryOnException {
 public static final int DEFAULT_RETRIES = 30;
 public static final long DEFAULT_TIME_TO_WAIT_MS = 2000;

 private int numRetries;
 private long timeToWaitMS;

 // CONSTRUCTORS
 public RetryOnException(int _numRetries,
 long _timeToWaitMS)
 {
 numRetries = _numRetries;
 timeToWaitMS = _timeToWaitMS;
 }

 public RetryOnException()
 {
 this(DEFAULT_RETRIES, DEFAULT_TIME_TO_WAIT_MS);
 }

Chapter 3
Use the REST API in Applications

3-3

https://apexapps.oracle.com/pls/apex/f?p=44785:112:120931940834304::::P112_CONTENT_ID:19420
https://apexapps.oracle.com/pls/apex/f?p=44785:112:120931940834304::::P112_CONTENT_ID:19420
https://apexapps.oracle.com/pls/apex/f?p=44785:112:120931940834304::::P112_CONTENT_ID:19419
https://apexapps.oracle.com/pls/apex/f?p=44785:112:120931940834304::::P112_CONTENT_ID:19419
https://apexapps.oracle.com/pls/apex/f?p=44785:112:11033074175771::::P112_CONTENT_ID:21943

 /**
 * shouldRetry
 * Returns true if a retry can be attempted.
 * @return True if retries attempts remain; else false
 */
 public boolean shouldRetry()
 {
 return (numRetries >= 0);
 }

 /**
 * waitUntilNextTry
 * Waits for timeToWaitMS. Ignores any interrupted exception
 */
 public void waitUntilNextTry()
 {
 try {
 Thread.sleep(timeToWaitMS);
 }
 catch (InterruptedException iex) { }
 }

 /**
 * exceptionOccurred
 * Call when an exception has occurred in the block. If the
 * retry limit is exceeded, throws an exception.
 * Else waits for the specified time.
 * @throws Exception
 */
 public void exceptionOccurred() throws Exception
 {
 numRetries--;
 if(!shouldRetry())
 {
 throw new Exception("Retry limit exceeded.");
 }
 waitUntilNextTry();
 }
}

Here is a Java method, getWithRetries, that illustrates how to wrap a REST GET
operation in the retry handler. CACHE_NAME is a String variable that holds the name of the
cache to access. You should tune the retries and retrySleep parameter values for
your application. Testing suggests that connectivity exceptions occur in a window of
about 5 seconds at most, so reasonable starting values for retries and retrySleep
might be 20 and 500, respectively.

 /**
 * getWithRetries
 * Issues a REST GET with retries. Throws Exception if the
 * GET could not succeed after retries attempts.
 * If the GET was successful, but returned anything other than an HTTP 200
 * status, return null;
 * If successful, returns the value.
 * @param target WebTarget for the REST call
 * @param key The cache key to fetch
 * @param retries Number of retries to attempt
 * @param retrySleep Sleep time in milliseconds between each attempt
 * @return String value, or null if the GET did not return an HTTP 200 code
 * @throws Exception

Chapter 3
Handle Connection Exceptions with Retries

3-4

 */
 public String getWithRetries(WebTarget target,
 String key,
 int retries,
 long retrySleep) throws Exception
 {
 Response getResponse = null;
 boolean success = false;
 int getStatus;

 // For handling retries
 RetryOnException retryHandler = new RetryOnException(retries, retrySleep);

 while(true) {
 try {
 getResponse = target
 .path(CACHE_NAME + "/" + key)
 .request(MediaType.APPLICATION_OCTET_STREAM)
 .get();
 }
 // Catch exception and retry.
 // If beyond retry limit, this will throw an exception.
 catch (Exception ex)
 {
 retryHandler.exceptionOccurred();
 continue;
 }

 // If the status is not a 200, return a NULL.
 // Otherwise, exit the loop to return the value.
 getStatus = getResponse.getStatus();
 if(getStatus != 200)
 {
 return null;
 }
 else
 {
 break;
 }
 }

 // Return the result
 return getResponse.readEntity(String.class);
 }

Chapter 3
Handle Connection Exceptions with Retries

3-5

4
Referencing Caches in Deployed
Applications

This section describes how to create service bindings to caches in Oracle Application
Container Cloud Service.

Reference a Cache During Application Deployment
Specifying a cache service for your application during deployment is recommended.

Deploying an application to Oracle Application Container Cloud Service is fully
described in Creating an Application in Using Oracle Application Container Cloud
Service.

When you select a cache service during deployment, the corresponding
CACHING_INTERNAL_CACHE_URL environment variable is automatically added to the
Environment Variables list. See The Cache URL Environment Variable.

Reference a Cache After Application Deployment
To reference a cache service in an already application deployed, you use a service
binding.

Service bindings are fully described in Managing Service Bindings in Using Oracle
Application Container Cloud Service, and The Cache URL Environment Variable.

4-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Resources
	Conventions

	1 Getting Started with Caches
	About Caches in Oracle Application Container Cloud Service
	Typical Workflow for Creating and Using Caches
	Access Caches in Oracle Application Container Cloud Service

	2 Creating and Managing Caches
	Explore the Cache Services Page
	Create a Cache Service
	Explore the Cache Service Overview Page

	3 Using Caching APIs in Applications
	The Cache URL Environment Variable
	Use the Java API for Caching
	Use the REST API in Applications
	Handle Connection Exceptions with Retries

	4 Referencing Caches in Deployed Applications
	Reference a Cache During Application Deployment
	Reference a Cache After Application Deployment

